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Preamble: on the necessity of energy transition

Although this work focuses primarly on the numerical simulation of fluid-structure interactions, it is interesting to begin with a larger contextualisation. It is thus introduced by a part aiming to explain the interest of studying and improving wind or marine turbines technology. It will provide a quick overwiew of causes and consequences of global warming, and it will show why energy transition, which includes the development of such sources of energy, has become a necessity. The interested reader is invited to refer to the Intergovernmental Panel on Climate Change (IPCC) report [START_REF]Ipcc, climate change 2021, the physical science basis[END_REF] for further details.

The climate crisis comes from an analysis: global temperature is increasing. This is illustrated by temperatures curves given in Fig. 0.1. Despites of this undeniable situation, Fig. 0.1: Left: Change in global surface temperature (decadal average) as reconstructed and observed (1850-2020). Right: Change in global surface temperature (annual average) as observed and simulated using human & natural and only natural factors (both 1850-2020). Extracted from [START_REF]Ipcc, climate change 2021, the physical science basis[END_REF]. causes may seem unclear. Climate evolution is indeed a complex science and it depends on a lot of factors. For instance, solar activity variations has an impact on climate but some studies have shown that in reality this latest is minor [START_REF] Laut | Solar activity and terrestrial climate: an analysis of some purported correlations[END_REF]. Climate can also change due to deviation of earth movement and rotation around the sun, called Milankovitch cycles. Even though this has a strong influence on climate, the time scale (cycles of about 100 000 Contents years) does not fit with the previous observations [START_REF] Berger | Milankovitch theory and climate[END_REF][START_REF] Huybers | Links between annual, milankovitch and continuum temperature variability[END_REF][START_REF]Science etonnante website[END_REF]. The hypothesis supported by a large majority of climate scientists is that this global warming is due to human activities, especially greenhouse effect gas emissions. That is why Fig. 0.1 also shows simulations of climate evolution without human impact and it remains nearly constant.

Greenhouse effect is explained in Fig. 0.2. It involes a difference in transparency of the atmosphere depending on the radiation that tries to pass through. When incoming solar Fig. 0.2: Schematic diagram of the global mean energy balance of the Earth. Numbers indicate best estimates for the magnitudes of the globally averaged energy balance components together with the uncertainty ranges. Extracted from [START_REF] Wild | The global energy balance from a surface perspective[END_REF]. radiation arrives at the top of the atmosphere, 30% is directly reflected towards space by clouds (20%), the various layers of the atmosphere (6%), and the surface of the earth (4%), which includes some places -for example the ice caps -that are particularly highly reflexive (albedo effect). The remainder of this incoming energy is absorbed by the various components of our planet (continents, oceans, atmosphere), heating them, and then re-emitted in the form of infrared energy, as black body radiation. The greenhouse gases here refer to gases that let pass solar radiation but are opaque to these infrareds. These gases then also heat up because of infrareds absorption, re-emitting infrareds that goes back to the ground, heating it up a second time. The whole process finally reaches an equilibrium, but with higher temperatures than if these greenhouse gases where not present [START_REF] Wild | The global energy balance from a surface perspective[END_REF][START_REF]Jm jancovici, website[END_REF].

Without this greenhouse effect, the average surface temperature would be -18°C; a temperature so low that all water on Earth would freeze, the oceans would turn into ice and life, as it is known, would not exist [START_REF] Lang | Nasa's cosmos[END_REF]. However, gas with this effect are minor ingredients of this atmosphere. 60% to 70% of the Earth's greenhouse warming is induced by water vapor, while carbon dioxide (CO 2 ) provides just a few degrees. Moreover, it is important to notice that Earth atmosphere had known different greenhouse gases concentrations, including CO 2 , and sometimes well beyond today. The natural mechanisms explaining atmosphere CO 2 concentration are complex and it exists a lot of positive and negative feedback loops; any interested reader can refer to [START_REF]Le reveilleur, website[END_REF] for more details. Consequently, as regards the above points, accurate climate prediction turns out to be really challenging.

Nevertheless, climate scientists keep thinking that the temperature increase is caused by greenhouse gas emissions due to human activities. These emissions are indeed increasing since the end of the XIX-th century, as shown by Fig. 0.3. They are in major part caused by energy production, as it is mainly based on fossil fuels combustion, releasing CO 2 . These energy sources have allowed important economic growth, with counterpart an increase in global temperatures. That is why temperature increase in 2081-2100 is estimated at around +3°C in comparison with 1986-2005 according the scenario "business as usual" [11].

Furthermore, for a deeper understanding of the climate crisis, it is essential to explain why climate change represents a problem. This is detailed in the IPCC report [START_REF]Ipcc, ar5 climate change 2014: Impacts, adaptation and vulnerability[END_REF] from where Fig. 0.4 has been extracted. It shows world regions where climate change affects physical systems, biological systems and human activities. Examples arising include water stress, disrupting food production, and also sea level rise, flooding densely populated regions. Projections also show that the number of days per year where temperature and humidity conditions are lethal for human will increase in several countries [START_REF] Raymond | The emergence of heat and humidity too severe for human tolerance[END_REF].

It is then obvious that global warming induces significant mass migration [START_REF] Stephenson | Population dynamics and climate change: what are the links?[END_REF], disrupts human societies, and is causing irreversible damages on biodiversity [START_REF] Botkin | Forecasting the effects of global warming on biodiversity[END_REF][START_REF] Malcolm | Global warming and extinctions of endemic species from biodiversity hotspots[END_REF], and that these effects will increase if greenhouse gas emissions continue to grow [START_REF]Ipcc, ar5 climate change 2014: Impacts, adaptation and vulnerability[END_REF]. One pathway would be to take carbon from the atmosphere and to store it apart. This Carbon Capture and Storage (CCS) strategy could indeed decrease atmosphere CO 2 concentration, but this is limited and demanding to develop at large scale [START_REF] Bui | Carbon capture and storage (ccs): the way forward[END_REF][START_REF] Haszeldine | Carbon capture and storage: how green can black be?[END_REF][START_REF] Bastin | The global tree restoration potential[END_REF][START_REF] Bettin | De la compensation du carbone au financement de la neutralité[END_REF]. As a result, a reduction of human greenhouse gas emissions is mandatory. This reduction is in fact extremely challenging given that a lot of different sectors are involved, as shown by Fig. 0.5. Therefore, changes have to be made in most human activities.

As explained above, human greenhouse gas emissions are mainly caused by energy produced with fossil fuels. Nevertheless, it exists other sources of energy with lower carbon intensity exist. Figure 0.6 gives greenhouse gas impacts of the different electricity supply technologies, integrating emissions during their entire lifecycle. It can be seen that nuclear and renewable energies such as solar, wind or hydropower induce low carbon emissions in comparison with gas and coal. However, nuclear power requires high initial investment, good security controls, and is often not accepted by local population. In addition, renewable ener-Contents Fig. 0.3: Greenhouse gas emissions by sector (top) and primary energy production by source (bottom). From [START_REF]The shift data portal[END_REF]. Contents Fig. 0.4: Widespread impacts in a changing world. Impacts are shown at a range of geographic scales. Symbols indicate categories of attributed impacts, the relative contribution of climate change (major or minor) to the observed impact, and confidence in attribution. Extracted from [START_REF]Ipcc, ar5 climate change 2014: Impacts, adaptation and vulnerability[END_REF]. Fig. 0.5: Global greenhouse gas emissions by sector for the year 2016. Extracted from [START_REF]Our world in data[END_REF]. Fig. 0.6: Emissions of selected electricity supply technologies (gCO 2 eq.kWh -1 ). Extracted from [START_REF]Ipcc, technology-specific cost and performance parameters[END_REF].

gies as wind or solar are intermittent and so hardly compatible with the necessity to ensure a stable energy production given that energy storage remains very difficult in large scale. As for hydropower, it depends on regions topography and most viable sites are already exploited in Europe. Those reasons explain why fossil fuels have been mainly used during the XX-th century, and make the energy transition challenging. Research works in this domain are then encouraged but it may seem unreasonable to wait for new technology given the task scope.

As a matter of fact, it must also be noticed that the problem is not only about electricity production, as shown by Fig. 0.7. With the example of France, it highlights that half of its energy consumption comes from fossil energies, despite a low carbon electricity production system (58.5 gCO 2 eq.kWh -1 in 2016, while it was 440.8 gCO 2 eq.kWh -1 in Germany [START_REF]European environment agency, co2 emission intensity[END_REF]). This is explained with Fig. 0.5; energy is indeed used in different domains under different forms. For instance, road transports use mainly oil and heating in buildings is often done with gas combustion. Besides, it has to be reminded that France, just as most occidental countries, has relocated a part of its industries in other countries (in Asia for instance), so that most of the consumer goods sold are made elsewhere, and gas emissions due to manufacturing of these products do not appear in France carbon budget [START_REF] Dussaux | Carbon Offshoring: Evidence from French Manufacturing Companies[END_REF]. This pollution offshoring induced by globalization imposes a common effort of every country, and is meaningless concerning the global climate given that carbon emissions impact the atmosphere independently of its location.

Improving the energy efficiency, like developing thermal insulation, and reducing the energy consumption by changing individual behaviour are necessary actions, but are still insufficient [START_REF] Webb | Climate change and society: The chimera of behaviour change technologies[END_REF][START_REF] Dugast | Faire sa part," Pouvoir et responsabilité des individus, des entreprises et de l'état face Al'urgence climatique[END_REF]. A strong global effort is then necessary to produce electricity with low carbon systems (nuclear and renewable energies), and also to electrify our systems in agriculture, transports, buildings, etc... Contents Fig. 0.7: Primary energy consumption in France between 1980 and 2016. From [START_REF]The shift data portal[END_REF].

Even supposing that human activities would not have any consequences on climate, or climate change would not cause any damage to human society, the situation would still be worrying because of fossil fuels rarefaction [START_REF] Auzanneau | L'inexorable déclin du pétrole[END_REF], as illustrated by Extracted from [START_REF]Jm jancovici, website[END_REF]. stocks are indeed in limited quantities on Earth, and are regenerated at timescale incompat-Contents ible with the current consumption. Changes in energy production will then be voluntary or suffered.

In order to limit the climate change and reduce greenhouse gas emissions, several energetic and social scenarios are studied by IPCC [START_REF]Ipcc, climate change 2021, the physical science basis[END_REF], or by national agencies [START_REF]Futurs energetiques 2050 -principaux resultats[END_REF]. They predict a decrease of energy consumption but an increase in electricity production to substitute current uses of fossil fuels. Consequently, in most of these scenarios, renewable energies have to be developed to ensure a low carbon electricity production system. It has indeed been shown that they can reduce significantly carbon emissions, even in France where the nuclear power is the main source of electricity [START_REF]Note: precisions sur les bilans co2 etablis dans le bilan previsionnel et les etudes associees[END_REF].

It has been explained why developing renewable energies is crucial. The present research work is part of this energy transition strategy, and is motivated by the need of improving wind or marine turbines technology. The first Chapter will go over one of these possible improvements, the use of flexible foils.

Chapter 1 Introduction

This chapter aims at introducing the objectives of this work. It starts by explaining what motivates the study, providing a literature review of experimental research results involving chordwise flexible blades. Then, the FSI phenomenon is presented, as the principal numerical methods used to simulate cases of that kind. State of the art of chordwise flexible foil numerical simulations is given. As a result, detailed objectives and a work plan can be described. 

Motivations: experimental research about chordwise flexible blades turbines

The necessity to develop and improve wind or marine tubines keeps rising, and today a majority of these turbines are Horizontal Axis Turbines (HAT). They present indeed a better efficiency than Vertical Axis Turbines (VAT). However, VAT have several advantages, as detailed in [START_REF] Guillaud | Simulation et optimisation de forme d'hydroliennes à flux transverse[END_REF]. At first, they are not sensitive to stream direction changes, which has a major impact with large scale turbine where flow conditions can be different at the bottom and at the top of the turbine. Besides, the gravity center is at the base facilitating the maintenance, and blade shape is the same along the span, implying simpler manufacturing. Finally, several studies [START_REF] Feng | Optimizing land use for wind farms using vertical axis wind turbines[END_REF][START_REF] Dabiri | Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays[END_REF] showed that in the case of tubine farm, the power extracted for a given surface tends to be superior with VAT than HAT, due to turbines wakes for instance.

As illustrated in Fig. 1.1, blades of VAT experience variable flow conditions during a rotation. One challenge is then to find an optimal shape that remains highly efficient regardless any conditions in order to maximize energy harvesting. Therefore, a static shape can seem not optimal. A bioinspired approach to control and improve stall characteristics of a foil is the use of adaptive morphology. The flexible fins or wings of some animals enhance indeed Fig. 1.1: Left and middle: Velocity triangles of a VAT, with ω the rotation speed and θ the azimuth angle. Only the tangential force generates thrust, causing the turbine rotation, so that most of the forces results in structural loads. Right: CAD model of a three-bladed H-Darrieus turbine rotor. Extracted from [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF].

their propulsion [START_REF] Lauder | Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins[END_REF][START_REF] Truong | A mass-spring fluidstructure interaction solver: Application to flexible revolving wings[END_REF]. The deformation modifies the foil shape, affecting the flow and the pressure field and then the fluid forces, as shown by Fig. 1.2. The angle of attack α (defined Fig. 1.2: A rigid and a flexible NACA0018 foil (National Advisory Committee for Aeronautics). The large deformations modify significantly the rotor flow characteristics. Extracted from [START_REF] Hoerner | Darrieus vertical-axis water turbines: deformation and force measurements on bioinspired highly flexible blade profiles[END_REF]. in Fig. 1.2) of the blade is varying along the cycle, reaching angle where the flow has stalled, which induces important lift reduction. Therefore, even a slight trailing edge deflection towards the flow direction would delay the stall and increase the lift. This may avoid deep and 1.1. Motivations: experimental research about chordwise flexible blades turbines light dynamic stall at high angles of incidence. Thereby, the dynamic shape modification of turbine blades adapted to the transient flow conditions have been recently considered as a promising research subject. It can be done actively or passively.

Active deformations can be performed with a control device. Several studies [START_REF] Bouzaher | Performance analysis of a vertical axis tidal turbine with flexible blades[END_REF][START_REF] Chougule | Overview and design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach[END_REF][START_REF] Liang | Blade pitch control of straightbladed vertical axis wind turbine[END_REF] showed that turbines with blade pitch control system or imposed blade shape deformations could see their efficiency improved. However, active blade-shape deformation system imposes a mechanical system requiring power source and maintenance. This system needs also to be sufficiently robust to resist to temperature and humidity conditions experienced by a production turbine, while being manufactured for a reasonable price for large scale production.

Passive blade shape modification is then preferred, using flexible material relatively light with respect to the fluid to ensure pressure based deformations. This has been achieved experimentally by Zeiner-Gundersen [START_REF] Zeiner-Gundersen | A novel flexible foil vertical axis turbine for river, ocean, and tidal applications[END_REF] with a hydrodynamic VAT, resulting with improvements at low current velocities in comparison with rigid model. Also, MacPhee & Beyene [START_REF] Macphee | Experimental and fluid structure interaction analysis of a morphing wind turbine rotor[END_REF] have designed a three flexible blades HAT. In order to quantify the turbine performance, the power coefficient, a normalized value of torque, is measured for different values of Tip Speed Ratio (TSR), which is a ratio between the blade velocity (ωR) and the inflow velocity. Good improvements were found, as given by Fig. Hoerner et al. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF][START_REF] Hoerner | Darrieus vertical-axis water turbines: deformation and force measurements on bioinspired highly flexible blade profiles[END_REF][START_REF] Hoerner | Characterization of the fluid-structure interaction on a vertical axis turbine with deformable blades[END_REF][START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF] with regard to an oscillating hydrofoil in a closed water channel (Fig 1 .4). The blade is pitched to replicate the variation of angle of incidence experienced by a rotating VAT blade. The compound hydrofoil consists of a leading edge milled from aluminum, a skeleton of carbon and a body of silicone. The rigidity of the foil is adjustable based on the thickness of the carbon core. Parametric studies of rigidity, oscillation frequency and tip speed ratio have then been performed. The best results combines a reduction of 25% in structural loads along with improved blade thrust (see Fig. 1.1) of 20% compared to an identical rigid turbine [START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF]. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF].

Note that blade deformations can also occur in spanwise direction, even for VAT [START_REF] Liu | Investigation on darrieus type straight blade vertical axis wind turbine with flexible blade[END_REF], but the efficiency seems limited compared to rigid blades. This effect is mainly studied for HAT [START_REF] Mo | Aeroelastic coupling analysis of the flexible blade of a wind turbine[END_REF] or flapping foil [START_REF] Heathcote | Effect of spanwise flexibility on flapping wing propulsion[END_REF], so that it will not be discussed in this work.

Giving those promising results, one of the goal of the ANR project DYNEOL is the experimental study of the influence of chordwise flexibility on energy harvesting, with for instance a four blades VAT. However, the physical phenomena occuring with chordwise flexible blade remain unclear in some aspects. That is the reason why another objective is to develop a tool to numerically reproduce those experiments in order to provide a better understanding of the flow and structure behaviours. The goal of this work is then to develop a solver able to reproduce cases of that kind, involving Fluid-Structure Interaction (FSI). To explain the underlaying difficulties, the next sections will present the FSI phenomenon, and then will give a state of the art of numerical methods for FSI simulations. Those sections will aim to present the requirements for chordwise flexible blades turbines simulations. On that basis, detailed objectives of this PhD as well as the plan of this manuscript will be provided.

Numerical methods for FSI simulation 1.2.1 Generalities

FSI phenomena are very common in nature and human activities. It happens as soon as a fluid and a solid are in contact and that the solid is deformed significantly under the effect of the forces applied by the fluid. The structure displacement influences also the flow, resulting in a complex coupling process [START_REF] Bungartz | Fluid-structure interaction: modelling, simulation, optimisation[END_REF][START_REF] Belytschko | Fluid-structure interaction[END_REF]. Given that the interaction is instantaneous and continuous, the study of this phenomenon can be difficult. In nature, FSI occur for flora with tree deformations caused by wind or submerged aquatic canopies [START_REF] Tschisgale | Large eddy simulation of the fluid-structure interaction in an abstracted aquatic canopy consisting of flexible blades[END_REF]. For fauna, the fins of fishes [START_REF] Lauder | Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins[END_REF], wings of birds or insects [START_REF] Truong | A mass-spring fluidstructure interaction solver: Application to flexible revolving wings[END_REF][START_REF] Engels | Video: Bumblebee flight in turbulence: high resolution numerical simulations[END_REF] are flexible so that it has bioinspired several human designs. Two of these examples are illustrated in Fig. 1.5. Fig. 1.5: Example of FSI in nature with seagrass meadow as an example of dense submerged canopy from [START_REF] Tschisgale | Large eddy simulation of the fluid-structure interaction in an abstracted aquatic canopy consisting of flexible blades[END_REF] (top) and bumblebee flight thanks to flexible wings (bottom) from [START_REF] Engels | Video: Bumblebee flight in turbulence: high resolution numerical simulations[END_REF].

FSI is also studied for human activites. A lot of applications involve flexible structure interacting with complex flows, such that parachutes [START_REF] Takizawa | Fluid-structure interaction modeling of parachute clusters[END_REF], aerospatial [START_REF] Šekutkovski | A partitioned solution approach for the fluid-structure interaction of thin-walled structures and high-reynolds number flows using rans and hybrid rans-les turbulence models[END_REF], civil engineering [START_REF] Seghir | Coupling fem and symmetric bem for dynamic interaction of dam-reservoir systems[END_REF] or even biomedecine [START_REF] Sigüenza | Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study[END_REF]. This is the phenomenon causing the foil deformations mentionned in the last section. More examples are given in [START_REF] Degroote | Partitioned simulation of fluid-structure interaction[END_REF].

In order to provide a better understanding of those problems, numerical simulations of FSI cases have been developed substantially in the last decade. This has been made possible by recent increases in the available computational ressources, but it is still very challenging since it requires advanced numerical methods in different physic fields. FSI simulations consist in coupling fluid and solid solvers. Among other, problem unknowns are the fluid velocity u, solid displacement d and fluid forces f . The coupling conditions occur at the interface Γ between fluid and solid as,

       u = ∂d ∂t f = ˆΓ µ ∂u ∂n + P n dΓ (1.1a) (1.1b)
with µ the dynamic viscosity, P the fluid pressure and n the normal direction to Γ pointing on the solid to the fluid. In fact, solid imposes its velocity to fluid while fluid applies a force on solid through viscous shear and pressure. Besides, FSI computation can be very unstable, especially when solid and fluid densities are close [START_REF] Langre | Fluides et solides[END_REF], so that fluid inertial effects are as important as solid ones. The resulting added-mass effect of the fluid on the structure, i.e. the mass of fluid which is accelerated by the structure, is known to be source of numerical difficulties [START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF][START_REF] Förster | Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows[END_REF]. Different approaches to face this problem are presented in the next sections.

Monolithic and partionned approaches

Monolithic approach consists in writting the entire problem in a single non linear system [START_REF] Hron | A monolithic fem/multigrid solver for an ale formulation of fluidstructure interaction with applications in biomechanics[END_REF]61]. This system is then solved using a Newton-Raphson type method. Consequently, fluid and solid fields are solved in the same time with a fully implicit formulation, resulting in an very accurate and unconditionally stable solving [START_REF] Michler | A monolithic approach to fluid-structure interaction[END_REF].

However, this method lacks of adaptability and remains difficult to use on complex FSI cases (geometry, physics) that require highly advanced solvers for both subtasks. Partionned schemes, where suited techniques can be used in each domain, are thus preferred as recent studies can demonstrate.

With this method, two different solvers are used for solid and fluid. They have to exchange data, fluid forces and structure displacements, at each time step. This technique allows a large variety of solvers for each physic fields. The fluid is generally solved with an Arbitrary-Lagrangian-Eulerian (ALE) approach, allowing to compute the flow equations on a moving grid. In addition, turbulence is often modeled with a Unsteady Reynolds Averaged Navier-Stokes (URANS) approach, in which none of the scales of the turbulent spectrum are resolved (see section 2.2.1.3 for more details). For the solid, Finite Element Method (FEM) with special shell and membrane elements are widespread [START_REF] Bletzinger | Algorithmic treatment of shells and free form-membranes in fsi[END_REF], given that FSI often occurs for thin solid. In most cases, coupling takes place at the interface Γ between fluid and solid, and the two meshes complement each other. The fluid mesh then has to move according to the solid displacement, imposing a mesh movement solving to maintain a good cell quality (see section 4.1). This step can represent a large part of the computational cost of FSI simulations.

Nonetheless, it must also be noticed that Immersed Boundary Methods (IBM) can also be used for FSI coupling [START_REF] Sigüenza | Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study[END_REF][START_REF] Sotiropoulos | Immersed boundary methods for simulating fluidstructure interaction[END_REF][START_REF] Griffith | Immersed methods for fluid-structure interaction[END_REF][START_REF] Kim | Immersed boundary methods for fluid-structure interaction: A review[END_REF]. With this technique, the Lagrangian solid nodes move over the fixed fluid grid, resulting in an overlap of the fluid and solid domain. Consequently, the elastic solid forces are interpolated from the lagrangian solid grid to the eulerian fluid grid. This results in a body forces source term in the Navier-Stokes equations. Conversely, the velocity is interpolated from the surrounding fluid to the structural nodes. Therefore, the fluid mesh remains unchanged with this method, reducing the computational cost, but the interpolations near the interface result in a loss of accuracy [START_REF] Degroote | Partitioned simulation of fluid-structure interaction[END_REF]. The interpolation of the velocities from the incompressible fluid to the structure also implies that the structural motion is divergence free, although not all solids behave this way.

It exists a lot of different coupling schemes, making the computation more or less accurate and stable. Two main categories can be distinguished; explicit (or weak) and implicit (or strong) coupling [START_REF] Degroote | Partitioned simulation of fluid-structure interaction[END_REF]. With weak coupling partitioned techniques, flow and structural equations are solved separately and only once per time step. This technique results in a reduced computational cost, but it has been shown that the added-mass effect causes instability of explicit coupling with an incompressible fluid [START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF][START_REF] Förster | Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows[END_REF]. This is highlighted in section 4.2.2. In order to enforce the equilibrium of the traction and displacement on the fluid-structure interface for cases with important added-mass effect, a strong coupling scheme is required. This implies several subiterations at each time step since flow and structural equations have to be solved in each coupling iteration. Different schemes are possible to minimize the number of subiterations, with for instance fixed-point method [START_REF] Küttler | Fixed-point fluid-structure interaction solvers with dynamic relaxation[END_REF]. Examples of scheme will be given in section 4.2.

Note that another approach is also possible where two systems are solved but the addedmass effect is computed in matrix form and taken into account for acceleration relaxation [START_REF] Yvin | Added mass evaluation with a finite-volume solver for applications in fluid-structure interaction problems solved with co-simulation[END_REF]. Nevertheless, this solution computational cost is growing very rapidly for solid system with a large number of degrees of freedom.

A large review of the different possible schemes for partitioned simulation is available in [START_REF] Degroote | Partitioned simulation of fluid-structure interaction[END_REF]. Now that the different methods for FSI simulation have been presented, next section will focus on existing techniques for the simulation of chordwise flexible blades turbines.

Numerical simulations of chordwise flexible blades turbines

Even if the present work is focused on energy harvesting applications, flapping or pitching foils are also studied to optimize propulsion, as detailed in the review of Wu et al. [START_REF] Wu | A review on fluid dynamics of flapping foils[END_REF]. The number of papers in this domain is growing since the last two decades (Fig. 1.6), but just 5% of them include 3D flexible foil approaches, and it is mainly experimental works. It is indeed still very difficult to numerically reproduce FSI cases of flexible foil with high fidelity. It requires a FSI solver able to handle cases with turbulence and complex geometries, for the fluid as well as for the solid. Consequently, it involves a FSI solver with different characteristics:

• For the flow solving, it is essential to correctly capture the velocity gradients close to the blade, which can be difficult with techniques based on IBM. As explained earlier, interpolations near the interface are sources of error. Besides, as a fine description of boundary layer at high Reynolds number requires small cell sizes, ensure the computation accuracy in cases with large structure displacements involves a fine grid resolution Extracted from [START_REF] Wu | A review on fluid dynamics of flapping foils[END_REF].

in an extented region. The necessary large amount of cells would induce prohibitively high computational cost. On the contrary, body fitted techniques do not suffer from these deficiencies, but require a mesh movement computation.

• In regard to the computation of the structure deformation, several methods exist, generally based on different types of finite element. However, accurate description of the foil geometry and internal stress, especially in cases of chordwise flexibility, implies a solid solver that can use 3D solid elements, where FSI solvers sometimes prefer to use membrane or shell elements [START_REF] Santo | Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation[END_REF][START_REF] Gerbeau | Fluid-structure interaction in blood flows on geometries based on medical imaging[END_REF][START_REF] Nakata | A fluid-structure interaction model of insect flight with flexible wings[END_REF]. Those elements are highly adapted to predict the behaviour of a structure with the corresponding geometry, but do not allow to reproduce structures with more complex geometry, such as a foil.

• Furthermore, flexible blades are composed of material with density comparable with water density, implying that the FSI coupling can be very unstable and requires a strong coupling, as explained in the previous section. A monolithic approach can overcome this issue [START_REF] Hron | A monolithic fem/multigrid solver for an ale formulation of fluidstructure interaction with applications in biomechanics[END_REF], but this solution lacks adaptability, so that a partitioned scheme is favored in most recent studies. This method allows to fully benefit from highly advanced solvers for both fields of application.

These requirements explain the limited number of numerical studies about flexible foil. However, some FSI solvers have been developed to face this challenge. For instance, MacPhee et al. [START_REF] Macphee | Fluid-structure interaction analysis of a morphing vertical axis wind turbine[END_REF] managed to simulate a three flexible blades turbine using the URANS approach with the k-ω-SST model for turbulence. Results of those simulations are given in Fig. 1.7. Despite small deformation cases, they found an increase of power coefficients around 9.6% for the blade with a Young modulus E = 0.5MPa in comparison to the same turbine with rigid blade. Similar method has been used by Marinić-Kragić et al. [START_REF] Marinić-Kragić | Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization[END_REF] to reproduce a Savonius-type VAWT and they also found an additional 8% increase in the power coefficient. More recently, other simulations have been performed [START_REF] Benaouicha | Fluid-structure interaction approach for numerical investigation of a flexible hydrofoil deformations in turbulent fluid flow[END_REF][START_REF] Hosseinzadeh | Numerical investigation of hydroelastic response of a three-dimensional deformable hydrofoil[END_REF][START_REF] Descoteaux | Performances of vertical-axis hydrokinetic turbines with chordwise-flexible blades[END_REF], but always with a RANS approach.

Nevertheless, RANS-based FSI solvers do not always provide reliable results, because the pressure distribution is not accurate enough to conveniently determine dynamic stall separation point position. This is why Hoerner et al. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF] suggest that three-dimensional Large-Eddy Simulations (LES) approach is required to reproduce with high fidelity a high Reynolds number case involving a chordwise flexible blade.

Unlike RANS approach, with LES the large scales of the flow are resolved while only the smaller subgrid scales are modelled. However, as detailed in [START_REF] Breuer | Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation[END_REF], LES-based FSI solvers face different issues, because they demand higher grid quality than RANS approach and impose a fine time and space resolution. The moving grid quality can be difficult to maintain, as it requires robust and efficient mesh movement method, especially for unstructured grids. Very few LES-based FSI solvers have been developed [START_REF] Breuer | Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation[END_REF][START_REF] Zhang | Large eddy simulation of turbulent flow in a true 3d francis hydro turbine passage with dynamical fluid-structure interaction[END_REF][START_REF] Tschisgale | Large eddy simulation of the fluid-structure interaction in an abstracted aquatic canopy consisting of flexible blades[END_REF][START_REF] Ilie | Fluid-structure interaction in turbulent flows; a cfd based aeroelastic algorithm using les[END_REF], but they never use 3D solid elements, making a chordwise flexible foil simulation impossible. To the best of author's knowledge, LES-based FSI solvers meeting all the previous requirements do not exist in the literature so far. Given all these elements, the next sections will explain the objectives of this PhD.

Objectives and plan

As explained above, the main motivation of this PhD is the numerical study of VAT with chordwise flexible blades. Given that the tool required for this kind of simulation does not seem to exist in the literature so far, the main objective of this work is then to develop a high fidelity FSI solver, based on LES approach, and able to reproduce a wide variety of FSI configurations, especially cases presented in section 1.1.

All implementations will be carried out within YALES2, a multi-physics library, initially designed for fluid mechanics. Thus, a partitioned coupling is chosen to provide genericity, and benefit from the existing ALE solver of YALES2. This library did not initially possess a solver for structure dynamics prediction though. In order to ensure compatibility between solvers and to easily modify the FSI solver for future works, it has been chosen to develop a Structural Mechanics Solver (SMS) from scratch within YALES2. The resulting FSI solver will then use LES for the flow solving, and FEM with 3D solid elements for the structure displacement prediction. Both domain will be discretized with unstructured grids to not be limited by geometry. Furthermore, for mesh movement, a special method will be developed to meet all the requirements of these simulations. Once the solver will be functionning and validated, it will be applied to experimental cases. This manuscript will then start by presenting the existing library and the fluid ALE solver in Chapter 2. A numerical study of four rigid blades VAT will also be performed. The FEM, used for the SMS development, will then be explained in Chapter 3 and tests performed to ensure good validation of the SMS will be detailed. The FSI solver, which couples the ALE solver and the SMS, will be discussed in Chapter 4, starting with a presentation of the original mesh movement method developed on purpose. The coupling scheme used will then be introduced step by step using a simple test case. The developed FSI solver will be validated against a 2D numerical benchmark with laminar flow in Chapter 5. It will finally be used to reproduce 3D experimental turbulent cases in Chapter 6; after a validation against a first turbulent case, a flexible pitching foil experiment is simulated, confirming the potential of the developed FSI solver for its intended use.

Chapter 2 Arbitrary Lagrangian-Eulerian solver

This second chapter presents the fluid solver used in this work. First, it introduces the library YALES2 used for the entire thesis. An additional focus is then given on the Arbitrary Lagrangian-Eulerian (ALE) solver, and specific numerical methods used by this lattest are detailed. The Dynamic Mesh Adaptation (DMA) method description is also provided. The last part of the chapter presents an application case where an experiment of a four blades VAT is reproduced numerically thanks to the ALE solver. 

Presentation of YALES2

The library used in this work is YALES2 (Yet Another LES Solver) [START_REF] Moureau | Design of a massively parallel CFD code for complex geometries[END_REF]. It has been originally designed to solve low-Mach number Navier-Stokes equations (incompressible and variable density) using LES and DNS approaches with finite volumes. YALES2 can use unstructured meshes and adaptive grid refinement with a large number of elements while maintaining good scalability thanks to a Double Domain Decomposition (DDD) strategy. At first, the mesh is split into sub-parts that are affected to each computational core. Then, the sub-parts are divided again into cells group of prescribed size, the element groups (ELGRPs), as illustrated in Fig. 2.1. This technique allows for easily optimizing the use of processor Fig. 2.1: Double domain decomposition strategy used in YALES2. Extracted from [START_REF] Moureau | Design of a massively parallel CFD code for complex geometries[END_REF]. memory for cache-aware algorithms and may also be exploited by deflation algorithms [START_REF] Malandain | Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines[END_REF], in order to fully benefit from high-performance computing on massively parallel machines. However, use of DDD requires specific data structure. Each ELGRP represents indeed an independent mesh block, adding the necessity to dispose of a structure to connect elements at the interface of several ELGRPs, even on the same processor. This internal communicator has then a copy of data for nodes, pairs and faces at the interface. In a similar manner, external communicators handle the communication at the interfaces between processors. Finally, a last structure is used for element located on boundaries to facilitate their specific treatments. This architecture is represented in Fig. 2.2. This technique is very effective but it complicates new implementations within the existing code.

Furthermore, YALES2 uses 4th-order central finite-volume method and 4th-order time integration called TFV4A [START_REF] Kraushaar | Application of the compressible and low-Mach number approaches to Large-Eddy Simulation of turbulent flows in aero-engines[END_REF]. The code, initially developed at CORIA (COmplexe de Recherche Interprofessionnel en Aerothermochimie), is now used and developed in different laboratories and also used by industrials to reproduce realistic configurations with high fidelity. That is why it has now become a multi-physics library able to reproduce two-phase flows (Lagrangian particles), spray and atomization (Levelset) and combustion (Tabulated or finite-rate chemistry) cases. Moreover, it disposes of magneto-hydro-dynamics solver and a granular flow solver. Examples of applications in various physic fields are shown in Fig. 2.3. The library can be then used in combustion [START_REF] Moureau | From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling[END_REF], biomechanics [START_REF] Chnafa | Image-based large-eddy simulation in a realistic left heart[END_REF], process engineering [START_REF] Dufresne | A massively parallel cfd/dem approach for reactive gas-solid flows in complex geometries using unstructured meshes[END_REF], geophysical flow [START_REF] Dagaut | Linear to turbulent görtler instability transition[END_REF], hydroelectricity [START_REF] Doussot | Rans and les simulations at partial load in francis turbines: Three dimensional topology and dynamic behaviour of inter blade vortices[END_REF][START_REF] Guilbot | Analyse et optimisation des performances de turbines à axe vertical et flux transverse par simulations numériques[END_REF] or wind turbine energy [START_REF] Bénard | Large-eddy simulation of wind turbines wakes including geometrical effects[END_REF].

In this work, the Arbitrary Lagrangian-Eulerian (ALE) solver has been used to predict the flow behaviour in a moving domain. This solver was already existing before the present work and was used to reproduce rotating turbine for example. Thus, developments performed in the ALE solver have remained then minor, while on the contrary YALES2 did not have Fig. 2.2: Double domain decomposition strategy used in YALES2. Extracted from [START_REF] Moureau | Design of a massively parallel CFD code for complex geometries[END_REF]. Fig. 2.3: Examples of applications with YALES2 in biomechanic, aerodynamic or hydrodynamic. More details can be found and animations can be visualized at [START_REF]coria cfd youtube channel[END_REF].

. The equations describing the flow dynamics are the Navier-Stokes equations:

     du dt = - ∇P ρ f + ν∆u + f v , ∇ • u = 0 , (2.1a) (2.1b)
where u is the vector field of material velocity, P is pressure, ρ f is the fluid density, ν is the kinematic viscosity, and f v a volumetric force. To take into account moving bodies, the Arbitrary-Lagrangian-Eulerian (ALE) approach is used. It consists in integrating the governing equations on deformable control volumes, while nodes of the computational mesh are moved as Lagrangian points. In order to express the modified Navier-Stokes equation in the ALE framework, the material time derivative has to be defined. If nodes are moved at a velocity w, then the material time derivative can be written such as

du dt = ∂u ∂t + (u -w) • ∇u . (2.2)
Thus, the governing equations can be rewritten as follows

   ∂u ∂t + ((u -w) • ∇)u = - ∇P ρ f + ν∆u + f v , ∇ • u = 0 .
(2.3a)

(2.3b)

The time advancement scheme used for explanation is an explicit low-storage four-step Runge-Kutta (LSRK4) scheme [START_REF] Williamson | Low-storage runge-kutta schemes[END_REF] recasted in ALE formalism and coupled with the Chorin's projection correction method [START_REF] Chorin | Numerical solution of the navier-stokes equations[END_REF] for the pressure term (more details in next section). Full methodology is detailed in [START_REF] Donea | Arbitrary l agrangian-e ulerian methods[END_REF][START_REF] Chnafa | Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature[END_REF]. This method can be broken down into a prediction step, where the grid is moved, and a correction step. During the prediction step, Eq.(2.3a) is then integrated in space on a node-centred control volume ω(t) and in time between t n and t n+1 = t n + ∆t such as

ˆtn+1 tn ∂ ∂t ˆω(t) udωdt + ˆtn+1 tn ˆω(t) ∇ • ((u -w)u)dωdt = RHS u n+1 V n+1 -u n V n + ˆtn+1 tn ˆω(t) ∇ • ((u -w)u)dωdt = RHS (2.4)
where V n is the control volume at t n , and RHS = ν∆u + f v . For the sake of clarity, the RHS is omitted in the following. The four sub-steps of the time advancement are computed as:

u 0 = u n u i = u n V n V i - α i ∆t V i ˆω(t i ) ∇ • ((u i-1 -w n+1 )u i-1 )dω for i = 1, ..., 4 
u * n+1 = u 4 (2.5)
where the index i refers to time of the i-th sub-step t i = t n + α i ∆t, u * n+1 is the predicted velocity and α i is a coefficient as α = [1/4, 1/3, 1/2, 1]. It should be noted that for w = 0, V n = V i so that classical LSRK4 scheme is recovered. Also, grid nodal velocity w is considered constant during the timestep, and consequently, node position x is computed at the beginning of each sub-step with:

x 0 = x n x i = x i-1 + β i ∆tw n+1 for i = 1, ..., 4 x n+1 = x 4 + β f ∆tw n+1 (2.6)
where β i are coefficients linked to α i equal to β i = [1/8, 1/24, 1/12, 1/4]. They are chosen so that the grid is at the midpoint configuration, meaning that

x i = x n + α i ∆tw n+1 2 . (2.7) 
At the end of the fourth sub-step, the grid is at x n+1/2 as confirmed by the β i summation.

It needs then to be replaced to reach its final position with β f = 0.5 to finally get x n+1 = x n + ∆tw n+1 . The reader's attention is now drawn to the integration volume ω(t i ) in Eq. (2.5). This volume has to verify:

V i -V n = -α i ∆t ˆω(t i ) ∇ • w n+1 dw for i = 1, ..., 4. (2.8) 
This relation, known as the Discrete Geometric Conservation Law (DGCL) [START_REF] Farhat | The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids[END_REF][START_REF] Boffi | Stability and geometric conservation laws for ale formulations[END_REF], states that for each control volume, the volume change between t n and t i must be equal to the volume swept by the control volume faces during t it n . Considering that w is constant during the entire time step, the integration volume ω(t i ) cannot be equal to V i ; in order to satisfy Eq.(2.8), ω(t i ) must be computed at the midpoint configuration for each sub-step, which corresponds indeed to the position x i given by Eq.(2.6). The RHS is computed with values taken at t i-1 but on the midpoint configuration as well. Thus, present scheme allows to compute velocity prediction u * n+1 , while respecting the DGCL. It should also be noticed that, in the original Chorin algorithm, the RHS term is computed without the pressure term. This has been possible since the velocity field u can be decomposed in a sum of a irrotational field and a solenoidal field, as stipulated by the Helmholtz-Hodge theorem. The pressure term of Navier-Stokes equation is then taken into account in the projection step, as detailed in the next section.

Correction step

The Chorin algorithm [START_REF] Chorin | Numerical solution of the navier-stokes equations[END_REF] can be explained by writing Eq.(2.3a) with a Euler explicit scheme such as:

u n+1 -u n ∆t = -((u n -w n+1 ) • ∇)u n + ν∆u n + f v - ∇P n+ 1 2 ρ f u n+1 -u n ∆t = -((u n -w n+1 ) • ∇)u n + RHS - ∇P n+ 1 2 ρ f u n+1 = u n -∆t((u n -w n+1 ) • ∇)u n + ∆tRHS -∆t ∇P n+ 1 2 ρ f u n+1 = u * n+1 -∆t ∇P n+ 1 2 ρ f . (2.9a) (2.9b) (2.9c) (2.9d)
The computation of u * n+1 , i.e. the prediction step, is explained in the previous section. Taking the divergence of Eq.(2.9d) and considering that u n+1 has to satisfy the divergence free condition (Eq.(2.3b)), the Poisson equation is obtained:

∆P n+ 1 2 = ρ f ∆t ∇ • u * n+1 . (2.10) 
This linear system is solved using a Deflated Preconditionned Conjugate Gradient (DPCG) solver [START_REF] Malandain | Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines[END_REF]. This step represents the major part of the computational time. Finally, the velocity correction step can be performed where the newly obtained pressure field P n+ 1 2 is used to rectify u * n+1 with Eq.(2.9d). It must be precised that in YALES2, the method is slightly different since the pressure gradient computed from P n-1 2 is added to the RHS before the prediction and removed afterwards, so that it is taken into account for the time advancement sub-steps [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF].

Large-Eddy Simulation

The resolution of Navier-Stokes equations for turbulent flows can be achieved thanks to various modeling approaches leading to different computational cost. First, with Direct Numerical Simulation (DNS), any scale can be resolved. As a result, very accurate flow predictions are obtained, however the downside is that cells sufficiently small are required to capture the smallest eddies. Concretely, computational cost of this method appears to be prohibitive for highly turbulent flows with current computational capacity.

The opposite approach is the Reynolds Averaged Navier-Stokes (RANS) approach, which consists in applying a time-average operator to the Navier-Stokes equations. The fluctuating parts of the flow are then completely modeled, and none of the scales of the turbulent spectrum are resolved. This approach is very widespread and attractive for industries as it does not require refined meshes but also results in very short restitution times. Nevertheless, the accuracy is highly sensitive to the validity of the RANS model which depends of the flow configuration.

In the present work, an alternative approach between RANS and DNS is used: the Large-Eddy Simulation (LES). While the large scales of the flow are resolved, the smaller subgrid scales (SGS) are modelled using a SGS model. The principles of those three approaches are illustrated in Fig. 2.4. Fig. 2.4: Sketch of energy density E vs wavelength k in an homogeneous isotropic turbulence (log-log scale). Note that the smallest eddies finally vanish into heat. Extracted from [START_REF] Jaravel | Prediction of pollutants in gas turbines using large eddy simulation[END_REF].

.

With LES formalism, the governing equations are the filtered Navier-Stokes equations,

         ∂u i ∂t + ∂u i u i ∂x j = - 1 ρ ∂P ∂x i + ν ∂ 2 u i ∂x j ∂x j - ∂τ SGS ij ∂x j + f v i , ∂u i ∂x i = 0 , (2.11a) (2.11b)
where the • operator is used to denote filtered quantities over scales which are large enough to be resolved with the computational mesh. Subgrid-scale eddies are then unresolved and result in the residual-stress tensor τ SGS ij = u i u ju i u j . This term has then to be modelled with a SGS model; in this work, the SGS model are based on eddy viscosity model,

τ SGS ij - 1 3 δ ij τ kk = -2ν t S ij with    S ij = 1 2 
∂u i ∂x j + ∂u j ∂x i ν t = (C s ∆) 2 D (2.12)
where ν t is the turbulent viscosity, ∆ = V 1 3 the filter length, C s the model constant and D the time-scale operator. It exists a lot of different eddy viscosity SGS models [START_REF] Moureau | Simulation aux grandes échelles de l'aérodynamique interne des moteurs à piston[END_REF], but in this work only the Dynamic Smagorinsky model is considered. It gives

D = 2S ij S ij (2.13)
while C s is computed dynamically [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF][START_REF] Germano | Turbulence: the filtering approach[END_REF].

The numerical methodology to solve equations governing the fluid dynamics on a moving grid with ALE approach has now been presented. The ALE solver has already been validated in [START_REF] Chnafa | Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature[END_REF]. Next part will then explain how to compute the node velocities w in the entire domain while maintaining a good grid quality.

Dynamic Mesh Adaptation

In general, mesh movement is prescribed on at least one domain boundary, like in the case of a moving object. A mesh movement solver is then required to compute grid movement in the rest of the domain while maintaining a good cells quality. The computation of nodes velocity w can be performed by different methods, as exposed in section 4.1.1. In YALES2, w can be computed with algorithm based on analogy with spring network [START_REF] Batina | Unsteady euler airfoil solutions using unstructured dynamic meshes[END_REF], or more simply, it can just be prescribed for basic case. For complex cases, a pseudo-solid based method has been implemented during the PhD, but as this technique uses concepts presented in the next chapter, it will be explained in detail in section 4.1.

However, for some cases involving very large deformation, moving or rotating object, mesh movement method alone cannot conserve a mesh describing the changing geometry. The only solution is then to produce a completely new mesh, adapted to the new geometry i.e. to use Dynamic Mesh Adaption (DMA). In YALES2, the re-meshing step is based on MMG, the sequential anisotropic mesh adaptation library for tetrahedral (3D) and triangle element (2D) [START_REF] Dobrzynski | Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations[END_REF][START_REF] Dapogny | Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems[END_REF]. The parallel mesh adaptation strategy proposed by Benard et al. [START_REF] Benard | Mesh adaptation for large-eddy simulations in complex geometries[END_REF] is used. The benefit of DMA has been already discussed in various configurations including simulations of multiphase flows [START_REF] Pertant | A finite-volume method for simulating contact lines on unstructured meshes in a conservative levelset framework[END_REF][START_REF] Janodet | An unstructured conservative level-set algorithm coupled with dynamic mesh adaptation for the computation of liquid-gas flows[END_REF] or moving bodies [START_REF] Pushkarev | Numerical approach for simulation of moving bodies by using the dynamic mesh adaptation method within ale technique[END_REF].

To prevent from performing the grid adaptation procedure at every step, a criterion on the maximum allowed rate of element deformation is defined based on the element skewness S. This latter can be determined quantitatively by computing

S = V ref -V c V ref (2.14)
where V c is the cell volume and V ref is the volume of the equilateral tetrahedron in 3D (or triangle in 2D), which fits in the same circumsphere as the one of the element (Fig. 2.5). After each time step, the mesh quality is assessed by computing the maximum skewness S max in the computational domain. If this value exceeds a given threshold S lim , the re-meshing step (grid adaptation procedure) is triggered, and all data fields are interpolated on the new mesh, as illustrated in Fig. 2.6. The new mesh is generated according to a given metric field computed from the old mesh. It should also be noted that, in order to limit the cost of the re-meshing step, the grid adaptation procedure can be applied only on a part of the flow domain. A mask can indeed be applied on the elements which are not deformed during the ALE time step. These elements are without nodes velocity or located in a region with a uniform movement (solid rotation or translation). This masking procedure allows also to preserve the mesh quality for specific regions by ensuring no-mesh deformation, as for the boundary layers, for example. Furthermore, thanks to this technique, MMG just has to deal with a reduced number of element, given that high density cells region can usually be masked.

Developments were made during the PhD to establish the mask as a function of the distance R of cells to previously flagged boundaries. This was usefull for cases with complex geometries. Also, it had been observed that the successive interpolations of the metric field could induce diffusion, so that the generated meshes finally did not present the same cell size distribution than the first mesh. A solution developed to face this issue involves recomputing the desired metric fied after each re-meshing as function of R, avoiding in this way the diffusion.

Finally, it should be brought to the attention of the reader a last point about data interpolation between old and new grids. It has been observed that this step resulted generally in a pressure spike at the next temporal iteration. This effect rapidly vanishes in the next iterations, so that it does not affect the flow prediction. Following deeper investigations, it has been concluded that it might be caused by the velocity interpolation. The hypothesis is that the interpolation step could not preserve the condition ∇ • u = 0 usually ensured by the correction step (see section 2.2.1.2). The correction step of the following time step should then offset and this would affect the pressure computation. This effect can be neglected in most cases, except FSI cases where the pressure is used to predict the structure displacement. This challenge and path forwards are discussed further in section 4.2.4.

Numerical methods for flow solving on moving grids has now been explained, as well as techniques to maintain suitable grid quality. Last part of this chapter presents an experimental case reproduced with the ALE solver using DMA. It shows that the present methodology can be applied to case of rigid blades VAT.

Application case: simulation of a Darrieus turbine 2.2.2.1 Case presentation

As explained in section 1.1, the ANR project DYNEOL aims to study VAT performances, experimentally and numerically, for rigid and flexible blades. Numerical simulations of the experiments of partner laboratories have then been performed during the PhD. One of them, run by the PPRIME institute, involved a four blades Darrieus turbine in a water channel. This experimental setup aims to study the influence of inflow velocity u ∞ , water height and Tip Speed Ratio (T SR = ωR/u ∞ with R the radius and ω the rotation speed) on the turbine performances. Once this first study was performed, turbines blades were replaced by deformable blades in order to compare power coefficient for the two type of blades as function of T SR. To be able to reproduce such cases, a FSI solver was required, hence its development detailed in the present work. However the first step has been the validation of the ALE solver by reproducing rigid blades experiment. This study is presented in this part.

The inflow velocity u ∞ can here be adjusted until u ∞ = 5 m.s -1 , as the water height H water . Pictures of the experimental set-up are given in Fig. 2.7. The water channel di- Next part will present the numerical setup used to reproduce this case.

Numerical setup

To reproduce numerically a case with a rotating body, different strategies are possible. A common approach is to use a rotating coordinate system, where the mesh does not need to be deformed [START_REF] Guillaud | Large eddy simulations on vertical axis hydrokinetic turbines-power coefficient analysis for various solidities[END_REF]. Nevertheless, water channel side walls cannot be taken into account with this method, and considering that the turbine fills half of the channel width, the effect of blockage cannot be neglected. Another approach involves using two different grids, one for the turbine, the other one for the channel [START_REF] Kaiho | Parallel overlapping scheme for viscous incompressible flows[END_REF][START_REF] Kato | An overset finite-element large-eddy simulation method with applications to turbomachinery and aeroacoustics[END_REF][START_REF] Guilbot | Analyse et optimisation des performances de turbines à axe vertical et flux transverse par simulations numériques[END_REF]. In particular, it can then be difficult to ensure mass conservation in flow solving. Moreover, data are interpolated from one grid to the other for every temporal iteration, which could be source of error.

The chosen method here relies on the DMA. The node velocity w is prescribed in the entire domain by defining three zones with two parameters, R 1 and R 2 :

• The first zone (r < R 1 ) is the high density cells zone containing the entire turbine. This zone moves in solid rotation so that w(r) = ω ∧ r where r is the radial vector between the turbine rotation axis and the considered point, and r = r . In this zone, the cells are not deformed.

• The second region (R 1 < r < R 2 ) is a transition zone where the radial speed is decreasing linearly from w(R 1 ) to zero as function of r. Cells deformations then occurs in this region, until the maximum skewness S max reaches a chosen threshold value which will trigger the DMA.

• In the third zone (r > R 2 ), the mesh does not move.

The technique is illustrated in Fig. 2.9. Besides, the masking procedure explained in sec 2.2.1.4 is used here, as illustrated in Fig. 2.10. It can be noticed that only the transition zone could be not masked, but tests showed that giving to MMG all the remaining domain facilitates its task, making the adaptation step faster.

It is well known that in numerical simulation, turbine performance prediction is highly dependent of the close blade mesh resolution [START_REF] Guillaud | Simulation et optimisation de forme d'hydroliennes à flux transverse[END_REF][START_REF] Guilbot | Analyse et optimisation des performances de turbines à axe vertical et flux transverse par simulations numériques[END_REF]. A mesh convergence study has been then performed to make sure that numerical results were mesh independent. In this study, the mesh strategy to ensure a fine close blade resolution with a minimum number of elements involves using prism layers, as illustrated in Fig. 2.11. These prismes need to be then cut into tetrahedrons to be able to use DMA, even if this region is masked. With this technique, three meshes are performed with different elements size in the prism layers. ∆s is defined as the lenght of prism face against the blade. Meshes characteristics are summarized in Tab. Also, two main simplifications are made here. First, the support attached to the superior disk shown in Fig. 2.7 is not present in the simulation. This would be numerically possible, but the hypothesis was made that it would not have a strong influence on the turbine performances. Furthermore, slip walls are used on every channel walls because the boundary layers description would be too costly. It also means that for the top side, the free surface is not taken into account. Once again, this would be numerically doable but it would require the development of a two-phase flow ALE solver and would increase the computational cost. The assumption is then made that the free surface does not affect the flow close to the blades. However, this has been investigated by testing cases where the channel height above the turbine was increased to reduce the effect of blockage. The results are discussed in the next part.

Results and discussion

The first study aims at reaching a mesh convergence to make sure that numerical results are mesh independent. The case is then reproduce on the three meshes 18M, 50M and 166M. In order to quantify the power extracted by the turbine from the flow, a power coefficient C p is defined such as

C p = ω F f luid ∧ r ρ f rHu 3 ∞ (2.15)
where ρ f = 1000kg/m 3 and F f luid is the fluid force applied on the entire turbine surface S turbine . This latter is computed as a sum of the viscous shear and pressure forces with

F f luid = ˆSturbine µ ∂u ∂n + P n dS (2.16)
where µ = 10 -3 P a.s is the dynamic viscosity, P the pressure and n the unite normal vector.

The results for the three meshes are given in Fig. 2.12, where the power coefficient is plotted as function of the normalized time. It can be seen very clearly that mean power coefficient needs to be computed once the flow is established. It is also shown that the power coefficient presents a τ periodicity. Another periodicity of τ 2 ≈ D/u ∞ can also appears on this kind of configurations, corresponding to the travel time of inter blades eddies. In fact, the upstream blade can generate structures that will collide with downstream blade and disrupt the flow. This effect is not observed here, possibly because the grid resolution in the turbine center might not be sufficient to transport these structures. Time averaged power coefficients have then been computed for each mesh on the three last rotations of the turbine as presented in Tab. tion given that they are closed of those obtained at the 3rd rotation. Despite an error of 13.8% obtained with the finest mesh on the last rotation, it can be deduced that values are converging towards the experimental values as more refined mesh were used.

However, the first value given by the PPRIME institute was 0.21 instead of 0.356. It was coming from a technical problem that had been fixed at the end of the PhD. The overestimation of C p with the last mesh was then requiring more understanding: that is the reason why another study was also performed with the 166M mesh to investigate the influence of the water height H water as function of the T SR. For this purpose, two other meshes had been generated, based on the mesh 166M, but with respectively 1H and 3H added above the initial channel of 1.47H (H being the blades lenght defined in section 2.2.2.1). As explained in the previous part, the idea here is to reduce the effect of blockage due to the channel top wall, considering that the experiment was executed with a free surface. Results are given in Fig. 2.13. This shows that for T SR < 2.5, considering a slip wall instead of a free surface seems acceptable. On the contrary, for T SR = 3, the free surface seems to have a strong influence on the flow. This can be explained by the higher rotation speed ω used experimentally to increase the T SR. With turbine support also rotating, that resulted in strong deformation of the free surface so that the upper disk of the turbine was nearly not immersed anymore. To confirm this assumption, it would be interesting to reproduce the experiment again with T SR = 3 but with a lower ω and a lower u ∞ . Velocity fields computed with the three different geometries for T SR = 3 are given in Fig. 2.14. It can indeed be seen that the high velocity region above the turbine computed with H water = 1.47H progressively vanishes when H water is increasing. Also, the velocity difference between each side of the turbine is reduced, explaining the power coefficient drop observed in Fig. 2.13.

The ALE solver used for the FSI coupling has now been presented. As explained at the beginning of this chapter, this solver was already operational before this work. In addition, the VAT simulation confirms that this solver is effective and can be used for FSI coupling. However, implementations in this solver have been successfully performed, especially regarding restarts and lagrangian probes, and few bugs were fixed. Several developments also concerned the DMA and were mentioned in section 2.2.1.4. Next chapter will now present the solver used to predict the structure behaviour. Unlike the fluid solver, the SMS has been entirely developed from scratch during the PhD.

Chapter 3

Structural Mechanics Solver

This chapter presents the solid solver. Given that it has been developed from scratch, the Structural Mechanics Solver (SMS) constitutes one of the main achievement of this work. The numerical methods used are introduced step by step, starting by a stationnary linear elasticity problem of one linear finite element. The problem complexity then progessively increases, to end with non linear dynamic problem solved with quadratic elements. In the second part of the chapter, the solver accuracy is verified with several test cases, ensuring the suitable implementation of the previously described method. Finite Element Method (FEM) is a general numerical method for solving Partial Differential Equations (PDE) by subdividing a system into smaller parts called finite elements. The method was originally designed to face complex problems in civil and aeronautical engineering implying structural analysis. The process of evolution leading to the present FEM is complex, and it involves a lot of mathematicians and physicist such that it is difficult to quote a precise invention date, but it can be estimated in the 1960s. Actually, it has been independently developed at different places in the world by pioneers such as Hrennikoff [START_REF] Hrennikoff | Solution of problems of elasticity by the framework method[END_REF] and Courant [START_REF] Courant | On the partial difference equations of mathematical physics[END_REF] in north America, Argyris [START_REF] Argyris | Energy theorems and structural analysis[END_REF] and Zienkiewicz [START_REF] Zienkiewicz | The finite element method[END_REF] in Europe and Kang in China. Mathematicians had back then already developed general techniques to solve PDE such as finite difference and on the other hand, engineers used to discretize continuum problems by more simple elastic bars. FEM arised at the frontier of these two fields, as it is shown in Fig. 3.1 that briefly sums up the historical development of the method. More details can be found in [START_REF] Zienkiewicz | Origins, milestones and directions of the finite element method-a personal view[END_REF].

The use of FEM has since been generalized in a wide varety of physics fields like heat transfer, electromagnetism and fluid dynamics. As it is the most widespread method used for structural mechanics code, it was a fairly obvious choice to use it to develop the Structural Mechanics Solver (SMS), even though there were no solvers in YALES2 using FEM. The work presented in this chapter has been mainly based on books from Zienkiewicz [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF][START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF], on the documentation of the code ANSYS [START_REF] Thompson | ANSYS mechanical APDL for finite element analysis[END_REF], but also on the work of Debard [START_REF] Debard | Calcul des structures par la methode des elements finis[END_REF].

Shape functions

FSI computations require a solid solver able to solve dynamic problems with finite deformations. Nevertheless, this implies several complex numerical methods, and this chapter aims at providing the entire methodology used. For the sake of clarity, the FEM will then be explained step by step. This part will start by introducing a crucial concept of FEM, shape functions. FEM is based on the mesh discretization of a continuous domain into a set of discrete sub-domains, called elements. At first, only one finite element is considered. The main idea in order to determine a continuous field u(x, y, z) inside the element consists in Fig. 3.1: History of development of FEM. Extracted from [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF]. using interpolation functions and values of u at the elements nodes. In a two-dimensional space, inside an element e of n n nodes, u(x, y) can be approached with:

u(x, y) ≈ n n a=1 N e a (x, y)u a , where u a = u(x a , y a ) (3.1)
and N e a is the interpolation function of node a in element e. These functions are called shape functions and verify the two following properties:

N e a (x a , y a ) = 1 N e a (x b , y b ) = 0, a = b (3.2a) (3.2b)
with b another node in the element e.

In the case of plane stress, if u(x, y) now represents the displacement of a point at (x, y), the vector can be written:

u(x, y) = u(x, y) v(x, y) , (3.3) 
and shape functions under matrix form become

N e a = N e a I. (3.4) 
Eq.(3.1) gives for the displacement u at any point within the element e:

u(x, y) v(x, y) = N e 1 (x, y) 0 ... N e n n (x, y) 0 0 N e 1 (x, y) ... 0 N e n n (x, y)            u 1 v 1 ... u n n v n n            (3.5)
and with FEM formulation,

u = N e 1 N e 2 ...    u 1 u 2 ...    = N e u e . (3.6) 
The problem consisting in solving the continuous displacement field u(x, y) has then been discretized since there are now only 2n n unknowns i.e. the components of displacements of the element nodes.

For the sake of clarity, until section 3.1.4, the method will be explained for linear elements such as 4-nodes tetrahedron or 3-nodes triangle. For this last element, illustrated in Fig. 3.2, shape functions are linear and can be written:

N a = (a a + b a x + c a y)/(2∆) (3.7) in which    a 1 = x 2 y 3 -x 3 y 2 b 1 = y 2 -y 3 c 1 = x 3 -x 2 (3.8a) (3.8b) (3.8c)
with other coefficients obtained by cyclic permutation of the subscripts in the order 1, 2, 3, and where ∆ is the area of triangle obtained with 2∆ = det

1 x 1 y 1 1 x 2 y 2 1 x 3 y 3 . (3.9)
The space discretization method using finite element has been presented, but the methodology to compute nodes displacements u e in function of external constraints and material properties has to be described. The next part will then present the governing equations, which have to be solved in order to predict the behavior of one element for a stationary linear elasticity problem.

Stationary problems

Stationary linear elasticity problem of one finite element

In this part, only one finite element is considered. Generalization to the whole domain will be done in section 3.1.2.3. The equilibrium equation governing the solid dynamics can be written in a Lagrangian frame such as :

σ ji,j + b i = ρü i (3.10)
where σ ij are components of Cauchy stress, corresponding to the internal force experienced by the element, b i are body force components and ρ refers to the solid density. Note that the partial derivatives are here and in the sequel denoted by

f ,i = ∂f ∂x i and ḟ = ∂f ∂t . (3.11) 
For stationary problem, Eq.(3.10) gives

σ ji,j + b i = 0 (3.12)
which corresponds to the balance between external and internal forces. To describe the deformation state of the solid, a strain-displacement relation needs to be defined; the strain may be expressed in tensor form as

ε ij = 1 2 (u i,j + u j,i ) (3.13)
for small deformations, i.e.

|ε ij | 1 and |ω 2 ij | ε ij (3.14)
where ω ij denotes the small rotations defined by

ω ij = 1 2 (u i,j -u j,i ). (3.15)
The last equation to describe the behavior of a material is the constituve equation relating the stress to the strain. The simplest model is the linear elasticity; by neglecting strains arising from other sources than the displacement, the stress-strain relation gives

σ ij = C ijkl ε kl (3.16)
where C ijkl are elastic moduli which depend on material properties (Eq.(3.26)).

In matrix notation, through the symmetry of the tensors, the three-dimensional forms of the stress can be written such as

σ = σ 11 σ 22 σ 33 τ 12 τ 23 τ 31 T (3.17)
where the shear stress is expressed

τ 12 = σ 12 = σ 21 .
(3.18)

In similar manner, strain is given by

ε = ε 11 ε 22 ε 33 γ 12 γ 23 γ 31 T (3.19)
where the engineering shear strain is introduced such as where the operator B is defined by For an orthotropic elastic material, the elasticty matrix D is given by

γ ij = ε ij + ε ji = 2ε ij , i = j. ( 3 
B T =      ∂ ∂x 1 0 0 ∂ ∂x 2 0 ∂ ∂x 3 0 ∂ ∂x 2 0 ∂ ∂x 1 ∂ ∂x 3 0 0 0 ∂ ∂x 3 0 ∂ ∂x 2 ∂ ∂x 1      . ( 3 
D =             E x h (1 -ν 2 yz E z E y ) E y h (ν xy + ν xz ν yz E z E y ) E z h (ν xz + ν yz ν xy ) 0 0 0 E y h (ν xy + ν xz ν yz E z E y ) E x h (1 -ν 2 xz E z E x ) E z h (ν yz + ν xz ν xy E z E y ) 0 0 0 E z h (ν xz + ν yz ν xy ) E z h (ν yz + ν xz ν xy E y E x ) E z h (1 -ν 2 xy E y E x ) 0 0 0 0 0 0 G xy 0 0 0 0 0 0 G yz 0 0 0 0 0 0 G xz             (3.26)
where E x i is the Young modulus material in the x i direction, ν x i x j the Poisson's ratio and G x i x j is the shear moduli. The Young modulus corresponds to the stiffness of the material while the Poisson's ratio is related to the deformation of the material in directions perpendicular to the specific direction of loading. In the last equation, h is introduced as

h = 1 -ν 2 xy E y E x -ν 2 yz E z E y -ν 2 xz E z E x -2ν xy ν yz ν xz E z E x . (3.27) 
Besides, G x i x j is computed by For the linear stationary problem, it is finally obtained:

G x i x j = E x i 2(1 + ν x i x j ) . ( 3 
K e u e = f e (3.32) 
where

K e = ˆΩe B eT DB e dΩ (3.33)
is the linear stiffness matrix of the element and

f e = - ˆΩe N eT b e dΩ (3.34)
is the force vector.

At this point, it is interesting to focus on elements near the boundary. Displacement boundary conditions will be detailed further in section 3.1.2.2, but if an element face Γ e is subjected to a surfacic force t, a loading term on the nodes of the element has to be added such as

f e → f e - ˆΓe N eT tdΓ. (3.35)
Also, it should be noted that for linear elements, derivatives of linear shape functions are constants, such that the strain matrix B e is constant. It results in a strain and a stress constant throughout the element. Futhermore, integration required for computation of K e (Eq.(3.33)) can be simplified as follows:

K e = ˆΩe B eT DB e dΩ = B eT DB e V e (3.36) 
with V e the element volume. Finally, the reader can notice that the stress and the strain are not explicitly present in Eq.(3.32) since they can be considered as post-processing data for linear elastic problem, where small deformations hypothesis are made. Most structural problems include displacement boundary conditions, to fix the structure as well as to impose a deformation. These conditions require a specific method, detailed in the next section.

Displacement boundary conditions

Prescribing a displacement condition to a node can be implemented in several ways. Taking the example of a one dimensional linear stationary problem, for a 2-nodes segment it can be written:

K 11 K 12 K 21 K 22 u 1 u 2 = f 1 f 2 (3.37)
in which the displacement u 1 = u 1 is to be imposed. For this purpose, different techniques exist as listed below.

• The simplest method to implement is a "penalty" approach where the system to solve is

α K 12 K 21 K 22 u 1 u 2 = αu 1 f 2 (3.38)
whith α K 11 . This method, sometimes called "Method of large number" can be easily added in a code, but presents the main drawback to not be perfectly accurate and lacks of elegance.

• Another method that requires more connectivity, involves modifying the system such as 1 0

K 21 K 22 u 1 u 2 = u 1 f 2 . (3.39)
However, if K is symmetric, it has to become

1 0 0 K 22 u 1 u 2 = u 1 f 2 -K 21 u 1 . (3.40)
This solution, much more rigorous, is more difficult to implement in a code since it requires enough cells connectivity to be able to retrieve K 21 from a boundary node 1, even if node 2 is not on the boundary.

• A third approach is to modify the system as above and then to remove from the system all equations where displacement has to be imposed. For a specified displacement of node i, the i-th column and the i-th line will then be removed. In the example it gives:

K 22 u 2 = f 2 -K 21 u 1 . (3.41) 
This method is optimal since it leads to a system with a minimum number of unknwows, but requires an important flexibility of the code.

The method is applied to a one-dimensional example, but principle remains the same for other dimensions; length of vector displacement becomes n dim n n and it is then possible to impose displacement only for one component. Considering the different methods requirements and the data structure of YALES2, the second method has been used for the SMS. It has allowed to implement options such that the user could impose zero displacement, rotation, vibration or just a given displacement to a chosen domain boundary.

The methodology to formulate a linear stationary structural problem using finite element has now been presented on one subdivision of the domain, one finite element. The assembly process has to be explained to be able to write equations for the entire system.

Matrices assembly

It is now mandatory to define a system where the unknowns will be the components of nodal displacements such as

u =              u 1 . . . u i . . . u nodes             
where

u i =    u i v i w i    (3.42)
is the displacement vector of node i, and u i , v i , w i are its components along each space dimension. The vector u will then list the displacement of the n nodes nodes of the whole structure in which all the n e elements participate. To write the corresponding system, both Equations (3.33) and (3.34) have now to be written for the whole system Ω such as

K = ˆΩ B T DBdΩ (3.43) and f = -ˆΩ N T bdΩ -ˆΓ N T tdΓ. (3.44)
These matrices are in fact composed by submatrices computed by

K ab = ne e=1 K e ab and f a = ne e=1 f e a . (3.45) 
This results in the system to solve for a linear stationary problem:

Ku = f . (3.46) 
This very simple rule for matrice assembly allows to compute the submatrice on each element with Eq.(3.33) and Eq.(3.34) while storing results directly in the appropriate global data. Material properties can then be different for each element, allowing the simulation of multi-material structure.

Also, it may be noticed that for two nodes a and b that do not belong to the same element, K ab = 0. Concretely, submatrices K aa and f a can then be indexed on nodes number, and submatrices K ab with a = b can be indexed on pair numbers. Furthermore, for the application cases targeted for this PhD, the matrice K will always be symmetric. It has then been chosen to store only half of submatrices to save computational memory. However, even if K is symmetric, for two or three dimensionals problem submatrices K ab = K ba but K ab = K T ba . This detail complicated a lot matrices computation, linear solving operations and displacement condition imposition. Nevertheless, data structure of YALES2 have been proven sufficiently flexible to overcome those difficulties so that the SMS has been written using those techniques.

The full methodology to write and solve a linear elastic stationary problem using linear finite elements has been presented. At the start of the PhD, a beam solver has then been entirely written in Python to confirm the good understanding of the FEM. It used 3-nodes triangle to solve stationary and dynamic problems, and good agreement were found with theorical results and Ansys comparison, as shown in Fig. 3.3. Its development constituted a first step before writting the SMS which had to fit to the specific YALES2 data structure.

Nevertheless, the presented method does not allow to reproduce cases with finite deformation. It is now necessary to explain how a structural problem can be solved whithout resorting to the small deformation assumption. 

Stationary non-linear problem

In section 3.1.2.1, it has been assumed that deformations were remaining small so that linear relations could be used to represent the body strain. Besides, shape functions were computed and integrated always on the same geometry. If large deformation are now considered, it is mandatory to distinguish between initial and deformed configurations, respectively called reference and current configuration, as illustrated Fig. 3 As much as possible uppercase letters and indices will refer to quantities defined in the reference configuration and lowercase letters and indices to quantities defined in the current deformed configuration. The displacement vector can then be used to change between two coordinate frames such as

x i = δ iI (X I + U I ) (3.47)
where Einstein notation and Kronecker symbol δ are used. It should be noted that displacement can be used equally in the two frame since u = U .

It is now possible to define the deformation gradient F by

F iI = δ iI + ∂u i ∂X I = δ iI + u i,I . (3.48) 
Stress and strain need also to be redefined for large deformation. In the reference configuration, the Green strain tensor E IJ can be used, expressed in function of the displacement such as

E IJ = 1 2 U I,J + U J,I + U K,I U K,J (3.49) 
where linear part corresponds to the small strain form (Eq.(3.13)).

In a similar manner, the second Piola-Kirchhoff stress S IJ can be related to the previously used Cauchy stress σ ij with det(F )σ ij = F iI S IJ F jJ .

(3.50)

The simplest stress-strain relation is the hyperelastic Saint-Venant-Kirchhoff model given by:

S IJ = C IJKL E KL , (3.51) 
where C IJKL is the same constant elastic moduli already used in Eq. (3.16). This model has been the only one implemented in YALES2 during the PhD, because it was sufficient to reproduce all the desired cases. However, data and solver structure had been developed to facilitate future implementations of other material models. For that matter, given that some material model results in non-bijective stress-deformation relation (i.e. path dependent), the possibility to apply progressively forces with successive sub-steps has been implemented, for stationary or dynamic problem.

Concretely, the computation of the derivatives of displacement is performed by using Eq.(3.1) such as

u i,I = n n a=1 ∂N e a ∂X I u a i ≡ N e a,I u a i . (3.52) 
The strain operator also needs to be changed; using the previous small deformations problem definition of B e a (Eq.(3.24)), B e a can be introduced with

B e a = B e a + B e a N L (3.53)
where the nonlinear part is given by

B e a N L =         u 1,1 N e a,1 u 2,1 N e a,1 u 3,1 N e a,1 u 1,2 N e a,2 u 2,2 N e a,2 u 3,2 N e a,2 u 1,3 N e a,3 u 2,3 N e a,3 u 3,3 N e a,3 u 1,1 N e a,2 + u 1,2 N e a,1 u 2,1 N e a,2 + u 2,2 N e a,1 u 3,1 N e a,2 + u 3,2 N e a,1 u 1,2 N e a,3 + u 1,3 N e a,2 u 2,2 N e a,3 + u 2,3 N e a,2 u 3,2 N e a,3 + u 3,3 N e a,2 u 1,3 N e a,1 + u 1,1 N e a,3 u 2,3 N e a,1 + u 2,1 N e a,3 u 3,3 N e a,1 + u 3,1 N e a,3         . (3.54)
As a result, the strain-displacement relation is now non linear. Finally, Eq.(3.30) gives for a stationary non linear problem:

ˆΩ B T SdΩ = f . (3.55)
To solve this non linear equation, a Newton-Raphson method is used so that the problem becomes the minimization of the function

Ψ(u) = f - ˆΩ B T SdΩ = f -P(u). (3.56)
To the first order, this equation can be approximated as

Ψ i+1 = Ψ(u i+1 ) ≈ Ψ(u i ) + ∂Ψ ∂u i du i = 0 (3.57)
with i the Newton iteration counter and du i a displacement increment. The tangeant stiffness matrice is here defined by

K T = - ∂Ψ ∂u (3.58)
for a stationary problem. One Newton iteration consists then in solving

K i T du i = Ψ i (3.59)
to find du i knowing that

u i+1 = u i + du i = u 0 + i k=1 du k . (3.60)
The principle of the Newton method is illustrated in Fig. 3.5. The method requires the computation of K T which is given by

K T = ˆΩ B T D T BdΩ + ˆΩ ∂ B T ∂u SdΩ - ∂f ∂u = K M + K G + K L . (3.61)
The first term, the material tangeant K M , is computed with D T = D as the Saint-Venant-Kirchhoff is used. Besides, the tangent term K G is called the geometric stiffness and can be written

K ab G = G ab I where G ab = ˆΩ N a,I S I,J N b,J dΩ. (3.62)
The last term K L comes from the loading which depends on deformation state, e.g following forces like pressure. In general, its computation results in an asymmetric term; this complicates greatly the solving of the final linear system, so that this term is neglected for the computation of K T . However, this does not affect the final result since forces f i are systematically updated for the computation of Ψ i . The process then repeats until

Ψ(u i+1 ) ∞ ≤ ε newton (3.63)
where ε newton is a selected convergence criterion. It should also be noted that displacement boundary conditions just need to be imposed at the first Newton iteration. This iterative method is essential when the solution process is path dependent, like for some non linear constitutive equations of solids. It can be improved with different techniques, such as quasi-Newton methods or line search procedures [START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF], to accelerate the convergence and reduce the number of iterations required. Also, a formulation using only the current configuration is possible. This formulation was originally used for the SMS, but it leads to stability issues when it comes to simulations involving a lot of iterations.

The method to solve linear and non linear structural mechanics stationary problem using FEM has now been detailed. Nonetheless, for FSI applications, the SMS needs to be able to predict the dynamics of the structure, at any time, under the influence of variable loads. This last assertion complicates the previous equations, and specific temporal schemes have to be used for time advancement; this is explained in the following part.

Dynamic problems

Generalities

Using the d'Alembert principle, intertial forces through the body can be introduced as:

f → f -ˆΩ N T ρNdΩü. (3.64)
For a dynamic problem, Eq.(3.46) now changes into

Mü + Ku = f (3.65)
where M is the mass matrix defined by Furthermore, for non linear problem, the function Ψ becomes

Ψ(u) = f - ˆΩ B T SdΩ -Mü. (3.67)
Concretely, the definition given by Eq.(3.66) corresponds to the so-called "consistent" mass matrix, but it can be very useful to obtain a diagonal mass matrix for explicit solving for instance. The mass can then be physically lumped at the element nodes so that where m e is the total mass of the element. It should be noted that as m e remains constant during the deformation, the mass matrix only needs to be computed once at the start of the simulation whereas K T and f have to be systematically updated.

A damping matrix can also be added to previous equation such as

Mü + C u + Ku = f . (3.70) 
In fact, the determination of the damping matrix C for a given material is difficult, and a method called Rayleigh damping is often used. This consists in considering that

C = αM + βK (3.71)
where α and β are coefficients determined experimentally [START_REF] Chopra | Dynamics of structures: Theory and applications to earthquake engineering[END_REF][START_REF] Clough | Dynamics of structures mcgraw-hill[END_REF]. The mass coefficient α results in decaying damping effects on higher modes while the stiffness coefficient β induces a damping on lowest modes. Also, the stiffness matrix K used to compute C, becomes K T for non linear solving and can be updated during the simulation or considered as constant. This choice has been implemented as an user's parameter into the SMS. Explicit solving has not been discussed at this point because timestep constraint results in smaller timestep than in CFD, making it unusable for FSI applications. Equations corresponding to dynamic problems have now been introduced, and different temporal schemes can be used for solving. The two schemes that have been implemented during the PhD will now be presented in the two following parts.

Newmark scheme

The Newmark method is widely used in dynamic analysis. For a linear dynamic problem at time t n+1 , system can be written

Mü n+1 + C un+1 + Ku n+1 = f n+1 . (3.72)
This problem with three unknowns ün+1 , un+1 and u n+1 needs to be simplified to be solved. The Newmark method consists in considering that velocity and acceleration can be expressed such as

un+1 = a 1 (u n+1 -u n ) -a 4 un -a 5 ün ün+1 = a 0 (u n+1 -u n ) -a 2 un -a 3 ün (3.73a) (3.73b)
where:

                                         a 0 = 1 α∆t 2 a 1 = δ α∆t a 2 = 1 α∆t a 3 = 1 2α - 1 
a 4 = δ α - 1 
a 5 = ∆t 2 δ α - 2 . 
(3.74a)

(3.74b) (3.74c) (3.74d) (3.74e) (3.74f) 
α and δ are Newmark's integration parameters. Eq.(3.72) can then be written

a 0 M + a 1 C + K u n+1 = f n+1 + M a 0 u n + a 2 un + a 3 ün + C a 1 u n + a 4 un + a 5 ün (3.75)
and once this last is solved to find u n+1 , velocity and acceleration can be computed using Eq.(3.73).

The amount of numerical dissipation of the algorithm can be controlled by δ value. However, to ensure an unconditionally stability, Newmark's parameters have to meet the following requirements:

           δ ≥ 1 2 α ≥ 1 4 1 2 + δ 2 . (3.76a) (3.76b)
In a similar manner than in Ansys, a user parameter, the amplitude decay factor γ, is introduced such as

           δ = 1 2 + γ α = 1 4 1 + γ 2 γ ≥ 0. (3.77a) (3.77b) (3.77c)
Case with γ = 0 then has no numerical damping. For non linear dynamic solving, the residual Ψ of Eq.(3.56) is now computed with

Ψ i n+1 = f i n+1 -P(u i n+1 ) -Mü i n+1 -C ui n+1 (3.78)
and one Newton iteration involves solving

a 0 M + a 1 C + K T i n+1 du i n+1 = Ψ i n+1 . (3.79) 
Initial displacement u 0 n+1 , velocity u0 n+1 and acceleration ü0 n+1 are taken as the converged solution from the last time step.

As explained above, the amout of numerical dissipation can be controlled by γ. However, in low frequency modes the Newmark method fails to retain the second-order accuracy. To overcome some drawbacks as identified for the Newmark method, another temporal scheme has also been implemented and is presented in the next section.

Generalised-α scheme

This method was originally developed by Chung & Hulbert [START_REF] Chung | A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[END_REF]. It allows to sufficiently damps out spurious high-frequency response via introducing controllable numerical dissipation in higher frequency modes, while maintaining the second-order accuracy. It consists in solving

Mü n+1-αm + C un+1-α f + Ku n+1-α f = f n+1-α f (3.80)
where

           ün+1-αm = (1 -α m )ü n+1 + α m ün un+1-α f = (1 -α f ) un+1 + α f un u n+1-α f = (1 -α f )u n+1 + α f u n f n+1-α f = (1 -α f )f n+1 + α f f n . (3.81a) (3.81b) (3.81c) (3.81d)
α m and α f are user's parameters allowing to control the algorithm properties. Using Eq.(3.73), the system can be written

a 0 M + a 1 C + (1 -α f )K u n+1 = (1 -α f )f n+1 + α f f n -α f Ku n + M a 0 u n + a 2 un + a 3 ün + C a 1 u n + a 4 un + a 5 ün (3.82) with                                        a 0 = 1 -α m α∆t 2 a 1 = (1 -α f )δ α∆t a 2 = a 0 ∆t a 3 = 1 -α m 2α - 1 
a 4 = (1 -α f )δ α - 1 
a 5 = (1 -α f ) ∆t 2 δ α - 2 . 
(3.83a)

(3.83b) (3.83c) (3.83d) (3.83e) (3.83f)
It should be noted that for α m = α f = 0 this scheme is identical to the Newmark method.

To ensure that the scheme is unconditionally stable and second-order accurate, α and δ are computed with

                   δ = 1 2 + γ α = 1 4 1 + γ 2 γ = α f -α m α m ≤ α f ≤ 1 2 . (3.84a) (3.84b) (3.84c) (3.84d) 
This optimal case can be described by defining α m and α f in terms of the spectral radius ρ ∞ such as

α m = 2ρ ∞ -1 ρ ∞ + 1 , α f = ρ ∞ ρ ∞ + 1 . (3.85) 
This ensures an optimal combination of high-frequency and low-frequency dissipation [START_REF] Chung | A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[END_REF]. Thus, by selecting the appropriate values for α m and α f , the user can use different wellknown time integration methods, as illustrated in Fig. 3.6. In a similar manner, non linear problems give:

Ψ i n+1 = f i n+1-α f -P(u i n+1-α f ) -Mü i n+1-αm -C ui n+1-α f (3.86)
and one Newton iteration consists in solving

a 0 M + a 1 C + (1 -α f )K T i n+1 du i n+1 = Ψ i n+1 . (3.87) 
Full methodology to reproduce non linear dynamic cases has now been provided. This work was used to develop a first version of the SMS. However, tests showed that this approach was not suitable to reproduce 3D large deformation cases. In fact, the code was only able to use 3-nodes triangles or 4-nodes tetrahedrons, which are linear elements. This results Fig. 3.6: Different time integration methods according values of α m and α f . Extracted from [START_REF] Chung | A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method[END_REF].

in a prohibitive number of elements necessary to predict accurately complex deformations. Consequently, second order elements, as well as quadrilateral and hexahedron, had to be available in the SMS, driving to a lot of mandatory modifications in the data structure. Their implementation is explained in the next section. As showed in section 3.1.1.2, 3-nodes triangles and 4-nodes tetrahedrons have linear shape functions. That facilitates considerably any integration and derivation necessary to compute stiffness matrix by example. Nevertheless, this is not true for other elements, where stress and strain are not constant in the element. Furthermore, for higher order elements, nodes are added at the pair centers and/or face centers. For second order elements, faces can then deform in a quadratic shape, making the metric direct computation of the element difficult, as illustrated in Fig. 3.7.

The widespread solution used in most FEM solvers to deal with this problem is using 

                         x(ξ, η, ζ) = n n i=1 N ref i (ξ, η, ζ)x i y(ξ, η, ζ) = n n i=1 N ref i (ξ, η, ζ)y i z(ξ, η, ζ) = n n i=1 N ref i (ξ, η, ζ)z i (3.88a) (3.88b) (3.88c)
where n n is the number of nodes of the element, x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ) are coordinates of a point inside the element e in the real space and (x i , y i , z i ) are coordinates of the i-th node of the element e in the real space. These relations allow then to determine the position of a point in the real space from its position in the reference space. By using these shape functions, it is now possible to define a Jacobian matrix of the transformation: Extracted from [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF].

J e (ξ, η, ζ) =          
          =               n n i=1 ∂N ref i ∂ξ x i n n i=1 ∂N ref i ∂ξ y i n n i=1 ∂N ref i ∂ξ z i n n i=1 ∂N ref i ∂η x i n n i=1 ∂N ref i ∂η y i n n i=1 ∂N ref i ∂η z i n n i=1 ∂N ref i ∂ζ x i n n i=1 ∂N ref i ∂ζ y i n n i=1 ∂N ref i ∂ζ z i               . ( 3 
This transformation has to be bijective: the Jacobian determinant has then to remain positive within the element. That implies that reference element and real element have to be numbered in the same way. In addition, usual rules of partial differentiation give giving relations between derivatives of the two space:

∂N ref i ∂ξ =
           ∂N ref i ∂ξ ∂N ref i ∂η ∂N ref i ∂ζ            = J e           ∂N ref i ∂x ∂N ref i ∂y ∂N ref i ∂z           and           ∂N ref i ∂x ∂N ref i ∂y ∂N ref i ∂z           = J e-1            ∂N ref i ∂ξ ∂N ref i ∂η ∂N ref i ∂ζ            . ( 3.91) 
Jacobian can also be used for integration; the computation of the element volume V e in the real space can indeed be done from the reference space with

V e = ˆV dxdydz = ˆVref det(J e (ξ, η, ζ))dξdηdζ. (3.92) 
This relation allows to compute an integration in the real space of a function f such as

ˆe V f (x, y, z)dxdydz = ˆVref f (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) det(J e (ξ, η, ζ))dξdηdζ. (3.93)
However, the explicit computation of the right hand side of this last equation can be difficult, especially when f and J are non linear. That is why it is usually performed numerically by quadrature; the most accurate methods for polynomial expressions is Gauss-Legendre quadrature [START_REF] Abramowitz | Handbook of mathematical functions dover publications[END_REF]. Gaussian quadrature integrates a function as

ˆ1 -1 f (ξ)dξ = ng j=1 f (ξ j )w j + O d 2ng f dξ 2ng (3.94)
where ξ j are the points where the function is evaluated, w j is the corresponding weight, and n g the number of points used for integration. Thus, this formula integrates exactly a polynomial of order 2n g -1. Examples of points location and weights are given in Tab. 3.9. This can be directly used for integration over segment element in the reference space. For more complex elements, shape functions and gauss points location and weights were found in Code Aster documentation [127]. Examples are given for quadrilateral and hexahedron in Appendix A (extracted from [127]). Now that the principle of the use of a reference space has been explained, its application in the case of structural mechanics and its implementation in YALES2 will be detailed in the next part. gives:

M e = ˆΩe N eT ρN e dΩ = ng j=1 N ref (ξ j , η j , ζ j ) T ρN ref (ξ j , η j , ζ j )) det(J e (ξ j , η j , ζ j ))w j .
(3.96)

However, in practice, it is difficult to store J e (ξ, η, ζ), J e (ξ, η, ζ) -1 , det(J e (ξ, η, ζ)) or shape functions derivatives because these matrices are element dependent and include high order polynomial functions. For N ref , which corresponds to the reference element and is unique for all the domain, shape function polynomial coefficients were stored but this solution was not possible for the other matrices. Choice has then been made to store directly det(J e (ξ j , η j , ζ j ))

and

∂N ref i (ξ j , η j , ζ j ) ∂x , ∂N ref i (ξ j , η j , ζ j ) ∂y , ∂N ref i (ξ j , η j , ζ j )
∂z values on Gauss points locations.

Furthermore, new elements had to be added in YALES2 which is originally a finite-volume based library. To be able to use the existing data structure of the code, the chosen development approach was to add nodes at pairs or face centers once the initial mesh were read. Consequently, both first order and second order were available for the same mesh file. This implementation required though a lot of modifications in cells connectivity, particularly to fit with the massively parallel characterictics of YALES2. Besides, the high number of pairs of some element (351 for 27-nodes hexahedron) complicated these tasks and required important memory space for few elements. Consequently, optimal number of elements by CPU and by element group revealed to be significantly lower for these elements than with linear elements. All elements finally made available in the SMS are shown in Fig. 3.10 and Fig. 3.11. This corresponds to a small case with few elements to highlight the parabolic deformation of second order elements. Efficiency of these elements is further checked in section 3.2.2. The last point not mentionned in this section is the computation of volumic and surfacic forces. Yet, it has to be adapted to the use of reference space. This is the subject of the next part.

Forces computation

Volumic forces require a computation of the element volume, dependent of its deformation state. Such forces will then impose at each time step a computation of det(J e (ξ j , η j , ζ j )). In fact, the resulting force on an element e subjected to a volumic force f V is given by:

f e = ˆΩe N eT f V dΩ = ng j=1 N ref (ξ j , η j , ζ j ) T f V det(J e (ξ j , η j , ζ j ))w j .
(3.97)

As explained above, Jacobian computation allows integration over the entire element, but is not adapted to describe the metric of only one face of a deformed element. However, surface or normal vector of such face are mandatory when surfacic forces are applied on one boundary of the structure, which is precisely what happens in FSI cases. The solution is then to refer to the reference element of inferior dimension e f ace corresponding to one face of the entire element e, as illustrated in Fig. 3.12. Fig. 3.12: Use of reference space to compute faces metric. Here the 3-nodes segment e f ace (left) corresponds to the reference element of the face of the real 6-nodes triangle e (right). Extracted from [START_REF] Debard | Calcul des structures par la methode des elements finis[END_REF].

In this example, shape functions N i of e f ace can be introduced such as:

x(ξ) = n n i=1 N i (ξ)x i and y(ξ) = n n i=1 N i (ξ)y i .
(3.98)

It can then be deduced:

dx(ξ) = n n i=1 ∂N i (ξ) ∂ξ x i dξ = J x (ξ)dξ dy(ξ) = n n i=1 ∂N i (ξ) ∂ξ y i dξ = J y (ξ)dξ ds(ξ) = dx(ξ) 2 + dy(ξ) 2 = J x (ξ) 2 + J y (ξ) 2 dξ = J s (ξ)dξ. (3.99a) (3.99b) (3.99c)
The force resulting in the application of a surfacic force f S along e f ace can then be computed with:

f e = ˆeface N eT f S dS = ˆ1 -1 N(ξ) T f S J s (ξ)dξ = ng j=1 N(ξ j ) T f S J s (ξ j )w j .
(3.100)

Normal vector at position ξ and surface S of e f ace can also be computed with:

n(ξ) =        ∂y(ξ) ∂ξ - ∂x(ξ) ∂ξ        = J y (ξ) -J x (ξ) and S = ˆeface ds = ˆ1 -1 J s (ξ)dξ = ng j=1 J s (ξ j )w j . (3.101)
In a similar manner, for a 3D real element, normal vector at position (ξ, η) is given by:

n(ξ, η) =                ∂x(ξ, η) ∂ξ ∂y(ξ, η) ∂ξ ∂z(ξ, η) ∂ξ                ∧                ∂x(ξ, η) ∂η ∂y(ξ, η) ∂η ∂z(ξ, η) ∂η                dξdη. (3.102)
The entire methodology used to develop the SMS during the PhD has now been presented. Despite the existing data structure of YALES2, many things had to be adapted since the code has not been originally designed for finite elements. The SMS has been then developed with the aim of reproducing FSI cases only with YALES2 solvers, but its structure is prepared to facilitate future implementations, like other material models. Given the limited time of the PhD, some axes of improvements were not investigated but they might be the subject of future work. The next section aims to present these axes.

Possible improvements

As shown in next section, the SMS has proven to be able to reproduce accurately structural mechanic cases. However, one of its main axis of improvements remains the reduction of computational cost. Moreover, a quick analysis of the computation time repartition revealed that most of the time was spent in the linear system solving algorithm. In fact, this part has not been discussed yet, but to solve systems such those of Eq. (3.46) or Eq.(3.87), the SMS uses a Preconditioned Conjugate Gradient (PCG) algorithm. This method will not be detailed here, but any interested reader is invited to refer to [START_REF] Shewchuk | An introduction to the conjugate gradient method without the agonizing pain[END_REF]. For small problem, direct linear solving is possible but those techniques require large memory storage space and suffer from poor scalability. Iterative linear solving has then been chosen. Different methods were already developed in YALES2, however the current routines were not suitable for the specific form of structural mechanics system so they had to be rewritten to fit with the SMS. In addition, YALES2 offered only the possibility to use a Jacobi preconditionning (JCG), where for a system (3.46), the matrix M Jacobi used for preconditionning is

M Jacobi = diag K ii . (3.103)
Nevertheless, as explained in [START_REF] Aster | Généralités sur le gradient conjugué: Gcpc aster et utilisation de petsc[END_REF], JCG suits well to CFD problem as they are known to have a better conditionning that CSM problem. The use of more complex and efficient preconditionner are necessary to be able to simulate efficiently problem with a large number of elements with the SMS. Issues in linear solving with JCG can also arise from solid composed by material with very different properties, or from very thin geometries. These limitations were caught during the SMS development, although implementation of new preconditonners appeared to be challenging due to parallelism constraints. One relevant choice providing many opportunities would be to make available the use of the PETSc (Portable, Extensible Toolkit for Scientific Computation) [START_REF] Balay | PETSc Web page[END_REF][START_REF] Balay | PETSc/TAO users manual[END_REF][START_REF] Balay | Efficient management of parallelism in object oriented numerical software libraries[END_REF] library by the SMS. This latter is indeed used by code ASTER [127] for instance. Further work would be needed on this subject, thus contributing to accelerate significantly the linear system solving. As mentioned in section 3.1.2.4, another possible improvement would be the implementation of more advanced techniques than the basic Newton algorithm used presently for non linear solving [START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF]. Finally, the SMS does not allow sereral different types of element in the same mesh. However, this strategy can be useful to reproduce some geometries with a minimum number of elements. For this purpose, some code modifications are required which would induce more complex data structure but would allow a greater flexibility. Now that the numerical methodology used by the SMS has been detailed, next sections of this chapter will aim to validate this solver, without FSI coupling for the moment. In this way, comparison with Ansys and mesh convergence studies of the implemented finite elements are presented in the next parts.

Verification

Comparison with Ansys

Stationary problem

In order to ensure the correct implementation of the methodology presented in the first part of this chapter, the library Ansys is used for comparison. Given that the structural solvers of Ansys used FEM, similar results are expected. However, YALES2 data structure is different and some details of the algorithms used by Ansys remain unclear, e.g for linear system solving.

One of the main challenge faced for verification is the wide variety of options available through the SMS. Among them, there are 10 different finite elements, the stationary or dynamic solving, the linear or non linear solving (i.e. the small deformation assumption, see section 3.1.2.4), the different boundary conditions, the possibility to add structural damping (Eq.(3.70)), isotropic or orthotropic material, different temporal schemes, the possibility to use heterogeneous material properties, etc... Considering the high number of combinations, this part will give an overview of main tests performed for verification. Cases with 2D elements will not be treated in this section as a 2D structural test case will be presented in section 5.3. Furthermore, the choice to use 3D solid elements does not restrain the geometry selection, which would not be the case with membrane or shell elements. A blade geometry has then been chosen for tests since the PhD aims at reproducing flexible blade turbine.

A NACA0018 profil with a chord C = 66 mm has been selected, corresponding to the foil used in the experiments run by Hoerner & al. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF][START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF]. For the material, the entire blade is considered as made of silicon which is a simplification of real case where some parts of the blade are composed of aluminium and carbon fiber. Silicon properties are E = 0.64 GPa, ν = 0.48 and ρ s = 1 100 kg.m -3 .

The first test introduced in this section is a stationary problem of span-wise flexibility. A blade with a length L = 4C is meshed with 80 112 tetrahedrons as shown in Fig. 3.13. Fig. 3.13: Blade mesh used for stationary problem.

The blade is fixed at its extremities along z-axis, and an acceleration field a = 20 m.s -2 is applied in y direction. The problem is solved with linear or non linear method, for 4nodes tetrahedrons (4NTET) and 10-nodes tetrahedrons (10NTET). With linear method, the problem is to solve Eq.(3.46), while with the non linear method, the problem is given by Eq.(3.55). Results obtained with the SMS are shown in Fig. 3.14. It highlights that problems where the structure length does not remain constant with large deformation cannot be solved with a linear approach. On the contrary, if only one blade extremity is fixed, results between linear and non linear solving are similar. This is explained by the constant stiffness matrix K used for linear solving, while physically the structure stiffness depends on its deformation state. This is taken into account with the non linear solving during the step of the Newton-Raphson method, resulting in a more realistic deformation.

Simulations are also reproduced with Ansys with the exact same mesh, and the normalized minimum vertical displacements of each case are gathered in Fig. 3

.15.

A good agreement is obtained for each cases, especially for linear solving. Differences for non linear solving are slightly larger but remain neglictible (<2.3 %). This can be explained by the complexity of algorithm used for non linear solving, where several linear systems have to be solved successively during Newton-Raphson method, while only one system is solved with linear solving. It can also be noticed that higher order elements use results in a larger bending, indicating that the mesh is not fine enough to use 4NTET.

The SMS has now been validated for stationary problems, and the following section will detail the validation for dynamic problems.

Dynamic problem

The idea is now to consider a case of chordwise flexibility. For that, the blade lenght has been divided by 4 so that L = C and the number of tetrahedrons is reduced at 20 209. Besides, the entire leading edge, the first third of the foil, is fixed. A force of F max = 5 N is then applied on the top surface of the blade, resulting in a curved deformation state (Fig. 3.16), similar to those observed during the experiments [START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF]. In order to amplify the oscillations amplitude, the density is set to ρ s = 55 000 kg.m -3 . This is not realistic but will induce an oscillating deformation state, more interesting for comparison. This will also highlight the effect of structural damping on the result. Five cases are then performed with different combination of options. This is detailed in Fig. 3.17. Once again, simulations are also carried out using Ansys and the quantity used for comparison is the normalized infinite norm of displacement. The force is applied with an increasing slope of 2 seconds. It is then maintained during 2 seconds and released within 2 seconds. After t = 6 s, forces are no longer applied to the blade and its displacement are only caused by intertial effects. A characterictic time τ = 2 s is defined. The Newmark temporal scheme is chosen with the amplitude decay factor γ = 0 to avoid numerical damping. The condition of Eq.(3.76) being respected, the scheme is unconditionally stable so that the time step can be chosen as ∆t = τ /100 s. Results obtained with YALES2 and Ansys are plotted in function

• Case A is simulated with 4NTET and linear method; results are given in Fig. 3.18. As no structural damping is applied, the problem involves solving Eq. (3.65). A good agreement between simulations is found and the exact same deformation state is predicted. Thanks to the large value of density ρ s , the structure oscillates around its equilibrium position, and the same results are found between 1t/τ and 2t/τ while minor differences appear for the oscillating state between 3t/τ and 4t/τ . This can be explained by an accumulation over time of small discrepancies. • Case B is simulated with 4NTET, linear method and structural damping; results are given in Fig. 3.19. The problem involves now solving Eq.(3.70), and the Rayleigh damping parameters defined in Eq.(3.71) are selected as α = 0.2 and β = 0.2. With Newmark scheme, the system is given by Eq.(3.75). In this case, no differences on the computed structure displacement can be observed between the two simulations. • Case C is simulated with 4NTET and non linear method; results are given in Fig. 3.20. With Newmark scheme, one Newton iteration is to solve Eq.(3.79) with C = 0. The oscillations are predicted with slight differences on the frequency and the mean value. Also, the amplitude predicted with Ansys after t/τ = 3 is nearly twice superior to the one computed with the SMS. As for the stationary case, non linear solving implies a larger number of operations than linear solving, increasing the accumulation of differences. Nonetheless, this relates to normalized infinite norm of displacement and the blade global predicted behaviour is the same with the two solvers. • Case D is simulated with 4NTET, non linear method and structural damping; results are given in Fig. 3.21. The differences observed are of the same order of magnitude than those observed between equilibrium position of the oscillating state obtained in case C. It remains then small, so that it can be concluded that structural damping seems to have the same impact in both simulations. • Case E is simulated with 10NTET, non linear method and structural damping; results are given in Fig. 3.21. In comparison with case D, it can be observed that the predicted deformation is more important, indicating again that the mesh is not fine enought to reproduce with accuracy this case with 4NTET. Furthermore, the difference is slightly increasing compared to the previous case, which was expected due to the higher number of nodes and the larger deflection. Nevertheless, a good agreement is found between the two computations. Although larger differences have been obtained for case with non linear solving in comparison with linear solving case, discrepancies remain minors so that the overall agreement can be considered satisfying. This confirms the correct implementation in YALES2 of the methodology presented in the chapter, while checking on the effective functioning of the SMS. Another test case in 2D is also proposed in section 5.3.

Next section will present a mesh convergence study performed to confirm the efficiency of the implemented quadratic finite elements in comparison with the linear elements.

Mesh convergence study with the implemented elements 3.2.2.1 2D finite elements

The goal of this part is to verify the correct efficiency of the different finite elements that can be used with the SMS. With this aim, a basic case of a beam embedded at its extremities is reproduced. In order to focus on elements precision, the problem is considered stationary and the linear method is used. Furthermore, the convergence criterion of the PCG is chosen sufficiently low to not have any influence on the computed result. The beam dimensions are L × h × w with h = w = 0.5 m and L = 20h such as its cross-section is a square of side h. A vertical surfacic force of F S = -4.8 N.m -2 is applied on the top face of the beam along y-axis and the problem consists in computing its stationary deformation state. Material properties are chosen to ensure a large deformation; E = 7.1 MPa and ν = 0.4. Note that the material density ρ s has no influence here since it is a stationary problem without acceleration field.

This first part presents the test for the 2D case. Five finite elements are studied: 3nodes triangle (3NTRI), 6-nodes triangle (6NTRI), 4-nodes quadrilateral (4NQUAD), 8nodes quadrilateral (8NQUAD) and 9-nodes quadrilateral (9NQUAD). Six meshes composed of quadrilaterals and six meshes with triangles are then generated with different cell sizes, s = [0.500, 0.250, 0.125, 0.100, 0.050, 0.025] m, as shown in Fig. 3.23. Computed solution obtained with 4NQUAD are given in Fig. 3.24. It highlights the progressive mesh convergence given that the result obtained with the two finest meshes seems identical and is very different from the solution computed with the coarser mesh. The infinite displacement norms computed with the different meshes are then gathered in Fig. 3.25. A convergence can also be noticed; every finite element seem to give results converging on the value obtained with the finest mesh of 9NQUAD. This value is taken as It can clearly be seen that for a same cell size, higher order elements (6NTRI, 8NQUAD and 9NQUAD) give result closer to the reference than lower order elements (3NTRI and 4NQUAD). Besides, 6NTRI and 8NQUAD seem identically efficient, but it must be noticed that the same geometry requires more triangles than quadrilaterals to be meshed with the same cell size. That is why the second graph shows the normalized error in function of the number of elements N elem . It highlights that for the same value of N elem , second order elements lead to better results than first order ones. Also, 8NQUAD are more precised than 6NTRI, which makes sense giving the larger number of degree of freedom per element.

Therefore, this study confirms the efficiency of the second order 2D finite element imple-mented in the SMS. These elements allow then to describe correctly the structure behaviour with a lower N elem , i.e. for a lower computational cost in comparison with first order elements. They will be used in Chapter 5. Nevertheless, this study needs also to be carried out for 3D elements, which is the subject of the next section.

3D finite elements

The same case is then extruded with w = h so that the beam cross-section is a square. The elements to study are: 4-nodes tetrahedron (4NTET), 10-nodes tetrahedron (10NTET), 8-nodes hexahedron (8NHEX), 20-nodes hexahedron (20NHEX) and 27-nodes hexahedron (27NHEX). Once again, 6 meshes are generated with tetrahedrons and 6 meshes with hexahedrons with the same cell size s than for the 2D case. The results are gathered in Fig. 3.27. It can be noticed that even if for the same cell size s the 10NTET gives the smallest errors, the number of elements required to describe the beam is way larger than with hexahedron. Therefore, for a same N elem , accuracy is thereby proven to be better with hexahedron. Nonetheless, it has to be precised than the computational cost per element is higher with hexahedron than with tetrahedron due to the higher number of nodes considered. Yet, for the same s, the cost is still lower with hexahedrons. Besides, tetrahedrons are very useful to represent complex geometry that cannot be discretized with hexahedrons. Given the error obtained with 4NTET and 8NQUAD, this study also confirms the efficiency of second order 3D finite element.

Those two studies have demonstrated the benefit to use higher order finite element. That has completed the verification of the correct implementation of the FEM in YALES2. The development of the SMS has then been a success, ensuring the availability of a performing tool to the YALES2 community to study case involving structural dynamics. In this PhD, it has been created with the aim of reproducing FSI cases, and consequently, stationnary solving is not used by the FSI solver. Surprisingly, several parts of the SMS were used to implement a pseudo-solid method used for mesh movement, allowing considerable time saving benefit. A FSI solver has then been developed after the SMS, and methods used are presented in the next chapter.

with large deflection on unstructured grid, because the mesh has no preferential direction contrary to structured mesh. This facilitates the distribution of the deformation among cells with algebraic methods such as transfinite interpolation (TFI) [START_REF] Thompson | Numerical grid generation: foundations and applications[END_REF][START_REF] Spekreijse | Elliptic grid generation based on laplace equations and algebraic transformations[END_REF][START_REF] Spekreijse | A simple, robust and fast algorithm to compute deformations of multi-block structured grids[END_REF][START_REF] Potsdam | A parallel multiblock mesh movement scheme for complex aeroelastic applications[END_REF], tension spring analogy [START_REF] Batina | Unsteady euler airfoil solutions using unstructured dynamic meshes[END_REF] or torsion spring analogy [START_REF] Farhat | Torsional springs for twodimensional dynamic unstructured fluid meshes[END_REF]. These methods are either not appropriate for unstructured meshes because it implies interpolation along mesh lines, or too expensive for large scale problems, as explained in [START_REF] Sheng | Efficient mesh deformation using radial basis functions on unstructured meshes[END_REF]. Furthermore, to be able to reproduce numerically fluid structure interaction cases with turbulent flows, mesh movement method has to be suitable for a grid with a large number of elements and different mesh size variation, especially for LES which requires fine grid resolution. However, precision of spatial schemes suffer from mesh distorsion [START_REF] Bernard | A framework to perform high-order deconvolution for finite-volume method on simplicial meshes[END_REF], so that it is preferable to avoid to deform the mesh in regions where strong velocity gradients occur. Thus, mesh movement requires an algorithm that can be fully parallelized and allowing to control which regions of the domain will withstand the deformation. These reasons explain the choice the pseudo-solid method [START_REF] Nayer | Interaction Fluide-Structure pour les corps élancés[END_REF][START_REF] Lefrançois | A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[END_REF] for the present work. Besides, considering that the SMS had been developed just before, the choice of and algorithm based on the FEM seemed very natural. Note that alternatives will be discussed as perspective of this work in section 7.2.

The principle of this method is to consider the fluid domain as a linear elastic solid. The displacement constrains that the domain undergo then become usual boundaries conditions of a solid with prescribed displacement, as seen in section 3.1.2.2. Inertial effects are not advisable here so the problem is considered stationary. The mesh movement consists then in solving a linear static problem. With a FEM formulation, it gives

Kd = f (4.1)
with K the stiffness matrix, d the nodes displacement and f the forces. With this formulation, the equilibrium position of the pseudo-solid is considered to be the mesh configuration at t = 0 = t 0 . Here, there is no external forces such as body forces or pressure on boundaries, however f depends on the displacement conditions. In this work, this method has been improved to meet FSI simulations requirements. This is detailed in the next two sections.

Implementation in YALES2

As explained above, it is very useful to select regions of the domain that will move without cell deformation, and the zone that will withstand the deformation. The pseudo-solid method is very convenient for this purpose because it only requires to change the element pseudo-Young modulus E, that will directly affect the cell flexibility. In fact, for an heterogeneous solid, the part that will deform first is the less rigid one. Moreover, in most cases, the smallest cells are regrouped close to the flexible body because it corresponds to the zone of interest, and it is essential to maintain the quality of these cells. Therefore, the generic technique developed here to compute the pseudo-Young modulus field of the pseudo-solid consists in establishing a E profile as a function of the distance from the object R.

In this work, this distance R is computed with a geometrical method for unstructured simplicial meshes [START_REF] Janodet | An unstructured conservative level-set algorithm coupled with dynamic mesh adaptation for the computation of liquid-gas flows[END_REF], already used in two phases flow solvers of YALES2 to compute the distance to the phases interface [START_REF] Pertant | A finite-volume method for simulating contact lines on unstructured meshes in a conservative levelset framework[END_REF]. The pseudo-Poisson ratio of all elements is 0.2 and their pseudo-Young modulus E is computed in function of R such as

             E(R < R min ) = 100E int E(R min ≤ R ≤ R max ) = E int - (R -R min )(E int -E min ) R max -R min E(R > R max ) = E min E int = E min y r (4.2a) (4.2b) (4.2c) (4.2d)
where the pseudo-Young modulus ratio y r , R min and R max are user's parameters. On the other hand, the value of E min has no influence since it is a linear elastic problem. This method ensures that for R < R min , deformation is minimal and cells move mainly according to the imposed displacement, thanks to the high jump of E at R min . On the contrary, the mesh deformation takes place in the transition zone between R min and R max . The size of the different regions can be easily adapted for the different cases with these two parameters. However the deformation is not uniform in the transition zone, because for y r = 1, only cells at R = Rmin are deformed, and for high value of y r , most of the deformation will be taken by cells at R ≈ R max . The suitable value for y r then depends on the size of the transition zone, the displacement amplitude and the cells size distribution. An example of both R and E fields can be visualized in Fig. 4.1, where the geometry used for the example corresponds to the case presented in Chapter 5. This method has been proven to be efficient but could be improved; the cells quality of the elements with the lowest E frequently dropped first, but the deformation did not sufficiently affect cells closer to the object so that the computations stopped and failed even though cells at R min ≤ R ≤ R max were still nearly non deformed.

Adjustment of pseudo-material properties

In order to improve the previous method, the idea is to make the cells pseudo-Young modulus E depend on their quality. The latter can be determined quantitatively by computing the cells skewness S defined by Eq. (2.14). This criterion is then used to adjust the pseudo-solid elements flexibility during the simulation such as

E(t n+1 , S(t n )) = E int -E(t 0 ) S(t n ) -S(t 0 ) S max -S(t 0 ) + E(t 0 ). (4.3)
where S max is chosen at 0.90. Note that the pseudo-Young modulus at the beginning of the computation E(t 0 ) is established according to the Eq.(4.2). Equation(4.3) is applied only for cells where R > R min because the properties of cells close to the object has to be homogeneous as most as possible to guarantee that these elements remain undeformed. However, this single modification is not enough to considerably improve the method. In fact, the solving of Eq.( 4.1) for a strong displacement will result in a mesh with a deformed cells zone. That will induce an increase of the pseudo-Young modulus of these cells because of Eq.( 4.3), so that they will become more rigid than their neighbours. The solving at the next time step will then lead to a mesh where that same zone has not been deformed because of the previously computed high value of E, but their neighbours on the contrary will withstand all the deformation. The issue here is that the solved problem is still defined according to the initial configuration, and therefore the cell skewness S cannot evolve progressively. To make this technique efficient, the reference configuration used to compute the stiffness matrix K has to be updated at each time step with the new node position, which means to update continuously the equilibrium position of the pseudo-solid. The computed displacement becomes then an increment dd n+1 used to move nodes between their position at t n and the new one at t n+1 . Besides, to prevent high gradient of E, the pseudo-Young modulus computed with Eq.(4.3) is filtered once with a scatter-gather algorithm, given that this data is stored at the element. Tests showed that this strategy improves significantly the efficiency of the algorithm.

An example of application of the full method is given in Fig. 4.2. It shows skewness fields of a test case where a domain boundary, the rod behind the cylinder, moves according a prescribed sinusoidal displacement at different instants. For this test, a mesh with inhomogeneous cell size has been used; close to the cylinder and the rod, a zone with small elements can be identified. The mesh movement strategy has to ensure that these cells will not be too much deformed as explained in previous section. With the present method, the good behaviour is obtained by choosing a correct value for R min , and the different snapshots highlight that the skewness in this region remains intact. Moreover, it can also be seen that the two critical zones in terms of skewness progressively appear; one at R = R min and the other at R = R max . That can be explained by the stronger pseudo-Young modulus gradients of these regions. Nevertheless, the two last snapshots prove that the rigidification of these cells leads to a smooth cell deformation, resulting in a satisfying skewness distribution.

A comparison of the method of section 4.1.2 and the method of section 4.1.3 is given in Fig. tend to deform, while the other cells in the transition zone remain nearly unchanged. With the adjustment of pseudo-material elements properties, it is clear that the skewness field is much more homogeneous, thanks to the rigidification of close wall cells. This last technique appeared consequently more robust to handle strong displacement and maintain a lower maximum skewness. An example of pseudo-Young modulus field after a large displacement is given in Fig. 4.4. It emphasizes that regions forced to stretch see their cell skewness decrease, and on the other hand compressed regions undergo growing skewness. This causes a pseudo-Young modulus profile quite different from the one at t = 0 given Fig. 4.1. This efficient mesh deformation method presents then the advantage to be robust, easy to implement and without parallelization issues. Furthermore, it allows the user to control which mesh region can be deformed or not.

Nevertheless, for certain cases with very large deformation, moving or rotating object, DMA is used (see section 2.2.1.4). To combine efficiently this feature with the pseudomaterial method, the stiffness matrix K has to be updated at each re-meshing step. In fact, a new mesh with a low maximum skewness has to be considered as a new equilibrium position. Besides, the previous E field resulting from adjusting the pseudo-Young modulus as a function of skewness becomes irrelevant because the skewness field is completely changed. The distance from the object R is then recomputed and a new pseudo-Young modulus field is established with Eq.(4.2). The entire method for mesh movement developed in this work is summarized in Fig. 4.5. Finally, it must also be noticed that the chosen time step can have a strong influence on the Fig. 4.5: Scheme of the mesh movement method developed in this work. reversebility of the algorithm. Figure 4.6 shows the evolution of the maximum skewness of the domain in function of time for the previously introduced case with a τ periodic prescribed motion of the rod. It can be seen that for ∆t/τ = 2.5 × 10 -2 the maximum skewness is increasing for each cycle of prescribed displacement, even if the geometry returns to the initial configuration every τ /2 seconds. This is caused by the incremental formulation used with the adjustment of properties. On the other hand, with a time step ten times smaller, this effect vanishes nearly entirely. Note that DMA is not used here to highlight this effect. In practice, considering the time step necessary for FSI computations, this effect remains acceptable and is not restrictive because if the maximum skewness finally reach too high value ( S ∞ < S lim with S lim = 0.99), the DMA can still be used. 

FSI coupling 4.2.1 Data transfer via CWIPI

FSI simulations consist in coupling fluid (ALE) and solid (SMS) solvers. The coupling conditions occur at the interface Γ between fluid and solid as,

       u n+1 = w n+1 = d n+1 -d n ∆t f n+1 = ˆΓ µ ∂u n+1 ∂n + P n+1 n dΓ (4.4a) (4.4b)
with µ the dynamic viscosity and n the normal direction to Γ pointing on the solid to fluid direction. In fact, solid imposes its velocity to fluid while fluid applies a force on solid through viscous shear and pressure. As a partitioned approach is chosen here (see section 1.2), the interface Γ displacement d has to be sent from the SMS to the ALE solver, and the fluid forces applied on Γ f has to be sent from the ALE solver to the SMS. The coupling is then performed by data exchange between solvers at the interface Γ ensured by the CWIPI (Coupling With Interpolation Parallel Interface) library [START_REF] Duchaine | On a first use of cwipi at cerfacs[END_REF][START_REF] Quémerais | Coupling with interpolation parallel interface[END_REF]. This library allows to compute data interpolation based on boundary nodes coordinates, which is mandatory when meshes are not coincident. Nonetheless, the library has not been designed to support quadratic elements. As a FSI simulation involves surfacic coupling, faces of the quadratic elements used by the SMS have to be cut into linear elements, as shown in Fig. 4.7. Now that the fluid solver (Chapter 2), the solid solver (Chapter 3) and the mesh movement solver have been presented, next part will present different possible coupling scheme, using a simple test case. 

Weak coupling 4.2.2.1 Case presentation

This part aims at explaining why a strong coupling scheme is necessary for certain cases. The coupling scheme used in the rest of this work will then be introduced step by step. For that, using a simple test case, the density ratio ρ s /ρ f will be varied to highlight the instabilities induced by the added mass effect. Note that other parameters, like geometry, have also an influence on this effect [START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF][START_REF] Förster | Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows[END_REF], but only ρ s /ρ f will be discussed here. Thus, increasingly complex schemes will be tested to study their robustness against more and more unstable cases. It will finally lead to the actual scheme used to reproduce cases of next chapters. It should also be precised that more sophisticated schemes exist in the literature, and that will be discussed as perspective of this work in section 7.2.

A simple 3D case of a flexible beam in a channel has been devised to study the stability of the different schemes with low cost tests. The case is illustrated in Fig. 4.9. The beam has a lenght l = 1 m, a square section of side a = 0.1 m and is reproduced with 10 27nodes hexahedrons. The material properties are E = 3.6 GPa, ν s = 0.4, and ρ s will be case dependent. The fluid domain dimensions are 5m × 4m × 3m and the fluid mesh is composed by 38 × 10 3 tetrahedrons. The fluid properties are ν f = 10 -6 m 2 .s -1 and ρ f = 10 3 kg.m -3 . The inflow velocity is U ∞ = 1 m.s -1 . In order to increase the structure deflection, a sinusoidal displacement of period T = 1 s and amplitude A = 0.1 m is imposed at the basis of the beam. For the mesh movement, the pseudo-solid method presented in the last section is used and slip boundary conditions are used for channel walls.

The beam will then bend under the flow effect. Fluid forces applied on the structure and beam tip displacement will be used for comparison.

Parallel synchronous scheme

The first approach proposed is very simple; data for coupling are exchanged at the beginning of the time step and both fluid and solid solving are computed simultaneously. The scheme is given in Fig. 4.10. The n + 1 time iteration begins with computation of the time step value ∆t f given the stability condition of the Runge-Kutta method used by fluid solver. Note that the SMS uses the generalized-α (see section 3.1.3.3) temporal scheme which is unconditionally stable. Thus, ∆t f is sent from the fluid to the solid and ∆t s = ∆t f is imposed for the SMS. In the present case, it results in a time step of about 15 ms. This method ensures optimal computational cost, but not the consistency between fluid and solid solution at the end ot the time step. Figure 4.11 compares the results obtained during the first ten seconds with ρ s /ρ f = [3.0, 2.0, 1.0]. It can clearly be seen that instabilities on forces (note that logarithmic scale is used) and d x are growing when ρ s /ρ f decreases. For ρ s /ρ f = 1, the forces diverges so that the computation failed. It must also be noted that important instabilities on the drag force reappears for ρ s /ρ f = 2 even after several seconds with small variations. This low cost scheme can be useful for simple case where a global behaviour is studied, but lacks of accuracy and does not allow to reproduce cas with important added mass effect.

Serial staggered scheme

This second scheme is presented in Fig. 4.12. It is sequential and begins with an estimation of structure displacement with

d 0 n+1 = d n + ∆t f v n (4.5)
where v is the solid velocity. This extrapolated displacement is then used by the ALE solver to compute fluid forces. This latter are sent to the SMS and taken into account to compute d n+1 . This method ensures a better consistency between solutions than previous scheme, but Fig. 4.12: Serial staggered scheme.

it is not perfectly accurate as d 0 n+1 = d n+1 . Figure 4.13 compares the results obtained during the first two seconds with ρ s /ρ f = [1.0, 0.75, 0.5]. With this scheme, case with ρ s /ρ f = 1 can be reproduced. Nonetheless, for lower density ratios, instabilities appear. They finally vanish for ρ s /ρ f = 0.75 but they make the computation fail for ρ s /ρ f = 0.5. This scheme is then slower than the previous one, but more precise; however, it does not allow case with important mass effect. In this test, this problem appears for very low ρ s /ρ f , but for other conditions, higher ratios can still result in unstable case, like in section 5.4.2 where ρ s /ρ f = 10 but the case cannot be reproduced with a weak coupling.

In order to enforce the equilibrium of the traction and displacement on the fluid-structure interface and ensure consistency between fluid and solid solutions at each time step, a strong coupling is required. This implies an additional iterative procedure during time advancement. The chosen strong scheme is explained in the next section. Fig. 4.13: Result obtained with the serial staggered scheme for different density ratios ρ s /ρ f .

Partitioned semi-implicit predictor-corrector coupling scheme

The FSI coupling scheme applied is given Fig. 4.14 and is similar to the one proposed by Breuer et al. [START_REF] Breuer | Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation[END_REF]. This coupling scheme is the one used in the rest of this work, so it will be explained in details. It can be split into different steps:

1. The n + 1 time iteration begins with computation of the time step value ∆t f given the stability condition of the Runge-Kutta method used by fluid solver. Note that the SMS uses the generalized-α (see section 3.1.3.3) temporal scheme which is unconditionally stable. Thus, ∆t f is sent from the fluid to the solid and ∆t s = ∆t f is imposed for the SMS.

2. New displacement of the interface Γ is estimated thanks to the following extrapolation

d 0 n+1 = d n + α 0 ∆t f v n + α 1 ∆t f (v n-1 -v n ) (4.6)
where v is the solid velocity, and α i are interpolation coefficients. For α 0 = 1 and α 1 = 0, Eq.(4.6) corresponds to a linear extrapolation while for α 0 = 1 and α 1 = 1/2 it corresponds to quadratic extrapolation. This last option leads to a faster convergence so it is used in this work. 3. Mesh movement is solved thanks to the method explained in section 4.1 with the displacement condition d 0 n+1 . That results in a nodes velocity field w 0 n+1 used to perform the "velocity prediction" step, as detailed in section 2.2.1.1. The intermediate velocity u * n+1 obtained is stored apart.

4.

A new pressure field is then determined with Eq.(2.10) and used to perform the "velocity correction step" via Eq.(2.9d). With the resulting pressure and velocity fields, the fluid force applied on the solid f k n+1 can be computed. Here the upper index k corresponds to the number of subiterations in the FSI loop. Note that absence of this index refers to converged values.

The f k

n+1 field is sent from the fluid to the solid by using CWIPI library.

6. The displacement d k n+1 in the solid is computed using the methodology detailed in section 3.1.

7. At this stage, both fluid and solid have been solved at least once. The dynamic equilibrium is then checked to verify the consistency of the two solutions. This checking is performed with

d k n+1 -dk-1 n+1 ∞ d k n+1 -d n ∞ ≤ ε F SI (4.7)
where ε F SI is a chosen convergence criterion, and d0 n+1 = d 0 n+1 . If the FSI solution is converged, the solution at the considered time is finally determined and next time step can be started. 8. Otherwise, the computed displacement has to be underrelaxed on Γ with

dk n+1 = ωd k n+1 + (1 -ω)d k-1 n+1 (4.8)
where ω is a constant underrelaxation factor defined by the user. This value can also be computed at each subiteration by different means [START_REF] Küttler | Fixed-point fluid-structure interaction solvers with dynamic relaxation[END_REF] but tests for our cases show that different methods did not allow to guarantee stability. Then, an accurate value of ω has to be found for the different case; a too large value will make the computation diverge, or will cause instability on fluid forces. On the other hand, the lower ω is, the greater will be the total number of subiterations N F SI required before reaching convergence.

9. The underrelaxed displacement dk n+1 is then sent to the fluid via CWIPI.

10. A new field of w k n+1 is computed thanks to the mesh movement solver (MMS). It has to be precised that before the solving, the domain is put back to its position at t n . A new increment of displacement has to be computed but the adjustment of pseudo-material parameters with Eq.(4.3) has to be done only once the convergence is reached.

With the previously stored velocity prediction u * n+1 and the updated w k n+1 , new pressure and velocity fields can be determined so that step 4 can be repeated and updated fluid forces f k+1 n+1 can be computed, closing so the FSI loop. This method thus ensures stability with a partitioned coupling and can be easily implemented, but presents the main drawback that the computational cost will depend on the number of FSI subiterations N F SI necessary to reach convergence. This number depends on a lot of factors and is initially impossible to determined. The skipping of the velocity prediction once in the FSI loop was initially proposed by Fernandez et al. [START_REF] Fernández | A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid[END_REF]. It allows to reduce computational cost and it has been shown that it does not affect the final result. Also, the underrelaxation and the convergence checking can be performed on f k n+1 instead of d k n+1 . The case of section 4.2.2.1 is now reproduced with this scheme for ρ s /ρ f = 0.5. Numerical parameters are ω = 0.5 and ε F SI = 10 -3 . Figure 4.15 shows the results. It shows that the computed solution is very accurate and whithout instabilities. Only the first time iterations presents a spike of drag, which is due to the non physical initialization of the flow. It can also be observed on the curve of N F SI that solid state corresponding to the maximums and the minimums of d y are unstable; at these instants, structure has a small inertia so that it requires more subiterations to determine the two consistent solutions. This phenomenon will also be observed on cases of the next chapters. Second graph also highlights that displacement and force have the same convergence behaviour.

|| f k n+1 -f k-1 n+1 || ∞ || f k n+1 -f n|| ∞ Fluid convergence 0.
This coupling scheme has finally been adopted for the present work. On each case, tests have to be done to find suitable values of ω and ε F SI to guarantee stability but also to minimize the computational cost. Also, in several cases, it has been noticed that the flow had to be established before starting the FSI coupling. As a matter of fact, whithout substantial resulting fluid forces on the structure, it seems that the scheme does not allow to find a stable solution and the successive computed forces within the FSI loop tend to diverge. This specific point has been a large source of difficulties in the PhD and took a lot of time to be identified. An important perspective of this work could be to develop a robust initialization strategy.

FSI coupling with DMA

It was important to be able to use DMA with the FSI solver to reproduce case with large deflection or flexible moving object. However, as mentioned in section 2.2.1.4, DMA can induce pressure spike in some configurations. This strong discontinuity on fluid force can disturb the FSI coupling and make the computation diverge. Attempts had been made to correct the pressure spike and reconstruct another pressure field after DMA but it was not enough to stabilize the coupling.

The solution finally adopted consists in an extrapolation of the fluid forces at the time step after the re-meshing. It is computed as

f n+2 = 2 f n+1 -f n (4.9)
and is sent to the solid instead of the normally computed f k n+2 at each subiteration. The underrelaxation factor is then temporarily set to 1 so that d 2 n+1 -d1 n+1 = 0 at the second subiteration and N F SI is systematically equal to 2 after DMA. This solution was very simple to implement but revealed quite efficient. Figure 4.16 shows the results obtained for the previous case where DMA was forced every 100 time iterations. The DMA step can be identified on the skewness curves by the sudden drops. It can also be noticed that at next time iteration, N F SI = 2. Other cases with DMA will be presented in next Chapters.

The entire numerical methodology used in the FSI solver has now been presented. The three schemes studied in this Chapter are still available in the FSI solver of YALES2. These developments occupied approximatively the first half of the PhD. It was then essential to correctly validate this new solver. Next Chapter will present the validation against a 2D laminar reference test case. Chapter 5

Validation against 2D numerical laminar cases

In this chapter, a complete validation of the previously introduced FSI solver is given, including mesh convergence studies. For that, a 2D numerical benchmark is reproduced. It involves the interaction between an elastic rod and a laminar incompressible flow. The chapter starts with validations of fluid and solid solvers independently, to finally presents two cases of FSI, with and without Dynamic Mesh Adaptation. 

Case presentation

In order to assess the present methodology, a 2D laminar FSI test case is first considered: the benchmark proposed by Turek & Hron [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]. This numerical case consists in the interaction between an elastic rod and a laminar incompressible flow. The benchmark proposes to validate each solver independently in preliminary tests. Therefore, three different test cases including mesh convergence studies are presented in this part.

This case is inspired by the older benchmark of an incompressible flow around a cylinder [START_REF] Schäfer | Benchmark computations of laminar flow around a cylinder[END_REF] except that a flexible rod is attached to the back side of the cylinder. The geometry and dimensions are given in Fig. 5.1 and Tab. 5.1. By measuring from the left bottom corner of the channel, the cylinder center position is then C = (0.2, 0.2) while the rod tip is situated at A = (0.6, 0.2). It should be noticed that the setup is intentionally non-symmetric (with H c = H/2) to prevent any influence of the computation precision. For the three folowing tests, reference values have been taken from [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]. They are obtained with a fully implicit monolithic ALE-FEM method with a fully coupled multigrid solver [START_REF] Hron | A monolithic fem/multigrid solver for an ale formulation of fluidstructure interaction with applications in biomechanics[END_REF] and are almost grid independent. 

CFD tests

To first validate the fluid solver alone, the benchmark proposes three cases with different physical parameters: the case named CFD3 is chosen here. The solid is considered perfectly rigid so that the test case focuses on the laminar flow description around the cylinder and the attached rod. Quantities used for comparison will then be the fluid forces applied on the whole submerged body, computed according Eq. (1.1b), for a fully developed flow and for one full period of the oscillation. In fact, for this case, a non stationary regime is reached where pressure distribution fluctuates. The flow is considered as incompressible, with a density ρ f = 1000 kg.m -3 and a kinematic viscosity of ν f = 0.001 m 2 .s -1 . A parabolic velocity profile u(x = 0, y) is prescribed at the inlet as

u(x = 0, y) = 1.5u ∞ y(H -y) (H/2) 2 . ( 5.1) 
In CFD3 case, u ∞ = 2 m.s -1 leading to a Reynolds number Re = 200 which leads to vortex shedding behind the cylinder, as illustrated in Fig. 5.4. No-slip boundary conditions are applied at channel walls and at the body. Simulations are performed on three different meshes, M1 f , M2 f and M3 f composed of triangles. They are characterized by two metric values, ∆x 1 and ∆x 2 , which correspond to cell size close to the cylinder and the rod, and to the cell size in the rest of the domain, respectively. These values are given in Tab. 5.2.

M1 f M2 f M3 f ∆x 1 [m] 1 × 10 -3 8 × 10 -4 6 × 10 -4 ∆x 2 [m] 1.25 × 10 -2 1 × 10 -2 0.75 × 10 -2 N elem (×10 3 ) 73 98 173 
Table 5.2: Characteristics of the three meshes used for CFD3.

The timestep ∆t used here is computed following the Courant-Friedrichs-Levy (CFL) convective time step constraint by keeping CFL number CF L = u∆t/∆x smaller than 0.8. This leads to a time step value around 139 µs, 113 µs and 84 µs for meshes M1 f , M2 f and M3 f , respectively.

As precised above, fluid forces oscillations are compared here. Amplitudes, mean value and frequencies have been computed for each mesh and are presented in Fig. 5 [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF].

case, amplitudes of drag and lift and mean lift converge towards the reference data when the grid is refined. Note that the mean drag force and the frequency are less sensitive to mesh refinement with an error about of 1% even for the coarser mesh. Therefore, the results allow to consider that the CFD solver is validated. [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]. Time offset is due to different computation initializations.

CSM tests

The solid solver needs now to be validated with pure structural test. This test consists in computing the deformation of the flexible rod in a gravitational field g = (0, 2) m.s -2 without taking into account the fluid. In this study, the CSM3 test is chosen because it is the only time dependent case. It starts from the undeformed configuration and as there is no damping, the structure immediately oscillates periodically. The material is characterized by a Poisson's ratio of ν s = 0.4, a Young modulus of E = 1.4 MPa and a density of ρ s = 1000 kg.m -3 . As significant deformations are expected, the Saint-Venant-Kirchhoff material model is used.

Three meshes have been made for this test, corresponding only to the deformable part of the body because the cylinder is always considered perfectly rigid. These meshes are only composed by 9-nodes quadrilaterals of size ∆x given in Tab. 5.4.

As the structure is clamped to the backside of the cylinder, a non displacement boundary condition is applied to the corresponding nodes. The chosen time step is ∆t = 0.005 s (same than in [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]) and is applied with the generalized-α method with the spectral radius ρ ∞ = 0.8 (Eq.(3.85)).

For comparison, displacement of previously defined point A is tracked in time. Once again, mean values, amplitudes and frequencies are computed for displacements d x and d y along x-axis and y-axis, respectively. All results are gathered in Tab. 5.5 and in Fig. 5 Differences with reference values are here minor, even though grid used in the reference study is much finer (5120 elements). Efficiency of 9-nodes quadrilaterals seems here confirmed since errors are not above 2% for all quantities, except for the amplitude of d y obtained with M1 s , which converges with grid refinement anyway. This close agreement with reference data allows then to successfully validate the CSM solver. 

FSI tests

FSI3 case

Finally, to validate the coupling between fluid and solid solvers, the FSI3 benchmark has been reproduced. The fluid forces are now applied to the flexible structure so that it deforms and starts interacting with the flow. Fluid properties are the same as in CFD3 but for the solid, the Young modulus is chosen as E = 5.6 MPa. This case is particularly challenging because ρ f = ρ s = 1000 k.m -3 , which maximizes the importance of the added-mass effect. Besides, the channel is narrow compared to the expected structure deflections; that imposes a very efficient mesh movement algorithm to keep a low maximum skewness. The method presented in section 4.1 is used here with R min = 0.02 m, R max = 0.2 m and y r = 100 m. These values allow the most refined zone close to the body to remain intact while coarser regions close to the channel walls will withstand the deformation. That can be seen in Fig. 5.4 which shows the resulting grid M1 f when the rod is at the maximum deflection. The method ensures a good grid quality without needs of DMA step. As regards the FSI coupling, the convergence criterion defined in Eq. (4.7) is set at ε F SI = 1 × 10 -5 and the underrelaxation factor is ω = 0.1. Because of the density ratio ρ s /ρ f = 1, higher values of ω do not allow to reach convergence within the FSI loop. Nonetheless, it results in a relatively low mean number of subiterations N F SI of 15.04 while this number averaged 55.21 in [START_REF] Breuer | Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation[END_REF] for the same value of ω. However, Breuer et al. [START_REF] Breuer | Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation[END_REF] managed to reach convergence with ω = 0.5 and N F SI = 9.38 which was not possible in the present study.

In the original case, the authors propose to progressively establish the flow starting with a zero velocity field in all the domain. Note that this cannot be done with the present algorithm because the fluid forces were so low that the importance of the added mass effect was relatively too important. Such an unstable configuration surely requires a more stable monolithic approach. Therefore, the coupling has here been started with a fully developed flow, as computed in CFD3 case.

Figure 5.4 also depicts an instantaneous velocity field. The vortex shedding at the cylinder is clearly visible and induces oscillating forces applied in the entire body as it has been seen in the CFD3 case of section 5.2. These forces cause the flexible structure displacement resulting in periodic displacement of the rod behind the cylinder. For comparison, sinusoidal displacement of previously defined point A is measured and presented in Fig. 5.5 and in Tab. 5.6. Even if numerical methodologies between the present study and the reference one are different, the results converge toward the reference values. The only disparity occurs for the mean d y obtained with mesh M2 f &M2 s . Considering that it concerns a small value and that error obtained with mesh M3 f &M3 s drops below the one with M1 f &M1 s , it can be considered as a minor deviation. Consequently the overall agreement with reference data enables to validate the present FSI solver.

More data are given for the computation with M3 f &M3 s in Fig. 5.7. This has been performed with 16 CPU for the ALE solver and 1 for the SMS; the mesh movement solving took about 61% of the computational time, the fluid solving 26% and solid solving 13%. With the three first graphes, it can be deduced that the computed solution is very stable. As regards the mesh movement, the nearly constant mean skewness in the domain confirms that only few cells are problematic. As for the maximum skewness, it slowly increases because of the non reversibility of the algorithm already highlighted in Fig. 4.6. However, the maximum skewness finally reaches values where the variation are stable and which allow the computation to continue despite high skewness. The cycles observed of the number of subiterations N F SI were already observed in Fig. 4.15. It corresponds to the same oscillations than d y . 

FSI2 case

Another proposed benchmark FSI2 [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF] has also been reproduced and statisfying results have been obtained. In this test case, ρ s /ρ f = 10 which makes the coupling less unstable, but it still requires the strong coupling scheme. This allows to apply an underrelaxation of ω = 0.3 and convergence is reached with a number of FSI subiterations that averages 4.5. Contrary to the FSI3 case, here the larger deflections impose the use of the DMA, which took less than 0.1% of the computational time. Animation of this case can be visualized at https://www.youtube.com/watch?v=qLWOg_EJtTM. With M 2 f & M3 s , the amplitudes were predicted with less than 2.3% of differences and frequencies with less than 4.5% in comparison with [START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]. Results are given in Fig. 5.8 and in Fig. 5.9. Here the effect of DMA on pressure mentionned in section 4.2.4 can clearly be seen on the two first graphes. At the time iteration after DMA, the Eq.( 4.9) is then used, allowing the pursuit of the computation. Nevertheless, this destabilizes the solution as it can be deduced from the graph of N F SI . The effect eventually vanishes but still increases the computational cost.

The entire FSI solver has thus been validated with success on a reference benchmark. It can be concluded that the strong coupling scheme developed in this work allows to reproduce accurately cases with important added mass effect. Also, the FSI2 case confirms that the DMA can be used for FSI coupling, allowing to reproduce case with large deflection on unstructured grid. Nonetheless, the objective of this work is to reproduce 3D experimental turbulent cases, as chordwise flexible blade for instance. The FSI solver then needs to be validated with cases of that kind; this will be presented in the next Chapter.

Chapter 6

Validation against 3D experimental turbulent cases

In this chapter, the developed FSI solver is used to reproduce turbulent experimental case. At first, the methodology is validated against a case in which a flexible plate clamped behind a cylinder immersed in a turbulent flow. Afterwards, a simulation of an experiment with flexible pitching foil is undertaken in order to verify that the FSI solver is able to reproduce cases of that kind. 

Case presentation

For completness, the FSI solver is now validated on the experimental case performed by Kalmbach et al. [START_REF] Kalmbach | Experimental piv/v3v measurements of vortex-induced fluid-structure interaction in turbulent flow-a new benchmark fsi-pfs-2a[END_REF], named FSI-PfS-2a. This case deals with a turbulent flow which leads to large deformation of the structure.

This test case is derived from the 2D case considered in the previous section; it consists of a cylinder fixed in a water channel. A flexible rubber structure with an attached steel weight is clamped behind it. The geometry and dimensions are detailed in Fig. 6.1 and Tab. 6.1.

The inflow velocity u inf low is set at 1.385 m.s -1 resulting in nearly symmetrical, large and reproducible structural displacement. The measured inflow turbulence level is T u inf low = 0.02 and is considered sufficiently low to be ignored in the rest of the study, a choice motivated by previous studies which also did not take it into account [START_REF] Nayer | Flow past a cylinder with a flexible splitter plate: A complementary experimental-numerical investigation and a new fsi test case (fsi-pfs-1a)[END_REF][START_REF] Nayer | Numerical fsi investigation based on les: Flow past a cylinder with a flexible splitter plate involving large deformations (fsi-pfs-2a)[END_REF]. The water density is ρ f = 1000 kg.m -3 and the dynamic viscosity is µ f = 0.001 Pa s. The structure is composed of two different materials; the flexible part is made of para-rubber while the bonded rear mass is made of steel. All properties can be found in Tab. 6.2. The rear mass is here added to emphasize the structure motion and trigger the second swiveling mode, unlike the first case FSI-PfS-1a [START_REF] Nayer | Flow past a cylinder with a flexible splitter plate: A complementary experimental-numerical investigation and a new fsi test case (fsi-pfs-1a)[END_REF]. The Reynolds number based on cylinder diameter gives Re = 30 470 and it is observed experimentally that the flow is in a sub-critical regime. The boundary layers around the cylinder are still laminar but the flow becomes turbulent downstream. At this point, a large variety of spatial and temporal frequencies appears but only the lowest ones can be found in the structure displacement. The flexible part thus deforms in the second swiveling mode with a frequency of f F SI = 11.25 Hz.

Density

Numerical setup

In order to reduce computational cost, a subset case has been executed in [START_REF] Nayer | Flow past a cylinder with a flexible splitter plate: A complementary experimental-numerical investigation and a new fsi test case (fsi-pfs-1a)[END_REF] where dimensions along z-axis were reduced. Structure width then became w = l 1 + l 2 , and the gap between channel walls and the structure was ignored such as the test section width W was equal to w . For the full case, these walls were assumed as slip walls while periodic boundary conditions were used for the subset case. The comparison of the results in terms of structure deflection but also flow field between both cases has demonstrated that this simplification was valid. Only the subset case is then considered in the present study with the difference that the small gap between the flexible part and the channel walls is taken into account. Test section height then becomes W = l 1 + l 2 + (Ww). Therefore, solid nodes on these sides are free and a boundary condition that imposes a zero z-displacement is not mandatory. For the fluid, slip walls are assumed for these boundaries to maintain the blocking effect and limit flow recirculation and thus reproduce the same effect than in the experimental setup.

Considering that the flow relatively away from the body will not affect the structure motion, fluid mesh has been refined in the zone of influence around the cylinder and the plate. First cell size close to the body is equal to 9 × 10 -3 D and slowly decreases to 2.3 × 10 -2 D in the rest of this region, as it can be seen in Fig. 6.2. Consequently, a grid composed of about 40 million tetrahedra is generated. As precised above, all channel walls are considered as Fig. 6.2: Fluid mesh metric field (log scale)(left) and solid mesh (right) used to reproduce the FSI-PfS-2a case. slip walls since the full resolution of their boundary layers would be too costly. Nevertheless, this simplification is expected to have no influence on solid motion. On the other hand, the cylinder and the structure are defined as no-slip walls. Once again, the timestep of the simulation is based on the CF L condition leading to ∆t ≈ 5×10 -5 s. For the flow simulation, LES is performed and the SGS model used is the dynamic Smagorinsky model [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF]. The pseudo-solid mesh movement is used with R min = 0.0025 m, R max = 0.08 m and y r = 100 and is combined with dynamic mesh adaptation.

Thanks to CWIPI (section 4.2.1), the two meshes do not need to be coincident. Thus, the solid mesh is composed by 900 27-nodes hexahedrons of size equal to structure height h and can be visualized in Fig. 6.2. The nodes against the cylinder are fixed but all the other ones are free to move, building five solid faces coupled with the fluid. For temporal advancement, the generalized-α method is used with a spectral radius ρ ∞ = 1.0 (Eq.( 3.85)). In a similar manner than in [START_REF] Nayer | Numerical fsi investigation based on les: Flow past a cylinder with a flexible splitter plate involving large deformations (fsi-pfs-2a)[END_REF], no structural damping are applied.

As explained in the previous section, the flow is first established before starting the FSI coupling. The underrelaxation factor is ω = 0.2 and the FSI convergence criterion ε F SI is equal to 5 × 10 4 . It results in a mean number of subiterations N F SI = 22.6. A cluster specifically designed for memory bound applications (eg: CFD codes such as YALES2) was used. It is based on AMD Epyc 7302 processors with 16 cores and 128Mo of L3 cache, providing high memory bandwith for each cores. Nodes with 128GB of RAM and two processors are connected with an InfiniBand HDR100 network (100Gb/s). The computation of the FSI-PfS-2a case was carried out using 240 cores for the fluid and 16 cores for the solid, so that one physical second could be predicted in 519 hours wall-clock, i.e. 133kH.CPU. The mesh movement solving took 28.6% of the computational time, the solid solving 52.2%, the fluid the DMA 2.0%. Given that the mesh movement solver and the SMS use the same linear solver, this computational time distribution highlights the impact of the preconditionner as mentionned in section 3.1.5.

Results

A visualization of the resulting simulation is given in Fig. 6.3 and 6.4 and an animation can be watched at https://www.youtube.com/watch?v=X7Zb7y67yAo. It shows that although the structure displacement is mainly two dimensional, three-dimensional flow structures appear in the wake of the cylinder. Furthermore, the vorticity field highlights the fact that the structure motion can deviate the vortex trajectories.

In order to compare with experimental data, a probe is positioned on the solid at 2 mm from the plate tip. To verify whether the displacement can be considered uniform along the z-axis, normalized y-displacement d y /D is measured at plate center z = 0.0 and extremities z ± 0.03. The progression over time for those quantities is plotted in Fig. 6.5. It can be seen that deviation between the three results is minor, confirming that d y /D can be computed as a mean value of those three points. This mean value is then averaged in 23 sub-parts of the phase in order to compare with experimental data. Results are collected over 5 periods leading to a mean standard deviation of about 0.01. The two phase-averaged d y /D signals are shown in Fig. 6.6 where standard deviation of each point is also represented. This figure highlights the good agreement between the numerical results and the experimental data. Table 6.3 gathers the maximum, minimum, amplitudes, mean and frequency values of the normalized y-displacement.

Note that the asymmetries of experimental data are unexpected considering the symmetry of the entire setup, but may be explained in [START_REF] Nayer | Numerical fsi investigation based on les: Flow past a cylinder with a flexible splitter plate involving large deformations (fsi-pfs-2a)[END_REF]. Following careful analysis, it has been concluded that errors were related with the assembly of the structure, especially the bond between the rubber plate and the cylinder and the bond between the cylinder and the test section. That explains the undesired mean value of d y /D of 0.019 while no mean displacement is expected in this direction due to symmetry. This experimental issue makes irrelevant any accurate comparison with the reference value for d y /D| max and d y /D| min . However, the amplitude of the structure oscillation is still valid and the numerical result deviates only of about 2.9%. This is also true for the predicted frequency where the error is around of 4.2%. The overall agreement with experimental values confirms that the present FSI solver is able to predict turbulent case with large deformation with high fidelity. More data are given in Fig. 6.7. It can be seen than despite the use of DMA, the solution is stable in terms of displacement and forces. Also it should be noticed that the remeshing step does not always results in low maximum skewness mesh. Nonetheless, the low quality cells can be within a zone which will not be deformed by the structure motion, as it is shown by the threshold obtained after 0.6 s. Finally, contrary to the case of section 5.4.2, the DMA does not induce any spike of the N F SI value.

This simulation confirms the ability of the developed FSI solver to reproduce with high fidelity 3D turbulent cases. This challenging case had been reproduced only twice in the literature so far [START_REF] Nayer | Numerical fsi investigation based on les: Flow past a cylinder with a flexible splitter plate involving large deformations (fsi-pfs-2a)[END_REF][START_REF] Kondratyuk | Investigation of the very large eddy simulation model in the context of fluid-structure interaction[END_REF], and never with unstructured mesh or 3D solid finite elements. Now that the FSI solver had been validated on several benchmarks, it can be used to reproduce a case of a chordwise flexible foil. The objective of the following part is then to verify is the developed FSI solver is able to reproduce such cases, but also to provide a deeper understanding of the FSI phenomenon occuring when flexible foil are used. Even if this key step has been initiated at a late stage of the thesis, some results were obtained and are presented in the next section. 6.2 Hoerner experimental case: flexible pitching foil

Case presentation

Several experiments involving chordwise flexible blade have been presented in section 1.1. They have been contemplated to test the present FSI solver, but choice of a case with only one blade seemed more suitable as it would be part of a good first step before reproducing an entire VAT. The case of Hoerner et al. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF][START_REF] Hoerner | Characterization of the fluid-structure interaction on a vertical axis turbine with deformable blades[END_REF][START_REF] Hoerner | Darrieus vertical-axis water turbines: deformation and force measurements on bioinspired highly flexible blade profiles[END_REF][START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF] has then been chosen. Also, this experiment was performed in the laboratory of the thesis, so that exchanges with experimentators were facilitated.

The goal of this experiment is to show how hyperflexible blades effectively adapt dynamically their shape and passively control the flow through deformation [START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF]. In order to generate high-resolution flow observation around the hydrofoil, only one blade is studied in a water channel. With VAT configuration, it can be shown [START_REF] Guillaud | Simulation et optimisation de forme d'hydroliennes à flux transverse[END_REF] that the angle of attack α (defined in Fig. 1.2) experienced by one blade is varying according to

α = arctan sin θ λ + cos θ where λ = ωR u ∞ , (6.1) 
with θ the azimuth angle, R the turbine radius, ω the angular velocity and u ∞ the inflow velocity.

To reproduce this variation, the blade is pitched by a drive system, as illustrated in Fig. 6.8 (and in Fig 1 .4). For that, half of one blade extremity is embedded in a rotating structure. The blade is disposed at 32 mm from the inlet, and its lenght is L = 173, 5 mm Fig. 6.8: Scheme of the experimental setup. The water tunnel dimensions are 1m × 0.28m × 0.175m. Extracted from [START_REF] Hoerner | Characterization of the fluid-structure interaction on a vertical axis turbine with deformable blades[END_REF]. so that there is only a gap of 1.5 mm between the free blade extremity and the side wall.

Four different hydrofoilds with a symmetric NACA0018 geometry were set up, with a chord of C = 66 mm. One of them was entirely rigid, while the others were composed of various materials, as shown in Fig 6 .9. The leading edges made of a milled aluminum pieces Fig. 6.9: Photographies of the bioinspired hydrofoil. Extracted from [START_REF] Hoerner | Characterization of the fluid-structure interaction on a vertical axis turbine with deformable blades[END_REF]. reach up to the first quarter of the chord. A carbon fiber plate is embedded in this part and the rest of the trail is composed by a silicone embodiment. Thus, the profile stiffness could be adjusted by changing the carbon-fiber blade thickness th between the three hydrofoils, from 0.3 to 0.7 mm. One part of the blade manufacturing as well as the experimental setup can be visualized at [151].

Parametric studies of rigidity, oscillation frequency and tip speed ratio have then been performed [START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF]. Considering that the goal of this part is to verify if the developed FSI solver is able to reproduce a flexible pitching foil case, the experiment resulting in the largest foil deformation seems to be a relevant choice. The corresponding parameters are th = 0.3 mm, f = 2.63 Hz, u ∞ = 3.07 m.s -1 and λ = 2. The chord-based Reynolds number then gives Re = 202620.

To measure blade deformation, the angle of deformation β is defined in Fig 6 .10. There-Fig. 6.10: Definition of the angle of deformation β.

fore, for the rigid blade, it gives α = β. Also, lift and drag forces applied on the blade are measured, as the velocity field around the foil. Figure 6.11 shows the obtained experimental results. Before trying to reproduce the flexible blade case, the rigid case is first simulated to Fig. 6.11: Experimental results. Extracted from [START_REF] Hoerner | Passive flow control mechanisms with bioinspired flexible blades in crossflow tidal turbines[END_REF].

ensure the chosen fluid mesh is able to describe accurately the flow.

Rigid foil simulation

In order to reduce the computational cost, the channel width is reduced from 2.65C to 1C. Preliminary tests have indeed shown that this change has not affected significantly the fluid forces per unit of length. Also, the gap between the extremity of the blade and the channel wall is not taken into account, and the channel walls are considered slip. The blade lenght then becomes L = 1C. The computationnal domain is shown in Fig. 6.12.

For the mesh movement, the grid velocity is prescribed in the whole domain, and DMA is used. This mesh strategy has already been discussed in section 2.2.2.2, in the case of Fig. 6.12: Fluid geometry. Channel width has been reduced in comparison with experiment from 2.65C to 1C. Also, the gap between the extremity of the blade and the channel wall has been ignored. Fig. 6.13: Prescribed grid velocity field for the rigid foil case. The mesh movement strategy has already been detailed in section 2.2.2.2. the VAT simulation. An example of grid velocity field is given in Fig. 6.13. The gravity is taken into account. The water density is ρ f = 1000 kg.m -3 and the dynamic viscosity is µ f = 0.001 Pa s.

In order to study mesh influence, two meshes with different cell sizes are generated, one with 27M tetrahedrons and the other one with 74M tetrahedrons. The metric fields of the two meshes is given in Fig. 6.14. It can be seen that mesh is refined in a large zone after the Fig. 6.14: Metric fields of the two meshes, 27M (left) and 74M (right). foil, in order to accurately predict the dynamic stall phenomenon occuring because of angle of attack variation. Flow is established before pitching the foil, and the two first oscillations are computed for each mesh. For accurate comparison, results should be averaged on a large number of periods, but it cannot be done easily at this point because of the ratio between the timestep dt and the period T . In fact, for the mesh 74M, dt ≈ 9 × 10 -6 s so that one oscillation requires T /dt ≈ 69500 iterations. However, preliminary tests on a larger amount of oscillations with the mesh 27M showed that results were similar from the second period, so that comparison with experimental data for t > 1T seems acceptable.

Results are compared in terms of lift and drag per unit of length. A comparison with experimental data for the two meshes is provided in Fig. 6.15. Hysteresis effects can be seen as the second period is slightly different from the first one. It can also be observed that lift and drag curves present a bump after each stall. This effect was already observed and analyzed in [START_REF] Guillaud | Simulation et optimisation de forme d'hydroliennes à flux transverse[END_REF]. Nonetheless, it does not appear in the experimental results; other tests demonstrated that this phenomenon was caused by the absence of gap at the blade extremity in the computational domain. Despite important differences in cell sizes, both meshes are giving similar results, in good agreement with experimental results. Those results confirms that the mesh influence is limited and that mesh 27M allows the accurate fluid forces computation. Therefore, this mesh will be used onwards for the flexible blade simulation.

Flexible foil simulation

For the flexible blade, reproducing real boundary conditions would imply setting displacement only at one extremity and taking into account the three materials composing the blade. Nonetheless, tests revealed that this configuration requires prohibitive computational time due to a lack of efficiency of the linear system solving algorithm of the SMS (see section 3.1.5). One solution was to consider the first quarter of the blade, entirely made of aluminum, as a perfectly rigid solid. The computational domain was then reduced to the silicone and carbon parts, and displacement was set on the solid face which is in contact with the aluminium part. Figure 6.16 illustrates the remaining solid domain, meshed with 10-nodes tetrahedrons. A first mesh was generated to take clearly into account the distinction between the silicone Fig. 6.16: Solid meshes composed by 10-nodes tetrahedrons; about 3000 10-nodes tetrahedrons for the mesh with the carbon plate (left) and about 1900 10-nodes tetrahedron without the plate. and the 3 mm carbone part. However, the differences in Young modulus values between these cells induce high condition number of the linear system, so that the solving requires a large number of iterations (more details in [START_REF] Aster | Généralités sur le gradient conjugué: Gcpc aster et utilisation de petsc[END_REF]). A similar situation has already been observed in section 6.1 due the steel weight linked to the rubber. It has finally been decided to not take into account explicitly the carbon plate in the solid domain, but to use instead a single material with physical properties between the silicon and the carbon, as given in Tab 6.17. This simplification made the computation 29 times faster. Several values have been tested but finally, the Young modulus was chosen as E = 1.28 MPa, the density as ρ = 1250 kg.m -3 , and the resulting mesh of 1900 10-nodes tetrahedrons is shown in Fig. 6.16. The poisson ratio was set to zero to prevent foil distension in spanwise direction.

Furthermore, the linear solving (see section 3.1) of the structure caused instabilities for the FSI coupling. A possible explanation is that the update of the interface fluid-solid is Fig. 6.17: Physical properties of the different materials. mandatory for the solid, to ensure consistency with fluid pressure normal to the boundary. Consequently, non linear solving was necessary.

As regards the FSI coupling, it should be noticed that only the part of the blade corresponding to the structure computational domain was coupled, and as a result, the first quarter of the blade appeared only in the fluid domain and its movement was prescribed. The underrelaxation factor is ω = 0.5 and the FSI convergence criterion ε F SI is equal to 5 × 10 -4 . Moreover, in order to stabilize the FSI coupling and reduce the number of subiterations N F SI required, structural damping is added with the stiffness proportional damping factor β equal to 0.05 and the mass proportional damping factor α equal to 0.0 (see Eq.( 3.71)).

It finally results in a mean number of subiterations N F SI = 3.39. The cluster presented in section 6.1.2 was also used, but this time with 20 cores for the solid and 225 for the fluid, so that one period of foil oscillation could be predicted in 53.25 hours wall-clock, i.e 13kH.CPU. It is only 6 times more than the computational cost of the rigid case simulated with the same fluid mesh. The mesh movement took 68.7% of the computational time, the solid solving 9%, the fluid solving 19.1% and the DMA 3.2%.

The first thing to consider is to verify that the chosen material properties allow to reproduce what has been observed experimentally. For that, numerical results are compared with experimental data in terms of lift, drag and deformation angle β in Fig. 6.18. It can be seen that the results are in good agreement with the experiment for the forces, and that the foil deformation is only slightly over estimated. The flow behaviour have then been well reproduced, allowing physical insights given that the solid problem simplification does not affect the flow configuration once the blade behaviour is similar. For the analysis of the FSI phenomenon, different post-processings have been done.

An animation showing the results can be watched at https://www.youtube.com/watch? v=d1A6ShfmbnM. At first, a visualization of the vorticity volumic rendering for different angle of attack is given in Fig. 6.19. It compares results computed for the rigid and flexible cases. For the rigid case, the dynamic stall can clearly be seen. It causes the generation of a first vortice above the foil. This will create a low pressure region, attracting the surrounding fluid, especially fluid coming from the other side of the foil. This finally lead to the generation of a second vortice at the trailing edge. That having been said, the analysis of the flexible case revealed that the generation of this second vortice induces the foil deformation. This second low pressure region appears indeed where the blade thickness is relatively small, and the pressure difference is sufficiently strong to deform significantly the foil. It finally results in completely different flow configuration. This explanation is confirmed by the analysis of the velocity and pressure fields shown in Fig. 6.20. The two vortices can be observed as well as the low pressure regions. The pressure distribution appplied on the blade is then very different between the rigid and flexible case, explaining the differences in lift and drag seen in Fig. 6.11. Also, the skewness fields highlight the difference of method used for mesh movement between the two cases, given that it is more complicated to move the fluid mesh when the blade is deforming.

Foil relative displacement compared to the rigid case for an angle of attack of α = 29.1 • is given in Fig. 6.21. It can be noticed that at the maximum deflection, deformation reaches 35% of the chord, confirming that the solver can reproduced cases with large foil deformation.

This simulation then confirms that the developed FSI solver is able to reproduce cases of chordwise flexible blade. These different analysis lead to a better understanding of the link between the dynamic stall and the flexible foil deformation. This also shows why a LES approach is crucial to perform accurate analysis of the flow. Further works would be necessary to complete this study and explain how exactly this phenomenon influences the turbine performances, but this could not be done in this work given the time requirements.

In the computation with the carbon plate, the FSI solver spent more than 90% of the computational time in the linear solving of the SMS. This highlights the need to enhance performances of the linear solver used by the SMS, as mentionned in section 3.1.5, to be able to reproduce cases with multi-materials solid. Nevertheless, the solutions are known (see section 7.2) and will be implemented in future works. Besides, once the simplification of the solid problem was made, this test proved that the developed method for the FSI solver allows indeed to reproduce cases of flexible pitching foil with large deformation, which has never been done in litterature so far with a 3D LES approach. It will then be used in future works to perform further physical analysis of this case, as well as the simulation of flexible blades turbine as part of the ANR project DYNEOL.

Chapter 7 Conclusion & Perspectives

Conclusion

Considering the necessity of energy transition, the importance to develop and enhance low carbon power sources as renewable energies keeps rising. In this context, recent experimental studies tend to show that the use of chordwise flexible blades for vertical axis turbines enhances their efficiencies and increases their lifetime. These potential improvements of turbine efficiency seem to be explained by the impact of the chordwise flexibility on dynamic stall which implies a drag reduction.

However, the FSI phenomenon occuring in these cases remains unclear in some aspects. Numerical simulations of these experiments would allow a better understanding of this effect and would open new perspectives for future improvements in the blade design. As a result, the main motivation of this thesis is the numerical study of VAT with chordwise flexible blades.

Although FSI phenomena are very common in nature and human activities, their numerical simulations remain a challenging task. It requires advanced solvers in different physic fields. Moreover, the resulting coupling can be very unstable, especially when fluid and solid densities are close. Different approaches are possible to face this problem, but cases of chordwise flexible blade involve a FSI solver with specific characteristics. For the fluid, it is necessary to use body fitted meshes to describe accurately the boundary layer at high Reynolds number. As regards the solid, the foil geometry imposes the use of 3D solid element in order to compute structure displacements. Finally, both solvers have to be strongly coupled to ensure consistency between fluid and solid solutions. These requirements explain the limited number of numerical studies about flexible foil. Some FSI solvers have yet been developed to face this challenge, but a RANS approach is systematically used. This do not always provide reliable results because the pressure distribution is not accurate enough to conveniently determine dynamic stall separation point position. This is why Hoerner et al. [START_REF] Hoerner | Characteristics of the fluid-structure interaction within darrieus water turbines with highly flexible blades[END_REF] suggest that three-dimensional LES approach is required to reproduce with high fidelity a high Reynolds number case involving a chordwise flexible blade. In fact, very few LES-based FSI solvers have been developed, and they never used 3D solid elements, making a chordwise flexible foil simulation impossible. To the best of author's knowledge, LES-based FSI solvers meeting all the previous requirements do not exist in the literature so far.

The aim of this work is then to develop a high fidelity FSI solver, able to reproduce a wide variety of FSI configurations, especially cases involving chordwise flexible blades. This solver uses LES approach to predict fluid dynamics and 3D solid finite elements for solid dynamics, all on unstructured meshes (Chapter 1).

All the implementations have been carried out within YALES2, a multi-physics library, initially designed for fluid mechanics. In order to predict the flow behaviour on moving grids, specific numerical methods are used by the ALE solver. They have been presented, as well as a mesh movement strategy using Dynamic Mesh Adaptation (DMA), allowing to reproduce cases of moving or rotating objects. A simulation of a four rigid blades VAT has then been performed, confirming that the ALE solver is effective and can be used for FSI coupling (Chapter 2).

Unlike the fluid solver, the solid solver has been developed from scratch in this work. This has represented one of the main task of this thesis. The FEM has been explained in details, and the SMS has been validated carefully with several tests (Chapter 3).

Also, body fitted techniques involve a fluid mesh movement computation. This can be difficult for large deformations, especially with unstructured grids. An original and efficient pseudo-solid method has then been proposed, meeting all the underlying requirements. The FSI coupling scheme has also been introduced step by step using a simple test case. The benefit of strong coupling has then been highlighted. The potential use of all the previous elements combination, including DMA, has thus been shown (Chapter 4).

Nonetheless, the developed FSI solver was requiring validation. For this purpose, a reference 2D numerical benchmark with laminar flow has been reproduced. For each cases, mesh convergence studies have been performed. After validation of fluid and solid solvers independently, the coupling has been validated against two FSI cases, with and without DMA (Chapter 5).

The methodology has then been applied to 3D experimental turbulent cases. The Kalmbach case has been studied. It consists of a flexible rubber structure with an attached steel weight clamped behind a cylinder. Once the structure is immersed in high Reynolds number flow, large deformations of the structure are obtained. This case has been succesfully reproduced even though it had never been simulated with unstructured fluid mesh or 3D solid finite elements by the past. That confirms the ability of the developed FSI solver to reproduce with high fidelity 3D turbulent cases.

Simulation of experiment involving chordwise flexible blade has been finally made at the end of the thesis. Even if simplification has been made for the solid problem, this confirms that the FSI solver was able to reproduce cases of flexible foil, completing the initial goal the thesis. The use of the LES approach also allowed physical analysis, providing deeper understanding of the link between the dynamic stall and the foil deformation. Simulation of this kind had never been done with a 3D LES approach. This work has demonstrated thus the potential of the FSI solver for its intended use (Chapter 6).

The development of a high fidelity FSI solver seems a sucess, and despite possible improvements detailed in the next sections, it can be used as a tool to reproduce a wide variety of FSI configurations.

The PhD defense can be watched at https://www.youtube.com/watch?v=Kc7vQDwIQP8& t=2422s.

Perspectives

As mentionned above, the principle axis of improvement is about computational time reduction. Most possible improvements are actually related to the SMS. In fact, this solver has been developed from scratch to ensure compatibility between solvers and to easily modify the FSI solver for future works. However, all features and advanced methods used in the literature for computational structural dynamics could not be implemented in this work. That is why the solid solver can be upgraded with well-known methods.

For faster computation, the linear solving algorithm needs to be improved with a better preconditionner. As detailed in section 3.1.5, One relevant choice providing many opportunities would be to make available the use of the PETSc library by the SMS [START_REF] Balay | PETSc Web page[END_REF][START_REF] Balay | PETSc/TAO users manual[END_REF][START_REF] Balay | Efficient management of parallelism in object oriented numerical software libraries[END_REF]. Also, it would be useful to implement more advanced techniques than the basic Newton algorithm used presently for non linear solving [START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF]. Finally, development should be undertaken to allow the use of different types of finite elements in the computational domain, or also other types, as shell or membrane elements which are well suited to describe thin structures.

As regards the mesh movement method, the pseudo-solid algorithm could be improved. Its computational cost can indeed be very important, as in section 6.1. Inspired from existing techniques [START_REF] Lefrançois | A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[END_REF], implementations to compute mesh deformation on a coarse grid and then interpolate on the computational grid have been undertaken, but not completed. In addition, other mesh movement methods for unstructured grid, as techniques based on Radial Basis Functions (RBF), could be tested and may result in lower computational cost [START_REF] Sheng | Efficient mesh deformation using radial basis functions on unstructured meshes[END_REF].

Another aspect slowing down computations is the large number of FSI subiterations N F SI required into the FSI loop. Only Aitken method has been tested in this work, but a lot of other schemes for partitioned simulation exist [START_REF] Degroote | Partitioned simulation of fluid-structure interaction[END_REF][START_REF] Bogaers | Quasi-newton methods for implicit black-box fsi coupling[END_REF][START_REF] Blom | Efficient numerical methods for partitioned fluid-structure interaction simulations[END_REF][START_REF] Naseri | A semi-implicit coupling technique for fluid-structure interaction problems with strong added-mass effect[END_REF]. A possible solution would be to combine YALES2 with the preCICE library [START_REF] Bungartz | precice-a fully parallel library for multi-physics surface coupling[END_REF].

Further works could aim at implementing the features to simulate simultaneously several FSI with different objects in the same domain. For instance, DMA could be used to reproduce several flexible falling objects, which is very difficult with body fitted techniques. Also, this would be necessary to simulate an entire flexible blades VAT. This work will also be used as a base for future studies, considering that the selected methods can be applied to a wide variety of FSI cases. Further works will be undertaken in order to complete the flexible foil simulations, and provide new physical insights on the use of chordwise flexible blade for VAT applications.

On the other hand, at IMAG (Institut Montpelliérain Alexander Grothendieck), a thesis has been started by B. Thibaud about numerical simulation of hemodynamics in deep vein valves. In this work, fluid dynamics and structure dynamics are at stake respectively for blood and valve tissues. The FSI solver is then used to predict the deformations of the leaflets under real blood pressure condition, as illustrated in Fig. 7.1. 
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  Fig. 0.8: Evolution of the world recoverable oil and gas discoveries, except US and Canada. Extracted from [8].
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  Fig. 1.3: Power coefficients comparison for rigid and flexible (morphing) blade VAT, obtained with the experiment of McPhee & Beyene. Extracted from [42].
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 14 Fig. 1.4: Photographies of the experimental set up used by Hoerner et al.. Extracted from [34].
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 16 Fig. 1.6: The number of papers on flapping foils since 1970 (top) and the proportion of paper involving foil according the nature of structure (bottom). Extracted from [69].

Fig. 1 . 7 :

 17 Fig. 1.7: Power coefficient comparisons for each VAWT simulation (left) and displacement magnitude (in meters) of the blade at E = 0.5MPa with a chord length c = 0.4m (right), by MacPhee & Beyene. Extracted from [73].
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 25 Fig. 2.5: Representation in 2D case of a cell (in purple) and of its reference shape (in green).

Fig. 2 . 6 :

 26 Fig. 2.6: Example of case with a rotating plate in a cylindrical domain. The mesh movement is here prescribed (by the Mesh Movement Solver (MMS)) so that a transition zone is established between the plate in solid rotation and the fixed walls. When the S max reaches a threshold value in the transition zone, DMA is then used to generate a new mesh adapted to the new geometry.
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 27 Fig. 2.7: Darrieus turbine (left) and water channel (right) used in the experiment.
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 28 Fig. 2.8: Water channel dimensions. Note that water height (here H water = 0.588m) can be adjusted.
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 21 Characteristics of the three meshes.

Fig. 2 . 9 :

 29 Fig.2.9: Three different mesh regions for the mesh movement prescription.
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 210 Fig. 2.10: Side view (left) and top view (right) of the computational domain where the masked regions are in red: the DMA does not occur in this region. In the present case, the masked region corresponds to the solid rotation zone.

Fig. 2 .

 2 Fig. 2.12: C p as a function of normalized time. Here τ is characteristic time such as τ = 2π ωn blades . As n blades = 4, a complete turbine rotation corresponds to 4τ .
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 2 Fig. 2.13: Power coefficient as function of T SR for different water channel height. The experiment is performed with a free surface of height correspond to the mesh 166M (H water = 1.47H).
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 214 Fig. 2.14: Velocity field obtained the three different channel heights H water = [1.47H, 2.47H, 4.47H]), front view just before the turbine (left) and side view (right), for T SR = 3.
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Fig. 3 . 2 :

 32 Fig. 3.2: Illustration of the displacement field discretization on a 3-nodes triangle. Extracted from [121].

. 20 )

 20 Both Eq.(3.13) and Eq.(3.19) then provide for the matrix form of the strain-displacement relation ε = Bu (3.21)

. 22 ) 24 )

 2224 Using Eq.(3.6), strain-displacement can now be expressed in function of node displacement u e as ε = Bu = n n a=1 BN e a u a = n n a=1 B e a u a = B e u e (3.23) where B e a is the strain matrix of element e at node a given by B In matrix form, Eq.(3.16) gives σ = Dε. (3.25)

. 28 )

 28 For plane stress or plane strain formulation of D, please refer to[122]. Now, Eq.(3.12) can be written with FEM formulation:B T σ + b e = 0. (3.29) By multiplying by N eT and integrating over the element Ω e , it gives: ˆΩe B eT σdΩ + ˆΩe N eT b e dΩ = 0. (3.30) Substituting Eq.(3.25) and Eq.(3.23), it comes ˆΩe B eT DεdΩ + ˆΩe N eT b e dΩ = 0 ˆΩe B eT DB e dΩu e + ˆΩe N eT b e dΩ = 0. (3.31a) (3.31b)
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 33 Fig. 3.3: Example of simulation computed with the Python solver, comparison with Ansys code.
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 34 Fig. 3.4: Reference and current configurations for finite deformation problem. Extracted from [119].
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 35 Fig. 3.5: Illustration of the Newton-Raphson method.

  M e ab = M e ab I and M e ab = ˆΩe N e a ρ e N e b dΩ e . (3.66)

  ρ e N e b dΩ e and M e ab = 0 when a = b. (3.68) Consistent or lumped mass matrices both have to respect the mass preservation condition given by m e = n n a n n b M e ab = ˆΩe ρ e dΩ e (3.69)
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 14 Use of reference space -Quadratic finite elements 3.1.4.1 Principle

Fig. 3 . 7 :

 37 Fig. 3.7: Geometric deformation of a 6-nodes triangles. Extracted from [121].

. 89 )Fig. 3 . 8 :

 8938 Fig. 3.8: Illustration of elements in real space (x, y, z) and corresponding elements in reference space (ξ, η, ζ). Extracted from [118].
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 39 Fig.3.9: Gaussian quadrature points and weights corresponding to Eq.(3.94). Extracted from[START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF].
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 310 Fig. 3.10: From top to bottom: 3-nodes triangles, 6-nodes triangles (left) and 4-nodes quadrilaterals, 8-nodes quadrilaterals, 9-nodes quadrilaterals (right).

Fig. 3 .

 3 Fig. 3.11: From top to bottom: 10-nodes tetrahedrons, 4-nodes tetrahedrons (left) and 27nodes hexahedrons, 20-nodes hexahedrons, 8-nodes hexahedrons (right).

Fig. 3 .

 3 Fig. 3.14: Stationary problem solved with 10-nodes tetrahedrons and linear (top) or non linear (bottom) method. Front view (left) and back view (right). Structures are colored by normalized vertical displacement.
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 3 Fig. 3.15: Results obtained (minimum of d y /C) for the four different cases and comparison with Ansys.
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 3 Fig. 3.16: Dynamic problem solved with 10-nodes tetrahedrons and non linear method (case E).
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 317 Fig. 3.17: Dynamic cases parameters. Structural damping is computed with α = 0.2 and β = 0.2 (Eq.(3.71)).
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 318 Fig. 3.18: Comparison of the normalized infinite norm of displacement computed with YALES2/Ansys for case A.
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 319 Fig. 3.19: Comparison of the normalized infinite norm of displacement computed with YALES2/Ansys for case B.
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 320 Fig. 3.20: Comparison of the normalized infinite norm of displacement computed with YALES2/Ansys for case C.
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 321 Fig. 3.21: Comparison of the normalized infinite norm of displacement computed with YALES2/Ansys for case D.

ForceFig. 3 . 22 :

 322 Fig. 3.22: Comparison of the normalized infinite norm of displacement computed with YALES2/Ansys for case E.
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 323 Fig. 3.23: Quadrilateral meshes used for mesh convergence study. The dimension is h = 0.5 m. From top to bottom, cell size s is respectively 0.5 m, 0.25 m, 0.125 m, 0.1 m, 0.05 m and 0.025 m.
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 324 Fig. 3.24: Displacement norm obtained with different quadrilateral meshes (4NQUAD).
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 325 Fig. 3.25: Results obtained (b = d ∞ in meter) for meshes composed by different finite elements of different sizes for the 2D case.
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 326 Fig. 3.26: Normalized error obtained with different 2D meshes. Here, b ref = b(s ref ) is computed with 9NQUAD, and s ref = 0.025 m.
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 327 Fig. 3.27: Results obtained ( d ∞ in meter) for meshes composed by different finite elements of different sizes for the 3D case.
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 328 Fig. 3.28: Normalized error obtained with different 3D meshes. Here, b ref = b(s ref ) is computed with 10NTET, and s ref = 0.025 m.
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 41 Fig. 4.1: Distance field from the object R (left) and pseudo-Young modulus field E (right).
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 4342 Fig. 4.2: Skewness field of a test case with imposed displacement for the moving boundary at different instants.

Fig. 4 . 3 :

 43 Fig. 4.3: Comparison of the pseudo-solid method of section 4.1.2 (top) and the method of section 4.1.3 (bottom).
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 44 Fig. 4.4: Pseudo-Young modulus field after large deflection of the rod while adjusting the pseudo-material properties with Eq.(4.3).
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 346 Fig. 4.6: Comparison of the maximum skewness obtained for different timestep ∆t. DMA is not used here.
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 47 Fig. 4.7: Adaptation of quadratic elements faces to make the SMS work with CWIPI.
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 48 Fig. 4.8: Data transfer via CWIPI from fluid mesh composed with tetrahedrons of size ∆x f (left) to solid mesh composed with 27-nodes hexahedrons of size ∆x s = 11∆x f (right).
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 49 Fig. 4.9: Test case configuration (top) and cross-section (bottom).
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 44 Fig. 4.10: Parallel synchronous scheme. Fluid and solid solving are performed simultaneously.

Fig. 4 .

 4 Fig. 4.14: FSI coupling scheme used for the present work.
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 4 Fig. 4.15: Result obtained with the strong coupling scheme for ρ s /ρ f = 0.5 (top) and evolution of solid and force convergence with subiterations for the first 20 time iterations (bottom).
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 4 Fig. 4.16: Result obtained with the strong coupling scheme for ρ s /ρ f = 0.5 with DMA.
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 51 Fig. 5.1: Sketch of the studied numerical test case.
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 52 Fig.5.2: Fluid forces integrated on the whole submerged body (cylinder+rod) computed with M3 f and results of the reference study[START_REF] Turek | Proposal for numerical benchmarking of fluidstructure interaction between an elastic object and laminar incompressible flow[END_REF]. Time offset is due to different computation initializations.
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 7054 ] 4 × 10 -2 2 × 10 -2 1 × 10 -2 N Characteristics of the three meshes used for CSM3.
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 53 Fig. 5.3: Displacement of point A along x-axis (top) and y-axis (bottom) obtained with M3 s and results of the reference study [145].
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 54 Fig. 5.4: Velocity field and deformed mesh of FSI3 benchmark reproduced with M 1 f & M1 s . Note that the domain has been cropped on the right side to focus on the deformable part.
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 55 Fig. 5.5: Displacement of point A along x-axis (top) and y-axis (bottom) obtained with M3 f &M3 s and results of the reference study [145].
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 5657 Fig. 5.6: Results of the FSI3 benchmark and comparison with the reference study [145].
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 58 Fig. 5.8: Velocity field and deformed mesh of FSI2 benchmark reproduced with M 2 f & M3 s . Note that the domain has been cropped on the right side to focus on the deformable part.
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 59 Fig. 5.9: Results obtained for FSI2 with M 2 f & M3 s .
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 61 Fig. 6.1: Sketch of the studied experimental test case. Extracted from [147].
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 63 Fig. 6.3: From top to bottom: velocity field, vorticity field and deformed mesh for the FSI-PfS-2a case. Note that the fields have been cropped but the entire domain can be seen in Fig. 6.2.
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 64 Fig. 6.4: Visualization of a Q-criterion volumic rendering for the FSI-PfS-2a case. The structure is colored by the normalized y-displacement d y /D.
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 65 Fig. 6.5: Normalized y-displacement at different z locations.
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 66 Fig. 6.6: Comparison of the numerical and experimental averaged phase of normalized ydisplacement.
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 67 Fig. 6.7: Results obtained with present computation. From top to botttom: lift and drag integrated on the cylinder and the plate, d y /D for different z positions, maximum skewness and number of subiterations.
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 618 Fig. 6.18: Comparison of forces and blade deformation with the experimental data for the flexible case.
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 619 Fig. 6.19: Vorticity volumic renderings of rigid (left) and flexible (right) foil cases.

Fig. 6 .

 6 Fig. 6.20: Velocity, skewness and pressure fields computed for the rigid (top) and the flexible (bottom) foil at α = 29.1 • .
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 621 Fig. 6.21: Relative displacement of the foil compared to the rigid case at α = 29.1 • .
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 71 Fig. 7.1: Simulations performed at IMAG with the FSI solver. Top: Leaflets in closed and open positions, the arrow represents the blood effect. Bottom: Flow velocity field in the middle place of the vein. Courtesy B. Thibaud.
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Table 2 .

 2 2.2. These values show that the solution seems converged at the 4th turbine rota-

		2nd turn	3rd turn	4th turn
		(4τ -8τ )	(8τ -12τ )	(12τ -16τ )
	C p on 18M	0.068	0.013	0.020
	C p on 50M	0.234	0.124	0.127
	C p on 166M	0.331	0.300	0.307
	expe		0.356	

2: Time averaged power coefficient computed on succesive turbine rotations.
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Table 5 .

 5 3: Results of the CFD3 benchmark and comparison with the reference study

	.2 and in

  .3.

					d x M3 s		d x Ref		
					d y M3 s		d y Ref		
		0.000							
	Displacement (m)	-0.100 -0.075 -0.050 -0.025							
		8.00 -0.125	8.25	8.50	8.75	9.00	9.25	9.50	9.75	10.00
					time (s)			

Table 5 .

 5 Mean d x [mm] Amp. d x [mm] Mean d y [mm] Amp. d y [mm] f [Hz] 5: Results of the CSM3 benchmark and comparison with the reference study [145].

	Ref [145]	-14.305	14.305	-63.607	65.160	1.0995
	M1 s	-14.057 (1.73%)	14.057 (1.73%)	-63.367 (0.38%)	63.367 (2.66%)	1.1074 (0.72%)
	M2 s	-14.398 (0.65%)	14.394 (0.63%)	-64.113 (0.80%)	64.436 (1.10%)	1.1053 (0.53%)
	M3 s	-14.257 (1.06%)	14.452 (1.03%)	-64.163 (0.87%)	64.872 (0.44%)	1.0972 (0.21%)

Table 6 .

 6 2: Structure properties for the FSI-PfS-2a case.

		[kg/m3]	Young's modulus [MPa]	Poisson's ratio
	Flexible structure (para-rubber)	1090	4.1	0.48
	Rear mass (steel)	7850	2.1 × 10 5	0.3

Table 6 .

 6 17.2% and d y /D| max d y /D| min Mean d y /D Amp. d y /D f d y /D [Hz] 3: Numerical results and comparison with the experiment.

	Exp	0.667	-0.629	0.019	0.648	11.25
	This study	0.632 (5.27%)	-0.627 (0.37%)	0.002 (86.37%)	0.629 (2.89%)	11.73 (4.23%)
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Chapter 4

FSI solver

This chapter describes the FSI solver, which couples the ALE solver and the SMS previously presented. It begins with the presentation of the original mesh movement method developed to deform the fluid mesh according to the solid displacement. The FSI coupling schemes are then introduced progressively and applied to a simple test case, and their stability in function of a given parameter is studied. It finishes with the scheme used in the rest of this work. As discussed in section 1.2.2, immersed boundaries methods do not allow the precise description of geometries which is critical to predict accurately boundary layers in turbulent cases. Therefore, body fitted meshes are prefered. Besides, the FSI coupling takes place at the interface between fluid and structure, so that the fluid domain has to move according to the solid displacement. This imposes to compute a grid movement for the entire fluid domain while maintaining suitable cells quality. This is particularly challenging for cases 

dérivées secondes du quadrangle à 8 noeuds : 

Abstract

Recent experimental studies tend to show that the use of chordwise flexible blades for vertical axis turbines enhances their efficiency and increases their lifetime. Numerical simulation of such experiments would provide a better understanding of the Fluid-Structure Interaction (FSI) phenomenon involved. However, this requires a FSI solver capable of accurately predicting the stall dynamics, while computing the deformation of a solid with complex geometry. Thereby, the goal of the thesis is to develop a solver capable of accurately reproducing cases of flexible foils at a high Reynolds number. The manuscript thus presents the development of a solver using the Large-Eddy Simulations (LES) approach to predict fluid dynamics and 3D solid finite elements for solid dynamics, all on unstructured meshes. The development work has been carried out within the YALES2 library, which was initially designed for fluid mechanics. Consequently, a Structural Mechanics Solver (SMS) has also been developed. Moreover, an original method based on the pseudo-solid approach has been proposed for the computation of the fluid mesh movement. Fluid and solid solvers are strongly coupled with a partitioned scheme, providing the opportunity to study dynamics between some fluid and solid of close densities. The FSI solver resulting from this work is therefore able to reproduce a wide variety of complex cases, and can also use a dynamic mesh adaptation method to take into account large solid displacements. Following the review of the numerical methods, the FSI solver can then be validated. To begin, a 2D numerical reference case with laminar flow is successfully reproduced. After that, a 3D validation is performed against an experiment where a flexible plate is clamped behind a cylinder immersed in a high Reynolds number flow. Finally, an experiment of a pitching flexible foil in a channel is reproduced. Despite possible improvements regarding computational time reduction, this process confirms the potential of the FSI solver for its intended use.