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Abstract

Leader election is important for many fault-tolerant services in asynchronous distributed systems. By

coordinating actions of a set of distributed processes, it allows solving agreement problems like the

consensus, a fundamental problem of distributed computing. Several consensus algorithms, such as Paxos,

rely on an eventual leader election service, also known as the Omega (Ω) failure detector. Omega returns

the identity of a process in the system, ensuring that eventually the identity of the same correct process is

always returned.

Many leadership algorithms were proposed in the literature to implement Omega. Among those that

consider dynamic systems, most of them do not choose the leader according to a topological criterion.

However, the position of the leader in the network directly impacts the performance of algorithms using

the leader election service, since the leader must often interact with other processes, for example, to collect

information from a majority of processes in consensus algorithms.

This thesis studies the eventual leader election problem in dynamic evolving networks and performance

related issues. Two eventual leader election algorithms are proposed for Mobile Ad Hoc Networks. They

maintain and exploit the knowledge of the network topology to eventually elect one leader per connected

component with the best closeness centrality. Evaluations were conducted on simulators with different

mobility models and performance results show that these algorithms present better performance than other

algorithms of the literature, including fewer messages, shortest paths to the leader, and better stability.



Résumé (Abstract in French)

L’élection de leader est importante pour les services tolérants aux pannes dans les systèmes distribués

(également appelés systèmes répartis) asynchrones. En coordonnant les actions d’un ensemble de processus

distribués, elle permet de résoudre des problèmes d’accord comme le consensus, un problème fondamental

en informatique distribuée. Des algorithmes de consensus, tel que Paxos, s’appuient sur un service d’élection

de leader ultime, également appelé détecteur de défaillances Omega (Ω). Omega renvoie l’identité d’un

processus du système et garantit qu’après un certain temps, l’identité du même processus correct est

toujours renvoyée.

De nombreux algorithmes d’élection de leader ont été proposés dans la littérature pour implémenter

Omega. Parmi ceux considérant les systèmes dynamiques, la plupart ne choisissent pas le leader selon un

critère topologique. Or, la position du leader dans le réseau impacte directement les performances des

algorithmes utilisant le service d’élection, car le leader doit souvent interagir avec les autres processus

pour, par exemple, collecter les informations d’une majorité de processus dans le cas du consensus.

Cette thèse étudie le problème d’élection de leader ultime dans les réseaux dynamiques. Deux algorithmes

d’élection sont proposés pour les réseauxmobiles ad hoc. Ceux-cimaintiennent et exploitent la connaissance

de la topologie du réseau pour élire à terme un unique leader par composante connexe ayant la meilleure

centralité de proximité. Des évaluations sur simulateurs avec différents modèles de mobilité montrent

que ces algorithmes présentent de meilleures performances que d’autres algorithmes de la littérature,

notamment moins de messages échangés, des chemins plus courts vers le leader, et une meilleure stabilité.
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Distributed computing is present everywhere in our world and is at

the heart of the information processing of our modern society. From

the World Wide Web to Peer-to-Peer applications to blockchains like

Ethereum [Woo
+
14], many applications revealed the importance of

distributed computing in our daily life.

A distributed
1
system can be defined

2
as follows [VT17]:

A distributed system is a collection of computing elements
that interact with one another in order to achieve a common goal.

Computing elements are autonomous computational entities, each of

themhas its own localmemory. They can bemultiple software processes

located on the same physical computer, or different hardware devices

interconnected together, such as computer networks [VT17; And00].

Computing elements are also called processes or nodes, and to achieve

their common goal, they collaborate and coordinate their actions by

communicating with each other. There are two main communication

paradigms: shared memory [Abr88] and messages passing [Tel00]. This

thesis only considers communication by messages passing which uses

a communication channel, i.e. a link between two processes of the

system on which information is transmitted. Through a communica-

tion channel, a process sends and receives messages to/from another

process [And00].

Since a distributed system is composed of many interconnected pro-

cesses, some of them may become faulty during the execution of the

system, and consequently, induce failures in the system. A failure is

a deviation from the expected behavior of the system. A distributed

system is considered reliable if it respects its specification, and if the

system is able to provide correct services regardless of failures. There-

fore, to run a reliable system in the presence of faults, the distributed

system needs to be fault tolerant.

With the ongoing advent of mobile computers such as smartphones,

intelligent vehicular, drones or mobile sensors, nodes with mobility
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compose a dynamic distributed system. These nodes move over a phys-

ical area and communicate directly with each other through wireless

links. They can also fail as well as join and leave the system. Thus,

the system evolves over time and the network is, therefore, highly

dynamic.

A common type of dynamic network is the Mobile Ad Hoc Network

(MANET), which does not rely on any pre-existing infrastructure to

communicate, such as router or access-point. A MANET is a self-

configuring network in which nodes are connected without wires and

are free to move. Nodes are equipped with a radio module that enables

wireless communications and participate in the network by forwarding

messages to other nodes.

Many distributed applications and services, such as the distributed

database Casandra [LM10] and blockchains like Bitcoin [Nak08], require

that processes reach a consensus, by choosing a single value among

proposed ones. The consensus problem is one of the most fundamental

problems of distributed computing. A consensus algorithm requires

that every process proposes a value to other processes in the system,

and all non-faulty process eventually agree on a single value among the

proposed ones. Consensus is used bymany other distributed algorithms

in the literature, such as state machine replication or atomic broadcast.

However, Fischer, Lynch and Paterson have proved (the well-known

FLP theorem [FLP85]) that it is impossible to deterministically achieve

consensus in a completely asynchronous system where at least one

node is prone to crash failure.

Several existing well-known algorithms in the literature solve consensus

in failure-prone distributed systems by using a leader election algo-

rithm. Examples of such algorithm are Paxos [Lam98], used by Google,

Amazon and Microsoft, or Raft [OO14]. Also known as the Ω failure

detector [CHT96], an eventual leader election allows to deterministi-

cally solve the consensus problem with the weakest assumptions on

process failures considering a majority of correct processes.Ω provides

a primitive called Leader(), which, when invoked, returns the identifier

of a process in the system and guarantees that there is a time after

which it always returns the identifier of the same correct process, i.e.

the leader.

Many leadership protocols were proposed to implement Ω. Most of

them consider static distributed systems and assume that the mem-

bership of the system is either known in advance [LFA00; Agu
+
04],

or unknown [FJR06; JAF06]. Among the ones that tolerate system dy-

namics [Góm
+
13; Ara

+
13], only a few of them take into account the

characteristics and the lack of knowledge of highly dynamic systems.

Furthermore, most of these algorithms do not choose the leader ac-

cording to a topological criterion, i.e. the position of the node in the

network, but rather on the highest or lowest node identifier. The topo-

logical position of the leader has a strong impact on the performance

of algorithms using the leader election service, since the leader must
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collect information from the other nodes, such as from a majority of

processes in the case of consensus. Thus, the average number of hops

to reach the leader has a direct impact on the performance of consensus

algorithms. A representation of a central leader is given in Figure 1.1.

This thesis studies the eventual leader election problem considering the

above described dynamic evolving networks and performance issues of

leader-based algorithms.

Figure 1.1.: Representation of a central leader (node in red) in a

distributed network.

1.1. Contributions

Since the choice of the leader has an impact on the performance of

algorithms using the leader election service, aΩ algorithm must take

into account the average number of hops to reach the leader. Hence,

the ideal would be to elect a non-faulty node with the best network

centrality. To this end, each node could maintain a knowledge of the

network topology.

This thesis thus proposes two eventual leader election algorithms, de-

noted Topology Aware and Centrality-based Eventual Leader (CEL), for
MANETs considering partial synchronous system and network parti-

tions. Nodes can move, fail by crash, join and leave the system. Initially,

nodes only know their respective identity, and, by exchanging messages

with neighbor nodes in their transmission range, they acquire knowl-

edge of the network topology. The algorithms exploit this knowledge

to eventually elect one leader per connected component of the network

with the best closeness centrality. The Topology Aware algorithm consid-

ers reliable channels, while the CEL algorithm tolerates message loss,
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interference and collisions. Furthermore, CEL implements a cross-layer

mechanism and a probabilistic gossip to reduce the number of sent

messages and increase the stability of the algorithm.

To the best ofmyknowledge, nootherΩ algorithm fordynamic networks

in the literature uses the closeness centrality as a criterion to choose the

eventual leader.

1.1.1. Topology Aware Leader Election Algorithm for
Dynamic Networks

The first proposed algorithm, denoted Topology Aware, assumes reliable

communication links with an underlying probe system to detect connec-

tion and disconnection of nodes. An incremental update mechanism is

used to improve propagation cost of messages over the network.

Experiments were conducted on the PeerSim simulator [MJ09], compar-

ing our algorithm to a flooding leader algorithm [VKT04] with Random

Waypoint and a periodic single point of interest mobility models. Perfor-

mance results show that the Topology Aware algorithm outperforms the

flooding one considering leader choice stability, number of messages,

and average distance to the leader metrics.

1.1.2. Centrality-Based Eventual Leader Election in
Dynamic Networks

The first contribution assumes reliable communication channels, which

are not suitable for communication environments prone to interference

and message collisions. The second proposed eventual leader election

algorithm for dynamic networks is the Centrality-based Eventual Leader
(CEL), that, similarly to Topology Aware, exploits topological information

to improve the choice of a central leader and reduce message exchanges.

However, rather than assuming an underlying probe system, CEL has

a cross-layer neighbors detection, with a neighbor-aware mechanism,

to improve the dissemination of topological knowledge and elect a

central leader faster. It uses a self-pruning mechanism based on the

topological knowledge, combined with probabilistic gossip, to improve

the performance of information propagation.

Evaluationswere conductedon theOMNeT++/INETenvironment [VH08;

MVK19], simulating realistic MANET following the IEEE 802.11n spec-

ifications with interference, collision, and messages loss. CEL was

compared to Gómez-Calzado et al. algorithm [Góm
+
13], with Random

Walk and Truncated LévyWalk mobility models. Results show that CEL
presents better performance than the latter, including fewer message

exchanges, shortest paths to the leader, and better stability.
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1.2. Manuscript Organization

This manuscript is divided in six chapters.

Chapter 2 introduces background concepts on distributed systems and

on leader election problems.

Chapter 3 presents related work on the classical and eventual leader

election problems in both static and dynamic systems. Algorithms are

compared and classified in tables according to different criteria.

Chapter 4 describes the first contribution of this thesis, the Topology
Aware eventual leader election algorithm. Evaluation results on PeerSim

of Topology Aware and a flooding algorithm [VKT04] are presented.

Chapter 5 presents the second contribution, the Centrality-based Eventual
Leader (CEL) election algorithm. Evaluations results on OMNeT++,

using IEEE 802.11n communications, of CEL and the Ω algorithm of

Gómez-Calzado et al. [Góm
+
13] are presented.

Finally, Chapter 6 concludes the thesis and discusses different future

research directions.

1.3. Publications

Four articles were published during this thesis: two in international

conferences and two in French national conferences. Chapter 4 and

Chapter 5 present the contributions from [Fav
+
20a] and [Fav

+
21] re-

spectively.

1.3.1. Articles in International Conferences

I [Fav
+
20a] Arnaud Favier, Nicolas Guittonneau, Luciana Arantes,

Anne Fladenmuller, Jonathan Lejeune, and Pierre Sens. ‘Topology

Aware Leader Election Algorithm for Dynamic Networks’. In: 25th
IEEE Pacific Rim International Symposium on Dependable Computing,
PRDC 2020, Perth, Australia, December 1-4, 2020. IEEE, 2020

I [Fav
+
21] Arnaud Favier, Luciana Arantes, Jonathan Lejeune, and

Pierre Sens. ‘Centrality-Based Eventual Leader Election in Dy-

namic Networks’. In: 20th IEEE International Symposium on Network
Computing and Applications, NCA 2021, Boston, MA, USA, Novem-
ber 23-26, 2021. Ed. by Mauro Andreolini, Mirco Marchetti, and

Dimiter R. Avresky. IEEE, 2021

— Best student paper award
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1.3.2. Articles in National Conferences

I [Fav
+
19] Arnaud Favier, Nicolas Guittonneau, Luciana Arantes,

Anne Fladenmuller, and Pierre Sens. ‘Un algorithme d’élection

de leader cross-layer pour réseaux mobiles ad hoc (résumé)’. In:

COMPAS 2019 - Conférence d’informatique en Parallélisme, Architec-
ture et Système. Anglet, France, June 2019

I [Fav
+
20b] Arnaud Favier, Nicolas Guittonneau, Jonathan Lejeune,

Anne Fladenmuller, Luciana Arantes, and Pierre Sens. ‘Topology

Aware Leader Election Algorithm for MANET’. In: COMPAS 2020
- Conférence francophone d’informatique en Parallélisme, Architecture
et Système. Lyon, France, June 2020
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This chapter presents some existing concepts, taxonomy, and models,

related to distributed systems, that are useful for this thesis. It is

organized as follows: Section 2.2 details common models in distributed

systems, Section 2.6 presents different communication assumptions

with some details on the different centrality measures, Section 2.8

explains how to disseminate messages over the network, and Section 2.9

describes both the classical and eventual leader election problems.

2.1. Properties of Distributed Algorithms

In distributed algorithms, processes run concurrently and indepen-

dently. Usually, each process has a limited view and information of the

system. A distributed algorithm should run correctly, even if individual

processes and communication channels operate at different speeds and

even if some of the components fail [Lyn96]. Therefore, theymust ensure

some properties that guarantee progress and correctness. A property is

an attribute of a program that is true for every possible execution of that

program [MK99]. The two main properties for a distributed algorithm

are safety and liveness [Lam77]:

I Safety asserts that nothing bad happens,

i.e. a program does not reach a bad state.

I Liveness asserts that something good eventually happens,

i.e. a program eventually reaches a good state.

These properties ensure users of the system to have a reasonable confi-

dence in the services delivered by it. Other properties can be considered



2. Background 8

[Lyn96] Lynch (1996): ‘Distributed al-

gorithms’

[DLS88] Dwork et al. (1988): ‘Con-

sensus in the presence of partial syn-

chrony’

[Cam20] Campusano (2020): ‘Dis-

tributed eventual leader election in the

crash-recovery and general omission

failure models’

by the algorithm, such as fairness for example. This ability of the system

to provide services that can be trusted is called dependability.

2.2. Timing Models

As processes can take a long time to reply, can fail, or even simply

leave the network during execution of the system, the communication

between processes is uncertain. To take into account this uncertainty,

the literature uses an underlying model that considers:

I Latency: the time required to transmit a message.

I Computation: the time for a process to execute a step.

Three main timing models were defined [Lyn96]:

I Synchronous model: there exists a known finite time bound � on

latency, and there exists a known finite bound ) on computation.

I Asynchronous model: there are no bounds on latency neither on

computation a process takes.

I Partially synchronous model: this model stands between the

two previous models. It assumes the existence of a bound � on

latency and a bound ) on computation [DLS88], but their values

are unknown. It considers that both bounds � and ) exist, but

only after a time C called Global Stabilization Time (GST). Before
GST, no bounds exist, such as the system is unstable and behaves

asynchronously, and after the GST, both bounds exist such as the

system became stable and behaves synchronously.

Among these three timing models, synchronous systems are included

in partially synchronous systems, which are included in asynchronous

systems, as shown in Figure 2.1 [Cam20].'

&

$

%

Asynchronous�

�

�

�
Partially Synchronous�
�

�
�Synchronous

Figure 2.1.: Representation of the three main timing models.

Note that there exist many other intermediate models between the

synchronous and asynchronous models.

The different types of temporal models are summarized in Table 2.1.
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Table 2.1.: Table of temporal models.

Message latency
bound �

Computation time
bound )

Synchronous model Exist, known and finite

Asynchronous model Do not exist

Partially synchronous model Exist but unknown

[HT94] Hadzilacos et al. (1994): A mod-
ular approach to fault-tolerant broadcasts
and related problems

[Dub11] Dubois (2011): ‘Tolerating

Transient, Permanent, and Intermit-

tent Failures’

[Ber04] Bertier (2004): ‘Service de dé-

tection de défaillances hiérarchique’

[GR06] Guerraoui et al. (2006): Intro-
duction to reliable distributed program-
ming
[CGR11] Cachin et al. (2011): Introduc-
tion to reliable and secure distributed pro-
gramming
[Cal15] Calzado (2015): ‘Contributions

on agreement in dynamic distributed

systems’

[Cam20] Campusano (2020): ‘Dis-

tributed eventual leader election in the

crash-recovery and general omission

failure models’

2.3. Process Failures

Processes are prone to failures during the execution of the system. A

failure can be defined as a deviation from correct behavior [HT94], i.e. a

behavior that does not comply with its specification. More specifically,

a fault is a flaw in the system that originates from a node, which may

cause unexpected behavior and result in an error. If the error is not

handled and then propagates through the system, it can lead to a failure.

Figure 2.2 illustrates the steps of a failure in a distributed system.

Fault → Error → Failure

Figure 2.2.: Steps of a failure in a distributed system.

Failures can happen due to algorithm conception and programming

(which can be difficult to detect, especially in distributed algorithms as

processes can be at different steps of the execution of the algorithm),

hardware, or hacking. A process which fails during the execution of

the system is considered to be faulty, whereas a process which never

fails during the whole execution of the system is correct.

There exist different modes of process failures in the literature. In

addition, failures can be permanent, where a component stays in the

faulty state forever, transient, where a component is in the faulty state

for a finite duration, or intermittent, where a component successively

exhibits correct and faulty behavior [Dub11]. Failures can be classified

from the weak to the strongest one, i.e. a failure includes previous

failures and is a subset of the next failures [Ber04; GR06; CGR11; Cal15;

Cam20].

As shown in Figure 2.3, crash failures are included in omission failures,

which are included in crash-recovery failures, which are included in

arbitrary failures.

I Crash: it leads to a definitive and permanent halt of the process

execution, meaning that the process has stopped and will not

execute any further steps of its algorithm (fail-silent).

Before the failure, the process behaves correctly, but when the

failure arises, the process is considered shutdown and will not

come back in the system.

If the system is not asynchronous, other processes may be able to

detect its state, by not receiving any response from this process

when invocation messages are repeatedly sent to it. However, this
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Figure 2.3.: Failure modes of a process, by [GR06].

1: The term Byzantine comes from the

allegory of the Byzantine Generals Prob-
lem, where a group of generals of the

Byzantine army, who communicate

only by messenger, must agree upon

a common battle plan. However, one

or more of them may be traitors who

will try to confuse the others [LSP19].

[LSP19] Lamport et al. (2019): ‘The

Byzantine generals problem’

crash failure detection mechanism relies on the use of timeouts,
which is a period of time a process has for something to occur

(assuming synchrony assumptions).

I Omission: this kind of failure arises when a process momentary

fails to perform the actions it is supposed to achieve. The process

temporarily halts its activity, and afterwards, takes back its normal

behavior.

I Crash-recovery: also called fail-recovery, the process which fails

stops any further steps of its algorithm, but may recover and

resume its execution afterwards. If the process uses volatile memory,
information contained in its memory before the failure will be lost

upon recovery, and the process is initialized again. If the process

uses stable memory, its memory will be recovered.

I Arbitrary failures: also called Byzantine 1
[LSP19] or malicious

failures, this type of failure considers that any type of error may

occur, such that the behavior of processes becomes unpredictable.

For instance, a process may set wrong values in its memory,

returns wrong values to a message, or arbitrarily omits to reply.

The different modes of process failure are summarized in Table 2.2.

Note that this list is not exhaustive and there exist other failures, such

as fail-safe, fail-stop, authenticated byzantine, etc.

Table 2.2.: Table of process failures modes.

Failures Component Description
Crash Process Permanent halt of process.

Omission Process Temporary halt of process.

Fail-recovery Process Halt of process execution, but may recover and resume afterwards.

Arbitrary/Byzantine Process Arbitrarily omits step or reply, sets or return wrong value.

2.4. Communication Channels

When using themessages passing approach, communication is achieved

by transmitting messages on a communication channel, which is a di-

rectional link between two processes, i.e. a logical abstraction of the
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physical medium. A communication from process ? to @ requires a

unidirectional communication channel from ? to @. A bidirectional com-

munication channel, also denoted two-way, assume two communication

channels: a first from ? to @, and a second one from @ to ?.

A process ? sends amessage< using the primitive emit at the application
layer, which inserts < in its buffer. The buffer of process ? sends the
message < on the communication channel, which transmits < to the

buffer of process @. The latter receives it and delivers it to the application

layer of process @. Note that these buffers are typically offered by the

operating system.

An example of communication from process ? to process @ is shown in

Figure 2.4.

Application

Buffer
receive

Buffer

Application

emit deliver

p q

Communication Channel

send

Figure 2.4.: Example of processes communication.

In the literature, there exist several types of communication channels

such as reliable, eventually reliable, fair-lossy, and unreliable [FJR06]. All of

them assume the three following common properties.

I No message creation (also called validity [Ray13]): if a process ?
receives a message from a process @, then @ sent it to ?.

I Nomessage duplication (also called integrity [Ray13]): if a process
? sends a message to a process @, then the process @ will receive

the message at most one.

I No message alteration: if a process ? receives a message from a

process @, then the message is exactly the same as the one sent by

@, without any modification or corruption.

Each type of communication channel offers different guarantees in

terms of message loss.

I Reliable: channels ensure that when a correct process ? sends

a message to a correct process @, the message will eventually be

delivered to @ [GR06].
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I Eventually reliable: channels assume the existence of a time C

after which all messages sent by process ? are eventually received

by process @. Messages sent before that time C may be lost [BCT96].

I Fair-lossy: channels ensure that when a correct process ? sends a

message an infinity number of times to a correct process @, then

@ will deliver the message an infinite number of times [GR06].

This property guarantees that a link does not systematically drop

every message.

I Unreliable: also called lossy channels. In this case, messages can

be lost, without notifying the processes.

The type of communication channel can also specify bounds for the

reception of a message, such as the eventually timely channels or timely
channels, or tolerate message loss without any bound, such as lossy
asynchronous channels:

I Eventually timely: a link from ? to @ is eventually timely if it is

either a reliable or an eventually reliable channel, satisfying that

there exists a bound � and a time C such that if ? sends a message

to @ at time C and @ is correct, then @ receives the message from ?

by time C + � [Agu
+
04]. Note that if the link is eventually reliable,

messages sent before time C can be lost.

I Timely: an eventually timely channel whose bounds hold from

C = 0 [Agu
+
04].

I Lossy asynchronous: messages can be arbitrarily delayed (i.e.

there is no bound on message delay) or even be lost (an arbitrary

number of messages can be lost, if not all) [Agu
+
03; LMS11]. Every

message that is not lost is eventually received.

Note that in this thesis, there is no assumption on message ordering,

and channels are not required to be FIFO. A FIFO channel stands for

First-In First-Out (FIFO), where messages are received to the process by

order they were sent.

The different types of communication channels explained previously

are summarized in the following Table 2.3.
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Table 2.3.: Table of communication channels types.

Channel types Description

Reliable

When a correct process ? sends a message to @ which is correct,

the message will eventually be delivered by @.

Eventually reliable

Existence of a time C after which all

messages sent by ? are eventually delivered by @.

Fair-lossy

A correct process ? sends a message infinitely

to a correct process @, @ delivers it infinitely.

Unreliable/Lossy Messages can be lost while they are in transit, without any notification.

Eventually timely

Existence of a bound � and a time C after which all

messages sent by ? are delivered by @ by time C + �.
Timely Eventually timely channel whose bounds holds from C = 0.

Lossy asynchronous

Messages can be lost or arbitrarily delayed.

Every message that is not lost is eventually received.

2.5. Failures of Communication Channels

There exist different modes of failures for communication channels in

the literature.

Section 2.3 presents a similar classification of failuremodes for processes

that can be adapted to communication channels. As shown in Figure 2.5,

crash failures are included in omission failures, which are included in

arbitrary failures.'

&

$

%

Arbitrary�

�

�

�
Omissions�� ��Crashes

Figure 2.5.: Failure modes of a communication channel, by [GR06].

I Crash: in case of a crash of a communication channel, the latter is

down and stops transmitting messages.

I Channel omission failure: it corresponds to a message loss in a

communication channel, i.e. failing to transmit the message from

the outgoing buffer to the incoming one.

I Arbitrary failures: for communication channels, arbitrary fail-

ures include messages corruption, messages omission, messages

creations or multiple message deliveries. Some arbitrary failures

in communication channels can be detected and fix by using error
detection and correction, such as checksums or cyclic redundancy
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checks (CRC).

Therefore, information exchanged by processes on communica-

tion channels is not reliable anymore, and security steps may be

then required.

The different modes of failure are summarized in the following Ta-

ble 2.4.

Table 2.4.: Table of failure modes of communication channels.

Failures Component Description
Crash Channel Stops transmitting messages.

Channel omission Channel Message loss.

Arbitrary/Byzantine Channel Arbitrarily corrupts, omits, creates or delivers message.

2.6. Distributed Systems

Distributed systems can be represented by communication graphs, com-

posed of two elements: vertices and edges. Vertices represent processes or
nodes and edges represent direct communication channels between two

vertices. If the communication channel is one-way, i.e. only from vertex

8 to vertex 9 without the way back, edges are oriented and the graph is

called a directed graph. However, this thesis assumes only bidirectional

communication channels, i.e. unoriented edges in undirected graphs.

Two processes connected with a channel are called neighbors, such
as process 8 is a neighbor of process 9 if they there is a direct edge

between them. The set of processes connected to process 8 is called the

neighborhood of 8. For example, considering Figure 2.6, process � is a

neighbor of process �, and the neighborhood of process � is the set of

processes {�, �, �}.

A

B

C

D

E

F

A : a process

— : a bidirectional communication channel

Figure 2.6.: Representation of a communication graph with bidirec-

tional communication channels.

Neighbors of a process have a communication distance of one hop, and
are called 1-hop neighbors, as they can directly communicate with it.

Neighbors of neighbors of a process are at a distance of 2-hop of this

process, and so on. When the distance is higher than one, the term

multi-hop can be used. The hop count distance refers to the number of

processes between two processes. For example, considering Figure 2.6,
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process � is a 1-hop neighbor of process �, and process � is a 3-hop

neighbor of process �.

As processes are autonomous entities, when a process needs to commu-

nicate with a process located further than 1-hop, intermediate processes

located between the sender and the final receiver, are called relays and
act as routers, establishing a path from the sender to the destination

process over which the message is transmitted.

Different assumptions about network knowledge can be made: known
networks, where nodes have a knowledge of the system, and unknown
networks, with the weakest possible assumptions about knowledge,

communication graph, channel connectivity and reliability, in order to

be as close as possible to reality.

I Known network: system where processes know the set of pro-

cesses that composed the system denotedΠ.

I Unknown network: system where processes have no information

about other nodes in the system, including the total number of

processes.

There are two main types of networks: static and dynamic networks.

2.6.1. Static Systems

Originally, distributed systems were based on static networks. A static

system is composed of a finite set of nodes, where the membership of

the system can only change because of failures. The communication graph
is static during the execution of the system, however, network partitions

can arise due to failures. Nodes do not move, nor leave, neither join the

system.

As an example, the links of a static system can physically be either

wires between nodes, or wireless radio wave antennas with a fixed

transmission range.

2.6.2. Dynamic Systems

With the advent of peer-to-peer technologies and mobile devices such

as mobile phones, mobile sensors, autonomous vehicular or drones,

nodes of a network are able to move, join, or leave the system. They

can also fail. Therefore, the membership of the system is no longer

finite but may vary over time. Communication channels between nodes

are non-persistent and can also change over time, which may lead to

network partitions.

There is nouniquedefinitionofdynamic systems in the literature [Agu04;

KLO10; BRS12; Lar
+
12]. Some authors define it as a distributed system

where the communication graph evolves over time. Others give the
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definition of a model where nodes join and leave the system at arbitrary

times during the system execution.

Dynamic systems can be represented by a dynamic communication

graph. Many works characterize the dynamics of graphs, such as the

Time-Varying Graph (TVG) proposed by Casteigts et al. [Cas+11] (where

relations between nodes take place over a time span T , with a presence

function indicating whether a given edge is available at a given time),

Flocchini et al. [FMS09] and Tang et al. [Tan+
10], evolving graphs by

Ferreira [Fer04], temporal network by Kempe et al. [KKK02], graphs over
time by Leskovec et al. [LKF07], or temporal graph by Kostakos [Kos09].

Physically, the links of a dynamic system can be, for example, wire-

less communication with radio wave antennas. A representation of a

dynamic network is given in Figure 2.7.

Figure 2.7.: Representation of a dynamic network.

2.7. Centralities

In a graph, some vertex can have a higher importance than others.

Importance can have a wide range of meaning, from the type of flow

through the network [Bor05], to the involvement of the cohesion in the

network [BE06], or even the topological position in the network [Bav50].

Indicators of centrality can be used to assign a number or a ranking

to vertices, according to their position in the network, identifying the

importance of the vertices in a graph [Fre78; Bor05; Gha18].

In terms of centrality, this thesis focuses on the three following centrali-

ties based on the shortest path:

• Degree centrality: the degree centrality is defined as the number

of neighbors of a process.

• Closeness centrality: the closeness centrality, or closeness, of a
vertex, is the average length of the shortest path between the vertex

and all other vertices in the graph [Bav50]. The more central is a

vertex, the closer it is to all other vertices. The closeness centrality

characterizes the ability of a node to spread information over the

graph.
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Alex Balevas [Bav50] defined in 1950 the closeness centrality of a

vertex as follows [Sab66]:

��(G) =
1∑

H 3(G, H)

where 3(H, G) is the shortest path between vertex H and vertex G.

• Betweenness centrality: the betweenness centrality measures

the number of times a vertex acts as a relay (router) along

shortest paths between other vertices. Even if previous authors

have intuitively described centrality as being based on between-

ness, betweenness centrality was formally defined by Freeman in

1977 [Fre77].

The betweenness of a vertex G is defined as the sum, for each pair

of vertices (B, C), of the number of shortest paths from B to C that

pass through G, over the total number of shortest paths between

vertices B and C,

It can be represented by the following formula [Bra01]:

��(G) =
∑
B≠G≠C

�BC(G)
�BC

where �BC denotes the total number of shortest paths from vertex B

to vertex C (with �BB = 1 by convention), and �BC(G) is the number

of those shorter paths that pass through G.

A visual representation given in Figure 2.8 compares the degree cen-

trality with the closeness centrality and the betweenness centrality of

the same graph [Tap15].

Figure 2.8.: Comparison between degree centrality, closeness cen-

trality and betweenness centrality of the same graph,

by Tapiocozzo [Tap15]

The more red a vertex is, the higher its centrality. The more blue a vertex

is, the lower its centrality. In Figure 2.8, the most central vertex for the

degree centrality is different than for the closeness and betweenness

centrality. However, closeness and betweenness centrality are not always

equal.

The differences between closeness and betweenness centrality are the

following: closeness is generally regarded as a measure of access ef-

ficiency, i.e. how long it will take to spread information from G to all
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other vertices sequentially; whereas betweenness is usually interpreted

as a measure of the dependence of others on a given vertex, i.e. the

number of times a vertex is present on the shortest path between two

other vertices [BBF16; Du19].

2.8. Messages Dissemination

To share messages from a source vertex to other connected vertices of a

graph, communication between vertices can be achieved using different

protocols. This thesis considers message flooding and probabilistic

gossip protocols.

Flooding Protocol

In a flooding protocol, each received message is sent through all out-

going edges, except the one on which it arrived [TW
+
96]. Therefore,

each vertex acts both as a transmitter and a receiver of the message,

forwarding every received message to its neighbors, except the one that

sent it the message.

There are two types of flooding: uncontrolled and controlled [CBL18].

I Uncontrolled flooding: vertices forward messages to all of their

neighbors, except the one from which it received the message.

I Controlled flooding: vertices remember received messages and,

therefore, drop already received messages.

While flooding protocols are easy to implement, they can be expensive

in terms of wasted bandwidth.

To reduce the number of messages sent, flooding protocols can use a hop
countmeasure contained in the header of messages, that is decremented

at each hop, i.e. each time the message is sent from a vertex to all its

neighbors. When the hop counter reaches 0, the message stops being

sent and is discarded.

Gossip Protocol

Gossip protocols can be used to reduce the cost of flooding protocol,

based on the way epidemics spread [Dem
+
87]. Also called epidemic

protocols, gossip protocols spread information in a manner similar to a

viral infection in a biological population, where a virus plays the role

of a piece of information, i.e. a message, and an infection plays the role

of learning about the information, i.e. receiving a message [SGK11].

There are two main types of gossip protocols:
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I Random probabilistic dissemination, suitable for Peer-to-Peer (P2P)

systems, where a node randomly chooses which of its neighbors

to send the information. Kermarrec et al. [KMG03] consider that

each node has a randomized partial knowledge of the system, i.e.

a list of process identifiers stored locally. Then, a process that must

forward a received information, randomly picks : processes from

its local list and sends them the information. This mechanism is

called peer-sampling service and provides a primitive that returns

a random process drawn from the list [Jel
+
07].

I Haas et al. [HHL02] proposed several gossip protocols for ad hoc
networks that use probabilities. Combined with the number of

hops or the number of times the same message is received, the

protocols choose if a node broadcast a message to all its neighbors

or not, reducing thus the number of messages propagated in

the system. The authors show that gossiping with a probability

between 0.6 and 0.8 ensures that almost every node of the system

gets themessage,withup to 35% fewermessages in somenetworks

compared to flooding.

The difference between Kermarrec et al. algorithms and Haas et al.
algorithms, is that Haas et al. algorithms gossip a message to all its

neighbors using a probability, whereas Kermarrec et al. algorithms

gossip a message to a subset of neighbors randomly chosen.

In this thesis, a probabilistic broadcast from Haas et al. is used to reduce

the number of messages exchanged. This type of gossip is more suitable

to wireless networks, since a message is received by all nodes within

the wireless transmission range of the sending node.

2.9. Leader Election

Electing a leader is one of the fundamental problems in distributed

computing [Pel90]. Also called coordinator election or leader finding, a
leader election selects a single node among the ones of a distributed

system, according to some election criterion.

The leader election problem was proposed for the first time
2
in 1977 by

Gérard Le Lann [Le 77], a French Computer Researcher.

In this thesis, two leader election problems are considered, denoted the

classical leader election problem (Section 2.9.1), and the eventual leader
election problem (Section 2.9.2).

2.9.1. Classical Leader Election

In 1980, Angluin shows that there is no deterministic leader election al-

gorithm in anonymous and uniform networks [Ang80], where anonymous

means that processes do not have a unique identifier, so there is no way
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to distinguish a process 8 from another process 9, and uniform means

that the number of processes in the system is not known in advance by

processes, i.e. not hardcoded in the algorithm [AW04]. To circumvent

this impossibility, the symmetry, i.e. the fact that all processes have

the same local state which makes a leader election impossible [Ray13],

needs to be broken. Therefore, the literature proposes two solutions:

I Nodes in the system have unique identifiers and, initially, can be

either aware or unaware of the identifier of other nodes.

I Randomized algorithms where each process has an independent

random number generator which allows to break the symmetry,

such as the algorithm proposed by Itai et al. [IR81] which is a Las

Vegas algorithm [Bab79], i.e. it always gives a correct answer but

have a probabilistic running time.

This thesis focuses on the first solution called non-anonymous, where

nodes have unique identifiers in the system, but initially do not have

knowledge of the identity of the other nodes in the system.

At the beginning of the leader election algorithm, all nodes in the

system are unaware of which node is the leader [Hal15]. At the end of

the election, there is exactly one correct node that has been elected as

the leader among the set of nodes, and each correct node throughout

the network recognizes this same and unique node as the leader. The

number of nodes in the system can be known or unknown by the

algorithm, as seen in Section 2.6.

Formally, the classical leader election problem has the two following

properties [MWV00; AW04]:

I There should never be more than one leader (i.e. there is zero

or one process considered as the leader by the processes of the

system).

I Eventually, there is a leader (i.e. all processes of the system

eventually agree on the identity of a single leader).

During the execution of a distributed system, failures may arise and if

the system is dynamic, processesmay join and leave the systemovertime,

as seen in Section 2.6.2. Therefore, the system may be partitioned into

multiple connected components. Every connected component of the

system has a unique leader. Therefore, Malpani et al. [MWV00] modify

the definition of a classical leader election to take into account multiple

components:

I Any component whose topology is static sufficiently long will

eventually have exactly one leader (i.e. every process will eventu-

ally agree on the identity of the same leader of its component).

In a classical leader election algorithm, during the election, nodes are

aware that they do not currently have the identify of the leader, and

therefore, are in an unstable state. This state can be indicated by a done
flag, as suggested by Raynal [Ray13], or by returning ⊥ like in the
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algorithm of Vasudevan et al. [VKT04].

2.9.2. Eventual Leader Election

The eventual leader election is a key component for many fault-tolerant

services in asynchronous distributed systems. An eventual leader

election considers that the uniqueness property of the elected leader is

eventually satisfied for all correctnodes in the system. Several consensus

algorithms such as Paxos [Lam98] or Raft [OO14], adopt a leader-based

approach. They rely on an eventual leader election service, also known

as theΩ failure detector [CHT96]. Consensus is a fundamental problem

of distributed computing [Pel90], used by many other problems in the

literature, like state machine replication or atomic broadcast.

Problem Definition

A first definition of the eventual leader election problem is given. Then,

a second definition is presented based on theΩ failure detector. Finally,

this second definition is enhanced to tolerate asynchronous dynamic

systems.

Formally, an eventual leader election algorithm has the two following

properties:

I Several (correct or not) leaders can coexist before a single correct

process is elected as the leader [Lar
+
12].

I Every correct process of the system eventually agrees on the

identity of the same correct leader.

The Ω failure detector introduced by Chandra et al. in 1996 [CHT96],

considering a static distributed system with reliable communication

links and knownmembership, satisfies the following property [Cal15]:

I EL (Eventual Leadership): there is a time after which all correct

processes trust the same correct process, i.e. the leader.

In a dynamic system, as processes can join and leave the system, the

size of the system may increase or decrease overtime. Therefore, Larrea

et al. [Lar+12] have defined the Dynamic Omega failure detector class

denoted ΔΩ, which provides an eventual leader election algorithm in

an asynchronous dynamic system (denoted ΔAS). ΔΩ have the two

following properties, assuming that there is at least one process in the

system at any time:

I EL_NI (Eventual Leadership in Non-Increasing systems): if after

some time, no process joins the system, a leader must eventually

be elected.
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I EL_ND (Eventual Leadership in Non-Decreasing systems): if after

some time, no process leaves the system, a leader must eventually

be elected, and the new processes joining after a leader has been

elected eventually adopt it.

Note that, by definition,Ω ⊂ ΔΩ [Cal15].

According to Larrea et al. [Lar+12] and considering dynamic (denoted

ΔS) systems, the class ΔΩ of failure detectors includes all failure

detectors which satisfies both properties EL_NI and EL_ND.

Note that the dynamics of the system may imply that no process stays

"long enough" in the system, in which case it is possible that no common

process will ever be elected [Lar
+
12]. Therefore, a leader, which can be

temporary, is required to be elected onlywhen the size of the systemdoes

no longer increase or decrease, during "long enough" period of time. The

two properties EL_NI and EL_ND satisfy this requirement [Lar
+
12].

Implementing Eventual Leader Election

Solving the eventual leader election problem is possible by implement-

ing an eventual leader service, also called a leader oracle [FJR06]. Such a

service consists in providing the processes with a primitive denoted

Leader() that [Ray07]:

1. Returns the identity of a process of the system each time it is

called.

2. Ensures that there exists a time after which it always returns the

identity of the same correct process.

As there is no knowledge of when the leader is elected, several leaders

can coexist at time C, such as two processes can have different leaders,

but eventually, the same correct process is elected as the leader and its

identity is known by all correct nodes. TheΩ failure detector provides

such a Leader() primitive satisfying these properties [CHT96].

A distributed algorithm based onΩ is indulgent, i.e. it never violates

the safety property of the consensus, if the algorithm never produces

incorrect outputs regardless of the behavior ofΩ [GR04; GL08; Lar
+
12].

Therefore, ifΩ behaves correctly (its behavior corresponds to its specifi-

cation), the algorithm produces correct outputs.

Ω cannot be implemented in pure asynchronous distributed systems

prone to process crashes. Otherwise, it would solve the consensus

proven to be impossible in such systems [FLP85; MRT04]. There exist

two main approaches to implementΩ in the literature:

1. Timer-based: it considers additional synchrony assumptions,

where some or all links are eventually synchronous [LFA00;

Agu
+
04]. In this case, other assumptions are usually included

such as the maximum number of processes that can crash, the

number of eventually synchronous links, etc.
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2. Time-free: it considers a property on the message exchange

pattern based on query-response, with a maximum number of

processes that can crash [MMR03; Ara
+
13]. It assumes that re-

sponses from some nodes eventually and permanently arrive

among the first ones.

Many algorithms use the maximum number of faults, i.e. the number

of processes that can crash, denoted 5 , where 1 ≤ 5 < = (= being the

number of processes = = |Π|) [MOZ05; FJR06; Hut
+
08]. An important

result by Aguilera et al. [Agu
+
04] shows that implementing theΩ failure

detector in a partially synchronous system with = process and up to 5

process crashes, requires the existence of some correct processes called

^ 5 -source, (whose identity does not have to be known) with 5 outgoing

links that are eventually timely. If 5 = 1, implementingΩ requires only

one eventual timely link.Ω can be implemented if there is at least one

correct ^ 5 -source (the identity of the ^ 5 -source does not have to be

known).

Leader Based Consensus

Ω allows to solve the consensus problem with the weakest assumptions

on process failures considering a majority of correct processes. In

consensus problems, each process proposes a value, and all correct

processes should eventually decide on a common value among the

proposed ones [FLP85; CT96].

The following properties are defined:

I Termination (a liveness property): All correct processes eventually

decide on a proposed value.

I Validity (a safety property): the decided value is one of the pro-

posed values.

I Agreement (a safety property): All correct process must agree on

the same value.

Fisher et al. [FLP85] proved the impossibility to deterministically achieve

consensus in a completely asynchronous system, if at least one node

is prone to crash failure, due to the inherent difficulty of determining

whether a process has crashed, or is slow to reply/compute.

Several consensus algorithmsuse a leader election to solve the consensus,

such as Paxos [Lam98] and Raft [OO14].

Lamport introduced in 1989 Paxos [Lam98], which uses an eventual

leader election toguarantee the safetypropertieswithweakassumptions.

The uniqueness property of the leader is required to ensure the protocol

to make progress, otherwise, two processes thinking they are leaders

may stall the protocol by continuously proposing conflicting updates.

Once a single leader is elected, it is the only one that tries to issue

proposals.
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In 2004, Ongaro andOusterhout introduced Raft [OO14], a leader-based

consensus algorithm which uses randomized timers to elect leaders,

responsible for log replication to the follower nodes. A leader election is

triggered at the initialization of the algorithm, when the existing leader

fails or disconnects, or if no heartbeat is received by the followers of the

leader after a timeout. Note that Raft, like other leader-based consensus

algorithms, is not tolerant to Byzantine fault, as the nodes trust the

elected leader.

2.10. Conclusion

This chapter has presented well-known concepts of distributed comput-

ing, systems, and algorithms such as the definition of the safety and

liveness properties, the timing models, which vary from synchronous

to asynchronous, communication channel types related to reliability

and time bounds, and some failure models that range from crash to

arbitrary failures. The communication graph with the specificity of

static and dynamic systems were described, including a discussion of

some centrality approaches, especially the closeness one, as well as the

flooding and probabilistic gossip protocols.

Both the classical and eventual leader election problems were described,

the latter including theΩ failure detector implementation. The consen-

sus problem and its properties are described and an overview of a few

leader based consensus algorithm is given. The concepts and models

introduced in this chapter will be useful in the following chapters.
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This chapter summarizes some related work on both the classical

(Section 3.1) and the eventual (Section 3.2) leader election problems.

Each of these sections presents existing algorithms of the literature for

static and dynamic systems. In static systems, nodes can fail and recover,

as presented in Section 2.6.1, whereas in dynamic systems, nodes can

move, join and leave the system, as well as fail and recover, as described

in Section 2.6.2.

3.1. Classical Leader Election Algorithms

The classical leader election problem defined in Section 2.9.1 has the

two following properties:

I There should never be more than one leader

I Eventually there is a leader.

In this section, the presented works assume a unique identifier for every

process in the system, where = and 4 correspond to the number of

processes in the network, and the number of edges respectively.

3.1.1. Static Systems

There exist several works in the literature on classical leader election

problem, essentially distinguishable on the topology and complexity.

Usually, they are extrema-finding, i.e. the highest or lowest process

identifier is used as the election criterion.

As a reminder, the complexity of an algorithm is provided using the

mathematical Big $ notation, describing the limiting behavior of a

function when the argument tends towards infinity [Cor
+
09]:

I Θ(6(=)) gives an asymptotically tight bound (i.e. bounds both

from above and below).

I $(6(=)) gives an asymptotic upper bound.
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I Ω(6(=)) gives an asymptotic lower bound.

Note that theΩ(6(=)) complexity should not be confused with theΩ

failure detector introduced in Section 2.9.2.

Ring Topologies

The leader election problem was studied for ring topologies since 1977

with the first solution proposed by Le Lann [Le 77] which required

$(=2) messages. In 1979, Chang and Roberts [CR79] improved the

algorithm of Le Lann by reducing the number of messages to$(= log =)
on average, still with a worst-case scenario of $(=2) messages. Both

solutions consider unidirectional communication. In Chang andRoberts

algorithm, a process compares its identifier with the one received by

message from its right neighbor in the ring. If the former is lower than

the identifier in the message, the process forwards the message to its left

neighbor, otherwise, it discards it. When at phase 8 a process receives

both of its messages, if the latter traveled overall the ring, the node is

elected as the leader, otherwise the process starts phase 8 + 1.

Hirschberg and Sinclair proposed in 1980 [HS80] an algorithm requir-

ing $(= log =)messages in the worst case, by assuming bidirectional

communication on the ring, i.e. processes can send messages to the left

and right sides. The algorithm executes by phases. In phase 8, processes

send messages along paths of length 2
8
. If the process identifier is

lower than the received one by message from its left (right) neighbor, it

forwards the message to its right (left) neighbor. Otherwise, it drops the

message. If a message of a process travels over all the processes, it has

won the election. They also conjectured that any unidirectional solution

must be Ω(=2). However, Dolev [DKR82] and Peterson [Pet82] both

shown in 1982 that the conjecture of Hirschberg and Sinclair is false,

by presenting unidirectional algorithms requiring at most $(= log =)
messages. By improving the algorithm of Peterson, Dolev obtained

a 1.356= log = + $(=) messages algorithm, which was improved to

1.271= log =+$(=) by Higham et al. [HP93], and to 0.693= log =+$(=)
by Pachl et al. [PKR82].

Burns [Bur80] and Franklin [Fra82] improved the algorithm of Chang

and Roberts. Burns proposed an algorithm that saves messages by

alternating the direction in which messages are sent. He also formally

defined the model and the problem, giving aΩ(= log =) lower bound

for bidirectional communication.

Leeuwen et al. proposed in 1987 [LT87] a 1.441= log = + $(=)message

complexity algorithm for a deterministic solution on bidirectional, but

unoriented rings of size =. Frederickson et al. [FL84] makes a distinc-

tion between algorithms doing computation or comparison on the

values of process identifiers in synchronous rings. He presented an

algorithm doing comparison with a lower bound of $(= log =) mes-

sages. Gafni [Gaf85] improved the time complexity of the Frederickson
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algorithm in synchronous rings, with two algorithms: a first one with

Θ(=) messages and Θ(=2
= + |) |2) time, where |) | is the cardinality

of the set of the processes identifiers, and a second algorithm achiev-

ing $(= log =)messages and $(−1(log =)|) |) time, where −1() is the
functional inverse of log .

General Networks and Spanning Trees

The problem of finding a leader is reducible to the problem of finding a

spanning tree [Awe87], as any distributed algorithm that constructs a

spanning tree can be transformed into an election algorithm [Afe85],

where the root vertex of the spanning tree is the leader of the system.

Spanning tree algorithms are usually based on the Echo algorithm,

which is a wave algorithm for networks of arbitrary topology [Tel00].

In the Echo algorithm, defined by Chang [Cha82] in 1982, an initiator

node sends messages to all its neighbors, which forward messages to

all their neighbors (except the sender node, i.e. the father), and so on.

After receiving a message from all its neighbors, each node sends an

echo message back to its father. When, the initiator receives an echo

message from all its neighbors, and decides.

In 1977, Spira investigated distributed algorithms to find the Mini-

mum Spanning Tree (MST), based on an asynchronous algorithm of

Dalal [Dal77] by which the MST can be found and maintained in a

completely distributedmanner. Spira proposed then an algorithm using

$(= log 2= + 4)messages, where 4 is the number of edges [Spi77].

Humblet [Hum83] presented in 1983 a distributed algorithm for min-

imum weight directed spanning trees, taking into account costs (i.e.

weights) associated with links in the network, achieving a complexity

of $(=2) on both messages and also time. For instance, the cost could

represent latency or some physical distance between two processes.

One notable distributed algorithm for minimum weight spanning

trees in static networks which requires $(5= log = + 24)messages and

$(= log =) time in a connected undirected graph was proposed by

Gallager et al. in 1983 [GHS83]. The algorithm of Chin et al. [CT85] for
an undirected weighted connected graph improved the time complexity

of this algorithm, with $(5= log = + 24)messages and $(=�(=)) time,

where �(=) is the number of times that the ;>6 function must be

applied to = to get a result smaller than or equal to 1. Gafni [Gaf85]

also presented in 1985 an algorithm in asynchronous general networks

with aΘ(4 += log =)messages andΘ(= log =) time. Awerbuch [Awe87]

proposed in 1987 an optimal distributed algorithm inmessages and time

to find a MST in asynchronous networks, which requires $(4 + = log =)
messages and $(=) time. Peleg suggested an alternative to MST in

1990 [Pel90], with an algorithm for general networks inspired from

Afek [Afe85] that achieves a complexity of $(34)messages and $(3)
time, with 3 being the diameter of the network.
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Garcia-Molina [Gar82] proposed the fault-tolerant bully algorithm for

synchronous general networks which requires $(=2)messages in the

worst case, and where the highest identifier process forces smaller

identifier processes into accepting it as the leader. Initially, a process ?

attempts to contact all processes with higher identifier: if any of these

processes respond, then process ? waits until the process with a higher

identifier becomes the new leader. Otherwise, if all processes with

higher identifiers do not respond after a time limit C as they have failed,

process ? elects itself as the leader.

As proposed by Afek [Afe85] and Awerbuch [Awe87],Ω(4) is a lower

bound to construct a spanning tree in asynchronous general net-

works (including rings topologies), since an algorithm requires to

send at least one message over each edge to traverse the network.

Burns [Bur80] proved an Ω(= log =) lower bound on the worst-case

number of messages sent to find a leader in an asynchronous ring.

Therefore, Ω(4 + = log =) messages are required to construct a span-

ning tree in asynchronous general network which solves the election

problem [Afe85; Awe87], and is an optimum as observed by Gallager et
al. [GHS83].

Complete network

Korach et al. [KMZ84] shown in 1984 that leader election in asynchronous

complete networks has a lower boundofΩ(= log =)messages presenting

an algorithm of 5= log : + $(=) messages where : is the number of

processes starting the algorithm, and $(= log =) time.

Afek et al. [AG85] proposed in 1985 two leader election algorithms

for synchronous and asynchronous complete networks, with $(log =)
and $(=) time complexity for the synchronous and asynchronous algo-

rithms respectively, and with $(= log =)messages for both algorithms.

In synchronous complete networks, the authors also proved a lower

bound of Ω(= log =) messages and that Ω(log =) time is required for

any message-optimal synchronous algorithm.
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Figure 3.1.: Representation of a ring topology, a spanning tree and

a complete graph.

The presented algorithms are summarized in Table 3.1.
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Table 3.1.: Comparison of some classical leader election algorithms

in static systems.

Article Topology Complexity
[Le 77] Ring $(=2)message

[CR79] Ring Average $(= log =)message, worst: $(=2)message

[HS80] Ring Worst: $(= log =)message

[Bur80] Ring Lower bound:Ω(= log =)message

[Fra82] Ring Worst: $(= log =)message

[Pet82] Ring 1.44= log = + $(=)message

[DKR82] Ring 1.356= log = + $(=)message

[HP93] Ring 1.271= log = + $(=)message

[PKR82] Ring 0.693= log = + $(=)message

[FL84] Ring $(= log =)message

[Gaf85] Ring Θ(=)message, Θ(=2
= + |) |2) time

[Gaf85] Ring $(= log =)message, $(−1(log =)|) |) time

[Spi77] MST Average: $(= log
2= + 4)message

[Hum83] MST Worst: $(=2), $(=2) time

[GHS83] MST $(= log = + 4)message, $(= log =) time

[CT85] MST $(5= log = + 24)message, worst: $(=�(=)) time

[Gaf85] MST Θ(4 + = log =)message, Θ(= log =) time

[Awe87] MST $(4 + = log =)message, $(=) time

[Pel90] General Networks $(34)message, $(3) time

[Gar82] General Networks Worst: $(=2)message

[KMZ84] Complete async. 5= log : + $(=)message, $(= log =) time

[AG85]

Complete sync. $(= log =)message, $(log =) time

Complete async. $(= log =)message, $(=) time

[Hat
+
99] Hatzis et al. (1999): ‘Funda-

mental control algorithms in mobile

networks’

[MWV00] Malpani et al. (2000):

‘Leader election algorithms for mobile

ad hoc networks’

3.1.2. Dynamic Systems

As presented in Section 2.6.2, the communication graph of dynamic

systems evolves over time since nodes can fail, recover, join or leave the

system at an arbitrary time during execution.

In this type of system, networkpartitions canhappen resulting indisjoint

connected component, and algorithms have to handle communication

changes.

Election Criterion

Like in static systems, many of the leader election algorithms are

extrema finding, meaning that they use the highest node identifier as

an election criterion [Hat
+
99; MWV00; RAC08]. Some other ones use

different criteria to elect a leader, like election time [Ing
+
09; Ing

+
13], or

some feature such as remaining battery or computation power [VKT04;

KW13].

Hatzis et al. [Hat
+
99] presented two leader election algorithms, where

both elect the node with the highest identifier. They solve a stronger

problem by specifying that once elected, the leader should also be aware

of the size of the system. In the algorithm of Malpani et al. [MWV00],

the leader is the node with the lowest identifier of the component.
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[VKT04] Vasudevan et al. (2004): ‘De-
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[MA
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06] Masum et al. (2006): ‘Asyn-
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[KW13] Kim et al. (2013): ‘Leader elec-
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Rahman et al. [RAC08] proposed an algorithm for static and dynamic

systems aiming at reducing the number of leader election rounds and

therefore saving energy: each node maintains a list of leaders, and the

leader is the node with the highest identifier. Each time a new node

joins the system, after recovering from a crash for example, it starts a

new leader election round.

Algorithms proposed by Ingram et al. [Ing+09; Ing+13] use clocks to

record the time the election took place, and the leader is the process

that wins the most recent election.

Vasudevan et al. [VKT04] proposed an algorithm where the election

criterion is some value related to the node, i.e. a performance-related

characteristic, such as remaining battery life or computation capabilities.

The authors suggest the idea of electing as the leader the node with the

minimum average distance to other nodes, but no implementation is

given.

Similarly, Masum et al. [MA
+
06] proposed an algorithm for electing a

local extrema among the nodes participating in the election, based on

an arbitrary value called priority. Each node has a priority indicating

its attractiveness to be the leader, which can be a performance-related

attribute of the node, such as the battery life or computational capabili-

ties.

By exploiting the structure of a spanning tree,Kim et al. algorithm [KW13]

elects a centrally positioned leader, according to the average depth of

nodes in the tree. They called their centrality measure tree-based central-
ity, and compare it with different centrality measures such as degree,

closeness, and betweenness. Compared to the closeness centrality, the

tree-based central leader is not always optimal because it depends on

the node that initiates the election algorithm.

Information Spreading

Dynamic classical leader election algorithms have different structures

of communication, which are mainly a leader-orientedDirected Acyclic
Graph (DAG) where each node has a direct path to the leader, or a

spanning tree directed towards the initiator node of the election. Some

other algorithms use a different communication structure, based on

counters, for example.

Directed Acyclic Graph. The algorithm proposed by Malpani et
al. [MWV00] is based on a routing algorithm for mobile wireless

networks called TORA [PC97], which creates a leader-oriented DAG.

A mechanism is used to detect network partitions, and nodes that no

longer have a path to a destination stop sending unnecessary messages.

Each node creates a 6-uplet from the 5-uplet used in TORA, adding

the identifier of the current assumed leader of the node partition. This
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6-uplet is modified during topological changes and is used for the

election.

Ingram et al. [Ing+09] improved Malpani et al. algorithm [MWV00] and

requires a three waves algorithm [Tel00] on all nodes of the system

to elect a new leader (two waves to search a potential leader and one

confirmation wave). Like Malpani et al. [MWV00], a leader-oriented

DAG structure is used in each connected component, where every node

has a directed path to the leader. Leader stability is also studied to

reduce new leader elections while a path to the old leader still exists.

Their algorithm requires that nodes have perfectly synchronized clocks,

which is made possible by using a global time accessible by all nodes in

the system.

A more complete version of the previous work was published in 2013

by Ingram et al. [Ing+13], with causal clocks instead of a global clock

accessible to all nodes, which can be implemented using perfect clocks

or logical clocks. Performance of the algorithm depends on the type of

clocks used to implement a causal time and the authors specify that

their algorithm is not correct for approximately synchronized clocks

unless they preserve causality.

Spanning Tree. Vasudevan et al. [VKT04] use a wave mechanism to

build a spanning tree, where each node sends back to its parent the

identifier of the node having the highest value in its subtree. Their

algorithm returns a leader identity onlywhen it is accepted by all nodes

in the network, returning ⊥ in the rest of the time. Note that links are

assumed to be bidirectional and heartbeat messages are periodically

sent from the leader node. Based on Vasudevan et al. [VKT04], the
algorithm of Rahman et al. [RAC08], also builds a spanning tree, where

nodes periodically send probemessages to their neighbors, and get reply
messages from them. As in the Echo algorithm previously presented, an

acknowledgement system is usedwhere nodes reply to electionmessages

with ackmessages alongwith their identifier. The leader sends heartbeat

messages every twenty seconds, and after a timeout of six messages, a

new leader election is triggered. Like in Vasudevan et al., the algorithm
also assumes that communication links are bidirectional.

Kim et al. [KW13] exploit a three wave algorithm to build a spanning

tree, used to elect a central leader. Each node periodically broadcasts

hellomessages, in order to check connectivity with its neighbors, and

to create a neighbor information table. Election messages are used to

dynamically build the spanning tree and are propagated when an

election is triggered.

Counter-based. Hatzis et al. [Hat
+
99] presented an algorithm with

a different communication structure, where each node maintains a

local counter representing the number of other mobile nodes met.

When two mobile nodes meet, they exchange their identities: the one
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with the higher identifier wins and receives the counter of the loser,

which is added to its local counter. The loser node changes its state to

inactive, and no longer responds to messages about the execution of the

algorithm. Information is only transmitted when a new node joins a

component, thereby reducing the number of broadcasts needed by the

algorithm and saving, therefore, battery power consumed for message

transmissions. Each node also keeps a local list of node identifiers that

it has defeated. When two nodes meet, the winner concatenates its

local list with the list transmitted by the loser node. That way, the final

winner will know the network size and the identifiers of nodes in the

network.

Other approaches. Masum et al. [MA
+
06] consider that communica-

tion links are reliable, bidirectional, and FIFO. Their algorithm does not

rely on a specific communication structure, and tolerates intermittent

failures, such as link failures, sudden crash, aswell as recovery ofmobile

nodes. A node is considered faulty if the communication links between

the node and each of its neighbors have failed, while a node recovery is

the recovery of the communication links between the recovering node

and its neighbors. Message delivery is only guaranteed if the sender

and receiver remain both connected (not partitioned) for the entire

duration of the message transfer.

Connectivity Assumption

To handle frequent topology changes, election algorithms must tolerate

arbitrary, concurrent changes and should eventually terminate electing

a unique leader within the connected component. Due to the dynamics

of the network, it is impossible to guarantee a unique leader all the time,

because when a network partition occurs or when two components

merge, it will take some time to elect a new leader. In order to satisfy

the agreement property of the leader election and eventually elect a

single leader, algorithms designed for dynamic systems make different

assumptions about connectivity of nodes of the system.

The two leader election algorithms of Hatzis et al. [Hat
+
99] are designed

to handle dynamic topology changes with mobility of some or all nodes.

Both leader election algorithms require that nodes know in advance

the type and dimensions of the area in which they move, and nodes

need to measure the distance that they cover when moving. The first

algorithm presented might never elect a single leader, if nodes never

meet to exchange information, while the second one assumes nodes

with no sense of orientation that follow random walks and is based on

a Las Vegas algorithm. Nodes have a unique identifier, but a variation

of the second algorithm allows anonymous nodes.

Malpani et al. [MWV00] supposed a synchronous system, where execu-

tions take place in stages during finite phases. When a partition occurs,

the system is separated in two or more components and the authors
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consider that any component whose topology is static long enough will

eventually have exactly one leader.

Similarly, Ingram et al. [Ing+09; Ing+13] consider an asynchronous

system where messages are delivered in FIFO order through reliable

asynchronous communication channels, and where nodes are assumed

to be completely reliable. If topology changes cease, then eventually

each connected component of the network has a unique leader.

Vasudevan et al. [VKT04] modified the requirements that eventually

every connected component has a unique leader, by proposing an

algorithm that ensures that after a finite number of topology changes,

eventually each node has the same leader.

Masum et al. [MA
+
06] assume one or multiple simultaneous topological

changes can occur, but eachnode remains in the network for a sufficiently

long time. Any connected component of the network whose topology

remains static sufficiently long will eventually have exactly one unique

leader.

The algorithm of Rahman et al. [RAC08] does not make the assumption

that topology changes eventually stop. Nodes permanently send peri-

odic probe messages and wait for the reply message from the neighbors

of the spanning tree, to maintain the connectivity.

Note that most of the presented works do not specify which mobility

model or pattern they use.

The presented algorithms are summarized in Table 3.2.

Table 3.2.: Comparison of classical leader election algorithms in

dynamic systems.

Article Election Criterion Information Spreading Connectivity Assumption
[Hat

+
99] Highest identifier Counter of met nodes Nodes need to meet with random walks

[MWV00] Lowest identifier Leader-oriented DAG Component is static long enough

[Ing
+
09] Most recent election Leader-oriented DAG Topology changes cease

[Ing
+
13] Most recent election Leader-oriented DAG Topology changes cease

[VKT04] Highest arbitrary value Spanning tree with waves Finite number of topology changes

[MA
+
06] Highest arbitrary value (not specified) Static long enough

[RAC08] Highest identifier Spanning tree with waves (not specified)

[KW13] Centrality positioned Spanning tree with waves (not specified)

3.2. Eventual Leader Election Algorithms

As presented in Section 2.9.2, Chandra et al. [CHT96] introduced in 1996

the Ω failure detector, which provides a primitive Leader() satisfying
the following property: there is a time after which all correct processes

trust the same correct process ?, i.e. the process returned by the Leader()
primitive.

AsΩ cannot be implemented in an asynchronous distributed system

where process crashes arise (otherwise it would solve the consensus in
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such system, which is known to be impossible as seen in Section 2.9.2),

any asynchronous system has to be enriched with some assumptions in

order to implementΩ [Lar
+
12].

Note that an algorithm is communication efficient if after some time,

the eventual leader is the only process to send messages to all other

processes, forever [Agu
+
01].

3.2.1. Static Systems

Eventual leader election algorithms designed for static networks can

be divided in two categories, known and unknown networks, based on

assumptions about network knowledge, as presented in Section 2.6.

The literature contains two main approaches: timer-based and time-free
as defined in Section 2.9.2.

Known Networks

In known networks, nodes have some knowledge about the system.

Timer-based. Chandra et al. [CT96], as well as Larrea et al. [LFA00],

proposed the firstΩ solutions by considering a fully-connected network

and reliable eventually timely links.

Aguilera et al. [Agu
+
01] presented in 2001 a weaker condition on channel

reliability and synchrony, by relaxing the need of time constraints on all

links. In their algorithm, the authors assume that there is at least one

process whose links are eventually timely with all the other processes

of the system. They later proposed, in 2003, an algorithm [Agu
+
03]

implementingΩ in weak systems, where all processesmay be arbitrarily

slow or may crash, except for some timely processes B whose identities

are not known. Only the output links of B are eventually timely, and all

other links can be arbitrarily slow and lossy. Then in 2004, the authors

presented an article where there exist some correct processes, whose

identities are not known, with 5 outgoing links that are eventually

timely [Agu
+
04]. They show that when 5 = 1, it is sufficient to have

only one eventually timely link to implementΩ and solve consensus.

The authors also give a simple communication efficient algorithm that

implementsΩ for systems with up to 5 crashes, and with at least one

correct � 5 − B>DA24, i.e. a correct process with eventually 5 outgoing

links that are timely.

Malkhi et al. [MOZ05] proposed an alternative solution without having

any eventual timely links, by considering eventually accessible links.
Their algorithmconsiders that eventually oneprocess can sendmessages

such that every message obtains 5 timely responses, denoted � 5 −
0224BB81;4. This property implies that the 5 responders do not need to

be fixed, and may change from one message to another, i.e. to vary in

time. Compared to Aguilera et al. [Agu
+
04], where in � 5 − B>DA24, the
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set of 5 links is fixed throughout the execution, Malkhi et al. algorithm
presents a weaker assumption with � 5 − 0224BB81;4 that allows the 5

links to vary in time.

By unifying the assumptionsmade in [Agu
+
03], [Agu

+
04] and [MOZ05],

an even weaker model was proposed by Hutle [Hut
+
08] in 2008. The

authors show thatΩ can also be implemented in a system with at least

one process with 5 outgoing moving eventually timely links (moving

means that the set of neighbors may change over time), assuming

either unicast or broadcast steps. They assume a model of a fully-

connected network where processes are partially synchronous. Their

model requires at least one correct process that is a�<>E8=6− 5−B>DA24,
i.e. it must have timely outgoing links with an unknown delay bound

to a moving set of 5 receivers at any time.

As seen in Section 2.3, in some systems, a crashed process can recover

with the same identifier and goes on executing. The algorithm of

Fernández-Campusano et al. [Fer+17] implementsΩ in a crash-recovery

and omissive system. They consider a totally ordered set of = processes

which are known by each node, and nodes have access to a stable storage.

Every pair of nodes is connected by two unidirectional communication

links, one in each direction. Each node elects as leader the node with

the smallest penalty value among the nodes that communicate with

a majority of processes. A node increases its penalty value when it

recovers after a crash, or if it is not well connected with a majority of

processes. Each node keeps track of its communication with every other

node by periodically exchanging messages, which includes its penalty

value, its current leader, and information about its connectivity with

the receiver node.

Time-free. Mostéfaoui et al. [MMR03] use a query-response mecha-

nism, which assumes that the responses from some processes to a query

arrive among the (=− 5 ) first ones. The authors show that the algorithm

implements the ^S failure detector, which is known to be equivalent

to Ω when the membership is known. In [MRT06], Mostéfaoui et al.
extend the previous algorithm to implement Ω, considering a star

communication structure if the following property is satisfied: there is

a correct process ? and a set & of 5 processes @ (? ∉ &, and processes

in & can crash), such that eventually, either 1) each time @ broadcasts a

query, @ receives a response from ? among the (= − 5 ) first responses
to this query (and such a first response is called a winning response),

or 2) the channel from ? to @ is timely.

Unknown Networks

Other works aim to implement Ω in unknown networks and look for

models with the weakest possible assumptions on the knowledge

and communication graph. They share a common assumption on

reachability communication between every pair of correct processes.
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The presented works consider a timer-based approach, as defined in

Section 2.9.2.

The work of Jimenez et al. [JAF06] shows that it is possible to implement

Ω without knowledge of the system membership. To this end, they

present an algorithm implementing aΩ failure detector, which requires

minimal reliability and synchrony assumptions in systems whose links

are only of two types: either eventually timely (where messages are

received by time C+Δ after an unknownGST, withΔ being an unknown

bound) or lossy asynchronous (where messages can be lost or arbitrarily

delayed), as seen in Section 2.4.

Two algorithms were proposed by Fernandez et al. [FJR06; AJR10]

to implement Ω with weak assumptions on the initial knowledge of

each process and the behavior of the underlying network. The first

one considers a partial unknown network, where each process knows

the lower bound  on the number of correct processes ( = = − 5 ).
This algorithm assumes fair-lossy links and a strongly connected graph,

where there is a correct process connected to 5 −2 other correct processes
through eventually timely paths (with 2 being the actual number of

crashes in the considered run, and eventually timely paths are paths

made up of correct processes and eventually timely links). Note that this

first algorithm is not communication-efficient, as each correct process

has to send messages forever by fair-lossy links (one in each direction).

The second algorithm considers an unknown network with a complete

communication graph, where each pair of correct processes is connected

by fair-lossy links (one in each direction). It also assumes that there is

a correct process with output links to every correct process that are

eventually timely. The authors also present an important impossibility

result which consists of a lower bound theorem: in a system where

processes know neither  (a lower bound on the number of correct

processes) nor 2 (a lower bound on the actual number of crashes) in

their initial knowledge, there is no eventual leader election algorithm

with less than = − 2 − 1 eventually timely links [AJR10].

Martín et al. [MLJ09] proposed some algorithms in 2009 to implement

Ω in systems not necessarily fully connected, where two algorithms of

them assume an unknown membership. The system does not require

that every pair of processes is connected by a direct communication

link, and some links can be lossy asynchronous. The first algorithm

assumes that eventually all processes are reachable timely from the

process that crashes and recovers a minimum number of times. The

second algorithm assumes that all processes are eventually reachable

timely from some correct process. The eventual leader is the process

with the lowest identifier in the set of processes that no longer crashes

after some time.

The presented algorithms are summarized in Table 3.3.
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Table 3.3.: Comparison of eventual leader election algorithms in

static systems.

Article Membership Approach
[CT96] Known Timer-based

[LFA00] Known Timer-based

[Agu
+
01] Known Timer-based

[Agu
+
03] Known Timer-based

[Agu
+
04] Known Timer-based

[MOZ05] Known Timer-based

[Hut
+
08] Known Timer-based

[Fer
+
17] Known Timer-based

[MMR03] Known Time-free

[MRT06] Known Time-free

[JAF06] Unknown Timer-based

[FJR06; AJR10] Unknown Timer-based

[MLJ09] Unknown Timer-based

[Lar
+
12] Larrea et al. (2012): ‘Speci-

fying and implementing an eventual

leader service for dynamic systems’

[Agu
+
08] Aguilera et al. (2008): ‘On

implementing omega in systems with

weak reliability and synchrony as-

sumptions’

[Góm
+
13] Gómez-Calzado et al. (2013):

‘Fault-tolerant leader election in mo-

bile dynamic distributed systems’

3.2.2. Dynamic Systems

The eventual leader election problem in dynamic systems has been

studied in the literature, particularly for MANET networks. Since this

thesis proposes eventual leader election algorithms formobile networks,

this section aims to discuss some related work organized following the

approach used by the related algorithms: timer-based or time-free.

Timer-based

The algorithm presented by Larrea et al. [Lar+12] elects the node that
has been in the system for the longest period of time, i.e. the node

that joined the system first and has not yet left nor crashed. Each

node has a local clock and the time when a node joins the system is

timestamped using its current local clock value. If two nodes have the

same timestamp, the lower identifier breaks the tie. Clocks are not

required to be synchronized, but the local clock value of a node joining

the system should be as large as the clock value of the nodes already

in the system. A new election is started when a timer related to the

current leader expires. The authors assume that communication links

are eventually timely among nodes in the system [Agu
+
08], and their

algorithm is communication-efficient. The proposed algorithm is of

class ΔΩ and satisfies the EL-NI and EL-ND properties introduced in

Section 2.9.2, i.e. no more nodes join or leave the system during long

enough periods of time.

Similarly to the previous algorithm, the algorithm of Gómez-Calzado

et al. [Góm
+
13] uses the timer-based approach and elects as the leader

the oldest node of the connected component with the highest identifier.

Each node maintains a set with the identity of the nodes that belong

to its component. When a node does not belong to any component, it

periodically broadcasts join messages. On the other hand, if it is the

leader of a component, it sends a leader message with the size of its
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component. When a node receives a join message, it adds the new

node to its component, and propagates this new information over the

network. When it receives a leadermessage, it changes its leader if the

received component size is higher than its current leader component

size (when components merge, for example), and propagates the result

over the network. Communication channels are bidirectional, and since

a minimum stability of the graph is required, they use a notion of link

duration, i.e. a time interval that ensures communication among nodes.

Periodically, all links act as eventually timely channels. Nodes aremobile

and the system alternates periods of good and bad behaviors. During a

good period, i.e. in a stable and long enough connected interval, the

communication paths guarantee that graph connectivity corresponds

to a spanning tree. The authors also consider the EL-NI and EL-ND
properties which guarantee stability of the system after some time,

extending them to tolerate nodes mobility, i.e. graph partitioning and

merging. To this end, they formally define Mobile Dynamic Omega,

denotedΔ∗Ω. In short,Δ∗Ω requires that eventually and for a sufficiently

long time, there is a bidirectional path between the leader and the

rest of nodes in case of fragmentation of the network or merging of

multiple partitions (which then act as independent networks). They

also introduced a formalism with a framework to classify mobile and

dynamic distributed systems [Cal15].

Tucci-Piergiovanni et al. [TB10] consider an unknown system where

nodes are up or down, with a bounded number of concurrently up
nodes. Nodes have a local oracle called ��∗ which provides a list of up
nodes, used to implementΩ. ��∗ sorts nodes according to a sequence

number of heartbeats, which are periodically sent by up nodes. Nodes

that are eventually and permanently up, i.e. the oldest nodes, are in

the first positions of the sorted list. ��∗ permanently exchange the set

of the first nodes of their respective lists, updating them. The leader

is the node with the lowest identifier among the 1 first nodes in the

list. The authors do not consider any specific communication structure,

assuming unknown but finite bounds on message losses and message

delay. Network partitions are temporary. Each node periodically sends

heartbeats with its identifier, so that the other up nodes consider it as a

participant of the system. An infinite number of nodes may join and

leave over time. Each node has a local clock, which is not synchronized

among each other nodes.

Melit et al. [MB12] proposed an algorithm that also elects the nodewhich

has the highest priority value among all nodes within its connected

component. The lowest node identifier is used to break ties in case of

equal priority value. A timer is used to detect loss of communication

with the leader, i.e. when no more leader messages are received. At

the expiration of the timer of a node, the node elects itself as the new

leader and starts sending leadermessage periodically. Links are either

fair-lossy or eventual timely. The algorithm uses the flooding approach

for the leadermessages, which is initiated by the leader and contains the

identifier and the priority value of the leader. Nodes forward received



3. Related Work 39

[Mos
+
05] Mostefaoui et al. (2005):

‘From static distributed systems to dy-

namic systems’

[MRT04] Mostefaoui et al. (2004):

‘Crash-resilient time-free eventual

leadership’

[Ara
+
13] Arantes et al. (2013): ‘Even-

tual Leader Election in Evolving Mo-

bile Networks’

[Cas
+
11] Casteigts et al. (2011): ‘Time-

varying graphs and dynamic net-

works’

[MMR03] Mostefaoui et al. (2003):

‘Asynchronous implementation of fail-

ure detectors’

leader messages to all direct neighbors, except the sender node. A finite

number of topological changes can take place, i.e. after a time C, the

topology does not change anymore and becomes static.

Time-free

Mostefaoui et al. [Mos
+
05] extends the algorithm for static systems [MRT04],

for dynamic systems. The system can have infinitely many nodes, but

at each run has only a finite number of nodes. Nodes are asynchronous,

i.e. there is no bound on the execution of a computation step, and they

enter the system by executing a join() operation that provides them an

identity. The system is characterized by a succession of unstable and

stable periods, where progress can only be guaranteed during the stable

periods if they last long enough. The set of nodes which are correct after

entering the system, i.e. neither crash nor leave, is called BC01;4, and

the elected leader is a BC01;4 node. The following progress condition

must be satisfied: |BC01;4 | > , where  = = − 5 . The leader is the

node with the lowest identifier among a set of trusted nodes. This set

of trusted nodes eventually contains all nodes of the component that

replied among the  first response to queries. Each node maintains a

logical date and a set of trusted node identifiers, such that eventually,

the set of all nodes have the same value, hence allowing each node to

elect the same leader from its set. Nodes use gossiping to disseminate

their set of trusted nodes as well as a logical date defining the age of set.

This logical date indicates if the received set of trusted nodes is more

recent than the current one. A query-response mechanism is used to

get knowledge about nodes in the system. Upon receiving  responses,

the query terminates.

Arantes et al. [Ara
+
13] propose a time-free algorithm for unknown

network where nodes can move, fail by crashing, join and leave the

system. The authors consider the finite arrival model, i.e. the network

is a dynamic system composed of infinitely many mobile nodes but

each run consists of a finite set of = nodes. Communication channels

are fair-lossy and the dynamics of the network is modeled by using the

recurrent connectivity class of Time-Varying Graph (TVG) that ensures

that at any point in time the communication graph remains connected

over time [Cas
+
11]. For diffusing information, the algorithm uses local

query-response mechanism [MMR03]: at each query-response round,

node ?8 systematically broadcasts a query message to the nodes in

its neighborhood until it possibly crashes or leaves the system. When

?8 receives 8 messages, the query-response terminates. 8 is defined

locally as a function of the expected number of correct known neighbors

with whom ?8 may communicate at the time C in which the query

is issued. The algorithm elects the leader based on a punishment

procedure and on the periodic exchange of query-response messages.

If a neighbor ? 9 of ?8 does not respond within the 8 responses, ?8
punishes it by incrementing a counter associated to it. The algorithm

thus will eventually elect a correct process that has the smallest punish



3. Related Work 40

counter. To ensure that all the nodes will elect the same leader, query

messages of ?8 carry information about the view it has of the system and

the values of its process punished counters. In order to tolerate mobility

of nodes and avoid false suspicions in case of mobility, messages are

timestamped: as soon as ?8 gets the information (by the contents of

a received message) that another node has received a message from

? 9 with a greater timestamp, ?8 stops punishing ? 9 , which was falsely

suspected as faulty by ?8 . To ensure eventual stability of the algorithm,

the system assumes both the Stabilized Responsiveness Property (SℛP),
which defines the ability of a correct process to eventually always reply

to a query sent among the first processes, and the Stable Termination
Property (S0CP), which guarantees that information from/to a process

is going to be sent/received to/from at least one correct other process

in its neighborhood.

The presented algorithms are summarized in Table 3.4.

Table 3.4.: Comparison of eventual leader election algorithms in

dynamic systems.

Article Approach Election Criterion Information Spreading Connectivity Assumption

[Lar
+
12] Timer-based

Oldest node with

lower identifier

Periodic leader flooding

(spanning tree)

Periodic stable system

[Góm
+
13] Timer-based

Oldest node with

higher identifier

Periodic leader flooding

(spanning tree)

Periodic stable system

[TB10] Timer-based

Oldest node with

lower identifier

Fully connected

graph

Only temporary

partition

[MB12] Timer-based

Highest

arbitrary value

Periodic leader flooding

(spanning tree)

Eventually static

[Mos
+
05] Time-free Lowest identifier (not specified) Periodic stable system

[Ara
+
13] Time-free

Lowest punishment

counter

Connected graph

Recurrent connectivity

(TVG)

3.3. Conclusion

This chapter has presented several works on the classic and eventual

leader election problems for static and dynamic systems.

First, a few pioneer articles are presented on the classical leader election

problem in static systems for specific topologies such as rings, spanning

trees, or complete communication graphs. Then some papers on the

same problem but for dynamic systems are described, following three

criteria: the election choice, information spreading and connectivity

assumptions.

Then, the problem of the eventual leader election, also called the Ω

failure detector is addressed. For static systems, the corresponding

section organizes the related work according to the knowledge or not
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of the system membership, while for dynamic systems, some existing

Ω algorithms are presented by implementation choice (timer-based or

time-free).
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This chapter presents the first contribution of this thesis: an eventual

leader election for Mobile Ad Hoc Networks (MANET), which exploits

the knowledge that nodes maintain of the network in the decision

of the leader choice. The mobile nodes communicate by transmitting

messages over wireless links. Only nodes within the transmission range

of each other can communicate directlywith one another. Then, they can

retransmit the message to other nodes. Thus, one or more intermediate

nodes may act as relays. In such a network, the communication graph

evolves: nodes can move, join and leave the system, fail, and recover

at runtime. Due to these dynamics, the network may be partitioned,

i.e. composed of two or more connected components. Initially, nodes

have no knowledge of the system membership, learning about it during

execution time.

As seen in Chapter 3, many works have proposed leader election

algorithms in both static and dynamic distributed systems. However,

among the latter, only a few of them take into account the above
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[BO99] Bellur et al. (1999): ‘A reliable,

efficient topology broadcast protocol

for dynamic networks’

highly dynamic characteristics and membership lack of knowledge of

MANET [Mos
+
05; MA

+
06; MB12]. Furthermore, in the majority of these

algorithms, the choice of the leader is based on a beforehand criterion

such as the lowest or the highest nonfaulty process identity. However, it

is important that the criterion should take into account the impact that

the choice of the leader may have on the performance of algorithms

that use the leader election service. Performance-related criteria are, for

instance, nodes remaining battery life, nodes computation capabilities,

nodes topological position (e.g. the minimum average distance from a

node to all other nodes), etc. Similarly to [VKT04], the most valued node
denotes the one that best meets the performance-related criterion in

question and, therefore, should be chosen as the leader. Hence:

1. An election algorithm for mobile networks must tolerate arbitrary,

concurrent topology changes, and should eventually terminate

electing a unique leader per connected component of the net-

work [Fer
+
17].

2. For the sake of performance, an elected leader should be the most
valued node among all the nodes within its connected component.

The proposed algorithm is an eventual leader election algorithm called

Topology Aware, which is based on the most valued node criterion and

whose nodes have a global knowledge of the communication graph

and its dynamic evolution, denoted topological knowledge. The algorithm
progressively builds and maintains a local knowledge of the connected

graph. It relies only on broadcasts within node transmission ranges

and does not require any election communication phase: with both its

current topological knowledge and choosing the most valued node, each node

can directly deduce at any moment which node is the current leader.

In particular, the topological knowledge makes the computation of the

closeness centrality possible, as well as the election of per component

central located leaders, which, thus, efficiently spread information

across nodes of the component. Even if the problem of discovering

network topology has been studied in various contexts [NT09; BO99],

this approach has never been used to elect an eventual leader.

It is worth pointing out that even if the presented work target MANET,

the Topology Aware algorithm has been designed for generic mobile

dynamic systems.

The rest of the chapter is organized as follows: Section 4.1 explains

the chosen model and assumptions, while Section 4.2 describes the

algorithm. Section 4.4 discusses performance results and, finally, a

conclusion is given in Section 4.5.

4.1. SystemModel and Assumptions

The system model considers an upper bound ) on the time a process

takes to execute a step and eventually timely links, i.e. an upper bound �
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on the transmission delay. However, both bounds ) and � are unknown

and hold after an unknownGlobal Stabilization Time (GST), so the system

is partially synchronous, as described in Section 2.2 and Section 2.4.

There exists one process per node. Therefore, the words node and process
are interchangeable.

4.1.1. Node states and failures

Every node always follows the specification of the algorithm, until a

potential fail. It is considered correct if it never fails and never leaves the

system during the whole execution. Otherwise, it is considered faulty,
until it comes back to the system.

A node can fail by crashing and a failed node can recover, joining the

system again with the same unique identifier, i.e. two nodes cannot have

the same identifier, as detailed in Section 2.3. Therefore, a node keeps its

identifier regardless of its state. However, the node does not recover its

state neither the knowledge of the network membership and, thus, is

initialized again.

4.1.2. Communication graph

The system is modeled as an undirected graph, as presented in Sec-

tion 2.6. Two nodes can communicate directly if they are in the trans-

mission range of each other, i.e. a receiver node is located inside the

emission range of a sender node. The system assumes that the emis-

sion range is the same as the reception range. Therefore, if node 8 can

communicate with node 9, node 9 can also communicate with node 8

(bidirectional links).

A given node belongs to a connected graph formed by its neighbors,

neighbors of its neighbors, and so on, which is called a connected
component. Due to the movement, failure, and disconnection of nodes,

the system can be divided into two (or more) different connected

components. Each of them is considered to be a fully-fledged network in

itself, and therefore, eventually elects one leader. Both partial synchrony

and algorithmensure that, regardless of topology changes, if the changes

cease, each connected component will eventually elect a single leader.

4.1.3. Channels

Nodes only communicate by broadcast on a fixedWi-Fi channel selected

beforehand. All neighbors of the sender node receive the broadcast

message. Reliable communication channels are assumed, possible in

a wireless network where the MAC layer reliably delivers broadcast

messages, even in the presence of signal attenuation, collision, and
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interference. Otherwise, the transmitter is faulty or out of the neighbor-

hood. There is no assumption about message order, so messages can be

delivered out of order.

4.1.4. Membership and nodes identity

The number of nodes is unknown. Each node initially knows its own

identifier which is unique in the system. A probe system is used which

allows detection of neighbor nodes. By receiving messages from its

neighbors, a node gets knowledge of the membership of the network.

4.2. Topology Aware Leader Election
Algorithm

In the Topology Aware algorithm, every node keeps a topological knowl-

edge of the connected component to which it belongs. The algorithm

builds this component knowledge during node connections and dis-

connections (triggered by a probe system), and maintains it by sending

either the full knowledge (called known) to new neighbors, or partial

modifications (called updates) periodically to its neighbors.

4.2.1. Pseudo-code

The pseudo-code of the Topology Aware algorithm for a node 8 is given

in Algorithm 1 and is described in the following.

4.2.2. Data structures, variables, and messages (lines 1
to 6)

The two following data structures are used by node 8:

I view (line 1) is composed of two elements: a logical clock [Lam78]

value only incremented by 8, and a set of identifiers representing
neighbors of 8.

I updt (update, line 2) represents additions or deletions of neigh-

bors of 8. It consists of the identifier of the source node that has

detected membership changes in its neighborhood, a set of added
nodes (new connected neighbors), a set of removed nodes (new

disconnected neighbors), the logical clock value of source node
before the modifications (old_clk) and its logical clock value after

the modifications (new_clk). This structure allows us to track new

modifications for a given period of time.

Each node 8 maintains three local variables (line 3):
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Algorithm 1: The Topology Aware eventual leader election algorithm for a node 8

1 Typedef view: 〈clk: int, neigh: set(id)〉
2 Typedef updt: 〈src: int, add: set(id), rmv: set(id), old_clk: int, new_clk: int〉

3 Local variables of node 8:
4 known: map(key: id, value: view)
5 updates: list(updt)
6 pending: list(updt)

7 Initialization of node 8:
8 known[8].neigh← {8}
9 known[8].clk← 0

10 updates← ∅
11 pending← ∅

12 Periodic Updates Task:
13 if D?30C4B ≠ ∅ then
14 Broadcast (updates)
15 updates← ∅
16 Wait Δmilliseconds

17 Invocation of Leader():
18 component← Reachable (known[8])
19 return Max (ClosenessCentrality (component))

20 Connection of node 9:
21 known[8].neigh← known[8].neigh ∪ {9}
22 known[8].clk← known[8].clk + 1

23 Broadcast (known)

24 Disconnection of node 9:
25 updates← updates ∪ {〈i, ∅, {9}, known[8].clk, known[8].clk + 1〉}
26 known[8].neigh← known[8].neigh \ {9}
27 known[8].clk← known[8].clk + 1

I known8 (line 4): the current topological knowledge of the con-

nected component of node 8 (including itself), implemented as a

map of view indexed by node identifier, i.e. an entry for each node.

I updates8 (line 5): a list of updt (updates) is periodically sent, used

to update the knowledge of nodes by propagating modifications

of the knowledge of 8 (new connections and disconnections),

without sending the full knowledge, avoiding therefore, to send

redundant information already received by neighbors.

I pending8 (line 6): a list of pendingupdates that cannot be applied by

8 at the time of first reception, but applied when new information

is received thereafter.

During communication, the variables known and updates are ex-

changed through two distinct types of messages identified by the name

of the variables.
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28 Receive :=>F= 9 from node 9:
29 ∀ 〈id, view〉 ∈ known9 do
30 if � 〈id, –〉 ∈ known then
31 updates← updates ∪ {〈id, view.neigh, –, 0, view.clk〉}
32 known[id]← 〈view.clk, view.neigh〉
33 else if E84F.2;: > :=>F=[83].2;: then
34 add← view.neigh \ known[id].neigh

35 rmv← known[id].neigh \ view.neigh
36 updates← updates ∪ {〈id, add, rmv, known[id].clk, view.clk〉}
37 known[id]← 〈view.clk, view.neigh〉

38 PendingUpdates()

39 Receive D?30C4B 9 from node 9:
40 ∀ updt〈src, add, rmv, old_clk, new_clk〉 ∈ updates9 do
41 if � 〈src, –〉 ∈ :=>F= then
42 if >;3_2;: = 0 then
43 known[src]← 〈new_clk, add〉
44 updates← updates ∪ updt

45 else
46 pending← pending ∪ updt

47 else if >;3_2;: = :=>F=[BA2].2;: then
48 known[src].neigh← (known[src].neigh ∪ add) \ rmv

49 known[src].clk← new_clk

50 updates← updates ∪ updt

51 else if >;3_2;: > :=>F=[BA2].2;: then
52 pending← pending ∪ updt

53 PendingUpdates()

54 Invocation of PendingUpdates():
55 ∀ updt〈src, add, rmv, old_clk, new_clk〉 ∈ pending do
56 if >;3_2;: = 0 then
57 if � 〈src, –〉 ∈ :=>F= then
58 known[src]← 〈new_clk, add〉
59 pending← pending \ updt
60 else if >;3_2;: = :=>F=[BA2].2;: then
61 known[src].neigh← (known[src].neigh ∪ add) \ rmv

62 known[src].clk← new_clk

63 pending← pending \ updt
64 if >;3_2;: < :=>F=[BA2].2;: then
65 pending← pending \ updt

4.2.3. Initialization (lines 7 to 11)

At the beginning, node 8 initializes its knowledge with its own identifier

(8) and its logical clock set to 0.
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4.2.4. Periodic updates task (lines 12 to 16)

Periodically, i.e. every Δmilliseconds, node 8 broadcasts its new updates
list if not empty, and then set it to empty.

4.2.5. Connection (lines 20 to 23)

When a new node 9 appears in the transmission range of node 8, it

is detected thanks to the probe system and the Connection method is

triggered (line 20). Node 9 is considered as a new neighbor and is added

to the knowledge of node 8 (line 21). As the latter has been updated, the

logical clock of node 8 is incremented (line 22).

Then, both nodes broadcast their current knowledge to share infor-

mation about their component with each other, and also to inform

neighbors about the new node. Therefore, node 8 broadcasts its known
map (line 23) to its neighbors: node 9 then acquire topological knowl-

edge about the component, while the other neighbors of 8 are informed

about the new connection with 9. Same process is executed by 9 in

regard to node 8 and its neighbors.

4.2.6. Disconnection (lines 24 to 27)

When a certain number (�) of probes from node 9 are not received

by node 8, node 9 is considered disconnected by 8 (line 24). An update
structure is then created with the following information (line 25):

I the identifier of node 8, considered as the source of the modifica-

tion;

I an empty value for the add set (no new connection);

I the identifier of the disconnected node 9 for the removed set;

I the current clock of node 8;

I the new clock, whose value is equal to the clock value of node 8

increased by 1.

This tuple is added to the list of updates to be propagated later by

the periodic updates task (line 12). Node 9 is then removed from the

knowledge of node 8 (line 26) and the clock of node 8 is incremented

(line 27).

4.2.7. Knowledge reception (lines 28 to 38)

When node 8 receives the known map of node 9 (line 28), it checks each

node 83 included in known9 (line 29). If 83 is a new node for it (line 30),

node 8 creates an update containing the neighbors of node 83 with an

old clock valued at 0, meaning that all neighbors of 83 are in the add set
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(line 31). The update is added to the list of updates to be propagated later

by the periodic updates task. Then, the clock and neighbors of 83 are

added to the knowledge of node 8 (line 32).

If 83 is known by 8 and the clock value of 83 is greater than the clock

value known by node 8 for 83 (line 33), it means that 83 made some

connections and/or disconnections of which node 8 is not aware. Hence,

node 8 creates an update and computes the add set (line 34), which will

be composed of the new neighbors for 8 that 83 informed in view, minus

the neighbors of 83 which 8 already knew. The result represents new

neighbors of 83 since its last received view. Then, node 8 computes the

removed nodes of the update, by removing the received neighbors from

the known neighbors of 83 (line 35), which represents disconnections

since the last received view. The value of the old clock in the update is set
to the clock value of 83 in the knowledge of node 8, and the new clock

value is set to the value of the received clock (line 36).

The update is added to the list of updates to be propagated later by the

periodic updates task (line 12), and eventually, thanks to their previous

knowledge and update exchanges, neighbors of node 8 will have the

same knowledge as node 8 with identical clocks, thus, they will be able

to apply this new update in their respective knowledge.

Finally, the clock value and neighbor identifiers of 83 are added to the

knowledge of 8 (line 37) and the PendingUpdates method is called to

apply previously received updates (line 38).

4.2.8. Updates reception (lines 39 to 53)

When node 8 receives updates from node 9 (line 39), each update adds or

removes neighbors of a source node BA2 (line 40). Following the old clock
value, an update can be applied, saved in the pending list to be applied

later, or discarded.

If the old clock is equal to 0 (line 42), the update contains all the

neighbors of node BA2 (see Knowledge reception paragraph), and the

update is applied (line 43) if node 8 does not have any information about

node BA2 (line 41). If the old clock is equal to the clock of node BA2 in the

current knowledge of node 8 (line 47), the update corresponds to new

information. The update is then applied, i.e. neighbors are updated

(line 48) as well as the clock (line 49). In both cases, the updates are

added to the updates set of node 8 (lines 44 and 50), to be propagated

later to neighbors through the periodic updates task.

Note that an update cannot be applied when it is more recent than

other updates not yet received by 8, which should have been applied

before the former. This out-of-order update receptions might happen if

the component contains cycles, i.e. when the old clock is greater than
the clock of BA2 in the knowledge of 8 (line 51), or when node 8 does not

have any information about node BA2 and the old clock is greater than
0 (line 45). In those cases, node 8 saves the update in a pending updates
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list (lines 46 and 52), and will try to apply it in the future, after new

updates will be received (line 53).

4.2.9. Pending updates (lines 54 to 65)

PendingUpdates (line 54) checks the updates that can be applied from

the pending list (line 55). To reduce message exchanges and improve

performance, updates that cannot be applied when first received are

saved, and the algorithm tries to apply them after new information is

received.

When an update is applied (i.e. the knowledge of 8 changes, lines 58

and 61-62), the latter is removed from the pending list (lines 59 and 63).

If the clock value of the current knowledge is greater than the old clock
value of the update (line 64), the update is also removed for the pending
list (line 65), meaning that node 8 receives a knowledge or updates from

a node with more recent information.

4.2.10. Leader election (lines 17 to 19)

When a process running on node 8 requires a leader, it calls the local

Leader method (line 17) which computes and returns, based on the

knowledge of 8, the best leader according to the closeness centrality

(line 19). The closeness centrality defined in Section 2.7 is used rather

than the betweenness centrality, because it is computed faster and

requires fewer computational steps, so use less energy from the mobile

nodes. In order to compute the closeness centrality, node 8, starting

from itself, get the set of reachable nodes according to its topological

knowledge of the component (line 18). Then, for each reachable node,

it computes the shortest distance between this node and the other

reachable ones, obtains the closeness centrality, and deduces the most

central node as the leader (line 19). The highest node identifier is used

to break ties among identical centrality values.

If all nodes of the component have the same knowledge of the topology,

the Leader() call returns the same leader node to all of them. Otherwise,

it may return different leaders for distinct nodes. However, if topology

changes cease, the algorithm ensures that all nodes of a connected

component will eventually have the same topology knowledge and,

therefore, will have the same leader node [Ing
+
13].

4.2.11. Execution examples

This section presents examples of the execution of Topology Aware
algorithm, showing the connection between node 8 and node 9.
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i

k

h

< i , 13 , [ i , k ] >
< h , 8 , [ h , k ] > 
< k , 5 , [ k , h , i ] >

< k , 5 , [ k , h , i ] > 
< i , 13 , [ i , k ] > 
< h , 8 , [ h , k ] >

< h , 8 , [ h , k ] > 
< i , 13 , [ i , k ] > 
< k , 5 , [ k , h , i ] >

j

< j , 22 , [ j , g ] > 
< g , 10 , [ g , j ] >

g

< g , 10 , [ g , j ] > 
< j , 22 , [ j , g ] >

(a) (b) 

Figure 4.1.: Example Topology Aware: Initial state.

Initially, in Figure 4.1, the system is composed of two connected

components: nodes ℎ, 8, and : in Figure 4.1.a, and nodes 9 and

6 in Figure 4.1.b. Each node has its own knowledge composed of

< 834=C8 5 84A, 2;>2:, B4C(=486ℎ1>AB) >, with arbitrary initial values

used for the sake of the example. One leader is currently elected per

component, respectively nodes : and 9. Nodes 9 and 6 have the same

closeness centrality, therefore, the highest node identifier is used to

break the tie, as presented in Section 4.2.10, and since 6 < 9, node 9 is

the leader.
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< i , 13 , [ i , k ] > 
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< j , 22 , [ j , g ] > 
< g , 10 , [ g , j ] >

g

< g , 10 , [ g , j ] > 
< j , 22 , [ j , g ] >

Connection of node 𝑗 

Figure 4.2.: Example Topology Aware: Connection of node 9.

In Figure 4.2, the underlying probe system of node 8 first detects node 9

and triggers theConnectionmethod described in Section 4.2.5. Therefore,

node 8 adds node 9 in its neighbors list, and increments by one its clock

value, previously sets to 13.
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Broadcast (known)

Connection of node i 

Figure 4.3.: Example TopologyAware: Broadcast knowledge of node

8 and connection of node 8.

Then, in Figure 4.3, node 8 broadcasts its knowledge in order to share its

view of the network with node 9. Meanwhile, the probe system of node

9 has detected node 8 and triggers the Connection method of node 9.

Node 8 is added to the neighbor list of node 9 and the latter increments

its clock value from 22 to 23.
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< k , 5 , [ k , h , i ] >

g

< g , 10 , [ g , j ] > 
< j , 22 , [ j , g ] >

Broadcast (known)

Figure 4.4.: Example TopologyAware: Broadcast knowledge of node

9 and knowledge reception of node 9.

In Figure 4.4, node 9 broadcasts its knowledge to complete theConnection
method, and it receives a knowledge from node 8. According to this

new knowledge, node 9 is not the leader anymore. Since node 9 received

a knowledge from node 8, it creates an update. However, in this case,

the update will not be usefull since its neighbors already received its

knowledge. Note that node : also received the knowledge of node 8,

therefore, it follows the steps described in Section 4.2.7: the received

clock of node 8 is higher than the known clock of 8 in the knowledge

of node : (14 > 13, line 33), meaning that new information is received.

Therefore, node : updates the entry of node 8 in its knowledge by

adding node 9 as a new neighbor and updating the clock of node 8 from

13 to 14. It also creates an update < 8 , 033(9), A<E(−), 13, 14 > that will

be sent by the Periodic Updates Task.
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Periodic Updates Task < i >

Periodic Updates Task < i , h , k >

Figure 4.5.: Example Topology Aware: Knowledge reception of

nodes 8 and 6.

Then, in Figure 4.5, nodes 8 and 6 receive a knowledge from node 9.

Both nodes update their knowledge and create updates with the new

received information, that will be broadcast later. According to this new

knowledge, node 8 considers itself as the leader since it has the highest

closeness centrality.
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Figure 4.6.: Example Topology Aware: Periodic Updates Task of

nodes 8 and 6.

In Figure 4.6, the Periodic Updates Task of both nodes 8 and 6 send their

update. Node ℎ received the update of node : and updates the entry

of node 8 in its knowledge with the more recent information received.

Therefore, it creates an update with the new information received, that

will be sent later.
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Figure 4.7.: Example Topology Aware: Update reception of node :.

Then, in Figure 4.7, node : received the update sent by node 8, with

information about nodes 9 and 6. Thus, it updates its knowledge and

creates an update containing this new received information. The Periodic
Updates Task of node ℎ sends the update with information about node

8.
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Figure 4.8.: Example Topology Aware: Periodic Updates Task of

node :.

In Figure 4.8, the Periodic Updates Task of node : sends the update with

information about nodes 9 and 6.
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[MJ09] Montresor et al. (2009): ‘Peer-

Sim: A Scalable P2P Simulator’
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Figure 4.9.: Example Topology Aware: Update reception of node ℎ.

Finally, in Figure 4.9, node ℎ receives the update from node : with

information about nodes 9 and 6. It updates its knowledge and creates

an update with the new received information, that will be sent later by

the Periodic Updates Task (not shown in the example). All nodes have the

same knowledge of the component. Hence, the invocation of Leader()
method ofΩ failure detectors returns the most central node according

to the closeness centrality: node 8, which is the leader.

4.3. Simulation Environment

The objective of the simulations is to compare the Topology Aware
algorithm with a flooding one.

Several evaluation experiments were conducted on PeerSim [MJ09], a

Java peer-to-peer network simulator with an event-based engine and

modularity. Each experiment lasts 30 minutes, with a simulated unit

of time corresponding to one millisecond, and simulates 60 nodes

placed in a 900 × 900 meters obstacle-free area, with a fixed diameter

of transmission range between 10 and 200 meters decided beforehand

and identical for all nodes. Message sending latency follows a Poisson

distribution with parameter � = 10. The experiments were conducted

using console-mode on remote servers, but a graphical interface was

used primarily for development purposes, as shown in Figure 4.10.

4.3.1. Algorithms

Two versions of the Topolgy Aware algorithm were considered:

I Topology Aware Closeness, which uses the closeness centrality as

the election criterion, and elects as the leader the node having the

highest closeness in the connected component, as presented in

Section 4.2.
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Figure 4.10.: Screenshot of a graphical PeerSim experiment running

the Topology Aware algorithmwith a transmission range

of 120 meters. Leaders are in red.

[VKT04] Vasudevan et al. (2004): ‘De-

sign and analysis of a leader election

algorithm for mobile ad hoc networks’

[Lyn96] Lynch (1996): ‘Distributed al-

gorithms’

I Topology Aware Degree, which uses the node degree, i.e. the number

of direct neighbors of a node, as the election criterion, and elects

as the leader the node having the highest degree in the connected

component.

These two versions of the Topology Aware algorithmwere comparedwith

a variant of the Vasudevan et al. algorithm [VKT04], which is based on

flooding. Vasudevan et al. algorithm returns⊥ during the election phase,

if the leader has not been elected yet. In order to be fairly comparable

with the Topology Aware algorithm, a variant of this algorithm that

never returns ⊥ but a possible current leader, is considered. Indeed, in

Topology Aware, a correct node is always able to render a leader according

to its topological knowledge. This variant is denoted Flooding because
each node periodically broadcasts leader messages informing its current

leader to neighbor nodes.

Note that Flooding is also a variant of the OptFloodMax algorithm that

Nancy A. Lynch introduced in her book Distributed Systems [Lyn96]. In
OptFloodMax, processes send their unique identifier to their neighbors,

whenever a process obtains a new maximum unique identifier (which

will eventually be elected as the leader).
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The Flooding algorithm was adapted for MANET assuming an underly-

ing probe system that detects connections and disconnections. Exchanged

leader messages contain the node identifier and an election criterion,

called value. The leader is the node with the highest value. It periodically
broadcasts leader messages to neighbor nodes every  milliseconds, and

each node forwards this information to neighbors. When the leader

fails, it stops sending leader messages, and after a non-reception of �

leader messages from the leader, nodes trigger a new election by setting

themselves as their own new leader. Thus, new leader messages from dif-

ferent nodes are propagated, and eventually, the node with the highest

value is elected.

In order to elect a leader with good local connectivity, it is considered

that the value is equal to the number of direct neighbors of a node,

equivalent to node degree in a graph, which is updated at each topology

change, thanks to the probe system (new connection or disconnection).

The highest node identifier is used to break ties among identical values.
This algorithm is denoted Flooding Degree.

4.3.2. Algorithms Settings

In the Flooding Degree algorithm, nodes send leader messages every

 = 250 milliseconds. Every node triggers a new election if � = 1 leader
message from the current leader was not received after a timeout of 300

milliseconds.

In both Topology Aware versions, updates are kept in a list acting as a

buffer, before being sent every Δ milliseconds if the list is not empty.

The value of Δ is based on the transmission range (on G-axis of figures),

considering that the larger the transmission range, the higher number

of nodes potentially reached. Thus, to avoid burst effect after topology

changes, the value of Δ should make information transmission faster

on small components, but slower on lager components, due to the high

dynamics of mobile nodes induced by larger transmission ranges. To

this aim, the following formula was deduced empirically:

Δ = 70 × ;>610(A0=64) − 60

With this formula, Δ has a low value for small ranges and increases

proportionally to the size of the range, with a fast increase for low

ranges and a slow increase for higher ranges, as shown in Figure 4.11.

Therefore, information is transmitted quickly on small components, but

more slowly on larger components. As a result, updates are sent every

60 milliseconds on average for lower transmission ranges, and every 90

milliseconds on average for larger transmission ranges.

In the three algorithms, when a probe message is received by node 8,

the Connectionmethod of the algorithm is triggered. A probemessage

contains the unique identifier of the node and is sent every � = 400
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Figure 4.11.: Representation of Δ in Periodic Updates Task.
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milliseconds. If � = 1 probe message from node 9 is not received after a

timeout of 450 milliseconds, node 8 considers node 9 as out of range

and trigger the Disconnection method.

4.3.3. Mobility Models

Twodifferentmobility patterns have been considered in the experiments:

the random waypoint and a periodic disc positioning pattern around a

single point of interest. For both mobility patterns, the minimum node

speed is set to 5 m/s and the maximum node speed is set to 15 m/s.

The chosen speed follows a uniform distribution between the minimum

and the maximum speed.

Random waypoint

Nodes are randomly placed in the area and move according to the

Random Waypoint mobility model [CBD02]. Nodes wait 10 seconds

before choosing the next random destination. It is worth noting that

this mobility pattern is largely used in the literature [VKT04; CBD02].

A representation of the Random Waypoint is given in Figure 4.12.

Periodic single point of interest

First, nodes are placed to create concentric circles whose center is the

same unique point of interest, thus, composing a disc, like the one

shown in Figure 4.13, such that there exists a path between any two

nodes in the disc.

After 10 seconds, nodes start moving to a randomly chosen destination.

Once reached, nodes wait 10 seconds before going back to their initial

position in the circle, waiting for each other nodes to reach its initial
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Figure 4.12.: Representation of the Random Waypoint mobility

model [CBD02].

Figure 4.13.: Representation of the single point of interest disc.

[Pap
+
16] Papandrea et al. (2016): ‘On

the properties of human mobility’

position. Note that nodes can wait a long time for the other nodes

to return to their initial position in the disc, due to various node

speeds. When every node is at its initial circle position (the disc is

reconstructed again), they wait 10 seconds before moving to another

random destination, and repeat this behavior continually until the end

of the experiment.

The shape of the disc is independent of the node transmission range, i.e.

it always looks like the one in Figure 4.12 regardless of the diameter of

the transmission range. This pattern could model user activities, where

nodes represent people visiting regularly just a few places [Pap
+
16].

4.4. Evaluation

The goal is to compare the performance of Flooding Degree algorithm
with the Degree and Closeness versions of Topology Aware algorithm, for

different diameters of transmission range. Note that, there is a strong

correlation between the transmission range and network connectivity,

i.e. the number of components in the system.
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4.4.1. Metrics

For evaluation, the following three metrics have been considered:

instability, number of messages sent per second, and longest leader

path relative to the component diameter.

Instability

This is the percentage of the average time that a node elects a different

leader from the eventually unique elected leader of its component. The

latter is computed by an oracle based on nodes degree for Flooding
Degree and Topology Aware Degree, or closeness centrality for Topology
Aware Closeness.

First, the �DAA4=C�=BC018;8CH at time C is computed with the following

formula:

�DAA4=C�=BC018;8CHC =

∑#
8=0

{
0 if ;4034AC(8) = >A02;4C(8)
1 if ;4034AC(8) ≠ >A02;4C(8)

#

where # is the number of nodes in the system, and 8 the node identifier.

Then, the Instability is computed over the entire experiment time, which

is the average �DAA4=C�=BC018;8CHC from 0, to the end of the experiment

(1 800 seconds).

Number of messages sent per second

It is the average of the total number of messages sent per second. This

metric does not consider probe messages, since the same number of

probes is sent by all three algorithms every �milliseconds.

Longest leader path relative to the component diameter

This metric characterizes how fast a leader can reach nodes of its

component. First is computed the longest path of all shortest paths from

every node of the component to their current leader. Then, since it

depends on the number of nodes in the component, the longest path

is divided by the diameter of the component, i.e. the greatest distance

between any pair of nodes in the component.

4.4.2. Instability

The random waypoint pattern in Figure 4.14 shows that the instability

percentage of Flooding Degree and of both Topology Aware versions varies
according to the transmission range, with a stabilization starting at a

transmission range of 120 meters when the majority of nodes are in a

few large connected components. However, nodes in Flooding Degree
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spend on average 55% more time with the wrong leader than nodes in

Topology Aware Degree. Note that the Closeness version of Topology Aware
is slightly less stable than the Degree version.
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Figure 4.14.: Instability percentage with random waypoint (lower is

better).
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Figure 4.15.: Instability percentage with periodic single point of

interest (lower is better).

For the periodic single point of interest pattern in Figure 4.15, com-

pared to Topology Aware Degree, Flooding Degree spends on average 82%

more time with a wrong leader, i.e. 1.5 times more than the previous

mobility pattern. In Flooding Degree, leader unavailability is progres-

sively detected by all nodes of the component, upon expiration of leader
messages timeout. In this case, each node of the component triggers

a new election by setting itself as the leader, and starts broadcasting

leader messages. However, some nodes located further away from the old

leader might still receive, from their neighbors, leader messages related
to this old leader and, thus, will take more time to start a new election.
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Furthermore, the greater the number of nodes in the component, the

higher the spreading of leader message (as observed in Figure 4.15).

In Flooding Degree, the spreading of leader messages from all the nodes

that have started a new election slows down the election convergence

and thus increases the average stability. On the other hand, both Topology
Aware versions only need to spread updates to each node.

The two versions of Topology Aware are more stable than Flooding Degree,
especially in large components where there is low nodes movement,

because they need fewer steps to elect a new leader once their topological

knowledge is built.

Instability over time at 90 meters
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Figure 4.16.: Evolution of instability at a transmission range of 90

meters with random waypoint (lower is better).
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Figure 4.17.: Evolution of instability at a transmission range of 90

meters with periodic single point of interest (lower is

better).
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Figure 4.16 and Figure 4.17 both show the evolution of instability over

time, considering a transmission range of 90 meters which is quite

realistic. The instability at time C is the average cumulative instability

from time 0 to time C, and the right H-axis is the exact number of

components at time C.

As shown in Figure 4.16, the random waypoint mobility pattern has

on average 18 connected components, and Topology Aware Degree is on
average 62% more stable than Flooding Degree.

For the periodic single point of interest pattern in Figure 4.17, nodes are

gathering at their initial position on the disc presented in Figure 4.13,

creating a unique connected component, then moving to random

positions, also having on average a maximum of 18 components. At the

beginning of the experiment, nodes in both Topology Aware versions
exchange messages to build their knowledge, inducing many leader

errors, hence, an instability rate of 41% for the Degree version and 69%

for the Closeness one. However, Flooding Degree quickly finds the correct

leader, thus, showing low instability. After the second gathering and

until the end of the experiment, the two Topology Aware versions are
on average 79% more efficient to elect the correct leader than Flooding
Degree, which increases its instability after each gathering, when nodes

start to randomly move again.

4.4.3. Number of messages sent per second

The previous section shows that the smaller the transmission range,

the higher the number of components. Therefore, in the case of low

transmission ranges, there are more components, and consequently,

more leaders. This higher number of leaders explains why Flooding
Degree presents bad performance with low transmission ranges, since

each leader floods its component with leader messages. When the trans-

mission range increases, the number of leaders decreases, thus reducing

the number of flooding messages. On the other hand, Topology Aware
algorithms behave inversely: when the transmission range increases,

each node observes more topological movements, therefore, increasing

the amount of new knowledge and update messages. These behaviors

arewell characterized in Figure 4.18, especially for the randomwaypoint

pattern. Note that the number of messages sent in both Topology Aware
versions is the same because the election criterion does not impact the

number of messages.
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Figure 4.18.:Number of messages sent per second with random

waypoint (lower is better).
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Figure 4.19.:Number of messages sent per second with periodic

single point of interest (lower is better).

An interesting threshold effect is observed from the transmission range

of 130 meters. At this range, components are bigger and start to become

more stable in terms of topology changes. Topology Aware algorithms

benefit from the topology stability since:

1. They generate fewer messages (due to fewer connections and

disconnections, so fewer knowledge and updates exchanges).

2. They are less sensitive to the size of components.

On the opposite, Flooding Degree is punished by the size of the compo-

nents, because it is not sensitive to topology changes and flooding is

more costly when the number of links increases. This explains why the

curves of Topology Aware versions stabilize while the curve of Flooding
Degree increases.
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Table 4.1.: Average message size (in bytes).

Flooding

Degree

Topology Aware

Degree

Topology Aware

Closeness

Random

waypoint

196 705 to 1284 681 to 1260

Periodic

single POI

196 786 to 942 760 to 915

For the periodic single point of interest pattern in Figure 4.19, both

versions of Topology Aware send fewer messages, because they do not

need to communicate when the topology is motionless. As the number

of nodes in the component increases, the number of messages also

increases, depending on the value of Δ that impacts the number of

messages sent per second. On the other hand, Flooding Degree sends
more messages than the two Topology Aware versions, because even if

the topology is static for a while, a flooding algorithm continues to

periodically send information about its current leader.

However, the size of messages exchanged in both Topology Aware algo-
rithms is larger than in the Flooding Degree algorithm. In Table 4.1, the

Flooding Degree algorithm presents the same average message size since

messages contain just a node identifier and a value, i.e. two integers. On

the other hand, the size of messages in Topology Aware varies according
to the number of nodes in the connected component. Therefore, mes-

sages in both Topology Aware versions have larger sizes when compared

to the Flooding Degree algorithm. Note that the values of message sizes in

Table Table 4.1 contain additional information needed by the simulator,

which is identical to the three algorithms. Furthermore, since the size

of messages remains below the MTU value of wireless networks, a

message fits within a single packet.

4.4.4. Path to the leader

Figure 4.20 gives the average longest path to the leader (H-axis left)

and the average component diameter (H-axis right) for both mobility

patterns. It shows that an election criterion based onCloseness centrality

shortens paths to the leader compared to an election criterion only based

on Degree.



4. Topology Aware Leader Election Algorithm for Dynamic Networks 66

0

1

2

3

4

5

6

7

8

Av
er

ag
e 

co
m

po
ne

nt
 d

ia
m

et
er

(in
 n

um
be

r 
of

 h
op

s)

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

5

10

15

20

25

30

35
Le

ad
er

 p
at

h 
re

la
tiv

e 
to

 c
om

po
ne

nt
 d

ia
m

et
er

Leader path relative to the component diameter
Random waypoint

Flooding Degree
Topology Aware Degree
Topology Aware Closeness
Average comp. diameter

Figure 4.20.: Longest leader path relative to component diameter

(lower is better).
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Figure 4.21.: Longest leader path relative to component diameter

(lower is better).

For the randomwaypoint pattern, low transmission ranges lead to small

components with only some nodes. Therefore, paths to the leader are

most of the time direct links or contain only a few nodes. When the

transmission range increases, Topology Aware Closeness is better than
Flooding Degree, thanks to its component central leader choice.

For the periodic single point of interest pattern in Figure 4.21 however,

since the shape of the disc is independent of the transmission range,

there is periodically only one component comprising the entire network.

It can be observed that Topology Aware Closeness is 11% better than

Flooding Degree. Topology Aware Degree has a similar behavior to Flooding
Degree as both have the same election criterion.
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Table 4.2.: Average election time with fault injection (in millisec-

onds).

Flooding

Degree

Topology Aware

Degree

Topology Aware

Closeness

Average election

time (in ms)

422 (� = 38) 820 (� = 188) 731 (� = 154)

[MJ09] Montresor et al. (2009): ‘Peer-

Sim: A Scalable P2P Simulator’

[VKT04] Vasudevan et al. (2004): ‘De-

sign and analysis of a leader election

algorithm for mobile ad hoc networks’

[RAC08] Rahman et al. (2008): ‘Per-

formance analysis of leader election

algorithms in mobile ad hoc networks’

[Ing
+
13] Ingram et al. (2013): ‘A leader

election algorithm for dynamic net-

works with causal clocks’

[KW13] Kim et al. (2013): ‘Leader elec-

tion on tree-based centrality in ad hoc

networks’

4.4.5. Fault injection

Some experiments were conducted aiming at injecting fault on the

leader node in a static configuration, evaluating then the average time

to elect a new leader when the transmission range varies from 10m to

200m. After nodes have exchanged information to elect the eventual

leader of the component, the leader crashes and recovers periodically.

Results in Table 4.2 show the average election time to elect the new

leader. It can be observed that for both Topology Aware versions the

election time is larger than Flooding Degree, because the buffering of

update messages slows down message transmission time of each node

as the transmission range increases. However, this time remains low

(smaller than 1 second).

4.5. Conclusion

This chapter has presented a per component eventual leader election

algorithm for dynamic networks that shows the advantages of all nodes

using network topology knowledge for the choice of the leader. To this

end, by exchanging messages, every node maintains a local knowledge

of the communication graph of connected nodes and exploits such

knowledge to elect as the leader the node having the highest closeness

centrality. This leader can, therefore, spread information faster over

its connected component than flooding algorithms. Considering the

randomwaypoint and aperiodic single point of interestmobilitymodels,

both versions of the Topology Aware algorithm (based on closeness

and degree centralities respectively) and a flooding algorithm with a

local topological election criterion, were evaluated on PeerSim [MJ09]

simulator.

A performance comparison of the Topology Aware algorithm with a

variant of the leader election algorithm of Vasudevan et al. [VKT04] is
presented, because their work is a good example of a typical flooding

algorithm and is strongly referenced in the literature [RAC08; Ing
+
13;

KW13]. The results confirm the effectiveness of the Topology Aware algo-
rithm and that it outperforms the latter. Both Topology Aware algorithms

are more stable than Flooding Degree and the Closeness version has a

shorter path to the leader, especially on large components with low

movements of nodes. The latter is less sensitive to the component size

and sends fewer messages than Flooding Degree. When compared to

FloodingDegree, bothTopologyAware versions improve the leader stability



4. Topology Aware Leader Election Algorithm for Dynamic Networks 68

up to 82% depending on mobility models, sends half as many messages,

and nodes reach the leader by 11% shorter paths. It is worth pointing

out that the size of messages in Topology Aware could be reduced using

compression, for example.

One limitation of the work presented in this chapter is the assumption

of reliable channels. Therefore, the second algorithm presented in the

next chapter considers eventually reliable communication channels,

with interference, collision, and messages loss.
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This chapter proposes a new eventual leader election algorithm for dy-

namic systems, which implements a cross-layer neighbor detection, and

a neighbor-aware mechanism that improves the sharing of topological

knowledge, electing a central leader faster. Furthermore, in order to

improve the performance of information propagation, the algorithm

uses a topological knowledge based on a self-pruning mechanism com-

bined with probabilistic gossip. Evaluations were conducted on the

OMNeT++ [Var10] environment, simulating realistic MANET including

interference, collision, and messages loss.

Nodes are mobile and communicate by sending messages over wireless

links. The system membership is not known in advance. The communi-

cation graph can evolve over time, therefore, the network is not always

fully connected but composed of one or more connected components.

The algorithm chooses the leader according to a topological criterion:

for every component, the leader is eventually the node having the best

closeness centrality in the component. Each node progressively builds

and maintains a local knowledge of the component communication
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graph. This knowledge is then used to locally determine a central leader,

well located to be reached by a majority of processes.

The current chapter brings three main contributions:

1. A new Centrality-based Eventual Leader election algorithm for

dynamic systems, called CEL, where the leader eventually has

the best centrality. CEL has a cross-layer neighbors detection

which exploits the broadcast features of the underlying wireless

network. The neighbor-aware mechanism improves the sharing

of the topological knowledge and elects a central leader faster.

2. CEL uses the topological knowledge through a self-pruning mech-

anism, combined with probabilistic gossip, to reduce global infor-

mation propagation costs.

3. An extensive evaluation on the OMNeT++ environment [Var10]

using two mobility patterns to simulate Mobile Ad Hoc Network

(MANET) with interference, collision, and messages loss. Com-

parison with the closest algorithm [Góm
+
13] shows that CEL has

a good trade-off considering the number of messages exchanged,

stability of the leader (i.e. the percentage of the average time that

nodes adopt the expected leader), and the closeness of the leader

to the other nodes.

Compared to the algorithm in the previous chapter, the system model

of CEL assumes unreliable communication channels, which are suitable

for realistic environments with interference and message collisions.

Message loss is taken into account by the CSMA/CA protocol included

in IEEE 802.11 [Com99]. Rather than assuming an underlying probe

system, CEL uses a cross-layer mechanism to leverage already exist-

ing data link layer messages, and to access the MAC addresses of

the nodes, which are used to construct the topological knowledge of

the connected component. In addition, the topological knowledge is

used to improve communication performance, and the sharing of this

knowledge between nodes is optimized by taking advantage of the bidi-

rectional links assumption (neighbor-aware mechanism), whereas in

the previous chapter, the algorithm does not provide such mechanisms.

Evaluation compare CEL with theΩ eventual leader election algorithm

of Gómez-Calzado et al. [Góm
+
13], which also assumes eventually

reliable communication channels and is more recent than Vasudevan

et al. algorithm [VKT04]. Experiments use two more realistic mobility

models: the Random Walk and the Truncated Lévy Walk.

The rest of the chapter is organized as follows: Section 5.1 presents the

system model and assumptions, Section 5.2 describes the algorithm,

Section 5.4 discusses performance results, and finally, a conclusion is

given in Section 5.5.
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5.1. SystemModel and Assumptions

The system considered is the same as in Section 4.1.

5.1.1. Node states and failures

Nodes always follow the specification of the algorithm until they fail.

They can fail by crashing and a node can recover, joining the system

again with the same unique identifier as before the failure. Hence, a node

keeps its identifier regardless of its state, and two nodes cannot have

the same identifier. However, a node does not recover its state neither its

knowledge of the network membership, thus, is initialized again.

Initially, all nodes in the system are in the correct state. A node is

considered faulty if it fails and does not recover, or if it leaves the system

forever. Otherwise, if present in the system, it is considered correct.

5.1.2. Communication graph

The assumptions for the communication graph are the same as in

Section 4.1.2.

5.1.3. Channels

Nodes can only communicate by broadcasting local messages, which

are received by all neighbors of the sending node. Communication is

based on a fixed Wi-Fi channel, chosen beforehand. Eventually reliable
communication channels are considered, with messages losses induced

by messages interference and collisions. The CSMA/CA protocol in-

cluded in IEEE 802.11 [09], is used to handle messages losses. There are

no assumptions about message ordering, i.e. messages can be delivered

out of order.

5.1.4. Membership and nodes identity

Initially, each node only knows its unique identifier in the system. This

means that nodes do not know the total number of nodes, neither the

membership of the system. Nodes detect their neighbors through a cross-
layermechanism described in Section 5.2.4, using already existing beacon
messages of the data link layer. A node gets knowledge of the network

membership by receiving knowledge messages from its neighbors.
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5.2. Centrality-Based Eventual Leader Election
Algorithm

This section presents the Centrality-based Eventual Leader (CEL) election
algorithm. In CEL, every node maintains a topological knowledge of

the connected component to which it belongs. The algorithm builds

this knowledge during node connections and disconnections (triggered

by the cross-layermechanism), and by sending knowledgemessages to its

neighbors. Nodes spread knowledge messages using probabilistic gossip,
combined with a self-pruningmechanism that exploits the topological

knowledge to reduce the number of messages sent. A new knowledge
message is only sent after a connection or disconnection. Based on the

component knowledge, the algorithm eventually elects one leader per

component, which is placed at the center of the component.

5.2.1. Pseudo-code

The pseudo-code of CEL for node 8 is given in Algorithm 2.

5.2.2. Data structures, messages, and variables (lines 1
to 4)

CEL uses a data structure called a view (line 1). A view associated to

node 8 is composed of two elements:

1. A logical clock value, acting as a timestamp and incremented at

each connection and disconnection.

2. A set of node identifiers, which are the current neighbors of 8.

Each node 8 maintains a local variable (line 3) called known. This
variable represents the current topological knowledge that 8 has of its

current component (including itself). It is implemented as a map of view
indexed by node identifier (line 4).

The only type of message exchanged between neighbors is the knowl-
edge message (line 2). It contains the current topological knowledge

that the sender node has of the network, i.e. its known variable.

5.2.3. Initialization (lines 5 to 7)

Firstly, node 8 initializes its known variable with its own identifier (8),

and sets its logical clock to 0.
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Algorithm 2: Centrality-based Eventual Leader (CEL) election algorithm for node 8

1 Typedef view: 〈clock: int, neigh: set(id)〉
2 Message knowledge: 〈map(key: id, value: view)〉

3 Local variables:
4 known: map(key: id, value: view)

5 Initialization:
6 known[8].neigh← {8}
7 known[8].clock← 0

8 Connection of node 9:
9 known[8].neigh← known[8].neigh ∪ {9}
10 known[8].clock← known[8].clock + 1

11 if 9 ∉ known then
12 known[9].neigh← {9, 8}
13 known[9].clock← 1

14 else
15 known[9].neigh← known[9].neigh ∪ {8}
16 known[9].clock← known[9].clock + 1

17 LocalBroadcast (knowledge〈known〉, 1)

18 Disconnection of node 9:
19 known[8].neigh← known[8].neigh \ {9}
20 known[8].clock← known[8].clock + 1

21 known[9].neigh← known[9].neigh \ {8}
22 known[9].clock← known[9].clock + 1

23 LocalBroadcast (knowledge〈known〉, 1)

24 Receive knowledge message :=>F= 9 from node 9:
25 ∀ = ∈ known9 do
26 if = ∉ known or
27 known9[=].clock > known[=].clock then
28 known[=]← known9[=]
29 UpdateNeighbors (known9 , =)

30 else if known9[=].clock = known[=].clock then
31 known[=].neigh← known[=].neigh ∪ known9[=].neigh
32 UpdateNeighbors (known9 , =)

33 if known was updated then
34 TopologicalBroadcast ()

5.2.4. Node connection (lines 8 to 17)

When a new node 9 appears in the transmission range of 8, the cross-

layer mechanism of 8 detects 9, and triggers the Connection method

(line 8). Node 9 is added to the neighbors set of node 8 (line 9). As

the knowledge of 8 has been updated, its logical clock is incremented

(line 10).

Since links are assumed bidirectional, i.e. the emission range equals the

reception range, if node 8 has no previous knowledge of 9 (line 11), the
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35 Call of UpdateNeighbors(:=>F= 9 , =):
36 ∀ : ∈ known9[=].neigh do
37 if : ∉ known or
38 known9[:].clock > known[:].clock then
39 known[:]← known9[:]

40 else if known9[:].clock = known[:].clock then
41 known[:].neigh← known[:].neigh ∪ known9[:].neigh

42 Call of TopologicalBroadcast():
43 ∀ = ∈ known[8].neigh do
44 if known[=].neigh = known[8].neigh then
45 if = < 8 then
46 return

47 LocalBroadcast (knowledge〈known〉, �)

48 Invocation of Leader():
49 component← known[8].neigh
50 ∀ 9 ∈ component do
51 component ∪ known[9].neigh

52 return Max (ClosenessCentrality (component))

[HHL02] Haas et al. (2002): ‘Gossip-

based ad hoc routing’

neighbor-aware mechanism adds both 8 and 9 in the set of neighbors of

9 (line 12). Then, 8 sets the clock value of 9 to 1 (line 13), as 8 was added

to the knowledge of node 9. On the other hand, if node 8 already has

information about 9 (line 14), 8 is added to the neighbors of 9 (line 15),

and the logical clock of node 9 is incremented (line 16).

Finally, by calling LocalBroadcast method (line 17), node 8 shares its

knowledge with 9 and informs its neighborhood of its new neighbor 9.

Note that such a method sends a knowledge message to the neighbors

of node 8, with a gossip probability �, as seen in Section 2.8 [HHL02].

However, for the first hop, � is set to 1 tomake sure that all neighbors of 8

will be aware of its new neighbor 9. Note that the cross-layer mechanism

of node 9 will also trigger its Connection method, and the respective

steps will also be achieved on node 9.

5.2.5. Node disconnection (lines 18 to 23)

When a node 9 disappears from the transmission range of node 8,

the cross-layer mechanism stops receiving beacon messages at the

MAC level, and triggers the Disconnectionmethod (line 18). Node 9 is

then removed from the knowledge of node 8 (line 19), and its clock

is incremented as its knowledge was modified (line 20). Then, the

neighbor-aware mechanism assumes that node 8 will also disconnect

from 9. Therefore, 8 is removed from the neighborhood of 9 in the

knowledge of node 8, and the corresponding clock is incremented



5. Centrality-Based Eventual Leader Election in Dynamic Networks 75

[LK01] Lim et al. (2001): ‘Flooding in

wireless ad hoc networks’

(lines 21- 22). Finally, node 8 broadcasts its updated knowledge to its

neighbors (line 23).

5.2.6. Knowledge update (lines 24 to 34)

When node 8 receives a knowledge message :=>F= 9 , from node 9

(line 24), it looks at each node = included in :=>F= 9 (line 25). If = is

an unknown node for 8 (line 26), or if = is known by node 8 and has a

more recent clock value in :=>F= 9 (line 27), the clock and neighbors of

node = are updated in the knowledge of 8 (line 28).

Note that a clock value of = higher than the one currently known by

node 8 (line 27) means that node = made some connections and/or

disconnections of which node 8 is not aware. Then, the UpdateNeighbors
method is called to update the knowledge of 8 regarding the neighbors

of = (line 29). If the clock value of node = is identical to the one of

both the knowledge of node 8 and :=>F= 9 (line 30), the neighbor-aware

mechanism merges the neighbors of node = from :=>F= 9 with the

known neighbors of = in the knowledge of 8 (line 31).

Remark that the clock of node = is not updated by the neighbor-aware

mechanism, otherwise, = would not be able to override this view in the

future with more recent information. The UpdateNeighbors method is

then called (line 32). Finally, node 8 broadcasts its knowledge only if

this latter was modified (lines 33-34).

5.2.7. Neighbors update (lines 35 to 41)

The UpdateNeighbors method (line 35) updates the knowledge of 8 with

information about the neighbors of node = (line 36). If the neighbor

: is an unknown node for 8 (line 37), or if : is known by 8 but has a

more recent clock value in :=>F= 9 (line 38), the clock and neighbors

of node : are added or updated in the knowledge of node 8 (line 39).

Otherwise, if the clock of node : is identical in the knowledge of node

8 and in :=>F= 9 (line 40), the neighbor-aware mechanism merges the

neighbors of node : in the knowledge of 8 (line 41).

5.2.8. Information propagation (lines 42 to 47)

The TopologicalBroadcast method (line 42) uses a self-pruning approach

[LK01] to broadcast or not the updated knowledge of node 8, after the

reception of a knowledge from a neighbor 9. To this end, node 8 checks

whether each of its neighbors has the same neighborhood as itself

(lines 43 to 44). In this case, node = is supposed to have also received

the knowledge message from neighbor node 9. Therefore, among the

neighbors having the same neighborhood than 8, only the one with

the smallest identifier will broadcast the knowledge (line 45), with a
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gossip probability � (line 47). Note that this topological self-pruning

mechanism reaches the same neighborhood as multiple broadcasts.

5.2.9. Leader election (lines 48 to 52)

The leader is elected when a process running on node 8 calls the Leader
function (line 48). This function returns the most central leader in

the component according the closeness centrality (line 52), as seen in

Section 2.7, using the knowledge of node 8. The closeness centrality

is chosen instead of the betweenness centrality, because it is faster to

compute and requires fewer computational steps, therefore consuming

less energy from the mobile node batteries than the latter.

First, node 8 rebuilds its component according to its topological knowl-

edge. To do so, it computes the entire set of reachable nodes, by adding

neighbors, neighbors of its neighbors, and so on (lines 49 to 51). Then,

it evaluates the shortest distance between each reachable node and the

other ones, and computes the closeness centrality for each of them.

Finally, it returns the node having the highest closeness value as the

leader (line 52). The highest node identifier is used to break ties among

identical centrality values. If all nodes of the component have the same

topological knowledge, the Leader() function will return the same leader

node when invoked. Otherwise, it may return different leader nodes.

However, when the network topology stops changing, the algorithm

ensures that all nodes of a component will eventually have the same

topological knowledge and therefore, the Leader() function will return

the same leader node for all of them [Ing
+
13].

5.3. Simulation Environment

Realistic simulationswere carried over in order to compare theCentrality-
based Eventual Leader (CEL) algorithm, with theΩ eventual leader elec-

tion algorithm of Gómez-Calzado et al. [Góm
+
13] (see Section 3.2.2).

Experiments were conducted on a C++ discrete event simulator called

OMNeT++ [VH08], with the INET framework [MVK19] to model wire-

less protocols andmobile networks. This environment allows simulation

of unreliable communication channels and realistic layers of the OSI

communication model. Each experiment involves 60 moving nodes

placed in a 500 × 500 meters obstacle-free area during 30 simulated

minutes. The experiments were conducted using OMNeT++ in console-

mode on remote servers, but a graphical interface shown in Figure 5.1

was mainly used for development purposes.

Simulations consider a full MANET network stack, with the physical

and data-link layers following the IEEE 802.11n specifications [09]. The

use of a cross-layer mechanism at the MAC level allows the application

layer to access neighbor’s MAC addresses. Therefore, the identifier of
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Figure 5.1.: Screenshot of an OMNeT++ experiment running the

CEL algorithm.

[HHL02] Haas et al. (2002): ‘Gossip-

based ad hoc routing’

a node is a MAC address, encoded on 3 bytes rather than usually 6

bytes, as it is assumed that all nodes have network components from

the same manufacturer. Every node uses a single transceiver, with a

fixed transmission range decided at the beginning of the experiment

between 20 and 80 meters, and identical for all nodes. This transceiver

uses the 2.4 GHz frequency band, with a nominal bitrate of 52 Mbps.

5.3.1. Algorithms Settings

In CEL, beacon messages are sent by the data-link layer every � =

102.4 milliseconds (usual interval value of the Target Beacon Trans-

mission Time), and are detected at the MAC level by the cross-layer

mechanism.

The following two configurations of the algorithm were used for evalu-

ation:

I In CEL-1, the probability � to gossip a knowledge message in the

TopologicalBroadcast method is set to 1. Therefore, messages are

flooded in the network, if the neighborhood of the sender node is

different from the receiver’s one.

I In CEL-0.7, � is set to 0.7, i.e. a message is retransmitted with 0.7

probability [HHL02], if the sender and receiver neighborhoods

are different.
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In Gómez-Calzado et al. algorithm, the frequency to send either 9>8=

messages when a node is unconnected, or leader messages, is 102.4ms,

as both are considered beacon messages. The timers detecting leader

failure and node disconnection have an initial value (100ms) which is

increased by 500ms when they expire. Since the original paper does not

give any indication on the parameter values, these values were chosen

after running several experiments using different values, as they were

the most favorable to Gómez-Calzado et al. algorithm.

5.3.2. Mobility Models

Experiments use two mobility models from BonnMotion [Asc
+
10], a

Java mobility scenario generation tool:

1. Random Walk [CBD02], based on the Brownian motion (mathe-

matically described by Einstein in 1926 [SM01; Ein56]), where a

node moves from its current location to a new location by ran-

domly choosing a direction in the interval [0, 2�] and a speed

between 0.1m/s and 1m/s, with a pause time of 10 seconds once

the destination is reached. A representation of the Random Walk

is given in Figure 5.2.

Figure 5.2.: Representation of the Random Walk mobility

model [CBD02].

2. Truncated LévyWalk [Rhe+11], which characterizes humanmobility.

Lévy walks are continuous-time random walks whose turning

points are the visit points associated with the Lévy flights model.

Parameters are a Levy exponent for flight length distribution 

sets to 1, and a Levy exponent for pause time distribution � sets

to 1. A representation of the Lévy Walk is given in Figure 5.3.
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[Góm
+
13] Gómez-Calzado et al. (2013):

‘Fault-tolerant leader election in mo-

bile dynamic distributed systems’

Figure 5.3.: Representation of the Lévy Walk mobility

model [Rhe
+
11].

5.4. Evaluation

The goal is to compare the performance of both versions of the CEL
algorithm, with Gómez-Calzado et al. algorithm [Góm

+
13], using dif-

ferent transmission ranges on both mobility patterns. Note that the

number of components in the system is strongly correlated with the

transmission range.

5.4.1. Metrics

The following three metrics have been considered: average number of

messages sent per second per node, average of the median path to the

leader and instability.

Average number of messages sent per second per node

Similarly as in Section 4.4.1, this metric does not consider beaconmes-

sages, since the same number of beacons is sent every � milliseconds

by the underlying data-link layer in all three algorithms. In both CEL
versions, beacon messages are used at the MAC layer by the cross-layer

mechanism.

Average of the median path to the leader

Compared to the metric in Section 4.4.1, this metric characterizes how

fast a leader can be reached by a majority of nodes (at least 50%) in its

component. First is computed the longest path of all shortest paths from

every node to their current leader, except for single node components,
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as its null path would unfairly improve the metric. Then, the average of

all medians over time is computed. Note that this metric is expressed in

number of hops, and is not a ratio between the longest leader path and

the component diameter as in Section 4.4.1.

Instability

This metric is the same as the one defined in Section 4.4.1. The oracle is

based on the closeness centrality for CEL, and on the oldest node of the

connected component with the highest identifier for Gómez-Calzado et
al. algorithm.

5.4.2. Average number of messages sent per second per
node
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Figure 5.4.: Messages sent (lower is better) RandomWalk.
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Figure 5.5.: Messages sent (lower is better) Truncated Lévy Walk.

Average number of messages sent per second is shown in Figures 5.4

and 5.5 for bothmobility patterns. Right y-axes give the average number

of components and their average diameter. In the Gómez-Calzado

algorithm, nodes periodically send join messages when they are alone,

in order to connect with a bigger component.

On both mobility models, CEL-1 sends more messages than CEL-0.7,
as it floods the network by broadcasting every received knowledge

message. CEL-0.7 reduces the number of messages sent per second,

especially in larger transmission ranges, where more messages are

broadcast at each topological change. There is an average reduction

of 36% when � is set to 0.7 compared to � sets to 1, on both mobility

patterns for a transmission range from 20m to 80m.

Note that the average message sent size varies from 4.56 to 6.58 bytes

in the Gómez-Calzado algorithm, and from 263.03 to 1322.69 bytes

for both versions of the CEL algorithm, as they share the topological

knowledge of the component, and fits into the MTU of a single network

packet.
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5.4.3. Average of the median path to the leader
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Figure 5.6.: Leader path (lower is better) RandomWalk.
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Figure 5.7.: Leader path (lower is better) Truncated Lévy Walk.

Average of the median path to the leader is shown in Figures 5.6 and 5.7

for both mobility patterns. Figure 5.6 shows that the average of the

median path from every nodes of the components to the leader, is

shorter in CEL than in Gómez-Calzado algorithm for the RandomWalk

mobility model, with a gain of up to 26% in larger transmission ranges.

Interestingly, the probabilistic gossip version of CEL has a low impact

on the leader path. These results are interesting, because the median

represents half of the component nodes, which is the size of a quorum

in Paxos-type consensus algorithms.
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The Truncated Lévy Walk pattern shows in Figure 5.7 the impact

of flying nodes which disrupt the component, by quickly moving in

and out, therefore, modifying potential paths to the leader. Therefore,

the difference between the CEL algorithm with � sets to 0.7 and the

Gómez-Calzado algorithm, leads to a shortest path up to 15%.

Sharing a topological knowledge like in the CEL algorithm, allows the

election of a central leader per component. Consequently, the results

confirm that the number of hops to reach the leader by the nodes of its

component is reduced.

5.4.4. Instability
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Figure 5.8.: Instability (lower is better) RandomWalk.
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Figure 5.9.: Instability (lower is better) Truncated Lévy Walk.
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Instability evolution is shown in Figures 5.8 and 5.9, according to

the transmission range, and for both patterns. It is observed that the

average instability increases when the transmission range increases,

since components are composed of more nodes with a larger diameter.

Hence, it takes a longer time to elect a new leader for all the algorithms.

In Figure 5.8, the percentage of instability in Gómez-Calzado algorithm

is on average 69% higher than on both CEL versions. There is no

significant instability difference between the CEL versions.

The instability for the Truncated LévyWalk pattern in Figure 5.9, shows

that the CEL algorithm is more stable than Gómez-Calzado algorithm

when the transmission range increases. On average, CEL versions are

57%more stable thanGómez-Calzado algorithm. It can also be observed

that the probabilistic gossip version of CEL with � sets to 0.7, is slightly

less stable than the flooding version with � sets to 1. This is induced

by a lower number of broadcast messages, making disrupting changes

caused by flying nodes, to take more time to be spread over large

components diameter.

5.4.5. Focusing on the 60 meters range over time
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Figure 5.10.: Instability at 60m (lower is better) RandomWalk.
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Figure 5.11.: Instability at 60m (lower is better) Truncated Lévy

Walk.

Focusing on the 60 meters range over time is interesting to understand

in detail the differences between the algorithms behaviors, on an

approximate range of usual Wi-Fi indoor devices. Figures 5.10 and 5.11

show the average instability from time 0 to time C for both mobility

patterns. The right y-axis gives the exact number of components at time

C.

In Figure 5.10, at the beginning of the experiment on the Random Walk

pattern, Gómez-Calzado algorithm has a higher instability rate, which

quickly decreases to reach a threshold of 50% at 240 seconds, with

a slight increase over time. Both CEL algorithm versions need a few

seconds to stabilize, before reaching a threshold of around 430 seconds.

The probabilistic gossip version (CEL-0.7) is less stable than the flooding

version, as some knowledge messages are not broadcast by nodes to

their neighborhood.

Figure 5.11 shows that the Truncated Lévy Walk model increases the

instability of Gómez-Calzado algorithm, where an instability threshold

of 59% is reached after 416 seconds.On the other hand, bothCELversions
have a common instability evolution over time, with a small difference

at the end of the experiment following the rebroadcast probability.

5.4.6. A comparative analysis with Topology Aware

A comparative analysis with the Topology Aware algorithm presented

in Chapter 4 shows the performance gain by both the neighbor-aware

and self-pruning mechanisms which exploit the topological knowledge,

and by the probabilistic gossip.

The Topology Aware algorithm elects a central leader, but assumes

reliable communication channels, which are not suitable for realistic
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environments with message interference and collisions. A global view

of the network is exchanged using probes and an update mechanism,

leading tomessage collisions and losses. Furthermore, the knowledge of

the topology is not used to improve communication performance, and

the bidirectional links assumption is not taken into account to optimize

knowledge sharing.

Table 5.1.: RandomWalk (lower is better)

Topology Aware CEL-1 CEL-0.7

Messages sent 53.32/s 24.91/s 14.97/s

Leader path (in hop) 2.44 2.20 2.24

Instability 21.75% 12.15% 19.04%

Table 5.2.: Truncated Levy Walk (lower is better)

Topology Aware CEL-1 CEL-0.7

Messages sent 84.06/s 52.35/s 30.74/s

Leader path (in hop) 3.50 3.14 2.96

Instability 54.53% 45.92% 62.36%

Experiments ran in the realistic OMNeT++ environment described in

Section 5.3, with a probe frequency � = 102.4ms for Topology Aware. The
analysis is focused on a Wi-Fi transmission range of 80 meters, as it is

the highest range of the experiments and a complex configuration with

large components diameters.

Results for the RandomWalk mobility pattern in Table 5.1, show that

exploiting the topological knowledge reduces the number of messages

sent per second by 71.92% comparing the Topology Aware algorithm to

CEL-0.7, while having a shorter leader path. Instability is 44.14% lower

comparing Topology Aware to CEL-1.

For the Truncated Levy Walk pattern in Table 5.2, the comparison

between Topology Aware and CEL-0.7 shows a reduction of the number

of messages sent per second by 63.43%, and an average median leader

path lower by 15.43%. Note that while the instability percentage is lower

for CEL-1, the reduction of the number of messages by the probabilistic

gossip version (CEL-0.7) may lead to lower stability than Topology Aware,
especially when high transmission ranges imply large components.

5.5. Conclusion

This chapter proposed CEL, a new distributed eventual leader election

algorithm for dynamic wireless networks, which exploits topological

information to improve the choice of the leader and reduce message

exchanges. A leader is eventually elected in each connected component

of the network, and it is the node having the highest closeness centrality

in the communication graph of the connected component.
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CEL implements a cross-layer approach: when the underlying network

layer (MAC) detects a change in the current neighborhood, the node

updates its knowledge and spreads its new view of the network. In order

to reduce the cost of message propagation, CEL uses a probabilistic

gossip approach and local topological information to avoid redundant

broadcasts.

Evaluation results fromexperiments on theOMNet++environmentwith

two mobility models, Random Walk and Truncated Lévy Walk, confirm
that CEL algorithm reduces the number of messages and the path to

the leader, when compared to Gómez-Calzado et al. algorithm.
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This thesis has addressed the eventual leader election problem in

dynamic networks.

It presents two eventual leader election algorithms, Topology Aware and
Centrality-based Eventual Leader (CEL), for dynamic networks, which

elect a leader as the process that presents the best closeness centrality

in each connected component of the system. Having a central leader is

essential to quickly reach a majority of nodes and communicate with a

quorum of processes, as required by Paxos-type consensus algorithms,

as well as to communicate faster with nodes of the component.

6.1. Contributions

Topology Aware and Centrality-based Eventual Leader (CEL) election al-

gorithms consider dynamic networks, where nodes can move, fail by

crash, join and leave the system, and partial synchronous system where

network partitions can happen.

The algorithms progressively build and maintain a local knowledge of

the network topology and rely only on broadcasts within the transmis-

sion range of nodes. They do not require any election communication

phase: by using its current topological knowledge, each node can directly

deduce at any moment which node is the current leader, by choosing

the most central node of its connected component according to the

closeness centrality.

TheTopologyAware algorithmassumes reliable communication channels,

and an underlying probe system to detect connection and disconnection

of nodes. It uses an update mechanism to improve propagation cost of

messages over the network. Evaluation experiments on top of PeerSim

simulator [MJ09] were conducted with Topology Aware to a flooding

algorithm based on [VKT04]. Performance results show that, compared

to the flooding leader algorithm, Topology Aware improves the leader

stability up to 82% depending on mobility models, sends half as many

messages, and nodes reach the leader by 11% shorter paths.

Compared to Topology Aware, the Centrality-based Eventual Leader (CEL)
algorithm assumes eventually reliable communication channels, closer

to realistic environments with interference and message collisions.

Communication follows the IEEE 802.11 [09] standard and message

loss is handled by CSMA/CA protocol, included in the standard. CEL
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implements a cross-layer neighbors detection which exploits the bea-

con messages of the underlying data-link layer and accesses the MAC

addresses of the nodes, which are used to construct the topological

knowledge of the connected component. In addition,CEL improves com-

munication performance through a self-pruning mechanism combined

with a probabilistic gossip. Finally, a neighbor-aware mechanism re-

duces the sending of redundant knowledge information on the network,

which was not the case in the first contribution.

CELwas extensively evaluated on the OMNeT++/INET [Var10; MVK19]

environment using both Random Walk and Truncated Lévy Walk

mobility models, simulating, therefore, a realistic Mobile Ad Hoc

Network (MANET) with interference, collision, and messages loss.

Results of performance comparison with [Góm
+
13] show that CEL

presents a good trade-off between the number of messages exchanged,

stability of the leader, and the closeness of the leader to the other

nodes.

6.2. Future Directions

As future research directions, a few possibilities are summarized in the

following:

Short term

I Proof of correctness for Topology Aware and CEL algorithms.

I Implementation and evaluation of a leader-based consensus algo-

rithm,which could take advantage of the good leader connectivity

offered both in Topology Aware and CEL.

I Render publicly available the source code for the implementation

of the Topology Aware and CEL algorithms, with the benchmark-

ing environments, allowing, thus, other researchers to easily

implement and evaluate their leader election algorithms through

realistic experimentation.

I Evaluation of the energy consumption of nodes running Topology
Aware and CEL algorithms, on both wireless communication and

computation. Since communication has a high energy consump-

tion, extending the cross-layer approach by using existing data on

different levels of the OSI model, should minimize the number of

message exchanged in the algorithm, and, therefore, reduce the

energy consumption of nodes. Preliminary works on the energy

consumption are presented in Appendix A.1.

Furthermore, the choice of the eventual leader could be based

on energy consumption. For instance, elect a leader with higher

remaining battery, as it will probably exchange more messages

than the other component nodes.
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Mid-term

I Implementation and evaluation of Topology Aware and CEL algo-

rithms on real networks like the ones composed by devices such

as Raspberry Pi.

I A mechanism to reduce the size of messages exchanged, since

largermessage sizes also have an important impact on the collision

rate. Such a reduction could be achieved by using compression

algorithms, or by restricting the knowledge of the network to a

limited number of hops, either locally for the centrality computa-

tion or for exchanged messages. Therefore, message exchanges

would be smaller, and communication would be more reliable

with less energy consumption.

I Exploration of other centrality metrics, such as the one proposed

by Kim et al. [KW13], the eigenvector used by Google PageRank

algorithm [BP98], or an estimation of the closeness [Coh
+
14],

taking advantage of network dynamics and reducing the number

of required computation steps. Temporal centralities [Gha18]

could also be considered.

I A collaborative approach of nodes of the same component in order

to exchange information about current centrality computation,

aiming at reducing the number of required computation steps,

redundant computation, and energy consumption. Examples,

such as the algorithm of Wang et al. [WT15] or Lulli et al. [Lul+15],
could be considered.



[VH08] Varga et al. (2008): ‘An

overview of the OMNeT++ simulation

environment’

[MVK19] Mészáros et al. (2019): ‘Inet

framework’
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A.1. Energy consumption per node

Some preliminary results about the energy consumption of nodes

executing Centrality-based Eventual Leader (CEL) and Gómez-Calzado et
al. algorithms (Chapter 5) are presented in the following.

A.1.1. Simulation environment

Experiments were conducted on the OMNeT++ [VH08]/INET [MVK19]

environment described in Section 5.3, with the same configuration.

However, the transmission range is fixed between 30 meters (instead of

20 meters) and 80 meters.

The power consumption consumer model for IEEE 802.11 used the

following constant parameter values approximately based on a CC3220

transceiver:

I Sleep is set to 0.05mW

I Idle receiver is set to 0.5W

I Idle transmitter is set to 1W

I Switching mode is set to 100mW

I Busy receiver is set to 0.5W

I Reception is set to 1W

I Transmission is set to 2.5W

Local computation (CPU) and mobility are not considered in the energy

consumption model, neither the power transmission range fixed at each

experiment. Each experiment lasts 30 simulated minutes.
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[Góm
+
13] Gómez-Calzado et al. (2013):

‘Fault-tolerant leader election in mo-

bile dynamic distributed systems’

A.1.2. Algorithms settings

The two versions of CEL, i.e. CEL-1 and CEL-0.7, and Gómez-Calzado

et al. algorithm [Góm
+
13] are compared using the same settings has in

Section 5.3.1.

A.1.3. Mobility Models

The two mobility models defined in Section 5.3.2 are used, i.e. Random

Walk and Truncated Lévy Walk.

A.1.4. Metric

The energy consumption is computed using the radio power consumer

model describe in A.1.1, where transmission, reception, or idle states

consume energy from the node battery. At the end of each experience,

the energy consumption per node for each algorithm is computed and

measured in watts (W).

A.1.5. Performance Results
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Figure A.1.: Energy consumption per node (lower is better) Random

Walk.



A. Appendix 93

15

20

25

30

35

40

Av
er

ag
e 

nu
m

be
r 

of
 c

om
po

ne
nt

30 40 50 60 70 80
Transmission range (in meters)

0

5

10

15

20

25
E

ne
rg

y 
co

ns
um

pt
io

n 
pe

r 
no

de
 (i

n 
w

at
ts

) Gómez-Calzado
CEL-1
CEL-0.7
Avg nb compnt

Figure A.2.: Energy consumption per node (lower is better) Trun-

cated Lévy Walk.

Overall, the energy consumption per node is correlatedwith the number

of messages sent, presented in Section 5.4.2, as the power consumption

consumer model considers only communication.

For the Random Walk mobility model in Figure A.1, the power con-

sumption of nodes in the Gómez-Calzado et al. algorithm decreases

as the transmission range increases, since more nodes are in the same

component and timeouts of leader messages are higher. The power

consumption of both versions CEL algorithms increase as the transmis-

sion range increase, since movements in larger connected component

lead to more messages sent. In lower transmission ranges, the energy

consumption per node executing Gómez-Calzado et al. algorithm is

higher than both CEL versions. For instance, at a transmission range of

30 meters, nodes executing Gómez-Calzado et al. algorithm consume

on average 16.47W, while nodes in CEL-1 and CEL-0.7 consume on

average 0.46W and 0.39W respectively. The probabilistic gossip version

of CEL with � sets to 0.7 reduces the energy consumption compared

to CEL-1, since less messages are sent as seen in Section 5.4.2, due to

the self-pruning approach used in the TopologicalBroadcastmethod de-

scribed in Section 5.2.8. Nodes in CEL-0.7 have an energy consumption

of 6.41W on average at a transmission range of 80 meters, while nodes

in CEL-1 and Gómez-Calzado et al. algorithms are up to 10.39W and

9.07W respectively.

Figure A.2 shows a higher average energy consumption for nodes

executing CEL-1 than Gómez-Calzado et al. in the Truncated Lévy Walk

mobility model when the transmission range is larger than 65 meters.

A similar observation can be made concerning the average number of

messages sent on this mobility model as presented in Section 5.4.2. At

a transmission range of 80 meters, nodes executing CEL-0.7 have an

average energy consumption up to 14.27W, while nodes executing CEL-1
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are up to 23.72W, and nodes in Gómez-Calzado et al. algorithm are

up to 9.18W. These increase are due to flying nodes that induce many

connections and disconnections among existing connected components.

However, the energy consumption per node remains lower for both

CEL versions than Gómez-Calzado et al. algorithm on smaller ranges

such as 30 meters.

Note that this preliminary evaluation is a work in progress.
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Glossary

C
CEL Centrality-based Eventual Leader. 3–5, 67–69, 74–77, 79–88, 90, 91

D
DAG Directed Acyclic Graph. 29, 30, 32

F
FIFO First-In First-Out. 11, 31, 32

G
GST Global Stabilization Time. 7, 35, 42

M
MANET Mobile Ad Hoc Network. 1–4, 36, 41, 42, 55, 67, 74, 86

MIT Massachusetts Institute of Technology. 18

MST Minimum Spanning Tree. 26, 28

P
P2P Peer-to-Peer. 1, 17

S
S0CP Stable Termination Property. 39

SℛP Stabilized Responsiveness Property. 39

T
TBTT Target Beacon Transmission Time. 75

TVG Time-Varying Graph. 14, 38, 39

W
WWW World Wide Web. 1
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