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Résumé: L’imagerie par résonance mag-
nétique (IRM) est l’une des modalités d’imagerie
les plus utilisées au monde. Son objectif principal
est de visualiser les tissus mous de manière non
invasive et non ionisante. Cependant, son adop-
tion générale est entravée par une durée d’examen
globalement élevée. Afin de la raccourcir, plusieurs
techniques ont été proposées, parmi lesquelles
l’imagerie parallèle (PI) et l’échantillonnage com-
pressif (CS) jouent une place prédominante. Grâce
à ces techniques, les données en IRM peuvent être
acquises de manière fortement compressée, réduis-
ant ainsi significativement le temps d’acquisition.
Cependant, les algorithmes généralement utilisés
pour reconstruire les images IRM à partir de ces
données sous-échantillonnées sont lents et peu
performants dans des scénarios d’acquisition forte-
ment accélérés.

Afin de résoudre ces problèmes, les “réseaux
de neurones déroulés” ont été introduits. L’idée
centrale de ces modèles est de dérouler ou déplier
les itérations des algorithmes de reconstruction
classiques en un graphe de calcul fini.

L’objectif principal de cette thèse est de pro-
poser de nouvelles architectures pour des scénarios
d’acquisition qui s’écartent de l’acquisition cartési-
enne 2D typique. À cette fin, nous passons d’abord
en revue une poignée de réseaux neuronaux pour
la reconstruction IRM. Après avoir sélectionné le
plus performant, i.e. le PDNet, nous l’étendons à
deux contextes : le challenge fastMRI 2020 et le
problème des données 3D non cartésiennes. Nous
avons également choisi de répondre aux préoccu-
pations de beaucoup concernant l’applicabilité cli-
nique de l’apprentissage profond pour l’imagerie
médicale. Nous le faisons en proposant des moy-
ens de construire des modèles robustes et inspect-
ables, mais aussi en testant simplement les réseaux
entraînés dans des contextes qui s’écartent de la
distribution d’entraînement. Enfin, après avoir re-
marqué comment l’outil de l’apprentissage profond
implicite peut aider à entraîner des modèles de re-
construction IRM plus profonds, nous introduisons
une nouvelle méthode d’accélération (i.e. SHINE)
pour l’entraînement de ces modèles.
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Abstract: Magnetic Resonance Imaging (MRI) is
one of the most prominent imaging techniques in
the world. Its main purpose is to probe soft tissues
in a non-invasive and non-ionizing way. However,
its wider adoption is hindered by an overall high
scan time. In order to reduce this duration, several
approaches have been proposed, among which Par-
allel Imaging (PI) and Compressed Sensing (CS)
are the most important. Using these techniques,
MR data can be acquired in a highly compressed
way which allows the reduction of acquisition times.
However, the algorithms typically used to recon-
struct the MR images from these undersampled
data are slow and underperform in highly acceler-
ated scenarios.

In order to address these issues, unrolled neural
networks have been introduced. The core idea of
these models is to unroll the iterations of classical
reconstruction algorithms into a finite computation

graph.
The main objective of this PhD thesis is to pro-

pose new architecture designs for acquisition scen-
arios which deviate from the typical Cartesian 2D
sampling. To this end, we first review a handful of
neural networks for MRI reconstruction. After se-
lecting the best performer, the PDNet, we extend
it to two contexts: the fastMRI 2020 reconstruc-
tion challenge and the 3D non-Cartesian data prob-
lem. We also chose to adress the concerns of many
regarding the clinical applicability of deep learning
for medical imaging. We do so by proposing ways
to build robust and inspectable models, but also
by simply testing the trained networks in out-of-
distribution settings. Finally, after noticing how
the implicit deep learning framework can help im-
plement deeper MRI reconstruction models, we in-
troduce a new acceleration method (called SHINE)
for the training of such models.
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General Introduction

Context & Motivations

Magnetic Resonance Imaging (MRI) is one of the most important and widely
used medical imaging modalities. It can probe soft tissues like the brain, the

heart or the knee, but also provide insights on the functional organization of the
brain or the layout of its vessels. Moreover, it can do so in a non-invasive and non-
radiative way contrarily to for example Computed Tomography (CT) or Positron
Emission Tomography (PET). However, MRI at its core is based on an inherently
slow physical phenomenon: the magnetic resonance and the corresponding spin re-
laxation. This translates into long acquisition times and high exam duration, which
hinder the wider adoption of MRI as a global imaging technique. Indeed, a high
exam duration restricts the use of MRI in certain contexts but also limit the number
of patients that can be examined per day. In order to address these limitations, sev-
eral techniques have been proposed to reduce the number of excitation-relaxation
sequences we need. The two main ones are Parallel Imaging (PI) and Compressed
Sensing (CS), and they both rely on acquiring an undersampled version of the ob-
ject to image. In PI, an array of receiver coils is used to gather the Radio Frequency
(RF) signals emitted during the relaxation. In CS, which can be combined with PI,
some structural prior knowledge is assumed about the object to be reconstructed,
and we use it to build a variational formulation whose solution is computed by
an optimization algorithm to retrieve an accurate view of the object. These two
approaches have allowed the physicians to reduce the scan times, however they
have also introduced new challenges. Indeed, the reconstruction of the object is
quite slow when using typical CS reconstruction algorithms. In addition, PI and
CS are limited to low acceleration factors because they use very basic and hand-
crafted knowledge about the object of interest, typically in CS, the sparsity of the
decomposed image in a wavelet basis or frame.

Concurrently, Deep Learning (DL) was developed to address challenges related
to classification and regression. But more generally, DL has also been demonstrated
to be a powerful tool for general function approximation and learning, in particular
in imaging. As such, one could use DL to solve the MR image reconstruction
problem from undersampled measurements by reformulating it as a supervised
learning problem. Originally, convolution based networks were proposed to tackle
this problem without incorporating physics-based or model-based knowledge into
their design. Nonetheless, more recently DL has been used to learn the formerly
handcrafted structure prior on the object, in particular in the framework of unrolled
neural networks.

The goal of this PhD thesis was to design original DL architectures by unrolling
optimization algorithms and learning their parameters in service to challenging
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acquisition settings that fit the clinical practice. Additionally, we were interested
in demonstrating the performances (accuracy and robustness) of these models in
a clinical setting.

Contributions

The first task in this thesis was to identify ideal candidates for the base of our
unrolled network. To this end, we benchmarked several existing unrolled networks
on 2 large databases and found consistently that one architecture, the PDNet was
outperforming its competitors. A side effect of this benchmark was the creation of
a GitHub repository gathering the implementations of all these networks, as well
as training and evaluation codes.

This benchmark was done on a single-coil 2D Cartesian dataset which is not
a clinically relevant setup. A more challenging acquisition scenario, closer to the
clinical practice is that of multicoil 2D Cartesian imaging. This is exactly the
setup of the 2020 fastMRI challenge we decided to participate in. To do so, we
first built an extended version of the PDNet which integrated state-of-art building
blocks. We termed this network the XPDNet, and we secured the second place
in the challenge, showing that even in clinically relevant setups, our network was
still promising. To further our developments and address the challenge of isotropic
high resolution imaging from massively undersampled data, we developed the NC-
PDNet, an architecture that is capable of handling 3D non-Cartesian k-space data.

This setting is particularly relevant for NeuroSpin, the lab where I effectuated
most of my PhD thesis, as the SPARKLING (Spreading Projection Algorithm for
Rapid K-space sampLING) technology was developed here for accelerating high
resolution anatomical and functional brain imaging at ultra-high magnetic field (7
T and beyond). Great efforts are actually deployed for understanding the best
non-Cartesian undersampling schemes.

Importantly, we tested the robustness of these networks in out-of-distribution
settings, a potential barrier to the adoption of neural networks in the clinical realm.
For the NC-PDNet, we made sure to test the network on unseen organs, acquisi-
tion trajectories or acceleration factors, and showed that it performed well in these
configurations. Our evaluation of the XPDNet was focused on the comparison
with Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), a clas-
sical PI reconstruction algorithm that is implemented by the vendors in most of
MR systems. This comparison stood in the context of prospective undersampling,
a way more complex scenario given the potential additional artifacts related to
actual acceleration. Indeed, we mostly trained and evaluated our networks with
retrospectively undersampled data, which does not present the same characteristics
as prospectively undersampled data. All these evaluations were done in the spirit
of testing the clinical applicability of the unrolled networks for MRI reconstruction.
Another aspect of this thesis in that direction is to provide tools to build robust and
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inspectable networks. The Learnlets, a type of learned wavelets, was modeled in
order to provide practitioners with a tool to build robust and generalizable networks.
Moreover, we showed how the Denoising Score Matching (DSM) framework could
be used to obtain a sense of the reconstruction error in DL-based reconstructions.

Another barrier to the use of unrolled networks in clinical settings is their weak
performance for very high acceleration factors or undersampling factors.1 As is
often the case in DL, we have very good reasons to believe that deeper networks
will enable reaching sufficient levels of performance even at very high acceleration
factors. When training deep neural networks, the main memory bottleneck usually
is the activations (i.e. the stored intermediary outputs of the networks’ building
blocks) needed to compute the gradients. Therefore, the number of activations and
their size are the main obstacle to training even deeper neural networks. To over-
come this issue, some DL frameworks introduced schemes that allow the training
of neural networks without relying on activations. As such they constitute a prom-
ising direction for solving inverse problems, notably MRI reconstruction. However,
training such models is more expensive from a computational viewpoint. Hence,
we proposed a method to accelerate some of these models, Deep Equilibrium Net-
work (DEQs) part of the implicit DL framework.

Thesis Outline

Chapter 1: Introduction to Magnetic Resonance Imaging introduces
the main concepts and motivations for MRI. We focus on how the physical system
can be designed to generate the signal of interest.

Chapter 2: Classical Reconstruction in MRI presents the main ways to
reconstruct the object to image in the undersampled context.

Chapter 3: Introduction to Deep Learning reviews briefly the main com-
ponents of the success of DL and how it is applied in practice.

Chapter 4: Review of Deep Learning for MRI reconstruction lists
and discusses the principal ways in which DL can be applied to MRI reconstruction.
We focus on unrolled neural networks. Contributions:

• Benchmark of unrolled networks for MRI reconstruction.

Chapter 5: New unrolled networks for MRI reconstruction presents
2 new unrolled neural networks for different acquisition settings: the XPDNet and
the NC-PDNet. Contributions:

1The wording acceleration factor is more used for prospective acquisitions whilethe term undersampling factor often refers to retrospective studies. Both coincide inCartesian acquisition scenarios whereas they may differ in non-Cartesian ones.
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• XPDNet: a reconstruction model for 2D multicoil brain data, ranking second
in the fastMRI challenge.

• NC-PDNet: a reconstruction model for non-Cartesian data.

Chapter 6: Clinical applicability of deep learning for MRI recon-
struction takes a look at how to build robust and inspectable networks fit for
clinical use, and additionally evaluates how the trained neural networks measure
their clinical applicability. Contributions:

• Learnlets: a wavelet-inspired network.

• Application of DSM to MRI reconstruction for uncertainty quantification.

• Comparison of the XPDNet with GRAPPA, and application to prospective
data.

Chapter 7: New learning paradigms for very deep networks lists
different paradigms allowing the training of very deep neural networks. We focus
on implicit deep learning, and DEQs in particular where we show how the training
of these models can be accelerated. Contributions:

• SHINE: a method to accelerate the training of DEQs and bilevel optimization
problems.

Open source contributions:

• fastmri-reproducible-benchmark: a repository with different unrolled net-
works for MRI reconstruction.

• PySAP: a library to perform sparse signal reconstruction.

• tfkbnufft: a library for the Non-Uniform Fast Fourier Transform in Tensor-
Flow.
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1 - Introduction to Magnetic Resonance Ima-
ging

Chapter Outline
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MRI is one of the most widely used techniques to probe the human body in a
non-invasive and non-ionizing way. The expected outcome of the exam is to

be able to visually diagnose diseases, anomalies or ill-formations. To do so, multiple
contrasts of the same organ of interest are generated, however the images are not
obtained directly via a photographic procedure. Rather, we use the phenomenon
of magnetic resonance to create a signal emanating from the object. The beauty
of MRI is then to spatially encode this signal during the acquisition stage in the so-
called k-space. The design of the signal generation is such that it can be inverted
to obtain the image (potentially in 3D) of the organ. Indeed, in an ideal case
without noise or artifacts, the k-space is simply the Fourier transform of the organ.
However, the generation of this signal, relying on the relaxation of excited spins, is
inherently slow. It is therefore an important research goal to be able to accelerate
the MRI acquisition process by limiting the number of required relaxation steps to
obtain a clean image.

In this chapter, we will cover first the motivations of MRI and describe its
current use. We will move on to explain the underlying physical concepts that
enable MRI. Finally, we will describe the acquisition side of acceleration.

An example MR image is presented in Figure 1.0-1.

1.1 . Motivations for the MRI modality
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Figure 1.0-1: Example of an MR image: MR image of the knee takenfrom the fastMRI dataset [Zbo+18].
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Figure 1.1-2: Number ofMRI scans per year per 1000 population: fig-ure courtesy of Health at a Glance 2019: OECD Indicators - Medical tech-nologies [19d].

Figure 1.1-3: Number of MRI and CT machines per year per million
population: figure courtesy of Health at a Glance 2019: OECD Indicators- Medical technologies [19d].

1.1.1 . Context

The use of MRI is growing rapidly around the world. In order to understand
how impactful improving the MRI modality can be, let us give some contextual
figures. In France for example, we went from 40 to 114 MRI scans each year
per 1000 population between 2007 and 2017, more than doubling [19d]. As a
comparison, there are about 2 to 3 times more Computed Tomography (CT) scans
per year [19d]. An overview of the worldwide situation can be seen in Figure 1.1-2.
The number of MRI scanners is estimated at 36,000 worldwide [Ogb+18]. However,
the distribution of MRI scanners is very uneven around the world and developing
countries are the most ill-equipped [Ogb+18] as illustrated in Figure 1.1-3.

1.1.2 . Diagnosis

MRI is currently used for many diagnosis tasks, in organs and body regions
such as the brain, the spine, the neck, the musculoskeletal system, the abdomen,1

1We also specify that the abdomen encompasses organs such as the spleen, theliver, the biliary system, the pancreas, the kidneys, the GI tract, the bowel and theupper urinary tract.
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Brain
Alzheimer, dementia, MS, 
epilepsy, seizures, lesions, 
infections, cerebrovascular 
diseases, strokes, cancers, 
tumors, movement disorders

Credit human anatomy unlabeled: https://online.seterra.com/en-an/vgp/3801

Head & Neck
Carcinomas, sinusitis

Spine
Degenerative diseases, 
herniated disc

Chest & Heart
Cardiomyopathy, heart 
diseases, cancers

Abdomen
Cancers, tumors, 
hepatitis, cirrhosis, 
pancreatitis, liver 
diseases, lesions, 
urinary tract disorders

Breast
Implant rupture, cancers

Pelvis
Carcinomas

Muscoloskeletal 
system
Meniscal tears, ligament & 
tendon lesions/tears, 
diseases of Marrow 
(osteomyelitis, 
bone-Marrow edema), 
fractures, muscle fibrosis, 
bone tumors

Figure 1.1-4: What can we diagnose with MRI? This illustrationprovides a non-exhaustive list of all the diagnoses that can be carriedout with MRI. All the information was compiled from the works of Re-imer et al. [Rei+10] and Runge et al. [RTH19].

the pelvis, the chest, the heart and the breast. In this section we provide a non-
exhaustive list of all the diagnosis that can currently be performed with MRI in the
form of an original image in Figure 1.1-4.

Importantly, not all these diagnoses are primary diagnoses, some of them like
cancer or brain tumors can help guide biopsy or invasive surgery more precisely.
Some other may rely on modality which are not exactly anatomical MRI: for ex-
ample the movement disorders diagnosis can be done from Functional MRI (fMRI)
of the brain [NH10a]. More information on how these medical investigations are
carried out can be found in the works of Reimer et al. [Rei+10] and Runge et al.
[RTH19].

For these diagnoses, MRI is not the sole imaging technique available. The
typical competitor is CT whose main advantage is to be quicker than MRI. However,
in many instances, MRI has been shown to be more sensitive to anomalies and
diseases than CT [KM00; Kid+04] and also more accurate in its depiction of said
diseases or anomalies [Pat+88].

1.1.3 . Non-invasiveness and absence of radiation
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MRI is typically referred to as a non-invasive exam, which means that the skin
or the mucosa is not violated [12a] (except the potential catheter used to inject
the contrast agent if any). This is a very suitable property for an imaging modality
which makes it more amenable to everyday clinical use, since it can also be used in-
vivo. In addition, as opposed to CT, it does not make use of radiations to perform
the probing of soft tissues which enables its repeated use without dangers [Hol+14].
Although there is a slight increase in temperature potentially harmful to pregnant
women [Le +21], the only real danger in MRI comes from the magnet which can
attract metallic objects implanted in the body.

1.1.4 . Resolution
MRI is also favored for its high resolution. It recently reached resolutions of

0.2 mm isotropic [Stu+15], and the promise of scanners delivering a magnetic field
of 11.7 Teslas (T) opens the door to even higher resolutions.2 Higher resolution
enables several things:

• finer biomarkers and medical diagnosis;

• better structural and functional connectivity mapping in the brain [Now18];

• better pre-surgery mapping [Now18].

1.2 . Physics of MRI

The goal of this section is to provide a brief overview on how the MR signal
gets created. In order to get a deeper understanding, we refer the reader to the
following resources which we took inspiration from when writing this section:

• mriquestions.com [EB01]: an online course presented in the form of an FAQ;

• imaios.com/en/e-Courses/e-MRI [08]: an online course with a lot of explan-
atory videos;

• Bernstein et al. [BKZ04b] and Brown et al. [Bro+14]: classical MRI hand-
books (the latter one being usually known as Haacke et al. 1999);

• the dissertations of former PhD students who pursued their thesis at NeuroSpin
in the same team: Lazarus [Laz18], El Gueddari [El 19].

1.2.1 . Nuclear Magnetic Resonance
The phenomenon of Nuclear Magnetic Resonance (NMR) is at the core of

MRI. A hydrogen3 atom possesses magnetic properties, one of which is its spin,

2See this press release: www.cea.fr/english/Pages/News/premieres-images-irm-iseult-2021.aspx3Other atoms can be used in a research setting like Carbon, Sodium, Phosphorus,etc.
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Figure 1.2-5: Illustration of the precession of a spin in a magnetic
field: the green arrow represents theB0 magnetic field, while the blackarrow represents the magnetic moment of the particle. Illustrationcourtesy of Larmor precession Wikipedia page [12b].
the magnetic moment of the nucleus. A first key property of the spin is that
when submitted to an outside magnetic field B0 = B0ez, it aligns with it in a
parallel or antiparallel way. It has a rotation movement around the magnetic axis
characterized by the Larmor frequency ω0 = γB0, with γ the hydrogen gyrometric
ratio. Typical values of ω0 are in the Radio Frequency (RF) band, i.e. in the MHz
range. This rotation movement forms a cone called a precession as can be seen in
Figure 1.2-5.

The resonance phenomenon corresponds to the interaction between the ro-
tating spins and an incoming RF pulse, denoted B1, orthogonal to B0. This
interaction can only happen if the RF pulse has the same frequency as the Larmor
frequency ω0. When the RF pulse interacts with a spin, it will create an excitation
of the spin. In effect, it will increase the precession of the spin by bringing energy
to the system and tip it into the transversal plan, orthogonal to B0. The amount
of increase of the precession will depend on the intensity of the RF pulse and its
duration.

After the excitation, the spin will enter the relaxation phase. In this phase, the
additional energy the spin received during the excitation will be reemitted back in
the shape of an RF pulse. This RF pulse, called the Free Induction Decay (FID)
can be recorded using an antenna. The characteristics of the FID depend on the
nature of the tissue where the spin is located. Therefore, we can leverage the FID
to form an image of the organ because different tissues will emit RF pulses with
different characteristics.

Formally, denoting M the total magnetic moment, M0 its equilibrium state,
Mtr its transverse component and Ml its longitudinal component, the Bloch
equations ruling the evolution of the system are:

dMtr

dt
= −Mtr

T2
(1.1)

dMl

dt
=

M0 −Ml

T1
(1.2)

with T1 and T2 the 2 characteristic times for the relaxation, whose values depend
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on the nature of the tissue.
The solution of this equation, for a position in space r, is:

Mtr(t, r) = Mtr(0, r)e− t
T2 (1.3)

Ml(t, r) = Ml(0, r)e− t
T1 + M0(1− e− t

T1 ) (1.4)
where in particular, |Mtr(0, r)| = 1

4ρ(r)γ2ℏ2

kT B0 with ℏ the Planck constant, k the
Boltzmann constant, T the temperature and ρ(r) the proton spin density [Bro+14].

1.2.2 . Image Formation

However, one can only record a single global FID signal without localization
information if no extra adjustments of the experiment are used. In order to encode
the spatial information, spatially varying gradients of magnetic field are used. These
gradients make the intensity of the magnetic field vary slightly across a certain
direction. Three types of gradients, whose total contribution is denoted G(t),
exist and allow different kinds of spatial encoding:

• Slice Selection Gradient: It allows us to excite only the spins rotating at a
certain Larmor frequency band (in practice it can never be a single frequency)
by tuning the RF pulse frequency. This frequency band is directly related to
the slice thickness.

• Phase Encoding Gradient: It allows us to dephase the FID from the
different spins even after its application by shortly modifying the frequency of
rotation. Temporally speaking, this phase encoding gradient is used after the
excitation and the slice selection gradient but prior to data acquisition. Since
the dephasing depends on the intensity of the gradient, we can repeat its
application with different intensities to obtain different combined dephasing.

• Frequency Encoding Gradient: It modifies the frequency of rotation of the
spins during the recording and is applied during the signal readout, so after
the previous ones and during the opening of the analog-to-digital converter.

For a given slice, the MRI acquisition corresponds to the sequence of sending
the same RF pulse sequence with different phase encoding and frequency encoding
gradients. In the case of a 3D acquisition, a second phase encoding gradient can
be used in the third direction. All of this encoding will naturally lead to a Fourier
encoding of the spatial information.

Because |Mtr(t, r)| is proportional to the spin density ρ(r), we would like to
get access to this quantity, but the latter cannot be measured directly. Instead, we
have access to the electromagnetic force induced by M (of compact support Vs)
in an antenna:

S(t) = − d
dt

∫
Vs

B1 ·M(t, r) dr (1.5)
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IFFT

Figure 1.2-6: Example of a k-space with its corresponding anatom-
ical image: The raw data is from the fastMRI dataset [Zbo+18]. Thek-space is in log-scale and only the magnitude of the 2 images are rep-resented. We selected only a single coil from the 16 coils available forillustrative purposes.

After neglecting low-magnitude derivatives, and focusing on the sinusoidal part
by ignoring the relaxation effect, we obtain a simplified MR signal:

S(t) ∝ ω0

∫
Vs

|Btr||Mtr(t, r)| sin
(
ω0t+ γ

∫ t

0
G(τ) dτ + ϕ0(r)− ϕB(r)

)
dr

(1.6)
where Btr and Mtr(t, r) are the transverse components of B1 and M(t, r) re-
spectively, ϕ0(r) is the transverse magnetization phase at t = 0, and ϕB(r) is the
phase of Btr.

From there, we can demodulate the signal to get rid of the effect of ω0t, by
multiplying by the appropriate sine and cosine waves at ω0 frequency, and using
a low-pass filter. The result of these 2 multiplications will form the real and the
imaginary parts of the MR signal:

Str(t) ∝ ω0

∫
Vs

BtrMtr(t, r)e−ıγr·
∫ t

0 G(τ) dτ dr (1.7)
where Btr = |Btr|eıϕB(r) and Mtr(t, r) = |Mtr(t, r)|e−ıϕ0(r). Here, the Fourier
encoding is apparent as the first part of the integral is proportional to the density
of the organ and the term k(t) = γ

2π

∫ t
0 G(τ) dτ in the complex exponential is

controlled by the operator. We refer to k(t) as the k-space vector. An example
k-space, i.e. the map k(t) 7→ Str(t), is given in Figure 1.2-6 along with its
corresponding anatomical image. The trajectory defined by k(t) over time is called
the k-space trajectory. This trajectory, piloted by the operator of the MR exam
via the gradient sequence G(t), will define how we traverse the Fourier Transform
(FT) space of the organ of interest. A first natural choice is of course to follow
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lines on a Cartesian grid and sample also on the grid in order to be able to use the
simple Inverse Fast Fourier Transform (IFFT) on the complex MR signal Str(t) to
obtain the image of the organ. However, this trajectory might have downsides in
some situations, for example it implies long scan times and might not be suited to
undersampling. Therefore, one might consider other trajectories that do not fall
on a Cartesian grid like radial spokes or spiral interleaves. Some trajectories might
even be designed or learned in order to satisfy some criterion with respect to the
reconstruction of the image in an undersampled setting [Laz+19]. If one uses a
non-Cartesian acquisition scheme, then Str(t) is not the FT of the organ anymore,
but the Nonuniform Discrete Fourier Transform (NDFT). As a consequence, the
IFFT cannot be used anymore and one has to resort to more complex schemes to
invert the forward process as the NDFT is not invertible. These schemes can be
iterative or rely on gridding the data to make the IFFT applicable.

1.2.3 . Parallel Imaging

In order to improve the Signal-to-Noise Ratio (SNR), multiple receiver antennas,
also called coils, can be used to receive the MR signal. In effect, they will not record
the same signal but one that is dependent on their position with respect to the
organ of interest. Because we have extra signal for the same organ, it is possible
to sample less lines in the k-space than with a single coil. In the Parallel Imaging
(PI) acquisition setup one has to resort to coil combination strategies to obtain
the final image. As discussed in the next part, this step may be complexified in
presence of undersampling due to inherent aliasing artifacts.

1.3 . Acceleration in MRI

1.3.1 . Motivations

An MRI exam might last up to 90 minutes according to NHS: How it’s per-
formed - MRI scan [18], and 15 minutes in general. This is unpractical for many
reasons:

• Accessibility: Some patients, for example young children or people suffering
from Parkinson’s disease, may not be able to stay still for such an extended
period of time. Moreover, patients suffering from claustrophobia could also
experience an anxiety crisis. General anesthesia is a solution, but it is a
heavy process with additional risks involved.

• Patient throughput: A long exam time means that only a reduced number
of patients can undergo an MRI per day. As an example, without accelera-
tion, the Koyasu Neurosurgical Clinic (KNC) was able to perform on average
26.8 patients per day with extra hours on a single MRI machine [KS18]. This
has two consequences. The first is that MRI scans are prescribed less often
than they should because of a long waiting line and as there needs to be
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spots left for emergencies. The second is that the cost of the MRI exam per
patient is high: sometimes reaching $4000 in the United States [19a].

• Motion: Patient motion during the MRI acquisition is one of the primary
sources of artifacts. However, the probability of motion occurring during
the acquisition is not uniformly distributed in time; in particular, it is more
likely to happen after a long time in the scanner. Reducing the amount of
time spent in the scanner therefore diminishes the probability to suffer from
patient-motion-related artifacts.

The MRI exam does not only consist of the actual acquisition. Three phases
can be distinguished before the medical diagnosis. The first is the preparation
phase where the patient needs to be installed in the MRI scan. This can be long
especially for patients with reduced mobility. The second is the acquisition in itself,
where the patient lays still in the MRI scanner, and the MR pulse sequences are run.
Most often, several sequences are carried out to get the most accurate diagnosis, for
instance for brain imaging: T2-weighted imaging, Fluid Attenuated Inversion Re-
covery (FLAIR), susceptibility weighted imaging and Diffusion-Weighted Imaging
(DWI). Taken together these different imaging contrasts provide complementary
information on the potential pathology. The third is the image generation or re-
construction, where the actual images used for diagnoses are generated from the
MR signal. In the case of an unaccelerated exam, the image generation phase is
almost instantaneous, while the preparation takes 5 minutes on average and the
acquisition 15 minutes [KS18]. This shows that the acquisition is really the main
bottleneck in an unaccelerated MRI exam.

1.3.2 . Tools
In order to accelerate the MRI acquisition, there are not many physical lever-

ages. Indeed, the relaxation time is driven by the molecular properties of the tissue
(and a little bit by the field strength) which cannot be modified. The T1 relaxation
time is for example in the orders of 1 to 4 seconds for aqueous tissues [Bus+11,
Chapter 12]. The only physical leverage we can use is the field strength.4 Indeed,
at higher field strengths, the SNR is very high, and we can therefore reduce the
scan time for the same resolution [Spr+16].

Lowering the resolution is also a way to accelerate MRI even at a given field
strength, although it is not always desirable depending on the task.5 Some other
methods exist that accelerate the MRI acquisition in a straight forward way. The
first is partial Fourier sampling. Because the organ of interest has a real-valued im-
age, in theory, its Fourier coefficients have a conjugate Hermitian symmetry [EB01].

4This is not due to the relaxation time which increases with the field strength forT1 [Bus+11, Chapter 12] and decreases for T2 [EB01].5It is however possible to use a superresolution algorithm/model in order to in-crease the resolution of the image, but we will not cover this aspect extensively, seethis Siemens press release.
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AF × 4 AF × 8

Figure 1.3-7: Reconstruction in PI at different undersampling
factors: an MR image of a brain reconstructed using GRAPPA [Gri+02],a common reconstruction technique, for different AccelerationFactors (AFs) in 2D multicoil imaging. The raw data is from the fast-MRI dataset [Zbo+18]. The AF of 4 is still readable while the AF of 8 isunpractical.

This symmetry could allow us to sample only half of the k-space and estimate the
other half. In practice however, imperfections in the acquisition system prevent us
from using this technique as is, and extra acquisition is required, or partial Fourier
is applied only to a fraction of the k-space (e.g. 6/8 of data collected).

Finally, in PI, it is possible to use the redundancy of the acquired signal across
the multiple coils to undersample the k-space.

1.3.3 . Limitations

However, all of these techniques suffer from limitations. For example partial
Fourier can only accelerate up to a factor of 1.6, while undersampling with PI can
be done up to a factor of 4 in 2D and 10 in 3D. At the core of this problem lies
an information problem. Basically one needs to have enough information about
the organ under investigation contained in the signal you acquire. Formally in the
single-coil case, for a general complex-valued signal, the Nyquist criterion applies.
The Nyquist-Shannon theorem is as follows:

Theorem 1.3.1. A band-limited continuous-time signal can be sampled and per-
fectly reconstructed from its discrete samples if the waveform is sampled at least
twice as fast as its highest frequency component.

If the Nyquist criterion is not met, one might face aliasing artifacts in the
generated image that prevent its proper evaluation. An example of these artifacts
can be seen in Figure 1.3-7.
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2 - Classical Reconstruction in MRI
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When acceleration is used to collect k-space data faster, via data under-
sampling, the image formation cannot be performed by simply applying the

IFFT. One needs to resort to more complex methods, most of which were de-
veloped before the advent of Deep Learning (DL). These methods must leverage
the sampled data as well as some knowledge on the underlying problem to gener-
ate an image which should ideally be indistinguishable from that computed without
undersampling.

In this chapter, we will first introduce Compressed Sensing (CS) [CRT06;
Don06], a framework which leverages the compressibility of natural images (and
thus medical images like MRI scans) in an appropriate domain, push forward pseudo-
random undersampling as a potential means to reach incoherent sampling and make
use of nonsmooth convex optimization to perform nonlinear MR image reconstruc-
tion from undersampled data. We will then detail how this framework can be used
to reconstruct MR images. Further, for comparison and/or possible combination
with CS we will introduce more standard methods specific to PI reconstruction.
Finally, we will explain how the reconstruction algorithms can be evaluated.

2.1 . Introduction to Compressed Sensing for MRI
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CS is a mathematical theory allowing the design of algorithms enabling the
reconstruction of a signal from noisy undersampled measurements, as well as the
design of efficient measurement strategies. The core idea is to leverage the sparsity
or the compressibility of the signal in an appropriate domain/basis to decrease the
sampling rate far below the Nyquist bound.

For a deeper understanding of CS, we recommend the following resource: Fou-
cart et al. [FR13a]. Most of the material in this section is based on this book.

2.1.1 . Linear Underdetermined Inverse Problems

Formally, CS is concerned with tackling the following type of problems: We
aim to recover a signal x ∈ Cn from linear measurements y ∈ Cm corrupted by
some noise ϵ.1 The problem reads:

y = Ax + ϵ (2.1)
where A ∈ Cm×n is the called the design matrix, the measurement operator or the
forward operator. A simpler noiseless problem can be considered in a simulated
setting for instance:

y = Ax (2.2)
When Ker (A) = {0}, the noiseless problem (2.2) is fully determined and can

be solved by applying the inverse or the pseudo-inverse of A to y, x = A†y. On
the contrary, when Ker (A) ̸= {0}, the noiseless problem is underdetermined, and
there exists multiple x which satisfy Equation 2.2. Indeed, when a solution x1 is
found, x1 +x0 where x0 ∈ Ker (A) is also a solution to the noiseless problem (2.2).
This situation happens when m < n but can also occur in other situations when
m ≥ n, for example in PI. In this case, it is necessary to discriminate between all
the possible solutions of the problem by assuming prior knowledge on the solution.
This prior knowledge is often encompassed in the form of redundancy or sparsity
of the solution in a certain decomposition basis.

2.1.2 . Guarantees of recovery

The question we can ask is: “What are the assumptions needed on x, A and ϵ

to guarantee the recovery of the signal x or at least a good enough approximation
x̂?” Indeed, it is easy to come up with examples in which the signal cannot be
recovered: for example, if A = 0, then all the information from x is destroyed,
and none of it can be found in y = ϵ.

Let us first define the notion of sparsity.

Definition 2.1.1 (s-sparse vectors [FR13c]). A vector x ∈ Cn is called s-sparse if
it contains at most s non-zero entries.

1The distribution of ϵ is an entire problem of itself, but it is very often assumed tobe i.i.d. zero-mean Gaussian of unknown variance σ2.
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From there, we can lay out the conditions that guarantee the recovery of an
s-sparse vector x in Equation 2.2. Let us first start with the following lemma:

Lemma 2.1.2 (Reformulation of sparse vector recovery [FR13c]). For a given
sparsity s, and s-sparse vector x:
(a) The vector x is the unique s-sparse solution of Equation 2.2, that is {z ∈

Cn : Az = Ax, ∥z∥0 ≤ s} = {x}

(b) The vector x can be reconstructed as the unique solution of:
min
z∈Cn

∥z∥0 subject to Az = y (2.3)

In other words, Lemma 2.1.2 allows us to transform a linear inverse problem
for sparse vectors admitting a unique solution into an optimization problem defined
by Equation 2.3. We therefore have a tool (we will see later however that it is
unpractical) to solve Equation 2.2 if there is a unique solution. Let us now give a
theorem which guarantees the uniqueness of the solution for a given sparsity:

Theorem 2.1.3 ([FR13c, Theorem 2.13]). The following properties are equivalent:
(a) Every s-sparse vector x ∈ Cn is the unique s-sparse solution ofAz = Ax,

that is, ifAx = Az and both x and z are s-sparse, then x = z.
(b) The null space Ker (A) does not contain any 2s-sparse vector other than

the zero.
(c) Every set of 2s columns ofA is linearly independent.
Theorem 2.1.3 hands us assumptions needed on x (sparsity) and A (at least

twice more independent measurements than the level of sparsity of x) to guarantee
recovery. This is however unsatisfactory in practice, because the resolution of
Equation 2.3 is NP-hard [FR13c, Theorem 2.17]. However, this is mostly due to
the very general nature of a potential algorithm solving the problem for all A and x,
therefore by refining even more our assumptions, we can hope to achieve tractable
recovery guarantees.

In particular, if we consider the following relaxation of Equation 2.3, also called
Basis Pursuit:

min
x∈Cn

∥x∥1 subject to Ax = y (2.4)
we can find assumptions on A that will guarantee the recovery of all sparse vectors
x when solving it. These assumptions involve the concept of coherence, whose
definition we recall next:
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Definition 2.1.4 (Coherence [FR13b, Definition 5.2]). LetA ∈ Cm×n be amatrix
with ℓ2-normalized columns a1, . . . ,an. The ℓ1-coherence function µ1 is definedfor s ≤ n− 1 by:

µ1(A, s) = max
i≤n

∑
j∈S

|⟨ai,aj⟩|, S ⊂ {1, . . . , n}, |S| = s, i /∈ S


Armed with this definition, we can give the following recovery guarantee theorem:

Theorem 2.1.5. LetA ∈ Cm×n have ℓ2-normalized columns. If:
µ1(A, s) + µ1(A, s− 1) < 1 (2.5)

then every s-sparse vector x ∈ Cn is exactly recovered from the measurements
y = Ax via basis pursuit.

Because the resolution of basis pursuit is possible in polynomial time, The-
orem 2.1.5 provides a practical way to have recovery guarantees when designing a
matrix A.

2.1.3 . Application to MRI
The work of Lustig et al. [LDP07] was seminal in the development of CS for

MRI. In particular, the incoherence needed in CS was implemented in the design of
the k-space trajectories that define the undersampling mask in the Fourier domain
for measuring k-space measurements. In addition, because MR images are not
s-sparse in their original domain, Lustig et al. [LDP07] proposed to use sparsifying
transforms to promote their “implicit sparsity”.

Let us denote ψ a potential sparsifying transform. Ideally, we would have for all
MR images x ∈ Cn, ψ(x) is sparse or at least compressible. Lustig et al. [LDP07]
showed that the Discrete Cosine Transform (DCT) and the wavelet transform are
both good candidates for ψ.

Regarding the incoherence, the key point to understand is that the k-space
has to be sampled via trajectories respecting some physical constraints. Lustig
et al. [LDP07] restrict their analysis to Cartesian sampling, and show that Variable
Density Sampling (VDS) is a great candidate sampling strategy. In this case, the
measurement operator is simply a masked FT, A = diag(1Ω)F , the FT being
coherent with the classical sparsity basis in the low frequencies. This sampling
allows to break the coherence barrier by sampling fully the center of k-space and
sparsely the high frequencies [PVW11; CCW13; Cha+14]. Of course, if we do
not restrict ourselves to Cartesian sampling, the space of trajectories we can con-
sider becomes larger. Potential alternatives in that case can be either based on
analytical non-Cartesian readouts such as radial spokes [BPM91; GP92] or spiral
interleaves [AKC86; Mey+92]. One can then optimize for the best trajectory2 for

2The trajectory requirements might change depending on the acquisition setting.
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a given target density like what was done in the SPARKLING approach [Laz+19;
Laz+20; Cha+21]. This optimization can also be done based on data using deep
learning frameworks [Wei+21; Wan+21a; CZC21].

2.2 . Sparse reconstruction algorithms

Let us now focus on concrete examples of MRI reconstruction is implemented
in the CS framework. We will try to remain general, so we will consider the
2/3D multicoil non-Cartesian setting. In the single-coil setting, there is only one
sensitivity map, and it is equal to the identity. In the Cartesian setting, the NDFT
is simply replaced by a masked FT.

2.2.1 . Classical algorithms
In an ideal setting (i.e. noiseless and without taking gradient inaccuracies and

B0 inhomogeneities into account), the reconstruction can be done by solving the
following analysis formulation,3 as an optimization problem:

arg min
x∈Cn

∥ψx∥1 subject to FΩSlx = yl ∀l = 1, . . . , L (2.6)
where ψ is a sparsifying transform (typically a wavelet transform), x is the recon-
structed image, FΩ is the NDFT on the Ω set embodying all k-space trajectories,
Sl is the sensitivity map of the l-th coil, yl is the measurement of the l-th coil
and L is the number of coils. The sensitivity maps (Sl)L

l=1 encompass the local
sensitivity of each coil, and we assume them to be known. However, in the real
life, the noise in the measurements must be taken into account, and we need to
relax Equation 2.6 in the following form:

arg min
x∈Cn

L∑
l=1

1
2
∥yl −FΩSlx∥22 + λ∥ψx∥1 (2.7)

where λ is a hyperparameter controlling the regularization imposed by the sparsity:
in essence, the less noise in the data, the smaller λ. The resolution of the optim-
ization problem can be done mainly by two types of algorithms:

• Primal-dual algorithms: Primal-Dual Hybrid Gradient (PDHG) [CP11], Condat-
Vu [Con13], Alternating Direction Method of Multipliers (ADMM) [Boy+11].

• Proximal gradient methods: Iterative Soft Thresholding Algorithm (ISTA) [DDD04],
Faster ISTA (FISTA) [BT09], Proximal Optimal Gradient Method (POGM’) [KF18].

An extensive review of these algorithms and how they are used in the context of
MRI reconstruction was done by Fessler [Fes20]. This review also introduces other

3When ψ is invertible an equivalent formulation, called the synthesis formulationcan be derived where we optimize over the coefficients of the transform rather thanthe image itself.
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regularization schemes. In this section, we will focus on a single algorithm, FISTA,
the improved version of ISTA.

In order to introduce ISTA, let us recall the definition of a proximal operator:4

Definition 2.2.1 (Proximal operator [Mor62]). For a semi-continuous convex
function R defined on a real Hilbert space H the proximal operator is defined
as:

proxR(x) = arg min
z∈H

R(z) +
1
2
∥z − x∥22 (2.8)

The basic idea of ISTA is to generalize the gradient step to nonsmooth functions
which admit a closed-form proximal operator. The way to do so is to rewrite
the quadratic approximation leading to gradient descent but this time with the
addition of a nonsmooth function. Further details on this can be found in the
work of Beck et al. [BT09]. Rewriting A = (IL ⊗FΩ)S, S = [SH

1 , . . . ,S
H
L ]⊤,

y = [yH
1 , . . . ,y

H
L ]⊤, R(·) = λ∥ψ · ∥1, and with H the Hermitian (i.e. transpose

conjugate) operator, we have the ISTA step of step size ϵn for Equation 2.7:

xn+1 = xn − ϵnAH (Axn − y)
xn+1 = proxϵnR (xn+1)

(2.9)
The first stage is known as the data consistency step, where one follows the

gradient of the data consistency term (i.e. the smooth term) in Equation 2.7.
The second stage is known as the proximal step, where one is constrained by the
proximal operator of the regularization. Informally, this second step makes the
solution look more like an MR image and denoises the output of the gradient step.
The idea behind FISTA is to generalize Nesterov acceleration [Nes83] to ISTA,
giving the following step:

zn+1 = xn − ϵnAH (Axn − y)
zn+1 = proxϵnR (zn+1)

tk+1 =
1 +

√
1 + 4t2k
2

xn+1 = zn+1 +
tk − 1
tk+1

(zn+1 − zn)

(2.10)

Just like many of aforementioned algorithms, FISTA can also be improved by
different techniques such as restart, enhanced momentum sequence and greedy
acceleration [LS18]. These improvements often directly translate to improved MRI
reconstruction speeds [Zac+19], showcasing the interest of working on abstract
versions of these algorithms.

4In order to familiarize oneself with proximal operators, the website proximity-operator.net [Chi+16] is an excellent resource.
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Synthesis vs. Analysis. The problem presented in Equation 2.7 is known
as the analysis formulation for MRI reconstruction. Another way to frame it, is
to actually consider that the signal to reconstruct is not the image itself but its
coefficients in a transform basis like the wavelets. This framing is known as the
synthesis formulation [EMR07], and reads as follows for an invertible wavelet basis
ψ:

arg min
z∈Cn

L∑
l=1

1
2
∥yl −FΩSlψ

−1z∥22 + λ∥z∥1 (2.11)
Cherkaoui et al. [Che+18b] showed that the analysis formulation is superior in

the case of MRI reconstruction, since it does not require the wavelet transform to
be invertible.

2.2.2 . Dictionary learning
The algorithms mentioned above suffer from 2 problems:

• They rely on an iterative scheme which will make a huge number of calls to
a computationally heavy A operator.

• The prior on the MR images is handcrafted and not specific to MR images
but instead selected for a broader class of natural images.

In order to tackle this last problem, Ravishankar et al. [RB11] leveraged Dic-
tionary Learning in order to learn a more suited prior. They introduce a dictionary
of patches (or atoms) D which is learned as part of the overall optimization scheme.
This gives the following optimization problem:

min
x,D,Γ

L∑
l=1

1
2
∥yl−FΩSlx∥22+λ

∑
ij

∥Rijx−Dαij∥22 subject to ∥αij∥0 ≤ T0 ∀i, j

(2.12)
with T0 a hyperparameter controlling the sparsity level, Rij the matrix extracting
a patch at location i, j in the image, Γ the collection of the sparse codes αij . In
order to solve Equation 2.12, an alternate minimization procedure is used, where
in one instance, x is fixed, and in the other D and Γ are fixed which leads to a
least square problem with an explicit solution. When x is fixed (this corresponds
to the dictionary learning step) the optimization problem is solved with K-SVD.

Caballero et al. [Cab+14] extended this approach to temporal data.

2.3 . Parallel Imaging Reconstruction

In the presentation of the CS-MRI reconstruction problem in the previous part,
we assumed the sensitivity maps were known. This assumption is not tenable in
practice. Consequently, they must be either acquired in separate scans or internally
estimated from k-space data or not used anymore in the formulation of the image
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Figure 2.3-1: SENSE reconstruction: image courtesy of Elster et al.[EB01].

reconstruction problem. Regarding the latter possibility, we talk about calibration-
less MR image reconstruction, and we refer the reader to the work (and references
therein) of El Gueddari et al. [El +21] to go further into MR image reconstruction
without the explicit use of sensitivity maps. Hereafter, we will see how to estimate
these sensitivity maps and in the end practically combine multicoil acquisition with
CS reconstruction.

2.3.1 . Image-domain techniques

One of the first techniques to deal with PI reconstruction is SENSE [Pru+99],
which stands for SENSitivity Encoding. The basic idea of SENSE is to acquire
coil sensitivity profiles before the actual acquisition in a low resolution fashion in
order to have only a small overhead. At the reconstruction stage, the voxel values
of the organ of interest are deduced from the voxel values of the multicoil images
by solving a linear system of equations in the image domain involving the voxel
values of the multicoil images and the sensitivity maps. In the noiseless setting,
the equation for a single voxel in the case of a 2-fold acceleration with 2 coils is
illustrated in Figure 2.3-1. Essentially, SENSE operates in the image domain once
all coil-specific images have been Fourier-inverted from coil-specific undersampled
k-space data. Then SENSE iterates over spatial locations and for a given position
poses the problem of PI reconstruction as a fully determined linear inverse problem
for which we can simply compute the pseudo-inverse of the measurement matrix
and apply it to the multicoil images. As the linear systems are spatially independent
their resolution can be carried out in parallel. Another image-domain technique
with similar idea is ASSET. We will now focus on a type of reconstruction methods
that are used in the context of this thesis (see section 6.3).

2.3.2 . Frequency-domain techniques
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Another branch of techniques to reconstruct PI data works directly in the
k-space. We will focus in this section on GRAPPA [Gri+02], which stands for Gen-
eralized Autocalibrating Partially Parallel Acquisitions. The idea behind GRAPPA
is to acquire only a subset of lines in the k-space, and fill the rest by interpolation,
using kernels calibrated on a fully sampled part of the k-pace, the Autocalibration
Signal (ACS), as can be seen in Figure 2.3-2. One of the key aspects of GRAPPA,
is that the acquisition scheme must be equispaced (except in the ACS) in order for
the same set of kernels to be applied similarly to the whole k-space.

(a)
(b)

Figure 2.3-2: (a) Autocalibration Signal - (b) Reconstruction. Thecentral part of the k-space is fully sampled and can be used as anAutocalibration Signal to calibrate the kernels. The reconstruction isthen carried out linearly on the rest of the k-space. Images courtesyof Elster et al. [EB01].
The formal definition of the GRAPPA algorithm steps can be summarized as

follows. For an AF of r (not taking into account the ACS), there are r−1 different
“geometries”, i.e. not sampled lines between sampled lines. This means that we
will consider r− 1 different kernels to fill the k-space, each one corresponding to a
different geometry, i.e. filling a not sampled k-space line from neighboring sampled
k-space lines. Let us denote Wnp,nf

the space of all GRAPPA kernels, using 2np

neighboring sampled lines to fill the unsampled k-space lines (np on each side) and
nf points on each sampled line. If we denote by ncoils the number of coils, we have
Wnp,nf

= Rncoils×2np×nf ×ncoils . In order to find the kernel for a given geometry
i < r − 1, we need to solve the following optimization problem:

w⋆
i = arg min

w∈Wnp,nf

NACS−np∗r−1+i∑
j=i+(np−1)∗r

∥y(j)
ACS −w ∗ y(−j,i)

ACS ∥
2
2 + λ∥w∥22 (2.13)
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Figure 2.3-3: ACS lines selection for kernel calibration during
GRAPPA : the target line y(j)

ACS is in orange, while the source lines y(−j,i)
ACSare in green. The other sampled lines of the ACS are in blue.

where NACS is the number of ACS lines, y(j)
ACS is the j-th line of yACS , y(−j,i)

ACS are
the lines neighboring the j-th line in the i-th geometry, and λ is a regularization
parameter. An example of how the y

(−j,i)
ACS lines are selected is visible in Figure 2.3-

3 for an AF r = 3, ncoils = 2 coils, np = 2 lines taken into account in the grappa
kernel on each side, the first geometry (i.e. i = 1), and the j = 6 line in this
geometry. Once the kernel have been computed, the not sampled lines can be
evaluated by the kernel corresponding to their geometry.

yinterp,i = (w⋆
i ∗ y

(−j,i)
ACS )j=i,...,n . (2.14)

Finally for the reconstructed k-space, we keep the ACS lines and the sampled lines,
yGRAP P A = (1−Ω).(

∑
i yinterp,i) + Ω.y.

2.3.3 . Combination with CS techniques
The main takeaway from PI reconstruction techniques is the handling of sens-

itivity maps. Indeed, CS techniques as presented in section 2.2 do need the exact
sensitivity maps in order to have a known forward model. Methods have then been
developed in order to take the best of both worlds. For a theoretical analysis of
optimal combination of CS with parallel imaging, the reader is invited to look at
the following references [CAT15; BBW16].

A first PI reconstruction method to combine elements of CS with PI is SPIRiT [LP10]
where ideas from SENSE and GRAPPA are combined to regularization techniques.
In this case the reconstruction is carried out fully in the k-space and the output
still needs to be combined to form the expected image like for GRAPPA.

Methods like ESPIRiT [Uec+14] which computes sensitivity maps solving an
eigenvalue decomposition problem, or self-calibrating MRI reconstruction [El +18]
which relies on a simple thresholding of the central portion of k-space (as sens-
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itivity maps are supposed to be smooth in the image domain) followed by a K-
means [Llo82] extract estimates of sensitivity maps from the data. They then solve
the problem introduced in Equation 2.7 with these estimated sensitivity maps.

2.4 . Quantitative evaluation of the reconstruction

With all these techniques in mind, a question arises: Which one should be used
to reconstruct MR images? In other words, there is a need for a clear benchmark-
ing strategy between acquisition-reconstruction couples. In order to compare the
performances of p acquisition-reconstruction couples, the ideal setting is to acquire
the same organ p + 1 times in a short window of time: once in a fully sampled
fashion and p times with the benchmarked acquisition schemes. The fully sampled
acquisition is then reconstructed using the IFFT and the accelerated schemes with
the corresponding reconstruction algorithms. The benchmarked couples are then
compared to the fully sampled image visually, and the best couple is determined
as the one approaching the image quality of fully sampled data (least artifacts
and blurring, best contrast and sharpness). However, in practice this comparison
procedure suffers from two flaws:

• Several acquisitions might take very long, especially for the fully sampled
one. This could be difficult to carry for several methods and patients.

• Experts are needed to carry out the visual comparison of images, which is
time-consuming. Additionally, this procedure be expensive.

In order to overcome these limitations, one can resort to the following solutions:

• Retrospective studies where the accelerated acquisitions are simulated
from the fully sampled one, for example by masking some elements in the
fully sampled raw k-space. The problem with this solution is that it does
not reproduce the inherent issues that occur during prospective acceleration,
in particular for non-Cartesian readouts (e.g. off-resonance effects are not
usually modeled in retrospective studies).

• Quantitative metrics can be used to replace the experts’ evaluation. How-
ever, finding a quantitative metric that perfectly reproduces the visual com-
parison is extremely difficult and a topic of research in itself. See more in
subsection 2.4.4.

Although one could use only one of these two methods and for instance consider
prospective acquisitions instead of retrospective ones, the assessment of quantitat-
ive metrics on MR images which have been prospectively accelerated and collected
at two different time points might be very challenging due to potential motion
artifacts between the different scans. Retrospective motion correction (i.e. after
data acquisition and image reconstruction) would not be helpful in such scenarios
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as the corrupted data directly impact the image quality at the reconstruction stage.
Prospective motion correction could be considered, however this is still an active
topic of research and slows down the final acceleration scheme.

Throughout this thesis, we will mainly rely on retrospective studies and quant-
itative metrics.5

2.4.1 . Classical quantitative metrics

Here we introduce the quantitative metrics that will be used in the rest of this
dissertation. The first metric is the Peak Signal-to-Noise Ratio (PSNR). It is
defined as follows for a magnitude MRI image x ∈ Rn

+ and its estimate x̂:

PSNR(x, x̂) = 10 log10

(
maxi xi

1
n∥x− x̂∥22

)
(2.15)

The second metric is the Structural Similarity Index Measure (SSIM) [Wan+04].
It was designed to be closer to the visual comparison of images than the PSNR,
although some critics have emerged pointing to downfalls of the metric [HZ10;
NA20]. It is defined as follows for a magnitude MRI image x ∈ Rn

+ and its
estimate x̂:

SSIM(x, x̂) = [l(x, x̂)]α.[c(x, x̂)]β.[s(x, x̂)]γ (2.16)
where l(x, x̂) is the luminance measure, c(x, x̂) is the contrast measure, and
s(x, x̂) is the structure measure. More details on these measures can be found in
the work of Wang et al. [Wan+04].

2.4.2 . Advanced metrics

Some efforts have been put first in enhancing the aforementioned metrics.
For example, the Multiscale-SSIM (MSSIM) has been introduced by Wang et al.
[WSB03]. The idea is to compute the contrast and structure measures at different
scales j = 1, . . . ,M , and then compute the MSSIM as follows:

MSSIM(x, x̂) = [l(x, x̂)]αM .
M∏

j=1
[c(x, x̂)]βj .[s(x, x̂)]γj (2.17)

A different line of research tried to use DL to craft image quality metrics. A
notable example is PieAPP [Pra+18] which leveraged a newly introduced dataset
to train a neural network to compute a metric which resembled human assessment.
A more thorough review of advanced metrics both with and without DL can be
found in the work of Mikhailiuk [Mik21].

5With the notable exception of the fastMRI challenge [Muc+21] in which 6 radiolo-gists graded the image quality with respect to artifacts, sharpness and contrast tonoise ratio in a double-blind fashion.
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2.4.3 . Specificities of MRI evaluation
The first problem posed by MRI is that the classical output of the reconstruction

is a complex-valued image, for which most visual quality metrics are not suited.
This problem is usually avoided by just considering the magnitude of the image,
like radiologists would do in most cases. We do not cover here the problem of
evaluating the phase of the image, as would be useful for Susceptibility Weighted
Imaging (SWI) [BSS15].

The second problem is that the output of the reconstruction is not a 2D image
but a 3D volume. The authors of the fastMRI dataset [Zbo+18] have used the
generalization of the classical metrics to 3D volumes rather than considering the
average over the slices of the volume. Because the fastMRI dataset is becoming a
standard in the research, we decided to use this method to compute our metrics,
but it is a topic of discussion since the reconstruction is read slice by slice.

The final problem is that the ideal visual comparison that would be done by an
expert is not sensitive to the scale differences between the images. However, the
SSIM and the PSNR are sensitive to it. One solution to overcome this problem
would be to normalize both the fully sampled and the reconstructed accelerated
images. However, this approach was not retained in the fastMRI dataset metrics
computation, and therefore using it would make the comparison of results between
different research works difficult. For this reason we chose throughout this thesis
to use unnormalized metrics.

2.4.4 . Discussion on the relevance of quantitative metrics
Many works have noticed the disagreement between classical quantitative met-

rics and human or expert ratings [Pra+18; Gu+20; Mie+21]. The solutions pro-
posed have been to gather sizeable datasets of manual image quality evaluations
of different types. From these datasets, neural networks can be trained to define a
more ad hoc metric. These network-defined metrics have not been tested through-
out this thesis, but it might be an interesting research direction to test them.
However, one forseeable problem is that since these networks are not trained on
MRI images, they will not be easily transferable to them. On top of that, repro-
ducing the training with MRI images would be challenging since the gathering of
equivalent datasets seems out of reach.

✽ ✽ ✽
✽ ✽

✽
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D eep learning can be defined as the field of research where the goal is to design
highly nonlinear models for a specific task (e.g. regression, classification,

segmentation, etc.) and the corresponding algorithms that permit to calibrate
these models from data. For this reason, deep learning is of particular interest for
Inverse Problems solving where two highly nonlinear dynamics appear obviously:

• the relationship between the signal/image to be recovered x and its noisy
undersampled measurements y;

• the prior that exists over the class of signals/images to be recovered.

These two ingredients can be assembled in a probabilistic way by combin-
ing the distribution p(y|x) (or the corresponding maximum likelihood estimator
arg maxx p(y |x)) with the prior density p(x).

In this chapter, we will introduce the main concepts of deep learning in general
while we postpone the presentation of their specific implementation in the MRI
reconstruction context to chapter 4.
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Figure 3.1-1: Timeline of Deep Learning.

3.1 . Timeline of Deep Learning

The primary message of this section is that deep learning, although a very hot
and timely topic, has a longstanding history and was able to achieve tremendous
scientific results thanks to a combination of important factors. Those factors can
be summarized as follows:

• an extensive, long-lasting research on the founding elements;

• an increased availability of intensive computational resources, notably Graph-
ical Processing Units (GPUs);

• some efforts to collect large scale labelled datasets;

• the emergence of reliable and well-documented open-source software and
libraries backed by large companies.

These factors are summarized in the timeline of Figure 3.1-1.

3.2 . The base ingredients of Deep Learning

In this section we will review what is typically needed to implement a deep
learning algorithm and focus on the modeling aspect in section 3.3.

3.2.1 . Formalism

A deep learning setup usually involves the following elements:
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• a dataset D composed of elements xi or pairs of elements (xi,yi) coming
from a stochastic generative process assumed stationary P;

• a function, typically highly nonlinear, parametrized by θ ∈ Θ whose output
depends on the task at hand, fθ(x);

• an ideal loss function Lideal defining the task to be achieved (and some
regularization), which generally depends on the output of the model fθ(x),
potentially y, the generative process P and the model’s parameters θ;1

• an empirical proxy function L which is a proxy of the ideal loss function in
the real case setting where we do not have access to the generative process
P, and depends on the output of the model fθ(x), potentially y, some
elements of the dataset D and the model’s parameters θ.

The theoretical objective is to solve the following optimization problem:

arg min
θ∈Θ

E(x,y)∼P Lideal(fθ(x),y,P,θ) (3.1)
In practice, the following optimization problem is solved:

arg min
θ∈Θ

∑
(xi,yi)∈D

L(fθ(xi),yi,D, i,θ) (3.2)

This second objective function is generally the empirical mean version of Equa-
tion 3.1, but can be more complex in particular regarding the link to the generative
process P.

An example of this problem is the case of ℓ2-regularized regression with mean
squared error, and a regularization parameter λ > 0:

arg min
θ∈Θ

∑
(xi,yi)∈D

1
2
∥fθ(xi)− yi∥22 + λ∥θ∥22 (3.3)

In order to solve Equation 3.2, first-order gradient based methods are typically
used despite two seemingly contraindicated facts:

• the problem might not be convex (in θ);

• the objective function might not be strictly speaking differentiable (w.r.t.
θ).

Recently some works have introduced methods that no longer rely on the gradient
to train neural networks, like Knyazev et al. [Kny+21] who use a meta-neural
network to predict other neural networks’ parameters.

1Weuse this very general formalism to also encompass in it Generative AdversarialNetworks (GANs) or self-supervised learning among others.
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Theory and depth. While the theory of deep learning is lacking the full un-
derstanding of all the dynamics at play, some results are of particular interest. A
particularly interesting one is that neural networks are universal function approxim-
ators [HSW89; Bar93; Han19]. This means that any continuous function can be
approximated by a neural network if given a sufficient width or depth. This result
can be generalized for example to convolutional neural networks which are univer-
sal translation-equivariant (or invariant) function approximators [Mar+19; Yar21].
While these results are sometimes obtained by playing on the width of the neural
network, in practice, neural networks often reach a better performance when they
are deeper, for example in MRI reconstruction [Pez+20]. An intuition about this
result has been proposed by Telgarsky [Tel16].

3.2.2 . Backpropagation with the chain rule
In general, the function defining the model (also called neural network) is

defined as a sequence of simpler operations. Therefore, in order to obtain the
gradient of the objective function with respect to the parameters θ, one needs to
be able to compute the gradient of a composition of functions. This is exactly
what the chain rule allows us to achieve.

Proposition 3.2.1 (Chain rule). Let f and g be two differentiable functions, and
let us denote h = f ◦ g. The partial derivative of h can be computed as follows:

∂h

∂·
=
∂f

∂g

∂g

∂·
(3.4)

For a neural network defined as fθ = f1,θ1 ◦ f2,θ2 ◦ . . . ◦ fd,θd
, the gradient of

the loss with respect to each set of parameters θi will be given by:

∂L
∂θi

=
∂L
∂f1,θ1

∂f1,θ1

∂f2,θ2

. . .
∂fi,θi

∂θi
(3.5)

We see in Equation 3.5 that the computation of ei = ∂L
∂f1,θ1

∂f1,θ1
∂f2,θ2

. . .
∂fi−1,θi−1

∂fi,θi
is

common for all the parameters’ gradients of indices j ≥ i and can therefore be
reused rather than recomputed for each set of parameters. This method gives its
name to the gradient computation in neural networks: backpropagation since we
backpropagate the error ei to compute ei+1.

Activations. In order to compute efficiently the different gradients involved in
the chain rule, we need to store the intermediate results of the computation of fθ.
These intermediate results are usually referred to as activations, and they typically
represent the largest share of the memory requirements of the model training.

A simplified example of why we need these activations for the gradient com-
putation is the following. Suppose we want to compute the gradient of fθ(x) =
exp

(
θ⊤x

)
.

∂fθ(x)
∂θ

= exp
(
θ⊤x

)
· x = fθ(x) · x (3.6)
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Here, the activations are both fθ(x) and x (usually the output of a previous
intermediate operation).

3.2.3 . SGDs

In the typical setting formalized in Equation 3.2, the loss is expressed as a
sum over elements of the dataset. Therefore, the gradient of the loss can also
be expressed as a sum over elements of the dataset, by linearity of the gradient.
One can take advantage of this property when the dataset is too large, making
the computation of the full gradient too computationally expensive. Indeed rather
than computing the full gradient at each gradient descent step, one can compute
only a stochastic gradient by summing over a batch of the dataset and not the
whole dataset. The stochastic gradient descent algorithm is the de facto algorithm

Algorithme 1 : Stochastic Gradient Descent.
Result : Optimal parameters θ⋆

1 Batch size b, learning rate η, iteration index k = 0
2 while not converged do
3 Sample b elements indices from the dataset D, i1, . . . , ibuniformly at random without replacement, and removethem from D
4 θ(k) ← θ(k−1) − η

∑b
j=1

∂L(f
θ(k−1) (xij

),yij
,D,ij ,θ(k−1))

∂θ(k−1)

5 k ← k + 1
6 θ⋆ = θ(k)

used to train neural networks [LeC+89] and as such is summarized in Algorithm 1.

Enhanced versions. An entire field of research (called optimization for deep
learning) is dedicated to improving the efficiency of stochastic gradient descent in
the context of deep learning. Some algorithms can be readily borrowed from the ex-
isting first-order optimization literature like the idea of using a momentum [Sut+13].
More tailored approaches also exist, and they usually try to tackle the fact that dif-
ferent parameters of the models might have different learning rates. Adam [KB15]
and RMSProp [HSS12] are two examples of such approaches.

Role on generalization. Early works [LeC+12] mentioned SGD as one of the
main factors explaining the generalization capabilities of neural networks. However,
this claim has been recently disputed, with some works suggesting that this asser-
tion is right [SL18; SED20] whereas others argue that full batch gradient descent
can perform as well [Hua+20; Gei+21].

3.2.4 . Computing power of GPUs
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The vast majority of the blocks used to build deep learning models are linear
functions and point-wise nonlinearities. Making sure that these operations can be
executed as fast as possible on hardware is key to obtaining a practical tool. GPUs
provide the possibility to write these operations in a highly parallel way [CPS06].
This can result in impressive computation gains compared to Central Processing
Units (CPUs): typically up to 7 times faster for training [BD18].

In practice, the complexity of using custom operations on GPUs is abstrac-
ted away from the end user by the typical deep learning frameworks like Tensor-
Flow [Aba+16] or PyTorch [Pas+19]. This allows a low barrier of entry for re-
searchers in conjunction with the increasing availability of computing resources
either via online tools such as Colab [19b] or Kaggle [10], or via public-funded su-
percomputers like the Jean Zay supercomputer [19c] we used for a large majority
of the experiments.

3.2.5 . Big Data

As neural networks use a very high number of parameters, they are prone to
overfitting in the classical regime.2 One way to regularize such networks without
losing too much of their capacity is to train them with more data. This is why the
dataset gathering efforts have also been key to the success of deep learning.
Some examples include:

• ImageNet [Den+09] for image classification;

• WikiText-103 [Mer+16] for language modeling;

• IMDB dataset [Maa+11] for sentiment analysis;

• Cityscapes [Cor+16] for semantic segmentation;

• fastMRI [Zbo+18] for MRI reconstruction;

• YouTube-8M [Abu+16] for video classification;

• howto100m [Mie+19] for text-video representation learning;

• TUH [Har+14] for EEG signals analysis;

• COCO [Lin+14] for object detection;

• CelebA [Liu+15] for facial attributes recognition;

• KITTI [Gei+13] for robotics and vision.

2although recently the phenomenon of double descent [Bel+19; Nak+20; BHX20] /grokking [Pow+21] has questioned our understanding of overfitting.
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Figure 3.2-2: Samples of the ImageNet dataset [Den+09], courtesy ofKarpathy [Kar19].
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Data augmentation. Collecting more data to build even bigger datasets is
sometimes out of reach due to the potential costs involved. When simulation is
not an option to generate data, data augmentation can be used to increase the
size of the dataset albeit in a much less rich manner. Data augmentation has
however played a huge role in improving the performance of neural networks and
is sometimes central to the method used like in contrastive learning.

The concept of data augmentation is to apply a transformation T to an element
of the dataset x or (x,y) and add its result to the dataset. The goal is then to
find a set of transformations ST that fulfills the invariances or equivariances of the
problem.

3.3 . Classical Architectural Blocks of Deep Learning

This section presents the typical blocks that go into the design of a neural
network. While as presented in section 3.2 the blocks are typically used sequentially,
some of the ones presented hereafter do not fit this description. Due to this typically
sequential nature, the blocks are usually called layers, but this term is overloaded,
and a layer can be defined in the literature as a composition of many of these
blocks.

3.3.1 . Perceptron
The Perceptron [Ros58] is the most widely thought of neural network building

block. It serves for example as a basis for the Multi-Layer Perceptron (MLP), which
basically chains multiple Perceptron layers. The Perceptron is applied on an input
x ∈ Rpin , and can be defined as:

fW ,b(x) = σ(W⊤x + b) ∈ Rpout (3.7)
where σ is the activation function, typically a Rectified Linear Unit (ReLU) or a
sigmoid, W ∈ Rpout×pin is the weight matrix, and b ∈ Rpout is the bias vector. An
MLP is then defined as a composition of several Perceptron layers, with potentially
varying dimensions pin and pout.

3.3.2 . Nonlinearities
An important aspect of deep learning is the use of nonlinearities in order to

create highly non-linear functions. Let us discuss here the most common nonlin-
earities used in deep learning whose implementation can be found in the common
deep learning frameworks, potentially under the name “activation”. Most of the
typical nonlinearities in deep learning are defined pointwise, i.e. are applied inde-
pendently to all the coordinates of the input. For a more extended discussion on
nonlinearities we refer the reader to the review of Nwankpa et al. [Nwa+18].

ReLU and variants. The ReLU [NH10b] is the most commonly used nonlin-
earity in deep learning. The ReLU is applied on an input x with any shape and

52



can be defined pointwise as:

f(x) = max(0,x) (3.8)
2 aspects make the ReLU a surprising candidate to build neural networks:

• It is non-differentiable at 0. However, this is often overlooked as the input
to it is rarely exactly 0.

• It has a gradient of 0 for negative inputs. This means that in roughly half
of the cases, the gradient is annealed by the ReLU making the training less
efficient.

This last problem is partly what causes the vanishing gradient problem. In order to
address this limitation, some variants of the ReLU have been proposed. The first
is the Leaky ReLU (LReLU) [MHN13], which is defined pointwise as:

fα(x) = max(0,x) + αmin(0,x) (3.9)
where α ∈ R⋆,+ is a constant scalar usually taken smaller than 1. A natural exten-
sion of this is the Parametric ReLU (PReLU) [He+15], which is defined pointwise
as:

fα(x) = max(0,x) + α min(0,x) (3.10)
where α ∈

(
R⋆,+)p is a learnable parameter of the activation function, typically

shared across some dimensions of the input.

Sigmoid. The sigmoid is a nonlinearity used when the output needs to be
bounded between two values, for example 0 and 1 in the case of an output poten-
tially interpreted as a probability. The sigmoid is defined pointwise as:

f(x) =
1

1 + exp(−x)
(3.11)

The sigmoid can also suffer from uninformative gradients at the tails and in some
situations should be avoided as pointed out by Ramzi et al. [Ram+21].

SoftMax. The SoftMax is one of the most widely used output nonlinearities in
deep learning when the output is expected to be similar to a probability distribution,
for example in classification. The SoftMax is defined on an input x ∈ Rp as:

f(x) =
ex∑p

j=1 e
xj

(3.12)
The SoftMax gets its name from the fact that it is a smooth version of the maximum
function. Indeed, the SoftMax exacerbates the differences between the maximum
and the other values.
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Tanh. The hyperbolic tangent is another nonlinearity used in deep learning,
although recently fallen out of favor. It is defined pointwise as:

f(x) = tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(3.13)

GELU. The Gaussian Error Linear Unit (GELU) [HG16] is a recently introduced
nonlinearity. It is defined pointwise as:

f(x) = xP (X < x) (3.14)
where P (X) ∼ N (0, 1). This function is now the de-facto function used in modern
architectures like MLP-Mixers [Tol+21].

3.3.3 . Convolutions
Convolutions are at the core of Convolutional Neural Networks (CNNs) [LeC+89;

Kri09], which are the first highly successful types of neural networks. Convolutions
are a special case of the Perceptron layer, where the weight matrix is actually a
convolution matrix. This is ideal for neural networks because it imposes a strong
inductive bias on the learned function which allows to reduce the amount of data
needed to train them. Indeed, the convolution is translation-equivariant which is
a desired behavior when working on a wide variety of signals, for example natural
images or sound. The convolution operation is defined for an input x ∈ Rw×h×c,
where w is the width of the image, h is the height of the image, and cin is the
number of channels of the image, as:

fW ,b(x)[i, j, k] =
K∑

i′=0

K∑
j′=0

Cin∑
k′=0

Wi′,j′,k,k′xi′+i− K
2 ,j′+j− K

2 ,k′+k + bk (3.15)

where i ≤ w, j ≤ h, and k ≤ cout, the number of output channels, K ∈ N is the
kernel size, W ∈ RK,K,Cin,Cout is the convolution kernel and b ∈ RCout is the bias.
This definition can be easily generalized to 1D or 3D convolutions.

A very nice dynamic explanation of how convolutions are applied to images in
CNNs can be found at this page cs231n.github.io/convolutional-networks/#conv [LK15].

Padding. The convolution is in practice not correctly defined at the edges of
the image. In order to tackle this, padding, i.e. enlarging the image, can be used.
The most common type of padding is zero-padding, where the image is enlarged
to a certain width and height by adding successive layers of 0s around it.

3.3.4 . Pooling
When working with signals, it is sometimes useful consider multiple scales. This

can be done using pooling operations, which reduce the dimension of the signal.
This is analogous to the decimation operation used in wavelets.
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Two types of pooling operations exist: average pooling and max pooling.
Max pooling is the most common pooling operation used in CNNs, and is

defined for an input x ∈ Rw×h as:

f(x)[i, j] = max
i′=− K

2 ... K
2 ,j′=− K

2 ... K
2

xi′+i,j′+j (3.16)
where K ∈ N is the pooling size.

Average pooling is mostly used as a final aggregation layer (called Global Av-
erage Pooling in this case) [LCY13]. It is defined for an input x ∈ Rw×h as:

f(x)[i, j] =
1
K2

K
2∑

i′,j′=− K
2

xi′+i,j′+j (3.17)
where K ∈ N is the pooling size.

3.3.5 . Normalization
In theory, the normalization of the inputs for neural networks is not necessary

since the weights should be learned to take into account the range of the inputs
values. However, in practice, because the training happens on computers with
finite precision, it is essential to normalize the inputs [Bis+95, Chap. 8]. Moreover,
for very deep networks this also becomes true for the intermediary results. For this
purpose, batch normalization [IS15] was introduced as a technique to allow the
normalization of the intermediary results of neural networks. This technique was
then generalized to instance normalization [UVL16], layer normalization [BKH16]
and group normalization [WH18] which allow training with smaller batch sizes.3

We use the notation of Wu et al. [WH18] to introduce the different types of
normalization for images.

fµ,σ(x)[b, i, j, k] =
1

σb,i,j,k
(xb,i,j,k − µb,i,j,k) (3.18)

where µb,i,j,k = 1
m

∑
(b′,i′,j′,k′)∈Sb,i,j,k

xb′,i′,j′,k′ and σb,i,j,k =
√

1
m

∑
(b′,i′,j′,k′)∈Sb,i,j,k

(xb′,i′,j′,k′ − µb,i,j,k)2 + ϵ

define the mean and the standard deviation of the normalization, and m is the size
of the set Sb,i,j,k (usually constant). What defines each normalization is the choice
of the set Sb,i,j,k, as can be seen in Figure 3.3-3.

• For Batch normalization, Sb,i,j,k = {(b′, i′, j′, k′)|k = k′}.

• For Instance normalization, Sb,i,j,k = {(b′, i′, j′, k′)|b = b′, k = k′}.

• For Layer normalization, Sb,i,j,k = {(b′, i′, j′, k′)|b = b′}.

• For Group normalization, Sb,i,j,k = {(b′, i′, j′, k′)|b = b′, ⌊ k
c/g ⌋ = ⌊ k′

c/g ⌋}.

Notably some works tried to show that normalization might not be needed
within the network to obtain good performances [Bro+21].

3Weight normalization [SK16] is not a normalization technique but a reparameter-ization technique
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Figure 3.3-3: Illustration of the different choices of Sb,i,j,k. Courtesyof Wu et al. [WH18].
3.3.6 . Residual/skip connections

The residual and skip connections are the simplest blocks presented here. They
were introduced in order to solve the vanishing gradient problem [He+16]. These
2 blocks are not layers as such, but actually wrappers around other layers.

The residual connection is defined for a layer g and an input x as:

f(x) = g(x) + x (3.19)
On the other hand, the skip connection is defined for a layer g and an input x

as:
f(x) = x||g(x) (3.20)

where || is the concatenation operator.

3.3.7 . Attention
The conception of attention stems from the need to query memories/dictionaries

based on the data. The indexing or query mechanisms are not differentiable, mak-
ing them unfit for neural networks design. With this view, attention can be seen as
a “soft-indexing” or “soft-querying”. In its original form [BCB15], for keys K and
corresponding values v (coming from a potentially anterior computation), attention
can be defined as:

f(x;K,v) = SoftMax
(
x⊤K

)
v (3.21)

This concept was generalized by Vaswani et al. [Vas+17] in the self-attention
mechanism core to the Transformer architectures.

fWQ,WK ,WV
(x) = SoftMax

(
(x⊤WQ)⊤x⊤WK

)
x⊤WV (3.22)

We refer the reader to this widely acclaimed blog post for a more thorough and
intuitive explanation of the self-attention mechanism in Transformers: jalammar.github.io/illustrated-
transformer.

3.3.8 . Dropout
Dropout [Sri+14] used in the training of neural networks to regularize the

model. Intuitively, it tries to drop randomly parts of the connections between
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layers to make them less dependent on each other. In practice dropout is defined
by at training time for an input x ∈ Rd as:

fp(x) =
1
p
M ⊙ x where M ∼ Bd(p) (3.23)

where p ∈ [0, 1] is the dropout rate, and M is a binary mask.
Notice that the dropout introduces a scaling factor 1

p in order to compensate
the fact that some entries of the vector are set to 0, therefore reducing the total
“energy” of the vector. At test time, the dropout is just the identity, without
masking or scaling.

Other regularization techniques. Although dropout is one of the most
common regularization techniques in deep learning, it is not the only one.

• Data augmentation is sometimes cited as a regularization technique simply
because it reduces the overfitting by in practice increasing the size of the
training data.

• Weight decay, another name for L2-regularization,4 penalizes the weights
of the network based on their norm in the loss function.

✽ ✽ ✽
✽ ✽

✽

4the difference between the use of the 2 terms being just the implementation, seethis medium article for example
57

https://medium.com/unpackai/stay-away-from-overfitting-l2-norm-regularization-weight-decay-and-l1-norm-regularization-795bbc5cf958




Part II

Methodological Developments

59





4 - Review of Deep Learning for MRI recon-
struction

Chapter Outline

4.1 Paradigms for deep learning use in MRI reconstruction . . . . . 62
4.1.1 Plug-and-Play . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Agnostic learning . . . . . . . . . . . . . . . . . . . . 63
4.1.3 Single-domain restoration . . . . . . . . . . . . . . . . 63
4.1.4 Adversarial reconstruction . . . . . . . . . . . . . . . . 64
4.1.5 Deep Compressed Sensing . . . . . . . . . . . . . . . . 64
4.1.6 Deep Image Prior . . . . . . . . . . . . . . . . . . . . 64
4.1.7 Self-supervised . . . . . . . . . . . . . . . . . . . . . . 65
4.1.8 Implicit field learning . . . . . . . . . . . . . . . . . . 65

4.2 Benchmarking unrolled networks for MRI reconstruction . . . . 66
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Related works . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Unrolled networks for MRI reconstruction . . . . . . . . . . . . 77
4.3.1 Model-based Deep Learning . . . . . . . . . . . . . . . 77
4.3.2 Variational Network . . . . . . . . . . . . . . . . . . . 77
4.3.3 Σ-Net . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.4 End-to-end VarNet . . . . . . . . . . . . . . . . . . . 78
4.3.5 Neumann Network . . . . . . . . . . . . . . . . . . . . 79

The second section of this chapter was published in a peer-reviewed journal:

Zaccharie Ramzi, P. Ciuciu and J. L. Starck. “Benchmarking MRI reconstruc-
tion neural networks on large public datasets”. In: Applied Sciences (Switzer-
land) 10.5 (2020)

This work was also presented in an international peer-reviewed conference
with proceedings:

Zaccharie Ramzi, P. Ciuciu and J. L. Starck. “Benchmarking Deep Nets
MRI Reconstruction Models on the Fastmri Publicly Available Dataset”. In:

61



Proceedings - International Symposium on Biomedical Imaging. Vol. 2020-
April. 2020, pp. 1441–1445

The main reason we want to use deep learning for MRI reconstruction is that
it should allow us to learn a prior on MR images from k-space data which is

more faithful and thus more powerful than the usual fixed sparsifying transforms.
However, there are many ways to tackle the learning of this prior and use it after-
wards in the reconstruction process. In this chapter we will present a selection of
works that have used deep learning in different ways to tackle the problem of MRI
reconstruction and compare some of them together.

4.1 . Paradigms for deep learning use in MRI reconstruction

In this section, we intentionally omit the unrolled framework which we will
discuss in depth in the following sections. In order to get an in-depth view of
some of the points discussed here, we recommend the review written by Ongie
et al. [Ong+20]. Additionally, it is worth mentioning that in this section we do not
tackle some specific issues related to MRI reconstruction such as multi-contrast
or dynamic image reconstruction, unpaired datasets, motion correction, B0 field
inhomogeneities or gradient inaccuracies.

4.1.1 . Plug-and-Play
The idea behind Plug-and-Play (P&P) did not appear with deep learning. It was

originally introduced by Venkatakrishnan et al. [VBW13] where the focus was on
existing denoising algorithms like BM3D [Dab+06], which were not deep learning
based. The key observation is that the proximal operator involved in Equation 2.9
plays the role of a denoiser. Therefore, one could try to replace this proximal
operator with a performant denoiser, which does not necessarily match the proximal
operator of a regularization term.

This idea can then be used with trained denoisers which in practice are outper-
forming classical denoisers. This was implemented in many recent works [Zha+17b;
ZZZ19; MMC17; Ryu+19; Xu+20], some even using Reinforcement Learning to
tune the parameters of the optimization algorithm [Wei+20].

Bayesian view and score. The P&P approach can be well understood by
considering the Bayesian formulation of inverse problems and score matching. The
Bayesian view of inverse problems reads the following:

p(x|y) ∝ p(y|x) p(x) (4.1)
where x is the object (i.e. signal or image) to recover and y are the noisy meas-
urements. In Equation 4.1 p(y|x) stands for the likelihood function, i.e. the
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probability of observing the actual measurements y given the object x and p(x)
the prior distribution on x.

We can use Equation 4.1 to estimate the most likely x, by maximizing the
posterior distribution:

x̂MAP = arg max
x

log p(x|y) (4.2)
= arg min

x
− log p(x|y) (4.3)

= arg min
x

[− log p(x)− log p(y|x)] (4.4)
which is equivalent to Equation 2.7 with − log p(x) = λ∥ψx∥1 and − log p(y|x) =∑L

l=1
1
2∥yl − FΩSlx∥22. In the Bayesian framework, assuming that log p is differ-

entiable, the ISTA step (i.e. Equation 2.9) is then rewritten as:

xn+1 = xn + ϵn∇x log p(y|x)(xn)
xn+1 = xn + ϵn∇x log p(xn+1)

(4.5)
In Equation 4.5 we clearly see that the proximal step is equivalent to the gradient
step of the log prior over the object to recover. This term is called the score of
the prior distribution. Interestingly, it has been shown that this score can be well
approximated (up to a Gaussian kernel convolution) by a denoiser of the object of
interest [Hyv05; AB13].

4.1.2 . Agnostic learning
From a machine learning perspective, one could consider the problem of MRI

reconstruction a supervised regression problem (if given a sufficiently large data-
base of fully-sampled MR images). The problem then reduces to finding the best
function f that maps k-space data y to MR images x, by minimizing an ℓ2 loss:
arg minf

1
2
∑

i ∥xi− f(yi)∥22. This approach was taken by Zhu et al. [Zhu+18] in
their seminal paper introducing AUTOMAP.

Their model is very simple in that it consists in applying Multi-Layer Perceptron
(MLP) followed by convolutions to the k-space data. Because it uses MLP on the
full data, it does not scale well to images of high resolution, multicoil data or 3D.
However, this work was instrumental in showing the promises that deep learning
holds for MRI reconstruction.

4.1.3 . Single-domain restoration
In MRI reconstruction, one has access to a naive reconstructor in the form

of AH (taking the notations from subsection 2.2.1). Therefore, one can work on
either restoring the k-space before the application of AH [HSY19], or one can
work on restoring the aliased image AHy [Lee+18; Han+18]. The first approach
will solve the problem arg minf

1
2
∑

i ∥xi−AHf(yi)∥22 while the second will solve
arg minf

1
2
∑

i ∥xi − f(AHyi)∥22. In effect, we can observe that those amount
to rewriting agnostic learning where we introduce knowledge about the underlying
physics to solve the reconstruction problem.
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4.1.4 . Adversarial reconstruction
In order to improve the results one might get by training a neural network in a

supervised way, like in the single-domain restoration setting, it might be necessary
to work on the loss function. Indeed, the ℓ2 loss is just a proxy measure of the
quality of the reconstruction, which in the end comes down to the appreciation by
experts. A better proxy might be the SSIM [Wan+04] or the MSSIM [WSB03],
as these metrics will be used to judge the reconstructions quantitatively. An even
better solution is to use a neural network to determine if the image really looks
like an MR image, and is typically free from common artifacts one might find with
supervised reconstruction using the ℓ2 loss. This can be achieved by adding an
adversarial loss to the ℓ2 loss, inspired by GANs [Goo+14] and recent results on
conditional GANs [Zhu+17]. The problem to solve then becomes:

arg max
g

arg min
f

E∥x− f(y)∥22 + Ex log g(x)− Ey log g(f(y)) (4.6)
This was successfully implemented for MRI reconstruction [MNJ18; Dra+17], al-
though it is difficult to judge the results in practice as demonstrated by Hammernik
et al. [Ham+19] given the lower performance on image quality quantitative metrics.

4.1.5 . Deep Compressed Sensing
Another GAN-inspired technique is that of Deep CS [Bor+17; WRL19]. The

idea is to train a GAN denoted g to reconstruct MR images from random vectors
z drawn from a Gaussian distribution. We can then use this GAN as a prior to
reconstruct the MR images, by solving the following equation:

z⋆ = arg min
z

∥y −Ag(z)∥22 (4.7)
The resulting image is then x = g(z⋆).

This process has been further refined to train the generator to tackle specifically
the inverse problem [WRL19] as well as the out-of-distribution problem [Dar+21].

4.1.6 . Deep Image Prior
The Deep Image Prior (DIP) [UVL18] technique is based on the following

assumption: the architecture of neural networks is already a sufficiently strong
prior to represent natural images. The way this prior is used in inverse problems,
is by solving the following problem:

θ⋆ = arg min
θ

∥y −Afθ(z)∥22 (4.8)
where z is just a random vector. The resulting image is then x = fθ⋆(z). In other
words, DIP overfits a neural network with an appropriate architecture (typically a
CNN) to fit the measurements.

This technique was applied to MRI reconstruction by Darestani et al. [DH20].
A great advantage of this technique is that it does not require any training data
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except to validate the architecture of the neural network. In this sense, DIP stands
out a bit in the MRI applications of deep learning, as it does not learn a prior from
the data, but rather uses the architectural prior of CNNs.

Inference time training. The idea of inference time training has been used
outside the context of DIP. The goal in this case is to slightly adapt the weights
of the neural network to a potentially new distribution [Sun+20]. This was done
in the context of MRI reconstruction by Hammernik et al. [Ham+19], and referred
to as semi-supervised fine-tuning.

4.1.7 . Self-supervised
Aside from DIP, most of the techniques introduced above require a substantial

amount of fully-sampled (i.e. not accelerated or not undersampled) training data.
Most of the time, only undersampled data are available because it is closer to the
clinical routine. Therefore, techniques that can leverage such data are desired.

In MRI, such techniques will generally rely on partitioning the undersampled
k-space data into 2 subsets. Yaman et al. [Yam+20] used one subset as the
input to a reconstruction network whose goal is to infer the other subset, by first
reconstructing the image and then using the measurement operator associated with
this second subset. The problem to solve then reads:

arg min
f

∥y(2) −A2f(y(1))∥22 (4.9)
where y(i) denotes the i-th subset of the undersampled k-space data, and A2
denotes the measurement operator associated with the second k-space subset. Hu
et al. [Hu+21] reconstruct an image with independent networks for each of the two
subsets and then make sure that the two reconstructions are consistent between
them and with the original full measurements. The problem to solve is then the
following:

arg min
f,g

∥f(y(1))− g(y(2))∥22 + α∥y −Af(y(1))∥22 + β∥y −Ag(y(2))∥22 (4.10)
where α and β are hyperparameters. At test time one can use f or g to reconstruct
the undersampled k-space data.

4.1.8 . Implicit field learning
The implicit field learning technique has been popularized by recent works on

scene rendering [Mil+20; Sit+20]. The concept of implicit field learning is to learn
a point-by-point representation of an object. In the case of scene rendering, it can
be a mapping from a 3D position in space and a viewing direction (as well as other
parameters such as the light direction) to a color in RGB space and a density. The
implicit field network fθ will then be learned by minimizing for a given field x:

∥fθ(x, y, z)− x[x, y, z]∥22 (4.11)
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In MRI reconstruction, we have the option to learn one of two possible fields:

• the field of the measurements, i.e. the k-space;

• the field of the reconstructed image.

The measurements field is the one computed by Sun et al. [Sun+21], where
the measurements field is not reconstructed in its entirety, but rather completed
to be used in a subsequent reconstruction algorithm. In this case the implicit
field is used to extrapolate unsampled k-space data. Shen et al. [SPX21] instead
learn an implicit field on a reference image and fine-tune it at test time on a new
image from the same patient. This idea can be applied to contexts where the
same patient is scanned sveral times in a restricted amount of time, for example
to follow up on the evolution of a condition or before and after contrast agent (e.g.
Gadolinium) injection. A more complete survey on implicit fields for computer
vision was recently carried out by Xie et al. [Xie+21].

4.2 . Benchmarking unrolled networks for MRI reconstruction

4.2.1 . Introduction
Some works [AÖ18b; Eo+18; Sch+18] have tried to inspire themselves from

existing classical methods in order to leverage problem specific properties, but also
from expertise gained in the field. However, they have not been compared against
each other on a large dataset containing complex-valued raw data.

A recently published dataset, i.e. fastMRI [Zbo+18], allows this comparison,
although it is still to be done and requires an implementation of the different
networks in the same framework to allow for a fairer comparison in terms for
example of runtime.

Our contribution is exactly this, that is:

• Benchmark different neural networks for MRI reconstruction on 2 datasets:
the fastMRI dataset, containing raw complex-valued knee data, and the
OASIS dataset [LaM+18] containing DICOM real-valued brain data.

• Provide reproducible code and the networks’ weights1, using Keras [Cho+15]
with a TensorFlow backend [Aba+16].

While our benchmark focuses on classical MRI modalities reconstruction, it
is worth noting that other works have applied deep learning to other modalities
like MR fingerprinting [VYL18] or diffusion-weighted MRI [AMJ20]. The networks
studied here could be applied, but would not benefit from some invariants of the
problem, especially in the fourth (contrast-related) dimension introduced. We also
specify that this benchmark was carried out in the 2D single-coil Cartesian (i.e.
simplest) setting.

1github.com/zaccharieramzi/fastmri-reproducible-benchmark
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4.2.2 . Related works
In this section we briefly discuss other works presenting benchmarks on recon-

struction neural networks.
Minh Quan et al. [MNJ18] benchmark their (adversarial training based) al-

gorithms against classical methods and against Cascade-net (which they call Deep
Cascade) [Sch+18] and ADMM-net (which they call DeepADMM) [Pui+16]. They
train and evaluate quantitatively the networks on 2 datasets, selecting each time
100 images for train, 100 images for test:

• the IXI database2 (brains);

• the Data Science Bowl challenge3 (chests).

While these two datasets provide a sufficient number of samples to have a trust-
worthy estimate of the performance of the networks, they are not composed of
raw complex-valued data, but of DICOM magnitude-only (i.e. positive real) data.
Minh Quan et al. [MNJ18] evaluate their algorithms on a raw complex-valued data-
set,4 but it only features 20 acquisitions, and therefore the comparison is only done
qualitatively.

Eo et al. [Eo+18] benchmark their algorithm against classical methods. They
train and evaluate their network on 3 different datasets:

• the brain magnitude-only data set provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [Pet+10];

• 2 proprietary datasets with raw complex-valued brain data.

Again, the only public dataset they used features magnitude-only data. Additionally,
it is worth mentioning that their code is not open, i.e. it cannot be found online.

4.2.3 . Models
Baseline U-net

We use a U-net-like [RFB15] architecture as a baseline single-domain restoration
network. This network was originally built for image segmentation, but has since
been used for a wide variety of image-to-image tasks, mainly as a strong baseline.
Han et al. [HSY19] used a U-net to apply on the undersampled k-space measure-
ments before performing the inverse FT. Hyun et al. [Hyu+18] used a U-net to
apply on the zero-filled reconstruction and correct the output of the U-net with
a DC step (where they replace sampled values in the k-space). The network we
implemented was however vanilla, without this extra DC step. Our implementation
features the following cascade of number of filters: 16, 32, 64, 128. The original
U-net is illustrated in Figure 4.2-1 where the number of filters used in each layer
is 4 times what we used.

2brain-development.org/ixi-dataset/3kaggle.com/c/second-annual-data-science-bowl/data4mridata.org/list?project=Stanford%20Fullysampled%203D%20FSE%20Knees
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Figure 4.2-1: Illustration of the U-net, courtesy of Ronneberger et al.[RFB15]. In our case the output is not a segmentation map but a recon-structed image of the same size (we perform zero-padding to preventdecreasing sizes in convolutions).

Unrolled networks

The second class of networks we introduce, are unrolled networks (or cross-domain
networks). The key intuitive idea is that they correct the data in both the k-space
and the image space alternatively, using the FT to go from one space to the other.
They are derived from the optimization algorithms used to solve the optimization
problems introduced before, using the idea of “unrolling” introduced by Gregor et al.
[GL10]. An illustration of this class of networks is presented in Figure 4.2-2.

As these networks work directly on the input data (and not on a primarily re-
constructed version of it), they need to handle complex-valued data. In particular,
the classical deep learning frameworks (TensorFlow and Pytorch) do not feature
the ability to perform complex convolutions off-the-shelf. The way convolution is
performed in the original papers is therefore to concatenate the real and imaginary
parts of the image (respectively the k-space), making it a 2-channel image, per-
form the series of convolutions, and have the output be a 2-channel image then
transformed back in a complex image (respectively k-space).

The Cascade-net [Sch+18] is based on the dictionary learning optimization
problem (2.12). The idea is to replace the dictionary learning step by convolutional
neural networks and still keep the data consistency step in the k-space. The optim-
ization algorithm is then unrolled to allow the back-propagation to be performed.
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Figure 4.2-2: Unrolled networks. The common backbone betweenthe Cascade net, the KIKI-net and the PD-net. US mask stands for un-dersampling mask. DC stands for data consistency. (I)FFT stands for(Inverse) Fast Fourier Transform. Nk,d is the number of convolutionlayers applied in the k-space. Ni,d is the number of convolution lay-ers applied in the image space. NC is the total number of alternationsbetween the k-space and the image-space. It is worth mentioning thatin the case of PD-net, the data consistency step is not performed witha replacement operator but with a residual, the Fourier operators arecarried out with the original undersampling mask, and a buffer is con-catenated along with the current iteration to allow for some memorybetween iterations and learn the acceleration (in the k-space net -dualnet- it is also concatenated with original k-space input). In the case ofthe Cascade net, Nk,d = 0, only the data consistency is performed inthe k-space. In the case of the KIKI-net, there is no residual connectionin the k-space. However, the k-space and image space nets could po-tentially be any kind of image-to-image neural network.
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Figure 4.2-3: Illustration of the Cascade-net, courtesy of Schlemperet al. [Sch+18]. Here each Ci is a convolutional block of 64 filters (48in our implementation) followed by a ReLU nonlinearity, nd is the num-ber of such convolutional blocks forming a convolutional subnetworkbetween each data consistency layer DC , and nc is the number of con-volutional subnetworks.

Figure 4.2-4: Illustration of the KIKI-net, courtesy of Eo et al. [Eo+18].The KCNN and ICNN are convolutional neural networks composed ofa number of convolutional blocks varying between 5 and 25 (we imple-mented 25 blocks for both KCNN and ICNN), each followed by a ReLUnonlinearity and featuring between 8 and 64 filters (we implemented32 filters). For both the varying numbers, Eo et al. [Eo+18] show thatthe higher, the better. The ICNN also features a residual connection.
Schlemper et al. [Sch+18] show that we can perform back-propagation through
the data consistency step (which is linear), and derive the corresponding Jacobian.
The parameters used here for the implementation are the same as those in the
original paper, except the number of filters which was decreased from 64 to 48 to
fit on a single GPU. This network is illustrated in Figure 4.2-3.

The KIKI-net [Eo+18] is an extension of the Cascade-net where they addi-
tionally perform convolutions after the data consistency step in the k-space. The
parameters used here for the implementation are the same as those in the original
paper. This network is illustrated in Figure 4.2-4.

The Primal-Dual-net (PD-net) was introduced by Adler et al. [AÖ18b] and
applied to MRI by Cheng et al. [Che+19]. It is based on the resolution of Equa-
tion 2.7 with the PDHG [CP11] algorithm. Here this algorithm is unrolled and the
proximity operators (present in the general case of PDHG) are replaced by convo-
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Figure 4.2-5: Illustration of the PD-net, courtesy of Adler et al.[AÖ18b]. Here T denotes themeasurement operator, which in our caseis the undersampled FT, T ∗ its adjoint, g is the measurements, whichin our case are the undersampled k-space measurements, and f0 and
h0 are the initial guesses for the direct and measurement spaces (theimage and k-space in our case). The initial guesses are zero tensors.Because we transform complex-valued data into 2-channel real-valueddata, the number of channels at the input and the output of the convo-lutional subnetworks are multiplied by 2 in our implementation.
lutional neural networks. In our implementation, for a fairer comparison with the
Cascade-net and U-net, we used a ReLU nonlinearity instead of a PReLU [He+15].
This network is illustrated in Figure 4.2-5.

Training

The training was done with the same parameters for all the networks. The optim-
iser used was Adam [KB15], with a learning rate of 10−3 and default parameters
of Keras (β1 = 0.9, β2 = 0.999, the exponential decay rates for the moment
estimates). The gradient norm was clipped to 1 to avoid the exploding gradient
problems [PMB13]. The batch size was 1 (i.e. one slice) for every network except
the U-Net where the whole volume was used for each step. For all networks, to
maximise the efficiency of the training, the slices were selected in the 8 innermost
slices of the volumes, because the outer slices do not have much signal. No early
stopping or learning rate schedule was used (except for KIKI-net to allow for a
stable training where we used the learning rate schedule proposed by Eo et al.
[Eo+18]). The number of epochs used was 300 for all networks trained end-to-
end. For the iterative training of the KIKI-net, the total number of epochs was
200 (50 per subtraining). Batch normalization was not used, however, in order
to have the network learn more efficiently, a scaling of the input data was done.
Both the k-space and the image were multiplied by 106 for fastMRI and by 102 for
OASIS, because the k-space measurements had values of mean 10−7 (looking sep-
arately at the real and imaginary parts) for fastMRI and of mean 10−3 for OASIS.
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Without this scaling operation, the training proved to be impossible with bias in
the convolutions and very inefficient without bias in the convolutions.

4.2.4 . Data
Undersampling

The undersampling was done retrospectively using a Cartesian mask described in
the data set paper [Zbo+18], and an AF of 4 (i.e. only 25% of the k-space was
kept). It contains a fully-sampled region in the lower frequencies, and randomly
selects phase encoding lines in the higher frequencies.

It is to be noted that different undersampling strategies exist in CS-MRI. Some
of them are listed by Chauffert et al. [Cha+14], like for example spiral or ra-
dial. These strategies allow for a higher image quality while having the same AF
or the same image quality with a higher AF. Typically, the spiral undersampling
scheme was designed to allow fast coronary imaging [IN95; Mey+92]. These under-
sampling strategies must take into account kinematic constraints (both physically
and safety based), but also should also be with variable density [Cha+14]. Re-
cent works even try to optimize the undersampling strategy under these kinematic
constraints [Laz+19]. Others have tried to learn the undersampling strategy in a
supervised way. Sanchez et al. [San+20a] learned the undersampling strategy with
a greedy optimization. Sherry et al. [She+20] used a gradient descent optimization.
Some approaches [AMJ20; WRL19; Wei+21] even try to learn jointly the optimal
undersampling strategy along with the reconstruction.

fastMRI

The data used for this benchmark is the emulated single-coil k-space data of the
fastMRI knee dataset [Zbo+18], along with the corresponding ground truth images.
The acquisition was done with a 15-channel phased array coil, in Cartesian 2D
Turbin Spin Echo (TSE). The pulse sequences were proton-density weighting, half
with fat suppression, half without, some at 3.0 T others at 1.5 T. The sequence
parameters were as follows: Echo train length 4, matrix size 320 × 320, in-plane
resolution 0.5mm×0.5 mm, slice thickness 3 mm, no gap between slices. In total,
there are 973 volumes (34, 742 slices) for the training subset and 199 volumes (7135
slices) for the validation subset.

Since the k-spaces are of different sizes, therefore resulting in images of different
sizes, the outputs of the unrolled networks were cropped to a central 320 × 320
region. For the U-net, the input of the network was cropped.

OASIS

The Open Access Series of Imaging Studies (OASIS) brain database [LaM+18] is
a database including MRI scans of 1068 participants, yielding 2168 MR sessions.
Of these 2168, we select only 2164 sessions which feature T1-weighted sequences.
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1878 of these were acquired on a 3.0 T 236 at 1.5 T and the remaining are
undisclosed (50). The slice size is majorly 256 × 256, and sometimes 240 × 256
(rarely it can be some other sizes). The number of slices per scan is majorly 176,
and sometimes 160 (rarely it can be smaller).

The data was then separated in a training and a validation set. The split was
participant-based, that is a participant cannot have a scan in both sets. The split
was of 90% for the training set and 10% for the validation set. We further reduced
the training data to make it comparable to fastMRI, to 1000 scans randomly
selected for the training subset and 200 scans randomly selected for the validation
subset.

Contrarily to fastMRI, the OASIS data is available only in magnitude and
therefore is only real-valued. The k-space is computed as the inverse FT of the
magnitude image.

4.2.5 . Results

Metrics

In order to evaluate the reconstruction quality of the networks, we used the PSNR
and SSIM, both of which are discussed in subsection 2.4.1. As mentioned in subsec-
tion 2.4.3, we compute these metrics volume-wise even though our reconstruction
setup is 2D.

While the 2 aforementioned metrics control the reconstruction quality, it is im-
portant to note that this is not the only factor to take into account when designing
reconstruction techniques. Because the reconstruction has to happen fast enough
for the MR physician to decide whether to re-conduct the exam or not, it is im-
portant for the proposed technique to have a reasonable reconstruction speed. For
real-time MRI applications or dynamic MRI (e.g. cardiac imaging), it is even more
important (for example in the context of monitoring surgical operations [Hor+07]).
The runtimes were measured on a computer equipped with a single GPU Quadro
P5000 with 16 GB of RAM.

Concurrently, the number of parameters has to stay relatively low to allow the
implementation on the different machines with potentially limited memory, which
will probably need to have multiple models (for various imaging contrasts, organs
or undersampling schemes including several AFs).

In summary, we use 4 metrics to compare the different approaches:

• PSNR;

• SSIM;

• reconstruction time;

• number of parameters.
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Quantitative results

Table 4.1: Quantitative results for the fastMRI dataset. PSNR andSSIM mean and standard deviations are computed over the 200 valid-ation volumes. Runtimes are given for the reconstruction of a volumewith 35 slices.
Network PSNR-mean (std) (dB) SSIM-mean (std) #params Runtime (s)
Zero-filled 29.61 (5.28) 0.657 (0.23) 0 0.68
KIKI-net 31.38 (3.02) 0.712 (0.13) 1.25M 8.22
U-net 31.78 (6.53) 0.720 (0.25) 482k 0.61

Cascade net 31.97 (6.95) 0.719 (0.27) 425k 3.58
PD-net 32.15 (6.90) 0.729 (0.26) 318k 5.55

The quantitative results in Table 4.1–Table 4.4 show that the PD-net [AÖ18b]
outperforms its competitors in terms of image quality metrics but also has the least
amount of trainable parameters. It is slightly slower than the Cascade-net [Sch+18]
though which can be explained by its higher number of iterations, involving there-
fore more costly FT (inverse or direct) operations. These results hold true on the
2 data sets, fastMRI [Zbo+18] and OASIS [LaM+18]. The only exception is that
KIKI-net [Eo+18] is slightly better than the U-net [RFB15] on the OASIS data set,
but still far from the best performers. We can also note that the standard devi-
ation of the image quality metrics is way higher in the fastMRI data set than in the
OASIS data set. This higher standard deviation is explained by the fact that the
2 contrasts present in the fastMRI dataset, Proton Density with and without Fat
Suprression (PD/PDFS), have widely different image metrics values. The stand-
ard deviations when we compute the metrics for each contrast separately are more
in-line with the OASIS ones. The range of the image quality metrics is also much
higher in the OASIS results.

Table 4.2: Quantitative results for the fastMRI dataset with the
Proton-Density with Fat Suppression (PDFS) contrast. PSNR andSSIM mean and standard deviations are computed over the 99 valid-ation volumes. Runtimes are given for the reconstruction of a volumewith 35 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)
Zero-filled 28.44 (2.62) 0.578 (0.095) 0 0.41
KIKI-net 29.57 (2.64) 0.6271 (0.10) 1.25M 8.88

Cascade-net 29.88 (2.82) 0.6251 (0.11) 425K 3.57
U-net 29.89 (2.74) 0.6334 (0.10) 482K 1.34
PD-net 30.06 (2.82) 0.6394 (0.10) 318K 5.38
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Table 4.3: Quantitative results for the fastMRI dataset with the
Proton-Density (PD) contrast. PSNR and SSIM mean and standarddeviations are computed over the 100 validation volumes. Runtimesare given for the reconstruction of a volume with 40 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)
Zero-filled 30.63 (2.1) 0.727 (0.087) 0 0.52
KIKI-net 32.86 (2.4) 0.797 (0.082) 1.25M 11.83
U-net 33.64 (2.6) 0.807 (0.084) 482K 1.07

Cascade-net 33.98 (2.7) 0.811 (0.086) 425K 4.22
PD-net 34.2 (2.7) 0.818 (0.084) 318280 6.08

Table 4.4: Quantitative results for the OASIS dataset. PSNR andSSIM mean and standard deviations are computed over the 200 valid-ation volumes. Runtimes are given for the reconstruction of a volumewith 32 slices.
Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)
Zero-filled 26.11 (1.45) 0.672 (0.0307) 0 0.165
U-net 29.8 (1.39) 0.847 (0.0398) 482k 1.202

KIKI-net 30.08 (1.43) 0.853 (0.0336) 1.25M 3.567
Cascade-net 32.0 (1.731) 0.887 (0.0327) 425k 2.234

PD-net 33.22 (1.912) 0.910 (0.0358) 318k 2.758

ReferenceZero-filled KIKI-net U-net Cascade-net PD-net

Figure 4.2-6: Reconstruction results for a specific slice (16th slice of
file1000196, part of the validation set). The first row represents thereconstruction using the different methods, while the second repres-ents the absolute error when compared to the reference.
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ReferenceZero-filled KIKI-net U-net Cascade-net PD-net

Figure 4.2-7: Reconstruction results for a specific slice (15th slice of
sub-OAS30367_ses-d3396_T1w.nii.gz, part of the validation set).The top row represents the reconstruction using the differentmethods,while the bottom row represents the absolute error when compared tothe reference.

Qualitative results

The qualitative results shown in Figures 4.2-6 – 4.2-7 confirm the quantitative ones
on the image quality aspect. The PD-net [AÖ18b] is much better at conserving
the high-frequency parts of the original image, as can be seen when looking at the
reconstruction error, which is quite flat over the whole image.

4.2.6 . Discussion

This section tackled the important task of comparing recent deep learning
approaches for MRI reconstruction on a sizeable dataset. The results suggest that
for unrolled networks, the tradeoff between a high number of iterations and a richer
correction in a certain domain (by having deeper networks) is in favor of having
more iterations (i.e. alternating more between domains). It is however unclear
how to best address the reconstruction in the k-space, since the convolutional
networks make a shift invariance hypothesis which is not tenable in the Fourier
space where the coefficients corresponding to the high frequencies should probably
not be treated in the same way as with the low frequencies. This leaves room for
improvement in the near future.

Due to a lack of computing resources, not all unrolled networks and their
variants could be tested, and therefore this benchmark can be judiciously comple-
mented with the work of Hammernik et al. [Ham+19]. The latter has not looked
at the tradeoff between image correction subnetwork size and number of unrolled
steps. It would be however interesting to extend this benchmark to include the
remaining unrolled networks.
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Although this benchmark was carried out in a simple acquisition setting, it
gives us grounds on how to most efficiently build networks that will perform well in
more challenging settings, like multicoil, non-Cartesian sampling and 3D imaging.

4.3 . Unrolled networks for MRI reconstruction

In this section we enumerate the different unrolled networks for MRI recon-
struction that were not covered by our benchmark.

4.3.1 . Model-based Deep Learning
Model-based Deep Learning (MoDL) [AMJ19] is the network obtained when

unrolling the Conjugate Gradient (CG) algorithm. Its iterations read as follows:

xn+1 = arg min
x

∥Ax− y∥22 + λ∥x− zn∥22 (4.12)
zn+1 = fθ(xn) (4.13)

Two important observations can be made regarding this model:

• Weight sharing is used between the different unrolled blocks.

• The data consistency layer is written as an optimization problem. In practice
this is solved via the CG algorithm, and the backpropagation is feasible as
the optimization problem has a closed form solution involving a large matrix
inversion. The authors claim that this way of imposing data consistency is
more accurate therefore reducing the number of necessary unrolled steps.

Aggarwal et al. [AMJ19] carried out ablation studies to evaluate the importance
of both aspects, showing that they were indeed providing a better performance in
their setting. Additionally, it can be hypothesized from their study that the reason
why weight sharing works well in this context is because they used a relatively small
dataset.

4.3.2 . Variational Network
The VarNet [Ham+18] is obtained when unrolling the Gradient Descent (GD)

algorithm derived from the classical MRI reconstruction optimization problem where
the regularization is a Field of Experts (FoE) model. Its iterations read as follows:

xn+1 = xn −
∑

l

fθl,n
(xn)− λnA⊤(Axn − y) (4.14)

where fθl,n
is a 2-layer convolutional neural network with a Gaussian Radial Basis

Function (RBF) with learned parameters as activation function. Hammernik et al.
[Ham+18] also add constraints on the convolution kernels to make sure that they
respect the condition of being derived from an FoE:

• The kernels have to be zero-mean.

• The kernels have to be of unit norm.
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4.3.3 . Σ-Net
The Σ-Net [Ham+19] is actually an ensemble of unrolled networks. The iter-

ations are obtained by unrolling ISTA steps:

xn+ 1
2

= xn − fθn(xn)

xn+1 = xn+ 1
2
− ηn

λn
A⊤(Axn+ 1

2
− y)

(4.15)

Hammernik et al. [Ham+19] then ensemble 3 types of network:

• one trained classically;

• one trained with an adversarial loss;

• one trained classically and using inference time training.

This allows them to keep the performance of the vanilla network while also im-
proving the texture of the reconstructed images. They also perform an extensive
ablation study to understand the impact of the following blocks on the perform-
ance:

• They looked at the impact of the Data Consistency layer. They show that
the impact of the MoDL [AMJ19] data consistency step is minimal, and that
sticking with the descent step is a decent option. Additionally, they demon-
strated that using data consistency is essential compared to just cascading
image enhancement networks.

• They looked at the impact of considering that x is a single aggregated
image (what they term Sensitivity Networks) or multicoil images (what they
term Parallel Coil Networks or Parallel Coil Network (PCN)). They showed
that this choice is not significant, although they noted that PCN do not
require sensitivity maps to be extracted. The authors did not however test
the impact of coil configuration on PCN.

• They finally benchmarked the different learning paradigms, and showed that
adversarial training and inference time training can help the reconstruction
texture and qualitative performance but will degrade the quantitative per-
formances (as expected).

4.3.4 . End-to-end VarNet
The essential addition of the End-to-End VarNet [Sri+20] is the sensitivity

maps estimation. Indeed, most works prior to it [Ham+18; AMJ19; Ham+19] re-
lied on ESPIRiT [Uec+14] to extract the sensitivity maps S. Sriram et al. [Sri+20]
proposed to use a CNN to refine sensitivity maps coarsely estimated by the inverse
FT of the masked k-space data in the low frequencies. This sensitivity maps refine-
ment module is embedded in the unrolled network in an end-to-end manner and
shared across coils.
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This work highlighted how deep learning can help in more than just learning a
prior over the object (here an image) to recover in inverse problems: it can also
help refine our knowledge of the measurements operator.

4.3.5 . Neumann Network
The Neumann Network [GOW19] is obtained when unrolling the Neumann

series used to solve the optimization problem arg minx
1
2∥y−Ax∥

2
2 +R(x) when

R is a quadratic term. Its iterations can be classically written as follows:

xn+1 = (I − ηA⊤A)xn − ηfθ(xn) (4.16)
The final output of the network is actually the sum of all the unrolled blocks
outputs:

∑
n xn.

Gilton et al. [GOW19] also proposed a preconditioning mechanism using
(
AHA+ λI

)−1

and a CG step to compute it as introduced in Aggarwal et al. [AMJ19].
Interestingly, this unrolled network is the only one to not rely on a data consist-

ency step, the measurements being used only at the network initialization stage:
x0 = ηA⊤y.

✽ ✽ ✽
✽ ✽

✽
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The first section of this chapter was presented as an oral in a peer-reviewed
conference:

Zaccharie Ramzi, P. Ciuciu and J.-L. Starck. “XPDNet for MRI Reconstruc-
tion: an application to the 2020 fastMRI challenge”. In: ISMRM. 2020, pp. 1–
4. Oral

The second section of this chapter was accepted for publication in a peer-
reviewed journal:

Zaccharie Ramzi, C. G R, J.-L. Starck and P. Ciuciu. “NC-PDNet: a Density-
Compensated Unrolled Network for 2D and 3D non-Cartesian MRI Reconstruc-
tion”. In: IEEE Transactions on Medical Imaging (2022)

Parts of this second section were also presented in an international peer-
reviewed conference with proceedings:

Zaccharie Ramzi, J. L. Starck and P. Ciuciu. “Density compensated unrolled
networks for non-cartesian MRI reconstruction”. In: Proceedings - International
Symposium on Biomedical Imaging. Vol. 2021-April. 2021, pp. 1443–1447
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In this chapter, we introduce two new unrolled networks for MRI reconstruc-
tion. Based on our benchmark, we based both these architectures on the

PDNet [AÖ18b]. These architectures essentially extend the original PDNet to
more challenging settings, first the 2D multicoil setting, and then the non-Cartesian
acquisition setting all the way to 3D imaging.

5.1 . XPDNet

5.1.1 . Introduction
The fastMRI 2020 brain MRI reconstruction challenge was organized by Face-

book and New York University (NYU), Langone Medical Center [Muc+21] in order
to evaluate the performance of MRI reconstruction algorithms. To participate, we
extended the promising PDNet architecture to the 2D multicoil setting, incorpor-
ating recent advances in denoising and MRI reconstruction along the way. The
resulting architecture is called the XPDNet, where the X stands for the fact that
it is implemented in a modular fashion where the image correction subnetwork can
be replaced by any performing denoising network. In this section we will present
this architecture and its results first on the validation set and then on the official
challenge results.

5.1.2 . Model
Unrolled networks.

The general intuition behind unrolled networks is that we are going to alternate the
correction between the image space and the measurements (i.e. k-space) space.
The key tool for that is the unrolling of optimization algorithms introduced by
Gregor et al. [GL10]. An illustration of what unrolled networks generally look like
is provided in Figure 5.1-1.

Unrolling the PDHG.

The XPDNet is a particular instance of cross-domain networks. It is inspired by the
PDNet introduced by Adler et al. [AÖ18b] by unrolling the PDHG algorithm [CP11].
In particular, a main feature of the PDNet is its ability to learn the optimization
parameters using a buffer of iterates, here of size 5.

Image correction network.

The plain CNN is replaced by a Multiscale Wavelet CNN (MWCNN) [Liu+18], but
the code1 allows for it to be any denoiser, hence the presence of X in its name. We
chose to use a smaller image correction network than that presented in the original
paper [Liu+18], in order to afford more unrolled iterations in memory [ZCS20b].

1github.com/zaccharieramzi/fastmri-reproducible-benchmark
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Additionally, because we use a small batch size, we removed batch normalization
layers from the network.

k-space.

In this challenge, since the data is multicoil, we did not use any k-space correction
network which would be very demanding in terms of memory footprint. However,
following the idea of Sriram et al. [Sri+20], we introduced a refinement network for
S, initially estimated from the lower frequencies of the retrospectively undersampled
coil measurements. This sensitivity maps refiner [Sri+20] is chosen to be a simple
U-net [RFB15].

We therefore have 25 unrolled iterations, an MWCNN that has twice as fewer
filters in each scale, a sensitivity maps refiner smaller than that of Sriram et al.
[Sri+20] and no k-space correction network.

Training details. The loss used for the network training was a compound
loss introduced by Pezzotti et al. [Pez+20], consisting of a weighted sum of an
L1 loss and the MSSIM [Wan+04]. The optimizer was the Rectified ADAM
(RAdam) [Liu+20] with default parameters.2 The training was carried for 100
epochs (batch size of 1) and separately for AFs 4 and 8. The networks were then
fine-tuned for each contrast for 10 epochs. Masks offset for the equidistant masks3

are sampled on-the-fly. On a single V100 GPU, the training lasted 1 week for each
acceleration.

Data. The network was trained on the brain part of the fastMRI dataset [Zbo+18].
The training set consists of 4,469 volumes from 4 different contrasts: T1, T2,
FLAIR and T1 with admissions of contrast agent (labelled T1POST). The valida-
tion was carried over 30 contrast-specific volumes from the validation set.

5.1.3 . Results
Quantitative. We used the PSNR and SSIM metrics to quantitatively compare
the reconstructed magnitude image and the ground truth. They are given for each
contrast and for the 2 AFs in the Figs. 5.1-2- 5.1-3. Similar results are available
on the public fastMRI leaderboard,4 although generally slightly better. It is a bit
difficult to consider these results when compared to only the zero-filled metrics,
but these quantitative metrics do not accurately capture the performance of the
GRAPPA algorithm [Gri+02]. However, at the time of submission, this approach
ranks 2nd in the fastMRI leaderboards for the PSNR metric, and finished 2nd in the
4× and 8× tracks of the fastMRI 2020 brain reconstruction challenge [Muc+21].

2tensorflow.org/addons/api_docs/python/tfa/optimizers/RectifiedAdam3To see more about the exact nature of the masks: git-hub.com/facebookresearch/fastMRI/issues/544fastmri.org/leaderboards
83

https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/RectifiedAdam
https://github.com/facebookresearch/fastMRI/issues/54
https://github.com/facebookresearch/fastMRI/issues/54
https://fastmri.org/leaderboards/


Qualitative. The visual inspection of the images reconstructed (available in
Figure 5.1-2) at AF 4 shows little to no visible difference with the ground truth
original image. However, when increasing the AF to 8, we can see that smoothing
starts to appear which leads to a loss of structure as can be seen in Figure 5.1-3.

5.1.4 . Conclusion and Discussion

We managed to gather insights from many works on computer vision and MRI
reconstruction to build a modular approach. Currently, our solution XPDNet is
among the best in PSNR and Normalized Mean Squared Error (NMSE) for both
the multicoil knee and brain tracks at the AFs 4 and 8. Furthermore, the modularity
of the current architecture allows us to use the newest denoising architectures when
they become available. However, the fact that this approach fails to outperform
the others on the SSIM metric is to be investigated in further work.

5.1.5 . Figures

Figure 5.1-1: General unrolled networks architecture. Skip and re-sidual connection are omitted for the sake of clarity. y are the under-sampled measurements, in our case the k-space measurements, Ω isthe undersampling scheme, F is the measurement operator, in ourcase the FT, and x̂ is the recovered solution.
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5.2 . NC-PDNet

5.2.1 . Introduction

The most well-known MRI reconstruction methods are employed to reconstruct
images from k-space data collected on a Cartesian grid, and therefore cannot be
tested in the more general non-Cartesian acquisition setting, when the measure-
ments are collected off the grid.

Non-Cartesian MRI acquisitions are of interest for multiple purposes. For ex-
ample, the radial acquisition that happens with projection acquisition can be used
for shorter echo times, reduced sensitivity to motion, and improved temporal res-
olution in some applications (e.g. angiography, dynamic MRI) [Pet+00; BKZ04a;
Fen+14]. The same statement holds for spiral imaging that remains insensitive
to in-plane flow-related artifacts [BKZ04a; NIM95]. As these setups are used in
clinical routine, it is crucial to push the development of DL reconstruction methods
for their application to these types of data.

Moreover, the interest in going from 2D to 3D imaging can be justified by
a higher SNR requested for targeting higher resolution in clinical use [Blo+14].
Although multiple approaches exist to efficiently sample the 3D k-space [The+99;
Fen+14; Laz+20; Cha+21], we will focus on full 3D radial undersampling as the
stacking strategies (e.g. stack of stars) can be tackled using a 2D (i.e. slicewise)
reconstruction method. However, due to hardware (i.e. GPU memory) constraints,
we focus on single-coil 3D imaging rather than on multicoil 3D imaging, and leave
this extension for future work.

We contributed to the domain of non-Cartesian MRI reconstruction by:

• introducing the NC-PDNet (i.e. Non-Cartesian PDNet), the first density-
compensated unrolled neural network for non-Cartesian k-space data;

• implementing the first unrolled networks for non-Cartesian multicoil MRI 2D
and single-coil MRI 3D data;

• open sourcing our implementation for all the networks, data processing, train-
ing, and evaluation5 in TensorFlow [Aba+16], in particular a version of the
Nonuniform Fast Fourier Transform (NUFFT) in the TensorFlow framework,
usable for multicoil and 3D data (with the corresponding density compens-
ation code);6

• performing some out-of-distribution performance tests for the trained net-
works in multiple acquisition scenarios and comparing them against the state
of the art.

5github.com/zaccharieramzi/fastmri-reproducible-benchmark6github.com/zaccharieramzi/tfkbnufft
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5.2.2 . Related Works
Correcting k-space for non-Cartesian reconstruction. This network
strongly builds on the seminal paper by Pipe et al. [PM99] introducing Density
Compensation (DCp)7 for non-Cartesian k-space data. In this work, the authors
provide a solution for computing the DCp which avoids some requirements that
may be difficult to meet in practice, such as the knowledge of the k-space readouts
or the constraint associated with the Nyquist criterion. However, this work does
not use a learning based reconstruction strategy to complement the application of
the DCp.

Some other works have explored other strategies to correct the k-space for non-
Cartesian reconstruction, using a pre-conditioning of the k-space in iterative CS
procedures in order to accelerate the convergence (not necessarily to obtain better
image quality for an unlimited computational budget) [Trz+14]. To improve the
latter approach, Ong et al. [OUL20] introduced a diagonal pre-conditionner optim-
ized for the Mean Squared Error (MSE) that did not need an inner loop. However,
these works use classical iterative algorithms which have been shown to be out-
performed by end-to-end learned unrolled approaches in various settings [AÖ18b;
AMJ19; Sch+18; Eo+18].

Classical non-Cartesian reconstruction. Classical reconstruction algorithms
like SPIRiT and GRAPPA [Gri+02] have been adapted to the non-Cartesian setting
and a summary of these adaptations was written by Wright et al. [Wri+14].

Another typical setting where non-Cartesian reconstruction is needed is dy-
namic MRI reconstruction. In this context, many works have used model-based
optimization to reconstruct MR images from non-Cartesian acquisitions. The
SmooThness Regularization on Manifolds (SToRM) method [PJ16] assumes that
the different frames of the dynamic MRI acquisition evolve in the same low-
dimensional manifold. The core idea is the following: As the underlying organ
does not evolve too much in time, navigators (i.e. a calibration signal) can be
used to recognize similar frames and build a Laplacian matrix from the latter in
order to obtain a manifold regularizer. This idea is not applicable to the acquisition
scenarios we cover in this paper as it strongly relies on the temporal nature of the
signal to build a fitting regularization. In contrast, we consider here non-Cartesian
reconstruction as a standalone task. Works derived from SToRM or similar to
it [Pod+19; Nak+17; Ahm+19] also make use of the temporal nature of dynamic
MRI to introduce a manually crafted regularization.

Neural networks for non-Cartesian reconstruction. The Nonuniform
Variational Network [Sch+18] was the first unrolled network to be designed for non-
Cartesian MRI reconstruction. This network unrolls a proximal gradient descent

7The acronym DC is usually used to denote Data Consistency in the MRI recon-struction field.
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algorithm and operates on 192× 192 single-coil images with a variable density ac-
quisition scheme. This network, however, does not include a DCp scheme, which
is most likely due to the fact that the trajectories studied in this work do not
present a variable density as recommended in the CS literature [Cha+14; Adc+17;
Boy+16]. Additionally, this network was only applied to single-coil 2D data whose
phase was simulated. Moreover, there is no open-source implementation for this
work to date. In contrast, our network is applied to both single and multicoil 2D
raw k-space data as well as to magnitude-only 3D data (i.e. no phase information
available).

A perceptual complex neural network was designed by Shen et al. [She+21] to
tackle 2D + time real-time cine MRI in cardiac imaging. However, this architecture
is not an unrolled network and was applied to the gridding-reconstructed MR image.
Shen et al. [She+21] specify that they did not consider data consistency-based
methods due to the increased computation cost of the NUFFT. They actually
pointed out that efficient tools like torchkbnufft [Muc+20] would be helpful in
this regard. Here, we show that using a DCp step, a modeling choice allowed by
an efficient implementation of the NUFFT, is actually critical to obtain improved
results compared to baseline neural networks.

Similarly to our work, Malavé et al. [Mal+20] used an unrolled network to
reconstruct non-Cartesian MR Angiography data. While they did use a density
compensation scheme, they did not perform an ablation study, and did not use
modern techniques for MRI unrolled networks such as buffers or sensitivity maps
refinement. Furthermore, their code is not available online neither for the network,
nor for the NUFFT.

Another direction of research for non-Cartesian MRI reconstruction is the use
of untrained networks with the DIP [UVL18] framework. Yoo et al. [Yoo+21]
designed a DIP approach tailored for dynamic MRI using a manifold to sample
from for the random input. While this specificity is not applicable to our setting,
it is a strong contender in its time independent (i.e. static) version, especially for
the out-of-distribution performance evaluations. For this reason, we will perform
a comparative analysis to the DIP framework.

Neural networks for 3D reconstruction. Küstner et al. [Küs+20] intro-
duced a complex unrolled network for multicoil 3D + time reconstruction with
two unrolled iterations for Cartesian acquisitions. However, due to the memory
requirements of the NUFFT, it is not clear how to adapt this solution to the non-
Cartesian case. Multicoil 3D MRI reconstruction is also tackled by Kellman et al.
[Kel+20], who designed a memory-efficient algorithm to train unrolled networks,
however again this approach was restricted to Cartesian acquisitions.

5.2.3 . Model
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We use a classical unrolled network based on the PDNet to design our NC-
PDNet. The major changes come from the fact that we use the non-uniform
Fourier Transform as a forward operator.

Non-Uniform Fourier Transform

The NDFT is the generalization of the discrete Fourier Transform to positions in
the Fourier space that are off the Cartesian grid and not necessarily equispaced.
An approximate algorithm to have an efficient computation of the NDFT was
introduced by Fessler et al. [FS03] and Beatty et al. [BNP05]. This algorithm uses
an oversampled grid and an optimal interpolation to perform the NDFT efficiently
at the cost of an approximation. We refer to this algorithm as the NUFFT and
highlight that unlike the FFT, it is not an exact algorithm.

While the NUFFT is a more efficient algorithm than the direct application of
the definition of the NDFT, it is still a very computationally demanding algorithm
compared to the FFT for the same image dimensions. An alternative to the NDFT
could be to grid the k-space measurements and simply use the FFT to compute the
data consistency. In practice, this would mean using ygrid = grid(y,Ω) (where
grid is a linear gridding operation) instead of y and FΩ would simply be the FFT.

NDFT vs. NUFFT. We draw the reader attention to the potential confusion
between the two acronyms. The NDFT is the original transform, while the NUFFT
is the approximate fast algorithm to compute the transform.

Data Consistency

The data consistency is the step in the unrolled network allowing us to inject
the initial measurements y by comparing them to the current estimate’s xb[0]
measurements. The formula we have chosen for data consistency stems from the
Additive White Gaussian Noise (AWGN) model, by taking the gradient of the ℓ2-
norm in Equation 2.7:

xdc = AHd (Axb[0]− y) . (5.1)
Density Compensation

In a fully sampled setting, unlike the Cartesian case, the adjoint operator of the
NDFT is not always its inverse operator. Worse, in most cases, the NDFT does not
admit an inverse operator, even when the Nyquist criterion is met. The application
of the adjoint Fourier operator FH

Ω to the single coil k-space data (or its multicoil
extension AH to the multicoil data) can therefore be very far from the solution to
Equation 2.2.
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To circumvent this, DCp has been introduced [PM99]. Indeed, the main prob-
lem with the classical non-Cartesian trajectories like radial, spiral or any variable
density sampler [Cha+14], is that they densely sample the center of k-space. There-
fore, when computing the adjoint operator (FH

Ω orAH , respectively) a lot of weight
is assigned to the densely sampled region at the center of the k-space, resulting in
an image with abnormally large values. DCp is just the action of using factors that
weigh the different sample locations so that they all play an even role during the
application of the adjoint. DCp is particularly needed for deep learning approaches
because the values entering convolutional layers need to have normalized (or close
to normalized) values in order to avoid numerical issues. An interpretation of DCp
is that it applies a preconditionning to the forward operator.

In practice, for both the radial and spiral trajectories, we obtain the DCp
factors d by applying the adjoint and forward operators8 iteratively for N iterations,
starting from d0 = 1:

dn+1 =
dn

FΩFH
Ω dn

(5.2)
where the division is here pointwise. The final weights are dN . In practice, we
took N = 10.

5.2.4 . Data
We used the NC-PDNet on different data acquisition scenarios. In all of them,

the data was retrospectively undersampled using fixed non-Cartesian trajectories.
Specifically in this work we used multi-shot spiral and radial trajectories for 2D
imaging, while we restricted our numerical studies to the use of full 3D radial
spokes for 3D imaging. A schematic view (i.e. with a much higher undersampling
of the trajectories) is available in Figs. 5.2-4 and 5.2-5. In 2D, most of the numerical
experiments were conducted with an AF of 4, up to an exception where AF = 8,
compared to the full Cartesian acquisition. This factor is defined as follows for 2D
imaging: AF = N

Ns
where n = N × N is the image dimension (N is the base

resolution) and Ns is the number of shots involved in the undersampling pattern.
This basically means that m = n/4 as we performed only retrospective studies.9

For 3D imaging, AF = N×Nz
Ns

where n = N2 ×Nz is the volume dimension and
Nz the number of slices. In this setup, we also chose the value of AF = 4.

fastMRI

A description of the fastMRI dataset is provided in subsubsection 4.2.4. To ob-
tain the non-Cartesian measurements y, we simply used the inverse Fourier trans-

8In practice, we use the interpolation operator of the NUFFT rather than the wholeoperator.9In CS prospective acquisitions, oversampling can be applied along each shot tofulfill Nyquist criteria without increasing the scan time. This would make the under-sampling factor n/m lower compared to AF.
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form (denoted as F⊤) of the full Cartesian k-space data yor,ℓ for each coil ℓ sep-
arately before applying the NUFFT according to the non-Cartesian undersampling
pattern Ω as follows:

∀ℓ = 1, . . . , L yℓ = FΩF
⊤yor,ℓ (5.3)

We did not use the fastMRI data to perform the 3D experiments for the fol-
lowing reason. The fastMRI dataset was collected using a 2D multislice acquisi-
tion that uses anisotropic resolution to maintain a good SNR (in-plane resolution
0.5mm×0.5 mm, slice thickness 3 mm). Consequently, the number of slices is very
limited (roughly 30 to 40 for each acquisition) and the 3D networks will therefore
not be able to fully take advantage of the third dimension.

OASIS

A description of the OASIS dataset is provided in subsubsection 4.2.4. We decided
to use the OASIS dataset with data recast to matrix size of 176×256×256, using
zero-padding. Because OASIS data is magnitude only, the NDFT was applied to
the magnitude volume, and we did not simulate the phase, a very challenging task
according to Sandino et al. [San+20b]. The 3D fully-sampled dataset provided by
Epperson et al. [Epp+13] was considered as a potential alternative as it contains
raw data collected at isotropic resolution. Unfortunately it is not sizeable enough
for deep learning tasks as specified by Zbontar et al. [Zbo+18]. Consequently, this
basically means that the learned model from OASIS database cannot likely be used
as is in a clinical setting, and would need to be further validated, even fine-tuned.

5.2.5 . Results

Experimental setup

Metrics. In order to evaluate the reconstruction quality of the networks, we
used the PSNR and SSIM, both of which are discussed in subsection 2.4.1. As
mentioned in subsection 2.4.3, we compute these metrics volume-wise even when
the reconstruction setup is 2D.

In order for the reader to get a better sense of the distribution of the quantitat-
ive image quality, we also provide detailed box-plots for all the quantitative results.
For the sake of clarity, we chose to separate the different contrasts which present
different quantitative metrics ranges in the box plots.

Comparison. To illustrate the need for all the key components of the NC-
PDNet, we carried out an ablation study against other neural networks where we
removed some aspects of the NC-PDNet.
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• An unrolled network without DCp but only a normalization mechanism (without
any normalization the network does not train due to very high values), to
show the need for the DCp.

• An unrolled network without NUFFT and instead a gridded version of the
k-space (the operator is only the much faster FFT), to show the need for a
better approximation of the NDFT.

• A U-net [RFB15] applied directly to the density-compensated adjoint of the
k-space measurements, to show the need for the unrolling framework (3D
convolutions and pooling operations are used in the 3D setting).

• The density-compensated adjoint of the k-space measurements as very naive
baseline.

For the 2D settings, the unrolled networks have NC = 10 unrolled iterations,
use a buffer size NP = 5, and a number of convolution filters Nf = 32. For the
3D setting, we needed to reduce those numbers for the network to fit on a single
GPU, and used NC = 6 unrolled iterations, a buffer size NP = 2, and Nf = 16.
The U-net was trained residually and had a base number of filters of 16.

We carried out the training and evaluation of the variants of the unrolled
networks only in the 2D single-coil setting in order to save some computation time
since we observed that the unrolled variants were not obtaining good performances.

We also compared to DIP, an approach that was shown to reach state-of-the-art
results in dynamic MRI reconstruction [Yoo+21], and that will help grasp better the
generalization capacities of the networks as it is an untrained method. Importantly,
in order to keep the reconstruction time reasonable, we used the method advocated
by Darestani et al. [DH20]. This means that for a given contrast, AF, trajectory and
coil number, we reuse previously trained weights in order to initialize the weights of
the DIP. Similarly to prior observations [DH20], we found that this strategy allows
us to reduce the number of epochs by a factor of 10. For the multicoil data, we
also used the method advocated by Darestani et al. [DH20] to generate the coil
images with the same network, and aggregate them using Root-sum-of-squares
(RSS).

Generalizability. We also studied the generalizability of the trained networks
to other settings, first to different sampling trajectories. In practice, we evaluated
the networks trained on the spiral trajectory in the 2D multicoil setting on the
radial undersampling pattern and vice-versa. We term this the reverse setting.

Second, we studied the generalizability of the networks to different organs and
contrasts simultaneously. We took advantage of the 2D multicoil brain dataset
available in fastMRI to carry out this analysis. This dataset features brain data
acquired with four different weighting contrasts (T1, T2, FLAIR and T1 after
Gadolinium injection), collected on the same scanners, which allows us to test for
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Table 5.1: Mean PSNR / SSIM on the validation volumes of the differentapproaches averaged over both contrasts (knee fastMRI) in the single-coil setting. The best results are in bold font.
Model Radial Spiral # Parameters
PDNet no DCp 27.02 / 0.6747 28.02 / 0.6946 156k
Adjoint + DCp 27.11 / 0.6471 31.70 / 0.7213 0
DIP 29.57 / 0.5148 29.79 / 0.5249 0
PDNet w gridding 31.12 / 0.6887 31.45 / 0.7126 156k
U-net on Adjoint + DCp 32.26 / 0.7224 32.82 / 0.7460 481k
NC-PDNet 32.66 / 0.7327 33.08 / 0.7534 156k

generalizability solely on organ/contrast. Due to this large number of contrasts
and the diversity in the number of coils for the brain data, we chose to not run
the DIP experiments on brain data in order to keep the amount of computation
reasonable.

Third, we tested the trained networks on an AF = 8, i.e. two times larger
than the AF they were confronted in training.

Computational efficiency. The time spent for image reconstruction by a
given method is also an important factor to take into account when choosing
which algorithm to be used in the clinical realm. Indeed, in clinical applications
we need to visualize the reconstructed MR images prior to the end of the exam
to permit any potential re-start of the pulse MR sequence in case of the presence
of significant artifacts impeding accurate image-based diagnosis. Additionally, this
allows the physician to report on the scans directly to the patient once the exam
is completed. For that reason, we decided to report the reconstruction times
associated with the different methods and networks.

Quantitative results

2D single-coil fastMRI dataset. The quantitative results in Table 5.1 show
that NC-PDNet outperforms the concurrent approaches. Moreover, these results
outline that combining unrolling and DCp with an accurate NDFT approxima-
tion (i.e. the NUFFT) within the same deep learning architecture is instrumental
in non-Cartesian MR image reconstruction as using only one of these three ingredi-
ents will lead to degraded performance. It is worth mentioning that DIP performs
poorly compared to U-net. Additionally, the quantitative scores are slightly im-
proved for spiral readout compared to radial whatever the reconstruction strategy,
likely because this undersampling scheme has a better coverage of high frequencies
in the k-space.
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Table 5.2: Mean PSNR / SSIM on the validation volumes of the differentapproaches averaged over both contrasts (knee fastMRI) in the mul-ticoil setting. The best results are in bold font.
Model Radial Spiral # Parameters
Adjoint + DCp 25.91 / 0.6486 31.36 / 0.7197 0
DIP 29.21 / 0.5834 29.19 / 0.5832 0
U-net on Adjoint + DCp 38.78 / 0.9106 40.02 / 0.9215 481k
NC-PDNet 40.00 / 0.9191 40.68 / 0.9255 163k

2D multicoil fastMRI dataset. Regarding the 2D multicoil numerical ex-
periments, we selected only the two best performers of the single-coil studies for
comparison purposes, along with the adjoint baseline for reference and DIP be-
ing a strong contender for the generalization studies. As reported in Table 5.2
the Adjoint with DCp has a very low performance for the radial trajectory, hence
the U-net working on top of this raw strategy is not able to correct sufficiently
well for aliasing artifacts in the image domain in order to be competitive with the
NC-PDNet. This illustrates that NC-PDNet has the ability to overcome situations
where the trajectory might be causing issues to naive methods. We also observed
for the NC-PDNet that the PSNR improvement in spiral imaging compared to
radial imaging is larger in the multicoil setting. Finally, it can be noted that the
sensitivity maps refinement has a relatively low impact on the number of para-
meters in the NC-PDNet, with only 7k additional parameters in θr (163k vs 156k
parameters in bottom rows of Table 5.2 vs Table 5.1).

Table 5.3: Mean PSNR / SSIM on the validation volumes of the differentapproaches for the OASIS brain dataset (3D setting). The best resultsare in bold font.
Model Radial #Parameters
Adjoint + DCp 27.51 / 0.5183 0
U-net on Adjoint + DCp 31.42 / 0.8432 1.6M
NC-PDNet 33.76 / 0.9160 67k

3D single-coil brain OASIS dataset. We can see in Table 5.3 that the
NC-PDNet outperforms the baseline models on the OASIS dataset by a significant
margin, even though its size was reduced due to memory constraints. We specify
that the SSIM was computed on slices along the first dimension of the volumes in
the 3D case. This choice was arbitrary.

Reverse trajectories in 2D multicoil knee imaging. The quantitative
results for the reverse setting shown in Table 5.4 reveal contrasting results. The
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Table 5.4: Mean PSNR/SSIM on the validation volumes of the differentapproaches averaged over both contrasts (knee fastMRI) in the mul-ticoil reverse setting. Best results are in bold font.
Model Radial Spiral # Parameters
Adjoint + DCp 25.91 / 0.6486 31.36 / 0.7197 0
DIP 29.21 / 0.5834 29.19 / 0.5832 0
U-net on Adjoint + DCp
(trained on different
trajectory)

27.94 / 0.87 26.35 / 0.8850 481k
NC-PDNet
(trained on different
trajectory)

37.86 / 0.9079 36.28 / 0.9052 163k

drop in PSNR is significant for both networks (compare Table 5.4 line by line with
the corresponding reference in Table 5.2): The weaker performance is achieved for
the U-net trained on radial and evaluated on spiral (by more than 13 dB), while
the drop for NC-PDNet is limited to approximately 4.5 dB in the same use case
and even less in the radial validation case (37.86 dB vs 40 dB). In contrast, the
situation in SSIM is very much controlled in the NC-PDNet’s case (a bit less so
for the U-net).

2Dmulticoil brain fastMRI dataset. The quantitative results for the brain
dataset are not to be compared head-to-head to the results obtained for the knee
data. Indeed, there is a significant mismatch in reconstruction difficulty, the brain
data being easier to reconstruct than the knee data metrics-wise, based on the
fastMRI public leaderboard.10 However, in Table 5.5 we can see that the neural
networks still largely outperform the baseline (Adjoint + DCp) for both trajectories.
We also observed that the NC-PDNet outperforms the U-net on both trajectories,
this time with a bigger gap, suggesting that it generalizes in a better way.

Table 5.5: Mean PSNR/SSIM on the validation volumes of the differentapproaches averaged over all brain fastMRI imaging contrasts in themulticoil setting.
Model Radial Spiral # Parameters
Adjoint + DCp 27.31 / 0.6028 32.23 / 0.6603 0
U-net on Adjoint + DCp
(trained on knee data) 37.88 / 0.9234 38.76 / 0.9302 481k
NC-PDNet
(trained on knee data) 39.48 / 0.9368 39.81 / 0.9390 163k

10fastmri.org/leaderboards/
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Higher AF. The quantitative results in Table 5.6 for a higher AF in validation,
namely AF = 8 compared to AF = 4 in training, allow us to draw the same
conclusions as the previous generalization experiments: the design of NC-PDNet
is instrumental in getting more robust results for different trajectories.

Table 5.6: Mean PSNR / SSIM on the validation volumes of the differentapproaches for both contrasts (knee fastMRI) in the multicoil settingfor AF = 8.
Model Radial Spiral
Adjoint + DCp 25.62 / 0.6097 30.00 / 0.6686
DIP 29.08 / 0.5782 29.21 / 0.5841
U-net on Adjoint + DCp 34.11 / 0.8592 34.60 / 0.8665
NC-PDNet 36.71 / 0.8887 37.47 / 0.8967

Reconstruction times. The reconstruction times given in Table 5.7 show
that the use of the NUFFT in the unrolled setting induces a 4.5-fold to 9-fold
increase in execution time for 2D and 3D image reconstruction.11 However, the
use of the DCp merely increases the reconstruction time by only 33 ms.

A number that stands out is of course the reconstruction time for DIP. This was
already noted by Darestani et al. [DH20], who proposed an acceleration strategy
that we implemented. However, the computation time remains unrealistic for
clinical applications.

Table 5.7: Reconstruction times of a single slice in milliseconds forthe different networks in the different acquisition scenarios based on2D/3D radial undersampling.
Model Single-coil 2D Multicoil 2D 3D
PDNet no DCp 446 NA NA
Adjoint + DCp 101 135 7
DIP 110k 133k NA
PDNet w gridding 112 NA NA
U-net on Adjoint + DCp 110 145 9
NC-PDNet 479 661 80

11The reconstruction times observed for 3D aremuch less than those in 2D becauseof the different image sizes as well as smaller sizes of the networks.
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Qualitative results

For all qualitative results, the images were selected at random and do not necessarily
have the same contrast. For each setting, the missing acquisition trajectory’s
reconstruction figures (if any) can be found in the Appendix in Figs. A-1-A-3. We
chose to highlight some key parts of the reconstruction to pay attention to for the
reader to better understand the difference between the U-net reconstruction and
ours.

2D single-coil knee fastMRI dataset. The visual inspection of the recon-
structed MR images confirm the quantitative measurements. In particular, one
can visualize in Figure 5.2-12 that the image’s inner contrast is better recovered
by the NC-PDNet and U-net, and the structures are sharper for both architectures
compared to the other competitors. The zooms allow us to identify the blurriness
in DIP, the benefit of using DCp in the NC-PDNet architecture compared to the
gridded and vanilla versions of PDNet.

2D multicoil knee fastMRI dataset. The qualitative results for the mul-
ticoil setting, available in Figure 5.2-13 confirm the quantitative results. We see on
the right part of the knee (cf. red frame and zooms) that the reconstruction by the
U-net after the application of the adjoint with DCp is not completely faithful. The
reconstruction by the NC-PDNet is much more representative of the groudn truth
anatomy. Regarding the DIP solution, it appears very blurry compared to U-Net
and NC-PDNet and hence this confirms the results we obtained in the single-coil
setting.

3D single-coil brain imaging (OASIS dataset). Similarly to previous nu-
merical experiments, the qualitative results shown in Figure 5.2-14 confirm the
quantitative scores for the 3D brain imaging setting. Although the NC-PDNet’s
reconstruction is blurred compared to the ground truth, we notice a much better
resolution than the baselines as can be seen in the magnified views.

Reverse trajectories in 2D multicoil knee imaging. The qualitative
results for the reverse setting, shown in Figs. 5.2-15-5.2-16, allow us to look at the
quantitative metrics from a different perspective. We actually observed that the
reconstructions are excellent in terms of image quality and that the degradation
compared to the regular setting is minimally visible (except the radial artifacts for
the NC-PDNet trained on spiral acquisition and evaluated on radial spokes in the
right part of the knee). This confirms that the SSIM is the best metric to monitor
in order for measuring success in generalization to other undersampling patterns.
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2Dmulticoil brain fastMRI dataset. The qualitative results shown in Fig-
ure 5.2-17 for the 2D multicoil brain FLAIR image confirm that the NC-PDNet
was able to better generalize than the U-net.

Higher AF. We see in Figure 5.2-18 that the higher AF has a very severe effect
on all the reconstructions in terms of blur. Although the image based on the
NC-PDNet architecture also suffers from a loss in resolution, it remains the best
reconstruction with the least amount of blur and the best recovery of finer details.
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T1PSNR: 41.56SSIM: 0.9506
T2PSNR: 40.68SSIM: 0.9554

FLAIRPSNR: 39.60SSIM: 0.9321
T1POSTPSNR: 42.53SSIM: 0.9683

Figure 5.1-2: Magnitude reconstruction results for the different
fastMRI contrasts at AF 4. The top row represents the ground truth,the middle on represents the reconstruction from a retrospectively un-dersampled k-space, and the bottom row represents the absolute er-ror when comparing the two. The average image quantitative metricsare given for 30 validation volumes.
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T1PSNR: 38.57SSIM: 0.9348
T2PSNR: 37.41SSIM: 0.9404

FLAIRPSNR: 36.81SSIM: 0.9086
T1POSTPSNR: 38.90SSIM: 0.9517

Figure 5.1-3: Magnitude reconstruction results for the different
fastMRI contrasts at AF 8. The top row represents the ground truth,the middle one represents the reconstruction from a retrospectivelyundersampled k-space, and the bottom row represents the absoluteerror when comparing the two. The average image quantitative met-rics are given for 30 validation volumes.
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Radial Spiral

Figure 5.2-4: Schematic representation of the two multi-shot non-
Cartesian (radial and spiral) readouts considered here for 2D ima-
ging. In our setting, we used Ns = 100 shots, each of them consistingof 640 samples giving a total of m = 64, 000 k-space measurements.Here only 10 shots are presented.

Figure 5.2-5: Schematical illustration of the k-space trajectory con-
sidered in this work for 3D imaging. Each of them uses 100 spokesand has a total of 64k measurements stacked 176 times across the ad-ditional dimension.
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Figure 5.2-6: Single-coil knee dataset: Quantitative results of the dif-ferent networks in the single-coil setting for both fastMRI contrasts.
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Figure 5.2-7:Multicoil knee dataset: Quantitative results of the differ-ent networks in the multicoil setting for both fastMRI contrasts.
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Figure 5.2-8: 3D OASIS brain dataset: PSNR distribution of the differ-ent networks in the 3D radial undersampling scenario.
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5.2.6 . Discussion and conclusion

In this section, we demonstrated how to apply the framework of unrolled neural
networks to the problem of non-Cartesian MRI reconstruction. In particular, we
showed via an ablation study, the importance of using the mechanism of density
compensation [PM99] for this setting and how it is instrumental in obtaining the
best possible results in a deep learning framework. We also managed to show how
this mechanism can be extended to challenging acquisition scenarios like multicoil
and 3D reconstruction with very minor adjustments. We conducted additional
generalizability experiments to measure the robustness of the trained networks to
out-of-distribution settings, and concluded that the visual degradation is minimal
for all networks, and that additionally the NC-PDNet is quantitatively consistent.
In particular, we found out that the generalization to other organs is possible even
when using a single organ in training. Finally, the modular design of the code
allows implementation and improvement of the results.

One disadvantage of the current implementation of unrolled networks in the
non-Cartesian setting is their slowness compared to other baseline networks. This
has been diagnosed in this work to be due to the NUFFT. Recent work has been
carried out to implement an efficient NUFFT on the GPU, cufiNUFFT [SBB21],
although not directly in a framework allowing auto-differentiation, making its use at
training time difficult. However, fast implementations could very well be embedded
in the network at reconstruction allowing us to alleviate the slowness of NUFFT in
auto-differentiation frameworks. Complementary to that, a recent work [Lu+21]
also tackles the problem of the slowness of the NUFFT by introducing a TPU
implementation.

Some issues regarding the transferability/generalizability of this work still re-
main open. Indeed, these networks have been trained on a specific dataset with
given experimental conditions, a given MR system vendor (Siemens-Healthineers,
Erlangen, Germany), and a specific acquisition setup and organ. The question of
generalizability from one vendor to another has been partially answered by Muckley
et al. [Muc+21], where it has been observed that the results degrade when the
networks trained with one vendor are applied to another. Although we partially
addressed the concerns regarding the acquisition setup and the organs with our
out-of-distribution experiments, a more systematic study is still required.

A more challenging question that can be raised is whether a lack of generalizab-
ility is intrinsic to the training process or not: The need for training data generally
translates to using retrospective undersampling to be able to learn how to correct
for aliasing artifacts from a “correct” ground truth. How do the networks general-
ize to prospective undersampling, especially in non-Cartesian acquisition scenarios
where off-resonance effects come into play? This question is very difficult to an-
swer systematically. In the case of prospective acquisition, as no ground truth is
available, the methods cannot be compared one another.

One could try to simulate the non-idealities of the clinical setting (such as B0
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field inhomogeneities, gradient inaccuracies/delays, eddy currents, etc...) as was
done by Schlemper et al. [SSS20], but the gain and correct implementation of such
simulations remains an open question. A final issue on transferability arises in this
section for the 3D data, which consisted of magnitude volumes (and not of raw
k-space data as in the 2D case). How can the networks generalize to complex-
valued data? There exists ways to generate an artificial phase information, and
they could be of help in order to be closer to the real use-case [SSS20]. Relevant
data augmentation mechanisms [FHS21] can be one of these solutions.

✽ ✽ ✽
✽ ✽

✽
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6 - Clinical applicability of deep learning for
MRI reconstruction
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The first section of this chapter was submitted to a peer-reviewed journal and
is currently under review:

Zaccharie Ramzi, K. Michalewicz, J. L. Starck, T. Moreau and P. Ciuciu.
“Wavelets in the deep learning era”. 2021. Under review in Journal of Math-
ematical Imaging and Vision

It was previously presented as an oral in a peer-reviewed conference:

Zaccharie Ramzi, J. L. Starck, T. Moreau and P. Ciuciu. “Wavelets in the
deep learning era”. In: European Signal Processing Conference. Vol. 2021-
Janua. 2021, pp. 1417–1421. Oral
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The remaining sections of this chapter were presented as abstracts in peer-
reviewed workshops/conferences:

Zaccharie Ramzi, B. Remy, F. Lanusse, J.-L. Starck and P. Ciuciu. “Denois-
ing Score-Matching for Uncertainty Quantification in Inverse Problems”. In:
NeurIPS 2020 Deep Learning and Inverse Problems workshop. 2020

Zaccharie Ramzi, A. Vignaud, J.-L. Starck and P. Ciuciu. “Is good old
GRAPPA dead?” In: ISMRM. 2021

While the promise of faster MRI thanks to deep learning is highly appealing,
these methods have to be properly vetted before they can be deployed in

clinical settings. In this chapter, we will review 3 contributions that we made in
order to provide guidelines for designing clinically applicable deep learning meth-
ods. These contributions deal with robustness to out-of-distribution settings, error
quantification and prospective clinical applications.

6.1 . Learnlets

6.1.1 . Introduction

In this section, we cover the topic of robustness of neural networks, and propose
a novel architecture, the Learnlets, inspired by wavelets denoising.

This architecture was designed to understand the gap between modern deep
learning architectures used for denoising, like the U-net [RFB15] and the wavelets.
Indeed, a large part of the success of deep learning is not well understood.

On the other hand, wavelets-based approaches are not state-of-the-art any-
more for denoising but are theoretically grounded [Don95]. For applications where
guarantees are needed – such as medical applications – this makes them ideal
candidates.

Similarly to wavelets, U-nets present a multiscale approach, which allows us to
analyze the signal at different resolutions. Their main difference lies in the num-
ber of nonlinearity applications. Indeed, while wavelets apply only one nonlinearity
when performing denoising – a method called wavelet shrinkage –, the U-net ar-
chitecture relies on several Rectified Linear Unit (ReLU) and max-poolings. These
chained nonlinearities make the analysis of the denoising in U-nets very complic-
ated. In particular, it is difficult to see how a network trained on one type of noise
can be applied to other types of noises. Some works [Got+20] even show that
classical neural networks can fail to recover elements that classical methods do,
suggesting a trade-off between quality and stability.

In this section, we investigate whether using massive learning and large available
datasets in a sparsity framework could allow us to achieve U-nets performance or if
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the chained nonlinearities are equally important. We propose a new network, called
Learnlets, which makes use of one of the strongest advantages of neural networks,
learning via gradient descent to enhance the expressive power of wavelets, while
keeping some interesting wavelet properties such as exact reconstruction.

We choose to test this network on a denoising problem, a task where wavelets
have historically well-performed but are now overtaken by deep learning approaches.
In parallel, we also propose a new U-net denoising scheme that guarantees an exact
reconstruction when the noise tends to zero.

The full implementation of our method is open source in Python.1

6.1.2 . Related Work

Different studies have attempted to work at the intersection of wavelets and
neural networks. Recoskie et al. [RM18] cast the wavelet transform as an auto-
encoder where the latent representation has to be sparse and learn the filters. In
this architecture only a simple high-pass and low-pass filter pair is learned. Similarly,
but pushing further the idea, Jawali et al. [JKS19] developed a learning strategy
to design new wavelet filters with certain properties imposed such as what they
call perfect reconstruction (which we termed exact reconstruction) or vanishing
moments. Their work was inspired by that of Pfister et al. [PB19], where the
authors chose to use data patches to learn their transform rather than noise as was
done by Jawali et al. [JKS19].

Observing U-nets, two parts are very similar to synthesis and analysis concepts
in wavelet decompositions, Ye et al. [YHC18] proposed to use the wavelet transform
to perform a better pooling/unpooling strategy than simply max-pooling/bilinear
upsampling. Fan et al. [Fan+20] inspired themselves from the cascading wave-
let shrinkage systems to enhance denoising autoencoders. In brief, they proved
that using a soft-thresholding nonlinearity provided more power to the denoising
autoencoders than other non-linearities.

In these related papers, non-linearities (namely ReLU) are in majority applied
to the low frequencies rather than the high frequencies, contrarily to what is com-
mon in the wavelet framework. In this section, we don’t try to modify U-nets by
importing wavelet ingredients, but rather try to push the limits of sparsity based
approach by using learning while keeping sparsity concept unchanged. This allows
us to recover the classical properties of wavelets i.e. decomposition with exact
reconstruction, thresholding and reconstruction, while using a learning based ap-
proach.

6.1.3 . Learnlets, the model

Let x ∈ Rn×n be an image. Let x̃ = x + ϵ be the version of this image
corrupted by an additive white Gaussian noise ϵ ∼ N (0, σ2In×n) whose variance
σ2 is assumed known. Let Σ be a compact set of possible values for σ, we chose

1github.com/zaccharieramzi/understanding-unets
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to have σ ∼ U(Σ). For a given number of scales m and a given set of parameters
θ = (θS ,θT ,θA) ∈ Θm, we defined the learnlets as function fθ from (Rn×n × Σ)
to Rn×n:

fθ(x̃, σ) = SθS
(TθT

(AθA
(x̃) , σ)) (6.1)

where we have:

1. AθA
, the analysis function defined in subsubsection 6.1.3.

2. TθT
, the thresholding function defined in subsubsection 6.1.3.

3. SθS
, the synthesis function defined in subsubsection 6.1.3.

An illustration of the learnlets is given in Figure 6.1-1.
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Figure 6.1-1: Schematic representation of the learnletsmodel, with
m = 2 scales. The red nodes are inputs/outputs. The lightly greennodes correspond to functions whose parameters can be learned.Note that the standard deviation of the noise before thresholding isnot learned but rather estimated, and is omitted in this diagram forclarity.

Analysis

Intuitively, one can see the analysis function as the equivalent of the wavelet trans-
form with some learned filters. This linear function is defined as:

AθA
(x̃) =

((
F

θ
(i)
A

∗ g
(
h̃i−1(x̃)

))m

i=1
, h̃m(x̃)

)
(6.2)
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where we have:

• F
θ

(i)
A

, the filter bank at scale i. The convolutions are done without bias. θ
(i)
A

are the Ji convolution kernels all of the same square size (kA, kA) (for now
Ji = Jm).

• h̃ = ū ◦ h, the low-pass filtering (h) followed by a decimation (ū). The
decimation is performed by taking one line out of 2 and one row out of 2,
in line with the way it is done in wavelet transforms.

• g the high-pass filtering defined as: g(y) = y − u(h̃(y)), with u the
upsampling operation performed with a bicubic interpolator.

For ease of manipulation we rewrite AθA
(x̃) =

((di)m
i=1, c), with di ∈ R

n

2i−1 × n

2i−1 ×Ji the detail coefficients and c the coarse
coefficients.

Note that low and high pass filters (h,g) are fixed, and only F(i)
θA

filters are
learned. As g has a zero mean, all coefficients di have by construction a zero
mean. This wavelet property is fundamental to model the noise on the coefficients.
Indeed, in the absence of signal, the coefficients follow a Gaussian distribution
with a zero mean, and a standard kσ thresholding can be applied, σ being the
noise standard deviation. With wavelets, k would be chosen between 3 and 5, and
would be a user parameter. In this setting, this k value can be learned, and can
be different at each scale.

Thresholding

The nonlinearity function used for wavelet shrinkage is typically either a hard-
thresholding or a soft-thresholding [Don95]. The soft-thresholding offers more
stability, therefore we made this choice for our architecture. The thresholding
function, in the case of a white Gaussian noise of variance σ2, is defined as:

TθT
(((di)m

i=1, c) , σ) =
((

(tij(dij , σ))Ji

i=1

)m

i=1
, c
) (6.3)

where tij(d, σ) = σ̂ijST
(

1
σ̂ij
dij , θ

(ij)
T σ

)
, with:

• dij ∈ R
n

2i−1 × n

2i−1 the output of the j-th filter of i-th scale.

• σ̂ij the estimated standard deviation of dij when the input of the transform
is set to be a white Gaussian noise of variance 1. This ensures the noise
coming just before the thresholding is of variance approximately σ. The
threshold is therefore truly θ(ij)

T σ.

• θ(ij)
T is the thresholding level applied at scale i on the j-th analysis filter.
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• ST (d, s) is the soft-thresholding function applied point-wise on d with
threshold s: ST (d, s) =
sign(d) max(|d| − s, 0).

It is important to notice that, thanks to the linearity of the analysis operator,
the thresholding strategy can be very easily adapted to non-stationary Gaussian
noise or to any other kind of noise, such as Poisson noise or a mixture of Gaussian
and Poisson noise.

Synthesis

Intuitively, one can see the synthesis function as the equivalent of the wavelet
reconstruction operator, with learned filters. It is important to note that the
synthesis function is linear. The synthesis function is defined recurrently as:

SθS
((di)m

i=1, c) = S(m−1)
θS

(
(di)m−1

i=1 ,u(c) + F
θ

(m)
S

∗ dm

)
(6.4)

where S∅(∅, c) = c and:

• F
θ

(i)
S

, the filter bank at scale i, used for regrouping. The convolutions are

done without bias and added all together. θ
(i)
S are the Ji convolution kernels

all of the same square size (kS , kS).

• u, the upsampling operation performed with a bicubic interpolator.

Constraints

Some constraints are used on the parameters of the learnlets to make them as
close as possible to the wavelets and therefore make them understandable:

• The analysis filters are forced to have a unit norm.

• The thresholding levels are in [0, 5].

Learning

The optimization problem is given as:

argmin
θ∈Θ

Ex,σ [Lf (θ)] (6.5)
where Lf (θ) = ∥x−fθ(x̃, σ)∥22 and the expected value is computed empirically,

via the empirical mean over a batch.
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Learnlets as the bridge between Sparsity and U-nets

The learnlet transform is very similar in its spirit to the curvelet transform. Indeed,
in both transforms the image is first decomposed into a set of wavelet scales, and
filters are applied on each scale. In a curvelet decomposition, it would be direc-
tional and fixed filters, while filters are learned in our proposed scheme. Obtained
coefficients can be manipulated exactly the same way as wavelets or curvelets
coefficients.

It is interesting to notice that after training, the pixels of the learnlets’ (with
exact reconstruction) analysis filters constitute meaningful designs. This can be
observed in Figure 6.1-2: lines with different slopes are displayed in scale-zero
filters (details about the data and the training are given in subsection 6.1.5).

Scale 0 Scale 1

Scale 2 Scale 4

Figure 6.1-2: Filters. Visualization of learnlets analysis filters for fourdifferent scales.
On the other hand, learnlets share very similar properties with U-nets. For ex-

ample, they make use of gradient-based learning, but they also feature a multiscale
analysis along with the use of non-linearities.

6.1.4 . Exact reconstruction
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Learnlets

Exact reconstruction guarantees that if no noise is present, the signal will be per-
fectly reconstructed, without any error. This can be achieved using the analysis
filter previously fixed as identity. In particular, let’s consider a single scale i, after
the application of the g filter. The operation carried out by the network, without
thresholding can be written as:

xout
(i) =

N∑
j=1

F
θ

(i,j)
S

∗ F
θ

(i,j)
A

∗ xin (6.6)
where N is the number of filters at that scale. Since we have F

θ
(i,1)
A

= Id, we can

also fix the corresponding synthesis filter F
θ

(i,1)
S

= Id−
∑N

j=2 F
θ

(i,j)
S

∗F
θ

(i,j)
A

. This

trivially gives without thresholding, xout = xin. We implemented this constraint
in the network, allowing to learn a different thresholding level for this filter.

The general case

In order to better understand the properties of exact reconstruction in the learnlets,
we can study whether it is possible to enforce it as well for black-box residual neural
networks. A simple solution, given a known noise level σ is to use the following
general expression:

gθ(x̃, σ) = x̃− σfθ(x̃) (6.7)
where fθ is the output of the network without exact reconstruction. It can be noted
that when σ tends to zero, then gθ(x̃, σ)→ x̃ and we can assure that the output
will retrieve the input signal. It should be noted that this formulation might be
unstable as it can amplify errors at high noise levels. This aspect will be analyzed
in the next section.

6.1.5 . Data and Experiments
The implementation was done in Python 3.6, using the TensorFlow 2.1 frame-

work [Aba+16] for model design. The training was done on the Jean Zay public
supercomputer, using for each job a single GPU Nvidia Tesla V100 SXM2 with
32 GB of RAM.

Data

The data used was the BSD500 dataset [Arb+11]. This data consists of natural
images of sizes 481× 321 and 321× 481. The train and tests subsets of BSD500
were used as the training dataset. The validation subset of BSD500, containing
the BSD68 [Mar+01] images was left out. We used BSD68 as the test dataset.
This choice is motivated by the fact that many other denoising studies [Zha+17a;
Lef18] use this dataset for comparison.
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Pre-processing

For training, patches of size 256 × 256 were randomly extracted on-the-fly. The
images were then linearly mapped from [0, 255] to the [−0.5, 0.5] interval and
converted from RGB to grayscale using the function provided by TensorFlow.2 In
addition, data augmentation techniques such as random flipping and random θ-
degree (θ = 90°, 180°, 270°) rotations were applied. Noise was then added by
first drawing uniformly at random in the specified interval Σ a noise level σ, then
generating a 256× 256 white Gaussian noise patch ϵ with this standard deviation.
It is to note that during training, a single batch can feature different noise standard
deviations.

At test time, the images were mirror-padded to a 352×512 size (or 512×352),
in order to avoid shape mismatches when downsampling and upsampling, and the
image quality metric was computed only on the original image shape. The test
images were also corrupted by an additive white Gaussian noise for various standard
deviations σ: {0.0001, 5, 15, 20, 25, 30, 50, 55, 60, 75, 85, 95, 100}. This allowed us
to test the performance of our method in different noise level settings.

Model and training

Models design. We compare the learnets with the U-net for the task of de-
noising. For the U-net, we used the architecture described in [YHC18, Fig.10.(a)]
which contains 124 million parameters for the case of a network with 128 base
filters.

Unless specified otherwise, the learnlets parameters were chosen as:

• m = 5 scales.

• 256 learnable analysis filters + 1 fixed analysis filters being just the identity,
F

θ
(i)
A

, of size 11× 11.

• 257 learnable synthesis filters, F
θ

(i)
S

, of size 13× 13.

• the thresholding levels only depend on the scale, θ(ij)
T = θ

(i)
T .

This amounts to 372k trainable parameters, only three hundredths of the size
of the U-net.

Training parameters. The networks were both trained on the mean squared
error in line with (6.5). Each epoch consisted of 200 batches of 8 extracted patches,
and their respective noise level in the case of the learnlets. The training noise
standard deviation range was chosen as Σ = [0; 55]. The networks were trained
with an Adam optimizer [KB15]. The learning rate was set at 10−3, then decreased

2TensorFlow Documentation for RGB to grayscale
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by half every 25 epochs, until it reached a minimum of 10−5. The trainings took
about 8 hours for 500 epochs each.

Evaluation

Evaluation metric. For the evaluation of the performance of the different
models we used the PSNR metric defined in subsection 2.4.1. For each test noise
standard deviation σ, we compute the mean of the PSNR of the denoised images,
for all BSD68 images.

Testing. In addition, the networks were compared to wavelets denoising [Mal99],
which was implemented by using the code of PySAP [Far+20]. The wavelets family
was the Biorthogonal 7.9, 5 scales were used, a hard-thresholding was used with a
thresholding level of 3 (except for the first scale where it was 4).

6.1.6 . Results
Quantitative results
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Figure 6.1-3: Denoising performance. Ratio of the denoised imagePSNR compared to the original noisy image PSNR for different stand-ard deviations of the noise added to the test images for all consideredmodels. The train noise standard deviation range was [0; 55].
Comparison with other methods. We compared the U-net and learnlets
with exact reconstruction against algorithms not involving learning, namely wave-
lets shrinkage. Figure 6.1-3 shows that for a large part of the band [5; 55], where
they have been trained, the wavelets have a performance that is degraded com-
pared to the learnlets. Using learning, the learnlets enhance their decomposition
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Model name Wavelets U-net 128 Learnlets U-net 64
Denoising runtime in ms (std) 274 (21) 272 (18) 106 (12) 64 (1)
Table 6.1: Runtimes of the different models for the denoising of oneimage. Parameters used are the same as Figure 6.1-3.
power compare to the original wavelet model with no learning. For small noise
level, the U-net gets degraded performances compared with learnlets with exact
reconstruction and wavelets. In this setting, the denoiser must act as the identity.
Finally, we can see that for unseen test noise levels (i.e. 95), the performance of
U-net drops slightly while the learnlets keep relatively good performances. This
suggests that the learnlets generalize better than U-nets on unseen noise levels.

In addition, we can see in Table 6.1 that the learnlets benefit from their GPU
implementation and run faster than both the wavelets and U-net 128.
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Figure 6.1-4: Exact reconstruction. Ratio of the denoised image PSNRcompared to the original noisy image PSNR for different standard de-viations of the noise added to the test images for learnlets with andwithout forcing exact reconstruction. The train noise standard devi-ation range was [0; 55]. The number of filters used was 64.
Learnlets with exact reconstruction. We saw in Figure 6.1-3 that learn-
lets with exact reconstruction compete with classical methods for a wide range of
noise standard deviations. Figure 6.1-4 shows that the performance of the network
with forced exact reconstruction is almost the same as the one without forced ex-
act reconstruction (we only lose 0.1 dB at σ = 30 for example) on the majority
of the test noise standard deviations. However, for low noise standard deviations,
the network with forced exact reconstruction completely overpowers the other one.
This is due to the fact that, at low noise standard deviations, for the i-th scale, the
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term x
(i)
out is practically the same as its thresholded version, because the thresholds

θ
(ij)
T σ are going to be low. Therefore, it is compensated in the corresponding

synthesis filter used for exact reconstruction at that scale, F
θ

(i,1)
A

. This allows to

guarantee, in this case, no loss of information in the signal if it is clearly present.
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Figure 6.1-5: Influence of model size. PSNR difference (in dB) withrespect to wavelets denoising for different standard deviations of thenoise added to the test images for U-nets of various sizes. The stripedbars correspond to negative differences. The train noise standard de-viation range was [0; 55].
U-nets of different sizes. Due to their reduced number of parameters, over-
fitting is a priori less likely to occur in small neural networks than in larger ones.
Therefore, we studied whether the generalization to high noise levels would be bet-
ter with small-sized U-nets. To do this, the number of base filters was modified
with respect to the original case, obtaining Figure 6.1-5. We can see that deeper
networks perform better for seen and unseen noise levels.

In terms of generalization, the PSNR difference between U-nets with a low
quantity of filters (4 or 8) and those with a larger amount (64 or 128) is amplified
for the range [55; 100].

U-net with exact reconstruction. It was of interest to know if the exact
reconstruction could be implemented in U-nets to avoid a large drop in performance
for low noise levels. Figure 6.1-6 shows that the application of the general case
equation (6.7) yields a PSNR ratio of approximately 1 when σ → 0. Apart from
that, the PSNR remains similar for higher, but seen, noise standard deviations
values (for instance, there is a loss of only 0.03 dB at σ = 30). However, the exact
reconstruction is incompatible with generalization at high noise levels in the case
of U-nets, as can be observed from the low performance in the interval [55; 100].
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Figure 6.1-6: Exact reconstruction for U-nets. Ratio of the denoisedimage PSNR compared to the original noisy image PSNR for differentstandard deviations of the noise added to the test images for U-netwith and without exact reconstruction. The train noise standard devi-ation range was [0; 55].
Generalization test: Denoising astrophysical images. Another inter-
esting test to evaluate how a network generalizes consists in denoising images that
are different from the training dataset. This is for instance similar to what was
done by Gottschling et al. [Got+20], where letters were added in the test image,
while no image contains letters in the training data set. Here we applied our trained
neural networks on a simulated astronomical image, contaminated with noise of a
standard deviation σ = 50. This experience complements the previous generaliza-
tion ones where the test images belong to the same class of natural images, but
some noise levels where higher than those in the training data.

The astronomical image was firstly normalized such that every pixel had a value
in the [−0.5; 0.5] interval It was then fed to pre-trained U-net and learnlet models.
The noisy, original and denoised versions, as well as the subtraction of the latter to
the original image are presented in Figure 6.1-7. Using the MSE metric, learnlets
(MSE of 20.83) perform almost twice as well as U-nets (MSE of 41.25).

Hence, similarly to the previous experiment, the generalization is much better
for learnlets than for U-nets.

Influence of the number of samples. In a lot of Computer Vision prob-
lems, training data is scarce. It is reasonable to think that a small network (i.e. low
quantity of parameters) would start performing better than a deeper one as fewer
samples become available. To test this, three models were examined: two U-nets
of different sizes (8 and 64) and learnlets without exact reconstruction. The first
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Figure 6.1-7: Generlization to astrophysical images. Denoising res-ults for an astrophysical image contaminated with a noise of σ = 50.The last two images correspond to the subtraction of the original im-age to its denoised version.
aspect that can be mentioned about Figure 6.1-8 is that for the three networks the
PSNR does not vary significantly when reducing the original number of samples all
the way down to 50. Despite learnlets overcoming U-nets with 64 base filters for
the lowest number of samples considered, they fail to outperform a U-net model
with 8 base filters. It can be inferred that a reduced number of parameters tends
to improve the robustness of a given neural network to the number of samples. In
other words, relatively few samples are required to obtain top performance.

Qualitative results

Comparison with other methods. The Figure 6.1-9 shows that the learn-
lets suffer from some drawbacks of the wavelets like the creation of artifacts in the
high frequency parts of the image. However, the results are less blurred in com-
parison. Compared to the U-net, the learnlets are clearly suffering visually from a
loss of contrast. This is a known effect of the soft thresholding which inherently
biases the results. This could be improved by the use of reweighting [CWB08] to
further approach the hard-thresholding, which does not bias the results.

6.1.7 . Conclusions
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Figure 6.1-8: Low-data regimes. The PSNR of the denoised image at
σ = 25 added to the test images as a function of the number of samplesused during training. The train noise standard deviation range was
[0; 55].

Pushing the limits of sparsity using massive learning and training data, we
have proposed a novel neural network architecture – named Learnlets – with the
following properties:

• Although their performances are inferior to U-nets, learnlets generalize bet-
ter on noise levels that were not present in the training data and in the exact
reconstruction domain. Additionally, they perform better on the astronom-
ical image which is different from the images present in the training dataset.
In this case, the U-net’s result is very poor.

• Learnlets can be forced to guarantee exact reconstruction when no threshold-
ing is applied. This allows an embedding of the learnlets in applications
where there is a need for guarantees of retrieval like in medical imaging. In
contrast, U-nets suffer from a loss of performance at high noise levels.

Learnlets therefore bridge the gap between parsimony and neural networks,
by combining massive learning and the computing power of GPUs as in neural
networks, but keeping a perfect understanding of how results are obtained, with all
the theoretical guarantees existing in the area of parsimony. Learnlets do clearly
not outperform U-nets in denoising images compatible with the training dataset,
which would indicate that massive learning and large datasets are not enough to
explain the difference between sparse techniques and neural networks. The highly
nonlinear processing in U-nets brings certainly a critical aspect in achieving high
quality results.
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Our main message is that we have clearly identified in this study a trade-
off to be made in any application between performance and generalization. For
performance, standard U-nets should clearly be chosen, while if the generalization
is important, learnlets give the security of sparse techniques, using massive learning
and GPU tools.

The future directions of this work are to try to adapt what has been successful
in the sparse domain to this network. For example, reweighting [CWB08] could help
us to get rid of the loss of contrast. Curvelet filters [SCD02] could also be used as
a good initialization or as complementary filters for the analysis. Apart from that,
just like with the wavelets, different types of noise – such as Poisson or spatially
non-uniform white Gaussian noise – could be taken into account with a single model
when implemented in an undecimated way, by adapting the thresholding function
to the noise. Finally, it would be interesting to study the impact of incorporating
learnlets as building blocks of the DIDN architecture [YPJ19].

6.2 . Denoising Score-Matching for Uncertainty Quantification
in Inverse Problems

6.2.1 . Introduction

In this section, we discuss how to build uncertainty quantification models for
MRI reconstruction. One promising lead for this is to be able to generate multiple
possible reconstructions from a single set of measurements. This enables users to
recognize what parts of the reconstructed image are constrained by the data, and
what parts are derived from the prior model. A promising technique for this goal
is constrained generative modeling.

Generative modeling has enjoyed remarkable success in recent years with models
such as GANs [Goo+14] reaching extremely high quality results on complex high
resolution images [Kar+20]. Yet, GANs are still prone to issues including unstable
training and mode collapse, i.e. a lack of diversity in generated images. In addition,
GANs only provide a convenient way to sample from the learned distribution, they
do not give access to the density function itself. Another class of commonly used
models, Variational Auto-Encoders (VAEs) [KW14] have also been able to reach
high quality sample resolutions [VK20], but can only provide a bound on the density
function of the model.

In some practical applications of these generative models however, the most
desirable aspect is not necessarily to be able to sample from the model, or directly
have access to its density functions, but have access to gradients of the log density
function, i.e. its score. In particular, in this section we focus on the generic problem
of performing Bayesian inference to solve an inverse problem (i.e. deconvolution,
denoising, inpainting, etc.), using a learned generative model as a Bayesian prior.
Such problems can typically be solved by gradient-based inference methods such
as Variational Inference (VI), and Langevin or Hamiltonian Monte-Carlo (HMC),
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but all these methods have in common that they only rely on the score of the
generative model.

Recent work [Lim+20; SE19] has investigated various approaches to directly
train a deep neural network (coined, a score network) to estimate the score of
a density function instead of the density itself. One of the most promising and
scalable approach relies on denoising score-matching, where the score network is
trained using a denoising loss on an augmented dataset where various amounts
of Gaussian noise is added to the data. Not only has this approach already been
demonstrated to reach convincing results in score estimation, but Song et al. [SE20]
for instance demonstrated that these score networks can be used to sample high
resolution natural images through Langevin dynamics.

In this section, we develop the first application of deep DSM to MRI recon-
struction and its use for Uncertainty Quantification (UQ) in the context of imaging
inverse problems.

6.2.2 . Related Works

Score Matching. Score Matching was introduced by Hyvärinen [Hyv05]. It
was later revisited by Vincent [Vin11] and Alain et al. [AB13] in the context of
Deep Learning and Denoising Auto-Encoder (DAE) in particular. Recently, Song et
al. [SE19] applied these findings to images showing the potential of this approach
combined with sampling techniques. They refined their work [SE20] to take it to
high dimension and provide some techniques for hyperparameter setting.

P&P Priors. The idea of using a denoising model as a prior for inverse problems
solving was introduced by Venkatakrishnan et al. [VBW13] who used non-learned
denoisers to replace the proximity operator in the ADMM algorithm [Boy+11].
More recently, Meinhardt et al. [MMC17] have made use of learned denoiser net-
works in P&P inverse problems solving. Annealed HMC sampling can be seen as
a fuzzy-version of these approaches with theoretical grounds.

Deep UQ in Inverse Problems. The idea of using generative models for
inverse problems such as data imputation and denoising was for instance suggested
in an early VAE work [RMW14]. In this approach, a generative network is first
trained on high quality data, and inference is then performed in the latent space
of the model typically using VI. The main advantage comes from the reduced
dimensionality of the parameter space. Recent examples of this approach include
the works of Wu et al. [WDS18] and Böhm et al. [BLS19], and an application to
MRI was carried out by Edupuganti et al. [Edu+20]. An important aspect of this
approach is that it relies on the known likelihood of observations.

A different approach was proposed by Adler et al. [AÖ18a] based on a Condi-
tional Wasserstein Generative Adversarial Network (cWGAN). In this formulation, a
generative model is trained to sample high quality images conditioned on degraded
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observations. At test time, independent samples from the posterior distribution
induced by the GAN are obtaind by simply sampling different latent space vari-
ables. Similar frameworks based on other conditional generative models have alse
been proposed, using conditional Normalizing Flows [Den+20], or using conditional
VAEs [Ton+19]. While this conditional generative model approach allows for fast
inference, thanks to ancestral sampling, it is worth noting that none of these mod-
els include an explicit data consistency step, nor do they make use of a test-time
likelihood. As a direct consequence, for instance, these models cannot be used on
data with different noise levels as seen during training.

6.2.3 . Deep DSM for Posterior Inference

Our main objective in this section is to perform probabilistic inference over a
Bayesian model typically represented as

p(x |y) ∝ p(y |x) p(x) (6.8)
where y are some measurements and the posterior p(x |y) is the distribution of
possible solutions x compatible with observations and p(x) the prior knowledge.
The problem-specific likelihood p(y |x) encodes the forward process of the model
and accounts for observational noise, while the prior p(x) encapsulates any a priori
information we have on the solution of the problem. Our goal for UQ is to sample
solutions x belonging to that posterior. Multiple inference techniques can be lever-
aged for sampling from this posterior p(x |y), but for high-dimensional problems
modern techniques rely on gradient-based methods, including Variational Infer-
ence [Hof+13] and Langevin Diffusion, or HMC [Nea11]. All of these techniques
have in common that they only require having access to the score ∇x log p(x) of
the target distribution (which in our case is the posterior distribution p(x |y)).
Two terms will contribute to the score of the posterior distribution in Equation 6.8,
the score of the likelihood, and the score of the prior. In many problems, such as in
the MRI problem presented later in this work, the likelihood score can be derived
analytically, only the score of the prior remains unknown but can be learned from
data by score matching.

Deep DSM. As originally identified by Vincent [Vin11] and Alain et al. [AB13],
the score of a given target distribution P can be modeled using a DAE, i.e. by
introducing an auto-encoding function r : Rn × R 7→ Rn trained to reconstruct
under an ℓ2 loss a true x ∼ P given a noisy version x′ = x+n with n ∼ N (0, σ2I).
An optimal denoiser r⋆ would then be achieved for:

r⋆(x′, σ) = x′ + σ2∇x log pσ2(x′) (6.9)
where pσ2 = p ∗ N (0, σ2). In other words, the optimal denoiser is closely related
to the score we wish to learn and when the noise variance σ2 tends to zero, should
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exactly match the score of the target density. In practice to learn this score effi-
ciently, we adopt the residual noise-conditional DSM technique proposed by Lim
et al. [Lim+20], and train a model to minimize the following DSM loss:

LDSM = E
x∼P

E
u∼N (0,I)

σs∼N (0,s2)

∥ u + σsrθ(x + σsu, σs) ∥22 (6.10)

In this formulation, the network rθ(x, σ) is now directly modeling the score∇x log pσ2(x)
of the Gaussian-convolved target distribution. Note that the noise level σs can be
negative intentionally. This was recommended by Lim et al. [Lim+20] in order for
the network to learn interpolation rather than extrapolation when σs tends to zero.
This does not affect the noise distribution.

Annealed HMC Sampling. Given the noise-conditional neural scores learned
with the procedure described above, it is now possible to use a variety of inference
methods to access the Bayesian posterior. In this section, we adopt an annealed
HMC procedure which provides an efficient way to obtain parallel batches of inde-
pendent samples from the target posterior despite the high dimensionality of the
problem. This is a sampling procedure closely related to the Annealed Langevin
Diffusion proposed by Song et al. [SE19; SE20], but benefits from the faster
Hamiltonian dynamics and Metropolis-Hastings calibration.

To build our procedure, we consider a Gaussian-convolved version of our target
density:

log pσ2(x |y) = log pσ2(y |x) + log pσ2(x) + cst (6.11)
where σ2 plays the role of the inverse temperature found in classical annealing.
The likelihood can be obtained analytically, and in the case of a Gaussian likelihood
takes the following form: log pσ2(y |x) = −∥x−f(x)∥2

2
2(σ2

n+σ2) + cst, where σ2
n is the noise

variance in the measurements. As for the prior term, the noise-conditional score
network introduced above already models the score of log pσ2 . This distribution is
gradually annealed to low temperatures and the chain progressively moves towards
a point in the target distribution.

6.2.4 . Application to Bayesian Inverse Problems
The MRI Problem. MRI is a non-invasive modality used to probe soft tissues.
Compressed sensing, introduced for MRI by Lustig et al. [LDP07] is used to reduce
its significant acquisition time, and recently, deep learning approaches [Sch+18;
Ham+18; Pez+20] have been shown to perform extremely well on the reconstruc-
tion problem. The idealized reconstruction problem is usually formalized in the
following way, for the single coil setting, with uniform acquisition:

y = MΩFx + n (6.12)
where y is the acquired Fourier coefficients, also called the k-space data, MΩ is a
mask, F is the classical 2D FT, x is the anatomical image, and n ∼ N (0, σ2

n) is
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measurement noise (we set σn = 0.1 in our experiments). The data we consider
is the single coil data with the PD contrast from the fastMRI dataset introduced
by Zbontar et al. [Zbo+18]. For comparison with deep learning approaches, we
use the state-of-the-art Primal-Dual net enhanced with a U-net for image correc-
tion (UPDNet) [ZCS20c], which is basically an XPDNet with a U-net instead of
a MWCNN. The undersampling was done retrospectively using an AF of 4 and a
random mask as described for knee images by Zbontar et al. [Zbo+18].

Results. We use a simple residual U-net inspired by Ronneberger et al. [RFB15]
with ResNet building blocks from the work of He et al. [He+16] as our score net-
work. In order to promote the regularity of the learned scores, we regularize the
spectral norm of each convolutional layer, and we find that setting the spectral
norm to ≃ 2 yields the best results. More details about the network architecture
and training can be found in the Appendix, Table B. We then sample from the pos-
terior following our annealed HMC procedure down to relatively low temperatures,
and apply one final denoising step on the last sample from the chain, following
the Expected Denoised Sample (EDS) scheme [Jol+21]. Figure 6.2-10 compares
samples from the MRI posterior to the ground truth (top left), zero-filled image
(top second left), and UPDNet reconstruction (top center). We see that although
individual samples carry slightly fewer details than the neural network reconstruc-
tion, confidence in any particular part of the image can be gauged by looking for
variability or stability across multiple independent posterior samples. We highlight
in particular the red region, where posterior samples show significant variability,
indicating that this part of the image is poorly constrained by data. In contrast, a
direct neural network reconstruction (top center) does not match the ground truth
in that region, and does not provide an estimate of uncertainty which may lead a
physician to misinterpret the image.

6.2.5 . Conclusions and Discussions

We have presented in this section the first (to the best of our knowledge)
instance of a framework for Bayesian inverse problems based on Deep DSM and
applied to MRI reconstruction and UQ. We illustrated the merits of this approach
on an MRI example where the ability to sample from the full posterior highlights
what features present in a reconstruction are not actually constrained by data.
We also showed that the Deep DSM approach can effortlessly be used for dimen-
sions as high as 320 × 320 × 2. It is therefore much more scalable than GAN-
or VAE-based models. We note however that finding an optimal HMC annealing
schedule and temperature-adaptive step-size proved difficult. In general, we did
not manage to lower the temperature below a certain level, prompting us to resort
to a denoising step on the last samples from our HMC chains. This was a direction
for further research. The new developments that occurred in score-based generat-
ive models, namely Stochastic Differential Equations (SDE) based models, have
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allowed to lift these problems. Some works have leveraged this new technique to
solve inverse problems in imaging and applied it to MRI [Son+21; CY21].

6.3 . Is good old GRAPPA dead?

6.3.1 . Introduction

One of the most challenging aspects of building better MRI reconstruction is
evaluation. We discussed this point in detail in section 2.4, and illustrate partially
this pain point in this section.

In this section, we compare a state-of-the-art approach, the XPDNet [ZCS20c],
to GRAPPA [Gri+02] on the task of reconstructing periodically undersampled MR
images in different qualitative settings. This type of comparison to GRAPPA had
not been performed before, even though GRAPPA is used in all the Siemens scan-
ners, the most distributed in the world, as the default method for MR image
reconstruction in the case of periodic undersampling (and similar approaches for
other manufacturers).

We show that for this algorithm a visual evaluation is necessary. This point
is critical, because replacing existing algorithms with neural networks will need
comparative evaluation. We also show how the XPDNet can without adjustment
be used to reconstruct prospectively accelerated data.

6.3.2 . Methods

Network. The XPDNet is a type of unrolled network that secured the second
place in the 2020 fastMRI brain reconstruction challenge [Muc+21]. Very basically,
it unrolls the PDHG [CP11] algorithm using a MWCNN [Liu+18] as the learned
proximity operator. It has 25 unrolled iterations, and also features a sensitivity
maps refinement module. Two networks were trained for AFs 4 and 8, using retro-
spectively undersampled data from the fastMRI dataset [Zbo+18] with equidistant
Cartesian masks.3 We chose to use non fine-tuned versions of the networks (i.e.
trained on the four available imaging contrasts).

GRAPPA. We used the vanilla version of GRAPPA without noise handling. We
use kernels that span 5 points in the readout direction and 2 in the phase direction.
We manually set the regularization parameter λ > 0 to obtain the best comprom-
ise between quantitative and qualitative evaluation, therefore biasing the analysis
towards GRAPPA.4 We leave the analysis of a smart setting of λ for future works.

Data. We used 3 data sets to perform our comparison on:

3facebookresearch/fastMRI/issues/544youtube.com/watch?v=PngT6chFy6c
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• a brain slice from the fastMRI validation data set [Zbo+18] (the state-of-
the-art network was trained on the training data set), with T2 contrast,
retrospectively undersampled at AFs 4 and 8;

• a brain slice acquired at a different resolution (0.25mm× 0.25mm) using a
different magnetic field strength (7 T), orientation and AF than the fastMRI
brain data set and featuring the cerebellum (not present in the fastMRI
brain data set), with T2 contrast, prospectively undersampled at AF 2 –
this allows us to test the robustness of the network to somewhat unseen
settings [Mar+16];

• a NIST phantom, prospectively undersampled at AF 8, acquired at 3 T
with 64 coils and a matrix size of 256× 256.

All the data is periodically undersampled with an ACS.

Code. We use the code of Zaccharie Ramzi et al. [ZCS20c] for the network.5

We used our own implementation of GRAPPA with a TensorFlow backend.6

6.3.3 . Results
On the fastMRI brain slice. At AF 4, the quantitative results seem to show
that the XPDNet has an overwhelmingly better image quality than GRAPPA. How-
ever, upon visual inspection of the images available in Figure 6.3-11, we see that
the image reconstructed by GRAPPA is only degraded by some noise not deterior-
ating its interpretability. At AF 8, the quantitative metrics once again show a clear
advantage of the XPDNet over GRAPPA. This time, it is clearly confirmed by the
visual inspection of the images presented in Figure 6.3-12.

On theout-of-distributionbrain slice. The image reconstructed with the
XPDNet shows some faint smoothing in the cerebellum as shown in the bottom
row of Figure 6.3-13. However, the overall image is artifacts-free and very difficult
to distinguish from the GRAPPA -reconstructed one.

On theNIST phantom. The phantom reconstructed using GRAPPA and XP-
DNet at AF 8 are very poor. For GRAPPA, the noise completely obfuscates the
signal while for XPDNet the artifacts are present everywhere as can be seen in
Figure 6.3-14.

5github.com/zaccharieramzi/fastmri-reproducible-benchmark6github.com/zaccharieramzi/grappa
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Original image Noisy image

Wavelets: Image denoised

Learnlets: Image denoised U-net: Image denoised

Figure 6.1-9: Denoising results for a specific image in the BSD68
dataset. The noise standard deviation used was of 30. Parametersused for the methods are the same as for Figure 6.1-3.
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Ground truth Zero-filled UPDNet Samples → . . .

Figure 6.2-10: Bayesian posterior sampling for MRI reconstruction. Thetop leftmost image is the ground truth image. The top second to the left im-age is the zero-filled retrospectively undersampled image F⊤y. The top thirdto the left image is the reconstruction of the undersampled image by the UP-DNet. All the other images are denoised samples from the estimated pos-terior distribution obtained by a tempered HMC. The zero-filling achieves aPSNR of 25.55 dB, each sample 27.63 dB on average, themean of the samples30.04 dB and the neural network 32.15 dB. A zoom of the region in the redsquare is provided in the Apppendix (Table A). An animation of posteriorsamples is available online�.
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Reference
GRAPPAPSNR: 35.83SSIM: 0.8784

XPDNetPSNR: 41.96SSIM: 0.9791

Figure 6.3-11: Magnitude reconstruction results for a specific fast-
MRI slice at AF 4. The top row represents the reconstruction using thedifferent methods, while the bottom one represents the error whencompared to the reference.
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Reference
GRAPPAPSNR: 26.18SSIM: 0.7704

XPDNetPSNR: 36.82SSIM: 0.9626

Figure 6.3-12: Magnitude reconstruction results for a specific fast-
MRI slice at AF 8. The top row represents the reconstruction using thedifferent methods, while the bottom row represents the error whencompared to the reference.
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GRAPPA XPDNet

Figure 6.3-13: Magnitude reconstruction results for a brain ac-
quired at AF 2, contrast T2, and field strength of 7T. The top rowrepresents the reconstruction using the different methods, while thebottom one represents a zoom in the cerebellum region, an anatom-ical feature that was not present in the XPDNet training set.
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Reference
GRAPPAPSNR: 24.59SSIM: 0.7673

XPDNetPSNR: 18.40SSIM: 0.6328

Figure 6.3-14: Magnitude reconstruction results for a phantom ac-
quired at AF 8. The top row represents the reconstruction using thedifferent methods, while the bottom one represents the error whencompared to the reference.
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6.3.4 . Conclusion and Discussion
The Deep Learning techniques seem ready for a substitution test at AF 4,

however, they do not seem to provide an overwhelming advantage over GRAPPA
visually. The AF of 8 looks like an attainable target, and it would drastically
improve the image quality when compared to GRAPPA, even when using the latest
noise handling techniques. We also showed that the XPDNet is robust enough to
be adapted to settings relatively different from the training distribution. However,
if trained on brains a network cannot reconstruct objects that are too dissimilar,
like phantoms. We conclude that it is therefore important to test visually the
results of a reconstruction network at low AFs to measure the difference compared
to GRAPPA, and that the high AFs are currently the real target for Deep Learning.

This comparison demands other types of robustness and sanity tests such as
(but not limited to) receiver array coil design, SNR level, contrasts, organs, and
orientation.

✽ ✽ ✽
✽ ✽

✽
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7 - New learning paradigms for very deep net-
works

Chapter Outline

7.1 SHINE: SHaring the INverse Estimate from the forward pass
for bilevel optimization and implicit models . . . . . . . . . . . 146
7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 146
7.1.2 Hypergradient Optimization with Approximate Jac-

obian Inverse . . . . . . . . . . . . . . . . . . . . . . . 148
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.1.4 Conclusion and Discussion . . . . . . . . . . . . . . . 158

7.2 Other paradigms for memory reduction when training neural
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.1 Gradient checkpointing . . . . . . . . . . . . . . . . . 159
7.2.2 Invertible Networks . . . . . . . . . . . . . . . . . . . 159
7.2.3 IFT-based networks . . . . . . . . . . . . . . . . . . . 161

The first section of this chapter was accepted as a spotlight to peer-reviewed
conference:

Zaccharie Ramzi, F. Mannel, S. Bai, J.-L. Starck, P. Ciuciu and T. Mor-
eau. “SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models”. In: International Conference on Learning
Representations. 2022. Spotlight

In order to maintain excellent performances in terms of image quality while drastic-
ally accelerating (i.e. undersampling) data acquisition, deep learning models for

MRI reconstruction will most likely need to be very deep. The most significant lim-
itation to this evolution is currently the fact that the memory required for training
grows with the depth of the network. This growth is driven not by the size of the
model weights but by the activations as we explained in paragraph 3.2.2.

As this problem is not specific to MRI reconstruction or even to inverse problems
solving, a lot of effort has been put in trying to reduce the memory needed for
training, by relying on fewer activations. However, most of the current techniques
rely on trading off memory for computation. In this chapter, we will first introduce
an original approach that enables faster training for DEQs [BZK19; BKK20], a
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type of models enabling memory-less training. These models are an instance of
the implicit DL framework. In this framework, the output of the model is not
defined by an explicit sequence of operations, but rather as the solution to a
parametrized equation. Thanks to this formulation, it is then possible to use the
Implicit Function Theorem (IFT) to compute the derivatives of the parameters
without having to rely on activations. In turn, this allows memory-less training.
We will then describe other frameworks alleviating the memory requirements for
training deep neural networks.

7.1 . SHINE: SHaring the INverse Estimate from the forward
pass for bilevel optimization and implicit models

7.1.1 . Introduction
In general, the formulation of DEQs can be cast as a bilevel problem of the

following form:
arg min

θ
L(z⋆) subject to gθ(z⋆) = 0 (7.1)

We will refer to the root finding problem gθ(z⋆) = 0 as the inner problem, and call
its resolution the forward pass. On the other hand, we will refer to arg minθ L(z⋆)
as the outer problem, and call the computation of the gradient of L(z⋆) w.r.t. θ

the backward pass. The core idea for DEQs is that their output z⋆ is expressed as a
fixed point of a parametric function fθ from Rd to Rd, i.e., gθ(z⋆) = z⋆−fθ(z⋆) =
0.1 This model is said to have infinitely many weight-tied layers as z⋆ can be
obtained by successively applying the layer fθ infinitely many times, provided fθ

is contractive. In practice, DEQs’ forward pass is not computed by applying
successively the function but usually relies on Quasi-Newton (qN) algorithms, such
as Broyden’s method [Bro65], which approximates efficiently the Jacobian matrix
∂gθ
∂z and its inverse for root-finding.

To compute DEQs’ gradient efficiently and avoid high memory cost, one does
not rely on back-propagation but uses the IFT [KP13] which gives an analytical
expression of the Jacobian of z⋆ with respect to θ, ∂z⋆

∂θ . While this method is
memory efficient, it requires the computation of matrix-vector products involving
the inverse of a large Jacobian matrix, which is computationally demanding. To
make this computation tractable, one needs to rely on an iterative algorithm based
on vector-Jacobian products, which renders the training particularly slow, as high-
lighted by the original authors [BKK20] (see also the breakdown of the computa-
tional effort in Table A.0.1).

Moreover, the formulation Equation 7.1 allows us to also consider general
bilevel problems such as hyperparameter optimization under the same framework.
For instance, hyperparameter optimization for Logistic Regression (LR) can be

1Here, we do not explicitly write the dependence of fθ on the input x of the DEQ,usually referred to as the injection.
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written as

min
θ
Lval(z∗) subject to z∗ = min

z
rθ(z) ≜ Ltrain(z) + θ∥z∥22 (7.2)

where Ltrain and Lval correspond to the training and validation losses from the LR
problem [Ped16]. Here, z corresponds to the weights of the LR model while θ is
the regularisation parameter. As the training loss is smooth and convex, the inner
problem can be written as in Equation 7.1 with gθ = ∇zrθ to fit Equation 7.1.
Similarly to DEQ, the inner problem is often solved using qN methods, which
approximate the inverse of the Hessian in the direction of the steps, such as the
LBFGS algorithm [LN89], and the gradient computation suffers from the same
drawback as it is also obtained using the IFT. Lorraine et al. [LVD20] review the
different hypergradient approximations for bilevel optimization and evaluate them
on multiple tasks.

With the increasing popularity of DEQs and the ubiquity of bilevel problems in
machine learning, a core question is how to reduce the computational cost of the
resolution of Equation 7.1. This would make these methods more accessible for
practitioners and reduce the associated energy cost. In this section, we propose
to exploit the estimates of the (inverse of the) Jacobian/Hessian produced by
qN methods in the hypergradient computation. Moreover, we also propose extra
updates of the qN matrices which maintain the approximation property in the
direction of the steps, and ensure that the inverse Jacobian is approximated in an
additional direction. In effect, we can compute the gradient using the inverse of
the final qN matrix instead of an iterative algorithm to invert the Jacobian in the
gradient’s direction, while stressing that the inverse of a qN matrix, and thus the
multiplication with it, can be computed very efficiently.

We emphasize that the goal of this section is neither to improve the algorithms
used to compute z⋆, nor is it to demonstrate how to perform the inversion of a
matrix in a certain direction as a standalone task. Rather, we are describing an
approach that combines the resolution of the inner problem with the computation
of the hypergradient to accelerate the overall process. Our work is the first
to consider modifying the inner problem resolution in order to account for the
bilevel structure of the optimization The idea to use additional updates of the qN
matrices to ensure additional approximation properties is not new, and it is also
known that a full matrix inversion can be accomplished in this way. For instance,
Gower et al. [GR17] used sketching to design appropriate extra secant conditions
in order to obtain guarantees of uniform convergence towards the inverse of the
Jacobian. The novelty in our work is that we integrate additional update to yield
the inverse in a specific direction, which is substantially cheaper than computing
the inverse. A concurrent work by Fung et al. [Fun+21] is also concerned with the
acceleration of DEQs’ training, where the inverse Jacobian is approximated with
the identity. Under strong contractivity and conditioning assumptions, it is proven
that the resulting approximation is a descent direction and the authors show good
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empirical performances for small scale problems.
The contributions of this section are the following:

• We introduce a new method to greatly accelerate the backward pass of DEQs
(and generally, the differentiation of bilevel problems) using qN matrices
that are available as a by-product of the forward computations. We call this
method SHINE (SHaring the INverse Estimate).

• We enhance this method by incorporating knowledge from the outer prob-
lem into the inner problem resolution. This allows us to provide strong
theoretical guarantees for this approach in various settings.

• We additionally showcase its use in hyperparameter optimization. Here, we
demonstrate that it provides a gain in computation time compared to state-
of-the-art methods.

• We test it for DEQs for the classification task on two datasets, CIFAR and
ImageNet. Here, we show that it decreases the training time while remaining
competitive in terms of performance.

• We extend the empirical evaluation of the Jacobian-Free method to large
scale Multiscale Deep Equilibrium Network (DEQs) and show that it per-
forms well in this setting. We also show that it is not suitable for more
general bilevel problems.

• We propose and evaluate a natural refinement strategy for approximate Jac-
obian inversion methods (both SHINE and Jacobian-Free) that allows a
trade-off between computational cost and performances.

7.1.2 . Hypergradient Optimization with Approximate Jacobian In-
verse

SHINE: Hypergradient Descentwith Approximate Jacobian Inverse

Hypergradient Optimization. Hypergradient optimization is a first-order
method used to solve Equation 7.1. We recall that in the case of smooth con-
vex optimization, ∂gθ

∂z is the Hessian of the inner optimization problem, while for
deep equilibrium models, it is the Jacobian of the root equation. In the rest of
this section, with a slight abuse of notation, we will refer to both these matrices
with Jgθ

whenever the results can be applied to both contexts. To enable Hy-
pergradient Optimization, i.e. gradient descent on L with respect to θ, Bai et
al. [BZK19, Theorem 1] show the following theorem, which is based on implicit
differentiation [KP13]:

Theorem 1 (Hypergradient [KP13; BZK19]) Let θ ∈ Rp be a set of parameters, let
L : Rd → R be a loss function and gθ : Rd → Rd be a root-defining function. Let
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z⋆ ∈ Rd such that gθ(z⋆) = 0 and Jgθ
(z⋆) is invertible, then the gradient of the

loss L wrt. θ, called Hypergradient, is given by
∂L
∂θ

∣∣∣
z⋆

= ∇zL(z⋆)⊤Jgθ
(z⋆)−1∂gθ

∂θ

∣∣∣
z⋆
. (7.3)

Algorithme 2 : qN method to solve gθ(z⋆) = 0.
Result : Root z⋆, qN matrix B

1 b = true if using Broyden’s method, b = false if using BFGS
2 n = 0, z0 = 0, B0 = I
3 while not converged do
4 pn = −B−1

n gθ(zn), zn+1 = zn +αnpn // αn can be 1 or determined

by line-search

5 yn = gθ(zn+1)− gθ(zn)
6 sn = zn+1 − zn

7 if b then
8 Bn+1 = arg min

X: Xsn=yn

∥X −Bn∥F

9 else
10 Bn+1 = arg min

X: X=X⊤ ∧Xsn=yn

∥X−1 −B−1
n ∥ // The norm used in

BFGS is a weighted Frobenius norm

11 n← n+ 1
12 z⋆ = zn, B = Bn

In practice, we use an algorithm to approximate z⋆, and Theorem 1 gives a
plug-in formula for the backward pass. Note that this formula is independent of
the algorithm chosen to compute z⋆. Moreover, as opposed to explicit networks,
we do not need to store intermediate activations, resulting in the aforementioned
training time memory gain for DEQs. Once z⋆ has been obtained, one of the major
bottlenecks in the computation of the Hypergradient is the inversion of Jgθ

(z⋆) in

the directions ∂gθ
∂θ

∣∣∣
z⋆

or ∇zL(z⋆).

qNmethods. In practice, the forward pass is often carried out with qN meth-
ods. For instance, in the case of bilevel optimization for LR, Pedregosa [Ped16]
used L-BFGS [LN89], while for Deep Equilibrium Models, Bai et al. [BZK19] used
Broyden’s method [Bro65], later adapted to the multiscale case in a limited-memory
version [BKK20].

These qN methods were first inspired by Newton’s method, which finds the
root of gθ via the recurrent Jacobian-based updates zn+1 = zn−Jgθ

(zn)−1gθ(zn).
Specifically, they replace the Jacobian Jgθ

(zn) by an approximation Bn that is
based on available values of the iterates zn and gθ rather than its derivative.
These Bn, called qN matrices, are defined recursively via an optimization problem
with constraints called secant conditions. Solving this problem leads to expressing
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Bn as a rank-one or rank-two update of Bn−1, so that Bn is the sum of the initial
guess B0 (in our settings, the identity) and n low-rank matrices (less than n in
limited memory settings). This low rank structure allows efficient multiplication
by Bn and B−1

n . We now explain how the use of qN methods as inner solver can
be exploited to resolve this computational bottleneck.

SHINE. Roughly speaking, our proposition is to use B−1 = limn→∞ B−1
n as

a replacement for Jgθ
(z⋆)−1 in Equation 7.3, i.e. to share the inverse estimate

between the forward and the backward passes. This gives the approximate Hyper-
gradient

pθ = ∇zL(z⋆)B−1∂gθ

∂θ

∣∣∣
z⋆

(7.4)
In practice, we will consider the nonasymptotical direction p

(n)
θ = ∇zL(zn)B−1

n
∂gθ
∂θ

∣∣∣
zn

.

Thanks to the Sherman-Morrison formula [SM50], the inversion of Bn can be done
very efficiently (using scalar products) compared to the iterative methods needed
to invert the true Jacobian Jgθ

(z⋆). In turn, this significantly reduces the compu-
tational cost of the Hypergradient computation.

Relationship to the Jacobian-Free method. Because B0 = I in our
setting, we may regard B as an identity matrix perturbed by a few rank-one updates.
In the directions that are used for updates, B is going to be different from the
identity, and hopefully closer to the true Jacobian in those directions. However, in
all orthogonal directions we fall exactly into the setting of the Jacobian-Free method
introduced by Fung et al. [Fun+21]. In that work, Jgθ

(z⋆)−1 is approximated by
I, and the authors highlight that this is equivalent to using a preconditioner on
the gradient. Under strong assumptions on gθ they show that this preconditioned
gradient is still a descent direction.

Transition to the exact Jacobian Inverse. The approximate gradient
p

(n)
θ can also be used as the initialization of an iterative algorithm for inverting

Jgθ
(z⋆) in the direction ∇zL(z⋆). With a good initialization, faster convergence

can be expected. Moreover, if the iterative algorithm is also a qN method, which
is the case in practice in the MDEQ implementation, we can use the qN matrix
B from the forward pass to initialize the qN matrix of this algorithm. We refer
to this strategy as the refine strategy. Because the refine strategy is essentially a
smart initialization scheme, it recovers all the theoretical guarantees of the original
method [Ped16; BZK19; BKK20].

Convergence to the true gradient

To further justify and formalize the idea of SHINE, we show that the direction p
(n)
θ

converges to the Hypergradient ∂L
∂θ

∣∣∣
z⋆

. We now collect the assumptions that will
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be used for this purpose.

Assumption 7.1.1 (Uniform Linear Independence (ULI) [LZZ98]). There exist a
positive constant ρ > 0 and natural numbers n0 ≥ 0 andm ≥ dwith the following
property: For any n ≥ n0 we can find indices n ≤ n1 ≤ . . . ≤ nd ≤ n + m such
that, for pn defined in Algorithm 2, the smallest singular value of the d× dmatrix( pn1

∥pn1 ∥ ,
pn2

∥pn2 ∥ , . . . ,
pnd

∥pnd
∥

)
is no smaller than ρ.
Assumption7.1.2 (Smoothness and convergence to the fixedpoint). (i)∑∞

n=0 ∥zn−
z⋆∥ <∞ for some z⋆ with gθ(z⋆) = 0; (ii) gθ isC1,Jgθ

is Lipschitz continuous near
z⋆, and Jgθ

(z⋆) is invertible; (iii)∇zL is continuous, and ∀θ, ∂gθ
∂θ is continuous.

Remark The Assumption 7.1.2 (i) implies limn→∞ zn = z⋆. The existence of the
Jacobian and its inverse are assumptions that are alreadymade in the regular DEQ
setting just to train the model.

Theorem 2 (Convergence of SHINE to the Hypergradient using ULI) Let us de-
note p(n)

θ , the SHINE direction for iterate n in Algorithm 2 with b = true. Under As-
sumptions 7.1.1 and 7.1.2, for a given parameter θ, (zn) converges q-superlinearly
to z⋆ and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

Proof. From More et al. [MT76, Theorem 5.7] we obtain that limn→∞ Bn =
Jgθ

(z⋆). We can then conclude using the continuity of the inversion operator
on the space of invertible matrices and of the right and left matrix vector mul-
tiplications. A complete proof is given in Appendix C.

Theorem 2 establishes convergence of the SHINE direction to the true Hyper-
gradient, but relies on Assumption 7.1.1 (ULI). While ULI is often used to prove
convergence results for qN matrices [LZZ98; NW06; CGT91], it is a strong assump-
tion whose satisfaction in practice is debatable [FBS93]. For Broyden’s method,
Mannel [Man21a; Man21b; Man20] showed that ULI is violated in all numerical ex-
periments, and they also proved that ULI is necessarily violated in certain settings
(but the setting of this work is not covered). In the following we therefore derive
results that do not involve ULI.

Outer Problem Awareness

The ULI assumption guarantees convergence of B−1
n to Jgθ

(z⋆)−1. However,
Equation 7.3 only requires the multiplication of Jgθ

(z⋆)−1 with ∂gθ
∂θ |z⋆ from the

right and ∇zL(z⋆) from the left.

151



BFGS with OPA. In order to strengthen Theorem 2, let us consider the setting
of bilevel optimization with a single regularizing hyperparameter θ. There, the
partial derivative ∂gθ

∂θ |z⋆ is a d-dimensional vector, and it is possible to compute its
approximation ∂gθ

∂θ |zn at a reasonable cost. We propose to incorporate additional
updates of the qN matrix Bn into Algorithm 2 that improve the approximation
quality of B−1

n in the direction ∂gθ
∂θ |zn (thus asymptotically in the direction ∂gθ

∂θ |z⋆).
Given a current iterate pair (zn,Bn), these additional updates only change Bn,
but not zn. We will demonstrate that a suitable update direction en ∈ Rd is given
by

en = tnB
−1
n

∂gθ

∂θ

∣∣∣
zn

, (7.5)
where (tn) ⊂ [0,∞) satisfies

∑
n tn < ∞. This update direction will be used to

create an extra secant condition X−1(gθ(zn+en)−gθ(zn)) = en for the additional
update of Bn. Since this extra update is based on the outer problem, we refer to
this technique as Outer-Problem Awareness (OPA). The complete pseudocode of
the OPA method in the LBFGS algorithm [LN89] is given in Figure A.

We now prove that if extra updates are applied at a fixed frequency, then fast
(q-superlinear) convergence of (zn) to z⋆ is retained, while convergence of the
SHINE direction to the true Hypergradient is also ensured. To show this, we use
the following assumption.

Assumption 7.1.3 (Assumptions for BFGS). Let gθ(z) = ∇zrθ(z) for some C2

function rθ : Rd → R. Consider Algorithm 2 with b = false. We assume some
regularity on r and that an appropriate line search is used. An extended version
of this assumption is given in Theorem C (Assumption C.0.1).

Theorem 3 (Convergence of SHINE to the Hypergradient for BFGS with OPA)
Let us consider p(n)

θ , the SHINE direction for iterate n in Algorithm 2 that is en-
riched by extra updates in the direction en defined in Equation 7.5. Under As-
sumptions 7.1.2 (ii-iii) and 7.1.3, for a given parameter θ, we have the following:
Algorithm 2, for any symmetric and positive definite matrix B0, generates a se-
quence (zn) that converges q-superlinearly to z⋆, and there holds

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

(7.6)
Proof. It follows from known results that the extra updates do not destroy
the q-superlinear convergence of (zn). The proof of Equation 7.6 relies firstly
on the fact that by continuity of the derivative of gθ, we have limn→∞

∂gθ
∂θ |zn =

∂gθ
∂θ |z⋆ . Due to the extra updates we can show convergence of the qNmatrices
to the true Hessian in the direction of the extra steps en, from which Equa-
tion 7.6 follows. A full proof is provided in Theorem C.
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Remark Theorem 3 also holds without line searches (i.e., αn = 1 for all n) and any
C2 function rθ (such that gθ(z) = ∇zrθ(z)) with locally Lipschitz continuous Hes-
sian if z0 is close enough to some z⋆ with ∇zrθ(z⋆) = 0 and ∇2

zzrθ(z⋆) positive
definite.

We note that Theorem 3 guarantees fast convergence of the iterates (zn)
and that z0 does not have to be close to z⋆ for that guarantee. Also, there is
no restriction on B0 other than being symmetric and positive definite (which is
satisfied for our choice B0 = I). Finally, Theorem 3 does not rely on ULI. From
a practical standpoint we thus regard Theorem 3 as a much stronger result than
Theorem 2.

Adjoint Broyden with OPA. It is not practical to use the partial derivative
∂gθ
∂θ in the DEQ setting because it is a huge Jacobian that we do not have access to
in practice. In order to still leverage the core idea of OPA, we propose to use extra
updates that ensure that B−1

n approximates Jgθ
(z⋆)−1 in the direction ∇zL(z⋆)

applied by left-multiplication, as required by Equation 7.3. An appropriate secant
condition is given by

v⊤
n Bn+1 = v⊤

n Jgθ
(zn+1), (7.7)

where
v⊤

n = ∇zL(zn)B−1
n . (7.8)

To incorporate the secant condition Equation 7.7, we use the Adjoint Broyden’s
method [SGW10], a qN method relying on the efficient vector-Jacobian multiplic-
ation by Jgθ

using auto-differentiation tools. To prove convergence of the SHINE
direction for this method, we need the following assumption.

Assumption 7.1.4 (Uniform boundedness of the inverse qN matrices). The
sequence (Bn) generated by Algorithm 2 satisfies

sup
n∈N

∥∥∥B−1
n

∥∥∥ <∞.
Remark Convergence results for qN methods usually include showing that As-
sumption 7.1.4 holds, cf. Broyden et al. [BDM73, Theorem 3.2] for Broyden’smethod
and the BFGS method, respectively, Schlenkrich et al. [SGW10, Theorem 1] for the
Adjoint Broyden’s method. It can also be proved that Assumption 7.1.4 holds for
globalized variants of these methods, e.g., for the line-search globalizations of
Broyden’s method proposed by Li et al. [LF00]. We point out that Assumption 7.1.1
entails limBn = Jgθ

(z⋆) and thus limB−1
n = Jgθ

(z⋆)−1, so it is clearly stronger
than Assumption 7.1.4.
Theorem 4 (Convergence of SHINE to the Hypergradient for Adjoint Broyden
with OPA) Let us consider p(n)

θ , the SHINE direction for iterate n in Algorithm 2
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with the Adjoint Broyden secant condition Equation 7.7 and extra update in the
direction vn defined in Equation 7.8. Under Assumptions 7.1.2 and 7.1.4, for a givenparameter θ, we have q-superlinear convergence of (zn) to z⋆ and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

Proof. The q-superlinear convergence of (zn) follows from Schlenkrich et al.
[SGW10, Theorem 2]. To establish convergence of the SHINE direction, we
proceed in three steps. First, it is shown that for∇zL(z⋆) = 0 the claim holds
due to continuity and Assumption 7.1.4. Then ∇zL(z⋆) ̸= 0 is considered,
and it is proved that the desired convergence holds on the subsequence that
corresponds to the additional updates. Lastly, this result is transferred to the
entire sequence by involving the fixed frequency of the additional updates.
The complete proof is provided in Equation C.

Using the Adjoint Broyden’s method comes at a computational cost. Indeed,
because we now rely on Jgθ

, we have to store the activations of gθ(z) (which
has a computational cost in addition to a memory cost), but also perform the
vector-Jacobian product in addition to the function evaluation.

7.1.3 . Results

We test our method in 3 different setups and compare it to the original iterative
inversion and its closest competitor, the Jacobian-Free method [Fun+21]. We draw
the reader’s attention to the fact that although the Jacobian-Free method [Fun+21]
is used outside the assumptions needed to have theoretical guarantees2 of descent,
it still performs relatively well in the Deep Equilibrium setting. The same is true
for SHINE: While the ULI assumption is not met (and we are in practice far from
the fixed point convergence), it performs well in practice.

Implementations. All the bilevel optimization experiments were done us-
ing the HOAG code [Ped16],3 which is based on the Python scientific ecosys-
tem [Har+20; Vir+20; Ped+11]. Deep Equilibrium experiments were done using
the PyTorch [Pas+19] code for MDEQ [BKK20],4 which was distributed under
the MIT license. Plots were done using Matplotlib [Hun07], with Science Plots
style [GP21]. DEQ trainings were done in a publicly funded HPC, using nodes with
4 V100 GPUs.

In practice, we never reach convergence of (zn), hence the approximate gradi-
ent might be far from the true gradient. To improve the approximation quality, we
now propose a variant of our method.

2See the results on contractivity in Figure A.0.1.3github.com/fabianp/hoag4github.com/locuslab/mdeq
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Fallback in the case of wrong inversion. Empirically, we noticed that
using B can sometimes produce bad approximations, although with very low prob-
ability. We propose to detect this with by monitoring a telltale sign based on the
norm of the approximation, as we verified on several examples that cases with
a huge norm compared to the correct inversion also had a very bad correlation
with the correct inversion. In these cases, we can simply fall back onto another
inversion method. For the Deep Equilibrium experiments, when the norm of the
inversion using SHINE is 1.3 times above the norm of the inversion using the
Jacobian-Free method (which is available at no extra computational cost), we use
the Jacobian-Free inversion. We refer to this strategy as the fallback strategy.

Bilevel optimization – Hyperparameter optimization in LR

We first test SHINE in the simple setting of bilevel optimization for ℓ2-regularized
LR, using the code from Pedregosa [Ped16] and the same datasets. Convergence
on unseen data is illustrated in Figure 7.1-1.5 An acceptable level of performance
is reached twice faster for the SHINE method compared to any other competitor.
Another finding is that the refine strategy does not provide a definitive improvement
over the vanilla version of SHINE. In order to verify that the performance gain of
SHINE is not simply driven by truncated inversion, we also run HOAG with limited
number of inversion iteration and showed that this degrades its performances (see
HOAG limited backward in 14).

We also tested our implementation of OPA on the 20news dataset and present
the results in Figure 7.1-2. In order to get a fair comparison, we implemented both
SHINE, SHINE-OPA and HOAG using the same full Python code instead of relying
on the original code which relied on the Fortran implementation of L-BFGS from
Virtanen et al. [Vir+20]. While SHINE with OPA does not outperform the vanilla
SHINE, it reaches similar performances, outperforming HOAG, and comes with
strong theoretical grounding. Additional results on hyperparameter optimization
for the regularized nonlinear least squares problem are available in subsection A.0.1.

We also showed on a smaller dataset, the breast cancer dataset [DG17], that
OPA indeed ensures a better approximation of the inverse in the prescribed direc-
tion. For a given split of the data, we compared the quality of the approximation
of the inversion in three different directions: a prescribed direction chosen ran-
domly but used for the OPA update, the Krylov direction ∂gθ

∂z

∣∣∣
z⋆

(zn − zn−1) and
a random direction not used in the qN algorithm. The results for 100 runs with
different random seeds are depicted in Figure 7.1-2, where we can observe that
OPA indeed ensures a better inversion in the prescribed direction compared to a

5To facilitate the reader’s understanding of the figures, we plot the empirical sub-optimality, but we do remind them that there is no guarantee of convergence onheld-out test data ; the kink present in the case of the real-sim dataset is an exampleof that.
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Figure 7.1-1: Bilevel optimization: Convergence of held-out testloss for different hyperparameter optimization methods on the ℓ2-regularized LR problem for the 2 datasets (20news [Lan95] and real-sim [Fan11]) SHINE achieves the best performances for both prob-lems while the Jacobian-Free method is much slower, in particular on20news. Note that the kink for HOAG on real-sim does not mean it isbetter as the optimization stops once the validation loss has convergedand not the test one. The typical loss order of magnitude is 102. An ex-tended figure with more methods is provided in 14.
random direction. We also notice that a poor direction for the inversion seems
correlated with a small magnitude.

Deep Equilibrium Models

Next, we tested SHINE on the more challenging DEQ setup. Two experiments
illustrate the performance of SHINE on the image classification task on two data-
sets. For both datasets, we used the same model configuration as in the original
MDEQ paper [BKK20] and did not fine tune any hyperparameter. For the different
DEQ training methods, models for a given seed share the same unrolled-pretraining
steps. We do not include OPA in the DEQ results because while the gradients
are well correlated with the true ones (see Figure A-8), we observe a sharp initial
performance drop that reduces its performance on Imagenet. We provide partial
results in Table A.0.1.

CIFAR-10. The first dataset is CIFAR-10 [Kri09] which features 60,000 32×32
images representing 10 classes. For this dataset, the size of the multiscale fixed
point is d = 50k. We train the models for five different random seeds.

The results in Figure 7.1-3 show that for the vanilla version, SHINE slightly
outperforms the Jacobian-Free method [Fun+21]. Additionally, our results sug-

156



20 40 60 80 100 120 140

Time (s)

10−1

100

101

102

103
T

es
t

se
t

lo
ss

HOAG

SHINE (ours)

SHINE - OPA (ours)

1.00 1.05 1.10

‖a‖/‖b‖
0.994

0.996

0.998

1.000

co
ss

im
(a
,b

)

Direction

Prescribed Krylov Random

Figure 7.1-2: Bilevel optimization with OPA: (left) Convergence of dif-ferent hyperparameter optimization methods on the ℓ2-regularized LRproblem for the 20news dataset [Lan95] on held-out test data. SHINEwith OPA achieves similar performance as SHINE without OPA but withbetter convergence guarantees. (right) Evaluation of the inversion qual-ity in direction v using OPA b = B−1
n v compared to the exact inverse

a = Jgθ
(z⋆)−1v for 3 different directions: the prescribed direction, theKrylov direction and a random direction. The points represent the co-sine similarity between a and b as a function of the ratio of their normand the closer to (1, 1) the better. The inverse in the prescribed direc-tion is better than in random direction.

gest that SHINE (in its vanilla version) is able to reduce the time taken for the
backward pass almost 10-fold compared to the original method while retaining a
competitive performance (on par with Res-Net-18 [He+16] at 92.9%). Finally, we
do highlight that the Jacobian-Free method [Fun+21] is able to perform well out-
side the scope of its theoretical assumptions, albeit with slightly worse performance
than SHINE. We conjecture that the batched stochastic gradient descent helps
accelerated methods by averaging out the errors made in the approximation.

ImageNet. The second dataset is the ImageNet dataset [Den+09] which fea-
tures 1.2 million images cropped to 224×224, representing 1000 classes. This
dataset is recognized as a large-scale computer vision problem and the dimension
of the fixed point to find is d = 190k.

For this challenging task, we noticed that the vanilla version of SHINE was
suffering a big drop just after the transition from unrolled pre-training to actual
equilibrium training. To remedy partly this problem, we introduced the fallback
to Jacobian-Free inversion. The results for a single random seed presented in
Figure 7.1-3 for the ImageNet dataset are given for SHINE with fallback. We
verified that the fallback is barely used: in 1000 batches of size 32, only 2 samples
used fallback, a proportion of 6.25× 10−5.

Despite the drop suffered at the beginning of the equilibrium training, SHINE in
its refined version is able to perform on par with the Jacobian-Free method [Fun+21].
We also confirm the importance of choosing the right initialization to perform ac-
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Figure 7.1-3: DEQ: Top-1 accuracy function of backward pass runtimefor the different methods considered to train DEQs, on CIFAR [Kri09]and ImageNet [Den+09]. The original DEQ training method corres-ponds to the Full backward pass points and the vanilla SHINE andJacobian-Free methods correspond to direct use of the inverse approx-imation without further refinement. The other points correspond tofurther refinements of the different methods with different number ofiterations used to invert Jgθ
(z⋆) in the direction of ∇zL(z⋆). This high-lights the trade-off between computations and performances drivingthe refinement choice.

celerated backpropagation, by showing that with a limited iterative inversion, the
performance of the original method deteriorates. Finally, while the drop in per-
formance for the accelerated methods is significant when applied in their vanilla
version, we remind the reader that no fine-tuning was performed on the training
hyperparameters, making those results encouraging (on par with architectures like
ResNet-18 [He+16]).

The key take-away from Figure 7.1-3 is that both SHINE and Jacobian-Free
approximation methods allow us to accelerate the DEQ’s backward pass at a rel-
atively low accuracy cost.6 Moreover, using the proposed refined versions of these
methods, the performance drop can be reduced by reducing the acceleration.

7.1.4 . Conclusion and Discussion

We introduced SHINE, a method that leverages the qN matrices from the
forward pass to obtain an approximation of the gradient of the loss function, thereby
reducing the time needed to compute this gradient. We showed that this method
can be used on a wide range of applications going from bilevel optimization to

6More on the overall computational effort can be found in Table A.7
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small and large scale computer vision tasks. We found that both SHINE and the
Jacobian-Free method reduce the required amount of time for the backward pass
of implicit models, potentially lowering the barriers for training implicit models.

As those methods still suffer from a small performance drop, there is room for
further improvement. In particular, a potential experimentation avenue would be
to understand how to balance the efforts of the Adjoint Broyden method in order
to come closer to guaranteeing the asymptotical correctness of the approximate
inversion. On the theoretical side, this may involve the rate of convergence of the
approximated gradient. It also seems desirable to develop a version of Theorem 4 in
which convergence of (zn) to z⋆ is not an assumption but rather follows from the
assumptions, as achieved in Theorem 3. We have no doubt that the contraction
assumption used for the Jacobian-Free method would allow us to prove such a
result, but expect that a significantly weaker assumption will suffice.

A first attempt to adapt DEQs to MRI reconstruction was made by Gilton
et al. [GOW21]. Although they used a constrained network, applied to a 2D single-
coil setting, they showed promising results. Using such networks to tackle the
problems encountered when scaling the NC-PDNet to 3D is a definite goal for
future research.

7.2 . Other paradigms for memory reduction when training neural
networks

Although they have been successfully applied to Natural Language Processing
(NLP) tasks [BZK19] and Computer Vision tasks [BKK20], DEQs are not the only
reduced-training-memory framework. In this section, we describe other frameworks
that could be used to achieve the elusive goal of O(1)-memory during training.

7.2.1 . Gradient checkpointing
The first work to tackle the problem of memory in neural networks training from

a modeling perspective introduces the gradient checkpointing scheme [Che+16].
The idea behind this method is to omit the saving of some activations and recom-
pute them during the backpropagation. The tradeoff is extremely clear, as instead
of saving activations during the forward pass, you accept to recompute them during
the backward pass. An excellent dynamic visualization of this tradeoff is provided
by Salimans et al. [SB17] on github.com/cybertronai/gradient-checkpointing.

7.2.2 . Invertible Networks
Gradient checkpointing still relies on storing some activations during the for-

ward pass. There exists of course a possible extreme scheme of gradient check-
pointing where you only store the last activation, and always re-perform the forward
pass the get the previous activation, called a memory-poor scheme. However, the
computational cost is then in O(n)2, which is not acceptable in most deep learning
applications.
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In order to still be able to store only the last activation, you need to be able to
compute the previous one from it. This is exactly what invertible neural networks
propose to do, using only layers that are invertible.

We describe 3 types of designs for invertible layers.

RevNets. The idea of invertible networks was originally introduced by Gomez
et al. [Gom+17], under the name reversible networks (RevNets). The design of
their layer is the following: given an input (x1,x2), we have the outputs (y1,y2)
defined as:

y1 = x1 + fθ1(x2)
y2 = x2 + fθ2(y1) .

(7.9)
This operation is by design invertible, since we can recover the inputs from the
outputs using the following operations:

x2 = y2 − fθ2(y1)
x1 = y1 − fθ1(x2) .

(7.10)
This way, during the backpropagation you can recompute the activations (x1,x2)
from (y1,y2), and therefore save the memory cost of storing (x1,x2).

i-RIM. Recurrent Inference Machines (RIM) [PW17] are a type of unrolled net-
work which, like Adler et al. [AÖ18b], propose to learn a nonlinear combination
of previous iterates and the data consistency gradient. The equivalent of the buf-
fer [AÖ18b] is the memory state, which in the case of RIM is decoupled from the
current iterates. Putzky et al. [PW19] made each RIM unrolled iteration invertible
in order to have an overall invertible network. This allowed them to push the limits
of the total number of iterations achievable. However, to this end, they had to
compromise some of the nonlinear dynamics of their network. As i-RIM is specific-
ally adapted to inverse problems, we will describe its equations in the context of
MRI reconstruction.

s′
t = st + gθg (AH

(
Afθf

(ηt)− y
)
)

ηt+1, st+1 = hθh
(ηt, s

′
t) .

(7.11)
Assuming hθh

is invertible, we can invert this layer using the following operations:

ηt, s
′
t = h−1

θh
(ηt+1, st+1)

st = s′
t − gθg (AH

(
Afθf

(ηt)− y
)
) .

(7.12)

MomentumNets. Momentum Residual Networks (MomentumNets) [San+21]
are designed thanks to a slight modification in the implementation of classical Re-
sidual Networks. Its equations are the following:

vn+1 = γvn + (1− γ)fθ(xn)
xn+1 = xn + vn+1 .

(7.13)
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We can then invert the layer in the following way:

xn = vn+1 − xn+1

vn =
1
γ

(vn+1 − (1− γ)fθ(xn)) .
(7.14)

One important point is that while this scheme enables in theory to achieve
an O(1) memory during training, its memory consumption is actually dependent
on the depth of the network. This is due to the fact that the multiplication by
γ will occur with finite precision, and will therefore be a non-invertible operation.
It is therefore important to store the lost bits when doing the forward pass. This
information buffer is then a source of memory consumption which can be adjusted
with the parameter γ. Sander et al. [San+21] show that the memory is arbitrarily
reduced with this parameter.

Memory-efficient Learning for Large-Scale Computational Imaging.
Kellman et al. [Kel+20] and Wang et al. [Wan+21b] proposed a reversible scheme
for the learned proximal gradient descent described in Equation 4.15 (and the ModL
network described in Equation 4.12). In order to do so, they used a revertible fθn ,
and designed the gradient step inversion with step size αn to be the solution of
the following fixed-point equation for the variable x:

xn+1 = x− αnA⊤(Ax− y) (7.15)
7.2.3 . IFT-based networks

While DEQs [BZK19; BKK20] are a very successful application of the IFT to
DL, previous works paved the way for the use of implicit layers. The main difference
with DEQs is that the implicit layer features an equation that is not a fixed point
equation. Amos et al. [AZ17] used an optimization problem implicit solution as a
layer in their network, but they did not mention memory gains (probably because
this layer was used in an otherwise classical architecture). Chen et al. [Che+18a]
chose to use the solution to an Ordinary Differential Equation as the output of their
neural network. They do mention memory-efficiency as being one of the strong
points of their method.

✽ ✽ ✽
✽ ✽

✽
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At the end of these 3 years, we managed to give a significant boost to the
MRI reconstruction community focusing on deep learning. Not only did we try to
compare different approaches, and provide the tools to do so to practitioners, we
have also designed new architectures, questioned their limitations and proposed
methodological developments reaching even beyond the scope of MRI reconstruc-
tion.

Contributions & Limitations

We started this thesis by taking a first look at the state of the art in the field of
deep learning for MRI reconstruction. After noticing a lack of direct comparisons
between approaches, the release of the fastMRI dataset [Zbo+18] was an oppor-
tunity for us to build a reproducible benchmark between some of them. The repos-
itory where this benchmark was implemented, github.com/zaccharieramzi/fastmri-
reproducible-benchmark, served as a basis for the rest of the thesis, but it gained
a lot of attention as can be assessed by the number of GitHub stars, 85 at the
time of writing, the second most for fastmri-tagged repositories on GitHub,7 but
also by the public discussions with external people in Issues. The current major
limitation of this repository, and of the corresponding benchmark, is that it does
not feature a lot of original approaches developed in the literature prior to and after
it, whether they concern unrolled networks or other DL approaches, as discussed in
chapter 4. The limited computation resources we had at the time of writing (one
local GPU with 16 GB of memory) also prevented a more extended review. The
easier access to supercomputers such as Jean Zay will help us realize exhaustive
benchmarks.

We added to this repository two new architectures: the XPDNet and the NC-
PDNet. The XPDNet is the model that allowed us to secure the second spot in the
fastMRI 2020 brain reconstruction challenge. It is implemented in a modular way
in order to facilitate the embedding of any newly developed denoising architecture.

7github.com/topics/fastmri
163

https://github.com/zaccharieramzi/fastmri-reproducible-benchmark
https://github.com/zaccharieramzi/fastmri-reproducible-benchmark
https://github.com/topics/fastmri


The NC-PDNet was designed to handle non-Cartesian data. Its key ingredient
is the density compensation [PM99], which we show to be crucial for the design
of networks that aim to reconstruct non-Cartesian data. These networks have
yet to be tested extensively before they can be used in practice. Moreover, their
implementation on MRI scanners, for example via the Gadgetron framework [HS13],
is not an easy task.

We then looked at the questions of the clinical applicability of deep learning
for MRI reconstruction. We started by deriving a new wavelet-inspired architec-
ture capable of retaining the robustness properties of wavelets, while enjoying the
performance boost of deep learning, the Learnlets. Additionally, we proposed to
use the newly introduced Denoising for Score Matching approach to create an un-
certainty quantification method (or metric) for MRI reconstruction. Finally, we
evaluated our proposed XPDNet against GRAPPA, in particular in the prospective
setting. One common weakness of the methods proposed to improve the clinical
applicability of deep learning for MRI reconstruction is that they obtain worse per-
formance than other unconstrained methods. Therefore, it is unclear whether the
most promising avenue is to increase the performance of these methods, or work
on more robust prospective tests for existing models.

Finally, when we realized that DEQs were a very promising approach to build
bigger and more performant networks, we decided to investigate their internal func-
tioning. We identified a severe bottleneck in the backpropagation of these models,
and proposed a solution, SHINE, which turned out to be even more successful for
Hyperparameter Optimization. However, there are still a lot of questions to be
answered, especially regarding the success of the Outer-Problem-Awareness patch,
but also the expected speed improvement of SHINE theoretically.

Perspectives

Several perspectives emerge from the work done in this PhD thesis.
The first one concerns the design of even deeper networks, using memory-

reduction techniques. As we know that the image quality will only get better with
deeper networks (since we have not reached the overfitting limit on the fastMRI
dataset), the current barrier is the memory size on GPUs. While model parallelism
techniques are part of the solution, they are not widely applicable, and in practice
lead to long software iteration cycles. Of course, augmenting the memory size
on GPUs is a definite option, but this is beyond the scope of our developments.
The benefits of the modeling approaches are then 2-fold: they are unbounded and
very affordable. Although it is clear how these techniques can be applied, the
missing bit is the dataset that will enable their use in a truly meaningful setting:
a large 3D multicoil complex-value raw k-space data. At this point, finding ways
to synthesize raw data from magnitude volumes might become crucial. Another
possibility is to be able to leverage accelerated data, for example in a self-supervised
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or semi-supervised way.
The second perspective emerges from the availability of the NC-PDNet and

the need to push further the efficiency of the overall MRI pipeline. Indeed, in this
thesis we have not questioned the acquisition that we have considered fixed, but
we can indeed optimize it. This requires carefully respecting the MRI hardware
constraints involved on the gradient system and designing an adapted learning
protocol, but promises to deliver new insights into how to best sample the k-space.
This line of work has already been undertaken by Chaithya et al. [CZC21].

Finally, while the sensitivity maps refinement module introduced by Sriram
et al. [Sri+20] is a way to refine our estimation of the forward operator, many
more adjustments can be made. These adjustments can be easily integrated in
the networks implemented in this thesis. To name one, the B0 correction can be
integrated and further refined end-to-end in the networks. This is at the core of
current developments conducted by my peers in the CS-MRI team at NeuroSpin,
notably Guillaume Daval-Frérot.

✽ ✽ ✽
✽ ✽

✽
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A - Additional results

Qualitative results for NC-PDNet

In Figure A-1, for the spiral acquisition, as was hinted by the quantitative
results in Table 5.1 in the main text, we can see that the difference between the
NC-PDNet and U-net with DCp is harder to grasp.

In Figure A-2, we can see that for the spiral acquisition, there is virtually no
difference between the U-net and NC-PDNet’s results.

Values of figures for Learnlets

In Tables A.1, A.2, A.3 and A.4 there can be found all the PSNR values as a
function of σ for each model in Figures 6.1-3, 6.1-4, 6.1-5 and 6.1-6 respectively.
Conversely, Table A.5 corresponds to the information presented in Figure 6.1-8.

DSM zooms

The zoom on this part of the reconstruction shown in Figure A-5, illustrates
a failure of the Neural network reconstruction. It indeed produces a sharp artifact
that might hinder the examiner’s conclusions. The bayesian sampling allows us to
see that this region is not necessarily very sharp.

OPA algorithm for SHINE

Remark A possible choice for (tn) is to use an arbitrary t0 > 0 and tn := ∥sn−1∥for n ≥ 1.

SHINE Bilevel optimization extended

In order to make sure that SHINE was indeed improving over HOAG [Ped16], we
also looked at the results obtained when performing an inversion with a precision
lower than that prescribed by Pedregosa [Ped16] originally (i.e. truncating the
iterative inversion). These results, also complemented with Random Search [BB12],
can be seen in Figure A-6. They confirm that the advantage provided by SHINE
cannot be retrieved with a looser tolerance on the inversion.

A.0.1 . Regularized Nonlinear Least Squares

In order to further validate the efficiency of SHINE compared to competing
methods, we also benchmarked it on the regularized nonlinear least squares task.
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σ Original Learnlets U-net 128 Wavelets
0.0001 128.13 124.69 53.29 127.30
5.0 34.15 36.51 37.76 35.76
15.0 24.61 30.87 31.67 29.56
20.0 22.11 29.55 30.27 28.25
25.0 20.17 28.54 29.24 27.32
30.0 18.59 27.74 28.43 26.61
50.0 14.15 25.58 26.31 24.79
75.0 10.63 23.90 24.71 23.46
85.0 9.54 23.38 23.74 23.06
95.0 8.58 22.93 22.59 22.71
100.0 8.13 22.71 22.14 22.56

Table A.1: PSNR for different standard deviations of the noise added tothe test images for every model in Figure 6.1-3 and the original noisyimages.

σ Original Learnlets Learnlets
No exact recon.

0.0001 128.13 124.69 43.56
5.0 34.15 36.51 36.32
15.0 24.61 30.87 30.81
20.0 22.11 29.55 29.46
25.0 20.17 28.54 28.44
30.0 18.59 27.74 27.63
50.0 14.15 25.58 25.45
75.0 10.63 23.90 23.76
85.0 9.54 23.38 23.21
95.0 8.58 22.93 22.71
100.0 8.13 22.71 22.50

Table A.2: PSNR for different standard deviations of the noise added tothe test images for both models in Figure 6.1-4 and the original noisyimages.
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σ Original U-net 4 U-net 8 U-net 64 U-net 128 Wavelets
0.0001 128.13 39.89 43.67 52.60 53.29 127.30
5.0 34.15 35.58 36.65 37.73 37.76 35.76
15.0 24.61 30.53 31.06 31.65 31.67 29.56
20.0 22.11 29.23 29.72 30.24 30.27 28.25
25.0 20.17 28.26 28.73 29.21 29.24 27.32
30.0 18.59 27.50 27.94 28.41 28.43 26.61
50.0 14.15 25.49 25.88 26.30 26.31 24.79
75.0 10.63 17.86 18.74 24.55 24.71 23.46
85.0 9.54 14.93 15.74 23.52 23.74 23.06
95.0 8.58 13.25 13.70 22.25 22.59 22.71
100.0 8.13 12.60 12.94 21.65 22.14 22.56

Table A.3: PSNR for different standard deviations of the noise added tothe test images for all the models in Figure 6.1-5 and the original noisyimages.

σ Original U-net 64 U-net 64
Exact recon.

0.0001 128.13 52.60 127.73
5.0 34.15 37.73 37.77
15.0 24.61 31.65 31.63
20.0 22.11 30.24 30.22
25.0 20.17 29.21 29.18
30.0 18.59 28.41 28.38
50.0 14.15 26.30 26.30
75.0 10.63 24.55 22.64
85.0 9.54 23.52 19.61
95.0 8.58 22.25 16.53
100.0 8.13 21.65 15.11

Table A.4: PSNR for different standard deviations of the noise added tothe test images for both models in Figure 6.1-6 and the original noisyimages.
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Samples U-net 8 U-net 64 Learnlets
No exact recon.

1 28.47 28.09 28.27
5 28.72 29.19 28.42
10 28.69 29.15 28.42
50 28.74 29.23 28.44
100 28.72 29.20 28.44
200 28.71 29.22 28.44
400 28.73 29.21 28.44

Table A.5: PSNR at σ = 25 added to the test images as a function ofthe number of samples used during training for the three models inFigure 6.1-8.

Ground truth Zero-filled UPDNet Samples → . . .

Figure A-5: Zoom of Bayesian posterior sampling for MRI reconstruc-tion. The ordering is the same as in Figure 6.2-10.
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Algorithme LBFGS: (Limitedmemory) BFGSmethod with OPA.
Input : initial guess (z0,B

−1
0 ), whereB−1

0 is symmetric andpositive definite, tolerance ϵ > 0, frequency ofadditional updates M ∈ N, memory limit L ∈ N ∪ {∞},
(tn) a null sequence of positive numbers with∑n tn <∞

1 Let F := ∇zgθ

2 for n = 0, 1, 2, . . . do
3 if ∥F (zn)∥ ≤ ϵ then let z⋆ := zn and letB := Bn; STOP
4 Let B̂−1

n := B−1
n

5 If (n mod M) = 0let en := tnB
−1
n

∂gθ

∂θ

∣∣∣∣
zn

,
ŷn := F (zn + en)− F (zn) and r̂n := (en)⊤ŷn

6 If r̂n > 0let ân := en −B−1
n ŷn and let

B̂−1
n := B−1

n + ân(en)⊤ + en(ân)⊤

r̂n

− (ân)⊤ŷn

(r̂n)2 en(en)⊤

LetB−1
n := B̂−1

n

7 if n ≥ L then remove update n− L fromB−1
n

8 Let pn := −B−1
n F (zn)

9 Obtain αn via line-search and let sn := αnpn

10 Let zn+1 := zn + sn, yn := F (zn+1)− F (zn) and
rn := (sn)⊤yn

11 if rn > 0 then
12 let an := sn −B−1

n yn and let
B−1

n+1 := B−1
n + an(sn)⊤ + sn(an)⊤

rn

− (an)⊤yn

(rn)2 sn(sn)⊤

13 else letB−1
n+1 := B−1

n

14 if n ≥ L then remove update n− L fromB−1
n+1

Output : z⋆,B
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Figure A-6: Bilevel optimization: Convergence of different hyperpara-meter optimization methods on the ℓ2-regularized LR problem for twodatasets (20news [Lan95] and real-sim [Fan11]) on held-out test data.

For a training set (xtrain,i, ytrain,i)N
i=1 and a test set (xtest,i, ytest,i)M

i=1, this prob-
lem reads

min
θ

1
2

M∑
i=1
∥ytest,i − σ((z∗)⊤xtest,i)∥22

z∗ = arg min
z

1
2

N∑
j=1
∥ytrain,j − σ(z⊤xtrain,j)∥22 +

θ

2
∥z∥22

(A.1)

where σ denotes the sigmoid function σ(x) = 1
1+e−x . For a fixed hyperparameter

θ, this task is typically solved using L-BFGS [XRM20; Ber+21].
We can see in Figure A-7 that SHINE clearly outperforms the Jacobian-Free

method, and it is also quicker to converge compared to HOAG. We can also notice
the benefit of OPA compared to the vanilla SHINE method is more pronounced.
We hypothesize that this is due to the nonconvex nature of the inner problem
making the Hessian inverse approximation more difficult, as was noted by Berahas
et al. [Ber+21].
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Figure A-7: Bilevel optimization on regularized nonlinear least
squares: Convergence of different hyperparameter optimizationmethods on the ℓ2-regularized nonlinear least squares for the20news [Lan95] dataset on held-out test data.

Table A.6: Nonlinear spectral radius obtained by the power methodfor the fixed-point defining subnetwork for the 3 different methods.
Method Nonlinear spectral radiusOriginal 230.5Jacobian-Free 193.7SHINE 234.2

SHINE contractivity assumption

One of the main limiting assumptions in the original Jacobian-Free method
work [Fun+21], is the contractivity assumption. We showed here that it was not
important to enforce this in order to achieve excellent results, but one can wonder
whether this assumption is not met in practice thanks to the unrolled pretraining
of DEQs. We looked at the contractivity of the fixed-point defining subnetwork
empirically by using the power-method applied to a nonlinear function, in the CIFAR
setting. The results, summarized in Table A.6, show that the fixed-point defining
subnetwork is not contractive at all.
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Table A.7: The time required for eachmethod on the different datasetsduring the equilibrium training. For the forward and backward passes,the time is measured offline, for a single batch of 32 samples, with asingle GPU, using the median to avoid outliers. This time is given inmilliseconds. For the epochs, the time is measured by taking an av-erage of the 6 first epochs, and given in hours-minutes for Imagenetand minutes-seconds for CIFAR. The epoch time for SHINE without im-provement on Imagenet is not given because it never reaches the 26forward steps: the implicit depth is too short. Fallback is not used forCIFAR. Numbers in parentheses indicate the number of inversion stepsfor the refined versions.
Dataset Name CIFAR [Kri09] ImageNet [Den+09]
Method Name Forward Backward Epoch Forward Backward Epoch
Original [BKK20] 256 210 4 min 40 644 798 3 h 38
Jacobian-Free [Fun+21] 249 12.9 3 min10 621 13.5 2 h 02
SHINE Fallback (ours) 218 16.0 3 min 20 622 35.3 2 h 13
SHINE Fallback refine (5, ours) 272 96.6 3 min 50 622 212 2 h 44
Jacobian-Free refine (5) 260 86.5 3 min 40 620 186 2 h 43
Original limited backprop 281 86.4 3 min 50 653 187 2 h 40

SHINE Time gains

Because the total training time is not only driven by backward pass but also
by the forward pass and the evaluation, we show for completeness in Table A.7
the time gains for the different acceleration methods for the overall epoch. We do
not report in this table the time taken for pretraining which is equivalent across
all methods, and is not something on which SHINE has an impact. It is clear in
Table A.7 that accelerated methods can have a significant impact on the training
of DEQs because we see that half the time of the total pass is spent on the
backward pass (more on ImageNet [Den+09]). We also notice that while SHINE
has a slightly slower backward pass than the Jacobian-Free method [Fun+21], the
difference is negligible when compared to the total pass computational cost.

DEQ OPA results

We can clearly see in Figure A-8 that in the case of DEQs, OPA also significantly
improves the inversion over the other accelerated methods. We also see that the
improvements of SHINE over the Jacobian-Free method without OPA are marginal.

Because the inversion is so good, we would expect that the performance of
SHINE with OPA would be on par with the original method’s. However, this is not
what we see in the results presented in Table A.8. Indeed, OPA does improve on
SHINE with only Adjoint Broyden, but it does not outperform SHINE done with
Broyden.
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Figure A-8: Quality of the inversion using OPA in DEQs : Ratio of theinverse approximation over the exact inverse function of the cosinesimilarity between the inverse approximation b = ∇zL(z⋆)B−1
n andthe exact inverse a = ∇zL(z⋆)Jgθ

(z⋆)−1 for different methods. ForOPA, the extra update frequency is 5. 100 runs were performed withdifferent batches.

Table A.8: CIFAR DEQ OPA results : Top-1 accuracy of different meth-ods on the CIFAR dataset, and epoch mean time.
Methode name Top-1 Accuracy (%) Epoch mean time
Original 93.51 4 min 40
Jacobian-Free 93.09 3 min 10
SHINE (Broyden) 93.14 3 min 20
SHINE (Adj. Broyden) 92.89 4 min
SHINE (Adj. Broyden/OPA) 93.04 4 min 40
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B - Training details

NC-PDNet training details

The training is done with a compound ℓ1 - MSSIM [WSB03] loss as advised by
the winners of the 2019 fastMRI challenge [Pez+20]. We used the Rectified Adam
optimizer [Liu+20] with default parameters from the TensorFlow implementation1

and a learning rate of 10−4. We used a batch size of 1, in order for the models to
fit on a single V100 GPU with 32 GB of memory. For the 2D settings, we used
100 epochs for training (97.3k gradient steps), where an epoch is defined as seeing
one slice of each volume in the dataset. For the 3D setting we used 8 epochs for
training (∼26k gradient steps). For the fastMRI data, the k-space is scaled up by
a factor of 106 as per [ZCS20b]. We scaled the OASIS data by a factor of 10−2.
The training times for the different networks in the different settings can be found
in Table B.1.

DSM training

Network architecture
The network is a 3-scale U-net with residual blocks composed of 3 convolutions

followed by a batch normalisation. Each batch normalisation is followed by a ReLU
non-linearity except the last one. A projection is used for the input of residual blocks
whose number of input channels is not the same as that of output channels. Each
scale uses 2 residual blocks for the downsampling path and 2 residual blocks for the
upsampling path. Downsampling is performed via average pooling and upsampling
is performed via up-convolution (as designed by Ronneberger et al. [RFB15]), in
order to avoid checkerboard artefacts. We use the following sequence of number
of channels: [32, 64, 128]. In order to deal with MRI images, that are complex
in nature, we concatenate the real and imaginary part of the image at the input
of the network, forming effectively a 2-channel 320 × 320 image. For input noise
level conditioning, we concatenate a noise standard deviation map to the input and
in the lower scale of the network. Following the recommendation of Song et al.

1tensorflow.org/addons/api_docs/python/tfa/optimizers/RectifiedAdam

Table B.1: Training times in hours (h) for the different networks in thedifferent settings.
Model Single-coil 2D Multicoil 2D Single-coil 3D
U-net on Adjoint + DCp 8 h 20 h 22 h
NC-PDNet 24 h 34 h 196 h
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[SE20], we also divide the output of the network by the absolute value of the noise
power. Finally, we use Spectral Norm regularisation [YM17] in order to make sure
the score does not take inconsistent values in low-density regions. The Spectral
Norm regularisation indeed forces the spectral norm (maximum eigenvalue) of each
layer to a certain value which in turn lowers the Lipschitz constant of the network,
preventing it to blow in unseen regions. The influence of the Spectral Norm has
been studied in the case of P&P approaches by Ryu et al. [Ryu+19].

Network training
We use the Adam optimizer for network training, with a learning rate of 10−4.

We add a white Gaussian noise of variance σ2
s to the images scaled by a factor of

106. σs is drawn on-the-fly from a Gaussian distribution of variance s = 50. This
means that at training time, the standard deviation of the noise can be negative,
following the recommendation of Lim et al. [Lim+20] to go from extrapolation to
interpolation.

HMC procedure
The HMC procedure starts from a zero-filled reconstruction of the image with

added white Gaussian noise of variance σinit = 100. For the reduction of noise
standard deviation at reduction step, we use a factor γ = 0.995, following the
recommendation of Song et al. [SE20]. We take a step size α dependent of the

sampling temperature at step i, α = ϵ
(

σi
σ0

)1.5
with ϵ = 10.

SHINE experiments details

Logistic Regression Hyperparameters
For both datasets we split the data randomly (with a different seed for each

run) between training-validation-test, with the following proportions: 90%-5%-5%.
The hyperparameters are the same as in the original HOAG work [Ped16], except:

• We use a memory limitation of 30 updates (not grid-searched) for acceler-
ated methods (Jacobian-Free and SHINE), compared to 10 for the original
method. This is because the approximation should be better using more
updates. We verified that using 30 updates for the original method does not
improve the convergence speed. That number is 60 for OPA.

• We use a smaller exponential decrease of 0.78 (not grid-searched) for the
accelerated methods, compared to 0.99 for the original method. This is
because in the very long run, the approximation can cause oscillations.

We also use the same setting as Pedregosa [Ped16] for the Grid and Random
Search. Finally, we highlight that warm restart is used for both the inner problem
and the Hessian inversion in the direction of the gradient.
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OPA inversion experiments. For the OPA experiments, we used a memory
limitation of 60, and a tolerance of 10−6. The OPA update is done every 5 regular
updates.

DEQ training details
The training details are the same as the original MDEQ paper [BKK20]: all the

hyperparameters are kept the same and not fine-tuned, and the data split is the
same. We recall here some important aspects. For both datasets, the network is
first trained in an unrolled weight-tied fashion for a few epochs in order to stabilize
the training.

We also underline that the DEQ models, in addition to having a fixed-point-
defining subnetwork, also have a classification and a projection head.

Finally, for Figure 7.1-3, the median backward pass is computed with 100
samples on a single V100 GPU for a batch size of 32.

CIFAR. Adam optimizer [KB15] is used with a 10−3 start learning rate, and a
cosine annealing schedule.

ImageNet. The Stochastic Gradient Descent optimizer is used with a 5×10−2

start learning rate, and a cosine annealing schedule.
The images are downsampled 2 times before being fed to the fixed-point defin-

ing subnetwork.
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C - Proofs for SHINE

To facilitate reading, we restate the results before proving them.

Convergence using ULI

Theorem 2 (Convergence of SHINE to the Hypergradient using ULI) Let us de-
note p(n)

θ , the SHINE direction for iterate n in Algorithm 2 with b = true. Under As-
sumptions 7.1.1 and 7.1.2, for a given parameter θ, (zn) converges q-superlinearly
to z⋆ and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

Proof. Under Assumptions 7.1.1 and 7.1.2, More et al. [MT76, Theorem 5.7]
shows thatBn satisfies

lim
n→∞

Bn = Jgθ
(z⋆)

The inversion operator is continuous in the space of invertible matrices,
so we have:

lim
n→∞

B−1
n = Jgθ

(z⋆)−1

Because ∇zL and ∂gθ
∂θ are continuous at z⋆ by Assumption 7.1.2 (iii), we

also have thanks to Assumption 7.1.2 (i):
lim

n→∞
∇zL(zn) = ∇zL(z⋆) and lim

n→∞
∂gθ

∂θ

∣∣∣
zn

=
∂gθ

∂θ

∣∣∣
z⋆

By continuity, we then deduce that, as claimed,

lim
n→∞

p
(n)
θ = lim

n→∞
∇zL(zn)B−1

n

∂gθ

∂θ
(zn) = ∇zL(z⋆)Jgθ

(z⋆)−1∂gθ

∂θ

∣∣∣
z⋆

=
∂L
∂θ

∣∣∣
z⋆

Convergence for BFGS with OPA

Assumption C.0.1 (Extended Assumptions for BFGS). Let gθ(z) = ∇zrθ(z) for
some C2 function rθ : Rd → R. Consider Algorithm 2 with b = false and suppose
that

1. the set Ω := {z ∈ Rd : rθ(z) ≤ rθ(z0)} is convex;
2. rθ is strongly convex in an open superset of Ω (this implies that rθ has aunique global minimizer z⋆) and has a Lipschitz continuous Hessian near

z⋆;
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3. there are positive constants η1, η2 such that the line search used in the al-gorithm ensures that for each n ≥ 0 either

rθ(zn+1) ≤ rθ(zn)−η1

[
∇rθ(zn)⊤pn

∥pn∥

]2

or rθ(zn+1) ≤ rθ(zn)+η2∇rθ(zn)⊤pn

is satisfied;
4. the line search has the property that αn = 1 will be used if both

∥(Bn − Jgθ
(zn))sn∥

∥sn∥
and ∥zn − z⋆∥

are sufficiently small.
Remark The requirements 3. and 4. on the line search are, for instance, satisfied
under the well-knownWolfe conditions, see Byrd et al. [BSS88, section 3] for further
comments.
Theorem 3 (Convergence of SHINE to the Hypergradient for BFGS with OPA)
Let us consider p(n)

θ , the SHINE direction for iterate n in Algorithm 2 that is en-
riched by extra updates in the direction en defined in Equation 7.5. Under As-
sumptions 7.1.2 (ii-iii) and 7.1.3, for a given parameter θ, we have the following:
Algorithm 2, for any symmetric and positive definite matrix B0, generates a se-
quence (zn) that converges q-superlinearly to z⋆, and there holds

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

(7.6)
Proof. The proof is divided into four steps. The first step is to establish the
q-superlinear convergence of (zn) to z⋆. Denoting by Ne ⊂ {0,M, 2M, . . .}
the set of indices of extra updates that are actually applied, the second step
consists of showing

lim
Ne∋n→∞

(Bn − Jgθ
(z⋆))

en

∥en∥
= 0, (C.1)

where, in this proof, Bn always represents the matrix from Algorithm LBFGS
before the update in the direction en is applied, i.e., the matrix whose inverse
appears in the definition of en, while B̂n always represents the matrix from
Algorithm LBFGS after the update in the direction en has been applied; if the
update in the direction en is not applied, then Bn = B̂n. The third step is toprove that Equation C.1 implies the desired convergence Equation 7.6 of the
SHINE direction if the limit n → ∞ is replaced by Ne ∋ n → ∞, i.e., the limit
is taken on the subsequence corresponding to Ne. The fourth step is then totransfer the convergence to the entire sequence.
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It is easy to check that instead of updatingB−1
n , respectively, B̂−1

n , we can
also obtain the sequences (Bn) and (B̂n) by updating according to

Bn+1 = Bn +
yny

⊤
n

y⊤
n sn

− Bnsn(Bnsn)⊤

s⊤
n Bnsn

for the usual update (skipping the update if y⊤
n sn ≤ 0), respectively,

B̂n = Bn +
ŷnŷ

⊤
n

ŷ⊤
n en

− Bnen(Bnen)⊤

e⊤
n Bnen

for the extra update (skipping the update if ŷ⊤
n en ≤ 0). Here, the quantities yn,

ŷn and en are defined as in Algorithm LBFGS. We can now argue essentially as
in the proof of Byrd et al. [BSS88, Theorem 3.1] to show that (zn) converges
q-superlinearly to z⋆. As part of that proof we obtain that B̂n ̸= Bn for at
least ⌈0.5Q⌉ of the indices n = 0,M, 2M, . . . , QM for any Q ∈ N (namely
for all n ∈ Ne satisfying n ≤ QM ) and that we can apply Byrd et al. [BN89,
Theorem 3.2], which yields
lim

n→∞

(
B̂n−Jgθ

(z⋆)
) sn

∥sn∥
= 0 and lim

Ne∋n→∞
(Bn − Jgθ

(z⋆))
en

∥en∥
= 0.

(C.2)
For the third step, we abbreviate vn := ∂gθ

∂θ |zn . From the definition of en and
Equation C.2 we infer that

0 = lim
Ne∋n→∞

(Bn − Jgθ
(z⋆))

en

∥en∥
= lim

Ne∋n→∞

(
I − Jgθ

(z⋆)B−1
n

) vn∥∥∥B−1
n vn

∥∥∥ .
After multiplication with Jgθ

(z⋆)−1 this entails
lim

Ne∋n→∞

(
Jgθ

(z⋆)−1 −B−1
n

) vn∥∥∥B−1
n vn

∥∥∥ = 0,

which shows that
lim

Ne∋n→∞
B−1

n vn = lim
Ne∋n→∞

Jgθ
(z⋆)−1vn = Jgθ

(z⋆)−1∂gθ

∂θ
|z⋆

by Assumption 7.1.2 (iii). Using Assumption 7.1.2 (iii) again it follows that
lim

Ne∋n→∞
p

(n)
θ = lim

Ne∋n→∞
∇zL(zn)B−1

n

∂gθ

∂θ

∣∣∣
zn

= ∇zL(z⋆)Jgθ
(z⋆)−1∂gθ

∂θ

∣∣∣
z⋆

=
∂L
∂θ

∣∣∣
z⋆
,

concluding the third step. To infer that Equation 7.6 holds, it suffices to show
that limNe∋n→∞ ∥Bn −Bjn∥ = 0 for any sequence (jn)n∈Ne ⊂ N such that
{jn, jn + 1, . . . , n− 1} ∩Ne = ∅ for all n ∈ Ne sufficiently large. Indeed, since
for C := max{supn ∥Bn∥ , supn

∥∥B−1
n

∥∥}, which is finite by Byrd et al. [BN89,
Theorem 3.2], there holds

(Bn) ⊂
{
A ∈ Rd×d : A−1 exists , ∥A∥ ≤ C, ∥∥∥A−1

∥∥∥ ≤ C}
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and the set on the right-hand side of the inclusion is compact by the Banach
lemma, inversion is auniformly continuous operation on this set, hence limNe∋n→∞

∥∥∥B−1
n −B−1

jn

∥∥∥ =
0, so

lim
Ne∋n→∞

∥∥∥p(n)
θ − p

(jn)
θ

∥∥∥ = 0

by continuity, and therefore
lim

Ne∋n→∞
p

(jn)
θ = lim

Ne∋n→∞
p

(n)
θ =

∂L
∂θ

∣∣∣
z⋆

by the third step, establishing the claim.
It remains to show the validity of limNe∋n→∞ ∥Bn −Bjn∥ = 0 for any se-

quence (jn)n∈Ne such that {jn, jn + 1, . . . , n − 1} ∩ Ne = ∅ for all n ∈ Nesufficiently large. Since at least every second extra update is actually carried
out, the condition on the intersection implies n− jn ≤ 2M − 1 for all these n.
Now let (jn)n∈Ne be any such sequence. ThenBn−Bjn =

∑n−1
m=jn

Bm+1−Bmis a sum of at most 2M − 1 BFGS updates in search directions, but contains
no extra updates. Hence, the secant conditions Bn−lsn−1−l = yn−1−l, l ∈
{0, 1, . . . , n− jn}, are satisfied, allowing us to deduce
∥Bn−l −Bn−l−1∥ =

∥(Bn−l −Bn−l−1)sn−l−1∥
∥sn−l−1∥

≤ ∥yn−l−1 − Jgθ
(z⋆)sn−l−1∥

∥sn−l−1∥
+
∥(Bn−l−1 − Jgθ

(z⋆))sn−l−1∥
∥sn−l−1∥

for all l ∈ {0, 1, . . . , n − jn − 1}. For each of these l, both terms on the right-
hand side tend to zero for Ne ∋ n → ∞ (for the second term this follows
from the first identity in Equation C.2 due toBn−l−1 = B̂n−l−1). Recalling that
Bn −Bjn =

∑n−1
m=jn

Bm+1 −Bm we find limNe∋n→∞ ∥Bn −Bjn∥ = 0, which
finishes the fourth step and thus concludes the proof.

Convergence for Adjoint Broyden with OPA

Theorem 4 (Convergence of SHINE to the Hypergradient for Adjoint Broyden
with OPA) Let us consider p(n)

θ , the SHINE direction for iterate n in Algorithm 2
with the Adjoint Broyden secant condition Equation 7.7 and extra update in the
direction vn defined in Equation 7.8. Under Assumptions 7.1.2 and 7.1.4, for a givenparameter θ, we have q-superlinear convergence of (zn) to z⋆ and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z⋆

Proof. Due to Assumption 7.1.2, the superlinear convergence of (zn) follows
from Schlenkrich et al. [SGW10, Theorem 2]. The proof of the remaining claim
is divided into two cases.
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Case 1: Suppose that∇zL(z⋆) = 0. By continuity this implies limn→∞∇zL(zn) =
0. Since the sequence (B−1

n
∂gθ
∂θ |zn) is bounded by Assumption 7.1.4, it follows

that
lim

n→∞
p

(n)
θ = lim

n→∞
∇zL(zn)B−1

n

∂gθ

∂θ

∣∣∣
zn

= 0 =
∂L
∂θ

∣∣∣
z⋆
,

as claimed.
Case 2: Suppose that∇zL(z⋆) ̸= 0. By continuity this implies∇zL(zn) ̸= 0

for all sufficiently large n ∈ N. Let us denote by Ne ⊂ N the set of indices of
extra updates. We stress that this set is infinite since, by construction, every
M -th update is an extra update. We have vn ̸= 0 for all sufficiently large
n ∈ Ne, hence Schlenkrich et al. [SGW10, Lemma 3] yields

lim
Ne∋n→∞

∥∥∇zL(zn)(I −B−1
n Jgθ

(z⋆))
∥∥∥∥∥(∇zL(zn)B−1

n )⊤
∥∥∥ = lim

Ne∋n→∞

∥∥∥(vn)⊤(Bn − Jgθ
(z⋆))

∥∥∥
∥vn∥

= 0.

This implies
lim

Ne∋n→∞

∥∥∇zL(zn)(Jgθ
(z⋆)−1 −B−1

n )
∥∥∥∥∥∇zL(zn)B−1

n

∥∥∥ = 0,

thus necessarily
lim

Ne∋n→∞

∥∥∥∇zL(zn)(Jgθ
(z⋆)−1 −B−1

n )
∥∥∥ = 0.

Since limNe∋n→∞∇zL(zn)Jgθ
(z⋆)−1 = ∇zL(z⋆)Jgθ

(z⋆)−1 by continuity, we
find

lim
Ne∋n→∞

∇zL(zn)B−1
n = ∇zL(z⋆)Jgθ

(z⋆)−1,

whence
lim

Ne∋n→∞
p

(n)
θ = lim

Ne∋n→∞
∇zL(zn)B−1

n

∂gθ

∂θ

∣∣∣
zn

= ∇zL(z⋆)Jgθ
(z⋆)−1∂gθ

∂θ

∣∣∣
z⋆

=
∂L
∂θ

∣∣∣
z⋆
,

(C.3)
where we have used continuity again. To prove that these limits hold not only
for Ne ∋ n → ∞ but in fact for all N ∋ n → ∞, we establish, as intermediate
claim, that for any fixedm ∈ Nwe have limn→∞ ∥Bn+m −Bn∥ = 0. Note that
this claim is equivalent to limn→∞ ∥Bn+1 −Bn∥ = 0. Denoting by L ≥ 0 the
Lipschitz constant of Jgθ

near z⋆, we find

∥Bn+1 −Bn∥ =

∥∥∥vnv
⊤
n [Jgθ

(zn+1)−Bn]
∥∥∥

∥vn∥2
≤ ∥Jgθ

(zn+1)− Jgθ
(z⋆)∥+

∥∥∥[Jgθ
(z⋆)−Bn]⊤ vn

∥∥∥
∥vn∥

≤ L ∥zn+1 − z⋆∥+

∥∥∥E⊤
n vn

∥∥∥
∥vn∥

.

Both terms on the right-hand side go to zero as n goes to infinity: the first
one due to limn→∞ zn = z⋆ and the second one since limn→∞

∥E⊤
n vn∥

∥vn∥ = 0 by
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Schlenkrich et al. [SGW10, Lemma3]. This shows that limn→∞ ∥Bn+1 −Bn∥ = 0,
which concludes the proof of the intermediate claim.

From limn→∞ ∥Bn+m −Bn∥ = 0 for any fixedm ∈ N it follows that for any
sequence (jn) ⊂ N with supn |jn−n| <∞ there holds limn→∞ ∥Bjn −Bn∥ =
0. This implies for any such sequence (jn) the limit limn→∞

∥∥∥B−1
jn
−B−1

n

∥∥∥ = 0.
To establish this, note that for C := max{supn ∥Bn∥ , supn

∥∥B−1
n

∥∥}, which is
finite by Assumption 7.1.4 and the combination of the bounded deterioration
principle [SGW10, Lemma 2] with Assumption 7.1.2 (i), the set{

A ∈ Rd×d : A−1 exists , ∥A∥ ≤ C, ∥∥∥A−1
∥∥∥ ≤ C}

includes the sequence (Bn) and is compact by the Banach lemma, so inver-
sion is a uniformly continuous operation on this set.

Now let us construct a sequence (jn) ⊂ Ne by defining, for every n ∈ N,
jn := arg minm∈Ne

|n−m|. That is, for every n, jn denotes the member of Newith the smallest distance to n. It is clear that |n− jn| ≤M − 1 for all n, hence
limn→∞

∥∥∥B−1
jn
−B−1

n

∥∥∥ = 0. Using this and, again, continuity it is easy to see
that

lim
n→∞

∥∥∥p(n)
θ − p

(jn)
θ

∥∥∥ = 0,

which implies by Equation C.3 that
lim

n→∞
p

(n)
θ = lim

n→∞
p

(jn)
θ = lim

Ne∋n→∞
p

(n)
θ =

∂L
∂θ

∣∣∣
z⋆
,

thereby establishing the claim.
Remark An inspection of the proof reveals that ifBn is never updated in the dir-
ection zn, but only updated in the direction vn defined in Equation 7.8, then As-
sumption 7.1.4 can be replaced by the significantly weaker assumption that the
sequence (B−1

n
∂gθ
∂θ |zn) is bounded. The price to pay is that the convergence rate

of (zn) to z⋆ will be slower (q-linear instead of q-superlinear) since the updates in
the direction zn are critical for ensuring fast convergence of (zn) to z⋆.
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D - Software

During this thesis, writing code brought me a lot of joy. I have tried as much
as possible to contribute to open source packages both in and out of the team.
In this section I will present 3 repositories I contributed to in the scope of MRI
reconstruction from a software perspective. All of these repositories are Python
based.

PySAP (Python Sparse data Analysis Package)

PySAP is a software package that is the outcome of the COSMIC interdiscip-
linary research project (2016-2020) between the CS-MRI team at NeuroSpin and
the CosmoStat laboratory, the two CEA entities where I pursued my PhD thesis.
At its core, PySAP is a sparse reconstruction package that is intended to be used
in multiple science contexts: astrophysics, medical imaging, non-destructive eval-
uation using tomographic and ultrasound imaging. It features multiple parts of
which we can identify:

• the core, which features efficient wavelet implementations;

• ModOpt, a module that contains the optimization algorithms used in PySAP;

• the plugins, like PySAP-MRI, which combine the first two components with
problem specific functions and classes.

The current version is tagged 0.0.5 and the next release is planned for the end of
2021.

fastmri-reproducible-benchmark

fastmri-reproducible-benchmark is the repository that contains a large part of
the work I did during my PhD thesis. It is very much reflecting the evolution of my
code writing style during this period, and I am both ashamed of some practices I
have used at the beginning of my work but also proud that it proved reproducible
as intended.

The earlier models are for example implemented using the functional API of
Keras, which is not really suited for research because it is not very flexible and
does not allow appropriate debugging. I later switched for the more comfortable
subclassing API, which is basically an object-oriented way of writing models much
like PyTorch.

The trainings and evaluations carried for the benchmark were originally done
using Jupyter notebooks, which are convenient when prototyping code, but do
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not fit at all a proper reproducible checklist. I later used scripts instead, which
can be better tracked by git, but also fit much more the supercomputer preferred
workflow.

There is unfortunately too much redundancy in the code, which stems from
the tradeoffs I had to make when developing research ideas. Fortunately, a lot of
the code is unit tested with continuous integration, which should hopefully make
all the refactoring safer.

The current big piece missing from this repository are example notebooks de-
tailing how one can use the different networks. Models should also be easily down-
loadable, but GitHub is not a viable option, while the HuggingFace Hub seems
much more suited.

tfkbnufft

tfkbnufft was originally developed as a translation of the Torchkbnufft package
of Muckley et al. [Muc+20]. It provides functions related to the NUFFT, which is
crucial in non-Cartesian MRI. We then incorporated a better density compensation
computation, suited for more general trajectories, but also gradients with respect
to the k-space trajectories in order to be able to learn sampling patterns.

This package still suffers from speed limitations, but it was used in different
works where it proved enough in its current state.

This package was also the first one I published on PyPI with continuous in-
tegration. Additionally, it has an example notebook which makes it the neatest
package in my eyes.

On the use of TensorFlow vs. PyTorch I do not have a strong opinion on
which framework is best in general. In my case, I carried over a legacy of previously
using TensorFlow (and then Keras), when PyToch was not available. Moreover,
at the beginning of my PhD this legacy was reinforced by the support of complex
tensors in TensorFlow which was not available in PyTorch. It therefore led to a lot
of complex arithemtic rewriting. Also, because I was used to the way TensorFlow
worked, I did not suffer from it being less user-friendly than PyTorch. Moving
forward, given the efforts done by the fastMRI team who uses PyTorch, I would
probably advise anyone starting fresh to use PyTorch. To nuance this advice, one
might also consider that a lot of our team’s efforts have been in TensorFlow, in
particular regarding reconstruction networks, non-Cartesian handling, and trajctory
optimization.
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E - Tutorials, documentation and courses

The desire to teach and disseminate knowledge is a core aspect of my person-
ality. For this reason, during my thesis I tried as much as possible to help others,
be they other students in the lab, strangers on the internet or hypothetical future
students. While I am proud of my StackOverflow account’s content, I will focus
in this section on the artifacts of teaching that were created in the context of my
thesis.

Git Tutorial

Because code is such an important aspect of a computational research scient-
ist’s life, sharing it and versioning it is instrumental. For these purposes, Git is the
go-to tool of most people, which is why it is important to learn how to use it.

I have created a tutorial which tackles the most important aspects of using
Git with GitHub in an open-source setting: it features a presentation and a short
practical exercise.

Jean Zay

In order to help foster the development of the Jean Zay (JZ) ecosystem, I
co-created with Loïc Estève a user documentation for the supercomputer: jean-
zay-doc.readthedocs.io. This documentation is accompanied by a GitHub repo
where users can improve it, and a Gitter forum, that is now very active and where
users can exchange questions and issues they face when using JZ. The goals of
this ecosystem were the following:

• Provide a more intuitive and user-friendly documentation than the official
documentation, which is more technical.

• Allow knowledge to be shared between different users, rather than having
many users email the same questions to the assist team.

In addition to this, I added NeuroSpin-specific instructions to the NeuroSpin
wiki.

Finally, I tried to advocate the use of JZ by always referring to it at the end of
my presentations. I also shared my personal experience with it during the Artifical
Intelligence 2021 event.

More general considerations on the use of supercomputers for re-
search. The reason I am trying hard to have people use supercomputers, and
JZ in particular in France, is because I think that it allows better research.
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Firstly, they enable extended ablation studies and runs with multiple random
seeds. This makes it very easy to identify truly essential components of a method,
and the measure of their significance. Secondly, they provide researchers with
means rivaling that of big companies, which means that they can then reproduce
large scale results and experiments. Thirdly, they force you to implement your
code in a way that favors reproducible research. Finally, I think that from a bigger
perspective, the mutualization of resources is indispensable for the computational
scientific community. Having GPUs sitting idle in laboratories, with installations
and maintenance being handled individually is a loss of time and money. Mutual-
ization helps to reduce the costs, lowers the barrier to entry and allows knowledge
to be shared.

However, I do understand that some aspects of supercomputers might be det-
rimental to research. They can sometimes be too rigid in their use. For example,
the first supercomputer I used was the TGCC of CEA, which had a very restricted
internet access, unpractical for a research project. The fact that you have to ask
the assist team for the installation of specific libraries is also problematic. Another
big hurdle in the case of JZ, is that it relies on SLURM, a queuing system which is
sometimes overwhelmed at the worst moments, i.e. AI/CV conferences deadlines.

NeuroSpin Deep Learning Lecture Group

With fellow PhD students Louise Guillon, Benoît Dufumier and Alexandros
Popov, we founded a lecture group on the topic of deep learning for students at
NeuroSpin. The idea was that a lot of students were working on this topic in silos
and not sharing their knowledge or questions, both on the theoretical and practical
sides.

Therefore, in addition to functioning as a classical lecture group, where one
person presents a research paper weekly, we also encouraged discussions regarding
the implementation aspects of deep learning. Many papers were presented, and we
managed to keep the dynamic during the pandemic with the meetings gathering
generally around 10 people.

Python TA

I had the opportunity to lead Python practical sessions at the IUT of Orsay.
I was teaching the very basics of Python to students that just got out of high
school. This experience was very interesting, but unfortunately I do not think it
was fulfilling, in the sense that I was not able to explain clearly core concepts such
as the difference between a variable and its value, or between the variable a and
the string “a”.
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F - Ideas we tried and did not work

This section is intended to provide ideas that were promising but that we did
not manage to make work correctly for various reasons. With a little bit of more
effort or thought they could be great.

AIRS-Net

One question that we often got when presenting the XPDNet was: “What did
the winners do better than you?”. It is unfortunately hard to answer this question
because the winners did not provide an open source implementation or description
of their solution. The only brief idea we can have is a 10-minute presentation done
at the NeurIPS Medical Imaging Workshop 2021. We tried implementing some
ideas presented in this talk, but to no avail. The implementations are present in
the fastmri-reproducible-benchmark repository.

Does denoising performance translate to inverse problem per-
formance?

When we understood that the image subnetwork of unrolled networks could
be thought of as a denoiser, one question immediately arose: “Can we know in
advance the performance of an unrolled network for an inverse problem based on
the performance of its subnetwork on image denoising?”.

We tried to answer this question empirically by comparing different subnet-
work architectures on image denoising and single-coil 2D MRI reconstruction when
embedded in an unrolled network. We did not find any correlation between the
two.

MomentumVarNet

The MomentumNet [San+21] is a promising framework for memory-efficient
training of deep networks. Moreover, it enjoys a very practical implementation
which can transform any PyTorch-implemented residual network in a momentum
network. We therefore tried to transform the VarNet [Sri+20] into a momentum
network and train it. Unfortunately, when increasing the number of unrolled iter-
ations too much in order to improve the reconstruction performance, the training
was not successful.

We think that it amounts to correctly tuning the different hyperparameters of
training in order to achieve a correct performance. One might also need to have
two or more chained momentum networks rather than one, mimicking the restart
strategy of accelerated optimization algorithms.
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MDEQs for MRI reconstruction

We tried to use MDEQs [BKK20] with few architectural changes to perform
MRI reconstruction. We did not manage to achieve decent performances, in par-
ticular because we had convergence issues in the backward pass. It’s actually these
issues that led us to investigate the internals of the backpropagation in DEQs,
eventually giving birth to the idea of SHINE.

Total Deep Variation reproduction

We tried to reproduce the Total Deep Variation [Kob+20] results. This ar-
chitecture is very interesting and exciting because its forward pass already uses
differentiation which makes it challenging to implement.

The way it was originally implemented by Kobler et al. [Kob+20] in PyTorch
was by writing manually the differentiations for each component. We wanted to try
to use auto-differentiation in TensorFlow to have a more concise and error-proof
code. This did not work out.

Dynamic denoising using soft-thresholding

One of the interesting aspects of the Learnlets, inspired by wavelets, is that
the denoising is dynamic thanks to the adaptive thresholding carried out in the
soft-thresholding layer. Of course this led us to try out this layer in classical
architectures, for example DnCNN [Zha+17a]. We also tried out an anti-soft-
thresholding layer, that would hopefully let through noise and stop signal via a
residual connection f(x, σ) = x−ST(x, σ), because the intuition behind DnCNN
is that the network is tasked with identifying the noise. While successful, this
approach did not perform better than a naive dynamic denoising where you just
concatenate a map with the noise to the input of each convolution.

Model Parallelism for MRI reconstruction

In order to build even bigger networks, model parallelism can be used. It is
however quite difficult to put in place with the current set of frameworks available.
The tool we had identified to turn the NC-PDNet in a model parallel version was
Mesh TensorFlow [Sha+18]. While we were having issues with its use, we found
out that it was a discontinued project that was no longer maintained (or just very
sparsely). We did not go any further down that road, after several tries at fixing
our problem.
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G - [

Abstract in French]Résumé en français

Abstract in French
Sujet : Réseaux neuronaux avancés pour la reconstruction d’images IRM à par-
tir de données fortement sous-échantillonnées dans des contextes d’acquisition
complexes.

Nous résumons ici les différents aspects abordés au travers de cette thèse. Après
avoir décrit les enjeux et motivations qui nous ont poussé au développement des
méthodes abordées dans ce travail, nous résumerons chacune des contributions.

Motivations et contexte

L’Imagerie par résonance magnétique (IRM) est une technique d’imagerie per-
mettant de visualiser les tissus mous du corps humain de manière non invasive.
C’est donc une modalité de visualisation très utilisée pour le diagnostic de nom-
breuses maladies et traumatismes. Cependant, l’un de ses principaux problèmes est
un temps d’acquisition très élevé, de 15 à 90 minutes, qui peut la rendre peu appli-
cable ou accroître les délais d’attente pour obtenir une date d’examen. Pour per-
mettre d’accélérer cette acquisition, le sous-échantillonnage des données constitue
l’approche la plus pertinente, mais cela crée une étape complexe de reconstruction
de l’image à partir de données incomplètes. L’enjeu de la reconstruction est dès lors
de tirer parti de connaissances a priori sur les images obtenues par IRM en général
pour reconstruire une image donnée. Il existe cependant deux problèmes avec les
techniques classiques basées sur la théorie de l’échantillonnage compressif :

– Le temps de reconstruction de ces méthodes itératives, qui utilisent des
opérateurs parfois complexes, est long.

– Les connaissances a priori sur les images IRM sont souvent encodées de
manière manuelle et restent de ce fait relativement simplistes.

Dans le même temps, l’apprentissage profond (Deep Learning en anglais) a émergé
comme une technique permettant d’apprendre des connaissances a priori sur des
objets à partir de grandes quantités de données. C’est pourquoi, de nombreux tra-
vaux de recherches essayent d’utiliser cette technique pour reconstruire des images
IRM. Dans cette thèse, nous avons essayé de développer cette idée en proposant de
nouvelles architectures de réseaux neuronaux pour la reconstruction d’images IRM,
mais aussi en interrogeant leur applicabilité clinique et en améliorant des méthodes
permettant la création de réseaux très profonds.
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Introduction à l’IRM

L’IRM par sa capacité à diagnostiquer de nombreuses pathologies et trauma-
tismes commence à s’imposer comme une modalité d’imagerie indispensable du
parcours clinique. Le grand avantage de l’IRM par rapport au scanner, son concur-
rent direct en imagerie, est qu’elle n’utilise pas de radiation ionisante. Il est donc
possible d’utiliser l’IRM de manière répétée sans dangers pour les patients.

Essayons donc de comprendre comment il est physiquement possible de générer
une image des tissus mous du corps humain sans utiliser de radiations. L’IRM se
base sur le phénomène de la Résonance Magnétique Nucléaire (RMN). La RMN
a lieu lorsque qu’un atome associé à un spin non-nul (p. ex. hydrogène, sodium,
phosphore, etc.), est plongé dans un champ magnétique statique B0. Le spin
de l’atome va alors s’aligner sur le champ magnétique et initier un mouvement de
rotation en cône, appelé précession, autour de l’axe du champ magnétique statique.
La résonance correspond à l’interaction entre les spins en rotation et une impulsion
Radio-Fréquence (RF), aussi appelée champ B+

1 , délivrée à la fréquence de Larmor
des spins précessant autour de B0. Cette interaction va exciter le spin en apportant
de l’énergie au système, et en pratique augmenter l’angle de la précession. Une
fois cette phase d’excitation finie, l’énergie apportée par l’impulsion est relâchée
par le spin sous la forme d’une autre impulsion RF (champ RF B−

1 ) qui peut
être enregistrée par une antenne sous la forme d’un signal d’induction libre (Free
Induction Decay). Les caractéristiques de ce signal FID dépendent du tissu (p. ex.
matière blanche ou grise dans le cerveau) dans lequel se situent les spins. Pour
former une image à partir de ce signal, on procède à un encodage spatial grâce à
l’application de gradients dans les trois directions de l’espace (sélection de coupe,
encodage de phase et en fréquence), ce qui permet de former une image, car les
différents tissus émettront des impulsions avec des caractéristiques différentes.

L’impulsion RF qui peut être enregistrée contient la contribution de tous les
tissus plongés dans le champ magnétique. Les caractéristiques de celle-ci sont
donc globales, et afin d’obtenir une information locale, il faut donc utiliser des
variations locales du champ magnétique pour enregistrer plusieurs informations
globales dont la variation dépend des variations locales du champ magnétique. Ces
variations locales du champ magnétique sont appelées gradients et l’acquisition
IRM correspond à l’envoi de la même impulsion RF accompagnée de différents
gradients. En l’effet, les gradients font varier la fréquence de résonance, mais aussi
la phase des différents spins de manière spatialement dépendante.

En négligeant certains phénomènes et en démodulant et filtrant le signal ana-
logique, on peut obtenir le signal suivant :

Str(t) ∝ ω0

∫
Vs

BtrMtr(t, r)e−ıγr·
∫ t

0 G(τ) dτ dr (G.1)
avec ω0 la fréquence de Larmor à laquelle tournent les spins, Btr la partie trans-
verse de l’impulsion RF, Mtr(t, r) le champ magnétique transverse, γ le rapport
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gyrométrique de l’hydrogène et G la résultante des gradients.
En notant k(t) = γ

2π

∫ t
0 G(τ) dτ , on s’aperçoit que l’opérateur qui contrôle les

gradients peut faire en sorte que le signal Str(t) soit la transformée de Fourier de
Mtr(t, r) qui est proportionnel à la densité de l’organe. On appelle k le vecteur
de l’espace k. Le choix de la trajectoire k(t) définit la manière dont on traverse
l’espace de Fourier de l’organe que l’on veut imager, et cela peut être fait de
manière cartésienne sur une grille ou non-cartésienne pour donner une transformée
de Fourier non-uniforme.

Afin d’améliorer le flux de patient, l’accessibilité de l’IRM à tous (notamment
les populations sujettes aux mouvements comme les jeunes enfants et les personnes
atteintes de la maladie de Parkinson), l’accélération de l’acquisition en IRM est un
enjeu majeur. Pour cela, il n’y a pas beaucoup de possibilités physiques, hormis
l’augmentation de la force du champ magnétique ce qui est technologiquement
complexe. Il faut donc échantillonner moins de points dans l’espace k, et donc
reconstruire une image à partir d’une information de Fourier incomplète.

Une des premières approches consiste à utiliser un réseau d’antennes pour
obtenir une certaine redondance dans le signal enregistré. On peut aussi s’appuyer
sur la symétrie hermitienne des coefficients de Fourier d’une image réelle afin de
réaliser une acquisition partielle.

Reconstruction classique en IRM

Les techniques de reconstruction en IRM sont basées sur la théorie de l’échan-
tillonnage compressif [LDP07]. Le cœur de cette théorie est que l’on peut recons-
truire parfaitement (c.-à-d. sans erreur) un signal inconnu à partir d’un nombre de
mesures plus faible que celui prescrit par le théorème de Nyquist-Shannon si on
le mesure de la « bonne manière » en supposant une certaine parcimonie dans le
signal. Cette bonne manière de mesurer est caractérisée par la notion de cohérence
de l’opérateur de mesure. La cohérence d’un opérateur est la mesure de décorréla-
tion des vecteurs de la base d’acquisition par rapport aux vecteurs canoniques de
la base de parcimonie. Si l’on considère le problème inverse :

y = Ax (G.2)
où y ∈ Rm décrit les observations, l’opérateur A ∈ Rn × Rm doit être in-
cohérent dans la base où le signal à reconstruire x ∈ Rn est parcimonieux,
du moins si l’on suit les théories initiales développées sur l’échantillonnage com-
pressif [CRT06]. La notion de parcimonie signifie qu’il existe une base Ψ où
la représentation de x comporte peu de coefficients non nuls (x = Ψz avec
s = Card{si ̸= 0, ∀i = 1, . . . , n} ≪ n). Dans ces cas-là, il existe des algorithmes
permettant de reconstruire le signal xb de façon exacte, dans une situation sans
bruit, à partir des mesures y. En présence de bruit, la reconstruction est à erreur
bornée, qui dépend du niveau de bruit [CRT06].
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Cette théorie a été appliquée avec succès à l’IRM dès 2007 [LDP07] même si
en réalité l’opérateur de mesure, c.-à-d. transformée de Fourier FΩ, est cohérente
dans les basses fréquences avec les bases de parcimonie classiques comme les dé-
compositions en ondelettes Ψ. Pour pallier cette difficulté, une solution consiste
à échantillonner complètement (c.-à-d. de façon déterministe) le centre de l’es-
pace k et à ensuite introduire un échantillonnage plus parcimonieux sur les hautes
fréquences. Ce principe a donné lieu à la notion d’échantillonnage à densité va-
riable (cf. [PVW11 ; CCW13 ; Cha+14] pour les détails) et sa justification théo-
rique tient au fait qu’il permet de casser la barrière de cohérence, donc in fine
de réduire le nombre de mesures nécessaires m pour garantir une reconstruction
exacte du signal x à partir des données y de l’espace k.

Ainsi, on peut reconstruire une image IRM même en mesurant seulement une
partie de l’espace k, avec des algorithmes itératifs. Les plus typiques sont les algo-
rithmes de gradient proximal qui résolvent les problèmes d’optimisation du type :1

arg min
x∈Cn

1
2
∥y −FΩx∥22 + λ∥Ψx∥1 (G.3)

où Ψ est la base dans laquelle x est parcimonieux, typiquement une transformée
en ondelettes. En notant R(·) = λ∥Ψ · ∥1, l’algorithme proximal s’écrit :

xn+1 = xn − ϵnFH
Ω (FΩxn − y)

xn+1 = proxϵnR (xn+1)
(G.4)

Il existe également des techniques propres à la reconstruction en IRM multica-
naux. Ces techniques s’appliquent soit dans le domaine image comme SENSE [Pru+99]
et se basent sur une acquisition préalable de cartes de sensibilités des canaux, soit
dans le domaine de l’espace k et essayent de le compléter en calibrant des noyaux
sur les parties acquises du signal. Des combinaisons entre ces techniques existent,
et également avec les algorithmes de l’échantillonage compressif comme ESPI-
RiT [Uec+14].

Introduction à l’apprentissage profond

Deux problèmes de reconstruction avec les techniques d’échantillonnage com-
pressif empêchent cependant d’atteindre de hauts facteurs d’accélération :

– Le temps de reconstruction élevé des algorithmes itératifs.

– La base de parcimonie manuellement définie.

L’apprentissage profond pourrait permettre de casser ces deux barrières.

1On présente ici seulement la version mono-canal du problème IRM par souci desimplicité.
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En effet, l’apprentissage profond se base sur des blocs fonctionnels relativement
simples pour construire des fonctions hautement non linéaires qui ont la capacité
d’approximer n’importe quelle fonction. Ces fonctions sont paramétrées par un très
grand nombre de variables et leur calibration se fait à l’aide de l’algorithme de
descente de gradient stochastique sur un très grand nombre de données.

Revue de l’apprentissage profond pour la reconstruction en IRM

Partant de cet ensemble riche, il existe de nombreuses manières d’utiliser l’ap-
prentissage profond pour la reconstruction en IRM. Il existe cependant un prin-
cipe général sous-tendant toutes ces approches, la recherche d’un a priori pour
contraindre la reconstruction d’une image IRM.

– Plug-and-Play [VBW13 ; Zha+17b ; ZZZ19 ; MMC17 ; Ryu+19 ; Xu+20 ;
Wei+20] : cette méthode consiste à remplacer l’opérateur proximal des al-
gorithmes itératifs par un réseau de neurones de débruitage pré-entraîné.

– Apprentissage agnostique [Zhu+18] : dans ce cadre, on considère que le
problème de reconstruction en IRM est un problème d’apprentissage super-
visé sans connaissances particulières sur la physique du problème et le réseau
de neurones passe directement de l’espace k à l’image.

– Restauration monodomaine [HSY19 ; Lee+18 ; Han+18] : cette méthode
est relativement similaire à l’apprentissage agnostique sauf que le réseau doit
cette fois apprendre la correspondance entre l’image artefactée (où l’on a
appliqué la transformée de Fourier sur des coefficients incomplets) et l’image
reconstruite, ou entre l’espace k incomplet et l’espace k complet.

– Reconstruction antagoniste (adversariale en anglais) [MNJ18 ; Dra+17 ;
Ham+19] : cette méthode vient se greffer sur une autre technique d’appren-
tissage, en proposant de rajouter une composante antagoniste à la fonction
de perte évaluée pendant la phase d’entraînement.

– Échantillonnage Compressif Profond [Bor+17 ; WRL19 ; Dar+21] : ce pa-
radigme utilise un réseau génératif antagoniste (GAN en anglais) pré-entraîné
pour contraindre la recherche de solutions satisfaisant les données.

– A priori Profond sur les Images [DH20] : cette approche est assez similaire
à la précédente, mais ici, on sur-apprend un réseau convolutif sur les données,
et on considère que l’a priori contenu dans l’architecture est suffisant pour
reconstruire l’image.

– Auto-supervisé [Yam+20 ; Hu+21] : lorsque des données acquises parfai-
tement pour servir de vérité terrain ne sont pas disponibles, le paradigme
de l’auto-supervision suggère de créer un problème à résoudre pour le ré-
seau de neurones afin de l’entraîner sur des données incomplètes seulement.
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Dans le cas de la reconstruction en IRM on peut par exemple rétrospective-
ment sous-échantillonner encore plus les données et demander au réseau de
reconstruire celles manquantes pour lesquelles on a une vérité terrain.

– Apprentissage de Champ Implicite [Sun+21 ; SPX21] : l’utilisation de
cette méthode est encore récente pour la reconstruction en IRM, mais pro-
metteuse, car versatile : le concept est d’apprendre un a priori sous la forme
d’une fonction (un champ) mettant en correspondance des coordonnées spa-
tiales (dans l’espace image ou l’espace k) avec leur valeur dans l’espace
modélisé.

– Réseaux déroulés [AMJ19 ; Ham+18 ; Ham+19 ; Sri+20 ; GOW19 ; Eo+18 ;
AÖ18b ; Sch+18] : cette méthode est la plus utilisée aujourd’hui pour la
reconstruction en IRM. Elle consiste à dérouler un algorithme de reconstruc-
tion itératif et à remplacer l’opérateur proximal par un réseau de neurones.
À la différence de la méthode Plug-and-Play, le tout est appris de bout en
bout sans avoir à pré-entraîner le réseau de neurones remplaçant l’opérateur
proximal.

Dans cet ensemble de méthodes, il existe peu de comparaisons sur un pied
d’égalité. Nous avons souhaité en réaliser une à petite échelle afin de commen-
cer à y voir plus clair. Cette comparaison a impliqué les réseaux U-net [RFB15],
KIKI-net [Eo+18], Cascade-net [Sch+18] et PDNet [AÖ18b]. Les résultats quanti-
tatifs (cf. tableau G.1) et qualitatifs (cf. figure G-1) ont permis de constater que le
PDNet était le réseau le plus prometteur des quatre, et ainsi une base pertinente
pour développer de nouveaux réseaux.

Cette comparaison a été faite avec le jeu de données fastMRI [Zbo+18] qui est
le premier à être suffisamment conséquent en taille pour permettre des applications
d’apprentissage profond. De plus, il contient des données brutes complexes d’ima-
gerie multicanaux, il est donc tout à fait approprié pour effectuer cette analyse
dans un cadre d’acquisition réaliste.

Table G.1 : Résultats quantitatifs pour le jeu de données fastMRI. Lamoyenne et l’écart type (std) de PSNR et de SSIM sont calculés sur les200 volumes de validation. Le temps d’exécution est donné pour la re-construction d’un volume avec 35 coupes.
Réseau PSNR-moyen (std) (dB) SSIM-moyenne (std) #params Temps d’exec. (s)

Fourier adj. 29,61 ( 5,28) 0,657 ( 0,23) 0 0,68
KIKI-net 31,38 (3,02) 0,712 (0,13) 1,25 M 8,22
U-net 31,78 ( 6,53) 0,720 ( 0,25) 482k 0,61

Cascade net 31,97 ( 6,95) 0,719 ( 0,27) 425k 3,58
PD-net 32,15 ( 6,90) 0,729 ( 0,26) 318k 5,55
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RéférenceFourier adj. KIKI-net U-net Cascade-net PD-net

Figure G-1 : Résultats de reconstruction pour une coupe spécifique(16ème coupe de file1000196, de l’ensemble de validation). La lignedu haut représente la reconstruction avec les différentes méthodes, etcelle du bas l’erreur absolue lors de la comparaison avec la référence.

Nouveaux réseaux déroulés pour la reconstruction en IRM

Partant de cette conclusion, nous avons développé deux nouveaux réseaux
déroulés pour la reconstruction en IRM basés sur le PDNet. Ces nouveaux réseaux
devaient répondre au besoin de reconstruire des images dans des contextes plus
complexes que le cadre simpliste d’imagerie 2D monocanal. Le premier réseau est
le XPDNet, qui permet de reconstruire en imagerie 2D multicanaux. Ce réseau a
été développé dans le but de participer au défi fastMRI 2020 de reconstruction de
cerveaux en IRM. Il met en place les avancées les plus récentes de l’état de l’art en
débruitage d’images, en réseaux déroulés et en IRM. Grâce à XPDNet, nous avons
pu nous classer 2èmes de ce défi, dont l’évaluation finale était déterminée par
un ensemble de radiologues en double aveugle. Son implémentation est disponible
sur GitHub. Le deuxième réseau est le NCPDNet dont le but est de reconstruire
des données acquises de manière non-cartésienne, en imagerie 2D et 3D. Une
représentation de ce réseau est disponible en figure G-2. La partie originale de ce
réseau concerne l’intégration d’une compensation de la densité d’échantillonnage,
un mécanisme crucial pour la reconstruction d’images non-cartésiennes en IRM,
mais peu utilisé dans les réseaux déroulés jusqu’à présent. Nous avons conduit une
étude d’ablation ainsi qu’une étude de robustesse pour mieux comprendre comment
se comportait ce réseau et conclu à l’importance de chacune des composantes, mais
aussi à une certaine robustesse de celui-ci.
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Figure G-2 : Représentation du NCPDNet.
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Applicabilité clinique de l’apprentissage profond pour la recons-
truction en IRM

Nous nous sommes justement ensuite intéressés à la question de l’applicabilité
clinique des réseaux de neurones. En effet, de nombreuses questions sont soulevées
quant à leur utilisation dans un contexte médical et notamment leurs potentielles
erreurs [Got+20]. Nous avons donc étudié cette question sous 3 angles différents.

Dans un premier temps, nous nous sommes interrogés sur les liens qui existent
entre les réseaux de neurones typiques de la vision par ordinateur comme le U-
net [RFB15] et les ondelettes classiquement utilisées en échantillonnage compressif.
À partir de cette étude, nous avons développé un nouveau type de réseau de
neurones, les Learnlets, qui sont en fait des ondelettes avec une forte composante
apprise. Nous avons montre que les Learnlets permettent d’apprendre une fonction
plus robuste que les réseaux de neurones classiques tout en ayant de meilleures
performances que les ondelettes en débruitage.

Dans un deuxième temps, nous avons essayé de créer une méthode de quan-
tification de l’erreur de reconstruction d’image en IRM en s’aidant de l’approche
récente de correspondance de score par débruitage [SE19 ; SE20]. Cette méthode
est basée sur l’entraînement d’un réseau de neurones pour du débruitage sur un si-
gnal et l’interprète comme le gradient de la log-distribution, appelé le score [Hyv05].
Ce score est ensuite utilisé pour échantillonner des images reconstruites, permet-
tant ainsi de distinguer les éléments propres aux données acquises et ceux propres
à l’a priori.

Enfin, dans un troisième temps, nous avons réalisé une comparaison du XPDNet
avec GRAPPA [Gri+02], un algorithme d’imagerie parallèle de référence utilisé dans
les scanners IRM. Cette comparaison a permis d’identifier les avantages de XPDNet,
en particulier dans un contexte prospectif où il n’avait jamais été utilisé. Ce dernier
résultat est visible en figure G-3.

Nouveaux paradigmes d’apprentissage pour les réseaux très pro-
fonds

Afin de pousser également les performances pures des modèles d’apprentissage
profond, il est important de pouvoir construire de plus grands réseaux de neu-
rones. Cependant, l’entraînement de ceux-ci est rapidement impossible du fait des
contraintes de mémoire imposées par la rétro-propagation du gradient dans l’algo-
rithme de descente de gradient stochastique. Nous nous sommes donc intéressés
aux méthodes permettant la réduction de ces contraintes de mémoire, et notam-
ment aux Modèles d’Équilibre Profonds (DEQs en anglais) [BZK19 ; BKK20]. Ces
modèles proposent de définir la sortie d’un réseau de neurones de manière implicite
comme la solution d’une équation de point fixe. Ainsi, il est possible d’optimiser les
poids de ce réseau en ne se basant plus sur la rétro-propagation classique, mais en
utilisant le théorème des fonctions implicites. En s’intéressant à ce type de modèles,
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prometteurs pour la reconstruction en IRM [GOW21], nous nous sommes aperçus
qu’ils étaient extrêmement lents lors de la phase d’entraînement. Nous avons donc
proposé une méthode, SHINE (pour SHaring the INverse Estimate en anglais), qui
se base sur un produit de l’algorithme de résolution de l’équation de point fixe
pour accélérer le calcul de la dérivée. En plus de cela, nous avons pu montrer la
généricité de SHINE en l’appliquant aussi à des problèmes d’optimisation biniveaux
pour le réglage des hyper-paramètres [Ped16].

Conclusion

En conclusion, dans cette thèse, nous avons pu produire des contributions de
différents ordres. Certaines sont applicatives et d’autres méthodologiques, certaines
sont des idées nouvelles ou d’autres correspondent à un parangonnage de méthodes
issues de la littérature sur des grands jeux de données ouvertes. La force de ces
études réside dans la mise à disposition d’un code documenté en libre accès. Nous
espérons ainsi avoir aidé la communauté de la reconstruction en IRM à travers ces
efforts.

Les perspectives de développement se concentrent autour de 3 aspects :

– L’application à la reconstruction d’images en IRM dans des contextes com-
plexes d’idées d’entraînement de réseaux de neurones frugales, c.-à-d. à faible
consommation de mémoire.

– Les entraînements hybrides ou conjoints du réseau de reconstruction et du
schéma d’acquisition.

– L’intégration de corrections physiques au-delà du modèle d’acquisition idéa-
lisé de Fourier au sein des réseaux déroulés.

✽ ✽ ✽
✽ ✽

✽
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GRAPPA XPDNet

Figure G-3 : Images des modules des résultats de reconstruction pourun cerveau [Mar+16] acquis avec un facteur d’accélération de 2, uncontraste T2 et une intensité de champ magnétique de 7T. La ligne su-périeure représente la reconstruction avec les différentes méthodeset la ligne inférieure représente un zoom dans le cervelet, un élémentanatomique qui n’était pas présent dans l’ensemble d’entraînement deXPDNet.
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