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Abstract

O
ver the past decade, mobile connectivity and wireless systems have be-
come a necessity for many applications and use-cases. Faster, smarter,
safer and environment-friendlier networks are sought. Continuous efforts

have been made to boost wireless systems performance, from analog to digital sys-
tems, bulky handheld cellular phone and user equipments to ever-small sensors and
smart phones, from mechanization and basic automation systems to the smart in-
dustry of the future or Industry 4.0. However, current wireless networks are not yet
able to fulfill the many gaps from 4G and address the requirements of 5G, or the
fifth generation of mobile networks. Thus, significant technological breakthroughs
are still required to strengthen wireless networks. For instance, in order to provide
higher data rates and accommodate many types of equipment, more spectrum re-
sources are needed and the currently used spectrum requires to be efficiently utilized.

5G is initially being labeled as an evolution, made available through improve-
ments in LTE (Long-Term Evolution), but it will not be long before it becomes a
revolution and a major step-up from previous generations.

Massive MIMO (Multiple-Input Multiple-Output) has emerged as one of the
most promising physical-layer technologies for future 5G wireless systems. The
main idea is to equip base stations with large arrays (100 antennas or more) to
simultaneously communicate with many terminals or user equipments. Using smart
pre-processing at the array, massive MIMO promises to deliver superior system im-
provement with improved spectral efficiency, achieved by spatial multiplexing and
better energy efficiency, exploiting array gain and reducing the radiated power. Mas-
sive MIMO can fill the gap for many requirements in 5G use-cases notably industrial
IoT (Internet of Things) in terms of data rates, spectral and energy efficiency, re-
liable communication, optimal beamforming, linear processing schemes and so on.
Over the last 6 years, several scientific papers proved the theoretical aspects and
promises of massive MIMO systems and many trials validated that this technology
is not just an academic concept. However, the hardware and software complexity
arising from the sheer number of radio frequency chains is a bottleneck and some
challenges are still to be tackled before the full operational deployment of mas-
sive MIMO. For instance, reliable channel models, impact of polarization diversity,
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optimal antenna selection strategies, mutual coupling and channel state informa-
tion acquisition amongst other aspects, are all important questions worth exploring.
Also, a good understanding of industrial channels is needed to bring the smart in-
dustry of the future ever closer. In this thesis, we try to address some of these
questions based on radio channel data from a measurement campaign in an indus-
trial scenario using a massive MIMO setup. The thesis main objectives are threefold:

1. Characterization of massive MIMO channels in Industry 4.0 (industrial IoT)
with a focus on spatial correlation, classification and impact of cross-polarization
at transmission side. The setup consists in multiple distributed user equip-
ments in many propagation conditions. This study is based on propagation-
based metrics such as Ricean factor, correlation, etc. and system-oriented
metrics such as sum-rate capacity with linear precoding and power alloca-
tion strategies. Moreover, polarization diversity schemes are proposed and
were shown to achieve very promising results with simple allocation strate-
gies. This work provides comprehensive insights on radio channels in Industry
4.0 capable of filling the gap in channel models and efficient strategies to op-
timize massive MIMO setups are proposed.

2. Proposition of antenna selection strategies using the receiver spatial correla-
tion, a propagation metric, as a figure of merit. The goal is to reduce the
number of radio frequency chain and thus the system complexity by selecting
a set of distributed antennas. The proposed strategy achieves near-optimal
sum-rate capacity with less radio frequency chains. This is critical for massive
MIMO systems if complexity and cost are to be reduced.

3. Proposition of an efficient strategy for overhead reduction in channel state in-
formation acquisition of FDD (frequency-division-duplex) systems. The strat-
egy relies on spatial correlation at the transmitter and consists in solving a
set of simple autoregressive equations (Yule-Walker equations). The results
show that the proposed strategy achieves a large fraction of the performance
of TDD (time-division-duplex) systems initially proposed for massive MIMO.

4



Résumé

D
ans le domaine des télécommunications sans fil, des efforts importants
se sont portés ces dix dernières années sur le développement de sys-
tèmes d’échange d’information rapides, intelligents, sûrs et respectueux

de l’environnement. Les domaines applicatifs sont de plus en plus larges, s’étendant
par exemple du grand public, à la voiture connectée, à l’internet des objets (IoT
Internet of Things) et à l’industrie 4.0. Dans ce dernier cas, l’objectif est d’aboutir
à une flexibilité et à une versatilité accrues des chaînes de production et à une main-
tenance prédictive des machines, pour ne citer que quelques exemples. Cependant,
les réseaux sans fil actuels ne sont pas encore en mesure de répondre aux nombreuses
lacunes de la quatrième génération des réseaux mobiles (4G) et aux exigences de la
5G quant à une connectivité massive, une ultra fiabilité et des temps de latence ex-
trêmement faibles. L’optimisation des ressources spectrales est également un point
très important. La 5G était initialement considérée comme une évolution, rendue
possible grâce aux améliorations apportées à la LTE (Long-Term Evolution), mais
elle ne tardera pas à devenir une révolution et une avancée majeure par rapport aux
générations précédentes. Dans ce cadre, la technologie des réseaux massifs ou Mas-
sive MIMO (Multiple-Input Multiple-Output) s’est imposée comme l’une des tech-
nologies de couche physique les plus prometteuses. L’idée principale est d’équiper
les stations de base de grands réseaux d’antennes (100 ou plus) pour communiquer
simultanément avec de nombreux terminaux ou équipements d’utilisateurs. Grâce
à un prétraitement intelligent au niveau des signaux d’émission, les systèmes mas-
sive MIMO promettent d’apporter une grande amélioration des performances, tout
en assurant une excellente efficacité spectrale et énergétique. De nombreux articles
scientifiques ont développé récemment les aspects théoriques de ces systèmes dont
la faisabilité a été validée par des essais réalisés par des opérateurs. Cependant, cer-
tains défis doivent encore être relevés avant le déploiement complet des communica-
tions basées sur le massive MIMO. Par exemple, l’élaboration de modèles de canaux
représentatifs de l’environnement réel, l’impact de la diversité de polarisation, les
stratégies de sélection optimale d’antennes et l’acquisition d’informations d’état du
canal, sont des sujets importants à explorer. En outre, une bonne compréhension
des canaux de propagation en milieu industriel est nécessaire pour optimiser les
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liens de communication de l’industrie intelligente du futur. Dans cette thèse, nous
essayons de répondre à certaines de ces questions en nous concentrant sur trois axes
principaux:

1. La caractérisation polarimétrique des canaux massive MIMO en environnement
industriel. Pour cela, on étudie des scénarios correspondant à des canaux ayant
ou non une visibilité directe entre émetteur et récepteur (Line-of-Sight – LOS)
ou Non-LOS, et en présence de divers types d’obstacles. Les métriques asso-
ciées sont soit celles utilisées en propagation telles que le facteur de Rice et la
corrélation spatiale, soit orientées système comme la capacité totale du canal
incluant des stratégies de précodage linéaire. De plus, les schémas de diversité
de polarisation proposés montrent des résultats très prometteurs.

2. En massive MIMO, un objectif important est de réduire le nombre de chaînes
de fréquences radio et donc la complexité du système, en sélectionnant un
ensemble d’antennes distribuées. Cette stratégie de sélection utilisant la cor-
rélation spatiale du récepteur, une métrique de propagation, comme facteur
de mérite, permet d’obtenir une capacité totale quasi-optimale.

3. Une technique efficace de réduction des ressources temps-fréquence lors de
l’acquisition d’informations du canal de propagation dans les systèmes FDD
(frequency-division-duplex) est enfin proposée. Elle repose sur la corrélation
spatiale au niveau de l’émetteur et consiste à résoudre un ensemble d’équations
auto-régressives simples. Les résultats montrent que cette technique permet
d’atteindre des performances qui ne sont pas trop éloignées de celles des
systèmes TDD (time-division-duplex) initialement proposés pour le massive
MIMO.
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Chapter 1
General Introduction and Motivations

Chapter Outline
In this introductory chapter, a general overview of 5G is presented in Sec. 1.1 while
Sec. 1.2 focuses on the main features, use-cases and enabling technologies. A brief
introduction of multi-antenna systems is given in Sec. 1.3. Massive MIMO (multiple-
input multiple-output) systems, their key features, systems architecture and channel
estimation are detailed in Sections 1.4, 1.5 and 1.7. Section 1.6 gives a summary
of massive MIMO testbeds, first trials and challenges published in the literature.
Lastly, Sections 1.8 and 1.9 present the different contributions of this work as well
as the thesis organization, respectively. Other contributions during these 3 years of
Ph.D. are listed in Sec. 1.10.

1.1 Introduction: Overview of The 5th Genera-
tion

1.1.1 5G: Evolution or Revolution ?
Mobile connectivity has become not only essential but a necessity for many network
users. Technological advances and computer abilities are needed to provide faster,
smarter and safer wireless networks [2]. The domain of application is wide and
not limited to mobile devices and cellular networks [3] but also includes connected
machines in industrial setups, vehicular communications (vehicle-to-everything or
V2X) [4] and smart cities [5, 6]. Network architectures and generations have also
evolved from the first digital generation (GSM or Global System for Mobile Com-
munications) to the most recent generation network connectivity 4G (LTE or Long
Term Evolution). The next 5 years are projected to supply unprecedented data rates
and networks efficiency should follow along. The number of mobile subscribers is
growing rapidly and the demand for more bandwidth (BW) and higher data rates
continues to increase as reported by CISCO [7]. This explosion of mobile applica-
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tions and adoption of mobile connectivity alongside the need for higher data rates,
green energies and cutting-edge applications, is fueling the growth of 4G deploy-
ments, soon to be followed by 5G systems. All these points and many others lead
to one conclusion: the need for cutting edge technologies [8] to support consumer
usage trends and keep cost efficient solutions in terms of infrastructure. From this
discussion, it appears that 5G would eventually be more of a revolution than an
evolution of 4G, changing the way the world is perceived. However, although 5G is
being marketed as a brand new technology, it will not be built from scratch [9, 10]
and hybrid non-standalone configurations using both 5G and 4G technologies will
co-exist.

1.1.2 Initial Vision: Use-cases for 5G New Radio
With the increasing requirements upon the new 5G communication standards, a new
radio (NR) interface and radio access network (RAN) are being developed. 5G NR
is the name that the third generation partnership project (3GPP) chose for 5G when
Release 15 was announced. NR is the equivalent of LTE for 4G or UMTS technology
for 3G technology. 5G NR’s goal is to meet the performance requirements set by the
international telecommunication union (ITU) for the year 2020. More specifically,
recommendation ITU-T Y.3101 presents distinguishing features and requirements
of the international mobile telecommunications 2020 (IMT-2020) for 5G networks.
Promising technologies capable of fulfilling the gap from previous generations are
sought. An overview of the NR interface standard under development by 3GPP is
available in [11] with preliminary specifications for Release 15 approved in December
2017 [12]. Release 16 will provide further specifications for the second phase. The
most central use-cases are not final and still being discussed both in ITU, 5G-PPP
[13], the METIS project [14] and in 3GPP [12]. The main use cases to be supported
span three different dimensions: enhanced mobile broadband (eMBB), massive ma-
chine type communications (mMTC) and ultra-reliable low latency communications
(URLLC). Additional use-cases may naturally emerge in time with the evolution of
the physical layer radio interface [15].

1.1.2.1 Use-Cases

Enhanced Mobile Broadband (eMBB):

Can be defined as the feature of 5G as the most relevant evolution of 4G. It is a data-
driven use-case enabling new applications such as virtual reality (VR). Improved
spectral efficiencies, cell-edge data rates and coverage, amongst other requirements,
define the shape of eMBB in 5G networks. The relevant 5G requirements are:

• Peak throughput: 20 Gbps in Downlink (DL), 10 Gbps in Uplink (UL).

• Experienced data rates (5th percentile user throughput): 100 Mbps (DL), 50
Mbps (UL).
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• Area capacity (e.g. indoor hotspot): 10 Mbps/m2.

• User plane latency: 4 ms

Massive Machine Type Communications (mMTC): Industry 4.0

IoT requires massive connectivity where tens of billions of interconnected low-cost
devices and sensors communicate [16]. Recent advancements on machine-to-machine
(M2M) communications in 4G networks are presented in [17]. This is being labeled as
the fourth industrial revolution or Industry 4.0. There are many advantages brought
by 5G cutting edge technologies for industrial automation scenarios in the drive for
Industry 4.0 [18]. In [19], challenges and solutions for M2M communications are
depicted. Relaxed data rates constraints are sought compared to eMBB but other
strict requirements are still to be fulfilled:

• Density: 1 Million devices/km2.

• Wide Coverage: 164 dB Maximum Coupling Loss (MCL).

• Device battery life: 10-15 years.

Ultra-Reliable Low Latency Communications (URLLC)

Critical applications (e.g. Intelligent V2X, remote surgery, smart grids, etc.) define
very stringent latency and reliability requirements. For this ultra-reliable and low
latency area communications, specific requirements are needed [20, 21]:

• Latency: less than 1 ms.

• Reliability : 99.999%.

• Control plane latency: tens of ms.

• User plane latency: less than 0.5 ms (one-way UL and DL).

• Mobility interruption time: 0 ms.

1.1.2.2 Multi-Layer Spectrum

Globally harmonized spectrum is needed for 5G systems to ensure the different re-
quirements and satisfy future expectations and potential capabilities. 5G network
deployments are converging to new frequency bands: 3.5 GHz (16% of total num-
ber of trials) and 24.25-27.5 GHz (19% of total number of trials) frequency ranges
[22], two new frequencies to the cellular network industry. For instance, in France,
Arcep (telecom regulator) announced it was planning to issue temporary frequency
authorizations (in the 3.5 GHz band [3400 – 3800 MHz]) to develop 5G in France
[23]. Also, it is expected that some applications of 5G networks will require very
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wide contiguous blocks of bandwidths (up to several GHz) to support high over-
all system capacities. To this end, high carrier frequencies (> 6 GHz) need to be
considered. Maintaining a sustainable spectrum management environment is also
critical for long term investments even if new techniques are envisaged. In Release
15 of 5G NR, two frequency ranges are defined [24]:

• 450 MHz - 6 GHz or the sub-6 GHz bands.

• 24.25 GHz - 52.6 GHz or the millimetr wave (mmW).

This multi-layer spectrum approach is vital to address the wide range of usage
scenarios. The sub-6 GHz band is also divided into two parts as indicated below.
According to Huawei in [25], 3 layers can be defined:

• Below 2 GHz: delivers high coverage for wide areas and deep indoor scenarios,
useful for mMTC [26] to help support IoT services. It is also needed to extend
high speed mobile broadband coverage across urban, suburban and rural areas.
Mobile spectrum in this range can be used in the future for some use-cases.
The European Commission has already expressed its wish to use the 700 MHz
band to support 5G services in Europe. Similarly, the FCC (Federal Commu-
nications Commission) indicated that the 600 MHz band could be used in the
United States and several other countries. Furthermore, the ITU is consider-
ing additional spectrum for mobile broadband from in 2023 (470-694 MHz), a
good timing for 5G services.

• From 2 to 6 GHz (C-band): The 3.3-4.2 and 4.4-5 GHz ranges deliver the
best compromise between wide coverage and spectral efficiency making them
attractive for eMBB. The 3.3-3.8 GHz range is almost globally harmonized and
used as the basis for initial commercial 5G services. A number of countries
are exploring whether a portion of other bands could be used such as 3.8-4.2
GHz and spectrum in the 4-5 GHz range, in particular 4.8-4.99 GHz. The
availability of at least 100 MHz BW per 5G network alongside the potential
of massive MIMO will potentially boost throughputs (peak, average and cell-
edge) with relatively affordable complexity.

• Above 6 GHz: delivers extremely high data rates (super data layer), and is
widely recognized as a key component for hotspot areas, fixed broadband and
fiber-like connectivity. mmW frequencies have particular propagation char-
acteristics and are more sensible to blockage than lower frequencies. Accu-
rate channel models and characteristics are needed to understand the different
mechanisms at these frequency ranges [27]. The targeted spectrum above 6
GHz is expected to handle a mixture of licensed and unlicensed mobile bands.
24.25-29.5 GHz, 31.8-33.4 GHz, 37-43.5 GHz, 45.5-50.2, GHz, 50.4-52.6 GHz,
66-76 GHz and 81-86 GHz bands should be agreed in WRC-19. Studies con-
cerning mmW mobile communications for 5G cellular networks can be found
in [28]. The authors presented some measurement results at 28 and 38 GHz

28



Chapter 1. General Introduction and Motivations

frequencies showing the possibility of employing steerable directional anten-
nas at base stations (BS) and mobile devices. In [29], a theoretical feasibility
study and prototype results on mmW beamforming are presented. In [30],
the authors study the feasibility of spatial multiplexing and maximum ratio
transmitter for mmW large MIMO.

From a cell point of view, this classification can be further generalized [9]:

• Macro-Cell : < 1 GHz: full coverage (rural scenarios and deep indoor).

• Dense urban: from 2 to 6 GHz: high date rates.

• Small cell 28/39 GHz (> 6 GHz generally): 10 Gbps hotspots.

• Ultra small cell: future mmW options and very high data rates.

1.1.3 Gaps and Challenges
The wireless industry has witnessed rapid growth in the last few decades. Nonethe-
less, many gaps and challenges should be addressed for the full development of 5G.
Table 1.1 presents some differences between LTE and 5G, and the corresponding
targeted applications and use-cases.

Table 1.1: Gaps and Challenges towards 5G.

Other requirements related to technical performance for 5G radio interface such
as energy efficiency (10 times longer battery life for low-power M2M), core network
technologies, outage probability, interruption time, etc. can be found in [31, 26, 32,
33]. Spectrum policies and regulatory issues as already discussed need to be tackled

29



1.2. Impacting technologies of 5G

before a worldwide deployment [34, 35]. NR Phase 1 and LTE share some common
technical aspects such such as OFDM (orthogonal frequency-division multiplexing).
However, PHY layer of NR phase 1 is scalable and supports new transmission modes
in digital beamforming. This is illustrated in Table 1.2.

Table 1.2: Main Differences in PHY layer of LTE and 5G-NR.

1.2 Impacting technologies of 5G
In order to satisfy the different requirements for 5G systems, improvements of exist-
ing technologies and emerging techniques should be evaluated [3, 36]. The 5 main
impacting technologies of 5G are:

• mmW: A gold mine of spectrum and contiguous blocs of bandwidths.
• Cloud-based radio access network (C-RAN): centralized baseband units (BBU)
are separated from remote radio heads (RRHs). Different RRHs are connected to a
centralized cloud with all the signal processing [37, 38].
• M2M communications and Industry 4.0: support of a large number of low-rate
devices at very low latency data-transfer.
• Device-centric architectures: small-cells (micro, femto) in a heterogeneous network
(HETNETs), traffic offload, better coverage, etc.
• Massive MIMO: allowing the densification of BS or access points (AP) by de-
ploying massive Tx arrays capable of multiplexing many user equipments (UEs) in
the same time-frequency resource. It is a cutting-edge technology capable of filling
the gap for many 5G systems requirements [32] by increasing system capacity of
new wireless systems [39].
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Many demonstrations have already highlighted the effectiveness of massive MIMO
systems implementation, mostly for cellular communications, indoor scenarios, etc.
and will be discussed later. Table 1.3 lists the different technologies and aspects of
5G NR highlighting the emergence of massive MIMO .

Table 1.3: Mobile Technologies for 5G.

1.2.1 Massive MIMO: Why Now ?
Multi-antenna systems are a must to address the different requirements of 5G-NR.
Extra antennas used in massive MIMO help focusing energy into ever smaller regions
of space to bring huge improvements in throughput and radiated energy efficiency
[40]. Other benefits such as cheaper parts, lower latency, reliability, amongst others,
make massive MIMO an interesting candidate for 5G. System throughput, defined
as the sum of data rates delivered to all users in a given cell and measured in bits per
second (bits/s or bps), is a key parameter for performance evaluation. Throughput is
directly related to BW and spectral efficiency (SE) as illustrated in Eq. 1.1. The SE
measured in bits/s/Hz (bps/Hz), is a deterministic number and gives direct insight
into expected data rates for a given system:

Throughput(bits/s) = BW (Hz)× SE(bits/s/Hz). (1.1)

The maximum SE is determined by the channel capacity defined by Claude Shannon
is his seminal paper from 1948 [41]. Clearly, in order to increase data rates, higher
bandwidths are needed and/or better SE. Due to congestion in cellular frequencies
(below 6 GHz), the second option is more adapted for this frequency range. For
mmW bands, the first option can be easily applied because of large contiguous blocs
of spectrum. In the following, some key points address the “Why Now ” question:
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• Congestion of macro networks, base sites will run out of capacity by 2020 for
sub-6 GHz spectrum: capacity requirements fulfilled by spatial multiplexing in
massive MIMO.

• Large BW above 6 GHz but complicated propagation conditions : coverage
requirements fulfilled by high gain adaptive arrays in massive MIMO.

• Massive MIMO is now supported (primary versions) in release 13-14 for LTE
and 15 for 5G-NR: 3GPP specifications support.

• Low cost and high efficiency components for active antenna arrays are becom-
ing technically and commercially feasible: Technology capability.

• In Rel. 15-NR, diversity schemes are not explicitly supported: Spatial multi-
plexing is becoming more and more essential.

1.3 Multi-antenna System Communications
Multiple antennas at either both ends or one end of the communication link have
been widely used in wireless systems to address different challenges such as link relia-
bility (diversity techniques) or SE (multiplexing techniques). In order to understand
massive MIMO, MIMO and MU-MIMO are first introduced.

1.3.1 MIMO Communications
MIMO systems gained considerate attention for the past decades [42, 43] and are
now incorporated into most of the new generation wireless standards. Transmission
with MIMO antennas is a well-known method to overcome fading and enhance
link reliability: this is categorized as diversity. Also, simultaneous communication
of multiple data streams over the same radio channel by exploiting the multipath
nature of the radio channel started a considerate evolution in data rates and system
capacity. This paves the way for a wide variety of use-cases and applications. More
recently, MIMO has been applied to power line communications (PLC) [44, 45, 46].

1.3.1.1 Fundamentals and system model

A simple system model with M transmitting antennas (Tx) and N receiving anten-
nas (Rx) is presented in Fig. 1.1. The N×M channel matrix H contains the channel
coefficients linking each Tx antenna to each Rx antenna of a single-user (SU).
For diversity schemes, each Rx antenna combines the Tx signals which coherently
add up to provide signal-to-ratio (SNR) gains on one hand, or to increase reliability
on the other hand. MIMO systems have the capability to multiply systems through-
put by min(M,N) in ideal rich multipath conditions: this is spatial multiplexing.
The memoryless MIMO flat fading channel (narrowband model) is given by :

y = Hx + n, (1.2)
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Figure 1.1: SU-MIMO system model.

• H is the N ×M complex channel matrix given by :


h11 h12 . . . h1M
h21 h22 . . . h2M
... . . .

. . . ...
hN1 hN2 . . . hNM


• hij is the complex channel gain between Tx and Rx elements with i = 1, ...,M

and j = 1, , ..., N

• x is the M × 1 complex transmitted signal vector

• y is the N × 1 complex received signal vector

• n is the N × 1 complex additive noise signal vector with variance σ2
n.

1.3.2 Multi-User MIMO
MU-MIMO have been attracting considerable interest [47]-[48] and is still a hot
topic for wireless communication systems [49]-[50]. A BS or AP equipped with M
antennas (up to 16) communicating with a number of distributed users K (equipped
with N ≥ 1 antennas) falls into the MU-MIMO systems category. Generally, the
transmitter should be equipped (as a minimum) with as many antennas as the total
number of served users antennas. A sketch of the MU-MIMO (multi-user MIMO)
scenario with K users equipped with N = 1 is illustrated in Fig. 1.2.
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Figure 1.2: MU-MIMO scenario.

The research on MU-MIMO is not recent and have witnessed some impactful
array processing papers [51, 52, 53, 54]. These systems can harmonize the high
capacity achieved using standard MIMO processing techniques with the benefits
of space-division multiple access (SDMA) for which the spatial degrees of freedom
(DoF) are used as multiplexing dimension. This technique supports multiple connec-
tions on a single channel where different users are spotted by their spatial signatures
inside the network. SDMA also helps mitigate the effects of adjacent cell interfer-
ence.

1.3.2.1 Advantages of MU-MIMO

Traditionally, the time-frequency resources are divided into resource blocks (RB)
and one user is active per RB for which the SISO (single-input single-output) SE is
quantified as log2(1 + SNR) with SNR an average signal-to-noise ratio. In a suit-
able and rich multipath environment, multiple users can be simultaneously assigned
multiple parallel streams. The total SE is thus scaled up by a factor G, known
as Multiplexing Gain, the number of potential parallel streams. The total SE
becomes G log2(1 + SNR) for an interference-free case. This is a general approach
to quantify the SE, details on power allocation and other systems aspect are given
in Ch. 2. The need to harvest multiplexing gains has motivated the effort to switch
from MIMO systems to MU-MIMO. It is noteworthy that SDMA does not require
multiple antenna at the UE [55]. The MU-MIMO main advantages are listed below:

• Possibility of using one antenna at Rx for each user: less constraints on the
physical size of UE and cost requirements.

• MU-MIMO is better equipped than MIMO to overcome most of propagation
limitations such as ill-conditioned channels or strong line-of-sight (LOS) by
using advanced scheduling schemes.
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• Enhanced sum-rates inside a given cell: better use of spectrum resources.

However, these advantages come at a price:

• MU interference can be mitigated through precoding (widely discussed in
Ch. 2) and cancellation techniques such as ML (Maximum Likelihood) de-
tection for UL [56], dirty paper coding (DPC) [57, 58] for DL or interference
alignment [59, 60]. Some approaches are based on beamforming techniques
such as in [61, 62].

• Availability of channel state information at the transmitter (CSIT) is challeng-
ing especially in high mobility scenarios.

• User scheduling and resource allocation schemes lead to an increase in imple-
mentation complexity.

1.3.3 Evolution of multi-antenna systems with 3GPP
Multiple antennas can increase capacity and reliability but also provide spatial re-
solvability, spatial DoF for multiple users to share and higher SE. MIMO systems
have evolved lately to include MU-MIMO systems (via the introduction of new
transmission modes TM) before the arrival of massive MIMO [63]. This transition
was motivated by many factors:

• In the 1-6 GHz range of cellular communication, the number of antennas that
can be deployed in compact user terminals is limited.

• The wireless channel to a given terminal can have, in some configurations or
scenarios, few contributing paths, limiting the ability to send parallel data
streams.

• Advanced signal processing schemes are sometimes needed in point to point
MIMO to detect multiple streams.

• For MU-MIMO, users should be spatially well-separated to avoid co-channel
interference.

• Small-scale fading can still affect the link reliability.

• Massive MIMO can be a solution to focus, in an efficient manner, the energy
towards the intended users.

The following figure illustrates the evolution of multi-antenna systems under the
scope of 3GPP standards and releases.
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Figure 1.3: 3GPP Releases-From MIMO to massive MIMO. This figure displays
the evolution from Release 8 to the up-coming Release 16.

1.4 Massive MIMO: Massive Breakthrough

1.4.1 History and Brief Introduction

The massive MIMO concept was first mentioned in the seminal paper: “Non-
cooperative Cellular Wireless with Unlimited Numbers of Base Station
Antennas” [64] by Thomas Marzetta, published in 2010. This paper only talks
about MU-MIMO systems with very large antenna arrays, but over the years, mas-
sive MIMO became a catchy term in all the published scientific papers.

From this paper, it is understood that massive MIMO is a form of MU-MIMO,
an asymptotic extension where M is very large and many UEs are simultaneously
served (see Fig. 1.4). The transition from MIMO, MU-MIMO to massive MIMO,
according to IEEE, is a clean break with current practice through the use of a large
excess of service Tx antennas over active terminals. Generally speaking, the re-
ceivers (UEs, machines, industrial robots, etc.) in 5G use-cases are equipped with
one antenna [9, 22, 25]. Transmission signals are adjusted by the physical layer us-
ing phase/gain control. The basic information, theoretical aspects and limits were
presented in early works such as [65]-[66].

Massive MIMO is generally defined as “useful and scalable version of MU-MIMO”
[67], or “a MU-MIMO system with M antennas and K users per BS. The system
is characterized by M � K and operates in time-division duplexing (TDD) mode
(discussed later) using linear UL and DL processing” [68].
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Figure 1.4: Overall Massive MIMO System.

These definitions cover most systems but are very general. In order to bring
out the characteristics of such systems, some essential caracteristics covering the
definition of massive MIMO are given hereafter. Massive MIMO:

• is an extensive raise in the number of transmitting antennas M packed into
an array (see Fig. 1.5),

• relies on the spatial dimension to form orthogonal sub-channels and simulta-
neously serve K users,

• communicates over a channel with favorable propagation conditions,

• benefits from channel hardening provided by the large number of antennas,

• Uses TDD relying on channel reciprocity and UL pilots to obtain channel state
information (CSI).

Different antenna array geometries for the Tx are presented in Fig. 1.5 from [69].
Mostly recognized, the URA (uniform rectangular array) because of its horizontal
and vertical aperture and the possibility of adjusting both elevation and azimuth
angles. For instance, vertical alignment of the array elements is beneficial for users
on different floors using elevation beamforming as shown in Fig. 1.6.
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Figure 1.5: Different Array Configurations: a) Linear, b) Rectangular and c)
Cylindrical (Lund University).

Figure 1.6: Massive MIMO in the elevation and azimuth domain.
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Channel hardening and favorable propagation condition (widely discussed in
Ch. 2) can be illustrated mathematically as the following:
Suppose a simple Rayleigh environment, a K ×M massive MIMO channel H with
channel vectors hij ∈ N 1×Nobs

C and Nobs the number of observations. The product
HHH → σ2IK , with σ2IK a K ×K scaled identity matrix. The diagonal elements
converge to a deterministic value (channel hardening) and off-diagonal elements con-
verge to 0 (indicating favorable propagation or zero inter-user interference). Chan-
nel hardening and favorable propagation condition are two main pillars of massive
MIMO. In the following, some key definitions from a 5G system point of view are
presented:

1.4.2 General Definitions
• BS orAP will designate the Tx massive MIMO transmitter in this manuscript.

• UE or user, receiver, will designate one Rx of the massive MIMO setup.

• RF Chain: A radio frequency chain is a set of electronic modules designed
to transmit and/or receive radio signals. RF chains usually contain amplifiers,
low-noise amplifiers (LNA), etc.

• Physical Radiating Element: emits radio waves in a given direction with a
given power depending on a predefined radiation pattern. It can also be called
physical antenna [9].

• Antenna: consists in one or more m radiating elements (dipoles, patches,
etc.) fed with the same signal. For instance, one antenna is capable of sending
one stream at a time even if many radiating elements exist. This is the key
aspect of phased arrays and analog beamforming discussed later. It can also
be called logical antenna port [12].

• An Antenna Array consists in multiple antennas, each with an individual
RF chain. In this case, the number of multiplexed streams equals the number
of antennas. An antenna array consists in M antennas (consequently M RF
chains) which in turn can consist in m radiating elements.

• A Radiation Pattern describes the directivity of a radiating element or
antenna array. The directivity is the ratio between the radiated power in a
given direction and the power radiated by an isotropic antenna. Directivity is
measured in dBi (with respect to the isotropic antenna).

• Array Gain: When multiple radiating elements are associated, the resulting
signal has a strong directivity. In cellular communications, large vertical an-
tenna panels with 120o horizontal sector have a strong directivity. It is made
up of many radiating elements, each having a directivity of a few dBi. If a
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panel consists in 8 patch antenna elements, each having typical 7 dBi, the total
array gain is the individual gain + 10× log10(8)= 16 dBi gain per panel.

• Multiplexing Gain: It is generally measured as the rank of the channel
matrix and indicates how many users can be simultaneously served (number
of layers in LTE). The multiplexing gain is limited by min(M,NRx), with NRx

the total number of users antennas (K ×N).

• Beamforming (BF) uses multiple antennas to adjust the phase and ampli-
tude of the wavefront by appropriately weighing individual antenna signals
to form a directional signal transmission. At mmW bands, beamforming will
be mostly used to increase range by energy focusing while at lower bands it
will be key to spatial multiplexing especially in increasing the SE. There has
been a considerate amount of research concerning beamforming techniques for
massive MIMO as illustrated in the next section. Beamforming architectures
and features will be thoroughly discussed later on.

1.4.3 Key Features

A great deal of interest in massive MIMO has been emerging [39, 64, 70, 71, 72]. In
[73] and references therein, an overview of massive MIMO technology is thoroughly
presented. In [64], Marzetta demonstrated that the use of excessive number of radi-
ating elements at the transmitting side paired with a number of active users permits
the use of simple linear precoders such as maximum-ratio-combining (MRC) in the
UL and maximum-ratio-transmitter (MRT) in the DL. Massive MIMO key enabler
is the asymptotic orthogonality of users channel vectors. Large array gains, low
complexity precoding and detection techniques, savings in term of radiated energy
per bit, hardware-friendly waveform shaping, reduced sensitivity to hardware imper-
fections and non-linearity distortions are all potential improvements from massive
MIMO. The many DoF provided by massive MIMO via spatial multiplexing and
high diversity orders can provide high data rates over a reliable channel.

1.4.4 Main Advantages

A review of the main advantages of massive MIMO is presented hereafter:

Inter-user Interference:

[HHH ]i,i values grow with M but the off-diagonal elements are also of importance
for the overall system evaluation. The values of [HHH ]i,j with i 6= j grow far slower
than diagonal elements. In i.i.d. Rayleigh channels, distributions of both diagonal
and off-diagonal elements converge to Gaussian distributions when M →∞.
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Spectral Efficiency:

With M BS antennas and K single-antenna users, a diversity order of M and a
multiplexing gain of K can be achieved. In [74], SE optimization methods with
pilot and users considerations are presented. In [75], the effect of increasing M and
its impact on SE is discussed while centralized and decentralized massive MIMO
systems are evaluated in [76].

Energy Efficiency:

With large arrays, increasing M can be harvested in terms of reduced transmit
energy per element. This is discussed in [77, 78]. These DoF make massive MIMO
a viable candidate for green communications [40, 79, 80]. In the DL, large arrays
can focus the transmitted energy in the directions of the users (using precoding
techniques discussed later) achieving high energy efficiency [39]. It is possible to
maintain the same SE for K users while doubling M and reducing Tx power by a
factor of 2; energy efficiency thus doubles. A survey on energy-efficient techniques
for massive MIMO is presented in [81]. In [82], the advantages and challenges of
massive MIMO for energy-efficient MU systems are discussed.

Large array gains:

Using more antennas can be interpreted as more samples in the spatial domain. If
these samples are constructively combined, the SNR can be improved with respect
to SISO systems. The signal strength for a targeted user becomes larger. However,
radio regulators set limitations on the effective transmitted power of wireless devices,
including array gain which cannot increase indefinitely. In Fig. 1.7, the radiation
pattern of a massive MIMO linear array of variable size is presented with omnidirec-
tional antennas. This is to underline how increasingM can benefit wireless systems:
narrower beamwidths, less spillage and attenuation of side lobes. This is a simple
example with one user located at angle θ = 0◦ and using phased array principle to
steer the beam in the wanted direction. Generally with massive MIMO, multiple
users are simultaneously served, thus multiple streams are sent from the array (a
superposition of beams) as shown in Fig. 1.8.

A complementary list of general advantages of massive MIMO:
• The effects of fast fading and uncorrelated noise vanishes with the increasing
M : channel hardening.

• High communication reliability.

• Capability to focus energy in small regions of space.

• Simple linear signal processing.

• Efficient diversity and multiplexing techniques in favorable propagation con-
ditions.
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Figure 1.7: Radiation Pattern of multiple-antenna setups a) M = 2, b) M = 4,
c) M = 8 and d) M = 64 radiating elements with normalized gain.

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 1.8: Radiation Pattern for 6 users with different spatial signatures and
M = 16 Tx antennas.
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1.5 Massive MIMO System Architecture
In this section, we introduce the concepts of analog, digital and hybrid beamforming.
The advantages of each scheme and their applications with massive MIMO setups
are also discussed. The three different architectures are illustrated in Fig. 1.9(a), (b)
and Fig. 1.10 for analog, digital and one example of hybrid beamforming, respec-
tively. These figures show a simplified schematic since carrier oscillator, baseband
modulator, power amplifiers, and other typical RF components should also be inte-
grated. As a general notation and from Sec. 1.4.2:

• Digital Beamforming (DBF): m = M = NRF

• Analog Beamforming (ABF): m > 1 and M = 1

• Hybrid Beamforming: m > 1 and M < m

1.5.1 Digital Beamforming (DBF)
In a full digital architecture, each radiating element is connected to one RF chain.
The signal is pre-processed at baseband before RF transmission. Multiple beams
can be simultaneously formed from the same set of elements in the array. This allows
a full flexibility of the system and makes DBF attractive for spatial multiplexing
with massive MIMO. However, this also requires a RF chain for each element. DBF
is referred to as MU-MIMO in LTE/5G. It is already used in transmission modes 7,
8 and 9 in LTE Advanced Pro.

1.5.2 Analog Beamforming (ABF)
ABF [83] is simpler but can accommodate one user (no SDMA). The same signal is
fed to each physical antenna element and the signal phases are adjusted in the RF
domain using analog phase-shifters to steer the radiating pattern of the array in a
given direction. The different copies of the signal from different array elements are
constructively summed at the Rx to form the in-beam direction. This is the principle
of phased arrays which has been known for a while now. The main difference with
DBF is mainly the processing wherein the DBF is applied on the baseband signal
(on K data streams) whilst phase shifting in the analog beamformer is applied after
digital-to-analog conversion (DAC) for the single stream user.

1.5.3 No Compromise ?
ABF is the best compromise between coverage and power/cost constraints but not
adequate for massive MIMO scenarios with a large number of receivers. However,
it can be associated with mmW for potential wireless backhaul design applications
or use-cases where link reliability and high data rates are a must [84, 85].
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(a)

(b)

Figure 1.9: (a) Tx Analog Beamformer (b) Tx Full Digital Beamformer.
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Figure 1.10: Example of a Hybrid Beamforming Architecture.

DBF is convenient for capacity enhancements and flexibility in MU scenarios.
However, its complexity increases with M . Hybrid beamforming is a compromise
between the two where the number of RF chains is less than the number of antennas
[86] but still large to accommodate a given number of streams. Hybrid beamforming
can also be thought of as a phased array adapted for the transmission of simulta-
neous beams. A survey on hybrid beamforming architectures for massive MIMO
is available in [87]. A comparison between hybrid analog-digital and full digital
schemes is presented in [88] and the trade-off between throughput and needed train-
ing is depicted in [89]. As shown in Fig. 1.10, NRF is less than the number of total
radiating elements m but should be equal or greater than the number of antennas
or K data streams (simultaneous sent beams). This is one of the proposed archi-
tectures (partially connected architecture) of hybrid beamforming but many others
exist [90] such as fully connected architectures where the RF beamformer of each RF
chain make use of all the array elements. It should be underlined that one RF chain
in hybrid beamforming can be considered as one logical antenna port. Typically,
there are more physical antenna elements than logical antenna ports. There can be
as many simultaneous beams as there are logical antenna ports .

1.5.4 What is precoding then ?
In massive MIMO, it is popular to use the term precoding or pre-filtering. Precoding
is equivalent to DBF. The transmitted signal can be matched to the multipath
signature of the channel and is not limited to LOS conditions. The 5G BS (AP)
computes the spatial information for each user based on CSI-RS (Channel State
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Information- Reference Signal). It uses this information to compute the precoding
matrix where the data symbols are mapped to array elements. The multiple data
streams have their own weights which include phase offsets to each stream to enable
the waveforms to combine constructively at the receiver. This maximizes the signal
strength to the user whilst also minimizing the interfering signals. In this way the
5G BS is able to communicate with multiple UEs concurrently and independently
by using spatial information. The three different precoding techniques: MRT, zero
forcing (ZF) and minimum-mean-squared estimator (MMSE) will be described in
Ch. 2. Under this umbrella, it should be noted that all the system complexity in
massive MIMO is reported at the transmitting side.

1.6 Massive MIMO in practice

1.6.1 Real-time Testbeds
Real-time testbeds for massive MIMO systems are the best solutions to validate the
different concepts and promises of this technology. Lund University, in collaboration
with National Instruments (NI), introduced the 100 antenna LuMaMi (Lund Uni-
versity Massive MIMO) testbed in [69], the first real-time implementation of massive
MIMO. Specifications of the design, implementation and validation of the system
can be found in [91]. In [92], a 128-element testbed, developed by the University of
Bristol in collaboration with NI and Lund University was presented. The ArgosV2
testbed [93] developed at Rice University is a TDD based system and reported some
cell capacity and signal-to-interference and noise (SINR) measurements. ZTE also
reported TDD massive MIMO field trial in [94] with 64 Tx and 8 LTE commercial
handsets in a rise building achieving a 300 Mbps sum-rate with 20 MHz BW. The Ti-
tan massive MIMO system [95] provides a ready to use MU massive MIMO testbed
with real-time processing up to 250 MHz BW with up to 1000 antennas, but no
details of the implementation were provided. The Ngara demonstrator in Australia
uses low-cost equipment in frequency-division duplexing (FDD) fashion and have
reported an UL SE of 67.26 bps/Hz in a lab at 638 MHz. It was reported in [96],
using the LuMaMi , through LOS measurements at 3.51 GHz in an indoor environ-
ment with 12 receivers, an uncoded system sum-rate of 1.59 Gbps using a single 20
MHz LTE band, equating a SE of 79.4 bps/Hz. In a subsequent indoor trial, 22
receivers were simultaneously served, achieving a SE of 145.6 bps/Hz, claimed to
be the highest SE achieved for any wireless system to date. The results of differ-
ent field trials demonstrated that massive MIMO can be adopted as a key enabling
technology for 5G.

1.6.2 Trials and Deployments
Although 5G is still in its exploratory phase, some operators have already advertised
some 5G technologies [97]-[98]. An overview of trials, challenges and deployments for

46



Chapter 1. General Introduction and Motivations

5G in practice can be found in [99]. Recently, the Russian telecom operator MTS has
deployed more than 40 state-of-the-art LTE sites with massive MIMO functionality
in seven cities where the 2018 FIFA World Cup took place [100]. Orange and
Ericsson demonstrated in Châtillon that high data rates (greater than 10 Gbit/s)
can be achieved thanks to bricks of the future 5G technology. Some field trials
[98] reported peak speeds of 330 Mbps per channel using a 20 MHz channel at 2.5
GHz. It also demonstrated a four-fold increase in capacity per channel, a three-fold
increase in cell edge performance and an improvement in the overall coverage area,
compared to current commercial deployment. In [97], DeutscheAG reported LTE
TDD massive MIMO field trials at 3.5 GHz with 20 MHz BW combining massive
MIMO, 256QAM where a 750 Mbps peak speed was reported. In [101], a FDD-LTE
massive MIMO field trial was reported for the first time but no technical details
were given. Etisalat has conducted a live on-air trial of massive MIMO technology
with Ericsson including latency, speed and beamsteering tests. The test reported an
aggregate site throughput of over 24 Gbps at 15 GHz with 800 MHz BW. Bouygues
Telecom reported a 5G test under real-world conditions [23]. The test was based
on non-standalone (NSA) 5G technology. In partnership with Huawei, various tests
were conducted in Bordeaux which saw a peak DL speed of 2.3 Gbps and latencies
as low as 7.5 ms. These tests and trials amongst others demonstrate the benefits of
massive MIMO and justify the race for deployment between different European and
international operators.

1.6.3 Challenges
Despite the merit of massive MIMO, a number of issues still need to be tackled
before fully bringing massive MIMO to practice [102, 103, 104]. Many challenges
[105, 106, 107, 108, 73, 109, 32] should be addressed, and original contributions are
sought. In the following, some general challenges are presented, then, we focus on
relevant challenges to this thesis.

• Pilot contamination issue in a multi-cell scenario investigated in [110, 103]
through a wide survey. Blind methods for non-linear estimation [111] are
proposed for instance and channel predictions to overcome channel aging [112].

• Low complexity hardware, impact and mitigation of hardware imperfections
[113]. Massive MIMO performance with hardware-constrained BS is inves-
tigated in [114] and the effect of non-ideal hardware on capacity limits and
energy efficiency is depicted in [65].

• Mutual coupling between antennas can be beneficial when reciprocity cali-
bration is considered in TDD. This effect has been widely studied for MIMO
systems [115]. Power loss [116] and higher spatial correlations [117] due to cou-
pling between closely-packed antenna elements [118] can degrade the system
performance of a simple MIMO system. For massive MIMO, mutual coupling
can generate power loss and reduction in DoF. The effect of element mutual
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coupling on the capacity of fixed length linear arrays is presented in [119] for
instance. This parameter should be seriously considered when evaluating the
overall performance of a massive MIMO setup. Effect of antenna spacing and
mutual coupling on the system are studied in [106, 120].

• Resource allocation schemes.

• Network optimization and deployment strategies.

• Channel modeling for high mobility scenarios, industrial scenarios and model
proposition for massive MIMO parameters.

• TDD or FDD and efficient feedback methods for FDD deployments.

• Efficient antenna selection strategies to reduce NRF and M .

1.7 Channel Estimation
Massive MIMO relies on quasi-perfect CSI at the BS to coherently pre-process the
signals [121]. However, channel acquisition is a challenging aspect and estimating
the channel by sending pilots consumes resources. In this paragraph, two techniques,
TDD and FDD, are discussed.

1.7.1 Time Division Duplexing
In TDD, UL and DL communication are performed over the same frequency band,
using different time slots. This technique has been initially proposed for massive
MIMO [64, 122].

• UL transmission : K users send K orthogonal pilot sequences and the channel
is estimated based on the received pilot signals. This operation is known as
training and requires K channel uses.

• DL transmission : BS needs CSI to precode the transmitted signals in order
to make sure each user recovers its own data. Due to the assumed channel
reciprocity1, the estimated channel at the BS from UL pilots can be used to
precode the transmit symbols. Limitations on the channel coherence time may
create a pilot contamination problem [64] where pilot sequences employed by
users in neighboring cells are no longer orthogonal to those within the cell.
Also, whenM is large, the effective channel gains become nearly deterministic
due to channel hardening. This property improves the DL channel gain esti-
mation and alleviates the need for DL pilots [123, 124].

1The impulse response between two elements is the same in both directions.
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1.7.2 Frequency Division Duplexing
In FDD systems, UL and DL use two different frequency bands to estimate the
corresponding channel. In this case, the UL and DL channel are not reciprocal.

• UL transmission: same procedure as in TDD and the process will need K
channel uses.

• DL transmission: The M BS antennas transmit M orthogonal pilot sequences
to K users and each user estimates the channel based on the received pilot
signal then the estimation is fed back to the BS via a control channel.

1.7.2.1 Coherence Interval

In the time-frequency domain (similar to the ressource grid in LTE), a coherence
interval τc is defined as the number of complex-valued samples (or ressource elements
RE) within a time interval corresponding to the coherence time Tc and a BW equal to
the coherence BW Bc. A coherence interval has TcBc complex-valued samples within
the time-frequency domain. It is the largest time-frequency space within which the
channel is supposed stationary and thus should be estimated. These samples are
distributed between UL and DL pilots (for training) and payload (useful data).
We denote τdl, τul, the DL and UL payload data samples and τ̃dl, τ̃ul the number
of samples allocated for DL and UL pilots, respectively. The two structures are
illustrated in Fig. 1.11(a) for TDD and (b) for FDD, respectively. Note that for
simplicity, the feedback process is not shown for FDD. In order to send and receive
data, the training burden should not consume a lot of resources. From this, we can
define constraints for TDD and FDD systems:

• TDD : τ̃ul < τc

• FDD : τ̃ul + τ̃dl < τc

Hence, it can be seen that the training burden in TDD is independent of DL
pilots thus independent of M . This is not the case in FDD where the training
overhead scales up with M reducing the payload as seen in Fig. 1.11(b).

Generally, we assume τ̃ul = K samples and τ̃dl = M . The constraints becomes:

• TDD : K < τc

• FDD : K +M (DL pilots) + M (feedback) = K + 2M < τc

1.7.2.2 5G Frame Structure

In Fig. 1.12, the number of resource elements for training (training pilots) is illus-
trated as a function of K and M . Based on LTE [125], 2 RBs consist in 14 OFDM
symbols spanning 12 sub-carriers in frequency domain (168 complex samples on the
time-frequency resource grid).
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(a) (b)

Figure 1.11: a) TDD Vs b) FDD frame structure inside a coherence interval τc.
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Figure 1.12: Comparison between TDD and FDD : number of allocated pilots for
channel estimation procedure with K =20, K=40 and M varying from 1 to 200.

The channel is assumed to be constant inside a RB. In 5G NR, multiple frame
structures are supported, the main difference being subcarrier spacing and the num-
ber of OFDM symbols. The number of subcarriers is also 12. If a BS with M = 200
elements is deployed, the entire RB is spent on DL pilots in FDD since pilots are
used for channel estimation at each antenna. Thus, to harvest massive MIMO gains
with FDD, new design schemes are needed to reduce the performance gap with TDD.
This illustration confirms the advantage of TDD over FDD wherein for a given K,
when M increases, the number of allocated pilots is constant while in FDD, the
evolution depends mostly on M . It is concluded from this analysis that TDD is the
preferable mode for massive MIMO since it requires less pilots than FDD and is
highly scalable with M . However, significant interest in massive MIMO-FDD ver-
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sions have emerged [126] and FDD systems were reported to achieve better results
than TDD systems in specific situations, for instance symmetric traffic and delay-
sensitive applications [127, 128]. Under this umbrella, massive MIMO FDD-based
solutions are needed.

1.8 Motivations and Contributions
An essential question for massive MIMO is to validate the theoretical predictions
with experimental results. Unlike Rayleigh channels, real scenarios such as large
indoor industrial channels have specific characteristics that can influence the per-
formance of massive MIMO. In the following, the different relevant challenges are
presented.

1.8.1 Special Focus on Industry 4.0
Works for Release 16 already began with some trends such as support for Indus-
trial IoT channel models for frequencies up to 100 GHz. A new study item entitled
“Study on NR industrial Internet of Things (IoT)” has been proposed [129] and
contributions are sought starting from the RAN1 meeting in April 2019. The study
item aims to develop a channel model to support studies on URLLC and industrial
IoT enhancements for industrial scenarios and use cases. In order to achieve this,
the study item should fulfill the following objectives:
• Review existing literature and new propagation measurements in industrial envi-
ronments.
• Identify key differences with existing channel models such as the model in techni-
cal report TR 38.901.
• Define new industrial propagation scenarios, corresponding propagation parame-
ters and new model components if needed.
• Priority for frequency ranges below 52.6 GHz.
These points underline the importance of channel modeling for M2M in industrial
scenarios. As no channel models are yet published, a geometrical-based channel
model is proposed in Ch. 2.

1.8.2 Polarimetric Channel Characteristics and Propagation
Conditions

Inter-user interference and channel hardening will depend on the massive MIMO
channel matrix H and thus on the environment and propagation conditions. When
i.i.d. Rayleigh is assumed, transmission is interference-free and optimal performance
can be achieved with relatively simple precoding. In practice, channels hardly sat-
isfy the i.i.d. assumption andM is limited. For instance, if the number of scatterers
is small compared to K or if users channels are highly correlated, propagation con-
ditions are unfavorable leading to performance degradation. A good understanding
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of propagation conditions is needed if optimal strategies are to be developed. Un-
der this umbrella, cross-polarization impact, a scarcely studied subject for massive
MIMO, is exploited in Ch. 3. A good understanding of polarization effects will
help to propose novel transmission strategies to achieve most of the performance of
massive MIMO. These subjects are studied for an industrial scenario with a massive
MIMO setup, an environment where massive MIMO studies are also scarce in the
literature.

1.8.3 CSI Feedback Overhead Reduction
Capacity improvements depend on CSI. Massive MIMO, originally uses the cali-
brated TDD strategy, to estimate the instantaneous channel from UL pilots. How-
ever, motivated by spectrum regulation issues, significant interest in FDD-based
systems have emerged [126, 130]. In this manuscript, a novel method for CSI feed-
back overhead reduction is proposed in Ch. 4.

1.8.4 Antenna Selection Strategies
Unlike i.i.d. scenarios where all array elements contribute equally, in real scenarios
[84], adaptive antenna selection strategies may be used to reduce the implementa-
tion complexity by decreasing the number of RF chains and the number of active
antennas. Antenna selection strategies have yet to be fully defined and evaluated.
A novel strategy is proposed in Ch. 4.

1.9 Thesis Organization
The main scope of the thesis will be the evaluation of the performance of a mas-
sive MIMO setup in an industrial scenario for potential M2M communication in
the scope of Industry 4.0. To achieve this goal, Ch. 2 introduces some system
metrics, main massive MIMO channel and system characteristics, and an overview
of channel modeling. Using a geometrical-based channel model, a massive MIMO
system is evaluated through a parametric analysis. In Ch. 3, the studied indus-
trial scenario is described and polarimetric channel measurements are presented.
A propagation-based method for user classification is proposed. Performance of
precoding techniques are evaluated according to the propagation scenario and po-
larimetric channel. Lastly, using polarimetric analysis, new strategies exploiting
polarization diversity and reducing infrastructure complexity, are proposed. Ch. 4
is dedicated to CSI feedback reduction on one side, by proposing a correlation-based
approach for feedback overhead reduction in FDD, and on the other side, an original
antenna selection strategy at Tx based on the receiver spatial correlation is described,
detailed, validated and evaluated. These strategies are assessed using propagation
parameters and sum-rate capacity analysis. In Ch. 5 and 6, the different conclusions
of this manuscript and future research directions are given.
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Figure 1.13: Structure of the thesis.

1.10 Other Contributions

The previous paragraphs briefly introduced the main contributions obtained during
the preparation of this Ph.D. thesis and which will be described in the next chapters.
It must be emphasized that, in parallel to this work, I have also contributed to other
studies presenting complementary aspects and always dealing with MIMO or massive
MIMO systems. The corresponding results have been published (5 papers) either
in journals or in proceedings of conferences, detailed references being given in the
List of Publications. Since it can be interesting to present a short overview of
what has been done in this frame, this section presents context and objectives of
this additional work, emphasizing my own contribution. The different results are
deduced from measurement campaigns and the corresponding papers are classified
according to the geometry of the indoor environment in which they took place:
laboratory room, meeting room, subway carriage and tunnel. Note that, in these
cases, frequency may cover a band extending from 1.3 GHz up to 94 GHz, while
in the following chapters the main focus is on frequencies around 3.5 GHz. The
different sections are associated with the corresponding paper number in the List
of Publications.

Laboratory Room

In collaboration with Univ. Politecnica di Cartagena (UPCT, Spain), a series of
experiments in LOS conditions were carried out in a laboratory of about 45 m2 fur-
nished whith tables, cupboards and desktops. The frequency-dependence of channel
correlation was first studied in the 5 -94 GHz band, spacing between array elements
of the 6 × 6 virtual URA varying from a few millimeters to 27 mm in [P6]. To
simulate a massive MIMO configuration, the size of the Tx array was increased up
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to 50× 50, for a frequency of 94 GHz, and 4 positions of the receiver (Rx) were con-
sidered. It was demonstrated that mmW massive MIMO systems allows reaching
orthogonal Tx-Rx streams even for a small 7× 7 antenna array subset with correla-
tion between users < 0.2. Moreover, strong phase variations at Tx are highlighted
through channel phase correlation studies. These phase variations also contribute
to the decorrelation at Rx between close users, paving the way for further massive
MIMO system enhancements [J1].

Meeting Room

In this room, 7.92 m wide and 6.82 m long, the polarimetric massive MIMO radio
channel of a LOS scenario was investigated at 1.35 GHz, using a real-time MIMO
radio channel sounder with dual-polarized patch antennas. The 8 × 12 massive
MIMO Tx array was based on a hybrid architecture including a vertical uniform
linear array translated at different horizontal positions, then forming an URA. The
performance of the system was evaluated for different polarization schemes and Rx
antenna orientations using propagation channel-based metrics, as receiver spatial
correlation, and system-oriented metrics such as sum-rate capacity. Results have
indicated a clear dependence of the performance to the polarization schemes and re-
ceiver orientation. It clearly appeared that the additional degree of freedom brought
by polarization diversity can contribute to improve spectral efficiency by a factor of
about 20%. Also, coupling effects were discussed and shown to decrease the overall
system performance by increasing spatial correlation. The latter parameter was also
modeled using a Burr statistical distribution [J2].

Subway carriages

In the frame of a collaboration between our laboratory, UPCT and Univ. of Valencia
(Spain), we have interpreted results of measurements that took place in a long
subway carriage in the 25-40 GHz band, Tx being a 7 × 7 URA, 8 users being
uniformly distributed in the carriage. One of the main objectives was to study the
dependence of the specular (SMC) and dense multipath components (DMC) to the
inter-user spatial correlation and sum-rate capacity. It appears that the inter-user
spatial correlation computed with DMC offers the best favorable propagation for
a massive MIMO setup whereas SMC contribute to the users correlation. These
results highlight the need to include DMC in 5G massive MIMO channel models
and emulators to improve their accuracy at the system level [J4].

Road tunnel

Measurements have been carried out in a low traffic road tunnel to investigate the
influence of the polarization of the Tx and Rx antennas on the channel characteris-
tics. The same channel sounder as in [J2] for the meeting room measurements was
used. In a first step, emphasis was on the cross-polarization discrimination factor
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(XPD) and, for a MIMO configuration, on the correlation between Tx and Rx array
elements, depending on the array orientation and on the polarization [C2].
In a second step, various combinations of polarization at both Tx and Rx have been
tested to minimize spatial correlation while keeping the size of the array as small
as possible. Indeed, to maintain a high MIMO capacity with a compact array, and
based on an association of co- and cross-polarized antennas, a compromise must be
found between loss of power due to XPD and decrease of correlation [C5].

1.11 Summary of Key Points
• Technological breakthroughs are needed in the wireless community to accommo-
date the requirements of 5G.
• 5G will not be built from scratch right away. Configurations using both 5G and
4G technologies will co-exist.
• Multiple antenna systems such as MIMO and MU-MIMO addressed many chal-
lenges but still not sufficient.
• Massive MIMO is presented as a paradigm shift to fulfill many milestones of 5G.
• Massive MIMO can achieve both high SE and EE by multiplexing many UEs
which share the energy costs and achieve high sum SE.
• Field trials have confirmed the potential benefits of massive MIMO systems, spe-
cially for outdoor scenarios.
• Massive MIMO can enhance coverage using high gain adaptive arrays (> 6 GHz)
and provides high orders of interference-limited spatial multiplexing (< 6 GHz).
• Massive MIMO can be used under ABF (beamsteering) technique. It is mostly
intended for backhaul or very high data rate applications.
• Massive MIMO’s full advantages are harvested when full digital systems are used.
• FDD channel estimation becomes challenging due to induced substantial overhead
(such as feedback) that scales up with the number of antennas.
• Many challenges still have to be addressed before fully exploiting the advantages
of massive MIMO.
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Chapter 2
Massive MIMO Channel and System
Aspects

Introduction

In order to design wireless communication systems, a first step is the understanding
of the medium between the transmitter and the receiver. The multipath channel
and its characteristics will help determine hardware and software requirements for
system design. Propagation models are generally used in network planning tools
and tuned for new frequency ranges to improve network planning accuracy. This is
particularly true for massive MIMO where channel models based on measurements
are a must to optimize the overall performance in any use-case. Moreover, from the
Tx array side, spatial and temporal stationarity assumptions of the channel are often
not verified in real massive MIMO environments. Under this umbrella, the objectives
of this chapter are twofold : (i) provide an overview of the wireless channel and main
propagation metrics of the SISO channel and (ii) extend this body of knowledge to
massive MIMO channels and systems with the specific set of impacting parameters
using a geometrical-based channel model.

This chapter is organized as follows: The SISO wireless channel and general
propagation characteristics are first presented in Sec. 2.1. The different parameters
are then extended to the massive MIMO case and additional parameters such as
Gram’s power ratio are presented in Sec. 2.2. A geometrical-based channel model for
massive MIMO is proposed and validated in Sec. 2.3. The massive MIMO system
model, precoding schemes and power allocation concepts are detailed in Sec. 2.4.
Finally, sum-rate capacity analysis using the proposed channel model are discussed
in Sec. 2.5. This chapter is concluded in Sec. 2.6.
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2.1 SISO Wireless Propagation Channel
Radio waves interact with the medium via reflexion, refraction, diffraction and other
variants of these physical phenomena (see Fig. 2.1(a). Different replicas of the
original signal are combined at the receiver (constructively or destructively) with
different directions, delays and amplitudes resulting in rapid fluctuations of the
signal amplitude. A constructive interference causes a signal peak while a destructive
one results in a valley or a deep fade. These replicas define the multipath components
(MPC) of the wireless channel. Propagation channel models aim at translating as
accurately as possible all or part of the different MPC taking into account time-
frequency-space variations. It is a very active research area for developing effective
tools used by standardization organisms.

2.1.1 Characteristics of Propagation Channels
Radio propagation phenomena yield to amplitude and phase variations on the re-
ceived signal. Two types of fading can be distinguished: (1) large scale and (2) small
scale fading.

2.1.1.1 Large scale propagation

In the case of free space propagation with direct LOS between the transmitter and
receiver, power loss is distance-dependent. It decreases proportionally with the
square of the distance d between Tx and Rx. Generally, the received power Pr from
one antenna with gain Gr when a signal with power Pt is transmitted from antenna
with gain Gt is calculated using Friis’ transmission equation.

Pr = PtGtGrc
2

(4πdf)2 , (2.1)

with f the operating frequency and c the speed of an electromagnetic wave in vac-
uum. It can be seen that Pr decreases with larger distance and for higher frequencies
due to the small size of the Rx antenna. Generally, with the presence of obstacles,
the free-space assumption does not hold and Pr decreases as 1

dn
where n is the

pathloss exponent. n is a real positive parameter that depends on the propagation
environment and determines how fast the power decays with distance. The latter
can take values smaller than 2 (indoor) or between 2 (free space propagation) and
5 (totally obstructed environment). Also, local shadowing effects between Tx and
Rx can occur, giving rise to large deep fading. In order to account for different
propagation conditions for different users, the large scale coefficient can be modeled
at user k located at distance dk from the Tx as:

βk(dB) = γ(d0) + 10n log
(
dk
d0

)
+ κ, (2.2)
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where γ(d0) is the reference path loss at distance d0 and n the pathloss exponent. κ is
the only non-deterministic term drawn from ∼ N (0, σ2

f ). This parameter represents
the shadow fading creating log-normal random variations around γ(d0)+10n log(dk

d0
).

It can indicate physical blockage from objects and provides a more realistic channel
description.

2.1.1.2 Small scale propagation

Contrary to large scale, small scale fading (or microscopic fading) refers to rapid
fluctuations of Pr around its average. Multipath is a key feature for multi-antenna
communications where diversity is exploited. It also has many effects on the radio
channel:

1. Fast changes in signal strength over relatively small distances and time-intervals.

2. Echoes in the time domain (time dispersion) caused by propagation delays.

3. Random frequency modulation due to different Doppler shifts on different
MPC.

It should be noted that multipath propagation does not only occur in NLOS con-
ditions. Even when a LOS exists, reflections from the ground and surrounding
structures still exist. The detection of fading mainly depends on system proper-
ties, its resolvability is determined by the system bandwidth BW. These different
discussed mechanisms in this section are illustrated in Fig. 2.1(b).

(a) (b)

Figure 2.1: (a) Example of MPC propagation mechanisms and (b) Radio Signal
Distortion (example from [1]).
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2.1.2 Time-Frequency Domain SISO Channel Model
The discrete channel impulse response (CIR) is function of the absolute time t and
the delay bin ∆τ whithin which different MPC are combined. Different time instants
t are snapshots of the observed event. t and ∆τ are two independent variables where
t� ∆τ . t is generally in the order of ms or s whilst ∆τ = 1

BW
is in the order of µs

or ns depending on the transmission BW. The baseband discrete impulse response
of a SISO multipath channel under WSS (wide-sense-stationary) assumption can be
written as:

h(t,∆τ) =
Mf∑
l

al(t)δ(τ − l∆τ)), (2.3)

where l∆τ and al represent the lth delay bin and complex amplitude, respectively.
δ(.) is the Dirac or unit impulse function. The channel gain at time t is the sum
over l of |al|2. If the CIR is time-invariant (static user and environment), or at least
WSS where al(t) is constant over the duration of the CIR (Mf∆τ), with Mf the
number of frequency samples in BW, Eq. 2.3 can be simplified as:

h(τ) =
Mf∑
l

alδ(τ − l∆τ). (2.4)

For the special case where the channel is time-variant, other parameters are necessary
to fully describe the radio channel such as the Doppler spread BD and coherence
time Tc. BD is a measure of the spectral broadening generally caused by relative
motion between Tx and Rx while Tc is the time domain dual of BD and is a measure
of the time range over which the CIR can be considered invariant. Channel responses
are correlated at different snapshots within Tc. For the rest of the chapter, as only
static channels are considered, the index t is dropped.

2.1.2.1 Delay Domain Analysis

The power delay profile (PDP) represents the relative received power as a function
of excess delays and can be directly derived from the CIR as follows:

PDP (τ) = 10 log10 |h(τ)|2. (2.5)

Basic parameters of the multipath channel can be directly derived from the PDP.
The rms delay spread (στ ) is the square root of the second central moment of the
PDP and largely depends on the studied environment.

The rms delay spread is expressed as :

στ =
√
−
τ 2 −(−τ )2, (2.6)

with
−
τ=

∑
l P (τl)τl∑
l P (τl)

, (2.7)
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where P (τl) = |al|2. Delays are measured with respect to the first detectable path
(depending on the BW), and generally taking a 20 dB threshold referred to the
highest peak. Typical values of στ are on the order of µs for outdoor radio channels
and on the order of ns for indoor settings. It should be noted that the CIR and
the frequency response (or channel transfer function CTF) are related through the
Fourier transform.

2.1.2.2 Frequency domain analysis

In the frequency domain, the coherence bandwidth Bc is the dual parameter of
the delay spread. Bc is a measure of the similarity of the radio channel frequency
response (h(f)). It gives quantitative information about the maximum allowed
transmission BW for which the channel can be considered frequency-flat. The au-
tocorrelation complex function Rh(∆f) is defined as :

Rh(∆f) = E{h(f)h(f + ∆f)∗}
E{|h(f)|2} . (2.8)

Bc corresponds to a ∆f value for which |Rh(∆f)| = η, a percentage of the maximum
value of the module of the autocorrelation function (Rh(0) = 1). Typical values of
η are generally 0.7 or 0.9. For instance, η = 0.7 is the limit between frequency flat
fading and frequency selective channels. η = 0.9 is applied for nearly flat channels,
generally useful for OFDM sub-carrier spacing.

2.2 Massive MIMO Channel Characteristics
In this section, we first present the main notations used for the massive MIMO
channel matrix. The two main consequences of massive MIMO are explained and the
additional channel propagation parameters and their application to massive MIMO
systems are described. Reminder: A massive MIMO system is a multi-user system
with a large number of transmitting elements. The number of receivers is usually
large (but less than the number of array elements) and each receiver is generally a
user with one receiving antenna. In this manuscript, only the DL part of the radio
channel is considered1.

2.2.1 Notations
Different multiple-antenna scenarios are shown in Fig. 2.2. Consider M the number
of BS antennas (denoted as Tx), K the number of receivers (denoted as Rx), N
the number of antennas per receiver and Mf the number of frequency points. The
following matrix definitions are used throughout the manuscript:

1In fact, using UL-DL duality properties, the different results can be directly translated to the
UL [74, 131].
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• K = 1, N = 1,M = 1: SISO Channel h ∈ C1×Mf (green).

• K = 1, N > 1,M > 1: SU-MIMO or point-to-point MIMO Channel H ∈
CN×M×Mf (red).

• K > 1, N ≥ 1,M > 1: MU-MIMO Channel H ∈ CKN×M×Mf (orange).

• K � 1, N ≥ 1,M >> K: Massive MIMO Channel defined hereafter (blue).

Note that the antenna array can be formed by M co-polarized elements (physical
antennas) or M/2 dual-polarized elements (M logical ports or RF chain as defined in
Ch. 1.4.2).

Figure 2.2: Multiple Antennas Configurations: SISO, SU-MIMO, MU-MIMO and
massive MIMO.
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For MU and massive MIMO systems, the particular case of N = 1 is considered.
The massive MIMO channel matrix structure is a generalized MIMO matrix with K
users. The channel between a single-antenna receiver and an M -antenna BS can be
represented by an M -dimensional channel vector that contains the contributions of
all M Tx elements: h ∈ C1×M×Mf . The K SU channel vectors are concatenated to
form the K×M ×Mf massive MIMO matrix. H = [h1,h2, ...,hK ] as illustrated in
Fig. 2.3 where the user channel vector hk,m ∈ C1×Mf . If one time-frequency resource
is considered, the subscript Mf is omitted and hk ∈ C1×M .

Figure 2.3: Massive MIMO channel matrix with hk,m ∈ C1×Mf .

2.2.2 General Propagation Parameters
In this section, the different useful propagation metrics are introduced.

2.2.2.1 Average Channel Gain

The average channel gain for each Tx-Rx SISO link G is first computed in the
bandwidth BW and is given by :

G = E{|h|2} = ‖h‖
2

Mf

, (2.9)
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with the expectation operator applied over frequencies, unless otherwise indicated.
This parameter is not specific to massive MIMO systems, but evaluates the strength
of the signal. For multi-antenna systems, the channel gain is generally computed
for each link :

Gk,m = E{|hk,m|2}. (2.10)

Extension to massive MIMO

However, one particularity for massive MIMO is the spatial variability of Gk,m over
the antenna array with k = 1, 2, ..., K and m = 1, 2, ...,M . This point will be
discussed in Ch. 3.

2.2.2.2 Cross-Polarization Discrimination

As discussed in Ch. 1, polarimetric massive MIMO measurements are scarce in the
literature. For such measurements, it is critical to characterize the channel de-
polarization effects to understand the different mechanisms impacting the system
performance. Cross-polarization discrimination (XPD) is defined as the ratio be-
tween average channel gain in co-polarization mode to the average channel gain in
cross-polarization mode and can be expressed as:

XPD(dB) = 10 log10

(
Gco−polar

Gcross−polar

)
. (2.11)

Large XPD values indicate low depolarization in the scenario whilst small values
indicate strong depolarization effects.

Extension to massive MIMO

Depolarization effects can provide an additional DoF for signals multiplexing. The
advantages of polarization diversity associated with spatial multiplexing will be
widely discussed in Ch. 3. For MU setups, XPD is computed for user k:

XPDk(dB) = 10 log10

(
Gco−polark

Gcross−polark

)
. (2.12)

2.2.2.3 Ricean Factor

In wireless communications, the Ricean factorKRice is identified as the ratio between
the LOS power component and the sum of the powers of all the NLOS components
[132, 133]. KRice is a useful metric for multipath propagation and channel classifi-
cation. The relative strength of the dominant component and the rest of the Nray

received MPC is expressed as in [134]: .

KRice(dB) = 10log10

 |h(τm)|2∑Nray
i 6=m |h(τi)|2

 , (2.13)
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where τm is the associated delay of the shortest path, τi is the delay of the ith
NLOS component. In [135], the author describes KRice as the ratio between the
deterministic signal power and the variance of the MPC power and can be formulated
as:

KRice(dB) = 10log10

(
A2

2σ2

)
, (2.14)

with A the peak amplitude of the dominant signal and σ the variance of the MPC
amplitude. As A → 0, the dominant path decreases in amplitude and the Ricean
distribution tends towards a Rayleigh distribution. The MLE (maximum-likelihood-
estimator) extracts A and σ from the channel distributions [134], and its limitations
are discussed in Appendix C.

Extension to massive MIMO

KRice is an insightful parameter when dealing with multiple receivers in different
propagation conditions. A receiver in LOS would have a larger KRice value than
partially or totally obstructed receivers. However, the computation of KRice is par-
ticularly challenging in massive MIMO systems because of the large array dimension
[136]. The assumption of spatial stationarity could not be verified [137] leading to
variability of KRice along the array.

2.2.2.4 Spatial Correlation

Correlation, a basic parameter for MIMO systems, is a measure of similarity be-
tween two vectors. The degree of correlation between antennas gives a good insight
on the possibility of using spatial multiplexing or spatial diversity. Spatial corre-
lation appears naturally in all communication systems, and using signal processing
techniques, it can be used to enhance the overall capacity performance. Generally,
spatially correlated users cause more inter-user interference. In massive MIMO, spa-
tial correlation at Tx or Rx, was found to dictate the performance of the system.
The correlation characteristics of the massive MIMO channel H are split into an
analysis of the Rx inter-user correlation and Tx correlation per user.

Tx spatial correlation

The Tx correlation RTx (or intracorrelation) highlights the dependence between
the channel coefficients for each user and provides information about the fading
characteristics that could participate in the decorrelation process of the massive
MIMO channel from the Tx side. It is reported in Ch. 4 that it is also a useful
parameter for potential feedback reduction for channel acquisition techniques. RTx,k

can be computed on the different frequency observations from the Mf ×M matrix
of user k denoted Hk:

RTx,k = E{HH
k Hk}

E{|Hk|2}
. (2.15)
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RTx,k results in a M ×M matrix containing all the correlation coefficients between
all Tx elements combinations. Taking k = 1, ..., K, the full channel correlation
matrix RTx of size K ×M ×M can be deduced.

Extension to massive MIMO

The distribution of the correlation values ρTx of each Rx across array elements is a
key aspect for parametric analysis, for scenario classification methods in Ch. 3 and
for the proposed strategy to reduce feedback for CSI aspects in Ch. 4.

Rx spatial correlation

RRx (or intercorrelation) is the main metric to assess the performance of the massive
MIMO system. It helps predicting the precoding matrix and its complexity as well as
many signal processing techniques. The Rx spatial correlation properties highlight
the capability of a massive MIMO system to simultaneously serve a number of users
and thus give valuable insight on whether the propagation is favorable or not by
evaluating the orthogonality between channel vectors. The receiving correlation
matrix Rm

Rx computation for two special cases is shown:
1. For any two users i and j, the intercorrelation ρij as a function of the

number of antennas of a subset in the array Mt (1 ≤Mt ≤M) and for a given
frequency f ∈ [1...Mf ], is given by:

ρij(Mt, f) =
|hihHj |
‖hi‖‖hj‖

. (2.16)

hi and hj are two channel vectors of user i and j respectively. It is possible to
average on the different frequency observations.

2. For all users and a fixed subset of Mt elements from the Tx array.
Considering one frequency sample, f , using the K ×Mt matrix denoted Ht, a
general equation for the computation of the total spatial correlation matrix:

Rt
Rx(f) = E{HtHtH}

E{|Ht|2}
. (2.17)

Note that in this case, the expectation is overMt and notMf . WhenMt = M
and after the averaging process on all samples, the correlation matrix will be
denoted RRx. The off-diagonal elements of the upper triangular part of RRx

(because of Hermitian symmetry) contain all the correlation values between
all receivers combinations as shown in Fig. 2.4 and as defined in Eq. 2.16.
In order to represent the result of the operation in Eq. 2.17, a scalar value
for RRx should be derived. A macroscopic Rx correlation coefficient ρRx
is deduced from RRx by averaging the off-diagonal upper triangular part of
RRx(values in the blue triangle of Fig. 2.4):

ρRx(Mt, f) =
∑K−1
i=1

∑K
j=i+1 |ρij|

(K2−K)/2
. (2.18)
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Figure 2.4: Massive MIMO Spatial Receiver Correlation Matrix Rt
Rx.

It should be noted that ρRx does not always reflect the correlation behavior
(because of the averaging process) and should be analyzed carefully. When
users have very different channel conditions (leading to different correlation
values), it is more prudent to take the cumulative distribution function (CDF)
of the values in RRx.

3. Asymptotic behavior. In order to highlight the influence of an increasing
M on the correlation properties in a massive MIMO system, the value of Mt

(from Eq. 2.17) is varied between 1 and M .

Extension to massive MIMO

The Rx correlation will be widely used throughout the manuscript to evaluate the
expected performance of a massive MIMO setup from a receiver point of view. It will
also be shown that this parameter is a key factor for an antenna selection strategy
proposed in Ch. 4 to reduce the number of RF chains in a massive MIMO system.
Also, the definition in Eq. 2.16 can be used to illustrate the two pillars of massive
MIMO system: (1) channel hardening and (2) favorable propagation condition as
illustrated hereafter.

2.2.3 The Two Characteristics of Massive MIMO
The theoretical mathematical aspect of massive MIMO is based on the law of large
numbers (very long random vectors [138]) and the theorem of Lindeberg-Levy. Let
hi and hj be two mutually independent 1×M channel vectors whose elements are
zero-mean random variables with σ2

i , σ
2
j their corresponding variances. For a SU

case, channel hardening can be mathematically illustrated as:
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1
M

(hihHi ) a.s.→ σ2
i as M →∞. (2.19)

And favorable propagation for two users:

1
M

(hihHj ) a.s.→ 0 as M →∞. (2.20)

where a.s.→ denotes almost sure convergence. Eq. 2.20 shows that the two vectors
become orthogonal as the number M increases.

Finally, from the Lindeberg-Levy central theorem :

1√
M

hihH
j

d−→ NC(0, σ2
i σ

2
j ) as M →∞, (2.21)

where d−→ denotes convergence of distribution.

2.2.3.1 Channel Hardening

One of the main impairments in wireless propagation is small-scale fading causing
random fluctuations in the channel gain over a brief period of time (as opposed
to large-scale fading). These fluctuations render the channel non-deterministic and
CSI estimation becomes more challenging. This aspect is well-known in wireless
communications and fading mitigation techniques have been proposed, for instance
in CDMA2 communications using a compact array receiver to provide space diver-
sity gain [139]. With massive MIMO, fast fading is naturally reduced similarly to
traditional spatial diversity schemes [140]. With M antennas, the probability of
getting a deep fade is pM where p is the probability of getting a deep fade with a
single antenna system. This corresponds to channel hardening. It naturally leads
to improved reliability when M increases resulting in lower latency and alleviat-
ing the need for DL pilots in massive MIMO TDD schemes [67, 123, 124]. Massive
MIMO channel measurements have confirmed the channel hardening effect as shown
in [141, 142]. Note that, on the contrary of favorable propagation condition, chan-
nel hardening can be evaluated for a SU scenario. Given a user channel vector,
the average received gain at user k when M antennas are transmitting converges to
a deterministic value denoted βk, the large-scale coefficient. Mathematically, for a
given observation, it can be written for user k as:

‖hk‖2

M
a.s.→ βk as M →∞. (2.22)

Eq. 2.22 shows that channel variations are reduced when more antennas are added .

2Code division multiple access
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2.2.3.2 Favorable Propagation Condition

To analyze the favorable propagation condition, the joint behavior of K channel
vectors h ∈ C1×M should be considered. When channel vectors become pairwise
orthogonal, the effect of MU-interference and noise can be eliminated with simple
techniques [143, 144, 145]. The ultimate favorite propagation condition occurs for
two users when hihH

j = 0. This makes the directions of the two channels orthog-
onal. In this case, the BS can completely separate signals si and sj. Generally,
this condition is very hard to satisfy and asymptotically favorable propagation [67]
is used instead as illustrated in Eq. 2.20. For any two user channel vectors, the
channel directions hi√

‖hi‖2
and hj√

‖hj‖2
become asymptotically orthogonal. This is

a consequence of the law of large numbers, a direct proof being provided in [67].

2.2.4 The Gram Matrix

In Fig. 2.5, the advantages of increasing the number of Tx elements is displayed
in a simple way. The module of the elements of G defined as the product HHH

is presented, normalized with respect to the largest value of G in order to obtain
values between 0 and 1. K is fixed to 8 and M is chosen to be 4, 16, 32 and 64.

Massive MIMO leads to two important aspects cleared from the analysis of the
Gram matrix G: (1) the diagonal elements converge to deterministic constants βk
proving channel hardening and (2) the off-diagonal elements converge to 0 proving
favorable propagation condition. Values close to one (after normalization) on the
diagonal indicate the channel is well-conditioned amongst the different receivers.
Off-diagonal element values close to 0 provide further insight on the degree of sepa-
ration between the different users and indicate good orthogonality between channel
vectors. It can be seen that when increasingM , not only inter-user interference is re-
duced, but also channel gains (diagonal elements) converge to a deterministic value,
in this case, σ2 = 1. In summary, for i.i.d. user channels, when M increases, inter-
user interference vanishes, and simultaneous transmission is potentially achieved
using linear precoding schemes.

2.2.4.1 Gram’s matrix Power Ratio

Gram’s matrix power ratio is the ratio between the intended power for user k and
the total power. It indicates the percentage of received interference from different
users. From the K×K Gram matrix G, the ratio γ(G) for user k can be formulated
as :

γk(G) = |gk,k|2∑K
j=1 |gk,j|2

. (2.23)
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(a) (b)

(c) (d)

Figure 2.5: Gram Product for K = 8 and a) M = 4, b)M = 16, c) M = 32, d)
M = 64 and 1000 observations are considered for the averaging.

This can be further generalized to obtain a single value or matrix power ratio by
averaging over all K users3. Values vary between 1 (very good separation) to 0
(highly correlated users).

2.3 Massive MIMO Channel Model

In order to evaluate the performance of a massive MIMO system, channel models
that reflect propagation characteristics are essential. However, standardized mas-
sive MIMO channel models are still not available. A review of channel model shows
that two main types of channel models are considered: correlation-based stochastic
models and geometry-based stochastic models (2D and 3D). The former regroups

3This should be carefully done to avoid misinterpretation of results due to the averaging process.
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i.i.d. channels and Kronecker-based model and have been used to provide theoretical
performance analysis for massive MIMO. However, its accuracy is limited especially
when modeling non-stationary phenomenon. The latter regroups accurate COST
and WINNER models but at the expense of higher computational complexity. A
thorough survey on massive MIMO channel models is available in [146] and ref-
erences therein. Performance comparison of preliminary massive MIMO channel
models is also available in [147, 148]. In order to evaluate the impact of massive
MIMO channel characteristics on system performance aspects, we will focus on ge-
ometrical channel models, from which massive MIMO correlation properties can be
determined.

2.3.1 Review of Correlation-based Channel Models
Correlated channel models (also referred to as Kronecker-based stochastic models
KBSM) are popular for performance analysis of massive MIMO systems [149]-[150]
due to their simplicity and consideration on spatial correlations. The total correla-
tion matrix is derived using the Kronecker product of the spatial correlation matrices
at both Tx and Rx [133]. However, this model relies on WSS assumption and that
both Tx and Rx correlation matrices are independent which is not always true. The
general system model is presented in Eq. 2.24:

Hkron = R1/2
RxHiidR

1/2
Tx, (2.24)

with RRx, the K ×K Rx correlation matrix and RTx, the M ×M Tx correlation
matrix. This model is suitable for local point-to-point SU-MIMO where RTx is
supposed constant. RTx is generally a Toeplitz matrix defined in LTE [151] for a
4-element ULA as:

RTx =


1 ρ1/9 ρ4/9 ρ
... . . . . . . ...
ρ . . . . . .

 , (2.25)

with ρ the correlation factor for element separation 3λ/2. However, this model is
adapted to specific scenarios and for ULA. As massive MIMO systems are mostly
URA-based, RTx can be determined from canonical geometrical channel models
discussed hereafter.

2.3.2 Geometrical based Propagation Channel Model
The proposed model is based on the Ricean channel model developed for SU-MIMO.
The propagation channel is composed of the sum of two contributions corresponding
to the LOS and NLOS components associated to a plane wave and the sum of
Nray plane waves, respectively. Each plane wave impinging the URA of size Mx ×
My is characterized by its complex amplitude a, angle of arrival (AoA) and delay.
By introducing the Ricean factor for each user k, KRice

k (defined in Sec. 2.2.2.3),
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Hk(Mx,My) can be expressed for the kth user and at frequency f as:

Hk =

√√√√ KRice
k

KRice
k + 1

√
MxMyHLOS,k

‖HLOS,k‖F
+
√

1
KRice
k + 1

√
MxMyHNLOS,k

‖HNLOS,k‖F
. (2.26)

The amplitude of the LOS component is drawn from a Rayleigh distribution. If the
LOS component is normalized to 1, HLOS,k is given by the steering matrix of the
URA whose elements hmx,my(f) are the phases of the plane wave impinging the array
element mx,my with an angle (θ, φ), the phase reference being defined at element
(0, 0):

hLOS
mx,my

(f) = exp
(
−2πj di

λ
[(mx − 1) sin θ cosφ+ (my − 1) sin θ sinφ]

)
. exp (−2πjfτi) . (2.27)

Figure 2.6: Steering vector with elevation θ and azimuth angle φ.

In the proposed geometrical model, θ and φ, the elevation and azimuth angle of
the plane wave, are randomly chosen in a uniform distribution within the interval
[θmin θmax], and [φmin φmax], respectively. These distributions can also be charac-
terized by the elevation and azimuth angular intervals ∆θ and ∆φ, respectively. In
Eq. 2.27, di is the antenna spacing, f the frequency, λ the wavelength and τi is the
absolute delay of the LOS component. The elements of HNLOS,k are easily deduced
from Eq. 2.27 and are given by:

hNLOS
mx,my

(f) =
Nray∑
i=1

aNLOS
i exp

(
−2πj di

λ
[(mx − 1) sin θi cosφi + (my − 1) sin θi sinφi]

)
. exp (−2πjfτi) . (2.28)
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In this formula, aNLOSi is the complex amplitude of the plane wave i, normalized
to the amplitude of the LOS component (chosen equal to 1). In the following, a
vectorization of the Hk matrix is applied, leading to a 1 × M vector with M =
Mx ×My. This approach can be generalized to any number of users K, with the
channel vector corresponding to the kth user: hk = vec(Hk)T . The total massive
MIMO channel is constructed as indicated in Fig. 2.3 after vectorization of all URA
user channel matrices. For K users, K channel vectors are concatenated to form
the K ×M full massive MIMO channel matrix H at frequency f :

H(f) = [h1(f) h2(f) ... hK(f)]. (2.29)

For f = 1, ...,Mf , the full K ×M ×Mf channel can be constructed (normalizing
with respect to frequency as well). This geometrical model can be used to simulate
various scenarios where the users are partly or not, collocated or distributed. Note
that collocated users correspond to the worst scenario due to strong correlation
between users which is still a challenging problem in the context of massive MIMO.
Depending on the geometrical configuration of the environment and on the relative
position of the Tx and Rx antennas to the obstacles, the various parameters in the
model can be adequately tuned as, for example, the interval of the AoA of the waves
impinging Rx, the number of rays and KRice. Note that Nobs channel realizations
can be performed but the subscript is dropped for simplicity. The proposed channel
model was validated using measurements from Ch. 3 and the results are reported in
Appendix D.

2.3.2.1 Special Case: Rayleigh Channel Model

The uncorrelated Rayleigh channel, widely used as a canonical model for massive
MIMO, is obtained from Eq. 2.26 when KRice = 0. This model is attractive because
closed-form expressions can be computed for capacity, bit-error-rate, etc. It can
also be categorized as a NLOS case where the the normalized channel vectors are
uniformly distributed over the unit sphere.

2.3.2.2 Improving Stochastic Models

For MU and massive MIMO setups, each user, depending on its propagation condi-
tion (LOS, NLOS, or obstructed LOS), can have a distinct correlation matrix. To
this purpose, RTx,k for the kth user should be accounted for in the model in Eq. 2.24.
Also, analytical definitions for RRx and RTx are either based on statistical distri-
butions as indicated in [152] or analytical expressions that can be cumbersome. It
appears the best approach to tune stochastic models and improve their accuracy
would be to compute these correlation matrices from the geometrical model. How-
ever, this part is outside the scope of the manuscript.
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2.3.3 Parametric Analysis
Using the established channel model in Eq. 2.26, a parametric analysis is applied
and results validating the proposed approach are presented. To this purpose, two
different aspects of the massive MIMO channel are verified: (1) channel hardening
effect for a SU scenario and (2) favorable propagation condition for a MU setup
using Gram’s matrix power ratio. The different parameters used for each simulation
are listed each time in a table. M , Nray and Nobs are fixed to 100, 13 and 500,
respectively, for all simulations.

2.3.3.1 Channel Hardening

Referring to Eq. 2.26, the effect of KRice is evaluated. Figure 2.7 shows the standard
deviation σ, for K = 1 using different KRice values.

100 101 102

M

10-3

10-2

10-1

100

(|
|h

i||2 /M
)

KRice = 20

KRice = 10

KRice = 6

KRice = -10

i.i.d

(a)

100 101 102

M

10-3

10-2

10-1

100

(|
|h

i||2 /M
)

KRice = 20

KRice = 10

KRice = 6

KRice = -10

i.i.d

(b)

Figure 2.7: Influence of KRice on Channel Hardening for (a) (∆θ,∆φ) = (30o, 30o)
and (b) (∆θ,∆φ) = (60o, 60o).

Table 2.1 summarizes the channel model parameters, the Tx correlation ρTx,3λ/2
being deduced from RTx for an element separation of 3λ/2 and can be found in the
charts in Appendix D.

Table 2.1: Model parameters for channel hardening simulations.

(∆θ,∆φ) KRice ρTx,3λ/2

(30o, 30o) [20 10 6 -10] [0.93, 0.90,0.88,0.67]
(60o, 60o) [20 10 6 -10] [0.85, 0.79 , 0.75, 0.31]

The values of the channel gain standard deviation decrease with M for all cases
indicating channel hardening effect in massive MIMO. For M = 100, the smallest
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value of σ (0.001) is observed for KRice = 20 dB and (∆θ,∆φ) = (30o, 30o). This
value increases with KRice and reaches 0.01 for the i.i.d. case. It also increases when
(∆θ, ∆φ) increases. For KRice = 6 dB, σ = 0.009 when (∆θ, ∆φ) = (30o, 30o) and
σ = 0.015 (higher than i.i.d.) when (∆θ, ∆φ) = (60o, 60o). It can be concluded
that the channel gain standard deviation decreases when KRice increases and thus
when ρTx,3λ/2 increases. This indicates that strong Ricean channels and highly corre-
lated Tx elements are both favorable for channel hardening. This is expected since
strong KRice generally implies a dominant LOS component whose value is more
deterministic than NLOS components, thus generating less variability in channel
gain.

2.3.3.2 Gram’s Power Ratio

The average Gram’s power ratio as a function of the number of antennas M is
presented for different KRice values in Fig. 2.8(a), for different angles in (b) and
compared for LOS, NLOS and mixed LOS/NLOS scenario in (c). Table 2.2 sum-
marizes the channel model parameters for this scenario, the Rx correlation being
deduced from the charts in Appendix D.

Table 2.2: Model parameters for favorable propagation conditions simulation.

K (∆θ,∆φ) KRice ρT x,3λ/2 ρRx

12 (60o, 60o) [10 6 0 -10] [0.8, 0.74, 0.53, 0.31] [0.81,0.69,0.46, 0.26]
12 ([60o, 60o, 30o],[120o, 60o, 30o] ) -10 [0.29, 0.31, 0.59] [0.18, 0.26,0.41]
6/6 60o, 60o [6/-10] 0.73/0.35 0.46

Similarly to channel hardening, increasingM leads to better power ratios. Nonethe-
less, from Fig. 2.8(a) it is observed that for KRice = −10 dB, γ(G) reaches ∼60%
and only ∼20% for KRice = 10 dB. Figure 2.8(b) shows that γ(G) is closer to i.i.d.
(80%) for (∆θ,∆φ) =(60o, 120o) and KRice = −10 dB compared to (∆θ,∆φ) =
(60o, 60o) and (∆θ,∆φ) = (30o, 30o) where γ(G)=60% and 30%, respectively. Also,
when the angular interval increases and KRice decreases, correlation values at both
Tx and Rx are very small, similar to what is generally found in the uncorrelated
i.i.d. case.
These parameters are inter-dependant and affect the general behavior of channel
characteristics. Channels with similar characteristics than i.i.d. (small correlation
values) present higher power ratio values. Finally, from Fig. 2.8, adding UEs with
strong KRice decreases γ(G) (40%) compared to UEs with small KRice (60%) but
larger than scenarios where UEs have strong KRice (25%). As opposed to channel
hardening, favorable propagation condition is mostly satisfied for small KRice and
large angular intervals, meaning more diversity and leading to strong decorrelations
at both Tx and Rx side. This does not mean that channels are either favorable or
harden, since correlated channels with strong KRice still harden without necessarily
having favorable propagation condition and vice-versa.
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Figure 2.8: Impact of (a) KRice and (b) (∆θ,∆φ) on Gram’s power ratio. (c)
Comparison between LOS, NLOS and LOS/NLOS scenarios.

2.4 System Model for DL Massive MIMO
In this section, the widely used system model for DL massive MIMO case stud-
ies is presented. The standard MIMO system model is a special case of massive
MIMO scenario with K = 1 and N the number of receive antennas. Perfect channel
knowledge is assumed for the computation of the capacity of MIMO channels and
sum-rate capacity for MU-cases.
Here, K users with N = 1 are simultaneously served from the M -element array
BS. Let x ∈ CM×1 the transmitted signal vector from the BS antenna array to the
intended K users. The channel can be described as flat-band at each subcarrier or
frequency point. The received signal at user k is given by:

yk = hkx + nk, (2.30)

where yk is the received DL signal for user k, H is the composite K ×M channel
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matrix and hk ∈ C1×M is the kth complex raw vector of H from the M BS antennas
to the kth user. nk is the noise for user k ∼ CN (0, σ2). x contains a precoded
version of the K × 1 data symbol vector (payload symbol) and given by:

x = W
√

Ps, (2.31)

where s is the K × 1 data symbol row vector with unit energy (E{ssH} = 1):

s = [s1, s2, ..., sK ]T . (2.32)

P is a diagonal matrix with elements pk (k = 1, 2, ..K) and describes the transmit
power allocated to a particular user k and depends on the applied strategy discussed
later. W is the M × K precoding matrix formed by the beamforming vectors for
each user W = [w1,w2, ...,wK ] detailed later. W is normalized to satisfy the power
constraint E{xxH} = 1:

W = W̃√
E{tr(W̃W̃H)}

, (2.33)

with W̃ the non-normalized version of W.
It should be noted that when both x and n have unit power, pk can be interpreted
as average transmit signal to noise ratio (SNR). Eq. (2.30) can be rewritten to
explicitly highlight the interference between the different users:

yk = √pkhkwksk +
K∑

i=1, i6=k

√
pihkwisi + nk, (2.34)

The first part of the equation is the desired part of the signal for the kth user and
the second part shows the interference from other users as well as the noise. From
this definition, the system performance metrics such as SINR (signal to interference
and noise ratio) can be defined. A block diagram of the DL massive MIMO system
is provided in Fig. 2.9

2.4.1 System performance: Capacity of MIMO systems

MIMO technology improves the capacity of the communication link without increas-
ing transmission power. Improvements depend largely on the propagation environ-
ment. In a SU scenario, capacity is a useful metric and gives the maximum amount
of data information that can be transmitted as a function of the available band-
width given a power constraint [153]. It is measured in bits/s/Hz or bps/Hz. In the
following, we provide a theoretical background on the capacity of MIMO channels
and then extend the discussion for MU setups and massive MIMO systems.
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Figure 2.9: Block Diagram of the Massive MIMO DL System.

2.4.1.1 Capacity of SU-MIMO

Mutual information capacity between input x and output y is written for a SU-
MIMO system (with N , M receiving and transmitting antennas, respectively as in
[42]:

I(x; y) = log2 det[IN + HQHH] = log2 det[IM + QHHH], (2.35)

where the second equality follows from Sylvester’s determinant identity (det(I +
AB) = det(I + BA)). Q is the M ×M positive definite input covariance matrix
(Tr(Q) = E{xxH} ≤ P ) with x the input signals and P the total transmitted
power. I(x; y) can be referred to as C(H,Q) and will be more simply denoted as
C(H) due to perfect channel knowledge assumption.
In Fig. 2.10, the capacity of H is presented as a function of the SNR for normalized
i.i.d. channels and different N and M values. Here, equal power allocation is used
with MRT (presented later).

2.4.2 Capacity of MU-MIMO

SU-MIMO systems are a special case of MU-MIMO channels where K = 1. In MU
systems, we assume K users with potentially one antenna (N = 1). For this reason,
in MU-MIMO scenarios, the capacity/user, the users mean capacity or the sum-rate
capacity are common used terms. The latter is widely used because it provides an
insight on the total reachable performance for all users in a given scenario. From
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Figure 2.10: (a) C(H) of SISO, MISO, SIMO, 4 × 4 MIMO and (b) C(H) for
different MIMO configurations in i.i.d. channels.

a pure mathematical point of view, Eq. 2.35 is valid for MU and massive MIMO
scenarios. For the K-user case, we consider capacity bounds :

• Capacity bound per user:

Ck ≤ log2

(
1 + pk

σ2
n

‖hk‖2
)
. (2.36)

• Sum-rate capacity

C =
K∑
k=1

Ck ≤ log2 det
(

IK +
K∑
k=1

pk
σ2
n

‖hk‖2
)
. (2.37)

These bounds define the capacity regions for MU-scenarios. In order to reach these
bounds and optimize the overall capacity, power allocation techniques and precoding
schemes (for interference management) are needed.

2.4.2.1 Power Allocation

In order to maximize the sum-capacity, Q should be chosen to maximize I(x; y).
This optimization problem is illustrated as in [154]:

C(H) = max
Q

log2 det[IK + ρHQHH], (2.38)

with Q ≥ 0 and Tr{Q} = 1 here and ρ = P
σ2
n
is the SNR. In a non-optimal equal

power allocation scheme over all transmit antennas M , Q = IM
M
. The sum-capacity

in Eq. 2.38 can be achieved using the dirty-paper coding technique in the DL and
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SIC (successive interference cancellation) for the UL. In order to obtain the optimum
covariance matrix denoted Q̃ the transmission is decoupled along individual channel
modes forming K parallel data streams (or data pipes) in the directions of the
singular vectors of H at both Tx and Rx side. A vital requirement to accomplish
this task is finding the optimal power allocation {p∗1, ..., pmin(K,M)∗} across these
modes and express Q̃ under the following form:

Q̃ = V diag{p̃1, ..., p̃min(K,M)}VH , (2.39)

where V is given by the SVD of H:

H = USVH , (2.40)

and S = diag{σ1, ..., σmin(K,M)}. The diagonal entries of S are the singular values of
H. Also, σ2

k = λk(G) with G = HHH for K > M . Eq. 2.38 becomes:

C(H) = max
pk

min(K,M)∑
k=1

log2[1 + ρpkλk]. (2.41)

Considering optimal power allocation from the power-constrained maximization
given by the waterfilling algorithm [42, 155, 156, 154], Eq. 2.41 can be written
such as:

C(H) =
min(K,M)∑

k=1
log2[1 + ρp̃kλk], (2.42)

with {p̃1, .., p̃min(K,M)}, the vector of optimal power allocation. This technique is
applicable for MIMO systems as well as for MU-MIMO systems. Generally, equal
power allocation is applied when no CSIT is available and waterfilling is possible
only under the assumption of CSIT.

2.4.2.2 Precoding Strategies

Power allocation as mentioned before is important for capacity optimization but not
sufficient when the channel suffers from inter-user interference. Hence, precoding is
a necessary step in a MU setups to separate data streams while minimizing inter-
user interference as much as possible. Different precoders will be discussed in the
next section, their characteristics and particularities. The transmitted signal from
M antennas is a linear combination of the symbols intended to the K users (consists
in a superposition of multiple beams corresponding to multiple data streams using
spatial multiplexing). In the DL, DPC is optimal because it achieves the maximum
sum-rate capacity [157]. However, DPC requires high computational power and
complexity, two factors to avoid when implementing massive MIMO systems. To
that purpose, linear schemes such as Matched Filtering also known as MRT, ZF or
MMSE are used due to their simplicity. Linear detection in the UL is similar to
linear precoding in the DL [158]. A comparison is established in [159].
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2.4.2.3 Maximum-Ratio-Transmission

The objective of MRT is to maximize the receive SNR at each user. It can be
obtained by solving the optimization problem illustrated in [159] and the solution
is given by the Hermitian transpose of the channel matrix:

WMF = HH . (2.43)

This solution shows a maximized receive signal for the kth user, but also the existence
of cross-talk.
• Advantages: simple signal processing, achieves the array gain of a SU system at
low SNR when interference is limited.
• Challenges: Performs poorly when correlation between users is high and should
be treated with caution at high SNR to avoid high inter-user interference.

2.4.2.4 Zero-Forcing

By contrast to MRT, ZF precoder aims at nulling out inter-user interference but
neglects the effect of noise. The optimization problem [157] searches for W that
completely removes cross-talk while maintaining minimum transmit energy. The
solution is the Moore-Penrose pseudoinverse of the channel :

WZF = H† = HH(HHH)−1. (2.44)

This scheme requires that M > K for H to be invertible. A simple example to
understand the ZF operation is illustrated in Fig. 2.11.

Figure 2.11: Exemple of a transmission using ZF for two users.

Consider K = 2 (see Fig. 2.11), the superposition of two data streams gives:

x = w1s1 + w2s2, (2.45)
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and the design goal is to achieve 2 spatial DoF with w1 ⊥ h2 and w2 ⊥ h1.

• Advantages: relatively simple signal processing, works well in interference-limited
scenarios.
• Challenges: ZF ignores noise enhancement problems and may suffer a great power
penalty due to the nulling effect. It also strongly depends on the channel condition-
ing. If the channel is ill-conditioned, the pseudo-inverse can significantly amplify
the noise, degrading the performance. If H has full rank and the Gram matrix
(HHH) is diagonal, pk can be fully used on user signals. When some user channels
are spatially correlated [140, 160], the nulling operation absorbs more energy leaving
little to the user signals.

2.4.2.5 Minimum Mean-Squared Error

ZF is suitable for high SNR scenarios while MRT outperforms ZF at low SNRs.
Across the whole SNR range, a tradeoff is necessary between maximizing signal
strength and reducing interference. MMSE precoding relies on the estimation of
noise covariance at the receiver and feeding it back to the transmitter to help design
a better precoder for the whole SNR range. MMSE is obtained by minimizing
the mean-square error (MSE) between the transmitted and the estimated received
signal. The MMSE solution is given by:

WMMSE = HH(HHH + κ.I)−1, (2.46)

where κ = K.σ2
n

pk
. At very high SNRs, κ = 0 and MMSE converges towards ZF.

When κ → ∞ (i.e. pk is very low), MMSE converges towards MRT. In between,
MMSE outperforms the two methods in terms of sum-rate capacity.

2.4.3 Performance Analysis: Simplified System Model
The computation of the optimal sum capacity is a particularly complex task since
the power allocation needs to be numerically optimized. This clearly indicates the
benefit of the presented linear schemes alongside heuristic strategies such as water-
filling in practice. This is specifically true for massive MIMO systems for which
channel hardening [142] is more pronounced compared to classical MIMO systems.
Taking into account Eq. 2.34, the corresponding signal to interference plus noise
ratio (SINR) for user k is given as the ratio between the desired signal (first part
of the equation) and the cross-talk with noise (second part of the equation) for a
given user k.

SINRk = pk|hkwk|2∑K
i=1, i6=k pi|hkwi|2 + σ2

n

. (2.47)

Note that in this manuscript, the noise is assumed to have unit variance σ2
n, meaning

the noise power is actually taken into account in pk that reflects the SNR. The
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corresponding capacity for user k is:

Ck = log2(1 + SINRk), in bits/s/Hz (2.48)

and the sum-rate in the considered cell or scenario will be:

C =
K∑
k=1

Ck. (2.49)

This definition will be widely used throughout this manuscript for the spectral effi-
ciency evaluation with the different presented precoders.

2.4.3.1 Massive MIMO and Linear Processing

When M increases, the users channels become nearly orthogonal reducing inter-
user interference and as a result, DPC (complex non-linear scheme explained in
Appendix B.1) maximum rates can be approached by using simpler linear schemes
[114]. IfM is very large such that inter-user interference is eliminated, the individual
capacities of K users can be added since all users channels are now interference-
free. In this case, if M is increased for a fixed K, the gain from beamforming is
obtained. If K is also increased the gain from spatial multiplexing appears. Clearly,
the largest gains in terms of spectral efficiency come from spatial multiplexing but
increasingM is necessary to facilitate spatial multiplexing by eliminating or at least
reducing the denominator in Eq. 2.47. This discussion implicitly assumes full digital
beamforming. Analog or hybrid beamforming schemes may achieve most of the array
gain for K = 1 but they are less efficient than digital beamforming when spatial
multiplexing is considered.

2.5 Sum-Rate Capacity Results
For the evaluation of the sum-rate capacity, we consider the simplified system model
in Sec. 2.4 with the geometrical channel model in Sec. 2.3. First, we evaluate the
performance of massive MIMO for i.i.d. channels, then a parametric analysis on the
geometrical model is performed to assess and quantify the impact of main propaga-
tion parameters (KRice, ρRx, etc.) on the system performance.

2.5.1 Performance in i.i.d. Channels

First, the i.i.d. case is considered for KRice = 0. The sum-rate capacity is repre-
sented first in Fig. 2.12(a) as a function of the SNR forK = 12 and a relatively small
number of antennas (M = 12) and in (b) for M = 32. The goal of this representa-
tion is to underline the actual effect of the precoding strategy on the performance
[158, 161].
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Figure 2.12: Comparison between MRT, ZF and MMSE for K = 12 and (a)
M = 12 and (b) M = 32.

To this purpose, we consider small numbers of antennas at Tx side to isolate the
performance of linear precoders from the effect of massive MIMO when M is large
with respect to K. It can be seen that MRT is better than ZF at low SNR when
the number of antennas is not so-large (M = 12). Also, MMSE is proven to be a
more versatile scheme combining the benefits of both schemes at high and low SNRs.
From Fig. 2.12(b), the number of antennas is larger than the number of users, the
massive MIMO regime kicks in and ZF performs equally well even at low SNRs
and behaves similarly to MMSE as opposed to (a). The sum-rate capacity is then
illustrated for a wide range of K values and SNR for MRT and ZF in Fig. 2.13.

(a) (b)

Figure 2.13: Massive MIMO SE for (a) MRT (b) ZF.

Here, M= 100 antennas, Nobs = 5000, SNR values ranging from -10 to 10 dB with
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unit variance noise, and waterfilling power allocation is considered. From this figure,
it can be seen that ZF can achieve higher sum-rates but is limited by the number
of users (60 here), whereas the MRT curve increases with SNR and K. The SE in-
creases with SNR but the performance is not only limited by this factor, especially
for ZF. For higher SNRs, the maximum number of users before the drop in SE will
eventually increase. It is also verified that MRT performs better at low SNR than
ZF for a large number of users.

This is observed in Fig. 2.14 presenting a comparison of the three schemes for SNR =
0 dB in (a) and 10 dB in (b).
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Figure 2.14: Massive MIMO SE for (a) 0 dB (b) 10 dB.

MMSE performs slightly better than ZF, and both better than MRT with a limited
number of users. Here, we only considered 100 antennas at Tx side, taking more
elements will yield to better SEs and more served users for ZF and MMSE. We
consider the number of accommodated users for a given SNR as the deflection
point (where degradation begins) for the corresponding scheme. At this point, users
should be dropped or multiplexed using other resource than space.

2.5.2 Parametric Analysis with the Geometrical Model

Studies addressing the influence of KRice on the achievable rates of a DL massive
MIMO system are scarce in the literature. In [162], the achievable sum-rate and
energy efficiency of ZF for Ricean fading channels is studied and it was found that
for a ULA, with the increase of KRice, the performance of the system is reduced,
the number of needed antennas M at the BS increases and the number of users K
decreases. This paper also states that optimal power allocation scheme follows the
waterfilling principle and that the average sum-rate can be increased in the presence
of strong LOS effect in the low SNR regime. However, this model does not take
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into account local mechanisms such as correlation. In [163], the authors identify
scenarios under which massive MIMO would potentially fail in Ricean channels and
are identified by non-vanishing alignment between LOS channel vectors. Taking the
model in Sec. 2.3, the massive MIMO channels are evaluated. The same scenarios
than for Fig. 2.8(a) are considered. The system performance is evaluated from a
parametric analysis on K, KRice, ρRx and ρTx,3λ/2, the last three parameters being
inter-dependant as discussed from the Gram’s power ratio analysis. K is varied from
1 to 100, the purpose being to quantify the limits of massive MIMO for different
precoding strategies. In real scenarios, trying to serve 100 users with 100 antennas
is practically impossible. In Fig. 2.15, the sum-rate is presented as a function of K
for three precoding schemes: (a) MRT, (b) ZF and (c) MMSE. The SNR is 20 dB
in this case. The different curves represent the different KRice values.
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Figure 2.15: The sum-rate capacity as a function of K: impact of KRice. (a)
MRT, (b) ZF and (c) MMSE.

It can be observed from this figure with KRice = 10 dB that the maximum value
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reached by MRT, ZF and MMSE is 5, 150 and 155 bps/Hz, respectively. The
high correlation imposed by high KRice renders the use of MRT ineffective. ZF
and MMSE precoding schemes both have extremum points corresponding to the
maximum number of users simultaneously served before performance degradation
(42 for ZF and 45 for MMSE). For small KRice values (-10 dB), the number of users
increases to 56 (ZF) and 58 (MMSE). MRT exhibits better sum-rate values for
small KRice values: ∼45 bps/Hz for K = 100 and KRice = −10 dB compared to ∼9
bps/Hz for K = 100 and KRice = 6 dB. This figure highlights the impact of strong
Ricean channels that limits the spectral efficiency of massive MIMO. Strong KRice

leads to high ρRx and ρTx,3λ/2 values, thus highlighting the influence of correlation
on wireless systems. Nonetheless, it should be indicated that the considered cases
are extreme and with the sole purpose of showing the limits of linear precoding.
Figure 2.16 presents the sum-rate as a function of K for (a) MRT and (b) ZF. The
different curves are obtained by varying ∆θ and ∆φ (values chosen from the charts
in Appendix D) in order to obtain the different ρRx values: 0.2, 0,4, 0.6 and 0.8.
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Figure 2.16: Impact of correlation on the sum-rate capacity for KRice = −10 dB
as a function of K. 4 configurations of the geometrical model are considered giving
correlation values ranging from 0.2 to 0.8. (a) for MRT and (b) for ZF.

It can be seen from this figure that for large values of ρRx (subsequently ρTx,3λ/2 as
observed in Table 2.2), and for a fixedKRice (-10 dB in this case), a clear degradation
in the sum-rate results is observed. For ρRx = 0.2, 56 users can be served using ZF
with ∼275 bps/Hz sum-rate capacity, while for ρRx = 0.8 only 10 users can be served
with ∼55 bps/Hz. Same observation for MRT where the sum-rate capacity drops
from ∼45 bps/Hz to ∼8 bps/Hz when ρRx = 0.8. Note that ρRx is an average spatial
correlation thus reflecting the average correlation in the geometrical-based model.
It can be concluded from this analysis, that (1) ρRx, ρTx,3λ/2 and KRice can heavily
affect the overall performance of the system. If ρRx = 1(worst-case scenario, does
not exist), the channels are ill-conditioned and all precoding schemes fail. For very
small ρRx, it is the i.i.d. case.
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2.6 Conclusion
In this chapter, a review of SISO wireless propagation channels is presented. The
characteristics of wireless channels are extended to a massive MIMO system. The
latter have specific propagation characteristics and its main advantages depend on
favorable propagation conditions and channel hardening. A geometrical-based mas-
sive MIMO channel model is proposed and validated with the corresponding chan-
nel metrics. KRice and channel correlation properties are shown to be crucial for
massive MIMO channel characterization. Finally, in order to quantify the system
performance of massive MIMO, a thorough review of precoding strategies and power
allocation schemes is presented. The performance of i.i.d. channels is evaluated and
a parametric analysis on the sum-rate capacity using the proposed massive MIMO
channel model is presented. It confirms the importance of channel characteristics
(KRice, Tx and Rx correlation) when evaluating the sum-rate capacity of a massive
MIMO system.

2.7 Summary of Key Points
• For massive MIMO systems, propagation conditions are approximately considered
as favorable if the channel responses hk for k = 1, 2, ..., K are nearly orthogonal
(pairwise).
• Massive MIMO systems increase systems reliability due to channel hardening.
• Massive MIMO is not pencil beamforming. It is a high-resolution version of multi-
user MISO with multiple streams to be multiplexed in the space dimension.
• Channel hardening and favorable propagation condition largely depend on KRice

and correlation properties at both Tx and Rx side.
• Linear precoding schemes are affected by correlation characteristics of Rx or Tx.
• ZF and MMSE achieve very high SE, but are limited with the number of users for
a given number of array elements. The maximum number of users is determined by
the corresponding KRice and correlation characteristics at Tx and Rx.
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Chapter 3
Polarimetric Massive MIMO Channel
Measurements in an Industry 4.0

3.1 Introduction: Industry 4.0
M2M communication systems consist in a large number of separately organized de-
vices connected through a network and can be used in different applications such
as industrial automation, health care, logistics and electricity grids [164]. The re-
quirements are many and include increase in flexibility, predictive maintenance of
machines, versatility and significant increase in efficiency of warehousing and supply
chain. ETSI, IEEE and 3GPP have confirmed the need to support increasing number
of M2M communications in LTE [165]. 5G should be able to support the connec-
tivity requirements in automation cells, and provide ultra-reliability with ultra-low
latency (mMTC and URLLC).
From this, it is expected that 5G wireless networks will benefit the industrial automa-
tion community in the frame of Industry 4.0 [18]. More specifically, new technologies
such as massive MIMO (for instance a massive MIMO AP inside an automated in-
dustry), make it possible to gather and analyze data across a big number of machines
because of its capability of accommodating a large number of user equipments (UEs).
A study in [166] on analytical correlated Nakagami-m fading channels demonstrated
that the achieved gain with polarization diversity can be significant despite losses
due to cross-polarizations. Nonetheless, massive MIMO measurements in industrial
scenarios are scarce and no polarimetric studies that could help in the choice of an-
tenna arrays in such environments were reported. Also, no capacity analysis using
linear precoding schemes was performed to assess the impact of cross-polarization
on massive MIMO performance for potential mMTC. For example, it is of interest to
see whether the MRT precoder can be a contender for the discussed configurations,
especially in scenarios from Industry 4.0 [167, 168] where data packets contain small
payloads (in the range of bytes to kilobytes) [169, 170]. In these cases, nearly opti-
mal precoders like ZF can be replaced by simpler ones like MRT. Also, the benefit
of using dual-polarized antenna arrays should be evaluated for Industry 4.0.
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Figure 3.1: Example of an Industry 4.0 automation cell.

Chapter Outline

As indicated in Ch. 1, sub-6GHz bands are crucial to support most 5G scenarios [26].
Three different frequency bands were considered in this study: 1.35, 3.5 and 6 GHz.
The organization of this chapter is as follows: after a thorough literature review of
sounding techniques and channel measurements in Sec. 3.2, the experimental setup
and geometrical configuration of the industrial experiments are presented in Sec. 3.3
and 3.4, respectively. The different propagation parameters are presented in Sec. 3.5
and used to classify the different UEs. The impact of cross-polarization is evaluated
using propagation and system-based metrics such as the Gram’s power ratio and
sum-rate capacity in Sec. 3.6. Finally, before concluding in Sec. 3.8, a communi-
cation strategy exploiting polarization diversity is proposed and its performance is
evaluated in Sec. 3.7.

3.2 Review of Massive MIMO Channel Charac-
terization

During the last 6 years, many massive MIMO channel characterization results have
been published in several frequency bands and for different use-cases and scenarios.
On one hand, the objectives are to develop accurate and realistic massive MIMO
channel models, and on the other hand, to quantify the massive MIMO gain under
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many constraints and using propagation and system-oriented metrics. In order to
establish realistic channel models, channel measurements are essential. A survey on
5G channel measurements and models can be found in [171, 146] and some channel
measurement settings and characteristics are presented in Table 3.1.

3.2.1 Sounding Techniques
Three main measurement techniques are considered:
• Fully physical real-time massive MIMO system (denoted R in Table 3.1) with an
M -element array (can be rectangular Mx ×My or other). This is the sole method
to allow dynamic real-time channel measurements. It is also a costly approach
especially if each radiating element is connected to an independent RF chain.
• Virtual Array Measurements (denoted V in Table 3.1) where anM -element array is
constructed by positioning one antenna element over different X and Y coordinates.
This forms a virtual massive MIMO array where mutual coupling and RF chains
imperfections are overlooked. The main drawback is the time spent to span all the
elements position.
• Hybrid Virtual Array where an M -element URA is constituted by positioning
one vertical ULA over different horizontal coordinates. This approach is a trade-off
between full physical arrays and virtual sounding techniques and is proposed and
exploited [152] in J2 from the list of publications. Note that both virtual and hybrid
virtual setups are not adequate for dynamic real-time measurements.

3.2.2 Review of Main Results
Here, a summary of main findings from different measurement campaigns are listed
in Table 3.1:

Non-stationarity of channel parameters

One essential factor for massive MIMO arrays is the power variation across antenna
elements analyzed in [77, 78]. A massive Tx array with large aperture and a large
number of elements could experience spatial variability due to cluster visibility re-
gions at the BS side [137]. Non-stationarity also occurs in delay and spatial domain
over the large array size [192]. In [179], the authors indicate that channel param-
eters appear stationary at high frequencies over the linear array but not at low
frequencies, basically due to stronger MPC at these frequencies.

Users orthogonality and channel hardening

The condition number (ratio between largest and smallest singular value) was shown
to be a good indicator on the orthogonality between users [77, 185, 178]. It also
depicts the channel hardening effect [141, 142].
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Table 3.1: Advances in massive MIMO Channel Measurements.

Sc. F
(GHz)

Array Size (Setup) V or R Channel Parameters Ref.

O
ut

do
or

2.6 128 ULA/UCA (LOS-
NLOS)

V/R SE/Spatial Fingerprints-
Condition Number WSS

[77,
172]

2.6 128 UCA (LOS) R Spatial Separation [78]
44 48 URA (LOS) R ABF-AoD/AoA-Capacity [173]
3.7 100 URA R Reciprocity Calibration-

Coupling
[174]

3.7 100 URA R Signal Constellation-Design
Parameters

[69]

2.59 64 URA/ULA R SNR-Correlation Coefficient [175]
15 40 × 40 URA (LOS-

NLOS)
V KRice/Spatial stationary

clusters
[79]

5.2 64 URA (UMa) V Power, Signal-to Interference
ratio

[176]

2.53 Switched UCA (Urban) V Cluster Statistics/EoD-EoA [177]
3.5-
2.35

URA/UCA (UMi) R Eigenvalues-Capacity statis-
tics

[178]

1.47 128 ULA (Stadium) V APS [179]

In
do

or

2-4-6 128 ULA V PathLoss (PL)/τrms/Bcoh [180]
26 ULA/URA V PL/Shadow Fading

τrms/Bcoh

[181]

94 50× 50- URA V KRice/MPC-Rx,Tx Correla-
tion

[182]

13-17 20× 20 URA (Hall) V KRice/τrms [183]
5.8 64 URA/ULA (Mall) V Singular-value-spread (SVS)/

Frequency-Dependency
[184]

4.1 64 URA R SVS/Capacity-Coupling Ma-
trix

[185]

11 64 URA (Lobby) V Power,Non-Stationnary
Properties

[186]

11-
16/28-
38

Up to 121× 121- ULA V AAS/EAS/τrms [187]

1.35 96 URA Hybrid Spatial Correlation
XPD,KRice

[152]

O
2I

2.53 Switched UCA V Az. and El. spread statis-
tics/SE

[188]

6 32 URA Tx/56 UCA Rx R Angular-delay spread-
Capacity statistics

[189,
190]

Ind. 1.35-
3.5-6

100 URA V Spatial Correlation-
Polarization Diversity-
Sum-rate

[191]
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In [175], the authors report that a horizontal arrangement appears more suitable for
massive MIMO and yields to low correlation values among the considered positions.
Spatial separation and interference reduction between closely-located users is high-
lighted to be possible in [78] using singular value spread analysis. The capacity of
massive MIMO to separate users is also explored for an anechoic chamber and an
indoor corridor at 2.6 GHz in [193]. In [194], massive MIMO channel performance
for close users in urban macro-cell scenario is evaluated using three kinds of channel
models: i.i.d., GSM, and physical ray-based software.

Spectral and Energy efficiency

Large gains in spectral efficiency, using sum-rate capacity analysis and power allo-
cation schemes, are achieved with massive MIMO [77, 124]. Energy efficiency based
on consumption analysis and hardware impairments was also shown to be of great
benefit for massive MIMO systems [65]. Optimal designs for MU setups with mas-
sive antenna arrays using linear precoding and heuristic power allocation techniques
are discussed in [82]. Nonetheless, no polarimetric massive MIMO measurements
in industrial scenarios have been reported. Moreover, the impact of dual-polarized
arrays and the potential of polarization diversity strategies have not been addressed
for industrial setups.

3.3 Experimental Setup
In this section, the experimental setup of an industrial environment in a concrete
lab is presented and the radio channel sounding procedure is explained.

3.3.1 Radio Channel Sounding
Radio Channel sounding measurements were performed in the frequency domain
using a vector network analyzer (VNA - Agilent E5071C), the virtual array acting as
a transmitter (see parameters in Table 3.2). The VNA being situated in the vicinity
of Tx, a 500-m optical fibers link was deployed for connecting Rx with optical/radio
frequency interfaces. A power amplifier is used at Tx side with output gain of 47
dB allowing an output power of 1 W, and a LNA of 31 dB gain is inserted at the
receiver end. The S21 scattering parameter of the VNA was calibrated by taking
into account the cabling (cables, fiber optics, transducers) and the LNA as well. The
power amplifier was separately characterized, allowing subsequent correction of the
measured S21 values. The Tx array is a virtual URA1 (see Fig. 3.2). The positioning
system of the moving Tx antenna is controlled through a fiber optics link with a
dedicated LabView program installed on a Windows PC. The spatial step and thus
the antenna spacing of the virtual array is 0.5λ, with λ the wavelength for each

1Vertical dimension along the z axis and horizontal dimension alongside x axis. The longitudinal
axis of the hall is along y.
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studied central frequency. The different sounding parameters and characteristics of
the Tx array are listed in Table 3.2. The mean height above ground being 6.5 m,
Tx has a dominant view over the hall as it can be seen in Fig. 3.4(a).

Table 3.2: Radio Channel Sounding Parameters and different Tx array dimensions.
V
N
A

Frequencies 1.35, 3.5 and 6 GHz
Span Bandwidth 80 MHz

Resolution 12.5 ns
Maximum resolvable path 3.75 m

Number of frequency points Mf 819
Number of observations Nobs 20

Power Amplifier 47 dB
LNA Gain 31 dB
Tx Power 3 dBm

Fiber/Cables Loss 30 dB
Resolution BW 70 KHz
Dynamic range 120 dB

T
x
ar
ra
y URA dimension 1.35 GHz 4× 10

Tx spacing 10 cm
URA dimension 3.5 GHz 10× 10

Tx spacing 3.86 cm
URA dimension 6 GHz 10× 10

Tx spacing 2.25 cm
Tx Height 6.5 m
Rx Height 1.6 m

3.3.2 Antennas
Identical mono-polarized patch antennas were used for F = 3.5 and 6 GHz with a
80 MHz bandwidth and manually rotated to get both polarizations. The antennas
at 1.35 Hz are dual-polarized as indicated in Fig. 3.3. These antennas operate at the
studied center frequencies with ∼80 degrees half-power beamwidth, both in azimuth
and elevation and an average 7 dBi gain with typical nominal VSWR ≤ 2 in the
band of interest. Main parameters of the antennas are presented in Table 3.3. The
bandwidth is computed for a scattering parameter S11 < −6 dB. The radiating
pattern and detailed characteristics of the antennas can be found in Appendix E.
V and H polarization were applied only at the Tx level since, from a practical point
of view, the complexity of switching polarizations is reported at the Tx side for a
massive MIMO system.
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Figure 3.2: Schematic of the created URA for 1.35, 3.5 and 6 GHz.

Figure 3.3: Schematic of the dual-polarized patch antenna at 1.35 GHz.

Table 3.3: Main Parameters of the antennas.

Frequency (GHz) BW (MHz) Patch Gain (dBi) V/H Rejection (dB)
1.35 >80 7 18
3.5 59 6.4 30
6 >80 6.3 30
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3.4 Geometrical Configuration of the Experiments
The propagation environment is a large industrial hall located in Technologiepark-
Zwijnaarde, Belgium. The 21.3×77.2×12.2 m3 hall is a research lab dedicated for
testing the robustness of concrete structures. The dominant building material for
walls, floor, and ceiling is concrete. The windows are located near the ceiling and a
large metallic industrial door which was closed during the measurements is located
at the end of the hall. Large metallic machines and measurement tools can be found
in the environment, typical for automation cells in Industry 4.0. In Fig. 3.4(a), a
panoramic view from the Tx array is shown.

3.4.1 Multi-User Setup
The massive MIMO scenario consists in a MU2 setup wherein a number of single
antenna UEs are distributed in the industrial hall as illustrated in Fig. 3.4(b). The
machines distributed in the hall and which act as reflectors or can block the direct
path between Tx and Rx are not indicated in the schematic. The positions of the
different users3 were selected to cover most of the practical configuration: LOS,
strong metallic surrounding the receiving antenna as seen in Fig. 3.5(a), totally
obstructed in (b), concrete structures around the UE in (c), and visible LOS UE
(partially obstructed by a measurement system) in (d).

3.4.2 General Notations

3.4.2.1 Polarimetric Massive MIMO Channel Matrix

In practice, the transfer matrices were measured by successively moving an Rx an-
tenna from one position to another one, its height remaining constant. For each UE
position k, Tx antenna m and polarization link ψ, the wideband complex channel
transfer function hk,m,ψ(f) ∈ C1×Mf is obtained from the S21 scattering parameter,
where k = 1, 2, ..., K, m = 1, 2, ...,M , and Mf is the total number of frequency
points, respectively. Note that M = Mx ×My, but vectorized in order to simplify
representations and notations. ψ can be either co-polar VV or cross-polar HV, the
first letter denoting Tx polarization and the second Rx polarization. The polarimet-
ric massive MIMO channel matrix Hψ ∈ CK×M×Mf is constructed from hk,m,ψ for
all possible k and m values.

2User or UE notations are both used to indicate a receiver with one Rx antenna.
3For all UEs, Tx and Rx antennas are always facing each other. The radiating patterns are

parallel between the Tx and Rx antennas.

96



Chapter 3. Polarimetric Massive MIMO Channel Measurements in an Industry 4.0

(a)

(b)

Figure 3.4: a) Panoramic view of the industrial hall from the Tx point of view and
b) Schematic from above of the distributed setup.
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(a) (b)

(c) (d)

Figure 3.5: Example of UE positions with metallic structures UE8 (a), totally
obstructed UE11 (b), with concrete surroundings UE12 (c) and visible LOS UE5
(d).
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Channel Normalization

For sum-rate capacity analysis, channel normalization is carefully applied to keep
the imbalance between both polarizations. Consider Hk the kth M ×Mf channel
matrix, then the normalization is as follows:

Hn
k,V V =

√
MMf Hk,V V

||Hk,V V ||F
and Hn

k,HV =

√
MMf Hk,HV

||Hk,V V ||F
. (3.1)

3.5 Propagation Channel Characteristics

3.5.1 Channel Transfer Function: Example
Figure 3.6 presents the co- and cross- |hk,m,ψ(f)|2 for positions k = 1 (strong LOS)
and k = 8 (high metal concentration around the UE, NLOS) for one Tx-Rx link to
highlight the particularity of these type of environments.
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Figure 3.6: |h1,50,ψ(f)|2 and |h8,50,ψ(f)|2 for co- and cross-polarization links.

Indeed, the LOS scenario exhibits a co-polarized flat frequency channel whereas
deep frequency fading occurs for co-polarized NLOS channel. In both cases, cross-
polarized channels are frequency selective and their relative gain with respect to
co-polarized channel is larger in NLOS than in LOS.

3.5.2 Average Received Gain
The median value of the LOS experimental gain at 26 m reference distance at 1.35
GHz is observed to be in agreement with the theoretical values estimated with the
Friis equation as shown in Table 3.4. At the same reference distance, UE11 in NLOS
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scenario exhibits additional losses of ∼18.7 dB, whatever the frequencies. However,
the relative NLOS additional losses at 3.5 GHz with respect to 1.35 GHz is 31
dB. This highlights the advantage of using lower frequency bands for deep indoor
coverage.

Table 3.4: Experimental Vs Theoretical Friis Gain and NLOS relative gain to UE
1 for the three frequencies.

F (GHz) LOS Experimen-
tal Gain (dB)

Theoretical Gain
(dB)

NLOS Addi-
tional Losses
(dB)

Relative NLOS
Additional
Losses (dB)

1.35 -50.2 -51.3 18.7 18.7
3.5 -62.9 -60.2 18.3 31
6 -65.9 -64.3 18.8 34.5

The average received gain as a function of the different discrete Tx-Rx distances
(of the UEs) in co-polarization over all Tx elements is presented in Fig. 3.7(a,c,e)
for 1.35, 3.5 and 6 GHz, respectively. In Fig. 3.7(b,d,f), a boxplot of the received
gain is illustrated for both polarizations. The central mark is the median over the
Tx antennas, the edges are the 25th and 75th percentiles. The whiskers extend to
the most extreme data points (but not considered as outliers) and the outliers are
plotted individually using red crosses.
From Fig. 3.7, gain variations across the Tx array4 can reach large values. Looking
in detail at UE 3 at 1.35 GHz, large fading of more or less 10 dB depth occurs on
∼50% of the array elements which highlights spatial variability across the array.
This variability is particularly true for 1.35 GHz for which the large array size gives
rise to different fading statistics. Similar observations were reported in [172].

3.5.3 Coherence BW, Ricean factor and Tx Correlation
Propagation channel characteristics such as the coherence bandwidth (Bc,0.7), esti-
mated Ricean factor (using MLE from Matlab toolbox) and Tx correlation can be
jointly used to classify the UEs, and without prior knowledge of their actual po-
sitions, according to distinct scenarios: LOS, NLOS or OLOS. This is particularly
of interest when studying multiple UE positions in order to understand the impact
of propagation conditions on the overall performance of the system. The median
values of Bc (the subscript 0.7 is omitted), KRice and ρTx are presented for all UEs
positions in Fig. 3.8(a), (b) and (c), respectively.
Some notable conclusions can be drawn from this figure: (1) apart from some
exceptions, Bc, KRice and ρTx are similar for the three frequencies and do not appear
to be frequency-dependant, (2) nonetheless, Rx 3 presents the lowest median value
of Bc, KRice at 1.35 GHz, which can be explained by the physical size of the Tx

4Note that the first 10 elements of the M dimension designate the first column or vertical
dimension of the URA.
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Figure 3.7: The average received gain in co-polarization scheme for all UEs across
the Tx array at (a) 1.35 GHz, (c) 3.5 GHz, (e) 6 GHz and the boxplot of average
received gain in both polarizations displaying gain variations at (b) 1.35 GHz, (d)
3.5 GHz, (f) 6 GHz.
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Figure 3.8: The median values of Bc,0.7 (a), KRice(b) and ρTx(c) for the three
studied frequency bands.

array for which different fading statistics occur showing lower Bc and KRice, (3)
Rx 12 and 13 appear to have completely different behavior for the three different
frequency bands with higher Bc and KRice at higher frequencies. This observation
suggests that the classification is not necessarily the same at different frequencies
and will eventually depend on the Tx array size. On another note, KRice has larger
variations than Bc and ρTx across the UEs. In fact, KRice is an estimation of the real
Ricean factor as already discussed and can be subject to some inaccuracies. Hence,
we have decided to use Bc and ρTx for the initial classification, and if needed, refine
the results with KRice.

3.5.4 Classification
It appears from the previous analysis that the presented channel parameters are
correlated and can, therefore, be thus used to obtain a relatively precise classification
of the different positions. Using a rule of thumb, a LOS scenario consists in selecting
UEs having Bc median values higher than 40 MHz, relatively high KRice (≥ 6 dB)
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and ρTx (around 0.95). Other UEs can be considered as either NLOS or OLOS.
Figure 3.9 presents a scatter plot of Bc and ρTx for the three studied frequencies.
This plot supports the claim that these two parameters are correlated and it is then
possible to jointly consider the Bc and Tx correlation values to create specific groups
of UEs.

(a) (b)

(c)

Figure 3.9: Classification of UEs with a scatter plot of Bc and ρTx for (a) 1.35
GHz, (b) 3.5 GHz, (c) 6 GHz.

This classification indicates that some UEs are “in-between” these two scenarios (at
1.35 and 3.5 GHz) and are probably considered as OLOS such as UE 3. These UEs
share LOS (relatively high ρTx) and NLOS properties (relatively lower Bc). In order
to classify these UEs, the Ricean factor is used: it is considered that a UE in OLOS
condition having KRice < 3 dB will be considered as NLOS.
As already stated, the proposed classification is different for the three frequencies.
One particularity for 6 GHz is the existence of more LOS UEs than 1.35 and 3.5
GHz. This is due to the small distance spanned by the 6 GHz array, meaning lower
probability of obstruction. The different results in this section were confronted and
validated with the map of UEs positions. Table 3.5 presents the standard deviation
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and mean values across the Tx array for a LOS UE 1, OLOS UE 3 and NLOS UE
11. Bc and KRice values are in MHz and dB, respectively.

Table 3.5: Statistics of key channel parameters over the Tx array at the studied
frequencies for LOS UE 1, OLOS UE 3 and NLOS UE 11.

1.35 GHz 3.5 GHz 6 GHz
LOS OLOS NLOS LOS OLOS NLOS LOS OLOS NLOS

Bc
Mean 39.2 16.1 3.8 37.8 19.7 3.5 35.4 23.4 8.2
σ 4.5 15.4 2.4 6.7 11.5 1.2 3.5 13.4 7.5

KRice Mean 8.6 2.3 0.3 8 3 0.9 7.9 4.2 1.9
σ 2.1 3.5 0.6 3 3 1.4 4.1 3 2.1

ρT x
Mean 0.96 0.8 0.61 0.95 0.85 0.67 0.93 0.88 0.71
σ 0.04 0.18 0.22 0.04 0.16 0.22 0.06 0.13 0.2

3.5.5 Selected Scenarios
Three distinct scenarios can be defined for 3.5 and 1.35 GHz:
• LOS Scenario: UEs 1, 2, 4, 5, 6 and 7.
• NLOS Scenario: UEs 3, 8, 9, 10, 11, 12, 13, 14 and 15.
• Total Scenario: All UEs.

And for 6 GHz:
• LOS Scenario: UEs 1, 2, 4, 5, 6, 7, 12 and 13.
• NLOS Scenario: UEs 8, 9, 10, 11, 14 and 15.
• Total Scenario: All UEs.

3.5.6 Parameter Cross-Correlation
The inter-dependence of channel parameters can be evaluated through a cross-
correlation analysis as indicated in The WINNER II channel model [195]. The
correlation between ρTx, KRice and Bc is computed and the median value is pre-
sented in Table 3.6. OLOS and NLOS UEs were regrouped for this analysis.

Table 3.6: Cross-correlation between channel parameters.

1.35 GHz 3.5 GHz 6 GHz
LOS NLOS LOS NLOS LOS NLOS

Bc −KRice 0.88 0.46 0.91 0.75 0.95 0.88
Bc − ρT x 0.80 0.44 0.84 0.72 0.85 0.84
KRice − ρT x 0.78 0.41 0.82 0.69 0.87 0.8
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The correlation between Bc and KRice slowly increases in the LOS scenario from
0.88 at 1.35 GHz to 0.95 at 6 GHz. However, with NLOS, the correlation between
these parameters significantly increases from 0.46 at 1.35 GHz to 0.75 and 0.88 at 3.5
and 6 GHz, respectively. The same conclusion holds for the correlation of Bc with
KRice and KRice with ρTx. In conclusion, even though Bc, KRice and ρTx are not
frequency-dependent, the correlation of these parameters is observed to be clearly
frequency-dependent since its value increases from 1.35 to 6 GHz, notably for NLOS
conditions.

3.5.7 Polarimetric Channel Characteristics
Depolarization effects, illustrated by the XPD, are insightful for polarimetric chan-
nel analysis, especially in industrial scenarios where UEs experience different prop-
agation environments. An XPD analysis helps predicting the potential impact of
cross-polarization, especially on UEs correlation. This will be further detailed when
analyzing favorable propagation conditions. From the previous classification and
the average received gain, it is possible to deduce the XPD (defined in 2.2.2.2 from
Ch. 2) variation across the Tx array and UE positions. To this purpose, we present
in Fig. 3.10 the CDF of the XPD for 2 UEs: UE1 (LOS), UE11 (NLOS) at the three
frequencies: (a) 1.35 GHz, (b) 3.5 GHz and (c) 6 GHz.
The observed values are well below the V/H rejection limit measured in an anechoic
chamber. One interesting point is that the XPD values spread over the Tx antennas,
showing that polarimetric channel characteristic also have spatial variability over the
Tx array. The median values for the NLOS UE are 4.1, 7.1 and 10 dB for 1.35, 3.5
and 6 GHz, respectively, indicating that depolarization effects are more dominant at
1.35 GHz. Compared to the LOS UE with median XPD > 10 dB for all frequencies,
it can be seen that channels stay strongly polarized in LOS conditions. Table 3.7
presents the median value of the XPD distribution over the Tx array for the three
different frequency bands. In this table, all LOS and NLOS UEs are regrouped since
similar behavior was observed.

Table 3.7: Median XPD value at the three frequencies for LOS and NLOS scenar-
ios.

XPD (dB)
Frequency LOS NLOS
1.35 GHz 12.6 7.3
3.5 GHz 15.5 10.1
6 GHz 13.9 10.5

The median XPD value at 6 GHz for LOS UEs is smaller than at 3.5 GHz but
higher than at 1.35 GHz. The XPD median value for both LOS and NLOS scenarios
increases with frequency for the NLOS scenario indicating less depolarization effects
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Figure 3.10: CDF of the XPD factor for LOS (UE 1), NLOS (UE 11) at (a) 1.35
GHz, (b) 3.5 GHz and (c) 6 GHz.

at higher frequencies as observed for UE 11. In the rest of this chapter, we are
interested in the 3.5 GHz frequency, a potential band for indutrial IOT.

3.6 Massive MIMO System Evaluation

In this section, key parameters for the evaluation of the massive MIMO system
are presented. The two pillars of massive MIMO are first illustrated using receiver
spatial correlation for the favorable propagation condition and the variance of the
average channel gain for channel hardening. The Gram’s power ratio is used to
evaluate the percentage of the total energy that is focused to the intended user.
However, this ratio does not take into account the cross-polarization losses, precod-
ing and power allocation schemes. This is achieved with the sum-rate capacity.

106



Chapter 3. Polarimetric Massive MIMO Channel Measurements in an Industry 4.0

3.6.1 Does Channel Hardening hold ?
When increasing M , variations of the user channel gain decrease and result in chan-
nel hardening. The definition in Ch. 2 (Eq. 2.22) is adequate for asymptotic analysis
but for practical purposes, it is of interest to evaluate, for a limited number of an-
tennas, how close to asymptotic channel hardening it can get. By using a simple
criterion based on the Chebyshev inequality, we use the definition in [123, 141] to
evaluate channel hardening for a particular propagation environment, illustrated by
V{‖hk‖2}

(E{‖hk‖2})2 with V{x}the variance of x . This expression almost surely converges to
0 when M →∞. The results of the channel gain variance are presented in Fig. 3.11
as a function of M for (a) LOS UE1, (b) OLOS UE 3 (c) NLOS UE 11 and the i.i.d.
taking the same number of observations Mf for all cases.
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Figure 3.11: Channel hardening effect using V{‖hk‖2}
(E{‖hk‖2})2 for (a) LOS UE1, (b) OLOS

UE 3 and (c) NLOS UE 11, as a function of M .

From this representation, when a given curve is below the i.i.d. case, it means
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that the corresponding Tx antennas experience a strong LOS component (thus large
KRice values). For UE 1, it was expected that co-polarized channels with strong
KRice behave better than the i.i.d., nonetheless KRice values vary across the Tx
array (as in Table 3.5) even for LOS UEs. Cross-polarized channels behave worse
than i.i.d. compared to co-polarized channels for UE 1. For the NLOS case, the
corresponding channel hardens slower than in LOS case with an advantage of cross-
polarized channels. This is rather surprising given that co-polarized channels harden
faster due to the existence of LOS. Indeed, it can be explained by the position of
UE 11 in strong NLOS conditions where cross-polarized schemes can be beneficial.

However, this result must be interpreted with caution because the SNR would be
very low (median received gain of -92 dB). For UE 3 in OLOS conditions, one can
note the variability of the channel hardening effect due to different fading statistics
experienced by the Tx array for this particular UE and validated by the different
channel characteristics (Bc, KRice, and ρTx).

It is concluded that depending on the UE location and propagation conditions,
the channel hardening assumption might not be true for some cases, underlining the
complexity of industrial channels. Also, even for co-polarized schemes, the variance
of the channel gains eventually behaves worst than the i.i.d. due to the spatial
variability over the Tx array.
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3.6.2 How Favorable is the Propagation ?
To illustrate this characteristic of massive MIMO, the correlation values from the
total correlation matrix RRx(averaged over frequencies) with M = 32 and M = 64
is shown in Fig. 3.12. It can be observed that, even with M = 64, UEs in the
LOS region (UE 1 to 7) are strongly correlated, while the same UEs have lower
correlation values with only M = 32 using cross-polarization. This figure clearly
underlines the advantage of cross-polarization in the decorrelation of UEs channels.
This can be further depicted looking at the definition in Ch. 2 of average spatial
receiver correlation ρRx.
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Figure 3.12: Receiver Spatial Correlation matrix RRx for all UEs averaged over
frequencies: Co-polarization with (a) M = 32 and (c) M = 64, Cross-polarization
with (b) M = 32 and (d) M = 64.

The evolution of ρRx at 1.35 and 3.5 GHz for both polarizations is illustrated in
Fig. 3.13 for the LOS, NLOS and total scenario with the 15 UEs. The i.i.d. curve
is used for the sake of comparison.
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Figure 3.13: Average spatial correlation ρRx evolution withM for (a) LOS scenario
(b) NLOS and (c) total scenario.

Some key points arise from the observation of ρRx. For the total and NLOS scenarios,
ρRx for M = 100 is lower (0.3 in NLOS) for 3.5 GHz compared to M = 40 at 1.35
GHz (0.36). However, the 1.35 GHz band appears to decorrelate UEs faster with
fewer antennas. This might be due to diversity richness brought by the larger Tx
array at this frequency band. The largest benefits are harvested in the LOS scenario
where the gap between the co- and cross-polarization schemes is more pronounced
than in the NLOS case. This can be explained by the high XPD values for LOS UEs
as seen in Sec. 3.5.7. Since LOS UEs have higher XPDs, the orthogonality between
both polarizations is more pronounced than in NLOS. Thus, when using cross-
polarization, it is suspected that the correlation curve decreases faster compared
to NLOS UEs. The number of needed Tx antennas Mmin to reach a decorrelation
target value ρt,Rx = 0.3 (good decorrelation between users) is proposed in Table 3.8
for both polarizations.
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Table 3.8: Minimum number of Tx antennas for ρt,Rx = 0.3.

Scenario Polarization Frequency (GHz)
1.35 3.5

LOS VV > 40 > 100
HV 40 20

NLOS VV > 40 100
HV 32 40

Total VV > 40 > 100
HV 34 36

The improvement brought by the extra DoF5 provided by cross-polarization is ob-
served for all frequency bands and all scenarios since Mmin is always smaller for
cross-polarization schemes. In all cases, the advantages of cross-polarization are
frequency-independent. It was illustrated, referring to the VV curve in LOS sce-
narios at 3.5 GHz, that adding more antennas does not always contribute to the
decorrelation process as the curve is stable for M > 40. This is an example of a
scenario where massive MIMO might fail because of high correlation between UEs,
making simultaneous transmission a challenging task. In this case, other DoF should
be used, for instance, cross-polarization. Indeed, it was indicated from this obser-
vation that massive MIMO systems in industrial scenarios can use the extra DoF
from cross-polarization to lower the correlation between LOS co-polarized UEs. The
same analysis was done for 6 GHz and similar results were found.

3.6.3 Gram’s Power Ratio
The Gram’s power ratio γ(G), or the percentage of total energy toward a given
intended user, is displayed for the 3.5 GHz band as a function of M . First, LOS,
NLOS scenarios are compared, and then we take a closer look on the UEs power
ratio for each scenario and the total scenario.

3.6.3.1 Influence of the Scenario

Normalized User Gain:

In order to understand the impact of propagation conditions, γ(G) should be first
compared for the same number of UEs and with corresponding normalized channels.
To this purpose, UEs 3 (OLOS), 8 and 11 (strong NLOS) are omitted from the NLOS
scenario for this analysis and the UE channels are normalized such that E(|hk|2) = 1.
The average Gram’s power ratio γ(G) is presented for the 3.5 GHz band as a function
of M in Fig. 3.14 for the LOS and NLOS UEs.

5Degrees of Freedom.
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Figure 3.14: Gram’s Power Ratio γ(G) evolution with M for LOS and NLOS
scenarios. The UE channels are normalized to remove the effect of channel gains
imbalance.

Figure 3.14 shows that massive MIMO with cross-polar in LOS and NLOS can focus
80% of the energy toward the intended user whereas this ratio tends to 95% in i.i.d.
channels. For co-polarized channels, the LOS scenario exhibits a ratio of 39% , a
rather small value compared to the i.i.d. or cross-polarized case. However, for the
NLOS scenario, the distribution of UEs and hence the decorrelation mechanisms
will lead to a ratio of 60%. The benefit of cross-polarization is higher when dealing
with LOS channels since γ(G) increases from 38% to 81% when cross-polarization
is applied on LOS UEs. This is less obvious for NLOS UEs where γ(G) increases
from 61% to 81%.

Non-Normalized User Gain: Real Case

The Gram’s power ratio γ(G) is plotted as a function of the UEs position for M =
100 and LOS and NLOS cases respectively in Fig. 3.15(a) and (b). The average
γ(G) for total scenario is presented in Fig. 3.15(c).
It can be globally observed from Fig. 3.15(a) and (b) that cross-polarization schemes
drastically improve the Gram’s Power ratio. It is also indicated from Fig. 3.15(a)
that this ratio decreases with distance which was expected because the average
received gain is subsequently lower. However, it still has improvement over co-
polarized schemes in strong LOS scenario wherein users channels are spatially cor-
related and spatial separation is more challenging than in NLOS conditions as high-
lighted from the spatial correlation earlier.
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Figure 3.15: Gram’s Power Ratio γ(G) evolution with UE positions for (a) LOS,
(b) NLOS scenarios and (c) Average γ(G) evolution in the total scenario.

Compared to the previous paragraph (with normalized channels), this representation
gives insight into the expected real performance for both LOS and NLOS scenarios.
It also quantifies the Gram’s power ratio for specific UE positions. In Fig. 3.15(c)
(total scenario), it can be seen that the average γ(G) is around 20% in co- and
52% in cross-polarization. These values are lower than for the LOS and NLOS
cases which is expected since for the total scenario, each UE suffers from the sum
of interferences from 14 UEs.
In conclusion, these results demonstrate that interference reduction is critical to
optimize the performance of the different UEs channels. The extra DoF provided
by cross-polarization is crucial to massive MIMO setups in the studied scenario.
This is particularly true for strongly-correlated UEs (i.e. LOS UEs), and the use
of co-polarization with an increasing M does not improve γ(G). This corroborates
with the results on the average spatial correlation.
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3.6.4 Sum-rate Capacity:

Average spatial correlation and Gram’s power ratio are both insightful parame-
ters for massive MIMO. However, a system approach is needed to further evaluate
the expected performance. Previous analysis revealed significant improvement from
cross-polarization schemes. However, one downside to cross-polarization is the power
penalty. In this paragraph, the trade-off between power loss and low correlation val-
ues is discussed using a sum-rate capacity analysis with different linear precoders.

Normalized User Gain:

The sum-rate of LOS and NLOS (with 6 UEs) scenarios for M = 64 as a function
of the SNR is presented in Fig. 3.16(a) for MRT and (c) ZF. The evolution with M
for SNR = 10 dB is presented for MRT and ZF in (b) and (d), respectively.

MRT performance:

From Fig. 3.16(a), for a SNR > 3 dB, the performance in cross-polarized channel
outperforms that of the one obtained in co-polarized channels, the low correlation
between UEs playing a leading part in this aspect. For M = 64 and SNR = 20
dB, it converges to ∼14 bps/Hz and ∼12 bps/Hz for NLOS and LOS scenarios,
respectively. The performance as a function ofM (Fig. 3.16(b)) is slowly increasing.
If NLOS and cross-polarized channels are considered as the best configuration for
MRT, the corresponding sum-rate capacity for M = 64 and M = 100 are 11 and
14 bps/Hz in LOS and NLOS, respectively. Lastly, the performance of MRT for
M = 100 is only 54% of the performance in i.i.d. In the MRT case, interference is
not canceled at the precoding stage, and thus, if users channels are correlated as
seen from the analysis of spatial correlation in Fig. 3.13, it becomes more challenging
to simultaneously transmit data. These results show that increasing the number of
array elements with MRT does not contribute to drastically increase the sum-rate.

ZF performance:

From Fig. 3.16(c) and (d), the sum-rate capacity is an increasing function of SNR
and M . For SNR > 5 dB, the capacity is a linear function, the best scenario being
the co-polarized channel. Indeed, for an SNR = 20 dB and M = 64, the sum-
rate capacity can reach ∼52 bps/Hz and ∼45 bps/Hz in NLOS and LOS scenario
respectively. These values are close to the value of 60 bps/Hz obtained for i.i.d. This
may be explained by the expression of the SINR in Ch. 2 (Eq. 2.47) wherein the sum-
rate depends on channel gains and users interference. Using ZF, interference becomes
very low such that configurations with larger received gain (co-polar schemes), reach
better capacity results.
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Figure 3.16: Sum-rate capacity evolution with the SNR for (a) MRT, (c) ZF for
M = 64 and the evolution with M for a SNR of 10 dB in (b) MRT and (d) ZF.
The LOS and NLOS scenarios are compared.

.

Real Total Case

The sum-rate capacity is presented in Fig. 3.17 for the total scenario with waterfilling
and M = 64. The UEs channels are normalized differently to account for the gain
imbalance. MMSE precoding showed similar behavior than with ZF, thus, only
MRT and ZF will be presented.
The conclusions formulated above remain applicable for the total scenario. The
capacity with ZF and MRT are nearly similar for SNRs lower than 0 dB (MRT
slightly better) but extremely low capacities with regard to the total number of
elements are obtained. Beyond this, the MRT capacity in cross-polar converges to
18 bps/Hz at 20 dB for M = 64.
For co-polar channels, ZF precoding for which capacity increases linearly, makes
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Figure 3.17: Sum-rate capacity evolution with the SNR for the total scenario with
MRT, and ZF. The results are presented for M = 64.

it possible to reach 80 bps/Hz for a SNR of 20 dB. As already discussed, the
advantage of MRT relies in its simplicity and energy efficiency even though ZF
will almost always leads in terms of SE. Also, using waterfilling, a saturation effect
for co-polarization schemes (very slow increase with the SNR in cross-polarization)
appears, indicating that waterfilling is not optimal for MRT schemes. Table 3.9
summarizes the different results in this section:

Table 3.9: Summary of Sum-rate capacity results with M = 64 and SNR = 20 dB.

Precoder ψ Sum-rate (M=64,
SNR=20 dB)

Best Approach Application

MRT
Co 8 bps/Hz

Cross Small PacketsCross 18.5 bps/Hz
i.i.d. 40 bps/Hz Less Complexity

ZF Co 80 bps/Hz
Co High Data RatesCross 54 bps/Hz

i.i.d. 123 bps/Hz

From this analysis, it can be seen that cross-polarization can be of great benefit
for MRT even though it results in less average received power. However, it should
be noted that the values of sum-rate capacity are not very large for MRT schemes
limiting their use to applications with low data rates whilst ZF appears to be a very
appealing solution for high data rate applications since very good sum-rate capacity
(∼43 bps/Hz for 6 UEs) are observed.
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3.7 Communication Strategy Using Polarization
Diversity

Until now, the extra DoF brought by cross-polarization was not exploited in any
UEs allocation strategy yet. In this section, a novel communication scheme using
simultaneously co- and cross-polarized channels is presented. The idea is to use M̂
(M̂ = M/2) RF chains in co- and M̂ in cross-polarization to simultaneously serve the
different UEs. The channel is still a K×M matrix, but the UEs are served (equally
or not) either via the VV link or HV link. This is illustrated in Fig. 3.18 where (a) is
the full VV channel (or HV channel) and (b) general polarization diversity scheme
where Kv UEs communicate over VV and Kh over the HV channel. The full channel
matrix can be depicted into two parts: (1) Hco ∈ CKv×M̂ and (2) Hcross ∈ CKh×M̂ .

Physical Vs Logical Configurations

Referring to [9], two features of AP can be distinguished: physical antenna arrays
and logical configurations. This is equivalent to the definitions in Ch. 1 (in 1.4.2).
In our case, Fig. 3.18(a) has a (10,10,1) logical structure (10 rows, 10 columns, co-
or cross-polarization) while the proposed scheme in (b) has a (5,10,2) structure with
both polarizations simultaneously used.

3.7.1 UEs Allocation Algorithms
The applied strategy relies on the correlation matrix defined in Ch. 2 (Eq. 2.17) and
then averaging over all frequency points. Observing the different correlation values
ρi,j, the goal is to find the couples (i, j) with large ρi,j. To compensate this high
correlation value, the corresponding UEs are mapped to orthogonal polarizations.
The allocation of UE per polarization is determined via two strategies presented in
Appendix F.

• Strategy 1 will map two UEs on two different polarizations if and only if
ρi,j ≥ ρth, a specified threshold chosen to be 0.75 in this investigation. This
algorithm will favor the VV channels (Kv > Kh). Indeed, UEs in NLOS
conditions will generally have small ρi,j values (< ρth) and will then be mapped
to VV.

• Strategy 2 will always map UEs with maximum correlation coefficient on or-
thogonal polarizations. In this case, this algorithm will equally distribute UEs
between co- and cross-polarizations (Kv ∼ Kh) even if ρi,j is not very large.
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(a)

(b)

Figure 3.18: Communication scheme with (a) Full co- or cross-polarized channel
with M = 100 and (b) Diversity scheme with M̂ = 50.
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These two strategies give the following polarization maps for the different UEs:

UE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ψ (BS → UE)-Str. 1 V H V V H V H V V V V V V V V
ψ (BS → UE)-Str. 2 V H V V H V H H H H V V H V V

Table 3.10: UEs polarization maps using strategy 1 and 2.

In Strategy 1, Kh = 3 and Kv = 12. This justifies the purpose of this algorithm: a
trade-off between gain optimization and polarization diversity for highly correlated
users. In Strategy 2, Kh = 7 and justifies the purpose of this algorithm to reduce
the correlation as much as possible with no consideration on channel gains.

3.7.2 Results
The sum-rate capacity is presented for NRF = 100 (to avoid confusion with M) for
full co- and cross-polarization compared to both strategies. NRF is the same for
diversity and full co- or cross-polarization schemes. The total scenario is considered
for these results.
For MRT and SNR < 0 dB, both strategies give similar results compared to co-
polarized channel whereas at higher SNR, performance of MRT in cross-polarized
channel remains the best configuration. Figure 3.19(b) shows that the 2 proposed
strategies provide the best results with NRF < 36. Since MRT totally ignores in-
terference, the strategy minimizing correlation between UEs (Strategy 2) presents
better results. For ZF, for any SNR, the performance between Strategy 1 and the co-
polarized channel gives similar sum-rates that are the highest for all configurations.
ZF aims at removing interference at a power penalty cost. Hence, the strategy of
using more co-polarized channels (larger gain) remains the most powerful (Strategy
1). A summary of main results is given in Table 3.11.

These results are interesting for mobile operators especially when infrastructure cost
and space are considered. The main advantage of using 50 dual-polarized antennas
being a smaller array size, one can expect having less channel spatial variability
along the array and potentially less variations in channel gain guaranteeing channel
hardening. Moreover, it was demonstrated that it is possible to use polarization
diversity as an extra DoF to propose novel transmission schemes with reduced array
size.
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Figure 3.19: Sum-rate capacity evolution with the SNR for (a) MRT, (c) ZF for
NRF = 100 and the evolution with NRF for a SNR of 10 dB in (b) MRT and (d)
ZF.

.

Table 3.11: Summary of sum-rate capacity results with the proposed diversity
schemes.

Precoder Scheme Sum-rate
(NRF=100,
SNR=20 dB)

MRT

Co 9 bps/Hz
Cross 21 bps/Hz
Strategy 1 12 bps/Hz
Strategy 2 14 bps/Hz

ZF

Co 100 bps/Hz
Cross 67 bps/Hz
Strategy 1 96 bps/Hz
Strategy 2 89 bps/Hz
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3.8 Conclusion
Polarimetric channel measurements of a massive MIMO setup for an indoor indus-
trial scenario are presented at 1.35, 3.5 and 6 GHz with 80 MHz bandwidth. The
scenario consists in a massive URA transmitter and 15 distributed UEs. The in-
dustrial massive channel was evaluated using propagation metrics (average received
gain, coherence bandwidth, Ricean factor, Tx correlation and Gram’s power ratio)
and system oriented metrics (sum-rate capacity). The propagation channel param-
eters were useful to classify UEs into two distinct groups: LOS and NLOS. The
median correlation between users reveals strong correlation in LOS co-polarized
channel whereas low correlation is obtained in all cross-polarized channels. Channel
hardening allowed to point out the spatial variability along the array. In order to
evaluate whether the channel is favorable for massive MIMO, the Gram’s power
ratio reveals that cross-polarized channel exhibits the best ratio in NLOS scenario
and drastically improves the power ratio in LOS scenarios. From sum-rate capac-
ity analysis (with the 3.5 GHz band), the best configuration for the 2 precoding
techniques was presented: (a) MRT with cross-polarization can provide a sum-rate
capacity of 18 bps/Hz with 64 antennas and 10 dB SNR whereas (b) ZF exhibits
a sum-rate capacity of 54 bps/Hz in co-polarized channel. Cross-polarization with
ZF does not improve the overall performance. The simplicity provided by MRT and
the improvement offered by cross-polarization can benefit massive MIMO setups for
indoor industrial environments. Finally, from previous analysis, it was concluded
that increasing the number of antennas does not always improve overall results, and
depending on the channel, other techniques should be considered. Two strategies
exploiting polarization diversity were proposed which achieve very high sum-rate
capacities (similar to co-polar in ZF) with a 50-element dual-polarized array. Com-
pared to full co- and cross-polarization schemes, diversity schemes jointly exploiting
high channel gains in co-polarization and better decorrelation in cross-polarization
can achieve near-optimal results and can, therefore, be beneficial for massive MIMO
setups in Industry 4.0.
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3.9 Summary of Key Points
• Polarimetric massive MIMO measurements in industrial scenarios are exploited
to characterize the channel with propagation-based metrics and the overall system-
performance with sum-rate analysis.
• A classification method jointly using the coherence bandwidth and Tx correlation
was used to categorize distinct scenarios.
•Bc, ρTx andKRice are not frequency-dependent but these parameters cross-correlation
is frequency dependent.
• Channel hardening and favorable propagation conditions are both demonstrated
to be dependent on the scenarios and channel polarizations.
• The percentage of focused energy for an intended UE was shown to depend on
propagation conditions. Moreover, cross-polarization schemes improve the power
ratio, especially in LOS conditions.
• Sum-rate capacity quantified the impact of cross-polarization on MRT and ZF.
While cross-polarization schemes are important for MRT, no improvement is noticed
with ZF.
• The use of MRT is limited to applications not requiring very high sum-rate ca-
pacities whereas ZF with waterfilling is adequate for such applications.
• Polarization diversity is exploited via UEs allocation strategies. The results high-
light the possibility of using dual-polarized arrays with half the number of array
elements to achieve nearly the same results for co-polarized schemes in ZF.
• Polarization diversity schemes combined with UE allocation strategies and spatial
diversity can achieve good results despite the inherent power imbalance between
polarizations.
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Chapter 4
Propagation-Based Antenna Selection
Strategies

Introduction
It was demonstrated in the previous chapter that polarization diversity can greatly
benefit massive MIMO setups in industrial environments. It was also observed that
massive MIMO can encounter some “unfavorable” propagation conditions, espe-
cially, for UEs aligned in LOS conditions. While UE allocation strategies taking
into account polarization diversity were highlighted, reduction of the number of RF
chains have not been addressed yet. To this purpose, antenna selection strategies
and hybrid beamforming wherein a smaller number S of RF chains is used (S < M)
are needed. In another matter, capacity improvements in massive MIMO depend
on CSIT in order to efficiently precode users signals. Originally, massive MIMO
was labeled under the TDD mode. Nonetheless, motivated by spectrum regulation
aspects, FDD is converging as an alternative solution. However, the complexity
arising from CSI feedback in FDD-based systems is a bottleneck, and efficient es-
timation strategy are yet to be fully defined. This chapter addresses two following
main challenges:

1. Reducing the number of reference elements at transmitter side (elements that
send pilot signals) for the channel estimation in FDD mode.

2. Optimize the sum-rate capacity in the scenario, while minimizing the number
of active RF chains serving simultaneously a given number of receivers.

Chapter Outline

After a thorough review of TDD and FDD-based systems in Sec. 4.1, we present
another approach to decrease the overhead related to the determination of CSIT.
The proposed method is evaluated for measured radio channels in an industrial
scenario at 3.5 GHz and its performance is discussed in Sec. 4.1.3 before concluding
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in Sec. 4.1.4. A review of antenna selection strategies is then provided in Sec. 4.2
and the proposed selection strategy, selection criterion and evaluation algorithm are
presented. Finally, 4.2.2 is dedicated to the strategy validation and performance
results before concluding this part in 4.2.3. A general conclusion can be found at
the end of the chapter.

4.1 CSI Feedback Reduction in FDD mode
Capacity improvements rely on the availability of CSIT. Massive MIMO was orig-
inally conceived using the calibrated TDD strategy, exploiting channel reciprocity
to estimate the instantaneous channel from UL pilots. However, motivated by spec-
trum regulation issues and the far majority of currently deployed FDD-based sys-
tems, significant interest in massive MIMO-FDD versions have emerged [126, 130].
Also, FDD systems were reported to be more effective than TDD systems in spe-
cific situations with symmetric traffic and delay-sensitive applications [127, 128]. In
FDD mode, fading channel reciprocity is not exploitable because UL and DL chan-
nels use different frequency bands. DL training becomes a bottleneck in FDD and
CSIT generates high overhead which fundamentally limits the number of potential
simultaneous data streams. In order to reduce DL training feedback overhead and
materialize significant massive MIMO gains in FDD systems, FDD-based schemes
solutions are necessary.

4.1.1 Context and Methodologies

4.1.1.1 Related Work

In [196], the performance of the two strategies (TDD- and FDD- based) is compared
from a set of measurements at 2.6 GHz with a 128-element virtual uniform-linear
array (ULA). It was reported that FDD beamforming with predetermined grid-of-
beams may achieve close performance to TDD but heavily depends on advantageous
propagation conditions, particularly LOS conditions and high Ricean factor values.
In other cases, TDD beamforming emerges as the only alternative. Various solutions
have already been proposed to cope with the limitations of FDD-based massive
MIMO systems.
A simplified DL scheduling based on joint spatial division and multiplexing is stud-
ied in [130, 197, 198], the users being clustered into groups having similar chan-
nel covariances. If the user distribution is such that the channel matrix has a
low rank, [199] proposes to use this property to make a joint recovery of CSIT
for all scheduled users, each of them directly feeding back the pilot observation
to the BS without performing channel estimation. Compressive-sensing-based ap-
proaches exploiting sparsity properties of the channel are proposed in [200, 201],
while temporal-correlation based approaches using treillis-code based quantization
codebooks and memory-based channel sequences to decrease CSIT estimation are
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described in [126]. In [202], the basic idea is to exploit the structure of the spa-
tial channel correlation matrix (CCM) with reduced CSIT and use the dominant
Eigen-space and Karhunen-Loeve representation. These models are mostly based
on Rayleigh channels assuming NLOS propagation and mutually independent user
channels with rich local scattering. The different proposed methods are shown to
perform well provided important channel correlations but this depends on many
factors as the environment, user positions, etc. It must be emphasized that results
based on measured channels are quite scarce.

4.1.1.2 Preview of the Method

The channel characteristics used to validate the approach are those deduced from
experimental data, as described in Ch. 3. Since measurements have been performed
under static conditions, the efficiency of the proposed method is based on a com-
parison between results obtained with the full measured matrix to those calculated
with the estimated matrix. The approach is based on successive steps:

• During the initialization process at time t, the full CSIT is measured with the
classical approach using feedback of the users, allowing the determination of
the full K ×M ×M CCM matrix RTx(t).

• To get an updated estimate of CSIT at time t+∆t, the channel transfer matrix
Href (t+∆t) between the UEs and only a small number of array elements, called
reference antennas (ref) in the following, are measured, in order to strongly
decrease the overhead time.

• An updated estimation Ĥ(t+∆t) of CSIT is deduced at the base station (BS)
from the knowledge of RTx(t) and Href (t+ ∆t).

The preview of the method is summarized in Fig. 4.1.

4.1.1.3 Framework For Channel Estimation

In this section, the fixed Tx array size is reduced from 10× 10 to 9× 9 URA, simply
to satisfy symmetry constraints when choosing the reference elements. Results pre-
sented hereafter suppose that the occupied frequency band is 20 MHz, which is the
maximum available DL bandwidth for LTE systems. Within this band, the channel
transfer function is measured onMf frequency points, withMf = 205. Nevertheless,
to increase the number of realizations, measurements have been made on 4 adjacent
bands of 20 MHz, allowing the study of the average performance of the proposed
CSIT recovery. For each position k of the Rx antenna, the wideband complex chan-
nel transfer function between Rx and any element (i, j) of the Tx array is given by
hk,ij(f) ∈ C1×Mf .
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Figure 4.1: Simplified preview of the method to estimate user channels with reduced
feedback overhead.

4.1.2 Estimation Procedure

In this section, the different guidelines for the channel estimation with the proposed
method are presented. First, the importance and impact of correlation in the model
is discussed, then the principle of the CSIT estimation procedure with reduced
complexity is explained.

4.1.2.1 Tx Correlation

To point out the difference in terms of correlation between different scenarios, we
have plotted in Fig. 4.2, the CDF of the amplitude of the Tx correlation matrix
between any 2 antennas of the array and distinguishing LOS, OLOS and NLOS
(grouped UEs) as explained in Ch. 3 (3.5.4).

The CDF has been calculated by considering all possible antenna element sepa-
rations from d to 8d, the minimum spacing d being equal to 0.5λ and the 4 bands
of 20 MHz. Obviously, correlation values are larger in LOS scenarios, the median
value of ρTx decreasing from 0.95 to 0.67 if the UE moves from LOS to NLOS.

This can also be seen by looking at RTx in Fig. 4.3, for (a) LOS UE 1, (b) OLOS
UE 3 and (c) NLOS UE 8.
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Figure 4.2: CDF of correlation values for any inter-element spacing in the array
for LOS, NLOS and OLOS scenarios.
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Figure 4.3: Colormap of the full CCM RTx for UE 1 (a), 3 (b) and 8 (c), respec-
tively in LOS, OLOS and NLOS conditions.
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It is also noticed that the Tx correlation reflects fading characteristics of the massive
MIMO channel. This is well depicted in Fig. 4.3(b) wherein the variability of fading
statistics is observed across Tx antennas, especially in OLOS UE.

To highlight the antenna element-spacing influence, the CDF of RTx(t) is plot-
ted in Fig. 4.4 for spacing values varying from d to 8d. Due to the configuration of
the hall where measurements took place and the relative positions of the Tx and Rx
antennas, the correlation is not the same between elements aligned along an hori-
zontal line (x axis) or a vertical line (z axis). CDF curves corresponding to these 2
cases are shown in Fig. 4.4(a) and (b), respectively, and are deduced from all values
of RTx(t) calculated for the 15 geometrical scenarios previously described, without
distinguishing LOS, OLOS and NLOS scenarios.
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Figure 4.4: CDF of Tx correlation values in vertical plane (a) and horizontal plane
(b) for different antenna spacing: 2d, 4d, 6d, 8d. In (c), the correlation values of the
full correlation matrix is presented for all possible spacing d and in both directions
x and z merged.
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Comparison of Fig. 4.4(a) and (b) indicates that correlation is much higher in the
vertical plane than in the horizontal plane. Indeed, taking the shape of the hall
(scatterers in the horizontal plane) and the position of the antennas into account,
all possible rays have a narrower angular spread in the elevation domain compared
to the azimuth domain, thus minimizing the phase shift between them. For the
horizontal correlation, the median value decreases as a function of the antenna sep-
aration, from ∼0.9 for d, to ∼0.8 for 2d and ∼0.6 for 8d. Finally, the CDF of all
correlation values for all spacing values along both directions (d to 8d) is presented
in Fig. 4.4(c). These results, especially the last one, will be used in the next section
to optimize the parameters of the proposed approach minimizing CSIT overhead.

4.1.2.2 Principle of CSIT Estimation Procedure

In this section, to reduce the amount of notation and without loss of generality, only
one UE is considered. The subscript k identifying the user is then omitted. It is
assumed that, during an initialization process occurring at a time t, the DL channel
transfer vector hij between the UE and any antenna (i, j) of the array is estimated
by the UE and sent back to the BS. Hence, the question which arises is to estimate
this transfer vector at time t+∆t while minimizing the complexity of the procedure
and, therefore, the number of symbols needed for this estimation. The basic idea of
the proposed approach is to measure the channel between a user and only a reduced
number Mref of antennas, belonging to a subset of the massive array, and called
reference antennas. The full transfer matrix will then be estimated owing to the
knowledge of a reduced correlation vector, as detailed in the next paragraph.

4.1.2.3 Determination of the reduced correlation vector

Let (i, j) be the indices of any antenna, along the horizontal and vertical axis, re-
spectively, and (i′, j′), noted (ref) to simplify the presentation, those of the reference
antenna. The channel vectors between the UE and (i, j) on one hand, and between
the UE and (ref) on the other hand, are complex-valued vectors in the frequency
domain noted hij, and hn, respectively, their size being (1 ×Mf ). At time t, since
the full transfer matrix has been measured, the correlation coefficient ρij,n between
hij, and hn, and given by Eq. 4.1, can be calculated as:

ρij,n =
hnhHij
‖hn‖‖hij‖

. (4.1)

Applying Eq. 4.1 to the Mref reference elements leads to a reduced correlation
vector ρij(t) = [ρij,1, ρij,2, ...ρij,Mref

]T . Generalizing for all (i, j) values, the reduced
correlation matrix can be computed. We suppose that, during the time interval
∆t, the change in the channel characteristics are not significant and that ρij(t),
corresponding to a second order statistics, does not vary appreciably.
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4.1.2.4 Estimation of the channel matrix

In a second step, we propose to estimate the channel vector ĥij(t+ ∆t) between the
UE and any array element (i, j) from the knowledge of hn(t + ∆t) and ρij(t), by
applying the Yule-Walker equations [203, 204]1.
In our case, a different approach is applied since the estimation of a given transfer
function depends on its correlation with known reference elements. It can be con-
sidered as a spatial equivalent of the classical AR model since the quality of the
estimation would eventually depend on the distribution of reference elements inside
a Tx array. In the following, to simplify the notation and since there is no ambiguity,
the time reference t or t + ∆t is omitted. In order to determine the estimate ĥij,
αij is first defined as:

αij = X−1
ij ρij, (4.2)

X is a Mref ×Mref Toeplitz matrix defined as:

1 ρij,1 ρij,2 . . . ρij,Mref−1
ρij,1 1 ρij,1 . . . ρij,Mref−2
ρij,2 ρij,1 1 ρij,1 . . . ρij,Mref−3
... . . .

. . . . . .
...

ρij,Mref−1 ρij,Mref−2 . . . . . . 1

 (4.3)

The estimate ĥij ∈ C1×Mf can be written in the following form:

ĥij = αTijHref , (4.4)
with Href (ref is just a subscript and not an index), the Mref × Mf channel
matrix containing all measured channel vectors hn of the reference elements n =
1, 2, ..,Mref .
The estimate ĥij(f) at frequency f can be written as:

ĥij(f) =
Mref∑
n=1

αij,nhn(f) (4.5)

which can be generalized for Mf :

ĥij =
Mref∑
n=1

αij,nhn (4.6)

The following table summarizes the sizes of the different used notations.
1The Yule-Walker equations named after Udny Yule and Gilbert Walker relate auto-regressive

(AR) model parameters to the autocovariance of a random process. An AR model is used to
describe a time-varying process where the output variable depends linearly on its previous values
and on a stochastic term. In channel estimation, the AR model is an iterative method usually
applied to minimize the mean square error of the difference between the known and estimated
complex transfer function [205, 206] using time-series expansions.
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Matrix or Vector Size
ĥij 1×Mf

Xij Mref ×Mref

ρij Mref × 1
αij Mref × 1

Href Mref ×Mf

hn or href 1×Mf

For a MU configuration with K users, this approach is repeated K times. Qual-
itatively, one can expect that this approach will give better results if the channel
transfer function does not strongly vary from one reference antenna to its nearest
one and if the related correlation coefficient remains high. Therefore, an analysis
on the accuracy of the method depending on the spread of the correlation functions
as a function of the antenna spacing, and on the number and choice of the refer-
ence antennas is required and discussed in the next section. The criteria chosen for
evaluating the performance of the proposed approach is the accuracy to predict the
channel capacity C. Links to individual SU or a global link to MU (simultaneous
transmission) are considered. Fot the latter, the sum-rate capacity is calculated
with two precoding techniques: MRT and ZF.

4.1.3 Optimization of the Algorithm and Performances
The channel characteristics used to validate the approach are those deduced from
experimental data, as described in previous sections. Since measurements have been
performed in static conditions, the efficiency of the proposed method is based on a
comparison between results obtained with the full measured matrix to those calcu-
lated with the estimated matrix.

As an example, a measured channel transfer function (CTF) and the corresponding
estimated function for a NLOS case (UE 8, Mref = 9, 4 ×20 MHz adjacent bands)
are presented in Fig. 4.5. The estimated CTF follows well the measured CTF.

4.1.3.1 Single-User Configuration

The ergodic capacity for any UE k, assuming equal power allocation over array
antennas, and deduced from the measured channels is given by:

C = log2

(
det(1 +

(
SNR

M
hhH

))
, (4.7)

where SNR is the mean signal-to-noise ratio and h is a 1 × MMf vector corre-
sponding to a vectorization of the transfer matrix H for one UE of size M ×Mf ,
its columns being the vectors hij. The capacity Ĉ calculated from the estimated
channels, is obtained by replacing hH (the precoding vector) in Eq. 4.7 by ĥH such
as:
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Figure 4.5: Measured vs. Estimated transfer function for UE 8.

Ĉ = log2

(
det(1 + SNR

M
hĥH)

)
, (4.8)

Evidently, h is not replaced by the estimate since it is the actual channel and should
not be changed. The ratio between Ĉ and C (computed from measured channels),
noted β gives an idea on the performance of the proposed strategy. It is defined as:

β (%) = Ĉ

C
× 100. (4.9)

Curves in Fig. 4.6 show the variation of β for different numbers of reference antennas,
varying from 4 to 32, and for the 15 successive positions of the single antenna UE
in the scenario. Furthermore, β is obtained by averaging its value on the 4 adjacent
bands of 20 MHz. In all cases, the reference antennas are chosen in such a way that
they are equally distributed amongst the array elements as illustrated in Fig. 4.1.
First, we observe in Fig. 4.6 that the performance of the channel estimator does
not strongly depend on the scenarios: LOS, OLOS or NLOS. With only 9 reference
elements (about 10% of the total number of Tx antennas), values of β >= 90% are
reached. The worst case, position 11, corresponds to a severe NLOS scenario. For
Mref = 9, the separation between 2 successive reference antennas along the x or y
axis is 3d. We have seen in Section 4.1.2, Fig. 4.4(c), that for such a distance, the
median value of antenna correlation is equal or greater than 0.8 whatever the Rx
position. The successive steps for optimizing the choice ofMref can be the following:

• From the measured full CSIT matrix at time t, calculate the matrix of corre-
lation coefficients between array antennas,
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Figure 4.6: Variation of β (in %) for different number of reference elements Mref

- Impact of the number of reference antennas Mref on the computed channel capacity
from estimated channels and for successive position of the UE.

• Determine the antenna element separation (spacing) such that the median
value of their correlation coefficient is equal or smaller than 0.8,

• Equally distribute the reference antennas among the array.

4.1.3.2 Multi-User Configuration

For massive MIMO, it is of interest to evaluate the capacity of the BS or AP to
simultaneously communicate with the different UEs. This is generally quantified
with the sum-rate capacity, justifying our choice of this metric as a figure of merit.
In presence of K = 15 UEs in our scenario, the sum-rate capacity for the measured
channels is given by:

C = log2

(
det(IK + SNR

M
HW)

)
, (4.10)

And for the estimated channels:

Ĉ = log2

(
det(IK + SNR

M
HŴ)

)
, (4.11)

H is the K ×MMf massive MIMO channel matrix and W the normalized MRT or
ZF precoding matrix given already defined in Ch. 2 (2.4.2.2). Ŵ are the normalized
precoding vectors for the estimated channel. β of the sum-rate capacity is given in
Table 4.1 for Mref = [4, 9, 16, 32].
The convergence of ZF towards 100% is slower than for MRT, ZF being more affected
by estimation errors. Nevertheless, Mref = 9 corresponding to a median value of
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Table 4.1: β (in %) of the sum-rate capacity with MRT and ZF for different Mref .

Mref 4 9 16 32
MRT 65 92 93 95
ZF 58 80 85 87

the Tx correlation of 0.8 still seems adequate in the way of choosing the number of
reference antennas previously described. However, it must be kept in mind that the
presented values do not mean that MRT provide higher sum-rate capacities com-
pared to ZF, at least for the geometrical configuration presented here. Indeed, the
capacity deduced from measurements of the full transfer matrix, without estimation
error, is equal to 29 bps/Hz and 89 bps/Hz for MRT and ZF, respectively. This can
be explained by the relatively large number of LOS UEs (7 among 15). In this case,
correlation between these UEs is rather high as shown in Ch. 3 (3.13(a)), with a
median value of 0.73. Since the MRT precoding technique does not take inter-user
interference into account, it could be expected that its performance would be infe-
rior to ZF. However, the presented values suggest that it is more robust than ZF
in terms of estimation error. This was rather expected, since phase mismatch due
to estimation errors result in misalignment and enhanced interference in some cases
with ZF.

4.1.3.3 Quantifying Complexity Reduction

To complete the evaluation of the proposed strategy, we take back the constraints
in 1.7.2.1 in Ch. 1, Sec. 1.7. The original FDD constraint was K + 2M < τc (τc is
the coherence interval). However, with the proposed strategy and taking Mref , this
constraint becomes K + 2Mref < τc. Considering Mref = 9 for the original 10× 10
array2, the new constraints on the number of estimation pilots in TDD, FDD and
the proposed approach become:

• TDD: K < τc

• FDD: K + 2M < τc

• Channel correlation-based approach (at phase t+ ∆t): K + M/5 < τc

For the investigated scenario, FDD requires 215 pilot samples while the proposed
strategy takes 33 samples compared to the 15 samples with TDD. Furthermore, to
generalize, the number of resource elements required for training (number of pilot
samples) is plotted as a function of M for an example of 64 UEs and is illustrated
in Fig. 4.7.

2Taking 10× 10 or 9× 9 does not change the approach since correlation factor at Tx does not
vary a lot from 6d to 8d as observed in Fig. 4.4(c).
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Figure 4.7: Number of pilot samples for TDD, FDD and the correlation-based
approach for feedback overhead reduction. An example for K = 64 is considered and
M varies from 64 to 256.

This figure validates the proposed overhead reduction strategy. It shows that for
small values of M , the number of pilot samples needed is close to TDD and much
less than FDD. When M increases, the number of pilot samples increases at a much
slower rate than with the original FDD scheme owing to the reduced number of
reference elements.

4.1.4 Conclusion

In this first part of the chapter, a correlation-based approach for feedback overhead
reduction in FDD massive MIMO was proposed. It is based on measurements of
transfer functions between UEs and only a few number of array elements, strongly
decreasing the size of the channel matrix. The estimation of the full matrix is then
obtained owing to the knowledge of the correlation matrix at the transmitter. Using
ergodic capacity and sum-rate analysis with ZF and MRT, it was demonstrated in
industrial environments that the prohibitive DL training feedback can be overcome
with nearly ∼10% of the original number array elements, materializing massive
MIMO gains with FDD-based systems.
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4.2 Antenna Selection Strategies

4.2.1 Context and Methodologies
Promising performance for massive MIMO systems can be obtained at the expense
of increased hardware cost and complexity arising from the sheer number of trans-
mitting elements. To address this challenge, antenna selection strategies have been
reported as an appealing solution for hybrid beamforming architectures where a
number of RF chains less than the total number of antennas is selected. Indeed,
unlike i.i.d. Rayleigh fading channels, where all antennas contribute equally, real
propagation channels are subject to large-scale fading over the array. Architec-
tures aiming at exploiting this aspect of massive MIMO systems are very appealing.
However, these architectures are yet to be fully defined and evaluated. On another
prospect, some massive MIMO base stations have already been developed and de-
ployed with dedicated transceivers to each antenna. From this, another motivation
can be that power might be saved by using a subset of the array at a time, es-
pecially for scenarios wherein the traffic load is much below the maximum system
capacity. In this case, there is no compromise with the overall users throughput. In
this section, we propose a novel transmit selection algorithm based on Rx spatial
correlation.

4.2.1.1 Related Work

In full DBF, each antenna element is equipped with an individual RF chain. With
the large increase in the number of Tx elements, hardware complexity becomes a
bottleneck. To alleviate this problem, many solutions have been proposed. The
general concept consists in choosing a subset of S antennas in a given M -dimension
array to reduce the number of required RF chains for communication between the
BS and UEs (see Fig. 4.8).

Figure 4.8: Switching architecture example S out of M .
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The overall RF-cost can be reduced but it should be verified whether antenna di-
versity is maintained. This has been studied for classical MIMO systems wherein a
small number of antennas is selected from the full array [207, 208, 209, 210]. These
strategies are generally computationally simple. Concerning massive MIMO, it has
been evaluated in measured massive MIMO channels at 2.6 GHz using the sum-rate
capacity maximization obtained after a convex optimization including exhaustive
search amongst different antenna subsets [211]. Nonetheless, convex optimization
using DPC analysis is quite complicated for massive MIMO systems, especially when
M is large. The authors have reported that selecting the best antennas boosts the
performance of a cylindrical array to obtain higher performance than a linear array
with higher angular resolution. In [212], the same authors compare selection schemes
based on convex optimization with a very simple selection technique based on the
highest relative received power (classic approach) at the antennas. Also, based on
strongest channel gains, with simulated i.i.d. channels, [213] derive analytical ex-
pressions for the number of selected antennas to maximize energy efficiency. It is
concluded that relatively simpler selection schemes can also provide good results. In
[214], transmit antenna selection in mmW is formulated using Knapsack problems
in order to determine the smallest subset of antennas to satisfy a given quality of
service (QoS) for a given user. Optimal selection schemes via advanced analytical
tools are proposed in [215]. In another approach, the determination of the optimal
number of RF chains when considering circuit power is evaluated in [216]. In [217],
the authors try to find an optimal balance between consumed power by the RF
chains and total transmitted power by jointly determining the optimal number of
antennas and the corresponding power allocation. More recently, several selection
strategies have been also tested for secrecy performance [218]. Switching architec-
tures and capacity bounds are also discussed for i.i.d. channels in [219]. Practical
implementation issues such as insertion losses caused by switching architectures are
discussed in [220]. It follows that in the existing state-of-art, most strategies are
based on analytical channels (i.i.d. for instance), exhaustive DPC and/or based on
relative received channel gains. Also, the implementation aspects are rarely taken
into account and if they are, sub-optimal solutions are derived at the expense of the
overall performance compared to full DBF. Under the same scope, hybrid transmit
precoding role is to alleviate complexity issues by picking a reduced set of RF chains
mapped to a larger number of radiating elements in the array. This issue is widely
discussed [87, 221, 222, 223, 224, 225]. From this, antenna selection strategies and
hybrid beamforming are supposed, in this thesis, as two complementary notions,
even though one can exist without the other. Based on this review, simple antenna
selection strategies at Tx side are yet to be fully defined and validated, especially
since measurement-based strategies for massive MIMO systems are scarce. The
trade-off between the number of elements and the overall performance with full-size
array should also be addressed.
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4.2.1.2 Antenna selection Procedure

Three general different configurations are considered for evaluation as shown in
Fig. 4.9 with a URA as an example: (1) the full massive M -antenna array, (2) a
sub-array (i.e. collocated elements) with S antennas (S < M) and (3) a distributed
array with S antennas.

Figure 4.9: Investigated subset configurations from a URA.

The sub-array is used as a reference to highlight the fact that distributing the
antennas within a given array is a better approach. It should be noted that the
propsosed antenna selection is a digital-based switch architecture that consists in
connecting S RF chains to S out of M possible antennas.

4.2.1.3 Selection criterion

The acquisition and application of Rx spatial correlation information will be key
in 5G and beyond-5G systems, to take the spectral efficiency to the next level.
Under this umbrella, the Rx spatial correlation ρRx (or intercorrelation) is chosen as
the selection criterion in order to select subsets. It highlights the capability of the
system to simultaneously serve a number of users which is a pivotal aspect in massive
MIMO. It follows that antenna selection criterion aiming at minimizing interference
via spatial correlation reduction is a suitable figure of merit. It was also evaluated
in Ch. 3 (3.7) for mapping high-correlated UEs to orthogonal polarizations, thus
demonstrating the potential of polarization diversity with the use of dual-polarized
antenna arrays.
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4.2.1.4 Evaluation Algorithm

The antenna selection algorithm is presented in Fig. 4.10. Basically, Ndist subsets
of S randomly distributed antennas are created from the massive K ×M massive
MIMO channel HFULL. The average spatial correlation is then computed for all
subsets using Eq. 2.18. The lowest correlation value ρmin3 corresponds to the best
selected subset (BSS) and the highest correlation value ρmax to the worst selected
subset (WSS). These subsets contain the indices of the best and worst selected an-
tennas from which HBSS and HWSS are constructed, respectively. For the sub-array,
NSUB subsets of S collocated antennas HSUB are generated from HFULL. It should
be noted that the proposed approach is independent of the antenna topology, fre-
quency band, or radio channels. Therefore, it is applicable to any desired setup.
The proposed approach was assessed by investigating the propagation characteris-
tics and system performance of arbitrary ray-traced radio channels at 6 GHz [226].
The analysis of the propagation mechanisms using channel metrics such as the power
to interference ratio and condition number has validated the choice of the Rx spatial
correlation. Also, sum-rate capacity was found to be nearly optimal compared to
convex optimization [227]. It should be noted that in order to choose the S dis-
tributed elements, the knowledge of the full channel is still needed to compute the
average spatial correlation between UEs. From this arises the importance of the
proposed method in Sec. 4.1.

4.2.1.5 Investigated Scenario

For this study, the 3.5 GHz band is considered with the defined scenarios: LOS,
NLOS and total. S designates the number of selected elements inside a subset.
Consequently, S = Sx × Sy. Nonetheless symmetric arrays are here considered
(same number of elements in x and y directions) at all times. For the evaluation of
the strategy, we only consider co-polarized channels . At the initialization, Ndist =
1000 were used to assess the approach. However, the convergence toward optimum
decorrelation values was achieved for the 5th and 10th trial for NLOS and LOS
scenarios, respectively. This will be further discussed later on.

4.2.2 Validation and Results

4.2.2.1 Validation based on Rx correlation

For each result, the four configurations (BSS, WSS, sub-array and full-array) are
considered with S = 36. In Figure 4.11(a) and (b), ρRx is presented for the LOS (a)
and total scenario (b). It shows the different draws for the selection strategy.
Compared to ρRx = 0.37 for M = 100, the BSS reaches decorrelation values of 0.35
with S = 36 for the full scenario. For the LOS scenario, ρRx = 0.59 for M = 100
and 0.33 for the BSS. This comparison is crucial for the LOS scenario, underlining

3The minimum value over all generated Ndist. The same procedure for the maximum value.
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Figure 4.10: Antenna selection evaluation algorithm.

that the applied strategy brings significant benefits, especially to the LOS decorre-
lation, which is the challenging part for massive MIMO systems, especially if high
correlation values exist. A similar result in Ch. 3 on the Gram’s power ratio and
average spatial correlation confirms this observation. One can note that with the
selection strategy, the drop in correlation values is very fast compared to the sub
and full-array. This is somehow expected since selecting distributed antennas at
Tx leads to lower Tx correlation values (larger separations between the elements),
which in turn, leads to UEs decorrelation.
This figure highlights the capability of the BSS to decorrelate users with ∼60% less
antennas compared with the full array. It also performs better than the Sx×Sy sub-
array. Regarding HSUB, the variance of the ρRx values for Nsub arrays of collocated
antennas was found to be negligible (' 0.05). This indicates the different sub-arrays
exhibit very close behavior regarding correlation mechanisms. Thus, a ρaverage on
Nsub, reflecting the overall behavior of the sub-arrays, was used.
It is noteworthy that, between the BSS and the WSS, there exists a family of curves
with ρRx values ranging from ' 0.35 (BSS) to ' 0.42 (WSS), for instance, for the
full scenario. This variation in ρRx strongly depends on the selected subset and,
therefore, propagation mechanisms. However, the difference is not large, and in
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(a) (b)

Figure 4.11: The average spatial correlation for the different configurations, show-
ing all the draws, for S = 36. In (a) the total scenario and (b) LOS UEs as defined
in Ch. 3.

order to lighten the presentation, only the BSS will be considered. Finally, Ndist

was chosen large enough for the sole purpose of generating sufficient statistics but
is much smaller than the total number of combinations CS

M (which is not tractable
in practice). Finally, to achieve convergence with distributed subsets and low ρRx
values, only 5, 10 and 13 draws on average are needed, therefore, considerably
reducing the computational time.

4.2.2.2 Strategy Performance Evaluation and Results

From the previous paragraph, it was shown that by exploiting the spatial selectivity
via the proposed strategy, the average spatial correlation can be greatly improved.
However, this is not sufficient to quantify the added value of this strategy.
The trade-off between reduced complexity and less Tx antennas is assessed using (1)
the Gram’s power ratio and in the next section (2) the sum-rate capacity that will
give good insight on the total achievable performance.

4.2.2.3 Gram’s Power Ratio

The CDF of the Gram’s power ratio is presented for the three configurations : full-
array, sub-array and BSS with S = 36. An additional curve denoted PS for power
selection was added. This designates a classical way of selecting antennas based on
their average received gain as discussed in [212]. It simply consists in selecting S
antennas with the largest gains from the M element-array. The 4 configurations are
compared using the CDF of γ(G) in Fig. 4.12(a) and (b) for the LOS and NLOS
scenarios whereas (c) and (d) present γ(G) for LOS and NLOS, respectively.
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Figure 4.12: CDF of γ(G) for (a) LOS and (b) NLOS scenario. The 4 different
configurations (S = 36) are presented as well as the i.i.d. curve for the sake of
comparison. The evolution of γ(G) as a function of UE position is also presented
in (c) and (d) for the LOS and NLOS scenario, respectively.

The observed values for the median γ(G) in Fig. 4.12(a) are ∼0.46 and 0.36 with
the BSS for LOS and NLOS scenario, compared to ∼0.3 and ∼0.36 for the full ar-
ray. The values of γ(G) for PS and sub-array are ∼0.25 for both configurations in
LOS and ∼0.1 for PS, 0.15 for sub-array in NLOS scenario. Figure 4.12(c) and (d)
highlight the benefits of the strategy from a UE local point of view. It demonstrates
that the benefits of the strategy are well shared between the UEs, especially in LOS.

In conclusion, this analysis suggests that the selection strategy works very well
under LOS conditions since it achieves larger power ratio values with less trans-
mitting elements as indicated by the double arrow in Fig. 4.12(a). For the NLOS
case, the same performance is observed for the full and distributed array. This is
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Table 4.2: Variation of γ(G) with respect to the full-array (in %) with S for LOS
and NLOS scenarios. Three configurations are compared: Full, Sub-Array and BSS.

S 9 16 25 36 49 64 81
γ(G) (in %) for LOS scenario

Full-Array (M = 100) 30
Sub-Array 20 22 25 26 27 29 30

BSS 26 33 34 45 35 33 27
γ(G) (in %) for NLOS scenario

Full-Array (M = 100) 36
Sub-Array 10 13 15 18 23 26 28

BSS 23 29 35 36 36 35 35

still beneficial since it indicates that the same values of γ(G) can be reached with
only S = 36 RF chains. It is also observed that the PS algorithm and sub-arrays
performance are very close to each other and well below the full array and the BSS.
This demonstrates that antennas reducing interference are preferred over antennas
with high gain that could eventually increase interference and decrease γ(G). To
this purpose, the PS algorithm will be dropped for the rest of this chapter and BSS,
full-array, sub-array are compared.

4.2.2.4 Parametric Analysis

It is of interest to analyze the impact of S on the overall performance. To this
purpose, the values of S are chosen from the set: [9, 16, 25, 36, 49, 64, 81]. The
median value of γ(G) as a function of S is presented in Table 4.2 for the three
considered configurations: Full, Sub-array and BSS.
It can be observed that increasing S does not always increase γ(G). Taking for
instance the LOS case, the maximum γ(G) (∼45%) is observed for S = 36 and then
decreases to ∼27% with S = 81 which is the same value for S = 9. This is not
observed for NLOS wherein the value of γ(G) is nearly constant for the different
values of S > 16.
It can be concluded that, in the LOS scenario, using massive MIMO withM >> does
not improve γ(G) when UEs are correlated. On the contrary, more antennas could
deteriorate the performance. It also suggests that there exists an optimal number
of Tx antennas for which γ(G) reaches its maximal value, in this case S = 36.
Concerning NLOS, the applied strategy can alleviate the need for M = 100 RF
chains by using a distributed array of S = 25 for instance. Finally, it is preferable to
wisely select a reduced number of distributed elements based on the UEs correlation
rather than increasing M .
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Figure 4.13: Sum-rate capacity variation for ZF precoding with SNR for (a) LOS
and (b) NLOS scenario. 3 values of S are considered: 9, 25 and 81, compared with
the full-array performance.

4.2.2.5 Sum-rate Capacity

The conclusion of the previous section is insightful regarding the reduction of the
number of RF chains. Nonetheless, it does not take into consideration other systems
parameter: power allocation and precoding strategies. Regarding sum-rate analysis,
it is well known, from a system perspective, that increasing M generally leads to
larger sum-rate capacity. In this section, our goal is to quantify the achievable overall
performance of the proposed selection strategy. In other words, we try to answer
the question: how closely is the performance (sum-rate capacity) of the proposed
antenna selection strategy to the full-array performance, under precoding and power
allocation constraints ? To this purpose, the classical system model presented in
Ch. 2 (2.4.3) is considered with MRT and equal-power allocation (EP), ZF and WF.
It was shown in Ch. 2 that for ZF and MRT, the best power allocation strategies
were WF and EP. These precoding schemes are considered in the following.
The sum-rate capacity is presented in Fig. 4.13 with ZF as a function of the SNR.
The full-array performance is compared with the BSS for S = 9, 25, 81. Fig. 4.13(a)
illustrates the LOS and (b) the NLOS scenario.
It can be observed that with S = 81, the sum-rate in LOS and NLOS is respectively
∼50 and ∼75 bps/Hz compared to ∼52 and ∼78 bps/Hz for the full-array in both
scenarios. This value drops to ∼ 39 and 57 bps/Hz for LOS and NLOS respectively
when S = 9. These results indicate that a large fraction of the total sum-rate
capacity can be achieved with S << M . The achievable sum-rate β using the BSS
for instance, is presented, as follows:

β (%) = C(HBSS)
C(HFULL) × 100, (4.12)
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where C(HBSS) and C(HFULL) are the sum-rates computed with the distributed
array and full-array. β variation with S is presented in Fig. 4.14 where the LOS and
NLOS scenarios are compared for the BSS and sub-array. The SNR is equal to 10
dB .
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Figure 4.14: β (in %) variation with S for the LOS and NLOS scenarios with (a)
MRT and (b) ZF. The BSS for different values of S is compared with the Sub-array.

Starting with Fig. 4.14(b), the applied strategy reaches ∼90% of the total capacity
with only S = 36 for both LOS and NLOS with ZF. With MRT, the achievable total
sum-rate is 100% for NLOS with S >= 36 and reaches 110% for S = 36 in LOS
conditions. Indeed, the MRT curve in LOS case presents a maximum for S = 49,
showing that for LOS UEs with MRT, increasing M is not the best solution. It is
observed that for S = 36, better achievable capacities are obtained. This is not to-
tally surprising since the antenna selection strategy aims at minimizing the receiver
correlation which corresponds to reducing interference and thus increasing capacity.
Regarding the sub-arrays, their performance is always below the BSS (S = 36) with
β = 80% and 65% with MRT for LOS and NLOS respectively, and β= 68% with
ZF for both LOS and NLOS scenarios. Note that the absolute sum-rate capacity is
lower for MRT compared to ZF.
In conclusion, this figure highlights the efficiency of the antenna selection strategy
for both MRT and ZF in LOS (especially) and NLOS scenarios.
These observations agree with the previous results of the Gram’s power ratio and
receiver spatial correlation.

A summary of β values for LOS, NLOS is presented in Table 4.3 for MRT and ZF.
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S 16 25 36 49 64 81
Precoding β (in %) for LOS
MRT 98 107 112 116 102 106
ZF 63 75 89 90 92 96

Precoding β (in %) for NLOS
MRT 84 95 100 100 100 100
ZF 63 75 81 88 93 97

Table 4.3: Variation of β (in %) with S for LOS and NLOS. Two configurations
are compared: BSS with MRT and ZF.

In Table 4.4, β values for the total scenario are presented with the sum-rate capacity.

S 16 25 36 49 64 81
Precoding β (in %)
MRT 98 99 100 105 100 100
ZF 27 59 80 82 89 94

Precoding Sum-rate capacity (bps/Hz)
MRT 31 33 34 37 34 34
ZF 26 54 80 82 93 97

Table 4.4: Variation of β (in %) with S for the total scenario. Two configurations
are compared: BSS with MRT and ZF and the corresponding sum-rate capacity
values are given.

4.2.3 Conclusion
An original strategy to minimize the number of RF chains of massive MIMO system
using a digital-based swicth architecture has been described. Basically, antennas for
which user spatial correlation is low are selected. Based on experimental channel
characterization, system metrics such as Gram’s power ratio and sum-rate capacity
are used to validate the approach. Results show that by considering MRT precod-
ing technique, the maximum capacity obtained with a full array of 100 antennas,
limited by high correlation especially in LOS scenario, can be achieved with only
36 antennas. This leads to a reduction of 64% of RF chains. ZF precoding exhibits
a sum-rate capacity of 80% of the maximum capacity using these selected anten-
nas. The proposed strategy gives near-optimal performance while reducing the com-
plexity of massive MIMO systems, minimizing cost, maintenance, antenna coupling
(since antennas are distributed) and increasing energy efficiency by decreasing the
overall hardware energy consumption. Finally, the proposed strategy simplifies the
task of Rx scheduling since correlated UEs can be simultaneously served.
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4.3 General Conclusion
To conclude this chapter, we must draw attention to the link between the two pro-
posed strategies. It is true that these two strategies can be applied independently
since one reduces the overhead feedback for channel estimation and the other de-
creases the complexity by only considering S Tx antennas connected to S RF chains
with S < M . However, these two strategies are the two faces of the same coin.
Indeed, the K × S BSS channel is deduced from the K × M full-array and the
knowledge of the K×M channel is necessary for the selection procedure of S. From
this, without the Tx correlation-based approach to reduce feedback overhead (with
FDD for instance), the Rx correlation-based approach to select the BSS would still
be too complex since K ×M channels should be estimated.
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Chapter 5
Conclusion

T
he main research subject investigated in this thesis was the evaluation of the
performance of a massive MIMO setup in an industrial scenario whithin the

scope of Industry 4.0. Moreover, many challenges were addressed such as CSIT
feedback overhead reduction, number of RF chains reduction, polarization diversity
impact and overall performance. The main contributions of this work are summa-
rized in the next paragraphs, and future research directions are proposed.
In Ch. 1, we presented an overview of 5G-NR, its use-cases, spectrum-related fea-
tures and gaps with previous wireless generations. 5G, in its current form, is not a
revolution but an evolution of 4G and configurations using both 5G and 4G technolo-
gies will co-exist. Multiple antenna systems such as MIMO and MU-MIMO are ca-
pable of addressing many challenges using spatial multiplexing or diversity. Despite
the many benefits brought by these technologies in modern wireless communication
systems, it was concluded that a paradigm shift was needed to fulfill the new re-
quirements. This leads to massive MIMO systems where the increase in the number
of array elements at Tx helps in achieving both high spectral and energy efficiencies
by multiplexing many UEs. Massive MIMO can be used for analog beamforming,
mostly for very high data rate applications and backhaul links. Nonetheless, its
full advantages are harvested with digital beamforming. The theoretical advantages
of massive MIMO such as channel hardening and favorable propagation condition
are now well-known to academia, and have been confirmed by some field trials by
telecom operators [97, 100, 101].

Ch. 2 introduced the main characteristics of wireless channel parameters such as
Ricean factor, received gain and spatial correlation. In order to understand the im-
pact of these channel parameters on the system performance, a geometrical channel
model was proposed and used to perform a parametric analysis. This model, vali-
dated with experimental results (Appendix D), quantified the impact of the different
scenarios such as highly correlated users and /or highly correlated Tx elements. The
two main properties of massive MIMO were evaluated, (i) channel hardening i.e. the

149



variance of channel gain vanishing with the increasing number of array elements and
(ii) favorable propagation conditions illustrated by the convergence to zero of inter-
ference between UEs. It was concluded from this analysis that channel hardening
and favorable propagation condition largely depend on the Ricean factor and corre-
lation properties at both Tx and Rx side. Finally, in order to quantify the system
performance, precoding strategies and power allocation schemes were presented and
a simplified system model was described. The performance of i.i.d. channels was
evaluated and a parametric analysis on the sum-rate capacity using the proposed
massive MIMO channel model was presented. It was shown that linear precoding
schemes are affected by the Ricean factor and by correlation properties, and that
ZF and MMSE achieving very high spectral efficiencies have limitations for a large
number of users.

On another note, 5G aims at supporting the Industry 4.0 connectivity require-
ments for massive connectivity, ultra-reliability and ultra-low latency (mMTC and
URLLC). Furthermore, massive MIMO could potentially lead to an increase in flex-
ibility, versatility, productivity and resource efficiency. The various channel and
system aspects of massive MIMO in industrial environments have been developed
in Ch. 3.

Ch. 3 was first dedicated to the presentation of polarimetric channel measurements
of a massive MIMO setup for an indoor industrial scenario at 1.35, 3.5 and 6 GHz
with 80 MHz bandwidth. The scenario consists in a massive URA transmitter and
15 distributed users covering most propagation conditions. Using the propagation
channel parameters introduced in Ch. 2, UEs were classified into two distinct groups:
LOS and NLOS. The median correlation between users revealed strong correlation in
LOS co-polarized channels whereas low correlation is obtained in all cross-polarized
channels, but at the cost of power penalty especially in severe NLOS conditions.
Spatial variability across the array, depending on the UE position, has been pointed
out using, for instance, channel hardening. Furthermore, the Gram’s power ratio
showed that cross-polarized channels exhibit the best percentage of the total energy
focused toward the intended users in NLOS scenario. From sum-rate capacity anal-
ysis, the best configuration for the 2 precoding techniques was cross-polarization
with MRT and co-polarization with ZF and waterfilling power allocation. Finally,
from previous analyses, it was shown that increasing the number of antennas does
not always improve overall results and other approaches should be considered. Two
strategies exploiting polarization diversity were proposed and it was demonstrated
that very high sum-rate capacities (similar to co-polar in ZF) with a 50-element
dual-polarized array can be achieved. Compared to full co- and cross-polarization
schemes, diversity schemes jointly exploiting high channel gains in co-polarization
and better decorrelation in cross-polarization can lead to near-optimal results and
can, therefore, be beneficial for massive MIMO setups in Industry 4.0.
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Finally, in Ch. 4, two original strategies are proposed to reduce the complexity of
massive MIMO on two main aspects: channel estimation and number of RF chains.
For the latter, we introduced an Rx-correlation based method to select antennas
at Tx. Basically, antennas for which user spatial correlation is low are selected.
Based on experimental channel characterization, system metrics such as the Gram’s
power ratio and sum-rate capacity were used to validate the approach. The results
showed that the proposed strategy gives near-optimal performance while reducing
the complexity of the massive MIMO systems, minimizing cost, maintenance and
antenna coupling. For instance, with MRT precoding technique and the propsed
selection strategy, it is possible to only use 36 RF chains (out of 100) and achieve
the same capacity than with the full-array. This indicates that in some cases, wisely
selecting a reduced number of antennas is by far a better approach. For these
selected antennas, ZF precoding achieves 80% of the maximum capacity. However,
the selection criteria, using Rx spatial correlation, depends on the knowledge of the
full channel state information. FDD channel estimation becomes challenging due to
substantial overhead that scales up with the number of antennas. This motivated the
idea of simplifying the channel estimation procedure by proposing a Tx correlation-
based approach for feedback overhead reduction in FDD massive MIMO. It is based
on measurements of transfer functions between UEs and only a few number of array
elements, strongly decreasing the size of the channel matrix. The estimation of the
full matrix is then obtained owing to the knowledge of the correlation matrix at
the transmitter. Using ergodic capacity and sum-rate analysis with ZF and MRT,
it was demonstrated in industrial environments that the prohibitive DL training
feedback can be overcome using only ∼ 10% of the original number array elements
for channel estimation. This indicates that the proposed method allows accurate
feedback of channel state information in a resource-efficient manner. In terms of
feedback reduction, we have demonstrated with an example that, for a Tx array of
81 elements, a rather robust estimation of CSIT is obtained by using only 9 reference
antennas, reducing overhead by ∼ 75 %. These two strategies provide a practical
approach for FDD-based massive MIMO systems alongside complexity reduction,
paving the way for enhanced massive MIMO systems.
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Chapter 6
Future Research Directions

W
orks for Release 16 within 3GPP have already begun and some new trends
for 5G are already emerging. There exists many aspects that can eventually

be supported by massive MIMO such as vertical industries, non-terrestrial networks
(NTN), V2X, public safety, and Industrial IoT. However, many challenges are still
to be tackled before achieving the full potential of massive MIMO for different use-
cases. Based on the results from this work, many future research directions and
guidelines can be proposed.

• The proposed geometrical channel model, with a specific set of parameters for
the Ricean factor, elevation and azimuth angles, appeared to be well suited
to the simulation of industrial environment as shown in Appendix D. Never-
theless, the accuracy of this model can still be improved by including spatial
variability of the Ricean factor along the URA transmitter.

• We have shown that the DMC or dense multipath components are a significant
contributor to the decorrelation mechanisms between UEs at mmW bands as
briefly mentioned in Sec. 1.10. Details are given in J4 from the List of
Publications. It was concluded that DMC should be taken into account
when modeling radio channels. In an ongoing work, this phenomenon is being
investigated for the massive MIMO setup in industrial environment for 1.35,
3.5 and 6 GHz. The goal of this study is to quantify the presence of DMC, its
frequency-dependence and its impact on the performance of massive MIMO.
This can be part of a recent study item proposed by 3GPP and dealing with
industrial channel characterization.

• NOMA or non-orthogonal-multiple-access can outperform conventional or-
thogonal multiple access (OMA) schemes in cellular networks. There exists
specific cases where NOMA can be complementary to massive MIMO, espe-
cially when UEs are highly correlated. By using power multiplexing when P1
(received power by UE1) 6= P2 (received power by UE2), as shown in Fig. 6.1,
two highly correlated UEs can be separated owing to their power contributions
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and using successive interference cancellation (SIC). More generally, UEs can
be grouped into pairs and the different pairs are spatially multiplexed using
massive MIMO properties. This is referred to as a hybrid solution of NOMA
and multi-user beamforming. The interest of this solution has been evaluated
for analytical channels and was shown perform better than a system using
only one of the two schemes as indicated in [228]. Nonetheless, an experimen-
tal approach is needed to validate this interesting approach. To this purpose,
measurements would be planned to assess the feasibility of the association of
NOMA to massive MIMO.

Figure 6.1: NOMA associated to massive MIMO in highly correlated environments.

• Results of CSIT overhead reduction in FDD mode and those of the proposed
Rx correlation-based antenna selection strategy to reduce the number of RF
chains are very encouraging. The next step would be to experimentally simu-
late dynamic conditions by introducing UE mobility and study its impact on
channel estimation and on the overall performance of the selection strategy.
This type of measurements would take place in the same industrial environ-
ment as that described in Ch. 3, but using a real-time channel sounder MI-
MOSA [229] capable of simultaneously measuring a full 16×16 channel matrix
in ∼ 350µs. The channel sounder is being extended to a new version support-
ing massive MIMO features and a new frequency band 6 GHz. Lastly, it would
be of interest to evaluate the temporal variability of the channel response and
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Chapter 6. Future Research Directions

its impact on the Tx correlation between array elements since this could have
an impact on the performance of the proposed CSIT estimation method.

• In J2 from the List of Publications, we used an indoor virtual hybrid mea-
surement setup at 1.35 GHz where a vertical ULA was moved along horizontal
positions. In this setup, coupling and RF chains imperfections along the ULA
were considered. This study compared the receiver spatial correlation with
and without coupling and it was concluded that more antennas are needed
to reach a given threshold of correlation when coupling is considered. The
effects of coupling are well-known in MIMO systems and for analytical chan-
nels. Nonetheless, for massive MIMO, and with the proposed antenna selection
strategy for RF chains reduction, it would be of interest to compare the per-
formance of the full array and the BSS. Since the antennas are distributed
within the BSS, one can expect a greater performance of the proposed strat-
egy with respect to the full array since coupling is reduced when antennas are
distributed. Also, since coupling introduces correlation between antennas at
Tx, it might be interesting to check if the correlation-based approach to reduce
CSIT feedback overhead can be optimized by taking less reference antennas
(Mref ) since the correlation is higher in the array.

• In this work, a dual-polarized antenna array with half the number of elements
appeared to achieve most of the sum-rate capacity of a full co-polarized an-
tenna array. Also, the BSS using the Rx correlation-based selection strategy
was shown to perform very well with only 36 antennas out of 100 for both MRT
and ZF. However, this strategy was applied for the co-polarized array and the
potential of jointly using antenna selection strategies and dual-polarized array
would be attractive to simplify even more the complexity of massive MIMO
systems.

• Towards Massive MIMO 2.0: The different advancements in massive
MIMO systems with the addressed challenges as indicated before are paving
the way towards massive MIMO 2.0, a term used by the authors in [230].
Massive MIMO 2.0 will be a key motivator for new research directions, even
beyond 5G. As an example one can mention large intelligent surfaces wherein
very large electromagnetically active surfaces are integrated into existing man-
made structures, such as windows, towers or walls. This creates arrays with
huge apertures and reconfigurable electromagnetic radiation properties. These
large intelligent surfaces are sometimes labeled holographic massive MIMO
[231] and could be an interesting research subject. Finally, let us mention that
sub-THz communications [232] provide answers in the quest for ever-increasing
data rates using very large bandwidths and application of massive MIMO to
this frequency band would also be a challenge. Indeed, owing to compact
arrays at high frequencies, the massive MIMO regime is reached very fast,
providing huge performance gains.
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Appendix A
List of Notations, Symbols and Acronyms

A.0.1 Mathematical Notations and Operators

Matrices are denoted by upper-case boldface letters (A) while column vectors are
denoted with lower-case boldface letters (a). Scalars are denoted by lower or upper-
case italic letters (a). Unless otherwise indicated, a product between two matrices
is a matrix product and not element-by-element product. In the following, a list of
mathematical notations:

CX×Y Matrix with X × Y complex-valued elements.
R+ The set of positive real-valued numbers.
j

√
−1.

e Euler number (∼ 2.718281).
(a)∗ Conjugate of a.
R(a) The real part of a.
I(a) The imaginary part of a.
x ∈ S x is a member of S.
x /∈ S x is not a member of S.
(a)T Transpose of a.
(a)H Hermitian or conjugate-transpose of a.
ak kth element of a.
Ak,l The (k, l) element of A.
A−1 The inverse of square matrix A.
tr(A) The trace of square matrix A.
det(A) The determinant of square matrix A.
rank(A) The rank of A or the number of non-zeros singular values.
IM M ×M identity matrix.
E{x} The expected value of random variable x.
V{x} V{x} = E{|x− E{x}|2}. The variance of random variable x.
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|a| The absolute value of a.√
a The square-root of a.
‖a‖ ‖a‖ =

√∑
i |ak|2. The Euclidean norm of a.

‖A‖F ‖A‖F =
√∑

k,l |Ak,l|2. The Frobenius norm of A.
max(a, b) The maximum of a and b.
sin(x), cos(x) The sine and cosine function of x.
logy(x) logarithm of x using the base a in R+.
σ2 The variance of a distribution.
NC(0, 1) Circularly symmetric complex Gaussian distribution: mean 0 and variance 1.
U[a, b] Uniform distribution between a and b.
χ2
N The chi-square random variable with N degrees of freedom.

A⊗B Kronecker product of A and B.

A.0.2 List of Specific Used Symbols

Ch. 2
M Number of transmitting antennas at BS or AP side.
NRF Number of RF chains.
K Number of users or UEs.
N Number of antennas per UE.
Mf Number of frequency points.
Nobs Number of observations.
Bc Coherence Bandwidth (generally at 0.7).
KRice Ricean factor in dB.
γ(G) Gram’s Power Ratio.
t Absolute time.
∆τ Delay bin.
n Pathloss exponent.
Nray Number of MPC.
hk kth user channel vector.
H (K ×M ×Mf ) Massive MIMO channel matrix.
RTx,3λ/2 Tx correlation matrix for 3λ/2 element separation.
RRx K ×K UE spatial correlation matrix.
ρij Spatial correlation between UEs i and j, respectively.
β Large-scale coefficient (dB).
θ Elevation angle.
φ Azimuth angle.
(∆θ,∆φ) Elevation and Azimuth angular spread.
Ck Capacity bound per user.
C(H) or C Sum-rate capacity of H.
W M ×K Normalized precoding matrix.
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Appendix A. List of Notations, Symbols and Acronyms

Ch. 3
Mmin Minimum number of array elements to reach ρth.
ψ Link Polarization (VV or HV).
M̂ Number of Tx elements in each polarization.
ρth Correlation threshold for Mmin .
Kv Number of UEs on VV link.
Kh Number of UEs on HV link.
Ch. 4
PS Power Selection
RTx(t) Full channel correlation matrix.
Href (t+ ∆t) Reduced measured channel matrix.
Ĥ(t+ ∆t) Estimate of the measured channel.
d Array element spacing.
ρ(t) Reduced correlation vector.
Mref Number of reference elements.
ρRx UEs average spatial correlation.
C Capacity from measured channels.
Ĉ Capacity from estimated channels.
β in %: ratio of C to Ĉ.
S Number of selected antennas for the array.
Ndist Number of generated subsets for antenna selection strategy.
Nsub Number of generated sub-arrays.
HFULL K ×M full array channel matrix.
HSUB K × S Sub-array channel matrix.
HBSS K × S channel matrix of the BSS.
HWSS K × S channel matrix of the WSS.
C(BSS) Sum-rate capacity obtained with the BSS.
C (FULL) Sum-rate capacity obtained with the full-array.
β Here, it is the ratio of C(BSS) and C (FULL).
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Appendix A. List of Notations, Symbols and Acronyms

A.0.3 List of Acronyms

3GPP 3rd Generation Partnership Project.
A
ADC Analog-to-Digital Converter.
AF Amplify and Forward.
AoD Angle of Departure.
AoA Angle of Arrival.
AP Access Point.
Arcep Autorité de régulation des communications électroniques et des Postes.
AWGN Additive White Gaussian Noise.
AAS Azimuth Angular Spread.
B
BBU Baseband units.
BS Base Station.
BSS Best Selected Subset.
BW Bandwidth.
C
CCM Channel Correlation Matrix.
CDF Cumulative Distribution Function.
C-RAN Cloud-based radio access network.
CSI Channel State Information.
CSIT Channel State Information at Transmitter.
CTF Channel Transfer Function.
D
DAC Digital-to-Analog Converter.
DBF Digital Beamforming.
DL Downlink.
DoF Degrees of Freedom.
DPC Dirty Paper Coding.
E
eMBB Enhanced Mobile Broadband.
ETSI European Telecommunications Standards Institute.
EoD Elevation of Departure.
EoA Elevation of Arrival.
EAS Elevation Angular Spread.
EP Equal Power allocation.
F
FDD Frequency-Division Duplexing.
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List of Acronyms

G
GSM Global System for Mobile Communications.
H
HETNET Heterogeneous network.
I
i.i.d. Independently and identically distributed.
IEEE Institute of Electrical and Electronics Engineers.
IoT Internet of Things.
K
KBSM Kronecker-Based Stochastic Model.
L
LDPC Low-Density Parity-Check code
LNA Low Noise Amplifier.
LO Local Oscillator.
LOS Line-of-Sight.
LTE Long-term evolution.
M
MGF Moment Generating Function.
MIMO Multiple-Input Multiple-Output.
mmW Millimeter Wavelength.
MMSE Minimum Mean-Squared Error.
mMTC Massive Machine Type Communications.
MPC Multipath Components.
MRC Maximal Ratio Combining.
MRT Maximal Ratio Transmitting.
M2M Machine-to-Machine.
MU Multi-User.
N
NR New Radio.
NLOS Non Line-Of-Sight.
O
OFDM Orthogonal Frequency-Division Multiplexing.
P
PDF Probability Distribution Function.
Q
QoS Quality of Service.
R
RB Resource block.
RF Radio-Frequency.
RRH Remote radio heads.
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Appendix A. List of Notations, Symbols and Acronyms

S
SDMA Space-Division Multiple Access.
SE Spectral Efficiency.
SINR Signal-to-Interference and Noise Ratio.
SISO Single-Input Single-Output.
SNR Signal-to-Noise Ratio.
SU Single-User.
T
TAS Transmit Antenna Selection.
TDD Time-Division Duplexing.
U
UE User Equipment.
UL Uplink.
ULA Uniform Linear Array.
UMa Urban Macro.
UMi Urban Micro.
URA Uniform rectangular array.
URLLC Ultra-Reliable Low Latency Communications.
V
VAA Virtual Antenna Array.
VNA Vector Network Analyzer.
V2V Vehicle-to-Vehicle.
VSWR Voltage Standing Wave Ratio.
W
WINNER Wireless World Initiative New Radio.
WF Waterfilling.
WSS Worst Selected Subset.
X
XPD Cross-Polar Discrimination.
Z
ZF Zero-Forcing.
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Appendix B
DPC and Waterfilling

B.1 Dirty Paper Coding
Dirty paper coding is a precoding technique for efficient data transmission over a
channel experiencing interference such as noise sources, crosstalk, etc. This tech-
niques was introduced by Max Costa [57] in 1983 and consists in canceling the effect
of known interferences. The paper referred to in the technique’s name is the data
transmission medium, the writer is the transmitter and the reader is the user or the
receive antenna. However, this paper is subject to dirt (interference) and the mes-
sage on the paper (data information) might be unreadable when it reaches the reader
because the dirt has distorted the original message. But if (and only if) the writer
already knows the positions and intensities of the dirt spots are on the paper, he
could try to get around them (in this case the paper is not fully used for writing the
message). He could also try to adapt his ink to convey the message, in other words
write on the dirt spots the message in a way that it is understandable to the reader.
In this case, the paper is fully used and the reader receives the original message.
Technically speaking, the BS avoids inter-user interference by adequately choosing
the transmitted codewords. The message is encoded in the direction of interference
instead of avoiding it and then added to the dirt. The set of used codewords should
be known to the user in order to decode the original message. In MU-MIMO, this
technique achieves the optimal channel capacity without interference knowledge at
the receiver and more importantly with no power penalty. Most linear precoders are
compared in terms of efficiency to the DPC technique. The drawback of this tech-
nique is mainly its significant complexity which is why low-complexity suboptimal
schemes were selected.

B.2 Waterfilling algorithm
In a MU-MIMO setup and time-variant scenarios, the channels linking the BS to
the different users is rapidly changing. Hence, the power and resource allocation
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B.2. Waterfilling algorithm

should be accordingly updated to take into consideration the channel state. The
power allocation {p∗1, ..., pmin(K,M)∗} that maximizes Eq. 2.41 is given by :

p∗k =
(
µ− 1

ρσ2
k

)
, k = 1, ...,min(K,M), (B.1)

where µ is the Lagrange multiplier satisfying the power constraint in the system.
For each level ρσ2

k with σ2
k denoting the singular mode of the corresponding user

channel, the power allocation is performed by filling up the mode up to the power
level indicated by µ. No power is allocated to the kth mode if ρσ2

k ≤ 1
λ
. The

optimization of power allocation is iteratively estimated as in [133]. A counter i
is incremented and the constant µ is estimated at each iteration from the power
constraint:

µ(i) = 1
n− i+ 1

1 +
min(K,M)∑

k=1

1
ρσ2

k

 . (B.2)

If the allocated power to the weakest mode is negative (i.e. pmin(K,M)−i+1 < 0), the
corresponding allocated power is set to 0. This mode is dropped and the power
for the other modes is re-calculated after incrementing i. The process is repeated
until the power allocated to each mode is either null or positive. An example of this
principle with 8 channels and arbitrary chosen values is illustrated in Fig. B.1.
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Figure B.1: Waterfilling algorithm principle.
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Appendix C
Ricean Factor Estimation
In this appendix, a brief specification of maximum-likelihood-estimation (MLE) is
discussed. In statistics, MLE is an estimation method of parameters by maximizing
a likelihood function between the data in an observation set and the assumed sta-
tistical model. The point in the parameter space maximizing this function is called
the maximum likelihood estimate [233]. The considered statistical model here is the
Ricean Distribution with density function:

p(x) = x

σ2 I0

(
Ax

σ2

)
exp(−x

2 + σ2

2σ2 ), x > 0 (C.1)

and 0 otherwise. I0 is the zero-order modified Bessel function of the first kind. A
is the non-zero positive non-centrality parameter and σ a positive scale parameter.
The Ricean factor is defined as:

KRice = A2

2σ2 . (C.2)

From the geometrical model presented in this manuscript, the accuracy of the MLE
is evaluated. The following figure illustrates the estimated KRice with respect to the
real simulated KRice.
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Figure C.1: Convergence of the MLE estimator for different KRice values.
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It is concluded from this presentation that KRice is well estimated for positive values
only and thus MLE cannot be used to estimate negative KRice values. Therefore,
the negative values of estimated KRice values in this manuscript are thus considered
as zeros due to the poor estimation accuracy.
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Appendix D
Geometrical Model: Charts and Validation
In this appendix, the geometrical channel model proposed in Ch. 2 is validated using
channel measurements described in Ch. 3. First, the different charts of correlation
values at Rx (Fig. D.1) and Tx (Fig. D.2) are presented. These values were used for
the parametric analysis in Ch. 2 as shown in Tables 2.1 and 2.2.
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Figure D.1: ρRx values for different elevation ∆θ and azimuth ∆φ angles (in o)
and different KRice values: (a) -10 dB, (b) 0 dB, (c) 6 dB and (d) 10 dB. These
parameters are set using the geometrical model.
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Appendix D. Geometrical Model: Charts and Validation
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Figure D.2: ρTx,3λ/2 values for different elevation ∆θ and azimuth ∆φ angles (in
o) and different KRice values: (a) -10 dB, (b) 0 dB, (c) 6 dB and (d) 10 dB. These
parameters are set using the geometrical model.

Experimental Vs Geometrical Model
The geometrical model parameters for this comparison are:
• LOS scenario : K = 6, KRice = 6 dB, ∆θ = 25o and ∆φ = 30o.

• NLOS scenario : K = 9, KRice = −3 dB, ∆θ = 45o and ∆φ = 90o.
The different CDF curves in Figs. D.3(a) and (b) show that the geometrical model
fits fairly well the measured channel in the industrial scenario, especially in NLOS
and for the total scenario. Also, the Tx correlation computed with the geometrical
model presents a similar behavior (shape and median value of the curve) than those
obtained from experimental channels. This figure gives insight into the possibility
of evaluating the massive MIMO system performance using a parametric analysis.
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Geometrical Model Validation
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Figure D.3: CDF of the spatial correlation values ρi,j for all (i, j) combinations.
The comparison is done for (a) LOS, NLOS scenarios of Ch. 3 and geometrical
model for each case, (b) the total scenario with all UEs and (c) the correlation at
Tx for inter-element spacing of 3λ/2 for LOS and NLOS UE.

Geometrical Model Validation
The different correlation characteristics were shown to be close to experimental data
in the previous section.

In order to validate the geometrical model, it is possible to evaluate its perfor-
mance using the Gram’s power ratio and comparing γ(G) for the LOS and NLOS
scenarios (presented in Ch. 3).

This is illustrated in Fig. D.4. This figure highlights the evolution of γ(G) with the
number of array elements M and confirms that the model performance is close to
the experimental channels.
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Appendix D. Geometrical Model: Charts and Validation
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Figure D.4: Comparison of the Gram’s power ratio dependence with M between
measured and geometrical channels for the LOS and NLOS scenarios. The geomet-
rical model was tuned using the parameters defined in the previous section.
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Appendix E
Antennas Characteristics

In this appendix, the different frequency characteristics of the patch antennas at
1.35, 3.5 and 6 GHz are presented. Antennas at 1.35 GHz were designed for the
MIMOSA channel sounder presented in [229]. More information about the antennas
can be found in [234]. The radiation patterns of antennas at 3.5 and 6 GHz are
presented for the two cuts in azimuth φ and elevation θ. The beamwidth at -3 dB
is also indicated.
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S11 parameter and Patch Gain

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Frequency (GHz)

-25

-20

-15

-10

-5

0

S
11

 [d
B

]

(a)

1.3 1.32 1.34 1.36 1.38 1.4

Frequency (GHz)

-5

0

5

10

G
ai

n 
(d

B
)

Gain Patch E

(b)

3.45 3.5 3.55

Frequency (GHz)

-25

-20

-15

-10

-5

0

S
11

 [d
B

]

(c)

3.45 3.5 3.55

Frequency (GHz)

-5

0

5

10

G
ai

n 
(d

B
)

(d)

5.8 5.9 6 6.1 6.2

Frequency (GHz)

-30

-25

-20

-15

-10

-5

0

S
11

 [d
B

]

(e)

5.8 5.9 6 6.1 6.2

Frequency (GHz)

-5

0

5

10

G
ai

n 
(d

B
)

(f)

Figure E.1: Scattering parameter S11 in dB for the three frequencies (a) 1.35 GHz,
(c) 3.5 GHz and (e) 6 GHz. Patch Gain in dB for the three frequencies (b) 1.35
GHz, (d) 3.5 GHz and (f) 6 GHz.

172



Appendix E. Antennas Characteristics

Radiation Pattern G(φ, θ)
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Figure E.2: Radiation pattern in azimuth cut for (a) 3.5 GHz, (b) 6 GHz and in
elevation cut for (c) 3.5 GHz, (d) 6 GHz.
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Radiation Pattern with Cross-Polarization
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Figure E.3: Radiation pattern for co- and cross polarizations at (a) 3.5 GHz and
(b) 6 GHz.
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Appendix F
UE Allocation Strategies

Algorithm 1 Minimization of ρi,j for i, j couples with ρi,j > ρt
1: Compute the K ×K RRx
2: i← 1
3: while i ≤ K − 1 do
4: j ← i+ 1
5: while j ≤ K do
6: if ρi,j ≥ ρt then
7: ψ(i)← V
8: ψ(j)← H
9: break

10: else
11: j ← j + 1
12: end if
13: end while
14: i← i+ 1
15: end while

Algorithm 2 Minimization of ρi,j for all i, j couples
1: Compute the K ×K RRx
2: i← 1
3: IndMax← 0
4: while i ≤ K − 1 && IndMax 6= i do
5: [Max, IndMax] = arg max(ρi)
6: ψ(i)← V
7: ψ(IndMax)← H
8: i← i+ 1
9: end while
10: i← i+ 1
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