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Abstract

In this work, we assess the possibility to use empirical thin-layer models to enhance propagation
hazard estimation for gravitational flows. Thin-layer equations model the propagation of a flow
on a topography and give its thickness, and its depth-averaged velocity. We test the SHALTOP
numerical model with an empirical rheology described only one or two parameters, in order to
facilitate its operational use. This approach is thus easier to use and computationally cheaper
than models simulating the dynamics of each solid or fluid particle, and allows to model the
dynamics and the geometry of the flows more finely than purely empirical models.

Three research issues are considered in this work. We first highlight the importance of a de-
tailed description of the topography curvature, even with simple rheological laws. Topography
curvature can indeed have a significant influence on the dynamics of rapid gravitational flows. It
should thus be properly taken into account to calibrate correctly the models and estimate more
precisely overflow hazards.

Then, we test the feasibility of using SHALTOP for propagation hazard quantification in two case
studies. We first consider debris avalanches on the Soufrière de Guadeloupe volcano (Guadeloupe,
Lesser Antilles), and then the combination of rock avalanches and subsequent debris flows in
the Prêcheur river (Martinique, Lesser Antilles). In both cases, we use a wide variety of data
(topographic, geophysical, geological, geomorphological, seismic, ...) to constrain simulation
scenarios, calibrate the model and study potential future events.

Finally, we propose a methodology to estimate, thanks to numerical simulations, landslide travel
distance as a function of destabilized volume. The resulting power law is site-specific. It is
derived through a statistical analysis of a site-specific simulation database, with various volumes
and rheological parameters. Through three case studies, we show that such a power law is
associated to smaller uncertainties in comparison to purely empirical estimations, and models
more accurately the dependence between the volume and the travel distance.

In the short term, this work contributes to adapt and test SHALTOP to allow its operational use
for landslide hazard assessment. In the long term, our work contributes to enhancing landslide
hazard maps and numerical tools for crisis management, by replacing purely empirical approaches
by physically-based models. In this context, some scientific problems remain to be tackled, as
the spatialization of uncertainty and the adaptation of models depending on the scale of the
study (identified landslide, mountain slope or watershed).

Key-words: landslide, modeling, hazard, thin-layer, shallow-water, uncertainty
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Résumé

Dans cette thèse, nous estimons la possibilité d’utiliser des modèles d’écoulement en couche
mince de manière empirique pour améliorer la quantification des aléas gravitaires. Les équations
d’écoulement en couche mince décrivent la dynamique d’un écoulement sur une topographie, à
travers son épaisseur et sa vitesse moyennée sur l’épaisseur. Nous choisissons le modèle numérique
SHALTOP avec une rhéologie empirique n’impliquant qu’un ou deux paramètres pour faciliter
son utilisation opérationnelle. Il est ainsi plus simple d’utilisation et moins coûteux en temps de
calcul que des modèles simulant la dynamique de chaque élément fluide ou solide, et permet de
modéliser plus finement la dynamique et la géométrie de l’écoulement que des modèles purement
empiriques .

Trois axes de recherche sont présentés dans cette thèse. Nous montrons d’abord l’importance,
même pour des rhéologies simples, d’une description fine de la courbure de la topographie. Cette
courbure peut avoir avoir une influence significative sur la dynamique d’écoulements rapides. Elle
est donc importante pour calibrer correctement les modèles et estimer avec plus de précision les
risques de débordement pour des écoulements chenalisés.

Dans un deuxième temps, nous évaluons les capacités de SHALTOP à quantifier la propagation
sur des cas d’étude spécifiques. Nous considérons d’abord des avalanches de débris à la Soufrière
de Guadeloupe, puis l’enchaînement d’avalanches de blocs et de laves torentielles dans la Rivière
du Prêcheur, en Martinique. Dans les deux cas, nous combinons des données variées (topogra-
phiques, géophysiques, géologiques, géomorphologiques, sismiques, . . . ) afin de contraindre les
scénarios de simulations, calibrer le modèle, et étudier de potentiels futurs événements.

Enfin, nous proposons une méthodologie pour estimer, à l’aide de simulations numériques, la dis-
tance de parcours d’écoulements gravitaires en fonction des volumes déstabilisés. La loi puissance
obtenue est spécifique au site d’étude considéré : elle est obtenue par l’analyse statistique d’une
base de données de simulations, avec des volumes et paramètres rhéologiques variés. A travers
trois cas d’étude, nous montrons que la loi obtenue permet de réduire l’incertitude par rapport
à des estimations purement empiriques, et de mieux modéliser la dépendance entre le volume et
la distance de parcours.

A court terme, cette thèse contribue à adapter et tester SHALTOP pour permettre son utilisation
opérationnelle pour des études d’aléas. A plus long terme, en remplaçant des approches purement
empiriques par des méthodes plus physiques, nos travaux s’inscrivent dans la volonté d’améliorer
les cartes d’aléas pour la propagation des glissements de terrain, ainsi que les outils numériques
utilisés pour la gestion de crise. Dans ce contexte, des verrous scientifiques doivent encore être
surmontés, comme la spatialisation des incertitudes et l’adaptation des modèles en fonction de
l’échelle (glissement identifié, versant ou bassin versant).

Mots clés : glissement de terrain, modélisation, aléa, couche mince, shallow-water, incertitude
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Introduction

Context

Between 2004 and 2016, non seismically triggered landslides killed more than 55,000 people
worldwide (Petley, 2012; Froude and Petley, 2018). Most of these landslides happened in moun-
tainous areas in China and India during the monsoon season. Earthquakes also trigger fatal
landslides (as in the case of the M. 7.9 earthquake in Wenchuan, China, Fan et al., 2019), but
it is difficult to identify the cause of the death in the chaotic aftermaths of earthquakes (Petley,
2012). Landslides can also have a significant economic impact. In France, a highly publicized
example is the Chambon landslide that partially destroyed the road between Grenoble and Bri-
ançon in May 2015. A new road could be opened only in December 2017 (Desrues et al., 2019).
The coast of the construction of the new road, as well as the management of alternate solutions
for the displacement of isolated population in the meantime, was at least 30 million euros for
this single event (Echos, 2015).

Gravitational hazards are not specific to mountainous areas. Still in France, landslides occur
for instance regularly on the hillsides of Vallée de la Marne and Montagne de Reims. They are
rarely a threat to populations, but damage communication networks and vineyards (e.g. Pannet
et al., 2015; Hannion and Hamman, 2018; Pannet, 2018).

Given the economic and human stakes, the study of landslides is important to assess correctly
hazards and associated risks. Hazard is associated to the process itself, and combines the prob-
ability of occurrence of an event with its intensity (for instance, the velocity and/or the travel
distance). The risk associates the hazard with its impact on exposed stakes, in regard of their
economic value. The main steps of risk assessment for landslides are (Alexander, 2002; Glade
and Crozier, 2005; Fell et al., 2008; Corominas et al., 2014):

1. Hazard characterization: What kind of landslides can be expected? In which range of
volumes? What is the probability of occurrence? This step is mainly based on the inventory
of past events in the study site.

2. Hazard cartography: where can landslides be initiated? How far can they go?

3. Quantification of intensity: what are the characteristics of landslides? If the focus is
on propagation, hazard intensity is measured for instance by travel distance, velocity,
dynamic pressure or deposited thicknesses. How is intensity related to the magnitude of
the landslides, i.e. to the destabilized volume?

4. Analysis of stakes exposure: what is the probability that an infrastructure or a living
quarter is affected by a landslide?

5. Analysis of vulnerability: What is the potential impact of a landslide of given magnitude
on the exposed stakes? This is different from exposure analysis: for instance, a bridge can
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be exposed to debris flow hazard, but will be threatened only in the case of high discharge
events.

6. Integration of previous quantitative and qualitative, to derive a quantified risk assessment
(QRA), in terms of economic costs and/or potential fatalities.

In this study, we focus on hazard assessment, that is, on the first three points of the previous list,
and in particular on propagation assessment. Indeed, the mere study of gravitational hazards is
already a complex research subject. Landslides can take various forms, like slope deformations,
rapid collapses of mountainous or volcanic slopes, or debris flows (these phenomenons will be
presented more thoroughly in Chapter 1). Such processes can of course follow one another during
the evolution and the transformation of the landslide (e.g., because of the incorporation of water).
Scales can also vary significantly. Destabilized volumes can range from a few m3 for rockfalls,
to several km3 pour volcanic flank collapses. Landslides velocities also span a large range of
magnitudes, from a few mm or cm per year for slope deformations, to several tens of meters per
second for rock avalanches or debris flows. Thus, no unified framework exist for landslide hazard
analysis.

In spite of significant progress over the past decades to better understand and describe the
physical processes at stake (e.g. Corominas et al., 2014; Delannay et al., 2017), engineers and
researchers studying landslides are also faced with methodological and practical issues. Indeed,
it is sometimes difficult to characterize in details the geotechnical and hydrogeological properties
of the geological formations that are destabilized, as well as the rheological properties of mate-
rials during propagation. If sampling, drilling, geophysical surveys and laboratory analyzes can
be done to investigate a given landslide, the duration and financial cost of such measurement
campaigns are sometimes incompatible with operational constraints. Besides, the spatial inter-
polation and/or the extrapolation of measures is complex and associated to major uncertainties
(Thiery et al., 2020).

Quantitative gravitational hazard assessment must thus tackle scientific problems (understanding
and modeling of physical processes), methodological problems (acquisition and interpretation of
data, usage of predictive models at various scales, quantification and propagation of uncertainty),
and operational constraints (limited temporal and financial resources). A milestone to solve
these problems is the collaboration between academic and applied research institutes. This PhD
project was developed in this perspective, as a result of the collaboration between the BRGM
(Bureau des Recherches Géologiques et Minières, the French Geological Survey), whose expertise
in natural hazards is often used by local authorities, and the IPGP (Institut de Physique du
Globe de Paris), where a numerical model for gravitational flow propagation was developed (in
collaboration with the Laboratoire d’Analyse et de Mathématiques Appliquées de l’Université
Gustave Eiffel and the Ecole Normale Supérieure de Paris). It is precisely this need of skill and
knowledge transfer between the academic and applied researches that raised my interest for this
research topic. Indeed, it requires a global vision of the stakes and the understanding of various
subjects to enable and justify the operational use of a numerical model. Thus, I had to acquaint
myself with, for instance, differential calculus, field work and statistical analysis methods.

Objectives of the thesis

In this context, this PhD aims at assessing the usability of numerical models to quantify prop-
agation hazard for gravitational flows, i.e. landslides whose propagation can be compared (in a
first approximation), to flows. We focus in particular on rock avalanches, debris avalanches, and
debris flows (see Chapter 1 for definitions).
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We consider only thin-layer models, that is, models describing the propagation of a material layer
whose thickness is small in comparison to its extent. In comparison to 3D models who aim at
describing the dynamics of each fluid or solid particle, thin-layer models give only the thickness of
the layer, and its averaged velocity. Thus, they are faster and easier to use, which is a significant
advantage for an operational use. However, on the contrary to purely empirical methods, thin-
layer models give better estimations of the dynamics and geometry of deposits. We will use the
SHALTOP numerical model that has already been tested to reproduce granular flows at the scale
of the laboratory (Mangeney-Castelnau et al., 2005; Mangeney et al., 2007b), as well as landslides
at the field scale (e.g. Favreau et al., 2010; Levy et al., 2015; Brunet et al., 2017; Moretti et al.,
2020a). In comparison to other thin-layer models (see McDougall (2017), Hungr et al. (2007)
and Pastor et al. (2018a) for a review), SHALTOP can seem rather simple. Indeed, it does not
model, for instance, erosion processes or two-phase flows (with a fluid and a solid fraction). Such
processes are however difficult to model and constrain because they involve many parameters
that must be fitted and require the use of ad-hoc (i.e. empirical) closure relations. As a good
compromise, we choose to use a simplified description of the physical propagation processes, with
only one or two rheological parameters. The latter are calibrated by reproducing documented
events. This empirical approach allows to simplify the analysis and interpretation of results,
and thus hazard assessment, while preserving in simulation the influence of topography on the
landslide propagation. The problematic we will try to answer can thus be formulated as follows:
To what extent can thin-layer models be used empirically to quantify propagation
hazard for gravitational flows?

This question can be studied through three research axes that shape our work (Figure 0.1):

• What is the importance, in thin-layer models, of a detailed description of geometrical
interactions between a landslide and the topography on which it propagates? How does it
influence the topographic control on the flow dynamics?

• Can thin-layer models be used empirically with a limited number of rheological parameters
to model realistic landslide scenarios?

• How can uncertainty be quantified and propagated in simulation results?

In the short term, this works contributes to assessing the practical modalities for using thin-
layer models, and in particular SHALTOP, for landslide hazard assessment. In this perspective,
SHALTOP has been adapted and modified to enhance its usability (in terms of modeled rheolo-
gies, simplicity of use and generation of unstable mass). Besides, the case studies, that will be
presented hereafter, are associated to important stakes. Our simulations help characterize the
associated gravitational hazard and can be used, in turn, for a preliminary risk assessment.

In the long term, this PhD contributes to developing a method where thin-layer models are
used to derive hazard maps integrating uncertainties. Three problems must be tackled first: the
propagation of uncertainty from measures to simulation results, the spatialization of uncertainty,
and the change of scale (from the isolated landslide to the mountain slope or watershed). In this
work, we address only the first point in a simplified framework. We consider cases where the
landslide source area is identified, and propagate uncertainty only to the estimation of landslide
travel distance. Deriving hazard maps for landslides thicknesses or maximum dynamic pressure
is nevertheless an important objective. Such maps would be a major improvement to enhance
gravitational hazards mitigation.



xii

Structure of the thesis

The context of our study is presented into more details in Chapter 1. We present usual classifi-
cation of landslides, along with physical processes controlling their propagation. We also give an
overview of empirical, semi-empirical and numerical methods used to assess propagation hazard.
Finally, we detail the main rheological laws used to model homogeneous one-phase flows in thin-
layer models. The research directions are then considered, corresponding to the three questions
listed above.

First is the question of the mathematical accuracy of thin-layer models. Even if the thin-layer
equations are relatively simple, their formal derivation on complex topographies is not straight-
forward. This results of course from the difficulty to define rheological laws that are representative
of physical phenomenons, but also from the complex mathematical tools that must be used to
obtain the final equations. The first point is widely studied in the literature, as discussed in Chap-
ter 1. The second point is, in comparison, less often considered: only few studies are dedicated
to quantifying the importance of a rigorous mathematical derivation, in particular regarding the
geometrical interactions between the flow and the topography on which it propagates. In Chap-
ter 2, we detail the origin and effects of two topography curvature terms in thin-layer models. We
quantify their influence on simulation results, by comparing simulations where they are properly
taken into account, approximated or neglected. Thus, we identify situations where an incomplete
topography curvature description lead to significant errors in numerical simulations, and thus to
inaccurate hazard assessment.

Then, we test the possibility of using SHALTOP with simple rheological laws to reproduce docu-
mented events and to quantify the propagation hazard for future similar events. Two case studies
with important stakes are considered. In Chapter 3, we consider a debris avalanche produced
by a partial dome collapse from the Soufrière de Guadeloupe volcano (Guadeloupe, Martinique,
Lesser Antilles). In Chapter 4 we study the combination of a rock avalanche and a subsequent
debris flow in the Prêcheur river in Martinique, Lesser Antilles. In both case, the method is the
same. We first a collect quantitative and qualitative information to constrain past landslides,
and potential future events. This step is crucial to get realistic simulation scenarios. The orig-
inality of our approach lies in the aggregation of a wide variety of data (topographic surveys,
geophysical measurements, geomorphological and geological observations, seismic recordings, ...).
Rheological parameters are then calibrated empirically by reproducing documented events, and
used to model forward prediction scenarios. By testing different rheological parameters and
initial conditions, a sensitivity analysis is carried out.

In the case of Soufrière de Guadeloupe, relatively few quantitative data are available, but thin-
layer models have already proven the ability to model debris avalanches in volcanic context
(e.g. Mangeney et al., 2000b; Kelfoun and Druitt, 2005; Sosio et al., 2012). This case study
thus enables to confirm this conclusion for SHALTOP, while improving gravitational hazard
assessment in the Soufrière de Guadeloupe area.

The situation is more complex in the Prêcheur river, where SHALTOP is used to model very
different phenomenons: a rock avalanche, and then a debris flow. As debris flows are two-phase
flows, which do not lie in the theoretical validity frame of SHALTOP, our approach is even more
empirical than in the Soufrière de Guadeloupe case. This is precisely the relevance of this case
study, for we want to test if SHALTOP can be used empirically to model phenomenons that are,
in theory, not meant to be described by its equations.

Finally, for landslide hazard assessment, quantifying uncertainty is important. As a matter of
fact, the data collected on the field or in the litterature are uncertain, and the representativeness
of models can be discussed. In this perspective, the previous parts focus on the reduction of
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Figure 0.1: Scientific issues and structure of the thesis.

epistemic uncertainties, (that is, uncertainties that cannot be quantified as they result from an
inappropriate description of the phenomenon), by ensuring the model equations are mathemati-
cally valid (Chapter 2), and by gathering various data to construct realistic simulation scenarios
(Chapter 3 and 4). In the last part of this thesis (Chapter 5), we focus on the quantification of
aleatory uncertainties (that can, precisely, be modeled and quantified), and on the possibility to
reduce them with thin-layer models in comparison to purely empirical methods. This problem
will be considered in the frame of power laws relating, for a given study site, the landslide travel
distance to its volume. Such power laws can be derived empirically from landslide databases. The
dispersion between the resulting power law and the data used to derive it can be used to estimate
uncertainty, but results are not, in general, site-specific. To the contrary, numerical simulations
take into account the topographic specificities of the study site, but uncertainty quantification is
more complex. To solve this problem, we propose a method based on a database of site-specific
simulations, with various rheological parameters and volumes. We test it on three different case
studies: rock avalanches from the Samperre cliff, the Frank Slide (Canada), and the Fei Tsui
Road debris slide (Hong-Kong)
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Contexte

Entre 2004 et 2016, les mouvements gravitaires non liés à des séismes ont provoqué la mort de
plus de 55 000 personnes dans le monde (Petley, 2012 ; Froude et Petley, 2018). La plupart d’entre
eux se sont produit dans les régions montagneuses de la Chine et de l’Inde pendant les moussons.
Les tremblements de terre sont aussi la source de glissements de terrains meurtriers (comme le
tremblement de terre de magnitude M. 7,9 dans la région de Wenchuan, en Chine Fan et al.,
2019), mais le dénombrement des pertes associées est complexe (Petley, 2012). Les glissements de
terrain peuvent aussi avoir un impact économique significatif. Un exemple fortement médiatisé
en France est le glissement du Chambon qui a provoqué la fermeture de la route reliant les villes
de Grenoble à Briançon en Mai 2015, jusqu’à l’ouverture d’une nouvelle route en Décembre 2017
(Desrues et al., 2019). La construction de la nouvelle route, ainsi que la mise en place de solutions
de déplacement alternatives en attendant, ont coûté plus de 30 million d’euros (Echos, 2015).

Les aléas gravitaires concernent aussi des reliefs moins escarpés que les massifs montagneux.
Toujours en France, les coteaux de la vallée de la Marne et de la Montagne de Reims (Cham-
pagne), connaissent par exemple régulièrement des déstabilisations qui endommagent des routes
et/ou des parcelles cultivées pour la vigne (e.g. Pannet et al., 2015 ; Hannion et Hamman, 2018 ;
Pannet, 2018).

Compte tenu des enjeux économiques et humains, l’étude des glissements de terrain est impor-
tante pour évaluer correctement les aléas, et par suite les risques associés. L’aléa se rapporte au
processus même en croisant la probabilité d’un événement avec son intensité (par exemple, la
vitesse et/ou la distance de parcours du glissement de terrain). Le risque combine l’aléa avec son
impact sur les enjeux exposés, au regard de leur valeur économique. Dans le cas des glissements
de terrain, les principales étapes d’une analyse exhaustive de risque sont (Alexander, 2002 ; Glade
et Crozier, 2005 ; Fell et al., 2008 ; Corominas et al., 2014) :

1. La caractérisation de l’aléa : quels types de glissement de terrain sont attendus ? Quels
volumes peuvent être déstabilisés ? Avec quelle probabilité d’occurrence ? Cette étape se
base principalement sur l’inventaire des événements répertoriés sur la zone d’étude.

2. La cartographie de l’aléa : où les glissements de terrains peuvent-ils être initiés ? Jusqu’où
peuvent ils aller ?

3. Quantification de l’intensité : quelles sont les caractéristiques des glissements de terrain ?
Par exemple pour l’aléa de propagation, l’intensité est mesurée par la distance de parcours,
la vitesses et/ou la pression dynamique, ou encore l’épaisseur des dépôts. Comment ces
mesures de l’intensité sont-elles corrélées à la magnitude de l’événement, c’est à dire au
volume du glissement de terrain ?

4. Analyse de l’exposition des enjeux : quel est la probabilité qu’une infrastructure ou un
quartier d’habitation soient affectés par un glissement de terrain ?

5. Analyse de la vulnérabilité des enjeux : quel est l’impact potentiel d’un glissement de
terrain de magnitude donnée sur les enjeux ? Cet aspect est différent de l’exposition : par
exemple, un pont peut être fortement exposé à l’aléa de coulée de boue, mais son intégrité
peut être menacée seulement en cas d’événement majeur.

6. Intégration des analyses précédentes, quantitatives ou qualitatives, pour obtenir une esti-
mation quantifiée du risque en terme de coûts et/ou de victimes potentielles.

Dans cette étude, nous nous concentrons sur l’étude de l’aléa, c’est à dire sur les trois premiers
points de la liste précédente, et en particulier sur l’aléa de propagation. Bien que le choix de
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nos cas d’étude, qui seront décrits plus loin, ait été guidé par les enjeux associés, nous n’avons
pas réalisé d’étude quantifiée des risques (Quantitative Risk Assessment en anglais). De fait,
même sans aller jusqu’à l’évaluation des risques, l’analyse des aléas gravitaires est un sujet
de recherche déjà complexe. En effet, les glissements de terrain peuvent prendre des formes très
variées, allant de la déformation de pentes à la rupture brutale de versants de massifs montagneux
ou volcaniques, en passant par les coulées de boue (ces différents termes seront définis plus
précisément dans le Chapitre 1, en anglais). De tels processus peuvent bien sûr s’enchaîner
lors de l’évolution et la transformation progressive d’un glissement de terrain (en raison, par
exemple, de l’incorporation d’eau). Les échelles peuvent être aussi très différentes. Par exemple,
les volumes mis en jeux peuvent aller de quelques m3 pour les chutes de blocs, à plusieurs km3

pour les déstabilisations de flancs d’édifices volcaniques. De même, les vitesses caractéristiques
sont également très variables, de quelques mm ou cm par an pour des déformations de pentes,
et jusqu’à plusieurs dizaines de mètres par seconde pour des avalanches de blocs ou les laves
torrentielles. Ainsi, aucun cadre d’étude unifié n’existe, ce qui rend l’étude des aléas gravitaires
très complexe.

Malgré des progrès réalisés ces dernières décennies pour mieux caractériser les phénomènes phy-
siques en jeu (e.g. Corominas et al., 2014), les ingénieurs, chercheurs et experts étudiant ces pro-
cessus sont également confrontés à des problématiques pratiques et méthodologiques. De fait, il
est parfois difficile de déterminer finement les caractéristiques géotechniques et hydrogéologiques
des formations géologiques impliquées dans des déstabilisations, ainsi que les caractéristiques
rhéologiques des matériaux lors de la propagation. Si des études ciblées sont possibles grâce à
des prélèvements, des forages, des techniques géophysiques et des analyses en laboratoire, les
coûts et la durée de telles campagnes de mesures sont parfois incompatibles avec les contraintes
opérationnelles. Par ailleurs, l’interpolation spatiale des données récoltées est complexe et as-
sociée à des incertitudes importantes, quand la zone d’étude est étendue à un versant ou à un
bassin versant (Thiery et al., 2020).

Cette problématique du changement d’échelle s’applique aussi aux méthodes utilisées pour éva-
luer l’aléa, où des méthodes purement quantitatives sont souvent inapplicables quand le site
d’étude est très étendu. Par exemple, la modélisation numérique en 3 dimension des déforma-
tions d’un versant est complexe, mais envisageable si la géologie du site et les processus physiques
en jeu sont suffisamment bien caractérisés. Néanmoins, une telle approche est inenvisageable à
l’échelle du massif montagneux dans son ensemble : en plus de la difficulté d’obtenir d’obtenir des
données topographiques, géologiques et géotechniques fiables à cette échelle, le temps de calcul
peut s’avérer rédhibitoire. En pratique, des méthodes plus empiriques sont donc utilisées à ces
échelles. Comme énoncé par Thiery et Terrier (2018), “il est préférable de disposer de quelques
données de qualité et d’envisager un zonage basique [de l’aléa] qui pourra être justifié et probant
plutôt qu’une multitude d’information de qualité médiocre et un zonage complexe avec de fortes
incertitudes”.

La quantification des aléas gravitaires fait ainsi face à des verrous scientifiques (compréhension
et modélisation des processus physiques), méthodologiques (acquisition et interprétation des
données, utilisation de modèles prédictifs à des échelles différentes, quantification de l’incertitude
et de sa propagation), ainsi qu’à des contraintes opérationnelles (temporelles, financières). Pour
apporter des solutions techniques à ces verrous, la collaboration entre le milieu de la recherche
académique et celui de la recherche appliquée est fondamentale. C’est dans ce cadre que cette
thèse a vu le jour, fruit de la collaboration entre le BRGM (Bureau des Recherches Géologiques
et Minières), qui apporte régulièrement son expertise pour évaluer les risques gravitaires auprès
de collectivités territoriales, et l’IPGP (Institut de Physique du Globe de Paris), où un modèle
numérique de propagation des écoulements gravitaires a été développé (en collaboration avec le
Laboratoire d’Analyse et de Mathématiques Appliquées de l’Université Gustave Eiffel et l’Ecole
Normale Supérieure de Paris). C’est d’ailleurs ce besoin de transfert de compétences entre le
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milieu académique et la recherche appliquée qui, personnellement, m’a incité à candidater à cette
thèse. Il nécessite en effet une vision d’ensemble et l’appropriation de sujets variés pour permettre
et justifier l’utilisation opérationnelle d’un modèle numérique. J’ai ainsi du me familiariser avec
le calcul différentiel en mathématique, le travail de terrain ou encore les méthodes d’analyse
statistique.

Objectifs de la thèse

Dans ce contexte, l’objectif de cette thèse est d’évaluer la faisabilité d’utiliser des modèles nu-
mériques pour quantifier la propagation des écoulements gravitaires, c’est à dire des glissements
dont la dynamique de propagation s’apparente à un écoulement. Nous nous intéressons en par-
ticulier aux avalanches de blocs ou de débris (rock/debris avalanche en anglais), et aux laves
torrentielles (ou coulée de débris, debris flow en anglais).

Nous considérerons uniquement les modèles d’écoulement en couche mince, appelés par la suite
“de couches minces” (thin-layer models, ou shallow-water models en anglais), c’est à dire des
modèles décrivant la propagation d’un écoulement ou d’un glissement de terrain dont l’épais-
seur est négligeable par rapport à son étendue. Par rapport à des modèles 3D décrivant, en
première approximation, la dynamique de chaque particule de fluide et/ou de solide, les infor-
mations qu’ils fournissent concernent uniquement l’épaisseur des matériaux en mouvement, et
leur vitesse moyennée (perpendiculairement à la topographie). Ces modèles intégrés sont donc
plus simples d’utilisation, ce qui est un avantage majeur pour une utilisation opérationnelle. A
l’inverse de modèles purement empiriques, ils permettent de simuler la dynamique et la géométrie
des dépôts des glissements de terrain. Nous utiliserons ainsi le modèle numérique SHALTOP déjà
testé à plusieurs reprises pour modéliser des écoulements granulaires à l’échelle du laboratoire
(Mangeney-Castelnau et al., 2005 ; Mangeney et al., 2007b) et des glissements de terrains (e.g.
Favreau et al., 2010 ; Levy et al., 2015 ; Brunet et al., 2017 ; Moretti et al., 2020a). En compa-
raison à d’autres modèles (voir par exemple McDougall, 2017 ; Hungr et al., 2007 ; Pastor et al.,
2018a, pour une revue), SHALTOP peut sembler relativement simple, car il ne modélise pas,
par exemple, les processus d’érosion ou la propagation d’écoulements bi-phasiques, contenant
une fraction solide et un fraction liquide. Des tels processus sont néanmoins difficiles à modé-
liser et à contraindre, car ils impliquent un nombre importants de paramètres à déterminer et
des lois empiriques ad-hoc. Nous prenons donc le parti d’utiliser une description simplifiée des
processus de propagation, avec seulement un ou deux paramètres rhéologiques calibrés en repro-
duisant des événements documentés. Cette approche empirique permet de simplifier l’analyse et
l’interprétation des résultats, et donc l’analyse de l’aléa, tout en préservant dans les simulations
l’influence de la topographie sur la dynamique du glissement de terrain. La problématique à
laquelle nous tenterons d’apporter des éléments de réponses peut ainsi être formulée de la ma-
nière suivante : Dans quelle mesure les modèles numériques d’écoulements de couches
minces peuvent-ils être utilisés de manière empirique pour quantifier la propagation
des écoulements gravitaires ?

Cette problématique peut se décliner en trois axes, qui structurent la thèse (Figure 0.1) :

• Quelle est l’importance d’une description fine des interactions géométriques entre le glisse-
ment de terrain et la topographie, dans les modèles de couches minces, pour bien modéliser
le contrôle de la topographie sur la dynamique des écoulements gravitaires ?

• Les modèles de couches minces peuvent-ils être utilisés avec un faible nombre de paramètres
pour modéliser des scénarios réalistes de glissements de terrain ?

• Comment propager et quantifier l’incertitude dans les résultats des simulations ?
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A court terme, ce travail contribue à discuter les modalités d’utilisation des codes de couches
minces, et en particulier de SHALTOP, pour réaliser des études d’aléas. En ce sens, le code SHAL-
TOP a été adapté et modifié pour diversifier ses possibilités d’utilisation (en terme notamment
de rhéologies modélisées, de simplicité d’utilisation et de génération des masses instables). Par
ailleurs, les cas d’applications, présentés plus loin, présentent des enjeux importants. Ainsi, nos
simulations permettent de mieux quantifier les aléas gravitaires associés. Les résultats pourront
donc être utilisés, ensuite, pour une estimation préliminaire des risques.

A plus long terme, cette thèse donne des pistes pour construire une méthodologie de cartogra-
phie des aléas gravitaires utilisant des modèles de couches minces et intégrant les incertitudes
d’estimation. Cet axe de recherche fait face à trois problèmes principaux : la propagation de
l’incertitude des données d’entrées aux résultats des simulations, la méthodologie de spatialisa-
tion de l’incertitude, et le changement d’échelle (du glissement de terrain isolé au versant ou au
bassin versant). Dans ce travail, nous apportons quelques éléments de réponses à la première
problématique, sans aborder les deux dernières. Nous nous limitons à des cas d’étude où la zone
source est identifiée, et ne considérons la propagation de l’incertitude que pour l’estimation de
la distance de parcours des glissements de terrain. Nous ne considérons donc pas, par exemple,
la géométrie des dépôts. L’obtention de carte d’épaisseurs ou de pression dynamiques maximales
prenant intégrant l’incertitude, au moins d’une manière simplifiée, reste néanmoins un objec-
tif important : de telles cartes seraient une réelle avancée pour améliorer la gestion des risques
gravitaires.

Structure de la thèse

Le contexte de notre étude est défini plus précisément dans le Chapitre 1, où nous rappelons
la catégorisation des mouvements gravitaires et les processus physiques contrôlant leur pro-
pagation. Nous y donnons également un aperçu des méthodes empiriques, semi-empiriques et
numériques utilisées pour étudier et quantifier la propagation des glissements de terrain. Nous
présentons également les principales lois rhéologiques utilisées pour modéliser des écoulements
mono-phasiques, homogènes, dans les modèles de couche mince. Trois axes de développement
sont ensuite considérés, répondant au trois problématiques énoncées précédemment.

Dans un premier temps se pose la question de la justesse mathématique des modèles de couches
minces. Même si les équations finales restent relativement simples, la dérivation rigoureuse de
ces équations pour des topographies complexes n’est pas évidente. Cela résulte bien sûr de la
difficulté de déterminer une rhéologie représentative des processus physiques, mais aussi des
outils mathématiques qui doivent être utilisés pour parvenir à la forme finale des équations.
Le premier aspect est un sujet largement étudié dans la littérature, comme discuté dans le
Chapitre 1. Le deuxième aspect est moins souvent considéré : peu d’études sont consacrées à
l’importance d’une méthodologie mathématique rigoureuse, en particulier pour décrire finement
les interactions géométriques entre le glissement de terrain et la topographie sur laquelle il se
propage. Dans le Chapitre 2, nous détaillons l’origine et les effets de deux termes de courbure
apparaissant des les équations des modèles de couches minces. Nous quantifions leur effets sur
les résultats de simulations en comparant des simulations où ils sont pris en compte, négligés
ou approximés. Ainsi, nous identifions les situations dans lesquelles une description incomplète
de la courbure de la topographie peut induire des erreurs significatives dans les simulations
numériques, et donc conduire à une estimation erronée des aléas.

Dans un second temps, nous évaluons la capacité de SHALTOP à reproduire des événements
documentés et à quantifier l’aléa de propagation pour d’éventuels futurs événements semblables.
Deux cas d’études avec des enjeux importants sont considérés : une avalanche de débris générée



par une déstabilisation partielle du dôme de la Soufrière de Guadeloupe (Chapitre 3), et l’enchaî-
nement d’un effondrement de falaise et d’une coulée de débris dans la Rivière du Prêcheur, en
Martinique (Chapitre 4). Dans les deux cas, la démarche est la même. Nous collectons d’abord des
informations quantitatives et qualitatives pour contraindre au mieux les mouvements gravitaires
passés et des scénarios de potentiels futurs événements. Cette étape est cruciale pour justifier les
scénarios de modélisation, et l’originalité de notre approche réside dans l’utilisation de données
variées (relevés topographiques, mesures géophysiques, observations géomorphologiques et géolo-
giques, enregistrements sismiques...). Les paramètres du modèles SHALTOP sont ensuite calibrés
empiriquement en reproduisant un ou plusieurs événements passés. Cette calibration permet de
modéliser des événements futurs probables. En faisant varier les paramètres des simulations, et
en considérant plusieurs scénarios différents, une analyse de sensibilité est finalement réalisée.

Dans les cas de la Soufrière de Guadeloupe, relativement peu de données quantitatives sont
disponibles, mais les modèles de couches minces ont déjà montré leur capacité à modéliser des
avalanches de débris en contexte volcanique (par exemple Mangeney et al., 2000b ; Kelfoun et
Druitt, 2005 ; Sosio et al., 2012). Ce cas d’étude permet donc de confirmer cette conclusion
pour SHALTOP, tout en améliorant la connaissance des aléas gravitaire pour la Soufrière de
Guadeloupe.

La situation est plus complexe pour la Rivière du Prêcheur, où nous tentons d’utiliser SHALTOP
pour modéliser des phénomènes aux caractéristiques physiques très différentes : une avalanche
de blocs, puis la remobilisation des dépôts en une coulée de débris. La composante empirique
de la modélisation est ainsi encore plus importante pour le Prêcheur que pour la Soufrière de
Guadeloupe, puisque nous ne prenons pas en compte directement dans les équations les interac-
tions entre fractions solides et liquides, alors qu’elles sont à priori importantes pour les coulées
de débris. C’est précisément l’intérêt de ce cas d’étude, puisqu’il permet de juger si SHALTOP
peut être utilisé empiriquement pour reproduire un phénomène qui, à priori, est hors du cadre
de validité théorique de ses équations.

Pour l’évaluation des aléas gravitaires, l’estimation des incertitudes associée est importante,
puisque les données servant à réaliser l’évaluation sont elles-mêmes incertaines, et que la re-
présentativité des modèles est également approximative. En ce sens, les parties précédentes se
concentrent sur la réduction des incertitudes épistémiques (c’est à dire les incertitudes non modé-
lisables car liées à une description erronée du phénomène), en s’assurant de la validité mathéma-
tique des équations dans le Chapitre 2, et en synthétisant des données variées pour contraindre les
scénarios de déstabilisation dans les Chapitres 3 et 4. Dans la dernière partie de cette thèse (Cha-
pitre 5), nous nous intéressons plutôt à la quantification des incertitudes dites aléatoires (celles
qui, justement, peuvent être modélisées), et à la possibilité de les réduire grâce à l’utilisation
de modèles d’écoulement en couches minces, par rapport à des approches purement empiriques.
Cette question sera étudiée dans le cadre de lois puissances estimant, pour un site donné, la
distance de parcours d’un glissement de terrain en fonction de son volume. De telles relations
peuvent être déduites empiriquement à partir de bases de données de glissements de terrain. La
dispersion entre les lois puissance empiriques et les données utilisées pour les établir permet de
quantifier l’incertitude des estimations, mais les lois obtenues ne sont en générale pas spécifiques
au site d’étude. A l’inverse, l’utilisation de simulations numériques permet de prendre en compte
les spécificités topographiques d’un site d’étude, mais la quantification des incertitudes est plus
complexe. Nous proposons une solution basée sur des bases de données de simulations avec des
volumes et des mobilités variées, spécifiques au site d’étude. Cette méthodologie est appliquée
sur trois cas d’étude : les effondrements de la Falaise Samperre (Martinique), le Frank Slide
(Canada) et le Fei Tsui Road debris slide (Hong-Kong).
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Chapter 1

Gravitational flows: processes and
models

1.1 Landslide types and processes

1.1.1 Landslides classification

Cruden (1991) defines a landslide as “the movement of a mass of rock, earth or debris on a slope”.
The term is however misleading, because it wrongly suggests that landslides are only associated
to a sliding process along a rupture surface. For this reason, Varnes (1978) refers more broadly
to “slope movements”. In the following, we will mostly use the term “landslide”, because it is
widely used. However to describe more accurately the different kinds of landslides, more precise
denominations are needed. Extending the pioneering work of Sharpe (1938), Varnes (1958) and
Varnes (1978) proposed a classification of landslides based on the type of movement and on
the type of material involved. It is summarized in Figure 1.1, with some examples sketched in
Figure 1.2. A distinction is made between 5 main movement types:

• Falls: Detachment of a mass from a steep slope or a cliff, that starts propagating through
free fall. It then bounces and rolls on the ground. Such events are common in mountainous
areas (e.g. Roy et al., 2019), coastal cliffs (e.g. Benjamin et al., 2020) and volcanoes (Calder
et al., 2005; Hibert et al., 2014; Durand et al., 2018; Kuehnert et al., 2020).

• Topples: Rotation of a mass around a pivot point located at its base (e.g. Schumm
and Chorley, 1964; Alejano et al., 2010). This process can initiate slowly, but can lead
eventually to failure and generation of, for instance, rockfalls.

• Slides: Displacement of a unit along one or several surfaces. For rotational slides, the
sliding surface is concave, such that the unstable mass has a rotational movement around an
axe roughly parallel to the slope. The downward movement of the upper section of the mass
creates one or several, often vertical, head scarps. Examples of massive rotational slides in-
volve the Maierato landslide in Italy (Guerricchio et al., 2012), the Villerville-Cricqueboeuf
landslide in Pays d’Auge (Lissak et al., 2009), or the Rilly-la-Montagne landslide in Cham-
pagne (Marre, 1987), both in France. On the contrary, in translational slides, sliding
occurs along a roughly planar surface along which the moving mass translates. A spectac-
ular example of translational slide is given in Hungr et al. (2014), Figure 11 (Murazzano,
Northern Italy).



2 1.1. Landslide types and processes

Figure 1.1: Varnes’ classification matrix of landslides by processes and types (USGS, 2004).

• Spreading: Movement is dominated by lateral extension, usually on near horizontal slopes.
For instance in sensitive clay spreading, coherent blocks of clay spread by floating on a layer
of liquefied clays (Locat et al., 2011).

• Flows: When the moving material disintegrates and/or displays important deformations,
its dynamics can be compared to that of a flow. Thus, the disintegration of one or multiple
rocks into multiple smaller fragments generates a granular flow (Hibert et al., 2014; Levy
et al., 2015), debris avalanches or rock avalanches that propagates sometimes kilometers
away from the destabilization areas (Korup et al., 2013; van Wyk de Vries et al., 2001).
Such events are very fast, with velocities reaching tens of m s−1 as in the initial stage of the
Mount Meager landslide (Guthrie et al., 2012; Allstadt, 2013). However, flows can also be
much slower, as for some earthflows in plastic and ductile soils that generally advance no
more than a few meters per hour (Picarelli et al., 2005). Creeping, which refers to the slow
(a few cm per year) deformation of slopes, is included in the category of flow-like landslides
by Varnes (1978), but Hungr et al. (2014) suggest another category is needed for such
slow slope deformations. Finally, another type of flow-like landslide are debris flows, where
saturated debris propagate rapidly (a few m s−1 to tens of m s−1) in channels. This is a
wide-spread hazard in mountainous areas (e.g. Remaître et al., 2011) but also on volcanoes
where the remobilization of eruption materials by water generates lahars (Vallance and
Iverson, 2015; Thouret et al., 2020). Debris flows are thus a subcategory of lahars, along
with hyper-concentrated flows, as will be discussed in the next Section.

• Complex: When several of the previous processes occur in the same landslide. Cruden
and Varnes (1996) use the word “complex” to characterize the type of activity of a landslide
(in the sense that we can talk, for instance, of a “complex rotational slide”), but do not
consider it anymore as a landslide category.

The second criterion to classify landslides is the type of materials involved. Varnes (1958) and
Varnes (1978) identify two main categories:

• Bedrock or rock: Hard and intact materials that was not disturbed by soil movements
before the landslide.
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Fall (rock) Topple (rock)

Rotational slide (debris/earth) Translational slide (debris/earth)

Flow (debris/rock avalanche) Flow (debris flow)

Spreading (earth)
Flow/creep (earth)

Figure 1.2: Classification of landslide processes, adapted from Highland and Bobrowsky (2008).
Processes are given in bold. In parenthesis we give the type of material associated to each sketch.
For flow-like landslide, we also give the names used in Figure 1.3.
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• Engineering soil: Loose, unconsolidated or poorly cemented materials including rocks,
organic materials, or minerals. The subcategory debris is used when the granulometry is
relatively coarse: more than 20% of the fragments are greater than 2 mm. In the opposite
case, the term earth is used.

Cruden and Varnes (1996) extended the aforementioned nomenclature to include a formal glos-
sary of terms that can be used to characterize further the landslide process. They thus define
different states of activity (e.g., active or inactive landslide), spatial distribution of activity (e.g.
widening, retrogressive or confined), and styles (e.g. complex when multiple processes, such as
slide and flows, occur in the same landslides, or multiple for the spatial repetition of similar
movements). Additionally, they also list terms used to characterize the rate of movement (from
extremely slow for velocities below 16 mm per year, to extremely rapid for velocities above
5 m s−1) and water content (from dry to very wet).

Later on, Hungr et al. (2014) suggested an update of this classification. They argued that
the full characterization of a landslide, as presented in the previous paragraph, can result in
lengthy names. In turn, it is difficult for scientists to communicate about their work to public
or private stakeholders, as well as to other scientists. Hungr et al. (2014) thus suggest that
the designation of a landslide should be as simple as possible, and highlight the focus of the
researcher, rather than explicit precisely all the processes at stake. For instance, the term “rock
avalanche” is not formally included in the classification of Cruden and Varnes (1996). Following
their nomenclature, the former should be referred as “rock flow”, which is not a term widely
used. Thus, Hungr et al. (2014) basically identify terms widely used in the literature to describe
landslides and class them in the process/material type matrix used by Cruden and Varnes (1996).
Besides, they add a process type, slope deformation, that refers to very slow processes (a few
mm per year) affecting slopes.

The Varnes classification is today widely used (Highland and Bobrowsky, 2008; SafeLand, 2012),
with sometimes some adaptations. For instance, Dikau et al. (1996) adapts the classification to
lay emphasis on the rupture mechanisms and on their temporal evolution. (Leroueil et al., 1996)
adds a third axe to the process/material matrice to include the current state of the landslide.

The works of Varnes (1958), Varnes (1978), Cruden and Varnes (1996) and Hungr et al. (2014)
aim at classifying broadly landslides, taking into account within a single frame the initial de-
formation, the failure and the propagation processes. Of course, more refined classifications can
be proposed if the focus is on one of them only. For instance, geotechnicians are particularly
interested in the failure mechanisms, such that appropriate classifications for them include the
geotechnical properties of the materials and geotechnical concepts, such as liquefaction (Hutchin-
son, 1988; Sassa, 1999). Flageollet (1989) uses another classification criterion, the main direction
of movement, to differentiate between vertical collapses and subsidence, and horizontal move-
ments (as in most other landslides).

On the contrary, if the focus is on the propagation of the landslide, it is worth highlighting the
composition of the propagating materials in the classification scheme. Indeed, we may expect
the latter to depend directly on the materials geotechnical and geomorphological properties. In
this perspective, a simple distinction between rocks, soils or debris is not sufficient. Following
Meunier (1991) and Meunier (1994), Coussot and Meunier (1996) suggest two classification
criteria: the solid fraction type (fine and cohesive to coarse and non-cohesive) and proportion
(dry to saturated materials). Such a classification is relevant and highly insightful for landslides
that disintegrates during their propagation (that is, flow-like landslides), but not when the bulk
moves relatively undisturbed and intact. This is illustrated by the mere fact that Coussot and
Meunier (1996) refer to the latter case as “landslide”, implying that in their perspective, debris
avalanches or debris flows are not landslides. This is in contradiction with Cruden and Varnes



Chapter 1. Gravitational flows: processes and models 5

SOLIDWATER

GRANULAR
DEBRIS FLOWS

DEBRIS
FLOWS

HYPER-
CONCENTRATED

FLOWS

STREAM
FLOWS

Increasing water content

Increasing solid fraction

Susp
ensio

n

NON-COHESIVE, COARSE SOLID FRACTION

COHESIVE, FINE SOLID FRACTION

MUDDY
DEBRIS FLOWS

DEBRIS
AVALANCHES

DRY GRANULAR
FLOWS

EARTHFLOW

Bed load

Rapid motion

Slow m
otion

CREEP

ROCK
AVALANCHES

Figure 1.3: Classification of gravitational flows, adapted from (Coussot and Meunier, 1996).
Grey rectangles match main types, white rectangle are debris flows subtypes.

(1996) and Hungr et al. (2014), highlighting the complexity of striking a common ground on the
mere definition of “landslide”.

1.1.2 Classification of flow-like landslides

Because our work focuses on flow-like landslides (that we will also call gravitational flows),
let’s elaborate further on the classification of Meunier (1991), Meunier (1994), and Coussot and
Meunier (1996). A schematic representation of this classification is given in Figure 1.3, with
some modifications in comparison to Coussot and Meunier (1996).

At one end of the spectrum, we find dry, non cohesive and coarse granular flows. Here, we use
“coarse” to designate materials mainly composed of sand, gravels and boulders and thus with
negligible clay fraction. In turn, the flow dynamics are mainly controlled by collision and friction
between grains (Delannay et al., 2017). This is the case for dry granular flows generated by the
disintegration of poorly cemented materials. They occur, for instance, in volcanic context where
eruptive materials can form hundreds of meters high cliffs but shatter relatively easily after failure
detached from the cliff. Examples include the Dolomieu Crater of Piton de la Fournaise volcano,
Réunion island (Hibert et al., 2011; Durand et al., 2018) or the Samperre cliff, in Martinique,
that we will study later on. When the flow is initiated by the destabilization of a large rock
mass (up to several 100×106 m3) and is made of large boulders and blocks (up to a few meters
large), the name rock avalanche, or sturzstrom, is commonly used in mountainous context
(Heim, 1932; Davies, 1982; Pirulli, 2009). In comparison, large destabilizations of volcanic
edifices are commonly called debris avalanches (e.g. Glicken, 1996; Blahůt et al., 2019). The
denomination debris avalanche also refers to the shallow-destabilizations of partly-saturated or
saturated vegetated soils, most of the time after heavy rainfalls, as in the Vargas State, Venezueal,
in 1999 (Hungr et al., 2014; Larsen and Wieczorek, 2006). Thus, debris avalanches may contain
both fine and coarse materials, and are generally associated to a larger water content than rock
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avalanches, due to precipitations or release of perched aquifers for volcanoes (Peruzzetto et al.,
2019).

Large debris and rock avalanches (typically, larger than 106 m3 and up to several 109 m3) display
surprinsingly long runouts. The mechanisms explaining this mobility increase with volume have
been thouroughly discussed in the litterature. They include effects of excess pore pressure when
fluids are trapped in the avalanche (Legros, 2006; Iverson et al., 2011) or lubrication by snow or
ice (Delaney and Evans, 2014; Aaron and McDougall, 2019). However high mobilities are also
observed for dry avalanches and other mechanisms have been suggested, such as fluidization by
air (Hsu, 1975), acoustic fluidization (Johnson et al., 2016) or flash heating (Lucas et al., 2014)
that reduces friction for high velocities (foor a review, see Korup et al., 2013; McDougall, 2017).

We can oppose these fast gravitational flows to earthflows and creeping. These movements
are associated to the deformation of ductile soils. Until a threshold is reached, the presence of
water in the material favors cohesion. However, increasing the water pore pressure progressively
reduces internal friction and favors lubrication between solid grains, and thus deformations.
While creeping is essentially related to slow (a few cm yr−1) slope deformations (thus, its inclusion
in flow-like landslides can be discussed, see (Hungr et al., 2014)), earthflows generally occur as
surges with higher velocities (a few m hr−1) triggered for instance by excess pore pressure and
liquefaction.

Increasing the water content of gravitational flows often produces debris flows. Debris flows are
common in mountainous areas, for instance in the Alpes, in Europe (e.g. Malet, 2003; Remaître,
2006; Quan Luna et al., 2012; Bel et al., 2015). This occurs, for instance, when debris avalanches
or rock avalanches are channelized in rivers and/or incorporate water by flowing over glaciers
and snow. The excess pore pressure favors partial liquefaction and thus enhance the mobility
of the flow. The characteristic solid fraction of debris flows varies in the literature: Coussot
and Meunier (1996) give weight solid fractions between 50 and 90%,Vallance and Iverson (2015)
mention 60%, and Thouret et al. (2020) suggests values above 80%. In any case, solid fraction
is high. A clear characteristic of debris flows is that there is no vertical separation between the
solid and fluid phases that have similar velocities (although the fluid phase is slightly faster, see
Vallance and Iverson, 2015). The physical process controlling the flow dynamics depend on the
granulometry of the solid fraction. When there’s a significant fraction of clays, viscous forces are
predominant and the debris flow is referred to as a muddy debris flow. A main characteristic
of such flows is their yield stress: flowing occurs only when shearing exceeds a critical value. This
“toothpaste” behavior results, in particular, in the formation of levees at the front and on the
sides of the flows (though this behavior is also observed for dry granular flow, see Mangeney et al.
(2007b)). In comparison, when the debris flow is coarser with mainly sand, gravel and boulders,
the predominant processes are the grain-to-grain interactions with collisions and friction: we
refer to them as granular debris flows. Obviously, there is no clear-cut limit between muddy
and granular debris flows: Scott et al. (1995) suggest for instance an empirical value for the clay
fraction of 5%, below which the debris flow can be considered granular.

A decrease of solid fraction (typically, between 20% and 60% of volume, Thouret et al. (2020))
leads to the vertical separation of the solid and fluid phases. Coarse particles are transported
at the base of the flow through bed load, while the fine particles remain in suspension. The
resulting flow type is commonly referred to as hyperconcentrated flows. They differ from
stream flow, for which the sediment load is further decreased.

Note that we slightly changed the classification suggested by Coussot and Meunier (1996) in
their Figure 1. Indeed, their classification is meant to include both the initial deformation,
rupture and propagation processes of flow-like landslides. In comparison, our focus is more on
the propagation stage. We thus removed the category “landslide” whose generality is misleading,
and replaced it by slow and cohesive gravitational flows: earthflow and creep. In the same
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perspective, we do not consider that the absence of water is necessarily associated to stability.
As a matter of fact, a dry granular flow is, by definition, both dry and mobile. We also associate
the acceleration of motion with increased water content only to fine and cohesive materials, as
a result of lubrication. Indeed, dry granular flows and rock avalanches can be very fast (several
m s−1) even without water.

Malet (2003) use a classification similar to that of Coussot and Meunier (1996), but goes into
more details to clarify the meaning of “landslides” in this context. For him, it describes the tran-
sition between a dry and solid material, and water-laden and mobile debris flows. Thus, Malet
(2003) suggests these movements display a transient nature between “slides”, where deformation
is concentrated along an interface, and “flows”, where the whole moving layer displays important
deformations. Hence the French term glissement coulée, whose literal translation “slide-flow”
clearly illustrates the temporal succession of an initial slide and of the a subsequent flow. It has
no direct equivalent in the Varnes classification, but can be referred to as creep, to describe slow
deformations before rupture, or earthflow to describe landslides where flowing processes become
predominant. This transition between static and flowing materials is very difficult to model
because it demands a good understanding of the initial deformation and rupture processes, with
soil mechanics, as well as the propagation processes.

In this study, we focus on the propagation of mobile flow-like landslides with a clear flowing be-
havior (that is, with important internal deformations), such as rock avalanches, debris avalanches
and debris flows. In the following section, we present the main physical processes controlling
propagation.

1.1.3 Main physical processes of gravitational flow propagation

There are still many challenges for characterizing the physical processes at stake in geophysical
flows. Following Coussot and Ancey (1999) and Delannay et al. (2017), we can distinguish
between the following mechanisms, depending on the solid fraction and on the shear rate of the
flow.

• For very dilute flows (solid fraction below 1%), the dynamics are mainly controlled by the
interstitial fluid (air or water), with hydro-dynamics and turbulence effects.

• For dilute flows (solid fraction between 10 and 50%) with high shear rates, the dynamics
of the fluid are still the dominant process. For smaller shear rates (that is, for smaller
deformations), binary collisions between grains can be described by kinetic theory. In its
(maybe) simplest form, it uses the statistical distribution of velocities and positions of
particles, and introduces a granular temperature that quantifies particles agitation. The
resulting “granular gas” differ from “molecular gases” in the sense that collisions are not
elastic, and thus dissipate energy.

• For dense flows (solid fraction above 50%), collisions can still occur but they are not binary
and can last, such that a kinetic theory is no longer valid (in particular because the positions
and velocities of different particles are no longer independent). Depending on the relative
importance of particle-particle interactions and particle-fluid interactions, three regimes
were suggested by Cassar et al. (2005):

– Particle inertia dominated regime: interactions between grains are the main driving
forces. Far small shear rates, they last a significant duration and the dynamics are well
described by pure friction. When the shear rate increases, contact duration decreases
and both friction and collisions must be accounted for. This is the case, for instance,
in what we called granular debris flows.



8 1.1. Landslide types and processes

– Viscous resistance dominated regime: the grains are slowed down by a viscous drag
force proportional to the relative velocity of the fluid, in respect to the solid phase.
The fluid phase movement is comparable to that of a fluid through a porous media.
The excess pore pressure generated by non-zero relative velocities lubricates contacts
between grains. Note that, as pointed out by Vallance and Iverson (2015), such effects
can be significant even for very small relative velocities (e.g., 10−5 m s−1).

– Fluid inertia dominated regime: viscosity is small, and the drag force applied on
particles is controlled by inertial effects.

The variety of scales and processes makes it difficult to describe properly, and then model, grav-
itational flows. This is particularly true for the static-flowing transition: for instance, Remaître
(2006) model the initiation and the propagation of debris flows with two different numerical
codes. Even in the idealistic case where a model would describe gravitational flows correctly, it
is in practice difficult to determine the right rheological parameters. In the case of muddy debris
flows, the rheology of the fine fraction can be studied with rheometers to derive yield strength
and viscosities, because small samples (about 1 cm3) can be deemed representative of the ma-
trice, at least in a first approximation. The situation is more complex for coarser debris flows
for which appropriate rheometers should be tens of meters large (Coussot and Meunier, 1996)
to accommodate for the coarse granulometry of the matrice. In turn, model calibration can be
done by comparing prediction to field observations or flume-tests experiments (e.g. Iverson et al.,
2011), but the resulting parameters are not necessarily representative of other events. Thus, the
direct estimation of rheological parameters is still an open issue.

Besides, geophysical flows are transient by nature, in space and time. As a matter of fact, a
debris avalanche can turn into a debris flow as it enters a ravine, while progressive dilution in
the stream will eventually transform it into a hyper-concentrated flow, and then into a muddy
stream flow. Similarly, at a given time, spatial variations of solid fraction between the sediment-
laden front of a debris flow and its diluted tail results in very different dynamics and solid
transportation processes. The transition between one fully-developed regime to another (for
instance, particle inertia to viscous regime) is characterized by complex mechanisms that are
not easy to include in models, such as the transition between static and dynamic states (Sibille
et al., 2007; Prime et al., 2014a), or the dilation and compaction of dense and loose materials
(Pailha and Pouliquen, 2009; Iverson, 2012; Bouchut et al., 2016). Eventually, debris flows are
also characterized by episodic surges that can have multiple origins, as hydraulic instabilities
(Zanuttigh and Lamberti, 2007), particular rheological properties (e.g., non-monotonic relations
between the shear stress and shear rate, Coussot et al. (1993)), or pulsatile incorporation of solid
materials through, for instance, bank erosion. All these process are very hard to include in one
single rheological model. That is why Iverson (2003) talk about “the debris-flow rheology myth”.

Another key problem that scientists must tackle in the perspective of modeling correctly geo-
physical flows is boundary conditions. In particular, the entrainment of materials along the bed
of the flow can significantly increase the volume of debris avalanches and debris flows (e.g., from
150 to 1620 m3 for the 2000 Tsing Shan debris flow in Hong Kong, Pirulli and Pastor, 2012).
Nevertheless, this process is still poorly constrained. For instance, an empirical law classically
used in numerical models relates the erosion rate to the flow momentum through a proportion-
ality relation (McDougall and Hungr, 2005; Pirulli and Pastor, 2012). However, as pointed out
by Iverson (2012), this may stand true only in situations where entrainment has no significant
impact on the flow momentum, as in fluvial system. When this is no longer the case, erosion
rates may actually be inversely proportional to the flow velocity (Iverson, 2012). As a matter
of fact, the energy needed to accelerate sediments at rest to the flow velocity is, precisely, all
the more important as the flow velocity is high. Lusso et al. (2017a) find that entrainment rate
are inversely proportional to the strain rate (see their equation 9), which is compatible with
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the conclusion of Iverson (2012), provided we approximate the strain rate by the average flow
velocity divided by the flow thickness.

The pore pressure in the bed has presumably also a prominent role in controlling entrainment
processes. By conducting experiments in flume tests, Iverson et al. (2011) show that entrainment
of water saturated beds accelerates the flow, as a result of liquefaction that reduces friction at
the base of the flow. However, for low pore pressure, the energy transfer required to entrain
the static bed is not compensated by liquefaction, and the flow is decelerated. These results are
in apparent contradiction with the experiments of Mangeney et al. (2010), where dry granular
flows propagating on a dry erodible bed go further than on a non-erodible bed. Apart from
different experimental set-up that could explain this difference, Mangeney (2011) suggest that low
pore water pressure prevents liquefaction but enhance cohesion, while completely dry granular
materials have no cohesion, and are thus more easily entrained. More details about erosion
processes can be found in Iverson (2012), Pirulli and Pastor (2012), Iverson and Ouyang (2015)
and Delannay et al. (2017). As pointed out by Bouchut et al. (2008), it is difficult to include
formally bed erosion in numerical models, in a way that ensures energy is preserved.

This short overview of literature highlights the complexity of conducting detailed landslide hazard
assessment, that is, “the spatial and temporal probability of occurrence of landslides in [a] target
area, along with their mode of propagation, size and intensity” (Corominas et al., 2014). As
discussed in the preamble, such an analysis involves the identification of unstable areas (i.e.
susceptibility estimation), and the estimation of propagation hazard. As we focus only on the
propagation, we will not detail the methods used to estimate landslide susceptibility, for which a
good review can be found for instance in Glade and Crozier (2005), Fell et al. (2008), Corominas
et al. (2014) and Reichenbach et al. (2018).

1.2 Empirical and semi-empirical models for propagation hazard
assessment

Propagation hazard assessment relies on the estimation of the gravitational flow dynamics, for
an event of given magnitude (i.e. volume). In its simplest form, it boils down to estimating the
travel distance, but more detailed characterizations involves spatial estimation of the thickness
of the flow and/or of the deposits, peak discharges, velocities and kinetic energy.

The evaluation of propagation can be done empirically. The most straightforward estimations
are carried out by using geomorphological evidences and expert judgment, as for the French Plan
de Prévention des Risques (PPR, Risk Prevention Schemes) (Thiery and Terrier, 2018; Hoblitt
et al., 1998). Another more quantitative approach uses empirical relations between the landslide
volume and geometrical characteristics of the deposits, including travel distance (or runout),
affected area or width of propagation path (e.g. Legros, 2002; Lucas et al., 2014; Mitchell et al.,
2019). To assess the intrinsic mobility of the landslide, the ratio between drop height and travel
distance (called the Heim’s ratio µH Heim, 1932; Hsu, 1975) is often used. The associated angle
of reach is the angle of an imaginary line connecting the highest point of the landslide scar, to the
furthest point reached by the landslide. It has been widely shown that µH decreases for larger
landslide volumes (e.g. Corominas, 1996; Finlay et al., 1999; Lucas et al., 2014; Zhan et al., 2017;
Mitchell et al., 2019; Strom and Abdrakhmatov, 2018; Brideau et al., 2019). However, µH is
not an appropriate measure of mobility because it also describes purely geometrical effects (e.g.
Finlay et al., 1999; Legros, 2002; Lucas et al., 2014). For instance, let’s consider that mobility
is controlled by the friction coefficient between the landslide and the topography. Then, for a
given friction coefficient, an increase of volume is naturally associated to longer runouts, that
are not necessarily compensated by higher drop heights in the same proportion. Then, µH will
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be different, while the friction coefficient does not change. Thus, Lucas et al. (2014) proposed
another indicator to estimate the intrisic mobility of landslides from field observations: the
effective friction coefficient µeff . The expression of µeff is derived from the analytical solution
of the dam-break problem and is, supposedly, a better estimate for the “real” friction coefficient.

For rockfalls, the shadow angle is preferred to the reach angle. The shadow angle (Evans and
Hungr, 1993) is measured by considering the line joining the apex of the talus where rocks
detached from a cliff fall, and the final position of the rock after bouncing and rolling on the
ground. For debris flows, empirical relations have also established to estimate the peak discharge,
planimetric and cross-section inundated areas from the event volume (Rickenmann, 1999; Iverson
et al., 1998).

Although the dispersion around the fitted power laws is often large, it is easy to quantity the
resulting uncertainty. This is typically done by considering a normal distribution of the residues
between the power law and the data used to derive it. Besides, they remain relatively simple,
which is key point when hazard assessment must be done quickly. Implementation of such
empirical relations in Geographical Information Systems (GIS) softwares for hazard mapping are
proposed, for instance, by Jaboyedoff and Labiouse (2003) for rockfalls, Iverson et al. (1998) and
Berti and Simoni (2014) for debris flows, and Mitchell et al. (2019) for rock avalanches. However,
this method cannot describe the full complexity of some events, such as flows with multiple
channeling (Peruzzetto et al., 2019), overflows as in the Johnsons Landing debris avalanche
(Marinelli et al., 2015; Pastor et al., 2018a), or erosion.

A statistical-empirical method was proposed by Fannin and Wise (2001) to model, in particular,
the propagation of debris flows. It was called “volume-change method” by Hungr et al. (2005a)
and Corominas et al. (2014). The propagation path is divided in “reaches” (i.e. sections) where
erosion, deposition, or both, occur. The eroded and deposited mass are calculated as function
of the width, length and slope of each section, after calibration on field observations. The
modeled debris flow thus advances from one reach to another, until all the volume is deposited.
This methods allows to derive probability that given travel distances are exceeded, but requires
significant a priori knowledge of the channel where the debris flow propagates.

Recently, somehow more straight-forward semi-empirical methods have been developed: flow-
routing algorithms (Wichmann and Becht, 2005; Horton et al., 2013). They use a random-walk
algorithm to model possible propagation paths on a given Digital Elevation Model (DEM). Start-
ing from a source point, such paths are constructed by progressing from one pixel to another,
following probabilistic laws that take into account the slope gradient and the direction of propa-
gation at the previous step. Velocities are estimated at each step empirically (with for instance
a frictional model, see Horton et al., 2013), and iterations stop when a minimal value is reached.
This process is repeated several times for each source point, which in turn yields a map of hun-
dreds or thousands of possible propagating paths. This approach is fairly easy to apply (though
of course parametrization must be considered with caution) and has met with significant suc-
cess over the past years. Examples of application of the flow-routing algorithm Flow-R (Horton
et al., 2013) include Pastorello et al. (2017), Melo and Zêzere (2017), and Kang and Lee (2018).
However, flow-routing algorithms may fail to reproduce accurately spreading, multiple channel-
ing and overflows of large rock and debris rock avalanches (Horton et al., 2013), and thus are
primarily used to investigate debris flows. Besides, they are largely based on empirical relations,
which is not sufficient to reproduce the complex processes at stake in actual landslides. Finally,
and maybe most importantly, they do not model the thickness of the flow or of the deposits.
Thus, they can be used for a first hazard assessment, but more refined modeling is needed to
assess vulnerability.
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1.3 Physically-based models for propagation hazard assessment

To estimate both the the travel distance and velocity of a landslide from a physically-based
model, the simplest approach is to solve the momentum equation of a rigid block sliding on a
1D topography (i.e. given by a graph z = z(x)). Energy is thus dissipated by the force applied
at the base of the block (Hungr et al., 2005a). A convenient representation of the results uses
the energy line above the topography, defined by

zE(x) = z(x) +
Mv(x)2

g
+ z0, (1.1)

where M is the mass of the block, z(x) the altitude along the profile, v(x) the velocity of the
block, g the gravity field and z0 the initial altitude of the block. The energy line zE(x) thus joins
the initial position of the mass to its final position. When a Coulomb solid friction law is used,
with a friction coefficient tan(δ) (δ is the friction angle), the energy line is a straight line with
slope − tan(δ) (Hungr et al., 2005a). The simplicity of this approach allows to consider different
laws to model the force applied at the base of the mass. For instance, it can be adapted to model
rockfalls (Evans and Hungr, 1993). However, such methods remain largely empirical because
the hypothesis of a rigid sliding block greatly simplifies the complexity of physical processes
controlling the propagation of real landslides, as discussed previously.

However, the combined effects of particle collision and friction, or lubrication, advection and sus-
pension in presence of an interstitial fluid, are difficult to model in a single framework (Andreotti
et al., 2013; Delannay et al., 2017). Thus, current solutions for 3D-modeling (that is, when the
dynamics of elementary volumes of fluid and/or of each solid particle are considered) often focus
on reproducing one or two physical processes, but never all of them. Discrete element modeling
(DEM) is now widely used to reproduce granular flows at the laboratory scale (Girolami et al.,
2012; Windows-Yule et al., 2016). They can also be used to model fluid-particle interactions
(Durán et al., 2012; Lefebvre-Lepot et al., 2015), which in turn can be applied to debris flow
simulation (Zhao and Shan, 2013; Leonardi et al., 2014). Another approach is to consider a
single-phase flow and solve the Navier-Stokes equations. Column collapse experiments are often
used to test the resulting models (e.g. Lagrée et al., 2011; Ionescu et al., 2015; Martin et al., 2017;
Lusso et al., 2017b), but real landslides can also be considered (Hu et al., 2015). The implemen-
tation of hybrid Eulerian-Lagrangian methods (Prime et al., 2014b; Ionescu et al., 2015; Lusso
et al., 2017b; Koo et al., 2018) allows to model both large deformations (which is problematic
using pure Lagrangian methods) and to track the material properties at the same time (which is
difficult with Eulerian schemes as a result of numerical diffusion). In particular, this approach
enables a fine description of the static-flowing transition (Prime et al., 2014b). However, these
3D models require huge computing resources. Most constitutive equations also depend on too
many user-defined parameters, which is incompatible with the limited knowledge of the flowing
material we have in practice.

The right balance between practical usage and physical modeling may have been reached, at least
so far, by thin-layer models, also called shallow-water models. Their main assumption is that
the flow (or landslide) extent is much larger than its thickness, so that the kinematic unknowns
are reduced to two variables: the flow thickness and its depth-averaged velocity. The dimension
of the problem is thus lower, allowing for relatively fast numerical computations. The first and
simplest form of shallow-water equations was given by Barré de Saint-Venant (1871) for almost
flat topographies. It was extended to curved 1D topographies (i.e. for topographies given by
a 1D graph z = z(x)) for water flows by Dressler (1978) and Sivakumaran et al. (1983). The
formulation was then adapted to model dry granular flows by Savage and Hutter (1991). This
model has since been extended to real 2D topographies (i.e. given by a 2D graph z = z(x, y)).
Some of the software products based on shallow-water equations are currently used for hazard



12 1.4. Rheologies for thin-layer models

assessment to derive, for instance, maps of maximum flow height and velocity. Examples include
RAMMS (Christen et al., 2010; Christen et al., 2012), 3d-DMM (GEO, 2011; Law et al., 2017),
DAN3D (McDougall and Hungr, 2004; Moase et al., 2018) and FLO-2D (O’Brien et al., 1993).
Various computational methods are used, in particular finite differences (O’Brien et al., 1993;
Beguería et al., 2009; Kelfoun and Druitt, 2005), finite volumes (Mangeney et al., 2007b; Christen
et al., 2010; Pirulli et al., 2007; Pudasaini, 2012) and Smoothed Particle Hydrodynamics (SPH)
(McDougall and Hungr, 2004; Law et al., 2017; Pastor et al., 2009a). An example of promising
developments include the writing of the shallow-water equations in each layer of a multi-layer
flow, with an arbitrary number of layers (Fernández-Nieto et al., 2016). In particular, this makes
it possible to describe any kind of velocity profile within the flow. Other research focuses include
bed erosion along the flow path (Hungr, 1995; Bouchut et al., 2008; Iverson, 2012; Pirulli and
Pastor, 2012; Fernández-Nieto et al., 2016; Fernández-Nieto et al., 2018) and the description of
two-phase flows (e.g. Pudasaini, 2012; Bouchut et al., 2015; Bouchut et al., 2016; Pastor et al.,
2018b; Iverson and George, 2014). Two international benchmarking exercises were carried out
in 2007 and 2018 (Hungr et al., 2007; Pastor et al., 2018a) and confirmed the need for new
developments in these directions as well as the importance of data acquisition so that model
parameters can be fitted by direct rheological measurements or back-analysis.

In our work, we focus on one-phase thin-layer models. Using the numerical code SHALTOP
(e.g. Bouchut and Westdickenberg, 2004; Mangeney et al., 2007b; Favreau et al., 2010; Moretti
et al., 2015; Brunet et al., 2017; Peruzzetto et al., 2019), we evaluate their abilities and limits
for propagation hazard assessment. In the following section, we will review into more details the
different approaches used in the litterature to model one-phase thin-layer flows.

1.4 Rheologies for thin-layer models

The basic principle of all thin-layer models is to consider the local mass and momentum equations
within the flow, and integrate them on the flow thickness to derive depth-averaged momentum
and mass equations. As we will see in Chapter 2, this operation is not straight-forward when
the topography on which the flow propagates is irregular. Here, we simply discuss rheological
assumptions and the resulting depth-averaged equations on simple topographies. We focus on
one-phase models, that all originate from the incompressible momentum and mass equations:

∂t~U + (~U · ∇ ~X)~U = −~g +∇ · σ, (1.2)

∇ ~X · ~U = 0, (1.3)

where ~U( ~X) is the 3D velocity field, −~g is the gravity, and σ is the Cauchy stress tensor.
~X = (X, Z) is the cartesian coordinates system, with X = (X,Y ). The base of the flow matches
the topography and is given by a 2D surface Z = b(X), with upward unit normal vector ~n:

~n = cos(θ)
(
− ∂b

∂X
,− ∂b

∂Y
, 1
)

=
(
−s, cos(θ)

)
, (1.4)

with

cos(θ) =
(
1 + ‖∇Xb‖2

)− 1
2 , (1.5)

s = cos(θ)∇Xb, (1.6)

where θ is the slope angle. Note that for 1D-topographies parametrized by Z = b(X), we have
simply ~n = (sin(θ), cos(θ)). The associated notations are given in Figure 1.4. The flow free
surface is another 2D surface given by some function F ( ~X, t) = 0, with upward unit normal
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Figure 1.4: Notations used in the main body of the text for thin-layer models on 1D topographies
given by Z = b(X).

vector ~ns and is assumed to be advected by the velocity field ~U . These two boundary conditions
read:

~U · ~n = 0 at the bed, (1.7)

∂tF + ~U · ∇ ~XF = 0 at the free surface. (1.8)

A traction free condition at the free surface is also commonly assumed at the surface of the
material layer:

σ~ns = ~0 at the free surface (1.9)

A slightly different and more general free surface condition is used in Bouchut andWestdickenberg
(2004), where only the stress tangent to the layer surface is assumed to be null:

σ~ns − (~ns · σ~ns)~ns = 0 at the free surface. (1.10)

However, it does not change the final depth-averaged equations in comparison to other studies.

For the sake of clarity, and because formal derivations are actually scarce on general topographies
(Bouchut and Westdickenberg, 2004; Luca et al., 2009b), we will consider thin-layer flows on
1D topographies given by a graph Z = b(X). Indeed, as will be discussed in Chapter 2, the
momentum equations must be integrated in the direction normal to the topography. As a matter
of fact, the shallowness of landslides propagating on potentially steep slopes must be regarded
in the direction normal to the topography. Moreover, the flow velocity is (at least in a first
approximation) tangent to the topography. Thus the velocity in the normal direction is small.
In order to translate this property it is appropriate to write these equations in a reference frame
linked to the topography with one vector in the direction normal to the topography. This can be
done relatively easily for 1D topographies (given by a 1D graph Z = b(x)) without complicating
to much the equations, in particular because strain and stress tensors are aligned (that is, the
principal stress directions coincide with velocity direction). It is however much more complex
for general topographies.

Following the pioneering work of Savage and Hutter (1991) and the notations used in Chapter 2,
we thus introduce for 1D topographies a topography reference frame with one unit vector ~e1
tangent to the topography, and a second unit vector ~e3 = ~n in the direction normal to the
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topography (see Figure 1.4). The associated coordinate system is (ξ1, ξ3), with ξ1 the curvilinear
coordinate along the topography, and ξ3 the distance to the topography. In this frame, the
velocity has components (u1, 0), because it is tangent to the topography. The depth-averaged
flow-velocity ~V has components (u, 0). Finally, the thickness of the material layer (measured in
the direction normal to the topography) is h. With these notations, the classical conservative
form of 1D thin layer equations as derived by Savage and Hutter (1991) is:

∂th+
∂h

∂ξ1
= 0, (1.11)

∂t(hu) +
∂

∂ξ1
(αhu2) +

∂

∂ξ1
(
1

2
kgh2 cos(θ)) = gh sin(θ)− T (1.12)

where α is a shape factor used to describe non linear velocity profiles (α = 1 is often used), and
k a coefficient appearing when internal friction is considered, with a soil mechanics approach
(see Section 1.4.2). The expression of the source term T depends on the constitutive equation
for the stress tensor σ, which is needed to close the system of equations. Depending on the
chosen constitutive equation, additional boundary conditions may also be required for the base
of the flow. The rheological parameters arising in the expression of T are to a large extent
empirical, because it is often impossible (or at least very difficult) to estimate them merely from
geotechnical or rheological properties of the materials. They are thus most of the time calibrated
by modeling the deposits or the dynamics of documented gravitational flows.

For one-phase thin-layer models, we can distinguish between four different approaches. The first
one, which is used in SHALTOP, considers that the deviatoric stress tensor is null in the flow,
that is, that off-diagonal terms of σ are zero (“hydro-static” approach). A second approach uses
constant internal friction: it is not implemented in SHALTOP but is common in other thin-layer
models. The third one considers a non constant internal friction through the µ(I)-rheology.
Finally, we will discuss another rheology and derivation used to model yield-stress fluids. The
third and fourth rheologies were not used in this study, but I implemented them in SHALTOP
during my PhD.

1.4.1 Hydrostatic pressure

In the most simple case, we can write the stress tensor σ = −pI3. In turn, the pressure at the
bottom of the material layer is proportional (in a first approximation) to the flow thickness,
hence the designation “hydrostatic”. It is misleading, in the sense that the layer is not static at
all, but this name is nevertheless commonly used. As shown in (Bouchut and Westdickenberg,
2004) and explained in Chapter 2, this is enough to derive thin-layer equations. In particular,
no friction must be imposed at the base of the flow. Indeed, no shearing occurs in the flow as
the stress tensor is reduced to its diagonal terms, such that a friction boundary condition would
not be coherent with the expression of σ.

Of course this is an over-simplification of real geophysical flows, in particular because in such
models there is no energy dissipation. In order to have a more realistic model, it is thus relevant
to introduce a dissipative term. The simplest way to do that is to introduce a friction boundary
condition at the bottom of the flow, but as discussed in the previous paragraph the constitutive
equations must then be changed. For flows on 1D topographies Z = b(X), a solution is to assume
that the expression of the stress tensor in the topography frame is:

σ =

(
−p σ13
σ31 −p

)
. (1.13)
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where σ13 = σ31. It is then possible to formally introduce a condition on the stress tensor at the
base of the flow using a frictional rheology:

σ~n− (~n · σ~n)~n = −µ
~U

‖~U‖
(~n · σ~n)+, at the base of the flow (1.14)

The latter equation simply states that stress component tangent to the topography (left hand
side of (1.14)) is proportional to the stress component normal to the topography (~n · σ~n) and
is in the opposite direction of the velocity. The proportionality factor is the friction coefficient
µ = tan(δ), with δ the associated friction angle. (x)+ = max(0, x) is the positive part, needed
to ensure that the flow is decelerated. The source term T in (1.12) then naturally arises for
the depth-integration by taking into account the traction free condition at the surface and the
bottom friction stress. The final momentum equation is:

∂t(hu) +
∂

∂ξ1
(hu2) +

∂

∂ξ1
(
1

2
gh2 cos(θ)) = gh sin(θ)− hµ(g cos(θ) + γu2), (1.15)

where γ = 1/R is the topography curvature in the propagation direction (R is the radius of
curvature). For flows on 1D topographies Z = b(X), y is:

γ(X) =
∂2b

∂X2

1(
1 +

(
∂b
∂X

)2) 3
2

. (1.16)

For flows on complex 2D topographies Z = b(X,Y ), this method is not easy to formalize, because
in this case the expression of ∇ ~X · ~U in the topography coordinate system induces various and
complex terms associated to the spatial variations of the topography reference frame. Besides,
on 2D topographies, the principal stress directions are not necessarily aligned with the velocity
(which is always the case, by construction, on 1D topographies). The ordering of terms after
integration of the momentum equations is then difficult. To address this problem, Bouchut and
Westdickenberg (2004) use the linear approximation of incompressible viscous newtonian fluids.
In the cartesian reference frame, it reads:

σ = σ′ − pI3, (1.17)

with
σ′ = ν

(
∇ ~X

~U + (∇ ~X
~U)t
)
, (1.18)

where ν is the kinematic viscosity.

To preserve mathematical formalism, Bouchut and Westdickenberg (2004) assume that ν is very
small. This boils down to considering downslope shear flows, for which the only remaining
terms in σ′ in (1.18) are the derivative of the velocity (written in the topography frame) in
the direction normal to the topography. Then, the bottom friction boundary condition (1.14)
appears when the momentum equation along the flow depth are integrated, and we derive (1.15)
for 1D topographies.

Thus, the formal approach proposed by Bouchut and Westdickenberg (2004) with a Newtonian
description of the material dynamics and a negligible viscosity can be seen as an attempt to
formalize mathematically the derivation on general topographies of classical thin-layer equations
(that were previously derived for 1D topographies and extended not always rigorously to general
topographies). The hypotheses on the flow rheology are thus chosen, to some extent at least, so
that the final equations match the classical form of thin-layer equations. In this sense, they are
indeed not necessarily compatible with field observations and laboratory experiments, and the
friction coefficient µ must be calibrated by reproducing granular flows at the laboratory scale,
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or gravitational flows at the field scale. However, so far, no model has been able to combine
a rigorous mathematical derivation (in particular considering the complex spatial variations of
topography) with a realistic constitutive equation. Besides, it is possible to define a friction
coefficient µ that depends both on the material averaged velocity u and on the material layer
thickness h. This allows to reproduce experimental evidence of friction increase for thin and/or
fast flows (e.g. Pouliquen and Forterre, 2002; Mangeney et al., 2007b; Edwards et al., 2017). It
is also possible to define µ such that the bottom stress has a similar form as the one derived for
simple shear flows with a visco-plastic behavior (see Section 1.4.4).

1.4.2 Internal friction

In the hydrostatic derivation, the diagonal terms of the stress tensor are assumed to be equal.
In their founding paper, Savage and Hutter (1991) use a different description of the stress state
within the flow, but keep the same friction boundary condition (1.14). They argue that the
material can be described by the Mohr-Coulomb theory. It is cohesionless, and can thus be
characterized by an internal friction angle φ. As it is flowing, it is (supposedly) constantly
verifying the Mohr-Coulomb yield criterion: there is plane element (not necessarily parallel to
the bed) where the normal and shear stresses, respectively N and T , verify:

T = N tan(φ). (1.19)

From classical geotechnical results, we thus have that on the Mohr Coulomb diagram (where N
is the abcissa and T the ordinate) all other possible values of T and N (that is, for various plane
element) span a circle centered on N = 0 and tangent to the line T = N tan(φ) (see Figure 1.5).
Besides, the bottom friction condition gives, for a plane element tangent to the topography, a
relation between the bottom shear stress Tb and normal stress Nb:

Tb = Nb tan(δ). (1.20)

At the bed, the normal and shear stress are given respectively by σ33 and σ13 because the stress
tensor is written in frame linked to the topography. Thus, the circle giving the possible normal
and shear stress in the material, for all possible plane element, is tangent to the line T = N tan(φ)
and passes through the point (σ33, σ13). There are two possible solutions, as shown in Figure 1.5.
For a given circle, σ11 is the abcissa of the point symmetric to (σ33, σ13) in respect of the center
of the circle (because σ11 + σ33 is constant, whatever the orthonormal reference frame in wich σ
is written). There are thus two possible values of σ11, one for each circle: in one case, σ11 > σ33,
and in the other case σ11 < σ33. Geometrical interpretation of the previous constraints yield:

σ33 = kactσ11 or (1.21)
σ33 = kpassσ11, (1.22)

with

kact = 2
1−

√
1− (1 + tan2(δ)) cos2(φ)

cos2(φ)
− 1 < 1, (1.23)

kpass = 2
1 +

√
1− (1 + tan2(δ)) cos2(φ)

cos2(φ)
− 1 > 1. (1.24)

Following soil mechanics practices, kact and kpass are called the earth pressure coefficients. The
“active” coefficient kact is used when the granular material is elongated (∂ξ3u > 0), and “passive”
coefficient kpass is used when the granular material is compressed (∂ξ3u < 0). In turn, after the
equations are integrated, the source T term in (1.12) becomes:

∂t(hu) +
∂

∂ξ1
(hu2) +

∂

∂ξ1
(
1

2
kact/passgh

2 cos(θ)) = gh sin(θ)− hµ(g cos(θ) + γu2). (1.25)
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Active state
Elongation

Passive state
Contraction

Figure 1.5: Geometrical relations in the Mohr-Coulomb diagram used to derive the stress tensor
components with internal friction, for thin-layer flows propagating on 1D topographies Z = b(X).

Apart from the fact that using static yield criteria can be questioned, as well as this non-linear
response (e.g. Gray et al., 2003), the mere methodology used previously is difficult to extend
to real topographies (i.e. given by Z = b(X,Y )). Indeed, when σ is a matrice of dimension
3, the shear and normal stresses are no longer constrained on the Mohr-Coulomb circle. If σ1,
σ2 and σ3 are the ordered main stresses (i.e. the eigen-values of the stress tensor σ), possible
locations for normal and shear stress lie inside the circle intersecting the line T = 0 at the 2
main principal stresses σ1 and σ3, but outside the smaller circles given by σ1 and σ2, and by σ2
and σ3. Thus, the geometric considerations presented above no longer stand true. Besides, in
a frame linked to the topography, the main stresses direction are not necessarily aligned with
the velocity, thus it is difficult to derive explicit expression for the different terms of σ. In
order to overcome these problems, it is convenient to assume that two of the three principle
stresses are equal. To further simplify the equations, Hutter et al. (1993) and Gray et al. (1999)
consider topographies with main slope in the x-direction, and velocities aligned with the main
slope. It is then possible to compute the earth coefficients in the X and Y directions, to account
for elongation and compression in these two directions. The resulting model is however not
valid on general topographies as it is not invariant by rotation. A simple rotation invariant but
isotropic formulation was proposed by Iverson and Denlinger (2001), and is now widely used in
shallow-water models (e.g., Christen et al., 2010; Kelfoun and Druitt, 2005). It reads:

σ̄11 = σ̄22 = kact/passp̄, (1.26)

where σ̄11 and σ̄22 are the depth-averaged diagonal stress tensor components, in the down-slope
and cross-slope directions, and p̄ is the depth-averaged pressure. A more complete resolution can
be found in Denlinger and Iverson (2004) who resolve the full stress state in the flow, but with
significant numerical cost.

1.4.3 The µ(I)-rheology

Over the past decade, the µ(I)-rheology (e.g., GDR MiDi, 2004; Jop et al., 2006) has met
with growing success to model granular flows. It was shown with dimensional arguments and
numerical simulations that in 1D dense granular flows, the shear stress T is proportional to the
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pressure p, following:

T = µ(I)p, (1.27)

I =
γ̇d√
p
, (1.28)

where I is the inertial number, γ̇ is the shear rate, d the grain diameter, p the pressure (divided
by the density, as before). I compares the characteristic time of deformation Tγ̇ = 1/γ̇ to the
characteristic time of grains rearrangements. Thus, high values of I characterize shear granular
flows with strong velocity gradients, and low values of I represent quasi-static states where the
the granular layer deforms slowly. Note that (1.27) is somehow similar to (1.19), in the sense that
at the bottom of the flow, the normal stress component is given by the pressure p. However, while
the internal friction coefficient tan(φ) is constant, associated to the stability of the materials,
µ(I) depends on the materials dynamics. The definitions (1.27) and (1.28) are extended by Jop
et al. (2006) and Gray and Edwards (2014) to tensors:

σ′ =
µ(I)p

‖D‖ D, (1.29)

I =
2‖D‖d√

p
, (1.30)

with D = 1
2(∇ ~X

~U + (∇ ~X
~U)t), ‖D‖ =

√
1
2 tr(D

2). p and σ′ are related to the stress tensor σ
through:

σ = −pI3 + σ′. (1.31)

These constitutive equations are consistent with classical static analysis, in the sense that when
I → 0, the material will flow only if

‖σ′‖ > µsp, (1.32)

where µs is a given friction coefficient (Jop et al., 2006).

For 1D simple shear flows on planes with inclination θ (i.e. for Z = b(X) = tan(θ)X), the
velocity has components (u1, 0) in the topography reference frame and we can assume that the
main velocity variations are along the flow depth, such that:

∂u1
∂ξ3
� ∂u1

∂ξ1
. (1.33)

In turn, if we assume ∂u1/∂ξ3 > 0, we get:

‖D‖ =
1

2

∂u1
∂ξ3

. (1.34)

In turn, following Gray and Edwards (2014), the ordering of the momentum equations in the
thin layer approximation yields:

p = g cos(θ)(h− ξ3), (1.35)
σ′13 = g sin(θ)(h− ξ3). (1.36)

Replacing (1.36) in (1.29), we deduce that µ(I), and thus I, are constant throughout the depth
of the material (once again, for steady uniform flows), with

µ(I) = tan θ, (1.37)
I = Iθ. (1.38)
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With (1.35), (1.30) then becomes

∂u1
∂ξ3

=
Iθ
d

√
g cos(θ) (h− ξ3)

1
2 , (1.39)

which can be integrated to deduce a Bagnold velocity profile (assuming a no-slip condition at
the base of the flow, which is more restrictive than the boundary condition (1.7)):

u1(ξ3) =
2Iθ
3d

√
g cos(θ)

[
h

3
2 − (h− ξ3)

3
2

]
. (1.40)

The associated depth-averaged velocity is

u =
2Iθ
5d

√
g cos(θ)h

3
2 , (1.41)

which gives the expression of Iθ
Iθ =

5du

2h
√
gh cos(θ)

. (1.42)

It is also possible to derive explicitly the terms of σ′, and the leading terms of σ′11, σ′13 and
σ̄′33. As we assume the velocity is tangent to the topography, given the form of (1.29), we have
immediately that σ′33 = 0. Following Gray and Edwards (2014) and Baker et al. (2016), we also
have

σ′13 = µ(Iθ)g(h− ξ3) cos(θ), (1.43)

σ′11 = 2g sin(θ)
(√

h(h− ξ3)− (h− ξ3)
) ∂h
∂ξ1

. (1.44)

Note that (1.43) is equivalent to (1.36) under the assumption µ(I) = tan(θ). However, using
(1.43) allows to consider a wider range of situations, provided an explicit expression of µ(I). This
will be discussed further on. Equation (1.44) can be integrated to derive the the depth-averaged
value σ̄′11 of σ′11:

σ̄′11 =
1

3
g sin(θ)h

∂h

∂ξ1
. (1.45)

It is interesting to see that, given the Bagnold velocity profile that was previously computed, the
latter equation can be written as a depth-averaged non-linear viscous law:

σ̄′11 = ν
√
h
∂u

∂ξ1
. (1.46)

with
ν =

5

9

g sin(θ)

Iθ
√
g cos(θ)

. (1.47)

The final step of the thin-layer equations derivation includes the integration along the layer
thickness (that is over ξ3) of ∂σ′11/∂ξ1, which yields ∂σ̄′11/∂ξ1, and of ∂σ′13/∂ξ3:∫ h

0

∂σ′13
∂ξ3

dξ3 = σ′13(ξ3 = h)− σ′13(ξ3 = 0). (1.48)

The traction free condition at the free surface gives σ′13(ξ3 = h) = 0. In the derivations described
in previous sections, σ′13(ξ3 = 0) was given by a bottom friction law. With the µ(I)-rheology, we
can instead use directly (1.43):

σ′13(ξ3 = 0) = µ(Iθ)gh cos(θ). (1.49)
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Thus, the final momentum thin-layer equation on u reads:

∂t(hu) +
∂

∂ξ1
(hu2) +

∂

∂ξ1
(
1

2
gh2 cos(θ)) = gh sin(θ)− T, (1.50)

with
T = µ(Iθ)gh cos(θ)− ∂

∂ξ1

(
νh

3
2
∂u

∂ξ1

)
. (1.51)

As before, the extension of these equations to flows on general topographies is not easy at
all. Baker et al. (2016) derived a set of equations for granular flows propagating on plane
topographies, i.e. given by a graph Z = b(X,Y ) = tan(θ)X, with non negligible cross-slope
velocities. In order to achieve this, they extended the non-linear viscous law (1.46) to:

σ̄′ = ν
√
hD̄, (1.52)

with D̄ the depth-averaged strain-rate tensor, σ̄′ the depth-averaged deviatoric stress tensor, and
ν is now a constant. The corresponding equations were implemented in the SHALTOP numerical
code.

Note that in the previous derivations, we had µ(I) = tan(θ), and given the final form of the
depth-averaged equations, µ(I) can be seen as a basal friction coefficient. In practice, this is
verified in experiments for steady and uniform flows on inclined planes. Pouliquen and Forterre
(2002) related empirically the basal friction coefficient (i.e., µ(I) or the slope angle) to granular
flow velocity and thickness, following:

µ = µ1 + (µ2 − µ1)
1

hβ
LFr

+ 1
, (1.53)

where µ1, µ2, β and L are constants and Fr = u/
√
gh cos θ is the Froude number. For slope

inclinations tan(θ) < µ1 the granular flow stops, and accelerates if tan(θ) > µ2. We have shown
that, for steady uniform flows without wall effects (Fernández-Nieto et al., 2018), I = Iθ is
constant through the depth of the flow and is given by equation (1.42). We can write:

Fr =
2hIθ
5d

, (1.54)

such that (1.53) becomes:

µ(I) = µ1 + (µ2 − µ1)
1

I0
Iθ

+ 1
, (1.55)

with I0 = (5βd)/(2L) a constant. This relation can then be used in the thin-layer equations, but,
once again, this is formally valid only for steady uniform flows without wall effects, for a given
range of slopes. Typically, µ(I) = tan(θ) = 0 does not stand true for a flow on a flat topography,
where such steady uniform law do not exist. Pouliquen and Forterre (2002) show that (1.53) and
thus (1.55) are valid for high enough Froude numbers, when steady-uniform flows can develop.
The critical value is β, that can be defined experimentally by fitting for steady-uniform granular
flows a law:

u√
gh

= β
h

hstop(θ)
, (1.56)

where hstop(θ) is the thickness of the deposits left by a steady-uniform flow with velocity u over a
plan with inclination tan(θ). For Fr < β, that is for flows with small velocities and/or important
thicknesses, a transitional law must be found for µ, to reach the static friction coefficient µstart
above which the material starts flowing. This transitional behavior has a key role constraining
the shape of the deposits (Mangeney et al., 2007b), and has been discussed for instance by
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Pouliquen and Forterre (2002) and Edwards et al. (2017) (who introduce a more general form of
(1.56)).

Even so, the derivation of the shallow-water equations with the µ(I)-rheology heavily relies on
the assumption that I is constant throughout the depth of the flow, from which µ(I) = tan(θ) is
deduced. Thus, using these equations to model non steady uniform flows, or even steady flows
with wall effects, can be questioned. Not to mention that, as for other rheologies, extending
these equations to complex topographies is far from easy.

1.4.4 Visco-plastic flows

As discussed in Section 1.1.2, debris flows containing a significant solid fine fraction (typically,
above 5 or 10%) have a significant viscous behavior and can be considered as yield stress fluids.
Though we did not study such flows in this PhD, we deemed relevant to adapt the SHALTOP
numerical code to model such flows, by modifying the source term T in (1.12). We follow Pastor
et al. (2004) and Pastor et al. (2009a) who derive the expression of T . They consider thin-layer
equations for non-newtonian fluids on 1D topographies. Keeping the notations of (1.13), they
assume a linear variation of the shear stress σ13 from the bottom of the flow to the top, from
which they deduce a velocity profile (note that the opposite was done for the µ(I)-rheology,
where the stress variations were deduced from the velocity profile). This linear variation, that
can be seen as a first order approximation of the stress within the flow, reads:

σ13 = σB(1− ξ3/h), (1.57)

where σB is the shear stress at the bottom of the flow. Then, a simple Bingham law also relates
the shear stress to the strain-rate:

σ13 = τy + ν
∂u1
∂ξ3

for
∣∣∣∣∂u1∂ξ3

∣∣∣∣ ≥ 0, (1.58)

σ13 ≤ τy for
∣∣∣∣∂u1∂ξ3

∣∣∣∣ = 0, (1.59)

where τy is the yield stress and ν is the kinematic viscosity. In the upper part of the flow (the
plug), shear stress is inferior to the yield stress τy, and velocity is constant. In the lower layer,
combining and integrating (1.57) and (1.58) yields a parabolic velocity profile:

u1 =
τB
hν

(
hsξ3 −

ξ23
2

)
for ξ3 < hs, (1.60)

u1 =
τBh

2
S

2hν
for hs ≤ ξ3 ≤ h, (1.61)

where hs is the height of the plug (given from (1.57) and σ13 = τy). The depth-average velocity
u is then given by:

u =
τBh

6ν

(
1− τy

τB

)2(
2 +

τy
τB

)
. (1.62)

This equation provides a relation between the average velocity and the basal shear stress, that
can in turn be used to close the system of equations. The roots of this third order polynomial are,
however, not easy to estimate directly. The simplest method is to disregard terms in (τy/τB)3,
which in turn gives the bottom shear stress (and equivalently the source term T in (1.12)):

τb = T =
3

2
τy + 3ν

u

h
. (1.63)
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This rheology models the behavior of visco-plastic flows: a minimum thickness is needed for
the materials to flows, it remains static otherwise. Note that all quantities are divided by the
material density: for instance the yield stress τy considered here is in Pa (kg m−3)−1 and ν is
the kinematic viscosity (i.e. the dynamic viscosity divided by density).

A generalization of this method was proposed by Pastor et al. (2009a) to model frictional-viscous
fluids. They argue that instead of (1.58), the shear strength below the plug layer has the form:

σ13 = τy + µCF

(
∂u1
∂ξ3

)m
+ g cos θ(h− ξ3) tan δ, (1.64)

where δ is the friction angle, ρ the density, µCF is a material parameter and m is a parameter.
The first two terms model visco-plastic behavior with non linear dependence between the shear
stress σ13 and the shear rate γ̇ = ∂u1

∂ξ3
(Herschel–Bulkley model). The last term adds a frictional

behavior by using the pressure within the flow p = g cos θ(h − ξ3). Keeping the assumption of
a linear variation along depth (1.57) for the shear stress σ13, a velocity profile is again deduced,
resulting again in an equation relating the averaged velocity to the basal shear stress τB. Note
that with m = 1 and δ = 0 we find back the Bingham model. On the contrary, µCF = 0 and
τy = 0 yield a purely frictional rheology as in the previous section (without taking the curvature
γ of the topography). For cohesionless materials (τy = 0), m = 2 leads to:

τb = T = gh cos θ tan δ +
25

4
µCF

u2

h2
, (1.65)

The quadratic term can be related to the empirical Voellmy’s law (Voellmy, 1955; Salm, 1993),
that is classically used is most thin-layer models to reproduce in particular snow avalanches and
debris flows (McDougall, 2017):

τb = gh cos θ tan δ + g
u2

ξ
. (1.66)

where ξ is a material parameter. Note that these derivations are only valid for simple 1D flows,
and so far have only been empirically extended to flows on complex 2D topographies, by using
the norm of the velocity instead of u and assuming the flow is going in the main slope direction.

1.5 Conclusion

As shown previously, gravitational movements are complex phenomena characterized by various
physical processes controlling their initiation and their propagation. Current research topics thus
span a wide range of domains, including for instance the objective zonation of susceptibility, the
modeling of initial deformation and failure, the modeling of propagation, and the integration of
all these processes to derive landslide hazard maps. The integration of estimated hazard with
human and economic stakes in order to asses vulnerability and in turn risk is yet another field
of research. In this work, we focus on the quantification of propagation for flow-like landslides
such as rock avalanches, debris avalanches or debris flows: this includes the estimation of travel
distance, but also of flow thickness and velocity.

As discussed in the previous sections, quantifying the propagation hazard is difficult for three
main reasons:

• The physical processes at stake are sometimes difficult to describe, and thus to model.

• The physical characteristics of the materials needed to constrain simulations, may be dif-
ficult to constrain.
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• In turn, the final propagation hazard assessment is associated to important uncertainties.
Some of them cannot be modeled because they result from an inappropriate description of
the phenomenon, when others can be estimated by quantifying the variability of some key
elements (for instance, unstable volume or rheological parameters).

To address these problems, methods for propagation hazard assessments use empiricism and/or
physically based models. Purely empirical methods are relatively easy to use and allow a rather
simple uncertainty estimation, but only allow to characterize a few characteristics of the land-
slide, such as travel distance or peak discharges. In comparison, physically based models can
simulate the full dynamics of the flow, but demand a strong a-priori on the rheology and, some-
times, important computing power. In turn, it is difficult to estimate rigorously the associated
uncertainties. The right balance between these two kind of methods depend on the scale of
the study site, on the data available to constrain simulations, and on temporal and financial
operational constraints.

Over the past decades, thin-layer models have been increasingly used to simulate flow-like land-
slides because they are less complex than full 3D models simulating the dynamics of each elemen-
tary volume of fluid and/or solid particle, and still proved to reproduce correctly the dynamics
and deposits of landslides. Even so, many different models exist to reproduce the variety of
phenomena observed on the field: complex rheologies are needed to model complex flows, such
as two-phase flows, but parameters are then difficult to calibrate. To the contrary, more simple
rheologies (such as the Coulomb rheology with a hydro-static derivation) are more empirical, but
make it possible to model more finely the geometrical control of topography on the flow propa-
gation. Thus, there has been so far no unified approach for quantitative hazard assessment.

In this context, our objective is to assess the usability and the added value of thin-layer numerical
models for propagation hazard assessment, in comparison to more empirical approaches. As we
want our methods to be easily applied by practitioners in an operational context, we use a
numerical model with fairly simple (and thus empirical) rheological laws and a limited number
of parameters, but that includes a rigorous and precise description of the geometrical interactions
between the topography and the flow. In this perspective, we will use the one-phase thin-layer
model SHALTOP (e.g. Bouchut and Westdickenberg, 2004; Mangeney et al., 2007b; Favreau
et al., 2010; Moretti et al., 2015).

In Chapter 2, we will first highlight the importance of a rigorous mathematical methodology
to derive the thin-layer equations, even for simple rheologies. We will then test the ability
of SHALTOP to model debris avalanches (on the Soufrière de Guadeloupe, Chapter 3), rock
avalanches and debris flows (in the Prêcheur river, Chapter 4). Finally, in Chapter 5, we focus
on the propagation and quantification of uncertainty in thin-layer simulations.
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Chapter 2

Topography curvature effects in
thin-layer models for fast gravity-driven
flow without bed erosion

Context

As discussed thoroughly in the previous chapter, it is very difficult to include all the physical
processes at stake in a gravitational flow in one single thin-layer model. A wide variety of
models has been proposed instead (see Delannay et al. (2017) for a review). In most cases, the
associated equations are derived for simple flows at the scale of the laboratory and are difficult
to calibrate at the field scale. Thus, for hazard assessment, practitioners most commonly use
models with semi-empirical rheologies that greatly simplify the physical processes, but use only
few parameters which makes hazard assessment easier.

While numerous studies have focused on rheology description, only few have analyzed the impor-
tance of topography description in models. The following study contributes to fill this gap. In
this perspective, its objective is not to develop a new set of equations that would reproduce more
correctly observations. Instead, it aims at warning practitioners who use thin-layer models at the
field scale about the potential influence of topography curvature effects on simulations results.
This influence may not be negligible in some situations, and must thus be modeled accurately.

This study has been submitted to JGR: Earth Surface in March 2020 and was accepted in
February 2021:

• Peruzzetto M., Mangeney A., Bouchut F., Grandjean G., Levy C., Thiery Y., and Lucas
A. Topography Curvature Effects in Thin-Layer Models for Gravity-Driven Flows without
Bed Erosion. Journal of Geophysical Research: Earth Surface, submitted.

We reproduce here the submitted version of the article, from Section 2.1 to Section 2.7, as well
as the abstract page 26. Appendices 2.A to 2.F are Supplementary Materials of the submitted
article. Foot notes are not included in the article and were added following remarks of examiners.

Along with this work, I have also been involved more broadly in formal comparison exercises
between the thin-layer model SHALTOP and other numerical models. Such exercises are impor-
tant to assess the differences that can be expected between two simulations results, as a result of
different methodological or numerical approaches. In 2007 and 2018, benchmarking exercises for
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thin-layer models were organized by the JTC1, for the Workshop on Triggering and Propagation
of Rapid Flow-like Landslides. I took part in the second one, and presented results during a
seminar held in Hong-Kong. The corresponding conference paper, reproduced in Appendix A,
is:

• Peruzzetto, M., Mangeney A., Grandjean G., Levy, C., Thiery, Y., Bouchut, F. Back-
analysis of a rock avalanche and a debris flow with the SHALTOP code. in Proceedings of
the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides,
Hong-Kong (2018).

The 2007 and 2018 benchmarking exercises were interesting because they involved a large num-
ber of models (more than 10) and field-scale case studies. However, they yielded only partial
conclusions on the origin of differences between codes, because the set-up of simulations and the
presentation of results were not enough standardized. It is then difficult to compare rigorously
results. In this perspective, the ongoing work:

• Gueugneau V., Charbonnier S., Esposti Ongaro T., de’ Micheli Vitturi M., Peruzzetto
M., Patra A., Mangeney A., Kelfoun K., Synthetic benchmarking of concentrated pyroclastic
currents models, Bulletin Of Volcanology. in prep.

compares simulations of pyroclastic currents carried out with 4 different thin-layer models, in-
cluding SHALTOP, in a more unified framework. Similarly, the work

• Hugo M., Viroulet S., Peruzzetto M., Mangeney A., Lagrée P.-Y., Popinet S. and Bouchut
F. Numerical simulations of granular column collapse: comparison between Navier-Stokes,
discrete and thin-layer numerical simulations, Physical Review E. in prep.

compares granular column collapse simulations carried out with the Navier-Stokes Gerris soft-
ware, a Discrete Element Method numerical code, and SHALTOP. This comparison makes it
possible to investigate, for instance, the different stopping processes. It also quantifies the extent
to which thin-layer approximations involve errors in column collapses simulations, in comparison
to models where equations are not depth-averaged.

Abstract

Depth-averaged thin-layer models are commonly used to model rapid gravity-driven flows such
as debris flows or debris avalanches. However, the formal derivation of thin-layer equations for
general topographies is not straightforward. The curvature of the topography results in a force
that keeps the velocity tangent to the topography. Another curvature term appears in the bottom
friction force when frictional rheologies are used. In this work, we present the main lines of the
mathematical derivation for these curvature terms that are proportional to the square velocity.
Then, with the SHALTOP numerical model, we quantify their influence on flow dynamics and
deposits over synthetic and real topographies. This is done by comparing simulations in which
these terms are exact, disregarded or approximated. With the Coulomb rheology, for slopes
θ = 10° and for friction coefficients below µ = tan(5°), neglecting the curvature force increases the
simulated travel times by up to 10% and 30%, for synthetic and real topographies respectively.
When the curvature in the friction force is neglected, the travel distance may be increased
by several hundred meters on real topographies, whatever the topography slopes and friction
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coefficients. We observe similar effects on a synthetic channel with slope θ = 25° and µ =
tan(15°), with a 50% increase of the kinetic energy. Finally, approximations of curvature in
the friction force can break the non-invariance of the equations and decelerate the flow. With
the Voellmy rheology, these discrepancies are less significant. Curvature effects can thus have
significant impact for model calibration and for overflows prediction, both being critical for
hazard assessment.
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Contexte

Comme discuté dans le chapitre précédent, il est difficile d’inclure tous les processus physiques
contrôlant la propagation des écoulements gravitaires, dans un seul modèle d’écoulement en
couche mince. Une grande variété d’équations et de modèles différents existe donc (voir par
exemple Delannay et al. (2017) pour une revue). Dans la plupart des cas, les équations sont
obtenues pour des écoulements simples, à l’échelle du laboratoire et sont difficiles à calibrer pour
des applications à l’échelle du terrain. Ainsi, pour ces applications, les rhéologies utilisées sont
la plupart du temps semi-empiriques, et n’utilisent qu’un nombre limité de paramètres.

Si beaucoup d’études sont consacrées au développement de nouvelles rhéologies, peu s’intéressent
à l’importance de la description de la topographie. L’étude suivante contribue à combler ce
manque. Dans cette perspective, son objectif n’est pas de développer de nouvelles équations qui
permettraient de reproduire correctement des observations. Son objectif est plutôt d’alerter les
utilisateurs de modèles d’écoulement en couche mince pour des applications de terrain à propos de
l’influence des effets de courbure de la topographie sur les résultats de simulations. Cette influence
peut, dans certains cas, ne pas être négligeable, et doit donc être modélisée correctement.

Cette étude a été soumise à JGR : Earth Surface en Mars 2020 et a été acceptée en Février 2021 :

• Peruzzetto M., Mangeney A., Bouchut F., Grandjean G., Levy C., Thiery Y., and Lucas
A. Topography Curvature Effects in Thin-Layer Models for Gravity-Driven Flows without
Bed Erosion. Journal of Geophysical Research : Earth Surface, submitted.

Nous reproduisons dans ce chapitre la version soumise de l’article, de la Section 2.1 à la Sec-
tion 2.7, ainsi que le résumé en anglais page 26. Les Apendices 2.A à 2.F sont des ressources
supplémentaires associées à l’article soumis. Les notes de bas de page ne sont font pas partie de
l’article et ont été rajoutées suite aux retours des rapporteurs.

En parallèle de ce travail, je suis aussi impliqué plus largement dans des exercices de com-
paraison entre le modèle SHALTOP et d’autres modèles numériques. De tels exercices sont
importants pour évaluer les différences qui peuvent être attendues entre deux simulations, en
raison d’approches méthodologiques ou numériques différentes. En 2007 et 2018, des exercices de
benchmarking entre modèles d’écoulement en couche mince ont été orgnisés par le JTC1, pour le
Workshop on Triggering and Propagation of Rapid Flow-like Landslides. J’ai pris part au second,
et présenté les résultats lors d’un séminaire de restitution à Hong-Kong en 2018. La publication
correspondant à la conférence est :

• Peruzzetto, M., Mangeney A., Grandjean G., Levy, C., Thiery, Y., Bouchut, F. Back-
analysis of a rock avalanche and a debris flow with the SHALTOP code. in Proceedings of
the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides,
Hong-Kong (2018).

Ces exercices de benchmarking de 2007 et 2018 ont été enrichissants car ils impliquaient un
nombre important d’équipes internationales (plus de 10 chaque fois) et des cas d’étude de ter-
rain. Toutefois, les conclusions de la comparaison n’étaient que partielles à cause d’un manque de
standardisation des simulations, autant pour leur mise en oeuvre que pour la restitution des ré-
sultats. Il était donc compliqué de comparer rigoureusement les résultats. Dans cette perspective,
le travail en cours :
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• Gueugneau V., Charbonnier S., Esposti Ongaro T., de’ Micheli Vitturi M.,Peruzzetto M.,
Patra A., Mangeney A., Kelfoun K., Synthetic benchmarking of concentrated pyroclastic
currents models, Bulletin Of Volcanology. in prep.

compare des simulations d’écoulements pyroclastiques de 4 modèles d’écoulement en couche
mince différents, dont SHALTOP, dans un cadre plus unifié. De manière similaire,

• Hugo M., Viroulet S., Peruzzetto M., Mangeney A., Lagrée P.-Y., Popinet S. and Bouchut
F. Numerical simulations of granular column collapse : comparison between Navier-Stokes,
discrete and thin-layer numerical simulations, Physical Review E. in prep.

compare des simulations d’écoulements granulaires secs réalisées avec le code numérique Gerris
(qui résout les équations de Navier-Stokes), avec un code d’éléments discrets, et SHALTOP. Cette
comparaison permet d’analyser, par exemple, les différentes manières dont l’arrêt de l’écoulement
survient dans les différents codes. Elle permet aussi de quantifier les erreurs induites par l’ap-
proximation de couche mince, par rapport à des codes où les équations ne sont pas intégrées sur
l’épaisseur de l’écoulement.

Résumé

Les modèles d’écoulement en couche mince sont couramment utilisés pour modéliser des écoule-
ments gravitaires rapides, comme les laves torrentielles ou les avalanches de débris. Toutefois, la
dérivation des équations associées sur des topographies quelconques n’est pas simple. La cour-
bure de la topographie génère une force d’accélération qui assure que la vitesse de l’écoulement
reste tangente à la topographie. Un autre terme de courbure apparaît dans dans la force de fric-
tion basale quand des rhéologies frictionnelles sont utilisées. Dans ce travail, nous présentons les
étapes principales de la dérivation de ces termes de courbures, tous deux proportionnels au carré
de la vitesse d’écoulement. Ensuite, avec le modèle numérique SHALTOP, nous quantifions leur
influence sur la dynamique de l’écoulement sur des topographies synthétiques et réelles. Pour
cela, nous comparons des simulations où ces termes sont exacts, négligés ou approximés. Avec la
rhéologie de Coulomb, pour des pentes supérieures à θ = 10° et des angles de friction inférieurs
à µ = tan(5°), négliger la force de courbure augmente les temps de parcours simulés de 10 et
30%, pour des topographies synthétiques et réelles respectivement. Quand le terme de courbure
apparaissant dans la friction basale est négligé, la distance de parcours peut être augmentée de
plusieurs centaines de mètres sur des topographies réelles, quelques soient les pentes et les angles
de friction. Nous observons des effets similaires pour un chenal synthétique incliné de θ = 25°
et µ = tan(15°), avec une augmentation de 50% de l’énergie cinétique. Finalement, approximer
le calcul des termes de courbure dans la friction basale peut rompre l’invariance par rotation
des équations et ralentir l’écoulement. Avec la rhéologie de Voellmy, ces différences sont moins
marquées. Une bonne prise en compte de la courbure de la topographie dans les équations est
donc important pour calibrer correctement le modèle et pour mieux prédire les débordements.
Ces deux points sont cruciaux pour l’estimation des aléas gravitaires.
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2.1 Introduction

The propagation of rapid gravity-driven flows (Iverson and Denlinger, 2001) occurring in moun-
tainous or volcanic areas is a complex and hazardous phenomenon. A wide variety of events
are associated with these flows, such as rock avalanches, debris avalanches and debris, mud or
hyper-concentrated flows (Hungr et al., 2014). The understanding and estimation of their prop-
agation processes is important for sediment fluxes quantification, for the study of landscapes
dynamics. Besides, gravity-driven flows can have a significant economic impact and endanger
local populations (Hungr et al., 2005b; Petley, 2012; Froude and Petley, 2018). In order to mit-
igate these risks, it is of prior importance to estimate the runout, dynamic impact and travel
time of potential gravitational flows.

This can be done empirically, but physically-based modeling is needed to investigate more pre-
cisely the dynamics of the flow, in particular due to the first-order role of local topography. Over
the past decades, thin-layer models (also called shallow-water models) have been increasingly
used by practictioners. Their main assumption is that the flow extent is much larger than its
thickness, so that the kinematic unknowns are reduced to two variables: the flow thickness and
its depth-averaged velocity. The dimension of the problem is thus lower, allowing for relatively
fast numerical computations. The first and simplest form of thin-layer equations was given by
Barré de Saint-Venant (1871) for almost flat topographies. The 1D formulation (i.e. for topogra-
phies given by a 1D graph Z = Z(X)) for any bed inclination and small curvatures was derived
by Savage and Hutter (1991). This model has since been extended to real 2D topographies (i.e.
given by a 2D graph Z = Z(X,Y )). Some of the software products based on thin-layer equations
are currently used for hazard assessment to derive, for instance, maps of maximum flow height
and velocity. Examples include RAMMS (Christen et al., 2010; Christen et al., 2012), 3d-DMM
(GEO, 2011; Law et al., 2017), DAN3D (McDougall and Hungr, 2004; Moase et al., 2018) and
FLO-2D (O’Brien et al., 1993). A non exhaustive overview of some existing models used for field
scale modeling is given in Table 2.1. Yavari-Ramshe and Ataie-Ashtiani (2016) and Delannay
et al. (2017) give a more comprehensive review of thin-layer models. Current research focuses
include modeling of multi-layer flows (Fernández-Nieto et al., 2018; Garres-Díaz et al., 2020), bed
erosion along the flow path (Hungr, 1995; Bouchut et al., 2008; Iverson, 2012; Pirulli and Pastor,
2012) and the description of two-phase flows (e.g. Pudasaini, 2012; Rosatti and Begnudelli, 2013;
Iverson and George, 2014; Bouchut et al., 2015; Bouchut et al., 2016; Pastor et al., 2018b).

In addition to the complexity of choosing realistic constitutive equations to model the flow physi-
cal properties, there is also a purely methodological difficulty in deriving the thin-layer equations
for a complex topography, with acceleration forces arising from the curvature of the topography.
Their influence in 1D thin-layer models was investigated by Hutter and Koch (1991), Greve and
Hutter (1993) and Bouchut et al. (2003). Koch et al. (1994) investigated curvature effects for
unconfined flows on simple 2D topographies. Their work was completed by Gray et al. (1999)
and Wieland et al. (1999) for channelized flows in straight channels. Later on Pudasaini and
Hutter (2003) and Pudasaini et al. (2003) considered flows in curved and twisted channels1. The
generalization of curvature forces to general topographies was done by Bouchut and Westdick-
enberg (2004), Luca et al. (2009a) and Rauter and Tukovic (2018). To our knowledge, only one
study focused on quantifying curvature effects in simulations on general topographies: Fischer
et al. (2012) showed curtaure terms have a substantial effect for model calibration. However, it
focuses on curvature terms in the bottom friction and does not consider other curvature terms
that are independent from the chosen rheology.

In this work, we aim at quantifying more generally and precisely the influence of curvature terms
1Curvature effects have also been studied for several decades for snow avalanche modeling (e.g. Salm, 1967;

Ancey, 1994)
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in depth-averaged thin-layers simulations. This is important for practitioners using thin-layers
models: we will identify situations (in terms of topographic settings and rheological parametriza-
tion) where curvature effects may significantly impact their simulation results, and thus are worth
taking into account for hazard assessment. We focus on the modeling of single-phase incompress-
ible flows, with an Eulerian description. We also disregard bed erosion and internal friction. The
resulting equations may be over-simplified in comparison to the physical processes at stake in
real geophysical flows. However, such equations are now widely used to simulate debris flows,
debris avalanches and rock avalanches (Hungr et al., 2007; Pastor et al., 2018a). Thus, we deem
important to assess quantitavely the importance of curvature terms for field applications. How-
ever, we acknowledge that it goes along with major uncertainties on the rheology and rheological
parameters needed to reproduce correctly real gravity flows.

In the following section, we present the depth-averaged thin-layer equations for flows on complex
topographies. We detail the derivation of two curvature terms: one that does not depend on
the rheology and the other appearing in the bottom friction when a frictional rheology is used.
We also introduce the SHALTOP numerical model (Mangeney et al., 2007b) and its modified
version without curvature forces, that will be used to carry out simulations. The curvature terms
will be formally analyzed and compared to previous studies in Section 2.3. Then, in Section
2.4, we illustrate for synthetic topographies the importance of taking into account curvature
forces. Finally, in Section 2.5, we consider two real Digital Elevation Models, with a non-viscous
debris flow in the Prêcheur river (Martinique, French Caribbean) and a potential massive debris
avalanche from the Soufrière de Guadeloupe volcano (Guadeloupe, French Caribbean).

2.2 Modeling approach using thin-layer equations

Thin-layer equations model the propagation of a thin layer of fluid following the topography.
As opposed to full 3D models, thin-layer models no longer simulate the movement of each solid
or fluid element. Instead, they integrate their dynamics over a column of fluid in the direction
normal to the topography and consider the mean flow velocity over this column. Although the
resulting equations are relatively simple, their rigorous derivation is not straight-forward. As a
matter of fact, the momentum and mass equations must first be written in a reference frame that
allows a convenient integration. Its mere definition is difficult, not to mention the expression
of the constitutive equations in the resulting coordinate system. In Appendix 2.B, we describe
into details how curvature terms appear in the thin-layer equations derivation in Bouchut and
Westdickenberg (2004). In the following, we will only present the chosen parametrization and
the final equations.

2.2.1 Mass and momentum equations and boundary conditions

Most thin-layer models are based on the incompressible mass and momentum equations

∂t~U + (~U · ∇ ~X)~U = −~g +∇ ~X · σ, (2.1)

∇ ~X · ~U = 0, (2.2)

where −~g is gravity and σ the Cauchy stress tensor normalized by the flow density. ~X = (X,Y, Z)
is the cartesian coordinate system associated with the orthonormal base (~eX , ~eY , ~eZ). In the
following we will write X = (X,Y ) ∈ R2 for the horizontal coordinates. In the following, 3D
vectors will be identified by an arrow and 2D vectors will be in bold. For instance, ~U( ~X) =
(UX , UY , UZ) = (U, UZ) gives the components of the 3D velocity field in the cartesian reference
frame. ∇ ~X is the gradient operator.



Chapter 2. Topography curvature effects 33

The base of the flow matches the topography and is given by a 2D surface Z = b(X), with upward
unit normal vector ~n (Figure 2.1a for 1D topographies, Figure 2.1b for 2D topographies),

~n = c
(
− ∂b

∂X
,− ∂b

∂Y
, 1
)

=
(
−s, c

)
, (2.3)

with

c = cos (θ) =
(

1 + ‖∇Xb‖2
)− 1

2
, (2.4)

s = c∇Xb, (2.5)

where θ is the topography steepest slope angle. Along with boundary conditions detailed in
Appendix 2.B, a constitutive equation for the stress tensor σ is needed to close the problem.
The latter can be divided into pressure and deviatoric parts, namely

σ = σ′ − pI3, (2.6)

with σ′ the deviatoric stress tensor, p the pressure field (devided by the flow density) and I3 the
identity matrix. For scale analysis and to allow for a rigorous mathematical derivation, Bouchut
and Westdickenberg (2004) chose a Newtonian approach with a linear stress constitutive equation

σ′ = ν
(
∇ ~X

~U + (∇ ~X
~U)t
)
, (2.7)

with ν the kinematic viscosity, that is assumed to be small (see Appendix 2.B). They furthermore
imposed a friction boundary condition at the bed

σ~n− (~n · σ~n)~n = µ
~U

‖~U‖
(−~n · σ~n)+, (2.8)

where µ = tan(δ) is the friction coefficient and δ is the friction angle. The key point here is the
transformation of the equations in a convenient reference frame, in which they can be integrated.

2.2.2 Coordinate system and reference frame

The simplest way to derive the thin-layer equations is to use cartesian coordinates and integrate
the Navier-Stoke equations along the vertical direction (Barré de Saint-Venant, 1871; Pitman
et al., 2003; Berger et al., 2011). This is done in particular to model the propagation of tsunamis
because the wavelength of waves is small in comparison to the water vertical depth and the main
driving forces are horizontal pressure gradients (e.g. Berger et al., 2011; LeVeque et al., 2011).
On the contrary, the shallowness of landslides propagating on potentially steep slopes must be
regarded in the direction normal to the topography. Moreover, the flow velocity is (at least for
a first approximation) tangent to the topography. Thus the velocity in the normal direction is
small. In order to translate this property it is appropriate to write these equations in a reference
frame linked to the topography with one vector in the direction normal to the topography. In
Figure 2.1b, we give some reference frames used in previous studies. A proper definition is of
prior importance, as the reference frame varies spatially. Spatial differential operators in the flow
equations, with respect to this reference frame, will thus describe the spatial variations of the
fluid thickness and velocity as well as the variations of the reference frame itself.

In order to characterize these variations, a functional relation must be found to relate the new
coordinates to the cartesian coordinates, from which the spatial derivative operators in the new
reference frame can be deduced. It is therefore somehow more natural and mathematically simple
to first define the new coordinate system and to derive the associated reference frame, instead
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(a) (b)

Figure 2.1: (a) Topography and flow description, for a 1D topography Z = b(X). The orange area
is the flow region, with thickness h in the direction normal to the topography. (b) 2D topography
Z = b(X,Y ) description, with reference frames commonly used in the literature to derive thin-
layer equations. Red arrows: Cartesian reference frame. Blue arrow: topography normal unit
vector. −s: main slope horizontal direction. All other arrows are in the topography tangent plane
(blue plane). Green arrows: Christen et al. (2010). Dashed gray arrows: Mangeney-Castelnau
et al. (2003). Orange arrows: Iverson and George (2014).

of the contrary. With this method, the reference frame may not be orthonormal but this does
not entail any loss of generality or accuracy compared to models using an orthonormal reference
frame.

The most straightforward way to localize a point M above the topography is to consider its
projection M ′ on the topography, along the direction normal to the topography (Figure 2.2a).
The point M , which has coordinates ~X = (X,Y, Z) in the cartesian reference frame, can then be
localized with a new set of coordinates (x1, x2, x3): (x1, x2) = x are the horizontal coordinates
of M ′ in the cartesian reference frame and x3 = MM ′ is the distance to the topography (Figure
2.2a). Provided we remain in a sufficiently small neighborhood above the topography, this new
coordinate system is non-ambiguous: one (and only one) triplet (x1, x2, x3) can be associated
with any point in this neighborhood and vice-versa. More formally, the link between the cartesian
coordinates ~X = (X, Z) and the new coordinates ~x = (x1, x2, x3) = (x, x3) of a same physical
point is given by:

(X, Z) = ~X(x, x3) = M ′ + x3~n =

(
x
b(x)

)
+ x3~n(x). (2.9)

As previously, ~n = ~n(x) is the unit upward vector normal to the topography. The same coordinate
system was used by Bouchut et al. (2003) for 1D topographies and Bouchut and Westdickenberg
(2004) and Luca et al. (2009a) for 2D topographies. A more general formulation with a curvilinear
coordinate system x = x(ξ) is presented in Bouchut and Westdickenberg (2004). For instance, for
1D topographies, we can choose to locateM ′ by its curvilinear coordinates along the topography,
instead of its cartesian X-coordinate (Savage and Hutter, 1991). For simplicity, we shall keep
the Cartesian coordinate system to locate M ′. However, this does not limit in any way the type
of topographies that can be described in the model.

The reference frame (~e1, ~e2, ~e3) associated with the new coordinates ~x = (x1, x2, x3)follows coor-
dinate lines, so we obtain, with the Einstein notation:

d ~X = ~eidxi = ~e1dx1 + ~e2dx2 + ~e3dx3. (2.10)
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Figure 2.2: Notations and reference frames for the thin-layer equation derivations. (a) Coordi-
nates of a material point M in the cartesian reference frame (~eX , ~eY , ~eZ) (red arrows) are given
by (X,Y, Z) and by (x1, x2, x3) in the topography reference frame (~e1, ~e2, ~e3) (blues arrows). M ′

is the projection of M on the topography: it has cartesian coordinates (x1, x2, b(x1, x2)). ~e3 is
the unit normal vector to the topography and ~e1, ~e2 are the projections parallel to ~eZ of ~eX and
~eY on the plane tangent to the topography (blue feature). (b) Parametrization of the physical
velocity ~U of a material point in the topography reference frame. (c) Parametrization of the
physical average velocity ~V of the flow. ~V is tangent to the topography and is parametrized in
the cartesian reference frame (red) and in the topography reference frame (blue).
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We therefore have, for instance, ~e1 = ∂x1
~X. In this base, the velocity field has coordinates

~V = (V1, V2, V3) = (V, V3), such that (Figure 2.2b):

~U = UX~eX + UY ~eY + UZ~eZ = V1~e1 + V2~e2 + V3~e3. (2.11)

We can show (see Appendix 2.B) that ~e3 = ~n and thus that V3 is the topography normal
component of the velocity (Figure 2.2b).

Note that in the previous equation, ~U must be seen as the physical 3D velocity of the fluid,
in the sense that ‖~U‖ =

(
U2
X + U2

Y + U2
Z

) 1
2 is the real velocity. In comparison, ~V is only a

parametrization of the velocity field. In particular, as the topography reference frame is in
general not orthonormal, we have:

‖~V ‖ =
(
V 2
1 + V 2

2 + V 2
3

) 1
2 6= ‖~U‖. (2.12)

It is not straightforward to replace ~U by ~V in the Navier-Stokes equations. This derivation
can be found in Bouchut and Westdickenberg (2004), or in Luca et al. (2009a) with a different
formalism. However, the resulting equations can be significantly simplified with the thin-layer
approximations. In the following, we simply give the final thin-layer equations and analyze the
resulting curvature terms. More details on the formal derivation and hypotheses are given in
Appendix 2.B.

2.2.3 Thin-layer equations

In the thin-layer approximation, we describe the dynamics of a fluid layer with thickness h(x).
We assume this thickness to be small in comparison to the flow extent. Its physical depth-
averaged velocity ~V is tangent to the topography and thus can be written in the topography
frame:

~V = V̄1~e1 + V̄2~e2, (2.13)

and has coordinates (V ,V3) in the cartesian coordinate system. We can show (see Appendix 2.B)
that it is written in the cartesian reference frame:

~V = V̄1~eX + V̄2~eY +
1

c
stV̄~eZ . (2.14)

We show that V̄1~e1 and V̄2~e2 are respectively the projections of V̄1~eX and V̄2~eY , on the topography-
tangent plane, parallel to ~eZ (Figure 2.2c).

The resulting equation for V̄ = (V̄1, V̄2) is given by:

∂tV̄ + (V̄ · ∇x)V̄ + (I2 − sst)∇x (g(hc+ b)) =

−c
(
V̄t(∂2xxb)V̄

)
s− µgcV̄√

‖V̄‖2 +
(
1
cs
tV̄
)2
(

1 +
V̄t(∂2xxb)V̄

g

)
+

. (2.15)

Two curvature terms, involving ∂2xxb, appear in (2.15). One does not depend on the rheology
(red term in (2.15)) and the other is included in the friction force (blue term in (2.15)). These
terms arise from the expression of the pressure at the bottom of the flow (see Appendix 2.B).
They will be interpreted in Section 2.3. Note that (2.15) is equivalent to equation (9.32) in Luca
et al. (2009a). The viscosity ν does not appear in (2.15), because we chose it to be negligible,
which allows for a rigorous mathematical derivation. To our knowledge, there exist no formal
derivation of thin-layer equations with non negligible viscosity, an no assumption on the velocity
profile, on general topographies.
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The mass equation does not entail any curvature term. With the same formalism as in our
development, Bouchut and Westdickenberg (2004) show that it reads :

∂t

(
h

c

)
+∇x ·

(
h

c
V̄

)
= 0. (2.16)

2.2.4 The SHALTOP numerical model

In order to investigate the influence of curvature forces in numerical simulations, we use the
SHALTOP numerical model (Mangeney et al., 2007b). It has been used to reproduce both ex-
perimental dry granular flows (Mangeney et al., 2007b) and real landslides (Lucas and Mangeney,
2007; Favreau et al., 2010; Lucas et al., 2011; Lucas et al., 2014; Moretti et al., 2015; Moretti
et al., 2020a; Brunet et al., 2017; Peruzzetto et al., 2019). We choose not to compare SHALTOP
to another code that would not describe precisely the topography effects. We would not be able
to tell whether discrepancies in results originate from curvature effects or, for instance, from the
different numerical scheme. A proper benchmarking exercise would be needed, but is beyond the
scope of this work. Instead we shall use the same code, but modify it in order to reflect several
approximations or remove the curvature.

In SHALTOP, the flow equations are written in terms of the variable u = V̄/c. This parametriza-
tion will be discuss later on. The corresponding momentum equation is:

∂tu + c(u · ∇x)u +
1

c
(Id− sst)∇x (g(hc+ b))

= −1

c

(
utHu

)
s +

1

c

(
stHu

)
u− µgcu√

c2‖u‖2 + (stu)2

(
1 +

c2ut(∂2xxb)u

g

)
. (2.17)

with curvature terms colored as in (2.15). SHALTOP solves the conservative form of (2.17) with
a finite-volume numerical scheme (see Mangeney et al. (2007b)

We will show in Section 2.3.1 that the curvature force (first two terms on the right-hand side of
(2.17)) ensures the velocity remains tangent to the topography at all time. Thus, to model this
effect, a tangent transport is applied (e.g. Knebelman, 1951). Considering the physical velocity
~V = (cu, stu) in one cell with topography normal vectors ~n, the transported velocity ~V ′ in a
neighboring cell with normal vector ~n′ is computed with:

~V ′ = ~V −
~V · ~n′

1 + ~n · ~n′
(
~n+ ~n′

)
. (2.18)

Since the curvature force involves the slope variations, for real data with small scale variations
it is often necessary to slightly smooth the topography to avoid numerical instabilities. Indeed,
when the topography radius of curvature is smaller than the flow thickness, lines normal to
the topographies can cross within the flow. In turn the coordinate system defined in (2.9) is
ambiguous: several coordinates (x1, x2, x3) can be associated to a single physical point.

In SHALTOP, the friction coefficient µ can be a function of the flow thickness and velocity.
We can thus change the expression of the bottom stress T as in other classical rheologies. For
instance, in the semi-empirical Voellmy rheology (Voellmy, 1955; Salm, 1993), the bottom stress
reads:

T = ρhµ(gc+ γ‖~V‖2) + ρg
‖~V‖2
ξ

, (2.19)

with ρ the material density, γ the curvature along flow path (see next section for its computa-
tion) and ξ the turbulence coefficient. In numerical experiments (Sections 2.4 and (2.5)), we will
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consider both the Coulomb and the Voellmy rheology that are classically used for field applica-
tion due to the small number of parameters involved while being able to reproduce first order
observations (e.g. Hungr et al., 2007; Lucas et al., 2014; McDougall, 2017).

2.3 Formal analysis of curvature terms

2.3.1 Interpretation of curvature terms

The curvature terms appearing in the derived thin-layer equations can be interpreted as ac-
celeration forces in the non-Galilean reference frame linked to the topography. This appears
more clearly when we write the depth-averaged equations for the 3D velocity ~V, in the cartesian
reference frame:

∂t~V + (V · ∇X
~V) = ~Fg + ~FH + ~Fµ, (2.20)

with

~Fg = −
(
Id− sst

cst

)
∇X(g(hc+ b)), (2.21)

~FH = c(V t∂2XXbV)~n =
1

c2
(V tHV)~n, (2.22)

~Fµ = −µgc
~V

‖~V‖

(
1 +

V t(∂2XXb)V
g

)
+

, (2.23)

where H = c3∂2XXb is the curvature tensor. ~Fg represents the gravity and lateral pressure forces,
~Fµ is the friction force and ~FH is the curvature force.

For a material point advected by the velocity field ~V, we can compute1

d

dt

(
~V · ~n

)
=
(
∂t~V + (V · ∇X)~V

)
· ~n+ ~V ·

(
(V · ∇X)~n

)
(2.24)

=
(
∂t~V + (V · ∇X)~V

)
· ~n− cV t∂2XXbV . (2.25)

In the right-hand side of (2.24), we can use (2.20). As ~Fg ·~n = ~Fµ ·~n = 0 and ~FH ·~n = cV t∂2XXbV ,
(2.24) becomes

d

dt
(~V · ~n) = 0. (2.26)

In other words, the curvature force ~FH ensures that the flow velocity remains parallel to the
topography, i.e. ~V · ~n = 02. This force is normal to the topography and thus to the velocity
and does no work: in the absence of gravity and friction, the material point would be advected
on the topography at constant kinetic energy. Note that this acceleration force is still present,
though the equations are written in the fixed cartesian coordinate system: that’s because they
arise in the intermediate step where the momentum equations are integrated in the direction
normal to the topography. The Lagrangian form of equation (2.20) provides a direct expression

1(2.24) is obtained with d
dt

(
~V · ~n

)
= d~V

dt
· ~n + ~V · d~n(X(t))

dt
, where X(t) is the horizontal coordinates of the

material point.
2Note that ~V · ~n = 0 is a necessary assumption to derive thin-layer equations, and not, striclty speaking,

a physical reality. The cruvature force thus ensures that the final thin-layer equations are consistent with the
assumptions made to derive them.
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of the curvature along a flow path. As a matter of fact, if M(t) is the position of a material
point, we have1:

Ṁ(t) = ~V, (2.27)

M̈(t) = ∂t~V + V · ∇X
~V. (2.28)

From classical analytical geometry results and using (2.20), the curvature of the topography
along a flow path, γ, is thus given by

γ = ±

∥∥∥Ṁ ∧ M̈∥∥∥∥∥∥Ṁ∥∥∥3 = c
V t∂2XXbV
‖~V‖2

. (2.29)

In the previous equation, we used (2.28) and (2.20), and the fact that ~FH is the only force
which is not colinear to the velovity Ṁ = ~V : other terms are canceled by the cross product
operation. γ is positive for a convex topography and negative otherwise. We thus obtain the
classical expression of a centripetal force

~FH = c(V t∂2XXbV)~n = γ‖~V‖2~n. (2.30)

Note however that as for any acceleration force, the expression of the curvature force depends
on the velocity parametrization. In the topography reference frame (~e1, ~e3, ~e3), the velocity
components are given by ~V . Provided we impose V3 = 0, (2.15) describes the evolution of the
2D velocity field V̄ along the topography. The curvature force in this reference frame is exactly

FV̄
H = −c

(
V̄t(∂2XXb)V̄

)
s. (2.31)

FV̄
H has the direction of the main slope and can have a non-zero power (FV̄

H ·V̄ 6= 0). As a matter
of fact, in the absence of gravity and friction, the kinetic energy must remain constant, however
it is given by ‖~V‖2 = ‖V̄‖2 +

(
1
cs
tV̄
)
and not by ‖V̄‖2 which is not constant, explaining why

the curvature force has a non-zero power in the topography reference frame.

2.3.2 Comparison with previous studies

Friction force

If we use (2.30) in (2.23) to introduce the curvature along flow path γ in the friction force, we
get

~Fµ = − µ~V
‖~V‖

(
gc+ γ‖~V‖2

)
+
, (2.32)

This is the classical expression of the friction force. In 1D (for b = b(X)), the derivation of γ is
simple. Thus, most 1D thin-layer models (e.g. Savage and Hutter, 1991) include the curvature
in the friction force. As shown in the previous section, the computation is less self-evident for
real 2D topographies (b = b(X,Y )), in particular because the flow path must take into account
velocity variations (see Appendix 2.C). The curvature term in the friction force is thus either
neglected (O’Brien et al., 1993) or approximated. For instance, Pitman et al. (2003) use the
curvature in the X and Y directions in the momentum equations for VX and VY respectively.
We could find only one reference (found in Fischer et al., 2012) to the exact curvature expression

1Strictly spealing, the Lagrangian formulation would give a trajectory M = f(M0, t), with M0 the initial
position of the particle. Here we consider M0 as an initial condition, and not a variable. It is not necessary to
use the complete Lagrangian formulation to derive the curvature along flow path.
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mentioned above with a different numerical model than SHALTOP (that is based on the thin-
layer equations derived previously). However, it is also possible to implicitly take into account
this curvature by solving the equations for the pressure at the bottom of the flow, in addition to
the flow thickness and velocity (Rauter and Tukovic, 2018, see next section).

If the curvature γ is positive, we see from (2.32) that neglecting the curvature decreases the
bottom friction and accelerates the flow. The opposite effect is expected if γ is negative. On
non-flat topographies, we can expect the flow to propagate on gradually decreasing slopes, at
least in a first approximation. For instance, the longitudinal cross-sections of volcanoes are often
modeled with an exponential fit (e.g. Mangeney-Castelnau et al., 2003; Kelfoun, 2011; Levy
et al., 2015). The topography is thus "globally" convex and the curvature is positive at most
points. Without the curvature term in the friction, we can thus expect landslides to go further
than in the model including curvature.

The effect of approximating the curvature depends of course on the chosen approximation. In
Appendix 2.C, we analyze these effects in some examples. In particular we can compute the
curvature along topography in a straight direction given by the local velocity, that is, without
taking into account changes in direction. If the flow is not moving in the main slope direction,
then the curvature term will be over-estimated.

The numerical code Volcflow uses the following approximation (Karim Kelfoun, personnal com-
munication),

γ = γx| cos(α)|+ γy| sin(α)|, (2.33)

where α is the angle between the horizontal component of the velocity and the X-axis. In our
study, we shall test the approximation

γ = γx cos2(α) + γy sin2(α), (2.34)

which is a more classical weighting as cos2(α) + sin2(α) = 1. In both cases, the model is no
longer invariant by rotation. For instance, in the case of a flow confined to a channel, we show in
Appendix 2.C that both approximations entail a deceleration of the flow in most realistic cases.
When the channel is aligned with in the X or Y axes, the deviation from the exact equations is
null, but significant differences can be expected otherwise. As the two previous approximations
have similar effects, we will test only the second in the following. The effects of neglecting or
approximating the curvature with (2.34) will be assessed in simulations in Sections 2.4 and 2.5.

Curvature force

The first detailed derivation of thin-layer equations for complex topographies was carried out by
Savage and Hutter (1991) on 1D topographies. The curvature tensor H was reduced to a scalar
κ, the curvature of the topography graph Z = b(X). The curvature term is present in their final
expression of the friction force, but no curvature force appears. That is however expected, given
their parametrization. They use a curvilinear coordinate system (ξ, η), with η the distance from
the topography (our coordinate x3) and ξ the curvilinear coordinate along the topography graph.
The associated orthonormal base is composed of the topography tangential vector ~T and of the
topography normal vector ~n. To be consistent with Savage and Hutter (1991), let us choose the
new parametrization

u =
V̄

c
. (2.35)

This is equivalent to changing our topography reference frame to (~i1,~i2,~i3) = (c~e1, c~e2, ~e3), such
that in 1D, ~i1 is the downslope unit vector and (~i1,~i3) is an orthonormal base. With this
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parametrization, the physical velocity is (cu, stu) and its norm is

‖~V‖2 = ‖cu‖2 + (stu)2. (2.36)

Substituting (2.35) in (2.15), we can show that the momentum equation for u is (2.17), where
the curvature force becomes:

Fu
H = −1

c

(
utHu

)
s +

1

c

(
stHu

)
u. (2.37)

In comparison to (2.15), the new term 1
c

(
stHu

)
u comes from the computation of

(V̄ · ∇X)V̄ = c(∇X(cu))u, (2.38)

where ∂Xc appears. The curvature force is null when s and u are colinear (i.e. when the velocity
is in the downslope direction). This is because in this case ‖~V‖ = ‖u‖, so no correction needs
to be applied to ensure energy is preserved. In particular in 1D, with this parametrization, no
curvature forces appear in the equations.

Gray et al. (1999) derived thin-layer equations in a similar fashion. But instead of choosing a
reference frame linked to the topography, they used a simpler reference surface with the constraint
that the deviation from the topography is of the order O(ε), where ε is the ratio of a characteristic
height of the flow over its characteristic length. In thin-layer models, ε is assumed to be very small
(see Appendix 2.B for a discussion on the ordering of the equations, and for the mathematical
meaning of O()). The same approach was used, for instance, by George and Iverson (2014). This
in turn makes it possible to assume that the velocity component normal to the reference surface
(and not normal to the topography) has magnitude O(ε) and only the curvature of the reference
surface needs to be accounted for. In Gray et al. (1999), this boils down to the curvature along
the x-axis κ (see their equations (5.9) and (5.10)). With their ordering, it however disappears
in the depth-averaged equations. The derivative of the curvature κ′ also appears before the
ordering of the equations in their work. It can also be found in the development of Bouchut and
Westdickenberg (2004) when curvilinear instead of cartesian coordinates are considered (without
changing the accuracy of the resulting equations).

Another fine description of the topography was made by Pudasaini and Hutter (2003) for flows
confined in channels. The thalweg is described by a 3D parametric curve ~R(s) to which an
orthonormal reference frame is associated with the Serret-Frénet formulas. Pudasaini and Hutter
(2003) write the Navier-Stokes equations in this reference frame. The topography curvature is
then rendered by the curvature κ and torsion τ of the thalweg ~R(s). However, they thus describe
only a limited set of topographies, making a proper comparison with our model difficult.

Fischer et al. (2012) derive a curvature force by solving the Euler-Lagrange equations for a free
point mass m with coordinates ~X(t) = (X1(t), X2(t), X3(t)) subjected to gravity and evolving
on the topography in a fixed cartesian reference frame. With our notation, the Lagrangian reads

L =
1

2
m‖ ~X(t)‖2 −mgX3(t), (2.39)

with the constraint
f( ~X) = X3(t)− b(X1, X2) = 0. (2.40)

Solving this system yields

d2 ~X

dt2
= −gc2

(
∇Xb
‖∇Xb‖2

)
+ c

(
V t∂2XXbV

)
~n = −gc2

(
∇Xb
‖∇Xb‖2

)
+ ~FH. (2.41)
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This is the Lagrangian form of the momentum equation (2.20), without the friction force ~Fµ
and lateral pressure forces in ~Fg. Fischer et al. (2012) use (2.41) to justify the curvature term
appearing in the friction force, but the curvature force ~FH is actually independent of the friction.

Rauter and Tukovic (2018) and Rauter et al. (2018) use an approach similar to that of Bouchut
and Westdickenberg (2004). However, while we use the momentum equation for the topography-
normal component of the velocity to get an explicit expression of the pressure, they keep this
equation and consider the basal pressure as another unknown to be numerically estimated. This is
equivalent to considering the basal pressure as a Lagrangian multiplier, respecting the constraint
that the velocity is in the topography-tangent plane. With this method, Rauter and Tukovic
(2018) do not need to explicitly describe the curvature. However, a rigorous derivation of their
equations also requires complex differential calculations, in particular related to the definition of
a gradient operator along the topography.

Now that we have detailed the origin of the curvature effects in thin-layer models, we will
investigate their influence, in practice, in simulations. We will first consider simulations on
synthetic topographies to identify situations where curvature effects significantly influences the
results. We will then carry out simulations on real topographies.

2.4 Curvature effects in simulations with synthetic topographies

As shown in Section 2.3.1, the curvature force ~FH is needed to ensure that the flow velocity
remains tangent to the topography. It is thus particularly important when the flow changes
direction in twisted channels. As proposed by Gray and Hutter (1998), we create a synthetic to-
pography with a channel composed of nb successive bends, superimposed on a plane (Figure 2.3)
with inclination θ = 10°. The channel cross-section is a parabola (Figure 2.3b). At both extrem-
ities, there is a smooth transition between the end of the channel and the bottom plane (Figure
2.3a and 2.3c). The thalweg is a sinusoidal of amplitude Ab and period L = 2.1 m (black curve
in Figure 2.3c). We define the ratio γ̄ = Ab/(L/2), that can be seen as a non-dimensionalized
bend curvature. This is detailed in Appendix 2.D, along with the exact mathematical definition
of this synthetic topography and some precisions on the simulation set-up.

In the following, we will first investigate the effects of approximating curvature for a flow prop-
agating in a straight channel (Section 2.4.1). We will then model flows in a channel with only
one bend, with the Coulomb and the Voellmy rheologies and analyze how curvature affects the
flow direction, velocity and kinetic energy (Section 2.4.2). For hazard assessment, however, it is
convenient to synthesize the overall flow dynamics with a few simple characteristics. In Section
2.4.3, we will thus investigate curvature effects on the flow travel duration within the channel
and on the maximal dynamic force, for various channel geometries and rheological parameters.

2.4.1 Curvature approximation and non-invariance by rotation

To demonstrate the importance of solving equations that are invariant by rotation, we first
consider the propagation of a flow with the Coulomb rheology (µ = tan(15°)) and the Voellmy
rheology (µ = tan(15°) and ξ = 2000 m s−2), in a channel without bends (that is, Ab = 0 m)
and a slope inclination of θ = 10°. As the flow propagates at the bottom of the channel, the
curvature in the flow direction is, as a first approximation, zero. As a consequence, no curvature
effects are expected. Changing the angle φ between the X-axis and the thalweg (see Figure 2.4a)
should not change the flow dynamics. However, when we implement the approximation of the
curvature (2.34) in the friction force, we lose the rotational invariance of the model and the flow
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Figure 2.3: Synthetic topography with a twisted channel superimposed on a flat plane. (a)
3D view of the generated topography, in the fixed cartesian reference frame (b) Cross-section
of the channel for X = 6 m (red curve in (a)). (c) Top view of the channel, with illustration
of the parameters used to construct the topography (see Appendix 2.D). Here L = 2.1 m and
Ab = 0.5 m. x′ and y′ are the curvilinear coordinates along the basal plane on which the channel
is superimposed. The contour interval is 5 cm in both (a) and (b).

is slowed down when φ > 0 (Figure 2.4b to 2.4e). For instance with φ = 45°, after 0.5 s, the
total kinetic energy is decreased by 20% and 15%, with the Coulomb (Figure 2.4a) and Voellmy
rheology (Figure 2.4c) respectively. This directly impacts the travel distance, with 20% (Figure
2.4b) and 5% (Figure 2.4d) reductions respectively.

In the following, we will no longer consider the approximation of curvature in the friction force,
and compare only simulations when it is properly taken into account (which is not numerically
costly) or omitted. Comparisons with approximated curvature are however provided in the
Supplementary Figures (Section 2.A) and will be referred to briefly.

2.4.2 Thicknesses, velocity and kinetic energy

Let us now construct a channel with one bend of amplitude Ab = 0.5 m (and thus γ̄ = 0.48). We
will first consider the case where µ = 0 in the Coulomb rheology. We thus model a pure fluid and
can highlight the influence of the curvature force, independently of the curvature term appearing
in the friction force. This is however unrealistic when considering real geophysical flows, as there
is no energy dissipation. We will thus also consider µ = tan(6°), which is a sensible friction
coefficient for debris flow modeling (e.g. Moretti et al., 2015), and the Voellmy rheology that is
commonly used to model such flows. To obtain insight on curvature effects for debris and rock
avalanche modeling, we will finally model flows propagating on a steeper slope (θ = 25°) with a
higher friction coefficient µ = tan(15°) (e.g. Moretti et al., 2020a).

Channel with slope θ = 10°

For µ = 0, the only acting forces are the curvature and gravity forces. The simulation results
are displayed in Figure 2.5. As shown in Section 2.3.1, the curvature force horizontal component
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Figure 2.4: Modeling of a flow within a straight channel with inclination θ = 10°. (a) Top view of
the channel, with the initial mass (thickness is given by the color scale). φ is the angle between
the channel direction (white dashed line) and the X-axis (white solid line). (b) and (c): Kinetic
energy and flow front position, with the Coulomb rheology (µ = tan(15°)). Colored solid curves:
results when the curvature term in the friction is approximated by weighting the curvature in the
X and Y directions (see equation (2.34)), for different values of φ. Black dashed curves: result
with the exact model, that does not depend on the channel orientation φ (up to small numerical
errors, not shown here)as it should be. (d) and (e): Same as (b) and (c) but with the Voellmy
rheology (µ = tan(15°) and ξ = 2000 m s−2)
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is in the steepest slope direction and thus tends to keep the flow at the bottom of the channel.
This has a major impact on the flow direction at the exit of the channel (Figures 2.5a and
2.5b). It also results in a smoother increase of the flow velocity (Figure 2.5e, between 1 and
2 s), because without the curvature force, the flow bounces back and forth on the channels walls
(Figures 2.5a and 2.5b). Thus, the effect of the curvature force cannot be neglected: its norm is
indeed comparable to the norm of gravity and pressure forces when there are steep changes in the
topography, as in the main bend and at the outlet of the channel (Supplementary Figures 2.A.1b
and 2.A.1c). The maximum flow velocities are, however, of the same order: about 3 m s−1 at
the outlet of the channel (Figures 2.5c and 2.5d).

In order to model debris flows more realistically, we now use a friction coefficient µ = tan(6°).
We can then analyze the influence of neglecting the curvature term in the friction force (Figures
2.6, ~Fµ=0). Because of friction, the flow is decelerated compared to the case without friction
(only 2 m s−1 at the channel outlet). The curvature terms (both in friction and curvature forces),
which are proportional to the square of velocity, are then only half as high as gravity and pressure
forces (see Supplementary Figures 2.A.2b and 2.A.2d). However, neglecting the curvature force
does still slow down the flow, with a 5% kinetic energy decrease at the channel outage (Figure
2.6i, FH=0). On the contrary, neglecting the curvature term in the friction force results in a
slightly smaller friction force and thus increases the flow velocity (kinetic energy increased by
5% at the channel outage, Figure 2.6i, Fµ no curvature) and runout (e.g. Figures 2.6a and 2.6e).
Approximating the curvature in the friction decelerates the flow, as expected (see Supplementary
Figures 2.A.2 and 2.A.3).

In the literature, the empirical Voellmy rheology is also often used to model debris flows. We
show in Supplementary Figures 2.A.4 and 2.A.5 that curvature effects have only limited influence
with this rheology, which will be confirmed by further results.

Channel with slope θ = 25°

The main slope of the channel and the parameters we have considered so far are reasonable
estimates for modeling debris flows (e.g. Moretti et al., 2015). For debris and rock avalanches,
it is more relevant to use steeper slopes and higher friction coefficients. In Figure 2.7, we
investigate the curvature effects on a steeper slope (θ = 25°) and for a higher friction coefficient
µ = tan(15°), which is still characteristic of mobile landslides (Pirulli and Mangeney, 2008). The
impact of neglecting curvature terms is qualitatively similar to the previous case with µ = tan(6°),
but errors are amplified (see Supplementary Figures 2.A.6 and 2.A.7 for the simulations with
approximated curvature in friction). In particular, neglecting the curvature term in the friction
leads to a significant acceleration of the flow: at the channel outlet, the total kinetic energy is
increased by 70% (Figure 2.8a, FH exact and Fµ no curvature). It can be directly correlated to
the 30% error induced on the friction in the channel bends, when curvature is not taken into
account (Figures 2.8b and 2.8d).

In the above simulations, we have shown that the direction of the flow at the channel outlet
can change significantly when curvature effects are not accounted for. That is of course of prior
importance in hazard mapping. In order to characterize the flow dynamics, two other indicators
can refine the hazard assessment analysis.
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Figure 2.5: Flow simulation with the Coulomb rheology, µ = 0 and a slope θ = 10°. (a) and
(c): with the curvature force (FH exact). (b) and (d): without the curvature force (FH = 0).
(a) and (b) give the maximum flow thickness during the simulation, (c) and (d) the maximum
flow velocity. The white curve is the flow extent when the curvature force is taken into account.
Simulation durations is 2.5 s. We give more details in Appendix 2.E on the derivation of maximum
thickness and velocity maps.
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Figure 2.6: Flow simulation with the Coulomb rheology, µ = tan(6°) and a slope θ = 10°. The
first column is the maximum flow thickness (a-d) and the second column is the flow maximum
velocity (e-h), both after 2.8 s. Each subfigure displays the results of the simulation when the
curvature force is taken into account (FH exact) or neglected (FH = 0) and when the curvature
in the friction is exact (Fµ exact) or neglected (Fµ no curvature). (a) and (e) are the simulation
results in the reference case, with exact curvature terms: the corresponding flow extent (white
line) is reported in all figures. The contour interval is 2 cm. (i) Kinetic energy in the different
simulations.
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Figure 2.7: Same as Figure 2.6, but with the Coulomb rheology, µ = tan(15°) and a slope θ = 25°.
The contour interval is 4 cm. Simulation duration is 2.3 s. The kinetic energies are given in
Figure 2.8.



Chapter 2. Topography curvature effects 49

0.0 0.5 1.0 1.5 2.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ki
ne

tic
 e

ne
rg

y 
(m

J)

F  exact, F  exact
F  = 0, F  exact
F  exact, F  no curvature
F  = 0, F  no curvature

(a)

0

5

10

15

20

25

30

Fo
rc

e 
(N

.m
2 )

Gravity + Pressure
Curvature
F  exact
F  no curvature

t = 1.2 s(b)

0

20

40

60 t = 2.1 s(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X (m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y 
(m

)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X (m)

Y 
(m

)

(e)

0.1 0.5 1.0 2.0 5.0 10.0
h (mm)

Figure 2.8: (a) Total kinetic energy of the flow with the Coulomb rheology, µ = tan(15°) and
a slope θ = 25°. (b) For the simulation with exact curvature terms, maximum norm of gravity
and pressure force (~FVg , black curve), of the curvature force (~FVH, red curve, negative when
~n · ~FVH < 0) and of the friction force (~FµH, blue curves). The friction force is computed with the
exact curvature term (Fµ exact) or when it is neglected (Fµ no curvature). The maximum is
computed for a constant X coordinate, at t=1.2 s. (c) Flow thickness at t=1.2 s. (d) and (e):
Same as (b) and (c), respectively, but for t=2.1 s. These two times are indicated by the red
dashed vertical line in (a).
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2.4.3 Travel time and maximum dynamic force

The flow travel duration within the channel is often a key indicator for hazard assessment. The
second indicator is the maximum dynamic force Fd,

Fd = max(
1

2
ρh‖~V‖2) = max(hPd), (2.42)

where Pd is the dynamic pressure. In the following we choose ρ = 1500 kg m3 for the density: it
acts only as a scaling factor. To obtain a more systematic analysis of the influence of curvature
terms on these indicators, we keep only one bend, but try three different bend amplitudes:
Ab = 0 m, Ab = 0.25 m and Ab = 0.5 m (γ̄ = 0, γ̄ = 0.24 and γ̄ = 0.48. Simulations are run
in each configuration with the Coulomb and Voellmy rheologies, while varying the friction and
turbulence coefficients.

Results are displayed in Figure 2.9 and summarized in Table 2.2. Unsurprisingly, for a straight
channel, travel durations in the channel are very similar whatever the curvature description.
There are however variations in the dynamic force (e.g. blues curves in Figure 2.9d), likely due
to the initial spreading of the mass in all directions. When a bend is added (Ab = 0.25 m and
Ab = 0.5 m), in the case of small friction coefficients and thus small friction forces, neglecting the
curvature in the friction force has less effect than neglecting the curvature force (e.g. Figure 2.9a,
Ab = 0.5 m for µ < tan(6°)). However the opposite occurs when the friction coefficient increases,
as the friction force also increases. The error on maximum dynamic force is particularly high for
fast flows, that is for small friction coefficients (e.g. for Ab = 0.5 m, up to 40% for µ = tan(2°)
and only 5% for µ = tan(8°), Figure 2.9b). Note, however, that when we increase the length of
the channel by adding successive bends, the effect of using incorrect curvature terms is amplified
due to successive errors. We have for instance at most 5% discrepancies in travel durations with
one bend and µ = tan(6°), but up to 15% differences with 5 successive bends (see Table 2.2 and
Supplementary Figure 2.A.8). With higher slope angles and friction coefficients corresponding
to rock avalanches, the differences would be even more significant.

When we use the Voellmy rheology, as expected, differences in travel times are less striking:
only 5% deviations for the flow travel time (Figure 2.9c), and 10% differences for the maximum
dynamic force (Figure 2.9d).

We may wonder whether our observations on synthetic and simple topographies can be extrap-
olated to more realistic scenarios. In the next section, we thus carry out simulations on real
topographies.

2.5 Curvature effects in simulations over real topographies

We chose two case studies for our simulations on real topographies: the simulation of debris flows
in the Prêcheur river, in Martinique (French Caribbean) and the simulation of a debris avalanche
on the Soufrière de Guadeloupe volcano, in Guadeloupe (French Caribbean)

2.5.1 Debris flow in the Prêcheur river

The Prêcheur river is located on the western flank of Montagne Pelée, an active volcano for which
the last eruption dates back to 1932. Debris flows and hyper-concentrated flows occur regularly
in this 6 km long river (Clouard et al., 2013; Nachbaur et al., 2019), with the risk of overflow
into the Prêcheur village, at the mouth of the river (Aubaud et al., 2013; Quefféléan, 2018a). In
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Figure 2.9: Simulation of a flow in a channel with slope θ = 10° and one bend with the Coulomb
rheology (a and b) and the Voellmy rheology (c and d, with µ = tan(2°)). The bend amplitude
Ab is either 0 m, 0.25 m or 0.5 m (respectively, blue, green and red curves).The corresponding
non-dimensionalized curvature is γ̄ The flow duration in the channel (a and c) and the maximum
impact pressure (b and d) are plotted as functions of the friction coefficients for the Coulomb
rheology (the top x-axis gives the corresponding friction angle) and as functions of the turbulence
coefficient for the Voellmy rheology. Different situations are considered: when the curvature force
is taken into account (FH exact) or neglected (FH = 0) and when the curvature in the friction
is exact (Fµ exact) or neglected (Fµ no curvature)
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Table 2.2: Influence of curvature terms for synthetic topographies, with the Coulomb rheology, for
different channel geometries with slope θ = 10° (lines, with Ab the channel bend amplitude) and
friction coefficients (columns). The relative maximum deviation from the reference simulation
with exact curvature is given for the flow duration in the channel (∆t, bold) and for the maximum
dynamic force (Fd, italic). We specify which curvature term has the more prominent influence on
the flow dynamics: the curvature force (FH) or the curvature in the friction (Fµ). n/a indicates
indicates no simulation was done.

µ = tan(0°) µ = tan(6°) µ = tan(8°)
∆t Fd ∆t Fd ∆t Fd

Ab = 0 m 0% 0% 0% -5% 0% 0%

Ab = 0.25 m 1 bend +10% -15% +5% -25% +2.5% -5%
FH FH FH, Fµ

Ab = 0.5 m
1 bend +10% -45% +5% +20% -2.5% +5%

FH FH, Fµ Fµ

5 bends
+15%a -60%a

not modeled -10%b +135%b not modeled
Fµ

a Differences for Fµ exact and FH = 0 neglected
b Differences for Fµ without curvature and FH exact.

this context, numerical modeling can help constrain the prominent parameters controlling the
flow dynamics and in turn be used for quantified risk assessment. However, a detailed analysis is
beyond the scope of this paper. We only aim here to illustrate whether or not curvature effects
have a significant impact on the flow dynamics. To that purpose, we release a hypothetical
mass of 90,000 m3 at the bottom of the cliff and model its propagation for 10 minutes, on a
5-meter Digital Elevation Model. We will first explore the possibility of overflows (Figures 2.10)
in simulations with the Coulomb rheology. We will then conduct a more systematic analysis of
curvature effects on the debris flow front position with the Coulomb and Voellmy rheologies and
various rheological parameters, tracking the front position during the simulation with a thickness
threshold of 1 cm (Figure 2.11). The results of approximating the curvature are displayed in
Supplementary Figures 2.A.9 and 2.A.10.

Channel overflows with the Coulomb rheology

A critical point for hazard assessment is the possibility of overflows. In Figure 2.10, we show the
maximum thickness of the flow in the Prêcheur river, simulated with the Coulomb rheology and
µ = tan(3°), which is representative of a highly mobile material. Keeping the curvature force but
neglecting the curvature in the friction not only increases the runout, but also leads to multiple
overflows (Figure 2.10c). Neglecting the curvature force partly compensates artificially this effect
(Figure 2.10d). However, in this case, overflows dot not correspond to the ones modeled in the
reference case(see Figure 2.10e and 2.10f, the white line is the extent of the flow in the simulation
with exact curvature). Streaks outside the topography are artifacts explained in Appendix 2.E.

Flow front position and travel distance

We now track the flow front position as the flow propagates in the river. With the Coulomb
rheology, the travel distance is increased by several hundred meters when the curvature in the
friction force is neglected (Figure 2.11a, solid and dashed curves with triangles). This difference
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may be reduced by choosing a thickness threshold higher than 1 cm. Nevertheless, it highlights
the bias introduced by an improper curvature description. Curvature effects have a particularly
strong influence in the upper part of the river which is narrow, twisted and with slopes above
θ = 7° (see Figure 2.10): there are significant variations in the time needed by the flow to travel
the first 1.5 km (Figure 2.11b). Depending on the friction coefficient, neglecting the curvature in
the friction increases the flow velocity by 20 to 30% (Figure 2.11b, FH exact, Fµ no curvature).
This allows the flow to gain enough momentum to overrun flatter areas, whereas it remains stuck
there in the reference case. To the contrary, neglecting the curvature force (FH = 0, Fµ exact)
slows down the flow by 30 to 50%.

With the Voellmy rheology, the prominent factor impacting the flow dynamics is the curvature
force (Figure 2.11d): without it, the flow needs up to 15% more time to travel the first 3 km.
Further downstream, the delay between simulations is however constant (e.g. no more than 25 s
with ξ = 3500 m s−2, Figure 2.11c), which indicates once more that curvature effects affect the
flow mainly in the upper part of the river.

2.5.2 Debris avalanche on the Soufrière de Guadeloupe volcano

Thin-layer numerical models are also commonly used to model the dynamics and emplacement
of debris and rock avalanches, which are not confined to one channel as for debris flows. They
usually involve bigger volumes (e.g. several million cubic meters) and spread on steeper slopes at
least at their onset (e.g. Guthrie et al., 2012). In this section, we investigate the importance of
curvature effects in simulations reproducing such events, studying the example of the Soufrière
de Guadeloupe volcano, in Guadeloupe (French Caribbean). This volcanic edifice has a strong
record of destabilization events, with at least 9 debris avalanches over the past 9,000 years
(Boudon et al., 2007; Legendre, 2012). Peruzzetto et al. (2019) model the runout of a 90 ×106

m3 debris avalanche: this volume is consistent with the estimated volume (80 ±40× 106 m3) of
the 1530 CE debris avalanche. In order to reach the sea 9 km away from the volcano like the
1530 CE event, the friction coefficient µ = tan(7°) had to be used (Figure 2.12a).

Using this friction coefficient and the same modeling set-up, we now model the debris avalanche
emplacement by neglecting the different curvature terms (Figures 2.12b to 2.12f). The results
of approximating the curvature are displayed in Supplementary Figure 2.A.11, and maximum
kinetic energies in Supplementary Figure 2.A.12. When the curvature force is neglected, the
most prominent difference is an excessive travel distance to the south (more than 1.5 km, Figure
2.12b, green rectangle). In some areas, spreading is less important, but only slightly (a difference
of less than 200 m, Figure 2.12b, blue rectangle). Neglecting the curvature in the friction induces
the most significant deviation from the reference simulation, with a generalized increase of the
debris avalanche spreading (Figure 2.12c and 2.12d). In particular, the debris avalanche reaches
the sea south of the Soufrière volcano, which is not predicted in the reference case (Figure 2.12a).
Such differences are critical for tsunami hazard assessment.

2.6 Discussion

2.6.1 Importance of curvature effects for different rheologies

In our study, we derived curvature forces for the simplified case of a inviscid thin-layer flow.
That is of course a simplification, as complex interactions between solid particles and between
the solid and liquid phases can be expected (see Delannay et al. (2017) for a review). The formal
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Figure 2.10: Maximum thickness of the flow simulated in the Prêcheur river with the Coulomb
rheology and µ = tan(3°). Each plot (a to d) displays the result of the simulation when the
curvature force is taken into account (FH exact) or neglected (FH = 0) and when the curvature
in the friction is exact (Fµ exact) or neglected (Fµ no curvature). The simulation results in the
reference case, with exact curvature terms, is given in (a). The corresponding flow extent (white
curve) is reported in all figures. Green dashed rectangles (respectively blue dashed rectangles)
indicate areas where the spreading is greater (respectively lesser) in other simulations, in com-
parison to the reference simulation (a). Zooms on these areas are given in (e) and (f). The
contour step is 20 m.
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Figure 2.11: Simulations of debris flow in the Prêcheur river. Different situations are considered:
when the curvature force is taken into account (FH exact) or neglected (FH = 0) and when
the curvature in the friction is exact (Fµ exact) or neglected (Fµ no curvature). (a) Flow front
position with the Coulomb rheology. (b) Time needed for the flow to travel the first 1.6 km (black
dashed line in (a)) with the Coulomb rheology, as a function of friction coefficient. (c) Flow front
position with the Voellmy rheology and µ = tan(2°). (d) Time needed for the flow to travel the
first 1.6 km (black dashed line in (c)) and 2.9 km (gray dashed line in (c)) with the Voellmy
rheology, as a function of turbulence coefficient.
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Figure 2.12: Maximum thickness of a hypothetical 90 ×106 m3 debris avalanche on the Soufrière
de Guadeloupe volcano (French Caribbean). Each plot (a to f) displays the result of the simula-
tion when the curvature force is taken into account (FH exact) or neglected (FH = 0) and when
the curvature in the friction is exact (Fµ exact) or neglected (Fµ no curvature). The simulation
results in the reference case, with exact curvature terms, is given in (a) (Peruzzetto et al., 2019).
The corresponding flow extent (white curve) is reported in all figures. Green dashed rectangles
(respectively blue dashed rectangles) indicate areas where the spreading is greater (respectively
lesser) in other simulations, in comparison to the reference simulation (a). The DEM is from
IGN BDTopo, coordinates: WGS84, UTM20N. The contour interval is 100 m.
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Error max for Error max for
channelized flow non-channelized flow

Synthetic topography Prêcheur river Soufrière de Guadeloupe

Coulomb µ < tan(5°) FH = 0
Fµ without curvature n/aand FH exact

µ > tan(5°) Fµ approximated Fµ without curvature Fµ without curvature
Voellmy Limited influence of curvature effects n/a

Table 2.3: Qualitative summary of the simulations results, with the different topographies
(columns) and rheologies (lines). For the Coulomb rheology, we give the curvature descrip-
tion that gives the biggest error in comparison to simulations with the exact curvature. FH
refers to the curvature force and Fµ to the curvature in the friction force.

derivation of SHALTOP equations requires, for instance, that the kinematic viscosity is small
(see Appendix 2.B), which can be questioned in practice for muddy debris flows. Pastor et al.
(2004) and Pastor et al. (2009a) used the Bingham and Herschel-Bulkley theories to derive an
implicit relation between the flow average velocity and the basal shear stress for simple shear
flows on 1D topographies. Note that the resulting equations are similar to that of SHALTOP,
provided we use an appropriate friction coefficient µ that depends on the thickness and on the
flow velocity. A more comprehensive description of viscous flows is done by Pudasaini and Mergili
(2019).

Historically, the first constitutive equations for 1D granular flows thin-layer models were linked
to soil mechanics, with the introduction of an internal friction coefficient (Savage and Hutter,
1991; Gray et al., 1999). Some studies suggest that it is needed to model granular flows (Hungr,
1995; Gray et al., 1999; Pirulli et al., 2007). This is, however, difficult to extend to complex
2D topographies, requiring simplifications (Iverson and Denlinger, 2001) or on the contrary the
resolution of the complete stress state within the flow (Denlinger and Iverson, 2004). Besides,
Gray et al. (2003) show that a hydraulic approach without internal friction, as in our study, allows
to reproduce accurately shock waves generated when granular materials flow around obstacles or
over topography slope breaks.

Finally, the µ(I)-rheology has been increasingly used over past years to model dry granular flows
(e.g. GDR MiDi, 2004; Jop et al., 2006). Formal derivations have been done to derive its depth-
integrated version but for simple topographies only (e.g. Gray and Edwards, 2014; Baker et al.,
2016).

More generally, following the classification of thin-layer models done by Luca et al. (2009b), our
study shows that curvature effects are important when there is limited resistance to shearing
in the flow. However, we did not consider situations where resistance to shearing increases
and/or stresses acting on topography perpendicular planes become significant (e.g., when an
internal friction coefficient is used). In such cases, it is nevertheless difficult to concile both a
fine decription of the topography and of the rheology. For instance, the velocity profile in the
normal variable is in general unknown and evolves with the flow (Ionescu et al., 2015), such
that assuming a velocity profile as in Luca et al. (2009b) may break down energy conservation.
It becomes even more complex when we consider that the flow rheology can change during
propagation (Iverson, 2003).

2.6.2 Importance of curvature effects in the Coulomb rheology

With the Coulomb rheology and without internal friction, our simulations show that curvature
effects can be significant for fast flows (e.g. several m s−1). For a given topography, the relative
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importance of the curvature force and of the curvature within friction strongly depends on the
friction coefficient µ (see Table 2.3): when it increases, the friction force (and thus the curvature
term within friction) prevails over the curvature term. In the extreme case µ = 0, there is no
friction and the curvature force has a strong influence on the flow dynamics. The transition
between these two regimes occurs between µ = tan(6°) and µ = tan(8°) in our simulations on
synthetic topographies for a slope θ = 10°. It is not clear how much these transition values
depend on the flow path and on the topography itself: neglecting the curvature force in the
Prêcheur river simulations entails a significant acceleration of the flow even for µ = tan(2°).
The latter is however artificially compensated for when the curvature force is also neglected
for friction coefficient below tan(4°). This artificial compensation of two errors with competing
effects (accelerating and decelerating the flow) is fortuitous and not at all a generality.

We did not focus on the effect of approximating the curvature in the friction force because it
is actually straight-forward to implement the accurate curvature term. However, approximating
the curvature does results in significant differences. On synthetic topographies with friction an-
gles above µ = tan(5°), the prominent error compared to the correct simulation is obtained when
the curvature within friction is approximated (e.g., see Supplementary Figures 2.A.2, 2.A.6 and
2.A.7). However, on real topographies, the prominent error occurs when it is neglected (see Sup-
plementary Figure 2.A.9 and 2.A.10 for the Prêcheur river, and Supplementary Figure 2.A.11 and
2.A.12 for Soufrière de Guadeloupe simulations). This difference may stem from the roughness
of the terrain (which has locally high curvatures) that is not rendered in our smooth synthetic
channel. Such local effects can then strongly affect the simulations results globally, impacting
for instance the travel distance.

Reproducing the laboratory experiment from Iverson et al. (2004) yields similar conclusions as
what we observed for synthetic and real topographies. In this experiment, a granular flow propa-
gates in and irregular channel. We model it using friction coefficients calibrated by Lucas (2010)
(µ = tan(23°) in the channel and µ = tan(26°) elsewhere). The channel is not significantly
twisted: using the same notations as previously, we estimate a non-dimensionalized bend curva-
ture γ̄ = 0.15. In comparison, we had γ̄ = 0.48 for our synthetic topographies. Thus, the flow
path is rather straight in the channel and curvature effects are limited in the first 0.3 s of the sim-
ulations (see Supplementary Figure 2.A.14). However, the important slope break at the channel
increases bottom friction when curvature is taken into account, and removing curvature acceler-
ates the flow (see Supplementary Figure 2.A.15). Omitting the curvature force does change the
final geometry of the mass but to a lesser extent. Indeed, the flow velocity remains globally in
the direction of the topography slope. All these observations are in agreement with our results
for synthetic channels. Future comparisons could be carried out by modelling experimental flows
in twisted flumes, as in Scheidl et al. (2015).

Errors induced by inaccurate curvature description can be highly critical for model calibration.
For instance, without curvature in friction, higher friction angles are needed to reproduce the
previous experiments deposits (at least 3° higher, see Supplementary Figure 2.A.16). That could
explain why, in the first JTC1 benchmarking exercise in 2007, SHALTOP used in many examples
a lower friction coefficient than other thin-layer models (Hungr et al., 2007).

2.6.3 Limited influence of curvature effects in the Voellmy rheology

In the Voellmy rheology, an empirical turbulence term proportional to the square of velocity is
added to the basal friction. It slows down the flow, but it also minimizes the relative importance
of curvature effects (that are also proportional to the square of velocity) when there are sudden
changes in the flow direction. As a result, there are only slight changes in the flow runout when
curvature effects are not accounted for. This is clearly seen in our simulations, both on synthetic
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and real topographies. In Appendix 2.F, we give an example of a back-analysis of a debris flow
simulated with the Voellmy rheology. Neglecting the curvature force influences only slightly the
results.

However, Salm (1993) actually suggests that the turbulence coefficient ξ is proportional to the
mean distance between irregularities on the topography. This distance can be seen as an estimate
of the local topography radius of curvature. In the same perspective, in their guide book to
avalanche modeling, Salm et al. (1990) advise choosing higher turbulence coefficients on rough
topographies than on smooth topographies. More recently, Gruber and Bartelt (2007) calibrated
a spatially varying turbulence coefficient by back-analysis of snow avalanches. As Fischer et
al. (2012) point out, the resulting map of turbulence coefficients is strongly correlated to the
topography curvature. This suggests that the Voellmy rheology, or at least the Voellmy rheology
with a turbulence coefficient correlated to the local topography curvature, might be a way of
taking into account curvature effects empirically. However the resulting model cannot correctly
reproduce the complexity of the interaction between the flow and the topography, in particular
because the curvature force depends on the velocity direction and not only on its norm.

2.6.4 Importance of local curvature effects for overflows and runup estima-
tions

For smooth topographies and channelized flows, we can expect some hazard indicators, such as
the travel distance and the impacted area, to vary evenly when the simulation parameters span
their variation ranges. This is no longer the case when the flow manages to overflow topographic
barriers. Such non-linear behaviors and threshold effects are highly critical for hazard assessment
and complicate hazard mapping (Mergili et al., 2018). They cannot be described by simple laws
relating, for instance, the travel distance to the initial unstable volume (e.g. Lucas et al., 2014;
Mitchell et al., 2019).

In our study, when we disregarded the curvature force in the simulation of the debris avalanche
on Soufrière de Guadeloupe volcano, part of the material managed to overrun a plateau and
enter a ravine. It could then spread much further (about 1.5 km, see Figure 2.12b). Such a
behavior is however not systematic. For channelized flows, the curvature force tends to maintain
the flow at the bottom of the channel, whereas it would otherwise bounce back and forth on
its walls and potentially overflow the channel. However, in the long run, the curvature force
allows the flow to move faster because it does not dissipate energy boucing back and forth on
the channel banks. If a sudden twist is encountered further down, the flow may in turn have
enough energy to overflow the channel banks, which would not be the case without the curvature
force. We could reproduce such a situation in the Prêcheur river, with the Coulomb rheology
and µ = tan(2°) (see Supplementary Figure 2.A.13).

Local curvature effects are thus worth taking into account when considering debris flow runup
against steep slopes (Iverson et al., 2016) and on the outer bank of a channel bend (Scheidl et al.,
2015). In the latter case, the runup (that is, the elevation difference between the inner and outer
boundaries of the flow in the channel, as measured in the field) can be related to the flow velocity
(Prochaska et al., 2008; Scheidl et al., 2015). The runup and/or the deduced velocity can then be
used to fit rheological parameters in thin-layer simulations. As they describe the dynamics of the
flow in locations where we can expect strong curvature effects, the resulting best-fit parameters
may depend significantly on whether or not these curvature effects are properly described in the
model, even with the Voellmy rheology.
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2.7 Conclusion

In this work, we show how an incorrect derivation of the thin-layer equations can lead to the
omission of two curvature terms, originating from the expression of the pressure at the bottom
of the flow. The first one, the curvature force, does not depend on the rheology and ensures that
the flow velocity remains tangent to the topography. The second one appears in the bottom
friction force (and thus only when frictional rheologies such as Coulomb or Voellmy are used).
They are both proportional to the square of the flow velocity, but also depend on the velocity
orientation and topography curvature tensor.

We have carried out simulations on synthetic and real topographies to highlight the influence of
these curvature terms in thin-layer numerical simulations, with the code SHALTOP (see Table
2.3). The curvature terms are all the more important when the flow is fast (typically, several
m s−1 to tens of m s−1), that is for low friction coefficients and/or steep slopes.

For flows propagating in twisted channels modeled with the Coulomb rheology, the curvature
force tends to maintain the flow at the bottom of the channel. Thus, neglecting it favors bouncing
on the channel walls and reduces the propagation velocity. For instance, in the case of the upper
section of Prêcheur river where slopes are higher than θ = 7°, omitting the curvature force in
simulations reduces the average velocity of channelized flow by 30%, for friction coefficients below
µ = tan(6°). Simulated overflows then differ, which is critical for hazard assessment.

Approximating the curvature in the friction force can break the rotational invariance of the model
and slow down the flow. Neglecting the curvature in friction decreases the norm of the friction
force and thus accelerates the flow, when the latter propagates from steep to more gentle slopes.
It results in the most important errors when the flow velocity is in the main slope direction,
and more generally on real topographies. For instance, in the case of the simulation of a debris
avalanche on the Soufrière de Guadeloupe, travel distances are increased by several hundred
meters. We observe similar effects on a synthetic channel with slope θ = 25° and µ = tan(15°),
with a 50% increase of the kinetic energy. Though such effects can sometimes be artificially
compensated for by also neglecting the curvature force, it is not at all systematic and thus both
terms need to be properly taken into account for correct model calibration.

Though we have focused on debris flows and debris avalanches modeling, our results could apply
to other geophysical flows, such as moutain river stream flows (Borthwick and Barber, 1992; Chu-
ruksaeva and Starchenko, 2015) and concentrated and dilute pyroclastic currents (Komorowski et
al., 2013; Kelfoun et al., 2017). Curvature effects may also be important for modeling landslide-
generated tsunamis, for which the thin-layer equations must be integrated in the direction normal
to the topography for the landslide, and in the vertical direction for the fluid layer (Ma et al.,
2013; Delgado-Sánchez et al., 2019).

Note that strong curvature effects may also be an inherent limitation of thin-layer models. Indeed,
curvature forces are particularly strong when the topography curvature is high, as for instance
in a narrow channel. However, in this case, the thin-layer assumption may no longer be valid. In
order to discriminate between real curvature effects and numerical artifacts, comparisons with
full 3D models where no approximations are done on the layer thickness could be conducted.
Yet such comparisons exercises may prove difficult (e.g. Pirulli et al., 2018).

Of course, our results must also be considered in regard of the rheology uncertainty, which is
sometimes large. We believe future research should focus on both the developement of accurate
physically-based rheologies with constrained realistic parameters, and on methodologies to prop-
erply describe topography effects. Such studies are complementary to, in turn, develop a model
uniting both aspects.



Chapter 2. Topography curvature effects 61

Appendix

2.A Supplementary Figures
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Figure 2.A.1: (a) Total kinetic energy of the flow with a Coulomb rheology, µ = 0 and a
slope θ = 10°. (b) For the simulation with exact curvature terms, maximum norm of gravity
and pressure force (~Fg, black curve) and of the curvature force (~FH, red curve, negative when
~n · ~FH < 0). The maximum is computed for a constant X coordinate, at t=0.9 s. (c) Flow
thickness at t=0.9 s. (d) and (e): Same as (b) and (c), respectively, but for t=1.7 s. These two
times are indicated by the red dashed vertical line in (a).



62 2.A. Supplementary Figures

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ki
ne

tic
 e

ne
rg

y 
(m

J)

F  exact, F  exact
F  = 0, F  exact
F  exact, F  no curvature
F  = 0, F  no curvature
F  exact, F  approximated
F  = 0, F  approximated

(a)

0

2

4

6

8

10

12

Fo
rc

e 
(N

.m
2 )

Gravity + Pressure
Curvature
F  exact
F  no curvature
F  approximated

t = 1.2 s(b)

5

0

5

10

15

20

25 t = 2.1 s(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X (m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y 
(m

)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X (m)

Y 
(m

)

(e)

0.1 0.5 1.0 2.0 5.0 10.0
h (mm)

Figure 2.A.2: (a) Total kinetic energy of the flow with the Coulomb rheology, µ = tan(6°) and
a slope θ = 10°. (b) For the simulation with exact curvature terms, maximum norm of gravity
and pressure force (~FVg , black curve), of the curvature force (~FVH, red curve, negative when
~n · ~FVH < 0) and of the friction force (~FµH, blue curves). The friction force is computed with the
exact curvature term (Fµ exact), its approximation (Fµ approximated) and when it is neglected
(Fµ no curvature). The maximum is computed for a constant X coordinate, at t=1.2 s. (c) Flow
thickness at t=1.2 s. (d) and (e): Same as (b) and (c), respectively, but for t=2.1 s. These two
times are indicated by the red dashed vertical line in (a).
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Figure 2.A.3: Flow simulation with the Coulomb rheology, µ = tan(6°), and a slope θ = 10°.
(a-f) Maximum flow thickness. (g-l) Maximum flow velocity. (a) and (g) are the simulation
results in the reference case, with exact curvature terms: the corresponding flow extent (white
curve) is reported in all figures. The contour interval is 2 cm. Simulation duration is 2.8 s.
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Figure 2.A.4: Same as Supplementary Figure 2.A.2 but with the Voellmy rheology, µ = tan(2°),
ξ = 3500m s−2 and a slope θ = 10°. The friction force in (b) and (d) includes the Voellmy
turbulence term. (b) and (c): t=1.2 s. (d) and (e):t=2.3 s.
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Figure 2.A.5: Flow simulation with the Voellmy rheology, µ = tan(2°), ξ = 3500 m s−2 and a
slope θ = 10°. (a-f) Maximum flow thickness. (g-l) Maximum flow velocity. (a) and (g) are
the simulation results in the reference case, with exact curvature terms: the corresponding flow
extent (white curve) is reported in all figures. The contour interval is 2 cm. Simulation duration
is 3.0 s.
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Figure 2.A.6: Same as Supplementary Figure 2.A.2 but with the Coulomb rheology, µ = tan(15°),
and a slope θ = 25°. (b) and (c): t=1.2 s. (d) and (e):t=2.1 s.
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Figure 2.A.7: Flow simulation with the Coulomb rheology, µ = tan(15°), and a slope θ = 25°.
(a-f) Maximum flow thickness. (g-l) Maximum flow velocity. (a) and (g) are the simulation
results in the reference case, with exact curvature terms: the corresponding flow extent (white
curve) is reported in all figures. The contour interval is 2 cm. Simulation duration is 2.3 s.
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Figure 2.A.8: Simulations of a flow in a channel with slope θ = 10°, a bend amplitude Ab =0.5 m,
with the Coulomb rheology (µ = tan(6°), blue curves) and the Voellmy rheology (µ = tan(6°),
ξ = 3500m s−2, red curves). The flow duration in the channel (a) and the maximum impact
pressure (b) are plotted as functions of the number of bends. Different situations are considered:
when the curvature force is taken into account (FH exact) or neglected (FH = 0) and when the
curvature in the friction is exact (Fµ exact), neglected (Fµ no curvature) or approximated (Fµ
approximated).
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Figure 2.A.9: Maximum thickness of the flow simulated in the Prêcheur river with the Coulomb
rheology and µ = tan(3°). Each plot (a to f) displays the result of the simulation when the
curvature force is taken into account (FH exact) or neglected (FH = 0) and when the curvature in
the friction is exact (Fµ exact), neglected (Fµ no curvature) or approximated (Fµ approximated).
The simulation results in the reference case, with exact curvature terms, is given in (a). The
corresponding flow extent (white curve) is reported in all figures. Green dashed rectangles
(respectively blue dashed rectangles) indicate areas where the spreading is greater (respectively
lesser) in other simulations, in comparison to the reference simulation (a). The contour step is
20 m.
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Figure 2.A.10: Simulations of debris flow in the Prêcheur river. Different situations are consid-
ered: when the curvature force is taken into account (FH exact) or neglected (FH = 0) and when
the curvature in the friction is exact (Fµ exact), neglected (Fµ no curvature) or approximated
(Fµ approximated). (a) Flow front position with the Coulomb rheology. (b) Time needed for the
flow to travel the first 1.6 km (black dashed line in (a)) with the Coulomb rheology, as a func-
tion of friction coefficient. (c) Flow front position with the Voellmy rheology and µ = tan(2°).
(d) Time needed for the flow to travel the first 1.6 km (black dashed line in (c)) and 2.9 km
(gray dashed line in (c)) with the Voellmy rheology, as a function of turbulence coefficient.
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Figure 2.A.11: Maximum thickness of a hypothetical 90 ×106 m3 debris avalanche on the
Soufrière de Guadeloupe volcano (French Caribbean). Each plot (a to f) displays the result of the
simulation when the curvature force is taken into account (FH exact) or neglected (FH = 0) and
when the curvature in the friction is exact (Fµ exact), neglected (Fµ no curvature) or approx-
imated (Fµ approximated). The simulation results in the reference case, with exact curvature
terms, is given in (a) (Peruzzetto et al., 2019). The corresponding flow extent (white curve) is
reported in all figures. Green dashed rectangles (respectively blue dashed rectangles) indicate
areas where the spreading is greater (respectively lesser) in other simulations, in comparison to
the reference simulation (a). The DEM is from IGN BDTopo, coordinates: WGS84, UTM20N.
The contour interval is 100m.
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Figure 2.A.12: Same as Supplementary Figure 2.A.11, but with the simulated maximum kinetic
energies.
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Figure 2.A.13: Maximum thickness of the flow simulated in the Prêcheur river with the Coulomb
rheology and µ = tan(2°). (a) Curvature and friction forces are exact. Maximum flow extent
(white line) is reported in (b). (b) Curvature force is neglected but the friction force is exact.
Green dashed rectangles (respectively blue dashed rectangles) indicate areas where the spreading
is greater (respectively lesser) in other simulations, in comparison to the reference simulation (a).
The contour step is 20 m.
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Figure 2.A.14: Simulation of the experimental set-up of Iverson et al. (2004). Colore scale:
thickness of simulated flow, at t = 0.3 s. Green dotted line: contour of the deposits in the
experiment. Each plot (a to d) displays the result of the simulation when the curvature force
is taken into account (FH exact) or neglected (FH = 0) and when the curvature in the friction
is exact (Fµ exact) or neglected (Fµ no curvature). We use µ = tan(23°) in the channel and
µ = tan(26°) elsewhere, as in Lucas (2010).
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Figure 2.A.15: Same as Supplementary Figure 2.A.14, but for t = 8.0 s.
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Figure 2.A.16: Same as Supplementary Figure 2.A.14, but for t = 8.0 s, µ = tan(26°) in the
channel and µ = tan(29°) elsewhere.
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2.B Derivation of SHALTOP thin-layer equations

2.B.1 Navier-Stokes equations

We detail here the derivation of the thin-layer equations, starting from the Navier-Stokes equa-
tions:

∂t~U + (~U · ∇ ~X)~U = −~g +∇ ~X · σ, (2.43)

∇ ~X · ~U = 0, (2.44)

Notations are given in the main body of the article. The flow free surface is a 2D surface given
by some time dependent equation F ( ~X, t) = 0, with upward unit normal vector ~ns (Figure 1a),
and is assumed to be advected by the velocity field ~U . The two associated boundary conditions
read

~U · ~n = 0 at the bed, (2.45)

∂tF + ~U · ∇ ~XF = 0 at the free surface. (2.46)

Denoting by (nt, ~ns) a time-space normal to the free surface (which means that ~ns = ∇ ~XF/‖∇ ~XF‖,
nt = ∂tF/‖∇ ~XF‖), condition (2.46) can also be written as nt + ~U · ~ns = 0. A traction free con-
dition at the free surface is commonly assumed,

σ~ns = ~0 at the free surface. (2.47)

We have written for σ:
σ = σ′ − pI3, (2.48)

with σ′ the deviatoric stress tensor, p the pressure field (devided by the flow density) and I3 the
identity matrix. Bouchut and Westdickenberg (2004) chose a Newtonian approach with a linear
stress constitutive equation

σ′ = ν
(
∇ ~X

~U + (∇ ~X
~U)t
)
, (2.49)

with ν the kinematic viscosity. Besides, we furthermore impose a friction boundary condition at
the bed

σ~n− (~n · σ~n)~n = µ
~U

‖~U‖
(−~n · σ~n)+, (2.50)

However, other closing equations may be chosen, as discussed in Setcion 6.1 in the main body
of the article. Nevertheless, it is difficult to reconcile fine descriptions of both the topography
and the rheology. Indeed, for 1D topographies, we can reasonably assume that the main stress
directions are normal and tangent to the topography. As the velocity is also along the main slope
direction, this greatly simplifies the expression of the stress tensor in a reference frame linked
to the topography. This is no longer the case for real topographies, as the flow can go in the
cross-slope direction (for instance, in the bend of a channel). It is very difficult to rigorously take
into account this variability when integrating the equations to derive the thin-layer equations.
In order to preserve the mathematical formalism, simplifications are therefore needed. In this
perspective, using a fluid dynamics approach as in Bouchut and Westdickenberg (2004) may be
physically incorret, but it facilitates the formal derivation of the equations in a frame linked to
the topography, as will be shown in the next section. Besides, it also simplifies the ordering, as
the only parameter for the internal rheology is the viscosity ν, as will be shown in Section 2.B.3.
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2.B.2 Coordinate system

We introduce a coordinate system (x1, x2, x3) = (x, x3) related to the cartesian coordinate system
(X,Y, Z) = (X, Z) through:

(X, Z) = ~X(x, x3) =

(
x
b(x)

)
+ x3~n(x). (2.51)

The vectors of the reference frame (~e1, ~e2, ~e3) associated with the new coordinates ~x = (x1, x2, x3)
have the same direction as coordinate lines, so we obtain, with the Einstein notation:

d ~X = ~eidxi = ~e1dx1 + ~e2dx2 + ~e3dx3. (2.52)

We therefore have, for instance, ~e1 = ∂x1
~X. Introducing the Jacobian matrix A of (2.51):

A = ∂ ~X~x =

∂Xx1 ∂Y x1 ∂Zx1
∂Xx2 ∂Y x2 ∂Zx2
∂Xx3 ∂Y x3 ∂Zx3

 , (2.53)

A−1 = ∂~x ~X =

∂x1X ∂x2X ∂x3X
∂x1Y ∂x2Y ∂x3Y
∂x1Z ∂x2Z ∂x3Z

 , (2.54)

~ei is thus the i-th column of A−1. By computing A−1, we can deduce that ~e3 is exactly ~n, the unit
vector normal to the topography (Figure 2a), and that ~e1 and ~e2 are orthogonal to ~n. However,
the base (~e1, ~e2, ~e3) is in general not orthogonal. In this base, the velocity field has coordinates
~V = (V1, V2, V3) = (V, V3):

~U = UX~eX + UY ~eY + UZ~eZ = V1~e1 + V2~e2 + V3~e3. (2.55)

From the latter equation, we can deduce

~V = A~U, (2.56)

V3 = ~U · ~n. (2.57)

Therefore, V3 is the topography normal component of the velocity (Figure 2b).

It is not straightforward to replace ~U by ~V in the Navier-Stokes equations, because it involves
the Jacobian matrix A that varies along the topography and along the depth of the flow. This
derivation can be found in (Bouchut and Westdickenberg, 2004), or in (Luca et al., 2009a) with
a different formalism. However, the resulting equations can be significantly simplified with the
thin-layer approximations.

2.B.3 Assumptions for ordering

In the thin-layer approximation, we describe the dynamics of a fluid layer with thickness h(x).
We introduce the aspect ratio ε = H/L, where H is the typical thickness of the fluid and L its
extent along the topography, and the topography curvature tensor H = c3∂2XXb,

H = c3

(
∂2b
∂X2

∂2b
∂X∂Y

∂2b
∂X∂Y

∂2b
∂Y 2

)
. (2.58)

The underlying rationale to derive the thin-layer equations consists in comparing terms in the
Navier-Stokes equations to the aspect ratio ε (which is itself small) and neglect the smallest
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ones. Such comparisons are done with the mathematical notations O() and o(). For instance,
h = O(ε) can be understood as “h has at most the same order of magnitude as ε” and h = o(ε)
means “h is much smaller than ε”. We use also the notation h ∼ ε, which means that h has
exactly the same order of magnitude as ε. With this formalism, we will accept to neglect terms
that are of magnitude O(ε2) in the non-conservative form of the momentum equation and terms
of magnitude O(ε3) in the depth-integrated mass conservation equation. To get these final
approximate equations, we make the following assumptions:

(a) The fluid layer is thin, i.e. ε� 1 and h ∼ ε and thus x3 = O(ε) within the flow layer. This
is in practice often valid, with geophysical flows that are sometimes several kilometers long
and only several meters or tens of meters thick.

(b) The slope curvature is small, i.e. H = O(ε) or equivalently ∂xs = O(ε). This assumption
is easily satisfied in open areas, but can be problematic, at least locally, for irregular
topographies.

(c) The velocity V is almost constant in the material layer. This assumption will be discussed
further on.

(d) The velocity in the direction normal to the topography, that is ~U · ~n = V3, is of the order
O(ε).

(e) The friction coefficient µ has magnitude O(ε) and it is also O(ν/ε). In reality, we use µ <
tan(6°) = 0.11 for mobile debris flows. For dry and massive landslides, empirical relations
(e.g. Lucas et al., 2014) show that µ decreases with increasing destabilized volumes. For
instance, we may have µ = tan(11°) = 0.20 for 1 km3 landslides and µ = tan(19°) = 0.34
for 1 ×106 m3 landslides. For even smaller landslides (Hibert et al., 2011; Levy et al., 2015)
and granular flows experiments (Mangeney et al., 2007b), typical friction coefficients reach
µ = tan(25°) = 0.47 or even µ = tan(30°) = 0.58.

(f) The material kinematic viscosity ν has magnitude o(ε2). For example, the viscosity of
water is 10−6 m2 s−1. The dynamic viscosity of mudflows is estimated with rheometers
(e.g. O’Brien et al., 1993; Malet et al., 2002; Sosio and Crosta, 2009) and/or by modeling
back-analysis (McArdell et al., 2003) and ranges from 1 to 100 Pa s. Assuming a density
of 2000 kg m−3, the associated kinematic viscosity ranges from 5 × 10−4 m2 s−1 to 5 ×
10−2 m2 s−1.

The last assumption may thus be an over-simplification in the case of muddy debris flows, which
can be very viscous. However, thin-layer models for viscous flows have been so far properly
derived only for simple topographies (Pastor et al., 2015; Baker et al., 2016). Extending them to
real topographies requires important simplifications, such that the resulting equations are very
similar to the ones we will derive here: only the basal shear stress changes (Pastor et al., 2015).
However, in our equations, we can use a friction coefficient µ that depends on the flow thickness
and velocity. By choosing it correctly, we can thus reproduce other rheologies classically used in
thin-layer models, including the Bingham rheology for viscous flows.

On account of boundary condition (2.45), assumption (d) can actually be derived from (a) (see
Bouchut and Westdickenberg, 2004). Moreover, the assumption (c) can take several forms. The
simplest expression is

V(t, ~x) = V̄(t,x) +O(ε2), (2.59)

but a more general form is

V(t, ~x) = V̄(t,x) + V1(t,x)(x3 −
h(t,x)

2
) +O(ε2). (2.60)



78 2.B. Derivation of SHALTOP thin-layer equations

In the second approximation, we assume that the deviation from a linear velocity profile is only
of the order O(ε2). Bouchut and Westdickenberg (2004) show that both approximations yield
the same system of averaged equations. The velocity V̄ can be seen as a parametrization of the
average flow velocity, or of the velocity at the middle of the fluid layer, in the plane tangent to
the topography (Figure 2b). That is equivalent to within an error in O(ε2). For simplicity, in
the following, we will consider only the approximation expressed in equation (2.59).

In the next section, we will use the above assumptions to simplify the expression of the topog-
raphy reference frame and in turn the relation between the cartesian coordinates ~U and the new
coordinates ~V of the velocity field. The spatial differential operators can also be written more
simply. This makes it possible to write the Navier-Stokes equations in the topography coordinate
system, from which we will deduce the thin-layer equations.

2.B.4 Derivation of the thin-layer equations

Using the thin-layer assumptions, we can derive a relatively simple expression for the topography
reference frame. With assumptions (a) and (b), we can show that the Jacobian matrix A (recall
that A−1 columns give the cartesian coordinates of the topography reference frame vectors) reads

A =

(
I2 − sst cs
−st c

)
+O(ε2), (2.61)

A−1 =

(
I2 −s
1
cs
t c

)
+O(ε2). (2.62)

Note that the reference frame is constant throughout the depth of the material layer (within
errors in O(ε2)). As mentioned above, the base (~ei)i∈[1,3] is, in general, neither orthogonal nor
orthonormal. Indeed, we have Gij = ~ei ·~ej 6= δij , where δij is the Kronecker symbol. The matrix
Gij is thus not diagonal,

G = A−tA−1 =

(
I2 + 1

c2
sst 0

0 1

)
+O(ε2) =

(
M−1 0

0 1

)
+O(ε2), (2.63)

where we introduced

M = I2 − sst =

(
I2 +

1

c2
sst
)−1

. (2.64)

Note however that ~e1 and ~e2 are respectively the projections of the cartesian base vectors ~eX
and ~eY , on the topography-tangent plane, parallel to ~eZ (Figure 2a). They thus have the same
horizontal direction but not the same norm as the reference frame chosen for instance by Christen
et al. (2010).

With the thin-layer approximation, we obtain the following relation between V̄ and ~U ,

‖~U‖2 = ‖V̄‖2 +

(
1

c
stV̄

)2

+O(ε2).

Note that even with the thin-layer approximation, ‖V̄‖ is not the physical velocity norm ‖~U‖.

The Navier-Stokes equations (2.43) and (2.44) must now be transformed to derive equations
for ~V , the velocity in the topography reference frame. For this, we must express the gradient
and the divergence operators in the topography reference frame. This can be done using the
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Christoffel symbols and classical tensor algebra results, as in Gray et al. (1999). Bouchut and
Westdickenberg (2004) instead compute the differential operators directly using the chain rule,

∇ ~X · ~U =
1

J
∂i(J Vi), (2.65)

A
(

(~U · ∇ ~X)~U
)

= (~V · ∇~x)~V − ~Γ(~V ), (2.66)

where J = det(A−1) = 1
c +O(ε2) and

~Γ(~V ) = −A
(
Vl∂l(A

−1)
)
~V , (2.67)

with ∂l = ∂xl . After rewriting and further calculations, in the case of inviscid derivations (i.e.
σ = −pI3), the momentum equation in the flow becomes

∂tV̄ + (~V · ∇~x)V̄ +M∇x (p+ g(x3c+ b)) = Γ(~V ), (2.68)

∂tV3 + (~V · ∇~x)V3 + ∂x3p+ gc = Γ3(~V ). (2.69)

With the thin-layer assumption, using the expression for V in (2.59) or (2.60) and the average
flow velocity V̄, the source terms Γ(~V ) and Γ3(~V ) are given by

Γ3(~V ) = −cV̄t(∂2xxb)V̄ +O(ε2) = O(ε), (2.70)

Γ(~V ) = Γ3(~V )s +O(ε2). (2.71)

As V3 = O(ε), the momentum equation for the normal velocity V3, (2.69), becomes

p = c(g + V̄t∂2xxbV̄)(h(t,x)− x3) +O(ε2) = O(ε). (2.72)

Substituting in (2.68), we obtain, still in the hydrostatic case, the thin-layer momentum equation
for V̄,

∂tV̄ + (V̄ · ∇x)V̄ + (I2 − sst)∇x (g(hc+ b)) = −c
(
V̄t(∂2xxb)V̄

)
s +O(ε2). (2.73)

Note that we only integrated the momentum equation over the direction normal to the topogra-
phy (2.69), from which we derived the expression of the pressure within the flow (2.72). When
we inject this expression in (2.68), we directly obtain the momentum equation for the average
velocity (2.73), without further integration. These results are of course obtained from the ap-
proximations presented in Section 2.B.3 and the expression of the velocity (2.59) (or (2.60), see
section 3.3.2 in Bouchut and Westdickenberg, 2004). However, if we now include the devia-
toric stress (2.49) in the Navier-Stokes equations, we have to integrate formally the momentum
equation over the direction normal to topography (2.68), along the flow depth.

The details of the derivations are given in Bouchut and Westdickenberg (2004). The key point is
the computation of ∇ ~X ·σ′ as a function of ~V and ~x, which is not straightforward. It is simplified
by assuming simple shear flows where the predominant terms are the velocity derivatives in the
direction normal to the topography, ∂x3 ~V . The integration of the momentum equation for V3
then gives the same expression of p as in (2.72). However the integration of the momentum
equation for V leads to two new terms including ∂x3V at the surface and at the base of the
flow. The traction free boundary condition at the surface eliminates one of them and the friction
condition at the base results in a new source term S that must be added to the right-hand side
of (2.73),

S = − V̄

h‖~U‖
(µpbottom + µ O(ν))+

= − V̄

‖~U‖

(
µ
(
gc− Γ3(~V )

)
+
µ

h
O(ε2) +

µ

h
O(ν)

)
+
. (2.74)
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To be consistent with the case without friction, we want µ
h O(ε2) and µ

h O(ν) to be of the order
of O(ε2). As h has magnitude ε, we need at least ν = O(ε2) and µ = O(ε) (more formally,
by integrating the conservative form of the Navier-Stokes equations, the friction source term is
in terms of hS, and we avoid the division by h, that can be problematic when h is small). In
practice, Bouchut and Westdickenberg (2004) choose ν = o(ε2) and µ = O(νε ) = o(ε), which
is more restrictive but necessary to properly derive the equations. In both cases however, the
term µΓ3(~V ) has magnitude O(ε2), as the leading error terms, and could thus be neglected. For
real landslides, the restriction µ = o(ε) or µ = O(ε) is nevertheless hardly realistic and greater
velocities can be expected. In turn, µΓ3(~V ) may well be greater than O(ε2). Though it is difficult
to quantify how it compares to other terms that are also neglected, it may be interesting to keep
it.

The resulting equation for V̄ is finally given by

∂tV̄ + (V̄ · ∇x)V̄ + (I2 − sst)∇x (g(hc+ b)) =

− c
(
V̄t(∂2xxb)V̄

)
s− µgcV̄√

‖V̄‖2 +
(
1
cs
tV̄
)2
(

1 +
V̄t(∂2xxb)V̄

g

)
+

+O(ε2). (2.75)

We dot not detail here the derivation of the mass equation, a it does not entail any curvature
term. With the same formalism as in our development, Bouchut and Westdickenberg (2004)
show that it reads :

∂t

(
h

c

)
+∇x ·

(
h

c
V̄

)
= O(ε3). (2.76)
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2.C Curvature approximation in friction forces

In this section, we analyze the effect of approximating the curvature term in the friction force.
This term is taken into account in most models, but not always accurately. As in the main body
of the article, we choose the following parametrization of the velocity,

~V = c

(
u, ut,

∂b

∂x
u+

∂b

∂y
ut

)
= (cu, s · u). (2.77)

The angle α gives the velocity direction, such that u = ‖u‖(cos(α), sin(α)). The expression of
the basal friction force reads

~Tf = ρhµ(g cos(θ) + γ(u))
~V
‖~V‖

, (2.78)

with ρ the material density, h the thickness of the material layer in the direction normal to
topography and γ(u) a curvature term. From the previous sections, we have

γ(u) = γ‖~V‖2 = utHu. (2.79)

Note that in order to practically compute the curvature along the flow path, velocity variations
must be taken into account. To illustrate this, let us consider a line tangent to the topography,
passing through a point (x0, y0, b(x0, y0)) in a fixed direction (cu, cut), with as previously c =
cos(θ). The resulting curve M(t) is given by

M(t) = (x0 + tcu, y0 + tcut, b(x0 + tcu, y0 + tcut)), (2.80)

Ṁ(t) = (cu, cut, cu∂xb+ cut∂yb), (2.81)

M̈(t) = (0, 0, c2u2∂xxb+ 2c2uut∂xyb+ c2u2t∂yyb). (2.82)

The associated curvature is

γ1 = ±

∥∥∥Ṁ(t) ∧ M̈(t)
∥∥∥∥∥∥Ṁ(t)

∥∥∥3 =

√
u2 + u2t

‖~V‖3
utHu. (2.83)

We thus have an approximation γ1(u) = γ1‖~V‖2 of γ(u),

γ1(u) =

√
‖u‖2

cos2(θ)(‖u‖2 + ‖u‖2‖∇b‖2 cos2(αb))
γ(u). (2.84)

where αb is the angle between u and the steepest slope direction. After some further transfor-
mations we obtain

γ1(u) =
1√

1− sin2(θ) sin2(αb)
γ(u). (2.85)

We have not taken into account the velocity variations and we observe that this approximation
yields an over-estimation of the curvature term and decelerates the flow. γ1(u) an γ(u) are equal
when the topography is flat or when the flow direction is aligned with the steepest slope.

We will now demonstrate the importance of using the full curvature tensor to compute the
curvature. As

H =

(
Hxx Hxy
Hxy Hyy

)
= cos3(θ)

(
∂xxb ∂xyb
∂xyb ∂yyb

)
, (2.86)
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is symmetric, it has two eigen-values λ1 and λ2. We introduce the angle β giving the principal
directions of curvature, such that the unit eigen-vectors associated with λ1 and λ2 are respectively

f1 = (cos(β), sin(β)), f2 = (− sin(β), cos(β)). (2.87)

From the previous relations we easily deduce

Hxx = λ1 cos2(β) + λ2 sin2(β), (2.88)

Hyy = λ1 sin2(β) + λ2 cos2(β), (2.89)
Hxy = (λ1 − λ2) sin(β) cos(β). (2.90)

With these notations, the curvature term γ(u) reads

γ(u) = Hxxu2 + 2Hxyuut +Hyyu2t = ‖u‖2
(
λ1 cos2(α− β) + λ2 sin2(α− β)

)
. (2.91)

Let us now approximate, wrongly, the curvature along the flow path with two expressions,

γ2 = Hxx cos2(α) +Hyy sin2(α), (2.92)
γ3 = Hxx| cos(α)|+Hyy| sin(α)|. (2.93)

We can also consider the curvatures in the x and y directions, respectively γx and γy,

γx =
∂xxb

(1 + (∂xb)2)
3
2

=
Hxx(

1− sin2(φ) sin2(θ)
) 3

2

, (2.94)

γy =
∂yyb

(1 + (∂yb)2)
3
2

=
Hyy(

1− cos2(φ) sin2(θ)
) 3

2

, (2.95)

where φ is the angle of the steepest slope direction,

cosφ = − ∂xb

‖∇b‖ , sinφ = − ∂yb

‖∇b‖ . (2.96)

As previously, we can weight γx and γy to estimate the curvature in the velocity direction,

γ4 = γx cos2(α) + γy sin2(α), (2.97)
γ5 = γx| cos(α)|+ γy| sin(α)|. (2.98)

In the main body of the article, we tested the influence of the approximation γ4 on the flow
dynamics. Note that if H were a scalar, the exact curvature along the flow path would be (see
(2.79))

γ = H‖u‖
2

‖~V‖2
. (2.99)

We could thus consider adding a multiplicative factor ‖u‖2/‖~V‖2 in the expressions (2.92), (2.93),
(2.97), (2.98) of γ2, γ3, γ4 and γ5. Though this would provide a better estimate, it is not intuitive.
We thus choose to keep the previous expressions, which seem more "natural", especially when
considering the curvature along the x and y directions.

There is no simple way to determine under what conditions these approximations result in an
acceleration or a deceleration of the flow. Note however that they are not invariant by rotation,
as they depend on the orientation α of the velocity. We can however look at a simple albeit
realistic case, when a flow is confined at the bottom of a ravine. We assume the ravine is aligned
with the steepest slope, as well as one of the eigen-vectors of H, say f1, so that αb = 0 and
α = β = φ. In particular we then have ‖u‖ = ‖~V‖. As the ravine cross-section is convex,
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the eigen-value associated with the other eigen-vector is positive: λ2 ≥ 0. Similarly, the sign
of λ1 depends on the convexity or concavity of the ravine longitudinal profile, i.e. the thalweg.
Typically, if the slope locally increases, λ1 < 0.

In the following we will evaluate the influence of each approximation of the curvature on the
dynamics of the flow. If the estimated curvature term is higher than γ(u) = λ1‖u‖2, then the
flow is decelerated. Otherwise, it is accelerated.

2.C.1 Approximation γ2

Let us first consider the approximation γ2(u) = γ2‖~V‖2. With the chosen configuration, it
simplifies to

γ2(u) = γ(u) + 2‖u‖2(λ2 − λ1) sin2(α) cos2(α). (2.100)

As λ2 > 0, the approximation γ2 results in an over-estimation of the curvature when λ2 > λ1.
On the other hand, the flow is accelerated when λ1 > λ2 > 0, that is when the thalweg slope
suddenly decreases.

2.C.2 Approximation γ3

The detailed development is more complex for the approximation γ3. As γ3(u) = γ3‖~V‖2 is
π/2-periodic for α, we can consider only α ∈ [0, π/2]. Simple trigonometric transformations then
yield

γ3(u) =

(√
2

2
(3λ1 − λ2) cos(α− π

4
) +
√

2 cos3(α− π

4
)(λ2 − λ1)

)
‖u‖2. (2.101)

Introducing r = λ1/λ2 and α̃ = α− π/4 ∈ [−π/4, π/4], we get

γ3(u) = λ2‖u‖2
(√

2

2
(3r − 1) cos(α̃) +

√
2(1− r) cos3(α̃)

)
. (2.102)

As this function is even in α̃, we can limit the analysis to α̃ ∈ [0, π/4]. Moreover we have

dγ3(u)

dα̃
= −λ2‖u‖2 sin(α̃)K(α̃, r), (2.103)

with

K(α̃, r) =

√
2

2
(3r − 1) + 3

√
2(1− r) cos2(α̃). (2.104)

If r ≤ 1 (i.e. λ1 ≤ λ2), K(α̃, r) ≥
√

2 and γ3(u) decreases between α̃ = 0 and α̃ = π/4. We then
have

γ3(u) ≥ γ3(u)|α̃=π/4 = λ1‖u‖2. (2.105)

If r > 1 (i.e. λ1 > λ2), K(α̃, r) ∈ [
√
2
2 (5 − 3r),

√
2]. Thus for r ≤ 5

3 (i.e. λ1 ≤ 5
3λ2), we also

have γ3(u) ≥ λ1‖u‖2. On the other hand, if r > 5
3 , there is an angle α̃0 ∈ [0, π/4] such that

K(α̃0) = 0. γ3(u) then increases for α̃ ∈ [0, α̃0] and decreases for α̃ ∈ [α̃0, π/4]. Moreover, we
have

γ3(u)|α̃=0 =

√
2

2
(r + 1)λ2‖u‖2 =

√
2

2
(λ1 + λ2)‖u‖2 (2.106)

γ3(u)|α̃=π/4 = λ1‖u‖2. (2.107)
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Thus, if r ≤
√

2 + 1 (i.e. λ1 ≤ (
√

2 + 1)λ2), γ3(u) ≥ λ1‖u‖2 and the flow is decelerated.

We can thus conclude that the approximation γ3 will decelerate the flow if λ1 ≤ (
√

2 + 1)λ2.
Otherwise, it depends on the channel direction. However, λ1 > (

√
2 + 1)λ2 can hardly be found

more than locally in a realistic channel as it corresponds to a sudden flattening of the channel
thalweg.

2.C.3 Approximations γ4 and γ5

Once again in the channel configuration, we compute for γ4(u) = γ4‖~V‖2 and γ5(u) = γ5‖~V‖2

γ4(u) = ‖u‖2
λ1

 cos4(α)(
1− sin2(α) sin2(θ)

) 3
2

+
sin4(α)(

1− cos2(α) sin2(θ)
) 3

2


+λ2 sin2(α) cos2(α)

 1(
1− sin2(α) sin2(θ)

) 3
2

+
1(

1− cos2(α) sin2(θ)
) 3

2

 , (2.108)

γ5(u) = ‖u‖2
λ1

 cos3(α)(
1− sin2(α) sin2(θ)

) 3
2

+
sin3(α)(

1− cos2(α) sin2(θ)
) 3

2


+λ2 sin(α) cos(α)

 sin(α)(
1− sin2(α) sin2(θ)

) 3
2

+
cos(α)(

1− cos2(α) sin2(θ)
) 3

2

 . (2.109)

In comparison to γ2 and γ3, the curvature approximations depend on the slope angle θ, which
makes a rigorous analysis difficult. This is illustrated in Figures 2.C.1 and 2.C.2, where we plot
for various slope angles the difference between the exact curvature term γ(u) and γ4(u) and
γ5(u) respectively. Note that for θ = 0°, we have γ2(u) = γ4(u) and γ3(u) = γ5(u). For small
slope angles, the difference between the approximations and the exact curvature term is positive
when λ1/λ2 < 0, whatever the channel direction α. However, when θ > 60° and θ > 40° (for γ4
and γ5 respectively), if λ1/λ2 > 0, the flow is decelerated. We were unable to derive the different
situations analytically or generally.

However we can identify graphically (Figure 2.C.3) the values of λ1/λ2 and θ for which the flow is
always accelerated (dark blue area) or decelerated (dark red area). In particular, we can deduce
graphically that the approximations γ4 and γ5 will always decelerate the flow if λ1/λ2 ∈ [−2, 1].
We may expect that the situation λ1/λ2 /∈ [−2, 1], in the case of a channel, will be met only
locally along the thalweg. However, even if λ1 < −2λ2, the flow will still be slowed down if
θ < 60° and θ < 40°, for γ4 and γ5 respectively. Even for higher slope angles, if λ1 > −6λ2, the
flow is slowed down in more than 50% of channel orientations.

We can thus expect the approximations γ4 and γ5 to decelerate the flow in most situations. This
is, in practice, verified on real topographies, as illustrated in the main body of the article.
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Figure 2.C.1: Normalized difference between the approximated γ4(u) and exact γ(u) curvature
terms, for (a) θ = 0°, (b) θ = 30°, (c) θ = 55°, (d) θ = 60°, (e) θ = 65°, (f) θ = 80°, plotted
as a function of the channel orientation α and of the main curvature ratio λ1/λ2. For θ = 0°,
γ4 = γ2. A positive difference (white and red colors) induces a deceleration of the flow, a negative
difference (blue colors) an acceleration.
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Figure 2.C.2: Normalized difference between the approximated γ5(u) and exact γ(u) curvature
terms, for (a) θ = 0°, (b) θ = 30°, (c) θ = 40°, (d) θ = 50°, (e) θ = 60°, (f) θ = 80°, plotted
as a function of the channel orientation α and of the main curvature ratio λ1/λ2. For θ = 0°,
γ5 = γ3. A positive difference (white and red colors) induces a deceleration of the flow, a negative
difference (blue colors) an acceleration.
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Figure 2.C.3: Sign of the difference between the approximated and exact curvature terms,
depending on the slope angle θ and the main curvature ratio λ1/λ2. (a) γ4(u) − γ(u). (b)
γ5(u)− γ(u) The color scale is p1 − p2, where p1 and p2 are the percentage of α values giving a
positive and a negative difference, respectively. p1−p2 = 0 means the flow is accelerated for 50%
of α values and decelerated for the remaining 50%. The dashed curves delimit the area where
λ1/λ2 ∈ [−2, 1] and where the difference is always positive (and thus where the approximations
decelerate the flow).
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2.D Supplementary Note 3: Synthetic topography generation

We define a basal reference surface SB in the fixed cartesian reference frame by z = zB(x, y).
The upward unit normal vector is

~nB =
1√

1 + (∂xzB)2 + (∂yzB)2
(−∂xzB,−∂yzB, 1). (2.110)

Taking zB = zB(x), we then have dzB/dx = tan θ and we consider θ to be constant, i.e. the
reference surface is a plane. We then construct a curvilinear coordinate system on this surface
by

x′(x, y) =

∫ x

0

√
1 + (∂xzB(τ, y))2dτ =

x

cos θ
, (2.111)

y′(x, y) = y. (2.112)

The third coordinate, z′, is the surface normal distance from a point to the surface. The channel
itself is constructed between x′1 and x′2 and has nb bends, such that each bend has length
L = (x′2 − x′1)/nb. Defining the amplitude Ab of the bends, the thalweg is given by y′ = ft(x

′),
with

ft(x
′) = 0 if x′ < x′1 or x′ > x′2, (2.113)

ft(x
′) =

Ab
2

+
Ab
2

cos

(
−2π

L

(
x′ − x′1 −

L

2

))
if x′ ∈ [x′1, x

′
1 +

L

2
], (2.114)

ft(x
′) = Ab cos

(
π

L

(
x′ − x′1 +

L

2

))
if x′ ∈ [x′1 +

L

2
, x′2 −

L

2
], (2.115)

ft(x
′) = (−1)nb+1

[
Ab
2

+
Ab
2

cos

(
2π

L

(
x′ − x′2 +

L

2

))]
if x′ ∈ [x′2 −

L

2
, x′2]. (2.116)

We construct the channel cross-section as a truncated parabola centered on the thalweg,

z′ = z′B(x′, y′) = min(
R

2
, β(x′)(y′ − ft(x′))2), (2.117)

where R is the curvature radius of the cross-section at the channel bottom. With x′0 and x′3
giving the transition length before and after the channel, β(x′) is given by

β(x′) = 0 if x′ < x′0 or x′ > x′3, (2.118)

β(x′) =
3

2R

(
x′ − x′0
x′1 − x′0

)2

− 1

R

(
x− x′0
x′1 − x′0

)3

if x′ ∈ [x′0, x
′
1], (2.119)

β(x′) =
1

2R
if x′ ∈ [x′1, x

′
2], (2.120)

β(x′) =
3

2R

(
x′ − x′3
x′2 − x′3

)2

− 1

R

(
x− x′3
x′2 − x′3

)3

if x′ ∈ [x′2, x
′
3]. (2.121)

For any point MB on the reference surface, points M on the final synthetic topography are thus
given by

M = MB + z′B~nB. (2.122)

In the main body of the article we introduced the ratio γ̄ = Ab/L. This expression arises from
the expression of the curvature of the channel thalweg, γ(x′), that we compute with:

γ(x′) =
|f ′′t (x′)|(

1 + (f ′t(x′))
2
) 3

2

. (2.123)



88 2.D. Supplementary Note 3: Synthetic topography generation

The maximum curvature is obtained in the bend at, for instance, x′ = x′1−L/2. The associated
curvature is

γ =
π2Ab
L2

. (2.124)

Considering a reference case where Ab = L/2 where the bend amplitude is half the period of the
sinusoid, we non-dimensionalize γ following:

γ̄ =
π2Ab
L2

2L2

π2L
=

2Ab
L
, (2.125)

which is the expression used in the main body of the article. In our simulations, the initial
mass, at the beginning of the channel, is a truncated spherical dome above the topography.
Its projection on the topography is approximately a circle of radius 9 cm and the dome has
a maximum height of 5 cm. For the simulations of Section 4.1 we used a regular grid with a
constant horizontal spacing of 8 mm. In Section 4.2 the grid step is 5 mm, and in Section 4.3
it is 7 mm (because we wanted to increase computation velocity, as numerous simulations are
done).
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2.E Supplementary Note 4: Comments on numerical simulations.

We give here some details on numerical simulation set-up and results processing to help interpret
correctly Figures 5, 7, 8 and 10.

Maximum thickness and velocities are derived from successive snapshots recorded during the
simulation. To derive Figures 5, 7 and 8, we use snapshots recorded every 0.01 s. When the
flow is fast, the flow extent may change significantly between two successive snaphots, resulting
in artifacts when the final flow extent is drawn (e.g. in Figure 5a between X=1.5 and X=2.0).
Besides, we do not represent thicknesses below 0.1 mm in Figures 5, 7 and 8: in turn, some part
of the maximum thickness velocities maps may appear disconnected from the main flow path
(e.g. in Figure 5a).

The Digital Elevation Model used to carry out simulations in the Prêcheur river is relatively
narrow around the Figure, as can be seen in Figure 10. However, it is necessary in SHALTOP
to fgive numeric values for altitudes in the whole simulation grid. Setting an arbitrary value (for
instance, 0 or 9999) would create strong topography gradients around the river. This can be
problematic, because the code is not able to deal with flows on almost vertical slopes. Thus, the
topography around the river was reconstructed iteratively by averaging altitudes in successive
neighborhoods of the DEM, until the whole grid was filled. The resulting topography is not
realistic around the initial data (hence we do not show it in figures), but the transition between
the real DEM and the reconstructed topography is smooth enough to avoid numerical issues.
The streaks observed when the flow overflows the Prêcheur river correspond to propagation on
this artificial topography.
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2.F Supplementary Note 5: Back-analysis of a debris flow: the
2008 Yu-Tung debris flow

The Second JTC1 Workshop on the Triggering and Propagation of Rapid Flow-like Landslides
was held in Hong Kong in December 2018. One of its key components was a benchmarking
exercise for landslide dynamics and runout modeling. One of the events that participants were
asked to reproduce was a debris flow that occurred in June 2008 above Yu Tung Road in Hong
Kong following heavy rainfalls (Figure 2.F.1). The flow front velocity could be estimated at
some locations from super-elevation data and visual observations (Pastor et al., 2018a). With
SHALTOP, the Voellmy rheology proved to be the most efficient rheology to reproduce these
observed velocities: the back-analysis results, with all precise curvature terms, are given in Figure
2.F.2 a and b ((Peruzzetto et al., 2018a)). Here we investigate the effects on the back-analysis
of neglecting the curvature force and approximating the curvature in the friction force.

As proposed by Peruzzetto et al. (2018a), for each set of parameters, the flow front position and
velocities were computed for different thickness thresholds. However they derived the RMS only
from the differences between observed and modeled velocities, at the chainages (i.e. horizontal
distance from the source of the landslide) where measures were done. Thus, they do not take
into account possible errors on these positions. This is particularly critical for the velocity
measurement at the onset of the flow, when it is accelerating: a slight increase in chainage leads
to sharp flow front velocity increase. For this reason, Peruzzetto et al. (2018a) did not take
into account the first observed velocity in their RMS computation. This is not acceptable if we
want to investigate the influence of curvature effects, as we can expect them to be highest at
the beginning of the flow, when the flow enters the channel. Therefore, we use here a different
method to compute the RMS.

We first compute µy, σy, the mean and standard deviations of the N observed velocities vi (that
is, the y coordinates of crosses in Figure 2.F.2 a). Similarly, µx, σx are the mean and standard
deviations of the chainages xi where these velocities were measured (that is, the x coordinates
of crosses in Figure 2.F.2 a). We thus have a set of standardized observed data

Xi =
xi − µx
σx

, Yi =
vi − µy
σy

. (2.126)

For each simulation and chosen thickness threshold, the simulated flow front velocity vs is given by
a function f of the chainage x, that can be numerically estimated by interpolation. Similarly, the
standardized flow front velocity Y = (vs−µy)/σy is given by a function F of the standardized flow
front position X = (x−µx)/σx. We can thus compute the distances di between the observations
(Xi, Yi) and the graph Y = F (x). The relative RMS is then computed as

RMS =
1

N

∑
i

di. (2.127)

Comparing the results of the inversion for the rheological parameters with and without the
curvature force (respectively, Figure 2.F.2 b and d), we see that neglecting the curvature force
increases the uncertainty. The inverted parameters are nevertheless comparable. Comparing now
the inverted flow front velocities,(Figure 2.F.2 c), as expected, the most significant differences
are at the onset of the flow. As in the synthetic case without friction, the flow bounces forth and
back on the channel walls, leading to a velocity increase that is less smooth than in the reference
case. Further downstream, velocities are nevertheless similar.
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Figure 2.F.1: 2008 Yu Tung Road debris flow topography and initial mass. The white curve is
the thalweg of the channel, along which chainage is measured (see Figure 2.F.2). White crosses
are locations where the flow front velocity was measured. The contour interval is 5 m.
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Figure 2.F.2: Simulations of the 2008 Yu Tung debris flow, with curvature forces (a and b) and
without curvature forces (c and d), with a Voellmy rheology. For each pair of parameters (µ, ξ),
position of the flow is derived for different thickness thresholds (5 to 40 cm, with a 5 cm step).
The resulting flow front velocity is plotted against chainage (a and c). Curve color gives the
relative RMS between observed (white crosses) and simulated velocities. The RMS averaged
over all thresholds is given in (b) and (d). The best ten pairs of parameters are indicated by
points (bigger dots indicate a relative RMS smaller than 1.9%. The cyan and black solid curves
(a and c) are the mean flow front velocities for these parameters, respectively with and without
curvature forces. Dashed curves are the minimum and maximum velocities, with the same color
code.
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Chapter 3

Thin-layer models for debris avalanches
hazard assessment

Context

The previous chapter focused on demonstrating the importance of a rigorous methodology to
derive the thin-layer equations. We will now investigate how thin-layer models can be used in
practice at the field scale when few data are available to constrain simulations parameters and
simulations scenarios. In such situations, the objective is not to derive precise hazard maps
because the associated uncertainties are not easy to quantify. Instead, we aim at quantifying
the main characteristics of the gravitational flow for a set of realistic simulation scenarios, after
model calibration on documented events. Simulation scenarios are constrained by aggregating
geological, geophysical and geomorphological data. This allows in particular to identify the most
exposed areas and provide stakeholders with a first approximation of expected flow thicknesses,
velocities and dynamic pressure.

Our first case study is the Soufrière de Guadeloupe volcano (Martinique, Lesser Antilles). Due
to its current hydrothermal unrest and a long record of partial dome collapse, it is important
to investigate the consequence of the debris avalanche produced by such an event, if it were
to happen again. Although simulations are not easy to constrain due to incomplete data, the
propagation of the avalanche is relatively easy to simulate (taking into account, of course, the
simplified assumptions of the thin-layer model) because it is a single event, with an instantaneous
initiation (in a first approximation at least). The situation is more complex in the Prêcheur river,
our second case study, as it will be shown in Chapter 4.

The work on the Soufrière de Guadeloupe volcano was initiated in 2014 during a part-time
research internship at the IPGP, while I was a student at MINES ParisTech. It was completed
at the beginning of my PhD, and is the subject of a paper published in 2019:

• Peruzzetto, M., Komorowski, J.-C., Le Friant, A., Rosas-Carbajal, M., Mangeney, A.,
and Legendre, Y.. Modeling of Partial Dome Collapse of La Soufrière of Guadeloupe
Volcano: Implications for Hazard Assessment and Monitoring. Scientific Reports 9, no. 1
(2019).

In this Chapter we reproduce this article, from Section 3.1 to Section 3.5. The associated abstract
is given page 94. Appendix 3.A is a Supplementary material of the article.
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In Chapter 4, we will investigate if SHALTOP can be used in an even more empirical way to
model debris flows, though we are outside the theoretical validity frame of SHALTOP equations.
In the same perspective, I have been more broadly involved in landslide modeling at the field
scale, in various geomorpholigcal contexts. In particular, the study

• Poulain, P., Le Friant A., Mangeney, A., Viroulet, S., Fernández Nieto E.D., Castro Diaz
M., Peruzzetto, M., Bouchut, F., and Grandjean, G. Submarine Granular Flows and
Generated Tsunami Waves: From Laboratories Experiments to Numerical Simulations of
Montagne Pelée Flank Collapses. Journal of Geophysical Research: Earth Surface, sub-
mitted.

investigate the possibility to use empirically SHALTOP to model submarine gravitational flows.
Laboratory expriments are first considered, with granular flows that are either dry, immersed
or that enter water. A real case scenario is then considered, with the propagation of historical
massive debris avalanches originating from Montagne Pelée volcano (Martinique, Lesser Antilles)
on land and in the sea. Results are compared to simulations with the HYSEA shallow-water
model (Synolakis et al., 2009; Macías et al., 2015; González-Vida et al., 2018). This model is
based on the work of Fernández-Nieto et al. (2008) and explicitely takes into account the fluid
and granular layers. However, it does not model accurately topography curvature effects. This
study shows that both model reproduce rather well deposits, but fail to model the dynamics of
the flow.

SHALTOP was also tested in a non terrestrial context. The paper

• Guimpier, A., Conway, S.J., Mangeney, A., Lucas, A., Mangold N., Peruzzetto, M.,
Pajola M., et al. Dynamics of Recent Landslides (<20 My) on Mars Insights from High-
Resolution Topography on Earth and Mars and Numerical Modelling. Planetary and Space
Science, submitted.

uses SHALTOP to model the deposits of Martian landslides. Geomorphological observations are
coupled to numerical simulations to investigate the propagation processes of three landslides.
Two of them present geomorphological characteristics of dry rock avalanches and can be mod-
eled with SHALTOP and a frictional rheology for dry granular flows. This rheology fails to
reproduce the deposits of the third landslide which indicates that it may be associated to differ-
ent mass wasting processes, as confirmed by geomorphological evidence. This event has indeed
similar characteristics to those of mudflows on Earth. Thus, this study contributes to better
understanding gravitational processeses on Mars.

Abstract

Over the past 9,150 years, at least 9 flank collapses have been identified in the history of La
Soufrière of Guadeloupe volcano. On account of the volcano’s current unrest, the possibility of
such a flank collapse should not be dismissed in assessing hazards for future eruptive magmatic
as well as non-magmatic scenarios. We combine morphological and geophysical data to identify
seven unstable structures (volumes ranging from 1 × 106 m3 to 100 × 106 m3), including one
that has a volume compatible with the last recorded flank collapse in 1530 CE. We model their
dynamics and emplacement with the SHALTOP numerical model and a simple Coulomb friction
law. The best-fit friction coefficient to reproduce the 1530 CE event is tan(7°) = 0.13, suggesting
the transformation of the debris avalanche into a debris flow, which is confirmed by the texture
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of mapped deposits. Various friction angles are tested to investigate less water-rich and less
mobile avalanches. The most densely populated areas of Saint-Claude and Basse-Terre, and an
area of Gourbeyre south of the Palmiste ridge, are primarily exposed in the case of the more
voluminous and mobile flank collapse scenarios considered. However, topography has a prominent
role in controlling flow dynamics, with barrier effects and multiple channels. Classical mobility
indicators, such as the Heim’s ratio, are thus not adequate for a comprehensive hazard analysis.
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Contexte

Dans le chapitre précédent, nous avons montré qu’une méthodologie rigoureuse est nécessaire
pour établir les équations d’écoulement en couche mince. Nous allons maintenant voir comment
elles peuvent être utilisées, en pratique, à l’échelle du terrain quand relativement peu de données
sont disponibles pour contraindre les paramètres et les scénarios de simulation. Dans de telles
situations, l’objectif n’est pas d’obtenir des cartes d’aléas précises, parce que les incertitudes
associées ne sont pas aisées à quantifier. Ainsi, vous voulons plutôt quantifier les principales
caractéristiques de l’écoulement gravitaire pour une gamme de scénarios de simulations réalistes,
après avoir calibré le modèle sur un événement passé. Les scénarios de simulation sont définis
grâce à l’agrégation de données géologiques, géophysiques et géomorphologiques. Cela permet en
particulier d’identifier les zones les plus exposées, et de fournir aux collectivités et autres parties
prenantes une première estimations des épaisseurs, vitesses et pressions dynamiques.

Notre premier cas d’étude est la Soufrière de Guadeloupe, dans les Petites Antilles. Compte tenu
de la réactivation hydrothermale du volcan et de la mise en évidence de déstabilisations pas-
sées, il est important d’évaluer les conséquences d’une potentielle future déstabilisation. Même
si les simulations se sont pas faciles à contraindre, la propagation de l’avalanche de débris reste
relativement facile à modéliser parce qu’il s’agit d’un événement unique, initié de manière instan-
tanée. La situation est plus complexe pour la rivière du Prêcheur, comme nous le verrons dans
le Chapitre 4.

Ce travail sur la Soufrière de Guadeloupe a été initié en 2014 pendant un stage de recherche à
mi-temps à l’IPGP, pendant que j’étais étudiant à MINES ParisTech. Il a été finalisé au début
de ma thèse, et a donné lieu à un papier publié en 2019 :

• Peruzzetto, M., Komorowski, J.-C., Le Friant, A., Rosas-Carbajal, M., Mangeney, A., and
Legendre, Y.. Modeling of Partial Dome Collapse of La Soufrière of Guadeloupe Volcano :
Implications for Hazard Assessment and Monitoring. Scientific Reports 9, no. 1 (2019).

Nous reproduisons cet article dans ce chapitre, de la Section 3.1 à la Section 3.5. Le résumé anglais
(abstract) est donné page 94. L’appendice 3.A est une ressource supplémentaire (Supplementary
materials) associée à l’article.

Dans le Chapitre 4, nous verrons si SHALTOP peut être utilisé de manière encore plus empirique
pour modéliser des laves torrentielles, bien que ce phénomène soit théoriquement hors du cadre
de validité des équations. Dans la même perspective, j’ai été plus largement impliqué dans des
études modélisant des déstabilisations gravitaires, dans des contextes géomorphologiques variés.
En particulier, l’étude

• Poulain, P., Le Friant A., Mangeney, A., Viroulet, S., Fernández Nieto E.D., Castro Diaz
M., Peruzzetto, M., Bouchut, F., and Grandjean, G. Submarine Granular Flows and
Generated Tsunami Waves : From Laboratories Experiments to Numerical Simulations of
Montagne Pelée Flank Collapses. Journal of Geophysical Research : Earth Surface, sub-
mitted.

teste la possibilitié d’utiliser SHALTOP (toujours empiriquement) pour modéliser des écoule-
ments gravitaires sous-marins. Des expériences de laboratoire sont dans un premier temps consi-
dérées, avec des écoulements granulaires secs, immergés ou entrant dans l’eau. Un cas d’étude
réel est ensuite étudié, avec la propagation d’avalanches de débris massives de la Montagne Pelée
en Martinique (Petites Antilles), sur terre puis sous la mer. Les résultats sont comparés à ceux
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du code d’écoulement en couche mince HYSEA (Synolakis et al., 2009 ; Macías et al., 2015 ;
González-Vida et al., 2018). Ce code, basé sur les travaux de Fernández-Nieto et al. (2008),
prend explicitement en compte la présence d’une couche liquide et d’une couche granulaire, mais
ne décrit pas la topographie aussi précisément que SHALTOP. Les deux modèles parviennent à
reproduire relativement bien les dépôts des écoulements, mais sont moins précis pour la dyna-
mique.

SHALTOP a aussi été testé pour des glissements de terrain sur d’autres planètes que la Terre.
Le papier

• Guimpier, A., Conway, S.J., Mangeney, A., Lucas, A., Mangold N., Peruzzetto, M.,
Pajola M., et al. Dynamics of Recent Landslides (<20 My) on Mars Insights from High-
Resolution Topography on Earth and Mars and Numerical Modelling. Planetary and Space
Science, submitted.

utilise SHALTOP pour modéliser les dépôts de trois glissements de terrain martiens. Ces si-
mulations sont couplées à des observations géomorphologiques pour étudier les processus de
propagation de ces glissements de terrain. Deux d’entre eux présentent des caractéristiques géo-
morphologiques d’avalanches de blocs, et peuvent en effet être simulés avec SHALTOP et une
rhéologie frictionnelle adaptée à des écoulements gravitaires secs. Au contraire, cette même rhéo-
logie ne permet pas de modéliser les dépôts du troisième glissement, ce qui indique que d’autres
processus sont associés à sa mise en place. Cela est d’ailleurs confirmé par des marqueurs géo-
morphologiques semblables à ceux de coulées de boue sur terre. Ainsi, cette étude contribue à
mieux comprendre les processus gravitaires sur Mars.

Résumé

Au cours des 9150 dernières années, au moins 9 déstabilisations de flanc ont été identifiées dans
l’histoire du volcan la Soufrière de Guadeloupe. Compte-tenu de son activité actuelle, l’éventua-
lité d’une nouvelle déstabilisation de ce type doit être prise en compte pour de futurs épisodes
d’éruptions magmatiques ou non-magmatiques. Nous associons des données géomorphologiques
et géophysiques pour identifier sept structures instables (volumes allant de 1 × 106 m3 à 100 ×
106 m3 , dont une qui a un volume compatible avec la dernière déstabilisation de 1530 CE. Nous
modélisons la dynamique et les dépôts des avalanches de débris générées avec SHALTOP, et une
simple loi frictionnelle de Coulomb. Le coefficient de friction permettant de reproduire l’événe-
ment de 1530 CE est tan(7°) = 0.13. Cela suggère que l’avalanche de débris s’est transformée
en lave torrentielle, ce qui est confirmé par la texture des dépôts cartographiés. Différents coef-
ficients de friction sont testés pour étudier des avalanches moins riches en eau, et donc moins
mobiles. Les zones les plus densément peuplées de Saint-Claude et Basse-Terre, et un quartier
de Gourbeyre au sud du Plateau du Palmiste, sont exposées principalement par les avalanches
de débris les plus volumineuses et les plus mobiles. Toutefois, la topographie joue un rôle pri-
mordial et contrôle fortement la dynamique de l’avalanche, avec des barrières topographiques et
de multiples chenalisations. Des indicateurs de mobilité classiques, comme le ratio de Heim, ne
sont donc pas suffisants pour réaliser une étude complète de l’aléa gravitaire.
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3.1 Introduction

3.1.1 La Soufrière of Guadeloupe volcano

The Guadeloupe archipelago is located in the northern part of the Lesser Antilles arc that
resulted from subduction of the North and South American plates under the Caribbean plate.
This process initiated volcanism about 40 Ma ago (Bouysse et al., 1990) . Activity of the inner
arc in the last 3 Ma built seven volcanic complexes on the island of Basse-Terre (Guadeloupe),
progressing from north to south (Boudon, 1988; Komorowski et al., 2005; Samper et al., 2009;
Ricci et al., 2017).

La Soufrière of Guadeloupe is an andesitic active volcano. It belongs to the 0.445 Ma old
Grande Découverte-La Soufrière volcanic complex (Boudon, 1988; Komorowski et al., 2005) and
is located about 2 km north of the town of Saint-Claude where about 10 000 people live (Figure
3.1). Successive eruptions and erosion phases built a complex and steep landscape (see Figure
3.1 for the following geographic names). To the south and south-west, old massive lava flows
(Parnasse Plateau, Palmiste plateau) and eruptive centers (Morne Goyavier, La Citerne, Morne
Graine Verte, Gros Fougas) partially protect inhabited areas. They are cut by numerous ravines,
such as the Ravine de la Citerne and the Ravine Blanche. Three main rivers have their source
in the vicinity of La Soufrière volcano: Le Galion and Rivière Noire flow south-west twoards the
cities of Saint-Claude and Basse-terre, and the Rivière du Grand Carbet heads east.

At least 15 Holocene magmatic eruptions (9 lava dome eruptions and 6 explosive plinian to sub-
plinian eruptions) have been identified. Phreatic and hydrothermal activity is also recurrent,
along with partial edifice collapses. Over the last 9,150 years, at least 9 debris-avalanches oc-
curred, mainly to the south-west, and reached a distance of 9-15 km from the dome (Komorowski
et al., 2005; Boudon et al., 2007; Komorowski, 2008; Legendre, 2012). The last magmatic erup-
tion, in 1530 CE, started with a partial flank-collapse of 80 ± 40 × 106 m3. It then produced
sub-plinian tephra fallout, a lava dome, and pyroclastic density currents from column and dome
collapse (Legendre, 2012; Komorowski, 2008; Boudon et al., 2008; Komorowski et al., 2008). In
addition, recent studies have shown that a small magmatic eruption occured in 1657 ± 20 years
Cal. CE (Legendre, 2012). Since 1635 CE, 6 phreatic explosions have been witnessed (Feuillard
et al., 1983; Boudon, 1988; Komorowski et al., 2005; Rosas-Carbajal et al., 2016). The most
recent and violent one took place in 1976-1977 and led to the evacuation of more than 70 000
people (Feuillard et al., 1983; Boudon, 1988; Komorowski et al., 2005; Hincks et al., 2014). It
may have been triggered by a small intrusion of magma that did not reach the surface (Feuillard
et al., 1983; Villemant et al., 2005; Boichu et al., 2011; Villemant et al., 2014).

La Soufrière is monitored by the Guadeloupe Volcanological and Seismological Observatory
(OVSG-IPGP), and has shown over the last two decades an increasing unrest (Komorowski et al.,
2005; Villemant et al., 2014; Moretti et al., 2018; Moretti et al., 2020b). Shallow seismicity has
been progressively increasing, as has the temperature of some acid-sulfate thermal springs (Ville-
mant et al., 2005; Villemant et al., 2014; Moretti et al., 2018; Moretti et al., 2020b). Fumarolic
activity has also strengthened, leading to a partial restriction of access to the dome in 1999
(Komorowski et al., 2005). In February and April 2018, three seismic swarms mainly composed
of hybrid volcano-tectonic earthquakes released a total seismic energy of about 90 GJ (OVSG-
IPGP, 2018a; OVSG-IPGP, 2018b; Moretti et al., 2018; Moretti et al., 2020b). Such an energy
release had not been measured for 40 years. Furthermore, near-field deformations, including
inflation (3-7 mm/year) and flank basal spreading (7-10 mm/year), are recorded (OVSG-IPGP,
2018a; OVSG-IPGP, 2018b; Moretti et al., 2018; Moretti et al., 2020b).

The past history of La Soufrière volcano of Guadeloupe, its structure, its deformation, its well-
developed hydrothermal system, and the current activity constitute factors that favor a future
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Figure 3.1: Rivers and main topographic features around La Soufrière of Guadeloupe volcano
(red triangle), along with the three main cities (Saint-Claude, Basse-Terre and Gourbeyre). The
upper left insert features the Guadeloupe island, with the red rectangle matching the extent of
the map. 1○ Ravine des Bains Jaunes, 2○ Ravine de la Citerne, 3○ Second Carbet waterfall.
Arrows A, B, C and D identify the main flow pathways discussed in the main body of the text.
Yellow patches are buildings (data from IGN BDAlti). The lateral extent of some initial unstable
volumes is displayed with the red lines. Dashed-dotted line: topA2 and midA2 scenarii ; dashed
line: topA1_inf and topA1_sup scenarii ; dotted line: dolomieu scenario. The DEM is from
IGN BDTopo, coordinates: WGS84, UTM20N. The contour interval is 100 m.
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instability, as observed on many other volcanoes (Harnett et al., 2019). Thus, we are concerned
with the consequences of slope failure involving the current lava dome. Instability could be sig-
nificantly enhanced as a result of magma or hydrothermal pressurisation (Voight, 2000), intense
volcanic seismicity, a strong local-to-regional earthquake (e.g. 21 st November 2004 Mw=6,3
earthquake (Feuillet et al., 2011)), or extreme rainfall (Casita-style collapse (Vries et al., 2000)).
Such failure could trigger rock avalanches or debris avalanches depending on material water
content (Hungr et al., 2014). Mixing of hydrothermal fluids (Rosas-Carbajal et al., 2016; Ko-
morowski et al., 2005) with the rock avalanches could promote their transition into mobile debris
flows if they become saturated and are channelised in ravines. This would significantly enhance
their mobility and would engender major risks to population, infrastructure and network, de-
pending on the volume of collapsed material. To address this problem, we investigated different
scenarios based on the current geological and geophysical knowledge of La Soufrière of Guade-
loupe volcano.

3.1.2 Dome structure and fluid circulation

Thorough geological surveys have investigated the eruptive history of La Soufrière volcano (Ko-
morowski et al., 2005; Komorowski, 2008; Boudon et al., 2008; Legendre, 2012). The current
dome of La Soufrière (Figure 3.2) volcano is composed both of andesite lava and pyroclastic
deposits (Boudon et al., 2008; Komorowski et al., 2008). These have been altered over cen-
turies by fluid circulation (Salaün et al., 2011), and have an average bulk density of 1800 kg/m3

(Brothelande et al., 2014).

Using self-potential measurements, resistivity tomography and density muon radiography, several
studies over the last decades have shown the extensive structural and textural heterogeneity of
the dome (Nicollin et al., 2006; Nicollin et al., 2007; Lesparre et al., 2012; Coutant et al., 2012;
Lesparre et al., 2014; Brothelande et al., 2014; Rosas-Carbajal et al., 2016; Rosas-Carbajal et
al., 2017). Since the last magmatic event, successive phreatic eruptions have led to the creation
of numerous fractures (Figure 3.2) that constitute major structural discontinuities favouring
the circulation of meteoric and acid hydrothermal fluids (Villemant et al., 2014). The dome is
thus divided between dense and relatively unaltered areas, and more fragile parts with active
fumaroles and hydrothermal fluid circulation, especially in the south-east of the dome (Nicollin
et al., 2006; Lesparre et al., 2014).

Perched reservoirs have been identified (Lesparre et al., 2014; Rosas-Carbajal et al., 2016),
including one just beneath the fractures opened during the 1976-1977 eruption (Feuillard et al.,
1983). This reservoir is the source of fumaroles located along these fractures, and of two acid
ponds. It may also be involved in the massive water resurgence that occurred in 1976-1977 and
in previous phreatic and hydrothermal historical eruptions (Komorowski et al., 2005; Rosas-
Carbajal et al., 2016). The presence of a basal hydrothermalised layer has long been inferred
(Nicollin et al., 2006; Nicollin et al., 2007). The self-potential positive anomaly in the south-
west basal part of the dome identified in previous studies (Brothelande et al., 2014) can be
interpreted as structural evidence of the hydrothermal activity linked to the basal layer. Recent
3D electrical tomography (Rosas-Carbajal et al., 2016) confirms the presence of highly conductive
regions inside the dome linked to fluid reservoirs and to the circulation of hot, acidic fluids. The
most prominent feature is a massive, listric, conductive body beneath the south-west part of the
dome, sloping to the south, with inferred conductivity values higher than 0.1 S.m−1 (A1, orange
area in Figure 3.3). It contains a well defined sub-region with conductivity higher than 1 S.m−1

(A2, red area in Figure 3.3) starting under the lava dome summit and Tarissan pit, descending
south and ending horizontally at the base of the dome where several thermal springs are active
in the upper Galion River (Figure 3.2). This fluid-saturated and mechanically weakened area
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Figure 3.2: La Soufrière of Guadeloupe lava dome. Main structures of the lava dome and
surface manifestations of the active hydrothermal system are displayed. Inserts: (a), (b) and
(c) are the collapse structure outline for the dolomieu, south, south-east scenarios respectively
(Figure 3.4). The red triangle is a reference for the center of the dome (Tarissan crater). The
DEM is from GeoEye Ikonos 2005-11-25 acquired image processed by Latitude Geosystems, the
map was created with the Arcgis software, coordinates: WGS84, UTM20N. The contour interval
is 25 m.



102 3.1. Introduction

can be related to the trend of the SW flank of the dome, that has been shown, by continuous
monitoring, to be moving horizontally to the south above the conductive bodies at about 7-10
mm/year (OVSG-IPGP, 2018a; OVSG-IPGP, 2018b; Moretti et al., 2018; Moretti et al., 2020b).
We interpret it as basal flank spreading over a decollement surface (Rosas-Carbajal et al., 2016;
OVSG-IPGP, 2018a; OVSG-IPGP, 2018b; Moretti et al., 2018; Moretti et al., 2020b). We
are concerned that this basal spreading could trigger shallow or deep-seated landslides (Morgan
and McGovern, 2005). The geometry and intrinsic mechanical weakness of these fluid-saturated
areas suggest they might be relevant candidates for unstable regions in case of massive partial
dome collapse. Indeed, the presence of such a low strength layer at the base of the dome likely
contributes to the inherent instability of the edifice. (Komorowski, 2008; Lesparre et al., 2012;
Reid, 2004; Rosas-Carbajal et al., 2016). This hypothesis may be supported by the history
of Holocene edifice collapse and systematic emplacement of debris avalanches to the south and
south- west (Komorowski et al., 2005; Le Friant et al., 2006; Boudon et al., 2007; Komorowski,
2008; Legendre, 2012), that is, in the same direction as the listric, highly conductive bodies A1
and A2.

Along with this active hydrothermal system, the dome is affected by several tectonic active
faults (Figure 3.2): in particular the Ty fault runs through the dome from the south-east to
the north (Feuillet et al., 2002; Mathieu et al., 2013). The repeated measurement of the width
of the 30th August 1976 fracture and of the Fente du Nord (northern section of the Ty fault),
using caliper measurements on a 3D metal rod fissurometer, has demonstrated a subsidence and
sinistral movement of a few millimetres over the last 35 years on either side of the Ty fault
(Rosas-Carbajal et al., 2016; OVSG-IPGP, 2018a). Although the amplitude remains moderate,
on the order of 3-10 mm/year (OVSG-IPGP, 2018a; Moretti et al., 2018; Moretti et al., 2020b),
these data confirm the potential structural instability of the dome.

3.1.3 Collapse scenarios

The stability of volcanic edifices has been thoroughly studied since the dramatic Mount St Helens
flank collapse in 1980, but is often hard to assess correctly due to the lack of geotechnical data
(Voight, 2000). Stability is classically studied with Limit Equilibrium Methods, with Finite
Element (Schaefer et al., 2013) or Finit Difference (Hürlimann et al., 2000; Apuani et al., 2005)
numerical schemes. In our case, however, such an analysis is complex due to the lack of data. We
therefore define the collapse scars with geometric, geological and geophysical constraints only.

A review of the phenomena associated with 3 and perhaps 4 of the historical non-magmatic
hydrothermal eruptions indicates that small collapses within hydrothermally active areas of the
dome were associated with small laterally-directed explosions and with rock avalanche flows, with
a runout of 1-2 km (Komorowski et al., 2005; Hincks et al., 2014; Rosas-Carbajal et al., 2016).
Given the current instability conditions of the dome as well as the current unrest conditions,
this scenario of a relatively small destabilization is the most critical and urgent scenario to
investigate and to model. However, a more catastrophic destabilization, involving the basal
hydrothermal layer, should not be excluded, as it is consistent with past and more voluminous
events associated with magmatic eruptions of the last 10 000 years at La Soufrière (Komorowski
et al., 2005; Komorowski, 2008; Legendre, 2012).

We thus consider 7 scenarios and summarize their characteristics in Table 3.1. We first constrain
4 deep-rooted collapse geometries with the main conductive bodies A1 and A2 (Figure 3.3, Rosas-
Carbajal et al., 2016). Their lateral extent matches the extent of the A1 body. Their longitudinal
profiles feature different shapes: topA1_sup (48 × 106 m3) follows the top of the A1 conducting
body, topA1_inf (53 × 106 m3) is similar but displays a flatter profile, topA2 (93 × 106 m3) is
constrained by the top of the A2 body, and midA2 (110 × 106 m3) cuts through A2.
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Figure 3.3: Collapse geometries of deep rooted scenarios. The inner yellow contour in (a) is the
extent of topA1_sup and topA1_inf scenarios, the outer yellow contour is the extent of topA2
and midA2 scenarios. In (b), (c), (d), (e), longitudinal and transverse cross-sections of the initial
(black line) and post-collapse (colored lines) topographies are given. The A1 (Rosas-Carbajal
et al., 2016) conducting body (orange area) and A2 (Rosas-Carbajal et al., 2016) conducting
body (red area) are seen from above in (a), and within cross-sections in (b), (c), (d) and (e).
Cross-sections extents and directions are given by the corresponding letters S, W, E, AE, AW,
BE, BW in (a). The DEM is from IGN BDTopo, coordinates: WGS84, UTM20N. The contour
interval is 20 m.

We then consider 3 superficial geometries for unstable regions with volumes ranging from 1 ×
106 m3 to 10 × 106 m3 (Figure 3.4). The south-east scenario (1.1 × 106 m3) is one of the most
plausible scenario as it lies entirely within the area showing the current fumarolic unrest, between
the 30th August 1976 fault (southern limit), and the 1956 - 8th July 1976 eruptive fractures
(northern limit). They are controlled by oblique sinistral fault motion on the Ty and Breislack
faults respectively (Figure 3.2). The south scenario (7.1 × 106 m3) extends from the Lacroix
fracture to a hypothetical structure linking the Dolomieu fracture to the positive self-potential
anomaly identified in previous studies (Brothelande et al., 2014) and discussed previously. The
dolomieu scenario (9.7 × 106 m3) shares this western limit, but goes further to the east to the
1956 - 8th July 1976 eruptive fractures.

3.1.4 SHALTOP numerical model

In order to simulate the emplacement of the resulting debris avalanche we solve the shallow-
water equations, with the main assumptions being that the avalanche is homogeneous and that
its thickness is much smaller than its characteristic length. Several numerical models exist to solve
these equations, such as Volcflow (Kelfoun and Druitt, 2005) and DAN3D (Hungr and McDougall,
2009), which have been both used to model volcanic flank collapse (Kelfoun and Druitt, 2005;
Sosio et al., 2012). RAMMS (Christen et al., 2010; Christen et al., 2012) and r.avaflow (Mergili



104 3.1. Introduction

Figure 3.4: Collapse geometries of superficial scenarios. (a), (d) and (g) respectively display the
extent of dolomieu, south and south-east scars. (b) and (c), (e) and (f), and (h) and (i) are
crossections of the initial (black line) and post-collapse (colored line) topographies, respectively
for dolomieu, south and south-east scenarios. Cross-sections extents are indicated by the letters
A, B, C, D. The DEM is from IGN BDTopo, coordinates: WGS84, UTM20N. The contour
interval is 20 m.
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et al., 2017) numerical models are also commonly used to model debris avalanches and debris
flows. In our study we used the SHALTOP numerical model (Bouchut et al., 2003; Bouchut and
Westdickenberg, 2004; Mangeney et al., 2007b) that has already been tested on several natural
cases (Moretti et al., 2012; Lucas et al., 2014; Brunet et al., 2017) and experiments (Mangeney
et al., 2007b). It describes a continuous and homogeneous granular flow over a 3D topography.
The equations are depth-averaged and numerically solved by taking into account the spatial and
temporal variations of the flow thickness and mean velocity, as well as topography curvature.
The model calculates the flow thickness in the direction normal to the topography as well as the
two-dimensional depth-averaged flow velocity. Processes that would lead to density variations,
such as expansion, contraction or incorporation of air and water, are dismissed. Bed erosion is
also neglected. Finally, we use a frictional rheology to model the interaction between the flow
and the topography, as it has been proven to reproduce the main features of natural landslides
(Lucas et al., 2014; Kuo et al., 2009; Moretti et al., 2015). Furthermore, a previous benchmark of
rheological laws Sosio et al. (2012) concluded that the frictional rheology yields better results than
Bingham or Voellmy rheologies for modeling large volcanic landslides. In depth-averaged models
with friction rheologies, the empirical friction coefficient µS = tan(δ), with δ the friction angle,
can be seen as a phenomenological representation of the dissipation during the flow (Mangeney
et al., 2007b). It can be constant or depend on the flow thickness and velocity, as for instance
in the Pouliquen law (Pouliquen and Forterre, 2002). We choose to a use constant friction as it
has proved to produce conclusive results (Sosio et al., 2012), and limits the number of unknown
parameters.

For each scenario, simulations are run with various friction angles. We first use a value of 7° that
best reproduces the deposits of the 1530 CE event (see following section), and is consistent with
previous simulations of dome collapse of La Soufrière of Guadeloupe (Le Friant et al., 2006).
This friction angle is typical of debris-flow modeling (Moretti et al., 2015). It thus corresponds
to a highly mobile and mechanically weak material, as characterized for instance the historical
non-magmatic volcanic debris avalanches that occurred at Ontake in 1984 (Endo et al., 1989;
Voight and Sousa, 1994) and Bandai San in 1888 (Siebert et al., 1987; Nakamura and Glicken,
1988). In order to investigate drier and less mobile debris avalanches, we also use an empirical
relation (Lucas et al., 2014) relating the friction angle to the volume involved. For our scenarios,
the resulting friction angle ranges from 13° to 20°. Finally, we have also considered intermediate
values of 10° and 12° to investigate the sensitivity of the simulated deposit to the friction angle.

3.2 Results

3.2.1 1530 CE collapse equivalent (topA2 scenario)

The 1530 CE debris avalanche volume was estimated at 80±40 × 106 m3 (Komorowski, 2008;
Boudon et al., 2008; Legendre, 2012). Its mapped extent, deduced from field observations (Ko-
morowski, 2008; Boudon et al., 2008; Legendre, 2012), is shown in Figure 3.5 with the white
dashed line. The estimated volume is consistent with our topA2 scenario. In order for our mod-
elled scenario to reach the sea like the 1530 CE collapse, we had to use a friction friction angle
δ = 7°. In comparison, the friction angle derived from the empirical law of Lucas (Lucas et al.,
2014) is δ = 13.6°. However, our best-fit friction angle is in good agreement with the value δ = 8°
that was used to simulate with SHALTOP the debris flow part of the Mount Meager landslide in
a previous study (Moretti et al., 2015). The dynamics from our simulation are given in Figure
3.5 and the final deposits in Figure 3.6 (g). Three flow paths are clearly visible (Figure 3.1 and
3.5 e, arrows A, B and C). Geographical references are shown in Figure 3.1.
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Figure 3.5: topA2 simulation. Snapshots of flow thickness (a, c, e) and velocity (b, d, f) for the
topA2 scenario and δ = 7°, at t=30 s (a, b), t=60 s (c,d) and t=110 s (e, f). Black arrows give
the flow velocity direction. The light grey area features the flow path in the simulation, i.e. the
total covered area. The white dashed line is the mapped extent of the 1530 CE collapse deposits
(Boudon et al., 2008; Komorowski, 2008; Legendre, 2012). The white plain line is the extent of
the initial unstable volume in our simulation. Arrows A, B and C are the main flow directions,
as in Figure 3.1. The DEM is from IGN BDTopo, coordinates: WGS84, UTM20N. The contour
interval is 100 m.
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The first flow path (Figure 3.1 and 3.5 e, arrow A) heads directly south-west between Morne
Goyavier and the Rivière Noire ravine. It involves only small thicknesses (less than 1 meter 110 s
after collapse, Figure 3.5) but threatens the northern parts of Saint-Claude village. If the 1530
CE collapse had a similar behavior in this area, its thin deposits may have been easily eroded.
Indeed, they have never been identified in the field.

The main feature, which is consistent with identified deposits of the 1530 CE event, is the
material that spreads from Bain Jaunes (Figure 3.1, 1○) towards Basse-Terre (Figure 3.1 and 3.5
e, arrow B). The flow is first partially channelled in the Ravine des Bains Jaunes and adjacent
ravines (Figure 3.1, 1○). However, because it subsequently encounters no massive topographic
barriers apart from the Parnasse lava flow to the north and the Galion ravine to the south, it
produces deposits of limited thickness (up to 5 meters) with a large lateral extension. The flow is
characterized by high velocities (70 m/s 60 seconds after collapse, 50 m/s 110 seconds after the
collapse). The thickness of the distal deposits (up to 5 meters, Figure 3.6 (g) ) is, furthermore,
in agreement with the deposit thickness observed in the field (see Appendix A). The flow first
spreads radially, but after 110 seconds the main flow front, about 500 meters wide, runs on the
northern side of Galion River down to the sea which is reached after 200 seconds. This part of the
flow is particularly fast and could generate jetted flow as described in the literature (Heim, 1932;
Hsu, 1975) in historically observed rock avalanches (sturztroms). Such effects cannot, however,
be modeled with SHALTOP, for which the flow is assumed to follow the topography closely.

The rest of the flow (Figure 3.1 an 3.5 e, arrow C) is first channelized in the Galion river and in
the Ravine de la Citerne (Figure 3.1, 2○), and bounces back and forth between the high walls of
the ravines before filling and overspilling it (thickness up to 80 meters). It then spreads radially
to the south of La Citerne scoria cone, into an area between the Morne Graine Verte and the
Gros Fougas scoria cones further south. 110 seconds after collapse, the associated flow front has
almost entirely stopped, except for a small patch that overpasses a notch in the Palmiste plateau,
allowing it to flow to the south towards parts of Gourbeyre village. Although no desposits were
found here for the 1530 CE event, older deposits have been identified in this area (Komorowski,
2008; Legendre, 2012).

3.2.2 All scenarios

Final deposits for all scenarios are displayed in Figures 3.6 and 3.7 for deep-rooted and superficial
collapses respectively, with δ = 7°, δ = 10° and Lucas friction angles. Results are summarized in
Table 3.1. The aforementioned pathways (Figure 3.1, arrows A, B and C) can be identified in
all scenarios.

The part of the modeled debris avalanches heading south-west towards Saint-Claude (Figure
3.1, arrows A) does not cross the deep Rivière Noire canyon in any simulation. This natural
barrier and the prominent Parnasse lava flow, that forms a massive topographic barrier on the
eastern boundary of Saint-Claude thus channel the avalanche flow towards Saint-Claude and the
northern quarters of Basse-Terre.

The second flow path (Figure 3.1, arrow B) generates widespread deposits and is visible in all
scenarios. For δ=7°, it stops only a few hundreds meters away from the sea in the topA1_sup
and topA1_inf scenarios, while the material enters the sea in topA2 and midA2 scenarios. In
these four scenarios, still with δ=7°, a small volume overtops the Palmiste plateau in its central
part and enters Ravine Blanche.

The third flow path (Figure 3.1, arrow C), generated by the material entering the Galion river,
is present in all the scenarios. For friction angles above 10°, the debris avalanche overspills
the Galion river but stops between Morne Graine vert and Gros Fougas in all scenarios. Only
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for δ=7°, the flow comes to rest against the southern edge of the Palmiste lava plateau in the
north-east periphery of Gourbeyre. In the three biggest scenarios, it enters Ravine Blanche.

The last flow path (Figure 3.1, arrow D) is only seen in the dolomieu and south-east scenarios.
This flow is generated by the material released in the active hydrothermal part of the dome be-
tween Fracture Lacroix and 8th July 1976 fracture, as only the dolomieu and south-east scenarios
include material in this area. The flow heads towards the east and is first mainly contained in
the Rivière du Grand Carbet (Figure 3.1). For δ=7°, it then spreads in a flatter area about one
kilometer after the second Chute du Carbet waterfall (Figure 3.1, 3○) at the junction with the
Grosse Corde River.

3.2.3 Final deposits main characteristics

In Figure 3.8 we summarize the main characteristics of the debris avalanche deposits resulting
from the different modelled scenarios. For the seven collapse geometries, of varying volume, and
for three friction angles (7°, 10°, 12°), we plot: runout (distance between scar highest point and
deposit front), covered area, mobile volume (i.e. material leaving the scarp), Heim’s ratio (µH)
and effective friction coefficient (µeff ). The Heim’s ratio (Heim, 1932) is defined as µH = H/∆L′,
where H and ∆L′ are respectively the difference in altitude and horizontal distance between the
highest point of the original mass and the lowest point of the deposit. The effective friction
coefficient was derived theoretically for a dam-break scenario (Lucas et al., 2014) and is defined
by:

µeff = tan(θ) +
H0

∆L
, (3.1)

where θ is the mean slope angle along the flow course, H0 the maximum material thickness at
the onset of the collapse and ∆L the length travelled by the flow front (see section Methods).

As expected, lower friction angles involve longer runouts (Figure 3.8 a) and greater deposit areas
(Figure 3.8 b). For δ = 7° a consistent trend can be seen with increasing volume. However for
δ = 12° and δ = 10°, the runout does not significantly vary between the dolomieu, topA1_inf
and topA1_sup scenarios, while the deposit area is almost twice as large for topA1_inf and
topA1_sup in comparison to dolomieu. This feature highlights the strong control of topography
on the emplacement of the debris avalanche deposits. Topographic barriers slow down the flow
front in the main flow direction and favor lateral spreading. For the four collapse geometries of
largest volume, a significant part of the material remains blocked within the collapse structure
due to its almost flat distal basal slope (Figure 3.3 b and c): for midA2 and δ = 12°, only a
volume of 30 × 106 m3 leaves the structure while more than 100 × 106 m3 is initially destabilized
(Figure 3.8 c). The topA2 geometry leads to a larger mobile volume even though it is more
superficial. As a matter of fact, bigger collapses involve deeper scars, thus expanding the area of
the collapse basal surface with a flat slope that cannot be overrun by a pure cohesionless collapse.
This hence favors blockage of material within the structure and reduces the truly mobile portion
of the collapse volume.

The Heim’s ratios of the modelled deposits are systematically lower than effective friction coef-
ficients (Figure 3.8 d). Both overestimate the friction coefficient used in Shaltop. While Heim’s
ratios seem to reach a constant value for unstable volume bigger than 10 × 106 m3, effective
friction coefficients show a sharp increase for δ = 10° and δ = 12°. It has been shown that
µeff can be a better approximation of the real friction coefficient (Lucas et al., 2014) for simple
coherent landslides but that does not seem to be the case here, for landslides made of multiple
flows. These discrepancies illustrate the impossibility of using simple indicators whose theoret-
ical validity stands only for simple coherent landslides, to describe more complex phenomena
characterized by multiple channelizations and complex topographies.
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Figure 3.6: Final deposits for deep-rooted scenarios. topA1_sup (a-c), topA1_inf (d-f), topA2
(g-i) and midA2 (j-l) scenarios, with δ = 7° (a, d, g, j), δ = 10° (b, e, h, k) and the friction angle
derived from Lucas’ law (c, f, i, l, Lucas et al., 2014). Colorscale gives thicknesses in meters. The
light grey area features the flow path in the simulation, i.e. the total covered area. The white
plain line is the extent of the initial unstable volume. The red triangle marks the summit of La
Soufrière volcano. The insert in each row displays the unstable volume and a profile of the scarp
for each scenario: it is a copy of Figure 3.3c where only the relevant scar has been kept. The
DEM is from IGN BDTopo, coordinates: WGS84, UTM20N. The contour interval is 100 m.
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Figure 3.7: Final deposits for the superficial scenarios. dolomieu (a-c), south (d-f) and south-east
(g-i) scenarii, with δ = 7° (a, d, g), δ = 10° (b, e, h) and the friction angle derived from Lucas’
law (c, f, i, Lucas et al., 2014). The light grey area features the flow path in the simulation, i.e.
the total covered area. The white plain line is the extent of the initial unstable volume. The
red triangle marks the summit of La Soufrière volcano. The inserts in each row are close-ups
on the dome showing the extent of the initial unstable volume and its volume for each scenario:
they are copies of Figures 3.4 a, d and g. The DEM is from IGN BDTopo, coordinates: WGS84,
UTM20N. The contour interval is 100 m for the main maps, and 20 m for the inserts.
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Figure 3.8: Main characteristics of debris avalanche deposits. Tested scenarios are categorized
by unstable volume, with δ = 7° (blue), δ = 10° (orange) and δ = 12° (green). (a) Runout, i.e.
maximum distance between the highest point in the scar prior to collapse and flow front. (b)
Covered area. (c) Mobile volume, i.e. volume of the material leaving the scar (d) Heim’s ratio
(crosses) and effective friction coefficient (squares). Values on the right y-axis are the angles δ
in degrees, matching µ on the opposite axis, such that µ = tan(δ). Colored lines are the friction
coefficients matching the tested friction angles. Error bars in (a) and (d) display the maximum,
minimum and mean value derived following the methodology presented in the body of the text.
The blue dashed lines in (a) and (b) are the best logarithmic fits derived for δ = 7°, with their
matching equation indicated on the plots.
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3.3 Discussion

In the case of the biggest collapse geometries, the strongly concave post-collapse topographies
are associated to important deposit thicknesses. The shallow-water assumption is thus not
valid as the thickness is not negligible in comparison to the initial flow extent, and we cannot
expect our model to properly describe the initiation phase of the collapse. However, at least
two reasons justify the use of shallow-water models. First, full 3D models demand significant
computing resources and are time-consuming, while each of our simulations was run in less than 4
hours, which is a major advantage to carry out multiple simulations with various geometries and
parameters for risk analysis. Secondly, previous studies have shown that shallow-water models
can indeed reproduce real landslide deposits (Lucas et al., 2011; Lucas et al., 2014; Zhao et al.,
2014; Brunet et al., 2017; Kuo et al., 2009).

Nevertheless complex topographies can favor threshold effects: for some paths to be taken by
the debris avalanches, the scar geometry must have a minimum extent and/or define a minimum
destabilized volume. For instance, including the material between the Lacroix and the 1956 -
8th July 1976 fractures in dolomieu and south-east scenarios enables some material to enter the
Rivière du Grand Carbet, while no flow is modelled there in the south scenario whose eastern
collapse boundary is only a few tens of meters west of Lacroix fracture. The overtopping of
Palmiste lava Plateau, observed in the topA2 scenario and not in the midA2 scenario, is another
example of such a threshold effect.

Whether topographic barriers are crossed or not strongly depends on the volume of mobile
material and on the friction coefficient. To illustrate this, simulations were run for the dolomieu
and topA2 scenarios with friction angles varying between 7° and 16° (i.e. friction coefficients
between 0.12 and 0.29). Their characteristics are shown in Figure 3.9. The dolomieu scenario’s
scar is steep enough to enable all the material to flow (Figure 3.9 c). On the contrary, the truly
mobile volume continually decreases in the topA2 scenario as µS increases. For µS > 0.2 =
tan(11.3°), the topography constrains the flow: although the mobile volume is bigger in topA2
than in dolomieu scenario, runouts are similar (Figure 3.9 a) and spreading is more important in
topA2 (Figure 3.9 b). For µS < 0.2, both scenarios reach a smoother area west of the Palmiste
Plateau. However in the dolomieu scenario, there is only little mobile material left, so that it
becomes blocked in the Galion river and small valleys (Figure 3.7). On the contrary, in the topA2
scenario enough material is available to prevent confinement and the flow can propagate more
easily (Figure 3.6).

Finally, the difference between the friction coefficients µS used in the simulations, µeff and µH
is clearly seen in Figure 3.9 d. In contrast to the case of landslides that dot not feature multiple
channelizations (Lucas et al., 2014), µH over-estimates µS but for µS > 0.19 = tan(10.8°) the
bias is almost constant and seems not to depend on the scenario (Figure 3.9 d).

The values of friction angles to be used in numerical simulation remain subject to debate. Lucas’
empirical law (that was derived for almost dry debris avalanches) yielded good fits in other
volcanic contexts (Mount St. Helens and Soufrière Hills, Zhao et al., 2014) where seismic data
was used to constrain the simulation parameters. However in our case the value µS = tan(7°)
used to reproduce an analogue of the 1530 CE event is much lower than the Lucas empirical
value of µeff = tan(13.6°). This suggests a strong mobility of the debris avalanche that could be
explained by the presence of water. Indeed, such a low friction angle (δ = 8°) was needed with the
same SHALTOP model to reproduce debris flows (Moretti et al., 2015). This is consistent with
the 1530 CE event that is characterized in the field by deposits (Komorowski, 2008; Legendre,
2012) by a well-developed muddy textural facies (Appendix A). The transition between a debris
avalanche and debris flow emplacement mechanism occurs about 5 km from the source and about
half-way along the total runout distance. Water could thus have a prominent role in controlling
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Figure 3.9: Main characteristics of debris avalanche deposits for the dolomieu (blue) and topA2
(orange) scenarios. Varying friction coefficient are tested (from δ = 7° to δ = 16°). (a) Runout,
i.e. maximum distance between the highest point in the collapse structure prior to collapse and
flow front. (b) Covered area. (c) Mobile volume, i.e. volume of the material leaving the collapse
structure (d) Heim’s ratio (crosses) and effective friction coefficient (squares). Values on the
right y-axis in (d) and top x-axis are the angles δ in degrees, matching µ on the opposite axis,
such that µ = tan(δ). Error bars in (a) and (d) display the maximum, minimum and mean value
derived following the methodology presented in the body of the text.
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the dynamics of future partial flank collapse and debris avalanche mobility, particularly for
the deep rooted landslides cutting through the highly conductive fluid-saturated bodies A1 and
A2. For instance, more than 13% of the collapsing volume of the midA2 scenario lies within
these bodies (Table 3.1). But there are numerous other sources of water in the La Soufrière
of Guadeloupe volcano, such as perched aquifers inside the lava dome (Lesparre et al., 2014),
shallow depth reservoirs of hydrothermal fluids (Lesparre et al., 2014; Brothelande et al., 2014;
Rosas-Carbajal et al., 2017), depressurized deep rising hydrothermal fluids (Rosas-Carbajal et
al., 2016; Lesparre et al., 2012), rivers and extreme rainfall. This is typical of the volcanic
context. For instance, the debris avalanche of August 2012 on Tongariro (Procter et al., 2014;
Lube et al., 2014) and the 1998 debris avalanche on Casita volcano (Sheridan, 1980; Vries et al.,
2000; Scott et al., 2005) both initiated as debris avalanches but later transformed into more
mobile and devastating debris flows, mostly in their distal part.

3.4 Conclusion

Our modelling of geologically and geophysically constrained partial collapse scenarios at La
Soufrière of Guadeloupe provides key insights on the propagation dynamics and controlling fac-
tors of the resulting debris avalanches. Back calibration of the last flank collapse in 1530 CE
and field evidence from deposit textures suggest such an event could be highly mobile due to the
presence of water in the flow. Multiple simulations of debris avalanches were carried out with
various initial geometries constrained by morphological and geophysical data, as well as different
friction angles. Four main trends were identified for the flows as they are channelled by the to-
pography, with two different dynamics. Part of the flow fills the ravines and stops quickly while
another part reaches open areas where it spreads with high velocities and limited thicknesses.
We show that the initial collapse geometry plays a major role in our model in retaining mate-
rial upslope and thus controlling the volume effectively leaving the collapse structure. For the
biggest collapse geometries, friction coefficients below 0.2 (i.e. friction angles below 11°) increase
the mobile volume and favor overtopping of topographic barriers by the flow.

In these simulations, the northern and eastern parts of Saint-Claude are the most exposed in-
habited areas. They could be impacted even by shallow small-volume partial dome collapse (our
dolomieu and south scenarios) if water is incorporated in the debris avalanche, increasing its
mobility. In the case of a major dome collapse, the mixing of the altered material with perched
ground water and hydrothermal fluids could threaten Basse-Terre, with the propagation of a
relatively thin but rapid flow. Gourbeyre is at first sight well protected by the Palmiste plateau
but massive collapse and/or mobile flows could threaten its eastern periphery. However, in the
most probable event of a small collapse from the most active part of the dome (our south-east
scenario), the material should be mainly confined in the ravines and impact only remote areas.
Nevertheless, all the material accumulated in the ravines could form temporary dams and be
easily remobilized as debris flows or mud flows long after the initial landslide, thus endangering
urban areas all along the rivers. The Rivière des Pères, the Galion river, the Rivière du Grand
Carbet and the Rivière Grand Anse (heading to the south towards Trois Rivières) would be
particularly exposed.

Given the current unrest of La Soufrière of Guadeloupe volcano, the work initiated in this study
must be continued in order to improve risk assessment associated with a partial dome collapse.
In particular, a limit stability analysis would help constrain the unstable volumes in the dome.
Numerous simulations randomly sampling a range of model parameters could also be developed
to produce probabilistic debris avalanche innundation maps.
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3.5 Methodological highlights

3.5.1 Scar geometries

The three superficial collapse structures were constructed using an interface specifically devel-
oped for that purpose. Starting from a 25-meter DEM of the intact lava dome, the surface to
be modified was defined from geological constraints. The z-value of a series of control points
within this surface was then manually modified, the rest being interpolated with the MATLAB
TriScatteredInterp function and the natural interpolation method. The collapse structure was
then smoothed with a moving average.

The four deep rooted collapse structures were constructed with a similar approach. Control
points were given along 5 longitudinal profiles, one being the profile displayed in Figure 3.3c
(used as reference). 30 points were then generated for each profile along a Beziers curve passing
through all control points. Finally, the 150 resulting points (plus some manually added points
to refine the interpolation) were used to interpolate the scar with a multiquadric radial basis
function.

In both cases, the thickness of the initial unstable volume was given in each point of coordinates
(x, y) by:

h = cos(θ)(zinit − zscar), (3.2)

where zinit is the altitude of the initial DEM, zscar the altitude of the DEM including the collapse
structure, and θ the local slope angle. The volume of destabilized material is computed with:

V =
∑
i,j

(zinit(i, j)− zscar(i, j)) dx dy, (3.3)

where dx = dy = 25 m and the indexes (i, j) indicate the position on the 25-meter DEM.

3.5.2 Computation of runout, Heim’s ratio and effective friction coefficient

The metrics we use are shown in Figure 3.10. For a given simulation, we first derive the map of
the maximum flow thickness for the entire simulation and draw the contour line corresponding
to a 10 cm thickness. We then compute the geographical distance ∆L′ to the upper point of the
collapse structure (Figure 3.10, point A) along this line and identify all local maximums. We
keep only the point with the global maximum distance dmax, and all points further than 0.9dmax
(Figure 3.10, points C). We then derive straight profiles along topography from A to C, passing
through the lowest point of the collapse geometry (Figure 3.10, point B). Runout (i.e. ∆L′), µH
and µeff are computed for all these profiles, yielding a variability estimation that is displayed
with error bars in Figures 3.8 and 3.9.

Appendix

3.A Field evidence of the 1530 CE debris avalanche

The field evidence for the 1530 CE debris avalanche of La Soufrière, collected between 1994
and 2008, has been partially discussed in previous works, such as Komorowski (2008), Boudon
et al. (2008) and Legendre (2012). Figure 3.A.1 was produced from a compilation and new
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Figure 3.10: Computation of µH and µeff . (a) Landslides metrics in 2D (after Lucas et al.,
2014). A (blue point) and B (red point) are respectively the highest and lowest points of the
initial mass. C (cyan point) is the flow front position. H0 is the initial mass maximum thickness.
H and ∆L′ are respectively the difference in altitude and horizontal distance between A and C.
∆L is the length traveled by the front flow, i.e. the length of the yellow curve. θ is the mean
local slope between A and C, i.e. the mean local slope of the joint yellow and green curves. The
Heim’s ratio is µH = H/∆L′, and the effective friction coefficient is µeff = tan(θ)+H0/∆L. (b)
Landslides metrics in 3D, for the topA2 scenario with δ = 10°. Color code of lines and points
matches (a). The white line is the deposit extent, the dashed white line is the collapse scar
extent. Colorscale in the collapse geometry matches the initial mass thickness (from yellow to
red). Points A and B are uniquely defined. Points C are chosen as explained in the main body
of the text. The DEM is from IGN BDTopo, coordinates: WGS84, UTM20N.

interpretation of these data in terms of location, thickness and textural facies of the identified
deposits. The co-existence of deposits showing a typical debris avalanche facies with those
showing a muddy debris-flow facies is striking and highlights both the complexity and mobility
of the overall flow. Although localized deposits with a debris flow facies were found only 850
meters away from the summit in Ravine Tarade, all other occurrences of debris flow facies are
located between a distance of 5.6 km from source in the north-eastern periphery of Basse-Terre
and the Caribbean sea. The occurrences of deposits with debris avalanche facies furthest from
source are located north of the Palmiste Plateau about 5.6 km from source. The 1530 CE partial
edifice collapse may thus initially emplaced a debris avalanche with only localized debris flows
in the vicinity of the volcano. After travelling between 3.6 and 5.6 kilometers south-west, it
transformed into a massive thick debris flow given its initial elevated water content and reached
the sea. A precise comparison with our simulation is complex due to the uncertainty on the initial
conditions of the 1530 CE debris avalanche, and on the topography that may have changed since
the event. In particular, the 1530 CE debris avalanche deposits seem to be thicker near the
mouth of The Galion river than in our simulation. However in the area of Basse-Terre, the
orders magnitude of mapped and simulated thicknesses are similar.
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Figure 3.A.1: Comparison between observed and simulated deposits for the 1530 CE debris
avalanche. Deposits identified on the field with debris avalanche facies are marked with triangles,
and deposits with debris flow facies are marked with crosses. The color of the symbols indicates
the thickness of the deposits. The white dashed line is the estimated extent of the deposits. The
simulated deposits of the topA2 scenario with δ = 7° are displayed with the same colorscale.
The light grey area matches the flow path in the simulation. The DEM is from IGN BDTopo,
coordinates: WGS84, UTM20N. The contour interval is 100 m.



Chapter 4

Thin-layer models for rock avalanches
and subsequent debris flows hazard
assessment

Context

In comparison to the Soufrière de Guadeloupe case study, the case of the Prêcheur river (Mar-
tinique, Lesser Antilles) is more complex because it combines two different phenomena: and
initial rock avalanche from the Samperre cliff, upstream the river, and the remobilization of
deposits as debris flows or hyperconcentrated flows (also called lahars in volcanic context). We
will try to model them with a single code, SHALTOP, changing only the rheological parameters.
Thus, we use SHALTOP empirically to model debris flows, which is in theory outside it validity
framework. Given the complexity of modeling precisely such flows, for which the main physical
processes may change during propagation, and between the front and the tail of the flow, we
focus on high discharge debris flows initiated by instantaneous or very quick remobilization of a
debris reservoir. Such events display, presumably, less temporal and spatial rheological variations
as they are less diluted along the river. Contrary to potential dome collapse of the Soufrière de
Guadeloupe volcano that threaten several cities, in the case of the Prêcheur river stakes are
limited to the Prêcheur village, at the mouth of the river. However, the historical recurrence of
destructive debris flows makes it important to address this hazard. In 2010, a high-discharge
debris flow flooded a quarter of the Prêcheur village, at the mouth of the river. In 2018, a new
episode of combined cliff collapses and lahars raised concerns that such a destructive event could
occur once again.

The work presented in this chapter results from the combined efforts of the IPGP and BRGM
to better characterize the hazards in the river catchment. Both institutions, with the local
BRGM antenna and the OVSM (Observatoire Volcanologique and Sismologique de Martinique),
are involved in monitoring the river. The OVSM maintains a network of seismic stations used to
identify rock avalanches and debris flows, and trigger alarms in the Prêcheur village whenever a
significant increase of flow height is detected. Alarms are also triggered by a pendulum system.
The BRGM installed cameras that help characterizing the river bed evolution. These data, as
well as helicopter flights, are used to help stakeholders understanding hazards and guide risk
mitigation. Thus, in 2018, a report from the ONF (Office National des Forêts) focused on lahars,
and suggested planning measures to limit overflow hazards in the Prêcheur village (Quefféléan,
2018a). Later on, a report from the BRGM analyzed possible future destabilization scenarios
for the Samperre Cliff (Nachbaur et al., 2019). In this perspective, our work can be seen as a
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synthetic study to analyze both phenomena (cliff destabilization and high discharge lahars) in a
single framework. It will be continued in a post-doc at the BRGM, and will result in a report
delivered to local authorities.

The methodology we use for the Prêcheur river here is the same as in the previous chapter,
even though it is adapted to the type of available data. We aggregate a wide variety of obser-
vations to constrain simulation scenarios and characterize observed events, calibrate the model
by back-analysis, and use the results to model a forward-prediction scenario. In comparison to
the Soufrière de Guadeloupe case study, more data are actually available (with, for instance,
successive topographic surveys), but the phenomena are more complex, such that all available
data are necessary to justify the simulation scenarios and hypotheses. We thus use, for instance,
granulometric curves to justify the choice of the rheological law. Seismic recordings are also used
to estimate the travel time of observed debris flows.

This chapter is the base of an article that was submitted in February 2021 to Engineering Geology.
Significant modifiations have been included to reduce its length:

• Peruzzetto, M., Levy C., Thiery, Y. , Grandjean G., Mangeney A., LejeuneA.-M., Nachbaur
A., et al. Simplified simulation of rock avalanches and subsequent debris flows with a
single thin-layer model. Application to the Prêcheur river (Martinique, Lesser Antilles).
Engineering Geology, submitted.

We give in Figure 4.1 the main questions and problematics that must be tackled in this chapter,
when analyzing the sediments transfer from the Samperre cliff to the sea, with the initial rock
avalanche, the remobilization of the deposits as lahars, and their evacuation in the sea. Each step
(lines in Figure 4.1) is characterized by physical processes (orange boxes), for which modeling
solutions must be found (black boxes). We constrain the propagation processes by field work
and agregation of existing data, and test numerical solutions for modeling the propagationth
with SHALTOP by reproducing past events. We will also estimate, when possible, the volume
involved in potential future rock avalanches from the cliff, and lahars (red boxes). Figure 4.1
will be completed at the end of this chapter.

Abstract

In this work, we assess the possibility of modeling a rock avalanche, and the subsequent re-
mobilization of the deposits as a high discharge debris flow, with a single one-phase thin-layer
numerical code, SHALTOP. The back-analysis of past events and the construction of a forward
prediction scenario are often complex because little quantitative data are available to constrain
precisely the simulation set-up and rheological parameters. Using the Prêcheur river and the
Samperre cliff (Martinique, Lesser Antilles) as case studies, we focus on extreme events with
highest potential impact on populations and infrastructures. We use geological and geomor-
phological data, topographic surveys, seismic recordings and granulometric analysis to define
realistic scenarios and reproduce the main characteristics of documented events. The calibrated
rheological parameters are then used to model the emplacement of a possible 1.5 × 106 m3

cliff collapse, with the Coulomb rheology and a friction coefficient µS = tan(14°) = 0.25. The
resulting deposits are remobilized as a high-discharge debris flow with the Coulomb rheology
and µS = tan(2°) or µS = tan(3°), or with the Voellmy rheology with a turbulence coefficient
ξ = 500 m s−2. The initial geometry of the reservoir has little impact on the flow dynamics, in
particular with the Voellmy rheology. However, a progressive release modeled with a constant
source discharge slows down the flow and limits overflows, in comparison to instantaneous re-
leases. By combining different source mechanisms and rheological parameters, our simulations
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Figure 4.1: Incomplete diagram of sediment transfer processes, from the Samperre Cliff to the
sea, along with modeling solutions.

could reproduce empirically the range of flow velocities deduced from seismic recordings for the
most important lahars of 2009 and 2010. This study should be completed by two-phase flow
thin-layer modeling to investigate the dynamics of hyper-concentrated flows, as well as the in-
fluence of erosion and deposition on inundation hazard. Nevertheless, our results already pave
the way to improved real-time monitoring and early-warning systems.
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Contexte

Par rapport au cas d’étude de la Soufrière de Guadeloupe, le cas de la Rivière de Prêcheur
(Martinique, Petites Antilles) est plus complexe car il combine deux phénomènes distincts : une
avalanche de blocs sur la Falaise Samperre, en amont de la Rivière, et la remobilisation des
dépôts en laves torrentielles ou écoulements hyper-concentrés (aussi appelés lahars en contexte
volcanique). Nous allons tenter de les modéliser avec le même code SHALTOP, en changeant
seulement les paramètres rhéologiques. Ainsi, nous utilisons SHALTOP en dehors de son cadre de
validité théorique. Par ailleurs, compte tenu de la complexité de modéliser de tels écoulements,
nous nous concentrons sur des événements extrêmes, c’est à dire des laves torrentielles à fort
débit initiées par une remobilisation instantanée ou très rapide du réservoir de débris en pied
de falaise. Un tel événement présente, à priori, moins de variabilités spatiales (entre le front et
la queue de l’écoulement) et temporelles, car le lahar est moin rapidement dilué dans la rivière.
Contrairement à la Soufrière de Guadeloupe qui menace plusieurs villes, les enjeux dans la rivière
du Prêcheur sont limités au village du Prêcheur, à son embouchure. Toutefois, la récurrence de
laves torrentielles dangereuses rend important l’étude de l’aléa. En 2010, une lave torrentielle a
ainsi inondé un quartier du village. En 2018, une nouvelle phase de la déstabilisation de la falaise
Samperre a eu lieu, sans, heureusement, provoquer de pertes humaines ou matérielles.

Le travail présenté ici résulte des efforts combinés du BRGM et de l’IPGP pour mieux caractériser
les aléas dans le bassin versant du Prêcheur. Ces deux institutions, via l’antenne Martinique du
BRGM et l’OVSM (Observatoire Volcanologique et Sismologique de Martinique) sont impliquées
dans la surveillance de la rivière et de la falaise. L’OVSM est responsable de la maintenance du
système d’alerte, comprenant des géophones et un système pendulaire, qui servent à déclencher
une sirène en cas de montée du niveau de l’eau. Grâce au réseau de capteurs sismiques installés
sur la Montagne Pelée, l’OVSM détecte également en temps réel les effondrements de la Falaise
Samperre. L’installation de caméras à faible fréquence d’acquisition par le BRGM permet de
suivre l’évolution du lit de la rivière. Ces données, ainsi que des survols réguliers de la rivière,
permettent de mieux caractériser les aléas et de suggérer des orientations pour la gestion des
risques. Ainsi, en 2018, un rapport de l’Office National de Fôrets (ONF) s’est concentré sur les
lahars et les aménagements envisageables pour limiter les risques de débordement (Quefféléan,
2018a). En 2019, le BRGM s’est lui concentré sur l’identification des mécanismes de déstabili-
sation de la Falaise et des volumes encore instables (Nachbaur et al., 2019). Cette étude tente
de faire une synthèse des deux aléas (avalanche de blocs et laves torrentielles massives) dans un
cadre d’étude unifié. Elle sera poursuivie pendant un post-doc au BRGM, qui donnera lieu à un
rapport rendu à la DEAL Martinique.

La méthode que nous utilisons pour la rivière du Prêcheur est la même que dans le chapitre pré-
cédent, mais elle est adaptée aux types de données disponibles. Par rapport au cas de la Soufrière
de Guadeloupe, plus de données sont disponibles (avec par exemple, des relevés topographiques
successifs), mais les phénomènes étudiés sont plus complexes. Ainsi toutes les données dispo-
nibles sont nécessaires pour justifier les scénarios et les hypothèses de simulation. Par exemple,
nous utilisons des analyses granulométriques pour justifier le choix de la loi rhéologique. Des
enregistrements sismiques sont également utilisés pour estimer les temps de parcours des laves
torrentielles.

Ce chapitre est une première version d’un article qui a été soumis à Engineering Geology en
Février 2021. Des modifications importantes ont été faites pour réduire la taille de l’article :

• Peruzzetto, M., Levy C., Thiery, Y. , Grandjean G., Mangeney A., LejeuneA.-M., Nachbaur
A., et al. Simplified simulation of rock avalanches and subsequent debris flows with a
single thin-layer model. Application to the Prêcheur river (Martinique, Lesser Antilles).
Engineering Geology, submitted.
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Dans la Figure 4.1, nous identifions les problèmes principaux qui se posent dans ce chapitre pour
comprendre les mécanismes de transfert des sédiments, de la Falaise Samperre jusqu’à la mer.
Chaque étape (lignes dans la Figure 4.1) est caractérisée par des processus physiques (rectangles
oranges) pour lesquels des solutions de modélisation doivent être cherchées (rectangles noirs).
Nous identifierons les différents processus à l’aide du travail de terrain et l’agrégation de données
déjà existantes, et testerons les solutions numériques en reproduisant un événement passé. Nous
estimerons aussi, quand c’est faisable, les volumes impliqués dans de futures avalanches de blocs
et laves torrentielles (rectangles rouges). La Figure 4.1 sera complétée à la fin de ce chapitre.

Résumé

Nous évaluons la possibilité de modéliser une avalanche de blocs et la remobilisation des dépôts
en de puissantes laves torrentielles, avec un seul code d’écoulement en couche mince, SHALTOP.
La calibration du modèle et la construction des scénarios de modélisation prédictifs sont souvent
rendues complexes par le manque de données quantitatives. En utilisant la Rivière du Prêcheur
et la Falaise Samperre comme cas d’étude, nous nous concentrons sur des événements extrêmes,
ayant l’impact le plus important sur les populations et les infrastructures. Nous utilisons des
données géologiques et géomorphologiques, des relevés topographiques, des enregistrements sis-
miques et des analyses granulométriques pour construire des scénarios de simulations réalistes,
et reproduire les caractéristiques principales d’événements passés. La calibration des paramètres
rhéologiques permet ensuite de modéliser les dépôts d’une potentielle avalanche de blocs de
1.5 × 106 m3, avec la rhéologie de Coulomb et µS = tan(14°) = 0.25. Ces dépôts sont ensuite
remobilisés pour générer une lave torrentielle, avec la rhéologie de Coulomb et µS = tan(2°) ou
µS = tan(3°), ou avec la rhéologie de Voellmy et un coefficient de turbulence ξ = 500 m s−2. A
volume fixé, la géométrie initiale du réservoir a relativement peu d’influence sur la dynamique
de l’écoulement, en particulier avec la rhéologie de Voellmy. Toutefois, par rapport à une re-
mobilisation instantanée, une remobilisation progressive (avec un débit source constant) ralentit
la propagation et limite les débordements. En combinant différents paramètres rhéologiques et
mécanismes d’initiation, nos simulations permettent de retrouver empiriquement la gamme de
temps parcours mesurée grâce aux enregistrements sismiques, pour les principaux lahars de 2009
et 2010. Cette étude pourrait être complétée par la simulation d’écoulements bi-phasiques pour
essayer de modéliser des écoulement hyper-concentrés, ainsi que l’influence de l’érosion et de la
déposition dans la partie avale du Prêcheur sur les risques de débordement. Nos résultats ouvrent
toutefois déjà des perspectives intéressantes d’amélioration de la surveillance en continu, ainsi
que des systèmes d’alerte.
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4.1 Introduction

The remobilization by water of old or recent volcanic material, during or even long after an
eruption, generates sediment-laden flows called lahars that travel in gullys and rivers tens to
hundreds of kilometers away from the volcano (Vallance and Iverson, 2015; Thouret et al., 2020).
Thus, they are sometimes major threats for the populations and infrastuctures. Non eruptive
lahars can be correlated to landslides that create loose debris reservoirs. This happened several
times over the past decades in the Prêcheur river, in Martinique (Lesser Antilles) (Clouard et
al., 2013; Aubaud et al., 2013). Hazard assessment studies considering both the landslide that
creates the reservoir and its remobilization as lahars are difficult, because these are two distinct
and different phenomena.

The initial landslide can take various forms, as debris or rock avalanches. Lahars can propagate
as hyperconcentrated flows (HFs) or debris flows (DFs). In the following, we will thus talk about
lahar to refer to both DFs and HFs. We define DFs as homogeneous mixtures of water and
granulated rocks with volumetric solid fraction higher than 60%, similar velocities for the solid
and fluid phases and densities above 1800 kg m−3 (Coussot and Meunier, 1996; Vallance and
Iverson, 2015; Thouret et al., 2020). In comparison, HFs feature solid fractions between 20%
and 60%, a vertical separation of the two phases and densities below 1800 kg m−3. When the
fluid fraction is further increased, the flow becomes a muddy streamflow, where fine particles
(silts and clays) are suspended in the stream and coarser grains are carried along the stream
bed. We may expect that the remobilization of a small amount of solid materials will produce
HFs, while fast remobilization by liquefaction of a large debris reservoir will turn into a DF
(Vallance and Iverson, 2015). However, lahars dynamics vary with space and time, with bulking
and dilution controlling the volumetric solid fraction. The excess pore water pressure, resulting
from difference in velocities between solid and fluid phases, favors partial liquefaction and slows
down the settling of solid grains. On the contrary, friction between grains dissipates kinetic
energy (Vallance and Iverson, 2015). Because of the combination of all these process, a DF
initiated in the upper section of a river may well turn into HF at its tail because of dilution and
settling, while its front increases it solid content due to bed erosion. Further dilution downstream
can then transform completely the DF into a HF (for a conceptual view of such a process, see
Figure 2 in Thouret et al. (2020)).

Over the past decades, thin-layer models have been increasingly used to study these phenomena
(see McDougall (2017) for a general review, and Thouret et al. (2020) for lahar modeling). Their
main assumption is that the landslide thickness is small in comparison to its lateral extent. In
turn, the flow description boils down to its thickness and its thickness-averaged velocity. In their
simplest form, they describe an homogeneous flow and dissipate energy solely by considering a
stress applied at the base of the flow. Such models proved to reproduce well rock and debris
avalanches, and debris flows (Hungr et al., 2007; Pastor et al., 2018a). Some numerical codes also
model, for instance, two-phase flows (Iverson and George, 2014; Bouchut et al., 2015; Bouchut et
al., 2016; Mergili et al., 2017; Pastor et al., 2018b), three-phase flows (fluid, coarse solid fraction,
fine solid fraction Pudasaini and Mergili, 2019), and erosion along flow path (Iverson, 2012;
Pirulli and Pastor, 2012). However, these developments rely often on empirical relations with
parameters difficult to constrain and/or are not yet adapted to flows on complex topographies.

In the following, we will use the one-phase thin-layer model SHALTOP (Bouchut et al., 2003;
Bouchut and Westdickenberg, 2004; Mangeney-Castelnau et al., 2005; Mangeney et al., 2007a),
that has been used extensively to model gravitational flows at the field scale(e.g. Pirulli and
Mangeney, 2008; Favreau et al., 2010; Lucas et al., 2014; Moretti et al., 2012; Moretti et al.,
2015; Moretti et al., 2020a; Peruzzetto et al., 2019). SHALTOP is semi-empirical in the sense
that rheological parameters are calibrated by reproducing past events. However, in comparison
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to purely empirical methods that rely only on observations, it solves the momentum equations
to model the dynamics of the flow the complex geometrical interactions between the flow and
the topography.

In this work, we test the feasibility of using SHALTOP to model both a rock avalanche and
the debris flows produced by the subsequent remobilization of the deposits. To our knowledge,
the combined simulation of both phenomena, which is required for comprehensive hazard as-
sessment, is rarely done with single-phase thin-layer models. Multi-phase models can be used
(e.g. Mergili et al., 2020), but involve more parameters which makes their operational use more
difficult. Because they have the highest potential impact on infrastructures and populations, we
focus on extreme events (avalanches of volumes > 1 × 106 m3, and high discharge DFs). We
choose the Prêcheur river as study site, where such events are documented and where large DFs
threaten a village at the mouth of the river (Figure 4.2). A wide variety of data is available,
but only part of these data is quantitative, which makes it difficult to constrain precisely simula-
tions. Our methodology is summarized in Figure 4.3. We use topographic surveys, geological and
geomorphological observations to construct realistic initial conditions for our simulations. The
rheological parameters are then calibrated by reproducing documented events (2 rock avalanches
and 1 high-discharge DF). For rock avalanches, runout is given by aerial photopgraphs and an
insight on their dynamics is provided by seismic data. For DFs, the rheology is constrained by
the granulometry and morphology of deposits. We estimate areas flooded by DFs with aerial
photographs, and travel times with geophones recordings. Using the calibrated rheological pa-
rameters, we can then consider forward-prediction simulation scenarios. We first model a possible
future avalanche, and remobilize instantaneously the simulated deposits to produce a DF. Then,
to explore the influence of DF initiation mechanism, we we also use a constant discharge as
source term to model progressive materials remobilization, instead of an instantaneous release.

In Section 4.2 we present in more details our study site, Prêcheur river, along with the events we
use to calibrate our model. Then in Section 4.3, we explain how we constrain the initial condi-
tions of rock avalanches and DFs simulations. In Section 4.4, we present into more detatils the
SHALTOP numerical model. Section 4.5 gives the results of model calibration, and Section 4.6
the results of forward prediction simulations. Finally, we discuss these results in Section 4.7, and
conclude in Section 4.8.

4.2 Data

The Prêcheur river catchment is located west of Montagne Pelée volcano in Martinique, Lesser
Antilles (Figure 4.2a). Since the 1902 eruption, this volcano has be been continuously moni-
tored by the Martinique Volcanologic and Seismologic Observatory (OVSM). Both seismic and
fumarolic activities have remained low since the last 1928-1932 eruption, with only one significant
seismic swarm in 1987 (Hirn et al., 1987; Boudon et al., 2005). The Samperre cliff is located
about 2 km north-west of the summit, at the source of the Samperre river (Figure 4.4a). About
2.5 km downstream, the latter joins the Prêcheur river whose source is located between Montagne
Pelée and the Samperre cliff. At the mouth of the river, 7 km downstream the Samperre cliff,
the Prêcheur village (Figure 4.4b) is built on the river alluvial fan and hosted 1300 inhabitants
in 2017 (INSEE, 2020). The bridge (Figure 4.4b) is the only access to the northern part of the
village. In Figure 4.5, we give a conceptual view of the Prêcheur catchment, summarizing the
sediments types and initiation processes for lahars and rock avalanches.

In the following we present the available data to constrain simulations of rock avalanches from
the Samperre Cliff (Section 4.2.1). Simulations scenarios for rock avalanches are given by topo-
graphic surveys, and geological/geomorpholigical interpretation of the cliff setting (Section 4.2.1).
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Figure 4.2: Prêcheur river map and section. (a) Map of the Prêcheur river. The 1 m DEM in
the river area is from Helimap 08/2018, and from IGN 03/2010 elsewhere. Coordinates: WGS84
UTM20N (b) River cross-section, from the river mouth (left) to the Samperre cliff (right). Green
and red arrows: estimated deposits extents after the 2009 and 2018 Samperre rock avalanche
episodes, respectively. White crosses: source areas for debris flow simulations with imposed dis-
charge. Average slopes are given for each section between dotted vertical black lines. Horizontal
and vertical scales differ.
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Figure 4.3: Modeling strategy for sand/rock avalanche and subsequent debris flow simulation.
We indicate the data used to construct a forward prediction scenario (top panel), and the data
used for model calibration (red panels).
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Figure 4.4: 2018 views of the Samperre cliff and Prêcheur village. (a) Feb. 2, 2018 view of the
cliff, after the main destabilizations. The dust cloud generated minor collapse is visible on the
right side of the cliff: the rocks rapidly disintegrate to form a granular flow. (b) Mar. 30, 2018.
Helicopter view of the prêcheur village, constructed on the alluvial fan of the Prêcheur river,
with a central view of the bridge.

Calibration of rheological parameters is done by reproducing the Aug. 21, 2009 and Jan. 2, 2018
rock avalanches.

In Section 4.2.2, we present in more details the Prêcheur river catchment. We give a geomorpho-
logical description of the river as well as the monitoring system that was used to characterize DF
events. The granulometric data and field observations used to constrain the rheology in simula-
tions are also described. Finally, we will also present the June 19, 2010 DF used for calibrating
the model parameters.

These data are summarized in Figure 4.6, where we provide a chronology of the main rock
avalanches and DFs/HFs that occurred between 2009 and 2019, along with the available moni-
toring and warning system.

4.2.1 Rock avalanches from the Samperre cliff

Geological setting

Over the past 40 years, the Samperre cliff has produced at least 4 episodes of massive destabliza-
tions in 1980, 1997-1998 (Aubaud et al., 2013), 2009-2011 (2.1 × 106 m3, Clouard et al., 2013)
and 2018-2019 (5×106 m3, Quefféléan, 2018a; Nachbaur et al., 2019). Since 1975, the occurence
and relative magnitude of collapse events is systematically inferred from the seismic network
maintained by the OVMP (Aubaud et al., 2013; OVSM-IPGP, 2020). However, another collapse
episode is inferred from testimonies in the early 1950s (Aubaud et al., 2013). Thus, the cliff rim
retreated by 250 m between 1988 and 2018 (Nachbaur et al., 2019). Its evolution between March
2010 and August 2018 is given in Figure 4.7a.

As it is impossible to get near the Samperre cliff, its geotechnical characteristics are unknown
and a precise monitoring system would be complex to set up. However, In August 2018, the
acquisition of LIDAR data and aerial photographs allowed for the construction of a textured
3D model of the cliff. These new data, along with historical aerial views, allow completing
the geological interpretation of the cliff (Nachbaur et al., 2019), in addition to previous studies
(Mathon and Barras, 2010; Clouard et al., 2013).
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Figure 4.7: Samperre Cliff longitudinal cross-section with topographic surveys and initial mass
in simulation. (a) Progressive retreat of the cliff between 2009 and 2018. (b) Initial mass for
the sc_2009 and sc_2018 rock avalanche scenarios. (c) Topograpgy before (03/2010 DEM)
and after (07/2010 DEM) the May 2010 main collapse episode. At the time of the 07/2010
topographic survey, the collapse deposits (purple dashed line) had already been washed away.
Its geometry is thus unknown. (d) Simulation scenarios to reproduce the Jun. 19, 2010 lahar.
The 01/2018 topographic survey is used as a proxy to reconstruct the surface of the reservoir at
the bottom of the cliff (LH_R_cliff scenario, red patch). A smoothed version of the 08/2018
topography (purple line) is the bottom layer in the simulation. The LH_R_total is constructed
by adding 30 m of material (from the gully bottom) in the major river bed (see Figure 4.2a).
White crosses indicate source areas for simulation with imposed source discharges.
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On the northern side of the cliff, an ochre basal unit, already seen in 2010, was further exposed
in 2018 (Figure 4.8a, red patch). Nachbaur et al. (2019) interpret it as hydrothermal volcanic
deposits emplaced before the major 25 km3 flank collapse (D1) event that occurred 216 kyrs ago
(Le Friant et al., 2003; Boudon et al., 2007; Germa et al., 2011; Brunet et al., 2017). This massive
collapse may have actually occurred as a succession of smaller (about 5 km3) debris avalanches
(Brunet et al., 2017). As the cliff is located within the destabilization structure, they could either
be the surface of the flank collapse scar, or of a mega-block transported by the debris avalanche.
On the opposite side of the cliff, a bottom layer of old and light pyroclastic deposits is visible
(Figure 4.8a, orange patch). Nachbaur et al. (2019) suggest they were emplaced after the D1
flank-collapse. The associated eruptive activity could be either the formation of the Piton Marcel
dome (Figure 4.2a, grey triangle) following the flank collapse, or the edification of the old Pelée
volcano, between 126 kyrs BP and 25 kyrs BP (Germa et al., 2011; Le Friant et al., 2003). Both
the pre-D1 ochre basal unit and the lower pyroclastic deposits seem to have remained stable over
the past decade: the cliff progressively retreated along their surface.

Most of the upper part of the cliff, which collapsed during the 2010 and 2018 destabilization
crisis, is constituted of a 100 to 200 meter succession of pyroclastic deposits, with dark grey to
brownish colors (Figure 4.8a, pink patch). The interface with the basal stable layer is marked
by a clear slope break, as well as several water seepages (Nachbaur et al., 2019). Finally, the
2018 destabilizations unveiled a white, probably andesitic, 30 m thick lava flow at the top of the
cliff (Figure 4.8a, blue patch), estimated at 12 kyrs BP by Nachbaur et al. (2019). It is capped
by a thin layer of pumice deposits (Figure 4.8a, yellow patch) emplaced during Montagne Pelée
plinian P1 eruption dated 1285±25 yr CE by Nachbaur et al. (2019). This layer is probably the
one identified after the 2010 destabilizations on the north-east side of the cliff by Mathon and
Barras (2010) and Clouard et al. (2013).

Because of the fluid circulations identified between the stable basal layer and the less consolidated
pyroclastic materials, Nachbaur et al. (2019) and Clouard et al. (2013) suggest the bottom part of
these latter formations is progressively weakened until it collapses (at least for the 2010 and 2018
collapse sequences). The cliff rim then retreats as a consequence of gravitational readjustments
(Aubaud et al., 2013). During such episodes most destabilizations involve limited volumes (up
to 10-100 ×103 m3), but larger events (1 to 2 × 106 m3) can be expected. Once destabilized,
the pyroclastic materials disintegrate quickly (see Figure 4.4a) and generate rock avalanches, as
observed in other volcanic contexts (Hibert et al., 2011; Levy et al., 2015; Durand et al., 2018).
Their travel distance seldom exceeds a few hundreds meters. However, some of the biggest rock
avalanches reach the RPRE station (Figure 4.2a) about 2 km downstream. In recent years, the
most important ones occurred in 2009-2010 and 2018.

Aug. 21, 2009 rock avalanche

On Aug. 21, 2009 at 14:12 UTM, a major rock avalanche occurred, following 23 smaller rock
avalanches in the previous 30 days. It was not preceded by intense precipitations (only 2 mm in
the previous 24h, Clouard et al., 2013). The avalanche was recorded by all seismic stations of the
Montagne Pelée’s surveillance network in a radius of about 10 km as a 4 min long event, with most
of the energy in the first 170 s (Figure 4.9a). From aerial inspection, deposits could be mapped
down to RPRE (Figure 4.2a and 4.2b, green arrow.), about 2 km away from the cliff (Clouard
et al., 2013). Unfortunately, only the post-collapse cliff morphology could be mapped, thanks
to a LIDAR survey carried by IGN in March 2010. No significant destabilization occurred in
between. Clouard et al. (2013) estimate nevertheless the order of magnitude of the 2009 collapse
volume to be 1× 106 m3.

A new phase of destabilizations started on May 8 2010, with a paroxysm on May 11 (47 collapses
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Figure 4.8: Samperre cliff geology and sc_east scenario. (a) Cliff topography in August 2018
with main geological units (Nachbaur et al., 2019). (b) Modified 08/2018 topography with the
scar from the potential rock avalanche (sc_east scenario). The unstable volume is 1.9× 106 m3.

in one day, Clouard et al., 2013). Thanks to a new LIDAR acquisition in July 2010, Clouard et al.
(2013) estimated the total collapsed volume between March and July 2010 to 2.1 × 106 m3. In
comparison to the 2009 crisis, the rock avalanche deposits extended only a few hundreds meters
away from the cliff toe (approximately, right most white cross in Figure 4.2b), presumably because
the rock avalanche occurred as successive small destabilizations rather than one major event as
in 2009.

Because we have a risk conservative approach, we will model only the 2009 event that occurred
in one main single phase and displayed a long runout. However, the screes reservoir resulting
from the 2010 crisis will be used to model the initiation of the Jun. 19, 2010 destructive debris
flow.

Jan. 2, 2018 rock avalanche

After the main May 2010 collapse crisis, smaller rock avalanches kept occurring on the cliff
until 2014 (see Figure 4.6) resulting in up to 50 m retreat of the rim between 2010 and 2017
(Nachbaur et al., 2019). On Jan. 2, 2018, after a particularly rainy wet season, a new sequence
of destabilization started. Its main phase lasted about two month, but episodic gravitational
readjustments occurred until October 2019. This crisis culminated on Jan. 4, 2018 with one
main event that will be reproduced to calibrate simulation rheological parameters.

It was recorded widely on the seismic network and lasted about 2 minutes (Figure 4.10). From
helicopter overflight, it is estimated to have reached the river bend just upstream RPRE (Fig-
ure 4.2b, orange arrow). Several topographic surveys help characterize this collapse event (see
Figure 4.7a). On Jan. 19, 2018, a photogrammetric 3D model of the cliff gives the early evolu-
tion of the cliff as well as the debris reservoir accumulated at the cliff toe. On Mar. 8, 2018, a
helicopter overflight allows the fortuitous acquisition of a new photogrammetric model. However,
as neither the flight plan nor the picture acquisition were meant to be used for such a purpose,
the resulting model is of relative poor quality. Finally a LIDAR acquisition over the whole river
Aug. 17, 2018 gives the full extent of the cliff retreat (with, in comparison, only minor destabi-
lizations occurring afterwards). By comparing each Digital Elevation Model (DEM) to the July
2010 DEM, we get the following estimations of collapsed volumes (see Figure 4.6):

• Between July 2010 and Jan, 19. 2018: 3.4 × 106 m3. Quefféléan (2018a) gets a higher
3.7× 106 m3 estimation. The discrepancy may arise from the presence of screes at the cliff
toe that makes the estimation more complex.
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Figure 4.9: Seismic recordings of the Aug. 21, 2009 Samperre rock avalanche. (a) Signal recorded
at station LAM, northern component. (b) Grey line: Seismic energy rate at station LAM. Red
lines: energy dissipated during the sc_2009 scenario (plain line, µS = tan(11°) = 0.19), and the
sc_2009_1 scenario (dashed line, µS = tan(12°) = 0.21). Grey and red lines are aligned for
their maximums to match.

• Between Jan. 19, 2018 and Mar. 8, 2018: 0.8× 106 m3.

• Between Mar. 8, 2018 and August 2018: 0.4× 106 m3.

Our 4.9× 106 m3 estimation of the total collapsed volume between July 2010 and August 2018
is consistent with Quefféléan (2018b) (5×106 m3). Besides, by comparing the Jan. 19, 2018 and
August 2018 surveys, we could estimate the screes reservoir volume, at the bottom of the cliff,
to 0.4 × 106 m3. This reservoir had indeed been washed away by the time of the August 2018
LIDAR acquisition. Several factors explain the difference with the 3.7×106 m3 volume estimated
previously. Firstly, the avalanche deposits were not limited to the cliff bottom but reached the
bend just above RPRE (Figure 4.2a). Secondly, as mentioned before, the cliff did undergo
several collapse episodes between 2010 and 2018. By reconstructing a synthetic topography that
is constrained by the 2017 cliff rim as seen on ortho-photographs, we estimate that the volume
that actually collapsed in the first days of January 2018 may rather be 1.5 × 106 m3 (see the
definition of the sc_2018 scenario in section 4.3.1). Finally, a few lahars had already occurred
between Jan. 2, 2018 and Jan. 19, 2018 and thus started carrying off the avalanche deposits.

4.2.2 DF in the Prêcheur river

Geomorpholocial context

The watershed drained by the Prêcheur river is about 6.2 km2 (Aubaud et al., 2013). Its baseflow
discharge does not exceed 2 m3 s−1, but in case of extreme cyclonic events it may reach up to
150 m3 s−1 (Aubaud et al., 2013). Its main affluent is the Samperre river, but other small and
intermittent torrents join it.

Following Quefféléan (2018a), the river can be divided in two main sections. The first one is
the Samperre river branch, down to its junction with the Prêcheur river. It is very narrow
(down to 10 m) and steep-walled (more than 70 m at some locations). Average slopes are
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Figure 4.10: Seismic recordings of the Jan. 4, 2018 Samperre rock avalanche. (a) Signal recorded
at station LAM, northern component. (b) Grey line: Seismic energy rate at station LAM. Red
lines: energy dissipated during the sc_2018 and sc_2018_1 scenarios (plain and dashed lines
respectively), with friction coefficient µS = tan(14°) = 0.25. Grey and red lines are aligned for
their maximums to match.

between 7° and 12° in the last 2 km. Further upstream, slope increases up to 30° at the cliff foot
(Figure 4.2b). Such slopes favor the remobilization of rock avalanches deposits, suggesting the
most powerful DFs are generated in this part of the river. However the remobilization mechanism
of the screes is not fully constrained. On aerial photographs from the 2018-2019 crisis, the absence
of collapse scars in the debris reservoir points to progressive gullying rather than instantaneous
remobilization. However, Lalubie (2013) suggest instantaneous liquefaction could also trigger
DFs. Such an hypothesis is coherent with the high discharge and velocities observed during the
destructive June 2010 DF, that had completely drained the screes at the cliff toe (see Section
4.2.2). Another major source of DF is river daming from river bank instabilities. Subsequent
breaching can produce debris flows, as on Jun. 9, 2019.

In the second section of the river, from the Samperre river / Prêcheur river junction down to the
river mouth, the river cuts through relatively poor resisting materials, such as pumices deposits
(Meunier, 1999; Quefféléan, 2018a). As a result, the river bed progressively widens (from 30 m
to 60 or 70 m) and flattens, with 3° to 4° slopes. Thus, it is mainly a deposition area for debris
flows, with meter-sized blocks scattered on the river bed. The conditions in which these deposits
could be further remobilized by subsequent lahar (DFs or HFs) are not clear. Given the small
slopes, DFs are unlikely to be generated in this section of the river, but the extent to which
HFs could develop there is still an open question. In normal streamflow conditions, the water
course meanders through the unconsolidated sandy deposits, forming terraces, some them several
meters high (Figure 4.12c). Though the river bed is wide, the banks are sometime steep and
small landslides develop all along the river. However, in most place, they are not large enough
to dam the whole river.

Initiation processes for lahars are given in Figure 4.5. In Figure 4.11a, we summarize the locations
where DFs, HFs and SFs can be initiated. Figure 4.11b gives the expected evolution of a DF
initiated in the upper section of the river.

The Prêcheur village is constructed on the alluvial fan of the river. The outlet position is also
mobile, with 80 to 100 m variations in the stream direction over the last 40 years (Quefféléan,
2018a). The river mouth has undergone important variations since 1950: after an important
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Figure 4.11: Cross-section of the Samperre and Prêcheur river, from the Samperre cliff to the
sea (a), with a conceptual view of lahars processes (b) and our modeling solution (c).
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lahar reported by Prêcheur inhabitants in the early 1950s, the river mouth was more than 330 m
wide at its outlet and about 90 m wide at the actual location of the bridge (Aubaud et al., 2013;
Quefféléan, 2018a). With the banks progressively anthropized and the installation of blocks to
protect the village, the outlet is now only 80 m wide, and the river bed is 30 m wide below the
bridge. In order to mitigate the overflow hazard which is enhanced by the reduction of the river
bed width, the river bed is actively cleared after major lahars by quarry companies.

Prêcheur river monitoring: AFMs and webcams

In order to monitor the Prêcheur river and detect lahars, a short-period one-component seismic
station was installed in 1979 at the CPMA site (Figure 4.2a) by the OVSM. In 1998, 2001 and
2014, three geophones, called Acoustic Flow Monitoring (AFM) sensors (LaHusen, 2005), were
installed at CPMA, RPRE and CCPA respectively. AFM system, developed at the Cascades
Volcano Observatory (LaHusen, 1998) is the most common monitoring lahar system. It is cur-
rently installed on active volcanoes (e.g. Pinatubo (Marcial et al., 1996), Merapi (Lavigne et al.,
2000), Ruapehu (Cole et al., 2009) and Tungurahua (Jones et al., 2015)). Acoustic signals are
processed on site by the digitizer, and three records are recovered in real-time by the OVSM:
FULL (10-300 Hz, low gain), HILO (10-100 Hz, high gain) and HIHI (100-300 Hz, high gain).
HILO and HIHI records allow monitoring the normal streamflow of the river but are saturated
by large events due to their high gain. The latter are thus better analyzed with the FULL record.
Values span between 0 and 4000 mV, but are usually below 350 mV for HIHI and HILO channels
and 50 mV for FULL channel in normal streamflow conditions. In 2010, sampling interval was
10 min and 5 min in normal conditions for CPMA and RPRE respectively, but was reduced to
1 min when the HILO channel exceeded 500 mV at CPMA and 1000 mV at RPRE. From 2019,
the replacement of digitizers allowed to decrease the sampling interval to 20 s. Finally, a rain
gauge with 5 mm resolution was also installed in CPMA in 2000.

The first warning system was set up at the RPRE station in 1999, consisting of several cables
with different lengths hanging vertically above the river. An increase of water level is detected by
inclinometers on the top of each cable. When two sensors are activated, an alarm is automatically
triggered in the Prêcheur village. As the most powerful lahars sometimes rip of cables, a threshold
on the HILO channel of the AFMs was also defined in 2010 to trigger automatically an alarm in
the Prêcheur village.

Following the 2018 rock avalanches and lahar crisis, two Solarcams were installed in 2019 by
the BRGM (Bureau de Recherches Géologiques et Minières) in the lowest section of the river,
and another one upstream, facing the cliff, to monitor the scree reservoir (pink and purple dots
in Figure 4.2). Pictures are automatically recovered every 15 min. Though it is not enough to
record lahar dynamics, it enables a detailed monitoring of the river bed sedimentary load. As
we calibrate our thin-layer model on a DF that occured in 2010, we do not use these cameras.

Granulometry of lahar deposits

In order to characterize the rheology of the lahars, we collected 11 samples of lahars deposits for
granulometry analysis, at 5 sites along the river, from its outlet to about 5.5 km upstream. To
our knowledge, it is the first time such a sampling is done: Meunier (1999) only analyzed the
granulometry of streamflow deposits at the river mouth, and Lalubie (2013) similarly recovered
one sample only at 80 m altitude (presumably near the CCPA station). More generally, on-site
sampling is rarely carried out to constrain numerical simulations. Although they cannot be used
directly to calibrate simulation parameters, they help better understand the physical process
controlling the dynamics of the flow.
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We recovered lahar deposits by digging a rectangular parallelepiped in exposed terrace outcrops.
On site 20 mm sieving was performed to recover at least 5 kg of material, with the mass fraction of
grains larger than 20 mm measured on site as well. Granulometric curves as well as an example of
sampling site are presented in Figure 4.12. All samples contain mainly sand, gravel and boulders,
with less than 4% of silts and clays (diameter d<0.1 mm). When comparing to the granulometric
envelopes derived by Bardou et al. (2003) in alpine context, our samples fit neither the "friction-
viscous" nor the "viscoplastic" envelopes, whose fine fraction is more important (between 5% and
20% of clay, Figure 4.12a). This suggest that in the Prêcheur river, DFs dynamics are controlled
by collision and friction between grains. The difference with the corresponding envelope in
Figure 4.12 may be explained by the different context in which the deposits were emplaced. Our
results are more consistent with the grading ranges of Semeru volcano lahars deposits presented
by Dumaisnil et al. (2010), in particular for hyper-concentrated flow and granular flow deposits
(Figure 4.12b). In their study, granular flows should be understood as DFs with only little silts
and clays, such that collision and friction between grains are the main driving forces. Pallares
et al. (2015) also find DF deposits with less than 10% silt and sand.

The distinction between DF deposits and HF deposits is not easy as each one can evolve into
the other one. Following Dumaisnil et al. (2010) we can associate finer grading range (mainly
sand and gravel) to HFs (as for sampling sites PR-02, PR-04, PR-05 and PR-07) and coarser,
unsorted deposits to DFs (as for sampling sites PR-01 and PR-06).

As mentioned in the introduction, we focus on the modeling of DFs: their high solid concentration
increases their impact pressure on infrastructure and thus their destructive power. Besides, the
homogeneous mixing of solid and fluid phases makes them easier to model with one-phase thin-
layer models. However, only high magnitude events have DFs dynamics all the way downstream
(at least at their front), as otherwise dilution and sediments settling will transform a DF into a
HF. Such a high magnitude DF occurred on Jun. 19, 2010: we will use it to calibrate our model.

The Jun. 19, 2010 debris flow

After the main collapse episodes of May 11, 2010, the first lahar occurred on May, 14. Two
lahars, on May 16 and 17, triggered the RPRE pendulum alert system (Aubaud et al., 2013). 5
small to medium amplitude lahars were recorded in late May and early June. On Jun. 19, at 7:30
UTM and after a non exceptionnal tropical wave, a high discharge DF ripped of the pendulum
warning system and flooded the Abymes quarter in the Prêcheur village (Figure 4.13). We will
reproduce this event to calibrate rheological parameters for DF simulations, using geophones
records to constrain travel time, visual observations to identify flooded areas, and granulometric
analyses to choose an appropriate rheological law.

AFMs records enable the identification of two initial relatively small amplitude surges, with the
main phase (that we will try to model) occurring between 8:30 and 9:00 UTM (Figure 4.14a
and b). The 3000 mV peak value registered at CPMA is particularly high: in all the other
lahars that occurred in 2009 and 2010, it exceeded 1000 mV on a few occasions only. The signal
amplitude then progressively decreased until 11:00 UTM. A last small surge can be spotted at
11:30 UTM, lasting about 30 min (Figure 4.14b). As pointed out by Aubaud et al. (2013), the
triggering rainfall was not particularly strong (11 mm in 1h40), but the main surge was preceded
by 1 hour long 30 mm precipitations (as recorded in CPMA station, Figure 4.14b). This surge
was particularly fast: the peak amplitude was recorded with only 2 to 3 min intervals at RPRE
then at CPMA (Figure 4.14a). Given the 1.5 km distance between the two stations, it yields an
average velocity of 30 to 45 km hr−1 (8 to 13 m s−1). The extent and location of overflows is
given in Figure 4.2a (south-western most orange patch). Two other significant deposition areas
are also reported on the river left bank (Figure 4.2a, orange patches between the bridge and
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Figure 4.12: Granulometry of lahar deposits. (a) Lines: granulometry of samples, with boulders
larger than 2 cm removed. Colored patches: granulometric envelopes from Bardou et al. (2003)
associated to flow rheologies, in alpine context. (b) Lines : granulometry of the whole sample.
Grey patches: Granulometric envelopes from Dumaisnil et al. (2010), for lahars deposits on the
Semeru volcano, Indoenisa. (c) Example of sampling site. Granulometric curves of the samples
are given in bold in (a) and (b). See Figure 4.2a for the location of sampling sites.
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(a) 17/06/2010 (b) 21/06/2010

DEAL Martinique DEAL Martinique

Figure 4.13: Prêcheur river bridge, before and after its destruction in June 2010. (a) Jun. 17,
2010. View of the bridge two days before the Jun. 19, 2010 DF, looking upstream. Previous
lahars had already filled the river bed. (b) Jun. 19, 2010. View of the Prêcheur bridge after
the Jun. 19, 2010 DF that flooded the Prêcheur village. Note the boulders below the bridge
damming the river (white arrow). The overflow took place just upstream the bridge, on the right
river bank (red arrow).

CCPA). On Jun. 20, a new high-discharge lahar was generated. In combination to the Jun. 19,
DF, it completely washed away the screes reservoir at the bottom of the cliff. Indeed, the scree
reservoir was still visible during helicopter overflight on Jun. 15, but had disappeared on Jun.
25.

The Jun. 19 lahar is described as a DF by Mathon and Barras (2010) and Laigle and Macabies
(2010). Its velocity, as well as the screes washout at the cliff toe, suggest it may have been
triggered by the instantaneous or at least very quick remobilization of the screes, in what Lalubie
(2013) called a liquefaction triggered lahar. From visual observation of its dynamics, as well as
from the presence of small side lobes on the river banks (see Figure 4.15) not higher than a few
tens of centimeters, we can infer that it had a slightly more viscous behavior than the 2018 lahars,
for which such lobes were not observed. It is confirmed by the granulometry of the PR-08 sample
that we associate to 2010 deposits: it features the highest fine fraction. However, as discussed
previously, it remains low: only 5% of clays and silts within the 20 mm fraction, and less than
4% of the total flowing sediment. Even if water circulation may have washed away part of the
fine fraction since 2010 (Dumaisnil et al., 2010), what must be actually considered is the clay
fraction, which will be even less than the previous percentages (that accounts for both clays and
silts). Besides, though side-lobes are typical of visco-plastic, yield-stress fluids (Coussot et al.,
1993), they can also be observed for dry granular flows (Mangeney et al., 2007b).

In the following, we explain how all these data are used to define realistic initial conditions for
rock avalanche and DF simulations.

4.3 Simulation scenarios: initial conditions and topography

To define the initial mass that will be released at the beginning of the simulation, we use topo-
graphic surveys. As mentioned previously, 4 DEMs with 1 meter resolution are available, acquired
in March 2010, July 2010, January 2018 and August 2018. They will be further referred to as
03/2010, 07/2010, 01/2018 and 08/2018 DEMs. As the 08/2018 DEM is the most detailed one,
simulations were thus carried out on this DEM, with small patch of screes identified at the cliff
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Figure 4.14: AFMs recordings of the Jun. 19, 2010 lahar from RPRE and CPMA. (a) Full event
recording, with cumulated pluviometry recorded in CPMA. The black dashed line locates the
main event ploted in (b). (b) Main phase of the lahar, with the main DF surge. Time is in
hours, UTM.

Figure 4.15: Jun. 25 2010 overflight of the Prêcheur river, after the Jun. 19, and Jun. 20 lahars.
Both pictures ((a) and (b)) were taken between RPRE and the bridge. Black and white arrows
point at deposits side lobes discussed in the main body of the thesis.
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sc_2009 sc_2009_1 sc_2018 sc_2018_1 sc_east
Purpose Reproduce Aug. 21, 2009 collapse Reproduce Jan. 4, 2018 collapse Forward prediction

Sensitivity
analysis

Mass geometry
and topography

Initiation
mechanism

Data to constrain
initial mass

Volume
only

2017 orthophotographs
01/2018 DEM

08/2018 DEM
geoloogy

geomorphology
Volume (×106 m3) 1 1.5 0.8, then 0.7 1.9
µeff = V−0.0774 0.34 = tan(18.9°) 0.33 = tan(18.4°) 0.34 = tan(18.9°)

Initiation Instantaneous Instantaneous 2 collapses
13 s apart Instantaneous

µS 0.19 = tan(11°) 0.21 = tan(12°) 0.25 = tan(14°) 0.25 = tan(14°)
Travel distance (m) 1550 1800 1630

Table 4.1: Rock avalanches scenarios. Travel distances are measured from the cliff bottom (right
most white cross in Figure 4.2b).

toe removed by manual modification of contour lines. Only one simulation was carried out on
the 03/2010 DEM to investigate the influence of topography on simulations results (sc_2009_1,
see Section 4.3.1). DEMS are re-interpolated to 5 m for rock avalanche simulations and 10 m for
DFs simulations because higher resolutions demand too much computational power.

The topography in the Samperre cliff sector is however adapted to each simulation scenario to take
into account the progressive retreat of the cliff and define realistic geometries for initial unstable
volumes. This is done by using the successive topographic surveys, along with the geologic and
geomorphologic observations presented in the previous sections. In the following, we explain into
more details how we construct the rock avalanche and DFs simulations scenarios, that will be used
to calibrate rheological parameters (Section 4.3.1 and 4.3.2). We then present the construction
of forward prediction simulation scenarios 4.3.3. The corresponding rock avalanches simulation
scenarios are given in Table 4.1, and DF simulation scenarios in Table 4.2. The initial unstable
masses are also presented in Figure 4.7.

4.3.1 Scenarios for rock avalanche back-analysis

Aug. 21, 2009 rock avalanche

As discussed previously, there is no topographic survey of the Samperre cliff available before
the 2009 destabilization crisis. Thus, we cannot constrain the collapse geometry, though we do
have an estimation of the volume (1 × 106 m3 Clouard et al., 2013)). As a consequence, we
define our initial volume as the difference between 03/2010 and 07/2010 DEMs, and uniformly
scale resulting heights to get a final volume of 1.0 × 106 m3. This is our sc_2009 scenario
(Figure 4.7b, orange patch). The rock avalanche is propagated on the 07/2010 DEM in the cliff
area, and on the 08/2018 DEM further downstream. The resulting unstable volume shape is
not representative of a real destabilization geometry, but several studies suggest that the initial
mass geometry has little influence on runout simulated with thin-layer models (e.g. Lucas et al.,
2011). However, to investigate the influence of bottom topography on the results, we will also
propagate the avalanche on the 03/2010 DEM (sc_2009_1 ). In this case the initial mass is
constructed as previously, but is added on the 03/2010 DEM.

Jan. 4, 2018 rock avalanche

In order to define the unstable volume involved in the Jan. 4, 2018 destabilization, we use the
cliff rim position (as seen on February 2017 orthophotographs) to reconstruct a synthetic cliff
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LH_R_cliff,
LH_R_river LH_R_total sc_east

LH_R_cliff,
LH_R_waterfall,
LH_R_RPRE

Purpose Reproduce Jun. 19, 2010 DF Forward prediction Influence of
source mechanism

Initial reservoir
location

Cliff toe
or river

Cliff toe
and river

Deposits of cliff
collapse sc_east

simulation
n.a.

Volume
(×106 m3) 0.65 1.2 1.9 0.65 / 1.2

Initiation Instantaneous remobilization
Imposed discharge
rate at the cliff toe,
waterfall or RPRE.

RPRE-CPMA
(1.6 km)

∆t (min) 1 (4) 1 (3.5) 2.5 (3.5) 3.5 / 3.5
vel. (m s−1) 26.5 (6.5) 26.5 (7.5) 10.5 (7.5) 7.5 / 7.5

RPRE-bridge
(4.3 km)

∆t (min) 7.5 (15) 5.5 (12) 6.5 (12) 11.5 / 10
vel. (m s−1) 9.5 (5) 13 (6) 11 (6) 6 / 7

Inundated
area (×104m2)

Left bank 2 (1) 8.5 (6) 8 (6) 1 / 4.5
Right bank 1.5 (3) 3.5 (4) 3.5 (4) 1 / 2.5

Table 4.2: Debris flow simulation scenarios characteristics and main results. Simulations results
are given for µ = tan(2°) and the Coulomb rheology, and for the Voellmy rheology in parenthesis
(with ξ = 500 m s−2). Travel duration ∆t is measured by picking the onset of discharge increase.
Results are given with a 10 min source discharge duration for LH_R_cliff, LH_R_waterfall,
and LH_R_RPRE. Colors highlight values to be compared, between instantaneous release and
progressive release simulations.

topography, as it may have been before the 2018 destabilization crisis (Figures 4.16b and 4.7b).
This is done by defining a set of longitudinal and transverse cross-sections on the 07/2010 DEM,
changing the corresponding profiles with cubic splines, and interpolating the DEM in between,
to finally reconstruct the cliff edge as it was in February 2017.

The post-collapse topography is given by the 01/2018 DEM that was manually modified to
remove the screes reservoir at the cliff bottom. The 1.5×106 m3 unstable volume is then defined
as the difference between these two reconstructed topographies. This is our sc_2018 scenario
(Figure 4.7b, green patch). To investigate the influence of retrogressive destabilizations on runout
prediction, we construct a sc_2018_1 scenario (Figure 4.17) . In this simulation a 0.8× 106 m3

volume is first released at the cliff bottom (A in Figure 4.17a), and the rest (B in Figure 4.17a)
collapses 13 s later. This delay corresponds to the initial duration of the seismic signal before
the seismic energy starts increasing sharply (see Figure 4.10b).

4.3.2 Scenarios for DF back-analysis

In this section we present the simulations scenarios that were used to perform the back-analysis
of the high-discharge Jun. 19, 2010 DF. Their main characteristics are given in Table 4.2.

As the screes reservoir at the cliff toe had already been washed away by the time of the 07/2010
DEM, there are no data to constrain the reservoir geometry (see Figure 4.7c for the pre and
post collapse DEMs), apart from aerial photographs. To the contrary, the reservoir can be
clearly identified on the 01/2018 DEM. As a result, we use the 2018 reservoir as a proxy for
the 2010 reservoir. The corresponding scenario will be called LH_R_cliff scenario. It involves
only 0.65 × 106 m3 of materials, which is less than a third of the collapsed volume estimated
by Clouard et al. (2013). Thus, we also carry out simulations with supplementary material
added in the river, down to the waterfall (LH_R_total scenario). Moreover, we will discuss the
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Figure 4.16: Reconstruction of the pre 2018 collapse cliff geometry for sc_2009 scenario. (a) Cliff
in July 2010. (b) Synthetic reconstruction of the cliff topography based on the 2017 cliff rim
(top of sc_2009 unstable volume). (c) Cliff on Jan. 19, 2018 modified to remove deposits at the
cliff bottom.
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surveys. Red hatched patch (A): first initial 0.8 × 106 m3 collapse. Blue hatched patch (B):
second 0.7× 106 m3 collapse, 13 s after initiation. (b) Final deposits of sc_2018 scenario, with
A and B collapsing at once. (c) Final deposits when A only collapses. (d) Final deposits of
the sc_2018_1 scenario, with A collapsing, followed by B 13 s later. All simulations are done
with the Coulomb rheology and µS = tan(14°) = 0.25. Green dashed line: Samperre cliff rim.
Topography in (b), (c) and (d) is the 08/2018 DEM. Thick contour interval is 100 m.
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influence of the initial reservoir geometry by constructing a reservoir in the river, without any
deposits at the cliff bottom (LH_R_river scenario). In each case, we consider an instantaneous
remobilization of the the reservoir.

On the 01/2018 photogrammetric model, we fit in the CloudCompare software a 27° dipping
plane to the surface of the screes reservoir. The fit is good, with a RMS of 2.1 m, when the
reservoir is about 120 m large and 340 m long. The reservoir geometry is thus rather simple and
we can expect that the 2010 reservoir shared the same characteristics, as the materials involved
are similar. The difference between this plane and the 08/2018 DEM (with, once again, remaining
deposits removed) provides us with the initial 0.65 × 106 m3 mass of the LH_R_cliff scenario
(Figure 4.7d, red patch). To investigate other initial conditions we create another 600 m long
reservoir in the river, between the cliff bottom and the waterfall (which is an upper estimation
of the maximum distance reached by the rock avalanches in 2010). In this section, we fill the
main river bed with up to 30 m thick deposits, which is a reasonable estimate of thicknesses
estimated during helicopter flights and is also consistent with rock avalanche simulation results.
Thicknesses linearly increase in the first 90 meters and linearly decrease in the last 150 meters,
yielding a 0.65× 106 m3 final reservoir (Figure 4.7d, blue patch). The corresponding simulation
is referred to as LH_R_river scenario. By combining the river reservoir and the cliff reservoir,
we obtain the LH_R_total scenario (1.2× 106 m3, Figure 4.7d, hatched patch).

4.3.3 Forward-prediction scenarios for rock avalanche and subsequent debris
flow

In a first forward prediction scenario, we will model the propagation of a possible future rock
avalanche, and the subsequent instantaneous remobilization of the simulated deposits to produce
a DF (sc_east scenario. We use the geological an geomorphological data given in Section 4.2.1 to
constrain the initial unstable mass in the cliff. Following its historical retreat direction (Nachbaur
et al., 2019), we infer that the north-west part of the cliff is the most likely candidate for future
large collapses (Figure 4.8a and b, red line). Following Nachbaur et al. (2019), the western limit
is constrained by the contact between the unstable upper pyroclastic deposits (Figure 4.8a, pink
patch), and the stable basal units (Figure 4.8a, orange and red patch). This contact is marked
by a clear slope break. We match the northern extent of the unstable volume with the gully
running behind the Samperre Cliff (Figure 4.2a). Finally, for the south-east limit, we extend the
actual cliff rim towards the north-east: over the past decades, it has constantly progressed in
this direction (Figure 4.2a and 4.2b, black dashed line).

In this simulation scenario, the simulated deposits will be instantaneously remobilized to model
a subsequent high discharge DF. However, given the relative poor constraints we have on DF
initiation, it is relevant to also consider DF simulations where the release is not instantaneous.
To empirically assess the effect of progressive remobilization, we impose a constant discharge
during 10 or 20 min on an area of approximately 300 m2 in the river. This could also reproduce,
to some extent at least, DF initiation by progressive breaching of river dams. Note, however, that
the flow has no initial velocity in the source area: the discharge rate controls only the amount
of material that is added at each time step.

Source discharge areas are located either at the cliff bottom (LH_D_cliffl scenario), at the water-
fall (LH_D_waterfall scenario) or at the RPRE station (LH_D_RPRE scenario). Correspond-
ing locations are given by white crosses in Figure 4.2b. To facilitate the comparison with DF
simulations with instantaneous remobilization (LH_R_total, LH_R_cliff and LH_R_river),
the released volumes are the same: 0.65× 106 m3 or 1.2× 106 m3.

Now we have presented the initial conditions of our simulation scenarios, we will introduce the
thin-layer model SHALTOP, that we use to model the propagation of rock avalanches and DFs.
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4.4 Numerical model

4.4.1 Shaltop numerical model

The SHALTOP numerical code simulates the dynamics and emplacement of flows on general
topographies (Bouchut et al., 2003; Bouchut and Westdickenberg, 2004; Mangeney-Castelnau
et al., 2005; Mangeney et al., 2007b). It has been successfully tested to reproduce both real
landslides (e.g. Moretti et al., 2015; Brunet et al., 2017; Peruzzetto et al., 2018b) and laboratory
experiments (Mangeney et al., 2007b). In SHALTOP, the layer moving on the topography is
considered homogeneous. Energy is dissipated through a force applied at the base of the flow, in
the opposite direction of the flow velocity. In its simplest form, this force derived from the solid
friction Coulomb rheology, such that the basal stress T is:

T = µSρh(g cos(θ) + γu2), (4.1)

where µS = tan(δ) is the friction coefficient and δ the friction angle, ρ is the flow density, h the
flow thickness, g the gravity field, θ the local slope angle, γ the curvature along flow path and
u the velocity norm. Using the Coulomb rheology to model rock and debris avalanches, it has
been shown that the friction coefficient µS needed to model observed deposits decreases as the
volume of the avalanche increases (Lucas et al., 2014). Typical friction coefficients thus range
from tan(30°) = 0.58 for granular flow experiments, tan(20°) = 0.36 for 0.5× 106 m3 landslides
and tan(11°) = 0.20 for 1 km3 debris avalanches. However, such values were derived for rock and
debris avalanches with little water content. In comparison, water-laden flows are more mobile,
and empirical friction coefficients below tan(7°) = 0.12 may be needed to model them (Moretti
et al., 2015; Peruzzetto et al., 2019).

For snow avalanche and debris flow modeling, the empirical Voellmy rheology is also commonly
used (Salm, 1993; Hungr et al., 2007; Pastor et al., 2018a). It introduces a turbulence term
proportional to the square velocity:

T = µSρh(g cos(θ) + γu2) + ρg
u2

ξ
, (4.2)

where ξ is the turbulence coefficient. Friction coefficients used in the Voellmy rheology to model
DFs are usually below tan(10°) = 0.18, which is necessary to propagate the DF on gentle slopes.
For such friction coefficients, turbulence coefficients span 100 to 1000 m2 s−1. Zimmermann et al.
(2020) find however a more constrained range, from 100 to 500 m2 s−1. However, it is sometimes
difficult to constrain both parameters by back-analysis, as various couples (µS , ξ) may provide
similar results (e.g. Peruzzetto et al., 2018a).

We model rock avalanches with the Coulomb rheology, as it proved to reproduce correctly real
landslides deposits (e.g. Lucas and Mangeney, 2007; Favreau et al., 2010; Lucas et al., 2014;
Yamada et al., 2018; Peruzzetto et al., 2019; Moretti et al., 2020a). For the back-analyses,
friction coefficients were tested between µS = tan(10°) = 0.18 and µS = tan(20°) = 0.36.

DFs were simulated both with the Coulomb rheology the Voellmy rheology, with friction coeffi-
cients equal to tan(2°) = 0.03, tan(3°) = 0.05, tan(4°) = 0.07 (with higher values, the flow would
stop before it reaches the Prêcheur village). Turbulence coefficients ξ range from 100 m s−2 to
500 m s−2 as realistic values were constrained by Zimmermann et al. (2020) within that range.
Influence of further increasing ξ is investigated with the Coulomb rheology, as it is equivalent
to choosing infinite values for ξ. As discussed previously, we assume the DF is homogeneous,
and use the same rheological law in the whole DF, without considering possible dilution and
sediments settling at its tail. In Figure 4.11b and 4.11c, we compare schematically what may be
expected in reality, and our empirical approach.
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In the following section, we explain how simulation results are processed and compared to field
data and observations. In turn, his comparison makes it possible to calibrate the simulation
rheological.

4.4.2 Simulation output processing

Cliff collapse simulations are primarily calibrated with the travel distance observed during aerial
reconnaissance. Following Schneider et al. (2010) and Levy et al. (2015), we also compare the
dissipated energy rate PSH during the simulation to the seismic energy rate Ps (see Figures 4.9b
and 4.10b). This allows to see if the simulated duration of of the rock avalanche is similar to
the duration of the generated signal, which is a good proxy for the actual duration of the rock
avalanche (Levy et al., 2015). Temporal variations of PSH and Ps can also help characterizing
the dynamics of the rock avalanche, and in particular determining if the initial collapse happened
in one or several successive steps. We define PSH as:

PSH = − d

dt
(Ek + Ep) , (4.3)

with Ek the total flow kinetic energy and Ep the total flow potential energy. This is equivalent to
computing the energy dissipated by the basal friction force. PS is computed with the 0.1-20 Hz
filtered seismic signal recorded on the LAM station, about 1300 m away from the cliff. Following
Vilajosana et al. (2008), Levy et al. (2015) and Durand et al. (2018), the seismic energy ES is:

ES = 2πrρhceαr
∫ t=tfinal

t=tinit

(
u2E + u2N + u2Z

)
dt, (4.4)

where we assumed a point-source and an isotropic and homogeneous medium. We also consider
that seismic surface waves dominate the signal. The parameters are r = 1300 m the distance to
the signal source, h = 250 m the thickness of the layer in which waves propagate, c = 1300 m s−1

the group seismic wave velocity, and α = 4.2×10−4 m−1 an attenuation parameter. In reality, α,
h and c are frequency dependent. Besides, much more complex topographic corrections should
be needed (Kuehnert et al., 2020). But Levy et al. (2015) find no major difference between the
energy integrated over successive frequency bands and the energy computed directly as in (4.4),
when the frequency band includes the frequencies concentrating most of the energy (in our case,
around 1 Hz). Furthermore, we are more interested in trends than absolute values. Thus, we
simply define PS as

PS =
dEs

dt
= 2πrρhceαr

(
u2E + u2N + u2Z

)
. (4.5)

Lowess smoothing (Seabold and Perktold, 2010) is applied to the resulting time series.

Lahar simulations are calibrated by quantifying the flooded area in the Prêcheur village (i.e., in
the yellow patches in Figure 4.2a), disregarding flow thicknesses below 0.1 m. We also compute
travel durations between RPRE and CPMA, and RPRE and the Prêcheur bridge. This is done
by deriving discharge time series at each position, and picking either the increase onset, or the
maximum. Discharges are computed along river perpendicular sections.

4.5 Model calibration results

In this section we will first describe the back-analysis results for the rock avalanches (Sec-
tion 4.5.1) and DF simulations(Section 4.5.2). Then, we will analyze the forward prediction
simulation results, where we model a potential future rock avalanche and the remobilization as
DF of the resulting deposits (Section 4.6). Results are summarized in Table 4.1 and 4.2.
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Figure 4.18: Simulation results for the sc_2009 (orange crosses), sc_2009_1 (orange circles)
and sc_2018 (green dots) rock avalanche scenarios, for various friction coefficients µS = tan(δ).
Travel distances are measured from the cliff toe (right most white cross in Figure 4.2b) along the
river stream. Error bars (computed by considering 1 to 10 m thickness thresholds, to locate the
extent of the deposits) are not displayed, but are at most twice the size of the markers.

4.5.1 Samperre rock avalanches back-analysis

The travel distance of the sc_2009, sc_2009_1 and sc_2018 rock avalanche scenarios are dis-
played in Figure 4.18 (orange crosses, orange dots and green dots respectively). The best-fit
friction coefficients to reproduce the Aug. 21, 2009 observations (dotted orange line in Fig-
ure 4.18) are µS = tan(11°) = 0.19 and µS = tan(12°) = 0.21 for the sc_2009 and sc_2009_1
scenarios respectively. The sc_2009_1 simulations (same volume as sc_2009, but different ini-
tial geometry) display slightly higher runouts than the sc_2009 simulations (maximum increase
of 200 m, compare orange circles and crosses in Figure 4.18). The Jan. 4, 2018 deposits extent
(dashed green line in Figure 4.18) is best reproduced with µS = tan(14°) = 0.25. For this friction
coefficient, the final deposits extent and geometry of the sc_2018_1 scenario (where the initial
unstable volume is released in two phases) are very similar to the sc_2018 ’s deposits (compare
Figures 4.17b and Figures 4.17d).

With the best-fit friction coefficients, the main phase of the sc_2009 and sc_2009_1 avalanches
last about 70 s, which is much less then the 170 s main phase of the Aug. 21, 2009 collapse
(compare red and grey lines in Figure 4.9b). Moreover, the cigar-shape clearly seen in the
seismic signal is not reproduced by the simulations dissipated energy rate: it displays a sharp
10 s increase followed by a progressive decrease. In comparison, seismic signal and modeled flow
durations are more consistent for the Jan. 4, 2018 event (about 60 s and 80 s for the main phase
respectively, see Figure 4.10b). The flow dissipated energy rate reproduces correctly the main
seismic energy increase phase (Figure 4.10b, at 30 s), but fails to reproduce the signal complexity,
with successive energy peaks. Results are slightly improved in the sc_2018_1 scenario where
the mass is released in two successive steps, 13 s apart (Figure 4.10b, red dashed line).

Thicknesses and velocities for the sc_2018 scenario with µS = tan(14°) = 0.25 are given in
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Figure 4.19 and Figure 4.20. In the first 30 s, the flow is locally more than 40 m thick, with
front velocities between 30 and 40 m s−2. After 100s, thicknesses do not exceed 30 m with
velocities lower than 20 m −1. While most of the energy is dissipated after 100 s (Figure 4.10b,
red plain line), at that time the flow front is still about 500 m away from its final resting position.
Afterwards, 600 s are still needed for the front to stop.

4.5.2 Debris flow back-analysis

Instantaneous reservoir remobilization: LH_R_cliff and LH_R_river

In the LH_R_cliff scenario, the Voellmy rheology with µS = tan(2°) and ξ = 500 m s−2, and the
Coulomb rheology with µS = tan(2°) and µS = tan(3°), reproduce correctly the flooded areas,
with thicknesses in the village mostly below 1 m (Figure 4.21a-e). Small overflows on the left
bank within inhabited areas are modeled with all rheologies though they were not observed in
2010. The most important overflow is obtained with Coulomb and µS = tan(2°) (Figure 4.21d,
20,000 m2). Still on the left river bank but more upstream, other 2010 overflow areas are modeled
correctly (Figure 4.21a-c, green outlines between the bridge and CCPA). With Voellmy, the area
flooded in 2010 on the right river bank (about 20,000 m2) is over-estimated with µS = tan(2°)
and under-estimated with µS = tan(3°) (see Figure 4.21e). With Coulomb and µS = tan(3°),
the total flooded area on the right bank is consistent with observations (Figure 4.21e, right-most
orange cross), but the shape of the flooded zone does not match in-situ observations (Figure 4.21b,
compare green outline with yellow deposits on the right bank). In comparison, Coulomb and
µS = tan(2°) yield more realistic results (Figure 4.21c and 4.21e, right most blue circle).

The Jun. 19, 2010 DF travel duration between RPRE and CPMA (1.5 km) is estimated from
AFMs recordings between 1 and 4 min. When picking the maximum discharge time at these
locations in simulations, only the Coulomb rheology with µS = tan(2°) could reproduce a 4 min
interval (Figure 4.21f, blue plain line). The second and third smallest interval are 5 min (Voellmy,
µS = tan(2°) and ξ = 500 m 2) and 5 min 20 s (Coulomb, µS = tan(3°)). For these 3 simulations,
the corresponding flow durations between RPRE and the Prêcheur bridge (4,3 km) vary between
10 and 24 min (Figure 4.21g). With Voellmy and µS = tan(2°), travel durations between RPRE
and CPMA is at most 6 min, and 20 min between RPRE and the Prêcheur bridge. With a
slightly higher friction coefficient (µS = tan(3°)), the flow is slowed down (at most 8 min are
needed to reach CPMA).

Picking discharge onsets instead of discharge maximums decreases travel durations. For instance,
with µS = 2° and the Voellmy rheology, the travel duration between RPRE and CPMA is
decreased by 1 min (Figure 4.21f, compare blue plain and dashed lines). These effects are
amplified when greater distances are considered. Thus, with µS = tan(3°), picking onsets instead
of maximums increase travel durations between RPRE and CPMA by 1 to 2 min, and travel
durations between RPRE and the bridge by 10 min (Figure 4.21f-g, compare orange plain and
dashed lines).

The LH_R_river scenario involves a similar volume as the LH_R_cliff scenario, but with
the reservoir located further downstream. It does not change significantly the results (see Fig-
ure 4.22). As mentionned previously, the 0.65 × 106 m3 volume involved in the LH_R_cliff
and LH_R_river scenarios is small in comparison to the volume that actually collapsed the the
Samperre during the May 2010 destabilization crisis (2.1× 106 m3, Clouard et al., 2013). Thus,
we also consider a larger 1.2× 106 m3 screes reservoir at the cliff bottom that extends down to
the waterfall.
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Figure 4.20: sc_2018 simulation with Coulomb rheology and µS = tan(14°) = 0.25. Flow
velocity is given at (a) t = 15 s, (b) t = 25 s, (c) t = 50 s and (d) t = 100 s. Small white arrows
give flow velocity direction.



152 4.5. Model calibration results

LH_R_cliff DF
simulation

Inhabited areas
AFM

Flooded area
in 2010
Gullies

Bridge
Church

(a) Voellmy
 = 2° = 500 m. s 2

10
0

(b) Coulomb
 = 3°

10
0

(c) Coulomb
 = 2°

10
0

0.1 1.0 2.5 5.0 10.0
Maximum thickness (m)

0

2

4

6

8

Fl
oo

de
d 

ar
ea

 (×
10

4  m
2 )

(d) Left bank

0

2

4

6

8 (e) Right bank  = 2.0 °
 = 3.0 °
 = 2.0 °
 = 3.0 °

200 300 400 500 Inf
 (m.s 2)

2

4

6

8

Fl
ow

 tr
av

el
du

ra
tio

n 
(m

in
)

(f) RPRE to CPMA

max
onset
max
onset

200 300 400 500 Inf
 (m.s 2)

10

20

30

40 (g) RPRE to the bridge

Figure 4.21: Simulation results for the LH_R_cliff scenario. (a) Maximum flow thickness with
the Voellmy rheology, µS = tan(2°) = 0.03 and ξ = 500 m s−2. (b) Maximum flow thickness with
the Coulomb rheology and µS = tan(3°) = 0.05. (c) Maximum flow thickness with the Coulomb
rheology and µS = tan(2°) = 0.03. Topography is the 08/2018 DEM. Each point in (d), (e),
(f) and (g) is a simulation result, with friction coefficient given by line color and turbulence
coefficients given by the x-coordinate. Left of hatches is for the Voellmy rheolgy, right is for
the Coulomb rheology (equivalent to infinite turbulence coefficient). (d) Flow travel duration
between RPRE and CPMA (about 1.6 km). They are measured by picking the maximum of
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Figure 4.22: Comparison between the LH_R_cliff, LH_R_river and LH_R_total scenarios (see
abscissa). (a) Area flooded in the Precheur village, left bank. (b) Area flooded in the Prêcheur
village, right bank. (c) Travel durations between RPRE and CPMA. (d) Travel durations between
RPRE and the bridge. Filled markers: durations measured by picking discharge maximum.
Empty markers: durations measured by picking the onset of discharge increase. Grey patch give
observations ranges for the Jun. 19, 2010 DF.
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Instantaneous reservoir remobilization: LH_R_total

In comparison to the LH_R_cliff scenario, observed flooded areas are largely over-estimated
in the LH_R_total scenario (Figure 4.23a-e), which indicates the LH_R_cliff scenario is more
realistic. With the Voellmy rheology, 40,000 and 60,000 m2 are flooded in inhabited areas on
the left bank for µS = tan(3°) and µS = tan(2°) respectively, whatever the turbulence coefficient
ξ (only about 10,000 m2 in LH_R_cliff scenario). In particular, the flow follows a small gully
in the Prêcheur village, on the northern side of the church (Figure 4.23a-b, black dashed line
near the cross), which was not observed in 2010. Both µS = tan(2°) and µS = tan(3°) yield
a 40,000 m2 flooded area on the right bank (Figure 4.23e) that largely exceeds observations
(Figure 4.23a-c, green line). Results are similar with the Coulomb rheology and µS = tan(3°),
but µS = tan(2°) results in a large overflow: the alluvial fan is completely flooded (Figure 4.23c).
Besides, the DF manages to run over the river right bank about 400 m downstream CCPA, and
enters two adjacent gullys (Figure 4.23c, black dashed lines on the northern side of the river).
One of these gullies drives the flow back to the alluvial fan. Less material enters the other gully,
the Ravine Demarre, but it then heads towards the northern quarter of the Prêcheur village
which is not reached in other simulations.

Voellmy rheology with µS = tan(2°) and ξ = 500 m s−2, as well as Coulomb rheology with
µS = tan(2°) and µS = tan(3°), give travel durations between RPRE and CPMA smaller than
4 min (Figure 4.23f), which is consistent with observations. The DF covers the distance between
RPRE and the bridge in 17 to 30 min with µS = tan(3°), and in 10 to 17 min with µS = tan(2°)
(Figure 4.23g, orange and blue plain lines respectively). The effect of measuring durations with
the onset of discharge increase instead of maximums is similar to simulations with the LH_R_cliff
scenario.

From the previous simulations, we have shown that the instantaneous remobilization of 0.65 ×
106 m3 modeled with the Coulomb or Voellmy rheology could reproduce the main characteristics
(travel duration between RPRE and CPMA and flooded areas) of the Jun. 19, 2010 DF. The
remobilization of a higher volume leads to an over-estimation of flooded areas, but yields a better
match with observed travel durations. We will now use the rheological parameters derived from
the previous rock avalanche and DF simulations for the forward prediction scenarios.

4.6 Forward-prediction simulations results

4.6.1 Possible future collapse and subsequent DF

A forward prediction simulation is done with the sc_east scenario, where 1.9× 106 m3 collapse
from the cliff. We use the Coulomb rheology with µS = tan(14°) = 0.25, which is the best-fit
friction coefficient that reproduced the Jan. 4, 2018 event in the sc_2018 simulation. Given the
uncertainty related to the volume involved in the Aug. 21, 2009 event, we choose not to use the
associated back-analyzed friction coefficient. The final deposits of the simulated rock avalanche
of the sc_east scenario are similar to the sc_2018 simulation with the same friction coefficient,
as they extend only a few tens of meters further downstream (Figure 4.24a). Their maximum
thickness is about 30 m.

This reservoir is then used as a source term for the propagation of the DF. We use instantaneous
remobilization, as it proved to reproduce results coherent with observations for the LH_R_cliff
scenario (in particular for flooded areas) and the LH_R_total scenario (in particular for the
travel durations). We test three rheologies: the Voellmy rheology with µS = tan(2°) and ξ =
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500 m s−2, and the Coulomb rheology with µS = tan(2°) or µS = tan(3°). The corresponding
disharges are given in Figure 4.24b, 4.24c and 4.24d.

With the Voellmy rheology, the travel durations and flooded areas are very similar to results
derived in the LH_R_total. However, the DF velocity is reduced by about 10% when the
Coulomb rheology is used (see Table 4.2). As a matter of fact, the initial mass is spread more
broadly in the river bed, such that the flow front accelerates on a shorter distance. This effect is
not observed with Voellmy because the turbulent retarding term in (4.2) prevents the flow from
accelerating indefinitely. Peak discharges at RPRE vary between 4,000 and 6,000 m3 s−1: this
is coherent with field observations in other contexts, for this range of volumes (see Figure 2 in
Rickenmann, 1999). With Coulomb and µS = tan(3°), some of the flowing material stops before
it reaches the sea, such that the peak discharge at the bridge does not exceed 400 m3 s−1. To
the the contrary, µS = tan(2°) increases mobility, and peak discharges reach almost 1000 m3 s−1

with the Voellmy rheology Figure 4.24c), and more than 1600 m3 s−1 with the Coulomb rheology
(before the DF overflows the river bed, Figure 4.24d).

4.6.2 DF with progressive initiation

We investigate here the influence of the initiation mechanism on the DF dynamics in simulations.
in Figure 4.25, we compare the results of releasing instantaneously the screes reservoir as in
the LH_R_cliff scenario, to simulations where we impose a constant source discharge during
∆t = 10 or 20 min at the foot of the reservoir location (LH_D_cliff scenario). The total released
volume remains the same. In comparison to the instaneous release, ∆t = 10 min reduces by half
the flooded area on the left bank. It is almost not flooded for ∆t = 20 min (Figure 4.25a). With
this discharge duration, inundations on the right bank are also halved (Figure 4.25b). Finally,
every 10 min increase in the discharge duration produces a 2 min and 5 min increase of the
travel duration between RPRE and CPMA, and between RPRE and the bridge respectively
(Figure 4.25c-d). Here travel durations are measured by picking the onset of discharge increase,
because no clear maximum can be identified when we impose a constant discharge in the source
area. For a given released volume, the location of the source discharge area has in comparison
little influence on the results (Figure 4.26, comparison between LH_D_cliffl, LH_D_waterfall
and LH_D_RPRE scenarios). The main difference is obtained when the DF is initiated at
RPRE: it needs 1 min less to reach CPMA, and then the bridge.

4.7 Discussion

In this section we will first discuss the results of rock avalanche modeling (Section 4.7.1). Then,
we will tackle the complex issue of DF modeling (Section 4.7.2). Our DF simulations were
calibrated on an extreme high-discharge event: we may wonder to what extent we could also
reproduce smaller DFs (Section 4.7.3). Finally, we will discuss the implications of our work for
hazard assessment (Section 4.7.4).

4.7.1 Rock avalanche modeling

Comparison with empirical estimations of runout

Lucas et al. (2014) estimate the mobility of landslides through the effective friction coefficient
µeff . µeff differs from the traditional angle of reach (or Heim’s ration) µH : while µH depends
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only on the landslide runout, µeff takes also the initial mass geometry into account. We have:

µeff = tan(θ) +
H0

∆L
, (4.6)

µH =
H

∆L′
, (4.7)

with θ the topography average slope along flow path, H0 the maximum height of the initial mass
and ∆L the landslide travel distance along topography from the scar toe. H (drop height) and
∆L′ are respectively the difference in altitude and horizontal distance between the upper scar and
furthest deposits location (see supplementary in Lucas et al., 2014). The expression (4.6) of µeff
is derived from the analytical solution of thin-layer dam-break (Mangeney et al., 2000a). Lucas
et al. (2014) use a database of terrestrial and non-terrestrial landslides with a small amount of
water to estimate empirical relations relating µH and µeff to the landslide volume V :

µeff = V −0.0774, (4.8)

µH = 1.2V −0.089. (4.9)

When we apply theses relation to the 2009 and 2018 Samperre rock avalanches, we get values
between tan(18.5°) = 0.33 and = tan(19.5°) = 0.35 for both µH and µeff . This is in good
agreement with the values we compute directly from observations, using (4.6) and (4.7) (between
= tan(19°) = 0.34 and = tan(19.5°) = 0.35 for both µH and µeff ).

In comparison, in the simulations we used friction coefficients between µS = tan(11°) = 0.19 and
µS = tan(14°) = 0.25 to reproduce observed travel distances. It has been shown that µH cannot
be used to estimate directly the flow mobility, because it describes also purely geometrical effects
(e.g. Lucas and Mangeney, 2007; Staron and Lajeunesse, 2009; Lucas et al., 2014). The latter
are corrected by the more complex definition of µeff , such that it proved to better estimate the
friction coefficient µS needed to reproduce real landslides (Lucas et al., 2014). It seems not to be
the case in our study, but large uncertainties are actually associated to (4.6). For instance, using
Supplementary Table 4 in Lucas et al. (2014), we deduce a 95% confidence interval [0.25 - 0.45]
for µeff , for the 2018 event. However, Peruzzetto et al. (2019) also find that µeff over-estimates
µS . As the expression (4.6) was derived for flows on constant slopes, it may no longer be valid
for flows on complex topographies when the flow follows bended channels.

One or multiple successive collapses?

We found that modeling successive collapses helps reproduce, to some extent at least, the com-
plexity observed in the Jan. 4, 2018 seismic signal, without changing significantly the runout.
Because SHALTOP models one-phase/one-layer flows, it should be noted that in the sc_2018_1
scenario, the second avalanche is assumed to be mixed with the first one as soon as they join. As
a result, we do not model the possible development of a two-layer flow, with the second avalanche
propagating above the first one. As the latter flattens the topography, such a mechanism could
enhance mobility.

However, the fact that for a given volume, the initiation mechanism has little influence on the
travel distance is consistent with results from (Moretti et al., 2015) who model the 2010 Mount
Meager landslide, with 1, 2 or 3 successive collapses. For our simulations, one possible explanation
is that the initial kinetic energy of the avalanche is dissipated quickly (in the first 25 s to 50 s
(see Figure 4.20a-b), because the avalanche is blocked at the inlet of the gully. The latter is
indeed too narrow for the flow to enter it at once. Then, the rock avalanche can move further
downstream only if relatively small friction coefficients are used in the simulations. In turn,
the final travel distance may then depend more on the friction coefficient and on the volume
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of material available to fill the river asperities, than on the initial position of or destabilization
process.

Nevertheless, such an analysis may be valid for large collapses only. In May 2010, destabilizations
occurred as a succession of 47 successive events in the first day (Clouard et al., 2013). Given
the estimated 2.1 × 106 m3 total volume, this suggests an average volume of 50,000 m3 per
event (certainly less, as collapses kept occurring in the following days). Following Lucas et al.
(2014), friction coefficients around µS = tan(23°) = 0.42 are needed to model the propagation
of such volumes. In turn, these small granular avalanches stop in the vicinity of the cliff toe. In
comparison, larger granular flows are modeled with lower friction coefficients (in our case, less
than tan(15°) = 0.27). The physical process enhancing the mobility of large landslides are still
debated: they include flash heating (Lucas et al., 2014), granular agitation at the base of the
flow (Bartelt et al., 2007), and acoustic fluidization (Johnson et al., 2016) (e.g. see Korup et al.
(2013) for a review).

We infer that the mechanism of the Aug. 21, 2009 rock avalanche is different from both the
January 2018 and May 2010 destabilizations. As a matter of fact, it occurred in one single main
event and the recorded seismic signal is very different from those recorded on Jan. 4, 2018 (see
Figure 4.9 and Figure 4.10). Its cigar-shaped envelope is similar to signals of granular flows in
Dolomieu crater, on Piton de la Fournaise volcano in Réunion island (Hibert et al., 2014; Durand
et al., 2018). We suggest it may have been initiated as a progressive retrogressive collapse. Such
a process cannot be modeled with SHALTOP, where the initiation is instantaneous. It could
however be empirically reproduced by imposing a constant source discharge, as we did for DF
simulations.

4.7.2 DF modeling

DF initiation: gully erosion or liquefaction?

As for rock avalanches, thin-layer models equations cannot reproduce the physical processes at
stake during the initiation of DFs. In mountainous areas, DFs are often initiated as multiple
local destabilizations of unconsolidated and water-laden debris on steep slopes. As they shear,
increased pore-water pressure promote liquefaction, and in turn the disintegration of the debris
(Iverson, 1997; Iverson, 2014). However, the process aforementioned is commonly associated
to debris flows in mountainous areas occurring after heavy rainfalls, such as in Vargas state,
Venezuela, in 1999 (Larsen and Wieczorek, 2006).

The instability of the reservoir could thus be controlled by sand dilatancy properties (Bolton,
1986; Yin and Chang, 2013). If it is in a loose state it will undergo compaction under shearing,
leading to the increase of pore pressure and in turn destabilization. Such a mechanism require
undrained conditions, which might be possible at the reservoir bottom due to water resurgences,
even without major precipitations. For instance, Chen et al. (1995) show that water supply
at the base of an unstable mass triggers larger failure than water supply from the surface. A
detailed geotechnical analysis of the screes reservoir would be necessary to better constrain its
destabilization process, all the more so as previous studies have shown instabilities in granular
materials can occur both in loose and dense sands, and in drained and undrained conditions (e.g.
Wanatowski et al., 2010). However, for safety reasons, it is impossible to sample the reservoir
screes, and only the lahars deposits can be used as proxys. Geotechnical analysis of some of the
samples recovered in the river was carrid out (uni-axial tests). Interpretation and exploitation
of these results is beyond the scope of this work, but could help investigate the stability of the
screes reservoir.
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As discussed previously, the high discharges observed during the Jun. 19, 2010 DF as well
as the relative short duration of its main phase (about 10 min, see Figure 4.14a) suggest an
instantaneous or at least very fast initiation. However, for smaller DFs, the respective importance
of screes destabilization and gully erosion/entrainment by runoff in the DF initiation is difficult
to constrain. For instance, McGuire et al. (2017) suggest that post wildfires debris flows are
more likely generated by mass failure of sediments in the river than progressive bulking, but the
nature of the solid materials is different than in our case. Cascading and entrainment processes,
with a small amount of material progressively gaining momentum as it flows over an erodible
bed, have been observed both for dry granular flows (Mangeney et al., 2010; Viroulet et al.,
2019) and for flows on water-laden beds with high pore pressure (Iverson et al., 2011).

Modeling such processes is not easy. We used constant source discharges to investigate the
influence of progressive material release. However, the extent to which this strategy allows to
model the dynamics of a DF initiated by progressive gully-erosion or runoff is hard to quantify. To
answer this question, more data is needed to characterize DF initiation. Comparisons with more
realistic initiation models could also be carried out. Recent studies have proposed integrated
models to simulate multiple rainfall induced debris flows at the catchment scale, with rainfall
runoff, infiltration, shallow-destabilizations and entrainment (Shen et al., 2018; Bout et al., 2018;
Hong et al., 2019). The applicability of such models to the specific case of the Prêcheur river is
nevertheless uncertain, in particular because of water seepage at the cliff toe that are difficult to
constrain and model. Besides, they rely on many parameters that are difficult to constrain.

DF propagation: erosion

As discussed previously, we have not considered entrainment in our simulations. Apart from the
influence such a process could have for the DF initiation, we may expect it also influences the
DF dynamics further downstream. In particular, the upper river section above RPRE is narrow
and steep-walled, with slopes between 7° and 12°, such that it is prone to bed (from previous
lahars deposits) and lateral erosion. It is however difficult to constrain numerically. The most
commonly used erosion/deposition law relates erosion rate to flow momentum hu: (McDougall
and Hungr, 2005; Pirulli and Pastor, 2012):

∂b

∂t
= Ehu, (4.10)

where b is the altitude of the bed, h the flow thickness, u the flow velocity and E is a positive
empirical coefficient. Assuming an exponential increase of the landslide volume from its initial
value Vi to its final value Vf over the length of the landslide path L, McDougall and Hungr
(2005) propose the following estimation of E:

.E =
ln(Vf/V0)

L
(4.11)

Such a law makes it possible to empirically reproduce the sometimes drastic increase of flowing
material (e.g., from 150 to 1620 m3 for the 2000 Tsing Shan debris flow in Hong Kong, Pirulli and
Pastor, 2012). However, as suggested by Iverson (2012), proportionality between erosion rate
and velocity may stand true only in situations where entrainment has no significant impact on
the flow momentum, as in fluvial system. When this is no longer the case, Iverson (2012) show
that erosion rates are actually inversely proportional to the flow velocity. A similar conclusion is
reached by Lusso et al. (2017a). As a matter of fact, the energy needed to accelerate sediments
at rest to the flow velocity is, precisely, all the more important as the flow velocity is high.
In turn, relations as in (4.10) lead to thin-layer equations (Bouchut et al., 2008) that do not
conserve energy. Iverson (2014) give an overview of existing erosion and deposition models in
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thin-layer models and specify the necessary requirements for mass and momentum conservation
at the static-flowing interface, highlighting the mere methodological complexity of deriving a
physically based model.

In our case, on account of the previous discussion, we may expect the high velocity at the onset
of the Jun. 19, 2010 DF to limit its erosive power, at least at its front. However, this stands
true only at the flow bottom and in the frame of laminar flows as in the development of Iverson
(2012). If large blocks bulge out in the flow, resulting turbulences could create pressure drag and
thus enhance entrainment. Inflexion points along the stream with sudden decrease of the slope
may also favor erosion (Hu et al., 2016; Li et al., 2018). Besides, DFs experiments in flumes show
that bank erosion may actually have a greater impact on DF dynamics than mere bed erosion
(Lyu et al., 2017).

Given the gentle slope in the lower section of the river below RPRE (less than 4°), the main pro-
cess at stake is supposedly deposition. However, the extent to which previous lahar deposits could
be entrained is still unclear and difficult to quantify, as only the final deposits can be mapped. In
order to estimate the conditions (in particular, DF velocity, height, solid content, and bed pore
pressure) under which entrainment could occur on such gentle slopes, further analyses are needed
with, for instance, flume tests and/or permanent on site instrumentation. The cameras installed
downstream RPRE could help adress this issue, but other footage further upstream (for instance
near CPMA) would provide key data on the DF evolution. More quantitative measurements
demand the installation of sensors, such as pressure sensors or load cells (Arattano and Marchi,
2008). However, their installation and maintenance would be difficult because is it complex to
access the river.

Nevertheless, such data would be a prerequisite to try and model precisely erosion along the
river. As a matter of fact, entrainment in numerical model is at least partly empirical. Thus, it
strongly depends on an a-priori knowledge experts in charge of in situ observations have about
erosion areas and erodible thicknesses.

DF propagation: dilution and deposition

As we focused on high discharge events that display DF characteristics all along the Prêcheur
river, we disregarded smaller events whose progressive dilution turns them into HFs with a
vertical separation between the solid and fluid phases as they reach the Prêcheur village. We
should also consider with caution the simulated velocities and thicknesses of the DF’s tail where
dilution is likely to change the flow rheology.

We can thus wonder whether deposits are well modeled in our simulations. A first estimation
can be given by comparing the 03/2010 and 07/2010 DEMs. Because the river is very narrow in
its upper section it could not be mapped properly and a detailed sedimentary balance is difficult
to establish. However when we consider only the lower section (starting 400 m downstream the
junction between the Prêcheur and Samperre river), we find that approximately 0.46 × 106 m3

were deposited by the lahars between March and July 2010. Similarly, we compute a 0.37×106 m3

volume deposited between July 2010 and August 2018, supposedly by the 2018 lahars. This
stands for about 20% of the 2.1× 106 m3 that collapsed in 2010, the rest being evacuated in the
sea or deposited upstream. The real percentage is actually higher, because some of the deposits
had already been washed away by normal streamflow. But this could be counter-balanced by
bank and bed erosion that are not accounted for in the 2.1×106 m3. Both effects are nevertheless
difficult to estimate. In comparison, in our LH_R_cliff and LH_R_total scenario, we model
final deposits in the same area of 0.04 × 106 m3 with the Coulomb rheology and µS = tan(2°),
and 0.12 × 106 m3 with the Voellmy rheology, µS = tan(2°) and ξ = 500 m s−2. Thus, the
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deposited volumes differ significantly from the 2010 and 2018 observations, whatever the initial
volume (0.65×106 m3 and 1.2×106 m3). A more thorough comparison should take into account
the influence of the river bed morphology, but this already suggests that deposition process may
not be properly modeled.

This is of prior importance to investigate more precisely overflow hazards, as it closely linked to
the river bed filling level. Numerical modeling with multi-phase shallow water models, such as
D-Claw (George and Iverson, 2014; Iverson and George, 2014), r.avaflow (Mergili et al., 2017;
Pudasaini and Mergili, 2019) or GeoFlow_SPH (Pastor et al., 2018b), could help investigate
such effects. However, as discussed in the introduction, the associated equations are generally
not fitted to complex topographies, but this would be less problematic in the lower section of the
river that displays gentle slopes (less than 4°) and a wider river bed than upstream RPRE. Thus,
future research could focus on using these models to investigate more deeply deposition process
in the lower section of the river, without modeling explicitly the DF initiation (for instance, by
using an hydrograph at RPRE as a source term).

Another key physical process that we do not model is the dilution of the DF as it reaches the
sea. As we do not have bathymetric data, the altitude in the sea is set to 0 and we let the
material flow freely through the grid boundary. Provided bathymetric data is available, the
interaction between sea water and the DF can, in theory, be empirically modeled with two-phase
models (Pudasaini and Mergili, 2019). We may however expect some process, such as the the
transformation of the DF into a turbidity current (Elverhøi et al., 2000), not to be properly
simulated. To our knowledge, research has mainly focused on understanding the generation of
tsunamis by debris flows (e.g. Walder and Watts, 2003; de Lange et al., 2020), rather than on
the influence of debris flow dilution in a large water body on the upstream dynamics.

4.7.3 Comparison between DF simulations and other documented events

Using the inventory of lahars made by Aubaud et al. (2013), we recovered the records from
RPRE’s and CPMA’s AFMS of the 8 strongest lahars between September 2009 and August
2010 (classified as "strong" or "very strong" by Aubaud et al., 2013). DFs and HFs cannot
be differentiated. By manually picking the maximums of the FULL channel on each AFM, for
each surge during the lahar, we could derive a set of travel durations between the two stations
(Figure 4.27a). Average travel durations decrease for increasing peak FULL values at RPRE:
when the latter are higher than 3000 mV, lahars need no more than 7 min to go from RPRE to
CPMA. However, when RPRE FULL records are about 1000 mV, travel duration span from 2
to 15 min. Any further interpretation is nevertheless complicated by the picking uncertainty, as
sampling interval is only 1 min and the identification of maximum couples in RPRE and CPMA
is sometimes difficult.

In our simulations, such variations in travel durations could be modeled by using different initial
conditions and rheological parameters (Figure 4.27b-c). We find that high discharges at RPRE
(more than 5000 m3 s−1) are associated to travel durations between RPRE and CPMA spanning
from 2.5 min to 5 min, while a discharge of 2500 m3 s−1 yield durations spanning from 5 min to
12 min (Figure 4.27b). Such an effect is also observed when travel durations are computed by
picking discharge onsets instead of discharge maximums (Figure 4.27c). For simulations with the
Voellmy rheology, changing rheological parameters only slightly changes the modeled discharge
but entails important variations in travel durations. Discharge are thus mainly controlled by the
initial condition (i.e. the simulation scenario, for instance see vertically aligned stars and circles
in Figure 4.27b and 4.27c). To the contrary, with the Coulomb rheology, a same simulation
scenario will produce different discharges depending on the friction coefficient (e.g. stars with
dashed circle in Figure 4.27b).
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Figure 4.27: Flow travel durations between RPRE and CPMA deduced from AFMs record-
ings and simulations. (a) Dephasing between RPRE and CPMA FULL channel maximum, as
a function of RPRE FULL channel maximum. Greyscale gives CPMA FULL channel. Pick-
ing was done manually for lahars with "strong intensity" between 2009 and 2011, from the
database of Aubaud et al. (2013). Crosses: match between RPRE and CPMA FULL maximum
is unambiguous. Circles: Uncertain pick, with multiple maximums in FULL CPMA possibly
matching one maximum in FULL RPRE. (b) Dephasing between maximum discharges at RPRE
and CPMA in simulation, as a function of maximum discharge at RPRE. Colorscale gives max-
imum discharge at CPMA. Symbols give the simulation scenario. Dashed black circles indicate
simulations where the Coulomb rheology was used (Voellmy otherwise). Friction coefficient is
µS = tan(2°), µS = tan(3°) or µS = tan(4°). Turbulence coefficients range from 100 to 500 m s−2.
Dashed black line is the power law regression. (c) Same as (b) but with dephasing measured by
picking the onset of discharge increase. Grey patch give observations ranges for the Jun. 19,
2010 DF.

This comparison shows that the range of travel durations (from RPRE to CPMA) measured for
the most important lahars in 2009 and 2010 can be empirically reproduced by choosing different
rheological parameters and source terms in DF simulations. This preliminary analysis should
be completed by using a catalogue of more recent lahars: their dynamics can be more precisely
contrained thanks to the CCPA AFM that was installed in 2014. Results could be then used for
operationnal hazard assessment.

4.7.4 Towards hazard management

Prediction of rock avalanche and DF occurrence

Given its remote location, it is very hard to monitor the Samperre cliff. Samples of materials
supposedly sharing the same characteristics as those composing the cliff could help characterize
its geotechnical properties. In particular, though the cliff basal layer associated to ancient flank
collapse seems not to have moved over the past decades, its stability should be further inves-
tigated. As a matter of fact, its ochre color suggests strong hydrothermal alteration. A more
detailed study of the hydrogeological setting of the cliff would also help constrain the instability
mechanisms. Finally, geomorphological and geological analysis of adjacent gullys could also point
at other potentially unstable slopes.
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In order to try and predict the occurrence of DFs, further investigations need to be done to
better characterize the initiation process and the respective role of meteoric and seepage water,
depending on the DF morphology. The latter can be deduced from deposits analysis and/or visual
observations. Then and only then may it be possible to estimate DF occurrence hazard, provided
i) a real-time estimation of the sedimentary stock in the river, ii) spatio-temporal precipitation
data in the previous days/weeks, iii) a hydrogeological conceptual model of the Prêcheur river
watershed. The latter may prove particularly difficult to construct in practice as the result of the
impossibility to access most of the river sources. Besides, because of unconstrained underground
water circulations,the hydrogeological and topographic watershed may well be different.

Though counter-examples exist, most lahars in the Prêcheur river are associated to rainfall events.
To characterize the critical rainfall conditions that can trigger a lahar (and in particular a DF),
it is common to define site-specific thresholds on rain intensity and duration from empirical
observations (e.g. Marra et al., 2016; Staley et al., 2017; Bel et al., 2017). Some attempts have
also been made to compute these rain intensity-duration thresholds with physical modeling of
runoff (Berti and Simoni, 2005; Tang et al., 2019) and/or shallow destabilizations (Berti and
Simoni, 2005; Papa et al., 2013). So far, no such threshold could be derived for the Prêcheur
river catchment: lahars are associated to both light and heavy rains (Ville et al., 2015). However,
this study did not take into account the volume of loose materials available at the cliff toe and
in the upper section of the river. These latter data are difficult to constrain, but it is essential
to consider them when investigating correlations between precipitations and lahars occurrences.
Such an analysis is however difficult, as there are important spatial variations of precipitations
intensity around the Montagne Pelée, at the scale of a few hundred meters. For instance, while
the annual mean precipitation is about 1,000 mm yr−1 on the west coast of Martinique, it
sometimes exceeds 10,000 yr−1 at the summit of Montagne Pelée (Aubaud et al., 2013). Thus,
the pluviometry recorded at CPMA may not be representative of precipitations near the cliff

Flood hazard mapping

Deriving flood hazard maps is one of the most critical point of hazard assessment as subsequent
land management may have long lasting impact on the population, with construction restrictions
or even resettlement (Crittenden and Rodolfo, 2002; Bowman and Henquinet, 2015). In our
simulations, no simple relation between flooded areas in inhabited areas and mobility could be
established from our simulations. On the one hand, more material will reach the Prêcheur village
when smaller friction coefficients and/or higher turbulence coefficients are used. On the other
hand, low friction coefficients in simulations favor the evacuation of debris in the ocean. Such
competing effects can be observed in our simulations: in the LH_R_cliff scenario, when we
increase the turbulence coefficient (up to infinite values for the Coulomb rheology), the flooded
area on the river right bank expands for µS = tan(3°) and lessens for µS = tan(2°).

The possibility that DFs overflow the river banks further upstream and enter adjacent gullies is
another major concern. Quefféléan (2018a) suggest that the rocky edge separating the Prêcheur
river from the Ravine Demarre, a few hundred meters downstream CCPA, could be overflowed
(or even destroyed) by high discharge DFs. Such a situation is reproduced in our LH_R_total
simulation with Coulomb and µS = tan(2°). However, the over-topping of river banks is a highly
non-linear phenomenon, with thresholds effects (Mergili et al., 2018; Peruzzetto et al., 2019),
such that their modeling with thin-layer models should be considered with caution.

Thus, given the uncertainties associated to the numerical model and the partial knowledge we
have in practice of DFs, it may prove difficult to derive quantitative flood maps merely from
simulations results. Such maps must also consider the appreciation by experts of their realism,
based on field observations (e.g. Moase et al., 2018). However, simulations results should not
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either be dismissed. As a matter of fact, they can provide key insight on possible overflow
scenarios that were not identified during field work. For instance, we have shown that in the
case of en extreme high discharge DF, part of the flow may enter the gully between the Prêcheur
river and the Ravine Demarre (Figure 4.23c). Such a scenario had not been considered by
Quefféléan (2018a), and could be further investigated in future field works. Numerical modeling
can also guide works in the river bed to mitigate overflow hazard: simulations can assess, at least
qualitatively, the impact of river bed carving and/or protection works. This could be done by
manually modifying the DEM on which simulations are run.

Real-time monitoring and early warning

So far, alarms have been triggered in the Prêcheur village when the flow height increases and
activates the pendulum system at RPRE and/or when a threshold level is exceeded on the FULL
channel of RPRE’s AFM. Though efficient, this system sometimes results in false positive alarms
when, for instance, the pendulum system is activated by debris or branches falling from the banks
or when the DF undergoes dilution and reaches the Prêcheur village without endangering neither
the population nor the infrastructures. A more thorough analysis of AFM and seismic stations
recordings, could help characterize the DF discharge and sediment bed transport (e.g. Burtin
et al., 2008; Roth et al., 2016; Anthony et al., 2018), and thus its rheology. Such analyzes need,
however, a calibration step, with additional sensors measuring directly these characteristic. But
instrumenting the river is in practice difficult.

Numerical modeling may help compensate for this lack of data. We derive in Figure 4.27b and
4.27c a power law giving the flow travel duration between RPRE and CPMA as function of the
modeled peak discharge at RPRE. If we manage to better quantify the relation linking AFM peak
values to records dephasing between RPRE and CPMA, it will be then possible to combine these
results to estimate peak discharges from AFM recordings. In a first approximation, this could
be done by assuming AFM peak values match peak discharges, as we have done in this study.
However, the seismic energy radiated by flows also depends on the sediment bed transport. As
DFs sometimes display particle segregation at their front (Vallance and Iverson, 2015), AFM
peak value may precede peak discharges.

More generally speaking, provided a database of simulation with various rheologies and initial
conditions, statistical analyzes can provide in turn simple relations between the main character-
istics of the lahars. Though the construction of the database is computationally demanding, the
results can then be used very quickly for real-time monitoring. For instance, we could derive lin-
ear relations between the travel durations from RPRE to CPMA, and from RPRE to the bridge
(Figure 4.28). Another example is given in Figure 4.29 where we compare simulated discharges
at RPRE and CPMA, to flooded areas on the left and right river banks. We find that flooded
areas are better correlated to the discharge at CPMA than at RPRE. Such observations could
help improve the monitoring of the Prêcheur river by identifying locations where data acquisition
is the most relevant.

4.8 Conclusion

In this work, we have modeled a rock avalanche, and the subsequent remobilization of the deposits
as a high discharge debris flow, with a single thin-layer numerical code, SHALTOP. It is a
physically-based model that simulates the propagation of a flow on a complex topography, but it
is used here empirically by using a maximum of two rheological parameters. They are calibrated
by reproducing real events, which then allows to investigate possible future events. In our case
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Figure 4.28: Travel durations between RPRE and CPMA, and RPRE and the bridge. (a) De-
phasing between maximum discharges at RPRE and the bridge in simulations, as a function
of dephasing between maximum discharges at RPRE and CPMA. Colorscale gives maximum
discharge at RPRE. Simulation scenario is given by the symbology. Dashed black circles indicate
simulations where the Coulomb rheology was used (Voellmy otherwise). Friction cofficient is
µS = tan(2°) or µS = tan(3°). Turbulence coefficients range from 100 to 500 m s−2. Dashed
black line is a linear fit. (b) Same as (a), but with dephasing measured by picking the onset of
discharge increase.
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Figure 4.29: Simulated flooded area depending on discharge. (a) Flooded are on the left bank
vs peak simulated discharge at RPRE. (b) Flooded are on the right bank vs peak simulated
discharge at RPRE. (c) Flooded are on the left bank vs peak simulated discharge at CPMA.
(d) Flooded are on the right bank vs peak simulated discharge at CPMA. Colorscale gives
maximum discharge at CPMA in (a) and (b), and at RPRE in (c) and (d). Note x-axis scale in
(a) and (b) is different from (c) and (d). Simulation scenario is given by the symbology. Dashed
black circles indicate simulations where the Coulomb rheology was used (Voellmy otherwise).
Friction cofficient is µS = tan(2°), µS = tan(3°) or µS = tan(4°). Turbulence coefficients range
from 100 to 500 m s−2.
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study, the Prêcheur river catchment in Martinique, the back-analysis of past events and the
construction of a forward prediction scenario are made complex because little quantitative data
is available to constrain precisely the simulation set-up and rheological parameters. However,
we show that combining a wide variety of information (geological and geomorphological data,
topographic surveys, seismic recordings and granulometric analysis of materials) makes it possible
to define realistic scenarios and reproduce the main characteristics of documented events.

In Figure 4.30, we complete Figure 4.1 with what field work and agregation of various data told us
about the processes transfering sediments from the Samperre Cliff to the Cliff. We also highlight
the different modeling solutions that were chosen. The two main processes, rock avalanches and
debris flows, are modeled separately. To calibrate avalanche simulations, we reproduce the Aug.
21, 2009 (1.0× 106 m3) and Jan. 4, 2018 (1.5× 106 m3) Samperre rock avalanches runouts with
the Coulomb rheology. We found best-fit friction coefficients between µS = tan(11°) = 0.19 and
µS = tan(14°) = 0.25, respectively.

The calibration of debris flows simulation is done by reproducing the destructive Jun. 19, 2010
DF that flooded the Prêcheur village. By releasing instantaneously a 0.65× 106 m3 reservoir at
the bottom of the cliff, we could reproduce both the observed travel durations and flooded areas.
With the Coulomb rheology, a low friction coefficient is needed (µS = tan(2°)). The Voellmy
rheology with turbulence coefficients above 500 m −2 also yields conclusive results. With a larger
reservoir (1.2 × 106 m3), the flow velocity is increased, allowing for an even better match with
observations, but the flooded area expands to an extent that was not observed in 2010. By
exploring different source terms, we show that the initial reservoir geometry has little influence
on the DF simulation result. However, when we consider progressive remobilization of materials
by imposing a constant discharge as source term, the flooded area is reduced (by 50% or even
100% for a 20 min constant source discharge), as well as the flow travel duration (10 min longer
between RPRE station and the Prêcheur village, for a 20 min constant source discharge).

Using the back-analyzed rheological parameters, geological and geomorphological constraints, we
could model an hypothetical 1.9× 106 m3 future collapse of the cliff. The resulting deposits are
then remobilized instantaneously to generate a DF. We model an average velocity of 11 m s−1 on
the 4.3 km long river section between RPRE and the outlet. With Coulomb and µS = tan(2°),
the discharge rate is almost 2,000 m3 s−1 at the bridge. It drops down to 1,000 m3 s−1 with the
Voellmy rheology, µS = tan(2°) and ξ = 500 m s−2.

Thus, we show that SHALTOP can be used to model both rock avalanches and high discharge
debris flows, at least in a first approximation. We suggest the dynamics of the debris flow front,
which displays a high solid fraction and little vertical separation between the solid and fluid
phases, are rather well modeled. In turn, we may be relatively confident in the modeled flow
front velocity. However, erosion and deposition processes as well as progressive dilution affect
the tail of the DF. Thus, flood maps should be analyzed with caution. However, they do provide
a key insights on the most exposed areas and on potential overflows locations.

This work contributes to assessing the usability of thin-layer models for hazard assessment,
particularly in complex cases where the deposits of an initial rock avalanche are remobilized by
debris flows. We also show how various data can be aggregated and used to constrain simulations
scenarios and parameters. In the case of the Prêcheur river, future research should focus on
modeling more finely the DFs dynamics in the lower part of the river to assess more accurately
flood hazard, for instance with two-phase thin-layer models. Further data acquisition and analysis
is also of prior importance to help better characterize the DFs occurring in the river, and in turn
calibrate simulations parameters.
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Figure 4.30: Diagram of sediment transfer processes, from the Samperre Cliff to the sea, along
with modeling solutions.
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Chapter 5

Thin-layer models for operational
runout hazard assessment: comparison
with empirical estimations

Context

In the previous two chapters, we have shown how thin-layer models (in particular SHALTOP)
can be used in combination with a wide variety of data and field observations to reproduce
gravitational flows. A cautious analysis of data is needed to define realistic simulations scenarios
and interpret correctly the simulation results. Thus, these studies are not straight-forward, in
the sense that the method must be adapted to the considered case study, depending on the
available data. This can be time consuming, which is not always compatible with short delays
given to practitioners. Besides, the communication of the results to stakeholders must also be
done carefully, because uncertainty is not quantified and relies on the expert judgement that is
thus inseparable from the results. In turn, the map showing the results of one simulation can be
misleading if it is not commented to stress the underlying assumptions and uncertainties.

In this context, the last chapter of this thesis focuses on quantifying the uncertainty associated to
simulation results. We propose a methodology to estimate, on a given study site, landslide travel
distance as a function of volume, with thin-layer numerical models and an explicit quantification
of uncertainty. The basic principle of our approach is to construct for a given site a database
of simulations, with various volumes and rheological parameters. The relation between the
simulation input (volume and rheological parameter) and output (travel distance) is then modeled
by a statistical law (in our case, a power law). This allows to estimate travel distances for volumes
and parameters not used in the simulation database. Note that a similar approach had already
been introduced in the previous two chapters: for instance, for the debris flow simulations in the
Prêcheur river, we have derived power laws giving the flow travel time as a function of discharge.
We will formalize this method to include, in particular, uncertainty quantification.

It is true that we considerably simplify the problem, in particular because the final estimation
is not spatialized: we will not derive hazard maps. However, even in this simplified framework,
it is not straight-forward to estimate rigorously the uncertainty. Besides, considering simple
travel distance estimations allows to interpret more easily results, and compare them to purely
empirical estimations.

The work presented here was published in a special issue of Geosciences: Landslides and Granular
Flows on Earth.
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Figure 5.1: Methodology for landslide travel distance estimation with thin-layer models

• Peruzzetto, M., Mangeney, A., Grandjean, G., Levy, C., Thiery, Y., Rohmer, J., and
Lucas, A., Operational Estimation of Landslide Runout: Comparison of Empirical and
Numerical Methodologies. Geosciences, 2020.

In this Chapter, we reproduce this paper, from Section 5.1 to Section 5.5. The associated abstract
is given page 174. The appendices of this chapter (Appendice 5.A to 5.D) are appendices of the
article.

In Figure 5.1, we give the graphical abstract of the paper that explains our method.

Abstract

A key point of landslide hazard assessment is the estimation of their runout. Empirical relations
linking angle of reach to volume can be used relatively easily, but they are generally associated to
large uncertainties as they do not consider the topographic specificity of a given study site. On
the contrary, numerical simulations provide more detailed results on the deposits morphology,
but their rheological parameters can be difficult to constrain. Simulating all possible values can
be time consuming and incompatible with operational requirements of rapid estimations. We
propose and compare three operational methods to derive power laws relating the landslide travel
distance to the destabilized volume. The first one relies only on empirical relations, the second
one on numerical simulations with back-analysis, and the third one combines both approaches.
Their efficiency is tested on three case studies : the Samperre cliff collapses in Martinique,
Lesser Antilles (0.5 to 4 × 106 m3), the Frank Slide rock avalanche (36 × 106 m3) and the Fei
Tsui debris slide in Hong Kong (0.014×106 m3). Purely numerical estimations yield the smallest
uncertainty, but the uncertainty on rheological parameters is difficult to quantify. Combining
numerical and empirical approaches allows to reduce the uncertainty of estimation by up to
50%, in comparison to purely empirical estimations. But it may also induces a bias in the
estimation, though observations always lie in the 95% prediction intervals. We also show that
empirical estimations fail to model properly the dependence between volume and travel distance,
particularly for small landslides (< 0.02× 106 m 3).
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Contexte

Dans les deux chapitres précédents, nous avons montré comment SHALTOP peut être utilisé avec
des mesures et des observations de terrain pour reproduire et étudier des écoulements gravitaires.
Une analyse minutieuse des données est nécessaire pour construire des scénarios réalistes, et inter-
préter correctement les résultats des simulations. Ainsi, de telles études peuvent être complexes,
car la méthodologie doit être adaptée à chaque cas d’étude en fonction des données disponibles.
Cela peut nécessiter beaucoup de temps, ce qui n’est pas toujours compatible avec les impératifs
opérationnels. Par ailleurs, la communication des résultats aux parties prenantes doit également
être faite avec précaution parce que l’incertitude n’est pas quantifiée et est directement liée à un
jugement d’expert, qui est ainsi indissociable des résultats. Ainsi, la carte montrant le résultat
des simulations peut être trompeuse si elle n’est pas commentée pour expliquer et souligner les
hypothèses faites, et les incertitudes sous-jacentes.

C’est dans cette perspective de quantification des incertitudes associées aux résultats de simu-
lations que s’inscrit ce dernier chapitre. Nous allons proposer une méthodologie pour estimer,
pour un site donné, la distance parcourue par un écoulement gravitaire en fonction du volume,
à l’aide de modèles d’écoulement en couche mince et en prenant en compte les incertitudes. Le
principe de base de notre approche est de construire, pour un site donné, une base de données
de simulations avec des volumes et des paramètres rhéologiques variés. La relation entre les pa-
ramètres d’entrée (volume et paramètre rhéologique) et les sorties de la simulation (la distance
de parcours) est ensuite modélisée par une loi statistique (dans notre cas, une loi puissance).
Cela permet d’estimer les distances de parcours pour des volumes et paramètres non présents
dans les simulations initiales. En fait, une approche similaire a déjà été utilisée dans les chapitres
précédents, quand nous avons déduit, par exemple, une loi puissance donnant le temps parcours
d’une lave torrentielle en fonction de son débit. Nous allons formaliser cette méthode pour y
inclure, en particulier, la quantification de l’incertitude.

Il est vrai que nous simplifions considérablement le problème de la quantification des incertitudes,
en particulier parce que nous ne considérons pas la spatialisation des incertitudes : nous ne
calculerons pas de cartes d’aléas. Toutefois, même dans ce cadre simplifié, il n’est pas simple
de propager de manière rigoureuse l’incertitude. Par ailleurs, considérer simplement l’estimation
des distances de parcours permet d’interpréter plus facilement les résultats, et de les comparer à
des estimations purement empiriques.

Le travail à donné lieu à un papier publié dans un numéro spécial de Geosciences : Landslides
and Granular Flows on Earth :

• Peruzzetto, M., Mangeney, A., Grandjean, G., Levy, C., Thiery, Y., Rohmer, J., and
Lucas, A., Operational Estimation of Landslide Runout : Comparison of Empirical and
Numerical Methodologies. Geosciences, 2020.

Nous reproduisons dans ce chapitre ce papier, de la Section 5.1 à la Section 5.5. Le résumé en
anglais associé (abstract) est donné page 174. Les appendices de ce chapitre (Appendice 5.A à
5.D) sont des appendices de l’article.

Dans la Figure 5.1, nous donnons le résumé graphique (graphical abstract) de l’article qui ex-
plique et résume la méthodologie.
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Résumé

Un point clé de l’évaluation des aléas gravitaires est l’estimation de leur distance de parcours. Des
relations empiriques reliant l’angle d’atteinte (angle of reach en anglais) peuvent être utilisées
relativement facilement, mais sont en général associées à de fortes incertitudes puisqu’elles ne
prennent en compte ni les spécificités topographiques du site d’étude, ni les caractéristiques des
matériaux. A l’inverse, les simulations numériques donnent plus de détails sur la morphologie des
dépôts, mais leurs paramètres rhéologiques peuvent être difficiles à contraindre. La simulation
de toutes les valeurs possibles est coûteuse en temps de calcul, et parfois incompatible avec les
exigences opérationnelles d’estimation rapide. Nous proposons et comparons trois méthodes opé-
rationnelles pour obtenir des lois puissance reliant la distance de parcours au volume déstabilisé.
La première s’appuie uniquement sur des relations empiriques, la deuxième sur des simulations
numériques avec calibration des paramètres, et la troisième combine les deux approches. Leur
efficacité est testée sur trois cas d’étude : des avalanches de blocs de la falaise Samperre en
Martinique dans les Petites Antilles (0.5 to 4 × 106 m3), l’avalanche de blocs de Frank Slide
(36 × 106 m3), et le glissement de terrain de Fei Tsui Road à Hong-Kong (0.014 × 106 m3).
Les estimations purement numériques donnent les incertitudes les plus faibles, mais l’incertitude
sur les paramètres rhéologiques est difficile à quantifier. En combinant les approches numériques
et empiriques, l’incertitude est réduite jusqu’à 50%, en comparaison des estimations purement
empiriques. Mais dans ce cas, l’estimation peut être biaisée, même si les observations des trois
cas d’études sont toujours comprises dans l’intervalle de confiance à 95%. Finalement, nous mon-
trons que les estimations empiriques ne parviennent pas à modéliser correctement la dépendance
entre le volume et la distance de parcours, en particulier pour les petits glissements de terrain
(< 0.02× 106 m 3).
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5.1 Introduction

Landslide hazard assessment is the estimation of the probability that an area is impacted by
a landslide of given intensity during a given period of time (Corominas et al., 2014; Thiery
et al., 2017). It relies on the evaluation of landslide susceptibility (i.e. the likelihood that
a given type of landslide occurs in a given area) and intensity. The definition of intensity
depends on the propagation mechanism (Corominas et al., 2014), but generally includes the
runout (or travel distance), the velocity and volume of the landslide. These characteristics
are commonly estimated from empirical relations (in most case, power laws) depending on the
landslide volume (e.g. Corominas, 1996; Legros, 2002; Lucas et al., 2014; Zhan et al., 2017;
Mitchell et al., 2018; Strom and Abdrakhmatov, 2018; Brideau et al., 2019). However, in order
to get more insight on the landslide dynamics, physical model must be used. The most simple
one is the rigid sliding block model for which an analytical solution can be derived (Hungr
et al., 2005a). Analytical solutions for one-dimensional dam-break problems have also been
proposed in (Mangeney et al., 2000a), and used for instance in Lucas et al. (2014) to estimate
landslide travel distances. Flow routing algorithms implemented in Geographic Information
Systems (GIS) softwares combine probabilistic methods and semi-empirical energy dissipation
laws to reproduce multiple channelling and mass spreading (Wichmann and Becht, 2005; Horton
et al., 2013). Nevertheless, physically-based numerical modeling is needed to reproduce the
complex mechanisms governing landslide propagation. 3D modeling allows to describe precisely
the interactions between fluid and/or solid particles (Leonardi et al., 2014; Prime et al., 2014b;
Hu et al., 2015) but is often computationally costly and relies on many user-defined parameters,
which are in practice difficult to estimate.

In comparison, thin-layer models (also commonly called shallow-water models) integrate the
momentum equations over the flow thickness of fast-propagating landslides, whose thickness
is negligible in comparison to their extent. Thus, the state variables are reduced to the flow
thickness and thickness-averaged velocity and simulations can be run faster than full 3D models.
In their most simple form, the shallow-water equations describe the evolution of a homogeneous
flow and use a solid Coulomb friction law to model the interaction between the topography
and the flow, through a friction coefficient µS = tan(δ). The stress applied at the base of the
flow can also be modeled with the Voellmy rheology that includes a turbulence term (Salm,
1993; McDougall, 2017), or the Bingham rheology for yield-stress fluids (Pastor et al., 2004).
More complex shallow-water models include, for instance, erosion and deposition along flow
path (McDougall and Hungr, 2005; Pirulli and Pastor, 2012) and two-phase flows with dilatancy
effects (Iverson, 2014; Bouchut et al., 2015; Bouchut et al., 2016; Pudasaini and Mergili, 2019).

In this work, we aim at developing and comparing methodologies to estimate the travel distance
of rapid gravity-driven flows (Iverson and Denlinger, 2001; Lucas et al., 2014; McDougall, 2017)
depending on their volume. The resulting relations must be simple enough to be used opera-
tionally by practitioners. They can be established simply by using mobility indicators such as
the Heim’s ratio µH or the effective friction coefficient µeff (Lucas et al., 2014):

µH =
H

∆L′
, (5.1)

µeff = tan(θ) +
H0

∆L
. (5.2)

H is the drop height, ∆L′ the horizontal travel distance along flow path, θ the average slope along
flow path, H0 the initial mass maximum height and ∆L the travel distance along topography
from the collapse scar toe (Figure 5.2). µeff is less straight-forward to use than µH as it takes
into account the geometry of the initial mass, which is not always easy to estimate.
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Figure 5.2: Parametrization of landslide mobility, with notations from Lucas et al. (2014).
Dashed line: initial mass. Grey shaded are: final landslide deposits. H is the drop height,
∆L′ the horizontal travel distance. H0 is the mass initial thickness, ∆L the travel distance along
topography from the landslide scar toe, and θ is the average slope angle along the flow path.
The notations in red are used for µeff , and in black for µH .

empirical estimations relating the landslide volume to µH or µeff rely on large datasets that are
not, in general, site specific. Thus, the particular topographic setting of a given study site is not
taken into account. This often results in large uncertainties that are however relatively simple
to evaluate from the residuals between the fitted model and the observations.

In comparison, numerical modeling and in particular shallow-water models are commonlyused
to carry out site-specific hazard analysis (e.g. Hussin et al., 2012; Mergili et al., 2018; Peruzzetto
et al., 2019). But many simulations (up to 1,000 or even 10,000) are needed to perform a
rigorous probabilistic hazard analysis (e.g. Rohmer and Foerster, 2011). Besides, estimating
parameters can be difficult, or at least time consuming and costly, which is often incompatible
with operational constraints where hazard assessment must be carried out quickly. Rheological
parameters can be estimated by back-analysis when previous events are documented, but the
extent to which results can be used for forward prediction is hard to constrain (Mergili et al.,
2018). Rheological parameters can also be empirically deduced from mobility indicators. In
particular, the effective friction coefficient µeff , whose definition differs from the Heim’s ratio
µH as it takes into account the initial mass geometry, proved to be a relatively good estimation
of the friction coefficient µS needed to model observed deposits (Lucas et al., 2014).

In this context, the extent to which numerical modeling can improve the estimation of landslide
runout in comparison to empirical approaches, has, to our knowledge, never been quantified. To
answer this question, we will derive site-specific power laws relating the horizontal travel distance
∆L′ to the unstable volume V , using a purely empirical approach, a numerical approach and
combining empirical data with numerical modeling. Empirical data is drawn from two landslides
databases (Lucas et al. (2014), and Corominas (1996) and Mitchell et al. (2019)). Numerical
modeling is carried out with the SHALTOP shallow-water numerical model (Mangeney-Castelnau
et al., 2005; Bouchut and Westdickenberg, 2004; Mangeney et al., 2007b). We will use a simple
Coulomb friction law that proved, with SHALTOP, to reproduce successfully real landslides
deposits (Lucas et al., 2007; Lucas et al., 2014; Moretti et al., 2015; Yamada et al., 2018;
Peruzzetto et al., 2019; Moretti et al., 2020a). Besides, this rheology involves a single parameter,
which simplifies uncertainty analysis. We compare the prediction and associated uncertainties
for three documented case studies: rock/sand avalanches from the Samperre cliff in Martinique,
Lesser Antilles, the Frank Slide rock avalanche in Canada and the Fei Tsui Road debris slide in
Hong-Kong.
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5.2 Materials and Methods

5.2.1 Data

We present here the case studies on which methods of travel distance estimations will be com-
pared. Empirical methods are based on empirical estimations of mobility deduced from landslide
databases. In comparison, numerical methods rely on site-specific simulation databases.

Case studies

In this work we focus on three landslide case studies, spanning a large range of volumes and
runouts. Their characteristics are summarized in Table 5.1.

Destabilizations from the Samperre cliff, in Martinique, Lesser Antilles, involve volumes between
1 and 4× 106 m3 (Clouard et al., 2013; Nachbaur et al., 2019) that propagate on a complex to-
pography (Figure 5.3a and 5.3b). As they detach from the cliff, old pyroclastic materials erupted
from the nearby Montagne Pelée volcano desegregate rapidly and the landslide propagates as a
granular avalanche. Massive destabilizations occur roughly every 10 years, as in 2009 and 2018
(Clouard et al., 2013; Nachbaur et al., 2019) and travel about 2 km in the Samperre torrent that
has its source at the cliff toe (Figure 5.3c). The stream flows in a narrow (no more than 40 m
wide) and steep-walled (up to 70 m high banks) ravine that confines laterally the avalanche.
The volume involved in the August 2009 collapse is estimated at 1 × 106 m3 in Clouard et al.
(2013). In 2018, the main destabilization phase occurred in early January, and involved at most
3.7× 106 m3 (Quefféléan, 2018a), as deduced from 1-m Digital Elevation Models (DEMs) com-
parisons between July 2017 (LiDAR) and mid-January 2018 (photogrammetric reconstruction).
However, considering the cliff retreat between these two dates, we estimate a smaller 1.5×106 m3

volume (see Appendix 5.B).

In comparison, the Frank Slide rock avalanche features a larger volume: 36× 106 m3. It is more
easily constrained than the Samperre destabilizations, because it consisted in a single event that
occurred in 1902 on the east face of Turtle Moutain in western Alberta, Canada (Figure 5.4a
and 5.4b). It involved mainly Paleozoic limestones that slid along the dipping bed of Turtle
Mountain anticline (Benko and Stead, 1998). The rock avalanche covered approximately 2.6
km2 and traveled about 3 km (from the rear scar) without confinement. The scar displays 30°
to 60° slopes, but the topography flattens quickly at the mountain toe. The rock avalanche then
ran slightly uphill on the other side of the valley with slopes no higher than 3° (Figure 5.4c).

The 1995 Fei Tsui Road debris slide case-study differs significantly from the previous ones (Fig-
ure 5.5). It occurred in Hong-Kong after intense rainfalls: more than 1,300 mm in the preceding
month and 230 mm in the preceding 12 hours (GEO, 1996). It involved 14,000 m3 of debris,
which is unusually high for landslides in Hong-Kong (Knill, 1996; GEO, 1996). The debris slide
originated form a 30 m high cut slope in moderately to highly weathered volcanic materials, with
the base of the scar following a kaolinite-rich altered tuff layer. It is assumed that the develop-
ment of a 1 to 4 m high perched aquifer above the kaolinite-rich layer favored the initiation of the
landslide as a translational slide. As a result of low cohesion values (GEO, 1996), the material
then desegregated rapidly. The debris slide traveled about 65 m (30 m from the scar toe) with
limited spreading, with some of the deposits piled up against the corner of a building.
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Figure 5.3: Samperre cliff destabilizations. (a) August 2018 topography, 1 m DEM. Black dashed
outline: extent of the destabilized area (difference between 2010 and 2018 DEMs). Bold contour
interval is 100 m. Red line: cross-section along which travel distances are measured. Black
triangle: observed travel distance in 2009. White triangle: observed travel distance in 2018. (b)
Picture of the Samperre cliff (black dashed outline in (a)) taken in February 2018 (OVSM). (c)
Cross-section along red line in (a). Red line: Post-collapse topography with deposits removed.
Black dashed line: Topography in July 2010. Black and white triangles are reported from (a).
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Figure 5.4: Frank Slide rock avalanche. (a) Post collapse topography with deposits removed,
20 m DEM. Black dashed outline: landslide scar. Dark area: observed landslide extent. Bold
contour interval is 100 m. Red line: cross-section along which travel distances are measured.
Black triangle: Observed travel distance. (b) Picture of the Frank Slide, taken in 1922 (Canada.
Dept. of National Defence / Library and Archives Canada / PA-052095). (c) Cross-section along
red line in (a). Red line: Post-collapse topography with deposits removed. Black dashed line:
Reconstructed pre-collapse topography. Black triangle: observed deposit extent.



182 5.2. Materials and Methods

(b)(a)

0 20 40 60 80
Horizontal distance (m)

40

50

60

Al
tit

ud
e 

(m
)

(c)

40

50

60

70

Al
tit

ud
e 

(m
)

Figure 5.5: Fei Tsui Road debris slide. (a) Post collapse topography with deposits removed,
1 m DEM. Black dashed outline: landslide scar. Dark area: observed landslide extent. Bold
contour interval is 10 m. Red line: cross-section along which travel distances are measured. Dark
triangle: Observed travel distance. (b) Picture of Fei Tsui Road debris slide (GEO, Hong-Kong).
(c) Cross-section along red line in (a). Red line: Post-collapse topography. Black dashed line:
Reconstructed pre-collapse topography with deposits removed. Black triangle: observed deposit
extent.
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Figure 5.6: Empirical landslide databases. (a) µH as a function of landslide volume V . Grey
circles: DB1. Red marker: DB2. Squares: rockfalls and rock avalanches from Corominas (1996).
Triangles: debris flow, debris slides and debris avalanches from Corominas (1996). Crosses: Rock
avalanches from Mitchell et al. (2019). Black line: power law regression result for DB1 (equation
given in black). Red dashed line: power law regression result for DB2 (equation given in red).
(b) µeff as a function of landslide volume V , for DB1 . Black line: power law regression result
for DB1 (equation given in black). Yellow circle: observations for Fei Tsui Road debris slide.
Blue circle: observations for the most import destabilization of the Samperre cliff in 2018. Green
circle: observations for the Franks Slide.

Landslide databases

We use two databases to estimate empirically travel distances. The first one (DB1 ) is drawn
from Lucas et al. (2014). It includes 43 dense and rapid landslides from Earth, Mars, Iapetus
(Saturn’s satellite) and Io (Jupiter’s satellite). Both the Frank Slide and the Fei Tsui Road debris
slide are included in DB1. The second database (DB2 ) combines 44 rockfalls, rock avalanches,
debris flows, debris slides and debris avalanches drawn from Corominas (1996), as well as 49 rock
avalanches drawn from Mitchell et al. (2019).

From these databases we fit two power laws relating µH to the landslide volume V : µH = µ1H(V )
for DB1 and µH = µ2H(V ) for DB2. Only DB1 could be used to derive a relation between µeff
and V , µeff = µ1eff (V ), because the field observations required to compute µeff are not available
in DB2. The regression results are given in Figure 5.6. More details on the regressions quality
are available in Table 5.A.1. Note that our power law µ1eff (V ) differs from the power law derived
in Lucas et al. (2014) because we fit a power law µeff = αV β without constraining α, while in
Lucas et al. (2014), α = 1 is imposed.

Simulation databases

For each case study, we construct a simulation database with the SHALTOP shallow-water
numerical code (Mangeney-Castelnau et al., 2005; Bouchut and Westdickenberg, 2004; Mangeney
et al., 2007b). This is done by considering multiple initial unstable geometries and friction
coefficients µS . For each case study, we model destabilized volumes ranging from one third to
about twice the volumes involved in documented events. The range of tested µS encompasses
realistic coefficients estimated from expert knowledge, in regard of the volumes considered. In
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particular, the value µeff = µ1eff (V ) (with V the volume of the real landslide, see Table 5.1)
is also tested: it has been shown to be a good estimate of the friction coefficient µS needed to
reproduce the landslide dynamics and deposits (Lucas et al., 2014; Moretti et al., 2015; Yamada
et al., 2018). The lowest value µS is also constrained by practical considerations: for small µS ,
the landslide does not stop within the simulation grid and no travel distance can be measured.
The main characteristics of the simulations are given in Table 5.1.

For the Samperre cliff case study, several topographic surveys were carried out over the years:
they allow to quantify the evolution of the cliff after collapses episodes, but no data are avail-
able to constrain precisely individual events. Thus, we have inferred a total of 10 initial vol-
umes/geometries spanning volumes from 0.25 × 106 m3 to 3.7 × 106 m3: two of them are used
to reproduce the August 2009 (1× 106 m3) and January 2018 1.5× 106 m3 major events. More
details about the definition of collapse scenarios are given in Appendix 5.B. Friction coefficients
are chosen between µS = tan(10°) = 0.18 and µS = tan(15°) = 0.27 every 1°, and every 2.5°
up to µS = tan(35°) = 0.70. This results in a total of 165 simulations. The best-fit friction
coefficients used in simulation to reproduce the travel distance of the 2010 and 2018 events are
tan(11°) = 0.19 and tan(14°) = 0.25, respectively. Given the relative poor constraints we have
on the 2010 event, in particular in term of initial geometry (see Appendix 5.B), we suggest the
second fit is more accurate. Thus, we will use in the following intermediate value tan(13°) = 0.23
that is closer to the 2018 event back-analysis.

For the Frank Slide and Fei Tsui Road case studies, simulations are run on 20 and 1 meter
DEMs respectively. They were provided (along with the initial mass of the past landslides) for
the First JTC1 Benchmarking Exercise (Hungr et al., 2007). In comparison to the Samperre
case study, we use a more simple way of simulating various volumes. Indeed, we simply scale
uniformly the heights of the real destabilized mass to explore larger and smaller volumes. For
the Frank Slide, in addition to the real 36×106 m3 landslide, we test 7 other volumes from 10 to
70× 106 m3, every 10× 106 m3. Friction coefficients are taken between µS = tan(7°) = 0.12 and
µS = tan(23°) = 0.42, every 1°. This amounts to 137 simulations. The best-fit friction coefficient
used in simulation to reproduce observed deposits resulting from the historical 36 × 106 m3

landslide is tan(11°) = 0.19, as in Lucas et al. (2007).

For the Fei Tsui Road debris slide, we test volumes between 5,000 and 30,000 m3, every 5,000 m3,
and the real 14,000 m3 volume. Friction coefficients are chosen between µS = tan(20°) = 0.36
and µS = tan(32°) = 0.62 every 1°, resulting in 91 simulations. The best-fit friction coefficient
used in simulation to reproduce the 2018 14 × 103 m3 debris slide is µfitS = tan(26°) = 0.49, as
in Lucas et al. (2007).

Simulations are run on the S-CAPAD DELL cluster of the IPGP, on CPU Power Edge C6220,
PowerEdge R720xd or PowerEdge R730xd nodes. 128 nodes were thus available, each one with
16 cores. In turn, simulations could be run simultaneously (one simulation per core). Each
simulation lasts between 10 min (in the Fei Tsui Road case study) and 12 hours (in the Samperre
case study). Note that the total number of simulations remains small in comparison to what
would be needed for a thorough analysis of uncertainty (at least 1,000 simulations, e.g. Rohmer
and Foerster, 2011). Nevertheless, it is compatible with time constraints met by practitioners
who must carry out quick hazard assessment.

For each case study, we use the simulations results to compute site-specific power laws relating
the horizontal travel distance ∆L′ to the initial volume V and the friction coefficient µS : ∆L′ =
fS(V, µS). For each simulated deposits, we can also compute the resulting µeff from (5.2). For
clarity, values derived from simulations results will be noted µ̃eff , while µeff refers to values
deduced from real landslides. Their definition is however the same. In turn, we can compute
another power law relating ∆L′ to V and µ̃eff : ∆L′ = gS(V, µ̃eff ). The data used to derive fS
and gS are given in Supplementary Materials.
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5.2.2 Estimation of horizontal travel distances

We use three different methods to estimate the horizontal travel distance ∆L′ directly from the
landslide volume V . They are summarized in Figure 5.7. We use empirical data from DB1 or
DB2, site-specific numerical simulations or a combination of the two. For the sake of clarity
and simplicity, we do not explicit the functions that will be mentioned hereafter. It can be any
kind of statistical model fitted to the landslide travel distance databases, or to the numerical
simulations results, provided the associated uncertainties can be estimated. In this work, we use
power law relations that are fitted by transforming the variables on a logarithm scale and by
fitting a linear regression model using Ordinary Least Square (OLS) regressions (see more details
in Appendix 5.C). Thus, the final relation relating ∆L′ to V has the form:

∆L′ = αV β, (5.3)

where the coefficients α and β depend on the studied site and on the chosen methodology.

Empirical runout estimation

For a given study site, we choose a profile along which travel distances will be measured, in
the main direction of propagation of observed landslides (red lines in Figures 5.4a, 5.4c, 5.3a,
5.3c, 5.5a and 5.5c). Provided an origin is chosen, a ratio µ̃H = H/∆L′ can be computed for
each point along the profile. Thus, we do not need to run simulations. However, in practice, it
is convenient to compute µ̃H for the points that are reached by landslides in our simulations.
As the modeled stopping points span a large portion of the profile, it is equivalent to choosing
manually points along profiles and the resulting relation does not depend on the simulations.
Besides, for the Samperre cliff simulations in particular, this allows to take directly into account
the variability of the profile, as we consider different collapse geometries.

If the topography is convex, which is the case in our three case studies, it is possible to invert
the previous relation to derive ∆L′ from µ̃H : ∆L′ = ∆L′(µ̃H). Note that µ̃H is computed
geometrically. We relate it to realistic landslide mobilities by choosing µ̃H = µH , where µH is
the Heim’s ratio measured on real landslides. Using the volume dependent relations deduced
from the empirical databases DB1 and DB2, µH = µ1H(V ) and µH = µ2H(V ), we get:

∆L′ = ∆L′(µ̃H) = ∆L′(µ1H(V )), (5.4)

∆L′ = ∆L′(µ̃H) = ∆L′(µ2H(V )), (5.5)

which we will write more simply

∆L′ = f1emp(V ), (5.6)

∆L′ = f2emp(V ). (5.7)

In comparison, it is more difficult to use µeff for direct empirical estimation as its definition
includes a more complex topography description (the mean slope along flow path) and the initial
geometry and volume (through the initial height H0). Thus, it is not straight-forward to invert
(5.2) to get a relation ∆L′ = ∆L′(µeff , V ). However, this can be done through simulations, as
will be explained in Section 5.2.2.

Not that we could also have used empirical power laws ∆L′ = Femp(V ) derived directly from
landslide databases, and apply them directly on each case study. We choose not to, because such
a method does not yield a site-specific power law. In comparison, µH can be deemed to be, in
a first approximation, a good mobility indicator, that can then be used on a chosen site. We
will however compare in Section 5.4.3 relations ∆L′ = Femp(V ) found in the literature, to the
site-specific laws derived in this study.



186 5.2. Materials and Methods

Numerical runout estimation

The travel distance can also be estimated without using empirical mobility indicators. For each
study site, we derived from the simulation results a statistical relation ∆L′ = fS(V, µS). As we
want our final relation to depend only on V , we must choose a value for µS . It can be done by
modeling a past landslide for which both the initial volume and the travel distances are known.
By choosing for µS the best-fit friction coefficient µfitS , and assuming that it does not depend on
the landslide volume, we then get a function that only depends on volume:

∆L′ = fS(V, µfitS ) = ffitS (V ) (5.8)

However, if no past event is available for back-analysis, we can use empirical observations.

Numerical/empirical runout estimation

In the relation ∆L′ = fS(V, µS) deduced from a simulation database, we can choose µS as a
function of the volume. As a matter of fact, it has been shown that lower friction coefficients
are needed to model larger landslides. This can be done by back-analysis of multiple events with
various volumes on a same site, but we do not have enough data for that. The other possibility
is to consider that the empirical mobility indicators µeff and µH are good estimates for µS and
setting respectively µS = µ1H(V ), µS = µ2H(V ) or µS = µ1eff (V ). Combining these relation with
∆L′ = fS(V, µS), we derive the volume dependent relations:

∆L′ = f1S,µH (V ) = fS(V, µ1H(V )), (5.9)

∆L′ = f2S,µH (V ) = fS(V, µ2H(V )), (5.10)

∆L′ = f1S,µeff (V ) = fS(V, µ1eff (V )). (5.11)

Another possibility is not to consider µS , and use only the simulations results. As a matter of
fact, we can compute for each simulated landslide the mobility indicators µ̃H and µ̃eff . The ˜
indicates that they are given by simulation results, when µH and µeff are computed using data
from historical landslides. Their respective geometrical definitions are however the same.

From the simulation database, we can thus estimate a relation ∆L′ = ∆L′(µ̃H), which is the
same as for empirical runout estimation (see Section 5.2.2). To be consistent with the definition
(5.2) of µeff that includes both the initial mass geometry and the travel distance, we derive
from the simulations results a relation ∆L′ = gS(V, µ̃eff ). This is done with the tuples (µ̃eff , V )
for which µ̃eff lies within the 95% prediction interval of the empirical relation µ̃eff = µ1eff (V ).
Other tuples are deemed to be unrealistic. Finally, we use µ̃eff = µ1eff (V ) in ∆L′ = gS(V, µ̃eff )
to derive the relation:

∆L′ = g1S,µeff (V ) = gS(V, µ1eff (V )) (5.12)

5.2.3 Estimation of uncertainty

To derive the uncertainty associated to the estimation of the travel distance, we use the dispersion
between observed values and values predicted by power laws, and the uncertainty on the power
law coefficients. Classical results of linear regression can be used to derive prediction intervals
for a given power law, taking both these aspects into account (see Appendix 5.C). However, it
is not straight-forward to extend these results for nested power laws, when the result of one is
the input of another. Indeed, the final expression of the runout involves the sum and product
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Figure 5.7: Methodologies to derive volume dependent relations for travel distance estimation.
The superscripts 1 and 2 refer to the empirical database that is used for a given relation (DB1
and DB2 respectively). In this study, all functions are power laws.
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of random variables that are not independent. Thus, it is not easy to derive formally the final
probability density function. Instead, we derive numerically prediction intervals by computing
4,000 estimations with coefficients and/or residues of each power law drawn randomly (following
probabilistic laws whose parameters are given by the regression). We then derive the 95%
prediction interval from the 2.5th and 97.5th percentiles. More details are given in Appendix 5.C.

The normalized standard deviation σV of the estimation ∆L′(V ), for a given volume V , is defined
as:

σ(V ) =

√√√√ 1

n

n∑
i=0

(
∆̂L
′
(V )− ∆̂L

′
i(V )

∆̂L
′
(V )

)2

, (5.13)

where ∆̂L
′
(V ) is the direct estimation from the best-fit power law, and ∆̂L

′
i(V ) are n random

estimates. We define the total standard deviation over a range of different volumes Vj as

σ =
1

m

m∑
j=1

σ(Vj). (5.14)

We choose m = 50 volumes Vj sampled regularly in logarithmic scale between the minimum
and maximum simulated volumes. When we use back analysis for travel distance estimation in
∆L′ = ffitS (V ), we also take into account for σ the uncertainty on the best fit friction coefficient
µfitS = tan(δfitS ). This is done by drawing random values of δS (µS = tan(δS)) with a normal
distribution of mean δfitS and standard deviation 1°. This value is chosen because it matches the
interval between two successive tested values of δS in simulations, in the neighbourhood of the
best-fit friction angle.

5.3 Results

In this section, we will first present the results of the different power laws that were computed
in this study, from empirical data or from simulations results. Then, we will compare, for each
case study, the different final estimations ∆L′ = ∆L′(V ) giving directly the travel distance as a
function of the unstable volume V .

5.3.1 Quality of power law regressions

In this work, we have used simple power laws to derive statistical models both from empirical
databases and simulations results. Their quality can be at first hand assesed from the adjusted
R2, but other indicators are needed to assess the reliability of uncertainty estimation. The details
of the statistical analyses, with the coefficients and quality indicators, are given in Table 5.A.1.
The behaviour of residuals depending on predicted values is given in Appendix (Figure 5.A.1
and Figure 5.A.2).

The site-specific power laws are associated to very good R2: 0.91 for gS(V, µ̃eff ) for the Samperre
case study, and more than 0.97 for other power laws. In comparison, empirical power laws feature
R2 values between 0.68 (for DB2 ) and 0.84 (for DB1 ). gS(V, µ̃eff ) and fS(V, µS) have a Variance
Inflation Factor (VIF) below 1.08, which is a good indication that the explanatory variables are
not linearly correlated and that the OLS regression is robust (in the sense that the inversion
problem is well-constrained). The linearity hypothesis (that is, the validity of using a linear
model to represent the link between the logarithm of the runout with the predictor variables)
is also relatively well verified, with residues relatively well centered around 0 (Figure 5.A.1 and
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5.A.2). However, we do see for the Frank Slide case study slightly concave and convex shapes for
the residuals curve (Figure 5.A.2d, 5.A.2e, 5.A.2f). In turn, the hypothesis of homoscedasticity
of residuals (that is, that the deviation from the regression result is similar for all predictions) is
not verified in the Frank Slide case study (p-value of the Breush-Pagan test below 0.04). Finally,
while the hypothesis that the distribution of residuals follows a normal law is well verified for
all empirical power laws µ1H(V ), µ2H(V ) and µ1eff (V ), it can be questioned for the site-specific
power laws, in particular for ∆L′ = ∆L′(µ̃H) and ∆L′ = fS(V, µS) (p-values of the Jarque-Bera
test below 0.15).

5.3.2 Estimation of travel horizontal travel distances

In Table 5.2 we summarize the different power laws ∆L′ = αV β that were derived to estimate
travel distances with different methodologies. In the following we compare the estimation results
for each case study.

Samperre cliff case study

Estimations of travel distances for the Samperre cliff case study are given in Figure 5.8 and
Figure 5.9. The empirical estimation f1emp (that uses directly µH and DB1 ) is in good agree-
ment with observations (Figure 5.8a), but f2emp (derived from DB2 ) slightly over-estimates them
(Figure 5.8c). When we use simulations results with µS approximated from µH or µeff (f1S,µH ,
f2S,µH , f

1
S,µeff

in Figure 5.8b, 5.8d, 5.8f respectively), the observed travel distance is systemati-
cally under-estimated by at most 40%. Finally the empirical/numerical estimation gS,µeff is in
almost perfect agreement with the back-analysis estimation ffitS (Figure 5.8e) and thus with the
observations. The exponent β is 0.14 for the empirical estimations, and varies between 0.24 and
0.33 for the empirical/numercial and numerical estimations (Table 5.2).

Observations lie within the 95% prediction intervals of all estimations (black dashed lines in
Figure 5.8). These intervals delimit the values predicted by the statistical models in 95% of
the cases, given the estimated uncertainties (See Appendix 5.C). These intervals are always very
large, which can be correlated to high values of the normalized standard deviations in travel
distance estimations, σ (see Table 5.2). Indeed, we have σ = 0.6 for empirical estimations, which
means that the standard deviation of estimations amounts to 60% of the direct prediction of the
power law, when uncertainties are not taken into account. Using Shaltop reduces σ to 0.4 in
empirical/numerical estimations with µS = µH , and even 0.3 when we choose µS = µeff . When
the best-fit friction coefficient is used, σ drops down to 0.13 (see Table 5.2). In turn, the 95%
prediction interval for ffitS is 2 to 3 times smaller than for other power laws.

As described in Section 5.2.2, the final empirical and empirical/numerical estimations of runout
uses a first empirical power law, whose result is used in a second site-specific power law. By
adding uncertainty in the first or in the second power law, or in both (see Appendix 5.C), we see
that most of the uncertainty comes from the empirical relation giving µH or µeff as a function
of volume. This is illustrated in Figure 5.9, where we see that the total uncertainty is almost the
same when we consider uncertainty on both power laws (blue bars from "Both power laws") or
on the empirical relation only (blue bars from "Empirical power law"): the difference is less than
2%. Besides, most of the uncertainty can be recovered by considering only the deviation between
the best-fit power laws, and the data used to derive them. In comparison, the uncertainty on the
power law coefficients increases σ by at most 3% (compare orange and green bars in Figure 5.9).
This can be expected, as we compute σ for volumes within the range of simulated volumes. If we
considered larger or smaller volumes, the uncertainty on coefficients would have more significant
effects.
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Frank Slide case study

The results for the Frank Slide case study are presented in Figure 5.10. The main conclusions
are similar to the Samperre case study. The direct empirical estimations predict correctly the
observed travel distance (Figure 5.10a and 5.10c). Using µH and µeff as input values for µS in
simulations, the observed travel distance are under-estimated by at most a 15% (Figure 5.10b,
5.10d and 5.10f, compare blue rectangle and black line).

However, on the contrary to the Samperre case study, the estimation gS,µeff is significantly
different from the other estimations. It predicts a travel distance that is about twice the observed
travel distance (Figure 5.10e). The power law exponent β = 0.33 is also significantly different:
we get only β = 0.065 for f1emp and f2emp, β = 0.1 for empirical/numerical estimations, and
β = 0.045 for the back-analysis estimation. Finally, gS,µeff is associated to larger uncertainties,
with σ = 0.35. It is even more than the uncertainty for empirical estimations, σ = 0.24. As
for the Samperre case study, the latter is improved by empirical/numerical estimations, though
less significantly (σ = 0.21 for f1S,µH and f2S,µH , and σ = 0.17 for f1S,µeff ). Once again, the

back-analysis estimation ffitS yields the most precise estimation, with σ = 0.07.

The analysis of uncertainty propagation (see Figure 5.A.3) yields similar conclusions as in the
Samperre case study.

Fei Tsui Road case study

The results for the Fei Tsui case study are presented in Figure 5.11. As previously, the direct
empirical estimations are coherent with observations (Figure 5.11a and 5.11c). The estimation
f1emp, that uses the database DB1, only slightly under-estimates the estimation by about 10%.
When µeff and µH are used to estimate µS in numerical simulations, the observations are all
well reproduced (Figure 5.11b, 5.11d and 5.11f). To the contrary, the estimation with gS,µeff
over-estimates the real travel distance by 45%.

A major difference between the empirical estimations and other estimations is the value of the
power law exponent β. For f1emp and f2emp we compute β = 0.09, but we get β = 0.38 or β = 0.39
for empirical/numercial estimations. A similar value (β = 0.34) is derived for the back-analysis
estimation ffitS .

Finally, as for the Samperre cliff case study, numerical simulations allow to reduce significantly
the estimation normalized standard deviation σ. When σ is more about 0.35 for empirical
estimations, it is reduced to less than 0.20 with empirical/numerical estimations (down to 0.16
with f1s,µeff ). f

fit
S yields the smallest standard deviation, with σ = 0.03.

The analysis of uncertainty propagation (see Figure 5.A.4) yields similar conclusions as in the
Samperre and Frank Slide case studies.

5.4 Discussion

5.4.1 Uncertainty of travel distances estimation

Uncertainty reduction with numerical models

A major result of this work is that combining empirical estimations with numerical simulations
reduces the standardized standard deviation σ of estimations. The smallest uncertainty is de-
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Figure 5.8: Travel distance estimated from volume for the Samperre case study. Green and
blue rectangles: estimations of volumes and travel distances for the 2009 and 2018 collapses,
respectively. Grey line: numerical estimation from back-analysis (ffitS ), with µS = tan(13.5°) =
0.24. The grey area is the upper and lower limits of the 95% prediction intervals derived for
µfitS = tan(13° ± 2°). Thick grey dashes: simulated volumes. (a) Estimation with f1emp. (b)
Estimation with f1S,µH . (c) Estimation with f2emp. (d) Estimation with f2S,µH . (e) Estimation
with g1S,µeff . (f) Estimation with f1S,µeff . Black lines are direct estimates, dashed lines give the
95% prediction interval.
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rived by using back-analysis and a constant friction coefficient, but it is difficult to quantify the
uncertainty on the best-fit friction oefficient µfitS . As shown by Mergili et al. (2018), the extent
to which it can be used for other landslides is not clear, even considering similar volumes and
propagation paths.

This reduction is all the more important as the volumes considered are small. By setting µS =
µ1H(V ) or µS = µ2H(V ) in ∆L′ = fS(V, µS), σ is reduced by 12.5% for the Frank Slide and
by 43% for the Fei Tsui Road case study. A similar trend is observed with µS = µ1eff (V )
(reductions by 29% and 54% respectively). This can be directly correlated to the exponents
of µ̃H in ∆L′(µ̃H), whose absolute values are systematically higher than the exponents of µS
in fS(V, µS) (see Table 5.A.1). In turn, uncertainty on µH or µeff results in less deviation in
the final empirical/numerical estimations, in comparison to the purely empirical estimation (see
Appendix 5.D).

We may argue that as the site-specific power laws do not always verify the hypotheses of OLS
regressions, the associated uncertainty estimation (and thus the observed reduction of uncertainty
afore-mentionned) is not relevant. However, the estimation of the coefficients of the power laws
does not depend on these hypotheses, such that the argument presented in the previous paragraph
still stands true. Besides, the residuals of the site-specific power laws are at most between -0.1
and 0.1 (in logarithmic scale), while they range from -0.3 to 0.3 for the empirical power laws
(compare Figure 5.A.1 and Figure 5.A.2). In turn, even if real uncertainty of site specific laws is
higher than what we estimate, it will still be less than the uncertainty associated to empirical,
non site-specific power laws. Thus, improving the quality of empirical/numerical travel distance
estimations should be done primarily by improving the quality of the empirical power laws.

Uncertainty related to dispersion in empirical power laws

Empirical laws can be improved by considering a database of landslides sharing similar char-
acteristics with the case study. For instance, if we construct DB2 by taking only the debris
flows, debris slides and debris avalanches from Corominas (1996), we derive a new relations
µH = µ2

∗
H (V ) with R2 = 0.8 that can be used for the Fei Tsui Road case study (see Figure 5.A.5

and Figure 5.A.6). As a result, the standard deviation σ of the travel distance estimation f2∗emp
is about 0.25. In comparison, we had σ = 0.35 for f2emp (that is, when we included rockfalls and
rock avalanches in DB2 ). But removing rockfalls and rock avalanches from DB2 also leads to
a 15% over-estimation of the observed travel distance (though it remains in the 95% prediction
interval).

Although regrouping landslides by type may increase the quality of the fit, associated R2 hardly
exceeds 0.9 (e.g. no more than 0.85 in Lucas et al. (2014), less than 0.5 in Strom and Ab-
drakhmatov (2018), less than 0.2 in Mitchell et al. (2019), and less than 0.8 in Legros (2002)). In
Corominas (1996), combining both landslide types and geometrical characteristics of the propa-
gation (i.e. whether the landslide is laterally or frontally obstructed) allows to derive power laws
with R2 values between 0.65 and 0.92. Further improvements of the quality of empirical power
laws may demand to express more finely the characteristics of the topography upon which the
landslide propagates.

Uncertainty related to topography description

To estimate more finely the travel distance in empirical relations, it may be worth using statistical
model that do not depend only on the volume. For instance in Mitchell et al. (2019), a relation

∆L′ = a010a3CV a1Ha2 × 10ε, (5.15)
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is derived from a database of rock avalanches, with R2 = 0.8. Here, C is an indicator variable
with C = 1 if lateral confinement is observed, and C = 0 otherwise. In comparison, with the
same data, they derive a power law µH = a0V

a1 with R2 = 0.2 only. In our work, combining
their data with the data of Corominas (1996) allows to increase the R2 to 0.68 because the
resulting database DB2 spans a wider range of volumes.

By estimating the probabilistic distribution of the residues ε in (5.15), it is then possible to
estimate, for a given topography and volume, the probability that the landslide goes further than
a chosen point M on the topography. This is done by considering the difference εM between the
travel distance ∆L′M associated to the point M, and the travel distance predicted by the power
law:

εM = log10

(
∆L′M

a010a3CV a1Ha2
M

)
. (5.16)

Then the probability that the travel distance ∆L′ exceeds ∆L′M , given a volume V , a drop height
HM and a confinement indicator C is:

P (∆L′ > ∆L′M ) = P (ε > εM ), (5.17)

which can be computed if the distribution of ε is known. This methodology could be applied in
our case: in particular, it allows to skip the derivation of the site-specific relation ∆L′ = ∆L′(µ̃H).
However, it should be adapted to consider the uncertainty on the power law coefficients, which
was not done in Mitchell et al. (2019). Besides, using the landslide drop height H as an explana-
tory variable may favor multi-linearity, as H is correlated to V . For instance in Legros (2002),
a power law H = a0V

a1 with R2 = 0.7 was derived for volcanic landslides.

A fine description of topography, as well as of the initial unstable mass, is also needed to es-
timate empirically the friction coefficient µS of a given landslide. In our empirical/numerical
methodologies of travel distance estimations, we used µH and µeff . The relevance of this choice
is discussed in the next section.

5.4.2 Are µH and µeff good estimates of µS?

Comparison with empirical data in Lucas et al. (2014) shows a good correlation between µeff
and µS over a wide range of volumes. This is not in exact agreement with our results, because
we needed µS < µ1eff (V ), as well as µS < µ1H(V ) and µS < µ2H(V ), to reproduce the Samperre
cliff collapse and the Frank Slide respectively. In simulations, when comparing µS to µ̃eff and
µ̃H (Figure 5.12), we find almost systematically that µ̃H and µ̃eff over-estimate µS by up to
30%. This is in agreement with results of Peruzzetto et al. (2019). The only exception is the Fei
Tsui Road case study where we have µ̃H < µS for V > 15, 000 m 3 (Figure 5.12e).

As already discussed in the literature (e.g. Lajeunesse et al., 2006; Legros, 2002; Finlay et al.,
1999; Lucas et al., 2014), the Heim’s ratio µH can’t be considered as a good proxy for the real
basal friction coefficient of the landslide. Indeed, the reduction of µH with increasing volumes
results from real friction reduction (in the sense that a lower friction coefficient µS is needed
to model larger landslide) but also from purely geometrical effects. This is illustrated in our
simulations in the Samperre and Fei Tsui Road case studies: when the volume V is increased
but µS remains constant, µH is reduced (see Figures 5.12a and 5.12e).

This should be supposedly corrected for with µeff whose expression (5.2) was derived analytically
to match µS (Lucas et al., 2014). However, though µ̃eff is almost constant for various volumes
and a given µS in the Fei Tsui Road case study (Figures 5.12f), it increases with volume in
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Figure 5.12: µ̃eff and µ̃H computed from simulations results, plotted against µS . (a) and (b) µ̃H
against µS and µ̃eff against µS (respectively) for the Samperre case study. (c) and (d) µ̃H against
µS and µ̃eff against µS (respectively) for the Frank Slide case study. (e) and (f) µ̃H against µS
and µ̃eff against µS (respectively) for the Fai Tsui debris slide case study. Color scale gives the
volume (in logarithmic scale) of the simulation. The red dashed lines correspond to µH = µS
and µeff = µS .
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the Frank Slide case study (Figures 5.12d), but on the contrary decreases with volume in the
Samperre case study (Figures 5.12b). This may be explained by the fact that, for the Frank Slide
case study, the increase of initial volume favors lateral spreading, such that in (5.2), the increase
of the initial maximum thickness H0 is not compensated by an increase of the travel distance
along topography ∆L. The opposite happens in the Samperre case study, where the landslide is
laterally confined in a narrow gully.

These results highlight the complexity of defining simple mobility estimations that can be com-
puted from landslide deposits and be used as proxys for the friction coefficient µS . In particular,
the description of topography is not easy. The analytical development leading to the definition
of µeff in Lucas et al. (2014) was done for landslides on 1D planar surfaces (that is, on a 1D
topography given by a graph z = tan(θ)x). Thus, it does not take into account lateral spreading
that can limit travel distance: it has been observed empirically that lateral confinement increases
travel distances (Strom and Abdrakhmatov, 2018; Mitchell et al., 2019). Besides, the propaga-
tion of landslides on complex topographies with non constant slope is not predicted either. In
Lucas et al. (2014), the formal expression of µeff is extended empirically to non constant slopes
by considering the average slope θ along the landslide path. As discussed previously, it proved
to yield conclusive results at the scale of the database, but it may not be precise enough when
considering forward prediction in a specific case study.

Indeed, when we try using µeff directly to estimate travel distances (that is, with the function
∆L′ = gS(V, µ̃eff )), we get somehow unstable results. Though the estimation is good for the
Samperre Cliff (Figure 5.8e), high uncertainties are obtained for the Frank Slide case study.
In the latter case, the dependence to volume seems also over-estimated in comparison to other
estimations (Figure 5.10e). Finally for the Fei Tsui Road case study, the observed travel distance
is over-estimated by 45%.

Thus, further investigations are needed to try and derive formulas relating landslides deposits
and topography geometry to µS . This could be done by modeling the propagation of landslides
on synthetic topographies with, for instance, a slope break or an exponential profiles, and analyze
the correlations between µ̃H and µ̃eff derived from simulations results, and µS .

Another possibility is to disregard empirical mobility estimations, and consider instead directly
the friction coefficient µS needed to reproduce each event from a database of at least, typically,
30 landslides, which is necessary to evaluate correctly uncertainty. The resulting relation µS =
µS(V ) could be then used directly in the function ∆L′ = fS(V, µS) derived from site-specific
simulations. The systematic back-analysis of mapped landslides has been done for instance in
Aaron and McDougall (2019) and Zimmermann et al. (2020) but with the Voellmy rheology.
We could find only one example of such studies with the Coulomb rheology in Brideau et al.
(2019), but for a small range of volumes (between 0 and 10,000 m3) and 1D simulations (i.e.
along profiles, not on real topographies). Note that the relation µS = µS(V ) may depend on
the numerical code used to derive it: although thin-layer models solve roughly similar equations,
differences in equations (in particular related to the description of internal stress) and numerical
implementations can affect the results. For instance, we found a best-fit friction coefficient
µfitS = tan(11°) for the Frank Slide, but µfitS = tan(14°) is obtained in Pirulli and Mangeney
(2008), and µfitS = tan(11°) in Hungr and Evans (1996)

In any case, a good estimation of µS is important, because it will influence the final estimation
of travel distance, and in particular the dependence to volume.
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5.4.3 Dependence between travel distance and volume

In our final estimations of travel distance ∆L′ = αV β , the dependence to volume is measured
by β. It varies significantly depending on the methodology and on the case study. In em-
pirical/numerical estimations, β is increased in comparison to purely empirical estimations, all
the more so as volumes are small. For instance in the Frank Slide case study, the exponent β
of empirical estimations f1emp and f2emp is 20% below the exponent β of f1S,µeff (where we set
µS = µ1eff (V )). In the Fei Tsui Road case study, it is 75% below (see Table 5.2). This shows
that µH does not model properly the influence of the initial volume on the final travel distance,
particularly for small landslides.

The influence of initial volume on travel distance is indeed all the more important as we consider
small landslides with limited travel distances. This is illustrated by comparing the exponents
of V and µS in the function ∆L′ = fS(µS , V ) (see Table 5.A.1 and Appendix 5.D). For the Fei
Tsui Road case study, volumes variations represents 20% of the total variance of travel distances,
the rest being attributed to variations of µS . For the Samperre and Frankslide case studies, this
proportion drops down to 3.7% and 0.3% respectively. This is not rendered in the empirical
relations µ1H(V ) and µ2H(V ), explaining why f1emp and f2emp under-estimate the dependance to
volume in comparison to empirical/numerical estimations.

These observations also explain why, in the Fei Tsui Road case study, the dependence to volume
are similar between the empirical/numerical estimations of travel distance and the purely nu-
merical estimations where we use the back-analyzed value µfitS of µS . We have indeed β = 0.38

or β = 0.39 in the former estimations, and β = 0.34 for ffitS , with a constant friction coefficient
derived by back-analysis. In comparison, for the Frank Slide case study, the exponent β in ffitS

is less than half the exponent in f1S,µH , f
2
S,µH

and f1S,µeff . Indeed, in this case, the travel distance
depends mainly on the friction coefficient µS , such that choosing a constant value of µS instead
of a volume dependent value has more impact than in the Fei Tsui Road case study.

These results may seem contradictory with empirical power laws ∆L′ = Femp(V ) derived directly
from landslide databases. The exponent β varies between 0.25 and 0.39 in Legros (2002) and
does not seem to depend on the range of volumes considered. In Lucas et al. (2014), β = 0.22 for
V < 106 m3, β = 0.28 for V > 108 m3 and β = 0.35 for all volumes. One possible explanation to
the difference between these values and the ones of our study is that, for the Frank Slide and Fei
Tsui Road simulations, our initial unstable mass were constructed by simply scaling the heights
of the documented landslide to obtain different volumes, without changing the scar geometry.
Though it was shown that the initial scar geometry has little influence on the landslide runout
(Lucas et al., 2011), it may be worth investigating more realistic initial settings.

However, our empirical estimations ∆L′ = f1emp(V ) and ∆L′ = f2emp(V ) also display exponents
β significantly different, between 0.06 and 0.13, whereas β > 0.2 for Femp. The discrepancies in
volume dependencies are thus not related only to numerical issues. It may rather be related to the
fact that f1emp and f2emp are site-specific relations, while Femp is not as it uses observations of V
and ∆L′ on different topographies. In turn, it may be possible that aggregating the observations
of landslides on various topographies yields an exponent β close to 0.33, as predicted by analytical
results for landslides propagating on constant slopes (Lucas et al., 2014). However, considering
each topography separately may well result in topography-specific values for β, different from
0.33.
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5.5 Conclusions

In this work, we derived operational and site-specific power laws to predict the horizontal travel
distance ∆L′ of a landslide from its volume V . Such simple relations are indeed of prior impor-
tance for landslide hazard assessment, in particular for crisis management when travel distance
estimations must be provided quickly by practitioners. We have compared three methodologies
to derive such power laws, using i) a purely empirical approach, ii) a database of simulations
along with the back-analysis of a documented event, and iii) combining an empirical estimation
of mobility with simulations.

We show that:

1. The best results, in terms of prediction uncertainty, are obtained with numerical estimations
of travel distances, with friction coefficient deduced from back-analysis. The standard devi-
ation of estimations is indeed less than half the standard deviation of empirical/numerical
estimations, and less than 30% the standard deviation of purely empirical estimations.
However, the uncertainty on the back-analysis results are asserted, to some extent, in an
expert way. In turn, comparison with other methodologies should be done with caution.

2. Combining numerical modeling with empirical estimations of µH and µeff reduces the
uncertainty of estimation by about 50%, in comparison to purely empirical estimations.
The smallest uncertainties are obtained by using µeff to estimate the simulation friction
coefficient µS . However, setting µS = µH or µS = µeff results, in 2 out of the 3 tested
case studies, in an under-estimation of observed travel distances.

3. When we relate the effective friction coefficient µeff observed on real landslides, to the
effective friction coefficient µ̃eff computed from simulations results, the resulting estima-
tions of travel distance displays large uncertainties (even larger than empirical estimates)
and/or over-estimates observations. This could be explained by the fact that the analytic
expression of µeff and µ̃eff was derived for constant slopes, such that their definition on
complex topographies is not straight-forward.

4. Numerical simulations allow to better characterize the respective influence of initial volume
and physical mobility (as measured with µS) on the final travel distance, for a given topog-
raphy. We show that for large landslide (i.e. for volumes > 1×106 m3), the travel distance
depends mainly on µS , while for small landslide (i.e. for volumes < 5× 105 m3) the initial
volume V has a more prominent role. This is not rendered in empirical estimations of
travel distances, for which the dependence of travel distance to volume is under-estimated,
all the more so as small volumes are considered.

The milestone of our work is the construction of a simulation database, where various landslide
volumes, collapse geometries and mobilities are tested. The definition of the initial unstable
masses can be time consuming, especially when little information is available to constrain collapse
geometries. This aspect may be the main practical difficulty to tackle in the perspective of using
our methodology for operational hazard assessment, especially in a regulatory framework. Indeed,
though the statistical analysis of results must be interpreted with caution, its implementation
can be automated to a large degree. In comparison, the methodology for constructing initial
geometries relies, at least to some extent, on expert judgment. It must be easy enough to be
reproducible and applied in a reasonable time, but must also provide realistic collapse scenarios.
Further work, including applications to other case studies, is needed to better constrain the right
balance between these two requirements. In any case, our study proves the relevance of using
numerical simulations to improve empirical estimations of travel distances for operational use.
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In this work, we have used only power laws which are easy to manipulate, but other non-
parametric models, such as the General Additive Models (e.g. Wood, 2017), could be used when
linear regression models are not valid. Further research should also focus on the estimation of the
friction coefficient µS to be used in simulations. This could be done by systematic back-analysis
of a landslide database, and/or by adapting the definition of landslide mobility indicators, such
as µeff , to take into account the topography more precisely. However, we may expect that
significant uncertainties will remain, as a result of the partial knowledge we have in practice
of the process at stake during the landslide propagation. Thus, expert judgments are valuable
to assess the representativeness of results. The selection, evaluation and aggregation of such
judgments (e.g. Hathout et al., 2019) could also help constrain the estimation of runout.

To conclude, let’s note that the information in our simulation databases are greatly simplified
for the purpose of this study, as we focused only on the estimation of travel distances. However,
we could also extract thicknesses and dynamic pressure maps for various volumes as done for
instance in tsunami hazard assessment (Aniel-Quiroga et al., 2018). The quantification of spatial
uncertainty is however difficult and requires tools more complex than our simple power laws.

Appendix

5.A Supplementary Table and Figures
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Figure 5.A.5: Travel distance estimated from volume for the Fei Tsui Road case study, and a
variation of DB2 with only debris flows, debris avalanches and debris slides. The corresponding
travel distance estimations are marked with the super-script 2∗ . Notations are otherwise the same
as in the main body of the article. Green and blue rectangles: estimations of volumes and travel
distances for the 2009 and 2018 collapses, respectively. Grey line: Numerical estimation from
back-analysis (ffitS ), with µfitS = tan(26°) = 0.49. The grey area is the upper and lower limits
of the 95% prediction intervals derived for µS = tan(13.5° ± 2°). Thick grey dashes: simulated
volumes. (a) Estimation with f1emp. (b) Estimation with f1S,µH . (c) Estimation with f2∗emp. (d)
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direct estimates, dashed lines give the 95% prediction interval.
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Figure 5.A.6: Uncertainty in travel distance estimation for the Fei Tsui Road cliff case study, and
a variation of DB2 with only debris flows, debris avalanches and debris slides. The corresponding
travel distance estimations are marked with the super-script 2∗ . Notations are otherwise the same
as in the main body of the article. (a), (b), (c), (d), (e) and (f), and symbology are the same as
for Figure 5.9.
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5.B Simulation database for the Samperre cliff case study

The Samperre cliff destabilizations occurred in several successive steps, such that the available
topographic surveys of March 2010, July 2010, January 2018 and August 2018 do not allow an
exact reconstruction of the destabilized volumes. The volume of the major 2009 cliff collapse
was estimated to 1 × 106 m3 (Clouard et al., 2013), but the scar geometry is unknown. Thus,
we reconstruct empirically the initial mass by scaling the difference between the March and July
2010 DEMs (before and after another major destabilization episode) to obtain a 1×106 m3, which
is the estimated volume involved in the August 2009 collapse. The avalanche propagation is then
modeled on the July 2010 DEM. Another documented destabilization took place in January 2018.
We estimate its volume at 1.5 × 106 m3 from the difference between the January 2018 DEM,
and a synthetic reconstruction of the cliff in 2017 (constrained by the cliff rim as observed on
ortho-photographs). The resulting mass is propagated on the January 2018 DEM. We generate
other initial geometries as follows:

• By taking the difference between the March and July 2010 DEMs. The resulting 2.1 ×
106 m3 mass is propagated on the July 2010 DEM. It is also scaled uniformly to consider
a smaller volumes (250,000 m3).

• By taking the difference between the July 2010 and January 2018 DEMs, resulting in a
3.7 × 106 m3 initial mass that is released on the Januray 2018 DEM. Three intermediate
synthetic topographies are also considered, yielding three other volumes (0.71 × 106 m3,
1.8× 106 m3 and 3.5× 106 m3).

• By considering two possible future destabilizations on the eastern and northern side of the
cliff (1.9 × 106 m3 and 0.5 × 106 m3 respectively). The resulting avalanche is propagated
on the August 2018 DEM.

Thus, we run simulations for a total of 10 initial volumes/geometries. Note that the different
DEMs on which the simulations are run differ near the cliff as a result of its progressive retreat,
but the Samperre river, where the avalanches propagate, did not significantly vary. The DEMs
are all re-interpolated to 5 m.

5.C Power law derivation and uncertainty estimation

We use the statsmodel python package (Seabold and Perktold, 2010) to derive power laws,
through Ordinary Least Square (OLS) linear or multi-linear regressions (Kraemer and Sonnberger,
1986). Fitting a power law y = axb is indeed equivalent to fitting a linear model log(y) =
log(a) + b log(x) For µH = µ1H(V ), µH = µ2H(V ) and µeff = µ1eff (V ), a first OLS regression
is carried out and outliers (points whose residue have a Student p-value lower than 0.025) are
removed. A new OLS regression is then carried out. The quality of the linear regression is
primarily given by the coefficients confidence interval and the adjusted R2. Note that a rigorous
estimation of uncertainty should take into account both the dispersion between the data and the
best-fit, and the uncertainty on the best-fit linear model coefficients. For instance, let’s assume
we have set of data (x1, ..., xn) (e.g. observed volumes) and (y1, ..., yn) (e.g. travel distances),
for which we want to derive a linear model of the form:

yi = axi + b+ εi, (5.18)

where the εi are the residues. Then the OLS regression will find â and b̂ such that
∑
ε2i is

minimal. If the residues have a normal distribution that does not depend on x or y, and are
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centered on 0, then for a new value x?, we can derive a confidence interval around the best-fit
estimate:

y? = âx? + b̂± tn−2sy, (5.19)

where sy is the standard deviation of the residuals and tn−2 is a coefficient that depends on the
number n of observations and on the level of confidence. It is derived from the Student law with
n − 2 degree of freedom. However, such an interval does not take into account the uncertainty
on the estimations â and b̂ and thus has no real statistical meaning.

On the contrary, if we disregard the uncertainty on residues but consider the uncertainty on
coefficients, we derive the confidence interval:

y? = âx? + b̂± tn−2sy

√
1

n
+

(x? − x̄)2

(n− 1)s2x
, (5.20)

where x̄ is the mean of the xi, and s2x their estimated variance. This interval has a given
probability (e.g. 95%) of containing ax? + b, where a and b are the "real" coefficients (remember
the OLS regression provides only estimations â and b̂). Note that the interval is all the more
large as x? is further away from the samples xi.

If we now combine the uncertainty on the coefficients estimation and the dispersion of the data
around the best fit, we get the prediction interval:

y? = âx? + b̂± tn−2sy

√
1 +

1

n
+

(x? − x̄)2

(n− 1)s2x
. (5.21)

The resulting interval has a given probability of containing the real value y? = ax? + b + ε?

estimated with the real coefficient a and b and taking into account a residue ε? that follows a
centered normal law with standard deviation sy.

The previous formulas are derived for simple linear regressions but can be extended to multi-
linear regressions. However, the derivation of confidence and prediction intervals for nested linear
fits (that is, when the prediction of a linear model is used as input of another linear model) is
not straight-forward. Thus, we derive them numerically by computing 4,000 estimations: the
coefficients and/or the residues of the successive linear models are drawn randomly following
normal laws whose parameters are given by the OLS regression results. To get for instance a
95% interval, we then identify the 2.5th and 97.5th percentiles.

If we consider for instance the empirical estimation of travel distance ∆L′ = f1emp(V ), it uses
successively two power laws:

µ̃H = 10α1V β1 × 10ε1 , (5.22)

∆L′ = 10α2 µ̃β2H × 10ε2 , (5.23)

where α1, β1, α2, β2 are coefficients estimated by the regression and ε1 and ε2 are residues. The
total uncertainty (i.e. prediction interval) for a given volume is obtained with random draws
on α1, β1, α2, β2, ε1 and ε2. We can also consider only the best-fit values of the power laws
coefficients and draw only ε1 and ε2, or to the contrary disregard dispersion and draw only α1,
β1, α2 and β2. Finally we can distinguish between the uncertainties specific to each power law
by drawing only α1, β1 and ε1, or only α2, β2 and ε2.

The previous methodology can be deemed to represent correctly real uncertainties only if certain
conditions are met:
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• There is indeed a linear relation between the input (x) and output values (y). This can
be verified with the Harvey-Collier test that evaluates to what extent the slope of the
linear regression changes when data points are recursively added. In practice, we could not
implement this test in a satisfactory manner, because results proved to depend strongly
on the order in which points were added. Thus, we evaluate linearity graphically with the
graph of residuals: if they have concave or convexe shapes, then the hypothesis of linearity
can be questionned (Figure 5.A.1 and 5.A.2).

• The residuals have a normal distribution. This is can be verified with the Jarque-Bera test.

• The residuals are homoscedastic: they do not depend on the value y predicted by the
linear model. In other words, the dispersion between the linear fit and the predicted value
is the same for all predicted values. Graphically, this means the scatter plot of residuals
against predicted value does not have a cone shape. This is quantitatively assessed with
the Breush-Pagan test.

• For multi-linear regressions, the explanatory input variables are not linearly related. This
can be assessed by computing the Variance Inflation Factor (VIF) for each associated
coefficient. High VIF (typically above 5 or 10) indicate strong linear correlations

5.D Propagation of uncertainty in power laws

Let’s consider a power law that was derived with OLS regression.

z = axbyc. (5.24)

We want to quantify how uncertainties on x and y will impact the estimation of z. In a first
approximation (that is, without considering the uncertainty on the estimation of a, b and c), this
can be done by considering the first order development:

(1 + α)γ ' 1 + γβ, (5.25)

that stands true if α � 1. In turn, if we consider small relative variations εx and εy of, respec-
tively, x0 and y0, we compute the first order approximation:

a ((1 + εx)x0)
b ((1 + εy)y0)

c ' axb0yc0(1 + bεx)(1 + cεy), (5.26)
' z0(1 + bεx + cεy), (5.27)

where z0 = axb0 + yc0. If we now assume εx and εy follow some uncorrelated random laws with
known variances V (εx) and V (εy), the ratio Rx of the variance of the error on z linked to error
on x, over the total variance of the error on z, is:

Rx =
V (bεx)

V (bεx + cεy)
=

b2V (εx)

b2V (εx) + c2V (εy)
. (5.28)

If we further assume V (εx) = V (εy), we get:

Rx =
b2

b2 + c2
. (5.29)

Similarly, we derive:

Ry =
c2

b2 + c2
. (5.30)



Conclusion

In this work, we have assessed the usability of thin-layer models for gravitational flows hazard
assessment. In this perspective, we chose the SHALTOP numerical model with a limited number
of rheological parameters (one or two), which simplifies its operational usage. These parameters
are calibrated by reproducing previous events, which means the numerical code is used empiri-
cally. However, it includes a rigorous description of the geometrical interactions between the flow
and the topography: it allows a more detailed modeling of the topographic control on the flow
dynamics. The question is thus: to what extent can SHALTOP be used empirically to study
gravitational flows and quantify related hazards?

Our work was structured along three research focus that are summarized in Figure 6.1. First,
we analyzed the importance of a rigorous mathematical derivation of the equations, even for
simplified rheological laws. It is indeed necessary to model correctly the geometrical interactions
between the flow and the topography, and in turn topography curvature effects. As we showed in
Chapter 2, correct thin-layer equations include two curvature terms. The first one is independent
from the rheology and ensures that the flow velocity remains tangent to the topography. In
particular, it tends to accelerate channelized flows by maintaining them at the bottom of the
channel. The second curvature term appears in the expression of the pressure at the bottom of
the flow, and generally slows down the flow when frictional rheologies are used. By comparing
simulations where these curvature terms are exact, to simulations where they are approximated
or neglected, we showed that discrepancies are particularly important for fast flows (steep slopes
and/or low friction coefficients with the Coulomb rheology). Incorrect curvature description can
thus lead to under-estimate the velocity of channelized flows. On the contrary, we showed that
the spreading of unconfined flows can be drastically over-estimated when curvature is neglected
in frictional rheologies. Thus, curvature terms are important for model calibration, to ensure that
the calibrated rheological parameters do not result from an improper topography description and
can be used in different topographic contexts. Curvature effects are also essential to estimate as
accurately as possible overflows, which is capital for hazard assessment.

Having demonstrated the mathematical robustness of SHALTOP, we then proved its ability to
reproduce debris avalanches, rock avalanches and debris flows, even with simplified rheologies,
and help quantify related hazards. To that end, we aggregated a wide variety of data (topographic
and geophysical surveys, geomorphological observations, seismic recordings, ...) to constrain the
simulation scenarios, calibrate rheological parameters and simulate forward prediction scenarios.
In Chapter 3, we studied debris avalanches on the Soufrière de Guadeloupe volcano (Guadeloupe,
Lesser Antilles). Model calibration on a past event highlighted the strong mobility of the debris
avalanche in comparison to other events with similar volume, that we relate to the presence of
water in the materials. By testing different initial collapse geometries and rheological parameters
we showed that only massive and mobile destabilizations of the dome threaten the city of Basse-
Terre, 6 km away from the volcano. However, the outskirts of Saint-Claude, which are closer from
the volcano, are more exposed. In Chapter 4, we considered a more complex case study, with the
combination of rock avalanches and the subsequent remobilization of deposits as debris flows. In
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this case, our approach is all the more empirical, because SHALTOP equations were not derived
to model two-phase flows. However, SHALTOP is able to reproduce the main characteristics of
extreme events (i.e. high discharge debris flows). We could thus quantify the areas exposed to
overflows, and estimate travel times for a forward prediction scenario.

In the Soufrière de Guadeloupe and Prêcheur river case studies, although simulations do give
precious insights on the dynamics of the gravitational flows, they cannot be used to derive hazard
maps integrating uncertainty. Indeed, the simulation results are too spatially and temporally
detailed to allow for a simple propagation and quantification of uncertainty. Uncertainty is
nevertheless a key point in the perspective of using thin-layer models for operational hazard
assessment. Thus, in Chapter 5, we addressed this problem in a rather simple framework: the
estimation of travel distance as a function of volume. For a given study site, this estimation
is done by analyzing with statistical tools a database of simulations (including various initial
volumes and rheological parameters). By calibrating or estimating empirically rheological pa-
rameters we could then derive a simple power law, relating the travel distance to the unstable
volume. Using three case studies, we showed that such a method allows to reduce the uncertainty
of estimation, in comparison to purely empirical methods, in particular when model calibration
is possible. We also show that the dependence between travel distance and volume is better mod-
eled with numerical simulations. However, further works are needed to help constrain rheological
parameters when calibration is not possible.

Our results suggest three main axes of development for further research. First, we have shown
that a fine description of topography in thin-layer equations is necessary to model correctly the
geometrical interactions between the flow and the topography, but only in the case of “hydro-
static” flows with basal friction. A detailed description of topography is yet to be introduced in
thin-layer models for more complex rheologies. Secondly, while we could use a wide variety of
data to constrain our simulations, in particular in the case of the Prêcheur river, the acquisition
and processing of more observations and quantitative data would allow a more systematic char-
acterization of gravitational flows. It would then be possible to evaluate more quantitatively,
with statistical methods, the agreement between simulations and observations. For instance, the
systematic estimation of debris flow discharge or flow thicknesses in the Prêcheur river would be
precious data to calibrate the model. It would be then possible to use simulations to improve
monitoring, by deriving relations relating, for instance, the travel time or flooded area to the
flow height.

Finally, we have used relatively simple statistical tools to aggregate and simplify simulations
results. The resulting relations have the advantage of being easy to implement and use for quan-
titative hazard assessment. However, they cannot be used to spatialize hazard, if we want to
construct hazard maps integrating the uncertainty on simulation parameters, and on the position
and/or geometry of the initial mass. In this perspective, meta-models could be powerful, albeit
complex, tools. They are statistically-based models derived from computer experiments. Their
construction can be computationally intensive with thousands of simulations, but it is then rela-
tively easy (at least in theory) to estimate a simulation result for a new set of input parameters,
without having to actually run the simulation. In this sense, our power laws relating travel
distance to unstable volumes and friction coefficient in Chapter 5 could be seen as very simple
meta-models. More complex meta-models may be used to estimate spatially peak discharges
and velocities, or even the contour of the impacted area. They could also improve monitoring by
updating, in near real-time, hazard maps (or at least expected flow characteristics in exposed ar-
eas), depending on information available to characterize hazards. These information could be, in
the case of the Prêcheur river, flow height in the uper section of the river, or volume estimations
of the scree reservoir at the bottom of the Samperre cliff.
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Figure 6.1: Summary of scientific questions, methods and results of the thesis.
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Dans ce travail, nous avons estimé la possibilité d’utiliser des modèles d’écoulement en couche
mince pour l’évaluation des aléas gravitaires. Nous utilisons pour cela le code numérique SHAL-
TOP avec un nombre limité de paramètres rhéologiques (un ou deux), ce qui simplifie son utili-
sation opérationnelle. Les paramètres rhéologiques sont calibrés en reproduisant des événements
passés : le code est donc utilisé de manière empirique. Toutefois, il inclue une description ri-
goureuse des interactions géométriques entre l’écoulement et la topographie. Cela permet une
modélisation plus fine du contrôle de la topographie sur la dynamique de l’écoulement. La ques-
tion est donc : dans quelle mesure SHALTOP peut-il être utilisé de manière empirique pour
étudier les écoulements gravitaires et quantifier les aléas associés ?

Notre travail se structure autour de trois axes de recherches qui sont illustrés dans la Figure 6.1.
Tout d’abord, nous avons analysé l’importance d’une dérivation mathématique rigoureuse des
équations, même pour des lois rhéologiques simples. C’est en effet nécessaire pour modéliser cor-
rectement les interactions géométriques entre l’écoulement et la topographie, et en particulier
la courbure de la topographie. Comme nous l’avons montré dans le Chapitre 2, les équations
d’écoulement en couche mince doivent inclure, si elles sont correctes, deux termes de courbure.
Le premier est indépendant de la rhéologie et assure que la vitesse de l’écoulement reste bien
tangente à la topographie. En particulier, ce terme tend à maintenir les écoulements chenalisés au
fond du chenal, et donc accélère ces écoulements. Le deuxième terme de courbure apparaît dans
l’expression de la pression au fond de l’écoulement et, en général, ralentit l’écoulement quand
une rhéologie frictionnelle est utilisée. En comparant des simulations où les termes de courbures
sont exacts à des simulations où ils sont négligés ou approximés, nous avons montré que les ef-
fets de courbures sont particulièrement importants pour les écoulements rapides (sur des pentes
importantes ou avec de faibles angles de friction avec la rhéologie de Coulomb). Une description
incorrecte de la courbure peut ainsi induire une sous-estimation de la vitesse des écoulement
chenalisés. Au contraire, enlever la courbure des rhéologies frictionnelles conduit à sur-estimer
drastiquement la distance de parcours. Ainsi, les termes de courbure sont importants pour la
calibration des modèles : ils assurent que les paramètres rhéologiques obtenus ne proviennent pas
d’une mauvaise description de la topographie et peuvent être utilisés dans d’autres contextes to-
pographiques. Une bonne description de la courbure de la topographie est également primordiale
pour estimer avec plus de précision les débordements, ce qui est évidemment important pour
l’évaluation des aléas.

Après avoir montré la robustesse mathématique de SHALTOP, nous avons montré qu’il peut
reproduire, même avec des rhéologies simples, des avalanches de débris et de roches, et des laves
torrentielles. Il peut aussi quantifier les aléas associés. Pour y arriver, nous avons dû collecter une
grande variété de données (relevés topographiques, mesures géophysiques, observations géomor-
phologiques, enregistrements sismiques,...) pour définir les scénarios de simulation, calibrer les
paramètres rhéologiques et modéliser des scénarios prospectifs. Dans le Chapitre 3, nous avons
étudié des avalanches de débris sur la Soufrière de Guadeloupe. La calibration du modèle a mis en
évidence la mobilité importante des avalanches sans doute due à l’intégration d’eau dans les ma-
tériaux. En testant différentes géométries d’effondrement et différents paramètres rhéologiques,
nous avons aussi montré que la ville de Basse-Terre, à 6 km du volcan, n’est menacée qu’en cas
de déstabilisations massives et très mobiles. A l’inverse, la périphérie de la ville de Saint-Claude,
plus proche du volcan, est également exposée pour des plus petits volumes. Dans le Chapitre 4
nous avons considéré un cas plus complexe, avec l’enchaînement d’une avalanche de roches et
d’une lave torrentielle, par remobilisation des dépôts. Dans ce cas, notre d’approche est d’autant
plus empirique, car les équations de SHALTOP ne modélisent pas, en théorie, des écoulements
bi-phasiques. Néanmoins, SHALTOP parvient à reproduire les caractéristiques principales d’évé-
nements extrêmes. Nous avons donc pu identifier les zones les plus exposées aux débordements
et estimer les temps de parcours pour un scénario prospectif.

Dans le cas de la Soufrière de Guadeloupe et de la rivière du Prêcheur, même si les simulations
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donnent des informations précieuses sur les écoulement gravitaires, elles ne peuvent pas être uti-
lisées directement pour établir des cartes d’aléas quantifiant l’incertitude. En effet, les résultats
des simulations sont trop détaillés spatialement et temporellement pour permettre simplement la
propagation et la quantification l’incertitude. Cette intégration de l’incertitude est néanmoins un
point majeur dans la perspective d’utiliser les modèles d’écoulement en couche mince de manière
opérationnelle, pour de l’analyse d’aléa. Dans le Chapitre 5, nous avons donc abordé cette ques-
tion dans un cadre relativement simplifié : l’estimation de la distance de parcours en fonction
du volume déstabilisé. Pour un site d’étude donné, cette estimation est réalisée en analysant
avec des outils statistiques une base de données de simulations (pour des volumes et paramètres
rhéologiques variés). En calibrant ou en estimant empiriquement les paramètres rhéologiques,
nous avons ainsi obtenu une loi puissance, reliant la distance parcourue au volume déstabilisé.
En nous basant sur trois cas d’étude, nous avons montré qu’une telle méthode permet de réduire
les incertitudes d’estimation par rapport à des méthodes purement empiriques. Nous avons aussi
mis en évidence que l’utilisation de simulations numériques permet de mieux modéliser la dé-
pendance entre la distance de parcours et le volume. Toutefois, la détermination des paramètres
rhéologiques aboutissant à ces relations reste incertaine, en particulier quand la calibration n’est
pas possible.

Nos résultats suggèrent trois pistes de recherches. Tout d’abord, nous avons montré l’impor-
tance d’une description fine de la topographie, mais seulement dans le cas simplifié d’une dé-
rivation hydro-statique, avec une friction basale. Une telle description de la topographie reste
néanmoins à développer pour des rhéologies plus complexes. Ensuite, bien que nous ayons pu
utiliser une grande variété de données pour contraindre nos simulations (en particulier dans le
cas du Prêcheur), l’acquisition et le traitement de mesures complémentaires permettraient une
caractérisation plus systématique des écoulements gravitaires. Il serait alors possible d’évaluer
de manière plus quantitative, avec des outils statistiques, la correspondance entre les simulations
et les observations. Ainsi, la mesure systématique des débits et ou des hauteurs des lahars de
la rivière du Prêcheur seraient des données précieuses pour calibrer le modèle. Il serait alors
possible d’utiliser les simulations pour améliorer la surveillance en estimant, avec les simulations,
des relations donnant par exemple le temps de parcours en fonction de la hauteur du lahar.

Pour finir, notons que nous avons utilisé des modèles statistiques relativement simples pour
agréger et simplifier les résultats des simulations. Les lois puissances déduites sont faciles à
implémenter et à utiliser pour l’estimation d’aléa. Toutefois, elles ne sont pas suffisantes pour
spatialiser l’incertitude, dans la perspective d’établir des cartes d’aléas intégrant l’incertitude
sur les paramètres des simulations et sur la position et/ou la géométrie des masses initiales. Les
méta-modèles pourraient être utilisés à cette fin, même si leur mise en oeuvre est complexe.
Ce sont des modèles statistiques déduits d’expériences numériques : leur construction demande
un temps de calcul important et un nombre significatifs de simulations (typiquement, plusieurs
milliers), mais leur utilisation pour estimer les résultats d’une simulation non réalisée initiale-
ment est, en théorie, rapide. En ce sens, nos lois puissances donnant la distance de parcours
en fonction du volume et du coefficient de friction au Chapitre 5 peuvent être vues comme des
méta-modèles très simples. Des modèles plus complexes pourraient être utilisés pour estimer
spatialement les vitesses ou débits maximums, ou même les contour des zones impactées. Une
autre piste intéressante d’utilisation est la mise à jour en temps réel de cartes d’aléas (ou du
moins des caractéristiques clés des écoulement gravitaires dans les zones menacées) en fonction
des informations disponibles à un instant donné pour caractériser l’aléa. Dans le cas de la rivière
du Prêcheur, ces informations pourraient être la hauteur de la rivière dans sa partie amont, ou
l’estimation du stock de matériaux remobilisables au pied de la falaise Samperre.
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Nomenclature

∆L Travel distance of landslide along topography

∆L′ Horizontal travel distance of landslide

δ Basal friction angle

γ̇ Shear rate

µ Basal friction coefficient

µH Heim’s ratio

µeff Effective friction coefficient

ν Kinematic viscosity

σ Stress tensor

σ′ Deviatoric stress tensor

tan(φ) Internal friction coefficient

τy Yield stress

θ Slope steepest angle

~V Depth-averaged velocity of the material layer

~g Gravity field

~n Unit vector othonormal to topography

~n′ Unit vector orthonormal to material layer surface

~U Velocity parametrization in the cartesian frame

~V Velocity parametrization in the topography frame

ξ Turbulence coefficient

c = cos(θ) Cosine of the slope angle

d Grain diameter

H Drop height of landslide

h Height of material layer, in the direction normal to the topography

H0 Maximum initial thickness of landslide



220 Nomenclature

I Inertial number

kact/pass Earth pressure coefficients

p Pressure field

u1 Velocity in the direction tangent top the topography

Z = b(X,Y ) Parametrization of the topography
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INTRODUCTION

1.1  The SHALTOP numercial model

The SHALTOP code models  the  propagation of homogeneous granular  flows over  complex topographies
(Bouchut & Westdickenberg 2004, Mangeney et al. 2007). In a fixed cartesian frame, the rigourous asymptotic
analysis  of  the  hydrostatic  Navier-Stokes  equations  in  the  thin  layer  approximation makes it  possible  to
account for the whole topography curvature tensor, extending the classical Savage-Hutter model.

The equation derivation in Bouchut & Westdickenberg 2004 was carried out assuming a Coulomb-type
basal friction. It remains valid for friction angles depending on flow thickness and velocity. Thus, it is possible
to adapt easily the code to other rheologies.

In the  following we note h the  flow thickness  perpendicular  to topography, θ the  steepest  slope angle,
z ( x,y ) the topography height and H the curvature tensor. Flow velocity v⃗ is tangent to the topography and

parametrized with u=( u ,ut ) , following :

c=cos (θ)=1 /√1+‖∇ z‖2, H=c3
∇∇ z , v⃗=c (u ,∇ z⋅u ) (1)

1.2  Implemented rheologies

To simulate the Goldau rock avalanche we use a simple Coulomb law with a constant friction coefficient
μ=tan (δ ) (with δ the friction angle). This kind of rheology has proved to reproduce accurately laboratory
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experiments and real landslides (Lucas et al. 2007). The basal stress is collinear to the velocity and its norm
T is given by :

T=cρhμg(1+
uH ut

gc ) (2)

with the material density that simplifies in the resulting flow equations and g the gravity field. For the Yu
Tung Road event we add a turbulent term ξ to get the Voellmy rheology that is commonly used to model
debris flows :

T=cρhμg(1+
uH ut

gc )+ ρg
‖v⃗‖2

ξ
(3)

Eventually the Bingham rheology models visco-plastic behaviors, with a yield stress τ under which the flow
stops and a dynamic viscosity η :

T=
3
2

τ+3η
‖v⃗‖

h
(4)

In this case the material density no longer simplifies in the flow equations. Thus after dividing by ρ , the
parameters in SHALTOP for the Bingham rheology become τ /ρ and η/ρ , the kinematic viscosity.

2  METHOD

2.1  Goldau rock avalanche

Simulations of the Goldau rock avalanche were carried out on a regular 320x281 grid, with a 25-meter step,
over 200 seconds. Flow thicknesses and velocities were recorded every 10 seconds. From these records we
derive the flow maximum thickness on each grid cell, from which we get the flow extent provided a thickness
threshold (grid with 1 where the flow passed, 0 otherwise). We test friction angles between 8° and 16° with a
1° step, and thresholds between 0.5 m and 10 m, every 0.5 m. We quantify the relative difference between
observations and simulations with the Root Mean Square (RMS) between observed and computed extents.

2.2  Yu Tung Road debris flow

For this case study we were provided a regular 325x88 grid with a 2-meter step. Simulations are run over 70
seconds, with records every 1 second. Provided a profile following the bottom of the ravine, we derive flow
thickness sections for each record. After defining a thickness threshold of the flow (varying between 5 cm and
40 cm with a 5 cm step) we can then track the flow front and get both its position and velocity. We compare
our simulations with 5  measured front velocities : one near the landslide onset and 4 further downstream. We
chose to compute only the relative RMS between the latters and our simulations,  the first  velocity being
always reasonably reproduced regardless of the chosen parameters.

For the Voellmy rheology we took between 200 m/s² and 1350 m/s² with a 50 m/s² step, and δ between
1° and 12° with a 1° step. Simulations were carried out iteratively to analyze only reasonable parameters. A
more systematic approach was used for the Bingham rheology, taking τ / ρ between 0 m²/s² and 0.4 m²/s² with
a 0.025 m²/s² step and η/ρ between 0.02 m²/s and 0.04 m²/s with a 0.02 m²/s step. A more refine sampling
(steps divided by 2) was done around the best fitting parameters (between 0 m²/s² and 0.1 m²/s² for τ /ρ , and
between 0.06 m²/s and 0.12 m²/s for η/ ρ ) .

2.3  Convergence analysis

Using  the  best  fit  parameters  (with  the  Voellmy  rheology  for  the  Yu  Tung  Road  case),  we  performed
simulations with varying refined grids to analyze the convergence of the algorithm. Topography and initial
mass were interpolated with bivariate splines from the data provided. Grid sizes ranged from 160x140 to
2000x1756 for the Goldau rock avalanche and from 160x43 to 2000x542 for the Yu Tung Road debris flow.
The finest mesh were used as references to estimate the error. 
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3  RESULTS

For the Goldau case, the best fitting friction angle changes for thickness thresholds smaller than 3 m (red dots
in Figure 1a), then stabilizes to 11° which is coherent with Aaron (2017). Using these parameters we plot the
maximum flow thickness and compare it to the the observed extent (Figure 1b). The runout is correct but
lateral spreading is too important. This is consistent with the conclusions of Aaron (2017) who infers the
source block started sliding before it turned into a rock avalanche.

Figure 1 : Simulations of the Goldau rock avalanche with a Coulomb rheology. (a)Relative RMS between simulated and
observed extent for various friction angles and thickness thresholds. Red dots show the bet fitting parameter for each

thickness threshold. (b) Maximum flow thickness with 11° for δ . The blue dotted line is the observed extent.

Results of the Yu Tung Road back analysis for parameters and thresholds with a relative RMS smaller than
0.4 are presented Figure 2 (a-c)  and (d-f) - for the Voellmy rheology and the Bingham rheology respectively.
No  significant  influence  of  the  thickness  threshold  was  highlighted.  The  Voellmy  rheology  reproduces
accurately the observed velocities, the best fit parameters being 4° for δ and 400 m/s² for ξ with a relative
RMS of 0.03. A whole range of parameters however give similar velocity profiles (red dots in Figure 2c), but
they do not match the values presented in AECOM (2012) (6° for δ and 300 m/s² for ξ ). In comparison, the
Bingham rheology yields inconclusive results, with at best a 0.32 relative RMS with 0 m²/s² for τ /ρ and 0.09
m²/s  for η/ ρ .  Other  simulations  were  performed  to  explore  small  order  of  magnitude  for τ /ρ ,  but  no
significant change in the results were found. 

Finally,  convergence analysis  (Figure  3)  confirms the convergence  of  the  algorithm.  In  both  case  the
estimated error is almost inversely proportional to the number of points along the x-axis, and thus to the space
step. Convergence appears to be faster in the Yu Tung Road case. Finer meshes could yield a more robust
estimation of the convergence speed, but computing time increases rapidly (1 day and a half for the Yu Tung
Road debris flow, more than 2 days for the Goldau Rock avalanche). Besides the interpolation process to
generate the topographies can not account for the irregularities of the real topography, hence the finest meshes
don’t necessarily give more realistic results.

CONCLUSIONS

Our simulation of the Goldau rock avalanche confirms that a simple Coulomb friction law can reproduce quite
accurately rock avalanchesdeposits,  as previously showned by Lucas et  al.  (2007).  Shallow-water models
however  fail  to  model  the  initiation  stage,  which  in  this  case  may  have  a  significant  impact  on  the
propagation. Furthermore, more complex rheologies including turbulence terms seem to be needed to model
the dynamics of water-logged flows such as the Yu Tung Road debris flow. In the latter case, the Bingham
rheology fails to reproduce observed velocities. Other visco-plastic laws, such as the Herschel-Bulkley law,
could be tested. 
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Figure 2 : Simulations of the Yu Tung Road debris flow with a Voellmy rheology (first row, a-c) and a Bingham rheology
(second row, d-f). (a,d) Front velocity along profile for parameters and thickness thresholds yielding a relative RMS

lower than 0.4. Line colors indicate the relative RMS. Black crosses are observed velocities. (b,e) Flow front position
against time. (c,f) Relative RMS averaged over tested thickness thresholds. Points are the 10 smallest RMS

Figure 3 : Convergence analysis for the Goldau (a) and Yu Tung Road (b) simulations, for the thickness h (blue plain
line) and the momentum h‖v⃗‖ (orange plain line). β Is is the slope of the best fiting logarithm fit (dotted lines), and

nx the number of points along the x-axis
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Appendix B

Légendes des figures

0.1 Problématiques scientifiques et structure de la thèse. . . . . . . . . . . . . . . . xiii
1.1 Matrice de Varnes de classification des glissements de terrain, par type de mou-

vement et de matériaux (USGS, 2004) . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Classification des processus de mouvements gravitaires, d’après Highland et

Bobrowsky (2008). Les processus sont indiqués en gras. Le type de matériaux
associés à chaque schéma est donné entre parenthèse. Pour les écoulements
gravitaires (flow-like landslides), nous donnons également les noms utilisés dans
la Figure 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Classification des écoulements gravitaires, d’après (Coussot et Meunier, 1996).
Les rectangles gris donnent les types principaux, les rectangles blancs sont des
sous-types de laves torrentielles (ou coulée de débris). . . . . . . . . . . . . . . 5

1.4 Notations utilisées dans le corps principal du texte pour les modèles
d’écoulement en couche mince, sur des topographies 1D données par Z = b(X). 13

1.5 Relations géométriques dans le diagramme de Mohr-Coulomb utilisées pour
calculer les composantes du tenseur de contrainte avec une friction interne,
pour des écoulements en couche mince se propageant sur une topographie 1D
(Z = b(X)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 (a) Description de la topographie et de l’écoulement, pour un topographie 1D
Z = b(X). La zone orange est la couche mobile de matériaux, d’épaisseur h me-
surée perpendiculairement à la topographie. (b) Description d’une topographie
2D Z = b(X,Y ), avec les repères couramment utilisés dans la littérture pour les
modèles d’écoulement en couche mince. Flèches rouges : repère cartésien. Flèche
bleue : vecteur unitaire normal à la topographie. −s : direction horizontale de
la plus grande pente. Toutes les autres flèches sont dans le plan tangent à la
topographie. Flèches vertes : Christen et al. (2010). Flèches grises en tirets :
Mangeney-Castelnau et al. (2003). Flèches oranges : Iverson et George (2014). 34
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2.2 Notations et repères pour la dérivation des équations d’écoulement en couche
mince. (a) Les coordonnées d’un point matériel M dans le repère cartésien
(~eX , ~eY , ~eZ) (flèches rouges) sont données par (X,Y, Z), et par (x1, x2, x3) dans
le référentiel lié à la topographie (~e1, ~e2, ~e3) (flèches bleues). M ′ est la projec-
tion de M sur la topographie : il a pour coordonnées (x1, x2, b(x1, x2)). ~e3 est
le vecteur unitaire normal à la topographie. ~e1, ~e2 sont les projections paral-
lèlement à ~eZ de ~eX et ~eY sur le plan tangent à la topographie (zone bleue).
(b) Paramétrisation de la vitesse physique ~U d’un point matériel dans le repère
lié à la topographie. (c) Paramétrisation de la vitesse physique moyennée ~V de
l’écoulement. ~V est tangent à la topographie et est paramétrisé dans le repère
cartésien (rouge) et dans le repère lié à la topographie (bleu). . . . . . . . . . . 35

2.3 Topographie synthétique avec un chenal courbé, superposé à un plan incliné.
(a) Vue en 3D de la topographie, dans le référentiel cartésien. (b) Section trans-
versale du chenal pour X = 6 m (courbe rouge dans (a)). (c) Vue du dessus du
chenal, avec l’illustration des paramètres utilisés pour construire la topographie
(voir Appendice 2.D). Ici L = 2.1 m et Ab = 0.5 m. x′ et y′ sont les coordonnées
curvilignes le long du plan auquel le chenal est superposé. L’intervalle entre les
contours est 5 cm dans (a) et (b). . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Modélisation d’un écoulement dans un chenal droit incliné de θ = 10°. (a) Vue
du chenal du dessus, avec la masse initiale (épaisseur donnée par l’échelle de
couleur). φ est l’angle entre la direction du chenal (ligne en tirets blancs) et l’axe
de abcisses (ligne sontinue blanche). (b) et (c) : énergie cinétique et position du
front, avec la rhéologie de Coulomb (µ = tan(15°)). Lignes colorées : résultats
quand le terme de courbure dans la friction est approximé (voir équation (2.34)),
pour différentes valeurs de φ. Ligne noir discontinue : résultat avec le modèle
exact, qui ne dépend pas de l’orientation φ du chenal (aux erreurs numériques
près). (d) et (e) : comme (b) et (c) mais avec la rhéologie de Voellmy (µ =
tan(15°) et ξ = 2000 m s−2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Simulation avec la rhéologie de Coulomb, µ = 0 et une pente θ = 10°. (a) et (c) :
avec la courbure (FH exact). (b) et (d) : sans la force de courbure (FH = 0). (a)
et (b) donnent l’épaisseur maximale pendant la simulation, (c) et (d) la vitesse
maximale. La courbe blanche est l’étendue maximale de l’écoulement quand
la force de courbure est prise en compte. La durée de la simulation est 2.5 s.
Nous donnons plus de détails dans l’Appendice 2.E sur la dérivation des cartes
d’épaisseur et de vitesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Simulation avec la rhéologie de Coulomb, µ = tan(6°) et une pente θ = 10°. La
première colonne est l’épaisseur maximale de l’écoulement (a-d), et la deuxième
colonne est la vitesse maximale de l’écoulement (e-h), dans les deux cas après
2,8 s. Chaque sous-gifure donne les résulats des simulations quand la force de
courbure est prise en compte (FH exact) ou négligée (FH = 0), et quand la
courbure dans la firction est exacte (Fµ exact) ou négligée Fµ no curvature).(a)
et (e) sont les résultats des simulations de référence, avec les termes exacts de
courbure. L’étendue correspondante de l’écoulement (ligne blanche) est reportée
dans toutes les figures. L’intervalle entre les contours est 2 cm. (i) Energie
cinétique des différentes simulations. . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Comme la Figure 2.6, mais avec la rhéologie de Coulomb, µ = tan(15°) et une
pente θ = 25°. L’intervalle entre les contours est 4 cm. La durée de la simulation
est 2,3 s. Les énergies cinétiques sont données dans la Figure 2.8. . . . . . . . . 48
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2.8 (a) Energie cinétique totale de l’écoulement avec la rhéologie de Coulomb, µ =
tan(15°) et une pente θ = 25°. (b) Pour la simulation avec les termes exacts
de courbure, norme maximale des forces de gravité et de pression (~FVg , courbe
noire), de la force de courbure (~FµH, courbe rouge, négative quand ~n · ~FVH < 0) et
de la force de friction (~FµH, courbes bleues). La force de friction est calculée avec
le terme de courbure exact (Fµ exact) et quand il est négligé (Fµ no curvature).
Le maximum est calculé pour des abcisse X constantes, à t=1,2 s. (c) Epaisseur
de l’écoulement à t=1,2 s. (d) et (e) : comme (b) et (c), respectivement, mais
pour t=2,1s. Ces deux instants sont indiqués par les lignes verticales rouges
dans (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Simulation d’un écoulement dans un chenal sur une pente θ = 10° et un virage
avec la rhéologie de Coulomb (a et b) et avec la rhéologie de Voellmy (c et d,
avec µ = tan(2°)). L’amplitude du virage est soit 0 m, 0,25 m ou 0,5 m (res-
pectivement, courbes bleues, vertes et rouges). La courbure a-dimensionnalisée
correspondante est γ̄. La durée de l’écoulement dans le chenal (a et c) et l’impact
dynamique maximal (b et d) sont tracés comme des fonctions du coefficient de
friction et du coefficient de turbulence. Différentes situations sont considérées,
quand la force de courbure est prise en compte (FH exact) ou négligée (FH = 0),
et quand la courbure dans la friction est exacte (Fµ exact) ou négligée (Fµ no
curvature). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Epaisseure maximale de l’écoulement simulé dans la rivière du Prêcheur avec
la rhéologie de Coulomb et µ = tan(3°) (a-d). Chaque sous-figure donne les
résultats des simulation quand la force de courbure est prise en compte (FH
exact) ou négligée (FH = 0), et quand la courbure dans la friction est exacte
(Fµ exact) ou négligée (Fµ no curvature). Les résultats de la simulation dans
le cas de référence, avec les termes de courbure exacts, sont donnés en (a).
L’étendue maximale de l’écoulement est reportée sur toutes les figures (ligne
blanche). Les rectangles en pointillés verts (respectivement bleus) indiquent
les zones où l’étalement est plus important (respectievement moins important)
dans les autres simulations, par rapport à la simulation de référence (a). Des
grossissements de ces zones sont donnés en (e) et (f). L’intervalle entre les
contours est 20 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Simulation de laves torrentielles dans le rivière du Prêcheur. Différentes situa-
tions sont considérées, quand la force de courbure est prise en compte (FH
exact) ou négligée (FH = 0), et quand la courbure dans la friction est exacte
(Fµ exact) ou négligée (Fµ no curvature). (a) Position du front avec la rhéologie
de Coulomb. (b) Durée de parcours des premiers 1,6 km (ligne noire pointillée
en (a)) avec la rhéologie de Coulomb, en fonction du coefficient de friction.
(c) Position du front avec la rhéologie de Voellmy et µ = tan(2°). (d) Durée
de parcours des premiers 1,6 km (ligne noire pointillée en (c)) et 2,9 km (ligne
grise pointillée en (c)) avec la rhéologie de Voellmy, en fonction du coefficient
de turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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2.12 Epaisseur maximale d’une hypothétique avalanche de débris de volume 90 ×106

m3 sur la Soufrière de Guadeloupe.Chaque figure donne les résultats de simu-
lation quand la force de courbure est prise en compte (FH exact) ou négligée
(FH = 0), et quand la courbure dans la friction est exacte (Fµ exact) ou négligée
(Fµ no curvature). La simulation dans le cas de référence, avec les termes exacts
de courbure, est donnée en (a). L’étendue de l’écoulement correspondant est re-
portée sur toutes les figures (ligne blanche). Les rectangles en pointillés verts
(respectivement bleus) indiquent les zones où l’étalement est plus important
(respectievement moins important) dans les autres simulations, par rapport à
la simulation de référence (a). Le MNT est extrait de IGN BDTopo. Coordon-
nées : WGS84, UTM20N. L’intervalle entre les contours est 100 m. . . . . . . . 56

2.A.1 (a) Energie cinétique totale de l’écoulement avec la rhéologie de Coulomb, µ = 0
et une pente θ = 10°. (b) Pour la simulation avec les termes exacts de courbure,
norme maximale des forces de gravité et de pression (~FVg , courbe noire), de la
force de courbure (~FµH, courbe rouge, négative quand ~n · ~FVH < 0). Le maxi-
mum est calculé pour des abcisse X constantes, à t=1,2 s. (c) Epaisseur de
l’écoulement à t=0,9 s. (d) et (e) : comme (b) et (c), respectivement, mais pour
t=1,7s. Ces deux instants sont indiqués par les lignes verticales rouges dans (a). 61

2.A.2 (a) Energie cinétique totale de l’écoulement avec la rhéologie de Coulomb, µ =
tan(6°) et une pente θ = 6°. (b) Pour la simulation avec les termes exacts
de courbure, norme maximale des forces de gravité et de pression (~FVg , courbe
noire), de la force de courbure (~FµH, courbe rouge, négative quand ~n · ~FVH < 0) et
de la force de friction (~FµH, courbes bleues). La force de friction est calculée avec
le terme de courbure exact (Fµ exact), quand il est négligé (Fµ no curvature) et
quand il est approximé (Fµ approximated). Le maximum est calculé pour des
abcisse X constantes, à t=1,2 s. (c) Epaisseur de l’écoulement à t=1,2 s. (d)
et (e) : comme (b) et (c), respectivement, mais pour t=2,1s. Ces deux instants
sont indiqués par les lignes verticales rouges dans (a). . . . . . . . . . . . . . . 62

2.A.3 Simulation de l’écoulement avec la rhéologie de Coulomb, µ = tan(6°), et une
pente θ = 10°. (a-f) Epaisseur maximale. (g-l) Vitesse maximale. (a) et (g)
sont les simulations de référence, avec la courbure exacte : l’étendue maximale
de l’écoulement est reportée sur les autres figures (ligne blanche). L’intervalle
entre les contours est 2 cm. La durée de la simulation est 2,8 s. . . . . . . . . . 63

2.A.4 Comme la Figure Supplémentaire 2.A.2, mais avec la rhéologie de Voellmy,
µ = tan(2°), ξ = 3500m s−2 et une pente θ = 10°. La force de friction dans
(b) et (d) inclue le terme de turbulence de Voellmy. (b) et (c) : t=1.2 s. (d) et
(e) :t=2.3 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.A.5 Simulation de l’écoulement avec la rhéologie de Voellmy, µ = tan(2°), ξ = 3500
m s−2 et une pente θ = 10°. (a-f) Epaisseur maximale. (g-l) Vitesse maximale.
(a) et (g) sont les simulations de référence, avec la courbure exacte : l’étendue
maximale de l’écoulement est reportée sur les autres figures (ligne blanche).
L’intervalle entre les contours est 2 cm. La durée de la simulation est 3,0 s. . . 65

2.A.6 Comme la Figure Supplémentaire 2.A.2, mais avec la rhéologie de Coulomb,
µ = tan(15°), et une pente θ = 10°. La force de friction dans (b) et (d) inclue
le terme de turbulence de Voellmy. (b) et (c) : t=1.2 s. (d) et (e) :t=2.3 s. . . . 66

2.A.7 Simulation de l’écoulement avec la rhéologie de Coulomb, µ = tan(15°), et une
pente θ = 25°. (a-f) Epaisseur maximale. (g-l) Vitesse maximale. (a) et (g)
sont les simulations de référence, avec la courbure exacte : l’étendue maximale
de l’écoulement est reportée sur les autres figures (ligne blanche). L’intervalle
entre les contours est 2 cm. La durée de la simulation est 2,3 s. . . . . . . . . . 67
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2.A.8 Simulation d’un écoulement dans un chennal sur une pente θ = 10° et un virage
d’amplitude Ab =0.5 m avec la rhéologie de Coulomb (µ = tan(6°), blue curves)
et avec la rhéologie de Voellmy (µ = tan(6°), ξ = 3500m s−2, red curves). The
durée de l’écoulement dans le chennal (a) et l’impact dynamyque maximale
(b) sont tracées en fonction du nombre de virages. Différentes situations sont
considérées, quand la force de courbure est prise en compte (FH exact) ou
négligée (FH = 0), et quand la courbure dans la friction est exacte (Fµ exact),
négligée (Fµ no curvature) ou approsimée (Fµ approximated). . . . . . . . . . 68

2.A.9 Epaisseur maximale de l’écoulement simulé dans la rivière du Prêcheur avec la
rhéologie de Coulomb et µ = tan(3°) (a-f). Chaque sous-figure donne les résul-
tats des simulation quand la force de courbure est prise en compte (FH exact) ou
négligée (FH = 0), et quand la courbure dans la friction est exacte (Fµ exact),
négligée (Fµ no curvature) ou approximée (Fµ approximated). Les résultats de
la simulation dans le cas de référence, avec les termes de courbure exacts, sont
donnés en (a). L’étendue maximale de l’écoulement est reportée sur toutes les
figures (ligne blanche). Les rectangles en pointillés vert (respectivement bleus)
indiquent les zones où l’étalement est plus important (respectievement moins
important) dans les autres simulations, par rapport à la simulation de référence
(a). L’intervalle entre les contours est 20 m. . . . . . . . . . . . . . . . . . . . . 69

2.A.10 Simulation de laves torrentielles dans le rivière du Prêcheur. Différentes si-
tuations sont considérées, quand la force de courbure est prise en compte (FH
exact) ou négligée (FH = 0), et quand la courbure dans la friction est exacte (Fµ
exact), négligée (Fµ no curvature) ou approximée (Fµ approximated). (a) Posi-
tion du front avec la rhéologie de Coulomb. (b) Durée de parcours des premiers
1,6 km (ligne noire pointillée en (a)) avec la rhéologie de Coulomb, en fonction
du coefficient de friction. (c) Position du front avec la rhéologie de Voellmy et
µ = tan(2°). (d) Durée de parcours des premiers 1,6 km (ligne noire pointillée
en (c)) et 2,9 km (ligne grise pointillée en (c)) avec la rhéologie de Voellmy, en
fonction du coefficient de turbulence. . . . . . . . . . . . . . . . . . . . . . . . 70

2.A.11 Epaisseur maximale d’une hypothétique avalanche de débris de volume 90 ×106

m3 sur la Soufrière de Guadeloupe.Chaque figure donne les résultats de simu-
lation quand la force de courbure est prise en compte (FH exact) ou négligée
(FH = 0), et quand la courbure dans la friction est exacte (Fµ exact), négligée
(Fµ no curvature) ou approximée (Fµ no curvature). La simulation dans le cas
de référence, avec les termes exacts de courbure, est donnée en (a). L’étendue
de l’écoulement correspondant est reporté sur toutes les figures (ligne blanche).
Les rectangles en pointillés vert (respectivement bleus) indiquent les zones
où l’étalement est plus important (respectievement moins important) dans les
autres simulations, par rapport à la simulation de référence (a). Le MNT est
extrait de IGN BDTopo. Coordonnées : WGS84, UTM20N. L’intervalle entre
les contours est 100 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.A.12 Comme la Figure Suplémentaire 2.A.11, mais avec les énergies cinétiques maxi-
males. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.A.13 Epaisseur maximale de l’écoulement simulé dans la rivière du Prêcheur avec
la rhéologie de Coulomb et µ = tan(2°) (a) Avec les termes exacts de cour-
bure. L’étendue maximale de l’écoulement (ligne blanche) est reportée sur (b).
(b) Avec la force de courbure négligée mais la courbure exacte dans la fric-
tion. Les rectangles en pointillés vert (respectivement bleus) indiquent les zones
où l’étalement est plus important (respectievement moins important) dans les
autres simulations, par rapport à la simulation de référence (a). L’intervalle
entre les contours est 20 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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2.A.14 Simulation de l’expérience de Iverson et al. (2004). Echelle de couleur, épaisseur
de l’écoulement simulé, à t = 0.3 s. Ligne verte pointillée : Contour de dépôts
dans l’expérience. Chaque sous-figure (a-d) donne les résultats de la simulation
quand la force de courbure est prise en compte (FH exact) ou négligée (FH = 0),
et quand la courbure dans la friction est exacte (Fµ exact) ou négligée (Fµ no
curvature). Nous utilisons µ = tan(23°) dans le chennal et µ = tan(26°) ailleurs,
comme dans Lucas (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.A.15 Comme la Figure Supplémentaire 2.A.14, mais pour t = 8.0 s. . . . . . . . . . 74

2.A.16 Comme la Figure Supplémentaire 2.A.14, mais pour t = 8.0 s, µ = tan(26°)
dans le chennal et µ = tan(29°) ailleurs. . . . . . . . . . . . . . . . . . . . . . . 74

2.C.1 Différences normalisées entre les courbures approximées γ4(u) et exactes γ(u),
pour (a) θ = 0°, (b) θ = 30°, (c) θ = 55°, (d) θ = 60°, (e) θ = 65°, (f) θ = 80°,
tracées en fonction the l’orientation α du chennal et du ratio des courbures
principales λ1/λ2. Pour θ = 0°, γ4 = γ2. Une différence positive (couleurs
blanches et rouges) implique un ralentissement de l’écoulement, et un différence
négative (couleurs bleues) une accélération. . . . . . . . . . . . . . . . . . . . . 85

2.C.2 Différences normalisées entre les courbures approximées γ5(u) et exactes γ(u),
pour (a) θ = 0°, (b) θ = 30°, (c) θ = 55°, (d) θ = 60°, (e) θ = 65°, (f) θ = 80°,
tracées en fonction the l’orientation α du chennal et du ratio des courbures
principales λ1/λ2. Pour θ = 0°, γ4 = γ2. Une différence positive (couleurs
blanches et rouges) implique un ralentissement de l’écoulement, et un différence
négative (couleurs bleues) une accélération . . . . . . . . . . . . . . . . . . . . 85

2.C.3 Signe de la difference entre les courbures approximées et exactes, selon l’angle
de la pente θ et le ratio des courbures principales λ1/λ2. (a) γ4(u)− γ(u). (b)
γ5(u)−γ(u). L’échelle de couleur donne p1−p2, où p1 et p2 sont les pourcentages
de valeurs de α donnant des différences positives et négatives, respectivement.
p1 − p2 = 0 signifie que l’écoulement est accéléré pour 50% des valeurs de α,
et décéléré pour les 50% restant. Les lignes pointillées délimitent la zone où
λ1/λ2 ∈ [−2, 1], et où la différence est toujours positive (et donc l’écoulement
toujours ralenti par l’approximation). . . . . . . . . . . . . . . . . . . . . . . . 86

2.F.1 Topographie et masse initiale de la lave torrentielle de Yu Tung Road, en 2008.
La ligne blanche est le thalweg du chenall, le long duquel les distances de
parcours sont mesurée (see Figure 2.F.2. Les croix blanches indiquent où les
vitesses du front ont été mesurées. L’intervalle entre les contours est 5 m. . . . 91

2.F.2 Simulations de la lave torrentielle de Yu Tung Road de 2008, avec les forces de
courbure (a et b), et sans les forces de courbure (c et d), avec la rhéologie de
Voellmy. Pour chaque paire de paramètres (µ, ξ), la position du front est calculée
pour différents seuils d’épaisseur (de 5 à 40 cm, tous les 5 cm). La vitesse du
front en est déduite, et est tracée en fonction de la position du front. L’échelle
de couleur donne le RMS relatif entre les observations (croix blanches) et les
vitesses simulées. Le RMS moyenné sur tous les seuils d’épaisseur est donné
dans (b) et (d). Les dix meilleures paires de paramètres sont données par les
points (les plus gros points indiquent un RMS inférieur à 1,9%). Les courbes
cyans et noires (a and c) sont les vitesses du front moyennées sur ces 10 paires
de paramètres, respectivement avec et sans les forces de courbure. Les courbes
pointillées sont les vitesses minimales et maximales pour ces paramètres, avec
le même code couleur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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3.1 Rivières et repères topographiques principaux autour de la Soufrière de Gua-
deloupe (triangle rouge), avec les villes principales (Saint-Claude, Basse-Terre
et Gourbeyre. L’encadré en haut à gauche présente l’île de Guadeloupe : le rec-
tangle rouge correspond à l’étendue de la carte. 1○ Ravine des Bains Jaunes,
2○ Ravine de la Citerne, 3○ deuxième cascade du Carbet. Les flèches A, B, C et
D donnent les directions principales d’écoulement discutées dans le texte. Les
rectangles jaunes sont des bâtiments (données de IGN BDAlti). L’emprise de
quelques structures instables est donnée par les lignes rouges. Ligne en tiret-
pointillés : scénarios topA2 et midA2 ; ligne en tiret : scénarios topA1_inf et
topA1_sup ; ligne en pointillés : scénario dolomieu. Le MNT provient de IGN
BDTopo. Coordonnées : WGS84, UTM20N. L’intervalle des contours est de 100
m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Dôme de la Soufrière de Guadeloupe, avec les principales structures et mani-
festations de surface du système hydrothermal. Les sous-figures (a), (b) et (c)
sont les contours structures d’effondrement pour les scénarios dolomieu, south,
south-east respectivement (Figure 3.4). Le triangle rouge donne le centre du
dôme (cratère Tarissan). Le MNT provient de GeoEye Ikonos acquis le 2005-
11-25, avec un post-traitement réalisé par Latitude Geosystels. Carte crée sous
Arcgis. Coordonnées : WGS84, UTM20N. L’interval des contours est 25 m. . . 101

3.3 Structures de déstabilisation pour les scénarios profonds. Le contour jaune in-
terieur dans (a) est l’emprise des scenarios topA1_sup et topA1_inf, le contour
jaune extérieur est l’emprise des scénarios topA2 et midA2. Dans (b), (c), (d) et
(e), les coupes longitudinales et transversales des topographies initiales (ligne
noire) et post-effondrement (lignes colorées) sont données. Les corps conduc-
teur A1 (zone orange) et A2 (zone rouge) (Rosas-Carbajal et al., 2016) sont
indiquées par les lettres S, W, E, AE, AW, BE, BW dans (a). Le MNT est de
IGN BDTopo. Coordonnées : WGS84, UTM20N. L’intervalle entre les contours
est de 20m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 Géométries d’effondrement pour les scénarios superficiels. (a), (d) et (g) donnent
respectivement l’emprise des scénarios dolomieu, south et south-east. (b) and
(c), (e) and (f), and (h) and (i) sont des coupes des topographies initiales (ligne
noire) et post-effondrement (lignes colorées), respectivement pour les scénarios
dolomieu, south et south-east. Les extrémités des coupes sont données par les
lettres A, B, C et D. Le MNT est de IGN BDTopo. Coordonnées : WGS84,
UTM20N. L’intervalle entre les contours est 20 m. . . . . . . . . . . . . . . . . 104

3.5 Simulation topA2. Instantanés des épaisseurs (a, c, e) et des vitesses (b, d, f)
pour le scénario topA2 avec δ = 7°, à t=30 s (a, b), t=60 s (c,d) et t=110 s
(e, f). Les flèches noires donnent la direction de la vitesse. La zone grisée est la
zone total impactée par la simulation. La ligne pointillé blanche donne l’emprise
de l’avalanche de débris de 1530 CE (Boudon et al., 2008 ; Komorowski, 2008 ;
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3.6 Dépôts finaux des scénarios d’effondrement profonds. Scénarios topA1_sup (a-
c), topA1_inf (d-f), topA2 (g-i) et midA2 (j-l) scenarios, avec δ = 7° (a, d,
g, j), δ = 10° (b, e, h, k) et l’angle de friction déduit de la loi de Lucas (c, f,
i, l, Lucas et al., 2014). L’échelle de couleur donne l’épaisseur en mètres. La
zone grisée est la zone totale impactée. La ligne continue blanche est l’emprise
de la masse initiale. Le triangle rouge indique le sommet de la Soufrière de
Guadeloupe. Sur chaque ligne, la sous-figure donne le volume déstabilisé et
une coupe de la loupe d’arrachement. C’est une copie de la Figure 3.3c avec
seulement la cicatrice correspondant au scénario. Le MNT est de IGN BDTopo.
Coordonnées : WGS84, UTM20N. L’intervalle entre les contours est 100 m. . . 110

3.7 Dépoôts finaux pour les scénarios superficiels. Scénarios dolomieu (a-c), south
(d-f) and south-east (g-i), avec δ = 7° (a, d, g), δ = 10° (b, e, h) et l’angle
de friction déduit de la loi de Lucas (c, f, i, Lucas et al., 2014). L’échelle de
couleur donne l’épaisseur en mètres. La ligne continue blanche est l’emprise de
la masse initiale. La zone grisée et la zone totale impactée. Le triangle rouge
indique le sommet de la Soufrière de Guadeloupe. Les sous-figures sur chaque
ligne sont des MNT du dôme donnant l’emprise des masses initiales, avec les
volumes associés : ce sont des copies des Figures 3.4a, 3.4d et 3.4g. Le MNT
est de IGN BDTopo. Coordonnées : WGS84, UTM20N. L’intervalle entre les
contours est 100 m sur la carte principale, et 20 m dans les sous-figures. . . . . 111

3.8 Principales caractéristiques des dépôts des avalanches de débris. Les scénarios
testés sont catégorisés par volume, avec δ = 7° (bleu), δ = 10° (orange) and
δ = 12° (vert). (a) Distance de parcours. (b) Aire impactée (c) Volume mobile,
i.e. volume sortant de la cicatrice d’arrachement. (d) Ratio de Heim (croix) et
coefficients de friction effectifs (carrés). L’axe des ordonnées à droite donne la
valeur correspondante δ, selon µ = tan(δ). Les lignes colorées donnent les angles
de frictions testés. Les barres d’erreur dans (a) et (d) donnent le maximum,
minimum et la moyenne des valeurs calculées suivant le méthode présentée
dans le corps du texte. Les lignes bleues pointillées dans (a) et (b) sont des fits
logarithmiques, obtenus pour δ = 7°. . . . . . . . . . . . . . . . . . . . . . . . . 112

3.9 Principales caractéristiques des dépôts pour les scénarios dolomieu (bleu) et
topA2 (orange). Différents angles de friction sont testés (de δ = 7° à δ = 16°).
(a) Distance de parcours. (b) Aire impactée (c) Volume mobile, i.e. volume
sortant de la cicatrice d’arrachement. (d) Ratio de Heim (croix) et coefficients
de friction effectifs (carrés). L’axe des ordonnées à droite donne la valeur cor-
respondante δ, selon µ = tan(δ). Les barres d’erreur dans (a) et (d) donnent
le maximum, minimum et la moyenne des valeurs calculées suivant le méthode
présentée dans le corps du texte. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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3.10 Calcul du µH and µeff . (a) Notations en 2D, d’après Lucas et al. (2014). A
(point bleu) et B (point rouge) sont respectivement les points les plus hauts
et plus bas de la masse initiale. C (point cyan) est la position du front des
dépôts.H0 est l’épaisseur maximale de la masse initiale. H et ∆L′ sont respec-
tivement les différences d’altitude et la distance horizontale entre A et C. ∆L
est la distance parcourue par le front de l’écoulement, soit la longueur de la
ligne jaune. θ est la pente moyenne entre A et C, i.e. le pente moyenne des
courbes jaunes et vertes. Le ratio de Heim est µH = H/∆L′, et le coefficient
de friction effectif est µeff = tan(θ) + H0/∆L. (b) Notations en 3D, pour le
scénario topA2 avec δ = 10°. Les codes couleurs pour les lignes et les points
sont les mêmes que dans (a). La ligne blanche done l’étendue des dépôts, la
ligne en tirets blanche donne l’emprise de la cicatrice d’arrachement. L’échelle
de couleur (du jaune au rouge) donne l’épaisseur de la masse initiale. Les points
A et B sont définis de manière unique. Les points C sont choisis comme décrit
dans le corps de l’article. Le MNT est de IGN BDTopo. Coordonnées : WGS84,
UTM20N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.A.1 Comparaison entre les dépôts observés et simulés pour l’avalanche de débris de
1530 CE. Les dépôts identifiés sur le terrain avec des faciès d’avalanche de débris
sont marqués par des triangles, et ceux avec des faciès de laves torentielles avec
des croix. La couleur des symboles donne l’épaisseur mesurée de dépôts. La
ligne en tirets blancs est l’emprise estimée de dépôts. Les dépôts simulés pour
le scénario topA2 avec δ = 7° sont donnés avec la même échelle de couleur. La
zone grisée donne la zone impactée par l’avalanche dans la simulation. Le MNT
est de IGN BDTopo. Coordonnées : WGS84, UTM20N. L’intervalle entre les
contours est 100 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1 Schéma incomplet des processus de transfert sédimentaire, de la falaise Sam-
perre jusqu’à la mer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Carte et profil de la rivière du Prêcheur. (a) Carte de la rivière du Prêcheur.
Le MNT autour de la rivière (1 m de précision) provient du relevé HELIMAP
de 08/2018, et du relevé IGM de 03/2010. Coordonnées : WGS84 UTM20N.
(b) Profil de la rivière, de l’embouchure (à gauche) jusqu’à la falaise (à droite).
Flèches vertes et rouges : étendue supposée des dépôts après les avalanches de
blocs de 2009 et 2018, repsectivement. Croix blanches : zones sources pour les
simulations de laves torrentielles avec débit imposé. Les pentes moyennes sont
données pour chaque section, entre les lignes verticales pointillées. Les échelles
horizontales et verticales sont différentes. . . . . . . . . . . . . . . . . . . . . . 126

4.3 Stratégie de modélisation pour les simulation d’avalanches de blocs et de laves
torrentielles. Nous indiquons les données utilisées pour le scénario prédictif
(panneau supérieur), et les données utilisées pour calibrer le modèle (panneaux
rouges). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Photos de la Falaise Samperre et du village du Prêcheur en 2018. (a) Vue de la
falaise Samperre le 2 Février 2018, après les déstabilisations principales et au
moment d’une déstabilisation mineure. (b) Vue aérienne du village du Prêcheur
le 30 Mars 2018, avec au centre le pont franchissant la rivière. Le village est
construit sur le cône alluvial de la rivière du Prêcheur. . . . . . . . . . . . . . 128

4.5 Vue conceptuelle de la géomorphologie du bassin versant, avec les types de
sédiments et les structures des dépôts, et les processus d’initiation des lahars. . 129

4.6 Chronologie des détabilisations de la Falaise Samperre et des lahars les plus
importants dans la rivière du Prêcheur, entre 2009 et 2019. Nous indiquons
également les différents systèmes d’observation et d’alerte. . . . . . . . . . . . 130
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4.7 Section longitudinale de la Falaise Samperre, avec les relevés topographiques
et les masses remobilisées dans les simulations. (a) Retrait progressif de la
falaise entre 2009 et 2018, observé avec les relevés topographiques. (b) Masse
initiale pour les scénarios d’avalanche de blocs de sc_2009 et sc_2018. (c)
Topographie avant (03/2010 DEM) et après (07/2010 DEM) l’avalanche de
blocs de Mai 2010. Au moment du relevé topographique de 07/2010, les dépôts
de l’avalanche de blocs (ligne pointillée violette) avaient déjà été lessivés. Leur
géométrie est donc inconnue. (d) Scénarios de simulation pour reproduire la
lave torrentielle du 19 Juin 2010. Le relevé photogrammétrique de 01/2018 est
utilisé comme proxy pour reconstruire la surface du réservoiren pied de falaise
(scénario LH_R_cliff, zone rouge). Une version lissée du MNT de 08/2018
(ligne violette) donne la surface basale du réservoir. Le scénario LH_R_total
est construit en ajoutant une épaisseur de 30 m de matériaux (depuis le fond de
la ravine) dans le lit majeur de la rivière (voir Figure 4.2a). Les croix blanches
indiquent les zones sources pour les simulations à débit imposé. . . . . . . . . 131

4.8 Géologie de la Falaise Samperre et scénario sc_east. (a) Topographie de la Fa-
laise Samperre en Août 2018, avec les unités géologiques principales (Nachbaur
et al., 2019). (b) Version modifiée de la topographie de 08/2018, avec la cica-
trice d’arrachement du scénario sc_east. Le volume instable associé représente
1.9× 106 m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Avalanche de blocs de la Falaise Samperre du 21 Août 2009. (a) Signal sismique
enregistré à la station LAM (composante Nord-Sud). (b) Ligne grise : variations
de l’énergie sismique à la station LAM. Lignes rouges : énergie dissipée dans
la simulation sc_2009 (ligne continue, µS = tan(11°) = 0.19), et la simulation
sc_2009_1 (tirets, µS = tan(12°) = 0.21). Les courbes rouges et grises sont
alignées à leur maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.10 Avalanche de blocs sur la Falaise Samperre du 4 janvier 2018. (a) Signal sismique
enregistré à la station LAM (composante Nord-Sud). (b) Ligne grise : variations
d’énergie sismique sur la station LAM. Lignes rouges : énergie dissipée dans la
simulation sc_2018 (ligne continue, µS = tan(11°) = 0.19), et la simulation
sc_2018_1 (tirets, µS = tan(12°) = 0.21). Les courbes rouges et grises sont
alignées à leur maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.11 Coupe longitudinale de la Falaise Samperre et de la Rivière du Prêcheur, de la
falaise jusqu’à la mer, avec une vue conceptuelle de la propagation des lahars
et ce que nous modélisons dans ce travail. . . . . . . . . . . . . . . . . . . . . . 136

4.12 Granulométrie des dépots de lahars. (a) Lignes : Granulométrie des échantillons
après enlèvement de la fraction supérieure à 2 cm. Fuseaux colorés : fuseaux
granulométriques de Bardou et al. (2003), obtenus en context alpin. (b) Lignes :
granulométrie des échantillons entiers. Fuseaux gris : fuseaux granulométriques
de Dumaisnil et al. (2010) pour les dépôts de lahars du Semeru (Indonésie).
(c) Exemple de site d’échantillonnage. Les courbes granulométriques corres-
pondantes sont données en gras dans (a) et (b). Voir la Figure 4.2a pour la
localisation des échantillons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.13 Vue vers l’amont du Pont du Prêcheur avant et après sa destruction par la
lave torrentielle du 19 Juin 2010. (a) 17 Juin 2010 (b) 19 Juin 2010. Flèches
blanche : blocs sous le pont, bloquant la rivière. Flèche rouge : localisation du
débordement, en amont du pont. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.14 Enregistrements des AFMS RPRE et CPMA du lahar du 10 Juin 2010. (a) Eve-
nement entier, avec la pluviométrie cumulée. (b) Phase principale du lahar, avec
la lave torrentielle principale. Le temps est en heures UTM. . . . . . . . . . . . 141
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4.15 Survol hélicoptère de la rivière du Prêcheur le 25 Juin, après les lahars des 19
et 20 Juin. Les deux photographies ((a) et (b)) ont été prises entre RPRE et le
pont. Les flèches blanches et noires indiquent les dépôts discutés dans le corps
du texte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.16 Reconstruction de la topographie de la falaise avant les avalanches de blocs de
Janvier 2018, pour le scénario sc_2009. (a) Falaise en Juillet 2010. (b) Re-
construction de la topographie de la falaise à partir du trait de falaise de 2017
(surface supérieure du volume instable de sc_2009 ). (c) Topographie de la fa-
laise le 19 Janvier 2018, légèrement modifiée pour enlever les dépôts en pied de
falaise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.17 Scénario d’avalanche de blocs sc_2018_1, avec la déstibilisation successive de
deux unités de la falaise. (a) Lignes noires : relevés topographique. Zone ha-
churée rouge (A) : premier volume instable (0.8× 106 m3) Zone havhurée bleue
(B) : Deuxième volume instable (0.7 × 106 m3). (b) Dépôts finaux du scé-
nario sc_2018, avec l’effondrement simultané de A et B. (c) Dépôts finaux
quand seulement A s’effondre. (d) Dépôts finaux du scénario sc_2018_1, avec
l’effondrement de A, puis de B 13 s après. Toutes les simulations sont faites
avec la rhéologie de Coulomb et µS = tan(14°) = 0.25. Ligne pointillée verte :
ligne de crête de la falaise Samperre. La topographie dans (b), (c) et (d) est le
MNT de 08/2018. Interval entre les lignes de niveau épaisses : 100m. . . . . . . 144

4.18 Distances de parcours modélisées pour les scénarios d’avalanche de blocs
sc_2009, sc_2009_1 et sc_2018, pour différents coefficients de frictions µS =
tan(δ). Les distances de parcours sont mesurées depuis le pied de la falaise (croix
blanche la plus à droite dans la Figure 4.2b) le long de la rivière. Les barres
d’erreur (calculées en considérant des seuils de 1 à 10 m pour localiser le fornt
de l’écoulement) ne sont pas représentées, mais correspondent au maximum à
deux fois la taille des marqueurs. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.19 Simulation sc_2018 avec la rhéologie de Coulomb et µS = tan(14°) = 0.25. Les
épaisseurs sont données à (a) t = 15 s, (b) t = 25 s, (c) t = 50 s et (d) t = 100 s.150

4.20 Simulation sc_2018 avec la rhéologie de Coulomb et µS = tan(14°) = 0.25. Les
vitesses sont données à (a) t = 15 s, (b) t = 25 s, (c) t = 50 s et (d) t = 100 s. 151

4.21 Résultats des simulations de laves torrentielles pour le scénario LH_R_cliff.
(a) Epaisseur maximale avec la rhéologie de Voellmy, µS = tan(2°) = 0.03
et ξ = 500 m s−2. (b) Epaisseur maximale avec la rhéologie de Coulomb et
µS = tan(3°) = 0.05. (c) Epaisseur maximale avec la rhéologie de Coulomb et
µS = tan(2°) = 0.03. (d) Durées de parcours entre RPRE et CPMA (1,6 km),
mesurées comme l’écart entre les maximums ou entre les débuts d’augmentation
du débit. (e) Durées de parcours entre RPRE et la pont du Prêcheur (4,3 km).
(f) et (g) Surface inondée rive gauch (respectivement rive droite), dans les zones
habitées. La zone grisée donne les observations pour la lave torrentielle du 19
Juin 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.22 Comparaison des scénarios LH_R_cliff, LH_R_river and LH_R_total pour
la modélisation des laves torrentielles. (a) et (b) Surface inondée rive gauch (res-
pectivement rive droite), dans les zones habitées. (c) Durée de parcours entre
RPRE et CPMA. (d) Durée de parcours entre RPRE et le pont. Marqueurs
remplis : durées mesurées avec le maximum des débits. Marqueurs vides : du-
rées mesurées avec le début d’augmentation du débit. La zone grisée donne les
observations pour la lave torrentielle du 19 Juin 2010. . . . . . . . . . . . . . . 153

4.23 Résultats des simulations de laves torrentielles pour le scénario LH_R_total.
Voir la Figure 4.21 pour la légende. . . . . . . . . . . . . . . . . . . . . . . . . 155
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4.24 Résultats des simulations d’avalanches de blocs et de laves torrentielles pour le
scénario sc_east. (a) Dépôts finaux de l’avalanche de blocs, avec Coulomb et
µS = tan(14°) = 0.25. (b), (c) and (d) Débits a RPRE, CPMA, CCPA et au
pont. (b) Rhéologie de Voellmy, µS = tan(2°) et ξ = 500 m s−2. (c) Rhéologie
de Coulomb, µS = tan(3°). (d) Rhéologie de Coulomb, µS = tan(2°). . . . . . . 157

4.25 Comparaison entre les simulations de laves torrentielles avec remobilisation ins-
tantanée (LH_R_cliff ) et progressive et (LH_D_cliff ). Le volume libéré est
toujours 0.65× 106 m3, mais le remobilisation est soit instantantanée, soit pro-
gressive (10 ou 20 min). (a) et (b) Surface inondée rive gauch (respectivement
rive droite), dans les zones habitées. (c) Durée de parcours entre RPRE et
CPMA. (d) Durée de parcours entre RPRE et le pont. Les durées de parcours
sont mesurées avec les débuts d’augmentation des débits. Les surfaces grisées
sont les observations pour la lave torrentielle su 19 Juin 2010. . . . . . . . . . 158

4.26 Comparaison entre les simulation de laves torrentielles avec remobilisation pro-
gressive (scenarios LH_D_cliff, LH_D_waterfall et LH_D_RPRE ), selon la
zone d’initiation. La remobilisation initiale dur 10 min. (a) et (b) Surface inon-
dée rive gauch (respectivement rive droite), dans les zones habitées. (c) Durée
de parcours entre RPRE et CPMA. (d) Durée de parcours entre RPRE et le
pont. Les durées de parcours sont mesurées avec les débuts d’augmentation des
débits. Les surfaces grisées sont les observations pour la lave torrentielle su 19
Juin 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.27 Comparaison entre les temps de parcours estimés avec les AFMs pour la lahars
principaux de 2009 et 2010, et les temps de parcours simulés avec SHALTOP.
(a) Déphasage entre les canaux FULL de RPRE et CPMA, en fonction de la va-
leur maximale du canal FULL de RPRE. L’échelle de gris donne le maximum
du canal FULL à CPMA. Croix : la correspondance entre les maximums de
RPRE et CPMA est claire. Cercles : plusieurs maximums sur CPMA peuvent
correspondre à un maximum sur RPRE. (b) Déphasage entre les débits maxi-
mums à RPRE et CPMA dans les simulations, en fonction du débit maximal à
RPRE. L’échelle de couleur donne le débit maximum correspondant à CPMA.
Les symboles correspondent aux scénarios de simulation. Les cercles en poin-
tillés indiquent les simulations où la rhéologie de Coulomb est utilisée (rhéo-
logie de Voellmy pour les autres). Le coefficient de friction est µS = tan(2°),
µS = tan(3°) ou µS = tan(4°). Le coefficient de turbulence varie de 100 to
500 m s−2. (c) Comme (b), mais les déphasages sont mesurés avec les débuts
d’augmentations des débits. Les surfaces grisées sont les observations pour la
lave torrentielle su 19 Juin 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.28 Relation entre les temps de parcours simulés de RPRE à CPMA, et de RPRA au
pont. (a) Déphasage entre les débits maximaux simulés à RPRE et au pont, en
fonction du déphasade entre les débits maximaux à RPRE et à CPMA. L’échelle
de couleur donne le débit maximum correspondant à CPMA. Les symboles
correspondent aux scénarios de simulation. Les cercles en pointillés indiquent
les simulations où la rhéologie de Coulomb est utilisée (rhéologie de Voellmy
pour les autres). Le coefficient de friction est µS = tan(2°), µS = tan(3°) ou
µS = tan(4°). Le coefficient de turbulence varie de 100 to 500 m s−2. (b) Comme
(a), mais les déphasages sont mesurés avec les débuts d’augmentations des débits.168



267

4.29 Relation entre les zones inondées et les débits simulés à CPMA et RPRE.
(a) Surface inondée rive gauche en fonction du débit maximal à RPRE. (b) Sur-
face inondée rive droite en fonction du débit maximal à RPRE. (c) Surface
inondée rive gauche en fonction du débit maximal à CPMA. (d) Surface inon-
dée rive droite en fonction du débit maximal à CPMA. L’échelle de couleur
donne le débit maximal à CPMA dans (a) et (b), et à RPRE and (c) et (d).
L’échelle de l’axe des abcisses dans (a) et (b) n’est pas la même que dans (c)
et (d). Les symboles correspondent aux scénarios de simulation. Les cercles en
pointillés indiquent les simulations où la rhéologie de Coulomb est utilisée (rhéo-
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