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Leader election is important for many fault-tolerant services in asynchronous distributed systems. By coordinating actions of a set of distributed processes, it allows solving agreement problems like the consensus, a fundamental problem of distributed computing. Several consensus algorithms, such as Paxos, rely on an eventual leader election service, also known as the Omega (Ω) failure detector. Omega returns the identity of a process in the system, ensuring that eventually the identity of the same correct process is always returned.

Many leadership algorithms were proposed in the literature to implement Omega. Among those that consider dynamic systems, most of them do not choose the leader according to a topological criterion. However, the position of the leader in the network directly impacts the performance of algorithms using the leader election service, since the leader must often interact with other processes, for example, to collect information from a majority of processes in consensus algorithms.

This thesis studies the eventual leader election problem in dynamic evolving networks and performance related issues. Two eventual leader election algorithms are proposed for Mobile Ad Hoc Networks. They maintain and exploit the knowledge of the network topology to eventually elect one leader per connected component with the best closeness centrality. Evaluations were conducted on simulators with different mobility models and performance results show that these algorithms present better performance than other algorithms of the literature, including fewer messages, shortest paths to the leader, and better stability.

Résumé (Abstract in French)

L'élection de leader est importante pour les services tolérants aux pannes dans les systèmes distribués (également appelés systèmes répartis) asynchrones. En coordonnant les actions d'un ensemble de processus distribués, elle permet de résoudre des problèmes d'accord comme le consensus, un problème fondamental en informatique distribuée. Des algorithmes de consensus, tel que Paxos, s'appuient sur un service d'élection de leader ultime, également appelé détecteur de défaillances Omega (Ω). Omega renvoie l'identité d'un processus du système et garantit qu'après un certain temps, l'identité du même processus correct est toujours renvoyée.

De nombreux algorithmes d'élection de leader ont été proposés dans la littérature pour implémenter Omega. Parmi ceux considérant les systèmes dynamiques, la plupart ne choisissent pas le leader selon un critère topologique. Or, la position du leader dans le réseau impacte directement les performances des algorithmes utilisant le service d'élection, car le leader doit souvent interagir avec les autres processus pour, par exemple, collecter les informations d'une majorité de processus dans le cas du consensus.

Cette thèse étudie le problème d'élection de leader ultime dans les réseaux dynamiques. Deux algorithmes d'élection sont proposés pour les réseaux mobiles ad hoc. Ceux-ci maintiennent et exploitent la connaissance de la topologie du réseau pour élire à terme un unique leader par composante connexe ayant la meilleure centralité de proximité. Des évaluations sur simulateurs avec différents modèles de mobilité montrent que ces algorithmes présentent de meilleures performances que d'autres algorithmes de la littérature, notamment moins de messages échangés, des chemins plus courts vers le leader, et une meilleure stabilité. 
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. . Representation : The term distributed originally referred to computers physically distributed over a large geographical area [Lyn ].

: Leslie Lamport gave another definition: "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable." [Lam ] [VT ] Van Steen et al. (

): Distributed Systems [And ] Distributed computing is present everywhere in our world and is at the heart of the information processing of our modern society. From the World Wide Web to Peer-to-Peer applications to blockchains like Ethereum [Woo + ], many applications revealed the importance of distributed computing in our daily life.

A distributed system can be defined as follows [VT ]:

A distributed system is a collection of computing elements that interact with one another in order to achieve a common goal.

Computing elements are autonomous computational entities, each of them has its own local memory. They can be multiple software processes located on the same physical computer, or different hardware devices interconnected together, such as computer networks [VT ; And ]. Computing elements are also called processes or nodes, and to achieve their common goal, they collaborate and coordinate their actions by communicating with each other. There are two main communication paradigms: shared memory [Abr ] and messages passing [Tel ]. This thesis only considers communication by messages passing which uses a communication channel, i.e. a link between two processes of the system on which information is transmitted. Through a communication channel, a process sends and receives messages to/from another process [And ]. Since a distributed system is composed of many interconnected processes, some of them may become faulty during the execution of the system, and consequently, induce failures in the system. A failure is a deviation from the expected behavior of the system. A distributed system is considered reliable if it respects its specification, and if the system is able to provide correct services regardless of failures. Therefore, to run a reliable system in the presence of faults, the distributed system needs to be fault tolerant.

With the ongoing advent of mobile computers such as smartphones, intelligent vehicular, drones or mobile sensors, nodes with mobility [LM ] Lakshman et al. (

): 'Cassandra: a decentralized structured storage system' [Nak ] Nakamoto ( ): 'Bitcoin: A Peer-to-Peer Electronic Cash System' [FLP ] compose a dynamic distributed system. These nodes move over a physical area and communicate directly with each other through wireless links. They can also fail as well as join and leave the system. Thus, the system evolves over time and the network is, therefore, highly dynamic.

A common type of dynamic network is the Mobile Ad Hoc Network (MANET), which does not rely on any pre-existing infrastructure to communicate, such as router or access-point. A MANET is a selfconfiguring network in which nodes are connected without wires and are free to move. Nodes are equipped with a radio module that enables wireless communications and participate in the network by forwarding messages to other nodes.

Many distributed applications and services, such as the distributed database Casandra [LM ] and blockchains like Bitcoin [Nak ], require that processes reach a consensus, by choosing a single value among proposed ones. The consensus problem is one of the most fundamental problems of distributed computing. A consensus algorithm requires that every process proposes a value to other processes in the system, and all non-faulty process eventually agree on a single value among the proposed ones. Consensus is used by many other distributed algorithms in the literature, such as state machine replication or atomic broadcast. However, Fischer, Lynch and Paterson have proved (the well-known FLP theorem [FLP ]) that it is impossible to deterministically achieve consensus in a completely asynchronous system where at least one node is prone to crash failure.

Several existing well-known algorithms in the literature solve consensus in failure-prone distributed systems by using a leader election algorithm. Examples of such algorithm are Paxos [Lam ], used by Google, Amazon and Microsoft, or Raft [OO ]. Also known as the Ω failure detector [CHT ], an eventual leader election allows to deterministically solve the consensus problem with the weakest assumptions on process failures considering a majority of correct processes. Ω provides a primitive called Leader(), which, when invoked, returns the identifier of a process in the system and guarantees that there is a time after which it always returns the identifier of the same correct process, i.e. the leader.

Many leadership protocols were proposed to implement Ω. Most of them consider static distributed systems and assume that the membership of the system is either known in advance [LFA ; Agu + ], or unknown [FJR ; JAF ]. Among the ones that tolerate system dynamics [Góm + ; Ara + ], only a few of them take into account the characteristics and the lack of knowledge of highly dynamic systems. Furthermore, most of these algorithms do not choose the leader according to a topological criterion, i.e. the position of the node in the network, but rather on the highest or lowest node identifier. The topological position of the leader has a strong impact on the performance of algorithms using the leader election service, since the leader must collect information from the other nodes, such as from a majority of processes in the case of consensus. Thus, the average number of hops to reach the leader has a direct impact on the performance of consensus algorithms. A representation of a central leader is given in Figure . . This thesis studies the eventual leader election problem considering the above described dynamic evolving networks and performance issues of leader-based algorithms. 

. . Contributions

Since the choice of the leader has an impact on the performance of algorithms using the leader election service, a Ω algorithm must take into account the average number of hops to reach the leader. Hence, the ideal would be to elect a non-faulty node with the best network centrality. To this end, each node could maintain a knowledge of the network topology.

This thesis thus proposes two eventual leader election algorithms, denoted Topology Aware and Centrality-based Eventual Leader (CEL), for MANETs considering partial synchronous system and network partitions. Nodes can move, fail by crash, join and leave the system. Initially, nodes only know their respective identity, and, by exchanging messages with neighbor nodes in their transmission range, they acquire knowledge of the network topology. The algorithms exploit this knowledge to eventually elect one leader per connected component of the network with the best closeness centrality. The Topology Aware algorithm considers reliable channels, while the CEL algorithm tolerates message loss, interference and collisions. Furthermore, CEL implements a cross-layer mechanism and a probabilistic gossip to reduce the number of sent messages and increase the stability of the algorithm.

To the best of my knowledge, no other Ω algorithm for dynamic networks in the literature uses the closeness centrality as a criterion to choose the eventual leader.

. . . Topology Aware Leader Election Algorithm for Dynamic Networks

The first proposed algorithm, denoted Topology Aware, assumes reliable communication links with an underlying probe system to detect connection and disconnection of nodes. An incremental update mechanism is used to improve propagation cost of messages over the network.

Experiments were conducted on the PeerSim simulator [MJ ], comparing our algorithm to a flooding leader algorithm [VKT ] with Random Waypoint and a periodic single point of interest mobility models. Performance results show that the Topology Aware algorithm outperforms the flooding one considering leader choice stability, number of messages, and average distance to the leader metrics.

. . . Centrality-Based Eventual Leader Election in Dynamic Networks

The first contribution assumes reliable communication channels, which are not suitable for communication environments prone to interference and message collisions. The second proposed eventual leader election algorithm for dynamic networks is the Centrality-based Eventual Leader (CEL), that, similarly to Topology Aware, exploits topological information to improve the choice of a central leader and reduce message exchanges. However, rather than assuming an underlying probe system, CEL has a cross-layer neighbors detection, with a neighbor-aware mechanism, to improve the dissemination of topological knowledge and elect a central leader faster. It uses a self-pruning mechanism based on the topological knowledge, combined with probabilistic gossip, to improve the performance of information propagation.

Evaluations were conducted on the OMNeT++/INET environment [VH ; MVK ], simulating realistic MANET following the IEEE . n specifications with interference, collision, and messages loss. CEL was compared to Gómez-Calzado et al. algorithm [Góm + ], with Random Walk and Truncated Lévy Walk mobility models. Results show that CEL presents better performance than the latter, including fewer message exchanges, shortest paths to the leader, and better stability. 

. . Manuscript Organization

This manuscript is divided in six chapters.

Chapter introduces background concepts on distributed systems and on leader election problems.

Chapter presents related work on the classical and eventual leader election problems in both static and dynamic systems. Algorithms are compared and classified in tables according to different criteria.

Chapter describes the first contribution of this thesis, the Topology Aware eventual leader election algorithm. Evaluation results on PeerSim of Topology Aware and a flooding algorithm [VKT ] are presented.

Chapter presents the second contribution, the Centrality-based Eventual Leader (CEL) election algorithm. Evaluations results on OMNeT++, using IEEE

. n communications, of CEL and the Ω algorithm of Gómez-Calzado et al. [Góm + ] are presented.

Finally, Chapter concludes the thesis and discusses different future research directions.

. . Publications

Four articles were published during this thesis: two in international conferences and two in French national conferences. Chapter and Chapter present the contributions from [Fav + a] and [Fav + ] respectively. This chapter presents some existing concepts, taxonomy, and models, related to distributed systems, that are useful for this thesis. It is organized as follows: Section . details common models in distributed systems, Section . presents different communication assumptions with some details on the different centrality measures, Section . explains how to disseminate messages over the network, and Section . describes both the classical and eventual leader election problems.

. . . Articles in International Conferences

. . Properties of Distributed Algorithms

In distributed algorithms, processes run concurrently and independently. Usually, each process has a limited view and information of the system. A distributed algorithm should run correctly, even if individual processes and communication channels operate at different speeds and even if some of the components fail [Lyn ]. Therefore, they must ensure some properties that guarantee progress and correctness. A property is an attribute of a program that is true for every possible execution of that program [MK ]. The two main properties for a distributed algorithm are safety and liveness [Lam ]:

Safety asserts that nothing bad happens, i.e. a program does not reach a bad state.

Liveness asserts that something good eventually happens, i.e. a program eventually reaches a good state.

These properties ensure users of the system to have a reasonable confidence in the services delivered by it. Other properties can be considered

. Background ): 'Consensus in the presence of partial synchrony' [Cam ] Campusano ( ): 'Distributed eventual leader election in the crash-recovery and general omission failure models' by the algorithm, such as fairness for example. This ability of the system to provide services that can be trusted is called dependability.

. . Timing Models

As processes can take a long time to reply, can fail, or even simply leave the network during execution of the system, the communication between processes is uncertain. To take into account this uncertainty, the literature uses an underlying model that considers:

Latency: the time required to transmit a message.

Computation: the time for a process to execute a step.

Three main timing models were defined [Lyn ]:

Synchronous model: there exists a known finite time bound on latency, and there exists a known finite bound on computation.

Asynchronous model: there are no bounds on latency neither on computation a process takes.

Partially synchronous model: this model stands between the two previous models. It assumes the existence of a bound on latency and a bound on computation [DLS ], but their values are unknown. It considers that both bounds and exist, but only after a time called Global Stabilization Time (GST). Before GST, no bounds exist, such as the system is unstable and behaves asynchronously, and after the GST, both bounds exist such as the system became stable and behaves synchronously.

Among these three timing models, synchronous systems are included in partially synchronous systems, which are included in asynchronous systems, as shown in Figure . [Cam ]. Note that there exist many other intermediate models between the synchronous and asynchronous models.

The different types of temporal models are summarized in Table . . ): Introduction to reliable and secure distributed programming [Cal ] Calzado ( ): 'Contributions on agreement in dynamic distributed systems' [Cam ] Campusano ( ): 'Distributed eventual leader election in the crash-recovery and general omission failure models'

. Background

Table . .:

. . Process Failures

Processes are prone to failures during the execution of the system. A failure can be defined as a deviation from correct behavior [HT ], i.e. a behavior that does not comply with its specification. More specifically, a fault is a flaw in the system that originates from a node, which may cause unexpected behavior and result in an error. If the error is not handled and then propagates through the system, it can lead to a failure. Figure . illustrates the steps of a failure in a distributed system.

Fault → Error → Failure Failures can happen due to algorithm conception and programming (which can be difficult to detect, especially in distributed algorithms as processes can be at different steps of the execution of the algorithm), hardware, or hacking. A process which fails during the execution of the system is considered to be faulty, whereas a process which never fails during the whole execution of the system is correct.

There exist different modes of process failures in the literature. In addition, failures can be permanent, where a component stays in the faulty state forever, transient, where a component is in the faulty state for a finite duration, or intermittent, where a component successively exhibits correct and faulty behavior [Dub ]. Failures can be classified from the weak to the strongest one, i.e. a failure includes previous failures and is a subset of the next failures [Ber ; GR ; CGR ; Cal ; Cam ]. As shown in Figure . , crash failures are included in omission failures, which are included in crash-recovery failures, which are included in arbitrary failures.

Crash: it leads to a definitive and permanent halt of the process execution, meaning that the process has stopped and will not execute any further steps of its algorithm (fail-silent). Before the failure, the process behaves correctly, but when the failure arises, the process is considered shutdown and will not come back in the system. If the system is not asynchronous, other processes may be able to detect its state, by not receiving any response from this process when invocation messages are repeatedly sent to it. However, this .: Failure modes of a process, by [GR ].

: The term Byzantine comes from the allegory of the Byzantine Generals Problem, where a group of generals of the Byzantine army, who communicate only by messenger, must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others [LSP ].

[LSP ] Lamport et al. (

): 'The Byzantine generals problem' crash failure detection mechanism relies on the use of timeouts, which is a period of time a process has for something to occur (assuming synchrony assumptions).

Omission: this kind of failure arises when a process momentary fails to perform the actions it is supposed to achieve. The process temporarily halts its activity, and afterwards, takes back its normal behavior.

Crash-recovery: also called fail-recovery, the process which fails stops any further steps of its algorithm, but may recover and resume its execution afterwards. If the process uses volatile memory, information contained in its memory before the failure will be lost upon recovery, and the process is initialized again. If the process uses stable memory, its memory will be recovered.

Arbitrary failures: also called Byzantine [LSP ] or malicious failures, this type of failure considers that any type of error may occur, such that the behavior of processes becomes unpredictable. For instance, a process may set wrong values in its memory, returns wrong values to a message, or arbitrarily omits to reply.

The different modes of process failure are summarized in Table . . Note that this list is not exhaustive and there exist other failures, such as fail-safe, fail-stop, authenticated byzantine, etc. 

Table . .:

. . Communication Channels

When using the messages passing approach, communication is achieved by transmitting messages on a communication channel, which is a directional link between two processes, i.e. a logical abstraction of the . Background [FJR ] ): Introduction to reliable distributed programming physical medium. A communication from process to requires a unidirectional communication channel from to . A bidirectional communication channel, also denoted two-way, assume two communication channels: a first from to , and a second one from to .

A process sends a message using the primitive emit at the application layer, which inserts in its buffer. The buffer of process sends the message on the communication channel, which transmits to the buffer of process . The latter receives it and delivers it to the application layer of process . Note that these buffers are typically offered by the operating system.

An example of communication from process to process is shown in Figure . . In the literature, there exist several types of communication channels such as reliable, eventually reliable, fair-lossy, and unreliable [FJR ]. All of them assume the three following common properties.

No message creation (also called validity [Ray ]): if a process receives a message from a process , then sent it to .

No message duplication (also called integrity [Ray ]): if a process sends a message to a process , then the process will receive the message at most one.

No message alteration: if a process receives a message from a process , then the message is exactly the same as the one sent by , without any modification or corruption.

Each type of communication channel offers different guarantees in terms of message loss.

Reliable: channels ensure that when a correct process sends a message to a correct process , the message will eventually be delivered to [GR ].

. Background Eventually reliable: channels assume the existence of a time after which all messages sent by process are eventually received by process . Messages sent before that time may be lost [BCT ].

Fair-lossy: channels ensure that when a correct process sends a message an infinity number of times to a correct process , then will deliver the message an infinite number of times [GR ]. This property guarantees that a link does not systematically drop every message.

Unreliable: also called lossy channels. In this case, messages can be lost, without notifying the processes.

The type of communication channel can also specify bounds for the reception of a message, such as the eventually timely channels or timely channels, or tolerate message loss without any bound, such as lossy asynchronous channels:

Eventually timely: a link from to is eventually timely if it is either a reliable or an eventually reliable channel, satisfying that there exists a bound and a time such that if sends a message to at time and is correct, then receives the message from by time + [Agu + ]. Note that if the link is eventually reliable, messages sent before time can be lost.

Timely: an eventually timely channel whose bounds hold from = 0 [Agu + ].

Lossy asynchronous: messages can be arbitrarily delayed (i.e.

there is no bound on message delay) or even be lost (an arbitrary number of messages can be lost, if not all) [Agu + ; LMS ]. Every message that is not lost is eventually received.

Note that in this thesis, there is no assumption on message ordering, and channels are not required to be FIFO. A FIFO channel stands for First-In First-Out (FIFO), where messages are received to the process by order they were sent.

The different types of communication channels explained previously are summarized in the following Table . .

Table . .: Table of communication channels types.

Channel types Description

Reliable When a correct process sends a message to which is correct, the message will eventually be delivered by .

Eventually reliable

Existence of a time after which all messages sent by are eventually delivered by .

Fair-lossy

A correct process sends a message infinitely to a correct process , delivers it infinitely.

Unreliable/Lossy Messages can be lost while they are in transit, without any notification.

Eventually timely

Existence of a bound and a time after which all messages sent by are delivered by by time + .

Timely

Eventually timely channel whose bounds holds from = 0.

Lossy asynchronous

Messages can be lost or arbitrarily delayed. Every message that is not lost is eventually received.

. . Failures of Communication Channels

There exist different modes of failures for communication channels in the literature.

Section . presents a similar classification of failure modes for processes that can be adapted to communication channels. As shown in Figure . , crash failures are included in omission failures, which are included in arbitrary failures. 9 [GR ].

Crash: in case of a crash of a communication channel, the latter is down and stops transmitting messages.

Channel omission failure: it corresponds to a message loss in a communication channel, i.e. failing to transmit the message from the outgoing buffer to the incoming one.

Arbitrary failures: for communication channels, arbitrary failures include messages corruption, messages omission, messages creations or multiple message deliveries. Some arbitrary failures in communication channels can be detected and fix by using error detection and correction, such as checksums or cyclic redundancy checks (CRC). Therefore, information exchanged by processes on communication channels is not reliable anymore, and security steps may be then required.

The different modes of failure are summarized in the following Table . . Two processes connected with a channel are called neighbors, such as process is a neighbor of process if they there is a direct edge between them. The set of processes connected to process is called the neighborhood of . For example, considering Figure . , process is a neighbor of process , and the neighborhood of process is the set of processes { , , }. Neighbors of a process have a communication distance of one hop, and are called -hop neighbors, as they can directly communicate with it.

Neighbors of neighbors of a process are at a distance of -hop of this process, and so on. When the distance is higher than one, the term multi-hop can be used. The hop count distance refers to the number of processes between two processes. For example, considering Figure . ,

. Background ): 'Specifying and implementing an eventual leader service for dynamic systems' process is a -hop neighbor of process , and process is a -hop neighbor of process .

As processes are autonomous entities, when a process needs to communicate with a process located further than -hop, intermediate processes located between the sender and the final receiver, are called relays and act as routers, establishing a path from the sender to the destination process over which the message is transmitted.

Different assumptions about network knowledge can be made: known networks, where nodes have a knowledge of the system, and unknown networks, with the weakest possible assumptions about knowledge, communication graph, channel connectivity and reliability, in order to be as close as possible to reality. Known network: system where processes know the set of processes that composed the system denoted Π. Unknown network: system where processes have no information about other nodes in the system, including the total number of processes.

There are two main types of networks: static and dynamic networks.

. . . Static Systems

Originally, distributed systems were based on static networks. A static system is composed of a finite set of nodes, where the membership of the system can only change because of failures. The communication graph is static during the execution of the system, however, network partitions can arise due to failures. Nodes do not move, nor leave, neither join the system.

As an example, the links of a static system can physically be either wires between nodes, or wireless radio wave antennas with a fixed transmission range.

. . . Dynamic Systems

With the advent of peer-to-peer technologies and mobile devices such as mobile phones, mobile sensors, autonomous vehicular or drones, nodes of a network are able to move, join, or leave the system. They can also fail. Therefore, the membership of the system is no longer finite but may vary over time. Communication channels between nodes are non-persistent and can also change over time, which may lead to network partitions.

There is no unique definition of dynamic systems in the literature [Agu ; KLO ; BRS ; Lar + ]. Some authors define it as a distributed system where the communication graph evolves over time. Others give the . Background ): 'Communication patterns in task-oriented groups' [Fre ] Freeman ( ): 'Centrality in social networks conceptual clarification' [Bor ] Borgatti ( ): 'Centrality and network flow' [Gha ] Ghanem ( ): 'Temporal centralities: a study of the importance of nodes in dynamic graphs' [Bav ] Bavelas ( ): 'Communication patterns in task-oriented groups' definition of a model where nodes join and leave the system at arbitrary times during the system execution.

Dynamic systems can be represented by a dynamic communication graph. Many works characterize the dynamics of graphs, such as the Time-Varying Graph (TVG) proposed by Casteigts et al. [Cas + ] (where relations between nodes take place over a time span , with a presence function indicating whether a given edge is available at a given time), Flocchini et al. [FMS ] and Tang et al. [Tan + ], evolving graphs by Ferreira [Fer ], temporal network by Kempe et al. [KKK ], graphs over time by Leskovec et al. [LKF ], or temporal graph by Kostakos [Kos ].

Physically, the links of a dynamic system can be, for example, wireless communication with radio wave antennas. A representation of a dynamic network is given in Figure . . 

. . Centralities

In a graph, some vertex can have a higher importance than others. Importance can have a wide range of meaning, from the type of flow through the network [Bor ], to the involvement of the cohesion in the network [BE ], or even the topological position in the network [Bav ]. Indicators of centrality can be used to assign a number or a ranking to vertices, according to their position in the network, identifying the importance of the vertices in a graph [Fre ; Bor ; Gha ].

In terms of centrality, this thesis focuses on the three following centralities based on the shortest path:

• Degree centrality: the degree centrality is defined as the number of neighbors of a process.

• Closeness centrality: the closeness centrality, or closeness, of a vertex, is the average length of the shortest path between the vertex and all other vertices in the graph [Bav ]. The more central is a vertex, the closer it is to all other vertices. The closeness centrality characterizes the ability of a node to spread information over the graph.

. Background [Bav ] Bavelas ( ): 'Communication patterns in task-oriented groups' [Sab ] Sabidussi (

): 'The centrality index of a graph' [Fre ] Freeman ( ): 'A set of measures of centrality based on betweenness' [Bra ] Brandes ( ): 'A faster algorithm for betweenness centrality' [Tap ] Tapiocozzo-Wikipedia ( ):

Centrality -Wikipedia

Alex Balevas [Bav ] defined in the closeness centrality of a vertex as follows [Sab ]:

( ) = 1 ( , )
where ( , ) is the shortest path between vertex and vertex .

• Betweenness centrality: the betweenness centrality measures the number of times a vertex acts as a relay (router) along shortest paths between other vertices. Even if previous authors have intuitively described centrality as being based on betweenness, betweenness centrality was formally defined by Freeman in [Fre ]. The betweenness of a vertex is defined as the sum, for each pair of vertices ( , ), of the number of shortest paths from to that pass through , over the total number of shortest paths between vertices and , It can be represented by the following formula [Bra ]:

( ) = ≠ ≠ ( )
where denotes the total number of shortest paths from vertex to vertex (with = 1 by convention), and ( ) is the number of those shorter paths that pass through .

A visual representation given in Figure . compares the degree centrality with the closeness centrality and the betweenness centrality of the same graph [Tap ]. The more red a vertex is, the higher its centrality. The more blue a vertex is, the lower its centrality. In Figure . , the most central vertex for the degree centrality is different than for the closeness and betweenness centrality. However, closeness and betweenness centrality are not always equal.

The differences between closeness and betweenness centrality are the following: closeness is generally regarded as a measure of access efficiency, i.e. how long it will take to spread information from to all

. Background [BBF ] 

. . Messages Dissemination

To share messages from a source vertex to other connected vertices of a graph, communication between vertices can be achieved using different protocols. This thesis considers message flooding and probabilistic gossip protocols.

Flooding Protocol

In a flooding protocol, each received message is sent through all outgoing edges, except the one on which it arrived [TW + ]. Therefore, each vertex acts both as a transmitter and a receiver of the message, forwarding every received message to its neighbors, except the one that sent it the message.

There are two types of flooding: uncontrolled and controlled [CBL ].

Uncontrolled flooding: vertices forward messages to all of their neighbors, except the one from which it received the message.

Controlled flooding: vertices remember received messages and, therefore, drop already received messages.

While flooding protocols are easy to implement, they can be expensive in terms of wasted bandwidth.

To reduce the number of messages sent, flooding protocols can use a hop count measure contained in the header of messages, that is decremented at each hop, i.e. each time the message is sent from a vertex to all its neighbors. When the hop counter reaches , the message stops being sent and is discarded.

Gossip Protocol

Gossip protocols can be used to reduce the cost of flooding protocol, based on the way epidemics spread [Dem + ]. Also called epidemic protocols, gossip protocols spread information in a manner similar to a viral infection in a biological population, where a virus plays the role of a piece of information, i.e. a message, and an infection plays the role of learning about the information, i.e. receiving a message [SGK ].

There are two main types of gossip protocols:

. Background ): 'Time-optimal leader election in general networks' : Gallager [Gal ] and Kanellakis [Kan ] also defined the leader election problem in at the Massachusetts Institute of Technology (MIT). However, both papers are not accessible online and some sources indicates that they might come from . Random probabilistic dissemination, suitable for Peer-to-Peer (P P) systems, where a node randomly chooses which of its neighbors to send the information. Kermarrec et al. [KMG ] consider that each node has a randomized partial knowledge of the system, i.e. a list of process identifiers stored locally. Then, a process that must forward a received information, randomly picks processes from its local list and sends them the information. This mechanism is called peer-sampling service and provides a primitive that returns a random process drawn from the list [Jel + ].

Haas et al. [HHL ] proposed several gossip protocols for ad hoc networks that use probabilities. Combined with the number of hops or the number of times the same message is received, the protocols choose if a node broadcast a message to all its neighbors or not, reducing thus the number of messages propagated in the system. The authors show that gossiping with a probability between . and . ensures that almost every node of the system gets the message, with up to % fewer messages in some networks compared to flooding.

The difference between Kermarrec et al. algorithms and Haas et al. algorithms, is that Haas et al. algorithms gossip a message to all its neighbors using a probability, whereas Kermarrec et al. algorithms gossip a message to a subset of neighbors randomly chosen.

In this thesis, a probabilistic broadcast from Haas et al. is used to reduce the number of messages exchanged. This type of gossip is more suitable to wireless networks, since a message is received by all nodes within the wireless transmission range of the sending node.

. . Leader Election

Electing a leader is one of the fundamental problems in distributed computing [Pel ]. Also called coordinator election or leader finding, a leader election selects a single node among the ones of a distributed system, according to some election criterion.

The leader election problem was proposed for the first time in by Gérard Le Lann [Le ], a French Computer Researcher.

In this thesis, two leader election problems are considered, denoted the classical leader election problem (Section . . ), and the eventual leader election problem (Section . . ).

. . . Classical Leader Election

In , Angluin shows that there is no deterministic leader election algorithm in anonymous and uniform networks [Ang ], where anonymous means that processes do not have a unique identifier, so there is no way . Background ): Distributed algorithms for message-passing systems to distinguish a process from another process , and uniform means that the number of processes in the system is not known in advance by processes, i.e. not hardcoded in the algorithm [AW ]. To circumvent this impossibility, the symmetry, i.e. the fact that all processes have the same local state which makes a leader election impossible [Ray ], needs to be broken. Therefore, the literature proposes two solutions: Nodes in the system have unique identifiers and, initially, can be either aware or unaware of the identifier of other nodes.

Randomized algorithms where each process has an independent random number generator which allows to break the symmetry, such as the algorithm proposed by Itai et al. [IR ] which is a Las Vegas algorithm [Bab ], i.e. it always gives a correct answer but have a probabilistic running time.

This thesis focuses on the first solution called non-anonymous, where nodes have unique identifiers in the system, but initially do not have knowledge of the identity of the other nodes in the system.

At the beginning of the leader election algorithm, all nodes in the system are unaware of which node is the leader [Hal ]. At the end of the election, there is exactly one correct node that has been elected as the leader among the set of nodes, and each correct node throughout the network recognizes this same and unique node as the leader. The number of nodes in the system can be known or unknown by the algorithm, as seen in Section . .

Formally, the classical leader election problem has the two following properties [MWV ; AW ]:

There should never be more than one leader (i.e. there is zero or one process considered as the leader by the processes of the system).

Eventually, there is a leader (i.e. all processes of the system eventually agree on the identity of a single leader).

During the execution of a distributed system, failures may arise and if the system is dynamic, processes may join and leave the system overtime, as seen in Section . . . Therefore, the system may be partitioned into multiple connected components. Every connected component of the system has a unique leader. Therefore, Malpani et al. [MWV ] modify the definition of a classical leader election to take into account multiple components:

Any component whose topology is static sufficiently long will eventually have exactly one leader (i.e. every process will eventually agree on the identity of the same leader of its component).

In a classical leader election algorithm, during the election, nodes are aware that they do not currently have the identify of the leader, and therefore, are in an unstable state. This state can be indicated by a done flag, as suggested by Raynal [Ray ], or by returning ⊥ like in the 

. . . Eventual Leader Election

The eventual leader election is a key component for many fault-tolerant services in asynchronous distributed systems. An eventual leader election considers that the uniqueness property of the elected leader is eventually satisfied for all correct nodes in the system. Several consensus algorithms such as Paxos [Lam ] or Raft [OO ], adopt a leader-based approach. They rely on an eventual leader election service, also known as the Ω failure detector [CHT ]. Consensus is a fundamental problem of distributed computing [Pel ], used by many other problems in the literature, like state machine replication or atomic broadcast.

Problem Definition

A first definition of the eventual leader election problem is given. Then, a second definition is presented based on the Ω failure detector. Finally, this second definition is enhanced to tolerate asynchronous dynamic systems.

Formally, an eventual leader election algorithm has the two following properties: Several (correct or not) leaders can coexist before a single correct process is elected as the leader [Lar + ].

Every correct process of the system eventually agrees on the identity of the same correct leader.

The Ω failure detector introduced by Chandra et al. in [CHT ], considering a static distributed system with reliable communication links and known membership, satisfies the following property [Cal ]: EL (Eventual Leadership): there is a time after which all correct processes trust the same correct process, i.e. the leader. In a dynamic system, as processes can join and leave the system, the size of the system may increase or decrease overtime. Therefore, Larrea et al. [Lar + ] have defined the Dynamic Omega failure detector class denoted ΔΩ, which provides an eventual leader election algorithm in an asynchronous dynamic system (denoted Δ

). ΔΩ have the two following properties, assuming that there is at least one process in the system at any time: EL_NI (Eventual Leadership in Non-Increasing systems): if after some time, no process joins the system, a leader must eventually be elected.

. Background [Cal ] EL_ND (Eventual Leadership in Non-Decreasing systems): if after some time, no process leaves the system, a leader must eventually be elected, and the new processes joining after a leader has been elected eventually adopt it.

Note that, by definition, Ω ⊂ ΔΩ [Cal ].

According to Larrea et al. [Lar + ] and considering dynamic (denoted Δ ) systems, the class ΔΩ of failure detectors includes all failure detectors which satisfies both properties EL_NI and EL_ND.

Note that the dynamics of the system may imply that no process stays "long enough" in the system, in which case it is possible that no common process will ever be elected [Lar + ]. Therefore, a leader, which can be temporary, is required to be elected only when the size of the system does no longer increase or decrease, during "long enough" period of time. The two properties EL_NI and EL_ND satisfy this requirement [Lar + ].

Implementing Eventual Leader Election

Solving the eventual leader election problem is possible by implementing an eventual leader service, also called a leader oracle [FJR ]. Such a service consists in providing the processes with a primitive denoted Leader() that [Ray ]:

. Returns the identity of a process of the system each time it is called.

. Ensures that there exists a time after which it always returns the identity of the same correct process.

As there is no knowledge of when the leader is elected, several leaders can coexist at time , such as two processes can have different leaders, but eventually, the same correct process is elected as the leader and its identity is known by all correct nodes. The Ω failure detector provides such a Leader() primitive satisfying these properties [CHT ].

A distributed algorithm based on Ω is indulgent, i.e. it never violates the safety property of the consensus, if the algorithm never produces incorrect outputs regardless of the behavior of Ω [GR ; GL ; Lar + ]. Therefore, if Ω behaves correctly (its behavior corresponds to its specification), the algorithm produces correct outputs.

Ω cannot be implemented in pure asynchronous distributed systems prone to process crashes. Otherwise, it would solve the consensus proven to be impossible in such systems [FLP ; MRT ]. There exist two main approaches to implement Ω in the literature:

. Timer-based: it considers additional synchrony assumptions, where some or all links are eventually synchronous [LFA ; Agu + ]. In this case, other assumptions are usually included such as the maximum number of processes that can crash, the number of eventually synchronous links, etc.

. Background . Time-free: it considers a property on the message exchange pattern based on query-response, with a maximum number of processes that can crash [MMR ; Ara + ]. It assumes that responses from some nodes eventually and permanently arrive among the first ones.

Many algorithms use the maximum number of faults, i.e. the number of processes that can crash, denoted , where 1 ≤ < ( being the number of processes = |Π|) [MOZ ; FJR ; Hut + ]. An important result by Aguilera et al. [Agu + ] shows that implementing the Ω failure detector in a partially synchronous system with process and up to process crashes, requires the existence of some correct processes called -source, (whose identity does not have to be known) with outgoing links that are eventually timely. If = 1, implementing Ω requires only one eventual timely link. Ω can be implemented if there is at least one correct -source (the identity of the -source does not have to be known).

Leader Based Consensus

Ω allows to solve the consensus problem with the weakest assumptions on process failures considering a majority of correct processes. In consensus problems, each process proposes a value, and all correct processes should eventually decide on a common value among the proposed ones [FLP ; CT ].

The following properties are defined: Termination (a liveness property): All correct processes eventually decide on a proposed value.

Validity (a safety property): the decided value is one of the proposed values.

Agreement (a safety property): All correct process must agree on the same value.

Fisher et al. [FLP ] proved the impossibility to deterministically achieve consensus in a completely asynchronous system, if at least one node is prone to crash failure, due to the inherent difficulty of determining whether a process has crashed, or is slow to reply/compute.

Several consensus algorithms use a leader election to solve the consensus, such as Paxos [Lam ] and Raft [OO ].

Lamport introduced in

Paxos [Lam ], which uses an eventual leader election to guarantee the safety properties with weak assumptions. The uniqueness property of the leader is required to ensure the protocol to make progress, otherwise, two processes thinking they are leaders may stall the protocol by continuously proposing conflicting updates. Once a single leader is elected, it is the only one that tries to issue proposals. In , Ongaro and Ousterhout introduced Raft [OO ], a leader-based consensus algorithm which uses randomized timers to elect leaders, responsible for log replication to the follower nodes. A leader election is triggered at the initialization of the algorithm, when the existing leader fails or disconnects, or if no heartbeat is received by the followers of the leader after a timeout. Note that Raft, like other leader-based consensus algorithms, is not tolerant to Byzantine fault, as the nodes trust the elected leader.

. . Conclusion

This chapter has presented well-known concepts of distributed computing, systems, and algorithms such as the definition of the safety and liveness properties, the timing models, which vary from synchronous to asynchronous, communication channel types related to reliability and time bounds, and some failure models that range from crash to arbitrary failures. The communication graph with the specificity of static and dynamic systems were described, including a discussion of some centrality approaches, especially the closeness one, as well as the flooding and probabilistic gossip protocols.

Both the classical and eventual leader election problems were described, the latter including the Ω failure detector implementation. The consensus problem and its properties are described and an overview of a few leader based consensus algorithm is given. The concepts and models introduced in this chapter will be useful in the following chapters. This chapter summarizes some related work on both the classical (Section . ) and the eventual (Section . ) leader election problems. Each of these sections presents existing algorithms of the literature for static and dynamic systems. In static systems, nodes can fail and recover, as presented in Section . . , whereas in dynamic systems, nodes can move, join and leave the system, as well as fail and recover, as described in Section . . .

. . Classical Leader Election Algorithms

The classical leader election problem defined in Section . . has the two following properties:

There should never be more than one leader Eventually there is a leader.

In this section, the presented works assume a unique identifier for every process in the system, where and correspond to the number of processes in the network, and the number of edges respectively.

. . . Static Systems

There exist several works in the literature on classical leader election problem, essentially distinguishable on the topology and complexity. Usually, they are extrema-finding, i.e. the highest or lowest process identifier is used as the election criterion.

As a reminder, the complexity of an algorithm is provided using the mathematical Big notation, describing the limiting behavior of a function when the argument tends towards infinity [Cor + ]: Θ( ( )) gives an asymptotically tight bound (i.e. bounds both from above and below).

( ( )) gives an asymptotic upper bound. ): 'On an improved algorithm for decentralized extrema finding in circular configurations of processors' [LT ] Leeuwen et al. (

. Related Work

): 'An improved upperbound for distributed election in bidirectional rings of processors' [FL ] Frederickson et al. (

): 'The impact of synchronous communication on the problem of electing a leader in a ring' [Gaf ] Gafni ( ): 'Improvements in the time complexity of two messageoptimal election algorithms' Ω( ( )) gives an asymptotic lower bound.

Note that the Ω( ( )) complexity should not be confused with the Ω failure detector introduced in Section . . .

Ring Topologies

The leader election problem was studied for ring topologies since with the first solution proposed by Le Lann [Le ] which required

( 2 ) messages. In , Chang and Roberts [CR ] improved the algorithm of Le Lann by reducing the number of messages to ( log ) on average, still with a worst-case scenario of ( 2 ) messages. Both solutions consider unidirectional communication. In Chang and Roberts algorithm, a process compares its identifier with the one received by message from its right neighbor in the ring. If the former is lower than the identifier in the message, the process forwards the message to its left neighbor, otherwise, it discards it. When at phase a process receives both of its messages, if the latter traveled overall the ring, the node is elected as the leader, otherwise the process starts phase + 1.

Hirschberg and Sinclair proposed in [HS ] an algorithm requiring ( log ) messages in the worst case, by assuming bidirectional communication on the ring, i.e. processes can send messages to the left and right sides. The algorithm executes by phases. In phase , processes send messages along paths of length 2 . If the process identifier is lower than the received one by message from its left (right) neighbor, it forwards the message to its right (left) neighbor. Otherwise, it drops the message. If a message of a process travels over all the processes, it has won the election. They also conjectured that any unidirectional solution must be Ω( 2 ). However, Dolev [DKR ] and Peterson [Pet ] both shown in that the conjecture of Hirschberg and Sinclair is false, by presenting unidirectional algorithms requiring at most ( log ) messages. By improving the algorithm of Peterson, Dolev obtained a 1.356 log + ( ) messages algorithm, which was improved to 1.271 log + ( ) by Higham et al. [HP ], and to 0.693 log + ( ) by Pachl et al. [PKR ].

Burns [Bur ] and Franklin [Fra ] improved the algorithm of Chang and Roberts. Burns proposed an algorithm that saves messages by alternating the direction in which messages are sent. He also formally defined the model and the problem, giving a Ω( log ) lower bound for bidirectional communication.

Leeuwen et al. proposed in

[LT ] a 1.441 log + ( ) message complexity algorithm for a deterministic solution on bidirectional, but unoriented rings of size . Frederickson et al. [FL ] makes a distinction between algorithms doing computation or comparison on the values of process identifiers in synchronous rings. He presented an algorithm doing comparison with a lower bound of ( log ) messages. Gafni [Gaf ] improved the time complexity of the Frederickson ): 'Distributed algorithms for election in unidirectional and complete networks (traversal, synchronous, leader, asynchronous, complexity).' algorithm in synchronous rings, with two algorithms: a first one with Θ( ) messages and Θ( 2 + | | 2 ) time, where | | is the cardinality of the set of the processes identifiers, and a second algorithm achieving ( log ) messages and ( -1 (log )| |) time, where -1 () is the functional inverse of log .

General Networks and Spanning Trees

The problem of finding a leader is reducible to the problem of finding a spanning tree [Awe ], as any distributed algorithm that constructs a spanning tree can be transformed into an election algorithm [Afe ], where the root vertex of the spanning tree is the leader of the system. Spanning tree algorithms are usually based on the Echo algorithm, which is a wave algorithm for networks of arbitrary topology [Tel ]. In the Echo algorithm, defined by Chang [Cha ] in , an initiator node sends messages to all its neighbors, which forward messages to all their neighbors (except the sender node, i.e. the father), and so on. After receiving a message from all its neighbors, each node sends an echo message back to its father. When, the initiator receives an echo message from all its neighbors, and decides.

In

, Spira investigated distributed algorithms to find the Minimum Spanning Tree (MST), based on an asynchronous algorithm of Dalal [Dal ] by which the MST can be found and maintained in a completely distributed manner. Spira proposed then an algorithm using ( log 2 + ) messages, where is the number of edges [Spi ].

Humblet [Hum ] presented in a distributed algorithm for minimum weight directed spanning trees, taking into account costs (i.e. weights) associated with links in the network, achieving a complexity of ( 2 ) on both messages and also time. For instance, the cost could represent latency or some physical distance between two processes.

One notable distributed algorithm for minimum weight spanning trees in static networks which requires (5 log + 2 ) messages and

( log ) time in a connected undirected graph was proposed by Gallager et al. in [GHS ]. The algorithm of Chin et al. [CT ] for an undirected weighted connected graph improved the time complexity of this algorithm, with (5 log + 2 ) messages and ( ( )) time, where ( ) is the number of times that the function must be applied to to get a result smaller than or equal to 1. Gafni [Gaf ] also presented in an algorithm in asynchronous general networks with a Θ( + log ) messages and Θ( log ) time. Awerbuch [Awe ] proposed in an optimal distributed algorithm in messages and time to find a MST in asynchronous networks, which requires ( + log ) messages and ( ) time. Peleg suggested an alternative to MST in [Pel ], with an algorithm for general networks inspired from Afek [Afe ] that achieves a complexity of ( ) messages and ( ) time, with being the diameter of the network. Garcia-Molina [Gar ] proposed the fault-tolerant bully algorithm for synchronous general networks which requires ( 2 ) messages in the worst case, and where the highest identifier process forces smaller identifier processes into accepting it as the leader. Initially, a process attempts to contact all processes with higher identifier: if any of these processes respond, then process waits until the process with a higher identifier becomes the new leader. Otherwise, if all processes with higher identifiers do not respond after a time limit as they have failed, process elects itself as the leader.

As proposed by Afek [Afe ] and Awerbuch [Awe ], Ω( ) is a lower bound to construct a spanning tree in asynchronous general networks (including rings topologies), since an algorithm requires to send at least one message over each edge to traverse the network. Burns [Bur ] proved an Ω( log ) lower bound on the worst-case number of messages sent to find a leader in an asynchronous ring. Therefore, Ω( + log ) messages are required to construct a spanning tree in asynchronous general network which solves the election problem [Afe ; Awe ], and is an optimum as observed by Gallager et al. [GHS ].

Complete network

Korach et al. [KMZ ] shown in that leader election in asynchronous complete networks has a lower bound of Ω( log ) messages presenting an algorithm of 5 log + ( ) messages where is the number of processes starting the algorithm, and ( log ) time.

Afek et al. [AG ] proposed in two leader election algorithms for synchronous and asynchronous complete networks, with (log ) and ( ) time complexity for the synchronous and asynchronous algorithms respectively, and with ( log ) messages for both algorithms. In synchronous complete networks, the authors also proved a lower bound of Ω( log ) messages and that Ω(log ) time is required for any message-optimal synchronous algorithm. The presented algorithms are summarized in Table . .

. Related Work

Table . .: Comparison of some classical leader election algorithms in static systems.

Article Topology Complexity

[Le ] Ring

( 2 ) message [CR ] Ring Average ( log ) message, worst:

( 2 ) message [HS ] Ring Worst: ( log ) message [Bur ] Ring Lower bound: Ω( log ) message [Fra ] Ring Worst: ( log ) message [Pet ] Ring 1.44 log + ( ) message [DKR ] Ring 1.356 log + ( ) message [HP ] Ring 1.271 log + ( ) message [PKR ] Ring 0.693 log + ( ) message [FL ] Ring

( log ) message [Gaf ] Ring Θ( ) message, Θ( 2 + | | 2 ) time [Gaf ] Ring ( log ) message, ( -1 (log )| |) time [Spi ]
MST Average: ( log 2 + ) message [Hum ] MST Worst:

( 2 ), ( 2) time [GHS ] MST

( log + ) message, ( log ) time [CT ] MST (5 log + 2 ) message, worst: ( ( )) time [Gaf ] MST Θ( + log ) message, Θ( log ) time [Awe ]
MST ( + log ) message, ( ) time [Pel ] General Networks ( ) message, ( ) time [Gar ] General Networks Worst:

( 2 ) message [KMZ ] Complete async. 5 log + ( ) message, ( log ) time [AG ] Complete sync.

( log ) message, (log ) 

. . . Dynamic Systems

As presented in Section . . , the communication graph of dynamic systems evolves over time since nodes can fail, recover, join or leave the system at an arbitrary time during execution.

In this type of system, network partitions can happen resulting in disjoint connected component, and algorithms have to handle communication changes.

Election Criterion

Like in static systems, many of the leader election algorithms are extrema finding, meaning that they use the highest node identifier as an election criterion [Hat + ; MWV ; RAC ]. Some other ones use different criteria to elect a leader, like election time [Ing + ; Ing + ], or some feature such as remaining battery or computation power [VKT ; KW ].

Hatzis et al. [Hat +

] presented two leader election algorithms, where both elect the node with the highest identifier. They solve a stronger problem by specifying that once elected, the leader should also be aware of the size of the system. In the algorithm of Malpani et al. [MWV ], the leader is the node with the lowest identifier of the component. Rahman et al. [RAC ] proposed an algorithm for static and dynamic systems aiming at reducing the number of leader election rounds and therefore saving energy: each node maintains a list of leaders, and the leader is the node with the highest identifier. Each time a new node joins the system, after recovering from a crash for example, it starts a new leader election round.

Algorithms proposed by Ingram et al. [Ing + ; Ing + ] use clocks to record the time the election took place, and the leader is the process that wins the most recent election.

Vasudevan et al. [VKT ] proposed an algorithm where the election criterion is some value related to the node, i.e. a performance-related characteristic, such as remaining battery life or computation capabilities. The authors suggest the idea of electing as the leader the node with the minimum average distance to other nodes, but no implementation is given.

Similarly, Masum et al. [MA + ] proposed an algorithm for electing a local extrema among the nodes participating in the election, based on an arbitrary value called priority. Each node has a priority indicating its attractiveness to be the leader, which can be a performance-related attribute of the node, such as the battery life or computational capabilities.

By exploiting the structure of a spanning tree, Kim et al. algorithm [KW ] elects a centrally positioned leader, according to the average depth of nodes in the tree. They called their centrality measure tree-based centrality, and compare it with different centrality measures such as degree, closeness, and betweenness. Compared to the closeness centrality, the tree-based central leader is not always optimal because it depends on the node that initiates the election algorithm.

Information Spreading

Dynamic classical leader election algorithms have different structures of communication, which are mainly a leader-oriented Directed Acyclic Graph (DAG) where each node has a direct path to the leader, or a spanning tree directed towards the initiator node of the election. Some other algorithms use a different communication structure, based on counters, for example.

Directed Acyclic Graph. The algorithm proposed by Malpani et al. [MWV ] is based on a routing algorithm for mobile wireless networks called TORA [PC ], which creates a leader-oriented DAG. A mechanism is used to detect network partitions, and nodes that no longer have a path to a destination stop sending unnecessary messages. Each node creates a -uplet from the -uplet used in TORA, adding the identifier of the current assumed leader of the node partition. This -uplet is modified during topological changes and is used for the election. Malpani et al. algorithm [MWV ] and requires a three waves algorithm [Tel ] on all nodes of the system to elect a new leader (two waves to search a potential leader and one confirmation wave). Like Malpani et al. [MWV ], a leader-oriented DAG structure is used in each connected component, where every node has a directed path to the leader. Leader stability is also studied to reduce new leader elections while a path to the old leader still exists. Their algorithm requires that nodes have perfectly synchronized clocks, which is made possible by using a global time accessible by all nodes in the system.

Ingram et al. [Ing + ] improved

A more complete version of the previous work was published in by Ingram et al. [Ing + ], with causal clocks instead of a global clock accessible to all nodes, which can be implemented using perfect clocks or logical clocks. Performance of the algorithm depends on the type of clocks used to implement a causal time and the authors specify that their algorithm is not correct for approximately synchronized clocks unless they preserve causality.

Spanning Tree. Vasudevan et al. [VKT ] use a wave mechanism to build a spanning tree, where each node sends back to its parent the identifier of the node having the highest value in its subtree. Their algorithm returns a leader identity only when it is accepted by all nodes in the network, returning ⊥ in the rest of the time. Note that links are assumed to be bidirectional and heartbeat messages are periodically sent from the leader node. Based on Vasudevan et al. [VKT ], the algorithm of Rahman et al. [RAC ], also builds a spanning tree, where nodes periodically send probe messages to their neighbors, and get reply messages from them. As in the Echo algorithm previously presented, an acknowledgement system is used where nodes reply to election messages with ack messages along with their identifier. The leader sends heartbeat messages every twenty seconds, and after a timeout of six messages, a new leader election is triggered. Like in Vasudevan et al., the algorithm also assumes that communication links are bidirectional.

Kim et al. [KW ] exploit a three wave algorithm to build a spanning tree, used to elect a central leader. Each node periodically broadcasts hello messages, in order to check connectivity with its neighbors, and to create a neighbor information table. Election messages are used to dynamically build the spanning tree and are propagated when an election is triggered. with the higher identifier wins and receives the counter of the loser, which is added to its local counter. The loser node changes its state to inactive, and no longer responds to messages about the execution of the algorithm. Information is only transmitted when a new node joins a component, thereby reducing the number of broadcasts needed by the algorithm and saving, therefore, battery power consumed for message transmissions. Each node also keeps a local list of node identifiers that it has defeated. When two nodes meet, the winner concatenates its local list with the list transmitted by the loser node. That way, the final winner will know the network size and the identifiers of nodes in the network.

Counter

Other approaches. Masum et al. [MA +

] consider that communication links are reliable, bidirectional, and FIFO. Their algorithm does not rely on a specific communication structure, and tolerates intermittent failures, such as link failures, sudden crash, as well as recovery of mobile nodes. A node is considered faulty if the communication links between the node and each of its neighbors have failed, while a node recovery is the recovery of the communication links between the recovering node and its neighbors. Message delivery is only guaranteed if the sender and receiver remain both connected (not partitioned) for the entire duration of the message transfer.

Connectivity Assumption

To handle frequent topology changes, election algorithms must tolerate arbitrary, concurrent changes and should eventually terminate electing a unique leader within the connected component. Due to the dynamics of the network, it is impossible to guarantee a unique leader all the time, because when a network partition occurs or when two components merge, it will take some time to elect a new leader. In order to satisfy the agreement property of the leader election and eventually elect a single leader, algorithms designed for dynamic systems make different assumptions about connectivity of nodes of the system.

The two leader election algorithms of Hatzis et al. [Hat + ] are designed to handle dynamic topology changes with mobility of some or all nodes. Both leader election algorithms require that nodes know in advance the type and dimensions of the area in which they move, and nodes need to measure the distance that they cover when moving. The first algorithm presented might never elect a single leader, if nodes never meet to exchange information, while the second one assumes nodes with no sense of orientation that follow random walks and is based on a Las Vegas algorithm. Nodes have a unique identifier, but a variation of the second algorithm allows anonymous nodes.

Malpani et al. [MWV ] supposed a synchronous system, where executions take place in stages during finite phases. When a partition occurs, the system is separated in two or more components and the authors consider that any component whose topology is static long enough will eventually have exactly one leader.

Similarly, Ingram et al. [Ing + ; Ing + ] consider an asynchronous system where messages are delivered in FIFO order through reliable asynchronous communication channels, and where nodes are assumed to be completely reliable. If topology changes cease, then eventually each connected component of the network has a unique leader.

Vasudevan et al. [VKT ] modified the requirements that eventually every connected component has a unique leader, by proposing an algorithm that ensures that after a finite number of topology changes, eventually each node has the same leader.

Masum et al. [MA +

] assume one or multiple simultaneous topological changes can occur, but each node remains in the network for a sufficiently long time. Any connected component of the network whose topology remains static sufficiently long will eventually have exactly one unique leader.

The algorithm of Rahman et al. [RAC ] does not make the assumption that topology changes eventually stop. Nodes permanently send periodic probe messages and wait for the reply message from the neighbors of the spanning tree, to maintain the connectivity.

Note that most of the presented works do not specify which mobility model or pattern they use.

The presented algorithms are summarized in Table . . Most recent election Leader-oriented DAG Topology changes cease [VKT ] Highest arbitrary value Spanning tree with waves Finite number of topology changes [MA + ] Highest arbitrary value (not specified) Static long enough [RAC ] Highest identifier Spanning tree with waves (not specified) [KW ] Centrality positioned Spanning tree with waves (not specified)

. . Eventual Leader Election Algorithms

As presented in Section . . , Chandra et al. [CHT ] introduced in the Ω failure detector, which provides a primitive Leader() satisfying the following property: there is a time after which all correct processes trust the same correct process , i.e. the process returned by the Leader() primitive.

As Ω cannot be implemented in an asynchronous distributed system where process crashes arise (otherwise it would solve the consensus in . Related Work such system, which is known to be impossible as seen in Section . . ), any asynchronous system has to be enriched with some assumptions in order to implement Ω [Lar + ].

Note that an algorithm is communication efficient if after some time, the eventual leader is the only process to send messages to all other processes, forever [Agu + ].

. . . Static Systems

Eventual leader election algorithms designed for static networks can be divided in two categories, known and unknown networks, based on assumptions about network knowledge, as presented in Section . . The literature contains two main approaches: timer-based and time-free as defined in Section . . .

Known Networks

In known networks, nodes have some knowledge about the system. Timer-based. Chandra et al. [CT ], as well as Larrea et al. [LFA ],

proposed the first Ω solutions by considering a fully-connected network and reliable eventually timely links.

Aguilera et al. [Agu + ] presented in a weaker condition on channel reliability and synchrony, by relaxing the need of time constraints on all links. In their algorithm, the authors assume that there is at least one process whose links are eventually timely with all the other processes of the system. They later proposed, in , an algorithm [Agu + ] implementing Ω in weak systems, where all processes may be arbitrarily slow or may crash, except for some timely processes whose identities are not known. Only the output links of are eventually timely, and all other links can be arbitrarily slow and lossy. Then in , the authors presented an article where there exist some correct processes, whose identities are not known, with outgoing links that are eventually timely [Agu + ]. They show that when = 1, it is sufficient to have only one eventually timely link to implement Ω and solve consensus. The authors also give a simple communication efficient algorithm that implements Ω for systems with up to crashes, and with at least one correct -, i.e. a correct process with eventually outgoing links that are timely.

Malkhi et al. [MOZ ] proposed an alternative solution without having any eventual timely links, by considering eventually accessible links. Their algorithm considers that eventually one process can send messages such that every message obtains timely responses, denoted -

. This property implies that the responders do not need to be fixed, and may change from one message to another, i.e. to vary in time. Compared to Aguilera et al. [Agu + ], where in -, the that allows the links to vary in time.

By unifying the assumptions made in [Agu + ], [Agu + ] and [MOZ ], an even weaker model was proposed by Hutle [Hut + ] in . The authors show that Ω can also be implemented in a system with at least one process with outgoing moving eventually timely links (moving means that the set of neighbors may change over time), assuming either unicast or broadcast steps. They assume a model of a fullyconnected network where processes are partially synchronous. Their model requires at least one correct process that is a --, i.e. it must have timely outgoing links with an unknown delay bound to a moving set of receivers at any time.

As seen in Section . , in some systems, a crashed process can recover with the same identifier and goes on executing. The algorithm of Fernández-Campusano et al. [Fer + ] implements Ω in a crash-recovery and omissive system. They consider a totally ordered set of processes which are known by each node, and nodes have access to a stable storage. Every pair of nodes is connected by two unidirectional communication links, one in each direction. Each node elects as leader the node with the smallest penalty value among the nodes that communicate with a majority of processes. A node increases its penalty value when it recovers after a crash, or if it is not well connected with a majority of processes. Each node keeps track of its communication with every other node by periodically exchanging messages, which includes its penalty value, its current leader, and information about its connectivity with the receiver node. Time-free. Mostéfaoui et al. [MMR ] use a query-response mechanism, which assumes that the responses from some processes to a query arrive among the ( -) first ones. The authors show that the algorithm implements the failure detector, which is known to be equivalent to Ω when the membership is known. In [MRT ], Mostéfaoui et al. extend the previous algorithm to implement Ω, considering a star communication structure if the following property is satisfied: there is a correct process and a set of processes ( ∉ , and processes in can crash), such that eventually, either ) each time broadcasts a query, receives a response from among the ( -) first responses to this query (and such a first response is called a winning response), or ) the channel from to is timely.

Unknown Networks

Other works aim to implement Ω in unknown networks and look for models with the weakest possible assumptions on the knowledge and communication graph. They share a common assumption on reachability communication between every pair of correct processes.

. Related Work [JAF ] The presented works consider a timer-based approach, as defined in Section . . . The work of Jimenez et al. [JAF ] shows that it is possible to implement Ω without knowledge of the system membership. To this end, they present an algorithm implementing a Ω failure detector, which requires minimal reliability and synchrony assumptions in systems whose links are only of two types: either eventually timely (where messages are received by time + Δ after an unknown GST, with Δ being an unknown bound) or lossy asynchronous (where messages can be lost or arbitrarily delayed), as seen in Section . . Two algorithms were proposed by Fernandez et al. [FJR ; AJR ] to implement Ω with weak assumptions on the initial knowledge of each process and the behavior of the underlying network. The first one considers a partial unknown network, where each process knows the lower bound on the number of correct processes ( = -). This algorithm assumes fair-lossy links and a strongly connected graph, where there is a correct process connected toother correct processes through eventually timely paths (with being the actual number of crashes in the considered run, and eventually timely paths are paths made up of correct processes and eventually timely links). Note that this first algorithm is not communication-efficient, as each correct process has to send messages forever by fair-lossy links (one in each direction). The second algorithm considers an unknown network with a complete communication graph, where each pair of correct processes is connected by fair-lossy links (one in each direction). It also assumes that there is a correct process with output links to every correct process that are eventually timely. The authors also present an important impossibility result which consists of a lower bound theorem: in a system where processes know neither (a lower bound on the number of correct processes) nor (a lower bound on the actual number of crashes) in their initial knowledge, there is no eventual leader election algorithm with less than --1 eventually timely links [AJR ].

Martín et al. [MLJ ] proposed some algorithms in to implement Ω in systems not necessarily fully connected, where two algorithms of them assume an unknown membership. The system does not require that every pair of processes is connected by a direct communication link, and some links can be lossy asynchronous. The first algorithm assumes that eventually all processes are reachable timely from the process that crashes and recovers a minimum number of times. The second algorithm assumes that all processes are eventually reachable timely from some correct process. The eventual leader is the process with the lowest identifier in the set of processes that no longer crashes after some time.

The presented algorithms are summarized in Table . . 

. Related Work

. . . Dynamic Systems

The eventual leader election problem in dynamic systems has been studied in the literature, particularly for MANET networks. Since this thesis proposes eventual leader election algorithms for mobile networks, this section aims to discuss some related work organized following the approach used by the related algorithms: timer-based or time-free.

Timer-based

The algorithm presented by Larrea et al. [Lar + ] elects the node that has been in the system for the longest period of time, i.e. the node that joined the system first and has not yet left nor crashed. Each node has a local clock and the time when a node joins the system is timestamped using its current local clock value. If two nodes have the same timestamp, the lower identifier breaks the tie. Clocks are not required to be synchronized, but the local clock value of a node joining the system should be as large as the clock value of the nodes already in the system. A new election is started when a timer related to the current leader expires. The authors assume that communication links are eventually timely among nodes in the system [Agu + ], and their algorithm is communication-efficient. The proposed algorithm is of class ΔΩ and satisfies the EL-NI and EL-ND properties introduced in Section . . , i.e. no more nodes join or leave the system during long enough periods of time.

Similarly to the previous algorithm, the algorithm of Gómez-Calzado et al. [Góm + ] uses the timer-based approach and elects as the leader the oldest node of the connected component with the highest identifier. Each node maintains a set with the identity of the nodes that belong to its component. When a node does not belong to any component, it periodically broadcasts join messages. On the other hand, if it is the leader of a component, it sends a leader message with the size of its . Related Work component. When a node receives a join message, it adds the new node to its component, and propagates this new information over the network. When it receives a leader message, it changes its leader if the received component size is higher than its current leader component size (when components merge, for example), and propagates the result over the network. Communication channels are bidirectional, and since a minimum stability of the graph is required, they use a notion of link duration, i.e. a time interval that ensures communication among nodes. Periodically, all links act as eventually timely channels. Nodes are mobile and the system alternates periods of good and bad behaviors. During a good period, i.e. in a stable and long enough connected interval, the communication paths guarantee that graph connectivity corresponds to a spanning tree. The authors also consider the EL-NI and EL-ND properties which guarantee stability of the system after some time, extending them to tolerate nodes mobility, i.e. graph partitioning and merging. To this end, they formally define Mobile Dynamic Omega, denoted Δ * Ω. In short, Δ * Ω requires that eventually and for a sufficiently long time, there is a bidirectional path between the leader and the rest of nodes in case of fragmentation of the network or merging of multiple partitions (which then act as independent networks). They also introduced a formalism with a framework to classify mobile and dynamic distributed systems [Cal ].

Tucci-Piergiovanni et al. [TB ] * permanently exchange the set of the first nodes of their respective lists, updating them. The leader is the node with the lowest identifier among the first nodes in the list. The authors do not consider any specific communication structure, assuming unknown but finite bounds on message losses and message delay. Network partitions are temporary. Each node periodically sends heartbeats with its identifier, so that the other up nodes consider it as a participant of the system. An infinite number of nodes may join and leave over time. Each node has a local clock, which is not synchronized among each other nodes.

Melit et al. [MB ] proposed an algorithm that also elects the node which has the highest priority value among all nodes within its connected component. The lowest node identifier is used to break ties in case of equal priority value. A timer is used to detect loss of communication with the leader, i.e. when no more leader messages are received. At the expiration of the timer of a node, the node elects itself as the new leader and starts sending leader message periodically. Links are either fair-lossy or eventual timely. The algorithm uses the flooding approach for the leader messages, which is initiated by the leader and contains the identifier and the priority value of the leader. Nodes forward received leader messages to all direct neighbors, except the sender node. A finite number of topological changes can take place, i.e. after a time , the topology does not change anymore and becomes static.

Time-free

Mostefaoui et al. [Mos + ] extends the algorithm for static systems [MRT ], for dynamic systems. The system can have infinitely many nodes, but at each run has only a finite number of nodes. Nodes are asynchronous, i.e. there is no bound on the execution of a computation step, and they enter the system by executing a join() operation that provides them an identity. The system is characterized by a succession of unstable and stable periods, where progress can only be guaranteed during the stable periods if they last long enough. The set of nodes which are correct after entering the system, i.e. neither crash nor leave, is called , and the elected leader is a node. The following progress condition must be satisfied: | | > , where = -. The leader is the node with the lowest identifier among a set of trusted nodes. This set of trusted nodes eventually contains all nodes of the component that replied among the first response to queries. Each node maintains a logical date and a set of trusted node identifiers, such that eventually, the set of all nodes have the same value, hence allowing each node to elect the same leader from its set. Nodes use gossiping to disseminate their set of trusted nodes as well as a logical date defining the age of set. This logical date indicates if the received set of trusted nodes is more recent than the current one. A query-response mechanism is used to get knowledge about nodes in the system. Upon receiving responses, the query terminates.

Arantes et al. [Ara +

] propose a time-free algorithm for unknown network where nodes can move, fail by crashing, join and leave the system. The authors consider the finite arrival model, i.e. the network is a dynamic system composed of infinitely many mobile nodes but each run consists of a finite set of nodes. Communication channels are fair-lossy and the dynamics of the network is modeled by using the recurrent connectivity class of Time-Varying Graph (TVG) that ensures that at any point in time the communication graph remains connected over time [Cas + ]. For diffusing information, the algorithm uses local query-response mechanism [MMR ]: at each query-response round, node systematically broadcasts a query message to the nodes in its neighborhood until it possibly crashes or leaves the system. When receives messages, the query-response terminates. is defined locally as a function of the expected number of correct known neighbors with whom may communicate at the time in which the query is issued. The algorithm elects the leader based on a punishment procedure and on the periodic exchange of query-response messages. If a neighbor of does not respond within the responses, punishes it by incrementing a counter associated to it. The algorithm thus will eventually elect a correct process that has the smallest punish counter. To ensure that all the nodes will elect the same leader, query messages of carry information about the view it has of the system and the values of its process punished counters. In order to tolerate mobility of nodes and avoid false suspicions in case of mobility, messages are timestamped: as soon as gets the information (by the contents of a received message) that another node has received a message from with a greater timestamp, stops punishing , which was falsely suspected as faulty by . To ensure eventual stability of the algorithm, the system assumes both the Stabilized Responsiveness Property ( ℛ ), which defines the ability of a correct process to eventually always reply to a query sent among the first processes, and the Stable Termination Property (

), which guarantees that information from/to a process is going to be sent/received to/from at least one correct other process in its neighborhood.

The presented algorithms are summarized in Table . . 

. . Conclusion

This chapter has presented several works on the classic and eventual leader election problems for static and dynamic systems.

First, a few pioneer articles are presented on the classical leader election problem in static systems for specific topologies such as rings, spanning trees, or complete communication graphs. Then some papers on the same problem but for dynamic systems are described, following three criteria: the election choice, information spreading and connectivity assumptions.

Then, the problem of the eventual leader election, also called the Ω failure detector is addressed. For static systems, the corresponding section organizes the related work according to the knowledge or not of the system membership, while for dynamic systems, some existing Ω algorithms are presented by implementation choice (timer-based or time-free). highly dynamic characteristics and membership lack of knowledge of MANET [Mos + ; MA + ; MB ]. Furthermore, in the majority of these algorithms, the choice of the leader is based on a beforehand criterion such as the lowest or the highest nonfaulty process identity. However, it is important that the criterion should take into account the impact that the choice of the leader may have on the performance of algorithms that use the leader election service. Performance-related criteria are, for instance, nodes remaining battery life, nodes computation capabilities, nodes topological position (e.g. the minimum average distance from a node to all other nodes), etc. Similarly to [VKT ], the most valued node denotes the one that best meets the performance-related criterion in question and, therefore, should be chosen as the leader. Hence:

. An election algorithm for mobile networks must tolerate arbitrary, concurrent topology changes, and should eventually terminate electing a unique leader per connected component of the network [Fer + ].

. For the sake of performance, an elected leader should be the most valued node among all the nodes within its connected component.

The proposed algorithm is an eventual leader election algorithm called Topology Aware, which is based on the most valued node criterion and whose nodes have a global knowledge of the communication graph and its dynamic evolution, denoted topological knowledge. The algorithm progressively builds and maintains a local knowledge of the connected graph. It relies only on broadcasts within node transmission ranges and does not require any election communication phase: with both its current topological knowledge and choosing the most valued node, each node can directly deduce at any moment which node is the current leader.

In particular, the topological knowledge makes the computation of the closeness centrality possible, as well as the election of per component central located leaders, which, thus, efficiently spread information across nodes of the component. Even if the problem of discovering network topology has been studied in various contexts [NT ; BO ], this approach has never been used to elect an eventual leader.

It is worth pointing out that even if the presented work target MANET, the Topology Aware algorithm has been designed for generic mobile dynamic systems.

The rest of the chapter is organized as follows: Section . explains the chosen model and assumptions, while Section . describes the algorithm. Section . discusses performance results and, finally, a conclusion is given in Section . .

. . System Model and Assumptions

The system model considers an upper bound on the time a process takes to execute a step and eventually timely links, i.e. an upper bound on the transmission delay. However, both bounds and are unknown and hold after an unknown Global Stabilization Time (GST), so the system is partially synchronous, as described in Section . and Section . .

There exists one process per node. Therefore, the words node and process are interchangeable.

. . . Node states and failures

Every node always follows the specification of the algorithm, until a potential fail. It is considered correct if it never fails and never leaves the system during the whole execution. Otherwise, it is considered faulty, until it comes back to the system.

A node can fail by crashing and a failed node can recover, joining the system again with the same unique identifier, i.e. two nodes cannot have the same identifier, as detailed in Section . . Therefore, a node keeps its identifier regardless of its state. However, the node does not recover its state neither the knowledge of the network membership and, thus, is initialized again.

. . . Communication graph

The system is modeled as an undirected graph, as presented in Section . . Two nodes can communicate directly if they are in the transmission range of each other, i.e. a receiver node is located inside the emission range of a sender node. The system assumes that the emission range is the same as the reception range. Therefore, if node can communicate with node , node can also communicate with node (bidirectional links).

A given node belongs to a connected graph formed by its neighbors, neighbors of its neighbors, and so on, which is called a connected component. Due to the movement, failure, and disconnection of nodes, the system can be divided into two (or more) different connected components. Each of them is considered to be a fully-fledged network in itself, and therefore, eventually elects one leader. Both partial synchrony and algorithm ensure that, regardless of topology changes, if the changes cease, each connected component will eventually elect a single leader.

. . . Channels

Nodes only communicate by broadcast on a fixed Wi-Fi channel selected beforehand. All neighbors of the sender node receive the broadcast message. Reliable communication channels are assumed, possible in a wireless network where the MAC layer reliably delivers broadcast messages, even in the presence of signal attenuation, collision, and interference. Otherwise, the transmitter is faulty or out of the neighborhood. There is no assumption about message order, so messages can be delivered out of order.

. . . Membership and nodes identity

The number of nodes is unknown. Each node initially knows its own identifier which is unique in the system. A probe system is used which allows detection of neighbor nodes. By receiving messages from its neighbors, a node gets knowledge of the membership of the network.

. . Topology Aware Leader Election Algorithm

In the Topology Aware algorithm, every node keeps a topological knowledge of the connected component to which it belongs. The algorithm builds this component knowledge during node connections and disconnections (triggered by a probe system), and maintains it by sending either the full knowledge (called known) to new neighbors, or partial modifications (called updates) periodically to its neighbors.

. . . Pseudo-code

The pseudo-code of the Topology Aware algorithm for a node is given in Algorithm and is described in the following.

. . . Data structures, variables, and messages (lines to )

The two following data structures are used by node : view (line ) is composed of two elements: a logical clock [Lam ] value only incremented by , and a set of identifiers representing neighbors of . 

∈ then if _ = 0 then known[src] ← new_clk, add updates ← updates ∪ updt else pending ← pending ∪ updt else if _ = [ ]. then known[src].neigh ← (known[src].neigh ∪ add) \ rmv known[src].clk ← new_clk updates ← updates ∪ updt else if _ > [ ]. then pending ← pending ∪ updt

PendingUpdates()

Invocation of PendingUpdates():

∀ updt src, add, rmv, old_clk, new_clk ∈ pending do if

_ = 0 then if src, -∈ then known[src] ← new_clk, add pending ← pending \ updt else if _ = [ ]. then known[src].neigh ← (known[src].neigh ∪ add) \ rmv known[src].clk ← new_clk pending ← pending \ updt if _ < [ ]. then pending ← pending \ updt . .

. Initialization (lines to )

At the beginning, node initializes its knowledge with its own identifier ( ) and its logical clock set to .

. . . Periodic updates task (lines to )

Periodically, i.e. every Δ milliseconds, node broadcasts its new updates list if not empty, and then set it to empty.

. . . Connection (lines to )

When a new node appears in the transmission range of node , it is detected thanks to the probe system and the Connection method is triggered (line ). Node is considered as a new neighbor and is added to the knowledge of node (line ). As the latter has been updated, the logical clock of node is incremented (line ).

Then, both nodes broadcast their current knowledge to share information about their component with each other, and also to inform neighbors about the new node. Therefore, node broadcasts its known map (line ) to its neighbors: node then acquire topological knowledge about the component, while the other neighbors of are informed about the new connection with . Same process is executed by in regard to node and its neighbors.

. . . Disconnection (lines to )

When a certain number ( ) of probes from node are not received by node , node is considered disconnected by (line ). An update structure is then created with the following information (line ):

the identifier of node , considered as the source of the modification;

an empty value for the add set (no new connection); the identifier of the disconnected node for the removed set;

the current clock of node ;

the new clock, whose value is equal to the clock value of node increased by .

This tuple is added to the list of updates to be propagated later by the periodic updates task (line ). Node is then removed from the knowledge of node (line ) and the clock of node is incremented (line ).

. . . Knowledge reception (lines to )

When node receives the known map of node (line ), it checks each node included in known (line ). If is a new node for it (line ), node creates an update containing the neighbors of node with an old clock valued at , meaning that all neighbors of are in the add set (line ). The update is added to the list of updates to be propagated later by the periodic updates task. Then, the clock and neighbors of are added to the knowledge of node (line ).

If is known by and the clock value of is greater than the clock value known by node for (line ), it means that made some connections and/or disconnections of which node is not aware. Hence, node creates an update and computes the add set (line ), which will be composed of the new neighbors for that informed in view, minus the neighbors of which already knew. The result represents new neighbors of since its last received view. Then, node computes the removed nodes of the update, by removing the received neighbors from the known neighbors of (line ), which represents disconnections since the last received view. The value of the old clock in the update is set to the clock value of in the knowledge of node , and the new clock value is set to the value of the received clock (line ).

The update is added to the list of updates to be propagated later by the periodic updates task (line ), and eventually, thanks to their previous knowledge and update exchanges, neighbors of node will have the same knowledge as node with identical clocks, thus, they will be able to apply this new update in their respective knowledge.

Finally, the clock value and neighbor identifiers of are added to the knowledge of (line ) and the PendingUpdates method is called to apply previously received updates (line ).

. . . Updates reception (lines to )

When node receives updates from node (line ), each update adds or removes neighbors of a source node (line ). Following the old clock value, an update can be applied, saved in the pending list to be applied later, or discarded.

If the old clock is equal to (line ), the update contains all the neighbors of node (see Knowledge reception paragraph), and the update is applied (line ) if node does not have any information about node (line ). If the old clock is equal to the clock of node in the current knowledge of node (line ), the update corresponds to new information. The update is then applied, i.e. neighbors are updated (line ) as well as the clock (line ). In both cases, the updates are added to the updates set of node (lines and ), to be propagated later to neighbors through the periodic updates task.

Note that an update cannot be applied when it is more recent than other updates not yet received by , which should have been applied before the former. This out-of-order update receptions might happen if the component contains cycles, i.e. when the old clock is greater than the clock of in the knowledge of (line ), or when node does not have any information about node and the old clock is greater than (line ). In those cases, node saves the update in a pending updates list (lines and ), and will try to apply it in the future, after new updates will be received (line ).

. . . Pending updates (lines to )

PendingUpdates (line ) checks the updates that can be applied from the pending list (line ). To reduce message exchanges and improve performance, updates that cannot be applied when first received are saved, and the algorithm tries to apply them after new information is received.

When an update is applied (i.e. the knowledge of changes, lines and -), the latter is removed from the pending list (lines and ). If the clock value of the current knowledge is greater than the old clock value of the update (line ), the update is also removed for the pending list (line ), meaning that node receives a knowledge or updates from a node with more recent information.

. . . Leader election (lines to )

When a process running on node requires a leader, it calls the local Leader method (line ) which computes and returns, based on the knowledge of , the best leader according to the closeness centrality (line ). The closeness centrality defined in Section . is used rather than the betweenness centrality, because it is computed faster and requires fewer computational steps, so use less energy from the mobile nodes. In order to compute the closeness centrality, node , starting from itself, get the set of reachable nodes according to its topological knowledge of the component (line ). Then, for each reachable node, it computes the shortest distance between this node and the other reachable ones, obtains the closeness centrality, and deduces the most central node as the leader (line ). The highest node identifier is used to break ties among identical centrality values.

If all nodes of the component have the same knowledge of the topology, the Leader() call returns the same leader node to all of them. Otherwise, it may return different leaders for distinct nodes. However, if topology changes cease, the algorithm ensures that all nodes of a connected component will eventually have the same topology knowledge and, therefore, will have the same leader node [Ing + ].

. . . Execution examples

This section presents examples of the execution of Topology Aware algorithm, showing the connection between node and node . used for the sake of the example. One leader is currently elected per component, respectively nodes and . Nodes and have the same closeness centrality, therefore, the highest node identifier is used to break the tie, as presented in Section . . , and since < , node is the leader. In Figure . , the underlying probe system of node first detects node and triggers the Connection method described in Section . . . Therefore, node adds node in its neighbors list, and increments by one its clock value, previously sets to .
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i k h < i , 13 , [ i , k ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < k , 5 , [ k , h , i ] > < i , 13 , [ i , k ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 13 , [ i , k ] > < k , 5 , [ k , h , i ] > j < j ,
i h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < k , 5 , [ k , h , i ] > < i , 13 , [ i , k ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 13 , [ i , k ] > < k , 5 , [ k , h , i ] > j < j ,
. Topology Aware Leader Election Algorithm for Dynamic Networks Then, in Figure . , node broadcasts its knowledge in order to share its view of the network with node . Meanwhile, the probe system of node has detected node and triggers the Connection method of node . Node is added to the neighbor list of node and the latter increments its clock value from to . In Figure . , node broadcasts its knowledge to complete the Connection method, and it receives a knowledge from node . According to this new knowledge, node is not the leader anymore. Since node received a knowledge from node , it creates an update. However, in this case, the update will not be usefull since its neighbors already received its knowledge. Note that node also received the knowledge of node , therefore, it follows the steps described in Section . . : the received clock of node is higher than the known clock of in the knowledge of node (14 > 13, line ), meaning that new information is received. Therefore, node updates the entry of node in its knowledge by adding node as a new neighbor and updating the clock of node from to . It also creates an update < , ( ), (-), 13, 14 > that will be sent by the Periodic Updates Task.

i k h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < k , 5 , [ k , h , i ] > < i , 13 , [ i , k ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 13 , [ i , k ] > < k , 5 , [ k , h , i ] > j < j ,
i h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 13 , [ i , k ] > < k , 5 , [ k , h , i ] > j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j , 22 , [ j , g ] > Broadcast (known)
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i k h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 13 , [ i , k ] > < k , 5 , [ k , h , i ] j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j , 23 , [ j , g , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > Periodic Updates Task < i > Periodic Updates Task < i , h , k > Figure .
.: Example Topology Aware: Knowledge reception of nodes and .

Then, in Figure . , nodes and receive a knowledge from node . Both nodes update their knowledge and create updates with the new received information, that will be broadcast later. According to this new knowledge, node considers itself as the leader since it has the highest closeness centrality.

i k h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < h , 8 , [ h , k ] > < i , 14 , [ i , k , j ] > < k , 5 , [ k , h , i ] > j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j , 23 , [ j , g , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] >
Periodic Updates Task < i , h , k > Periodic Updates Task < j , g >

Figure .

.: Example Topology Aware: Periodic Updates Task of nodes and .

In Figure . , the Periodic Updates Task of both nodes and send their update. Node ℎ received the update of node and updates the entry of node in its knowledge with the more recent information received. Therefore, it creates an update with the new information received, that will be sent later.
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i k h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < h , 8 , [ h , k ] > < i , 14 , [ i , k , j ] > k , 5 , [ k , h , i ] > j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j , 23 , [ j , g , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > Periodic Updates Task < i > Figure .
.: Example Topology Aware: Update reception of node .

Then, in Figure . , node received the update sent by node , with information about nodes and . Thus, it updates its knowledge and creates an update containing this new received information. The Periodic Updates Task of node ℎ sends the update with information about node .

i < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j , 23 , [ j , g , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < h , 8 , [ h , k ] > < i , 14 , [ i , k , j ] > < k , 5 , [ k , h , i ] >
Periodic Updates Task < j , g >

Figure .

.: Example Topology Aware: Periodic Updates Task of node .

In Figure . , the Periodic Updates Task of node sends the update with information about nodes and .

. Topology Aware Leader Election Algorithm for Dynamic Networks [MJ ] Montresor et al. ( ): 'Peer-Sim: A Scalable P P Simulator' Finally, in Figure . , node ℎ receives the update from node with information about nodes and . It updates its knowledge and creates an update with the new received information, that will be sent later by the Periodic Updates Task (not shown in the example). All nodes have the same knowledge of the component. Hence, the invocation of Leader() method of Ω failure detectors returns the most central node according to the closeness centrality: node , which is the leader.

i k h < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < k , 5 , [ k , h , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > j < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > g < g , 10 , [ g , j ] > < j 23 , [ j , g , i ] > < i , 14 , [ i , k , j ] > < h , 8 , [ h , k ] > < k , 5 , [ k , h , i ] > < h , 8 , [ h , k ] > < i , 14 , [ i , k , j ] > < k , 5 , [ k , h , i ] > < j , 23 , [ j , g , i ] > < g , 10 , [ g , j ] >

. . Simulation Environment

The objective of the simulations is to compare the Topology Aware algorithm with a flooding one.

Several evaluation experiments were conducted on PeerSim [MJ ], a Java peer-to-peer network simulator with an event-based engine and modularity. Each experiment lasts minutes, with a simulated unit of time corresponding to one millisecond, and simulates nodes placed in a × meters obstacle-free area, with a fixed diameter of transmission range between and meters decided beforehand and identical for all nodes. Message sending latency follows a Poisson distribution with parameter = 10. The experiments were conducted using console-mode on remote servers, but a graphical interface was used primarily for development purposes, as shown in Figure . .

. . . Algorithms

Two versions of the Topolgy Aware algorithm were considered: Topology Aware Closeness, which uses the closeness centrality as the election criterion, and elects as the leader the node having the highest closeness in the connected component, as presented in Section . . Topology Aware Degree, which uses the node degree, i.e. the number of direct neighbors of a node, as the election criterion, and elects as the leader the node having the highest degree in the connected component.

These two versions of the Topology Aware algorithm were compared with a variant of the Vasudevan et al. algorithm [VKT ], which is based on flooding. Vasudevan et al. algorithm returns ⊥ during the election phase, if the leader has not been elected yet. In order to be fairly comparable with the Topology Aware algorithm, a variant of this algorithm that never returns ⊥ but a possible current leader, is considered. Indeed, in Topology Aware, a correct node is always able to render a leader according to its topological knowledge. This variant is denoted Flooding because each node periodically broadcasts leader messages informing its current leader to neighbor nodes.

Note that Flooding is also a variant of the OptFloodMax algorithm that Nancy A. Lynch introduced in her book Distributed Systems [Lyn ]. In OptFloodMax, processes send their unique identifier to their neighbors, whenever a process obtains a new maximum unique identifier (which will eventually be elected as the leader).

. Topology Aware Leader Election Algorithm for Dynamic Networks

The Flooding algorithm was adapted for MANET assuming an underlying probe system that detects connections and disconnections. Exchanged leader messages contain the node identifier and an election criterion, called value. The leader is the node with the highest value. It periodically broadcasts leader messages to neighbor nodes every milliseconds, and each node forwards this information to neighbors. When the leader fails, it stops sending leader messages, and after a non-reception of leader messages from the leader, nodes trigger a new election by setting themselves as their own new leader. Thus, new leader messages from different nodes are propagated, and eventually, the node with the highest value is elected.

In order to elect a leader with good local connectivity, it is considered that the value is equal to the number of direct neighbors of a node, equivalent to node degree in a graph, which is updated at each topology change, thanks to the probe system (new connection or disconnection). The highest node identifier is used to break ties among identical values. This algorithm is denoted Flooding Degree.

. . . Algorithms Settings

In the Flooding Degree algorithm, nodes send leader messages every = 250 milliseconds. Every node triggers a new election if = 1 leader message from the current leader was not received after a timeout of milliseconds.

In both Topology Aware versions, updates are kept in a list acting as a buffer, before being sent every Δ milliseconds if the list is not empty. The value of Δ is based on the transmission range (on -axis of figures), considering that the larger the transmission range, the higher number of nodes potentially reached. Thus, to avoid burst effect after topology changes, the value of Δ should make information transmission faster on small components, but slower on lager components, due to the high dynamics of mobile nodes induced by larger transmission ranges. To this aim, the following formula was deduced empirically:

Δ = 70 × 10 ( ) -60
With this formula, Δ has a low value for small ranges and increases proportionally to the size of the range, with a fast increase for low ranges and a slow increase for higher ranges, as shown in Figure . . Therefore, information is transmitted quickly on small components, but more slowly on larger components. As a result, updates are sent every milliseconds on average for lower transmission ranges, and every milliseconds on average for larger transmission ranges.

In the three algorithms, when a probe message is received by node , the Connection method of the algorithm is triggered. A probe message contains the unique identifier of the node and is sent every = 400 . Topology Aware Leader Election Algorithm for Dynamic Networks milliseconds. If = 1 probe message from node is not received after a timeout of milliseconds, node considers node as out of range and trigger the Disconnection method.

. . . Mobility Models

Two different mobility patterns have been considered in the experiments: the random waypoint and a periodic disc positioning pattern around a single point of interest. For both mobility patterns, the minimum node speed is set to m/s and the maximum node speed is set to m/s. The chosen speed follows a uniform distribution between the minimum and the maximum speed.

Random waypoint

Nodes are randomly placed in the area and move according to the Random Waypoint mobility model [CBD ]. Nodes wait seconds before choosing the next random destination. It is worth noting that this mobility pattern is largely used in the literature [VKT ; CBD ]. A representation of the Random Waypoint is given in Figure . .

Periodic single point of interest

First, nodes are placed to create concentric circles whose center is the same unique point of interest, thus, composing a disc, like the one shown in Figure . , such that there exists a path between any two nodes in the disc.

After seconds, nodes start moving to a randomly chosen destination. Once reached, nodes wait seconds before going back to their initial position in the circle, waiting for each other nodes to reach its initial position. Note that nodes can wait a long time for the other nodes to return to their initial position in the disc, due to various node speeds. When every node is at its initial circle position (the disc is reconstructed again), they wait seconds before moving to another random destination, and repeat this behavior continually until the end of the experiment.

The shape of the disc is independent of the node transmission range, i.e. it always looks like the one in Figure . regardless of the diameter of the transmission range. This pattern could model user activities, where nodes represent people visiting regularly just a few places [Pap + ].

. . Evaluation

The goal is to compare the performance of Flooding Degree algorithm with the Degree and Closeness versions of Topology Aware algorithm, for different diameters of transmission range. Note that, there is a strong correlation between the transmission range and network connectivity, i.e. the number of components in the system.

. . . Metrics

For evaluation, the following three metrics have been considered: instability, number of messages sent per second, and longest leader path relative to the component diameter.

Instability

This is the percentage of the average time that a node elects a different leader from the eventually unique elected leader of its component. The latter is computed by an oracle based on nodes degree for Flooding Degree and Topology Aware Degree, or closeness centrality for Topology Aware Closeness.

First, the at time is computed with the following formula:

= =0 0 if ( ) = ( ) 1 if ( ) ≠ ( )
where is the number of nodes in the system, and the node identifier.

Then, the Instability is computed over the entire experiment time, which is the average from , to the end of the experiment ( seconds).

Number of messages sent per second

It is the average of the total number of messages sent per second. This metric does not consider probe messages, since the same number of probes is sent by all three algorithms every milliseconds.

Longest leader path relative to the component diameter

This metric characterizes how fast a leader can reach nodes of its component. First is computed the longest path of all shortest paths from every node of the component to their current leader. Then, since it depends on the number of nodes in the component, the longest path is divided by the diameter of the component, i.e. the greatest distance between any pair of nodes in the component.

. . . Instability

The random waypoint pattern in Figure . shows that the instability percentage of Flooding Degree and of both Topology Aware versions varies according to the transmission range, with a stabilization starting at a transmission range of meters when the majority of nodes are in a few large connected components. However, nodes in Flooding Degree spend on average % more time with the wrong leader than nodes in Topology Aware Degree. Note that the Closeness version of Topology Aware is slightly less stable than the Degree version. For the periodic single point of interest pattern in Figure . , compared to Topology Aware Degree, Flooding Degree spends on average % more time with a wrong leader, i.e. . times more than the previous mobility pattern. In Flooding Degree, leader unavailability is progressively detected by all nodes of the component, upon expiration of leader messages timeout. In this case, each node of the component triggers a new election by setting itself as the leader, and starts broadcasting leader messages. However, some nodes located further away from the old leader might still receive, from their neighbors, leader messages related to this old leader and, thus, will take more time to start a new election.

. Topology Aware Leader Election Algorithm for Dynamic Networks Furthermore, the greater the number of nodes in the component, the higher the spreading of leader message (as observed in Figure . ).

In Flooding Degree, the spreading of leader messages from all the nodes that have started a new election slows down the election convergence and thus increases the average stability. On the other hand, both Topology Aware versions only need to spread updates to each node.

The two versions of Topology Aware are more stable than Flooding Degree, especially in large components where there is low nodes movement, because they need fewer steps to elect a new leader once their topological knowledge is built. As shown in Figure . , the random waypoint mobility pattern has on average connected components, and Topology Aware Degree is on average % more stable than Flooding Degree.

For the periodic single point of interest pattern in Figure . , nodes are gathering at their initial position on the disc presented in Figure . , creating a unique connected component, then moving to random positions, also having on average a maximum of components. At the beginning of the experiment, nodes in both Topology Aware versions exchange messages to build their knowledge, inducing many leader errors, hence, an instability rate of % for the Degree version and % for the Closeness one. However, Flooding Degree quickly finds the correct leader, thus, showing low instability. After the second gathering and until the end of the experiment, the two Topology Aware versions are on average % more efficient to elect the correct leader than Flooding Degree, which increases its instability after each gathering, when nodes start to randomly move again.

. . . Number of messages sent per second

The previous section shows that the smaller the transmission range, the higher the number of components. Therefore, in the case of low transmission ranges, there are more components, and consequently, more leaders. This higher number of leaders explains why Flooding Degree presents bad performance with low transmission ranges, since each leader floods its component with leader messages. When the transmission range increases, the number of leaders decreases, thus reducing the number of flooding messages. On the other hand, Topology Aware algorithms behave inversely: when the transmission range increases, each node observes more topological movements, therefore, increasing the amount of new knowledge and update messages. These behaviors are well characterized in Figure . , especially for the random waypoint pattern. Note that the number of messages sent in both Topology Aware versions is the same because the election criterion does not impact the number of messages. An interesting threshold effect is observed from the transmission range of meters. At this range, components are bigger and start to become more stable in terms of topology changes. Topology Aware algorithms benefit from the topology stability since:

. They generate fewer messages (due to fewer connections and disconnections, so fewer knowledge and updates exchanges).

. They are less sensitive to the size of components.

On the opposite, Flooding Degree is punished by the size of the components, because it is not sensitive to topology changes and flooding is more costly when the number of links increases. This explains why the curves of Topology Aware versions stabilize while the curve of Flooding Degree increases. For the periodic single point of interest pattern in Figure . , both versions of Topology Aware send fewer messages, because they do not need to communicate when the topology is motionless. As the number of nodes in the component increases, the number of messages also increases, depending on the value of Δ that impacts the number of messages sent per second. On the other hand, Flooding Degree sends more messages than the two Topology Aware versions, because even if the topology is static for a while, a flooding algorithm continues to periodically send information about its current leader.

However, the size of messages exchanged in both Topology Aware algorithms is larger than in the Flooding Degree algorithm. In Table . , the Flooding Degree algorithm presents the same average message size since messages contain just a node identifier and a value, i.e. two integers. On the other hand, the size of messages in Topology Aware varies according to the number of nodes in the connected component. Therefore, messages in both Topology Aware versions have larger sizes when compared to the Flooding Degree algorithm. Note that the values of message sizes in Table Table . contain additional information needed by the simulator, which is identical to the three algorithms. Furthermore, since the size of messages remains below the MTU value of wireless networks, a message fits within a single packet. For the random waypoint pattern, low transmission ranges lead to small components with only some nodes. Therefore, paths to the leader are most of the time direct links or contain only a few nodes. When the transmission range increases, Topology Aware Closeness is better than Flooding Degree, thanks to its component central leader choice.

. . . Path to the leader

For the periodic single point of interest pattern in Figure . however, since the shape of the disc is independent of the transmission range, there is periodically only one component comprising the entire network. It can be observed that Topology Aware Closeness is % better than Flooding Degree. Topology Aware Degree has a similar behavior to Flooding Degree as both have the same election criterion. 

. . . Fault injection

Some experiments were conducted aiming at injecting fault on the leader node in a static configuration, evaluating then the average time to elect a new leader when the transmission range varies from m to m. After nodes have exchanged information to elect the eventual leader of the component, the leader crashes and recovers periodically. Results in Table . show the average election time to elect the new leader. It can be observed that for both Topology Aware versions the election time is larger than Flooding Degree, because the buffering of update messages slows down message transmission time of each node as the transmission range increases. However, this time remains low (smaller than second).

. . Conclusion

This chapter has presented a per component eventual leader election algorithm for dynamic networks that shows the advantages of all nodes using network topology knowledge for the choice of the leader. To this end, by exchanging messages, every node maintains a local knowledge of the communication graph of connected nodes and exploits such knowledge to elect as the leader the node having the highest closeness centrality. This leader can, therefore, spread information faster over its connected component than flooding algorithms. Considering the random waypoint and a periodic single point of interest mobility models, both versions of the Topology Aware algorithm (based on closeness and degree centralities respectively) and a flooding algorithm with a local topological election criterion, were evaluated on PeerSim [MJ ] simulator.

A performance comparison of the Topology Aware algorithm with a variant of the leader election algorithm of Vasudevan et al. [VKT ] is presented, because their work is a good example of a typical flooding algorithm and is strongly referenced in the literature [RAC ; Ing + ; KW ]. The results confirm the effectiveness of the Topology Aware algorithm and that it outperforms the latter. Both Topology Aware algorithms are more stable than Flooding Degree and the Closeness version has a shorter path to the leader, especially on large components with low movements of nodes. The latter is less sensitive to the component size and sends fewer messages than Flooding Degree. When compared to Flooding Degree, both Topology Aware versions improve the leader stability up to % depending on mobility models, sends half as many messages, and nodes reach the leader by % shorter paths. It is worth pointing out that the size of messages in Topology Aware could be reduced using compression, for example.

One limitation of the work presented in this chapter is the assumption of reliable channels. Therefore, the second algorithm presented in the next chapter considers eventually reliable communication channels, with interference, collision, and messages loss. [Var ] graph. This knowledge is then used to locally determine a central leader, well located to be reached by a majority of processes.

The current chapter brings three main contributions:

. A new Centrality-based Eventual Leader election algorithm for dynamic systems, called CEL, where the leader eventually has the best centrality. CEL has a cross-layer neighbors detection which exploits the broadcast features of the underlying wireless network. The neighbor-aware mechanism improves the sharing of the topological knowledge and elects a central leader faster.

. CEL uses the topological knowledge through a self-pruning mechanism, combined with probabilistic gossip, to reduce global information propagation costs.

. An extensive evaluation on the OMNeT++ environment [Var ] using two mobility patterns to simulate Mobile Ad Hoc Network (MANET) with interference, collision, and messages loss. Comparison with the closest algorithm [Góm + ] shows that CEL has a good trade-off considering the number of messages exchanged, stability of the leader (i.e. the percentage of the average time that nodes adopt the expected leader), and the closeness of the leader to the other nodes.

Compared to the algorithm in the previous chapter, the system model of CEL assumes unreliable communication channels, which are suitable for realistic environments with interference and message collisions. Message loss is taken into account by the CSMA/CA protocol included in IEEE . [Com ]. Rather than assuming an underlying probe system, CEL uses a cross-layer mechanism to leverage already existing data link layer messages, and to access the MAC addresses of the nodes, which are used to construct the topological knowledge of the connected component. In addition, the topological knowledge is used to improve communication performance, and the sharing of this knowledge between nodes is optimized by taking advantage of the bidirectional links assumption (neighbor-aware mechanism), whereas in the previous chapter, the algorithm does not provide such mechanisms. Evaluation compare CEL with the Ω eventual leader election algorithm of Gómez-Calzado et al. [Góm + ], which also assumes eventually reliable communication channels and is more recent than Vasudevan et al. algorithm [VKT ]. Experiments use two more realistic mobility models: the Random Walk and the Truncated Lévy Walk.

The rest of the chapter is organized as follows: Section . presents the system model and assumptions, Section . describes the algorithm, Section . discusses performance results, and finally, a conclusion is given in Section . . 

. . System Model and Assumptions

The system considered is the same as in Section . .

. . . Node states and failures

Nodes always follow the specification of the algorithm until they fail. They can fail by crashing and a node can recover, joining the system again with the same unique identifier as before the failure. Hence, a node keeps its identifier regardless of its state, and two nodes cannot have the same identifier. However, a node does not recover its state neither its knowledge of the network membership, thus, is initialized again.

Initially, all nodes in the system are in the correct state. A node is considered faulty if it fails and does not recover, or if it leaves the system forever. Otherwise, if present in the system, it is considered correct.

. . . Communication graph

The assumptions for the communication graph are the same as in Section . . .

. . . Channels

Nodes can only communicate by broadcasting local messages, which are received by all neighbors of the sending node. Communication is based on a fixed Wi-Fi channel, chosen beforehand. Eventually reliable communication channels are considered, with messages losses induced by messages interference and collisions. The CSMA/CA protocol included in IEEE

. [ ], is used to handle messages losses. There are no assumptions about message ordering, i.e. messages can be delivered out of order.

. . . Membership and nodes identity

Initially, each node only knows its unique identifier in the system. This means that nodes do not know the total number of nodes, neither the membership of the system. Nodes detect their neighbors through a crosslayer mechanism described in Section . . , using already existing beacon messages of the data link layer. A node gets knowledge of the network membership by receiving knowledge messages from its neighbors.

. . Centrality-Based Eventual Leader Election Algorithm

This section presents the Centrality-based Eventual Leader (CEL) election algorithm. In CEL, every node maintains a topological knowledge of the connected component to which it belongs. The algorithm builds this knowledge during node connections and disconnections (triggered by the cross-layer mechanism), and by sending knowledge messages to its neighbors. Nodes spread knowledge messages using probabilistic gossip, combined with a self-pruning mechanism that exploits the topological knowledge to reduce the number of messages sent. A new knowledge message is only sent after a connection or disconnection. Based on the component knowledge, the algorithm eventually elects one leader per component, which is placed at the center of the component.

. . . Pseudo-code

The pseudo-code of CEL for node is given in Algorithm .

. . . Data structures, messages, and variables (lines to )

CEL uses a data structure called a view (line ). A view associated to node is composed of two elements:

. A logical clock value, acting as a timestamp and incremented at each connection and disconnection.

. A set of node identifiers, which are the current neighbors of .

Each node maintains a local variable (line ) called known. This variable represents the current topological knowledge that has of its current component (including itself). It is implemented as a map of view indexed by node identifier (line ).

The only type of message exchanged between neighbors is the knowledge message (line ). It contains the current topological knowledge that the sender node has of the network, i.e. its known variable.

. . . Initialization (lines to )

Firstly, node initializes its known variable with its own identifier ( ), and sets its logical clock to .

. 

. . . Node connection (lines to )

When a new node appears in the transmission range of , the crosslayer mechanism of detects , and triggers the Connection method (line ). Node is added to the neighbors set of node (line ). As the knowledge of has been updated, its logical clock is incremented (line ).

Since links are assumed bidirectional, i.e. the emission range equals the reception range, if node has no previous knowledge of (line ), the neighbor-aware mechanism adds both and in the set of neighbors of (line ). Then, sets the clock value of to (line ), as was added to the knowledge of node . On the other hand, if node already has information about (line ), is added to the neighbors of (line ), and the logical clock of node is incremented (line ).

Finally, by calling LocalBroadcast method (line ), node shares its knowledge with and informs its neighborhood of its new neighbor . Note that such a method sends a knowledge message to the neighbors of node , with a gossip probability , as seen in Section . [HHL ]. However, for the first hop, is set to 1 to make sure that all neighbors of will be aware of its new neighbor . Note that the cross-layer mechanism of node will also trigger its Connection method, and the respective steps will also be achieved on node .

. . . Node disconnection (lines to )

When a node disappears from the transmission range of node , the cross-layer mechanism stops receiving beacon messages at the MAC level, and triggers the Disconnection method (line ). Node is then removed from the knowledge of node (line ), and its clock is incremented as its knowledge was modified (line ). Then, the neighbor-aware mechanism assumes that node will also disconnect from . Therefore, is removed from the neighborhood of in the knowledge of node , and the corresponding clock is incremented (lines -). Finally, node broadcasts its updated knowledge to its neighbors (line ).

. . . Knowledge update (lines to )

When node receives a knowledge message , from node (line ), it looks at each node included in (line ). If is an unknown node for (line ), or if is known by node and has a more recent clock value in (line ), the clock and neighbors of node are updated in the knowledge of (line ).

Note that a clock value of higher than the one currently known by node (line ) means that node made some connections and/or disconnections of which node is not aware. Then, the UpdateNeighbors method is called to update the knowledge of regarding the neighbors of (line ). If the clock value of node is identical to the one of both the knowledge of node and (line ), the neighbor-aware mechanism merges the neighbors of node from with the known neighbors of in the knowledge of (line ).

Remark that the clock of node is not updated by the neighbor-aware mechanism, otherwise, would not be able to override this view in the future with more recent information. The UpdateNeighbors method is then called (line ). Finally, node broadcasts its knowledge only if this latter was modified (lines -).

. . . Neighbors update (lines to )

The UpdateNeighbors method (line ) updates the knowledge of with information about the neighbors of node (line ). If the neighbor is an unknown node for (line ), or if is known by but has a more recent clock value in (line ), the clock and neighbors of node are added or updated in the knowledge of node (line ). Otherwise, if the clock of node is identical in the knowledge of node and in (line ), the neighbor-aware mechanism merges the neighbors of node in the knowledge of (line ).

. . . Information propagation (lines to )

The TopologicalBroadcast method (line ) uses a self-pruning approach [LK ] to broadcast or not the updated knowledge of node , after the reception of a knowledge from a neighbor . To this end, node checks whether each of its neighbors has the same neighborhood as itself (lines to ). In this case, node is supposed to have also received the knowledge message from neighbor node . Therefore, among the neighbors having the same neighborhood than , only the one with the smallest identifier will broadcast the knowledge (line ), with a 

. . . Leader election (lines to )

The leader is elected when a process running on node calls the Leader function (line ). This function returns the most central leader in the component according the closeness centrality (line ), as seen in Section . , using the knowledge of node . The closeness centrality is chosen instead of the betweenness centrality, because it is faster to compute and requires fewer computational steps, therefore consuming less energy from the mobile node batteries than the latter.

First, node rebuilds its component according to its topological knowledge. To do so, it computes the entire set of reachable nodes, by adding neighbors, neighbors of its neighbors, and so on (lines to ). Then, it evaluates the shortest distance between each reachable node and the other ones, and computes the closeness centrality for each of them. Finally, it returns the node having the highest closeness value as the leader (line ). The highest node identifier is used to break ties among identical centrality values. If all nodes of the component have the same topological knowledge, the Leader() function will return the same leader node when invoked. Otherwise, it may return different leader nodes. However, when the network topology stops changing, the algorithm ensures that all nodes of a component will eventually have the same topological knowledge and therefore, the Leader() function will return the same leader node for all of them [Ing + ].

. . Simulation Environment

Realistic simulations were carried over in order to compare the Centralitybased Eventual Leader (CEL) algorithm, with the Ω eventual leader election algorithm of Gómez-Calzado et al. [Góm + ] (see Section . . ).

Experiments were conducted on a C++ discrete event simulator called OMNeT++ [VH ], with the INET framework [MVK ] to model wireless protocols and mobile networks. This environment allows simulation of unreliable communication channels and realistic layers of the OSI communication model. Each experiment involves moving nodes placed in a × meters obstacle-free area during simulated minutes. The experiments were conducted using OMNeT++ in consolemode on remote servers, but a graphical interface shown in Figure .  was mainly used for development purposes.

Simulations consider a full MANET network stack, with the physical and data-link layers following the IEEE . n specifications [ ]. The use of a cross-layer mechanism at the MAC level allows the application layer to access neighbor's MAC addresses. Therefore, the identifier of a node is a MAC address, encoded on bytes rather than usually bytes, as it is assumed that all nodes have network components from the same manufacturer. Every node uses a single transceiver, with a fixed transmission range decided at the beginning of the experiment between and meters, and identical for all nodes. This transceiver uses the . GHz frequency band, with a nominal bitrate of Mbps.

. . . Algorithms Settings

In CEL, beacon messages are sent by the data-link layer every = . milliseconds (usual interval value of the Target Beacon Transmission Time), and are detected at the MAC level by the cross-layer mechanism.

The following two configurations of the algorithm were used for evaluation:

In CEL-, the probability to gossip a knowledge message in the TopologicalBroadcast method is set to . Therefore, messages are flooded in the network, if the neighborhood of the sender node is different from the receiver's one.

In CEL-. , is set to . , i.e. a message is retransmitted with . probability [HHL ], if the sender and receiver neighborhoods are different. In Gómez-Calzado et al. algorithm, the frequency to send either messages when a node is unconnected, or leader messages, is . ms, as both are considered beacon messages. The timers detecting leader failure and node disconnection have an initial value ( ms) which is increased by ms when they expire. Since the original paper does not give any indication on the parameter values, these values were chosen after running several experiments using different values, as they were the most favorable to Gómez-Calzado et al. algorithm.

. . . Mobility Models

Experiments use two mobility models from BonnMotion [Asc + ], a Java mobility scenario generation tool:

. Random Walk [CBD ], based on the Brownian motion (mathematically described by Einstein in [SM ; Ein ]), where a node moves from its current location to a new location by randomly choosing a direction in the interval [ , ] and a speed between . m/s and m/s, with a pause time of seconds once the destination is reached. A representation of the Random Walk is given in Figure . . 

. . Evaluation

The goal is to compare the performance of both versions of the CEL algorithm, with Gómez-Calzado et al. algorithm [Góm + ], using different transmission ranges on both mobility patterns. Note that the number of components in the system is strongly correlated with the transmission range.

. . . Metrics

The following three metrics have been considered: average number of messages sent per second per node, average of the median path to the leader and instability.

Average number of messages sent per second per node

Similarly as in Section . . , this metric does not consider beacon messages, since the same number of beacons is sent every milliseconds by the underlying data-link layer in all three algorithms. In both CEL versions, beacon messages are used at the MAC layer by the cross-layer mechanism.

Average of the median path to the leader

Compared to the metric in Section . . , this metric characterizes how fast a leader can be reached by a majority of nodes (at least %) in its component. First is computed the longest path of all shortest paths from every node to their current leader, except for single node components, as its null path would unfairly improve the metric. Then, the average of all medians over time is computed. Note that this metric is expressed in number of hops, and is not a ratio between the longest leader path and the component diameter as in Section . . .

Instability

This metric is the same as the one defined in Section . . Average number of messages sent per second is shown in Figures . and . for both mobility patterns. Right y-axes give the average number of components and their average diameter. In the Gómez-Calzado algorithm, nodes periodically send join messages when they are alone, in order to connect with a bigger component.

On both mobility models, CELsends more messages than CEL-. , as it floods the network by broadcasting every received knowledge message. CEL-. reduces the number of messages sent per second, especially in larger transmission ranges, where more messages are broadcast at each topological change. There is an average reduction of % when is set to . compared to sets to , on both mobility patterns for a transmission range from m to m. Note that the average message sent size varies from . to . bytes in the Gómez-Calzado algorithm, and from . to . bytes for both versions of the CEL algorithm, as they share the topological knowledge of the component, and fits into the MTU of a single network packet.

. Centrality-Based Eventual Leader for both mobility patterns. Figure . shows that the average of the median path from every nodes of the components to the leader, is shorter in CEL than in Gómez-Calzado algorithm for the Random Walk mobility model, with a gain of up to % in larger transmission ranges. Interestingly, the probabilistic gossip version of CEL has a low impact on the leader path. These results are interesting, because the median represents half of the component nodes, which is the size of a quorum in Paxos-type consensus algorithms.

. Centrality-Based Eventual Leader Election in Dynamic Networks

The Truncated Lévy Walk pattern shows in Figure . the impact of flying nodes which disrupt the component, by quickly moving in and out, therefore, modifying potential paths to the leader. Therefore, the difference between the CEL algorithm with sets to . and the Gómez-Calzado algorithm, leads to a shortest path up to %. Sharing a topological knowledge like in the CEL algorithm, allows the election of a central leader per component. Consequently, the results confirm that the number of hops to reach the leader by the nodes of its component is reduced. Instability evolution is shown in Figures . and. , according to the transmission range, and for both patterns. It is observed that the average instability increases when the transmission range increases, since components are composed of more nodes with a larger diameter. Hence, it takes a longer time to elect a new leader for all the algorithms. In Figure . , the percentage of instability in Gómez-Calzado algorithm is on average % higher than on both CEL versions. There is no significant instability difference between the CEL versions.

The instability for the Truncated Lévy Walk pattern in Figure . , shows that the CEL algorithm is more stable than Gómez-Calzado algorithm when the transmission range increases. On average, CEL versions are % more stable than Gómez-Calzado algorithm. It can also be observed that the probabilistic gossip version of CEL with sets to . , is slightly less stable than the flooding version with sets to . This is induced by a lower number of broadcast messages, making disrupting changes caused by flying nodes, to take more time to be spread over large components diameter. Focusing on the meters range over time is interesting to understand in detail the differences between the algorithms behaviors, on an approximate range of usual Wi-Fi indoor devices. Figures . and .

show the average instability from time to time for both mobility patterns. The right y-axis gives the exact number of components at time .

In Figure . , at the beginning of the experiment on the Random Walk pattern, Gómez-Calzado algorithm has a higher instability rate, which quickly decreases to reach a threshold of % at seconds, with a slight increase over time. Both CEL algorithm versions need a few seconds to stabilize, before reaching a threshold of around seconds. The probabilistic gossip version (CEL-. ) is less stable than the flooding version, as some knowledge messages are not broadcast by nodes to their neighborhood.

Figure . shows that the Truncated Lévy Walk model increases the instability of Gómez-Calzado algorithm, where an instability threshold of % is reached after seconds. On the other hand, both CEL versions have a common instability evolution over time, with a small difference at the end of the experiment following the rebroadcast probability.

. . . A comparative analysis with Topology Aware

A comparative analysis with the Topology Aware algorithm presented in Chapter shows the performance gain by both the neighbor-aware and self-pruning mechanisms which exploit the topological knowledge, and by the probabilistic gossip.

The Topology Aware algorithm elects a central leader, but assumes reliable communication channels, which are not suitable for realistic CEL implements a cross-layer approach: when the underlying network layer (MAC) detects a change in the current neighborhood, the node updates its knowledge and spreads its new view of the network. In order to reduce the cost of message propagation, CEL uses a probabilistic gossip approach and local topological information to avoid redundant broadcasts.

Evaluation results from experiments on the OMNet++ environment with two mobility models, Random Walk and Truncated Lévy Walk, confirm that CEL algorithm reduces the number of messages and the path to the leader, when compared to Gómez-Calzado et al. algorithm. ): 'Peer-Sim: A Scalable P P Simulator' [VKT ] It presents two eventual leader election algorithms, Topology Aware and Centrality-based Eventual Leader (CEL), for dynamic networks, which elect a leader as the process that presents the best closeness centrality in each connected component of the system. Having a central leader is essential to quickly reach a majority of nodes and communicate with a quorum of processes, as required by Paxos-type consensus algorithms, as well as to communicate faster with nodes of the component.

. . Contributions

Topology Aware and Centrality-based Eventual Leader (CEL) election algorithms consider dynamic networks, where nodes can move, fail by crash, join and leave the system, and partial synchronous system where network partitions can happen.

The algorithms progressively build and maintain a local knowledge of the network topology and rely only on broadcasts within the transmission range of nodes. They do not require any election communication phase: by using its current topological knowledge, each node can directly deduce at any moment which node is the current leader, by choosing the most central node of its connected component according to the closeness centrality.

The Topology Aware algorithm assumes reliable communication channels, and an underlying probe system to detect connection and disconnection of nodes. It uses an update mechanism to improve propagation cost of messages over the network. Evaluation experiments on top of PeerSim simulator [MJ ] were conducted with Topology Aware to a flooding algorithm based on [VKT ]. Performance results show that, compared to the flooding leader algorithm, Topology Aware improves the leader stability up to % depending on mobility models, sends half as many messages, and nodes reach the leader by % shorter paths.

Compared to Topology Aware, the Centrality-based Eventual Leader (CEL) algorithm assumes eventually reliable communication channels, closer to realistic environments with interference and message collisions. Communication follows the IEEE

. [ ] standard and message loss is handled by CSMA/CA protocol, included in the standard. CEL implements a cross-layer neighbors detection which exploits the beacon messages of the underlying data-link layer and accesses the MAC addresses of the nodes, which are used to construct the topological knowledge of the connected component. In addition, CEL improves communication performance through a self-pruning mechanism combined with a probabilistic gossip. Finally, a neighbor-aware mechanism reduces the sending of redundant knowledge on the network, which was not the case in the first contribution.

CEL was extensively evaluated on the OMNeT++/INET [Var ; MVK ] environment using both Random Walk and Truncated Lévy Walk mobility models, simulating, therefore, a realistic Mobile Ad Hoc Network (MANET) with interference, collision, and messages loss. Results of performance comparison with [Góm + ] show that CEL presents a good trade-off between the number of messages exchanged, stability of the leader, and the closeness of the leader to the other nodes.

. . Future Directions

As future research directions, a few possibilities are summarized in the following:

Short term

Proof of correctness for Topology Aware and CEL algorithms.

Implementation and evaluation of a leader-based consensus algorithm, which could take advantage of the good leader connectivity offered both in Topology Aware and CEL.

Render publicly available the source code for the implementation of the Topology Aware and CEL algorithms, with the benchmarking environments, allowing, thus, other researchers to easily implement and evaluate their leader election algorithms through realistic experimentation.

Evaluation of the energy consumption of nodes running Topology Aware and CEL algorithms, on both wireless communication and computation. Since communication has a high energy consumption, extending the cross-layer approach by using existing data on different levels of the OSI model, should minimize the number of message exchanged in the algorithm, and, therefore, reduce the energy consumption of nodes. Preliminary works on the energy consumption are presented in Appendix A. . Furthermore, the choice of the eventual leader could be based on energy consumption. For instance, elect a leader with higher remaining battery, as it will probably exchange more messages than the other component nodes. 

Mid-term

Implementation and evaluation of Topology Aware and CEL algorithms on real networks like the ones composed by devices such as Raspberry Pi.

A mechanism to reduce the size of messages exchanged, since larger message sizes also have an important impact on the collision rate. Such a reduction could be achieved by using compression algorithms, or by restricting the knowledge of the network to a limited number of hops, either locally for the centrality computation or for exchanged messages. Therefore, message exchanges would be smaller, and communication would be more reliable with less energy consumption.

Exploration of other centrality metrics, such as the one proposed by Kim et al. [KW ], the eigenvector used by Google PageRank algorithm [BP ], or an estimation of the closeness [Coh + ], taking advantage of network dynamics and reducing the number of required computation steps. Temporal centralities [Gha ] could also be considered.

A collaborative approach of nodes of the same component in order to exchange information about current centrality computation, aiming at reducing the number of required computation steps, redundant computation, and energy consumption. Examples, such as the algorithm of Wang et al. [WT ] or Lulli et al. [Lul + ], could be considered. 

A. . . Algorithms settings

The two versions of CEL, i.e. CEL-and CEL-. , and Gómez-Calzado et al. algorithm [Góm + ] are compared using the same settings has in Section . . .

A. . . Mobility Models

The two mobility models defined in Section . . are used, i.e. Random Walk and Truncated Lévy Walk.

A. . . Metric

The energy consumption is computed using the radio power consumer model describe in A. . , where transmission, reception, or idle states consume energy from the node battery. At the end of each experience, the energy consumption per node for each algorithm is computed and measured in watts (W). Overall, the energy consumption per node is correlated with the number of messages sent, presented in Section . . , as the power consumption consumer model considers only communication.

A. . . Performance Results

For the Random Walk mobility model in Figure A. , the power consumption of nodes in the Gómez-Calzado et al. algorithm decreases as the transmission range increases, since more nodes are in the same component and timeouts of leader messages are higher. The power consumption of both versions CEL algorithms increase as the transmission range increase, since movements in larger connected component lead to more messages sent. In lower transmission ranges, the energy consumption per node executing Gómez-Calzado et al. algorithm is higher than both CEL versions. For instance, at a transmission range of meters, nodes executing Gómez-Calzado et al. algorithm consume on average . W, while nodes in CEL-and CEL-. consume on average . W and . W respectively. The probabilistic gossip version of CEL with sets to . reduces the energy consumption compared to CEL-, since less messages are sent as seen in Section . . , due to the self-pruning approach used in the TopologicalBroadcast method described in Section . . . Nodes in CEL-. have an energy consumption of . W on average at a transmission range of meters, while nodes in CEL-and Gómez-Calzado et al. Note that this preliminary evaluation is a work in progress.
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 A Figure A. shows a higher average energy consumption for nodes executing CEL-than Gómez-Calzado et al. in the Truncated Lévy Walk mobility model when the transmission range is larger than meters. A similar observation can be made concerning the average number of messages sent on this mobility model as presented in Section . . . At a transmission range of meters, nodes executing CEL-. have an average energy consumption up to . W, while nodes executing CEL-
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As seen in Chapter , many works have proposed leader election algorithms in both static and dynamic distributed systems. However, among the latter, only a few of them take into account the above . Topology Aware Leader Election Algorithm for Dynamic Networks

  ∈ known then updates ← updates ∪ { id, view.neigh, -, , view.clk } known[id] ← view.clk, view.neigh add ← view.neigh \ known[id].neigh rmv ← known[id].neigh \ view.neigh updates ← updates ∪ { id, add, rmv, known[id].clk, view.clk } known[id] ← view.clk, view.neigh

	Receive		from node :
	∀ id, view ∈ known do
	if id, -else if	.	>	[ ].
	PendingUpdates()	
	Receive		from node :
	∀ updt src, add, rmv, old_clk, new_clk ∈ updates do
	if	src, -		
	updt (update, line ) represents additions or deletions of neigh-
	bors of . It consists of the identifier of the source node that has
	detected membership changes in its neighborhood, a set of added
	nodes (new connected neighbors), a set of removed nodes (new
	disconnected neighbors), the logical clock value of source node
	before the modifications (old_clk) and its logical clock value after
	the modifications (new_clk). This structure allows us to track new
	modifications for a given period of time.
	Each node maintains three local variables (line ):

then
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	Local variables:	
	known: map(key: id, value: view)	
	Initialization:	
	known[ ].neigh ← { }	
	known[ ].clock ←	
	Connection of node :	
	known[ ].neigh ← known[ ].neigh ∪ { }
	known[ ].clock ← known[ ].clock +
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	known[ ].neigh ← { , }	
	known[ ].clock ←	
	else	
	known[ ].neigh ← known[ ].neigh ∪ { }
	known[ ].clock ← known[ ].clock +
	LocalBroadcast (knowledge known , )
	Disconnection of node :	
	known[ ].Receive knowledge message	from node :
	∀ ∈ known do	
	if ∉ known or	
	known [ ].clock > known[ ].clock then
	known[ ] ← known [ ]	
	UpdateNeighbors (known , )
	else if known [ ].clock = known[ ].clock then
	known[ ].neigh ← known[ ].neigh ∪ known [ ].neigh
	UpdateNeighbors (known , )
	if known was updated then	
	TopologicalBroadcast ()	

neigh ← known[ ].neigh \ { } known[ ].clock ← known[ ].clock + known[ ].neigh ← known[ ].neigh \ { } known[ ].clock ← known[ ].clock + LocalBroadcast (knowledge known , )

  gossip probability (line ). Note that this topological self-pruning mechanism reaches the same neighborhood as multiple broadcasts.
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Algorithm :

The Topology Aware eventual leader election algorithm for a node Typedef view: clk: int, neigh: set(id) Typedef updt: src: int, add: set(id), rmv: set (id) pending (line ): a list of pending updates that cannot be applied by at the time of first reception, but applied when new information is received thereafter.

During communication, the variables known and updates are exchanged through two distinct types of messages identified by the name of the variables. environments with message interference and collisions. A global view of the network is exchanged using probes and an update mechanism, leading to message collisions and losses. Furthermore, the knowledge of the topology is not used to improve communication performance, and the bidirectional links assumption is not taken into account to optimize knowledge sharing. Experiments ran in the realistic OMNeT++ environment described in Section . , with a probe frequency = 102.4ms for Topology Aware. The analysis is focused on a Wi-Fi transmission range of meters, as it is the highest range of the experiments and a complex configuration with large components diameters.

Results for the Random Walk mobility pattern in Table . , show that exploiting the topological knowledge reduces the number of messages sent per second by . % comparing the Topology Aware algorithm to CEL-. , while having a shorter leader path. Instability is . % lower comparing Topology Aware to CEL-.

For the Truncated Levy Walk pattern in Table . , the comparison between Topology Aware and CEL-. shows a reduction of the number of messages sent per second by . %, and an average median leader path lower by . %. Note that while the instability percentage is lower for CEL-, the reduction of the number of messages by the probabilistic gossip version (CEL-. ) may lead to lower stability than Topology Aware, especially when high transmission ranges imply large components.

. . Conclusion

This chapter proposed CEL, a new distributed eventual leader election algorithm for dynamic wireless networks, which exploits topological information to improve the choice of the leader and reduce message exchanges. A leader is eventually elected in each connected component of the network, and it is the node having the highest closeness centrality in the communication graph of the connected component. 

A. . Energy consumption per node

Some preliminary results about the energy consumption of nodes executing Centrality-based Eventual Leader (CEL) and Gómez-Calzado et al. algorithms (Chapter ) are presented in the following.

A. . . Simulation environment

Experiments were conducted on the OMNeT++ [VH ]/INET [MVK ] environment described in Section . , with the same configuration. However, the transmission range is fixed between meters (instead of meters) and meters.

The