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JURY
Christine Fernandez Professeure d’Université Rapporteure
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Carole Lartizien Directrice de Recherche Examinatrice
Nicolas Passat Professeur d’Université Examinateur
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Résumé

Les maladies neurovasculaires et neurodégénératives liées à l’âge sont en forte augmentation. Alors

que ces changements pathologiques montrent des effets sur le cerveau avant l’apparition de symp-

tômes cliniques, une meilleure compréhension du processus de vieillissement normal du cerveau aidera

à distinguer l’impact des pathologies connues sur la structure régionale du cerveau. En outre, la con-

naissance des schémas de rétrécissement du cerveau dans le vieillissement normal pourrait conduire

à une meilleure compréhension de ses causes et peut-être à des interventions réduisant la perte de

fonctions cérébrales associée à l’atrophie cérébrale. Par conséquent, ce projet de thèse vise à détecter

les biomarqueurs du vieillissement normal et pathologique du cerveau dans un modèle de primate

non humain, le singe marmouset (Callithrix Jacchus), qui possède des caractéristiques anatomiques

plus proches de celles des humains que de celles des rongeurs. Cependant, les changements struc-

turels (par exemple, de volumes, d’épaisseur corticale) qui peuvent se produire au cours de leur

vie adulte peuvent être minimes à l’échelle de l’observation. Dans ce contexte, il est essentiel de

disposer de techniques d’observation offrant un contraste et une résolution spatiale suffisamment

élevés et permettant des évaluations détaillées des changements morphométriques du cerveau asso-

ciés au vieillissement. Cependant, l’imagerie de petits cerveaux dans une plateforme IRM 3T dédiée

à l’homme est une tâche difficile car la résolution spatiale et le contraste obtenus sont insuffisants

par rapport à la taille des structures anatomiques observées et à l’échelle des modifications attendues.

Cette thèse vise à développer des méthodes de restauration d’image pour les images IRM préclin-

iques qui amélioreront la robustesse des algorithmes de segmentation. L’amélioration de la résolution
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spatiale des images à un rapport signal/bruit constant limitera les effets de volume partiel dans les

voxels situés à la frontière entre deux structures et permettra une meilleure segmentation tout en

augmentant la reproductibilité des résultats. Cette étape d’imagerie computationnelle est cruciale

pour une analyse morphométrique longitudinale fiable basée sur les voxels et l’identification de mar-

queurs anatomiques du vieillissement cérébral en suivant les changements de volume dans la matière

grise, la matière blanche et le liquide cérébral.
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Abstract

Age-related neurovascular and neurodegenerative diseases are increasing significantly. While such

pathological changes show effects on the brain before clinical symptoms appear, a better understand-

ing of the normal aging brain process will help distinguish known pathologies’ impact on regional

brain structure. Furthermore, knowledge of the patterns of brain shrinkage in normal aging could lead

to a better understanding of its causes and perhaps to interventions reducing the loss of brain func-

tions. Therefore, this thesis project aims to detect normal and pathological brain aging biomarkers in

a non-human primate model, the marmoset monkey (Callithrix Jacchus) which possesses anatomical

characteristics more similar to humans than rodents. However, structural changes (e.g., volumes,

cortical thickness) that may occur during their adult life may be minimal with respect to the scale of

observation. In this context, it is essential to have observation techniques that offer sufficiently high

contrast and spatial resolution and allow detailed assessments of the morphometric brain changes

associated with aging. However, imaging small brains in a 3T MRI platform dedicated to humans

is a challenging task because the spatial resolution and the contrast obtained are insufficient com-

pared to the size of the anatomical structures observed and the scale of the xpected changes with age.

This thesis aims to develop image restoration methods for preclinical MR images that will improve

the robustness of the segmentation algorithms. Improving the resolution of the images at a constant

signal-to-noise ratio will limit the effects of partial volume in voxels located at the border between

two structures and allow a better segmentation while increasing the results’ reproducibility. This

computational imaging step is crucial for a reliable longitudinal voxel-based morphometric analysis
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and for the identification of anatomical markers of brain aging by following the volume changes in

gray matter, white matter and cerebrospinal fluid.
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Healthy aging is defined as a process that involves functional and cognitive decline and decreased

long-term memory without diseases. However, the high risk of neurodegenerative diseases to ac-

company normal aging process requires a better understanding and quantification of biomarkers of

cerebral aging. This helps to distinguish age-related diseases from normal aging and facilitate their

treatment. The advances in neuroimaging allowed the study of the macro-structural changes occur-

ring in the brain throughout the life span. In particular, the development of magnetic resonance

scanners increased its value as a primary tool for the study of age-related changes in the brain. Due

to ethical and practical limitations, researchers investigated animal models possessing homologous

brain changes to humans. In this chapter, we will introduce the concept of cerebral aging. Then, we

3
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will provide a general overview of the basics of magnetic resonance imaging and voxel based mor-

phometry analysis that will be further used to detect statistically significant changes in the aging

brain. Since this research work is a preclinical study, we will highlight the idea of using animal

models for brain age research. Finally, we will present the motivations of the research work and the

context of the manuscript.

1.1 Cerebral aging

Globally, life expectancy has been increasing dramatically in the last two centuries due to the increase

in the individual’s life quality and the advancing technologies. Therefore, researchers are focusing

on not only increasing the life span but also on establishing healthy aging that guarantees an im-

proved life quality free of age-related diseases. However, elderly people experience more difficulties

in performing daily tasks and eventually lose their autonomy, independence and functional capacity

[1, 2]. Since functional capacity is linked with brain structure, a detailed knowledge of healthy brain

development is crucial for better understanding of changes that occur as one ages (Figure 1.1).

Figure 1.1: Functional capacity with respect to life time course. Figure is collected from [2].

While the brain develops in a complex series of dynamic and adaptive processes, an understanding

of the aging process is the first step towards following and treating a broad spectrum of brain
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disorders linked to aging, such as learning disability, Parkinson’s, and Alzheimer’s diseases [3]. These

neurodegenerative diseases induce alterations in the brain that can be observed before the clinical

symptoms of the disease appear (Figure 1.2). Thus, a better definition of the normal aging biomarkers

and age-related patterns of change helps to intervene early to slow the effects of the brain shrinkage

on the population. It also leads to a better identification and distinguishing of the neurodegenerative

diseases and their effects on the brain [4]. Detecting structural brain changes will thus allow to

relate them with functional, cognitive, and behavioral changes and understand the pathways and

mechanisms associated with aging, which will help in increasing life span and, more importantly,

health span.

Figure 1.2: Effects of aging and neurodegenerative diseases on the brain. Figure is collected from
www.ndcn.ox.ac.uk/research/neurodegeneration-imaging.

Cerebral aging, as defined in [5], is a complex and heterogeneous process that is associated with

a high degree of inter-individual variability due to neuronal and synaptic alterations inducing func-

tional and network disruptions and particularly affecting brain regions such as the hippocampus

and prefrontal areas. Such age-related brain changes differ in their location, severity, and extent

and are associated with loss in sensation, cognition, memory, and motor control. Based on post

mortem and in vivo studies, researchers believe that the brain changes with age, and more specif-

ically shrinks, with the intersubject variability and the extent of these changes still being elusive

[6]. Thus, the brain undergoes several structural changes that reflect the normal aging process and
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are therefore not necessarily pathologic. Assessment of these changes becomes necessary and can be

investigated by the quantitative study of cerebral tissue volumes. Postmortem studies of cultivated

brain slices from healthy human brains have shown a great potential in detecting brain tissues that

had undergone pathological changes with age [7, 8]. However, postmortem analyses present some

methodological constraints that may affect the study’s results, such as the small sample size, the

interval between death and fixation, the timing of measurement, inclusion or exclusion of the brain

stem and meninges, and the ratio of the brain weight to body weight [6]. With the development of

advanced and powerful neuroimaging tools, traditional postmortem analysis has been replaced by

non-invasive in-vivo technologies. This allows to overcome the mentioned limitations and to study a

larger sample of brains at all ages.

Various imaging techniques have proven to be effective in the neuroimaging field. The develop-

ment of X rays, Computed Tomography (CT), Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) have shown some progress, but their dependence

on ionizing radiations presents some limitations for the repeated study of healthy subjects. Magnetic

Resonance Imaging (MRI), Functional MRI (fMRI), Magnetic Resonance Spectroscopy (MRS) and

Magnetoencephalography (MEG) are better suited for the structural and functional study of the

brain with the possibility of having repeated measures since they do not involve ionizing radiations

or radioactive isotopes and thus do not present any biological hazard [9]. An effective evidence of

age-related changes in the brain has been well characterized using structural and functional MRI.

In particular, structural MRI enables the detection of anatomical alterations and brain structure

differences contributing to the cognitive and functional symptoms of normal aging [5, 10].

Quantitative cerebral tissue volumes are important for the assessment of age-related changes in

the brain. A vast number of cross-sectional and longitudinal studies has been dedicated for the study

of whole and regional brain changes associated with normal brain aging. The tissue-based analysis

of the brain’s main compartments i.e., gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF), demonstrates evidence of brain changes with age [11]. Volumetric GM analysis can

reveal cortical and subcortical atrophy patterns and brain networks exhibiting GM loss. Unlike the

extensive researches conducted for GM changes with age, the analysis of aging effects on the WM
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region remained sparse due to its complexity [12]. However, postmortem and in-vivo MRI studies on

age-related changes present conflicting results in the extent, location and severity of these changes

mainly due to the difference in the studied population and the study design [8, 13]. Factors such as

sexual dimorphism and brain asymmetries may also affect the results of the aging study. Therefore,

it becomes essential to have a powerful examination tool and an accurate segmentation technique for

the correct monitoring of structural changes in the brain tissue volumes.

1.2 Animal models in aging research

As researchers’ interest in understanding the normal aging processes and their effects on the human

brain increases, this task remains challenging. The long life span of the human being and the ethical,

practical, environmental, and social limitations accompanying the investigation of the human brain

renders using humans for experiments and research impractical. A possible alternative for the human

aging study is thus to investigate animal species that exhibit similar aging processes to be used as

models for therapeutic treatments [14].

1.2.1 Animal models

Researchers are elaborating their work on which animal models to use for study of aging of the human

brain. There are several aspects to consider before conducting aging research on animals, including

the animal’s genetic basis, the physiological pathways regulating the rate of aging, and identifying

factors that influence the life span.

Organisms The first primitive organisms that have been used in aging studies are yeast, round-

worms, and fruit flies. Although these organisms are not considered animals, they possess genetic and

cellular characteristics that aided the aging research. For instance, such models have been helpful

to conclude the effect of restriction of caloric intake in increasing the life span of animal species and

detecting the genes that may delay the aging process [14, 15].
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Rodents Preclinical research has then turned its interest towards the investigation of mammals

that are closer to human beings. Rodents, such as mice and rats, have been the main subjects

of interest for scientists in human aging researches. Advantages of using rodents in aging studies

include the deep knowledge about their biology, the convenience of use, the capacity to regulate their

environmental factors, the ability to manipulate their genes and their short life span that makes

them easier to study than the long-lived animals. Results showing that dietary and genetic changes

in mice can slow aging have favored the importance of this model for human aging. However, several

concerns are raised concerning rodents as an aging model, of which the significant difference in the

biological aging between rodents and humans, the fact that they don’t develop several important

age-related diseases naturally, and that rodents may be distantly related to humans [14–18].

Non-human primates (NHP) Since the complexity of the human physiology can not be repli-

cated using simple organisms or rodent models, the interest in NHP as models of human brain aging

began to grow. NHP are the most logical and appreciated models for the aging study. Preclinical

NHP models offer a link between research and clinical applications as they offer findings that are

highly translatable to human health issues. The advantages of using NHP as animal models include

their long-average life span, the human resemblance in naturally occurring age-associated diseases,

and the trade-off between limitations of using rodents or humans in the aging study. Several species

have been investigated as a possible model for human brain aging, including the common marmoset,

the squirrel monkey, the macaque, the vervet monkey, the baboon and the chimpanzee. Other alter-

native vertebrate aging models have been also reported in the literature, such as fish, dogs, cats, and

birds [14, 19].

Old world monkeys, Rhesus Macaques (Macaca Mulatta), exhibit an aging process similar to

a human with an aging rate three times faster, as they age at 20 years and show signs of physical

decline. Macaques have been the prime focus of aging research as they are well adapted to laboratory

research and show genetic, endocrinological, physiological, neuroanatomical, and cognitive similarities

to humans. Despite the encouraging traits rendering macaques an important NHP model of aging,

several drawbacks limit their use, including their heavyweight and strength, the need for sophisticated
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equipment to navigate their daily life, the potential of aggressive behavior, their ability to carry

and transmit pathogens, and the expensive cost for the aging study [16]. Apes have also provided

interesting findings in the field of aging research. Chimpanzees show more than 98% similarity with

humans at the DNA level, which made them the most common used apes in the biomedical research.

Reduction in gray and white matter volumes with age have been one of the most relatable results

to the aging process in the human brain. However, the use of Chimpanzees was further limited due

to ethical principles stated by the National Institute of Health (NIH) [16]. Among the new world

monkeys, the common marmoset (Callithrix jacchus) is being investigated as a promising model for

the aging research. To summarize, Table 1.1 presents the main characteristics of the NHP, and Table

1.2 summarizes the advantages and limitations of using different NHP in the aging study.

Table 1.1: Characteristics of NHP used in aging research. This table has been collected from [16]

Model
Average adult weight

(kg)

Average life span

(years)

Maximim life span

(years)

Grey mouse lemur 0.06 - 0.12 8 - 10 18

Common marmoset 0.35 - 0.40 7 - 8 21

Squirrel monkey 0.60 - 1.30 20 30

Macaques 5 - 10 26 40

Vervet monkey 3 - 7 20 31

Baboon 12 - 25 30 38

Chimpanzee 40 - 65 30 65
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1.2.2 The Common marmoset

In the study of aging and age-related diseases, researchers aim to establish shorter studies on small-

bodied short-lived NHP. A small new world primate, the common marmoset (Callithrix jacchus),

has been recognized as an effective model for neuroscience, infectious disease, behavioral research,

obesity, and reproductive biology. As an NHP model, the common marmoset offers many advantages

that render it a popular and effective aging model. With early maturation, short life span, and rapid

life history, the use of marmosets allowed researchers to perform a longitudinal aging assessment at

shorter scales from young adulthood to old age. Their human-like cooperative breeding structure and

their small sizes make them easier to handle and maintain since they need smaller space compared to

macaques. However, some difficulties accompany the research work conducted on marmosets. The

primary cause of marmoset death has been reported to be bacterial infection, with a linear death rate

across middle age not observable in humans or other NHP species. In addition, aging in marmosets

may be associated with an increased risk of cardiovascular and renal diseases. Therefore, studying

the marmoset population and increasing their survival rate require maintaining the animals in barrier

conditions to decrease their exposure to infectious agents and pathogens [3, 19].

Figure 1.3: Comparison of developmental epochs between marmosets and humans during their life
spans. Figure is collected from [20].

The marmoset brain is an isometrically scaled version of the human brain in terms of weight and

number of neurons. With a weight of 8g, its brain is 11 times smaller than that of macaques (90g)
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and 190 times smaller than that of humans 1500g (Figure 1.4) [21]. Since its discovery, the marmoset

brain model has been used to reflect neurodegenerative diseases of the human brain. The interest in

marmoset brain studies increased mainly due to the features analogous to the human brain, especially

in regions such as the temporal lobe, the sensory cortices, and the prefrontal cortex. Not only does

the marmoset share similar age-related diseases and conditions as humans, but researchers have also

found evidence of neurogenesis that occurs before old age. Since marmosets are capable of learning

and performing simple cognitive tasks, they are well adapted for the study of disease progression

[22, 23]. Thus, the marmoset model has been thoroughly evaluated as a model for Parkinson’s,

Alzheimer’s, Huntington’s diseases, and multiple sclerosis [3, 19, 21].

Figure 1.4: Marmoset brain compared to macaques and humans brains in terms of size and number
of neurons. This figure is collected from [21] and originally adapted from [24].

The lissencephalic (smooth) cortex of the marmoset brain offers advantages for developing tech-

niques to explore neural processes and their underlying natural behaviors since all cortical substrates

are on the surface directly under the skull. However, invasive procedures may cause damage to the

brain due to electrode placement and injections. The use of non-invasive imaging techniques, such as

MRI, provides an alternative for translational insights in neuroscience and opens the path to answer



1.3 - Magnetic Resonance Imaging 13

many open questions in research.

1.3 Magnetic Resonance Imaging

Clinical neuroimaging has been one of the most useful tool in the diagnosis and detection of patholo-

gies associated to neurodegenerative diseases. In the context of detection of age-related changes

in the brain, it is important to have observation techniques allowing sufficiently high contrast and

spatial resolution. MRI provides high soft tissue contrast and presents the best imaging modality for

measuring volumes of brain regions and its constituents [25].

1.3.1 Basics of MRI

MRI is a non-invasive technique widely used for imaging of humans and animals (Figure 1.5). The

Nuclear MR phenomenon was first described and measured by Isidor Rabi in 1938 [26] and then

expanded by Felix Bloch and Edward Mills Purcell in 1946 [27, 28]. A fundamental property is that

nuclei with odd atomic weights and/or odd atomic numbers, such as 1H, 13C, and 23Na, possess

an angular momentum which is often called spin which creates a magnetic field around it called the

magnetic moment. In the presence of an external magnetic field B0, the hydrogen nuclear spins are

aligned in two energy states: parallel and anti-parallel. The angular frequency ω0 of the nuclear

precession is proportional to the external magnetic field according to Larmor equation: ω0 = γB0 ,

where γ is the gyromagnetic ratio. The spin population difference between the two states generates

an observable macroscopic magnetization vector −→M that points along the positive direction of the

external magnetic field.

As a radio frequency (RF) field B1 with frequency ω0 is applied, the spins are excited and

the magnetization vector −→M , initially in the z-plane, is tilted towards the xy-plane. As a result,

magnetization transverse component −→Mxy increases. Meanwhile, its longitudinal component −→M z

decreases and may totally disappear. A pulse which rotates the magnetization vector by a certain

flip angle α is often referred to as an α-pulse (Figure 1.6). After RF excitation, the magnetization

returns to its original state: this phenomenon is called relaxation. We can distinguish two types
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Figure 1.5: MRI machine setup for image acquisition showing its different components. Figure is
collected from www.orthopaedicdoctor.com.sg/magnetic-resonance-imaging/.

of relaxations: the spin-lattice relaxation, characterized by relaxation time T1 and describing the

recovery of the longitudinal magnetization caused by energy exchange between the protons and the

surrounding environment (Figure 1.7a), and the spin-spin relaxation, characterized by relaxation time

T2 describing the loss of transversal magnetization (Figure 1.7b). Since the decrease in transversal

magnetization is caused by the exchange of energy with the environment and energy changes between

spins, T2 is smaller than T1 [29]. At the end of the RF pulse, a free induction decay (FID) signal

is produced, this is the MR signal. While the MR signal is supposed to decay with a time constant

T2, the process happens more quickly with a shorter effective time constant T2
∗. For instance, a spin

echo sequence gets back the lost signal using a 180-degree pulse applied at time τ after a 90-degree

RF pulse, and a spin echo is generated after an echo time TE = 2τ . However, this is a basic sequence

in MRI. In practice, marmoset MR images are acquired using the gradient echo sequence (Figure

1.8). A negative gradient pulse applied directly after the RF pulse dephases the spin frequencies.

When the polarity of the gradient is reversed, the precessing spins will be in phase again. Therefore,

the gradient echo is the measured echo during the rephasing of the FID. The echo time for a gradient

echo has to fit into the T ∗2 time. This is why the gradient-echo technique is faster than the spin-echo

technique [30].
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Figure 1.6: In equilibrium, the magnetic moments align themselves along the static magnetic field
B0. After excitation with the RF pulse, the spins are tilted into the xy-plane and precess with the
Larmor frequency ω0. Figure is collected from [29].

(a) Recovery of longitudinal magnetization (b) Decay of transverse magnetization

Figure 1.7: Recovery of longitudinal magnetization (a) and decay of the transverse magnetization
(b) are exponential processes characterized by the time constants T1 and T2 for exponential growth
and decay respectively. After the RF-pulse, spins that were phase coherent producing a signal in the
receiver coil start to get out of phase again. Figures were collected from [30].
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Figure 1.8: Illustration of a Gradient echo sequence achieved using a gradient pulse. Figure is
collected from [30].

There are different types of gradient-echo sequences applied in clinical practice. The advantage

of a gradient-echo sequence is the possibility to decrease repetition time TR by using a reduced flip

angle α of less than 90 degrees. In this case, only part of the magnetization −→M is converted into a

transverse magnetization −→Mxy. On the other hand, the longitudinal magnetization is not zero after

such an α-pulse, but continues to have a reduced magnitude −→M z [30].

1.3.2 Image formation

The detected MR signal is proportional to the density of all excited proton spins within the reception

range of the RF coil. To form the MR image, spatial encoding is introduced by the use of additional

gradient coils along with main magnetic field B0 in x, y and z directions as introduced by Lauterbur

in 1973 [31]. By switching them separately or together, a spatial dependent magnetic field can be

created (Figure 1.9).

The final image is not directly formed from the signal produced. The use of these additional

gradients and a suitable signal processing method produces raw data from which the final image is
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(a) Slice selection (b) Oblique slice selection

Figure 1.9: For sagittal, coronal or axial slice selection (a), a gradient along x, y or z is switched on.
We can then obtain an oblique slice (b) by switching two or three gradients simultaneously. Figure
is collected from [30].

computed. Since the MR signal is made up of a mixture of signals resulting from all excited spins,

gradients help distinguish these spins from each other and allow the formation of the raw data [30].

Slice selection In order to select a slice of the scanned object, a gradient, called the slice selection

gradient GS , is switched along the z-direction. A RF-pulse of a bandwidth ∆ω0 can excite a slice

thickness ∆z0. While maintaining ∆ω0 constant, the thickness of the slice can be varied according

to the ramp slope of the applied gradient (Figure 1.10a). Only within the selected slice a transverse

magnetization is created [30].

Frequency encoding During the measurement of the spin echo, a gradient is switched along the

x-direction allowing the spins to precess along the x-axis with increasing frequencies. This process

is called frequency encoding (Figure 1.10b). Application of Fourier transform (FT) allows then to

determine the signal’s contribution and the exact localization of the frequency component along the

x-axis. The strength of the signal detected defines the gray intensity level in the final image. During

the formation of the image matrix, the line voxels are defined by switching this frequency gradient
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(GF ) [30].

Phase encoding In fact, two different voxels may have the same frequency and thus could not be

distinguished from each others. To further form the whole matrix, a brief gradient along the y-axis

is introduced and the spins precess now at different speeds (Figure 1.10b). After the gradient is

switched off, these spins show different phase shifts. FT is also used to separate these phase shifts as

well. The associated gradient with the formation of multiple lines of voxels is then called the phase

gradient (GP ) [30].

(a) Slice selection gradient (b) Frequency and phase encoding

Figure 1.10: For slice selection, frequency encoding, and phase encoding, magnetic field gradients
are applied along z, x, and y axes respectively. The raw data is then collected from the signals
detected. Figure is collected from [30].

The pulse sequence has to be repeated until all phase-encoding steps of the scan matrix have

been acquired. The time interval between the repetitions is called repetition time TR. TE and TR

are important parameters for controlling the contrast of MRI images.
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MR image The signal matrix, filled line by line from echoes, is preprocessed to form the raw data

matrix, i.e. the k-space. The application of the FT enables to transform the raw data of the k-space

into gray value distributions in the image. Low spatial frequencies at the center of the k-space define

the structure and contrast of the formed image whereas high spatial frequency components far from

the center define its resolution (Figure 1.11) [30].

Figure 1.11: Raw data versus image data. Note that a point data in the k-space does not correspond
to a pixel in the image. Rather, each part of the k-space contains information of the whole image.
Figure is extracted from [30].
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1.3.3 MR image contrast

Because of their dependence on the individual sample material, T1 and T2 offer a powerful tool to

distinguish human tissues in clinical MRI. Different tissue types show different relaxation times and

this is the key of sharp image contrast obtained with MR (Figure 1.12).

(a) T1 relaxation (b) T2 relaxation

Figure 1.12: Different tissues have different T1 and T2 relaxation times offering high contrast images.
Figure is collected from [30].

MRI contrast can be determined based on the difference in the number of protons per voxel,

the speed of transverse relaxation or the speed of longitudinal relaxation according to the selected

parameters (TE and TR) during the MRI acquisition. Therefore, signals with different contrast can

be generated. We can distinguish three important combinations of TE and TR resulting in different

contrasts (Figure 1.13):

• TR short, TE short −→ T1 contrast (T1-weighted)

• TR long, TE long −→ T2 contrast (T2-weighted)

• TR long, TE short −→ Proton Density (PD) contrast

The MR tissue contrast visualized in the final image depends on the sequence chosen. For example,

a tissue with long T1 and T2 is dark in the T1-weighted images while bright in T2-weighted images.

Whereas, a tissue with a short T1 and a long T2 is bright in the T1-weighted image while gray in the
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T2-weighted image. Figure 1.14 shows a comparison of the effect of different sequences and contrasts

on the structures’ appearance in the final image formed.

(a) T1 contrast (b) T2 contrast (c) PD contrast

Figure 1.13: Three types of contrast distinguished: T1 contrast (a), T2 contrast (b) and PD contrast
(c). Figure is collected from [30].

Figure 1.14: Effect of different contrasts on tissue appearance on an axial slice of the human brain.
Figure is extracted from [30].
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1.3.4 Structural brain MRI

Structural MRI provides static anatomical information used in research and clinical practice. It

reveals signals of pathological processes and morphological characteristics by providing information

to qualitatively and quantitatively describe the shape, size, and integrity of gray and white matter

structures in the brain. Morphometric techniques measure the volume or shape of brain structures

such as GM, WM, CSF, as well as the cortical thickness. Since brain function depends on the

integrity of brain structures, measures that characterize the underlying tissue integrity also allow one

to examine the impact of tissue loss or damage on functional signals. For example, morphological

modifications due to aging can generally be assessed with structural MRI. Furthermore, structural

MRI provides an anatomical reference for visualization of activation patterns and regions of interest

to extract functional signal information.

Many techniques are used in structural MRI including high resolution T1, T2, and T2
∗ weighted

imaging, magnetization transfer imaging, and diffusion imaging [32]. Because they provide excellent

anatomical details, T1-weighted volume scans have become a central component of scanning pro-

tocols for structural imaging as they are the most useful and informative structural MRI method.

Applications of T1–weighted imaging include the quantification of signal changes in lesions (based

on serial scanning and high-precision image registration), the analysis of cortical morphology, the

quantitative analysis of surgical resections and correction of the partial volume effect in magnetic

resonance spectroscopy [33]. Given that T1-weighted sequences generate images that typically maxi-

mize the contrast difference between different brain tissues (Figure 1.15), they have been well suited

for the detection of the subtle volumetric brain changes by the segmentation and quantification of

the shape and volume of these tissues. T1-weighted images provide a good contrast between GM

appearing in gray, WM appearing in white, and CSF being black. However, bone region (skull) can

not be distinguished from the CSF on T1-weighted images and requires additional head CT scans to

be performed in order to separate these regions.
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Figure 1.15: Example of a structural T1-weighted slices of the human brain. It shows the
good contrast provided between the GM and WM tissues. Figure is collected from cfmri-
web.ucsd.edu/Howto/3T/structure.html.

1.3.5 MRI of the marmoset brain

In general, the marmoset brain can be imaged with specialized MRI scanners dedicated to rodents.

These scanners are characterized by high field strength (4.7− 11.7 T) and customized RF coils that

produce high resolution MR images with high signal to noise (SNR) ratios outperforming human

brain scanners. While commercially available coils and the adapted sequences for rodents may not

be practical for large-headed marmosets, it is possible to acquire these images using clinical MRI

scanners dedicated to humans. Utilizing small receiver coils, such as those dedicated for the wrist

or knees, and adapted MRI sequences from the human brain can help maintain good signal quality

and resolution of structural marmoset brain images. Therefore, the acquisition of structural brain

images of the marmosets is feasible with standard MRI scanners without the need for commercial

platforms dedicated for animals. However, the major challenge remains in reducing the head motion

of the marmoset during the whole procedure to acquire high quality images. Thus, it is necessary to

resort to anesthetic regimes and adapt the acquisition sequences according to the anesthetic duration.

In general, isotropic structural T1-weighted images of 0.4mm resolution best compromises between

SNR and anatomical details with a fast sequence for the anesthetized animal. MRI provides similar

structural data across all species and it remains necessary to establish a data analysis procedure

adapted to the marmoset brain taking into consideration possible artifacts from the sequence used
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and the animal examined, as well as the brain extraction parameters [34, 35].

1.3.6 MRI artifacts

During image acquisition, some structures appear in the image that do not really correspond to

any spatial distribution in the image plane and may be confused with a pathology; these are the

artifacts. Artifacts may result either from the hardware or from the interaction of the subject with

the hardware resulting in image quality reduction. MR images are prone to different kinds of artifacts

that can belong to one of these groups [36, 37]:

1. Subject- and tissue-related artifacts

• Ghosting and smearing artifacts due to motion during acquisition (respiration, heart rate,

blood flow, eye movement, sudden subject movement, etc..)

• Contour artifacts (black boundary) caused by chemical shifts at the lipid - water interface

• Relief artifacts caused by chemical shifts of voxels with direct transition between tissues

• Distortion artifacts caused by altered or shifted signal intensities due to local field inho-

mogenity especially in susceptible areas of transition between tissues and bones

2. System-related artifacts

• Image Distortion artifacts due to the magnetic field inhomogenity, gradient non-linearity

or presence of ferromagnetic materials near the acquisition field

• RF image interference due to the presence of RF pulses from external sources

3. Use- and application-related artifacts

• Truncation artifacts and data sampling due to abrupt signal transition in tissues that

appear in high contrast tissue interfaces

• Aliasing (wrap around) artifacts that occur when the tissue is outside the field of view

but within the sensitive volume of the coil
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Several proposals have been made to reduce the effects of these artifacts on the resulting image of

which we mention:

• reduce patient movement or perform fast acquisitions

• adjust acquisition parameters during the examination

• perform in-phase and opposed-phase MR to reduce contour artifacts

• use different acquisition sequences to suppress the effect of distortion

• correct images during reconstruction for magnetic field inhomogenity

• apply filtering or increase the size of the measurement matrix to reduce truncation effects

• double the sampling points or increase the field of view to reduce aliasing

It remains crucial to understand the type and the source of artifacts during image acquisition to be

able to reduce their effects on the image. Moreover, it is important to take them into consideration

during the interpretation of the images to avoid mixing them up with normal or pathological changes.

However, if these artifacts were inevitable during the acquisition phase, post processing of the images

remain the final solution for image enhancement and better quantification of the results.

1.4 Voxel-Based Morphometry

Advancing age is associated with structural changes and brain shrinkage that can be different across

different regions in extent and severity. Identification of these changes is an important step to

recognize the underlying pathological changes and neurodegenerative diseases. Each of these diseases

exhibits loss of tissue brain and abnormal changes that are well detectable using MRI. Old methods,

including delineation of region of interest, manual measurement of atrophy, or visual inspection by

radiologists, are time-consuming and prone to errors. Voxel based morphometry (VBM) [38] is an

automatic technique well suited for the statistical estimation of tissue brain atrophies for large groups

of subjects. Accordingly, VBM techniques have facilitated the detection of brain alterations occurring
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through life time by defining regional pattern changes of GM and WM. Such studies can be conducted

in a cross-sectional (for a group of subjects) and longitudinal (within the same subject) manners [39].

VBM is the voxel-wise study of the local volume and concentration of gray matter between

different scans. It works on structural T1-weighted images that are further segmented into GM, WM

and CSF and requires a statistical analysis usually based on a general linear model. Prior to any

analysis, raw MR images should follow a common general process of four steps [38, 40]:

1. segmentation of the brain volume into its main compartments; GM, WM and CSF

2. normalization of the individual segmentation into a stereotactic space to correct for differences

in brain shape and dimension allowing the direct comparison between brains

3. modulation of the normalized segments to a common template to compensate for volume

changes during normalization

4. smoothing the segmented volumes to reduce inter-individual variability and to make sure the

residuals follows a normal distribution (which is the basic assumption of VBM work)

While applying a VBM protocol requires to follow standard steps in order to achieve the final

statistical results, choosing the appropriate tools for performing the above tasks remains necessary.

The choice depends on the quality of MR images acquired and the studied group of subjects. For

instance, longitudinal studies require specific additional steps that take into account intra-individual

variability. Moreover, the process should consider the studied species, whether human or animal

models, upon choosing the appropriate tools.

1.5 Motivations and context

1.5.1 Motivations

The marmoset monkey shows advantages compared to other primate models, with a short lifespan,

or compared to rodent models, with a higher phylogenic and anatomical proximity with the human.

Marmosets are studied longitudinally at CerCo (Centre de recherche Cerveau et Cognition) lab, where
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they are trained for behavioral tasks aimed to investigate cognitive deficits [22, 23]. In parallel, they

are scanned regularly on a 3T MRI scanner to explore possible anatomical alterations of the brain.

However, structural modifications (e.g., volumes, cortical thickness) occurring during adult life can

be very small with respect to the observation scale. The limited resolution and contrast of images

acquired at 3T on small animals (Figure 1.16) make it hard to extract pertinent information using

image processing tools originally dedicated to MR images of the human brain or contrast-enhanced

preclinical images. In general, the spatial resolution in MRI mainly depends on the main magnetic

field power, but increasing the magnetic field is an issue in practical situations for different reasons,

such as the need for a uniform magnetic field pattern during the acquisition time. Moreover, fast

sequences performed to compensate for the time during which the animal is anesthetized affects the

overall quality of the images.

Figure 1.16: Example of axial, coronal and sagittal slices acquired for a marmoset brain on a 3T
MRI platform dedicated to human and large animal research.

To overcome the physical limitations of MRI hardware and the practical conditions of the animal

scanned, this thesis project aims at developing resolution enhancement methods for preclinical MR

images. Such post-processing image restoration methods increase, a posteriori, the spatial resolution

of biomedical images, in our case of MR images. The success of these techniques relies on the precise

mathematical model describing the imaging system, the robustness of prior information on the images

to reconstruct, and the numerical optimization algorithms solving the inverse problem of estimating
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high resolution images from acquired data. Ultimately, this work will help to improve the robustness

and reproducibility of segmentation algorithms, which are crucial steps for a reliable longitudinal

morphometric analysis and the correct identification of cerebral aging anatomical markers. The

longitudinal assessment of the subtle changes accompanying aging will be performed following a

pipeline well-adapted to the available data set of marmoset images. VBM statistical analysis and

modeling brain tissue changes will help identify regions that are mainly affected by the normal aging

process.

1.5.2 Thesis Context and Outline

The objective of this thesis is to propose approaches to tackle the challenges described in Section

1.5.1. To elaborate, we aim to investigate the effectiveness of several image enhancement methods

on the low-resolution (LR) MRI data set of the marmoset brain. Since our final objective is to assess

the compartmental changes occurring in the brain during the life span of the marmoset, we wish to

explore the effect of super-resolution (SR) on the segmentation of brain tissues, i.e., GM, WM, and

CSF. The thesis is structured as follows.

• Chapter 2 will present the theoretical background of image enhancement methods for MR im-

ages, methods for brain segmentation. The first part of this chapter will go through existing

SR methods that start with LR observations and exploit the high-resolution (HR) images start-

ing from the image formation model in MRI. The second part will then present the literature

overview of the basic segmentation tools and techniques for extracting brain tissues and focus

on those used for animal images. Finally, We will elaborate on the concepts of cross-sectional

and longitudinal segmentation methods used in other studies.

• Chapter 3 introduces a method for marmoset brain segmentation from deconvolved MR image

and their associated label maps that does not rely on a brain template or atlas. The proposed

method creates label maps based on modeling the image statistics locally using a Generalized

Gaussian distribution (GGD) and couples the deconvolved image and its corresponding labels

map using the GGD-Potts model. The output labels are further considered as prior maps
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for the deconvolved and the native images used to obtain the final segmentation of the brain

tissues.

• Chapter 4 evaluates several methods for SR of marmoset brain MR images. The first part

of this chapter introduces model-based techniques for the SR task. In particular, we assess

a 2D fast SR method (FSR) and a 3D tensor-factorization (TF) method for general image

reconstruction and compare them to the existing state-of-the-art methods. The second part

covers deep learning networks that have been initially published for the SR of human brain MR

images and trained using a marmoset data set. The results of these methods are evaluated from

a brain segmentation perspective, using a state-of-the-art brain segmentation method applied

to native, LR, and estimated HR volumes.

• Chapter 5 presents a longitudinal segmentation pipeline for the marmoset population and a

structural analysis, including VBM and modelling, of the changes occurring in GM and WM

with age. We will go through the critical findings in the context of changes reported in different

brain regions with aging in the human brain, and compare them to our findings in the marmoset

brain. In order to demonstrate the efficiency of super resolution in improving the study of

morphological brain changes, we will compare the developmental analysis of the native data set

with that of super-resolved volumes using the 2D FSR method and a 3D deep learning method.

• Chapter 6 details the final conclusions of this thesis, presents the limitations of the study

conducted, and states possible future work directions.
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This chapter focuses on describing the background of SR and longitudinal segmentation of MR

images, two frameworks that represent the main objective of this thesis. We will first introduce the

image formation model and the basic theory of model-based image reconstruction for MRI which rep-

resents the basis of the enhancement techniques. Then, we will present the fundamental background

of post-processing techniques reported in the literature for MR image enhancement, starting with

basic deblurring methods and expanding to model-based and deep learning SR techniques. Following

our main objective of improving the brain segmentation for a more accurate longitudinal analysis

of morphological changes with aging, we will further report existing methods for MR longitudinal

segmentation, taking into account the intra-individual variability. Based on the advantages and

limitations of these algorithms, we will finally conclude by highlighting the proposed and adapted

frameworks in this thesis.

31
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2.1 General acquisition model

2.1.1 Image resolution

The spatial resolution of an imaging system is defined as its ability to separate two close source points

[41]. In other words, it is the ability of the system to separate two close targets. In most imaging

applications, an HR image is always desired since it offers more accurate details that facilitate the

medical condition diagnosis. For instance, the spatial resolution of an MRI scanner is determined by

the gradients’ intensities, the digital imaging filter bandwidth, the number of readout points, and the

phase encoding steps. Therefore, a sufficiently HR image can be obtained by decreasing the field of

view (FOV), increasing the number of readout points, increasing the number of phase encoding steps,

increasing the number of coil receiver channels, or increasing the main magnetic field of the MRI

core [42]. In practice, MRI scanners used in medical applications are of strength of 1.5T or 3T with

a typical spatial resolution of 1.5× 1.5× 4 mm3. As higher resolutions are achieved with increasing

the field strength, an isotropic resolution of 250 µm for whole brain T1-weighted images has been

reported using a 7T MRI scanner in [43], and an 80 × 80 × 200 µm3 resolution have been attained

using an 11.7T MRI scanner dedicated to research in [44]. However, hardware improvements and

scanners with higher magnetic fields are not always feasible, and the acquisition parameters limit the

resolution of the images [41, 45].

2.1.2 Image formation model

As mentioned before, the observed images are usually low in resolution limited by the available

hardware and methods of acquisition. Therefore, the first step of understanding the concept of

image enhancement is to model the image formation process that relates the LR observations to the

unobserved HR images. The process includes identifying different operations applied on the original

HR image during its construction phase [45]. The most common model for static images assumes

that the HR image is subject to warping, blurring, and sub-sampling which finally results into the

observed LR image. Figure 2.1 represents an overview of the observation model relating LR to HR

images. Therefore, the k-th LR observation yk can be expressed as a function of the HR image x,
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Figure 2.1: Observation model relating LR to HR images. Figure is collected from [45].

that is sampled at or above the Nyquist rate from a band-limited scene, as:

yk = DBkMkx+ nk, k = 1, ..., p (2.1)

where p is the total number of observed LR images, and for the k-th LR image:

• D is the decimation operator that defines the sampling rates (L1, L2), in horizontal and vertical

directions, of the high-resolution scene

• Bk is the blurring operator, sometimes referred to as the point spread function (PSF) of the

system

• Mk is the geometric transformation operator that brings all the LR input images to the same

base point (reference grid) so that they could be combined

• nk is the white additive noise which exists due to the nature of the imaging device.

Therefore, reconstructing a HR image from the observed LR ones following the observation model

in equation 2.1 requires a proper modelling for these operators depending on the imaging system.

2.2 MRI reconstruction model

Following our desire to investigate the SR problem for the MRI system, the application requires first

to model the MR image reconstruction in order to link it to image restoration techniques. The idea
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has been addressed significantly in the literature [29, 46, 47], and we thereby summarize the image

reconstruction model for an MRI scanner as fully described in [46].

2.2.1 MRI physics

Based on the physical principles of MR image formation, stated in Section 1.3, a static magnetic field

B0 induces a net magnetization vector −→M , at a point −→r = (x, y, z) in the space body being scanned,

that is given by
−→
M = Mx

~i+My
~j +Mz

~k, (2.2)

In practice, a time-varying magnetic field is used −→B (r, t) inducing time-varying changes in the mag-

netization:
−→
M(~r, t) = Mx(~r, t)~i+My(~r, t)~j +Mz(~r, t)~k. (2.3)

Two main phases are distinguished, excitation and readout. During the excitation phase, spins

are tilted into the xy-plane and precess with the Larmor frequency ω. The transverse magnetization

can be then expressed as a single complex vector:

−→
M(~r, t) = Mx(~r, t)~i+ iMy(~r, t)~j. (2.4)

Let t = 0 be the time when the excitation pulse is completed, with −→M(~r, 0) being the object’s

transverse magnetization directly after excitation, and t > 0 be the readout time. The evolution of

the transverse magnetization can be written as:

−→
M(~r, t) = −→M(~r, 0) exp

(
−i
∫ t

0
ω(~r, t) dt′

)
, (2.5)

where ω(~r, t) represents the instantaneous frequency at a given spatial location and is expressed by

the Larmor relationship as a function of the longitudinal field strength Bz(~r, t) and the gyromagnetic

ratio γ:

ω(~r, t) = γBz(~r, t). (2.6)

An accurate model of this evolution takes into consideration the shorter effective time constant T2
∗

and can be re-written as:

−→
M(~r, t) = −→M(~r, 0)e

−t
T2∗

(~r) exp
(
−iγ

∫ t

0
Bz(~r, t) dt′

)
. (2.7)



2.2 - MRI reconstruction model 35

2.2.2 MRI signal

According to Faraday’s law, the time-varying magnetization −→M(~r, t) induces an electromotive force

in the receiver coil resulting in an electrical potential v(t) defined as:

v(t) = real

(∫
c(~r) d

dt
M(~r, t) d~r

)
, (2.8)

where real(.) is the real part of a complex number and c(~r) represents the coil response pattern. The

signal in the receiver coil is then amplified and demodulated using quadrature modulation resulting

in an in-phase signal I(t) and a base-band signal Q(t). These signals are further digitized and stored

as complex values. The demodulated MRI signal, s(t), is expressed as:

s(t) , I(t) + iQ(t) = eiω0t
∫
c(~r)M(~r, t) d~r. (2.9)

In order to increase the SNR and decrease the acquisition time, several receiver coils are usually used.

By combining (2.7) and (2.9), the MRI signal associated to the lth coil is given as:

sl(t) =
∫
cl(~r)y(~r)e

−t
T2∗

(~r)
e−iφ(~r,t) d~r, (2.10)

where sl(t) is the signal received by the lth coil , cl(~r) is the sensitivity (response pattern) of the

lth coil, y(~r) = −→M(~r, 0) is the unknown function representing the proton spin density , and φ(~r, t) is

space- and time-varying phase defined as:

φ(~r, t) ,
∫ t

0

(
γBz(~r, t′) dt′

)
. (2.11)

To summarize, the longitudinal component of the magnetic field applied consists of three com-

ponents: the constant field strength B0, the spatial deviation of the field strength ∆B0(~r), and the

field gradient ~G applied during image acquisition. Thus, we re-write Bz(~r, t) as:

Bz(~r, t) = B0 + ∆B0(~r, t) + ~G(t).~r. (2.12)

Substituting (2.12) in (2.11), and defining the k-space trajectory during frequency encoding as

~k(t) , 1
2π

∫ t

0
γ ~G(t) dt (2.13)

yield, finally, to the general form of the MRI signal in the lth receiver coil:

sl(t) =
∫
cl(~r)y(~r)e

−t
T2∗

(~r)
e−i∆ω0(~r)te−i2π

~k(t).~r d~r. (2.14)
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2.2.3 Linear image reconstruction

In the discrete form, y(~r) can be approximated by finite series expansion as:

y(~r) =
N∑
j=1

yjb(~r − ~rj), (2.15)

where b(.) is object – basis function, ~rj is center of the jth translated function and N is the number of

parameters. Therefore, using (2.15), the discrete forward model of the MRI signal can be simplified

to:

sl(t) =
N∑
i=1

alijyj , (2.16)

where alij are the elements of the system matrix Al associated to the lth coil and combining the

scanning parameters. Since the basis function is highly localized, center of voxel approximation is

usually used. Let z(~r) = 1
T2
∗ (~r) + i∆ω0(~r) be the rate map, then alij is simplified to:

alij ≈ cl(~rj)e−z(~rj)tie−i2π
~k(ti).~rj (2.17)

The recorded MR measurements are noisy samples of the induced MR signals given by:

gli = sl(ti) + εli, (2.18)

where l = 1, ..., L is the number of receiver coils, ti=1,...,nd is the number of time samples, gli is the

ith sample of the lth coil’s signal at time ti, and εli is the additive, complex, zero mean, and white

Gaussian noise. Combining (2.18) with the discrete forward model in (2.16) yields to:

gl = Aly + εl, (2.19)

where y = (y1, ..., yN ) is the vector of parameters (pixel values) that we wish to estimate from the

collected data g. By stacking up all L measurement vectors as g = (g1, ..., gL) and defining the

(ndL)×N system matrix A = (A1, ..., AL), the linear model of model-based image reconstruction is

expressed as:

g = Ay + ε. (2.20)
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During image reconstruction of MRI data y, a significant challenge is that the elements of A can

be quite complicated. Because the noise in MRI measurements is assumed Gaussian and the inverse

problem is ill-posed, a natural approach is to estimate y by minimizing a regularized cost function:

ŷ = arg min
y
‖g −Ay‖2 + βR(y), (2.21)

where R(.) is the regularization function chosen during the reconstruction process. Popular regu-

larization methods for MRI data are Tikhonov and Total Variation regularization. Conventionally,

reconstructed MR images with FFTs from complex-valued raw data in the frequency domain (k-space)

result in complex-valued image data that represents the phase and magnitude images [48, 49]. While

certain MRI applications require phase images (such as flow measurements with velocity encoding,

quantitative susceptibility mapping (QSM), susceptibility-weighted imaging (SWI), etc.), diagnostic

and post-processing applications require only the magnitude images. In the rest of the work, the

reconstructed image ŷ will represent the magnitude MR image.

Beyond the acquisition stage, the reconstructed volume ŷ can be corrupted with noise, blur, and

artifacts due to post-acquisition processing. The distortions in the acquisition and reconstruction

phases thus limit the possibility of obtaining the desired HR images. However, the loss of spatial

resolution in the acquisition process can be expressed through a linear model, similar to the model

provided in (2.1), which relates the observation image y to a non-noisy, non-blurry, and HR image x

to be estimated. Therefore, the linear observation model for an MR image used for the SR task can

be given as:

y = Wx+ n, (2.22)

where W is the global transformation operator that includes geometric transformation, blur and

down-sampling from the high resolution to the low-resolution image. The noise n in the reconstructed

complex MR data is usually assumed to follow a Gaussian distribution. Since the computation of

the magnitude image is non-linear operation, the distribution changes from Gaussian to Rician when

considering magnitude images [50]. However, it has been shown that in the case of an SNR larger

than 2dB, the noise distribution affecting the magnitude images can be also assumed Gaussian [51].
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2.3 Post-processing techniques in MRI

Several approaches have been proposed in the literature for enhancing the resolution of MR images

after their reconstruction. We distinguish two main post-processing techniques: image deblurring

and image super-resolution, both based on the linear formation model of the MR image and the

assumptions made on the global transformation operator W of equation (2.22).

2.3.1 MR image deblurring

During image acquisition, the partial volume effect in regions where the boundaries are not orthogonal

to the image slice and post-acquisition processes, such as denoising filters, result in blurring. In

general, blurred images are characterized by weak strength of edges defining details of the image,

eroded texture features of smoothly varying regions, loss of edges’ sharpness, and reduced contrast

between anatomical structure [52]. While blurring consequences on the MR image are inevitable,

researchers continue to investigate methods for its assessment as a step for image enhancement

approach. Since deblurring is important for the effective analysis and diagnosis of medical images,

several methods and theories have been proposed for the automatic estimation of a blur. For example,

Noll et al. [53] proposed a method using the raw MR data modulated to several different frequencies

and reconstructed to create a series of base images. The degree of blurring was then determined

after computing the focusing measure for each point in the base and composite images. Moreover,

Osadebey et al. [52] proposed a method to assess blur level in MRI based on convolving the image with

two multi-scale difference Gaussian filters, with their parameters tuned according to edge sharpness,

which allows extracting contrast and sharpness maps. Finally, blur level is assessed from the difference

between the contrast and sharpness quality features in the images at the output of each filter.

However, most studies are based on the assumption that the blurring in an MR image may be viewed

as the convolution of the image by a blurring kernel (the PSF). This introduces the basis of image

deconvolution task, considered as a deblurring method, detailed hereafter.
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2.3.1.1 Deconvolution model for MRI

Based on the general linear formation model in (2.1), and as a consequence of the MR image restora-

tion model in (2.22), the MR image can be modelled as the convolution between a blurring kernel,

referred to as the PSF of the imaging system, and the unknown HR. The resulting linear model can

be re-written as:

y(r) = h(r) ∗ x(r) + n(r), r ∈ R. (2.23)

where y(r) is the observed imaged pixel at the location r, x(r) is the enhanced image to be estimated,

h(r) is the blurring matrix classically constructed from the imaging PSF, n(r) is an additive, zero-

mean white Gaussian noise and R is the image domain. This general model can be applied in 1D, 2D

or 3D depending on the convolution problem we have. It is also possible to perform the deconvolution

of a 3D volume slice by slice, i.e. in 2D. After lexicographical ordering the corresponding images

y(r), x(r), n(r) and forming the convolution matrix H ∈ N ×N associated with h(r), we obtain the

following equivalent model:

y = Hx + n (2.24)

At this point, the objective is to estimate the unknown, non-blurry image x from the corrupted

observation y. Based on the knowledge of the system PSF, H, we can distinguish two types of

deconvolution problems: blind and non-blind. In blind deconvolution, deblurring of an image is

achieved with no or very little prior information about the degrading PSF kernel. Whereas, when

sufficient information about the PSF is available, the process is referred to non-blind deconvolution.

Therefore, the key for the deconvolution problem is a good estimation of the PSF.

In general, the PSF of an imaging system is defined as a function that specifies how points

in the image are distorted. It represents the amount of blur added during the overall acquisition

process and is often assimilated to the blur introduced by the imaging system. The PSF is difficult

to measure precisely in MRI, especially for complex sequences [54]. Phantom-based techniques have

been proposed for measuring the PSF by producing an image weighted by the integral of the PSF that

can monitor its spatial, temporal, and platform variance [55, 56]. Despite being an effective method

for precise PSF calculation, phantoms are not always available in practice, and PSF estimation
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becomes necessary. In the context of PSF measurement for an MRI system, Robson et al. [54]

proposed a constant time imaging technique that uses additional phase encoding gradients that are

constant in length but vary in amplitude before the echo-planar acquisition. An alternative approach

to PSF calculation or measurement is its reconstruction along with the image during the acquisition

phase. Tan and Zheng [57] formulated a PSF minimization problem during image reconstruction,

which optimizes individual weights of the k-space sampling points in order to obtain the minimum

side-lobe level for a given main-lobe width of the PSF. When PSF can not be calculated directly during

image acquisition, estimating it from the observation images remains important for the deblurring

process. In MRI, it is commonly assumed that the PSF induced during acquisition is space invariant.

Most studies on PSF estimation for MR images conclude that PSF can be well estimated as a

Gaussian function in the three dimensions where its full-width of half maximum (FWHM) equals the

slice thickness of the MR volume in the slice-select dimension [42, 58–60]. Moreover, Greenspan et

al. [61] compared using a Gaussian-PSF and a rectangular Box-PSF for image enhancement. They

have observed that a Gaussian-PSF gives better results than a Box-PSF on phantom and real MRI

data.

Once the PSF kernel is well-estimated, the deconvolution task can be referred to as non-blind

deconvolution. Several methods for non-blind deconvolution have been addressed in the literature.

Ahunbay et al. [62] proposed a method performed during the reconstruction of spiral MR images

where the image is convolved by the inverse of the PSF derived from the off-resonance frequencies.

Getreuer et al. [63] solved the restoration problem under the assumption that the image is degraded

by a Gaussian blur and Rician noise. They solved the variational model of deconvolution using L2 and

Sobolev (H1) gradient descents and split Bregman methods with Total variation (TV) regularization.

Results were validated on MRI phantoms of T1-weighted brain volumes.

However, when no data is available for the shape of the PSF kernel, image deconvolution becomes

a blind problem, where the PSF should be recovered along with the non-blurry image. Sainarayanan

et al. [64] proposed an iterative blind deblurring method for the enhancement of cardiac MR images.

The PSF was first estimated from the degraded image then the restoration was done using the

simulated annealing technique. Another blind deconvolution method was evaluated for dynamic
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MRI of the lung by Gou et al. [65] using low-rank decomposition and dictionary learning. It is

based on approximating the low-rank, sparse, and noise components of the input degraded image,

supposing that the data follows Poisson distribution, then estimating the blur kernel using an adaptive

dictionary learning, and finally solving the deblurring problem using the Lucy-Richardson algorithm.

In the same context, Liyan et al. [66] blindly recovered the degraded images from blur by assuming

that the noise contaminating the images follows a Poisson distribution, unlike the studies concluding

that the noise in MR images is Gaussian. They then solve the variational model of image formation

using two types of priors: patch-based sparse representation prior over a learned dictionary and the

pixel-based TV regularization. An example of their results on human brain MR data is illustrated

in Figure 2.2. Although some of these methods were not applied to brain images, yet they present

important techniques for deblurring MR images that could be further tested on brain images.

Based on the extensive researches in MRI deblurring, we will explore in our work the importance

of the deconvolution problem for the restoration of brain MR images of marmosets. In this context,

we are interested in the technique proposed by Zhao et al. [67] which performs the restoration using

the statistical properties of the image noise. The interest behind this method is that the segmentation

task is conducted jointly with the deconvolution one by defining a Potts Markov random field for

the hidden image labels and assigning GGD priors to the unknown image to be restored. However,

while deblurring methods help remove the blur contaminating MR images due to reconstruction

artifacts, it does not improve its spatial resolution. Therefore, another enhancement method, the

super-resolution (SR), is introduced.

2.3.2 Image super-resolution

2.3.2.1 Introduction

Acquiring images beyond the system resolution is referred to as super-resolution (SR). Here, SR is

a post-acquisition image restoration technique that allows the reconstruction of high-SNR and HR

representations of objects that could only be acquired at low resolution, thus overcoming instrumental

limitations and physical constraints. SR methods were mainly introduced to increase the spatial

resolution by extracting information from a set of LR images that may have been translated, blurred,
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Figure 2.2: Illustration of the deblurring result of the method proposed in [66] on a MR brain image
corrupted by a 5 × 5 uniform blur and Poisson noise with peak intensity 600 compared to a TV-based
algorithm (denoted by PIDSplit+) [68] and to a frame-based algorithm (denoted by PIDAL-FA) [69].
This figure was collected from [66].

rotated, or scaled. It has been proved helpful in many applications where multiple frames of the

same scene can be obtained, such as in medical imaging (e.g., computed tomography and MRI since

the acquisition of multiple images with limited resolution can be achieved), satellite imaging (e.g.,

remote sensing and LANDSAT: several images of the same area are available) and video applications

(conversion from an NTSC video signal to an HDTV signal) [41, 45]. In general, SR restoration

techniques fall into one of the three following categories: frequency domain techniques, iterative

algorithms, and statistical methods [42].

Frequency domain techniques These techniques are based on the generalized sampling theorem

laid by Papoulis [70] and Yen [71]. Tsai, and Huang [72] suggested the first SR algorithm, where

they assumed non-blurred and non-noisy images. Their work was followed by Kim et al. [73] who

used least-square minimization on noisy and blurred images. Most frequency-domain methods are

based on transforming the input images to the frequency domain (using 2D DFT), combining the

spectral data, and returning the output image (after applying 2D IDFT). Because the images are

reconstructed in the frequency domain, these methods have “recursive” properties, and new samples

can be combined into the final reconstructed image as they arrive [42]. Three main principles govern

this approach: the shifting property of the Fourier transform, the aliasing relationship between the

continuous Fourier transform (CFT) of an original HR image and the discrete Fourier transform
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(DFT) of observed LR images, and the assumption that an original HR image is band limited. These

make it possible to formulate the equation relating the aliased DFT coefficients of the observed LR

images to a sample of the CFT of an unknown image [74]. However, frequency-domain methods have

apparent limitations (sensitivity to model errors, difficulty handling complicated motion models),

which prevented their development.

Iterative algorithms These algorithms include Iterative Back Projection, Projection onto Convex

Sets (POCS), and Regularized Methods. Irani and Peleg [75, 76] first discussed the main concept of

Iterative Back Projection. In this algorithm, the high-resolution output image is built iteratively to

best describe the input sample images. In every step, a set of back projected LR images is generated

using the current best guess as to the high-resolution scene. The algorithm then refines the best guess

such that the back projections better describe the input images. The advantage of IBP is that it is

understood intuitively and easily. However, this method has no unique solution due to the ill-posed

nature of the inverse problem, and is known for its low rate of convergence and sensitivity to noise.

[42, 45]. Other iterative methods were suggested, such as the Projection onto Convex Sets (POCS)

algorithm, proposed by Patti et al. [77]. The POCS algorithm resembles IBP and assumes that

the solution updates the current best guess iteratively according to known convex constraints (data

constraints, amplitude constraints. . . ). The advantage of POCS is that it is simple, and it utilizes

the powerful spatial domain observation model. It also allows a convenient inclusion of a priori

information. However, it presents disadvantages of non-uniqueness of the solution, slow convergence,

and a high computational cost [45].

Statistical methods These methods rely on the image formation model and restore the HR image

with the maximum probability of creating the LR observations. Such algorithms were first presented

by Cheeseman [78] who used the Bayes’ Theorem and Shekarforoush [79] who used Markov Random

Field to model and solve the problem. Regularized SR approaches are adopted to stabilize the

inversion of the ill-posed problem of the reconstruction. Two techniques are present: stochastic

and deterministic. The deterministic regularized SR approach solves the inverse problem equation
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by using the prior information about the solution rendering the problem well-posed. Stochastic SR

image reconstruction, typically a Bayesian approach, provides a flexible and convenient way to model

a priori knowledge concerning the solution. Bayesian estimation methods are used when a posteriori

probability density function (PDF) of the original image can be established. The MAP estimator of

the HR image maximizes the PDF with respect to it [45].

D. Fiat first presented the idea of attaining sub-pixel resolution in MRI in [80]. The applications of

SR reconstruction from different scenes have consequently started to elaborate. Peled and Yeshurun

[81] acquired eight low-resolution images with sub-pixel shifts, and combined them using the IBP

[75] model-based algorithm to super resolve spatially shifted, single-shot, diffusion-weighted brain

images. Similarly, Greenspan et al. [61] proposed to perform the 3D inter-slice SR reconstruction in

the slice-select direction using several 2D LR images also based on the IBP of Irani and Peleg [75].

Carmi et al. [42] introduced a novel method for sub-pixel SR of MRI by introducing a simplified

model of the LR images. However, multiple LR frames are not always available for the SR task where

only one LR observation can be obtained. Thus, the problem is referred to as single-image SR. We

will thereby define the image observation model related to this problem.

2.3.2.2 Image observation model

Having defined the general image formation model in (2.1), one can estimate the unknown HR image

using several interrelated LR images and some linear constraints. However, only one LR image is

available in our work, referring the problem to as single-image SR. Therefore, we aim to estimate the

HR image from one corresponding LR image that is modeled as a noisy version of the blurred and

decimated HR image as follows:

y = SHx + n, (2.25)

where y ∈ RNl×1 and x ∈ RNh×1 (Nh = d2Nl) are the vectorized versions of the LR and HR images.

H ∈ RNh×Nh represents the 2D convolution of the HR image with the PSF of the imaging system.

S ∈ RNl×Nh corresponds to the down sampling operator with an integer sampling rate d. n ∈ RNl×1

is an independent identically distributed (IID) additive white Gaussian noise (AWGN). Although

this model has been addressed in 2D, the application of SR to a 3D volume can be performed slice
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by slice. However, we will re-write this convolution problem in 3D whenever necessary in our work.

The reconstruction of the HR image from the LR image is an ill-posed problem, i.e., the solution

is not unique for an observed input. In fact, the observation matrix represented by SH may be

unknown due to the complexity of real imaging systems and requires several assumptions on the

shape of the operators [82, 83]. Thus, many solutions have been discussed in the literature to solve

the SR problem and which fall into one of two main categories: model-based and learning-based

methods. In the next sections, we will introduce some basic techniques proposed in the literature .

2.3.2.3 Model-based SR methods

Model-based methods formulate the image SR as a reconstruction problem, either by incorporating

priors in a Bayesian framework or by introducing regularizations into the variational inverse problem.

Starting from (2.25), the SR problem can be formulated as the following optimization problem:

min
x
φ(y - SHx)︸ ︷︷ ︸
data fidelity

, (2.26)

where φ(y - SHx) is the data fidelity term, i.e., the likelihood of the observations, related to the

noise distribution. This term usually penalizes the difference between the degraded SR image and

the observed LR image. Given an additive white Gaussian noise (AWGN), the data fidelity term can

be rewritten as:

φ(y - SHx) = 1
2‖y− SHx‖22. (2.27)

Thus the HR image can be estimated by minimizing a least-square cost function as:

x̂ = arg min
x

1
2‖y− SHx‖22, (2.28)

where ‖.‖2 stands for the standard l2-norm.

The IBP method, proposed by Irani and Peleg [84], calculates the residual between a simulated

LR image with the LR observation y and then sum the reconstruction error back to the estimated

HR image x̂ as 
x̂0 = Uy

x̂t+1 = x̂t + U(SHx̂t + y)
(2.29)
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where t is the current iteration, and U is an up-scaling operation chosen to be the nearest-neighbor

interpolation. However, the IBP technique is highly sensitive to noise and outliers. In this case, the

result may contain high frequency artifacts because of ignoring the visual complexity of the ill-posed

problem. Thus, these limitations raise the importance of introducing a regularization constraint.

Therefore, the optimization problem in (2.28) becomes:

x̂ = 1
2‖y− SHx‖22 + τR(x)︸ ︷︷ ︸

regularization

, (2.30)

where R(x) is the regularization constraint, which usually reflects the prior knowledge about x,

and τ is the regularization parameter which weights the importance between the data fidelity term

and the regularization term. Various regularizations have been already advocated to regularize the

image super-resolution problem, such as, Tikhonov [85], l1-norm [86], or total variation (TV) [87].

Different regularizers result in different cost functions, (2.31), (2.33), and (2.39) respectively, under

the assumption of AWGN.

• Tiknonov regularization: R(x) = ‖x− x‖22
Where x is a rough estimation of the HR image such as the interpolation of the LR image or a

clean image obtained from other sensors. In this case, the optimization problem is given by:

x̂ = 1
2‖y− SHx‖22 + τ‖x− x‖22. (2.31)

Thus, the solution can be expressed as:

x̂ = (HHSHSH + 2τINh)−1(HhSHy + 2τx). (2.32)

Where HH and SH are the conjugate transpose of H and S respectively, and INh is an identity

matrix

• l1-norm regularization: R(x) = ‖x‖1 = max1≤j≤n
∑m
i=1 |xij |

The optimization problem becomes:

x̂ = 1
2‖y− SHx‖22 + τ‖Wx‖1. (2.33)
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The solution of (2.33) can not be obtained directly since the cost function is not differential.

However, variable splitting methods can be used, such as the alternating direction method

of multipliers (ADMM) [88], the forward-backward algorithm (FBA) [89], the fast iterative

shringkage thresholding algorithm (FISTA) [90].

• Total variation (TV) regularization: The TV norm was introduced by Rudin et al. [91] as an

isotropic l2-based function defined as:

TV (x) =
∑
i,j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2 + α2, (2.34)

where α is a small constant added since it is not possible to differentiate TV(x) at zero [92].

However, based on the choices of discretization for the image gradient, then an alternative form

of TV exists relying on the l1-norm given by:

TV (x) =
∑
i,j

{|xi+1,j − xi,j |+ |xi,j+1 − xi,j |}. (2.35)

In our work, we will use the original TV norm definition as a regularizer for the inverse problem

given as:

R(x) = ‖x‖TV =
√
‖∂hx‖2 + ‖∂vx‖2, (2.36)

where ∂h and ∂v are horizontal and vertical gradient operators that, for an image x ∈ Rm×n

and under the periodic boundary conditions, are defined as:

(∂hx)(i, j) =


x(i+ 1, j)− x(i, j), if i < m

x(m, j)− x(1, j), if i = m

(2.37)

(∂vx)(i, j) =


x(i, j + 1)− x(i, j), if j < n

x(i, n)− x(i, 1), if j = n

(2.38)

The non-differentiable cost function is then expressed as:

x̂ = 1
2‖y− SHx‖22 + τ‖x‖TV (2.39)

Variable splitting methods, such as ADMM and FBA, are employed to tackle the solution of

(2.39).
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Single image SR in MRI Super-resolution based on the physical model of acquisition has been

addressed significantly for anatomical brain MR images. Single-image SR was performed by Luo

et al. [93] based on the intrinsic link in k-space between the modulus LR image and the desired

HR image. Reconstruction of the HR image was done by estimating low-frequency k-space data

from the LR image then filling the high-frequency data with zeros followed by the IFT operation.

On the other hand, Rousseau [94] proposed a new regularization approach for the model-based SR

problem using an example-based framework that integrates non-local similarity constraints. Later

on, they developed a non-local patch approach to define the regularization term taking into account

the complex spatial interactions [95]. Following the work done in [94], Manjón et al. [96] used

information from co-planar HR images to super-resolve LR images acquired for the same subject.

In another work [97], they proposed a reconstruction method that uses a data-adaptive patch-based

regularization in combination with a sub-sampling coherence constraint. This non-local mean up-

sampling (NMU) method performs high-quality reconstructed images via the iteration patch-based

filtering. Gholipour at al. [60, 98] and Rousseau et al. [99] used the l2-regularization to solve the

minimization optimization problem of image SR given by:

x̂ = arg min
x
‖y−Wx‖2 + λ‖Cx‖22, (2.40)

where H incorporates motion compensation, degradation effects, and sub-sampling for each slice Y,

and C is a positive definite matrix.

Shi et al. [100] proposed a super–resolution method that integrates both local and global infor-

mation. This approach is based on the idea of matrix completion i.e. considering the recovery of the

HR matrix from a low rank (incomplete) matrix by combining Low Rank and TV regularizations for

the effective image SR as:

x̂ = arg min
x
‖y− SHx‖2 + λrankRank(x) + λTV TV (x), (2.41)

where λrank and λTV are the tuning parameters for the low–rank and TV terms respectively, Rank

is the weighted sum of trace norms of all slices along each dimension of an image and TV denotes the

integral of the absolute gradients of data. The regularizer Rank takes advantages of the similarity
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between the slices in different directions. Figure 2.3 shows an example of the results collected in [100]

for the SR of brain MR images using their proposed method compared to nearest-neighbor interpo-

lation (NN), spline interpolation (Spline), IBP based up-sampling [84], NLM based up-sampling [97],

and TV based up-sampling [101]. While NN, Spline and IBP methods resulted in blurry images, TV

provides a better reconstruction and the proposed LRTV shows better details.

Figure 2.3: Illustration of upsampling results for simulated data on a typical slice for each of
coronal, sagittal, and axial views, and a zoom-up of frontal region in the sagittal view. LR data with
2× 2× 2mm3 resolution was upsampled to 1× 1× 1mm3. This figure was collected from [100].

In this PhD thesis, we will evaluate several model-based methods for single image SR that have

not been applied in MR images before. Among the existing methods for single image SR, we wish to

assess a proposed Fast Single Image Super-resolution method by Zhao et al. [102] which solves the

SR problem in an ADMM framework for US imaging by exploring the intrinsic properties of blur and

decimation kernels in the frequency domain. The main interest in this approach is in the reduced

computational cost compared to other model-based SR methods. While this method defines the
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convolution problem in 2D, we will therefore apply it on 3D volumes slice by slice. Moreover, driven

by the interest to explore the SR problem in 3D, we will continue to evaluate a tensor-factorization-

based approach, originally proposed by Hatvani et al. [103] for dental CT images, which offers a fast

solution without the use of known image pairs or strict prior assumptions. We will then compare the

results to the technique proposed by Shi et al. [100], where they have presented interesting results

for the SR of brain MR images.

2.3.2.4 Deep learning-based SR methods

Learning based approaches establish the relationship of HR images with their corresponding LR

images by assuming available external data. Given a set of extracted patch pairs {(xi, yi)}Ni=1 these

methods consist in learning a direct mapping φ(xi, yi) between the LR patches yi to the HR patches

xi. This section gives an introduction to deep learning generalities and a review of the application

of deep learning methods for the super resolution problem in MRI [82, 104].

Deep learning introduction Deep learning refers to artificial neural networks (ANN) with com-

plex multilayers. It has been remarkably used in the fields of speech recognition, computer vision,

pattern recognition, natural language processing, image identification, object detection, image clas-

sification, and face identification [105]. Deep learning approaches learn high-level features from data

using multiple layers of neurons having linear transformations and non-linear activation functions.

A classical deep learning network is made up of an input layer, an output layer, and intermediate

hidden layers. Figure 2.4 shows a classical 5 layers Multi Layer Perception (MLP) neural network

[104].

Each node (neuron) of a layer combines input from the data of the previous layer with a set of

coefficients, or weights assigning significance to these inputs. Denoting hl the output of layer l, the

output hl+1 of layer l + 1 can be written as :

hl+1 = σl(W lhl + bl), l = 1, 2, ..., L (2.42)

where L is the total number of layers,W l represents the weights assigned for each neuron at layer l, bl

is the bias, and σl is the non-linear activation function [106]. Several activation functions have been
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Figure 2.4: MLP neural network showing the input layer, the output layer, and the hidden layers.
Figure is extracted from [104].

used for ANN such as the Rectified Linear Unit (ReLU) (Figure 2.5(a)), the Parametric Rectified

Linear Unit (PReLU)(Figure 2.5(b)), and the Sigmoid function (Figure 2.5(c)) defined as:

ReLU(x) =


x, if x ≥ 0

0, otherwise
(2.43)

PReLU(x) =


x, if x ≥ 0

ax, otherwise
(2.44)

sigmoid(x) = 1
1 + exp(−x) (2.45)

During the training phase, input data are fed into the input layer and the network minimizes

a selected loss function with respect to parameters optimized within the network [104]. The loss

function measures the performance of the network and is usually a differentiable function. One of

the most used loss functions is the Mean Squared Error (MSE) defined as:

MSE = 1
N

N∑
i=1

(yi − hi,l)2 (2.46)

MSE is meant to measure how different the target output y is from the predicted output in the

output layer hL in terms of the averaged square of its elements.
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Figure 2.5: Illustration of the ReLU, PReLU, and sigmoid activation functions. The figure was
extracted from [104].

With optimization, the objective is to minimize the loss function. The idea is that if the loss is

reduced to an acceptable level, the model has indirectly learned the function that maps inputs to

outputs. The most commonly used optimizers are Stochastic Gradient Descent (SGD) [107], Adaptive

Moments (Adam) [108], and Root Mean Squared Propagation (RMSprop). Each optimizer features

tunable parameters like learning rate, momentum, and decay. Adam and RMSprop are variations of

SGD with adaptive learning rates [109].

Advanced network architectures have been proposed in the literature and have proven their effi-

ciency in the image processing domain, including Generative Adversarial Networks (GANs), Google’s

inception network, Ronneberger’s U-net, ResNets, Variational Networks, Recurrent Neural Networks

(RNNs), and Convolution Neural Networks (CNN) [110]. CNN architectures that emerge from deep

learning are computationally very efficient. CNN have multiple layers including fully-connected lay-

ers, pooling layers, convolutional, and non-linearity layers. While convolutional layers only face a

limited perceptive field and all neurons share the same weight, pooling layers reduce the total input

size and their combination in an alternating manner constructs CNNs (see Figure 2.6).
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Figure 2.6: CNNs architecture based on convolutional and pooling layers. Figure is collected from
[110].

Deep learning for MRI SR Several deep learning methods have been proposed in the literature

for the SR of medical images [111–114]. For conciseness, we focus in this section only on the appli-

cation of deep learning methods in MRI super resolution problems. Oktay el al. [115] proposed an

anatomically constrained convolutional neural network (ACNN) for image segmentation and super-

resolution tasks evaluated on multi-modal cardiac MR and Ultrasound (US) data sets. They used

auto-encoder (AE) and T-L networks as regularizers to train neural network (NN) models (Figure

2.7). They introduced two losses, the X-Entropy Loss (Lx) for segmentation and the Smooth L1 loss

for super resolution, to integrate shape prior and improve the accuracy of estimation at pixel level.

The idea is to non-linearly transform the estimation and the reference into a low dimensional space

and to penalize the dissimilarity between them [104].

Chaudhari et al. [116] developed a SR technique using convolutional neural networks to gen-

erate thin-slice knee MR images from thicker input slices. Their DeepResolve network learns a

residual-based transformations between high-resolution thin-slice images and lower-resolution thick-

slice images at the same center locations (see Figure 2.8).
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Figure 2.7: ACNN network proposed in [115] and regularized using AE and T-L networks for
segmentation and super-resolution tasks. The figure was collected from [115].

Figure 2.8: The DeepResolve network architecture that computes a residual image from an input
LR image in order to generate the corresponding HR image. The figure was collected from [116].
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Mansoor at al. [117] investigated the application of SR Generative adversarial network (SRGAN),

presented first in [118] for photo realistic images, on volumetric CT and MRI data sets. A generator

was trained to estimate HR diagnostic quality images from LR observations. A discriminator then

distinguished the real diagnostic quality image from the estimated diagnostic quality image. A

perceptual loss function, rather than pixel-based mean-squared error (MSE) loss, was calculated on

the feature maps of the network. The network was trained on LR images that were simulated by

blurring and down-sampling HR diagnostic quality images. The proposed framework is presented in

Figure 2.9.

Zhao et al. [119] presented a self SR algorithm (SSR) for single image SR of brain MRI that was

inspired by [120] and extended from the enhanced deep super-resolution network (EDSR) [121]. In

their approach, MR images acquired were low in resolution in the coronal and sagittal planes and

high in resolution in the axial plane. Consequently, the HR axial slice was degraded to resemble

the LR ones, and the EDSR network was then trained with the paired low and high resolution axial

slices. The trained network was further used to reconstruct the LR slices in the coronal and sagittal

planes. An overview of the proposed work is provided in Figure 2.10.

Figure 2.9: SRGAN method proposed for the enhancement of MR and CT scans. The figure was
collected from [117].



56 Chapter 2 - State-of-the-art

Figure 2.10: The proposed framework for MRI single image SR. The figure was extracted from [119].

Chen et al. [122] proposed a single image densely connected SR network (DCSRN) for brain MRI

images where the output of each layer is connected to the following layers. The authors claimed

that their proposed method offers three main advantages: faster training due to shorter paths, a

light-weight due to weight sharing, and less over-fitting during training since the number of param-

eters is greatly reduced and features are reused. For the training task, LR images were created in

the frequency domain rather than the classical image-domain simulations. The proposed network

architecture is presented in Figure 2.11.

Chun et al. [123] developed a framework, based on the concept named cascaded deep learning,

that consists of three main components: a CNN-based denoising auto-encoder (DAE) trained using

clinical LR noisy MRI scans that have been processed with a non-local means (NLM) filter, a down-

sampling network (DSN) trained with a small amount of paired LR/HR data, and a proposed SR

generative model (p-SRG) trained with data generated by the DSN that maps from LR inputs to

HR outputs. The authors concluded that their robust SR MRI reconstruction method enabled 3D
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Figure 2.11: DCSRN for single image SR of brain MR images. The figure was collected from [122].

LR breath-hold MRI as well as 4D-MRI within a clinically feasible time frame without sacrificing

spatial resolution or image quality. Figure 2.12 shows a summary of the proposed network.

Investigations in single image SR of MRI, applied to brain image enhancement, continued using

different deep learning approaches. Zeng et al. [124] proposed a deep convolutional neural network

model, which performs single- and multi-contrast super-resolution reconstructions where a HR image

from another modality is used as a reference. More recently, Du et al. [125] developed a gradient-

guided convolutional neural network for improving the reconstruction accuracy of high-frequency

image details from the LR image where a gradient prior is used to supply the information of high-

frequency details during the super-resolution process. Finally, Zhao et al. [126] presented a novel

channel splitting network (CSN) which divides the hierarchical features into two branches, i.e., a

residual branch and a dense branch, with different information transmissions. The residual branch is

able to promote feature reuse, while the dense branch is beneficial to the exploration of new features.

In this thesis, we will focus on two deep learning networks that have been proposed in the literature:

the framework proposed by Pham et al. [82, 127] which performs the restoration of brain MR images

using 3D residual-learning convolutional neural networks, and the work developed by Georgescu et

al. [128] based on deep convolutional neural networks (CNNs) and an intermediate up-scaling layer.

Further details about these methods will be elaborated in Chapter 4.



58 Chapter 2 - State-of-the-art

To sum up, with the development of the application of deep learning in the SR problem, re-

searchers in medical image processing have been influenced by deep learning methods. They now

propose new architectures that permit the integration of priors to boost the network’s performance

and facilitate the follow-up analysis and research. Moreover, increasing image resolution through

super-resolution, whether model- or learning-based, is a key to a better understanding of the anatomy

[61]. Indeed, the first step is to obtain a better quality of an image that will, then, result in more

accurate segmentation and registration. Therefore, based on our desire to enhance marmoset brain

MR images for the better detection of biomarkers of cerebral aging, the next section will provide a lit-

erature overview of segmentation methods used for brain MR images. In particular, we will highlight

the importance of performing longitudinal segmentation, i.e., taking into consideration intra-subject

variability in such studies.
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Figure 2.12: Proposed framework for SR MRI reconstruction using cascaded deep learning. The
figure was collected from [123].
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2.4 MR Image Segmentation

Developing post-processing methods to enhance degraded images reduces the partial volume effect,

improves the relative contrast between adjacent tissues, and improves the segmentation accuracy. In

this section, we will provide an overview of the segmentation techniques used for brain MR images

while highlighting those proposed for animal volumes in particular, and we will introduce the basics

of Statistical Parametric Mapping (SPM), the segmentation tool that will be used in our work.

Moreover, we will present longitudinal segmentation methods as they appeared in the literature with

their advantages over using cross-sectional methods.

2.4.1 Brain Segmentation in MRI

Segmentation of human brain images has been extensively discussed in the literature benefiting from

the availability of rich databases and templates of human MRI. Consequently, several methods have

been investigated to perform brain segmentation [129, 130]. According to the survey done by Gordillo

et al. [131] and the review done by Balfar et al. [132] on segmentation techniques for brain MR im-

ages, methods of segmentation fall into one of these categories: threshold-based methods (global

thresholding or local thresholding), region-based methods (region growing or watershed), pixel clas-

sification methods (Fuzzy C-means, Markov random fields or artificial neural networks [133, 134] and

model-based methods (parametric deformable models or geometric deformable models/ level sets).

Some segmentation techniques use multi-spectral MR images for the segmentation task. For exam-

ple, Amato et al. Amato et al. [135] tested three non-parametric and one parametric discriminant

analysis methods for the segmentation of a computer-built brain phantom using T1-weighted (T1-

w), T2-weighted (T2-w) and proton density (PD) weighted images. Similarly, Anbeek et al. [136]

investigated the optimal combination of different MR modalities for the best segmentation results.

In their study, a probabilistic segmentation technique based on the supervised K-nearest neighbor

(KNN) classification was used to extract information from T1-w, T2-w, PD, inversion recovery (IR)

and fluid attenuation inversion recovery (FLAIR) scans. However, other researchers used only single

model MR images (mainly T1-w) for the segmentation process. For example, Dong et al. [137]
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used a local Gaussian mixture model for brain segmentation and non-local bias regularization for

bias correction. [138] proposed an automatic segmentation technique based on a iterative clustering

approach followed by denoising and bias field removal and Ballester et al. [139] combined a statistical

classification method for indicating partial volume effect voxels and a geometry-driven segmentation

to ensure continuous output segmentation.

Due to the complex process of image acquisition, several factors affect the quality of the output

image [29], which results in the corruption of the image, a reduction in the contrast and spatial

resolution and consequently makes the segmentation procedure a challenging task. This problem

accentuates when imaging small sized anatomical structures in animal models. For instance Mclaren

et al. [140] compared between the segmentation of the rhesus macaque (Macaca mulatta) brain using

FAST (FMRIB’s Automated Segmentation Tool) from FSL (FMRIB’s Software Library), which

does not require prior maps but only a template, and SPM, which requires both the priors and

the template. They finally recommended to use SPM for segmentation in non-human primates.

Moreover, SPM has been systematically used in the literature for the segmentation of marmoset

brain. For example, it has been used for the detection of regional volume loss in the marmoset brain

in [141]. In [142], Hikishima et al. created priors for the marmoset brain using the FAST algorithm

from FSL (depending on the marmoset atlas). These priors were further used in SPM for the final

segmentation of the brain into GM, WM and CSF in order to create a marmoset brain template.

Although a few attempts of marmoset brain atlases have been proposed in the literature [143–146],

the construction of such an atlas is limited by the availability of sufficient data. However, even for

the most advanced methods of segmentation using deep learning [147, 148], the presence of huge

validation and training data sets along with their manually labeled annotations is essential.

Another axis of image segmentation methods emerges with the development of machine learning

and deep learning algorithms, especially with the increase of medical imaging data sets. However,

automated image segmentation methods using deep learning techniques require the presence of a

huge dataset with ground truth labels for training, validation and evaluation of the proposed net-

works. Akkus et al. [149] provide a detailed review on deep learning for brain MRI segmentation.

To summarize, there exist several convolutional neural network (CNN) architecture styles for the
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segmentation task (see Figure 2.13). Patch-wise CNN architecture extracts image patches and train

the network using their corresponding labels [150–152]. Semantic-wise CNN architecture includes

encoder and decoder parts to extract features and classify pixels of an image [153]. Cascaded CNN

architecture, which combines two CNN architectures for the classification task, is extensively used

for brain tumor segmentation [154].

Despite the high accuracy of segmentation results using deep learning algorithms [149], the pres-

ence of ground truth labels for the training and evaluation sets is necessary. However, in our work,

obtaining the ground truth labels of the marmoset brain is time-consuming and requires an expert

in the domain. For instance, we were able to obtain the manual segmentation of only three volumes

with the help of a marmoset brain specialist. Therefore, with the lack of ground truth labels, seg-

mentation techniques using deep learning were not a choice in this thesis. However, based on the

recommendation provided in [140] for the use of SPM for the segmentation of non-human primates’

brains, we will thereby perform the marmoset brain segmentation using SPM throughout all our

work.

Tissue classification and segmentation using SPM, as proposed by Ashburner and Friston in [155],

relies on a generative model based on the mixture of Gaussian model (MOG) that takes into account

bias correction and registration with probability maps of the main brain compartments (GM, WM

and CSF). It minimizes the following objective function (ε):

ε =
N∑
n=1

log ρi(β))∑K
k=1 γkbik(α))

K∑
k=1

γkbik(α)(2πσ2
k)1/2 × exp

(
−(ρi(β)yi − µk)1/2

2σ2
k

)
(2.47)

whereK is the total number of Gaussians considered in the mixture model, ρi(β) accounts for smooth

intensity variations related to bias correction, bik is the tissue probability to belong to class k at voxel

i, α represents the parameter allowing the registration to a standard space through map deformation,

yi is the ith element of the observed data y, µk and σk are the mean and standard deviation of the kth

Gaussian to which yi belongs and γk is the probability of a voxel to belong to the kth Gaussian. In our

work, the number of Gaussians assigned for each region are two for GM, two for WM, two for CSF,

and four for everything else. Starting by prior tissue probability maps containing the values bik, the

goal is to optimize the model’s parameters to obtain the final segmentation maps using information
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from the image pixels. The mixture of parameters {µ, σ, γ, α, β} are optimized using the iterative

Expectation-Maximization (EM) algorithm [156]. Furthermore, the estimate of the bias field (β)

is updated following the Levenberg–Marquardt (LM) [157] optimization approach. In the proposed

objective function, the tissue probability maps are allowed to be deformed according to α that is

updated using the same LM strategy. A detailed mathematical explanation of the optimization

problem is presented in [38].

Tissue probability maps represent the prior information to which the brain volume will be reg-

istered to in order to create the final segmentation. Producing these maps involves warping a given

template to match the target brain volume to be segmented. Similar to most existing brain segmen-

tation methods that will be discussed afterwards, SPM requires these information to be contained in

a brain template built from an atlas.

Generating tissue probability maps is a relatively easy task when the template is available such

as in the case of human brain applications. However, obtaining a template is more challenging

for animals, especially when data is readily available, making brain segmentation more difficult in

such situations compared to human brain applications. Therefore, it becomes important to develop

methods for creating such maps without the need for a template available, which is one of the main

objectives of the work proposed in the thesis and that will be addressed in Chapter 3.

Most segmentation algorithms proposed are categorized as cross-sectional techniques since only

one measurement per individual is available for the study. Although informative, cross-sectional

studies are limited because they cannot provide information about change within individuals since

data is analyzed individually. However, when multiple measurements of the same individual are

acquired for the segmentation task, the technique is referred to as being longitudinal. Longitudinal

segmentation takes into account intra-individual variability, i.e. differences observed within the same

subject when assessed at different times.
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(a) Patch-wise CNN architecture

(b) Semantic-wise CNN architecture

(c) Cascaded CNN architecture

Figure 2.13: Schematic representation of CCN architecture styles for brain segmentation in MRI.
Figures are collected from [149].
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2.4.2 Longitudinal Segmentation

Longitudinal studies of aging collect abundant health measures throughout the life span of the same

individuals. Data generated from these studies help identify trajectories associated with aging in a

given population, leading to a greater understanding of the link between aging and age-associated

chronic diseases. Consequently, the treatment of longitudinal data requires adapted processing meth-

ods that differ from the cross-sectional ones. In this context, several longitudinal segmentation

schemes have been reported in the literature to follow the longitudinal brain changes with aging.

Since information is often transferred across time within each subject, Xue et al. [158] designed an

algorithm that optimizes all time points simultaneously by jointly segmenting the 4D volume, within

subject, via longitudinal high-order warps to the baseline scan using an elastic warping algorithm.

They treated the baseline scan differently from follow-up images by using it as the reference frame

for their registration.

Reuter et al. [159] proposed a longitudinal segmentation scheme enabling temporally unbiased

evaluation of an arbitrary number of time points by treating all inputs the same. The method was

based on generating an unbiased within-subject template. The template was designed by individually

segmenting all time points followed by solving an iterative minimization problem that computes a

median image of the time points then registers and re-samples each input until convergence. Longitu-

dinal segmentation was then performed based on information from the built template and initialized

by the individual cross-sectional segmentation of the time points. The pipeline of the proposed

method is presented in Figure 2.14.

Hadj-Hamou et al. [160] presented a deformation-based morphometry framework relying on

three main steps: preprocessing of raw data by standard orientation, FOV reduction, and intensity

non-uniformity correction, longitudinal position correction by rigidly aligning follow-up images to

the base-line image, and normalization of the residual morphological differences using non-linear

registration. The resulting intra-subject model in the subject’s space is estimated using ordinary

least squares regression in the tangent space of Stationary Velocity Fields (SVF). It is equivalent to

the assumption that the deformation noises are centered, uncorrelated and have equal variance in

the space of SVFs. Then for a given template and subject-to-template deformation, the intra-subject
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model can be transported using parallel transport in the template space. This deformation can be

decomposed along the template trajectories giving a morphological aging rate, a disease progression

rate, and an orthogonal component. The framework is summarized in Figure 2.15.

Figure 2.14: Proposed pipeline for longitudinal segmentation using within-subject template. The
figure was collected from [159].

Aubert-Broche et al. [161] proposed a longitudinal registration and classification scheme based

on the creation of subject-specific linear and non-linear templates in which participant-specific in-

formation is used for both registration and segmentation. The longitudinal scheme is designed to

be unbiased with respect to any time point (TP). Instead of initializing it with information from a

specific time point, a template volume is created. This template can be seen as an initial guess for the

segmentation and surface reconstruction. Each T1-weighted time point is pre-processed individually

by performing image denoising using the NLM filter, intensity inhomogenity correction, and intensity

scaling. Images are then subject to a longitudinal registration method, including a rigid registration

to the ICBM152 template, linear registration to a linear subject-specific template, and a non-linear

registration to a non-linear subject-specific template. These templates are created iteratively from

the data studied. Longitudinal classification of regional brain volumes is then achieved by an initial
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cross-sectional classification of GM, WM, and CSF, followed by an Expectation Minimization (EM)

used to obtain the final classification. Details of the proposed framework are presented in Figure

2.16.

Figure 2.15: Longitudinal log-Demons framework (LLDF) for longitudinal segmentation as proposed
by Hadj-Hamou et al [160]. The figure was extracted from [160].
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Figure 2.16: Longitudinal registration and longitudinal classification (LL) scheme as proposed by
Aubert-Broche et al. The figure was extracted from [161].

Several tools are available online to perform the longitudinal segmentation task of human brain

images. For instance, the longitudinal segmentation stream in FreeSurfer, based on the method

proposed by Reuter et al. [159], allows for a probabilistic voting scheme of independently processed

label maps from all time points, to determine the probability of a specific voxel having a specific label

by weighting labels across time according to their intensity similarity. This fused segmentation is then

used to initialize the segmentation algorithm for each time point instead of the fixed segmentation

of the subject template to allow for larger departures from the subject average. Similarly, the aBeat

tool box proposed by Dai et al. [162] integrates a group of image processing tools, including 4D brain

extraction, 4D tissue segmentation, and 4D brain labeling to provide robust and accurate analysis of

the longitudinal adult brain MR images. The architecture of the aBeat toolbox is provided in Figure

2.17 showing its five main processing modules.
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Figure 2.17: aBEAT toolbox architecture. The figure was collected from [162].

The image preprocessing module normalizes the original images and corrects their intensities.

The 4D brain extraction module consistently removes non-brain tissues (such as scalp and skull)

and keeps brain tissues (including GM, WM, and CSF) from the preprocessed longitudinal images

of each subject. The serial brain tissues of each subject are then jointly segmented by the 4D tissue

segmentation module. Next, the 4D brain labeling module simultaneously warps an atlas with pre-

labeled ROIs onto the longitudinal images for ROI labeling. Finally, longitudinal ROI volumes and

the volume changes for all subjects can be automatically measured and displayed using the ROI

analysis module [162].

As an extension to the optimized VBM framework in [6], CAT12 toolbox (www.neuro.uni-jena.

de/cat/), integrated as an SPM module, offers a longitudinal segmentation pipeline of the human

brain for detecting small brain changes. Figure 2.18 shows the steps for processing longitudinal

data. First, initial inverse-consistent rigid registration, including bias-correction between time points,

is performed on images of all time points. These images are then re-aligned and segmented into

different tissue types (i.e. gray and white matter and CSF). In the following step, the registration

parameters (i.e. deformation fields) are estimated using a non-linear spatial registration (Dartel

or Geodesic Shooting) and then averaged. Finally, the resulting mean deformation is applied to

the tissue segmentation of all time points and modulated with the Jacobian determinant of the

deformation.

www.neuro.uni-jena.de/cat/
www.neuro.uni-jena.de/cat/
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Figure 2.18: CAT12 framework for longitudinal brain segmentation. Figure was collected from the
CAT12 manual (www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).

www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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2.5 Conclusion

Longitudinal image processing aims at reducing within-subject variability by transferring information

across time, i.e. informing the processing of later time points with results from earlier scans. While

within-subject anatomical changes are usually significantly smaller than inter-individual morphologi-

cal differences, developing longitudinal schemes to detect these changes becomes inevitable. However,

accurate and robust segmentation and analysis of these changes require sufficiently high-resolution

MR images that offer high contrast and spatial resolution between adjacent tissues. This chapter

covers the existing work related to these two main topics: MRI super resolution and longitudinal

image segmentation and analysis.

In our thesis work, we will evaluate the effectiveness of several SR approaches that have been

reported in the literature. We will compare the performance of model- and learning-based methods in

the enhancement problem. Moreover, starting from the longitudinal segmentation scheme proposed

in CAT12, we will present a pipeline developed and adapted for the longitudinal segmentation and

analysis of marmoset brain. At the end, we will compare the VBM analysis of the native images to

that using super-resolved images to highlight the importance of image quality in the accuracy of the

analysis.

In the next chapter, we will present a joint deconvolution and segmentation method for Marmoset

brain segmentation based on modeling locally the image statistics using a Generalized Gaussian

distribution (GGD) and coupling the deconvolved image and its corresponding labels map using

GGD-Potts model.
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Chapter 3

Marmoset Brain Segmentation from
Deconvolved Magnetic Resonance
Images and Estimated Label Maps

This chapter presents material from the journal paper [163].
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This chapter introduces a joint deconvolution and segmentation method for marmoset brain MR

images. The proposed approach aims to create label maps that can be used for the segmentation of

animal brain MR images without the need for a brain template. This is achieved by performing a

joint deconvolution and segmentation of the brain MR images. It is based on modeling locally the

image statistics using a Generalized Gaussian distribution (GGD) and couples the deconvolved image

and its corresponding labels map using a GGD-Potts model. Due to the complexity of the resulting

Bayesian estimators of the unknown model parameters, Gibbs sampler is used to generate samples

73
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following the desired posterior distribution. The performance of the proposed algorithm is assessed

on simulated and real MR images by the segmentation of enhanced marmoset brain images into its

main compartments using the corresponding label maps created. The proposed method of using

labels as prior information for brain segmentation provides similar or slightly better performance

compared to the classical reference method based on a dedicated template.

3.1 Introduction

MRI has been widely used in the past decades for the non-invasive exploration of the structural

and functional properties of organs and tissues due to its high contrast and spatial resolution. MRI

presents a powerful tool for extracting diagnostic information, measurements and statistics which aid

the study of the progression and regression of some diseases [29]. It also allows for the quantitative

calculation of volumes and helps in extracting valuable biomarkers characterizing a specific condition

[164]. More specifically, T1-weighted anatomical MRI remains the main protocol for the analysis of

structural brain changes that occur with age and which plays a significant role in the development

of brain related diseases such as epilepsy, Parkinson, Alzheimer, etc. The study of such changes, as

well as the differentiation between normal aging and brain pathologies [165], on human brains or on

animal brain models, as in the case of the marmosets (Callithrix jacchus) considered in this thesis,

require the brain’s segmentation into its main compartments: gray matter (GM), white matter (WM)

and cerebrospinal fluid (CSF). However, imaging small brains in a 3T MRI platform dedicated to

humans is a challenging task because the spatial resolution and the contrast obtained are insufficient

compared to the size of the anatomical structures observed. Degradation in the quality of images

during acquisition and reconstruction results in miss-classification or over segmentation of different

regions of interest [166]. In the absence of a higher field MRI scanner for generating high quality

images, it becomes crucial to develop appropriate post-processing methods for the enhancement of

preclinical images which allows the analysis of morphological changes. The goal of image enhancement

is thus to improve the usefulness of an image for a given task [167], in our case image segmentation.
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While enhancement and segmentation are usually done separately, several researchers have in-

vestigated the joint enhancement and segmentation for different medical imaging modalities. To

further combine between both tasks, Zhao et al. [67] proposed a joint segmentation and deconvo-

lution Bayesian method for medical ultrasound (US) images. This method defines a Potts Markov

random field for the hidden image labels and assigns GGD priors to the image tissue reflectivity

function to investigate the joint segmentation and deconvolution problem. Visual impression and

numerical results on simulated and real US data confirmed that a better contrast and more defined

boundaries between the different tissues is achieved with their method. Similarly, Ayasso and Djafari

[168] proposed a method to simultaneously restore and to segment piecewise homogenous images

degraded by a known point spread function (PSF) using a family of non-homogeneous Gauss-Markov

fields with Potts region labels model in a Bayesian estimation framework. Toma [169] and Li [104]

developed joint super-resolution and segmentation approaches for trabecular bone computed tomog-

raphy (CT) images. In her work, Toma [169] investigated variational approaches to perform the SR

task using TV regularization and the 3D joint SR and segmentation task using a convexification of

the regularization functional with additional box constraints. As an extension to her work, Li [104]

proposed a semi-coupled dictionary learning approach in which two dictionaries are learned corre-

sponding to the high and low resolution CT images and a deep learning approach inspired by the

Fast Super-Resolution Convolutional Neural Networks (FSRCNN) suggested by Dong et al. [170].

Finally, Bahrami et al. [171] proposed a mutual deep-learning based framework, composed of cas-

caded CNNs, to estimate 7T-like MR images and their corresponding segmentation maps from 3T

MR images. Their method presented higher restoration and segmentation accuracy when compared

to state of the art methods.

In this context, the aim of this chapter is to propose a joint deconvolution and segmentation

method, relying on the method proposed in [67], to create prior maps for marmoset brain MR

images. The output label maps, considered as prior maps, are further used in SPM along with the

enhanced image for the final segmentation of the brain into GM, WM, and CSF. In this method,

we assume that the priors of the image follow a generalized Gaussian distribution (GGD), and we

define a Potts Markov random field for the hidden discrete labels representing the segmentation of
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the image. The originality of this work is to propose a segmentation method which does not depend

on the registration of the brain template to the MR image. Rather, it is based on the statistical

properties of the regions and the correlation between the neighboring pixels forming these regions.

The computation of the Bayesian estimators corresponding to the posterior distribution is then given

by a Markov Chain Monte Carlo (MCMC) method based on a Gibbs sampler, which reduces their

computational complexity. The interest of this approach goes beyond the study of marmoset brain

MRI since it can be applied to the study of human brain such as in the fetal brain study or of any

animal model, especially when specific templates are not available.

3.2 Methods

The aim of this chapter is to introduce a method for brain segmentation without the need for a tem-

plate with an application to marmoset MR images. More precisely, the probability maps required by

SPM segmentation method are replaced by the label maps estimated with the proposed algorithm,

referred to as joint MCMC (JMCMC) hereafter. Figure 3.1 summarizes the proposed label-based

segmentation methodology (referred to as segLabels) by comparison to the existing template-based

segmentation approach (called segTemp). Instead of creating probability maps from the template

registration to the MR volume to be segmented, further used by SPM, JMCMC algorithm outputs

an enhanced version of the volume along with label maps that partition the images into statistically

homogeneous regions. Once these labels are estimated, segLabels can then be applied either to the

native MR volume or its enhanced version estimated by the proposed segmentation and deconvolu-

tion algorithm. Starting from an MR image observation model, this method based on a Bayesian

approach aims at jointly estimating enhanced MR images and label maps corresponding to statistical

homogeneous regions.
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Figure 3.1: Workflows of existing segTemp and proposed segLabels methods. While segTemp re-
quires a template registration procedure to generate probability maps, the JMCMC method produces
enhanced MR volumes and estimated label maps that serve as priors for the proposed segLabels seg-
mentation in SPM, thus not requiring neither a brain template nor a registration method. segTemp
and segLabels can be further applied to the native MR volume or its enhanced version obtained by
deconvolution to get the final segmentation.

3.2.1 Image Formation Model

As stated in Chapter 2, taking as input the reconstructed MR image and considering the convolution

(blur) operator as the only degradation in addition to noise, this results into the simplified model as

follows:

y = Hx + n, (3.1)

where y is the observed image, x is the image to be estimated, H is the blurring matrix classically

constructed from the imaging system PSF and n is an additive, zero-mean white Gaussian noise.
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At this point, the objective is to estimate x from y given a known PSF, H, which is a typical

deconvolution problem. However, as previously stated and in order to avoid the use of a registered

template within SPM, the proposed method aims at estimating, at the same time, x and a label

map dividing the image into statistically homogeneous regions. To this end, suppose that the clean

image x = (x1, · · · , xN )T can be divided into K regions {R1, ...,RK} and that a hidden label field

z = (z1, · · · , zN )T ∈ RN maps the N image pixels into these K regions. Suppose also that pixel

intensities are distributed following a generalized Gaussian distribution (GGD). Then, the conditional

distribution for a pixel xi to belong to the region Rk (i.e. zi = k) where i ∈ {1, · · · , N} and

k ∈ {1, · · · ,K} is:

xi|zi = k ∼ GGD(µk, ξk, γk), (3.2)

where µk, ξk and γk are respectively the mean, shape and scale parameters of the GGD associated

to the region Rk. The probability density function (pdf) of a univariate GGD with a mean µ, shape

parameter ξ and scale parameter γ is:

p(x) = 1
2γ1/ξΓ(1 + 1/ξ)

exp
(
−|x− µ|

ξ

γ

)
, x ∈ R. (3.3)

Assuming that pixels from different regions are conditionally independent, the pdf of x is given by

p(xi) =
K∑
k=1

wkGGD(µk, ξk, γk) with wk = P (zi = k). (3.4)

A Potts model is used in the following for the hidden field z, imposing high probability for neigh-

bouring pixels to have the same label, i.e., to belong to the same region, and thus promoting smooth

label maps [168].

3.2.2 Hierarchical Bayesian model

Using the Bayes rule, the joint posterior distribution of the unknown image x and its corresponding

labels z can be written as:

p(x,θ, z|y) ∝ p(y|x,θ)p(x|z,θ)p(z|θ), (3.5)

where θ is a parameter vector containing the unknown hyperparameters including the noise variance,

and the mean, shape and scale parameters of the GGD characterizing each region. The posterior
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distribution requires the knowledge of the likelihood p(y|x,θ), which depends on the noise model,

and the prior distributions p(x|z,θ) and p(z|θ), which are based on the GGD-Potts model.

3.2.2.1 Likelihood

The likelihood function derived from the linear model, defined in equation (2), depends on the noise

n being an additive white Gaussian noise (AWGN) with a constant variance σ2
n:

p(y|x, σ2
n) = 1

(2πσ2
n)N/2

exp
(
− 1

2σ2
n

‖y−Hx‖22
)
, (3.6)

where ‖ · ‖2 is the Euclidean `2-norm.

3.2.2.2 Prior distributions

Deblurred image x Assuming that x follows a mixture of GGD and that the pixels of different

regions are conditionally independent, the prior distribution of x can be written as:

p(x|z,µ, ξ,γ) =
K∏
k=1

Nk∏
i=1

1
2γ1/ξk

k Γ(1 + 1/ξk)
exp

(
−|xi − µk|

ξk

γk

)

=
K∏
k=1

1[
2γ1/ξk

k Γ(1 + 1/ξk)
]Nk exp

(
−
∑Nk
i=1 |xi − µk|ξk

γk

)

=
K∏
k=1

1[
2γ1/ξk

k Γ(1 + 1/ξk)
]Nk exp

−‖xk − µk‖ξkξk
γk

 , (3.7)

where µ = (µ1, · · · , µK)T , ξ = (ξ1, · · · , ξK)T and γ = (γ1, · · · , γK)T . µk, ξk and γk are the mean,

shape and scale parameters of the kth region Rk and Nk is the number of pixels in Rk. xk contains

all the pixels assigned to Rk. Γ(·) is the gamma function and ‖xk − µk‖ξ = (∑Nk
i=1 |xi − µk|ξ)1/ξ

denotes the `ξ-norm.

Labels z The Potts Markov Random Field (PMRF) imposing high priority that neighboring pixels

belong to the same region [172] is chosen to describe the conditional distribution of zn given by:

p(zn|z−n) = p(zn|zV(n)), (3.8)
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where z−n = (z1, ..., zn−1, zn+1, ..., zN )T and V(n) contains the 4-nearest neighbors of label zn. Using

an Ising model [173], the prior distribution of z can then be written as:

p(z) = 1
C(β) exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 , (3.9)

where β is the granularity coefficient tuned manually, δ(·) is the Kronecker function and C(β) is a

normalization constant.

Noise variance (σ2
n) The non-informative conjugate inverse gamma (IG) distribution was assigned

to noise variance:

p(σ2
n) ∼IG(α, ν)

= να

Γ(α)(σ2
n)−α−1 exp

(
− ν

σ2
n

)
IR+(σ2

n), (3.10)

where α is the shape parameter and ν is the scale parameter of the inverse gamma distribution, and

IA is the indicator function on the set A.

GGD parameters Independent Gaussian prior distribution was used for modeling the mean [174],

the uninformative Jeffreys prior for the scale parameter γk and uniform distribution in the range [0, 3]

for the shape parameter ξk.

p(µ) =
K∏
k=1

p(µk) =
K∏
k=1

1
2πσ2

0
exp

(
−(µk − µ0)2

2σ2
0

)
(3.11)

p(γ) =
K∏
k=1

p(γk) =
K∏
k=1

1
γk
IR+(γk) (3.12)

p(ξ) =
K∏
k=1

p(ξk) =
K∏
k=1

1
3I[0,3](ξk) (3.13)
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3.2.2.3 Joint distributions

The joint posterior distribution of the unknown parameters x, σ2
n,µ, ξ,γ, z can be written as:

p(x, σ2
n,µ, ξ,γ, z|y) ∝ p(y|x, σ2

n,µ, ξ,γ, z)× p(x, σ2
n,µ, ξ,γ, z)

∝ p(y|x, σ2
n,µ, ξ,γ, z)× p(x|µ, ξ,γ, z)× p(σ2

n)× p(µ)× p(ξ)× p(γ)× p(z)

∝ 1
(2πσ2

n)N/2
exp

(
− 1

2σ2
n

‖y−Hx‖22
)
× 1

(σ2
n)α+1 exp

(
−ν/σ2

n

)

×
K∏
k=1

{
aNkk exp

−‖xk − µk‖ξkξk
γk

× 1
2πσ2

0
exp

(
−(µk − µ0)2

2σ2
0

)

× exp
[ N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)
]
× 1

3I[0,3](ξk)
1
γk
IR+(γk)

}
, (3.14)

where ak = 1
2γ1/ξk
k

Γ(1+1/ξk)
and the hyperparameters are supposed to be a priori independent.

Figure 3.2 represents the proposed hierarchical Bayesian model which mainly differs from the

model provided by [67] in modeling the mean value of each segmented region which, unlike ultrasound

images, was necessary when using MR images. Moreover, the final objective of the authors in [67]

was not the quality of the segmentation but rather to propose a method to perform both tasks of

deconvolution and segmentation jointly.

3.2.3 Sampling the posterior distribution

Given the complexity of the posterior distribution in (3.14) and the need for estimating both continu-

ous variables such as the deconvolved image and discrete value variables, i.e., the labels, a simulation

method is used in this work instead of numerical optimization routines. More precisely, an MCMC

method is employed, following the sampling scheme proposed in [67]. Hybrid Gibbs sampler is used

to generate a great number of samples distributed according to the joint posterior law (3.14) due

to the complexity of computing the estimators of the unknown parameters directly. The generated

samples are further used to calculate the marginal MAP estimator of z and the MMSE estimators

for x, σ2
n, µ, ξ and γ. In the following subsection, the conditional distribution of each unknown is

given, and the way they are sampled following these distributions is described.
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Figure 3.2: Hierarchical Bayesian model for the parameters’ and hyperparameters’ priors, where the
deblurred image x is modeled by a mixture of GGDs, the hidden label field z follows a Potts MRF
and the mean µ follows a Gaussian distribution. The parameters appearing in the boxes are fixed in
advance.

3.2.3.1 Sampling the noise variance

p(σ2
n|y,x,µ, ξ,γ, z) ∝ p(y|x, σ2

n,µ, ξ,γ, z)p(σ2
n)

= IG
(
α+N/2, ν + 1

2‖y−Hx‖22
)
. (3.15)

The samples are generated directly following (3.15). The choice of modelling the noise variance as

an inverse gamma distribution has been guided by existing works such as [168] and [175].

3.2.3.2 Sampling the hyperparameters

Mean vector µ The conditional distribution of the vector µ, containing the mean values (µ1, · · · , µK)T

of regions Rk, is:

p(µ|y,x, σ2
n, ξ,γ, z) ∝ p(y|x, σ2

n,µ, ξ,γ, z)p(x|µ, ξ,γ, z)p(µ)

∝ p(x|µ, ξ,γ, z)p(µ). (3.16)
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Assuming that the mean values are a priori independent, we have

p(µk|x, ξ,γ, z,µ−k) ∝ p(xk|µk, ξk, γk, zk)p(µk)

∝ aNkk exp

−‖xk − µk‖ξkξk
γk

− (µk − µ0)2

2σ2
0

 , (3.17)

where µ−k = (µ1, ..., µk−1, µk+1, ..., µK). xk contains the pixels belonging to class k and having a

mean µk, shape parameter ξk and scale parameter γk. The conditional distribution (3.17) is sampled

using random walk Metropolis Hastings (RWMH) [176].

Shape parameter vector ξ

p(ξ|y,x, σ2
n,µ,γ, z) ∝ p(y|x, σ2

n,µ, ξ,γ, z)p(x|µ, ξ,γ, z)p(ξ)

∝ p(x|µ, ξ,γ, z)p(ξ). (3.18)

Assuming that the shape parameters are a priori independent:

p(ξk|x,µ,γ, z, ξ−k) ∝ p(xk|µk, ξk, γk, zk)p(ξk)

∝ aNkk exp

−‖xk − µk‖ξkξk
γk

 I[0,3](ξk), (3.19)

where ξ−k = (ξ1, ..., ξk−1, ξk+1, ..., ξK) for k ∈ {1, ...,K}. Similar to µk, the conditional distribution

(3.19) is sampled by RWMH.

Scale parameter vector γ

p(γ|y,x, σ2
n,µ, ξ, z) ∝ p(y|x, σ2

n,µ, ξ,γ, z)p(x|µ, ξ,γ, z)p(γ)

∝ p(x|µ, ξ,γ, z)p(γ). (3.20)

Assuming that the scale parameters are independent:

p(γk|x,µ, ξ, z,γ−k) ∝ p(xk|µk, ξk, γk, zk)p(γk)

∝ IG
(
Nk

ξk
, ‖xk − µk‖ξkξk

)
, (3.21)

where γ−k = (γ1, ..., γk−1, γk+1, ..., γK) for k ∈ {1, ...,K}. Samples are generated directly from (3.21).
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3.2.3.3 Sampling the labels

p(z|y,x, σ2
n,µ, ξ,γ) ∝ p(y|x, σ2

n,µ, ξ,γ, z)p(x|µ, ξ,γ, z)p(z)

∝ p(x|µ, ξ,γ, z)p(z). (3.22)

Based on the dependency between neighboring pixels, the conditional distribution of the label zn is:

p(zn = k|z−n,x,µ, ξ,γ) ∝ p(xn|zn = k,µ, ξ,γ)p(zn = k|zV(n)), (3.23)

where z−n is the vector z whose nth element has been removed and zV(n) represents the 4-pixel

neighborhood structure of zn. Denoting the left hand side of 3.23 as πn,k:

πn,k ∝ ak exp
(
−|xn − µk|

ξk

γk

)
exp

 ∑
n′∈V(n)

βδ(k − zn′)

 . (3.24)

The normalized conditional probability of the label zn is defined as

π̃n,k = πn,k∑K
k=1 πn,k

. (3.25)

The label zn can be drawn from the set {1, ...,K} with the respective probabilities {π̃n,1, ..., π̃n,K}

3.2.3.4 Sampling the unknown, deblurred image

p(x|y, σ2
n,µ, ξ,γ, z) ∝ exp

−‖y−Hx‖22
2σ2

n

−
K∑
k=1

‖xk − µk‖ξkξk
γk

 . (3.26)

Given the high dimensionality of x, for computational reasons, a Hamiltonian Monte Carlo (HMC)

[177] method was used to sample the conditional distribution of the deblurred image x [67].

3.3 Results

This section presents the SPM segmentation results of simulated and in vivo MR volumes into GM,

WM and CSF using both the conventional segTemp method based on template registration, and the

proposed segLabels method based on the labels resulting from the joint deblurring and segmentation

algorithm.
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The proposed method was evaluated using four MR volumes, one simulated (simulation results)

and three real (experimental results). The hyperparameters (µ, ξ, γ and σ2
n) are estimated auto-

matically by the Bayesian method. Note that although the noise variance can be determined from

the background signals of MR images, the computational cost of sampling the noise variance is neg-

ligible and these background signals are not always easy to identify. Thus, avoiding to estimate it

in preprocessing is an advantage of the proposed algorithm. However, a detailed analysis on the

difference between modelling the noise variance during the deconvolution process and pre-estimating

it is presented in Section 3.3.4. On the other hand, the set of parameters (µ0, σ0, β, α and ν) was

fixed by cross-validation to (mean(y), std(y), 0.6, 0, 0), where y is the input image, using simulated

data with label ground truth available in order to ensure the best performance of the algorithm.

Since the simulation data was extracted from real MR images, the same fixed values were success-

fully used within the experimental study. While the value of the granularity coefficient (β) could be

determined by automatic approaches such as the one proposed in [172], this coefficient was tuned

herein by cross-validation to ensure estimated label maps as close as possible to the true labels in

the simulation study. Additional information on the influence of β is also presented in Section 3.3.4.

The number of classes K should be set by the user according to the number of regions to be

segmented in the given volume. 50 chains of 2450 iterations including a given burn-in period of 800

iterations were run for each scenario. The choice of number of iterations was done based on the

systematic study on the effect of number of iterations on the output of the JMCMC algorithm (See

Section 3.3.4). The labels created by the JMCMC algorithm were smoothed by a Gaussian kernel

with a full width at half maximum (FWHM) of 0.8 mm3 to be further used in segLabels as priors

for SPM segmentation. Experiments were conducted using MATLAB R2018a.

3.3.1 Evaluation metrics

Performance assessment of the proposed algorithm in terms of deblurring and the results of seg-

mentation using the output labels were done quantitatively using the improvement in SNR (ISNR),

normalized root mean square error (NRMSE) and image structural similarity (SSIM) and respectively
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Dice coefficient. These metrics are defined as follows:

ISNR = 10 log10
‖x− y‖2
‖x− x̂‖2 , (3.27)

NRMSE =
√
‖x− x̂‖2
‖x‖2 , (3.28)

SSIM = (2µAµB + C1)(2σAB + C2)
(µ2
A + µ2

B + C1)(σ2
A + σ2

B + C2) , (3.29)

Dice = 2A ∩B
A+B

, (3.30)

where x,y, and x̂ are the ground truth, the corrupted image and the restored image respectively.

µA and µB are the local means, σA and σB are the local standard deviations, and σAB is the

cross–covariance of the two images A and B to be compared. The Dice coefficient is given as twice

the number of elements common in A and B (A ∩B) divided by the sum of the number of elements

in each (A+B).

3.3.2 Simulation results

A simulated MRI brain volume of size 78×108×52 was created such that each region follows a GGD

with known parameters (µ, ξ and γ). The simulation scenario is summarized in Figure 3.3. A map

of labels is created out of the registration of a selected MRI volume which was further used to create

an MRI volume with simulated GGDs having parameters estimated from the initial volume. This

simulated volume, considered as the ground truth (gtVol), was convolved by a Gaussian blurring

kernel, of size 3 × 3 and standard deviation 0.6, and contaminated by an AWGN noise to mimic

the degradation induced by the MRI scanner. The choice of this blurring PSF was based on the

conclusions drawn by [42] and [81] stating that the PSF in MRI can be approximated by a Gaussian

function with its FWHM being the selected slice width. The additive noise is characterized by its

blurred signal to noise ratio (BSNR) defined as:

BSNR = 10 log10

(
‖Hx− E(Hx)‖22

Nσ2
n

)
, (3.31)

where E(·) is the empirical average and N is the total number of image pixels. The BSNR was set

to 30 dB.
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Figure 3.3: Simulation scenario of an MRI volume with voxel intensities following GGDs with known
parameters.

The quality of the deblurring by deconvolution using JMCMC was quantitatively assessed by

comparing the recovered volume to the ground truth in terms of ISNR, NRMSE and SSIM. The

average of these metrics (± the standard deviation) for the 52 slices were computed, and we obtained

an ISNR = 26.21± 1.79 dB, NRMSE = 0.026± 0.014 and SSIM = 0.98± 0.14.

To further study the efficiency of using the label-based segmentation method, the recovered

volume was segmented using the template-based segmentation method and the corrupted volume

using the labels produced by the JMCMC algorithm. The results of segmentation of GM and WM

using these two methods is shown for an axial slice in Figure 3.4 compared to the true labels of the

ground truth volume.

Finally, Table 3.1 shows the average SSIM and Dice coefficients of 52 slices computed for the

GM and WM segmentation respectively. InDices were computed by comparing the true maps with

the following segmentation results: segmentation obtained from 1) corrupted volume using segTemp,

2) corrupted volume using segLabels, 3) recovered volume using segTemp and 4) recovered volume

using segLabels.
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Figure 3.4: Axial slice of (A) the GGD-based simulated volume (ground truth), along with its
corresponding (B) true labels, (C) GM and (D) WM maps. (E) is the image slice in (A) corrupted
with blur and noise. (F) is the resulting map after the registration of (E) to the marmoset brain
template. (K) is the image slice recovered from (E), and (L) is its estimated label map by JMCMC
to be used as priors in SPM. Finally, the GM and WM result of the segTemp method for (E) are
shown in (G) and (H), and for (K) in (M) and (N), respectively. The results of the segLabels method
for (E) are shown in (I) and (J), and for (K) in (O) and (P), respectively.
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Table 3.1: Quantitative assessment of the GM and WM segmentation using the segTemp and
segLabels methods, by comparing the segmentation of the corrupted and recovered volumes with
the true labels.

segTemp segLabels

corrupted recovered corrupted recovered

SSIM
GM 0.84±0.02 0.90±0.3 0.87±0.02 0.92±0.09

WM 0.92±0.03 0.90±0.01 0.74±0.02 0.96±0.05

Dice
GM 0.96±0.003 0.98±0.004 0.98±0.006 0.89±0.25

WM 0.97±0.007 0.96±0.004 0.94±0.011 0.80±0.39

3.3.3 Experimental results

The workflow (Figure 3.1) was evaluated on three MRI brain volumes acquired from the same adult

marmoset, and for which we have the manual segmentation (MS). These structural T1-weighted

volumes were acquired using a Philips MRI scanner dedicated to human and animal research, at a

field strength of 3T. A 3D gradient echo sequence was used with TR = 10.5 msec, TE = 4.7 msec,

flip angle of 8o, isotropic resolution of 0.35 mm and size of 288 × 288 × 288 voxels. To decrease

the computational time and focus on the brain region, the volumes were cropped to the size of

78× 100× 80.

Figure 3.5 shows the results of deconvolution by JMCMC for axial slices of the three different volumes,

chosen so as to depict a clear enhancement of the image’s quality, especially at the borders between

different regions.

Similar to what was done in the simulation part, the results of the segTemp and segLabels methods

were then compared to the manual segmentation of the three volumes. While the segmentation of

the native and the enhanced volumes (by JMCMC) required their registration to the marmoset

brain template before performing the segmentation task in SPM, the JMCMC method produced the

estimated label map which was further used as prior information in SPM to produce the final GM and

WM. In order to assess the efficiency of the proposed segLabels algorithm on real data, as compared
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to the existing one (segTemp), the native and the enhanced volumes were further segmented using

both approaches.

Figure 3.5: Results of image deconvolution by JMCMC algorithm for 3 axial slices (I1, I2 and I3) of
the 3 MRI volumes. Top: the native images. Bottom: the enhanced (deconvolved) versions.

Figure 3.6 and Figure 3.7 show the results of GM and WM segmentation respectively of the axial

slices presented in Figure 3.5. Moreover, difference maps were computed between the segmentation

by segTemp and segLabels and the reference manual segmentation to visualize the accuracy of the

results.

The average SSIM (Table 3.2) and Dice coefficients (Table3.3) were computed for the three

volumes. In this quantitative study, the manual segmentation of (vol1, vol2 and vol3) was compared

with the segmentation of these volumes, and their enhanced versions, using segTemp and segLabels

methods.
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Figure 3.6: GM segmentation from the axial slices (I1, I2 and I3 respectively) of Figure 3.5. (A)
Manual segmentation, (B) segTemp result from the native image, (C) segLabels result from the native
image, (D) segTemp result from the enhanced image and (E) segLabels result from the enhanced
image. (F), (G), (H) and (I) are the difference maps between the reference segmentation in (A) and
the segmentation results in (B), (C), (D) and (E), respectively.
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Figure 3.7: WM segmentation from the axial slices (I1, I2 and I3 respectively) of Figure 3.5. (A)
Manual segmentation, (B) segTemp result from the native image, (C) segLabels result from the native
image, (D) segTemp result from the enhanced image and (E) segLabels result from the enhanced
image. (F), (G), (H) and (I) are the difference maps between the reference segmentation in (A) and
the segmentation results in (B), (C), (D) and (E), respectively.
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Table 3.2: Average SSIM, computed for the segmentation of each volume and their enhanced versions
using segTemp and segLabels, with respect to the manual segmentation.

segTemp segLabels

native enhanced native enhanced

vol1 0.58±0.13 0.53±0.12 0.74±0.13 0.72±0.09

vol2 0.66±0.17 0.65±0.17 0.73±0.14 0.76±0.13

vol3 0.56±0.19 0.58±0.19 0.73±0.14 0.73±0.16

Table 3.3: Average Dice coefficients, computed for the segmentation of each volume and their en-
hanced versions using segTemp and segLabels, with respect to the manual segmentation.

segTemp segLabels

native enhanced native enhanced

vol1 0.75±0.23 0.72±0.22 0.82±0.27 0.85±0.22

vol2 0.63±0.35 0.62±0.35 0.73±0.36 0.68±0.38

vol3 0.55±0.34 0.58±0.35 0.72±0.33 0.68±0.38

3.3.4 Influence of the hyperparameters’ choice

While most of the hyperparameters are automatically estimated in our Bayesian method, a number

of parameters has to be tuned manually. In this section we will present the influence of some of

these parameters on the algorithm’s output and accordingly the motivation of the values chosen in

the above results.

Choice of the noise variance (σ2
n): The proposed method estimates the noise variance using

Bayesian inference imposing a non-informative Inverse Gamma prior. However, in MRI images, the

noise variance can be determined from the background signals. In order to address the difference

between modelling the noise variance during the deconvolution process and pre-estimating it, we
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performed the joint segmentation and deconvolution of a real MR image, for which we have the

ground truth manual segmentation, with the noise variance being:

• pre-estimated from the background signals (σbackground = 2.02)

• pre-estimated by a Rician noise estimator [178] (σrician = 1.21)

• modeled (as in the proposed algorithm) by an Inverse Gamma distribution

(σmodelled = 1.16)

For each case, the deblurred images were further segmented using their estimated labels in SPM.

Figure 3.8 shows the results of the GM and WM segmentation compared to the manual segmentation

of the native image.

Figure 3.8: Showing the native axial slice with the manual GM and WM segmentation compared to
the deblurred images and their respective segmentations with the noise variance being pre-estimated
from the background signals, pre-estimated by a Rician noise estimator and modelled respectively.
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Moreover, the SSIM index and the Dice coefficients were computed for each segmentation result

compared to the manual segmentation (MS). The results are shown in Table 3.4. They show that

estimating the noise variance within the proposed method gives comparable or slightly better results

than the two approaches of estimating it as a pre-processing step.

Table 3.4: SSIM index and Dice coefficients for GM and WM segmentation of the three cases for
noise variance estimation compared to the manual segmentation (MS)

SSIM Dice

(σbackground,MS) (σrician,MS) (σmodelled,MS) (σbackground,MS) (σrician,MS) (σmodelled,MS)

GM 0.6657 0.6806 0.7137 0.8575 0.8895 0.9106

WM 0.7536 0.8337 0.8309 0.8236 0.9106 0.9143

Thus, we consider that estimating the noise variance along with all the parameters is more

practical than estimating it in a prior step that requires extracting the background region (which

could be difficult depending on the image and the size of the background), especially since sampling

this parameter is not computationally expensive. Indeed if the size of the the background is small,

the pre-estimation is imprecise.

Choice of the granularity coefficient (β): The granularity coefficient in the Ising model (3.9)

was tuned manually. Since the impact of the granularity coefficient appears on the labels map, this

parameter has been tuned on simulated data with available ground truth labels, and, importantly,

fixed to the same value for all the experiments on real data. Since the simulation scenario was based

on data extracted from a real MR volume,it was successful to fix the value of the parameter using

the simulation data. Figure 3.9 shows the estimated labels map of a real MR image starting with

different granularity coefficients.
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Figure 3.9: The effect of varying the value of the granularity coefficient β on the labels map produced
by the JMCMC algorithm and that would be further used as prior maps for SPM segmentation.

Choice of number of iterations: Due to the complexity of the structures in MR images, per-

forming a huge number of iterations is time and memory consuming. Since our ultimate goal is to

produce labels maps as priors for SPM segmentation, we followed the general rule of MCMC sam-

pling by fixing a burn-in period (where the samples generated are discarded) followed by a number

of iterations sufficiently large (1650 iterations) for producing good labels map. Hereafter, we present

a systematic study for the effect of varying the number of iterations by observing its impact on the

deblurred image and its corresponding labels for several iteration numbers (900, 1000, 1400, 2000,

2400, 2800, 3200, 4000, 5500). The JMCMC algorithm was performed on a real MR slice that has

been degraded by a blurring kernel and Gaussian noise. The results were then compared to the

ground truth image and labels.

Figure 3.10 shows the curves of the SSIM index and improved signal to noise ratio (ISNR) between

the deconvolved images and the ground truth. In addition, we plotted the elapsed time (in secs) for

each number of iterations. This shows that as the number of iterations increase, the SSIM and ISNR

increase until they reach a plateau, however, the compromise is made with respect to the elapsed

time required for the MCMC iterations to end. Moreover, Figure 3.11 shows the effect of the number

of iterations on the estimated labels of the JMCMC method. As expected, one may remark that

within a small number of iterations, the labels could not be constructed successfully.
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(a) SSIM (b) PSNR

(c) Elapsed time

Figure 3.10: SSIM index and ISNR computed between the deconvolved image and the ground truth
for different MCMC iterations and the elapsed time (in secs) for each set of iterations to be completed.
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Figure 3.11: Effect of varying the number of iterations on the estimated labels map that will be
further used for the segmentation task in SPM.
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3.4 Discussion and conclusion

This chapter presented a segmentation method for marmoset brain MR images, which does not rely

on a brain template. We proposed a segmentation method based on a Bayesian joint deconvolution

and segmentation algorithm, whose outputs are an enhanced version of the input MRI volume and

its corresponding labels which can be further used as prior information (maps) for segmenting the

brain into its main compartments in SPM. Experiments on simulated and real data show that the

proposed method presents results that are comparable to those obtained with the classical method,

i.e. registering the volumes to a brain template.

Comparing Figure 3.4(K) to 3.4(A) and referring to the quantitative assessment of the simula-

tion experiment, we notice the efficiency of deconvolution using JMCMC algorithm in recovering

the simulated volume from its blurred version. As our main objective is to evaluate the proposed

methodology of segmentation (segLabels), the SSIM and Dice results presented in Table 3.1 show

that segmenting a volume (corrupted or recovered) using the segLabels method gives better results

for GM segmentation than segmenting it using the classical segTemp one. However, one can observe

that the result of the segmentation using segLabels of the recovered volume (Figure 3.4(O) and (P))

contained outliers in some slices due to the simulate.

Moreover, the quantitative assessment of segLabels and segTemp applied to the recovered volume

(see Table 3.1) shows that the proposed label-based method shows significant interest since it does

not require any template, representing the main contribution in this segmentation methodology.

This result can also be qualitatively observed when comparing the GM and WM outputs of both

methodologies in Figure 3.4.

In addition, experimental results presented in Tables 3.2 and 3.3 show that the proposed segmen-

tation method (segLabels) outperforms the segTemp method in segmenting both the native volumes

and the enhanced ones. Difference maps computed for GM (Figure 3.6) and WM (Figure 3.7) seg-

mentations show that the proposed method (segLabels) is able to produce segmentations that are

as close to the manual segmentation as those produced by the conventional segTemp method. Not

only enhancing the MR volumes by deconvolution gives competitive segmentation results regardless
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of the method used, but also using the associated labels as segmentation priors presents an impor-

tant contribution, especially when templates are not available. The segmentation obtained with the

proposed method show a good similarity with the manual segmentation, which is most of the time

difficult to achieve in practical situations.

Although the registration process may be important for some applications, such as voxel-based-

morphometry, yet our method is efficient when brain templates are not available, which is the case

in most preclinical applications. Future work will include the investigation of the proposed joint

super-resolution and segmentation to further improve the longitudinal analysis whose aim is to obtain

insights about the normal or abnormal brain aging. Approaches for accelerating the JMCMC method

exist in literature, for example by combining them with optimization methods [179], thus including

other sampling schemes in the proposed work is also an interesting future direction aiming at reducing

the computational time. Moreover, automatic approaches for choosing the granularity coefficient

will be further investigated. Finally, the interest of machine learning in improving marmoset brain

segmentation is also an important topic to explore. The major challenge of such approaches is to

obtain ground truth data, i.e., by manual segmentation, a cumbersome and time consuming task for

the few experts in animal brain MR imaging. Therefore, transfer learning from human databases or

weakly supervised machine learning techniques could offer interesting perspectives to this work.

Limited by the heavy computational cost of this method, especially when processing all the data

of the marmoset population, we will not further use the deblurred images of the JMCMC algorithm

in the longitudinal analysis scheme. In the next chapter, we will investigate the effectiveness of faster

super-resolution (SR) methods for the enhancement of marmoset brain MR images. We will evaluate

several model- and learning-based methods and study their effect on the segmentation of the brain

into its main compartments. This systematic study will allow us to choose the best enhancement

methods that will be further used in the longitudinal analysis in Chapter 5.
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Super-resolution of 3D Marmoset
Brain MR Images
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4.1 Introduction

As stated in Chapter 2, single image SR is a post-processing method that restores an HR image from

one LR observation. Investigations in single image SR of MRI, applied to brain image enhancement,

have shown great potential in improving LR images by restoring high-frequency image details lost

during image reconstruction. Therefore, this chapter aims to explore the ability of SR techniques in

3D restoration and enhancement of marmoset brain MR images to facilitate the study of cerebral

aging bio-markers. In particular, we will validate the effectiveness of SR in enhancing the robustness

of automatic segmentation of brain images. We will focus on existing model-based and deep-learning

methods that have been validated for several medical imaging applications. We will further compare

their performance from the segmentation perspective using a state-of-the-art brain segmentation

method applied to native, LR, and estimated HR volumes.

The first part of this chapter introduces model-based techniques for the SR task. In particular,

we will assess a 2D fast SR (FSR) method [102] applied to the 3D volume slice by slice, a 3D tensor-

factorization (TF) [103] method for general image restoration, and a state-of-the-art method for SR

method that combines low-rank and total variation regularization [100]. The second part covers 3D

deep learning networks [127, 128] that have been initially published for the SR of human brain MR

images and re-trained here using marmoset data. In addition, we will present a preliminary study

in which we evaluate the applicability of the deep network proposed in [182] and trained on 3T/7T

pairs of human brain images for enhancing the quality of the 3T MRI of the marmoset brain.

SR is followed by the segmentation of the main brain compartments and the computation of their

respective volumes. Finally, we will compare super-resolved images provided by different methods

to the reference native images in the simulation scenario. Results are then confirmed based on the

better differentiation of the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) on

native and super-resolved images compared to the manual segmentation of the brains. Finally, this

will allow us to choose one model-based and one deep-learning method that will be further assessed

in the longitudinal brain analysis of Chapter 5.
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4.2 Model-based SR methods

4.2.1 2D Fast SR (FSR)

The FSR algorithm originally introduced in [102] for general 2D image restoration purpose has been

further validated for medical applications such as acoustic microscopy in [183]. This method exploits

the joint properties of the system point spread function (PSF) and the sub-sampling operators to

derive a fast algorithm. The authors proposed a new method for handling the decimation and

blurring operators simultaneously by exploring their intrinsic properties in the frequency domain

thus reducing the computational cost of matrix inversion when solving the SR problem. The FSR

method is based on the traditional observation model assuming that the LR image can be expressed

as a noisy, blurred and decimated version of the HR image as:

y = SHx + n, (4.1)

where y ∈ RNl×1 and x ∈ RNh×1 (Nh = d2Nl) are the vectorized versions of the LR and HR images.

H ∈ RNh×Nh represents the 2D convolution of the HR image with the PSF of the imaging system.

S ∈ RNl×Nh corresponds to the down sampling operator with an integer sampling rate d in each

spatial direction. n ∈ RNl×1 is an independent identically distributed (IID) additive white Gaussian

noise (AWGN).

We recall the two basic assumptions about the blurring and decimation matrices upon which the

method is built. These assumptions are necessary for the framework and are widely used in image

processing applications for image deconvolution and SR methods.

1. The blurring matrix H is the matrix representation of the cyclic convolution operator, i.e. H is

a block circulant matrix with circulant blocks (BCCB). This allows to writeH and its conjugate

transpose HH as:

H = FHΛF, (4.2)

HH = FHΛHF, (4.3)
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where the matrices F and FH are associated with the 2D Fourier and 2D inverse Fourier

transforms, and Λ = diag{Fh} is a diagonal matrix whose elements are the Fourier coefficients

of the first column of the blurring matrix H, denoted as h [102].

2. The decimation matrix S ∈ RNl×Nh is a down-sampling operator, while its conjugate trans-

pose SH ∈ RNh×Nl interpolates the decimated image with zeros as illustrated in Figure 4.1.

The decimation matrix satisfies the relationship: SSH = INl . Starting from S , SHS, then

multiplying an image by S is equivalent to the entry-wise multiplication of the image with an

Nh ×Nh matrix of ones at the sampled positions and zeros elsewhere [102].

Figure 4.1: Effect of up-sampling matrix SH on a 3× 3 image and of the down-sampling matrix S
on the corresponding 9× 9 images for a scale factor of 3. Figure was collected from [102].

The restoration of the HR image from the LR image is an ill-posed problem which is usually overcome

by the use of regularization terms chosen according to the application. Assuming that n in (4.1) is an

AWGN, the maximum a posteriori (MAP) estimator of x can be obtained by solving the following

optimization problem

x̂ = arg min
x
‖y− SHx‖22 + τR(x), (4.4)

where ‖y − SHx‖22 is the data fidelity term, R(x) is a regularization or penalty term, and τ is a

regularization parameter. The computational efficiency of the FSR approach mainly comes from

exploiting the properties of the decimation matrix S. Indeed, while H is diagonalizable in the Fourier

domain thus facilitating its implementation, the matrix S does not have the same property; this leads
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to high computational burden to directly invert (4.4), even when a classical l2 regularization is used.

In this case the analytical solution of (4.4) is straightforward. Based on [102], such analytic solution

becomes tractable in high dimensional cases, and can be further used even with more sophisticated

regularizers.

A well suited regularization term for MRI is the total variation (TV) regularization due to its

denoising properties and its ability to remove unwanted details while preserving edges [92, 102].

Therefore, the TV regularization for the SR problem can be given by:

φ(x) =
√
‖Dhx‖2 + ‖Dvx‖2, (4.5)

where Dh and Dv are the BCCB matrices representing the horizontal and vertical gradients re-

spectively. The problem in (4.4) is solved within FSR using the alternating direction method of

multipliers (ADMM) framework. Thus the problem can be rewritten as:

minx,u
1
2‖y− SHx‖22 + τφ(u)

subject to Ax = u. (4.6)

where with A = [Dh,Dv]T and the auxiliary variable u = [uh,uv]T . Thus, the Augmented La-

grangian (AL) function associated with it is:

L(x,u,λ) = 1
2‖y− SHx‖22 + τφ(u) + µ

2 ‖Ax− u + d‖22, (4.7)

where d is a scaled dual variable and µ is a hyper parameter. The solution of equation (4.4) is then

computed by solving three sub problems iteratively where for each iteration k (k = 0, 1, ...) we solve:


xk+1 ∈ arg minx 1

2‖y− SHx‖22 + µ
2‖Ax− uk + dk‖22

uk+1 ∈ arg minu τ
√
‖uh‖2 + ‖uv‖2 + µ

2‖Axk+1 − u + dk‖22

dk+1 = dk + (Axk+1 − uk+1)

(4.8)

The solution of x is given by the analytical solution derived in [102] (refer to Algorithm 3 in [102])

and u is updated using the generalized 2D soft shrinkage operator.
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Results of image restoration using the proposed algorithm [102] have shown great computational

efficiency with fast and smooth convergence with similar quantitative metrics when compared to

classical methods of restoration. In our work, we will evaluate this SR algorithm slice by slice to

3D MR acquisitions of the marmoset brain, i.e. the enhancement will be performed in the x and

y directions only. However, we will go further to investigate other SR methods that enhances the

whole 3D volume.

4.2.2 3D SR using Tensor Factorization (TF)

The TF method has been recently introduced in [103], validated, and proven computationally-efficient

on dental computed tomography images. The idea behind this method is to decompose the image of

interest using its canonical polyadic decomposition (CPD). The CPD of a tensor is a representation

based on a sum of an appropriate number of rank-1 tensors, whose number depends on the image

structure (see Figure 4.2). For self-consistency, we recall hereafter the main steps of this method.

Figure 4.2: Illustration of Tensor Factorization concept where F is the number of outer products
formed by mode-1 (U1 := U1(:, i)), mode-2 (U2 := U2(:, i)) and mode-3 (U3 := U3(:, i)) fibers
summing up to a rank-F tensor. Figure was extracted from [103].

Single image SR using TF is based on the traditional image degradation model assuming that the

LR image can be expressed as a noisy, blurred and decimated version of the HR image. Within this

algorithm, 3D images are associated to tensors of order 3, resulting into the following degradation
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model:

vec(Y ) = DHvec(X) + vec(N), (4.9)

where vec() vectorizes the elements of the 3D tensor in lexicographical order. Y ∈ RI/r×J/r×K/r and

X ∈ RI×J×K are the LR and HR images respectively, H ∈ RIJK×IJK is the block-circulant version

of the 3D point spread function (PSF), N is an independent identically distributed (IID) additive

white Gaussian noise (AWGN), I, J and K are the 3D volume dimensions and r is the decimation

rate accounting for the voxel resolution loss. Based on the hypothesis of separable PSF (valid in

the present study given the choice of Gaussian PSF), H can be decomposed in three block circulant

matrices with circulant blocks (BCCB), H1 ∈ RI×I , H2 ∈ RJ×J and H3 ∈ RK×K . Similarly, the

down sampling operators for the three dimensions can be given as D1 ∈ RI/r×I , D2 ∈ RJ/r×J and

D3 ∈ RK/r×K .

Using the canonical polyadic decomposition of X

X =
F∑
f=1

U1(:, f) ◦ U2(:, f) ◦ U3(:, f), (4.10)

with

Ū = {U1 ∈ RI×F , U2 ∈ RJ×F , U3 ∈ RK×F }, (4.11)

where F is the rank of the tensor, (4.9) can be rewritten as the mode-n product of the separated

kernels:

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 + N

= [[D1H1U
1, D2H2U

2, D3H3U
3]] + N. (4.12)

Thus the reconstruction of the HR image from the LR image requires to find the set of matrices

Ū by solving the following minimization problem:

min
Ū
‖Y − [[D1H1U

1, D2H2U
2, D3H3U

3]]‖2F . (4.13)

Since the minimization problem posed in (4.13) is NP-hard, U1, U2 and U3 are minimized sequentially
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as follows:

minU1
1
2‖Y

(1) −D1H1U
1(D3H3U

3 �D2H2U
2)T ‖2F

minU2
1
2‖Y

(2) −D2H2U
2(D3H3U

3 �D1H1U
1)T ‖2F

minU3
1
2‖Y

(3) −D3H3U
3(D2H2U

2 �D1H1U
1)T ‖2F (4.14)

The solution of the three minimization problems in (4.14) is obtained using the least-square estimator

with a Tikhonov regularization. The solution is further computed using the Moore-Penrose pseudo-

inverse+:

U1 = (D1H1)+Y(1)(D3H3U
3 �D2H2U

2)+T

U2 = (D2H2)+Y(2)(D3H3U
3 �D1H1U

1)+T

U3 = (D3H3)+Y(3)(D2H2U
2 �D1H1U

1)+T (4.15)

Unlike the conventional unfolding performed in 3D reconstruction algorithms such as in [100],

this method unfolds the tensor sequentially, in each direction, thus preserving the local 3D informa-

tion. The proposed method on dental CT images provided interesting computational advantages and

improved image quality with significantly less parameters (only tensor rank and iteration number)

to be adjusted by the user. Our interest in this approach is in the 3D handling of the MR volume;

i.e. resolution enhancement in the three directions. Additional information on the mathematical

derivations of the stated equations can be found in [103].

As mentioned in Section 5.1, we will compare the performance of the two methods (FSR and TF)

presented above, and which were not previously applied to MR images, to a state-of-the-art method

by Shi et al. [100] originally proposed for the 3D single-image SR of human brain MR images.

4.2.3 3D SR with Low-Rank and TV Regularization (LRTV)

While reconstruction-based algorithms use TV regularizations to retain edge sharpness during image

recovery, information from remote voxels is ignored, and only information from local neighbors is

used. To mitigate this issue, Shi et al. [100] developed a super–resolution method that integrates

both local and global information in the image restoration process. This approach is based on the idea
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of matrix completion i.e., considering the recovery of the HR matrix from a low rank (incomplete)

matrix by combining low rank and TV regularizations for the compelling image SR.

The authors suggested to consider that the LR 3D MRI image is a low – rank matrix from which

a HR image is going to be restored. This property can be integrated in the cost function provided in

(4.4) where the regularization can be separated into low-rank and total variation terms. Thus, (4.4)

can be rewritten as:

x̂ = arg min
x
‖y− SHx‖2 + λrankRank(x) + λTV TV (x), (4.16)

where λrank and λTV are the tuning parameters for the low – rank and TV terms respectively, Rank

is the weighted sum of trace norms of all matrices unfolded along each dimension and TV denotes the

integral of the absolute gradients of data. The regularizer Rank takes advantages of the similarity

between the slices in different directions. A 3D image with size of U × V ×W can be unfolded into

three 2D matrices with sizes of U × (V ×W ), V × (W × U), and W × (U × V ) respectively. To

simulate x in each dimension i, consider N – redundant variables {Mi}Ni=1 such that the unfolded x

along the i-th dimension (x(i)) should be equal to the unfolded Mi along this dimension (Mi(i)). The

new cost function becomes:

minx,{Mi}Ni=1
‖y− SHx‖2 + λrank

∑N
i=1 αi‖Mi(i)‖tr + λTV TV (x)

subject to xi = Mi(i) ; i = 1, 2, .., N (4.17)

where {αi}Ni=1 are parameters satisfying αi ≥ 0 and ∑N
i=1 αi = 1, and x(i) is the unfolded x along

the i-th dimension.

The minimization problem in (4.17) is further divided into three sub problems that are solved iter-

atively in an alternating direction method of multipliers (ADMM) framework and the total variation

(TV) is implemented using gradient descent thus rendering this method computationally expensive

[100]. This method will be referred to as LRTV hereafter.

To summarize, in this section, we have presented an overview of the model-based methods that

we assessed in the SR problem of the marmoset brain MR images. We will apply these methods and

fine-tune their hyperparameters for the maximum performance on our database.
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In general, these model-based methods depend on the choice of the regularization term for the

optimization process which can further impact the restored images. An alternative approach is to

learn the mapping between low- and high- resolution images in a supervised context. This is referred

to as learning based SR approaches.

4.3 Deep-learning based SR methods

In this section, we will further emphasize some deep-learning methods that have been originally

proposed for the SR of human brain MR data.

4.3.1 3D Residual Convolution Neural Network (ReCNN)

As stated before, deep-learning methods for SR are based on learning a mapping from the LR- to the

HR-space. Instead, Pham et al. [127] proposed a 3D deep convolutional neural network for single

brain MRI SR that estimates a mapping from the LR space to the high-frequency components by

computing the residual between the HR and LR data. Figure 4.3 illustrates the network architecture.

The skip connection introduced in the network architectures models the residual learning method.

The method is referred to as ReCNN hereafter. Table 4.1 summarizes the network’s parameters of

Figure 4.3: Illustration of the 3D ReCNN proposed by Pham et al. [127]. The skip connection
in the network adds the residual information learnt between the LR image and the high frequency
components. LR is the low resolution image, ILR is the interpolated LR image and HR is the high
resolution image. The figure was extracted from [127].
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the baseline architecture proposed in [127] consisting of 10 blocks of convolutional layers and rectified

linear unit (ReLU) activation function. Each layer is formed of 64 convolution filters of size 3×3×3.

The weights of the convolutional filters are initialized using the Microsoft Research Asia (MRSA)

filler [184] that samples weights from a normal distribution N(0,
√

2
(nf3))), where n is the number

of filters and f is the spatial size of the filter. The network’s parameters are then optimized using

Adam’s optimizer [108] by minimizing the mean squared error (MSE) as the loss objective function.

The network is trained for 20 epochs with a batch size of 64 and learning rate of 0.0001. However, in

their study, the authors have thouroughly investigated the impact of the optimization method, the

weights’ initialization, the residual-based model, the network depth, the filter size, the filter number,

the training patch size, the size of training data set, and the ability of the network to handle arbitrary

scales in a single network [127].

Table 4.1: Parameters’ initialization of the benchmark network proposed in [127].

Parameter Assigned Value

Optimization method Adam (adaptive moment estimation) [108]

Adam’s learning rate 0.0001

Loss Function Mean Squared Error (MSE)

Weight initialization Microsoft Research Asia - MRSA filler [184]

Network depth 10 layes

Number of filters 64 convolution filters

Filter size 3× 3 at each layer

Number of epochs 20

The ReCNN in [127] was originally implemented using Caffe [185] package. Evaluation of the

network’s performance for the SR task was done using two MRI databases of 3T T1-weighted images

of the human brain (Kirby21 data set [186], NAMIC Brain Multimodality data set (http://hdl.

handle.net/1926/1687)). LR images were simulated by adding Gaussian blur of fixed standard

deviation and down-sampling by isotropic scaling factors. Training was performed on 10 MR volumes

 http://hdl.handle.net/1926/1687
 http://hdl.handle.net/1926/1687
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from which 3200 patches were randomly extracted, each of size 25× 25× 25. Five volumes were then

used in the testing phase. Quantitative assessment of the peak signal to noise ratio (PSNR) showed

improved performance of the residual network compared to the non-residual SRCNN scheme of Dong

et al. [187]. Moreover, better performance can be achieved by using deeper networks of 20 layers,

increasing the number of filters, or increasing the filter size. However, a trade-off should be considered

regarding the computational cost [127].

SR of neonatal brain MR images was also performed where sharper images with better defined

boundaries were obtained. This seems important for our work since, similar to the neonatal brain,

marmoset brains are also small in size. Thus evaluating this network for the SR of the marmoset

brain is of a great interest.

4.3.2 Convolutional Neural Networks with Intermediate Loss (CNNIL)

In the context of 3D single-image SR, Georgescu et al. [128] has also proposed a deep convolutional

neural network (CNN) for CT and MRI scans. The network is composed of two CNNs of similar

architecture, but the first CNN performs the SR in the height and width directions, whereas the

second CNN increases the resolution in depth (see Figure 4.4). The trained models are combined to

provide the 3D super-resolved volume in the testing phase on along the three dimensions. The main

contribution in their work is that each of the 10-layers CNN has an intermediate up-scaling layer

placed after the first six convolutional layers (see Figure 4.5) which refines the HR image without

taking any additional information from the LR image. Therefore, instead of computing only the

loss between the final super-resolved image and the ground truth, the authors suggest computing

an additional intermediate loss right after the up-scaling layer. This method will be referred to as

CNNIL in the rest of the chapter.

Table 4.2 summarizes the network’s parameters of the CNN architecture proposed in [128] which

is the same for the two CNNs (height-width and depth). As depicted in Figure 4.5, each CNN

is composed of 10 convolutional layers followed by a ReLU activation function. These ten layers

are divided into 2 blocks, the first block containing six convolution layers followed by a sub-pixel

convolutional layer for up-scaling, and the second block containing the last 4 layers. The first 5
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Figure 4.4: Illustration of the CNN proposed by Georgescu et al. [128] where CNN1 resizes the
volume in the height and width dimensions and CNN2 resizes it in the depth. The figure was
extracted from [128].

Figure 4.5: The convolutional neural network (CNN1) which performs the SR in the height and
width directions. Green arrows represent the convolutional layers, red arrows represent sub-pixel
convolutional layers, and blue arrows represent short- and long-skip connections. The figure was
extracted from [128].
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convolutional layers of the first block are formed of 32 filters of size 3 × 3. The sixth convolutional

layer of CNN1 has d2 filters, whereas the sixth convolutional layer of CNN2 has d filters, with d

being the scaling factor. The first convolutional layer has a short-skip connection to the third layer

and a long-skip connection to the fifth layer. In the up-scaling layer, the activation laps produced by

the sixth layers are assembled into a single activation map. In the second convolutional block, the

first three convolutional layers have 32 filters whereas the last layer has a single convolutional filter.

A short-skip connection is also introduced between the seventh and the ninth layers. The network’s

parameters are then optimized using Adam’s optimizer with a learning rate of 0.001 for the first 20

epochs and further decreased to 0.0001 for the last 20 epochs [128].

Table 4.2: Parameters’ initialization of the CNNs proposed in [128]

Parameter Assigned Value

Optimization method Adam (adaptive moment estimation) [108]

Adam’s learning rate
0.001 for 1st 20 epochs

0.0001 for the last 20 epochs

Loss Function Mean Absolute Difference

Weights learned from data in an end-to-end fashion

Network depth 10 layes

Number of filters 32 convolution filters

Filter size 3× 3

Number of epochs 40

As highlighted before, the loss function of the proposed method is not computed from the es-

timated HR image and the ground truth only. Instead, an intermediate loss that minimizes the

difference between the up-scaled HR image (at the sixth convolutional layer) and the ground truth
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is added. Finally, the full loss of the network, provided here for the height-width CNN, is given by:

Lfull(θ, I, O) =
w0∑
i=1

h0∑
j=1
|f(θ, I)−O|

︸ ︷︷ ︸
Lstandard

+
w0∑
i=1

h0∑
j=1
|f1(θ1, I)−O|

︸ ︷︷ ︸
Lintermediate

, (4.18)

where θ are the CNN weights, θ1 are the weights of the first convolutional block, W0 and h0 are

the width and height of the ground truth image O respectively, I is the LR input image, f is

the transformation function learned by the CNN and f1 is the transformation function of the first

convolutional block.

Evaluation of the network’s performance for MRI 2D and 3D SR was done in [128] using the

NAMIC Brain Multimodality data set (http://hdl.handle.net/1926/1687)) containing 20 MR

volumes of 176 slices each and of voxel resolution = 1 × 1 × 1 mm3. LR images were simulated

by adding Gaussian blur of a varying standard deviation randomly chosen between 0 and 0.5 and

down-sampling by scale factors of 2 and 4. Training was performed on 10 MR volumes from which

patches of size 7× 7 were extracted whereas the other 10 were spared for testing. Since the network

performs 2D and 3D SR, the results of both enhancements were compared to baseline methods of

interpolation (nearest-neighbors, bilinear, bicubic and Lanczos) in addition to some state-of-the-art

methods ([124, 125, 188]). Quantitative results showed that the 2D SR using the proposed method

[128] outperforms all the other stated methods for the up-scaling factors of 2 and 4. Moreover the

authors showed that their method even surpasses the method proposed by Pham et al. [127] when

tested for the SR of 3D T2-weighted images. However, in their study, they did not compare the

performance of both methods on T1-weighted images. In our work, we will further conduct this

study on the 3D marmoset brain images.

To conclude, several deep-learning-based methods for MR image SR have been covered in this

section. Our aim is thus to assess the efficiency of these methods in the SR of marmoset brain

images after we re-train and fine-tune the parameter using our database. In the context of image

enhancement, we will provide in the next section an overview of a deep-learning method for the

synthesis of 7T-like images from 3T images. Although it is not a SR method, we wish to assess the

potential enhancement provided by higher magnetic field images.

 http://hdl.handle.net/1926/1687
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4.4 Synthesized 7T MRI from 3T MRI (WATNet)

In addition to SR, enhancement of MR images can be further provided by increasing the magnetic

field strength for the better quantification of brain changes [189, 190]. However, this is constrained

by the limited number of 7T platforms and the expensive acquisitions. An alternative approach

to using high magnetic fields is to generate synthetic 7T images from 3T data using deep learning

networks. The interest of such approaches was shown in the literature by several studies dedicated

to human brain, for example by generating 7T MR images from 3T MR images [191–194]. In these

studies, networks are trained using pairs of 3T/7T MR images of the human brain, where features

representing the transition between 3T and 7T are learned using different approaches. A recent

deep network, proposed by Qu et al. [182] for the synthesis of 7T images out of 3T ones using the

information in spatial and wavelet domains, has proven to outperform these methods.

The deep network, called WATNet [182], uses features extracted from the spatial domain and

incorporates wavelet features extracted by the image wavelet packet decomposition (WPD) for syn-

thesizing 7T-like images. These features are then modulated with those extracted in the spatial

domain through a wavelet-based affine transformation (WAT) layer. The advantage of these layers

relies on their ability to combine multi-level frequency components holding information on image

contrast and anatomical details. A brief summary of WATNet [182] is provided hereafter. Figure 4.6

shows the network proposed in [182]. WATNet reconstructs a 7T image (Ô), as close as possible to

the ground truth 7T (O), from a 3T MR image (I). With θ being the network’s parameters and Rθ
the mapping function form 3T to 7T, the learning function can be expressed as

Ô = Rθ(I). (4.19)

By incorporating the wavelet information in the learning process using the wavelet decomposition of

I, (4.19) can be re-written as:

Ô = Rθ(I|Wl), (4.20)

where Wl are the wavelet coefficients at level l. The WAT layers use the wavelet information and

the intermediate feature map F to learn a set of affine parameters γl and βl thus creating modulated
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Figure 4.6: WATNet for the synthesis of 7T MRI from 3T MRI of human brain. This figure is
extracted from [182]

feature maps as follows:

WAT (I|γl, βl) = γl � F + βl, (4.21)

where � is the element-wise multiplication. The final 7T image is reconstructed out of these mod-

ulated maps. The mean absolute error is then computed between the synthesized 7T MRI and the

ground truth image. For a batch of N synthesized images, the network’s loss function is given by:

LMAE =
N∑
i

‖Oi − Ôi‖1, (4.22)

where ‖.‖1 stands for the l1-norm.

The feature extraction process consists in passing an image through two convolutional layers,

four stacked information distillation blocks, and three WAT layers. Image reconstruction is then

performed by adding the original 3T image to the modulated feature map resulting from the feature

extraction block. WATNet was implemented with Caffe [185] and optimized using Adam [108] with

a learning rate to 0.002 (halved every 10 epochs). Weights were initialized following Hui et al. [195].

As suggested in [182], the network was trained on 13 pairs of 3T/7T T1-weighted MR images of the

human brain with 224 coronal slices and voxel size of 1× 1× 1 mm3 divided as 9 pairs for training

and 4 pairs for validation. The patch size was 64× 64× 3, covering 3 consecutive axial slices. Data
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augmentation by rotation, scaling, and fitting was performed to prevent over-fitting. Qualitative and

quantitative analysis showed that WATNet yielded significantly closer results to the ground truth 7T

images. Moreover, they have shown that not only does 7T images improve brain tissue segmentation,

but also that segmentation results of the synthesized 7T images were more comparable to that of the

ground truth images compared to other methods [182].

Since only 3T MR images are available in our study, we will evaluate the applicability of the

deep network proposed in [182] and trained on 3T/7T pairs of human brain images for enhancing the

quality of the 3T MRI of the marmoset brain. The synthesized 7T MR images are qualitatively and

quantitatively compared to the original 3T images and the results of model-based and learning-based

methods for SR that have been previously addressed.

4.5 Data preparation

This section presents the MRI dataset of the marmoset brain used to evaluate the performance of the

model- and learning-based methods illustrated above. Moreover, we detail the simulation and the

experimental setups used in the evaluation process. We finally highlight the segmentation method

adopted in this work to perform the automatic tissue brain segmentation.

4.5.1 Marmoset brain dataset

Structural T1-weighted MR images of marmoset brains were acquired using a Philips MRI scanner

dedicated to human and animal research at a field strength of 3T. A 3D gradient-echo sequence

was used with TR = 10.5 msec, TE = 4.7 msec, flip angle of 8o, isotropic resolution of 0.35 mm

and size of 288 × 288 × 113 voxels. Since the marmoset size is small for the machine used, most

brain scans include the neck and the shoulders regions. Thus, analyzing the whole image would

increase the image processing time and lead to increased errors due to intensity artifacts. Therefore,

it is preferable to reduce the image’s Field of View (FOV) to include the head only. Reduction of

FOV was achieved during the rigid registration of the MR scans to the T1-weighted marmoset brain

template that have been previously developed by Risser et al. [196] using SPM. This template was
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built from a single fully segmented marmoset brain image, which was transported onto the Karcher

mean [197] of 13 adult marmoset brain images using a diffeomorphic strategy that fully preserves the

brain topology. Finally, the registration process, illustrated in Figure 4.7, reduces all the scan’s size

to 126× 110× 81. This step is important later on for the segmentation purpose since all the brains

are now in the template space.

Figure 4.7: Registration of the original MR scans to the T1-weighted marmoset brain template
reduces the FOV to the head region only and ensures that all scans are in the template space.

For the remainder of the chapter, we will refer to the registered MR scans as the native images

that we will use in our simulation and experimental setups.

4.5.2 LR data simulation

To evaluate the SR performance of the different methods, LR/HR pairs of scans for each brain should

be acquired. An alternative approach in the absence of these pairs is to simulate LR volumes from the

available MR scans considered as high in resolution (Figure 4.8). In our work, LR images have been

generated by convolving the HR data (native images) with a Gaussian kernel and down sampling by

an isotropic factor.
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Figure 4.8: Simulation of LR images from native images considered as HR by convolving by a
Gaussian blurring kernel and down sampling by a factor of 2. ~ represents the convolution operation
and the down arrow represents down sampling.

Training data Following the work in [128], we generated LR patches for the training phase of both

learning-based methods by applying a Gaussian blur of size 7× 7 and a random standard deviation

chosen between 0 and 1.5. The training data set of the 3D ReCNN compromised 23 subjects of which

3200 patches of size 21× 21× 21 were were randomly sampled per subject. On the other hand, the

training dataset of the CNNIL contained 10 subjects of which 115000 patches of size 7× 7× 7 were

sampled.

Testing data Based on the image formation model, LR images used for assessment in the simula-

tion setup were generated from their HR correspondence using a Gaussian kernel of a fixed standard

deviation σ = 0.7 and size 3× 3 and down-sampled by a scale of 2. The same LR scans were used to

test all the methods to perform a fair comparison. The proposed methods were evaluated using three

MR volumes, for which the manual segmentation is available, in the simulation and the experimental

setups. Moreover, 7T-like images were synthesized out of these volumes, and their segmentations

were compared to the ground truth manual segmentation in the experimental setup. The testing

data will be referred to as Scan1, Scan2 and Scan3 in the rest of the chapter.

Figure 4.9 illustrates the data used for training and testing phases. Moreover it shows the different

inputs an outputs for simulation and experimental setups. LR images of size (md ×
n
d×

k
d ) are simulated

from native data of size (m × n × k), where d is the scaling factor. These LR/HR pairs are further
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used for training the deep-learning networks. Moreover, the LR simulated images are used in the

simulation setup to test the performance of model-based and learning-based methods with the ground

truth native data available. The output images of the simulation setup are then expected to be as

close to the native images as possible. In the experimental setup, the native images are fed into the

methods evaluated to get super-resolved volumes of size dm× dn× dk that are better in resolution

compared to the native images.

Figure 4.9: Illustration of the data used in the training phase and the testing phase including
simulation and experimental setups. LR images are simulated from native images to create LR/HR
pairs that are further used in the training phase. Testing phase includes two setups: the simulation
and the experimental. In the simulation setup, simulated LR images are used for testing with the
native ground truth image available, whereas in the experimental setup the native images are directly
used for testing different methods.
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4.5.3 Image segmentation

In this chapter, we performed cross-sectional brain segmentation of each volume in SPM. To recall

from Chapter 2, SPM segmentation requires the presence of tissue probability maps that represent the

prior information used to create the final segmentation. These tissue probability maps were previously

created at CERCO lab (cerco.cnrs.fr/en/cerco-umr5549-2/) from an initial automatic brain

segmentation of 43 marmoset subjects to represent the whole population. The procedure, called

DARTEL (Diffeomorphic Anatomical Registration using Exponential Lie Algebra) template creation

[198], begins by creating a mean of all the segmentation images, which is used as an initial template.

Deformations from this template to each of the individual images are computed, and the template

is then re-generated by applying the inverses of the deformations to the images and averaging. This

procedure is repeated auntil convergence and the final maps are created. MR volumes registered to the

T1-weighted template, and the DARTEL priors are then fed into SPM to create the final segmentation.

Figure 4.10 illustrates the segmentation procedure. Following the suggestion in [141, 142], the native

3D T1-weighted volumes are enlarged to five times the head size to make the images usable in software

for human brains.

4.6 Results

Several model-based and learning-based SR techniques have been presented. In this section, we will

compare the performance of these methods versus classical interpolation methods, i.e. bicubic, cubic,

and spline interpolation. Quantitative and qualitative analysis will be performed for simulation

and experimental results. Moreover, we will further analyze the results from the 2D and 3D SR

perspective.

cerco.cnrs.fr/en/cerco-umr5549-2/
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Figure 4.10: Segmentation of the native scan (already registered to the marmoset IMPEC brain
template) in SPM using DARTEL prior maps as input to create the final segmentation of GM, WM
and CSF. Note that for human brain, two additional priors exist for the head and skull that are not
available in our study.

4.6.1 Image quality assessment

To quantify the quality of the super-resolved images and their corresponding segmentation, we have

used different metrics. In addition to ISNR and SSIM, previously introduced in Chapter 3, we used

the peak signal-to-noise ratio (PSNR), the information fidelity criterion (IFC) [199, 200], and the

mean squared error (MSE) as classical criterion to evaluate the similarity between gray level images.

Although IFC has been scarcely used in literature, Yang et al. [201] has proved the effectiveness

of this metric being highly correlated with the human perception of the super-resolved mages. IFC

metric is designed to evaluate the loss of image information by extracting wavelet features with focus
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on high-frequency details rather than low-frequency components. Higher IFC values correspond to

a better enhancement. The MSE and the PSNR are defined as:

MSE = 1
N

N∑
i=1

(xi − x̂i)2, (4.23)

PSNR = 10 log10
(max(x)−min(x))

MSE
, (4.24)

where x, y, and x̂ are the ground truth, the corrupted image and the restored image by SR respec-

tively, and N is the total number of elements in x. max and min are the maximum and minimum

intensity values of the HR image x.

Segmentation results were assessed based on the SSIM index computed for segmentation maps,

and the Dice coefficient computed for segmentations binarized by thresholding.

4.6.2 Choice of the hyperparameters

Since model-based SR algorithms require the previous knowledge or estimation of the blurring point

spread function (PSF), we have followed the conclusion drawn by [42] and [81] by approximating the

PSF as a Gaussian function with its full width at half maximum (FWHM) equal to the selected slice

width. The standard deviation is then computed by:

σ = FWHM
4
√

2ln2
(4.25)

The dimensionality of the PSF kernel generated depends on the SR problem to be solved, i.e.

in 2D or 3D. While the FSR performs the SR in 2D (slice by slice), the TF and LRTV algorithms

require a 3D kernel. The parameters used in the LRTV algorithm were kept as suggested by the

authors in [100] given that the original paper already addressed an MR application. The TF method

only requires one hyperparameter, the tensor rank F which was set to its best value of 1200, while

LRTV requires the right tuning of the weights of each regularization term and the parameters of the

ADMM and gradient descent optimizer. Similarly, the hyperparameters of the FSR algorithm were

set by cross-validation to their best values, µ = 0.005 and τ = 0.02.

Starting from the initial parameters suggested by the authors for learning-based methods, several

trials were conducted to choose the best values for the available marmoset database. Finally, Table
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4.3 and Table 4.4 summarize the parameters used in the training phase for the 3D ReCNN and the

CNNIL respectively. The 3D ReCNN algorithm was re-implemented in Tensorflow(2.3.0).

Table 4.3: Parameters’ initialization for the training phase of the 3D ReCNN

Parameter Assigned Value

Optimization method Adam (adaptive moment estimation)

Loss Function Mean Squared Error (MSE)

Number of epochs 20

Adam’s learning rate 0.001

Scale [2,2,2]

Blur N v (0, σ)

σ random number ∈ [0, 1.5]

Batch size 128

Patch size 21× 21× 21

Patch stride 7

Number of filters 64 convolution filters

Filter size 3× 3 at each layer

Number of subjects 23

Samples/subject 3200

Number of samples 106141

Figure 4.11 shows the evolution of loss function and the PSNR (in dB) during the training phase

of the 3D ReCNN as function of training epochs. Similarly, Figure 4.12 shows these values computed

for the height-width sub-network of CNNIL (CNN1) and the depth sub-network of CNNIL (CNN2)

respectively.
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Table 4.4: Parameters’ initialization for the training phase of the CNNIL

Parameter Assigned Value

Optimization method Adam (adaptive moment estimation)

Loss Function Mean Absolute Error

Number of epochs 40

Adam’s learning rate
0.001 for 1st 20 epochs

0.0001 for the last 20 epochs

Scale [2,2,2]

Blur N v (0, σ)

σ random number ∈ [0, 1.5]

Batch size 128

Patch size (CNN1) 7× 7

Patch size (CNN2) 14× 7

Patch stride 7

Number of filters 32 convolution filters

Filter size 3× 3

Number of subjects 10

Number of patches 115000

Figure 4.11: Evolution of the loss and PSNR of 3D ReCNN with respect to the number of epochs
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Figure 4.12: Evolution of the loss and PSNR of CNNIL with respect to the number of epochs. The
figure shows the metrics’ evolution of CNN1 in red and CNN2 in blue.

While the 3D ReCNN starts by an LR image interpolated using Spline interpolation in order

to train the SR network, the CNNIL network is trained without resizing the input image due to

the architecture of the network having an intermediate up-scaling convolutional layer. As stated

previously, the WATNet for 7T-like image synthesis from 3T images was tested directly using the

trained model on 3T/7T pairs of the human brain as provided by the author [182] due to the lack of

3T/7T T1-weighted pairs for the marmoset brain.

4.6.3 Simulation results

As stated in Section 4.5, the simulation setup consists in applying SR to simulated LR data of the

marmoset brain where the ground truth HR data is available. Restored images are thus compared,

quantitatively, to their HR reference using the evaluation metrics. Similarly, segmentations of images

restored by SR are compared quantitatively to the segmentation of the HR reference. Results are
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collected for the three MR scans used as testing data. Table 4.5 provides the model-based SR results

for the FSR, TF and, LRTV compared to standard resizing methods based on interpolation schemes,

namely bicubic and cubic interpolation, in terms of SSIM, PSNR, ISNR, MSE and IFC. In addition,

Table 4.5 shows the elapsed time (in secs) to complete the SR task for FSR, LRTV, and TF methods

performing 800, 20, and 20 iterations respectively. Similarly, Table 4.6 provides the learning-based

SR results for the ReCNN, the CNNIL along height-width axes (CNNIL-2D), and the CNNIL along

the 3 axes (CNNIL-3D) compared to standard Spline interpolation method. Note that we have

included the Spline interpolation in learning-based comparisons since it is the interpolation method

used to upscale the LR image in the ReCNN method.

Table 4.5: Model-based SR results of FSR, TF, LRTV Bicubic interpolation and Cubic interpolation
methods on three MR scans of the marmoset brain (Scan1, Scan2, and Scan3). The SSIM, PSNR,
ISNR, MSE and IFC values are reported for an up-scaling factor of 2. Elapsed time (in secs) to
complete the SR task for FSR, TF, and LRTV is given for 800, 20, and 20 iterations respectively.
The best result from the three methods is highlighted in bold for each scan.

Method SSIM PSNR ISNR MSE IFC Time (secs)

Scan1

FSR 0.725 34.574 3.369 0.0088 4.843 8.13

TF 0.894 29.920 1.107 0.0134 3.6021 55.97

LRTV 0.700 30.637 0.374 0.0105 3.3050 751.28

Bicubic 0.650 30.465 - 0.0118 2.554 -

Cubic 0.829 27.729 - 0.0145 2.6702 -

Scan2

FSR 0.760 34.947 3.713 0.0003 4.989 7.78

TF 0.710 30.663 3.891 0.0008 3.8695 56.15

LRTV 0.724 31.481 0.202 0.0020 3.5504 736.08

Bicubic 0.699 31.234 - 0.0021 2.640 -

Cubic 0.702 23.096 - 0.0026 2.8145 -

Scan3

FSR 0.739 33.295 2.998 0.0005 4.723 8.23

TF 0.685 29.840 1.249 0.0013 3.4221 55.82

LRTV 0.707 33.148 0.0202 0.0020 3.1852 723.49

Bicubic 0.668 30.297 - 0.0024 2.508 -

Cubic 0.671 22.638 - 0.0030 2.5638 -
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Table 4.6: Learning-based SR results of ReCNN, CNNIL-2D, CNNIL-3D, and Spline interpolation
methods on three MR scans of the marmoset brain (Scan1, Scan2, and Scan3). The SSIM, PSNR,
ISNR, MSE and IFC values are reported for an up-scaling factor of 2. The best result from the three
methods is highlighted in bold for each scan.

Method SSIM PSNR ISNR MSE IFC

Scan1

ReCNN 0.946 34.063 2.003 0.0174 4.1304

CNNIL-2D 0.662 29.374 2.277 0.0099 2.616

CNNIL-3D 0.680 28.304 6.124 0.0107 3.1712

Spline 0.916 32.060 - 0.0144 2.5385

Scan2

ReCNN 0.962 35.223 2.337 0.0013 4.4701

CNNIL-2D 0.918 31.564 6.179 0.0009 2.703

CNNIL-3D 0.932 31.576 5.922 0.0007 3.9980

Spline 0.910 32.059 - 0.0144 3.8130

Scan3

ReCNN 0.940 33.252 1.981 0.0026 3.9980

CNNIL-2D 0.902 30.422 5.760 0.0011 2.528

CNNIL-3D 0.906 28.888 7.548 0.0016 3.0698

Spline 0.905 31.271 - 0.0043 3.3745

In addition to the quantitative results shown in Tables 4.5 and 4.6, we present qualitative illus-

tration of the model-based SR results and learning-based SR results in Figure 4.13 and Figure 4.14

respectively for three axial slices from Scan1, Scan2, and Scan3.

In order to further assess the recovered images by SR, we performed the brain tissue segmentation

of the HR and the recovered images into GM, WM and CSF. Although the segmentation of CSF is

not accurate since it can not be distinguished from the skull, this error is present in the segmentation

of HR and recovered scans, thus presenting its results here is acceptable. Table 4.7 and Table

4.8 compares, respectively, the SSIM index and Dice coefficient computed between the HR image

segmentation and the recovered image segmentation using model- and learning-based methods.
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Figure 4.13: Axial slices showing SR model-based results of the LR image in (b) using (c) FSR, (d)
TF, (e) LRTV, and (f) Cubic interpolation with respect to the ground truth HR image (a). First,
second, and third row represent the axial slice from Scan1, Scan2, and Scan3 respectively. The LR
images were blurred using Gaussian kernel and downsampled by a scale of 2.

Table 4.7: SSIM index computed for the segmentation of each recovered scan using different model-
based and learning-based SR methods with respect to the segmentation of the HR image. The best
results from the model-based and learning-based methods are highlighted in bold for each scan.

Model-based Learning-based

FSR TF LRTV Bicubic Cubic ReCNN CNNIL-2D CNNIL-3D Spline

Scan1

GM 0.9352 0.8843 0.8943 0.8751 0.8594 0.9231 0.8925 0.8759 0.8960

WM 0.9113 0.8632 0.8778 0.8782 0.8592 0.8892 0.8826 0.8670 0.8794

CSF 0.7983 0.7533 0.7794 0.7495 0.7083 0.6019 0.8184 0.7231 0.6414

Scan2

GM 0.8975 0.8595 0.9097 0.8299 0.8386 0.9461 0.8592 0.8900 0.8486

WM 0.8807 0.8977 0.9025 0.8983 0.8954 0.9257 0.8941 0.8863 0.9137

CSF 0.7312 0.7363 0.8333 0.7653 0.7732 0.7179 0.7539 0.8170 0.7457

Scan3

GM 0.9218 0.8620 0.8754 0.8111 0.7972 0.9145 0.8757 0.8413 0.8162

WM 0.8997 0.8463 0.8496 0.8483 0.8477 0.8802 0.8604 0.8343 0.8651

CSF 0.7400 0.6457 0.6384 0.5956 0.6254 0.7856 0.7213 0.6302 0.7715
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Figure 4.14: Axial slices showing SR model-based results of the LR image in (b) using (c) ReCNN,
(d) CNNIL-2D, (e) CNNIL-3D, and (f) Spline interpolation with respect to the ground truth HR
image (a). First, second, and third row represent the axial slice from Scan1, Scan2, and Scan3
respectively. The LR images were blurred using Gaussian kernel and downsampled by a scale of 2.

Table 4.8: Dice coefficient computed for the segmentation of each recovered scan using different
model-based and learning-based SR methods with respect to the segmentation of the HR image. The
best results from the model-based and learning-based methods are highlighted in bold for each scan.

Model-based Learning-based

FSR TF LRTV Bicubic Cubic ReCNN CNNIL-2D CNNIL-3D Spline

Scan1

GM 0.9521 0.9100 0.9200 0.9054 0.9067 0.9383 0.9248 0.9126 0.9272

WM 0.9371 0.8882 0.8932 0.8851 0.8889 0.9176 0.8963 0.8904 0.9086

CSF 0.9095 0.8901 0.9015 0.8815 0.8601 0.7544 0.9128 0.8702 0.7982

Scan2

GM 0.9303 0.8872 0.9297 0.8560 0.8791 0.9571 0.8829 0.9237 0.8935

WM 0.9231 0.9071 0.9118 0.9014 0.8997 0.9447 0.9091 0.9031 0.9157

CSF 0.8899 0.8886 0.9292 0.8974 0.9016 0.8678 0.8917 0.9218 0.8929

Scan3

GM 0.9512 0.8957 0.9121 0.8389 0.8458 0.9445 0.9239 0.9076 0.8703

WM 0.9261 0.8766 0.8800 0.8723 0.8646 0.9082 0.8833 0.8753 0.8860

CSF 0.9108 0.8548 0.8374 0.8225 0.8401 0.9279 0.9028 0.8339 0.8507
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Finally, based on the quantitative results in Tables 4.7 and 4.8 favoring the 2D FSR and the 3D

ReCNN, and to further illustrate the effect of MRI SR on tissue brain segmentation, Figure 4.15

shows the GM and WM segmentation of an axial slice of Scan1 for these methods compared to that

of the LR and HR images.

Figure 4.15: GM (second row) and WM (third row) segmentation of an axial slice of Scan 1 for
the (a) HR ground truth image, (b) LR simulated image, (c) recovered image by 2D FSR, and (d)
recovered image by 3D ReCNN.
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4.6.4 Experimental results

Herein, we have applied the SR methods directly to the MR scans, thus considered as the LR. SR was

performed using an isotropic upsampling factor of 2. Figure 4.16 and Figure 4.17 compare the qual-

itative results of HR image restoration using model-based and learning-based methods respectively

for an axial slice of Scan1. In this experimental setup, the ground truth HR data are not available

for calculating metrics.

Figure 4.16: Illustration of model-based SR results on the native LR data of the marmoset brain
with isotropic voxel upsampling factor of 2. The first row shows the recovered axial slice of (a) native
LR data using (b) FSR, (c) TF, (d) LRTV, and (d) Cubic interpolation. The second row shows a
close-up visualization of a cropped region of the corresponding images.

Moreover, we have tested the 7T image synthesis from 3T scans of the marmoset brain using the

WATNet. In order to create a dataset similar to the one used for training, the skull and head parts

were removed and voxels’ values were normalized between 0 and 1. A qualitative analysis between

the original 3T image and the synthesized 7T image is done by observing some regions of the brain

that are interesting to investigate during the aging process. Fig. 4.18 shows axial and sagittal slices

of a 3T image (a and b) and their corresponding synthesized 7T image (c and d) respectively. A

closer look at the CSF ventricles, on the different slices, reveals the important visual enhancement

in the definition of the borders of this region enabled by the synthesized 7T image, further validated

by an expert in marmoset brain images.
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Figure 4.17: Illustration of model-based SR results on the native LR data of the marmoset brain
with isotropic voxel upsampling factor of 2. The first row shows the recovered axial slice of (a) native
LR data using (b) ReCNN, (c) CNNIL-2D, (d) CNN-3D, and (e) Spline interpolation. The second
row shows a close-up visualization of a cropped region of the corresponding images.

Figure 4.18: Axial and sagittal slices of a 3T image (a, b) and the corresponding 7T synthesized
image (c, d) in the first row. The second row provides a close up visualization of the CSF ventricles
for the different slices.
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Validation of the enhancement provided by synthesizing 7T MRI from 3T MRI was further

performed by the quantification of the GM, WM and CSF volumes after segmentation. The results

were then compared to the values computed from the manual segmentation (MS) of the native scans

used for testing. In order to quantitatively assess segmentation results, Table 4.9 shows these volumes

(in mm3) calculated for the three MRI acquisitions, for the original 3T, as well as for the results

of model-based and learning-based SR methods and the synthesized 7T. For a better comparison

of the results, Table 4.10 provides the absolute difference between the volumes computed and the

volume of the manual segmentation. As mentioned before, the segmentation of the CSF remains not

as accurate as the manual segmentation since it is hard to differentiate the CSF from the skull using

the T1-weighted MRI sequence. Indeed, the CSF volume is systematically overestimated here.

Table 4.9: Volumes in mm3 of the GM, WM and CSF tissues segmented for the native 3T, the
super-resolved 3T volumes with model-based and learning-based methods, and the synthesized 7T
with WATNet volumes of three scans. Results are compared to the volumes computed from the
manual segmentation (MS). The values closer to the MS are highlighted in bold.

Model-based Learning-based

MS Native FSR TF LRTV Bicubic Cubic ReCNN CNNIL-2D CNNIL-3D 7T-synthesis Spline

Scan1

GM 5.504 5 5.18 5.099 5.230 4.83 4.824 5.545 5.04 5.135 5.415 4.974

WM 1.6916 1.896 1.67 1.750 1.679 1.89 1.897 1.771 1.81 1.761 1.639 1.869

CSF 0.3053 4.696 5.53 4.364 5.567 5.52 5.723 5.731 5.4 5.619 3.883 6.019

Scan2

GM 5.2303 4.864 5.56 4.610 4.938 4.89 4.838 5.550 5.24 4.795 4.864 4.580

WM 1.7243 1.984 1.76 1.923 1.893 1.96 2.024 1.917 1.86 1.864 1.792 2.079

CSF 0.2586 4.984 4.95 5.327 5.670 5.36 5.514 5.465 5.43 5.920 3.437 6.112

Scan3

GM 5.2155 5.072 5.41 4.869 4.921 4.69 4.680 5.192 5.11 5.368 4.573 4.790

WM 1.6841 1.872 1.73 1.796 1.800 1.96 1.969 1.933 1.84 1.780 1.907 1.972

CSF 0.2761 4.864 5.30 5.158 5.580 5.4 5.597 5.592 5.32 5.437 3.671 5.721
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Table 4.10: Absolute volume difference of the GM, WM and CSF tissues segmented for the native 3T,
the super-resolved 3T volumes with model-based and learning-based methods, and the synthesized
7T with WATNet volumes of three scans with respect to the volumes computed from the MS. The
best results, representing the smallest difference, from the model-based and learning-based methods
are highlighted in bold for each scan.

Model-based Learning-based

Native FSR TF LRTV Bicubic Cubic ReCNN CNNIL-2D CNNIL-3D 7T-synthesis Spline

Scan1

GM 0.504 0.342 0.404 0.273 0.674 0.679 0.041 0.464 0.368 0.088 0.529

WM 0.204 0.021 0.059 0.011 0.198 0.205 0.080 0.118 0.070 0.052 0.1744

CSF 4.390 5.224 4.058 5.261 5.214 5.418 5.426 5.094 5.314 3.577 5.713

Scan2

GM 0.456 0.239 0.709 0.381 0.430 0.482 0.230 0.080 0.525 0.455 0.739

WM 0.259 0.035 0.198 0.168 0.235 0.300 0.193 0.135 0.140 0.0682 0.355

CSF 4.725 4.691 5.069 5.411 5.101 5.255 5.207 5.171 5.661 3.179 5.845

Scan3

GM 0.143 0.194 0.346 0.294 0.525 0.535 0.023 0.105 0.153 0.642 0.424

WM 0.187 0.045 0.111 0.116 0.275 0.285 0.249 0.155 0.096 0.223 0.288

CSF 4.587 5.023 4.882 5.304 5.1239 5.321 5.316 5.043 5.161 3.395 5.445

4.7 Discussion

In this chapter, we have evaluated several model-based and learning-based SR methods for the

enhancement of marmoset brain images. Simulation results were carried out on LR images that

have been degraded from the native dataset using a Gaussian blurring kernel and an isotropic down

scaling factor of 2. Moreover, experimental results carried on the native data were assessed from the

segmentation perspective where volumes of GM, WM and CSF were computed and compared to the

MS.

The comparison of model-based methods in terms of quantitative metrics presented in Table 4.5

reveals that FSR outperforms TF and LRTV in recovering HR images providing the highest SSIM,

PSNR, ISNR, and IFC and the lowest MMSE scores. However, the three proposed methods present

better results than classical bicubic and cubic interpolation. These results further appear on the axial

slices of Figure 4.13 where the recovered HR images by FSR (Fig.4.13(c)) from the LR (Fig.4.13(b))
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are closer to the ground truth (HR) than other methods and show better defined boundaries between

GM, WM, and CSF. Furthermore, SSIM index and Dice coefficient computed for the brain tissues

with respect to the segmentation of the HR ground truth image support the previous results. For

Scans 1 and 3, FSR provided the best similarity with the HR segmentation, while LRTV was better

for Scan2. These results also show that the volumes recovered by TF method and LRTV method

provide almost equivalent results in comparison to the ground truth with TF being faster and more

efficient in HR image recovery compared to LRTV (Table 4.5).

In the same context, learning-based results addressed in Table 4.6 reveal an out-performance of

the 3D ReCNN over the CNNIL in 2D and 3D and spline interpolation. It is also worth mentioning

that spline interpolation is a strong baseline method with very close results to the ReCNN and

CNNIL. While the qualitative inspection of images recovered by different learning-based methods

in Figure 4.14 show similar performance, with well defined structures, compared to the LR images,

spline interpolated images came out more blurry. To further assess these super-resolved images, the

SSIM and Dice coefficient of their segmentation were the highest using ReCNN. In most cases, values

computed from ReCNN and CNNIL recovered images were very close.

Qualitative analysis of segmentation results of Figure 4.15 confirms that SR has provided regions

with borders that are better defined, with more confident mapping of the tissues and less partial

volume effect, compared to LR segmentations. This may lead to an underestimation of the gray

matter, and inversely to an overestimation of the white matter, in this region. The texture of the

GM region also appears smoother in Figure 4.15(d) compared to Figure 4.15(c).

Experimental results on the native volumes, that are considered as LR in this case, show the

enhancement provided by SR to the quality of the images. The close up inspection in Figures 4.16

and 4.17 reveals sharper images using FSR (Figure4.16(b)), ReCNN (Figure 4.17(b)), and CNNIL-2D

(Figure 4.17(c)). Moreover, qualitative assessment of the 7T-like generated images showed that the

7T synthesis method provided additional information in the images, barely visible in 3T data. The

comparison to the native 3T images in Figure 4.18 revealed the power of the 7T images in contrast

enhancement. In order to show the importance of having high quality images for better brain tissue

segmentation, Table 4.10 demonstrates the absolute volume difference computed from the volumes
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provided in Table 4.9 for GM, WM and CSF with respect to the MS. While the segmentation of native

images presents a big difference with the MS, this difference decreased significantly after SR. FSR

and LRTV provided the best enhancement for model-based methods, while 7T synthesized images

clearly enhanced WM and CSF segmentation compared to ReCNN with CNNIL-2D presenting some

competitive results. Classical interpolation methods did not show any improvement with respect to

the segmentation.

Finally, another comparison could be done regarding the methods evaluated which is 2D SR

versus 3D SR. In what we have presented, FSR, CNNIL-2D, and bicubic interpolation upscales the

LR images along two axes only, while TF, LRTV, ReCNN, CNNIL-3D, cubic interpolation, and

spline interpolation perform the SR task along the three axes. Similar to what has been reported in

[128], 2D SR methods show higher IFC values compared to 3D SR. Moreover, CNNIL-2D has slightly

better performance than CNNIL-3D since the 3D SR task is harder than the 2D one. For all the

quantified metrics, FSR was better than CNNIL-2D and bicubic interpolation, and ReCNN was the

best among the other 3D methods.

4.8 Conclusion

To conclude, several SR approaches exist for MR image enhancement classified herein as model-based

and learning-based methods. Our objective was then to study the effect of image SR on brain tissue

segmentation. Qualitative and quantitative results on simulated LR data show that the segmentations

of the recovered images was closer to the ground truth (MS). Using classical interpolation did not

provide results as promising as SR methods. The practical application of SR on native data and the

computation of tissue volumes revealed that the segmentation of enhanced images were closer to the

MS performed by an expert than that of the native images. This demonstrates the importance of

using SR in future morphometric analysis for the study of cerebral aging. 7T-like image synthesis

out of 3T images revealed a great enhancement in the contrast between brain tissues. However, we

believe that this method could provide better results if the network was trained using 3T/7T pairs of
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marmoset brain images. With the possibility of having few pairs of 3T/7T marmoset brain images,

one may also consider transfer learning where we would train the network on human brain images

and fine-tune it with the marmoset brain images to compare the results. Although the evaluation on

synthetic LR data remains a limited approach to quantify the effect of SR on real MR data, acquiring

LR/HR pairs is a challenging task. Moreover, while learning-based methods learn the mapping from

the LR space to the HR space of a given dataset, model-based methods depend on the accurate

choice of the PSF kernel, which can affect the SR results.

In the following chapter, we will introduce the longitudinal segmentation and analysis scheme

of the marmoset brain for the detection of cerebral aging biomarkers. Based on the results of this

chapter, we will further compare the longitudinal analysis using native data to that using super-

resolved images using the 2D FSR and the 3D ReCNN.
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5.1 Introduction

When studying anatomical changes in the brain for a given population, the high heterogeneity within

individuals limits the accuracy of detecting variations related to age. Therefore, a cross-sectional anal-

ysis, where one measurement per individual is only available, remains sub-optimal since the data is

141
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analyzed individually. In this context, longitudinal studies, with repeated scans of the same individ-

ual over his course of life, provide an alternative scheme that considers intra-individual variability

reflecting the possible changes in brain structures of an individual. This chapter will start with an

overview of the volumetric brain changes reported in the literature for the human brain. Then, we

will present a framework developed and adapted for the longitudinal segmentation of the marmoset

brain. We will model trajectories of volumetric GM and WM changes with age and the whole brain

volume considered as the sum of the gray and white matter volumes, thus excluding the brain-stem

and both intra- (ventricles) and extra-cerebral CSF. Moreover, we will conduct the VBM analysis

for the statistical estimation of local changes in GM and WM between different scans with age. We

will also compare the analysis performed on native images with that performed on super-resolved

images using the model-based FSR method and the learning-based ReCNN method proved efficient

in Chapter 4. Finally, we will compare the findings related to the marmoset brain aging with those

reported for the human brain to assess the homology of the aging process between the two species.

5.2 Aging of the human brain: a state-of-the art

The normal aging process is thought to be accompanied by several structural changes in the brain.

Thus, a better understanding of the markers of normal aging helps to distinguish it from possible

pathologies and diseases occurring with the aging process. Several cross-sectional and longitudinal

studies have investigated the normal brain aging providing trajectories of volumetric (global and local;

subcortical and cortical), microstructural, and focal (presence of microbleeds, lacunar or cortical

infarcts) markers in aging [202]. In this section, we will focus on the reported volumetric changes of

GM and WM in the human brain with age since these regions are the main scope of the marmoset

brain study. We will thus exclude the CSF in our study since it is over-estimated with the skull on

the T1-weighted images of the marmoset brain.
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5.2.1 Changes in GM volume

5.2.1.1 Global effects of age

The study of GM volume through life can reveal brain networks undergoing GM tissue loss as a

result of aging. Indeed, there is an expected age-related reduction in gray matter volume in specific

brain regions, which is thought to arise from cortical neuronal degeneration and synaptic density

reduction [11]. Different studies have investigated GM changes in distinct age groups and modeled

the trajectory of these volumetric changes. In the cross-sectional study performed by Good et al.

[6], using MR scans of 465 normal adult human brains with an age range between 17 and 79 years,

a linear decline of global GM volume was noted (Figure 5.1(a)). On the other hand, Sowell et al.

[203] reported a significant quadratic (non-linear) decrease of the total GM volume (Figure 5.1(b))

on a population of 176 normal individuals with age ranging from 7 to 87 years old. In their study,

a significant nonlinear decline in GM density with age was observed over dorsal frontal and parietal

association cortices on both the lateral and inter-hemispheric surfaces. Age effects were inverted in

the left posterior temporal region, where GM density gain continued up to age 30 and then rapidly

declined [203]. In the study of tissue volume differences in older age, Fotenos et al. [204] examined

a population of 370 adults (aged 18–97 years) including 79 elders followed longitudinally for an

average of 1.8 years. They compared cross-sectional and longitudinal head-size corrected whole brain

measures and found that among non-demented adults the GM volume decreased non-linearly (with

a quadratic fit) from an early age at about 0.45% per year although exact differences varied by brain

region (frontal being greatest) and tissue type. Their study confirmed that volume reductions begin

relatively early in adulthood and tend to accelerate with age. In one of the most recent and largest

studies conducted, Coupé et al. [205] performed a cross-sectional study with a total of 2944 subjects,

with age ranging from 9 months to older than 94 years. Instead of using linear or low order polynomial

models for volumetric trajectories, they used combinations of cumulative exponential functions to

enable the modelling of rapid growth and complex degenerative processes which is another factor

limited in the previous studies. They observed a 4-stage evolution in global absolute GM volume:

fast growth until 8− 10 years, a fast decrease until the age of 40 years, a plateau, and an accelerated
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decrease around 80 years (Figure 5.3). The longitudinal study by Lebel et al. [206] of 103 individuals

scanned at least twice across ages 5–32 years reported a linearly decrease in total gray matter volume

(Figure 5.1(c)) across this age span. Moreover, a recent longitudinal investigation of GM changes in

later stages of life [202] was performed with a total of 5286 MRI scans with age ranging from 45 to

95 years, with an average of 2 scans per individual, with a mean interval between MRI scans of 3.3

years, and with an average follow-up time of 5.2 years. They reported a non-linear decrease of GM

volume with age (Figure 5.1(d)). However, after approximately the age of 50–55 years, GM volume

showed a more linear decrease with age with a relative decrease in frontal, occipital and parietal

lobes.

5.2.1.2 Voxel-wise effects of age

Several studies have also reported the voxel-wise linear regression of age, i.e. the VBM analysis, on

the GM volume maps. For instance, Good et al. [6] found a relative accelerated loss of GM volume in

the superior parietal gyri, pre-and postcentral gyri, insula/frontal operculum, right cerebellum and

anterior cingulate. In a study on 29 individuals of similar age range, i.e. between 23 and 84 years,

Bergfield et al. [207] identified an extensive GM reduction in bilateral dorsolateral and medial frontal,

anterior cingulate, insula/perisylvian, precuneus, parietotemporal, and caudate regions. However re-

gions of relative GM preservation were also identified including the bilateral cerebellum, thalamus,

putamen, mid cingulate, and temporal pole regions. Raz et al. [208] investigated the regional het-

erogeneity of gray matter differences across the life span in a longitudinal study of 127 participants

ranging from 31 to 83 years of age. Manual measurements of structures revealed substantial volume

declines in caudate nucleus and cerebellum gray matter, moderate declines in hippocampus, lateral

prefrontal cortex, orbitofrontal cortex, inferior temporal cortex, and inferior parietal cortex, and

smaller but still significant declines in entorhinal cortex. They found no significant age-related differ-

ences in primary visual cortex gray matter. Further, volume losses in the hippocampus, entorhinal

cortex, and inferior temporal cortex increased with advancing age. Moreover, Ramanoel et al. [209]

studied the GM differences between two groups: 16 adults with mean age of 41 years and 14 old aged

subjects with a mean of 71 years. Results showed more GM reduction in old aged group compared to
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adults in the frontal, parietal, temporal and occipital regions, as well as of the cerebellum. Giorgio et

al. [210] performed the study on 66 subjects aged between 23 and 81 years to find an extensive linear

negative correlation of GM volume with age in the left superior frontal gyrus (SFG), right middle

frontal gyrus (MFG), left postcentral gyrus, right superior parietal lobule and right lateral occipital

cortex. For most studies, results are generally in favor of a linear negative association between GM

volume and age.

5.2.2 Changes in WM volume

5.2.2.1 Global effects of age

While extensive researches have been conducted to understand the volumetric trajectory of GM

change through the lifespan, relatively fewer studies exist for analyzing the impact of aging on WM

volume [11]. For instance, the study performed by Good et al. [6] did not find any significant decline

in the WM volume with age ranging between 17 and 79 years (Figure 5.2 (a)). On the other hand,

Sowell et al. [203] reported a quadratic effect of age on WM volume, where the the WM volume

peaked at age 43 years and declined thereafter (Figure 5.2 (b)). The longitudinal studies of Fotenos

et al. [204] and Raz et al. [208] examining difference in regional WM volume found significant age-

related volume losses in prefrontal and inferior parietal WM and demonstrated that prefrontal white

matter volume loss tended to accelerate with greater age. In the same context, the longitudinal study

of Lebel et al. [206] showed a significant quadratic increase in WM volume across the age range of

5–32 years (Figure 5.2 (c)). For the age range of 45 − 95 years, Vinke et al. [202] showed a spline

non-linear decrease in the WM volume with an accelerated change after approximately age 50 − 55

years (Figure 5.2 (d)). In the study of Coupé et al. [205], which analysed a high number of subjects

with a wide age range and more complex models, the authors reported a fast non-linear increase of

WM volume until a peak around 30− 40 years, followed by a decrease, at a slower rate (Figure 5.3).

5.2.2.2 Voxel-wise effects of age

Similar to the global effects study of WM, fewer studies exist on the linear correlation between WM

volume and age using T1-weighted images. Good et al. [6] reported areas of accelerated WM loss in
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the frontal WM, optic radiations, and posterior limbs of internal capsule while other areas exhibited

a preservation of WM volume such as the posterior central lobe, cerebellum, and right temporal

lobe. However, Giorgio et al. [210] found a linear negative correlation of WM volume with age in the

anterior thalamic radiations, anterior limb of the internal capsule (ALIC), cerebral peduncle (CP),

cerebellum and bilaterally in the external capsule (EC) with no significant linear positive correlation

between WM volumes and age. On the other hand, Smith et al. [4] reported no significant global WM

volume loss with old ages ranging between 58 and 95 years. In the group compariosn of older subjects

(mean age 68 years) to younger ones (mean age 27 yrs), Farokhian et al. [211] observed significant

WM increases in the pericentral and occipital areas among older subjects, and an age-related decline

in the WM volume in the thalamic radiations.

5.2.3 Summary

The differences in volumetric trajectories and voxel-based studies reported in the literature make

it hard to acknowledge a consistent developmental trajectory for the brain volumes. One of the

differences appears in the restricted and distinct life periods of the analyzed subjects. Consequently,

this makes it difficult to compare the results and limits the global understanding of brain modifications

during the entire life span. Moreover, the use of a limited number of scans, especially in certain age

ranges, produces less reliable results. Finally, the acquisition protocols and methods used in imaging

processing, namely segmentation and volumetric measurements, can also lead to the disagreement

between researchers [205].
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(a) (b)

(c) (d)

Figure 5.1: Different volumetric trajectory of GM with age as reported by (a) Good et al. [6] for
men (blue line) and women (red line), (b) Sowell et al. [203], (c) Lebel et al. [206], and (d) Vinke et
al. [202] where measurements from the same participant are shown in 3 shades of gray. The x-axis
represents the age in years, and the y-axis is the total GM volume in liters for (a), mm3 for (b), and
cm3 for (c) and (d).
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(a) (b)

(c) (d)

Figure 5.2: Different volumetric trajectory of WM with age as reported by (a) Good et al. [6] for
men (blue line) and women (red line), (b) Sowell et al. [203], (c) Lebel et al. [206], and (d) Vinke et
al. [202] where measurements from the same participant are shown in 3 shades of gray. The x-axis
represents the age in years, and the y-axis is the total WM volume in liters for (a), mm3 for (b), and
cm3 for (c) and (d).
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Figure 5.3: Volume trajectories based on absolute volume in cm3 (y-axis) with age (x-axis) for brain
tissues and subcortical structures across the entire lifespan as appeared in the study of Coupé et al.
[205], estimated on 2944 subjects from 9 months to 94 years. Male and female models are presented
in blue and magenta while the general model is shown in black. Colored dots represent the different
datasets used in there study. Figure was extracted from [205].
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5.3 Longitudinal segmentation of the marmoset brain

5.3.1 The marmosets

A total of 42 marmoset animals (21 males, 21 females, minimum age = 2.59 years, maximum age

= 14.71 years) were used in this study. The marmosets were bred in CerCo (agreement B3155501

from Haute Garonne Prefecture, France), housed in pairs or small groups, and maintained in a

12 : 12 h light–dark cycle. Food and water were withdrawn from the cages in the morning preceding

the imaging session. All imaging sessions were conducted in the afternoons, between 1 and 5 pm.

During the MRI acquisition session of a typical duration of about 36 − 37 minutes, the animals

were anesthetized with Alphaxalone (i.m., 1.85 ml/kg Alfaxan, 10 mg/ml, Jurox, Worcestershire,

UK). Peripheral oxygen saturation (SpO2), heart and respiratory rates were constantly monitored

during the image acquisition. All experimental procedures were conform to Directive 2010/63/EU

and were carried out according to the National Committee for Ethical Reflection on Animal Testing.

The project received the regional (MP/03/76/11/12) and the governmental authorizations from the

MENESR (project #05215.03) [196].

5.3.2 MRI acquisition

The brains of the 42 marmosets were scanned, and structural T1-weighted MR images were acquired

using a Philips MRI scanner dedicated to human and animal research at a field strength of 3T. A

3D gradient-echo sequence was used with TR = 10.5 msec, TE = 4.7 msec, flip angle of 8o, isotropic

resolution of 0.35 mm, and size of 288 × 288 × 113 voxels. Images were acquired with an antero-

posterior (AP) encoding direction, and the sagittal plane was chosen to avoid fold over effects. Images

were obtained with an 8-channel receiving human wrist coil (6.5 cm internal diameter) [196]. A total

of 185 T1-weighted scans were obtained with an average of 5 scans (±3) per individual at different

ages of their life span.
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5.3.3 Longitudinal processing pipeline

The proposed longitudinal processing method has been adapted from the longitudinal segmentation

scheme of CAT12 toolbox (www.neuro.uni-jena.de/cat/) originally developed for the longitudinal

segmentation of the human brain and integrated into SPM. More information regarding the step-by-

step implementation of the steps to be explained can be found in [212] and [213]. The pipeline consists

of two main steps: a cross-sectional pre-processing of all the individuals’ scans and a longitudinal

processing procedure including the scans of each individual.

5.3.3.1 Image pre-processing

The standard pre-processing steps are applied to each native T1-weighted scan Nn (n = 1, .., 185).

Figure 5.4 summarizes the pre-processing steps followed. These steps are further detailed hereafter.

Standard reorientation During image acquisition of small animals using an MRI platform ded-

icated to humans, the orientation of the marmoset head is not always uniform. Therefore, all the

scans were reoriented into the standard orientation space where the plane through the midline of the

left and right hemispheres is the sagittal plane, the AC–PC plane is the horizontal plane, and the

plane orthogonal to the horizontal plane passing through the center of the anterior commissure is the

coronal plane [196]. The origin of each scan was checked and re-positioned, manually, at the anterior

commissure using the display module of SPM12. This step further facilitates the registration of the

scans to the template.

Noise reduction MR images are usually corrupted with random noise inherent to the acquisition

process that would further affect the accuracy of the quantitative measurements of the analyzed

tissues. Although noise can be reduced by averaging multiple images acquired from the same scanner

on a non-moving subject, this is not a common practice since it would increase the acquisition

time. Instead, different noise filters are commonly used to remove image noise without damaging

image quality. Unfortunately, some filters have the drawback of removing relevant high-frequency

components from the image resulting in blurred edges and introducing bias to the image. In this

www.neuro.uni-jena.de/cat/
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context, a Spatial Adaptive Non-Local Means (SANLM) filter has been developed by Manjon et al.

[214] that takes into consideration both the Rician nature of the MR data and the spatially varying

noise patterns thus preserving edges while removing noise. The strength of the filter is automatically

estimated based on the standard deviation of the Rician noise [178]. The SANLM filter has been

integrated as a module into CAT12 toolbox where we used it directly on our scans as proposed.

Figure 5.5 shows the effect of denoising on the quality of the processed images.

Figure 5.4: Flow diagram of the cross-sectional image pre-processing steps. All native T1-weighted
scans Nn (n = 1, .., 185) are checked for the standard orientation position with the origin positioned
at the anterior commissure. Reoriented scans are denoised using the spatial adaptive non-local means
filter module integrated into CAT12 toolbox. Denoised scans are then corrected for intensity non-
uniformity using the N4ITK MRI Bias Correction module of 3D Slicer which requires a mask for
the brain region. Finally, the FOV is reduced to the head region by registering the scans to the
marmoset IMPEC brain template rendering all the scans in the template space using SPM12. Red
arrows represent the input to each module and the blue arrow represents the output of the process.
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Figure 5.5: Denoising of the reoriented native scans using the SANLM filter with a close up visual-
ization of a cropped region.

Bias field correction Intensity non-uniformity of an MR signal from a homogeneous tissue is

usually due to radio frequency coil variations forming a low frequency non-uniform intensity in vox-

els, gradient-driven eddy currents, and patient anatomy. While non-uniformity due to the frequency

response of the receiver and spatial sensitivity of the RF coils can be corrected for by regular calibra-

tion or theoretical modelling, non-uniformity due to induced currents and the spatial in-homogeneity

of the excitation field depending on the subjects may be inevitable. This non-uniformity artifact,

referred to as bias field, is assumed to be a smooth, slowly varying multiplicative field corrupting

image intensities [215]. As an alternative to improving intensity uniformity during data acquisition,

a number of post-processing methods to compensate for non-uniformity have been proposed ([215–

218]) and the choice of the correction method is usually let to the user. In our study, we have used

the popular N4ITK MRI Bias Correction module [219, 220] which is an implementation of the N3

algorithm [215] for the Insight Toolkit (ITK: https://itk.org/) and proven to outperform the N3

method in effectiveness and efficiency [221]. The N4 bias correction method represents an improved

variant of the N3 algorithm where, at each iteration, the correction of the image is performed using

the results of the previous iteration. The N4ITK module is integrated into 3D Slicer and requires a

https://itk.org/
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mask image for the brain region (Figure 5.7). Bias correction of the marmoset MR images was then

performed with a shrink factor of 4 and 200 iterations per scale. These values were fixed using a

cross-validation study conducted on the effect of these parameters on the segmentation of corrected

images. All other parameters were kept unchanged. The mask image was created by registering the

complement of the fourth tissue probability map (representing structures other than GM, WM, and

CSF) to the each scan using the coregistration module in SPM12.

Figure 5.6: Bias correction of the acquired scans using the N4ITK module of 3D Slicer. Although
the effect of the correction is not visually clear, its impact appears in the segmentation of the brain.

Image registration The registration procedure, previously detailed in Chapter 4, was also per-

formed here. To recall, the reduction of FOV to the head region only was achieved by the rigid

registration (using SPM) of the MR scans to the T1-weighted marmoset brain template (IMPEC

template) that have been previously developed by Risser et al. [196], reducing the residual positional

variability between scans. Figure 5.7 shows a sagittal slice before and after registration. The regis-

tration step is important to guarantee that all the scans are in the template space and to correct any

misalignment in the head position between scans. This inverse consistent rigid registration, with 6



5.3 - Longitudinal segmentation of the marmoset brain 155

degrees of freedom ensures inverse consistency, keeping individual registrations unbiased and reduc-

ing the influence of outlier regions. This results in highly accurate brain registrations, even in the

presence of local differences, such as lesions and skull artifacts [222].

Figure 5.7: Registering the pre-processed scans to the brain template reduces the FOV to the head
only and ensures a correct alignment between scans. The figure shows a sagittal slice (a) before and
(b) after the registration step.

5.3.3.2 Longitudinal segmentation

The longitudinal segmentation pipeline is summarized in Figure 5.8. Since each individual marmoset

has been scanned several times throughout its life span, Si,j represents the scan from time point i

(i = (1, .., I)) of the marmoset j (j = (1, 2, ..., J)), where I is the total number of scans per individual

and J is the total number of individuals (42 in our study).

Intra-subject realignment Intra-subject realignment is used for motion correction and averaging

of several intra-session scans to increase the signal to noise ratio while accurately aligning longitudinal

image data [222]. A time-series of images acquired for the same individual, and previously registered

to the IMPEC template in the pre-processing step, are realigned using a least-squares approach and a

6 parameters (rigid body) spatial transformation. During this period, a mean image of the realigned

images is created and updated iteratively until convergence. This mean image is considered as the
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Figure 5.8: The longitudinal segmentation pipeline used for the segmentation of the marmoset brain.
Intra-rigid realignment of all the time points (S1,j , S2,j , ..., SI,j) of a given subject results in the
creation of re-aligned scans (rS1,j , rS2,j , ..., rSI,j) and a subject specific template (Tj). A brain mask
is then created from the re-aligned scans and the template Tj and further used for skull stripping
of all the individual’s images. Skull-stripped scans and template are now segmented individually
using tissue probability maps in SPM12 into GMSi,j , WMSi,j , and CSFSi,j . These segmentations
are used in the statistical analysis to model the volumetric trajectories of the brain tissues. Next,
deformation fields are estimated from the segmentation of the subject-specific template then applied
to the segmentation of the scans. This results in smoothed, modulated and warped segmentations
that are ready for the VBM analysis (smwGMSi,j , smwWMSi,j , smwCSFSi,j ). Red boxes represent
the input for each stage and blue boxes represent the output expected from each stage.

subject-specific template (T ) in our study. All the realigned images undergo equivalent processing

steps. This process was performed using the ’Realign: Estimate & Reslice’ batch of VBM8 module

integrated into SPM12. The only parameter that we changed is the separation (in mm) between the

points sampled where we set it to 0.4 since the voxel size of our MR data is 0.35 mm3. All other

parameters were kept to their default values as changing them did not bring any additional difference
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to the results.

Brain mask creation and skull stripping For an accurate segmentation of MR images, it is

necessary to process the marmoset brain without its surrounding skull and head regions. A brain mask

for skull stripping has been created for each individual by registering each of its scans, including the

mean image, to the marmoset MRI standard brain template (https://brainatlas.brain.riken.

jp/marmoset/modules/xoonips/detail.php?id=004) created by Hikishima et al. [142] since it

includes all the marmoset brain regions. The final mask is constructed as the union of the registered

brain masks across time, i.e. a voxel is included in the brain mask if it is included in any time point

[159]. Skull stripping of all the time points and the mean image is finally performed using the final

brain mask.

Tissue segmentation Brain tissue segmentation into GM, WM and CSF was performed using the

’New Segment’ module of SPM12. Basics of SPM tissue classification and segmentation were already

explained in chapters 2 and 3. For the optimal performance of the SPM segmentation module, the

voxel size of the marmoset MR images were first multiplied by five following the work in [141]. Tissue

probability maps, which were created from the DARTEL template of 43 marmoset segmented brains,

were used to initialize the segmentation of all the scans. To recall from Chapter 4, a DARTEL

template for each tissue class is created by rigidly aligning and averaging gray, white and CSF

images. While the ’New Segment’ module requires 6 tissue probability priors for the segmentation

task (GM, WM, CSF, skull, head, and other outside regions), only 4 of these priors are available for

the marmoset brain, i.e. GM, WM, CSF, and other regions. Accordingly, the segmentation batch

was modified to accept 4 priors instead of 6. Moreover, since we had performed bias field correction

as a pre-processing step, we applied a very light bias regularization, with a bias FWHM of 30mm

cutoff. After the segmentation is complete, images of GM, WM, and CSF are generated for each scan

with the prefix c1, c2, and c3 respectively. Additionally, for the segmentation of the subject-specific

template, DARTEL imported versions of the tissue class images (rc1, rc2, and rc3) are generated,

which will be used to create the study-specific template.

https://brainatlas.brain.riken.jp/marmoset/modules/xoonips/detail.php?id=004
https://brainatlas.brain.riken.jp/marmoset/modules/xoonips/detail.php?id=004
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Study-specific template In order to be able to compare all the subject-specific longitudinal

deformation trajectories, a study specific template was created to have these deformations normalized

in the same common reference anatomy. To this end, the study-specific template was created from

the respective segmentations of the subject-specific templates of all the individuals in the study.

Similar to the DARTEL template constructed for the cross-sectional study described in Chapter 4,

the study-specific template was built using the imported segmentation images (rc1, rc2, and rc3)

of all the subject-specific templates available. All parameters were kept to their default values. At

the end of this step, a DARTEL template (study-specific) is created, along with a DARTEL flow

field (a file named u_rc1) for each subject which encodes the deformations that warps (maps) each

subject-specific template to the study-specific template (see Figure 5.9).

Normalization In order to compare data from several scans and /or subjects, all the brain images

have to be in the same 3D space. In SPM this is accomplished by normalizing the images into a

standard space, i.e. warping a native space anatomical image into standard space. The normalization

step was performed using the ’Normalize to MNI Space’ batch in DARTEL tools of SPM12. This

mainly requires a DARTEL template (which is the study-specific template in our case), the flow

field image of each individual created during the construction of the study-specific template, and the

segmentation images of all time points of a given subject. The voxel size of the loaded images was

(1.56, 2, 1.56) mm3 and the bounding box was evaluated from the dataset in SPM12. We chose to

preserve the amount of signal from each region of the spatially smoothed and normalized images, i.e.

areas that are expanded during warping are correspondingly reduced in intensity. A spatial smoothing

of the data before performing the statistical testing ensures that the residual differences, after fitting

the model, are closer to Gaussian. This makes the data less likely to violate the assumptions required

for parametric statistical testing and reduces more of the intersubject registration error. It also

ensures a more conservative statistical analysis, in which fewer regions are found significantly different,

thus reducing false positive or type 1 error [223]. The FWHM of the Gaussian blurring kernel in mm

was thus fixed to [10, 10, 10] as recommended by [212]. This value of the FWHM is reasonable in our

study since we have resized the MR data to resemble the human brain volume in size. At the end of
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this step, smoothed, modulated, and warped versions of the segmentation images (smwc1, smwc2,

and smwc3) are generated. These images will be further used in the VBM analysis that compares,

in a voxel-by-voxel analysis, the volume of a tissue among population of subjects [223].

Global Statistical Analysis Using the tissue segmentation results, the mixed-effects modelling

[224] was employed to estimate volume trajectories of GM, WM and total brain volume (GM plus

WM). This analysis method allows an estimation of the fixed effects of measured variables on volume

change, while incorporating the longitudinal nature of the data by including within-person variation

as nested random effects [225]. We performed the trajectory estimation of brain tissues’ changes

using the linear model given as:

V olume = Intercept+ α ∗ age (5.1)

where α is the constant term defining the effects of each fixed term [225]. All computations were

performed in R version 3.6.3.

VBM analysis Age related GM and WM changes were evaluated for the smoothed, modulated and

warped segmentation images of all the individuals scan (total of 185 scans). Since we are performing

a longitudinal analysis of the brain with multiple scans per individual, the most suitable design model

was the flexible factorial analysis [213]. Sex, gender, and total intracranial volume (GM+WM+CSF)

were included as covariates of the regression model. We computed t-statistics for each model and

evaluated longitudinal increase and decrease in regional brain volume with age. Results were limited

to areas with a tissue prior probability greater than 0.2. For each tissue brain (GM or WM), a

corresponding mask was applied to determine which voxels to be included in the analysis.
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Figure 5.9: Creation the study-specific template. The imported segmentation images rc1, rc2 and
rc3, corresponding to GM, WM, and CSF respectively, of the subject-specific templates (T1, T2, .., TJ)
of all the individuals (j = 1, 2, .., J) are used to create the study-specific DARTEL template. This
step results also in the formation of a deformation flow field (u1, u2, .., uJ) for each individual.
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5.4 Results and discussion

This section presents the statistical and VBM results of the longitudinal segmentation pipeline applied

on the original scans and enhanced scans by SR. To elaborate, since we have shown in Chapter 4 that

SR enhances the segmentation results, we further tested the effect of using super-resolved images on

the statistical and VBM results. To this end, we applied the 2D model-based FSR method and the

3D learning-based ReCNN method to the output images of the pre-processing step (Sn in Figure

5.4) and compared their results to those obtained when using the original images (Figure 5.10).

Figure 5.10: In addition to performing the longitudinal segmentation of the original images (Sn)
resulting from the pre-processing step, we further applied a 2D FSR method and a 3D ReCNN
method to enhance the original images. The resulting images from each SR method were then fed
into the longitudinal segmentation pipeline. Finally the longitudinal segmentation results from the
original scans, and the super-resolved ones by the 2 different methods were further independently
analyzed.

Based on the literature, maturation of the marmoset brain occurs around 2.5 years [226] while

aging starts around 8 years [227]. Three main groups were thus formed as follows for the statistical

analyses of collected volume information:

• Adulthood group including all the 185 scans with age ranging from 2.5 to 14.7 years

• Young to middle adulthood group with age between 2.5 and 8 years containing 95 scans per 33
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subjects

• Late adulthood group with age greater than 8 years containg 90 scans per 24 subjects

Global volume and VBM results were further assessed for each group in order to analyze the GM and

WM changes per age-range. CSF results were excluded from the analysis due to the overestimation

of the CSF volume from segmentation. This is mainly due to the difficulty of distinguishing CSF

from the skull on T1-weighted images, where both tissues appear dark.

5.4.1 Global statistical analysis

In what follows, we will present the global statistical analysis of the volumetric GM, WM and total

brain changes in the three groups mentioned before. More precisely, we will comparatively present

the linear trajectory fitted to volumes extracted from the original scans, from scans enhanced by

2D FSR, and from scans enhanced by 3D ReCNN. Models’ parameters (estimated slope with 95%

confidence interval) will be shown in different tables.

5.4.1.1 Adulthood group analysis

All scans available (185 MRI scans) from 42 marmosets were included in this analysis with an age

range between 2.5 and 14.7 years.

Table 5.1 shows the results of modelling the GM volume trajectory using a linear model. In

addition, Figure 5.11 shows the predicted linear fit to GM volumes as a function of age, computed

from the segmentation of the original and the enhanced scans. Although not very steep, a linear

decrease in GM volume was detected using both the original and the enhanced scans. This supports

the hypothesis of a possible linear decrease in GM volume with age in the marmoset brain. Note that

a similar GM decrease has been previously reported in the human brain, which favors the hypothesis

of an homologous evolution of the GM between marmoset and human brains [6] (Figure 5.1 (a)).
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Table 5.1: Global statistical analysis of the volumetric GM changes with age for the marmoset
adulthood in the study (with age ranging from 2.5 to 14.7 years) including 185 scans. The table
shows the slope and the 95% confidence interval of the linear model fitted to GM volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0179 [-0.0321 , -0.0034]

Enhanced scans by 2DFSR linear -0.0225 [-0.0358 , -0.0089]

Enhanced scans by 3DReCNN linear -0.0209 [-0.0359 , -0.00560]

Similarly, Table 5.2 shows the results of modelling the WM volume trajectory using a linear

model. In this context, using a linear fit could not provide a significant change in WM volume when

using either the segmentations from the original scans, or the segmentations from the enhanced scans

(Figure 5.12). Indeed, these results may imply that either the WM volume does not linearly change

with age, or the changes in WM are too small to be detected with respect to the observation scale.

However, in the study of the human brain, Sowell et al. [203] (Figure 5.2 (b)) and Good et al. [6]

(Figure 5.2 (a)) showed a quadratic fit for the WM trajectory with a peak around the age of 40 years.

Table 5.2: Global statistical analysis of the volumetric WM changes with age for the marmoset
adulthood in the study (with age ranging from 2.5 to 14.7 years) including 185 scans. The table
shows the slope and the 95% confidence interval of the linear model fitted to WM volumes.

Tested Model Slope Confidence Interval

Original scans linear -0.0036 [- 0.0012 , 0.0055]

Enhanced scans by 2DFSR linear 0.0023 [- 0.0045 , 0.0091]

Enhanced scans by 3DReCNN linear - 0.0024 [- 0.0120 , 0.0073]

Similar to GM and WM, the sum of these two volumes, considered in this study as the total brain

volume, was also analysed. Consistent results of a significant linear decrease of the total volume with

age was observed (Table 5.3). Results from original and enhanced scans were similar (Figure 5.13).
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This is mainly due to the fact that possible errors in gray and white matter segmentation due to

misclassification are now compensated when added together.

Table 5.3: Global statistical analysis of the total brain volume changes with age for the marmoset
adulthood in the study (with age ranging from 2.5 to 14.7 years) including 185 scans. The table
shows the slope and the 95% confidence interval of the linear model fitted to total brain (GM +
WM) volumes.

Tested Model Slope Confidence Interval

Original scans linear -0.0284 [- 0.0432 , - 0.0131]

Enhanced scans by 2DFSR linear -0.025 [- 0.0381 , - 0.0115]

Enhanced scans by 3DReCNN linear -0.0298 [- 0.0449 , -0.0144]
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Figure 5.11: GM volume trajectory with age, along with the predicted linear fit. GM segmentations
were computed from (a) original scans, (b) scans enhanced by 2D FSR, and (c) scans enhanced
by 3DReCNN. Different lines’ colors represent different individuals in the study. All the scans per
individual are connected with each others. The black line represents the fitted model and the dashed
lines are the confidence interval.
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Figure 5.12: WM volume trajectory with age, along with the predicted linear fit. WM segmentations
were computed from (a) original scans, (b) scans enhanced by 2D FSR, and (c) scans enhanced by
3DReCNN. Different colors represent different subjects and connected points refer to the scans per
individual. The black line represents the fitted model and the dashed lines are the confidence interval.



5.4 - Results and discussion 167

Figure 5.13: Total brain volume trajectory with age, along with the predicted linear fit. Total brain
segmentations were computed from (a) original scans, (b) scans enhanced by 2D FSR, and (c) scans
enhanced by 3DReCNN. Different colors represent different subjects and connected points refer to
the scans per individual. The black line represents the fitted model and the dashed lines are the
confidence interval.
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5.4.1.2 Young to middle adulthood group

As mentioned before, 95 scans from 33 subjects with age ranging between 2.5 and 8 years were

included in this analysis. The aim is thus to quantify the volumetric change in brain tissues during

the young to middle adulthood period of the marmoset life.

This time, Table 5.4 shows that there is no significant linear decrease in GM volume with age

when computing volumes from segmentations of original scans or scans enhanced by 3D ReCNN.

However, a linear decrease in GM volumes was detected when volumes were computed from segmen-

tations of images enhanced by 2D FSR. Figure 5.14 shows the difference between the linear model fit

to GM segmentation of the original, enhanced by 2D FSR, and enhanced by 3D ReCNN scans. Such

differences in the results may be due to a reduced variability, especially intra-subject, in volumes

computed from segmentations obtained after enhancement with SR. Referring back to the longitudi-

nal study performed by Lebel et al. [206], a similar linear decrease in the GM volume of the human

brain was detected between 5 and 32 years, i.e. in the young to middle adulthood. Therefore, even

though a linear decrease in the marmosets’ brain during this period would be in accordance with

the changes occurring in the human brain during this life period, one should keep in mind that the

most significant decrease found here is still very small. Again, despite enhancement with SR, which

can at best reduce segmentation errors, the observed changes are still very small with respect to the

acquisition spatial resolution, and may not be detected.

Table 5.4: Global statistical analysis of the total brain volume changes with age for the marmosets in
their young to middle adulthood (with ages between 2.5 and 8 years) including 95 scans. The table
shows the slope and the 95% confidence interval of the linear model fitted to GM volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0125 [- 0.0387 , 0.0153]

Enhanced scans by 2DFSR linear - 0.0351 [- 0.0567 , - 0.0121]

Enhanced scans by 3DReCNN linear -0.0213 [- 0.0487 , 0.0075]

As for the WM volume, the only linear model that showed a significant relationship between
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volume and age was the model fitted to volumes computed from segmentations of scans enhanced

by the 2D FSR method. However, the linear increase in WM volume was not significant using

segmentations of original scans or scans enhanced by 3D ReCNN. This WM increase in the young

to middle adulthood period of the marmoset life can be linked to the human brain WM increase

reported in [6] and [203] until the age of 40 years, and in the longitudinal study of Lebel et al. for

ages between 5 and 32 years [206]. But again, one should not conclude too fast based on these results

since the confidence interval on the slope is still close to zero with this model.

Table 5.5: Global statistical analysis of the volumetric WM changes with age for the marmosets in
their young to middle adulthood (with ages between 2.5 and 8 years) including 95 scans. The table
shows the slope and the 95% confidence interval of the linear model fitted to WM volumes.

Tested Model Slope Confidence Interval

Original scans linear 0.00033 [- 0.0165 , 0.0181]

Enhanced scans by 2DFSR linear 0.0158 [0.0073 , 0.0246]

Enhanced scans by 3DReCNN linear 0.0018 [- 0.0116 , 0.0211]

Finally, Table 5.6 and Figure 5.16 show that, for the three kinds of scans, the linear model reveals

a significant decrease in the total brain volume during the young to middle adulthood period of the

marmoset.

Table 5.6: Global statistical analysis of the total brain volume changes with age for the marmosets
for the marmosets in their young to middle adulthood (with ages between 2.5 and 8 years) including
95 scans.. The table shows the slope and the 95% confidence interval of the linear model fitted to
total brain (GM + WM) volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0262 [- 0.0499 , -0.0013]

Enhanced scans by 2DFSR linear -0.0243 [- 0.0467 , - 0.0010]

Enhanced scans by 3DReCNN linear -0.0333 [- 0.0578 , -0.0078]
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Figure 5.14: GM volume trajectory with age in the young to middle adulthood period, along with the
predicted linear fit. GM segmentations were computed from (a) original scans, (b) scans enhanced
by 2D FSR, and (c) scans enhanced by 3DReCNN. Different colors represent different subjects and
connected points refer to the scans per individual. The black line represents the fitted model and
the dashed lines are the confidence interval.
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Figure 5.15: WM volume trajectory with age in the young to middle adulthood period, along with the
predicted linear fit. WM segmentations were computed from (a) original scans, (b) scans enhanced
by 2D FSR, and (c) scans enhanced by 3DReCNN. Different colors represent different subjects and
connected points refer to the scans per individual. The black line represents the fitted model and
the dashed lines are the confidence interval.
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Figure 5.16: Total brain volume trajectory with age in the young to middle adulthood period, along
with the predicted linear fit. Total brain segmentations were computed from (a) original scans, (b)
scans enhanced by 2D FSR, and (c) scans enhanced by 3DReCNN. Different colors represent different
subjects and connected points refer to the scans per individual. The black line represents the fitted
model and the dashed lines are the confidence interval.
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5.4.1.3 Late adulthood group

Volumetric markers of cerebral aging of the marmoset brain was longitudinally studied with a group

of marmosets of 24 subjects having a total of 90 scans and age ranging between 8 and 14.7 years.

A linear decrease in GM volume was detected using GM segmentations from original and 3D

enhanced scans (Table 5.7). This is in accordance with the human-brain theory that GM declines

with late age. Figure 5.17 illustrates the linear model of GM trajectory using original and 3D

enhanced scans.

Table 5.7: Global statistical analysis of the volumetric GM changes with age for the marmosets in
their late adulthood period (with ages greater than 8 years) including 90 scans. The table shows the
slope and the 95% confidence interval of the linear model fitted to GM volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0293 [- 0.0533 , - 0.0047]

Enhanced scans by 2DFSR linear - 0.0234 [- 0.0487 , 0.0019]

Enhanced scans by 3DReCNN linear - 0.0276 [- 0.0530 , - 0.0018]

However, during the late adulthood period, no significant relationship was observed between WM

volumes and age (Table 5.8). This could be interpreted as either no linear changes in the WM of

the marmoset’s brain occur after the age of 8, or that the data in this group is not precise enough to

detect such tiny changes in the WM volume.

Table 5.8: Global statistical analysis of the volumetric WM changes with age for the marmosets in
their late adulthood period (with ages greater than 8 years) including 90 scans. The table shows the
slope and the 95% confidence interval of the linear model fitted to WM volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0099 [- 0.0258 , 0.0059]

Enhanced scans by 2DFSR linear - 0.0049 [-0.0182 , 0.0085]

Enhanced scans by 3DReCNN linear - 0.0059 [- 0.0212 , 0.0091]
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Finally, although still very small, a consistent significant linear decrease of the total brain volume

with age was detected using original, 2D enhanced, and 3D enhanced scans of older subjects. Figure

5.19 shows the total brain volume as a function of age, along with its predicted linear fit.

Table 5.9: Global statistical analysis of the total brain volume changes with age or the marmosets in
their late adulthood period (with ages greater than 8 years) including 90 scans. The table shows the
slope and the 95% confidence interval of the linear model fitted to total brain (GM + WM) volumes.

Tested Model Slope Confidence Interval

Original scans linear - 0.0419 [- 0.0687 , - 0.0147]

Enhanced scans by 2DFSR linear -0.0303 [- 0.0547 , - 0.0056]

Enhanced scans by 3DReCNN linear -0.0352 [- 0.0623 , -0.0079]
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Figure 5.17: GM volume trajectory in the late adulthood period fitted with a linear model using the
segmentation of (a) original scans and (b) enhanced scans by 3D ReCNN. Different colors represent
different subjects and connected points refer to the scans per individual. The black line represents
the fitted model and the dashed lines are the confidence interval.
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Figure 5.18: WM volume trajectory with age in the late adulthood period, along with the predicted
linear fit. WM segmentations were computed from (a) original scans, (b) scans enhanced by 2D FSR,
and (c) scans enhanced by 3DReCNN. Different colors represent different subjects and connected
points refer to the scans per individual. The black line represents the fitted model and the dashed
lines are the confidence interval.
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Figure 5.19: Total brain volume trajectory with age in the late adulthood period, along with the
predicted linear fit. Total brain segmentations were computed from (a) original scans, (b) scans
enhanced by 2D FSR, and (c) scans enhanced by 3DReCNN. Different colors represent different
subjects and connected points refer to the scans per individual. The black line represents the fitted
model and the dashed lines are the confidence interval.
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5.4.1.4 Discussion

In this section, we modelled the volumetric changes in the brain tissue volumes with age using a

mixed effects linear model. During our study, we tried also to fit the data using quadratic and cubic

models as already tested in previous studies of the human brain [225]. We found that the three

models (linear, quadratic and cubic) similarly described the data implying that adding complexity to

the model does not bring much. Worse, such models can over fit the data and hide true changes. In

such conditions, it is generally advised to apply the principle of parsimony, and choose the simplest

model, which is the linear model in our case. The small value of the slope, rendering the increase

or decrease of the fitted curve not obviously visible, can be related to the fact that the changes

occurring in the marmoset brain are too small with respect to the voxel size. Thus, the detection

of such changes may require acquiring data with a higher spatial resolution. To this end, our global

statistical analysis is still a preliminary study where further investigations should be conducted.

Despite these limitations, to sum up our findings, GM volume of the marmoset brain was found

to decrease over time, indicating a possible shrinkage with age. Volumetric changes in WM could

not be detected in the adulthood analysis, whether the images were previously enhanced or not by

2D FSR or 3D ReCNN methods. We were able to detect an increase, although still very small, in

WM volume in the young to middle adulthood period of the marmosets’ life using the segmentations

of the enhanced scans by 2D FSR. Even though enhancing images with SR may reduce the intra-

and inter-individual variability in segmentations and hence in volumes, the acquisition resolution is

probably too low to detect such subtle changes. Besides, we believe that additional studies on WM,

including the analysis of myelin in WM fibers, using different but complementary MRI techniques,

may be more suitable for this brain tissue. Finally, the total brain volume composed of the gray and

white matters tends to decrease throughout the life span of the marmoset starting from age of 2.5

years. Information about the total brain trajectory before this age is not available in this study.

As this analysis has provided information about the global volumetric changes of GM and WM, we

are more interested in the regional changes occurring in the brain. Such changes are more likely to be

linked with cognitive and behavioral observations in future studies. Therefore, the following section

will highlight the VBM study of the GM and WM changes of the marmoset brain.
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5.4.2 VBM analysis

Similar to the global statistical analysis conducted on the three age-groups, the regional volumes’

changes were studied, voxel-by-voxel, in a VBM analysis of GM and WM tissues. We will hereafter

show the results of this VBM analysis while highlighting regions showing an increase or decrease with

age. We will, as before, show these results for the original, 2D enhanced, and 3D enhanced scans.

5.4.2.1 Adulthood group

Statistical inferences were made at voxel-level using a significativity level of 0.05 with family-wise error

(FWE) correction for multiple comparisons across the whole brain, and with no extent threshold.

For the analysis of GM volume change, more specifically, a GM mask was applied to exclude any non-

GM voxels in the analysis. The difference between the VBM results on GM extracted from original

scans, from scans enhanced by 2D FSR, and from scans enhanced by 3D ReCNN, are depicted in

Figure 5.20. A GM volume decrease with age was observed in the lateral and medial prefrontal

cortex, cingulate gyrus, caudate nucleus, hippocampus and parahippocampal gyrus, parietal lobe,

and occipital posterior areas. No voxels in GM were found to significantly increase in this analysis.

These results can be related to the GM reduction in the human brain reported in [207] and [208].

Although the analysis of the human brain involved more GM regions, our results remain interesting

as they show a similar behaviour of the aging process between the marmoset and the human GM

volume. As hippocampal reduction accelerates in the middle age [228], detection of this loss is in

accordance with the process occurring in the human brain. Moreover, the reduction in the caudate

nucleus, which is usually associated with memory decline in the human brain [229, 230], seems to be

coherent with the aging of the marmoset brain. In the study of WM regional decrease, few pixels were

found in the occipital area, but it may be strongly due to a misclassification error in the segmentation

step since this region had the most acquisition-related artifacts. This result is in contradiction with

the WM loss reported in [6, 210] for the human brain. Since we test only for a linear regression with

age, this result may be due to the fact that WM exhibits a non-linear relation with age which could

not be detected, or that changes occur at a smaller scale and could not be captured with sufficient

precision. On the other hand, a WM increase was observed in the prefrontal areas, the parietal lobe,
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and frontal and parietal connections. Figure 5.21 shows the global maximum increase in WM for the

three kinds of scans studied.

Figure 5.20: VBM analysis of GM decrease for 185 MRI scans from 42 marmosets with an age
range of 2.5 to 14.7 years using smwGM segmentation from (a) original scans, (b) enhanced scans by
2D FSR, and (c) enhanced scans by 3D ReCNN. Darker shades of red represent a more significant
decrease in a specific region than lighter shades.

5.4.2.2 Young to middle adulthood group

Statistical inferences were made at voxel-level using an uncorrected p-value of p < 0.001, and with

no extent threshold. A smaller uncorrected p-value was necessary since the studied sample is smaller

than the previous one with only 95 scans available. Again, a mask was applied to exclude any non-

GM voxels in the analysis. A decrease in GM volume was observed in the lateral prefrontal cortex.

However, we were not able to detect a decrease in the medial prefrontal cortex. The caudate nucleus

did not show a strong decrease and no decrease in the hippocampus was reported. These results are

expected as these areas start to decrease in late ages in the human (Figure 5.22).
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Figure 5.21: VBM analysis of WM increase for 185 MRI scans from 42 marmosets with an age range
of 2.5 to 14.7 years using smwWM segmentation from (a) original scans, (b) enhanced scans by 2D
FSR and (c) enhanced scans by 3D ReCNN. This figure shows the pixels of global maximum for each
case. The color bar ranges from least (red) to most significant (white) change.

Figure 5.22: VBM analysis of GM decrease for 95 MRI scans from 33 marmosets during their young
to middle adulthood with an age range of 2.5 to 8 years using smwGM segmentation from (a) original
scans, (b) enhanced scans by 2D FSR, and (c) enhanced scans by 3D ReCNN. Darker shades of red
represent a more significant decrease in a specific region than lighter shades.
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No decrease was observed in the WM region either for the young to middle adulthood analysis.

However, an increase in the prefrontal area was observed, which may be due to brain maturation,

especially in younger subjects. Figure 5.23 shows the effect of SR on the VBM analysis of WM.

While using the original scans no pixels were highlighted, the segmentation enhancement by 2D FSR

allowed for a stronger VBM result. This result is in accordance with the results in Table 5.5 where

the linear increase of WM was only detectable using the super-resolved scans by 2D FSR. Similar to

the original scans, no voxels were found significant when using scans enhanced by 3D ReCNN.

Figure 5.23: VBM analysis of WM increase for 95 MRI scans from 33 marmosets during their young
to middle adulthood with an age range of 2.5 to 8 years using smwWM segmentation from (a) original
scans and (b) enhanced scans by 2D FSR. No significant pixels of WM increase were detected using
the enhanced scans by 3D ReCNN. This figure shows the pixels of global maximum for each case.
The color bar ranges from least (red) to most significant (white) change.

5.4.2.3 Late adulthood group

Similar to the VBM analysis of the young to middle adulthood group, the analysis of the 90 scans of

old ages was performed at voxel-level using an uncorrected p-value of p < 0.001, and with no extent

threshold. A GM volume decrease was observed in hippocampus and parahippocampal gyrus, limbic
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lobe and the cingulate gyrus. More GM volume decrease was detected in the posterior cingulate

which is associated with memory and connected to the hippocampus, and the medial pre-frontal

lobe. However, less decrease occurred in the lateral area of the brain. Detection of the hippocampal

changes in the late adulthood group represents an interesting result as several studies have reported

the effect of hippocampal reduction on the cognitive abilities in late ages in humans [231, 232].

Cognitive flexibility deficits in marmosets have been previously reported by Sadoun et al. after the

age of 7 years in a study based on reversal learning and delayed-matching-to-position tasks and

which can be linked to the reduction observed in the hippocampus [23]. For this age group, a WM

volume decrease was observed in the body of corpus callosum, the hippocampus connection, and the

cingulum bundle. No increase in WM volume was observable as illustrated in Figure 5.25 even after

image enhancement. Indeed, a similar difficulty had already been encountered while modelling the

trajectory for this age range, where none of the models tested successfully predicted WM changes.

Figure 5.24: VBM analysis of GM decrease for 90 MRI scans from 24 marmosets during in their
late adulthood period with age greater than 8 years using smwGM segmentation from (a) original
scans, (b) enhanced scans by 2D FSR, and (c) enhanced scans by 3D ReCNN. Darker shades of red
represent a more significant decrease in a specific region than lighter shades.
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Figure 5.25: VBM analysis of WM increase for 90 MRI scans from 24 marmosets during in their late
adulthood period with age greater than 8 years using smwWM segmentation from (a) original scans
and (b) enhanced scans by 2D FSR. No significant pixels of WM increase were detected using the
enhanced scans by 3D ReCNN. This figure shows the pixels of global maximum for each case. The
color bar ranges from least (red) to most significant (white) change.

5.5 Conclusion

In this chapter, we have proposed a longitudinal segmentation pipeline for the segmentation of the

marmoset brain MRI scans. Scans were first corrected for position and orientation, noise reduction,

and bias field correction before being registered to the marmoset brain template. Then, scans of

each individual marmoset were processed to obtain GM, WM, and CSF segmentations while taking

into consideration intra-individual variability. Brain tissue segmentations were used in the statis-

tical analysis of the volumetric trajectory of each tissue, while smoothed, modulated, and warped

segmentations were used in a VBM analysis to detect a regional increase or decrease in GM and

WM volume. The study was performed for three age ranges: the adulthood period with age between

2.5 and 14.7 years, the young to middle adulthood period with age between 2.5 and 8 years, and
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the late adulthood period for ages greater than 8. Statistical and VBM analyses using the original

marmoset scans were further compared to the analyses using enhanced scans by 2D FSR and 3D

ReCNN methods, which have been previously proven efficient for segmentation. We have showed that

the GM volume decreases with age with a variability in the regional decrease within each studied

group. On the other hand, WM was observed to increase during young to middle adulthood with

no additional information that could be detected of what happens after. Moreover, the total brain

volume, which is made up of the sum of GM and WM, is thought to decrease throughout the life

of the marmosets. These results were consistent with previous studies on modelling the volumetric

trajectory of GM and WM in the human brain, which supports the idea of considering the marmoset

brain aging as a model for the human brain aging. Starting from the conclusion of Chapter 4, stat-

ing that SR enhances the segmentation of the brain, the effect of this enhancement was validated

in the global statistical analysis and was further obvious in the VBM analysis. Artifacts detected

as a possible increase or decrease of GM and WM on original scans were suppressed on enhanced

scans by SR. However, as SR increased the precision around the estimated slope allowing to detect

significant changes, they could not uncover changes occurring with aging and that are smaller than

scale of the acquired images. This shows the importance of having high resolution acquisitions with

smaller voxel size suitable for detecting such small changes. The study on intra- and extra-cerebral

CSF was further limited by the overestimation of the CSF, which is confounded with the skull in

T1-weighted MRI. Future perspectives will include the regional statistical analysis of cortical volumes

in the marmoset brain.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

The objective of this PhD was to develop resolution enhancement methods for the preclinical detec-

tion of biomarkers of cerebral aging using MR images of the marmoset brain. We investigated the

effectiveness of several image enhancement methods on MRI data sets of the marmoset brain, in-

cluding image deblurring, image SR using model-based methods, and image SR using learning-based

methods. We further tested the impact of image enhancement on the segmentation of brain tissues.

Finally, statistical and VBM analyses were conducted to detect age-related volumetric trajectories

and regional changes of the GM and WM of the marmoset brain.

The first work conducted in this thesis was introduced in Chapter 3, where we presented a seg-

mentation method for marmoset brain MR images, which does not rely on a brain template. Rather,

we proposed a segmentation method based on a Bayesian joint deconvolution and segmentation al-

gorithm. The method is based on modeling locally the image statistics using a Generalized Gaussian

distribution (GGD) and couples the deconvolved image and its corresponding label map using the

GGD-Potts model. The outputs (enhanced version of the input MRI volume and its corresponding

labels) were further used as prior information (maps) for segmenting the brain into its main compart-

ments with SPM. Enhancing the MR volumes by deconvolution resulted in competitive segmentation

results regardless of the method used. Using the associated labels as segmentation priors presented

a significant contribution, especially when templates are not available. The segmentation obtained

with the proposed method showed a good similarity with the manual segmentation.

In Chapter 4, we evaluated several methods for SR of marmoset brain MR images. The first part

introduced model-based techniques for the SR task. In particular, we assessed a 2D fast SR method

187
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(FSR) and a 3D tensor-factorization (TF) method for general image reconstruction and compared

them to the existing state-of-the-art methods. The second part covered deep learning networks that

have been initially published for the SR of human brain MR images and trained using a marmoset

data set. The results of these methods were evaluated from a brain segmentation perspective, using

a state-of-the-art brain segmentation method applied to native, LR, and estimated HR volumes.

The objective was to study the effect of SR on the final segmentation of the brain. Qualitative and

quantitative results on simulated LR data showed that the segmentation of the recovered images

were closer to the ground truth. Using classical interpolation did not provide as promising results as

SR methods. The practical application of SR on native data and the computation of tissue volumes

revealed that the segmentation of enhanced images were closer to the MS performed by an expert

than that of the native images. Moreover, we tried to synthesize 7T -like MRI images using 3T images

using a network that has been trained on human brain images which revealed a great enhancement

in the contrast between brain tissues. The best performing SR methods, the 2D FSR model-based

method and the 3D ReCNN learning-based method, were further used in the statistical and VBM

analyses for the marmoset brain.

Finally, in Chapter 5, we have introduced an original work on the longitudinal segmentation

and analysis of the marmoset brain MR images. In this context, we have proposed a longitudinal

pipeline for the segmentation that starts by correcting the brain scans for position and orientation,

noise reduction, and bias field correction before registering them to the marmoset brain template.

Then, scans of each individual marmoset were processed to obtain GM, WM and CSF segmentations

while taking into consideration intra-individual variability. The statistical analysis of the volumetric

trajectory of GM, WM and the total brain showed a decrease in GM volume with age, a potential

increase in WM volume until the age of 8 years, and a global decrease in the total volume with age.

We further studied the voxel-by-voxel analysis of the regional brain changes in the GM and WM areas

where we have detected a decrease in GM with age in regions such as lateral and medial prefrontal

cortex, cingulate gyrus, caudate nucleus, hyppocampus and parahippocampal gyrus, parietallobe,

and occipital posterior areas. A WM increase with age was also observed in the pre-frontal areas,

the parietal lobe, and frontal and parietal connections. The study was conducted for the adulthood
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and the senescent stages of the marmoset life. Results showed a potential homology between the

human and the marmoset brain. The global decrease in GM volume and increase in WM volume

have been already reported in the human brain. Moreover, GM shrinkage of some regions, such as the

caudate nucleus and the hippocampus, is highly linked to signs of aging in humans, such as cognitive

decline and memory loss. Finally, we studied the effect of SR by performing the same analysis using

scans enhanced by 2D FSR and 3D ReCNN. SR showed more precision in the statistical analysis

by reducing uncertainty and inter- and intra-subject variability. However, the changes occurring

with aging remains too small to be detected using super-resolved scans and require higher resolution

acquisitions.

6.2 Future perspectives

Several interesting perspectives could further complete the work performed in this PhD.

• Model-based hyper-parameters: The choice of hyperparameters in the model-based SR

methods was either done by cross-validation or manually, based on visual inspection of images

and using appropriate metrics. However, it would be interesting to investigate some methods to

tune these hyperparameters automatically from the data. This was already stated in Chapter 3

as in the possible automatic estimation of the noise variance [178] and the granularity coefficient

[172].

• PSF estimation: In experimental setups, when applying different SR methods on real MR

images, the choice of the PSF kernel is important and it usually depends on the MRI sequence

performed. More specifically, the shape of the PSF depends on the trajectory in the k-space

(Cartesian, radial, spiral). Performing blind deconvolution, independent of the PSF model,

and adapting the algorithms to estimate the kernel based on any sequence performed could be

a major future step. Further research should focus on a better PSF estimation scheme of the

MRI data studied with the flexibility of having data from different sources.
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• Learning-based image enhancement: With the rapid advancements in deep learning meth-

ods and the abundant networks proposed in literature, SR can now be performed using multi-

modal MRI data. To elaborate, these networks integrate scans from different modalities or

sequences (T1-weighted, T2-weighted, PD, etc..) to perform the SR task as in [127, 233]. More-

over, since obtaining abundant or HR data for deep learning networks could be a challenging

task in the case of animal studies, transfer learning [234] could be considered. The idea is to

train networks using not only animal MR scans but also human brain scans since these are now

available online. As this method has been proven efficient in machine learning applications, its

applicability to deep learning could be further investigated and tested.

• Learning-based image segmentation: Automated image segmentation methods using deep

learning techniques require the presence of a huge dataset with images having ground truth

labels for training, validation and evaluation of the proposed networks. With the lack of

ground truth labels, segmentation techniques using deep learning were not a choice in this

thesis. However, by obtaining more manual segmentations of the marmoset brain, investigating

learning-based segmentation would be an interesting future work. Since GM, WM and CSF

contrasts on T1-weighted marmoset brain images are similar to those in the human brain,

increasing the data sets by transfer learning could be a possible alternative. In this context,

Delannoy at al. [235] have already performed the segmentation of the neonatal brain cerebral

cortex using generative adversarial network. A similar implementation could be investigated

for the segmentation of tissue brain structures.

• Marmoset brain analysis: The preliminary results of the statistical and VBM analysis could

be further elaborated for more interesting investigation of the marmoset brain. While we only

performed the statistical trajectory analysis for the whole GM and WM volumes, regional

changes of brain areas could be studied independently to analyze the changes and relate them

to the human brain as performed by Coupé et al. [205]. This will aid the study of the possibility

of using the marmoset as a human aging model. Moreover, we can further link these regional

changes with age with cognitive and behavioral studies, and their ability to perform specific
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task that they have learned in their adulthood [22, 23, 236].
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