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Linear and nonlinear optical responses of chiral
multifold semimetals

Abstract

Since the initial predictions for the existence of Weyl fermions
in condensed matter, many different experimental techniques have
confirmed the existence of Weyl semimetals. Among these techniques,
optical responses have shown a variety of effects associated with the
existence of Weyl fermions, such as the linear frequency dependence of
the optical conductivity and the quantized circular photogalvanic effect.
In chiral crystals we find a new type of fermions protected by crystal
symmetries — the chiral multifold fermions — that can be understood
as a higher-spin generalization of Weyl fermions.

In the first part of this thesis, we provide a complete description of all
chiral multifold fermions, studying their topological properties and the
k · p models describing them. We compute the optical conductivity of
all chiral multifold fermions and establish their optical selection rules.
We find that the activation frequencies are different for each type of
multifold fermion, and thus constitute an experimental fingerprint for
each type of multifold fermion. Additionally, we find that the optical
conductivity of threefold and fourfold fermions are up to four times
larger than that of a Weyl fermion per node, given the same Fermi
velocity.

Building on the theoretical results obtained from the previous
analysis, we study two chiral multifold semimetals: RhSi and CoSi. We
analyze the experimental results with k · p models and tight-binding
models based on the crystal symmetries of the material. We trace
back the features observed in the experimental optical conductivity to
the existence of multifold fermions near the Fermi level and estimate
the chemical potential and the scattering lifetime in both materials.
Additionally, our analysis of the optical conductivity of CoSi indicates
the existence of a spin-3/2 fourfold fermion near the Fermi level,
constituting the first example of a spin-3/2 quasiparticle excitation in a
crystal.

xvii



In the last part, we study the second-harmonic generation of
RhSi. We analyze the experimental results using a second-order k · p
Hamiltonian and compare our results with density functional theory
calculations. We find a sizeable second-harmonic response in the
low-energy regime. However, this regime is extremely challenging
to access with the current experimental techniques. The density
functional theory calculations reproduce the reported experimental data
reasonably well, allowing us to trace back the features observed in the
second-harmonic generation to different optical transitions.

Finally, we present the main conclusions of our research and motivate
further studies based on the work presented in this thesis: first,
understanding better chiral multifold semimetals and their responses;
second, we propose to apply the analysis of optical responses developed
in this thesis to different materials, such as topological superconductors.
This thesis highlights the need to develop a package to compute linear
and nonlinear optical responses of different models based on the codes
developed during our research.
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Réponses optiques linéaires et non linéaires des
semi-métaux chiraux multifolds

Résumé

Depuis les prédictions initiales de l’existence de fermions de Weyl
dans la matière condensée, de nombreuses techniques expérimentales
différentes ont confirmé l’existence de semi-métaux de Weyl. Parmi ces
techniques, les réponses optiques ont montré une variété d’effets associés
à l’existence de fermions de Weyl, tels que la dépendance linéaire en
fréquence de la conductivité optique et l’effet photogalvanique circulaire
quantifié. Dans les cristaux chiraux, nous trouvons un nouveau type de
fermions protégés par des symétries cristallines — les fermions chiraux
multifolds — qui peuvent être compris comme une généralisation à spin
supérieur des fermions de Weyl.

Dans la première partie de cette thèse, nous proposons une description
complète de tous les fermions chiraux multifolds, en étudiant leurs
propriétés topologiques et les modèles k ·p les décrivant. Nous calculons
la conductivité optique de tous les fermions chiraux multifolds et
établissons leurs règles de sélection optique. Nous trouvons que les
fréquences d’activation sont différentes pour chaque type de fermion
multifold, et constituent ainsi une empreinte expérimentale de chaun
de leurs types. De plus, nous trouvons que la conductivité optique des
fermions triples et quadruples est jusqu’à quatre fois supérieure à celle
d’un fermion de Weyl par nœud, étant donné la même vitesse de Fermi.

Sur la base des résultats théoriques obtenus à partir de l’analyse
précédente, nous étudions deux semi-métaux chiraux multifolds : RhSi
et CoSi. Nous analysons les résultats expérimentaux avec des modèles k·
p et des modèles de tight-binding fondés sur les symétries cristallines du
matériau. Nous lions les caractéristiques observées dans la conductivité
optique expérimentale à l’existence de fermions multifolds près du
niveau de Fermi et estimons le potentiel chimique et la durée de vie
de diffusion dans les deux matériaux. De plus, notre analyse de la
conductivité optique du CoSi indique l’existence d’un fermion quadruple
de spin-3/2 près du niveau de Fermi, constituant le premier exemple de
quasiparticule de spin-3/2 dans un cristal.

xix



Dans la dernière partie, nous étudions la génération de deuxième
harmonique de RhSi. Nous analysons les résultats expérimentaux
en utilisant un hamiltonien k · p du second ordre et comparons nos
résultats avec les calculs de la théorie de la fonctionnelle de la densité.
Nous trouvons une réponse de seconde harmonique importante dans le
régime de basse énergie. Cependant, ce régime est extrêmement difficile
d’accès avec les techniques expérimentales actuelles. Les calculs de la
théorie fonctionnelle de la densité reproduisent raisonnablement bien
les données expérimentales rapportées, ce qui nous permet de relier les
caractéristiques observées de la génération de la deuxième harmonique
à différentes transitions optiques.

Finalement, nous présentons les principales conclusions de notre
recherche et motivons d’autres études fondées sur les travaux présentés
dans cette thèse : premièrement, mieux comprendre les semi-métaux
chiraux multifolds et leurs réponses ; dans un deuxième temps, nous
proposons d’appliquer l’analyse des réponses optiques développées
dans cette thèse à différents matériaux, tels que les supraconducteurs
topologiques. Cette thèse met en évidence la nécessité de développer
un package pour calculer les réponses optiques linéaires et non linéaires
de différents modèles à partir des codes développés au cours de nos
recherches.
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When we think about condensed matter physics and how it has
evolved, we can go all the way back to the early years of civilization. As
kids we study the changes in society according to its technology and its
access to materials and knowledge. However, as interesting as History
is, we do not need to go to the dawn of society to witness a revolution
in the way we think of materials.

In 1902 Albert A. Michelson said1 “it seems probable that most of
the grand underlying principles have been firmly established ... An
eminent physicist remarked that the future truths of physical science
are to be looked for in the sixth place of decimals”. Only three years
later Albert Einstein published four papers about the photoelectric
effect2, the Brownian motion3, the theory of special relativity4, and
the energy-mass equivalence5, a prelude of the change of paradigm in
physics during the first half of the 20th century6.

As with the lack of evidence of the revolution to come at the turn of
the 20th century, before 1980 the hints for the existence of topological
phases of matter were absent in physics. In 1980 Klaus von Klitzing
measured the Hall voltage of a silicon metal-oxide-semiconductor field
effect transistor, showing that the Hall resistance is exactly quantized
in units of h/e2 7∗. This discovery is considered to be the first
experimental milestone that put topological phenomena under the
spotlight of physicists across different areas of research. The observation
of this phenomenon constitutes a great success: a physical observable
that can be measured without too much complication — the electrical
resistance — that is quantized independently of details of the material
under investigation, such as purity or size of the sample. In the
41 years that separate von Klitzing’s experiment and this thesis, the

∗K. von Klitzing measured the samples developed by M. Pepper and G. Dorda
while working in the high magnetic field laboratory in Grenoble. Five years later he
was awarded the Nobel prize for this finding.
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landscape of topological phases has grown extraordinarily. Both the
number of observed topological phenomena and our understanding of
the underlying principles has expanded remarkably, adding a whole new
dimension to the already rich realm of condensed matter physics. This
— the study of topological phases — is the context of this thesis.

In my training as a physicist I have had the opportunity to discuss
different points of view about our subject of study. As a theoretical
physicist I have learned that physics is an experimental science, and thus
the experiment plays a fundamental role in what we actually know and
understand about reality. In the ample landscape of topological phases
of matter, beyond the exciting and extremely interesting foundations,
a crucial aspect to consider as theoreticians are the signatures of
topological phases of matter in experimental measurements. Thus,
understanding experiments will be central to this thesis.

One aspect I find particularly interesting of topological phases
of matter is how they realize concepts imported from the realm
of high-energy physics. One of these cross-pollinations between
high-energy and condensed matter physics are Weyl fermions.
Weyl fermions exist as low-energy quasiparticle excitations in
three-dimensional crystals without time-reversal symmetry, inversion
symmetry, or both. They, however, have not been discovered as
fundamental particles. In the next chapter we will provide a more
detailed explanation of what is a Weyl crossing and how to derive its
topological properties. For now, we can work with the basic idea of
what a Weyl semimetal is: a material that features a topological twofold
crossing near the Fermi level.

1.1 Experimental signatures of topological metals

In a Weyl semimetal, the low-energy spin-1/2 quasiparticles emerging
near the Weyl crossings are described by a Weyl Hamiltonian of the
form8 H = ±vFk ·σ, where vF is the Fermi velocity, k is the crystalline
momentum, and σ is a vector containing the three spin-1/2 Pauli
matrices. The bands arising from this Hamiltonian disperse linearly
with energy E = ±vF |k| (see Fig. 1.1 (a)). The crossing of two
non-degenerate bands is special because the Weyl crossings act as

4
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kx

Figure 1.1: Schematic of the Weyl cone dispersion and Berry curvature. (a) Band
dispersion for a fixed kz near the Weyl crossing. The bands are linear, given by the
energies E = ±vF |k| of the Weyl Hamiltonian H = ±vFk · σ. (b) Each Weyl fermion
in the Brillouin zone acts as a monopole of Berry curvature Ω(k). Depending on the
chirality of the Weyl fermion, it can act as a source (red sphere) or a drain (blue sphere)
of Berry curvature in the Brillouin zone. The Nielsen-Ninomiya theorem forces Weyl
fermions to appear in pairs of opposite chirality, leading to a net vanishing chirality in
the Brillouin zone.

monopoles — sources and drains — of Berry curvature9 Ω(k) in the
Brillouin zone (see Fig. 1.1 (b)), as we will see in Chapter 2. The Berry
curvature is analogous to a magnetic field in momentum space, and the
Weyl nodes act as monopoles of this magnetic field in momentum space.
Thus, the only way to open a gap is to make two Weyl nodes interact,
for example by bringing them closer to each other in momentum space,
which is the origin of the robustness of the Weyl crossings against small
perturbations in the material.

In 2D materials that break time-reversal symmetry, the Berry
curvature gives rise the aforementioned quantum Hall effect. In Weyl
semimetals that break time-reversal symmetry, the Hall effect features
a contribution coming from the topological charge of Weyl monopoles10.
Nevertheless, most Weyl semimetals discovered so far are non-magnetic
and preserve time-reversal symmetry, which implies that the anomalous
Hall conductivity is identically zero. It is thus necessary to rely on
different probes to study the topological properties of Weyl semimetals.
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1.1.1 ARPES and the discovery of Weyl semimetals

Different experiments have contributed to probe the existence of
topological crossings in materials. The angle-resolved photoemission
spectroscopy (ARPES) technique has provided very useful information
about the band structure of different topological materials. This
technique measures the single particle spectral function as a function of
energy and momentum11. When the materials under investigation are
weakly interacting, which is the case for most topological compounds8,
this technique gives a direct measure of their band structure. This
technique played a central role in the identification of topological
insulator surface states12, and it has proven to be equally useful in
identifying topological semimetals like Na3Bi13,14 and Cd3As2 15–19†.

The first prediction of a material hosting Weyl fermions was the
family of pyrochlore iridates, R2Ir2O7, where R is a rare earth20,21.
This type of material was predicted to feature an anti-ferromagnetic
behavior that breaks time-reversal symmetry, allowing the existence of
Weyl crossings. Nevertheless, the magnetic order described for that
type of material is still under debate in experiments22,23, and to this
date no ARPES measurements of these systems have been reported. A
series of proposals followed this initial work, including a superlattice
consisting of a stack of alternating thin films of a topological insulator
and a normal ferromagnetic insulator24, and the natural ferromagnet
HgCr2Se4 25. No experimental measurements to this date have reported
a successful measurement indicating the existence of Weyl crossings in
either of these systems.

The breakthrough took place in 2015, when different works predicted
and confirmed the existence of Weyl crossings in TaAs26–29 (see Fig. 1.2).
This material has a body-centered tetragonal lattice and crystallizes
in the space group 109 in a lattice that lacks inversion symmetry, a
key feature for hosting Weyl fermions. The Weyl fermions in the bulk
Brillouin zone of TaAs, together with the corresponding Fermi arcs,
have been directly observed by ARPES measurements28–30, providing

†ARPES measurements initially indicated that Cd3As2 was a Dirac semimetal.
Later, magneto-optic measurements in this material showed that the conical features
observed in the band structure, originally attributed to Dirac fermions, correspond
to massless Kane electrons, and that the Dirac electrons may appear only at smaller
energy scales19.
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The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k-point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise
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Figure 1.2: Weyl cones in the bulk Brillouin zone of TaAs. (a) In the absence of
spin-orbit coupling, TaAs hosts nodal rings in the kx and ky mirror planes. When
spin-orbit coupling is included, the nodal rings are gapped except at 12 pairs of Weyl
crossings with opposite chirality (red and blue spheres) off the mirror planes: 8 Weyl
points on the kz = 0 plane, referred to as W1, and 16 Weyl points away from the
kz = 0 plane, referred to as W2. (b) ARPES in-plane energy dispersion (EB , k∥) that
goes through a W1 Weyl node. A linear dispersion is clearly observed, consistent with the
Weyl fermion cone. (c) ARPES in-plane energy dispersion (EB , k∥) that goes through a
pair of W2 Weyl nodes. (d) ARPES out-of-plane energy dispersion (EB , k⊥) that goes
through two W2 Weyl nodes with the same kx, ky but different kz value. Adapted from
Refs. [27,28].

the first indications of the presence of Weyl fermions in a crystal‡. These
measurements were complemented with spectroscopy measurements in
different compounds in the TaAs family26–30,32–42, providing further
evidence of the existence of Weyl fermions in this class of materials.

‡A Weyl band structure was observed also in 2015 in an inversion-breaking 3D
double-gyroid photonic crystal without breaking time-reversal symmetry31.
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1.1.2 The chiral anomaly and negative magnetoresistance
of Weyl semimetals

The presence of Weyl fermions in a system has physical consequences
beyond its band structure. Each Weyl node in a condensed matter
system has a positive or negative chirality corresponding to the sign
of the determinant of the velocity matrix, and determines whether
the Weyl node acts as a source (positive chirality) or drain (negative
chirality) of Berry curvature. Thus, a single Weyl fermion — i.e.,
a single monopole — is not periodic in the Brillouin zone. The
Nielsen-Ninomiya theorem establishes that Weyl fermions in condensed
matter realizations must appear in pairs of opposite chirality to have
a net zero topological charge43. This means that, in equilibrium, two
Weyl nodes at the same energy with opposite chirality will yield a net
zero chiral-dependent current, making the chirality of each Weyl node
unobservable.

Although Weyl fermions appear in pairs of opposite chirality, it
is possible to induce a steady-state density difference between both
chiralities in the presence of parallel electric (E) and magnetic (B)
fields proportional to E · B8. The density imbalance between both
chiralities results in a current j ∝ τBE · B, where τ is the
inter-node scattering time. This current is a manifestation of the
chiral anomaly in condensed matter realizations, originally predicted
for Weyl fermions in high-energy physics43. Along the magnetic field
direction, the conductivity increases proportionally to B2, leading to
a negative magnetoresistance44,45. Typically, metals or conventional
semiconductors have a weak positive magnetoresistance that does not
depend strongly on the magnetic field direction. Thus, the negative
magnetoresistance could be used as a signature of Weyl fermions.

Typical measurements of the magnetoresistance involve measuring
the voltage drop between two points in a sample, where an electric
current is injected through metallic contacts. When the size of the
contacts is smaller than the cross section of the sample, a magnetic
field applied to the sample can enhance the electric current parallel to
the magnetic field direction. Since we expect to observe the negative
magnetoresistance characteristic of Weyl semimetals along the direction
of the magnetic field, we need to measure the voltage drop along

8



this same direction, where the current is potentially enhanced by the
magnetic field. The enhancement of the electric current along the
magnetic field is known as current jetting46–50, and can lead to an
apparent negative magnetoresistance not originated by Weyl fermions51.
Current jetting can therefore mask the signatures of Weyl fermions in
magnetotransport, an extrinsic effect that is challenging to rule out.

1.1.3 Optical responses as probes for topological phases

The options for detecting experimentally the presence of Weyl fermions
are not limited to observing directly their band structure or their DC
electrical transport. When an incident electric field interacts with a
material, the material reacts by inducing a current density proportional
to the incident field. Assuming the electric field is a continuous wave
with a wavelength larger than the material sample, we can neglect the
spatial dependence of the electric field and express the induced current
in powers of the electric field as

ja(t) =
∑
b

σ
(1)
ab Eb(t) +

∑
bc

σ
(2)
abcEb(t)Ec(t) + · · · . (1.1)

The quantities σ(1)
ab and σ(2)

abc are the linear and second-order conductivity
tensors, respectively.

Let us start by considering linear responses σ
(1)
ab . An interesting

example is the optical conductivity of graphene, a two-dimensional
semimetal featuring Dirac cones at the K and K ′ points of the Brillouin
zone. For interband transitions near the Dirac degeneracy, the optical
conductivity of graphene has a universal value σ0 = e2/(4ℏ), resulting
in a frequency-independent transmission quantized in terms of the
fine-structure constant α = e2/ℏc ≈ 1/137 as T = 1− πα52–54. In Weyl
semimetals we can consider the low-energy limit, when higher-order
terms in the dispersion can be neglected. In the absence of impurities
and interactions, the result that arises from interband transitions across
the Weyl node when the chemical potential is placed exactly at the
Weyl degeneracy is the non-universal optical conductivity σ(ω) =
Nωe2/(12hvF ), where vF is the Fermi velocity and N is the number
of nodes24,55–57.
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In non-interacting electron systems consisting of two bands that
meet at the Fermi energy, which can describe generically an untilted
Weyl crossing, the optical conductivity has the power-law frequency
dependence σ ∝ ω(d−2)/z, where d is the spatial dimensionality of the
system and z is the power law of the band dispersion58. In graphene
(d = 2), the linear dispersion of the bands (z = 1) near the K and K ′

points results in the constant optical conductivity σ0 mentioned in the
previous paragraph. In the case of Weyl semimetals (d = 3), the linear
dispersion (z = 1) characterizing the topological bands near the Weyl
crossings leads to the linear scaling (σ ∝ ω) of the optical conductivity
with incident frequency.

However, the features of the optical conductivity associated with the
presence of Weyl crossings in the material can be significantly affected
by the position of the Fermi level and the sample disorder. It is thus
necessary to have a good estimation of these quantities to interpret
the experimental measurements of optical responses correctly. This
endeavor will be central to this thesis.

Let us consider now the second-order response σ
(2)
abc of a material

to a monochromatic source with frequency ω. Since the second-order
response is proportional to the second power of the electric field, the two
Fourier components of the field +ω and −ω can interfere constructively
or destructively. This interference results in different effects that can
be used to probe different material properties (see Fig. 1.3).

In Weyl semimetals some nonlinear optical responses can be
directly linked to the topological charge of Weyl fermions59–65. In
inversion-breaking Weyl semimetals we can find second-order optical
responses that provide valuable information about the topological
charge of the Weyl crossings and the geometric properties of their bands,
such as the variation of Berry curvature with the crystalline momentum.

Let us first consider the destructive interference of two incident
electric fields with frequency ω, which results in a second-order DC (ω =
0) response. One of the responses linked to the topological properties of
Weyl semimetals is the circular photogalvanic effect (CPGE), associated
with the second-order DC (ω = 0) response to circularly polarized
light. The optical selection rules for circularly polarized light result
in asymmetric excitation probabilities within a single Weyl cone63 (see
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Figure 1.3: Overview of second-order nonlinear processes. (a) A monochromatic
electric field at frequency ω applied to a material that lacks inversion symmetry can
induce a 2ω response in the material, known as second-harmonic generation, and a DC
current know as the instrinsic photogalvanic effect. Depending on the polarization of the
incident light, the effect is known as the linear or circular photogalvanic effect for linear
and polarized light, respectively. Depending on the frequency, the responses induced in
the material can be measured with different probes, from all electric in the DC limit to
all-optical for higher frequencies. (b) When the source is not monochromatic, electric
fields of two frequencies ω1,2 can induce responses in the material at the sum or difference
of their frequencies, known as sum or difference frequency generation, respectively, as
well as the second-harmonic responses for each of the incident frequencies at 2ω1,2.
(c) Nonlinear photocurrents can be measured by capturing the carriers with metallic
contacts or via an emitted pulse whose electric field can be detected in the far field.
Reproduced from Ref. [59].
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(b)

Figure 1.4: Optical excitations for circularly polarized light in tilted Weyl fermions.
Occupied states below E = µ are indicated in blue. (a) Asymmetric excitations in a
single Weyl cone. Circularly polarized light will excite electrons from only one side of
the cone (blue arrow), while the transition in the opposite side is forbidden (red arrow)
(b) In a tilted Weyl cone along the tilt direction kt optical transitions at a given energy
(blue arrow) are Pauli blocked in the opposite side of the cone (red arrow and circles).

Fig. 1.4 (a)), producing a nonzero current. However, as we mentioned in
Sec. 1.1.2, the Nielsen-Ninomiya theorem forces Weyl cones to appear
in pairs with opposite chirality. Weyl cones with opposite chirality
contribute with opposite signs to the total current, meaning that if
both chirality-opposed Weyl fermions have the same band dispersion
the net current is zero. This situation can be overcome in systems
with tilted Weyl cones, which is the natural situation for Weyl cones
placed outside high-symmetry points in the Brillouin zone63,64. In this
case, the optical excitations are asymmetric for different sides of a single
cone. Additionally, placing the chemical potential away from the node
prevents optical transitions within the Pauli-blocked region, leading to
additional asymmetries in the contributions from different sides of the
cone (Fig. 1.4 (b)). This combination of Pauli-blocking and optical
selection rules has led to the observation of non-zero photocurrent
generation63,65.

In inversion-symmetry breaking Weyl semimetals, the variation of
the Berry curvature Ω(k) with the crystalline momentum — the Berry
dipole ∂kΩ(k) — determines the strength of the CPGE10,60,61. The
effect is, thus, generically not quantized. However, in Weyl semimetals,
at nonzero frequency there is a quantization of the rate of the CPGE62

determined by the topological charge of the Weyl crossing in units of
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e3/ℏ2. It is rather unusual to find a quantized observable in a metallic
system, and the CPGE in Weyl semimetals constitutes a remarkable
example of a nonlinear optical response that provides a direct way of
measuring the topological charge of Weyl crossings.

Turning to the constructive interference of frequencies at second
order we find the second-harmonic generation (SHG). In this case,
the two oscillating incident electric fields with frequency ω interfere
constructively to generate a response in the material at 2ω. The
second-harmonic response of a Weyl semimetal is not quantized, and
its relation to the topological and geometrical properties of the band
structure is still a matter of study. This response has been measured
in TaAs in the energy range from 0.5 eV to 1.5 eV66,67, revealing a
giant second-harmonic response at room temperature with a resonance
at 0.7 eV68. The giant second-harmonic response of the first discovered
Weyl semimetal raised the question of whether this enhancement was
mainly due to the topological nature of the Weyl crossings present in
TaAs. However, the energy scale explored in the experiments (∼eV) is
considerably larger than the interband energy excitations near the Weyl
node (∼meV), thus involving non-Weyl bands in the response. The
added contribution of different bands poses a challenge when aiming to
determine the topological or trivial origin of the giant second-harmonic
response. First-principles calculations of a wide range of crystals found
that in most materials the Weyl fermions are very close together in
momentum space, typically leading to short Fermi arcs and narrow
topologically non-trivial energy windows8,10,69. Moreover, predicted
band structures often exhibit a very large number of Weyl fermions
scattered throughout the bulk Brillouin zone with Weyl fermions that
lie far from the Fermi level as well as irrelevant trivial electron bulk and
surface states at the Fermi level8,10,69. All these factors question the
enhancement of the second-harmonic response from topological bands.
In this thesis we will study the second-harmonic response of topological
semimetals exhibiting a large energy window where only topological
bands are involved.

Along with the interesting phenomena observed in optical responses of
Weyl fermions, for excitation frequencies between the infrared (∼0.1 eV)
and the UV (∼ 10 eV), experiments can be performed in a completely
contactless fashion (see Fig. 1.3), which can be an advantage compared
to transport probes. This energy range is especially relevant for the
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optical conductivity and second-harmonic responses studied in this
thesis. Expanding the energy scope down to the microwave (∼1 meV)
regime, the measurements can be performed applying a laser source
to the sample and measuring the induced current with the help of
electrodes. Finally, for DC excitation frequencies (0 meV) one must
rely on DC sources and electrodes to measure the current.

The scenario described here is significantly enriched when we consider
bi-chromatic responses. Under this assumption we find two initial
frequencies ω1 and ω2 that can be combined in different ways to give
rise to a larger variety of responses (see Fig. 1.3 (b)). A detailed review
of monochromatic and bi-chromatic nonlinear responses in topological
materials can be found in Ref. [59].

1.2 Beyond Weyl crossings: multifold fermions

In the previous section we relied on time-reversal and inversion
symmetry breaking as the requirements for a material to host the
twofold band degeneracies giving rise to Weyl quasiparticle excitations.
However, it is reasonable to ask if we can rely on a different
set of symmetries to find other degenerate band crossings. In
2016 Bradlyn et al 70 studied what type of crossings can exist in
different crystal structures analyzing all possible non-magnetic space
groups. We can find two-, three-, four-, six-, and eightfold band
degeneracies in different crystal structures70,71 protected by the crystal
symmetries. The low-energy quasiparticles emerging near these band
degeneracies are described by a generalization of the Weyl equation with
higher spin H = vFk · S, and we refer to them as multifold fermions.
These quasiparticles do not have a high-energy counterpart in the
traditional classification of fermions, and were originally referred to as
unconventional fermions70. Out of all possibilities, only two-, three-,
four-, and sixfold fermions are chiral, in the sense that they have a
nonzero topological charge and act as sources of Berry curvature in the
momentum space. These are central to this thesis and will be described
in detail in Chapter 2.

The development of the theory of multifold fermions led to the
prediction of a near-ideal chiral multifold semimetals family, the AB

14



material class with A = Co,Rh and B = Si,Ge70,72,73. These
materials crystallize in the cubic chiral space group 198. Their band
structure features multifold fermions at the zone center and at the
zone corner, achieving the largest momentum-space separation possible
between two chiral charges in the Brillouin zone. This new class of
materials opens exciting possibilities to study the effect of fermions
with higher topological charges than Weyl fermions in optical responses.
Unlike previous Weyl candidates, in these new materials the topological
band crossings are well isolated in the Brillouin zone and separated
in energy from trivial bands. This potentially allows us to trace
back the features observed in the experimental measurements to the
presence (or absence) of topological bands extending over a wide range
of energies. Additionally, two of these materials, RhSi and CoSi, have
been synthesized as single crystals, an advantage to grow clean enough
samples where the effect of the chiral multifold crossings is not masked
by disorder effects.

In this thesis we will study the linear and nonlinear responses of chiral
multifold fermions. We will review the classification of chiral multifold
fermions, describing their topological properties. Our main focus are the
optical fingerprints of these multifold band degeneracies in materials
hosting them. To study these fingerprints, we will rely on different
models of increasing order of complexity: k · p Hamiltonians for each
type of chiral multifold fermions and tight-binding models incorporating
the crystal symmetries of the materials under study. We will compare
the results obtained for the k · p and tight-binding models with density
functional theory (DFT) calculations providing specific band structures
for each material, which will allow us to examine the limitations of the
simpler models. Finally, we will analyze and provide a comprehensive
understanding of the linear optical conductivity in RhSi and CoSi, and
address the question of the effect of topology in the second-harmonic
generation of RhSi.
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1.3 Structure of the thesis

In this chapter we have provided an introduction to the experimental
detection of Weyl semimetals, which can be considered the
lowest-degeneracy case of a chiral multifold semimetal. We gave an
overview of the linear and nonlinear responses that can emerge in Weyl
systems, making special emphasis on the properties and experimental
accesibility of nonlinear responses.

In Chapter 2 we provide a complete description of all chiral multifold
fermions, studying their topological properties and the different models
of increasing order of complexity that we will use throughout this
thesis. We start with the simplest case, the twofold (Weyl) fermion,
providing an introduction to the topological quantities that characterize
it and their physical consequences. We extend this analysis to all chiral
multifold fermions, and provide a relation of the Brillouin zone positions
where they can appear in all chiral space groups.

In Chapter 3 we derive a general expression for the optical
conductivity, and use it to compute the optical conductivity of all
chiral multifold fermions using low-energy k ·p Hamiltonians, identifying
characteristic fingerprints for each type of multifold fermion. Finally, we
compute the optical conductivity of two tight-binding models capable
of describing real materials crystallizing in space groups 198 and 199.
We analyze the main characteristics and trace back the features of
the optical conductivity of these models to the presence of multifold
crossings in their band structure.

In Chapter 4 we model two experiments measuring the optical
conductivity of RhSi and CoSi, both materials crystallizing in SG198
and featuring multifold crossings near the Fermi level with a relatively
large topological energy window. We characterize their optical
conductivity using different models, and provide the first evidence for
the existence of a spin-3/2 quasiparticle excitation in a crystal. The
study of CoSi presented in this chapter is the result of a collaboration
with Bing Xu, Christian Bernhard, and Liang Wu, who worked on
the experiment, and Zhenyao Fang, Jorn Venderbos, Tian Qiu, Eugene
Mele, and Andrew M. Rappe, who worked on the ab-initio calculations.
The results discussed here were presented in Ref. [74]. The results for
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RhSi have been obtained in collaboration with Zhuoliang Ni, Bing Xu,
Yang Zhang, Kaustuv Manna, C. Bernhard, Jorn W. F. Venderbos,
Fernando de Juan, Claudia Felser, and Liang Wu, and were originally
presented in Ref. [75].

In Chapter 5 we study the second-harmonic generation of RhSi.
We analyze the experimental results by using a second-order k ·
p Hamiltonian and DFT calculations, providing a comprehensive
description of the origin of the different features in the second-harmonic
response and their relation to the topological character of the bands
in RhSi. This study was done in collaboration with Baozhu Lu,
Kaustuv Manna, Claudia Felser, and Darius H. Torchinsky, who worked
on the experiment, and Sharareh Sayyad, who performed the DFT
calculations, and was originally presented in Ref. [76].

In Chapter 6 we state the conclusions of our research of linear and
nonlinear optical responses of chiral multifold fermions, with emphasis
in the materials RhSi and CoSi. Finally, we provide future directions
for the study of chiral multifold semimetals and important applications
of nonlinear responses to other families of materials.
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In my last year as an undergraduate student, the teacher of the
elementary particle physics course came into the room and asked us:
“if you contact an alien very far away in space, what would you ask
them to know if they are made of matter or antimatter?”. Of course, at
that moment I did not know that this question is known as the Ozma
problem. The answer lies in the neutral kaon K0 decay and the violation
of CP symmetry. Both the kaon K0 and anti-kaon K̄0 have a slightly
lower probability to produce electrons than anti-electrons in the decay
process. That day the teacher explained the relevance of CP symmetry
and the full symmetry of the Standard Model. It was one of my first
exposures to the almighty role of symmetries in defining∗ the properties
of physical systems.

When studying what type of free particles we can find in nature,
we can divide them into bosons and fermions. The latter can be of
three types: Dirac, Weyl, and Majorana fermions. The assumption
underneath the traditional classification of fermions is that these
particles exist in space-time, thus respecting Poincaré symmetry.
However, in condensed matter systems, fermions are not constrained
by Poincaré symmetry, and a natural question arises: can we find some
type of fermion in condensed matter systems that does not exist as
a free particle in space-time? We know condensed matter systems
predicted to host Dirac, Weyl, and Majorana excitations, but recent
works70–72,77,78 studied the possibilities of finding new quasiparticles
with no high-energy counterparts in crystals. These particles, together
with the Weyl fermion, are the so-called multifold fermions.

In this chapter, we will study the complete classification of multifold
fermions and focus on those with a nonzero topological charge: the
chiral multifold fermions. We start by the simplest possible case,

∗Defining or explaining, depending on your epistemological approach to natural
sciences.
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the well-known Weyl fermion, and we will progress through all
cases, explaining their properties and constructing the corresponding
low-energy k.p models describing them. We will finish by turning to
candidate materials to host these multifold excitations, the multifold
semimetals, and discussing the structure of two space groups where
these materials can crystallize.

2.1 Weyl fermions

Weyl fermions, one of the three types of fermions in the traditional
classification of particles, are chiral, massless, spin-1/2 particles
governed by the Weyl equation with Hamiltonian8

HWeyl = ±vFk · σ, (2.1)
where ± corresponds to the positive or negative chirality of the particle,
meaning that the particle propagates with velocity vF parallel or
antiparallel to its spin†. In condensed matter systems, vF corresponds
to the Fermi velocity of the bands meeting at the Weyl crossing.
The quantity k = (kx, ky, kz) is the momentum of the particle and
σ = (σx, σy, σz) is a vector containing the three Pauli matrices. The
bands described by Eq. 2.1 meet at a single point, which we refer to as
Weyl node (see Fig. 1.1 (a)). This degeneracy cannot be gapped out
in the 2× 2 matrix subspace. The only linearly-independent term that
we can add is proportional to σ0, which would result in a change of the
energy position of the node, and adding any term proportional to σx, σy
or σz can be absorbed in kx, ky, kz.

For some time, the connection between the material realization of
Weyl quasiparticles and their high-energy counterpart remained unclear.
The physics community believed that neutrinos might be Weyl fermions.
However, in 2016 the evidence of nonvanishing mass of the neutrino79,80

discarded this possibility. At the moment of writing this thesis, there
are no fundamental particles believed to be massless Weyl fermions.
How did this idea of massless Weyl fermions materialize in the study

†The relation of parellelism or antiparallelism of the spin and the direction of
propagation is called helicity. This corresponds to the chirality of the particle only
in the massless cases.
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of condensed matter systems? In 1937 Herring81 noted that one could
find accidental twofold band degeneracies in three-dimensional solids
even with no symmetries enforcing it. The low-energy dispersion
of the electrons near these degeneracies was generically linear and
resembled the Weyl equation. The connection between the low-energy
dispersion near the twofold degeneracies studied by Herring and the
Weyl fermions described in high-energy physics solidified with the work
of Nielsen and Ninomiya82. They realized that the chiral anomaly
described for high-energy Weyl fermions could have a nontrivial effect
in a lattice realization of Weyl degeneracies — such as the negative
magnetoresistance discussed in Sec. 1.1.2. Finally, the term Weyl node
for these twofold degeneracies was coined in 201120.

To understand many of the interesting properties of Weyl fermions in
condensed matter we turn to their topological aspect. In band theory,
we describe the electronic states in a crystal in terms of one-particle
Bloch wave functions |un(k)⟩, defined within the unit cell and labeled
by the crystal momentum k and band index n. The first concept we
need to define to describe the topological features of Weyl fermions is
the Berry connection of the band n, which can be expressed as83

An(k) = i ⟨un (k)|∇k |un (k)⟩ . (2.2)

It is important to note that the Berry connection can change
depending on an additional phase on the definition of |u±⟩ → eiθk |u±⟩.
It is thus convenient to define a field tensor Ωn(k) associated to the
connection An,

Ωn (k) = ∇×An, (2.3)

which we refer to as Berry curvature. The Berry curvature is
a gauge-invariant intrinsic property of the band structure since it
exclusively depends on the wave function, providing useful information
about its properties. In a similar way to the calculation of the charges
enclosed by a surface in electrodynamics, here we can define the flux
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of Berry curvature over a surface Sk in momentum space enclosing the
degeneracy point k = 0, given by

∫
Ω±(k) · dSk (2.4)

An extensive and more general explanation of the Berry curvature,
its relation to topological features of materials, and its physical
consequences can be found in Ref. [83].

To compute the monopole charge of Weyl fermions obeying the
Hamiltonian in Eq. 2.1 the first quantity we need are the eigenfunctions
|u± (k)⟩ of the Hamiltonian in Eq. 2.1, expressed in polar coordinates
k = k (sin θ cosϕ, sin θ sinϕ, cos θ) as83

|u+⟩ =
(
cos θ

2
e−iϕ

sin θ
2

)
, |u−⟩ =

(
sin θ

2
e−iϕ

− cos θ
2

)
. (2.5)

It is easy to compute the components of the Berry connection
(Eq. 2.2) for |u−⟩, which are

Aθ
− = ⟨u−|i∂θu−⟩ = 0, (2.6)

Aϕ
− = ⟨u−|i∂ϕu−⟩ = sin2 θ

2
. (2.7)

(2.8)

With these ingredients the Berry curvature reads

Ω−(θ, ϕ) = ∂θAϕ − ∂ϕAθ =
1

2
sin θ. (2.9)

If we proceed in an analogous way for |u+⟩, we obtain the Berry
curvature of the + band,

Ω+(θ, ϕ) = −1

2
sin θ. (2.10)
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We can now compute the flux of Berry curvature (see Eq. 2.4) over a
sphere S2 enclosing the Weyl degeneracy for each band as

∫
S2

dϕdθΩ±(θ, ϕ) = ∓2π. (2.11)

The Chern theorem establishes that the Berry curvature integrated
over a closed surface is quantized in units of 2π. The proportionality
between the Berry curvature integrated over a closed surface and 2π is
given by the number of monopoles enclosed by the surface. This is a
topological invariant known as the Chern number C, which indicates
the charge of the monopole enclosed by the surface of integration in
momentum space, and can be defined as

C± =
1

2π

∫
S2

dϕdθΩ±(θ, ϕ). (2.12)

The topological features of the Weyl fermion come from this nonzero
Chern number, which indicates that the Weyl nodes in the band
structure of a crystal act as sources and drains of Berry curvature (see
Fig. 1.1 (b)). In order to open up a gap, it is necessary to bring together
two Weyl nodes with opposite charges. Since this procedure requires
strong disorder or strain, this endows the Weyl nodes with a topological
robustness against perturbations and local defects. We refer commonly
to this robustness as topological stability. The topological charge of
the Weyl nodes is responsible for some of the exotic properties of Weyl
semimetals, the materials hosting Weyl crossings, including protected
surface Fermi arcs84 connecting nodes with opposite topological charges.

2.2 The classification of chiral multifold fermions

When we consider the symmetries of a crystal structure, we find two
types of symmetries: those that leave one point invariant, the point
group symmetries, and the translations in three-dimensional space,
which define the 14 Bravais lattices. The combination of point group
symmetries and Bravais lattices lead to 230 different possibilities, which
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Figure 2.1: Schematic band dispersions of all chiral multifold fermions. The low-energy
quasiparticles near the Weyl degeneracy have spin-1/2, and the Chern numbers of the
bands are C = 1,−1. The double-Weyl fermion can be understood as the superposition
of two Weyl fermions, which do not mix due to symmetry constraints. For the threefold
fermion, the low-energy quasiparticles have spin-1, and the Chern numbers of the bands
are C = 2, 0,−2. The sixfold fermion can be understood as the superposition of
two threefold fermions that do not mix due to symmetry constraints. The low-energy
quasiparticles near the fourfold crossing have spin-3/2, and the Chern numbers of the
bands are C = 3, 1,−1,−3.

we refer to as space groups (SGs). Out of those 230 SGs, only 65
are chiral, and we refer to them as chiral space groups. In the chiral
space groups, isolated point degeneracies at high-symmetry points in the
Brillouin zone are generically monopoles of Berry curvature, similar to
Weyl crossings. In fact, the simplest degeneracy behaving as a monopole
we can find in chiral systems are Weyl nodes at a time-reversal invariant
momentum85 (TRIM) in a material with spin-orbit coupling such as
Te. Additional symmetries can lead to the protection of nonlinear
twofold degeneracies86,87 or higher-fold degeneracies with higher Chern
numbers. The latter are the so-called multifold fermions and are the
focus of this thesis.

Multifold fermions can only exist as two-, three-, four-, six-, or
eightfold degeneracies. Unlike their lower-fold partners, eightfold
degeneracies cannot be assigned a nonzero Chern number and, in this
sense, they are not topological. In this thesis, we will focus on two-,
three-, four-, and sixfold fermions, and we will refer to them as chiral
multifold fermions (see Fig. 2.1). However, for the sake of conciseness,
we will frequently use simply the term multifold fermions.

The low-energy degrees of freedom near chiral multifold crossings of
degeneracy larger than two can be described by a generalization of a
Weyl Hamiltonian (see Eq. 2.1) of the form H = −ℏvFk·Sα, where Sα is
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Table 2.1: Complete classification of multifold fermions in the 65 chiral space groups.
The quantity in parenthesis indicates the effective spin for the symmetric case of each
multifold fermion. Cn corresponds to the Chern number of the bands (see Eq. 2.12).
The last two columns list all space groups where each multifold fermion can occur with
and without spin-orbit coupling. Table adapted from Ref. [71].

a vector of three matrices that depend on a material-specific parameter
α. For particular values α = α0, the matrices Sα take the rotationally
symmetric form of a higher-spin representation of SU(2). In such cases,
the multifold fermions have an effective spin given by S0 .

The complete classification of chiral multifold fermions in the 65
chiral space groups, originally presented in Ref. [71], is here presented
in Table 2.1. This table contains the Chern number for the bands of
each type of multifold fermion, together with the space groups where
each multifold fermion appears for finite and zero spin-orbit coupling.

In the remainder of this chapter, we will study each type of multifold
fermion and compute the low-energy k · p Hamiltonians describing
them. Lastly, to connect with real materials, we will study two
symmetry-based tight-binding models that describe materials featuring
different multifold crossings in their band structure.

2.2.1 Double-Weyl fermion

The first chiral multifold fermion in the classification presented in
Table 2.1 is a fourfold degeneracy at a TRIM at the corners of the
Brillouin zone when the material possesses a twofold screw axis. This
axis, combined with time-reversal symmetry, can enforce a doubling of
the twofold degeneracy.

When we consider finite spin-orbit coupling, a double-Weyl crossing
can exist at the R and S points in space groups 18 and 19, the A and
M points in space groups 90, 92, 94, and 96, and at the M point in
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space groups 198, 212, and 213. If the spin-orbit coupling is zero, the
double-Weyl fermion can exist at the R point in space groups 19, 198,
212, and 213, and at the A point in space groups 92 and 96.

This fourfold crossing can be understood as a superposition of two
Weyl fermions with the same chirality, which means that the linear
k ·p Hamiltonian describing the degrees of freedom near this degeneracy
can be brought to a block-diagonal form with a Weyl Hamiltonian in
each block. As an example, the k · p Hamiltonian of SG90 features a
double-Weyl crossing in the zone corner71, which can be expressed as:

H2×Weyl =

(
HWeyl (k, b) 0

0 H∗
Weyl (k,−b)

)
, (2.13)

where HWeyl (k, b) is parametrized as

HWeyl (k, b) = ℏvF
(

akz (kx + iky) (c+ ib)
(kx − iky) (c− ib) −akz

)
(2.14)

where a, b, and c are real numbers. This means that, generically,
both Weyl fermions have a different Fermi velocity, and do not overlap
completely (see Fig. 2.1).

The existence of double-Weyl fermions was known for some space
groups70,85,88, but the full classification of double-Weyl fermions was
introduced in Ref. [71]. For a more detailed description of the
construction of the low-energy k · p and the symmetries involved in
the example for SG90 see Appendix G of Ref. [71].

This decomposition implies that it is not necessary to consider
explicitly the double-Weyl Hamiltonian in the calculation of observables
using the linear k · p models. Instead, we will use our calculations for
the Weyl fermion to obtain the result for the double-Weyl case as an
addition of two separated Weyl fermions.
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2.2.2 Threefold fermion

So far, we have only considered the Weyl fermion and a superposition of
two Weyl fermions. The next multifold degeneracy we consider here is a
threefold crossing. Unlike the Weyl fermion, this provides the first case
of a new quasiparticle in crystals with no high-energy counterpart. This
degeneracy can happen at the Γ point of space groups 195–199,207–214,
the H point in space groups 199, 211, the R point in space groups
195, 207, and 208, and the P point in space groups 197 and 211 without
spin-orbit coupling. For finite spin-orbit coupling, we can find this
threefold crossing at the P and −P points of space groups 199 and
214.

The Berry curvature of the threefold fermion corresponds to that of
a spin-1 moment in a magnetic field9. The most general Hamiltonian
describing a threefold fermion is70,71

H3f (k, ϕ) = ℏvF

 0 eiϕkx e−iϕky
e−iϕkx 0 eiϕkz
eiϕky e−iϕkx 0

 , (2.15)

where vF is the Fermi velocity and ϕ is a material-dependent
parameter70,71.

In the absence of spin-orbit coupling the value of ϕ is constrained to
be ϕ0 = π/2 mod (π/3)77. For ϕ = ϕ0 the Hamiltonian takes the form
Hϕ0

3f (k) ≡ H3f (k, ϕ0) = ℏvFk ·S1, where S1 = (S1,x, S1,y, S1,z) is a vector
of three spin-1 matrices which form a representation of SU(2)

S1,x =

 0 i 0
−i 0 0
0 0 0

 , S1,y =

0 0 −i
0 0 0
i 0 0

 , S1,z =

0 0 0
0 0 i
0 −i 0

 ,

(2.16)

with commutation relations [S1,i, S1,j] = −iϵijkS1,k.

The threefold fermions described by Hϕ0

3f have full rotational
invariance and effective spin S = 1, and we refer to them as symmetric
threefold fermions (see Fig. 2.2).
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Figure 2.2: Band dispersion for symmetric and non-symmetric threefold fermions.
(a) For ϕ = ϕ0 = π/2 mod (π/3), the threefold Hamiltonian in Eq. 2.15 recovers
the full rotational symmetry, and we refer to this case as symmetric threefold fermion.
(b) For ϕ ̸= ϕ0 we are no longer in the symmetric case, and the Hamiltonian loses
full-rotational symmetry. This leads to an asymmetry in the band structure, which
becomes more asymmetric (c) as |ϕ− ϕ0| grows.

The eigenfunctions and eigenvalues for this Hamiltonian can be
computed analytically70,71,

ψs =
1√

(3E2
s − k2)(E2

s − k2z)

 E2
s − k2z

Eskxe
−iϕ + kykze

2iϕ

Eskye
iϕ + kxkze

−2iϕ

 , (2.17)

where the energies Es are given by71

Es =
2|k|√
3
cos

(
1

3
arccos

(
3
√
3kxkykz cos 3ϕ

)
− 2π(n− 1)

3

)
. (2.18)

In the case ϕ = ϕ0 the energies read Es = sℏvF |k|, where s = +1, 0,−1
corresponds to the effective spin of the multifold fermion.

Following a similar procedure to the calculation of the topological
charge of the Weyl fermion in Eqs. 2.6–2.11, we obtain the Berry
curvature for each band‡, which reads70

Ω± = i∇× ⟨ψ±|∇ψ±⟩ = ± k

|k|3
(2.19)

Ω0 = i∇× ⟨ψ0|∇ψ0⟩ = 0. (2.20)
‡This calculation is done for ϕ = π/6 as a representative value of 0 < ϕ < π/3.

The results of the Chern number of the bands are valid for every ϕ ∈ (0, π/3). If we
choose the sector π/3 < ϕ < 2π/3, the result is the opposite, with C± = ∓2, and
the threefold crossing acts as a sink of Berry flux.
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We can integrate now the Berry curvature over a surface enclosing the
threefold degeneracy in momentum space to obtain the Chern number

C± =
1

2π

∫
Ω± · dSk = ±2. (2.21)

This means that the threefold degeneracy is a monopole of Berry
curvature with charge +2. Due to the nonzero topological charge, the
surface Brillouin zone of the material hosting this threefold crossing
will feature two Fermi arcs emanating from the projection of the
degeneracy point k0 on the surface. Since we are considering systems
with time-reversal symmetry, a time-reversal conjugate source of Berry
curvature is placed at the time-reversed point in the Brillouin zone
−k0. This time-reversal partner has the same monopole charge. The
Nielsen-Ninomiya theorem requires the net topological charge in the
Brillouin zone to be zero. Thus, two sinks of Berry curvature must exist
to compensate the topological charge of the threefold crossings located
at k0 and −k0. The projections of the sinks of Berry curvature on
the surface are the termination of the Fermi arcs emanating from the
threefold fermions, providing the first example of the existence of Fermi
arcs without the presence of Weyl crossings70.

2.2.3 Sixfold fermion

It is possible to have a sixfold crossing composed of two threefold
fermions sitting at the same place protected by cubic symmetry, in
the same way that we can find a fourfold degeneracy that consists of
two Weyl fermions sitting at the same position with the same chirality.
These sixfold crossings can happen at the R point in primitive cubic
space groups 198, 212, and 213. The linear k · p Hamiltonian for these
sixfold fermions can always be brought to a block-diagonal form, where
the diagonal blocks are composed of threefold Hamiltonians (Eq. 2.15)
and has the form

H6f =

(
H3f (k, π/2− ϕ) 0

0 H3f (k, π/2 + ϕ)

)
. (2.22)
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The difference in the value of the ϕ parameters between both blocks
translates into a generically different Fermi velocity for each of the two
threefold fermions (see Fig. 2.1), similar to the case of the double-Weyl
fermion.

2.2.4 Fourfold fermion

The last multifold fermion in the classification presented in Table 2.1 is
the fourfold fermion. Unlike the double-Weyl fermion in Sec. 2.2.1,
the linear k · p Hamiltonian of this fourfold degeneracy cannot be
decomposed in terms of simpler multifold crossings. These fourfold
degeneracies can be found only in materials with finite spin-orbit
coupling, and can happen in points with tetrahedral or octahedral
symmetry. The Berry curvature of the fourfold fermion corresponds
to that of a spin-3/2 moment in a magnetic field. We start with the
most general k · p Hamiltonian for the octahedral case,

H4f (k, a, b) =
akz 0 −a+3b

4
k+

√
3(a−b)
4

k−

0 bkz
√
3(a−b)
4

k− −3a+b
4
k+

−a+3b
4
k−

√
3(a−b)
4

k+ −akz 0√
3(a−b)
4

k+ −3a+b
4
k− 0 −bkz

 ,
(2.23)

where k± = kx ± iky, and a, b are two material-dependent parameters
expressed in units of ℏvF , whose ratio we define as χ = arctan(b/a).
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Figure 2.3: Band dispersion for symmetric and non-symmetric fourfold fermions.
(a) For χ = χ0 = arctan(−1/3), the fourfold Hamiltonian in Eq. 2.23 has full rotational
symmetry. We refer to this case as symmetric fourfold fermion. (b) For χ ̸= χ0

the Hamiltonian loses full-rotational symmetry, leading to an asymmetry in the band
structure, which becomes more asymmetric (c) as |χ− χ0| grows.

This Hamiltonian recovers the full rotational symmetry when
χ = χ0 = arctan(−3) (b = −3a) or χ = χ0 = arctan(−1/3)
(b = −a/3), for which the Hamiltonian takes the form Hχ0

4f (k) ≡
H4f (k, χ0)= ℏvFk · S3/2, where S3/2 are three matrices that form a
spin-3/2 representation of SU(2):

S3/2,x =


0 0 0

√
3

0 0
√
3 −2

0
√
3 0 0√

3 −2 0 0

 ,

S3/2,y =


0 0 0 −i

√
3

0 0 −i
√
3 −2i

0 i
√
3 0 0

i
√
3 2i 0 0

 ,

S3/2,y =


3 0 0 0
0 −1 0 0
0 0 −3 0
0 0 0 1

 , (2.24)

with commutation relations
[
S3/2,i, S3/2,j

]
= 2iϵijkS3/2,k.

The fourfold fermions described by Hχ0

4f (k) have full rotational
invariance and effective spin S = 3/2, and we refer to them as symmetric
fourfold fermions (see Fig. 2.3).
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The energies of the fourfold Hamiltonian in Eq. 2.23 are given by71

E1(k) =

√
k2 +

√
k4 − 4f(k, χ)

2
, E2(k) =

√
k2 −

√
k4 − 4f(k, χ)

2
,

E3(k) = −

√
k2 −

√
k4 − 4f(k, χ)

2
, E4(k) =

√
k2 +

√
k4 − 4f(k, χ)

2
,

(2.25)

with

f(k, χ) =
1

8
(1− cos 4χ)(k4x + k4y + k4z)

+
1

8
(
11

4
+

7

4
cos 4χ+ 3 sin 2χ)(k2xk

2
y + k2xk

2
z + k2yk

2
z). (2.26)

In the symmetric case χ = χ0 the energies read Es = 2sℏvF |k|, with
s = −3/2, −1/2, 1/2, 3/2 corresponding to the effective spin of the
multifold fermion.

We can identify distinct phases of the Hamiltonian depending on the
value of χ in the range [−π/2, π/2]70. For values −π/2 < χ < −π/4
the Chern number (Eq. 2.12) of the four bands is C = 3, 1,−1,−3
ordered in decreasing energy. For −π/4 < χ < 0 the order is reversed,
and the bands have Chern numbers C = −3,−1, 1, 3 in decreasing
order of energy. For χ = −π/4 the bands are degenerate in pairs,
allowing for the Chern numbers to reverse their ordering in energy at
this transition. Finally, for 0 < χ < π/2, χ ̸= π/4 the bands have Chern
numbers C = −3, 1,−1, 3 ordered in decreasing energy. This phase of
the Hamiltonian was first described in Ref. [70] and had no precedent in
prior experimental or theoretical work. It is interesting to note that for
χ = 0 and χ = π/2 the two middle bands are degenerate at zero energy,
and for χ = π/4 the degeneracies between the bands are not necessarily
stable if we include higher-order terms in the k · p Hamiltonian70.
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Finally, in the tetrahedral case, an extra linear term is allowed, and
the Hamiltonian for the most general fourfold fermion in this case is

H4f,T = H4f + ℏvT


0 kz −

√
3kx iky

kz
2kz√
3

iky
kx−2iky√

3

−
√
3kx −iky 0 −kz

−iky kx+2iky√
3

−kz −2kz√
3

 , (2.27)

where H4f is the octahedral fourfold Hamiltonian given in Eq. 2.23,
and the parameter vT is proportional to the strength of the fourfold
rotational symmetry breaking. Thus, this additional term can become
relevant when vT is large, and must be taken into account to obtain the
correct result when computing physical observables.

The Chern number calculations for the different values of χ indicate
that the fourfold (spin-3/2) crossing acts as a monopole of Berry
curvature with topological charge three. Thus, this is the highest
topological charge of a single multifold crossing that cannot be
decomposed in simpler multifold crossings, and constitutes the second
example of a fermion with no high-energy counterpart in the traditional
classification of fermions.

With the fourfold fermion, we have introduced all chiral multifold
fermions and the linear k · p models describing them. In the
following chapters, these models will constitute the basis to compute
multifold-specific properties and fingerprints in physical observables.
However, we are also interested in more complex models that describe
multifold fermions in realistic band structures. To this end, in the
following section, we will build two material-specific tight-binding
models that describe different multifold fermions in a single band
structure, thus providing us with more realistic models to study
materials candidates to host multifold fermions.
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2.3 Material-oriented tight-binding models of chiral
multifold fermions

All non-magnetic materials in nature crystallize in one of the 230 space
groups. However, if we are interested in finding suitable materials,
we need to consider materials that feature multifold crossings near the
Fermi level, and we need these multifold crossings to be as isolated
as possible in energy from other bands. A significant challenge is
the synthesis of the candidate materials. As we will discuss in
the experiment-oriented chapters of this thesis, the impurities and
scattering lifetimes in the samples play a crucial role in masking the
signatures of each multifold fermion in the physical observables. It is
crucial, thus, to find materials that can be synthesized as clean single
crystals to have a suitable sample for experimental detection.

2.3.1 Space group 199

The first tight-binding model that we consider describes a material in
SG199 without spin-orbit coupling, which captures the adequate band
connectivity and chirality. Materials in SG199 have body-centered cubic
structures with Bravais lattice vectors

R1 =
a

2
(−x̂+ ŷ + ẑ), R2 =

a

2
(x̂− ŷ + ẑ), R3 =

a

2
(x̂+ ŷ − ẑ).

To describe adequately the position of the atoms in the unit cell, we
include the orbital embedding, i.e. the position of the orbitals within
the unit cell, as described in Ref. [71] by conjugating the tight-binding
Hamiltonian with a unitary matrix parametrized by x, with |x| < 1/2.
This places the spinless s−orbitals in the positions qi, given by

q1 = (x, x, x), q2 = (
1

2
− x,

1

2
, 0),

q3 = (0,
1

2
− x,

1

2
), q4 = (

1

2
, 0,

1

2
− x), (2.28)
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where qi is expressed in reduced coordinates, i.e., in units of Ri. A
generic value in the range −1/2 < x < 1/2 sets the model to be in
SG199. Choosing x = 1/4 increases the symmetry from tetrahedral
to octahedral, provided the hoppings do not break this symmetry,
describing a material in SG214. These requirements are satisfied by
the tight-binding model and thus it can interpolate between SG199 and
214 depending on the value of u.

Then, we can write the tight-binding Hamiltonian for a material in
SG199 as H199(x,k) = U †(x,k)H0(k)U(u,k), where

H0(k) =


0 1 1 1
1 0 e−ik·R3 eik·R2

1 eik·R3 0 e−ik·R1

1 e−ik·R2 eik·R1 0

 , (2.29)

and

U(x,k) =


eik·q1 0 0 0
0 eik·q2 0 0
0 0 eik·q3 0
0 0 0 eik·q4

 . (2.30)

In Fig. 2.4 we show the band structure of the tight-binding model for
SG199 H199(x,k). This model features protected threefold nodes at the
Γ point at energy µΓ/t = −1 and at the H = (−π, π, π) point at energy
µH/t = 1. It also hosts two Weyl nodes at the P = (π/2, π/2, π/2)
point, and two Weyl nodes with opposite chirality at −P , at energies
µW1/t = −1.732 and µW2/t = 1.732.

Although the band structure of this model features threefold and
Weyl crossings, at the moment of writing this thesis, no material has
been found in this space group with only multifold fermions near the
Fermi level. The lack of isolated multifold fermions in the band structure
complicates the experimental detection, since the effect of the multifold
degeneracies near the Fermi level can be masked by the contribution of
trivial bands in the same range of energies. However, the tight-binding
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Figure 2.4: Band structure of the tight-binding model for SG199 in Eqs. 2.29–2.30.
This model features a threefold crossing at the Γ point with energy µΓ/t = −1 and at
the H = (−π, π, π) point at energy µH/t = 1. Additionally, it hosts two Weyl nodes at
the P = (π/2, π/2, π/2) point with energies µW1/t = −1.732 and µW2/t = 1.732, and
two Weyl crossings with opposite charge at −P .

model described in this section is a good platform to explore the effect
of multifold fermions in physical observables.

2.3.2 Space group 198 and candidate materials

The next model describes a material in SG198. A variety of
materials in this space group are candidates to host chiral multifold
excitations70,72,73,78. The corresponding band crossings have been
observed in angle-resolved photoemission experiments in RhSi89,
CoSi90,91, or AlPt92. This model was originally introduced in Ref. [78],
constructed with the most general terms allowed by the crystal
symmetries of SG198. In the original tight-binding Hamiltonian H(k)
the atoms are located in the positions
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qA =(0, 0, 0) , qB =

(
1

2
,
1

2
, 0

)
, (2.31)

qC =

(
1

2
, 0,

1

2

)
, qD =

(
0,

1

2
,
1

2

)
, (2.32)

given in reduced coordinates.

We include the orbital embedding following the same procedure
described in the previous section for SG199, with x = 0.3959 for RhSi71.
This leads to the new atomic positions

qA = (x, x, x) , qB =

(
1

2
+ x,

1

2
− x,−x

)
,

qC =

(
1

2
− x,−x, 1

2
+ x

)
, qD =

(
−x, 1

2
+ x,

1

2
− x

)
, (2.33)

The transformed tight-binding Hamiltonian takes the form
H198(x,k) = Ux(k)

†H(k)Ux(k) with

Ux(k) =

exp

 ix(k1 + k2 + k3) 0 0 0
0 ix(k1 − k2 − k3) 0 0
0 0 ix(k3 − k2 − k1) 0
0 0 0 ix(k2 − k1 − k3)

 ,
(2.34)

and H(k) the tight-binding Hamiltonian without spin-orbit coupling
presented in Ref. [78], which reads

H(k) =v1

[
τxµ0 cos

(
kx
2

)
cos

(
ky
2

)
+ τxµx cos

(
ky
2

)
cos

(
kz
2

)
+ τ 0µx cos

(
kz
2

)
cos

(
kx
2

)]
+vp

[
τ yµz cos

(
kx
2

)
sin

(
ky
2

)
+ τ yµx cos

(
ky
2

)
sin

(
kz
2

)
+ τ 0µy cos

(
kz
2

)
sin

(
kx
2

)]
+v2

[
cos (kx) + cos (ky) + cos (kz)

]
τ 0µ0, (2.35)
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Figure 2.5: Band structure of the tight-binding model for SG198 with and without
spin-orbit coupling. (a) When spin-orbit coupling is neglected, the band structure of
the tight-binding model for SG198 (Eqs. 2.35–2.34) features a threefold fermion at the
Γ point and a double-Weyl fermion at the R point. (b) When spin-orbit coupling is
included, the threefold fermion at the Γ point splits into a fourfold fermion and a single
Weyl fermion. The double-Weyl fermion at the R point splits into a sixfold fermion and
a twofold Kramers pair. The tight-binding model with spin-orbit coupling can be found
in Refs. [71,78].

where τ i and µi, i = x, y, z, are the three Pauli matrices for spin-1/2,
τ 0 = µ0 = I2×2 is the 2 × 2 identity matrix, and τ iµj ≡ τ i ⊗ µj is a
short-hand notation for the Kronecker product.

In Fig. 2.5 we show the band structure of the tight-binding model
for SG198. When we include spin-orbit coupling, the threefold
fermion at the Γ point decomposes in a fourfold (spin-3/2) and a
single Weyl crossing separated proportionally to the spin-orbit coupling
energy scale. We will devote part of the analysis in Chapter 4 to
search signatures of the spin-3/2 fourfold fermion in a real material.
Additionally, the double-Weyl crossing at the R point transforms
into a sixfold degeneracy and a twofold Kramers pair. The details
of the tight-binding model with spin-orbit coupling can be found in
Refs. [71,78]. Thus, SG198 features all possible chiral multifold fermions
when considering the spin-orbit coupled and spinless cases, making it
an excellent platform to look for candidate materials.

Two of the materials crystallizing in SG198, RhSi and CoSi, feature
threefold and double-Weyl degeneracies near the Fermi level and have
been synthesized as single crystals. This makes them outstanding
candidates to study the multifold fermions and their effect in the
physical observables of multifold semimetals.
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2.4 Conclusions

In this chapter, we introduced the concepts of Berry curvature and
topological charge of band degeneracies in crystalline systems. We
studied the complete classification of chiral multifold fermions in all
possible crystal structures, providing a detailed catalog of where to find
them in the Brillouin zone of each space group.

We built the most general low-energy k · p model for each type of
multifold fermion. Using these models, we studied their topological
features and the effective spin for the symmetric cases, which will play a
fundamental role in the optical responses computed in the next chapter.
We described two quasiparticles — the threefold and fourfold fermions
— with no counterpart in the traditional classification of fermions. The
k · p models constitute the starting point for characterizing the optical
response of multifold fermions in the next chapter and will be crucial to
understand the effect of the topological charge of multifold fermions in
nonlinear responses in Chap. 5.

Finally, we constructed two tight-binding models based on the crystal
symmetries of space groups 199 and 198. While no candidate materials
are known at the moment for SG199, in SG198 we find RhSi and
CoSi. In the following chapters we will focus on the study of RhSi
and CoSi, the detection of chiral multifold fermions, and the impact
of the topological charge of the multifold degeneracies in the optical
responses of multifold semimetals.
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In this chapter we will derive the general expressions for the optical
conductivity in the length gauge. The formalism presented here
constitutes the building block for computing the linear and nonlinear
responses throughout the following chapters. Using the expressions
derived here, we will compute the linear optical conductivity of the
low-energy k · p models for all chiral multifold fermions and identify
fingerprints for each type of multifold fermion.

To obtain a more realistic optical conductivity of real materials, we
will use the tight-binding models for SG198 and SG199 described in
Sec. 2.3. We will compare our theoretical calculations with experimental
data for materials crystallizing in SG198 in the next chapter.

3.1 Linear optical response in the length gauge

We will calculate the optical responses in the approximation
where electrons do not interact with each other and behave as
independent particles interacting with the electromagnetic field in the
long-wavelength limit.

In order to provide a self-contained approach we will derive the
expression for the optical conductivity in the length-gauge that we
will use throughout the following chapters. In this formalism, and
considering the approximations in the previous paragraph, we can
neglect the position dependence of the electric field and write the
coupling of the bare Hamiltonian H0 for the electrons in a crystal to
the electric field as

Ĥ = Ĥ0 + V̂ (t), V̂ (t) = −eE(t) · r̂. (3.1)

45



Here r̂ is the position operator, E(t) is the time-dependent external
electric field, and e < 0 is the elementary charge. We will consider a
monochromatic source in what follows, meaning that we only have one
frequency.

The non-interacting term of the Hamiltonian H0 has eigenstates |nk⟩
associated with eigenvalues ℏωn(k), labeled by the band index n and
the crystalline momentum k.

In the interacting term of the Hamiltonian, the time-dependent
electric field can be parametrized as∗

E(t) =
1

2
Ea

ωe
−iωtêa + c.c., (3.2)

where Ea
ω is the amplitude of the field for the frequency ω in the direction

a, êa is the corresponding unitary vector, and c.c. indicates the complex
conjugate. The remaining element to define in Eq. 3.1 is the position
operator r̂. We can express the matrix elements of the position operator
between two Bloch states as93

⟨mk| r̂ |nk′⟩ = iδmn∇kδk,k′ + δk,k′Amn(k), (3.3)
where Amn(k) is the non-Abelian Berry connection for two bands m,n

Amn(k) = i ⟨um (k)|∇k |un (k)⟩ . (3.4)

The form of r̂mn leads to a separation of the intraband (r̂(i)) and
interband (r̂(e)) matrix elements of the position operator. We define
these two terms as

r̂(e) ≡
∑
kk′

∑
m ̸=n

r̂(e)mn |mk⟩ ⟨nk′ | , (3.5)

r̂(i) ≡
∑
kk′

∑
m

r̂(i)mn |mk⟩ ⟨mk
′ | . (3.6)

∗Alternatively, in some parametrizations the factor 1/2 is absent, which must
be taken into account when comparing our expressions with other works or with
experimental results.
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Since the matrix elements read

⟨mk| r̂ |nk′⟩ =

{
i∇kδk,k′ + δk,k′Amn(k) ,m = n

δk,k′Amn(k) ,m ̸= n
, (3.7)

the inter- and intra-band matrix elements are

⟨mk| r̂(e) |nk′⟩ =(1− δmn) δk,k′Amn (k) , (3.8)
⟨mk| r̂(i) |nk′⟩ =δmn

(
δk,k′Amn (k) + i∇kδk,k′

)
. (3.9)

In the remainder of this section we will build a perturbative approach
that allows us to compute the conductivity as a series of terms
proportional to increasing powers of the electric field. The first object
we need to define is the density matrix for the system

ρ̂(t) ≡
∑
mn

ρmn(t) |m⟩ ⟨n| , (3.10)

where |m⟩ are the eigenstates of Ĥ0 and we have omitted the
k-dependence in the notation. In the Schrodinger representation, the
density matrix ρ obeys the quantum Liouville equation

iℏ
dρ

dt
=

[
Ĥ, ρ

]
, (3.11)

where Ĥ is the total Hamiltonian of the system.

To simplify the derivation, we will change from the Schrodinger
picture, where operators do not carry time dependence and the
evolution of the system is contained in the states, to the interaction
picture, where the operators evolve in time. We will denote the
operators in the interaction picture by θ̃ = Û θ̂Û †, where Û = eiĤ0t

is the time evolution operator. The wave functions in the interaction
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picture have the form |ψ̃⟩ = Û †
0 |ψ⟩, and the density matrix is expressed

as ρ̃ = Û †
0ρU0.

Introducing the expressions for ρ̃ and Ĥ in Eq. 3.11 we obtain the
Liouville equation for the density matrix in the interaction picture

iℏ
∂ρ̃(t)

∂t
= −

[
eˆ̃r · E(t), ρ̃(t)

]
. (3.12)

Integrating this equation and using Eqs. 3.8–3.9 we obtain

iℏρ̃mn(t) = iℏρ(0)mn −
∫ t

−∞
dt′ ⟨m|

[
eˆ̃r(t) · E(t), ρ̃(t′)

]
|n⟩ (3.13)

= iℏρ(0)mn − e

∫ t

−∞
dt′eiωmnt′/ℏ

(∑
l

[(1− δml)Aa
mlρln

− (1− δln) ρmlAa
ln ] + (ρmn);ka

)
Ea(t

′), (3.14)

where ωmn = (ϵm − ϵn)/ℏ, and

(ρmn);ka = ρmn (Aa
mm −Aa

nn) + i∇kaρmn. (3.15)

We can proceed now to solve Eq. 3.13 recursively. In the absence
of the external field E(t), the unperturbed density matrix describes a
system in equilibrium, and the density matrix reads ρ(0)mn = δmnfm, where
fm is the Fermi-Dirac distribution for band m. Using this expression
for the zeroth order, we can build the first order solution for the density
matrix:

iℏρ̃mn(t) = iℏδmnfm

− e

2

∫ t

−∞
dt′eiωmnt′e−iωt′

[iδmn∂kafmE
a
ω + (1− δmn)Aa

mnfnmE
a
ω] .

(3.16)
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where fnm = fn − fm, and we have introduced the explicit form of the
electric field (Eq. 3.2).

We consider an adiabatic turn-on of the external perturbation, this is,
we assume that the interaction is turned on at t = −∞. This translates
into a shift ω → ω + iη, where η is a positive infinitesimal, allowing us
to perform the time integration in the previous equation as follows:

∫ t

−∞
dt′ei(ωmn−ω)t′ =

ei(ωmn−ω)t′

i (ωmn − ω)

∣∣∣∣∣
t

−∞

= lim
η→0+

1

i (ωmn − ω − iη)

[
eiωmnte−iωteηt − lim

t′→∞
ei(ωmn−ω)t′eηt

′
]

= lim
η→0+

1

i (ωmn − ω − iη)
eiωmnte−i(ω+iη)t. (3.17)

Now, omitting the explicit limit η → 0+, the dynamic equation for
the density matrix reads

iℏρ̃mn(t) = iℏδmnfm

− e

2
[iδmn (∂kafm)E

a
ω + (1− δmn)Aa

mnfnmE
a
ω]

eiωmnte−i(ω+iη)t

i (ωmn − ω − iη)
.

(3.18)

This expression constitutes the first iterative solution of the Liouville
equation for the density matrix in the interaction picture (Eq. 3.12),
where can identify the terms proportional to Ea

ω:

ρ̃(1)mn(t) = − e

2ℏ
[(1− δmn)Aa

mnfnm + iδmn (δkafm)]
Ea

ωe
iωmnte−i(ω+iη)t

i (ωmn − ω − iη)
.

(3.19)

For later convenience, we will rewrite the linear term of the density
matrix in the Schrodinger representation using the relation ρ̃ = Û †

0ρU0

as
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ρ(1)mn(t) = − e

2ℏ
[(1− δmn)Aa

mnfnm + iδmn (δkafm)]
Ea

ωe
−i(ω+iη)t

ω − ωmn + iη
.

(3.20)

Since we are interested in computing the conductivity, we recall that
when an electromagnetic wave with electric field given by Eq. 3.2 acts
on an electronic system, the induced current density can be expressed
as a sum of contributions proportional to increasing powers of the field
magnitude

Ja(t) =
∞∑

N=1

∑
ω1=±ω

· · ·
∑

ωN=±ω

σ
(N)
ab...c (ω1, . . . , ωN)

Eb
ω1
. . . Ec

ωN

ei(ω1+···+ωN )t
, (3.21)

where σ
(N)
ab...c (ω1, . . . , ωN) is the N−th order frequency-dependent

conductivity described by a rank N + 1 tensor that determines the
cartesian component a of the current Ja(t) as a function of the electric
field. It is important to note that we have summed over each ωm = ±ω
to account for the negative frequency component in the definition of the
electric field (Eq. 3.2).

We can compute the current density in terms of the density matrix
as

J(t) ≡ Tr
[
ρ̂(t)ĵ

]
= −ge

Ω

∑
mn

vnmρmn(t)

= −ge
Ω

∞∑
N=0

∑
ω1=±ω

· · ·
∑

ωN=±ω

∑
mn

vnmρ
(N)
mn (t), (3.22)

where g = 2 accounts for the spin degeneracy, Ω is the D−dimensional
volume of the system, ρ(N)

mn (t) is the N -th order solution of Eq. 3.12
in the Schrodinger picture, and vmn are the matrix elements of the
single-particle velocity operator, defined as

v̂ ≡ i

ℏ

[
Ĥ, r̂

]
. (3.23)
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We can now identify the N−th order conductivity with the N -th
order term of the density matrix:

σ
(N)
ab...c (ω1, . . . , ωN)

Eb
ω1
. . . Ec

ωN

ei(ω1+···+ωN )t
= −ge

Ω

∑
mn

vanmρ
(N)
mn (t). (3.24)

We introduce the first-order density matrix (Eq. 3.20) in the
right-hand side of Eq. 3.24 to obain

− ge

Ω

∑
mn

vanmρ
(1)
mn(t)

=
ge2

2Ωℏ
∑
mn

vamn

[
(1− δnm)Ab

mnfnm + iδmn (∂kbfm)
] 1

ω − ωmn + iη

Eb
ω

ei(ω+iη)t
.

(3.25)

Comparing this with the left-hand side of Eq. 3.24 we arrive to the
final expression for the linear optical condutivity

σ
(1)
ab (ω) =

ige2

2Ωℏ
∑
mn

[
(1− δmn)

vbmn

ωmn

fnm + δmn (∂kbfm)

]
vanm

ω − ωmn + iη
,

(3.26)

where we have used the relation Aa
mn = ivamn/ωmn, obtained from

combining Eq. 3.8 and Eq. 3.23.

It is now easy to separate the interband and intraband contributions
by considering explicitly the δmn functions involved:

σinter
ab (ω) =

ige2

2Ωℏ
∑
m ̸=n

ωnm
ranmr

b
mn

ω − ωmn + iη
fnm, (3.27)

σintra
ab (ω) =

ige2

2Ωℏ
∑
m

vamm

ω + iη
∂kbfm. (3.28)
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where we have used the relation vnm = irnmωnm for m ̸= n. These
expressions constitute the building blocks for the computation of linear
and nonlinear optical responses in this work.

The interband optical conductivity in Eq. 3.27 corresponds to
transitions of electrons from an occupied state to an empty state with
the same momentum separated by the energy of the incoming photon
ℏω. The interband contribution depends on the matrix elements rnm
connecting the occupied and empty bands involved in the electronic
transition. Since

∑
m ̸=n implicitly involves an integration over k-space,

the joint density of states (JDOS) gives information about which
photons of a particular energy are more effective in producing an
interband transition. For example, if the energy separation between
the occupied and empty bands is nearly constant over many k values
there are many initial and final states which can be coupled by the same
photon energy, resulting in a large contribution to the JDOS.

The intraband optical conductivity in Eq. 3.28 accounts for electronic
transitions within the same band from an occupied to an empty state.
The real part of the intraband response can be modeled by the Drude
formula94,95

Re
[
σintra
ab (ω)

]
=

2π

Z0

Ω2
p

τ (ω2 + τ−2)
, (3.29)

a Lorentzian distribution centered at ω = 0 with width 1/τ , where Ωp

is the plasma frequency, τ is the scattering rate in the material, and Z0

is the electric impedance of vacuum.

In the next section we will focus in the interband optical conductivity
(Eq. 3.27) to identify signatures of multifold fermions in the optical
conductivity. In the next chapter we will study the optical response of
real materials. To identify the fingerprints of multifold fermions in a
real experiment it will be necessary to model the intraband response
and extract the interband optical conductivity from the experimental
data.
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3.2 Optical fingerprints in the multifold k · p models

The goal of this section is to calculate the interband contribution to
the optical conductivity of all chiral multifold fermions. Since multifold
crossings occur in cubic space groups, the three diagonal elements σxx,
σyy, and σzz are equal and we can focus on a single component, σxx †.

In the main body of this chapter we compute the real part of the
interband optical conductivity, and obtain its imaginary part using
standard Kramers-Kronig relations94 in Appendix C. There is an
additional Fermi surface contribution to the conductivity, the intraband
Drude-like term in Eq. 3.29, that scales as 1/ω when ω → 0 and will be
dominant at small frequencies. Since this contribution is not different
from any other metal95 we omit it in the discussion that follows, and
we will come back to it in the next chapter.

3.2.1 Optical conductivity of fully rotationally
symmetric models

The lowest-degeneracy multifold fermion is the twofold described by the
Weyl Hamiltonian (Eq. 2.1). A simple dimensional analysis of Eq. 3.27
using the Weyl Hamiltonian shows that the optical conductivity of Weyl
fermions must have a linear dependence on the frequency ω 24,55,97 (see
Sec. 1.1.3), and its explicit computation gives as a result57

σW (ω) =
ωe2

24πℏvF
sinh(ℏωβ/2)

cosh(µβ) + cosh(ℏωβ/2)
. (3.30)

In the limit of zero temperature Eq. 3.30 takes the known form24,55,57,97

σW (ω) = ωe2

24πvF ℏΘ(ℏω − 2µ), where Θ(x) is the Heaviside step function.
The optical conductivity grows linearly as the frequency increases above
the frequency threshold ω = 2µ. The value of this threshold is
determined by the activation frequency of optical transitions from the
lower band to the upper band, set by the distance between the Weyl
node and the Fermi level µ.

†There is a type of double spin-1/2 fermion that can occur in non-cubic space
groups96. Since our results will not change qualitatively and RhSi and CoSi — the
materials studied in this thesis — are cubic, we restrict our analysis to cubic space
groups.

53



Table 3.1: Effective Hamiltonians (in units of 1/ℏvF ) and their corresponding optical
conductivities for all symmetric chiral multifold fermions. The optical conductivity of
the effective models for the Weyl, threefold, and fourfold fermions are defined piecewise
for each region delimited by their characteristic frequencies. The effective Hamiltonian
of the double-Weyl fermion is a direct sum of two Weyl Hamiltonians, and its optical
conductivity is twice that of the Weyl fermion. Similarly, the effective Hamiltonian
of the sixfold fermion is the direct sum of two threefold Hamiltonians, and its optical
conductivity is two times that of the threefold fermion.

The double-Weyl fermion consists of two decoupled copies of the Weyl
Hamiltonian (see Sec. 2.2.1) and thus its optical conductivity is twice
the optical conductivity of the Weyl fermion given by Eq. 3.30. We
express it as σ2×1/2

4f (ω) = 2σW (ω) (see Table 3.1 and Fig. 3.1 (c)). If the
Weyl bands are tilted, the characteristic frequency ℏωW = 2µ at which
the optical conductivity changes from being zero to being linear in ω
depends on the magnitude of the tilt, but its linear dependence remains
unaltered98.

The next multifold fermion we consider is the spin-1 threefold fermion.
The most general low-energy Hamiltonian H3f (k, ϕ) for a threefold
fermion was obtained in Eq. 2.15. In the symmetric case, ϕ = ϕ0 ≡ π/2
mod (π/3)) and the Hamiltonian takes the form Hϕ0

3f (k) ≡ H3f (k, ϕ0) =
ℏvFk ·S1, where S1 = (S1,x, S1,y, S1,z) is a vector of three spin-1 matrices
which form a representation of SU(2).

The band energies for the spin-1 symmetric threefold fermion are
Es = sℏvF |k| (see Fig. 3.1 (a)), where s = −1, 0, 1 correspond to the
three possible values of the effective spin of the fermion. In this case, the
velocity matrix elements between states s, s′ satisfy vs,s′ = ⟨s| v̂ |s′⟩ = 0

if s − s
′ ̸= ±1. This results in an optical selection rule: a photon

can excite an electron from a filled band s to an unoccupied band s′

only if the selection rule ∆s = s′ − s = ±1 is satisfied, as depicted in
Fig. 3.1 (a).
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Figure 3.1: Band structures of the rotationally symmetric multifold fermions in the
high-symmetry direction k111 = k(1, 1, 1)/

√
3. (a) Threefold fermion (spin-1), (b)

spin-3/2 fourfold fermion, (c) double spin-1/2 fourfold fermion and (d) sixfold fermion
(double spin-1). The labels indicate the effective spin quantum number s of each band.
The vertical arrows indicate the only allowed interband transitions, those that satisfy
∆s = s− s′ = ±1, with characteristic frequencies ℏω = 2µ/3 (purple), ℏω = µ (green)
and ℏω = 2µ (orange).

By inserting the analytic energies and the eigenfunctions of Hϕ0

3f

(Eqs. 2.17–2.18), in Eq. 3.27 we obtain the optical conductivity

σϕ0

3f (ω, µ, β) =
ωe2

6πℏvF
sinh(ℏωβ)

cosh(ℏωβ) + cosh(µβ)
, (3.31)

where ϕ0 refers to the symmetric case, ϕ = ϕ0 = π/2 mod (π/3).
Taking the T → 0 (β → ∞) limit, the optical conductivity simplifies to

σϕ0

3f (ω, µ, β) =
ωe2

6πℏvF
Θ(ℏω − µ). (3.32)

From Eq. 3.32 we see that the optical conductivity of the threefold
fermion is linear with ω as for the Weyl fermion, yet four times larger
given the same Fermi velocity vF (see Table 3.1). Also, the characteristic
frequency at which the optical conductivity starts to grow linearly with
the frequency is ℏω3f = µ, which is different from the characteristic
frequency of the Weyl fermion ℏωW = 2µ. At ω = ω3f the only allowed
interband transition is activated (green arrow in Fig. 3.1 (a)), connecting
a filled and an empty band with ∆s = s′ − s = ±1.
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Figure 3.2: Comparison between the optical conductivities of the symmetric multifold
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has a larger conductivity than a Weyl fermion, normalized per node and by their Fermi
velocity. The possible activation frequencies are ℏω = 2µ/3, µ or 2µ, and characterize
each type of multifold fermion.

Since the low-energy Hamiltonian describing the sixfold fermion can
be brought to a block-diagonal form with two copies of the threefold
Hamiltonian in the diagonal (see Sec. 2.2.3), its optical conductivity is
twice that of the threefold fermion (see Table 3.1 and Fig. 3.1 (d)).

We now carry out a similar analysis to obtain the optical conductivity
for the symmetric fourfold fermion. As discussed in Sec. 2.2.4, a fourfold
fermion recovers the full rotational symmetry when χ0 = arctan(−3)
or arctan(−1/3), for which the Hamiltonian (Eq. 2.23) takes the form
Hχ0

4f (k) ≡ H4f (k, χ0) = ℏvFk · S3/2, where S3/2 are three matrices that
form a spin-3/2 representation of SU(2). In this case, the energies are
given by Es = sℏvF |k|, with s = −3

2
,−1

2
, 1
2
, 3
2

corresponding to the
effective spin of the multifold fermion (see Fig. 3.1 (b)). Similar to the
threefold case, the selection rules only allow transitions between a band
s and a band s′ such that ∆s = s′ − s = ±1.

Inserting the energies (Eqs. 2.25–2.26) and the eigenfunctions of
the symmetric fourfold fermion‡ in the expression for the optical

‡Although the eigenfunctions can be obtained analytically, their form is too
cumbersome to show them here.
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conductivity (Eq. 3.27) we obtain

σχ0

4f (ω, µ, β) =
ωe2

8πℏvF

[
sinh(ℏωβ/2)

cosh(ℏωβ/2) + cosh((µ− ℏω)β)

+
4

3

sinh(ℏωβ/2)
cosh(ℏωβ/2) + cosh(µβ)

]
. (3.33)

Taking the zero temperature limit T → 0 Eq. 3.33 simplifies
considerably to

σχ0

4f (ω, µ) =
ℏωe2

8πℏvF

[
1

3
Θ(ℏω − 2µ) + Θ(ℏω − 2

3
µ)

]
. (3.34)

The conductivity depends linearly on the frequency ω of the photon.
In this case we find two characteristic frequencies due to the multiple
possible optical transitions between the fourfold bands, ℏω4f,1 = 2µ/3
and ℏω4f,2 = 2µ (see Fig. 3.1 (b)), defining two separate regions in the
optical conductivity with different linear dependence on ω. As in the
threefold case, the velocity matrix elements between states s, s′ satisfy
vs,s′ = ⟨s| v̂ |s′⟩ = 0 if s − s

′ ̸= ±1. When ω4f,1 < ω the transition
with ∆s = ±1 from the intermediate-upper band to the upper band is
allowed, until it vanishes at ω = ω4f,2. When ω > ω4f,2 the transition
between the two intermediate bands is activated (lower orange arrow in
Fig. 3.1 (b)).

Finally, for tetrahedral groups an extra linear term is allowed and
the Hamiltonian is expressed in Eq. 2.27, and its optical conductivity is
discussed in Appendix A.

In Fig. 3.2 we compare the optical conductivities of the Weyl fermion
and the symmetric threefold and fourfold fermions discussed in this
section at zero temperature. For 2µ/3 < ℏω < 2µ the optical
conductivity of the spin-3/2 fourfold is larger than that of the Weyl for
a given vF , but smaller than that of the threefold, while in the region
ℏω > 2µ the optical conductivity of the threefold and the fourfold are
equal. Thus, per node, the linear optical conductivity of threefold and
fourfold fermions is larger than that of a Weyl fermion.
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The characteristic frequencies that activate the interband transitions
are different for each symmetric multifold fermion, and they do not
depend on dimensionality99. Thus, their characteristic frequencies
constitute a unique fingerprint for each type of multifold fermion, and
can be used to distinguish each type of multifold fermion regardless of
the dimension of the system.

Temperature controls the abruptness of the jump in the optical
conductivity at the characteristic frequencies. Thermally activated
carriers will populate states above the Fermi level and empty states
below it, broadening the step function in Eq. 3.32 (see Appendix B,
Fig. B.1).

3.2.2 Optical conductivity of non-symmetric low-energy
models

In real materials, the material-dependent parameter ϕ is pinned to the
symmetric value ϕ0 only if spin-orbit coupling is absent77. Spin-orbit
coupling splits a particular multifold into other multifolds at the same
high-symmetry point but with different degeneracy. For example, in
space group 198 a threefold at Γ splits into one fourfold fermion and
one Weyl fermion.

In particular, for a generic threefold fermion occurring in the presence
of spin orbit coupling the material-dependent parameter is no longer
restricted to ϕ = ϕ0, and can take values in the range π/3 < ϕ <
2π/3 mod π/370. A change in ϕ will tilt the bands, breaking the full
rotational symmetry (see Fig. 2.2). In this case, the selection rules of
the symmetric model no longer apply and more excitations are allowed,
as depicted in Fig. 3.3 (a), since the effective spin is no longer a good
quantum number. The characteristic frequencies ωi(ϕ) associated to
each transition depicted in Fig. 3.3 (a) can be obtained analytically96.
For a threefold fermion described by Eq. 2.15 with an arbitraty value of
ϕ, the activation frequencies are given by
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Figure 3.3: Band structure and optical conductivity of the non-symmetric (ϕ ̸= ϕ0)
threefold fermion. (a) Band structure for ϕ = π/6 − π/15 and the corresponding
transitions allowed with their characteristic frequencies (Eq. 3.35). (b) Optical
conductivity for the non-symmetric threefold fermion depicted in (a). The characteristic
frequencies are represented by vertical lines with colors corresponding to the transitions
depicted in (a). The frequencies ω4 and ω5 have little effect on the optical conductivity
since they correspond to transitions with ∆s ̸= ±1, which are forbidden for the symmetric
case ϕ = ϕ0, and typically have smaller matrix elements than those with ∆s = ±1.
(c) Optical conductivities of non-symmetric threefold fermions for different values of the
material-dependent parameter ϕ.

ω0 = µ

√
3 cos(ϕ+ π/6)

cos(ϕ)
, ω1 = µ

√
3 cos(ϕ+ π/6)

cos(ϕ− 2π/3)
,

ω2 = µ

√
3 cos(−ϕ+ π/2)

cos(−ϕ+ π/3)
, ω3 = µ

√
3 cos(ϕ− π/6)

cos(ϕ)
,

ω4 = µ

√
3 cos(−ϕ+ π/6)

cos(−ϕ+ π/3)
, ω5 = µ

√
3 sinϕ

cos(ϕ− 2π/3)
. (3.35)

The activation of new transitions at each ωi in Eq. 3.35 results in
a change in the linear dependence on ω of the optical conductivity, as
depicted in Fig. 3.3 (b). Some transitions have a large effect on the slope,
while others barely affect it. This is consistent with other optical effects
in multifold fermions96 and is rooted in the fact that the matrix elements
for transitions with ∆s ̸= ±1 are typically smaller than those with ∆s =
±1. In Fig. 3.3 (c) we plot the optical conductivity for different values of
ϕ. Changing the value of ϕ shifts the characteristic frequencies according
to their analytic expression ωi(ϕ), given in Eq. 3.35. As apparent in
Fig. 3.3 (c), the slope of the optical conductivity also depends on ϕ, yet
we find no closed analytic form for arbitrary ϕ.

We find a similar behavior in the fourfold case. For an arbitrary
value of χ ̸= χ0 we lose full rotational symmetry (see Fig. 2.3) and the

59



0 2 4
h̄!/µ

0

1

2 ¬ =-0.36

¬ =-0.09

°2.5 0.0 2.5
k

°5

0

5
E

/(
h̄
v F

)

0 2 4
h̄!/µ

0.0

0.5

1.0

æ
x
x
(1

0°
2 e

2 /
(h̄

v F
)) ¬ =-0.36

ω1ω2ω3
ω4

ω5

ω7ω7ω7

ω6 ω8

[100]← k               k → [111]

ω9

(a) (b) (c)� = �0.36
<latexit sha1_base64="5qa3mq2NYzN1WJl30GMQrRtWV0c=">AAAB63icbZDNSgMxFIUz9a/Wv6pLN8EiuHGYsaJuhKIblxXsD7ZDyaR3OqFJZkgyQhn6FLoSdefb+AK+jWntQlvP6ss9J3DPDVPOtPG8L6ewtLyyulZcL21sbm3vlHf3mjrJFIUGTXii2iHRwJmEhmGGQztVQETIoRUObyZ+6xGUZom8N6MUAkEGkkWMEmNHD10as6sTz62e98oVz/Wmwovgz6CCZqr3yp/dfkIzAdJQTrTu+F5qgpwowyiHcambaUgJHZIBdCxKIkAH+XTjMT6KEoVNDHj6/p3NidB6JEKbEcTEet6bDP/zOpmJLoOcyTQzIKmNWC/KODYJnhTHfaaAGj6yQKhidktMY6IINfY8JVvfny+7CM1T16+63t1ZpXY9O0QRHaBDdIx8dIFq6BbVUQNRJNEzekPvjnCenBfn9SdacGZ/9tEfOR/fn9iNNg==</latexit>

Figure 3.4: Band structure and optical conductivity of the non-symmetric (χ ̸= χ0)
fourfold fermion. (a) Band structure for χ = −0.36 and the corresponding transitions
allowed with their characteristic frequencies (Eq. 3.36). (b) Optical conductivity for
the non-symmetric fourfold fermion depicted in (a). The characteristic frequencies are
represented by vertical lines with colors corresponding to the transitions depicted in (a).
The frequencies that affect less the optical conductivity correspond to transitions with
∆s ̸= ±1, which are forbidden for the symmetric case χ = χ0, and typically have smaller
matrix elements than those with ∆s = ±1. (c) Optical conductivities of non-symmetric
fourfold fermions for different values of the material-dependent parameter χ.

spin-3/2 picture breaks down, allowing for new electronic excitations in
the system (see Fig. 3.4 (a)). The characteristic frequencies for these
excitations are given by96

ω0 = µ
E1(k

111)− E2(k
111)

E1(k111)
, ω1 = µ

E1(k
100)− E2(k

100)

E1(k100)
,

ω2 = µ
E1(k

100)− E2(k
100)

E2(k100)
, ω3 = µ

E1(k
111)− E2(k

111)

E2(k111)
,

ω4 = µ
E1(k

100)− E3(k
100)

E1(k100)
, ω5 = µ

E1(k
111)− E3(k

111)

E1(k111)
,

ω6 = µ
E1(k

111)− E4(k
111)

E1(k111)
, ω7 = µ

E2(k
111)− E4(k

111)

E2(k111)
,

ω8 = µ
E2(k

100)− E4(k
100)

E2(k100)
, (3.36)

where k100 = k(1, 0, 0) and k111 = k(1, 1, 1)/
√
3. The activation

of optical transitions at these frequencies can produce a change in
the linear dependence on ω of the optical conductivity, as we see in
Fig. 3.4 (b) and (c). However, the transitions with ∆s ̸= ±1, forbidden
by the selection rules in the symmetric case, do not affect the optical
conductivity for small deviations from the symmetric case, similar to
what we observe in the threefold case.

We find that it is possible to identify generic threefold and fourfold
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fermions in an optical experiment by their activation frequencies and
linear dependence on ω, provided ϕ or χ and vF are known (for
example either from first-principle calculations or photemission data).
The characteristic frequencies at which the optical conductivity changes
and its linear dependence on ω are different for each multifold also in
the non-symmetric cases, allowing us to identify them by their optical
conductivity regardless of the value of ϕ or χ.

3.3 Imaginary part of the optical conductivity and sum
rules

Before discussing realistic tight-binding models we note that so far
we have calculated only the absorptive (real) part of the optical
conductivity. Using the Kramers-Kronig transformations94 we have
obtained the dispersive (imaginary) of the optical conductivity in
Appendix C, where we derive a general expression applicable to all
symmetric and non-symmetric cases, and we compute it explicitly for
the symmetric cases.

For completeness, in Appendix D we compute the conductivity sum
rule, known as f-sum rule. The sum rule relates the integral over all
frequencies of the real part of the optical conductivity, ⟨σ⟩, to the total
number of particles. Since low-energy linearly dispersing bands, such
as those of Weyl or multifold fermions, are unbounded, the f-sum rule
explicitly depends on the cut-off scale Λ, similar to what is known for
the low-energy model of graphene52,100. Leaving the closed form and
details to Appendix D, we simply mention that for symmetric multifolds
the sum rule of the interband part of the conductivity takes the form
⟨σ⟩ ∝ (Λ2−cµ2) where c is a factor that depends on the type of multifold.
Specifically c = 1 and c = 4/3 for the symmetric threefold and fourfold
cases respectively. Thus, the sum rule provides another way to identify
each multifold fermion by measuring their optical conductivity.
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3.4 Optical conductivity of realistic tight-binding
models

In the previous section we identified fingerprints of chiral multifold
fermions in the optical conductivity using low-energy k · p models. To
move one step closer to real materials, in this section we will use the
tight-binding models of space groups SG199 and SG19873,78,96 discussed
in Sec. 2.3. We choose these two groups because, combined, they realize
all types of chiral multifold fermions.

The tight-binding models that we consider here are built considering
the crystal symmetries of the material, thus capturing the specific
properties we are interested in such as the energy scales, the band
connectivity and multifold crossings, and the orbital embedding. The
latter describes the spatial position (or embedding) of the orbitals in
real space. A change in the orbital embedding acts as a momentum
dependent unitary transformation of the tight-binding Hamiltonian: it
does not modify the band structure of the material, but modifies its
eigenfunctions96. It is thus necessary to take it into account to give
accurate predictions of observables, in particular the optical responses,
and the details of this transformation depend on the space group. What
these models do not capture is the orbital character of the material. In
the next chapter we will discuss in more details how this affects our
predictions for the optical conductivity of materials in SG198.

3.4.1 Space Group 199

The first tight-binding model that we consider describes a material in
SG199 without spin-orbit coupling (see Sec. 2.3.1). At the moment of
writing this thesis, no material has been found in this space group with
only multifold fermions near the Fermi level70. Since we are interested
in investigating the fingerprints of the multifold fermions in realistic
models we present the results for this model in units of the characteristic
hopping scale t > 0 and the lattice constant a.

In Fig. 3.5 (a) we show a representative band structure of a material
in SG199. It features protected threefold nodes at the Γ point at energy
µΓ/t = −1 and at the H = (−π, π, π) point at µH/t = 1. It also
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hosts two Weyl nodes at the P = (π/2, π/2, π/2) point, and two Weyl
nodes with opposite chirality at −P , at energies µW1/t = −1.732 and
µW2/t = 1.732.

To focus on the optical conductivity of the threefold fermion in SG199,
we can place the chemical potential slightly above the threefold node at
the Γ point, at µ/t = −0.93. We present the conductivity for this case in
Fig. 3.5 (b). It has a linear dependence on the frequency ω and exhibits
a change in the slope at ℏωΓ/t = 0.07. This result matches exactly the
analytic results obtained for a threefold fermion in Eq. 3.31 in two ways.
First the activation frequency ℏω3f/t = µ/t = 0.07 exactly matches the
distance from the node to the Fermi surface. Second, the numerical
slope coincides with the slope determined by the effective Fermi velocity
that we obtain by projecting the tight-binding Hamiltonian on the
three eigenstates corresponding to the Γ point. This projection can
be brought to the form of the threefold model in Eq. 2.15 with a
unitary transformation77, with an effective Fermi velocity vF = at/(2ℏ),
where a is the lattice constant and t is the hopping parameter in the
tight-binding model.

If we instead place the chemical potential at µ/t = −1.7, near
the lower Weyl node at energy µW2 around P , we can focus on the
optical conductivity of this Weyl node. We can see in Fig. 3.5 (c)
that it has a linear dependence on the frequency ω and a change in
the slope at ℏωP/t = 0.064. This energy scale matches that of a
Weyl fermion (see Table 3.1) with an activation frequency of ℏωW/t =
2µ/t = 0.064, corresponding to twice the distance from the node to the
Fermi surface. The slope matches that of Eq. 3.30 using the effective
Hamiltonian around the P point. We obtain this model by projecting
the Hamiltonian on the corresponding eigenstates near the Weyl node
and bringing it to a Weyl Hamiltonian form H = ℏvFk·σ with a unitary
transformation, where vF = at/(2

√
3ℏ)77.

3.4.2 Space Group 198: RhSi

The next model that we consider describes a material in SG198 (see Sec.
2.3.2). In the next chapter we will compute the optical conductivity
of RhSi and CoSi using tight-binding parameters fitted to ab-initio
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Figure 3.5: Band structure and optical conductivity of the tight-binding model for a
material in SG199. (a) Band structure of the tight-binding model used in Sec. 3.4.1
(Eqs. 2.29–2.30). (b) Optical conductivity of the tight-binding model calculated with a
chemical potential µ/t = −0.93 (solid green line), separating by 0.07 the threefold node
at the Γ point and the Fermi level (left inset). In solid orange the optical conductivity
calculated for the tight-binding model with µ/t = −1.7, separating by 0.032 the lower
Weyl node at the P point and the Fermi level (right inset). We present the optical
conductivity of the effective models described in 3.4.1 for the Γ point (dashed green)
obtained with Eq. 3.31, and for the P point (dashed orange) obtained with Eq. 3.30.
In the frequency range 0 < ℏω/t < 0.2 the optical conductivity is well described by the
linear effective model, i.e. the solid and dashed lines fall on top of each other. The
orbital embedding does not affect the results at these energy scales. These results are
obtained with 1/β = 5× 10−4t.
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calculations. In the remaining of this chapter we well compute the
optical conductivity of the tight-binding model for SG198 with the
parameters obtained for RhSi in Ref. [78], focusing on the response
of different multifold fermions in the Brillouin zone, setting the first
understanding to build a more complete description in the next chapter.

In Fig. 3.6 (a) we present the band structure for the tight-binding
model of SG198 (Eqs. 2.34–2.35) — without spin-orbit coupling —
for the tight-binding parameters in Ref. [78]. It exhibits a protected
threefold crossing at the Γ point at µ3f = −0.07 eV and a protected
fourfold crossing (double spin-1/2) at the R = (π, π, π) point at
µ4f = −0.48 eV.

It is instructive to place the chemical potential close to the threefold
at Γ (µ = 0.065 eV) to compare it with the optical conductivity of the
linear low-energy model. In Fig. 3.6 (b) we present the results obtained
numerically choosing the orbital embedding for RhSi (x = 0.3959), the
results without orbital embedding (x = 0) and the analytic results
for the effective model obtained following the projection procedure
described for SG199 in the previous section. As for SG199 the projection
around Γ results in the effective Hamiltonian Eq. 2.15 with vF =
at/(2ℏ), where a = 4.6 Å for RhSi and with t = vp = 0.76 eV extracted
from the tight-binding fit to the DFT bands in Ref. [78]. Fig. 3.6 (b)
shows that the numerical results match the optical conductivity of the
effective model for ω ≲ 12 meV, they grow linearly with ω and have a
step at ωΓ = 5 meV, which is the energy separation from the node
to the Fermi surface. For ω ≳ 12 meV the quadratic corrections
become important, and the optical conductivity calculated with the
tight-binding model departs from the linear dependence obtained for the
effective model. At the same scale, the results obtained for x = 0 and
x = 0.3959 do not match exactly, which indicates that the higher-order
corrections are sensitive to the orbital embedding unlike the linear
approximation.

We now consider the natural position of the Fermi level with chemical
potential µ = 0 and the orbital embedding for RhSi x = 0.3959. We
recall that for µ = 0, the Fermi level lies 0.07 eV above the threefold
fermion at Γ, and 0.48 eV above the fourfold node at the R point.
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Figure 3.6: Band structure and optical conductivity of the tight-binding model for a
material in SG198. (a) Band structure of the tight-binding model of RhSi used in
Sec. 3.4.2 (Eqs. 2.34–2.35). (b) Optical conductivity corresponding to excitations near
the Γ point calculated for 1/β = 0.5 meV (T = 5.8 K), including the spin degeneracy
and µ = 65 meV. The latter sets an energy difference of 5 meV between the threefold
node at the Γ point and the Fermi level (inset). The results without taking into account
the orbital embedding (dashed orange line) and with the orbital embedding for RhSi
(dashed blue line) are close in the range of frequencies plotted, 0 < ω < 40 meV.
The numerical results obtained for the tight-binding model (dashed lines) are similar to
the optical conductivity of the effective model at Γ (green line) discussed in Sec. 3.4.2
for ω ≲ 12 meV, and exhibit a jump at ω = 5 meV, a characteristic of the threefold
fermion. For higher frequencies the linear effective model fails to capture the curvature of
the bands where higher-order terms become important, causing the optical conductivity
to deviate from that of the tight-binding model.
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(T = 5.8 K). The contribution of the Γ point (blue line) is activated by excitations
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line), and exhibits a jump near ω = 74 meV, which is larger than |µ3f | = 70 meV, set
by the concavity of the intermediate band. The contribution due to excitations near the
R point (orange line) is magnified by a factor 10 for comparison. This contribution is
activated by transitions between the intermediate-upper (green) and upper band (red),
depicted in the right inset. The characteristic frequencies, represented by vertical arrows
in the right inset, correspond to the maximum value of σR at ω = 96 meV and it vanishes
at ℏω = 154 meV.
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For these material parameters, and in the 0 < ℏω < 200 meV
frequency range, the interband optical conductivity has contributions
from transitions close to the Γ and R points, that we present separately
in Fig. 3.7. The contribution to the conductivity near the Γ point
exhibits a jump at a frequency ℏωΓ = µ3f = 74 meV, which is slightly
larger than the corresponding characteristic frequency of a threefold
fermion ℏω3f = 70 meV (see Table 3.1). This is due to the curvature
of the intermediate band, which results in a higher activation frequency
for the allowed transition near the Γ point (see left inset in Fig. 3.7).

Near the R point, the only transitions that contribute below ℏω <
4µf ∼ 1 eV are the interband transitions from the intermediate-upper
band (green) to the upper band (red), that we depict in Fig. 3.7, right
inset. Their contribution to the conductivity is two orders of magnitude
smaller compared to that associated to the Γ point (see Fig. 3.7). This
small magnitude is to be expected once we recall that at low energies,
near the node at R, these two bands correspond to two decoupled
Weyl fermions (see Fig. 3.6 (a)), and the transitions between them are
forbidden. As we increase the energy, the matrix elements grow as
the bands separate. Since the separation is small, the matrix elements
are small. The two extremal energies, depicted by the arrows in the
right inset of Fig. 3.7, correspond to the frequencies ℏω = 96 meV and
ℏω = 154 meV, which match the scales where the R point conductivity
reaches its maximum and vanishes, respectively (see Fig. 3.7).

In summary, the interband optical conductivity of this model for the
tight-binding parameters in Ref. [78] in the frequency range ℏω < 200
meV is determined by that of the threefold fermion at the Γ point,
since the contribution of the fourfold at the R point is two orders of
magnitude lower.

This study of the features of the tight-binding for SG198 model will be
crucial to understand and explain the experimental data of the optical
conductivity of RhSi and CoSi in the next chapter.
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3.5 Conclusions

In this chapter we have derived the expression for the linear optical
conductivity in the length gauge. Using that expression and the
k · p models in Chapter 2, we have shown that, per node, multifold
semimetals have larger optical conductivity than Weyl semimetals.
They also feature characteristic activation frequencies that are specific
to each class of multifold degeneracy. These activation frequencies, as
well as the slope of the conductivity as a function of frequency, can
be used as a fingerprint to distinguish each chiral multifold crossing.
We have considered multifold fermions in rotationally symmetric and
non-symmetric cases, and realistic hamiltonians in space groups 199 and
198. We have used tight-binding parameters that allowed us to explore
the properties of both models. In the next chapter we will use the
tight-binding model for SG198 to characterize the optical conductivity
of RhSi and CoSi.
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4.1 Introduction

Two of the most promising candidates to host multifold fermions near
the Fermi level are RhSi and CoSi, both crystallizing in SG198 (Fig. 4.1).
The presence of multifold fermions near the Fermi level is responsible for
many interesting optical phenomena, such as gyrotropy101,102 and the
quantized circular photogalvanic effect (CPGE)62,71,85,103,104. However,
a solid understanding of the effect of multifold fermions on the optical
responses of RhSi and CoSi is still lacking.

The first experimental evidence of the existence of multifold fermions
was based on band structure measurements, such as ARPES90,91,105.
However, accessing the energy ranges involved in the fine details of
the band structure, such as SOC band-splitting, usually in the range
of meV (see Fig. 4.2), is challenging. As discussed in Chapter 3, the
optical conductivity can reveal details at small energy scales, and it
provides information about the band structure and the wave functions
of occupied and unoccupied states. These features make it an excellent
physical observable to probe multifold fermions in real materials.
Furthermore, in order to understand and interpret the second-order
optical responses in topological semimetals, such as second-harmonic
generation66,67 and photogalvanic effects 106–112, a precise measurement
of the optical conductivity is crucial, together with precise knowledge
of the chemical potential in the sample, the carrier lifetime, and the
energy range where topological crossings are activated75,111,113.

The two materials studied in this chapter — RhSi and CoSi —
have the same symmetries and the same multifold fermions at the
same high-symmetry points. However, both materials are different in
some key aspects. The first of them is the bandwidth involved in the
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optical excitations between topological bands, which is considerably
larger in RhSi than in CoSi (see Fig. 4.1). Another difference is
the energy separation between the threefold node at the Γ point
and the double-Weyl crossing at the R point. While in CoSi this
energy difference is of ∼ 0.2 eV, in RhSi they are separated by ∼
0.4 eV (Fig. 4.1). This gives a much larger energy window where
the dominating contributions to the optical conductivity are transitions
coming from the threefold fermion at the Γ point. In this chapter we
study of the optical conductivity of these materials to determine their
chemical potential, their carrier lifetime, and to identify signatures of
chiral multifold fermions.

In Chapter 3 we obtained an expression for the optical conductivity
and studied the signatures of each type of multifold fermion using
low-energy k · p models. After identifying the fingerprints of each
multifold fermion in the optical conductivity using the simplest
model, we studied the main characteristics of the generic tight-binding
models for SG198 and SG199. In this chapter we will analyze the
experimental optical conductivity of CoSi114 and RhSi75. We will base
our comprehensive analysis on the theoretical calculations with the
k · p model and tight-binding model for SG198, complemented with
ab-initio results, to explain the experimental behaviour of the optical
conductivity in CoSi and RhSi. This will allow us to gain a deeper
understanding of the mechanisms involved in the optical responses of
multifold fermions, and remark the advantages and limitations of the
different models that can describe them.

4.2 CoSi

In this section we present a comprehensive study of the optical
conductivity of CoSi. This material has some features that make it
an ideal platform for revealing the signature of multifold fermions in
an optical conductivity experiment. It has a low carrier density, a large
energy window where only optical transitions between topological bands
are involved — Lifshitz energy — of ∼ 0.6 eV72,74,90,91,105, and the energy
separation between the multifold nodes at Γ and R is ≈ 0.2 eV, with no
other bands expected at the Fermi level90,91,105 (see Fig. 4.1 (b)).
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Figure 4.1: Band structures of RhSi and CoSi. Both materials crystallize in SG198,
thus exhibiting a threefold fermion at the Γ point and a double-Weyl fermion at the
R point. However, the overall energy scale involved in RhSi (a) is larger than in CoSi
(b), which translates into a larger energy window where only optical transitions between
topological bands are involved (Lifshitz energy) in RhSi. The energy separation between
the threefold fermion at the Γ point and the double-Weyl fermion at the R point in RhSi
(a) is ∼ 0.4 eV, while in CoSi (b) is ∼ 0.2 eV. The tight-binding parameters for RhSi
(a) are v1 = 1.95, vp = 0.77, and v2 = 0.4, and for CoSi (b) v1 = 1.29, v2 = 0.25 and
vp = 0.55.

For incident light energies below 0.2 eV, interband excitations near
the multifold crossing at the R point are expected to be Pauli-blocked,
leaving only the linearly dispersing multifold fermions at the zone
center115,116. The large Lifshitz energy and the separation between
multifold nodes are key to observe a clean linear relation between the
conductivity and frequency as predicted for multifold fermions (see
Chapter 3) and to provide a good platform to understand why and
how deviations could occur. The optical conductivity of CoSi was first
measured more than two decades ago, but the topological properties of
CoSi and their implications for the optical response were not addressed,
since the topology of CoSi was not known until very recently72,90,91,105.
The relation of the optical conductivity with the topological properties
is the subject of this chapter.

4.2.1 Experimental features of the optical conductivity

The optical conductivity of CoSi was measured using Fourier-transform
infrared (FTIR) spectroscopy over a range of 40 to 50000 cm−1 for
temperatures ranging from 10 K to 300 K. The measurements were
performed for two different samples, one grown using chemical vapor
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Figure 4.2: DFT band structure, JDOS, and matrix elements of CoSi. (a) Band
structure of CoSi with spin-orbit coupling. The bottom inset shows the band structure
without spin-orbit coupling in the same shaded energy window of (a). (b) Joint density of
states as a function of energy. (c) Momentum-resolved matrix elements that contribute
to the 0.62 eV interband transition along Γ−R−M direction. Adapted from Ref. [74].

transport (CVT) method105 and the other with a flux method117. In this
section we will focus on explaining the experimental data for the CVT
sample. The differences between both samples are discussed extensively
in Ref. [74].

In Fig. 4.2 (a) we see that the multifold crossing at the zone center
is close to the Fermi level, and transitions near the R point are
Pauli-blocked, which means that the low-energy optical conductivity
must be dominated by optical transitions near the Γ point. The
spin-orbit splitting in the material is weak, approximately 18.1 meV
at the zone center (Fig. 4.2 (a)). This suggests that a model without
spin-orbit coupling is sufficient to describe the coarse features, broader
than this energy scale, while spin-orbit coupling can explain features of
the response at finer energy scales.

The measured optical conductivity of CoSi is shown in Fig. 4.3 (a)
for different temperatures. In order to understand the features of the
experimental data and trace back their origin to the band structure
of CoSi, we reproduce in Fig. 4.2 the DFT band structure for CoSi
originally presented in Ref. [74], and the corresponding predicted optical
conductivity in Fig. 4.3 (b).
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Figure 4.3: Experimental optical conductivity of CoSi. (a) Temperature-dependent
optical conductivity spectra σ1(ω) of a CVT-grown CoSi (001) crystal. (b) Measured
optical conductivity at 10 K along with the Wannier tight-binding calculation with and
without spin-orbit coupling at 10 K. Adapted from Ref. [114].

We will analyze the experimental features of the optical conductivity
from high to low energies. Before studying the tight-binding model
and the low-energy scale of the optical conductivity, let us first focus
on the measured peak around 0.6 eV, which is only due to interband
transitions. The calculated DFT optical conductivity (Fig. 4.3 (b))
shows a peak at ω ≈ 0.62 eV, the position of which matches well with
the experimentally-observed peak. Contributions to the conductivity
peak come from all transitions at the peak energy range which are not
Pauli-blocked and have nonzero velocity matrix elements.

The joint density of states (JDOS), shown in Fig. 4.2 (b), is a measure
of the number of transitions at a given energy, and is thus a significant
indicator for the origins of the observed peak. The JDOS corresponding
to two bands n,m can be expressed as118

JDOSnm(ℏω) =
∫
BZ

dk

(2π)3
δ(En(k)− Em(k)− ℏω), (4.1)

where the delta function in the integrand gives a nonzero contribution
when the bands n and m are separated by an energy ℏω.

The JDOS shows strong variations in the neighbourhood of critical
points in the band structure, and can help us identify the origin of
different features in the optical conductivity. For a detailed study of
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the JDOS and how it behaves at different critical points see Chap. 5 of
Ref. [118].

In Fig. 4.2 (b) the JDOS exhibits a shoulder-like feature at ≈ 0.62
eV. This shoulder-like feature is characteristic of a saddle point118, a
critical point in the band structure that is neither a local maximum or
minimum but has vanishing k−derivative. This shoulder-like feature
of the JDOS suggests that the interband contributions at ℏω ≈ 0.62
eV primarily originate from the M point, which is a saddle point in the
band structure of CoSi. The JDOS is a momentum-integrated quantity;
therefore, to unambiguously determine which interband transitions give
rise to the peak, we plot the (momentum-resolved) matrix elements of
Eq. 3.27 in Fig. 4.2 (c). In particular, in Fig. 4.2 (c) we show the
quantity

|V (k)|2 =
∑
n̸=m

fnm(k)

Emn

|vanm(k)|2δ(Emn − ℏω), (4.2)

where fnm(k) = fn(k) − fm(k) , Emn is the energy difference between
bands m and n, and vanm(k) is the velocity matrix element between
bands n,m. We calculate |V (k)|2 for fixed energy ℏω = 0.62 eV along
Γ − R and R −M , which is a measure of the matrix elements of all
allowed transitions at the peak energy. Fig. 4.2 (c) clearly confirms that
the interband transitions giving rise to the peak originate mainly from
the vicinity of the M point, which was assigned to optical transitions
between the lower an upper bands of the double-Weyl fermion along the
Γ−R direction in previous works111,116,119.

A second feature of the calculated DFT conductivity shown in
Fig. 4.3 (b) is a dip at around 0.25 eV. As we will see later, this feature is
present in the tight-binding model prediction as well. This is due to the
curvature of the middle band in the threefold node at the Γ point. When
the energy of the incoming photon is very small, the allowed transitions
should occur between the lower band and the middle band at momenta
right near Γ (see Fig. 4.2 (a)). Away from Γ, the middle band curves
downward in energy and becomes occupied, thus blocking transitions
from the lower band to the middle band and providing the downward
dip in the spectrum. As the energy of the incoming photon increases
further, the transitions around the R point become activated, providing
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the recovery from the dip and the continuation of the spectrum upward.
However, this dip is not observed in experiments, probably due to
a short lifetime of the hot carriers around 0.25 eV as decreasing the
quasiparticle lifetime by broadening the Dirac delta function smears
out this dip feature116.

Finally, we focus on the optical conductivity below 0.2 eV. In
order to compare the calculation results with experiment below 0.2
eV accurately, we need to extract the interband contribution from
the experimental data by subtracting the sharp Drude and phonon
responses at low energy. To isolate the interband contribution we
fit the low-energy response to the Drude model in Eq. 3.29. This fit
allows us to extract a Drude width of ≈ 3 meV at 10K an obtain an
estimation of the Fermi velocity of the carriers dominating the intraband
contribution. We estimated this Fermi velocity vRF for the double-Weyl
fermions is around 1.4 × 105 m/s, which agrees within 5 % with the
DFT calculation in Fig. 4.2 (a), bottom. This agreement indicates
that the narrow Drude response comes from the electron pocket with
double-Weyl quasi-particles at R.

4.2.2 Low-energy regime: k · p and tight-binding models

After subtracting the intraband contribution, we study the low-energy
features of the interband optical conductivity. The most striking feature
of the interband optical conductivity is its approximately linear behavior
up to ∼ 0.2 eV. Below ∼0.2 eV, vertical transitions at the R point
are Pauli blocked, as is clear from Fig. 4.2 (a), except for the tiny
peak at ℏω ∼ 11 meV shown in the green curve in Fig. 4.3 (b),
which is associated with the interband transitions between spin-orbit
split bands along the R − M line. The contribution from these
transitions is much smaller, however, than the vertical transitions from
the multifold fermions at the Γ point (see Sec. 3.4.2). Therefore, the
linear conductivity below 0.2 eV is mainly attributed to interband
transitions near the Γ point.

To quantitatively understand the linear slope of the observed
conductivity, and to determine whether it originates from the
low-energy multifold fermions, we now analyze the low-frequency regime
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of the optical conductivity in detail. As a first step, we consider the k ·p
model for the threefold spin-1 threefold fermion (Eq. 2.15) to describe
the multifold crossing at the Γ point in the absence of spin-orbit coupling
(see lower panel of Fig. 4.2 (a)). As discussed in Chapter 3, interband
transitions are allowed from the partially occupied lower linear band
to the central flat band, but are forbidden between the two linearly
dispersing bands due to angular momentum selection rules. For this
model, the optical conductivity is given by Eq. 3.32. The only free
parameter is the Fermi velocity, which is obtained by fitting the linear
model to the DFT bands near the Γ point wihout spin-orbit coupling
(Fig. 4.2 (a)). We find a Fermi velocity vΓF = 1.9 × 105 m/s. The
corresponding result for the linear model, shown in Fig. 4.4 (b)-(c),
falls lower than the experimental curves for both samples.

To better understand the origin of the discrepancies, we go beyond
the linear model and compare the optical conductivity data to that
obtained by the tight-binding model for SG198 fitted for CoSi, and a
Wannier tight-binding model based on the DFT calculation discussed
previously in this section114.
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Figure 4.4: Tight-binding model for SG198 fitted to the Γ point of CoSi. (a) Band
structure of CoSi obtained using the tight-binding model for SG198 (Eqs. 2.34–2.35)
with v1 = 1.29, v2 = 0.25, and vp = 0.55 compared to DFT bands (dotted grey). Fermi
levels for different chemical potentials are marked as horizontal dashed lines. (b) Optical
conductivity for the chemical potentials shown in (a) with no broadening. For reference
we show as a solid line the optical conductivity of a threefold fermion σ3f = ω

3πvF
with

vF = vp/2. (c) Optical conductivity at two fixed chemical potentials, one above and
one below the Γ node, calculated with a finite broadening of 12 meV.

To describe CoSi, we set the orbital embedding (see Sec. 2.3.2) for
CoSi to xCoSi = 0.3865120,121, and find v1, vp, and v2 by fitting the
tight-binding spectrum to the DFT bands. To capture the separation
in energy between the multifold nodes at Γ and R, we fix it to match that
found by DFT, which equals 210 meV. By expanding the tight-binding
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Figure 4.5: Tight-binding model for SG198 fitted to the R point of CoSi. (a) Band
structure of CoSi obtained using the tight-binding model for SG198 (Eqs. 2.34–2.35)
with v1 = 1.29, v2 = 0.25, and vp = 0.41 compared to DFT bands (dotted grey). Fermi
levels for different chemical potentials are marked as horizontal dashed lines. (b) Optical
conductivity for the chemical potentials in (a). For reference, we show as a solid line
the optical conductivity of a threefold fermion σ3f = ω

3πvF
with vF = vp/2. (c) Optical

conductivity at two fixed chemical potentials, one above and one below the Γ node
calculated with a finite broadening of 12 meV.

Hamiltonian for SG198 (Eq. 2.35) to linear order in momentum around
Γ and R, we see that the parameter vp sets the Fermi velocity of the
threefold and double-Weyl fermion at the Γ and R points to vΓF = vp/2
and vRF = vp/(2

√
3), respectively77. The fitted values of v1, vp, and v2

adequately describe the band structure, but lead to an inaccurate value
of the Fermi level compared to the DFT calculation. To set the right
energy scale in the tight-binding model we add a constant energy shift
of E0 = 0.551 eV, H = H198(v1, vp, v2;x) + (E0 − µ)I4×4. All chemical
potentials are measured with respect to this energy shift.

It is illustrative then to compare two different fits, one that matches
well the Fermi velocity near the Γ point, and a second one to match the
Fermi velocity at the R point. The first fit sets vp = 0.55 to fit the Fermi
velocity of the bands near the Γ point (see Fig. 4.4 (a)). Upon closer
inspection, we find that it provides a better description of the upper
band of the threefold crossing at the Γ point than that of the middle
and lower bands. The second fit sets vp = 0.41 to fit to the Fermi
velocity of the bands near the R point (see Fig. 4.5 (a)). Despite being
a good fit for the R point, we observe this to be a fair description also
of the lower and middle bands at the Γ point away from the Γ node.
For both fits, we obtain v1 = 1.29 and v2 = 0.25 for the remaining
tight-binding parameters.

We must note that for both sets of parameters the tight-binding
model fails to capture the flatness of the middle band near the Γ
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point. Additionally, the tight-binding model is constructed considering
s orbitals. Due to this limitation of the orbital character considered,
this model fails to capture the behavior of the M point, which is not
well described by s orbitals.

In Fig. 4.4 (b) and Fig. 4.5 (b) we compare the optical conductivities
obtained for different chemical potentials crossing the node with no
broadening. The (c) panels show the optical conductivity for selected
chemical potentials and with a finite phenomenological Lorentzian
disorder broadening of 12 meV. For both values of vp, i.e. both fits,
we find that a chemical potential that crosses the bands below the Γ
node results in a peak and dip structure. In the case of vp = 0.55,
which amounts to vF = 1.23 eV·Å, the conductivity has an increasing
trend when lowering the chemical potential. Specifically, the curve with
vp = 0.55, µ = −39 meV shown in Fig. 4.4 (c) falls closest to the Wannier
tight-binding calculation.

It is interesting to note that we obtain a good agreement between the
four-band tight-binding model and the flux sample data for vp = 0.41
with the chemical potential above the node and a 12 meV broadening
(Fig. 4.5 (c)). However, this value of the chemical potential does not
agree with the rest of our observations. As discussed at length in the
experimental section of Ref. [114] and in Sec. 4.2.1, we find that CoSi
is a compensated semimetal with a hole pocket at the Γ, implying that
the chemical potential in the sample is below the node. In this case, the
curve with µ = −39 meV vp = 0.55 in Fig. 4.4 (c) results in the best fit
to the data and first-principles calculations.

Overall, this analysis establishes that the chemical potential lies below
the threefold node at Γ and highlights that deviations from a linear
band structure near multifold fermions have an important impact on
the optical conductivity.

4.2.3 The role of spin-orbit coupling and the spin-3/2
multifold fermion

When we consider a finite SOC, the multifold fermions in the band
structure of CoSi decompose into different multifold fermions (see
Sec. 2.3.2 and Fig. 2.5). In particular, the threefold fermion at the Γ
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point decomposes into a spin-3/2 fourfold fermion and a Weyl fermion
separated by ≈ 18.1 meV. To assess the role of spin-orbit coupling
and the splitting of the threefold fermion into a spin-3/2 fourfold
fermion and a Weyl fermion, we compare the experimental data with
the optical conductivity obtained from a Wannier tight-binding model
based on the DFT calculation114 presented in Fig. 4.2. This is a
64×64 (with spin-orbit coupling) tight-binding model in the basis of
maximally-localized Wannier functions contructed with the Wannier90
package. The tight-binding model is fitted to the DFT band structure
shown in Fig. 4.2, obtained with the software package Quantum
Espresso122–124. Further details about this model can be found on
Appendix C of Ref. [114].

The DFT-based Wannier tight-binding model result with spin-orbit
coupling is represented by the green curve of Fig. 4.6. We have
subtracted the small peak feature at 11 meV shown in Fig. 4.3 (b), since
it originates from the interband excitations between spin-orbit-split
bands along the R −M line. The optical conductivity of the Wannier
tight-binding model with SOC (green line in Fig. 4.6) is in better
agreement with the measured conductivity in the flux-grown sample
below 0.1 eV than the Wannier tight-binding model without SOC (pink
line in Fig. 4.6). The spinless model shows an activation frequency
at ∼ 0.01 eV, approximately half of the activation frequency observed
in the experimental data and the model with SOC. Furthermore, the
change of slope of the optical conductivity at ∼ 0.05 eV is well captured
by the model with SOC, while the model without SOC fails to reproduce
it. The optical conductivity in this energy region (∼ 0.1 eV) is
dominated by the optical transitions at the Γ point (see Fig. 4.2), where
we find a spin-3/2 fourfold fermion and a Weyl fermion when SOC
is considered. Thus, the agreement of the model with SOC with the
experimetal data indicates that the low-frequency shoulder below 0.1
eV observed in experiments arises from transitions between the spin-3/2
fourfold node and the Weyl node at the Γ point. To the best of our
knowledge, this spin-3/2 fourfold fermion at the Γ point is the first
example of a spin-3/2 quasiparticle in a crystal.
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Figure 4.6: Interband optical conductivity in CoSi from measurements in both CVT-
and flux-grown samples (red and black curves) along with Wannier tight-binding
calculations without (pink curve) and with (green curve) spin-orbit coupling. Reproduced
from Ref. [114].

4.2.4 Summary

In summary, we revealed the topological origin of the optical
conductivity in CoSi. Our analysis shows that determining the location
of the chemical potential accurately with respect to the central
flat band is crucial to understand the optical response. We have
shown that the interband optical conductivity in different frequency
regimes is dominated by the existence of different topological multifold
fermions and a saddle point in the band structure. Most notably,
our analysis provides the evidence of the existence of the fourfold
spin-3/2 quasi-particles for the first time. Our results provide a
comprehensive picture of the optical conductivity of CoSi tracing
back its features to the presence of multifold fermions in the band
structure, and give an estimation of the scattering lifetime and chemical
potential of the material. This knowledge of the optical conductivity is
crucial to interpret the experimental data of second-order responses,
such as the circular photogalvanic measurement in this family of
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materials62,75,103,111,113, and pave the way to study optical signatures in
other chiral topological semimetals70,85.

4.3 RhSi

In this section we will proceed in an analogous way to the case of CoSi to
find the signatures of the multifold fermions in the optical conductivity,
determine the position of the Fermi level and estimate the disorder scale
in the sample. We will work with the tight-binding model for SG198
(Eqs. 2.34–2.35) fitted to the DFT band structure of RhSi presented in
Ref. [75].

4.3.1 Experimental features of the optical conductivity

The optical conductivity of RhSi, shown in Fig. 4.7, is obtained by
performing a Kramers-Kronig analysis on the frequency-dependent
reflectivity R(ω) obtained by FTIR spectrometry in the frequency range
from 0 to 8000 cm−1(0 to 1 eV). The measurements were performed for
several selected temperatures between 10K and 300K.

Let us start studying the intraband optical conductivity. We fit
the optical conductivity at low frequencies with the Drude model in
Eq. 3.29, similar to the procedure followed for CoSi in Sec. 4.2.1.
After performing this analyisis we find the need for a broad (orange
curve in Fig. 4.7) and a narrow (green curve in Fig. 4.7) Drude
term to correctly account for the intraband response in RhSi, which
indicates the existence of two types of charge carriers with very different
transport scattering rates. This is a common scenario when describing
the optical response of multiband systems, such as the iron-based
superconductors125–127.

In RhSi the threefold crossing is expected to be above the Fermi level.
Examining the band structure in Fig. 4.8, the position of the Fermi level
leads to the existence of a heavy hole pocket centered at the Γ point, and
an electron pocket at the R point72,103. These two pockets are the source
of the two different Drude peaks found in the intraband analysis (see
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Figure 4.7: Experimental Drude and interband optical responses in RhSi. (a) Optical
conductivity spectrum of RhSi up to 1.5 eV at 10 K. The thin red line through the data
is the Drude-Lorentz fitting result, which consists of the contributions from a narrow
Drude peak (green line), a broad Drude peak (orange line), and several Lorentz terms
that account for the phonons (gray) and the interband transitions (light blue, magenta,
and wine lines). Temperature dependence of (b) the plasma frequency Ωp,D and (c) the
transport scattering rate 1/τD of the Drude terms. (d) Optical conductivity spectrum of
RhSi at 10 K, and the corresponding spectrum after the Drude response and the sharp
phonon modes have been subtracted. Black dashed lines are eye guidance for different
quasi-linear regimes. Reproduced from Ref. [75].

Fig. 4.7). It is interesting to note that we could expect a third Drude
peak from the pocket at the M point. Nevertheless, its contribution
must be small, as the pockets at Γ and R are much larger and we do
not need to include it to explain the low frequency data. We use the
transport lifetime of the narrow Drude peak as the upper bound and
estimate the transport lifetime τ300 ≤ 13 fs at 300 K and τ10 ≤ 23 fs at
10 K75, consistent with previous studies111,119

We investigate now the interband optical conductivity. With the
subtraction of two Drude peaks with transport scattering rates of
200 cm−1 and 2400 cm−1 (Drude fit 1 in Fig. 4.7 (d)), we find a
quasi-linear behavior of σ1(ω) in the low-frequency regime (up to about
3500 cm−1). Such behavior is a strong indication for the presence
of three-dimensional linearly dispersing bands near the Fermi level,
as we established in Chapter 3. Indeed, from DFT band structure
calculations (see Fig. 4.8), we see that this low-energy quasi-linear
interband conductivity (ω < 3500 cm−1) could be attributed to the
interband transitions around the Γ point. At higher energies, the
interband contributions around the R point become allowed and can
be responsible for the second quasi-linear interband conductivity region
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Figure 4.8: DFT band structure of RhSi (a) without spin orbit coupling, and (b) with
spin orbit coupling. It hosts a threefold fermion at Γ and a double-Weyl fermion at R
without spin orbit coupling. They split into a spin-3/2 fourfold node and a Weyl node
at Γ, and a sixfold double spin-1 node and a twofold Kramers node at R, when spin
orbit coupling is included. Reproduced from Ref. [75].

(3500 cm−1 < ω < 6500 cm−1). At ω > 6500 cm−1, the optical
conductivity flattens and forms a broad maximum around 8000 cm−1.
From Fig. 4.7 (a) we see that this maximum is well fitted with two
Lorentzian distributions peaked around 0.85 eV (light blue) and around
1.1 eV (magenta). Following a symilar analysis to that of CoSi, we can
attribute the peak around 0.85 eV to broadened interband transitions
centered at the M point. This interpretation is different from previous
explanations of this feature, such as that of Ref. [119].

When considering the interband optical conductivity obtained after
subtracting the Drude contributions, it is important to note that the
fit to the broader Drude peak might suffer from more uncertainty than
that of the narrow Drude peak. Small changes in the width of the broad
Drude peak might result in appreciable changes when subtracting it
from the full data set to obtain the interband response. A different
approach discussed in Ref. [75], where the two Drude and two phonon
terms are subtracted directly, uses a smaller transport scattering rate
of 1350 cm−1 (Drude fit 2 in Fig. 4.7 (d)). In this case, the onset
frequency at which the interband conductivity emerges decreases and
the magnitude of σ1 below 4000 cm−1 increases with respect to the
Drude fit 1. However, the resulting slope below 3500 cm−1 is not
significantly modified as the wide Drude response contributes as a flat
background in this regime. Note that another recent study used a
similar method and also found that the quasi-linear behavior is robust
within the uncertainty of the fit parameters119. Therefore, we conclude
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Figure 4.9: Tight-binding model for SG198 fitted to RhSi. (a) Band structure obtained
using the tight-binding model (Eqs. 2.34–2.35) for RhSi without spin-orbit coupling
with tight-binding parameters v1 = 1.95, vp = 0.77, and v2 = 0.4. (b) Optical
conductivity of RhSi for different chemical potentials µ without disorder broadening.
The σ3f

1 conductivity by low-energy linear model is shown as a dashed gray line. (c)
Optical conductivity of RhSi calculated with different disorder related broadenings, η,
for µ = −100 meV (see (b)).

that the low-frequency quasi-linear conductivity is contributed from
interband excitations and will be analyzed next in our theoretical
modeling.

4.3.2 Low-energy regime: k · p and tight-binding models

To understand better the low-frequency interband optical conductivity
of RhSi, we compare the experimental results with the prediction of the
k · p model for the threefold fermion at the Γ point (see Eq. 2.15), and
the four-band tight-binding model for SG198 described in Sec. 3.4.2.

The band structure calculations of Fig. 4.8 suggest that at low
frequencies ω ≲ 0.4 eV the optical conductivity is dominated by
interband transitions close to the Γ point as the R point is 0.4 eV below
the chemical potential. To linear order in momentum, the middle band
at Γ is flat (see Fig. 4.8 (a)). The only free parameter of the optical
conductivity of a threefold fermion (Eq. 3.32) is the Fermi velocity
vF, which can be obtained by fitting the linear model for a threefold
fermion (Eq. 2.15) to the bands near the Γ point. The resulting optical
conductity is shown in Fig. 4.9 (b). We observe that the low-energy
σ3f
1 shows a smaller average slope compared to the low-energy part

of our experimental data. In addition, a purely linear conductivity is
insufficient to describe a small shoulder at around 200 meV.
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Fig. 4.8 indicates that the position of the chemical potential combined
with the deviations from linearity of the central band at Γ can play
a significant role in optical transitions. These deviations are better
captured by the tight-binding model for SG198, which can capture
the downward curvature of the middle band. To adequately describe
RhSi, we fit the tight-binding model for SG198 (Eq. 2.35) to the DFT
band structure shown in Fig. 4.8, which results in a set of tight-binding
parameters v1 = 1.95, vp = 0.77, and v2 = 0.4. The DFT fit delivers
parameters that differ from those obtained in Ref. [103], which we
discussed in Sec. 3.4.2. Our current parameters result in a better
agreement with the observed optical conductivity. Additionally, we
rigidly shift the zero of energies of the tight-binding model by 0.78 meV
to facilitate comparison with the DFT calculation. We set the orbital
embedding parameter to xRhSi = 0.3959 for RhSi71,115. The resulting
tight-binding band structure is shown in Fig. 4.9 (a).

To understand the role of chemical potential, in Fig. 4.9 (b) we
compare the optical conductivity for different values of µ that leave
the threefold node at Γ close to the Fermi level, and the experimental
optical conductivity in the interval ℏω ∈ [0, 0.7] eV (sub. Drude fit
2). By choosing different chemical potentials below and above the node
without yet including a hot-carrier scattering time τ , we observe that if
the chemical potential is below the threefold node (see µ = 0,−100 meV
curves in Fig. 4.9 (b)), a peak appears (around 200 meV for µ = −100
meV), followed by a dip in the optical conductivity at larger frequencies,
before the activation of the transitions centered at the R point.

The peak-dip feature observed in the optical conductivity can be
traced back to the allowed optical transitions and the curvature of the
middle band. When the Fermi level lies below the node, the interband
transitions with the lowest activation frequency connect the lower to
the middle threefold band at Γ. Increasing the frequency could activate
transitions between the bottom and upper threefold bands, allowed
by quadratic corrections, but these are largely suppressed due to the
selection rules, as the change of angular momentum between these bands
is 2 (see Sec. 3.2.1). Because of the curvature of the middle band, the
transitions connecting the lower and the middle threefold bands die out
as frequency is increased further, resulting in the peak-dip structure
visible in Fig. 4.9 (b). Since the curvature of the middle band is absent
by construction in the linear model but captured by the tight-binding
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model, it is only the latter model that shows a conductivity peak-dip.
As a side remark, we observe that the transitions involving the R
point bands activate at lower frequencies as the chemical potential is
decreased.

Although placing the chemical potential below the Γ node results
in a marked peak around 0.2 eV, it is clearly sharper and overshoots
compared to the data, for which the sudden drop at frequencies above
the peak is also absent. It is likely that this drop is masked by the
finite and relatively large disorder-related broadening η = ℏ/τ . This
scale is expected to be large for RhSi given the broad nature of the
low-energy Drude peak. Note that τ is the hot-carrier lifetime, which
is different from the transport lifetime τD estimated from the Drude
peaks. In Fig. 4.9 (c) we compare different hot-carrier scattering
times for µ = −100 meV. Upon increasing η the sharp features in
Fig. 4.9 (b) are broadened, turning the sharp peak into a shoulder,
similar to that observed in the experimental data. When η = 100− 150
meV the resulting optical conductivity falls close to our experimental
data, including the upturn at 0.4 eV, associated to the activation of the
broadened transitions around the R point. Note that the large disorder
scale is similar to the spin-orbit coupling (≈ 100 meV) and, therefore,
disorder washes out any feature narrower than 100 meV and justifies our
discussion based on a tight-binding model without spin-orbit coupling.

We note that despite the general agreement below 0.5 eV, the intuitive
tight-binding calculations deviate from the data above 0.5 eV. This is
likely due to the known limitations of the tight-binding model, which
fails to accurately capture the band structure curvature and orbital
character at other high-symmetry points such as the M point, which is
a saddle point as discussed extensively for CoSi.

Overall, the curves with broadening factor η = 100 meV and with
chemical potential below the nodes at Γ show a good qualitative
agreement with the experimentally measured curve in a wide frequency
range. This observation determines approximately the hot-carrier
lifetime in RhSi to be τ = ℏ/η ≈ 6.6 fs.
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4.3.3 Summary

The optical conductivity measurements, combined with tight-binding
and ab-initio calculations, show that interband transitions ≲ 0.4 eV
are mainly dominated by the vertical transitions near the multifold
nodes at the Brillouin zone center, the Γ point. We found that the
transport lifetime is relatively short in RhSi, ≤ 13 fs at 300 K and ≤ 23
fs at 10 K. Our optical conductivity experiments are reasonably well
reproduced by tight-binding and first-principle calculations when the
chemical potential lies below the threefold node at the Γ point, crossing
a relatively flat band, and when the hot-carrier lifetime is chosen to be
τ ≈ 4− 7 fs.

In conclusion, we have established a consistent picture of the optical
transitions in RhSi using k ·p, tight-binding, and DFT methods applied
to interpret the linear and nonlinear optical responses. Our analysis
illustrates the crucial role played by the curvature of the flat-band
at the Γ point and the saddle point at M . The interband optical
conductivity shows two quasi-linear regions where the conductivity
increases smoothly with frequency and a slope change around 0.4 eV.
The slope in the first region is determined by a disorder-broadened
contribution associated with a threefold fermion at the Γ point, while
the slope in the second region is determined by the onset of a broadened
R point conductivity.
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4.4 Conclusions

In this chapter we provided a detailed explanation of the origin of the
peak around 0.6 eV in the optical conductivity of CoSi, attributed to the
saddle point at M . Thanks to our analysis, we know that the simplicity
of the orbital character considered in the tight-binding model limits its
capacity to describe the M point, and the predictions made using this
model are bound by the dominance of the contributions coming from
the M point. Additionally, the flatness of the middle band cannot be
captured by the tight-binding model, limiting its capacity to describe
adequately transitions at low energy in the flat region near the Γ point.

In both materials the low-energy optical conductivity is dominated
by the multifold crossing at the Γ point. The analysis of the optical
conductivity for RhSi and CoSi indicate that the position of multifold
crossing at the Γ point with respect to the Fermi level plays a key role
in the low-energy features of the optical conductivity. In both materials
the Fermi level lies below the threefold node at Γ. However, in CoSi
the Drude analysis indicates that the intraband response is dominated
by the double-Weyl fermion at the R point, while in RhSi both Fermi
surfaces at the Γ and the R points contribute to the intraband response.

In the case of RhSi, the optical conductivity is well explained by the
tight-binding model for SG198 without SOC. The larger energy scale of
the band structure (compared to that of CoSi) provides a larger energy
window where the optical response is dominated by the bands at the Γ
and R points, making the contributions of the M point appear at larger
energies than in CoSi. Thus, the tight-binding model captures well the
overall features of the band structure of RhSi above the disorder-induced
broadening scale, leading to a good agreement between theory and
experiment. Conversely, in CoSi the smaller energy scales and the
dominance of the M point limit the validity of the tight-binding model
to a smaller energy region compared to that of RhSi.

In RhSi the disorder-induced broadening is estimated to be η ∼
100− 150 meV (τ ∼ 4− 7 fs), which is large enough to mask the effect
of spin-orbit coupling and the discrepancies between the tight-binding
model and the experimental data due to the flatness of the middle band.
However, in CoSi the disorder-induced broadening is η ∼ 3 − 12 meV
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(τ ∼ 55− 200 fs), small enough compared to the spin-orbit splitting at
the Γ point (∼ 20 meV). After ruling out other origins, such as the
curvature of the middle band at the Γ point and the position of the
chemical potential, we concluded that the optical conductivity features
below 20 meV in CoSi are a result of the spin-orbit splitting of the
multifold crossing at the Γ point, providing the first evidence of the
existence of a spin-3/2 fermion in condensed matter.
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Nonlinear optical 
responses   

5
Second-harmonic generation in RhSi 





5.1 The zoo of nonlinear responses

In Chapters 3 and 4 we studied the linear optical conductivity,
which is proportional to the first power of the electric field and
involves single-photon processes. At higher orders optical responses
are proportional to higher orders of the electric field (Eq. 3.21), and
multiple-photon processes can happen.

It is useful to make a distinction between even- and odd-order
responses. The current induced in the marterial is odd under inversion
symmetry, while even powers of the electric field are even under
inversion symmetry. This leads to a clear distinction: odd-power
responses are allowed in all cases, while even-power responses are only
present when the system lacks inversion symmetry. Since even-order
responses are only nonzero for materials without inversion symmetry
they can be used as a test for spontaneous symmetry-breaking128–133

and to study the surfaces and interface properties of materials134–139,
which always break inversion symmetry.

In this chapter we will focus on second-order responses induced by
a monochromatic source of light with frequency ω. When we consider
the second-order responses — proportional to the square of the electric
field — the two Fourier components of the incoming light +ω and
−ω can interfere constructively or destructively. Depending on this
interference, the resulting effects are radically different, allowing us to
explore different material properties.

When both Fourier components have opposite sign the result is a DC
current in the material (ω = 0) known as the bulk photogalvanic effect
(BPGE). This current can be divided into two different components:
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the first of them is a non-oscillating photocurrent that grows linearly in
time, known as injection current; the second component, known as the
shift current, does not depend on time. In the presence of time-reversal
symmetry, we can relate univoquely each of the two components with
linear or circular light polarization: linearly-polarized light will give
rise to the linear photogalvanic effect (LPGE), determined by the
shift current, while circularly-polarized light will produce a circular
photogalvanic effect (CPGE), determined by the injection current∗.

When both Fourier components are equal the generated current
oscillates at frequency 2ω, known as second-harmonic generation (SHG).
The SHG is at the core of the technologies for generating light sources
at different wavelengths140,141. Therefore, finding materials where the
second-harmonic response is large is not only a quest for understanding
this phenomenon, but also a contemporary material science challenge
with solid technological interest.

Beyond the potential technological applications, the microscopic
origin of large second-harmonic responses is an open scientific question.
Two recent studies66,67 reported a giant SHG response in the topological
semimetal TaAs at ω ∼ 1.5 eV (800 nm)66, reaching a maximum value
one order of magnitude larger than the benchmark materials GaAs142

and ZnTe143. The incoming photon energy scales involved in these
responses (∼ eV) are considerably larger than the ∼ 60 meV associated
with the topological band crossings, the Weyl nodes, present in TaAs.
Therefore, the existence of topological band degeneracies alone cannot
explain the giant second-harmonic response, and a general microscopic
origin has yet to be uncovered. In fact, the role of topological band
crossings with linear dispersion, such as Weyl nodes, in the SHG is
experimentally unclear.

In this chapter we study the second-harmonic generation in RhSi.
The intricate combination of linear and topological bands of TaAs when
probed at large frequencies66,67,144 makes it difficult to separate the
contributions of trivial and topological bands to SHG. In RhSi the
topological multifold crossings at Γ and R are separated in energy
(∼ 0.4 eV) and the topological bands are isolated from trivial bands.
Our analysis of the optical conductivity of RhSi in Sec. 4.3 manifest

∗When time-reversal symmetry is absent, both shift and injection currents can
be nonzero for any light polarization.
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the dominance of the threefold fermion in the linear response at low
energies as a consequence of the energy separation between bands. The
dominance of the threefold crossing at low energy and the isolation of the
topological bands from trivial bands makes RhSi a promising material to
study the effect of topological bands in the second-harmonic generation.

To interpret correctly the experimental results and understand the
origin of the features observed in the second-harmonic response it
is necessary to characterize the material, this is, have an accurate
estimation of the scattering lifetime τ and the chemical potential in the
sample. It is thus convenient to have an input independent from the
second-harmonic experiment where we can estimate these quantities,
and compare them against the results obtained for the linear optical
conductivity in the previous chapter. To do so we will rely on the
other second-order response described in this chapter: the CPGE.
The particular form of the dependence of the CPGE reponse on τ
makes it a suitable observable to obtain an estimation of the scattering
lifetime τ from the experiment. Building up on our study of the optical
conductivity of RhSi and the estimation of τ obtained from the CPGE
experimental data we will study the SHG in RhSi.

5.2 The circular photogalvanic effect in RhSi

The CPGE has been the focus of recent studies that led to the prediction
that this response would be quantized for chiral Weyl semimetals62.
However, chiral Weyl semimetals with the required node separations to
observe this quantization have not been synthesized as single crystals†.
The two materials studied in this thesis, CoSi and RhSi, are good
candidates to study the signatures of topological excitations in CPGE
due to the energy separation between the nodes at Γ and R and the
Lifshitz energy (see Fig. 4.1), of the order of 1 eV, in contrast with
previous Dirac and Weyl semimetals, such as Cd3As2

149, Na3Bi
150,

TaAs27,151 with Lifshitz energies < 100 meV.

†A promising candidate material to display a quantized CPGE was SrSi2
145,146,

but the first experimental works on SrSi2 revealed that it is in fact a topologically
trivial semiconductor147,148.
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In this section we will reproduce the results presented in Ref. [75],
where we reported the experimental measurement of the CPGE response
in RhSi and compared it with predictions based on DFT calculations
and the tight-binding model for SG198 discussed in the previous
chapters of this thesis. We will present the necessary background to
understand the CPGE in RhSi. We focus on the material analysis
that will tell us about the chemical potential and the hot-carrier
lifetime in the sample, as we will use it as a reference to study the
second-harmonic generation in the next section. Other details about
the CPGE quantization in Weyl and multifold semimetals can be found
in Refs. [62,96], and the details of the experiment presented in this
section in Ref. [75].

In materials with time-reversal symmetry — like RhSi — the CPGE is
directly determined by the injection current: when circularly-polarized
light interacts with RhSi it induces a time-dependent current density,
the injection current, given by62,96,152

dja
dt

= βab(ω) (E(ω)× E∗(ω))b , (5.1)

where E(ω) is the electric field as described in Eq. 3.2, and βab(ω) is the
CPGE tensor. This current grows linearly in time for times t≪ τ , and
the the CPGE response βab can be expressed as75

βab(ω) =
iπe3

4ℏ

∫
BZ

dk

(2π)3

∑
n>m

fnmϵ
bcd∆a

nmIm
(
rdnmr

c
mn

)
Lτ (ϵnm − ℏω) ,

(5.2)
where ∆a

nm ≡ ∂kaωmn, ramn = vnm/(iωmn) (see Eq. 3.23), fnm = fn −
fm is the difference of Fermi-Dirac distributions that accounts for the
chemical potential and temperature, and Lτ is a Lorentzian function
that accounts for a finite hot-carrier scattering time τ in the sample.

5.2.1 Experimental features of the circular
photogalvanic effect

In Fig. 5.1 we reproduce the experimental result presented in Ref. [75].
The CPGE response was obtained by THz emission spectroscopy.
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The measurements were performed for circularly-polarized light with
opposite helicities, and the CPGE contribution was extracted by taking
the difference between the two emitted THZ pulses for incident photon
energies between 0.2 and 1.1 eV.
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Figure 5.1: Experimental CPGE spectrum of RhSi (blue squares) compared to the DFT
calculation for µ = −30 meV and temperature T = 300 K (solid green line), and the
tight-binding model (Eqs. 2.34–2.35) presented in Sec. 3.4.2 (solid orange line) for the
parameters v1 = 1.95, vp = 0.77, and v2 = 0.4. Both theoretical calculations are
computed with a constant broadening η = 100 meV. Reproduced from Ref. [75].

In Fig. 5.1 we see that as the incident photon energy decreases from
1.1 to 0.7 eV, there is a rapid increase of the CPGE response with a
peak value of 163(±19) µA/V2 at 0.7 eV. Similar features were observed
previously in Ref. [111]. As the incident photon energy decreases
further from 0.7 to 0.2 eV, the CPGE response shows a sharp drop
with a marked sign change at 0.4 eV. Noticeably, the peak response
at 0.7 eV is one order of magnitude larger than a previous study on
RhSi111, probably due to a larger hot-carrier lifetime. Additionally,
the sign change was absent in previous theory studies96,103,104 and was
not observed in previous experimental works since the lowest photon
energies measured were around 0.5 eV111. Conversely, the quantized
CPGE below 0.7 eV predicted in previous works96,103,104 is absent in the
experiment.
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To extract the hot-carrier lifetime τ from this experimental data we
rely on the tight-binding model for RhSi presented in Sec. 3.4.2 and
a DFT calculation orignally presented in Ref. [75]. From the analysis
performed in the previous chapter using the optical conductivity, we
know that the hot-carrier lifetime τ in this sample is short compared
to the pulse width used for the CPGE measurements75. Under these
conditions, the total photocurrent is given by βxxτ 104. As for the optical
conductivity calculations, we assume the lifetime τ to be constant, and
it is the only fitting parameter to match both the peak and width of
the measured CPGE current with the theoretical predictions.

5.2.2 DFT calculation of circular photogalvanic effect
in RhSi

In Fig. 5.1 we reproduce the results of the DFT calculation for µ = −30
meV and η = ℏ/τ = 100 meV (τ ≈ 6.6) fs . The DFT calculation
captures quantitatively the features of the experimental CPGE data:
the existence of a peak around 0.7 eV, its height and width, and the sign
change of the response. This is consistent with the analysis of the optical
conductivity in the previous chapter, and supports the estimation of
the hot-carrier lifetime τ ≈ 6.6 fs and the conclusion that the chemical
potential lies below the Γ node.

To understand how different regions in the Brillouin zone contribute
to the CPGE, in Fig. 5.2 we show the momentum-resolved contribution
to the CPGE response for different photon energies. Below 0.6 eV
the main contributions come from the R and Γ points. The M
point contributions are activated for energies higher than 0.75 eV.
This indicates that the sign change observed at 0.4 eV is due to the
activation of the excitations at the R point contributing to the CPGE
with opposite sign with respect to Γ, which was also observed in a recent
work studying a k · p model113.

It is interesting to note that at 0.4 eV the R point is already
active due to the large broadening η ∼ 100 meV in this
material. The differences observed between the theoretical calculation
and the experimental measurements suggest that considering a
constant, energy-independent hot-carrier scattering time τ might be
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Figure 5.2: CPGE contributions from different regions in the Brillouin zone.
Momentum-resolved contribution to the CPGE photocurrent shown in Fig. 5.1 (solid
green line) for incident photon energies 0.4 (a), 0.6 eV (b), and 0.75 eV (c). The
contribution is indicated in the red-blue color scale, where red indicates a positive
contribution and blue a negative contribution. Adapted from Ref. [75].

an oversimplified phenomenological model for the disorder. Including
energy and momentum dependence in the hot-carrier scattering time
might give an even better agreement between theory and experiment.
However, to the best of our knowledge, no work has studied the energy
and momentum dependence of τ for RhSi so far.

5.2.3 Circular photogalvanic effect calculation with a
tight-binding model for RhSi

As discussed in the previous chapters, the tight-binding model for SG198
presented in Sec. 3.4.2 is the simplest model to capture the multifold
fermions at Γ and R points. It is illustrative to compare the results
obtained for the tight-binding model with the DFT results described in
this section. In Fig. 5.1 (a) we reproduce the results for the CPGE using
the tight-binding model for SG198‡ 75 with parameters η = 100 meV and
µ = −100 meV, obtained in the analysis of the optical conductivity in
the previous chapter. This calculation underestimates the position of
the peak and the overall magnitude of the CPGE. This discrepancy can
be attributed to the failure of the tight-binding model to capture the M
point, as was extensively discussed in Sec. 4.2.1. It shows, however, the
overall peak-dip structure of the response and the sign change around
0.4 eV, consistent with the chemical potential placed under the threefold

‡The tight-binding parameters are those obtained in Chapter 4 for the optical
conductivity calculation: v1 = 1.95, vp = 0.77, and v2 = 0.4.
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node at Γ. This manifests the crucial relevance of the curvature of the
flat band at the Γ point and the important contributions of the saddle
point at M , missing in the tight-binding model.

The comparsion between experimental data and theory indicate that
the chemical potential is placed below the node at Γ in RhSi, with values
between −30 and −100 meV, and agree well for hot-carrier lifetime
τ ∼ 6.6 fs, equivalent to a broadening of η ∼ 100 meV. This is consistent
with the results obtained analyzing the optical conductivity of RhSi
(Sec. 4.3), giving us a solid estimation of the position of the Fermi level
and the hot-carrier scattering lifetime that we will use to compute the
SHG of RhSi in the next section.

5.3 Second-harmonic generation in RhSi

After studying the CPGE and the optical conductivity, we have a
good estimation of the position of the Fermi level and the hot-carrier
scattering lifetime. This is crucial to obtain an accurate prediction for
the SHG in RhSi and to correctly interpret the experimental results,
and to attribute the origin of the SHG features to material properties
implemented in the theoretical models.

To study the SHG in RhSi we will compute the second-harmonic
response using a low-energy k · p model describing the threefold
crossing at the Γ point and a DFT calculation in a wider energy
range with a large number of bands. We will discuss the results of
the theoretical calculations in comparison with the experimental data,
originally reported in Ref. [76].

5.3.1 Second-harmonic generation in the length gauge

To compute the second-harmonic generation for both the low-energy
k · p model and the DFT, our first task is to write the expression for
the second-harmonic response. In Sec. 3.1 we discussed how we can
express the current induced in a material by a light source as a series
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on increasing powers of the eletric field (see Eq. 3.21). At second order,
we can express the contribution to the induced current as

J (2)
a (t) = σ

(2)
abc (ω1, ω2)E

b
ω1
Ec

ω2
e−i(ω1+ω2)t. (5.3)

Since we are considering a monochromatic light source, the only
possible combinations are ω1 = −ω2 and ω1 = ω2. In the first scenario
we find ω1 + ω2 = 0, a DC response that we already studied in the
CPGE section. In the second scenario, the system will show a response
at ω1 + ω2 = 2ω, which we refer to as second-harmonic response and
label as σabc (2ω;ω, ω) ≡ σ

(2)
abc (ω, ω).

In Eq. 3.24 we showed how the responses in the perturbative
expansion (Eq. 3.21) are related to the density matrix order by order.
The solution to the density matrix equation is iterative, and we can use
the first-order solution of the density matrix in Eq. 3.20 to compute the
second-order response σabc (2ω;ω, ω).

For later convenience we will work with the second-order
susceptibility χabc(2ω;ω, ω), which is related to the second-order
conductivity σabc (2ω;ω, ω) by σabc (2ω;ω, ω) = −i2ωχabc(2ω;ω, ω). We
can separate the second-harmonic response into terms involving one
photon and two photons as153

χabc (2ω;ω, ω) =χabc
2ph(ω) + χabc

1ph(ω), (5.4)

where the labels 2ph and 1ph denote two- and one-photon transitions,
respectively, χabc

2ph = χabc
2ph,inter+χ

abc
2ph,intra, and χabc

1ph = χabc
1ph,inter+χ

abc
1ph,intra+

Σabc. The above terms of χabc (2ω;ω, ω) are

χabc
2ph,inter(ω) =C

∫
k

∑
nml

ranm{rbmlr
c
ln}

(ωln − ωml)

2fnm
(ωmn − 2ω)

, (5.5)

χabc
1ph,inter(ω) =C

∫
k

∑
nml

ranm{rbmlr
c
ln}

(ωln − ωml)

[ fml

ωml − ω
+

fln
ωln − ω

]
, (5.6)
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χabc
2ph,intra(ω) =C

∫
k

∑
nm

ranm{∆b
mnr

c
mn}

ω2
mn

−8ifnm
(ωmn − 2ω)

+ C

∫
k

∑
nml

ranm{rbmlr
c
ln}

ω2
mn

2fnm(ωml − ωln)

(ωmn − 2ω)
, (5.7)

χabc
1ph,intra(ω) =C

∫
k

∑
nml

ranm{rbmlr
c
ln}

ωmnfnl
ω2
ln(ωln − ω)

− C

∫
k

∑
nml

ranm{rbmlr
c
ln}

ωmnfml

ω2
ml(ωml − ω)

, (5.8)

Σabc(ω) =
iC

2

∫
k

∑
nml

ωnlr
a
lm{rbmnr

c
nl}

fnm
ω2
mn(ωmn − ω)

− iC

2

∫
k

∑
nml

ωlmr
a
nl{rblmrcmn}

fnm
ω2
mn(ωmn − ω)

+
iC

2

∫
k

∑
nm

fnm∆
a
nm{rbmnr

c
nm}

ω2
mn(ωmn − ω)

, (5.9)

where C = e3/ℏ2, the wave vector k is defined in the Brillouin zone,∫
k
=

∫
d3k/(4π3), lmn subscripts denote band indices, the energy of

band n is ℏωn, and the frequency difference is ωmn = ωm − ωn. We
recall that ramn = ivanm/ωmn, and ∆a

mn = ∂kaωmn = vamm−vann, where vanm
denotes the velocity matrix elements (see Eq. 3.23). The curly brackets
impose symmetrization with respect to the Cartesian coordinates such
that {Aa

mlB
b
ln} = 1

2
(Aa

mlB
b
ln +Ba

mlA
b
ln).

5.3.2 Second-harmonic generation of the threefold
fermion at Γ: low-energy k · p model

As a first step in understanding the second-harmonic response of RhSi
we will focus on the threefold fermion at the Γ point. In the analysis
of the optical conductivity of RhSi (Sec. 4.3) we observed that the
curvature of the middle band of the threefold fermion plays an important
role in the behaviour of the optical transitions near the Γ point. Since
the threefold model presented in Eq. 2.15 has only linear terms in
momentum k, it cannot capture the curvature of the middle band. Thus,
in this section we use the three-band k ·p model with up-to-second order
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terms in momentum, originally presented in Ref. [113] for CoSi, which,
as we know, crystallizes in the same space group as RhSi.

The k·p Hamiltonian is built based on the point group T at the Γ point
of SG198. To build this model we consider first a higher-symmetry point
group, O, and we add the necessary terms to break down the symmetry
to T . Thus, we can express the k · p Hamiltonian as Hk2

3f = HO +HT .
The first term

HO =ak2 + 2c
3
(k2 − 3k2z) ivkx + bkykz −ivky + bkxkz

−ivkx + bkykz ak2 + 2c
3
(k2 − 3k2y) ivkz + bkxky

ivky + bkxkz −ivkz + bkxky ak2 + 2c
3
(k2 − 3k2x)

, (5.10)

is the most general Hamiltonian allowed by the point group symmetry
O. Here k =

√
k2x + k2y + k2z , and a, vF , b, and c are the parameters

corresponding to the terms coming from A1, T1, T2, and E symmetries,
respectively.

The second contribution, which breaks down the symmetry to the
point group T , is written as

HT =
2d√
3

k2y − k2x 0 0
0 k2x − k2z 0
0 0 k2z − k2y

 . (5.11)

Together, they form the most general symmetry-allowed Hamiltonian
Hk2

3f = HO + HT up to second order in momentum for the threefold
degeneracy at the Γ point.

In previous calculations using this model113 the effect of the
parameter d proved to be negligible in other optical responses
like the circular photo-galvanic effect. Nevertheless, to study the
second-harmonic response it is crucial to include the symmetry breaking
term with a finite d parameter since the SHG response is forbidden for
the point group O, but generically finite for the point group T 113,154.
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The eigenvectors and eigenvalues of the k · p model do not depend
on d up to second order in k113,154, and thus we cannot use
their analytical expressions to fit the value of d. To obtain the
low-energy model parameters, we fit the the k · p parameters by fitting
the k · p model to the tight-binding model for RhSi described in
Sec. 4.3. The resulting values for the parameters are (a, b, c, d, vF ) =
(−0.0438344,−0.01, 0.131377, 0.1874, 0.385). This choice of parameters
sets the threefold node at E = 0 eV. As we saw in the previous chapters,
the chemical potential, and thus the position of the Fermi level Ef , plays
a crucial role in the optical responses of RhSi. To test the different values
of Ef we add a term to the Hamiltonian H = Hk2

3f − Ef 3×3.

To account for the broadening induced by the finite scattering in the
sample we consider a constant broadening η by replacing ω → ω + iη
in Eq. 5.4 in a similar fashion to the optical conductivity and CPGE
calculations. This increases considerably the computational cost of the
second-harmonic response calculation. To obtain results in reasonable
time scales we wrote a parallelized code in Julia155. More information
about the code can be found in Appendix E.
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Figure 5.3: Second-harmonic generation of the k · p model for the threefold
fermion at the Γ point of RhSi. (a) Band structure of the k · p model
along the Γ → X and Γ → M directions with parameters (a, b, c, d, vF ) =
(−0.0438344,−0.01, 0.131377, 0.1874, 0.385). The threefold node is placed at
EΓ = 0 eV, and the Fermi level is placed at Ef = −0.14 eV. The vertical dashed
arrows indicate the most relevant one-photon activation energies. (b) Nonlinear
susceptibility (solid lines) of the k · p model shown in (a) for different values of
disorder η. The energy regions where the most relevant transitions are activated are
indicated in shaded grey. The vertical dashed lines indicate the two-photon activation
frequencies (blue) and the one-photon activation frequencies (ocher). (c) Nonlinear
susceptibility for different values of Ef shown in different shades of green with a disorder
η = 0.005 eV.

In Fig. 5.3 we show the second-harmonic response of the k · p model.
As we see in Fig. 5.3 (b) the response features a two-peak structure at
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low energies. The energy regions where these peaks appear are delimited
by the activation frequencies of the transitions from the lowest to the
middle band and from the lowest to the upper band. The first peak is
dominated by the two-photon transitions from the lowest to the middle
band (see Fig. 5.3 (b), vertical dashed blue lines and shaded grey region).
The lower, second peak in Fig. 5.3 (b) appears in the energy region
(shaded gray) delimited by one-photon transitions from the lower to
the middle band (vertical ocher lines) and the two-photon transitions
from the middle to the upper band (vertical blue lines).

As the disorder broadening η is increased, the features of the nonlinear
response are broadened, and the two-peak structure is no longer
distinguishable at η = 0.05 eV (Fig. 5.3 (b)) for Ef = 0.14 eV. For
higher η, the nonlinear response features a single, wider and smoother
peak, with contributions from one- and two-photon optical tranistions.

The activation frequencies, and thus the position and width of the
peaks, depend on the Fermi level. As the threefold node at Γ is separated
from the Fermi level, the activation frequencies and the difference
between them becomes larger. As a result, the peak positions are shifted
towards higher energies. The peaks also become wider because the
energy regions delimited by the activation frequencies are spread over
a larger range of energies (see Fig. 5.3 (c)). For large values of Ef the
one-photon transitions are suppressed due to the Pauli blocking at low
energies, and the two-photon response becomes dominant.

Of course, this model is limited to a small energy range. This model
is useful to understand the behaviour of the second-harmonic response
coming from the optical transitions near the threefold crossing under
different values of disorder and chemical potential. Nevertheless, we
know that in RhSi the energy separation between the threefold node at
Γ and the double-Weyl at R is around 0.4 eV. Since we are considering
two-photon processes, a two-photon excitation with photons of energy
ω ∼ 0.2 eV could explore the excitations coming from the R point.
Thus, the energy range in which the k ·p model is suitable for potentially
describing the experiment is very limited compared to the linear optical
conductivity. This type of two-photon process also leads to a smaller
energy scope of the tight-binding model used previously for RhSi, which
we would expect to be reduced from a good agreement up to ∼ 0.5 eV
in the optical conductivity (Fig. 4.9) to less than 0.25 eV in the SHG.
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5.3.3 Experimental features of the second-harmonic
generation in RhSi: characterization with DFT
calculations

The limitations expected for the k · p and tight-binding models lead
naturally to the need for a DFT calculation capable of describing
multiple bands above and below the Fermi level, providing a large
energy range where the theoretical prediction is suitable for describing
the experimental results.

In Fig. 5.4 we reproduce the experimental and DFT results originally
reported in Ref. [76] for the second-harmonic susceptibility of RhSi in
the energy range 0.27−1.5 eV. To understand the SHG features observed
in the experiment we compare the results with a DFT calculation
performed using the EXCITING package156. In this calculation the
lattice parameters of RhSi were chosen based on previous experimental
measurements103,157, and the computations were performed using a
40 × 40 × 40 k-mesh. As band splitting due to the spin-orbit coupling
is of the order of meV103 — much smaller than the estimated scattering
strength η ∼ 100 meV75,111 (see Sec. 4.3) — and including SOC
is computationally expensive, this effect is neglected in the DFT
calculation.

In Fig. 5.5 we show the electronic band structure for RhSi. This
DFT calculation considers a larger number of bands and higher energies
than the previous DFT calculation used in this thesis for the optical
conductivity (see Sec. 4.3). For the pristine system with Fermi energy
Ef = 0 the threefold node is located slightly above the Fermi level,
and the double-Weyl node at R is located around 0.4 eV below the
Fermi level, consistent with the analysis of the optical conductivity of
RhSi in Sec. 4.3. Since the DFT considers multiple bands, we see that
degenerate threefold crossings also exist at different energies at the Γ
point, e.g., around E ≈ −1.57 eV, a region magnified in Fig. 5.5 (c).

In Fig. 5.4 we reproduce the results for the SHG of RhSi using the
DFT calculations. In order to compare the theoretical prediction with
the experiment, the SHG response is calibrated with that of GaAs142 in
a similar fashion to the procedure followed in the experiment76.

To account for the effects of disorder and finite temperature the
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Figure 5.4: Experimental SHG response of RhSi compared to the DFT calculation.
Experimentally measured (black line) and theoretically calculated (colored lines) SHG
susceptibilities. Fermi energies are indicated by colors Ef = 0.054 (green), 0.00 (dark
red), −0.108 (royal blue), −0.155 (cyan) eV. The scissors potential is ∆ = 1.23 eV.
Shaded areas represent the photon energies at which different transitions from the
valance to conduction bands occur. See also Fig. 5.5 (a) for examples of these transitions.
Shaded areas span ω ∈ [0.276, 0.58] (green), [0.58, 0.74] (purple), [0.74, 1.05] (orange),
and [1.05, 1.33] (red) eV. Reproduced from Ref. [76].

calculation includes a constant broadening η = 100 meV obtained
from the analysis of the optical conductivity and CPGE experiments
in Sec. 4.3 and Sec. 5.2, respectively. The DFT calculation includes
a scissors shift153 of ∆ = 1.23 eV to account for inaccurate energy
differences between the occupied and unoccupied bands. This correction
modifies the energy differences between bands ωmn, modifying the
activation frequencies of the optical transitions. To see how this
correction is implemented see Appendix F.

The SHG yield for RhSi (Fig. 5.4) is computed for one Fermi energy
that lies above the threefold node (Ef = 0.054, green line), and three
that lie below this node (0.0,−0.108,−0.155 eV). We see that for ω ≲
0.45 eV, theory and experiment agree better when Ef = 0.054 eV, while
for ω > 0.45 eV, it is the Ef = −0.108,−0.155 eV (cyan and royal blue
lines) curves that better reproduce the experimental data.

The small SHG yield in the green frequency window ω ∈ [0.276, 0.58]
in Fig. 5.4 (c) is a result of the suppressed optical transitions between
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Figure 5.5: DFT band structure of RhSi and optical transitions. (a) First-principles
band structure of RhSi without spin-orbit coupling. Arrows indicate representative
two-photon electronic transitions in SHG, and their color code corresponds to that of
the shaded areas representing different frequency windows in Fig. 5.4 (c). (b) Zoom to
the low-energy bands between Γ and M points close to the Fermi level. Dashed lines
indicate the Fermi energies at which the theoretical curves in Fig. 5.4 (c) are plotted,
namely Ef = 0.054 (green), −0.108 (royal blue), and −0.155 (cyan) eV. (c) Same as
(b) but close to energy −1.6 eV. The zero of energy scale represents the Fermi energy
of the pristine system. Reproduced from Ref. [76].

low-energy linearly dispersing bands close to the Γ point (see green
arrows in Fig. 5.5). To support this conclusion in Fig. 5.6 we show
separate one-photon (ω) and two-photon (2ω) transitions contributing
to χxyz. We observe that two-photon transitions dominate the
green frequency region, regardless of whether the threefold Γ node is
occupied (Ef = 0.054 eV) or unoccupied (Ef = −0.155 eV). Next,
we compare this result to the two-photon and one-photon JDOS (see
Eq. 4.1) in Fig. 5.7 (a) and (b), respectively. In the green frequency
window, the one-photon JDOS dominates, compared to the two-photon
JDOS (see Fig. 5.7 (a)–(b)). Comparing with Fig. 5.6, this indicates
that the optical matrix elements suppress the one-photon contribution
to χxyz, reducing the overall SHG for ω < 0.58 eV. The band structure
in Fig. 5.5 suggests that the contribution to one-photon processes in
this frequency region arises from linear bands around Γ, whose matrix
elements therefore do not contribute strongly to the SHG.

We move on to analyze the purple frequency window in Fig. 5.4 (c),
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i.e., ω ∈ [0.58, 0.74] eV. The SHG increases in this region, a feature
which is captured in the DFT calculation only if Ef < 0 eV. Separately
plotting one- and two-photon contributions as before in Fig. 5.6 reveals
that the two-photon response in the purple energy window is dominant.
Consistent with our discussion in the previous paragraph, the rise of
the two-photon contributions occurs around ω ≈ ∆/2 in the JDOS.
When compared to the band structure, the observation of a dominant
two-photon transition in Fig. 5.6 suggests that two partially flat bands
close to the Γ point, separated by approximately 1.3 eV, and connected
by two-photon excitations (purple arrows in Fig. 5.5), are responsible
for enhancing χxyz in the purple energy window. The width of this
energy window is comparable to the broadening η = 0.1 eV, supporting
their flat band origin.

At photon energies ω ∈ [0.74, 1.05] eV, i.e., in the orange window
in Fig. 5.4 (c), the data exhibits a plateau-like structure. The DFT
calculations show that this feature is reproduced better for Ef =
−0.108,−0.155 eV. Naively, one would expect that in this frequency
window the one-photon electronic transitions from linear bands close
to the R point are activated. However, Figs. 5.6 and 5.7 reveal
that the one-photon contribution (dashed lines) is small compared to
the dominant two-photon transitions. The small contribution of the
linearly dispersing bands close to the R point is expected by dimensional
analysis and confirmed by the DFT results. The two-photon transitions
responsible for SHG in this region likely involve dispersing valance bands
around the M and Γ points, as indicated by the orange arrows in
Fig. 5.5.

Lastly, there is a drastic increase of χxyz measured within the red
energy window of ω ∈ [1.05, 1.33] eV in Fig. 5.4 (c). The DFT results
also report an increased SHG yield in this energy range. Once more we
can identify the substantial role of two-photon transitions compared to
the smaller one-photon contribution (see Figs. 5.6 and 5.7). The large
photon energies that define this energy window enable electrons to reach
a considerable number of bands exemplified by red arrows in Fig. 5.5.
As frequency increases, we observe quantitative differences between
the DFT results and the experimental measurements, especially when
ω > 1.33 eV. These deviations could be attributed to the insufficient
many-body corrections in the first-principle calculations.
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5.4 Comparing low-energy second-harmonic generation
using first-principles and k · p calculations

The analysis of the SHG presented in the previous section is based
on DFT calculations with a large scissors potential ∆ = 1.23 eV.
To compare the SHG obtained from DFT (Sec. 5.3.3) with the SHG
obtained from the k · p (Sec. 5.3.2), in Fig. 5.8 we show the nonlinear
susceptibility of RhSi obtained for Ef = −0.14 eV using DFT and
Ef = −0.27 eV using the k ·p model. Both k ·p and DFT are computed
without many-body effects, i.e., ∆ = 0 eV, and are calibrated with
the SHG response of GaAs in a similar fashion to the procedure in the
experiment76.

Fig. 5.8 shows that the second-harmonic generation obtained from
DFT and the k · p calculations without the scissors potential correction
are similar. The broader peak in DFT compared to that of the k · p
model can be attributed to extra electronic transitions in DFT, which
are not captured by the k · p model.
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We illustrate the influence of the scissors potential ∆ on shifting the
absorption energy in the nonlinear response χxyz in Fig. 5.9. The results
are calculated for the pristine RhSi system (Ef = 0) and originally
presented in Ref. [76]. The figure shows that by adjusting ∆, the
energy difference between bands ωmn is modified, and thus the optical
transitions between bands. As we increase the value of the scissors
potential ∆, the activation frequencies move to higher energies and
the peak present at low energies in the DFT calculation dissapears.
The shift to higher energies of the activation frequencies suppresses the
one- and two-photon transitions between the topological bands of the
threefold fermion at Γ point and leads to a better description of the
experimental SHG data in RhSi (Fig. 5.4).
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Figure 5.9: Different scissors corrections for the second-harmonic susceptibility χ in
pristine RhSi (Ef = 0) with a disorder broadening of η = 0.1 eV. Reproduced from
Ref. [76].
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5.5 Conclusions

The first-principles calculations with a scissors potential ∆ = 1.23 eV
agree with the experimental data of SHG in RhSi, both presented
in Ref. [76]. However, the DFT results only match the SHG of the
k · p model of the threefold fermion at Γ when no scissors potential
is included. In this regime (∆ = 0), both calculations show a strong
peak in the SHG at the frequencies of the one- and two-photon optical
transitions near the Γ point. However, the behavior of the DFT results
of the SHG of RhSi are different from that observed experimentally.

The DFT results with ∆ = 1.23 show that one-photon transitions
among relatively linear bands have a small contribution to SHG.
Instead, two-photon transitions, including those between relatively flat
bands, account for the observed SHG signal. This can be explained by
the scissors potential, which separates occupied and unoccupied states
and favours two-photon over one-photon transitions.

Unfortunately, there are no experimental data of the SHG of RhSi
at low energies, where the k · p calculations and DFT calculations with
∆ = 0 predict a large response due to the topological bands. The current
understanding of the SHG in RhSi is based on the agreement between
the experimental results in the range 0.3−1 eV and the DFT results with
a large scissors potential. The scissors correction is a coarse, relatively
uncontrolled approximation that works better for high energies than for
low energies76.

To shed light on the effect of optical transitions between topological
bands of RhSi near the Γ point it would be helpful to perform
more precise DFT calculations that can describe the low- and
intermediate-energy regime ranging from 0 to 1 eV.
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Since the initial predictions for the existence of Weyl fermions in
condensed matter20,21,24,25, many different experimental techniques have
confirmed the existence of various Weyl semimetals26–30,32–42. Among
these techniques, optical responses have shown a fruitful variety of
effects associated with the existence of Weyl fermions, such as the
linear frequency dependence of the optical conductivity24,55–57 and the
quantized circular photogalvanic effect62 (CPGE). Additionally, the
Weyl semimetal TaAs has shown the largest second-harmonic generation
(SHG) measured in a material68,158, although its relation with the
existence of Weyl fermions is still unclear.

In 2016, Bradlyn et al 70 predicted the existence of a new type of
fermion in chiral crystals, the chiral multifold fermions, protected by
crystal symmetries. The threefold and fourfold multifold fermions can
be thought of as a generalization of the Weyl fermion in the sense that
they are described by a generalized Weyl equation with higher spin.
However, unlike Weyl fermions, threefold and fourfold fermions do not
have a counterpart in the traditional classification of fermions as free
particles. In this thesis we have studied the optical properties of chiral
multifold fermions using low-energy models and realistic tight-binding
models in combination with experimental data.

In this chapter, we will give a brief overview of the main results since
we already provided a detailed discussion of the results obtained in each
chapter. Then, based on these results, we discuss possible avenues to
fill the gaps in our current understanding of chiral multifold semimetals
and a personal perspective of future research in these materials and
potential applications of the optical responses in topological systems.

In Chapter 1, we provided an overview of the experimental
characterization of Weyl semimetals. After this, we introduced the
concept of multifold fermion as a generalization of Weyl fermion and
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motivated our aim to study the optical responses of these new types of
quasiparticles in real materials.

In Chapter 2, we provided a detailed classification of all chiral
multifold fermions, emphasizing their topological properties and the
different points in every space group (SG) where they can appear.
In this chapter, we introduced the two types of models that we used
throughout the thesis in increasing order of complexity: k · p models
and tight-binding models.

In Chapter 3, we derived the general expression for the optical
conductivity in the length gauge, setting the notation for our
calculations of optical responses. Next, we computed the optical
conductivity of all chiral multifold fermions. We established the optical
selection rules in the symmetric cases and provided quantitative results
about how these selection rules are gradually violated as the k · p
Hamiltonians depart from the completely symmetric cases. We found
that the activation frequencies are unique for each type of multifold
fermion given the same chemical potential, leading to a slope change in
the optical conductivity at different energies for each case. Additionally,
we found that the optical conductivity of threefold and fourfold fermions
are up to four times larger than that of a Weyl fermion per node, given
the same Fermi velocity. Finally, we computed the optical conductivity
of the tight-binding models describing the crystal symmetries of space
groups 198 and 199. We identified the signatures of the multifold
fermions present in each band structure, providing a quantitative
explanation of the contribution of each type of multifold fermion in
the band structure to the total optical conductivity.

In Chapter 4, we built on the theoretical results of the previous
chapters and studied two materials candidates to host multifold
fermions: RhSi and CoSi. The analysis of the experimental results
with different models allowed us to trace back the features observed
in the experimental optical conductivity to the existence of multifold
fermions near the Fermi level and estimate the chemical potential and
the scattering lifetime in both materials. We discussed extensively the
crucial role of the position of the Fermi level with respect to the partially
flat band of the threefold fermion at the Γ point and the importance of
the transitions near the M point. By studying the joint density of states
(JDOS) in the case of CoSi, we saw that the M point is a saddle point,
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and the tight-binding model for SG198 does not correctly capture its
contribution. This exhaustive analysis allowed us to set clear limits for
the range of applicability of the tight-binding model: it cannot capture
the flat region of the central band of the threefold fermion at the Γ
point and is valid for energies smaller than the activation frequencies of
optical transitions near the M point.

Additionally, in RhSi the disorder scale is similar to the spin-orbit
splitting, washing out any spin-orbit-related features and allowing us to
rely on the spinless models for its analysis. This material has a larger
overall energy scale than CoSi, which leads to a better description of
the optical conductivity by the spinless tight-binding model up to ∼ 0.6
eV. However, in CoSi we found that the disorder scale is small enough
to reveal spin-orbit splitting effects in this material compatible with the
existence of a spin-3/2 fourfold fermion at the Γ point.

In Chapter 5, we introduced nonlinear responses in topological
semimetals, focusing on the second-order monochromatic responses: the
circular photogalvanic effect (CPGE) and second-harmonic generation
(SHG). We analyzed the CPGE experiment in RhSi presented in
Ref. [75] to estimate the scattering lifetime and the position of the
chemical potential. The results obtained for the CPGE are consistent
with those obtained from the analysis of the optical conductivity of
RhSi, reinforcing the conclusion that the Fermi level lies under the
threefold node at Γ and that this material has a large disorder scale of
∼ 100 meV. Furthermore, the density functional theory (DFT) analysis
of the contributions of different regions in the Brillouin zone confirmed
the crucial relevance of the M point, in this case, for the CPGE. Armed
with all the previous results obtained in this thesis, we studied the
second-harmonic generation of RhSi. To do so, we implemented a
parallelized code in Julia155 language capable of computing the SHG
for several values of disorder and chemical potential in a single run,
separating the one- and two-photon contributions.

Due to the limited applicability of the tight-binding model used in
Chap. 4 when exploring two-photon optical transitions, we relied on a
three-band second-order k · p model describing the threefold fermion at
the Γ point. The large energy difference between the threefold fermion
at the Γ point and the double-Weyl fermion at the R point results in
a relatively large energy window where the only relevant contributions
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come from transitions near the Γ point. The SHG of the k · p model
shows two large peaks in the low-energy regime due to the activation of
the one- and two-photon optical transitions between topological bands
of the threefold crossing. However, the low-energy range where this
behavior is displayed is extremely challenging to access with the current
experimental techniques. To analyze the experimental results in a range
of energies between 0.3 eV and 1.5 eV, we relied on DFT calculations.
Within the scissors approximation, the DFT calculations reproduced
the reported experimental data reasonably well up to ∼ 1.1 eV, tracing
back the features observed in the SHG to different transitions between
multiple bands across the Brillouin zone. We observed that in RhSi,
the experimental data does not show an enhanced second-harmonic
response due to the linear topological bands at the R point, but instead,
it features a significant increase due to transitions between partially flat
bands.

It is important to note that to reproduce the SHG experimental data
adequately, the DFT calculations include a sizable scissors potential
of 1.23 eV. The scissors approximation is a coarse approximation that
shifts the energy difference between occupied and unoccupied bands
independently of their energy or other properties. Thus, we do not
know what is the underlying physical reason that makes necessary this
large correction of the energy differences between bands to adequately
describe the experimental results. This open question highlights the
importance of new research to understand the effects of interactions
and strong disorder in chiral multifold semimetals. A recent work159

established that interaction effects spoil the quantization of the CPGE
in Weyl semimetals. Additionally, another work160 calculated that
interaction effects in CoSi can be relevant, affecting the lifetime of
multifold quasiparticles. Following this line, it would be interesting to
study the effect of interactions in threefold and fourfold fermions and
estimate how relevant they can be in RhSi.

Another interesting point in the landscape of optical responses of
chiral multifold semimetals is the contribution of the surface states. We
found discrepancies in the optical conductivity of two different samples
of CoSi grown with different crystallographic orientations, which could
be compatible with the contribution of surface states. A recent work161

measured the Fermi arc surface states contribution to the linear and
circular photogalvanic effects in RhSi. However, to this date, we do
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not know of any quantitative prediction of the effect of surface states in
CoSi.

The range of chiral multifold semimetals that can be grown as
single-crystals and display multifold fermions near the Fermi level is
limited. RhSi and CoSi constitute two of the few exceptions. However,
growing cleaner samples could lead to the observation of stronger
signatures of multifold fermions. In the case of RhSi, the large disorder
scale prevents us from observing any signature in the spin-orbit coupling
scale. With a cleaner sample of RhSi, the large energy scale of the band
structure of RhSi, the energy difference between the multifolds at the
Γ and R points, and the larger spin-orbit coupling scale compared to
CoSi could lead to strong signatures of the spin-3/2 fourfold fermion at
the zone center.

The optical responses presented here are not the only possible avenues
to explore these materials. As we discussed in the introduction,
the negative magnetoresistance of Weyl semimetals is a predicted
consequence of the chiral anomaly associated with the topological
charge of Weyl fermions. A recent experiment162 measured the
magnetoresistance of the multifold semimetal CoSi. However, they
reported that a better characterization of the bulk electronic structure
is needed to probe the mutifold crossings at the Γ point. Another
effect associated with the chirality of Weyl fermions is the helical
magnetic effect (HME), which predicts a photocurrent in the presence
of a magnetic field in a tilted, asymmetric Weyl material163. However,
Weyl semimetals satisfying the required conditions to display HME are
rare. A recent work164 showed that multifold semimetals are an ideal
platform to observe the HME, since multifolds fermions can display a
finite HME response in the low-energy symmetric case. In particular,
they estimated that the size of the HME response in RhSi and CoSi
would be comparable to the CPGE, and propose both materials as
candidates to measure the HME.

Beyond further studies of chiral multifold semimetals, there is a
second set of future avenues based on the optical responses presented
in this thesis. In the course of the research presented in this thesis,
I noticed a lack of efficient tools for computing linear and nonlinear
responses of different models. Numerical calculations of nonlinear
responses tend to be subtle due to the paramount presence of potentially
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divergent terms that must be treated carefully. Therefore, it would be
helpful to build a package for computing linear and quadratic optical
responses in different materials. Based on the current implementation
of the linear optical conductivity and second-harmonic generation
presented in this thesis, the next step would be to expand the code
to compute photogalvanic effects and non-monochromatic second-order
responses, such as sum- and difference-frequency generation104. The
latter two are likely the focus of the next generation of experiments. This
code could take an arbitrary non-interacting Hamiltonian in momentum
representation as an input, generated using the Kwant165 package.
This project would ultimately provide the community with a reliable,
useful tool to compute optical responses efficiently, thus significantly
accelerating the research in the field and the possibilities of studying new
types of materials by providing helpful input for experimental research.

Ideally, the optical response package would not be limited to
topological semimetals and insulators, being general enough to
compute optical responses of Bogoliubov-de Gennes Hamiltonians.
Recent works have studied the linear optical conductivity of
multi-band superconductors in the clean limit, reporting significant
contributions of previously overlooked interband momentum-conserving
excitations166. Additionally, a study of nonlinear optical responses
in superconductors with inversion symmetry breaking has reported a
significant second-harmonic generation compared to the linear optical
conductivity based on a 1D model167. These works open new fronts of
research that can potentially lead to a new paradigm for the optical
responses of superconductors.

I think it is especially interesting to investigate how to probe
Majorana Zero Modes in superconducting phases using linear and
nonlinear optical responses. The task of finding suitable optical
responses to characterize the superconducting phases hosting Majorana
states is challenging from the experimental and theoretical points of
view. The small energies required to reach sub-gap resolution and
the nanometer-size localization scales of the Majorana modes place the
problem at the frontier of theoretical and experimental possibilities.
However, the benefits of finding an optical probe that can discriminate
Majorana states in fully contactless measurements, in contrast with
the transport probes frequently used, could be enormous, potentially
leading to a new generation of experiments.
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The research developed in this thesis can be extended in multiple
directions, as discussed in this chapter. Multifold semimetals are a
recent addition to the family of topological materials. They display
interesting effects, such as the quantized CPGE96,111,113, and are
candidates to feature other phenomena, such as the HME164. However,
more research is needed to characterize these materials. Our work is
one of the first steps in this direction. The optical responses studied
throughout this thesis are not limited to multifold fermions. However,
the calculation of nonlinear optical responses can be challenging, and the
work developed in this thesis could be the first step to build a package
capable of computing optical responses in a variety of materials, ranging
from topological semimetals and insulators to superconducting phases.
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Appendices





A
Optical conductivity of a

tetrahedral fourfold fermion

At linear order, the k · p Hamiltonian of a tetrahedral fourfold fermion
admits an extra term compared to the octahedral fourfold in Eq. 2.23.
We recall here the expression for the tetrahedral Hamiltonian, presented
in Eq. 2.27,

H4f,T = H4f + ℏvT


0 kz −

√
3kx iky

kz
2kz√
3

iky
kx−2iky√

3

−
√
3kx −iky 0 −kz

−iky kx+2iky√
3

−kz −2kz√
3

 , (A.1)

where H4f is the octahedral fourfold Hamiltonian given in Eq. 2.23. The
parameter vT is proportional to the strength of the fourfold rotational
symmetry breaking.

By changing vT we introduce a tilt in the bands (see Fig. A.1 (a)),
breaking the full rotational symmetry. For finite vT , the optical selection
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Figure A.1: Optical conductivity of a tetrahedral fourfold fermion. (a) Band structure
and (b) optical conductivity corresponding to the tetrahedral fourfold fermion with two
different values of the ratio vT /vF (see Eq. 2.27).

rules of the symmetric fourfold do not apply, leading to a different
optical conductivity (Fig. A.1 (b)) compared to the symmetric fourfold
case (see Eq. 3.34 and Fig. 3.2).
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B
Temperature and broadening of the

step function

In Chapter 3 we have derived analytic expressions for the optical
conductivity of the symmetric threefold and symmetric fourfold
fermions (Eqs. 3.31 and 3.33, respectively) for any temperature T =
1/(kBβ). In Fig. B.1 we plot the optical conductivities for the
Weyl, symmetric threefold and symmetric fourfold fermions at zero
temperature and at a finite (unrealistic) temperature 1/β = 10−1µ
to illustrate the broadening of the step functions at the characteristic
frequencies. In units of µ the broadening, set by µβ, is larger for the
step function at 2µ than at µ or 2/3µ, which is clearly visible in Fig. B.1.

The broadening due to a finite temperature is visible as well in our
calculations for realistic models in Sec. 3.4.
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Figure B.1: Optical conductivity of symmetric models with finite temperature. The
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coding) are calculated with the exact analytic expressions Eqs. 3.30, 3.31 and 3.33 for
finite temperature with 1/β = 10−1µ.
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C
Imaginary part of the optical

conductivity from the
Kramers-Kronig relations

The optical conductivity is a complex quantity with real (Re[σ] ≡ σRe)
and imaginary (Im[σ] ≡ σIm) parts σ = σRe + iσIm which are related
by the Kramers-Kronig relations94. In Chapter 3 we have calculated
the absorptive (real) part of the optical conductivity. Using the
Kramers-Kronig relations we can obtain the dispersive (imaginary)
part of the optical conductivity. The Kramers-Kronig relations are
commonly written as94

σRe(ω) =
1

π
P
∫ ∞

−∞
dx
σIm(x)

x− ω
, (C.1)

σIm(ω) =− 1

π
P
∫ ∞

−∞
dx
σRe(x)

x− ω
, (C.2)
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where P denotes the Cauchy principal value. To calculate it we follow
the procedure in Ref. [94] and subtract the singularity at ω

σRe(ω) + iσIm(ω) =
1

iπ

∫ ∞

−∞
dx

(
σ(x)− σ(ω)

x− ω

)(
x+ ω

x+ ω

)
. (C.3)

Using now that the real part is even and the imaginary part is odd in
frequencies we obtain

σRe(ω) =
2

π

∫ ∞

0

dx
xσIm(x)− ωσIm(ω)

x2 − ω2
, (C.4)

σIm(ω) =− 2ω

π

∫ ∞

0

dx
σRe(x)− σRe(ω)

x2 − ω2
. (C.5)

Since the low-energy models that we used in Chapter 3 to calculate the
real part of the optical conductivity have unbounded linearly dispersing
bands, we regularize the upper limit in the integrals in Eqs. C.4 and C.5
using a cutoff frequency Λ. The real part of the optical conductivity of
all chiral multifold fermions (see Table 2.1) is a piecewise function of
the form σRe(ω) =

∑N−1
i=0 σi(ω) =

∑N−1
i=0 SiωΘ(ωi+1−ωi). The subindex

i is associated to each characteristic frequency ωi where the slope of the
optical conductivity changes (see Sec. 3.2.1), where ω0 = 0, ωN = Λ/ℏ is
the cutoff frequency, and N is the number of different frequency regions.
In particular, N = 7 and N = 10 for threefold and fourfold fermions as
dictated by Eqs. 3.35 and 3.36 respectively. Using this partition for the
optical conductivity we can rewrite now Eq. C.5 as

σIm (ω,Λ) = −2ω

π

[
N−1∑
i=0

∫ ωi+1

ωi

σi(x)

x2 − ω2
dx−

∫ ∞

0

σRe(ω)

x2 − ω2
dx

]

= − 1

π

[
σRe(ω) log

∣∣∣∣Λ + ℏω
Λ− ℏω

∣∣∣∣+ ω
N−1∑
i=0

Si log

∣∣∣∣ω2
i+1 − ω2

ω2
i − ω2

∣∣∣∣
]
.

(C.6)
This expression can be evaluated analytically for the cases of the twofold
(Weyl), the symmetric threefold, and the symmetric fourfold fermions
(see Fig. C.1) presented in Table 3.1. For the Weyl fermion we obtain

σIm,W (ω) = − ωe2

24π2ℏvF

[
log

∣∣∣∣ Λ2 − (ℏω)2

4µ2 − (ℏω)2

∣∣∣∣+Θ(ℏω − 2µ) log

∣∣∣∣Λ + ℏω
Λ− ℏω

∣∣∣∣] .
(C.7)
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Figure C.1: Imaginary part of the optical conductivity for a Weyl fermion (orange), a
symmetric threefold fermion (blue), and a symmetric fourfold fermion (green) as dictated
by Eqs. C.7, C.8, C.9 with Λ = 100µ.

We take the result obtained for the symmetric threefold in Eq. 3.32, and
we obtain the corresponding imaginary part

σϕ0

Im,3f (ω) = − ωe2

6π2ℏvF

[
log

∣∣∣∣Λ2 − (ℏω)2

µ2 − (ℏω)2

∣∣∣∣+Θ(ℏω − µ) log

∣∣∣∣Λ + ℏω
Λ− ℏω

∣∣∣∣] .
(C.8)

For the symmetric fourfold fermion

σχ0

Im,4f (ω) = − ωe2

24π2ℏvF

[
4 log

∣∣∣∣ Λ2 − (ℏω)2

4µ2 − (ℏω)2

∣∣∣∣+ 3 log

∣∣∣∣36µ2 − 9(ℏω)2

4µ2 − 9(ℏω)2

∣∣∣∣
+

(
3Θ

(
ℏω − 2µ

3

)
+Θ(ℏω − 2µ)

)
log

∣∣∣∣Λ + ℏω
Λ− ℏω

∣∣∣∣] . (C.9)

For the non-symmetric multifold fermions, the characteristic
frequencies can be calculated analytically for each ϕ, χ using Eqs. 3.35
and 3.36. The slopes for each piece Si can be calculated numerically
and introduced in Eq. C.6 to obtain the corresponding imaginary part
of the optical conductivity.
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D
Sum rules

Optical sum rules relate the real part of the optical conductivity
(Re[σ] ≡ σRe) with the total number of particles in the system, and are
obtained as the integral of the optical conductivity to all frequencies,

⟨σ⟩ = ℏ2
∫ ∞

0

dωσRe(ω). (D.1)

As for the Kramers-Kronig relations, the unbounded linear dispersion of
the effective low-energy models requires us to insert a cutoff frequency
Λ in Eq. D.1 to regularize the integral. As discussed in the previous
section, we will use that the optical conductivity of these models is of the
form σRe(ω) =

∑N−1
i=0 σi =

∑N−1
i=0 SiωΘ(ωi+1 − ωi) for both symmetric

and non symmetric cases. Introducing this general form in Eq. D.1 as
well as the cut-off Λ we obtain a general expression for the sum rule for
all multifold fermions:

ℏ2
∫ Λ/ℏ

0

dωσRe(ω) = ℏ2
N−1∑
i=0

∫ Λ/ℏ

0

dωSiωΘ(ωi+1 − ωi)

= ℏ2
e2

2ℏvF

N−1∑
i=0

Si(ω
2
i+1 − ω2

i ). (D.2)
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To obtain analytic results for the symmetric cases we insert the optical
conductivities in Table 3.1 in Eq. D.2. In the twofold (Weyl) case we
obtain

⟨σ⟩2f =
e2

48πℏvF
(
Λ2 − 4µ2

)
. (D.3)

For the symmetric threefold fermion we obtain that

⟨σ⟩3f =
e2

12πℏvF
(
Λ2 − µ2

)
. (D.4)

In the symmetric fourfold case the optical sum rule is

⟨σ⟩4f =
e2

12πℏvF

(
Λ2 − 4

3
µ2

)
. (D.5)

For the non symmetric cases the frequencies at which the linear
dependence of the optical conductivity on ω changes are given by
Eqs. 3.35 and 3.36 for the threefold and fourfold fermions, respectively.
In this case, the linear dependence Si in each section ωi < ω < ωi+1

can be computed numerically and substituted in Eq. D.2 to obtain the
corresponding sum rule.

Finally, note that the Drude peak will contribute to the sum rule as
well. Extending the results of Ref. [100] to three-dimensions, we expect
its contribution to be proportional to µ2.
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E
Parallelized code for computing

second-harmonic generation

To obtain results in reasonable time scales we wrote a parallel code in
Julia using the package Distributed included in the standard Julia
library. This code was optimized to minimize the data transfer between
different nodes by creating a momentum mesh with a number of points
exactly divisible by the number of available nodes for the run. As
a result, whole blocks of momentum-space resolved quantities were
computed in each node, diagonalizing the Hamiltonian locally and
avoiding unnecessary communication between different nodes.

The code was implemented to run in the local cluster at Institut
Néel and to compute multiple values of disorder and chemical potential
in a single run, computing the disorder- and Fermi-energy-independent
elements ramn, ωmn, and ∆a

mn for each term in χabc (2ω;ω, ω) (Eq. 5.4)
a single time. The disorder-dependent denominators 1/(ω + iη) and
Fermi-energy dependent terms fmn were computed separately for each
pair (η, EF ), and the final results of the combined contributions stored
independently.
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The code provides stable results and good convergence for k-mesh
larger than 25×25×25. It it interesting to note that the k ·p model used
to describe the threefold node at Γ in Sec. 5.3.2 features a degeneracy
in the energy differences ωmn between pairs of bands for b = 0. The
ωab − ωcd terms in the denominators of the interband contributions
of χabc (2ω;ω, ω) become zero for b = 0, leading to stability and
convergence problems in the calculation. This issue is easily overcome
by choosing a different set of parameters to fit the k · p model to the
tight-binding model at the Γ point. Since the set of parameters that
provide the best fit is not unique, it is relatively easy to find a good
description of the threefold node at Γ with b ̸= 0.
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F
Accounting for many-body effects in

the second-harmonic generation of
RhSi: scissors potential in DFT

calculations

While DFT calculations can provide a good description for ground-state
properties and occupied states, treating unoccupied states is more
challenging. During the optical transitions, the unoccupied states can
be occupied by the electron as a result of intermediate-state processes.
The description used in the k · p and tight-binding models lacks any
consideration of many-body effects, and this might lead to wrong
results when evaluating the energies at which the photons will be
absorbed142,168,169.

To tackle the problem of innacurate energy differences between
occupied and unoccupied bands when considering many-body effects we
consider a scissors shift ∆153,170–173. Under the scissors approximation,
the position and velocity matrix elements are modified by the potential
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∆ as

rnm =
ṽnm

i
[
ωnm + ∆

ℏ (δ
unoc
n − δunocm )

] , (F.1)

ṽnm = vnm
ωnm + ∆

ℏ (δ
unoc
n − δunocm )

ωnm

, (F.2)

where δunocn is the Kronecker delta for unoccupied state n.
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