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ABSTRACT

In this thesis, we discuss an elastic, isotropic and homogeneous straight Timoshenko beam with
linear constitutive laws subjected to external forces and moments, and surrounded eventually by
foundations.
On one hand, we are interested in analyzing the effect of Winkler foundation on a Timoshenko beam.
We show the influence of wall rigidity in a dynamical way where modal analyses are conducted for a
rigid wall and dispersion relations are discussed for an elastic wall. Furthermore, we expose buckling
solutions of a plane, quasi-static Timoshenko beam with small transformation subjected to a longi-
tudinal force and surrounded by an elastic wall modeled by two-parameter Winkler foundation. A
non-dimensional analysis of associated Haringx and Engesser model is performed where buckling
stress and shape are exposed analytically. Relations for rigidity of the wall and buckling solutions
are made for different regimes and for both models using an asymptotic approach. Introducing the
yield limit gives a simple criterion in terms of stiffness foundation and slenderness ratio for which
buckling or irreversible transformation occurs. A more detailed study of plasticity behaviour could
improve our approach.
On the other hand, we expose solutions of a quasi-static but large transformation of a Timoshenko
beam. We offer analytical post-buckling solutions for different regimes driven explicitly by two in-
variants of the problem. Firstly, we establish the planar problem for which a Cauchy initial value
problem was found, where load (force and moment) is prescribed at one end and kinematics (trans-
lation, rotation) at the other. With such formalism, solutions are explicit for any load and existence,
uniqueness and regularity of the solution are detailed. Therefore, analytical post-buckling solutions
are found with different regimes. This approach presents how these solutions of a Cauchy initial
value problem may help tackle (i) boundary problems, where physical quantities (of load, position
or section orientation) are prescribed at both ends and (ii) problems of quasi-static instabilities. In
particular, several problems of bifurcation are explicitly formulated in case of buckling or catastro-
phe. A more detailed study of energy function property and a dynamic approach could ameliorate
our understanding of planar elastic beam.
In the non-planar case, we impose moment only at the boundary, this approach converts a Timo-
shenko beam into a Kirchhoff rod. Invariants in this case are moments and energy per unit length.
These invariants dictate the existence of the solutions and impose four regimes depending on the
thickness of the cross-section. Explicit solutions are given in terms of Jacobian elliptic functions.
Rod shapes are given for different cases and a detailed approach for the influence of each control
parameter was introduced. We apply this approach to present the equilibrium of the Möbius strip
and the Torus knots. Our study can be further extended to investigate DNA shapes and chromatin
condensation.
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RÉSUMÉ

Les poutres sont des structures elancées qui résistent aux charges longitudinales, aux forces de
cisaillement, aux moments de flexion et torsion.
L’histoire de l’étude d’une poutre remonte au XVe siècle. En 1493, Leonardo da Vinci a présenté
une poutre soumise à une charge à l’extrémité. Plus tard, Galileo Galilei a essayé d’améliorer le
travail de Léonard de Vinci dans sa célèbre publication "Discorsi e dimostrazioni matematiche" en
1638.
Cependant, la première théorie complète de la poutre, connue sous le nom de poutre d’Euler-
Bernoulli, a été développée par Leonhard Euler et Daniel Bernoulli au XVIIIe siècle. Cette poutre
est soumise à une contrainte cinématique: les sections restent planes et perpendiculaires à l’axe
neutre après déformation. Pour généraliser la poutre d’Euler-Bernoulli, Timoshenko a assoupli
cette contrainte en ajoutant l’effet du cisaillement.
Nous discutons dans cette thèse d’une poutre de Timoshenko élastique, isotrope, homogène et droite
avec des lois de comportements linéaires, soumise à des forces et moments extérieurs et entourée
éventuellement par des fondations.

Cinématique d’une poutre

Notre approche est basée sur la théorie de Timoshenko suivant le point de vue de Cosserat.
La poutre est constituée d’une courbe qui définie l’ensemble des centres de masse de la section,
appelée fibre moyenne C, telle que, à chacun de ses points est liée une base vectorielle orthonormale
(d1,d2,d3) nommée base de directeurs de la poutre. Par convention, (d1,d2) sont liées à la section
de la poutre et d3 est normale à la section. La position de tout point M de la poutre dans la courbe
déformée est définie par:

(ξ1, ξ2, S, t) −→ OM(S, t) = φ(S, t) +
2∑

α=1
ξαdα(S, t). (1)

A chaque instant t, il existe un tenseur de rotation R(S, t), qui relie la base initiale (e1, e2, e3)
avec la base déformée: di = R(S, t)ei. Ainsi la courbure et la vitesse de rotation des directeurs sont
définies par:

∂di

∂S
= κ × di, κ = vect(∂R

∂S
RT ); ∂di

∂t
= ω × di, ω = vect(∂R

∂t
RT ). (2)

La déformation de la poutre est présentée par le tenseur de Green-Lagrange:

E =
3∑

i=1

(
(ε̃ + κ × GM) · di

)ei ⊗ e3 + e3 ⊗ ei

2 + 1
2 ∥ε̃ + κ × GM∥2 e3 ⊗ e3. (3)
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Ainsi la déformation est entièrement déterminée par ε = ∂φ

∂S
et κ.

Equations dynamiques des poutres
En appliquant le principe de travail virtuel, on obtient les équations d’équilibres:

∂N
∂S

+ q = ρ0A
∂2φ

∂t2
,

∂M
∂S

+ ∂φ

∂S
× N + m = ρ0

∂(Iω)
∂t

. (4)

Où N et M sont les forces et moments internes, q et m sont la densité linéique de force extérieure
et le couple linéique, respectivement.

Energie, forces et moments

On applique le modèle d’hyperélasticité de Saint Venant-Kirchhoff où l’énergie linéique est
définie d’une manière adimensionelle par:

Ψ = 1
2

(
ε2

1 + ε2
2 + g(ε3 − 1)2 + eg

1 + e
κ2

1 + g

1 + e
κ2

2 + κ2
3

)
. (5)

Où g précise le matériel de la poutre et e dépend de la géométrie de la section. Par conséquent:

N1 = ε1, N2 = ε2, forces de cisaillement.
N3 = ε3 − 1, force normale.
M1 = eg

1 + e
κ1, M2 = g

1 + e
κ2, moments de flexion.

M3 = κ3, moment de torsion.

(6)

Poutre plane

Dans le cas des poutres planes, la dynamique est donnée par:

ε′
1 + g(ε3 − 1)κ2 + q1 = φ̈1 + 2φ̇3θ̇2 − φ1θ̇

2 + φ3θ̈,

gε′
3 − ε1κ2 + q3 = φ̈3 − 2φ̇1θ̇ − φ3θ̇

2 − φ1θ̈,

gκ′
2 + ε1ε3 − gε1(ε3 − 1) +m2 = θ̈.

(7)

Poutre Timoshenko et fondation de Winkler

Nous nous intéressons dans cette partie à l’analyse de l’effet des fondations de Winkler qui
exercent une contrainte transversale sur une poutre plane de Timoshenko. Donc on se restreint à
l’hypothèse de petite perturbation où les déformations sont données par:

ε1 = u′
1 − θ, ε3 = u′

3, κ = θ′.
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Avec u = u1d1 + u3d3 est le déplacement de la poutre.
Dans le cas d’un mur rigide; on a u = 0, q3 = m2 = 0 et q1 = θ′, alors, En imposant des conditions
initiales de type Dirac (choc ponctuel à une extremité), on obtient:

θ(s, t) = 2Ω0
∑

n

(−1)n

ωn

sin(kns) sin(ωnt). (8)

Les variables dynamiques sont garanties en utilisant (6).
Ensuite, nous nous intéressons au flambage d’une poutre entourée d’une fondation de Winkler à
deux paramètres. Plus précisement, nous imposons une force longitudinale qui aboutit à réécrire
l’équilibre statique sous la forme de l’équilibre de Haringx:

u′′ − gκ1u− (1 + gϵ)θ′ = 0, gθ′′ + (1 + gϵ)u′ − (1 + gϵ+ gκ2)θ = 0. (9)

Un autre modèle largement utilisé pour le flambement est proposé par Engesser pour lequel les
relations d’équilibre sont :

(1 − gϵ)u′′ − gκ1u− θ′ = 0, gθ′′ + u′ − (1 + gκ2)θ = 0. (10)

Pour les deux modèles, l’analyse de flambement est effectuée en étudiant, d’une manière analytique,
la relation entre la charge critique de flambement et le nombre d’onde des modes de flambement, en
fonction des paramètres de la fondation. De plus, l’introduction de la limite d’élasticité du matériel
de la poutre nous conduit à conclure que dans le régime de flambage, les modèles d’Engesser et de
Haringx convergent vers la même estimation de la contrainte critique de flambage, où les modes de
flambage ont sensiblement le même comportement.

Analyse explicite de la grande transformation d’une poutre de Timoshenko
Dans cette partie, nous analysons la transformation post-flambée d’une poutre plane de Tim-

oshenko soumise à des charges et des moments externes avec q = m = 0. En étudiant l’équilibre
statique de (4), nous remarquons que N(s) est uniforme tout au long de la section, mais l’orientation
de la section n’est pas fixe. Cela nous motive à introduire l’angle ϕ(s). Ensuite, les déformations
peuvent être écrites en termes de ϕ:

ε1(s) = Nℓ sin (ϕ(s)), ε3(s) = 1 + Nℓ

g
cos (ϕ(s)), κ2(s) = −ϕ′(s). (11)

En conséquent, l’équilibre statique (7) est donné par:

(gϕ′)2 + 2gNℓ cos (ϕ) − (g − 1)N2
ℓ cos2 (ϕ) = M2

ℓ + 2gNℓ cos (ϕℓ) − (g − 1)N2
ℓ cos2 (ϕℓ). (12)

Cet équilibre n’est qu’un problème de Cauchy dependant de conditions initiales en (Nℓ, ϕℓ,Mℓ).
La solution de l’équation (12) est donnée sous forme de fonctions de Jacobi.
Vu que notre approache aboutit à des équations exactes, nous examinons le comportement d’une
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poutre soumise à une force suiveuse. Un rapport de taille indépendant du matériel et des propriétés
géométriques de la poutre est obtenu.
Pour le contrôle cinématique d’une poutre supportant une charge morte, le phénomène de catas-
trophe est observé d’une manière directe et explicite.

Comportement d’une tige de Kirchhoff chargée par un moment pur
Dans cette partie, une analyse quasi-statique d’une poutre de Timoshenko soumise à un moment

à l’éxtremité est présenté. Plus précisement, en regardant l’équilibre statique (4), on constate que N
est une constante qui depend de la force exercée à l’extremité. on peut donc supposer que cette force
est nulle c’est à dire le comportement de cette poutre est contrôlée uniquement par un moment.
Dans cette condition une poutre est exactement une tige de Kirchhoff où l’equilibre vectoriel est
donné par M′ = 0. Ceci aboutit après projection:

r1 κ
′
1(s)−(r2−1)κ2(s)κ3(s) = 0, r2 κ

′
2(s)+(r1−1)κ1(s)κ3(s) = 0, κ′

3(s)+(r2−r1)κ1(s)κ2(s) = 0.
(13)

Avec r1 = eg

1 + e
et r2 = g

1 + e
. On remarque que (13) dépend du matériel g et essentiellement de

la forme des sections e.
De cet équilibre on déduit les deux invariants le moment M et l’énergie linéique Ψ:

M2 = M2
1 +M2

2 +M2
3 , Ψ = 1

2

(
M2

1
r1

+ M2
2

r2
+M2

3

)
. (14)

Dans l’espace de configuration (M1,M2,M3), ces deux invariants correspondent à une sphère et une
ellipsoïde. Donc leurs intersections donnent une condition nécessaire de l’existence des solutions de
(13). D’où l’existence de 4 régimes differents qui dépendent de e. De plus, les solutions exactes de
(13) sont sous la forme de κi = κipq

(
λ(s+ s0),m

)
, où, pq est une fonction de Jacobi et κi, λ, s0,m

dépendent de µ :=
√

2ψ et η = M/µ. En conclusion, la déformation de la tige est contrôlée par un
paramètre géométrique et un autre matériel. Elle est aussi contrôlée par µ, le paramètre d’échelle
qui contrôle la taille du motif et par η qui décrit la forme du motif. Ces résultats peuvent être
appliqués pour étudier les noeuds toriques et les rubans de Möbius.

Conclusion et perspectives
Nous discutons dans cette thèse une poutre de Timoshenko soumise à des forces et moments

extérieurs et entourée éventuellement par des fondations. Plus précisément, nous nous intéressons
d’une part à l’analyse de l’effet des fondations de Winkler sur une poutre de Timoshenko où une
relation entre la rigidité de la paroi et les solutions de flambement a été établi. Une étude plus
détaillée du comportement de plasticité pourrait élargir notre analyse.
D’autre part, nous exposons les solutions quasi-statiques d’une poutre de Timoshenko en grande dé-
formation. Dans le cas d’une poutre plane, nous discutons le problème de Cauchy et de bifurcation.
L’instabilité dynamique est l’une des questions intéressantes qui peut être potentiellement abordée
en étendant le présent travail. Dans le cas non-plan, nous présentons explicitiment les solutions du
problème ainsi que l’équilibre des noeuds toriques et de ruban de Möbius.
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INTRODUCTION

Logic is the foundation of the certainty of
all the knowledge we acquire

Leonhard Euler

Beam theories

Beams are slender structures resisting to vertical loads, shear forces, bending moments and
torsion and are widely used in civil, mechanical, aerospace engineering.
Many scientists aimed to study beam behaviour, including Leonardo da Vinci who, in 1493, intro-
duced a beam subjected to end load. Later on, Galileo Galilei tried to enhance da Vinci’s work
in his famous publication "Discorsi e dimostrazioni matematiche" in 1638. However, the first com-
plete beam theory known as Euler-Bernoulli beam was developed by Leonhard Euler and Daniel
Bernoulli in the Eighteenth-Century [Eul51]. This theory introduced an equation that gives the
relationship between deflection of the beam and the applied load:

EI
d4u

dS4 = q(S). (15)

The curve u(S) describes the deflection of the beam in the z direction. q is a distributed load, E
is the Young modulus and I is the second moment of area of beam cross-section. This model uses
kinematical hypotheses: cross-section remaining normal to the center-line and sometimes inextensi-
bility of the center-line as seen in figure (1).
This theory led to vast sort of applications specifically in construction of the Eiffel Tower and

Beam before deformation

Beam after deformation

Figure 1 – Deformation of Euler Bernoulli beam.

Ferris Wheel. It also provides reasonable approximations for many problems especially for slender
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structure. However, it overestimates the natural frequencies and kinematical hypotheses are not
easily justified under such transformations. Additional Lagrange multipliers may increase the dif-
ficulty to formulate the non-linear problem [Del+16].
In order to correct the overestimation of natural frequencies in Euler-Bernoulli beam, Rayleigh
provided his own beam theory and implicated the effect of rotary inertia [CY62]. Attempting to
improve upon the Euler-Bernoulli model, a shear distortion was added [PB82].
Later on, Timoshenko relaxed the kinematical hypotheses by adding the effect of shear and rotation
to the Euler-Bernoulli beam given by a shear angle γ = du

dS
− θ [Tim21]. This idea is illustrated in

figure (2) where we can remark that without shear (γ = 0) we retrieve exactly the Euler Bernoulli
model. Timoshenko also introduced stress-strain relations for all degrees of freedom [Tim22; TG09].

γ

du
dS

θ

Figure 2 – Deformation of a Timoshenko beam. The normal rotates by an amount θ ̸= du

dS
.

In the linear case, the Timoshenko model allows the consideration of shorter beam and less-standard
material [Eli20]. Moreover it provides an adapted formulation for large transformation where non-
linear coupling between several strains intervenes.
The governing equation of this model is given by:

EI
d4u

dS4 = q(S) − EI

AG

d2q

dS2 . (16)

It is clear that an additional term was added to Euler’s equation (1). This term represents the shear
effect with G as a shear modulus that includes a shear correction factor and A as the cross section
area.

Buckling

Several studies where conducted regarding these beam theories. Among others, a significant
study, is the deflection of a beam caused by a longitudinal compressive external load. Many sci-
entists investigated deflections on a beam, specifically the sudden change in shape of a structural
component under load known as beam buckling analysis. One can search the critical load needed
for sudden large deformation of structure known as buckling load, where this load is influenced by
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the material and geometrical beam form.
One of the first attempt to study buckling was made by Euler, who considered a pin-ended column
loaded by an axial load P [Eul44], bending moment in this case is given by M = −Pu and the

differential equation of bending is given by M = EI
d2 u

dS2 , so, an ordinary linear differantial equation
was obtained

d2 u

dS2 + k2u = 0, with k2 = P

EI
.

P

P

L

u

Figure 3 – Euler column submitted to axial load.

For pin-ended beam (fig.(3)), boundary conditions are given by u(0) = u(L) = 0, therefore, the
critical loads for nonzero deflection is given by Pcrn = (nπ

L
)2EI, the lowest critical load is given for

n = 1 and it is called the Euler load:
PE = π2

L2EI. (17)

A while after, scientists aimed to generalize Euler load for a "non Euler-Bernoulli beam". J.A Har-
ingx proposed a theory for helical springs [Har42] in which he explained the fact that springs of
small slenderness do not buckle. Whereas, F. Engesser proposed another theory that consider the
influence of shear on the buckling loads of straight bars [Eng91]. These two theories differ regarding
how the normal and shear forces are defined with respect to the non-deformed or deformed cross
section. In Haringx’s approach, the normal force is chosen normal to the deformed cross section
in the state after loading, whereas in Engesser’s theory, the normal force is chosen parallel to the
beam axis in the loaded state.
During the last decades, many researchers investigated beam behaviour and its relation in micro-
structure, some of them supported the Engesser approach while others adapted Haringx strategy.
So far, no accord has yet been reached.
Nanni [VN71] studied the effect of shear forces on the buckling load of simply supported members
with narrow rectangular cross section and of elliptic cross section and concluded that Engesser’s
approach was superior. While Reissner [Rei72] computed one-dimensional large strain beam theory
for plane beams and noticed that Haringx theory provided better agreement. Ziegler [Zie82] for-
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mulated a one-dimensional formulation for bars, and concluded that Engesser approach is superior
to Haringx’s for columns and can still be improved if axial shortening is taken into account, while
Haringx’s is more appropriate for helical springs. These conclusions were, shortly afterwards, re-
fused by Reissner [Rei58], who again supported Haringx’s formulation, finding that both theories
can be obtained by different forms of the one-dimensional stress-strain relations. Then, Bažant
derived Engesser formula from the theoretical analysis of the problem [Ced+10] and performed
some theoretical considerations on the buckling behaviour of weak-in shear columns. He, despite
some correspondence between Engesser and Haringx formulations, concluded that Haringx formula
gave better results [Baz03]. He reinforced his idea in [BB04] and invented a finite element stud-
ies of homogeneous orthotropic columns using a constant shear modulus for an elastic material
in small strain, which corresponds to Engesser-type theory [BB04]. Blaauwendraad [Bla08] agreed
with Bažant and advised to avoid the Haringx model in building construction and civil engineering
and to rather choose Engesser’s hypothesis. These results were rebutted by Aristizabal [AO07] who
studied static and dynamic stability of uniform shear beam-columns under generalized boundary
conditions and employed Haringx’s model. Allen [All69] studied the buckling behaviour of sandwich
structures and derived the Engesser formula while Kardomateas et al. [Kar+02] made theoretical
predictions and FEM analysis of buckling loads for sandwich columns with metallic laminated fac-
ings and foam or honeycomb cores under uniform axial compression, and noticed that Haringx
formula was closer to their results.
Attard [Att03] computed an internal strain energy density for isotropic hyperelastic Hookean mate-
rials and showed that this formulation leads to a buckling load formula that agrees with Haringx’s.
Simo and Kelly [SK84] performed a two-dimensional buckling analysis of multilayer elastomeric
bearings, and concluded that, as long as the beam theory assumptions hold, their formulation was
in closer agreement with the Haringx theory. After a while, Banerjee and Williams [BW94] analyzed
shear-deformable uniform columns, derived the Engesser formula and buckling curves for the most
common supporting conditions. Coming after, Pedro Dias Simao [Sim17] studied the influence of
shear deformations on the buckling of columns using the Generalized Beam Theory (GBT) and
energy principles. He deduced that Engesser load agrees much better with the results arising from
the GBT analysis. Later, Xiang-Fang Li et al.. [LL18] studied the effects of Engesser’s and Har-
ingx’s hypotheses on buckling of Timoshenko and higher-order shear deformable columns and they
concluded that for shorter columns with weak shear rigidity Engesser beam theory gives the lowest
estimate of the critical load, and it is more conservative.

Large transformation

For large transformation, an adequate approach is to consider Timoshenko beam as a one-
dimensional Cosserat body [CC09]. Following this approach, it is possible to extend the Timo-
shenko initially linearized theory to large transformations [EH20]. Among others, Mohyeddin and
Fereidoon [MF14] offered analytical solutions for the large deflection of a simply supported Timo-
shenko beam. Li [LL16] investigated a closed problem both analytically and numerically. Accord-
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ingly Antman [Ant05] developed non-linear theory of elastic bodies such as strings, rods, beams.
Reissner adopted the same formulation to give the principle of virtual work leading to constitutive
and equilibrium equations [Rei72]. Following the same approach, Simo examined a numerical for-
mulation of a finite strain beam theory and gave a stress-strain relation [Sim85]. Later on, these
results where expanded by Rakotomanana who regarded waves and vibrations of strings, beams and
shells [Rak09]. Henceforth, Le Marrec et al. gave an exact theory of Timoshenko beam undergoing
three-dimensional finite transformation and subjected to dynamical perturbations [LMLR18] .
Stability of the equilibrium solutions is of crucial importance under such large transformations (e.g.
[Big12]). Buckling of straight beam was extended to ring by Reissner [Rei82]. Bažant and Cedolic
investigated the stability of elastic structures using energy methods [Ced+10]. The link with incre-
mental equilibrium equations was investigated in [Baz71] where an example of flexure and shear of
a Timoshenko beam was presented. However, energetic approach is not the unique approach. For
example the numerical solutions of the extensible Timoshenko beam model under distributed load
performed in [Del+19] motivates Corte et al. to identify sequences of equilibria among which two
at most are stable [DC+19].
In the previous mentioned studies, analytical expression of a solution is not the main objective.
In practice such analytical solutions mainly invoque Jacobian elliptic functions. These functions
appear as solutions of many important problems in classical mechanics. Mathematical background
can be found, among others, in [Mey01; BB12] and fundamental relations are reported in [Olv+10].
Ohtsuki [OHT86] gave analytical and numerical solutions for large deflections of a symmetric three
point bending of a simply supported beam subjected to a central concentrated load. Chucheespakul
et al. [Chu+99] set up Euler-Bernoulli elastica for pinned-pinned beam. Whereas Magnusson et al.
provided the behaviour of the extensible elastica solution for an Euler-Bernoulli beam [MRL01].
The Timoshenko beam was treated by Humer who adapted Reissner’s beam approach and gave
buckling and postbuckling solutions for cantilever beam subjected to follower force [Hum13; HP19].
In pursuit, Batista specified analytical solutions of cantilever beam [Bat13; Bat14]. Other bound-
ary conditions were presented in [Bat16a] but no general formulation was presented for general
boundary conditions.

Elastic beam on a foundation

Knowing that beam behaviour is also related to what it surrounds, many researchers examined
beams supported on elastic foundation and their applications in modern engineering, such as soil
foundation, strip foundation, foundation of the buildings as well as such structure of underpass
bridges. To describe the interactions of the beam and foundation as most appropriately as possible,
scientists have proposed various kinds of foundation models. One of the first attempt to study elastic
beam on deformable foundation was made by Emil Winkler in 1867 [Win67]. This model known by
Winkler foundation (e.g figure (4)) consists of a beam on elastic foundation which assumes linear
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force-deflection relationship. Namely,

q(S) = KWu(S). (18)

Where KW is the Winkler spring stiffness. Pasternak [Pas54] generalized the Winkler model and

Figure 4 – Winkler foundation on an elastic beam.

assumed existence of shear interactions between the spring elements illustrated in figure (5) left
with the following relation:

q(S) = KWu(S) −KP
d2 u(S)
d S2 . (19)

With KP is the shear stiffness of the shear layer . A possible generalization of Pasternak model is
Reissner model [Rei58] that has been analyzed by Kerr [Ker64]:

q(S) −KR
d2 q(S)
d S2 = KWu(S) −KP

d2 u(S)
d S2 . (20)

Where KR is a function of the two linear elastic spring layers and shear layer. This model is
illustrated at the right part of figure (5).
Many results were obtained using these models. As an example, Hetenyi discussed the behaviour
of beams on elastic foundation [HH46]. Zhang et al..[ZM05] investigated the secondary bifurcations
and tertiary states of a beam resting on nonlinear foundation. In addition, Guo-Ping [XZ09] found
a numerical method for critical buckling load for a beam on elastic foundation. In the same spirit,
Challamel studied the buckling of elastic beam using Reissner model, and he also investigated
the buckling of generic higher-order shear beam with elastic connections using local and nonlocal
formulation [CMB10]. Moreover, Rajesh [RS17] examined the free vibration of uniform Timoshenko
beams on Pasternak foundation using coupled displacement field method. In the same manner, Rana
et al. [RH16] investigated the exact solution of post-buckled non linear beam on elastic foundation
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Pasternak foundation. Reissner foundation.

Figure 5 – Elastic foundations.

and showed that the foundation stiffness is greatly influenced by the buckling force of the beam
with an internal hinge. Furthermore, Mercan et al. [Akg+16] found a static analysis of beams on
elastic foundation by the method of discrete singular convolution.

Manuscript organization

All along the manuscript we will focus on an elastic, isotropic, homogeneous straight Timo-
shenko beam with linear constitutive laws. In the first chapter, we give some preliminaries that
are essential to study beam behaviour. We use the Principle of Virtual Power to establish beam
equilibrium under large transformation written in a non-dimensional form. This equilibrium is a
first order non-linear partial differential system of equations with respect to strains and a second
order with respect to kinematical variables.
The second chapter investigates a planar Timoshenko beam subjected to Winkler foundations. For
rigid foundations, exact solutions were obtained using Sturm-Liouville criterion and by imposing
an initial choc type condition. This is not the case for elastic foundations where equilibrium is
written as a coupled wave equations. In this case, dispersion curves are discussed using harmonic
vibrations. To investigate bifurcation, we discuss buckling solutions of a plane, Timoshenko beam
with quasi-static small transformation subjected to a longitudinal force and surrounded by an elas-
tic wall modeled by two-parameters Winkler foundation. A non-dimensional analysis of associated
Haringx and Engesser model is performed and buckling stress and shape are exposed analytically.
Relations for rigidity of the wall and buckling solutions were made for different regime and for both
models using asymptotic approach. Introducing the yield limit gives a simple criterion in terms of
stiffness foundation and slenderness ratio for which buckling or irreversible transformation occur.
The third chapter describes the plane transformation of straight Timoshenko beam subjected to
load at the boundaries. In order to embrace wide applications, the situations for quasi-static fol-
lower or dead load are examined and the domain of variation of each dimensionless parameters
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is examined. By series of mathematical transformations, we transform the non-linear equilibrium
system into a scalar equation seen as a Cauchy initial problem on contrary to most previously
conducted studies (based on boundary value problem). This imposes a meticulous analysis (values,
variation domain) of each component of the problem. Two invariants of the problem are exhibited.
Existence and uniqueness of the solution for a prescribed load is addressed. Explicit and analytical
solutions of the problem for any given load (force and moment) at one end is given by means of
Jacobian elliptic functions. The problem of regularity of these solutions in regards to a smooth (and
quasi-static) evolution of the load at one end is tackled through a deep analysis of the analytical
expressions. After an illustrating example, the problem of a pure-shear follower load is presented
and shows how asymptotic solutions can be recovered through Taylor expansion of the attainable
expression. Also, the problem of quasi-static stability is addressed as a driven parametric oscillator
in a general situation. The last section shows how the proposed approach is able to face problem of
quasi-static instability more general than bifurcation (buckling) as catastrophe. These instabilities
are widely used in mechanics, especially in structural design and construction.
The fourth chapter analyzes the behaviour of a straight Timoshenko subjected to pure moment,
this approach leads to a model similar to Kirchhoff rod model without an external force. Domains
of variation of each dimensionless parameter is examined. Furthermore, two invariants that depend
on moments and energy density govern the problem. Four regimes model arise that depends on
the thickness of the cross section. Solutions were found in an analytical way (in terms of Jacobian
elliptic functions). A detailed study is given on rod shapes to give a better understanding on the
load parameters. Later on, a connection between our theoretical study and the physical world was
made, specifically we first analyzed a Möbius strip obtained by a deformation of a straight beam
where we obtained exact solutions for symmetric cross-section. Then we implicated our exact ap-
proach into the study of Torus knots where interesting results were obtained regarding the shape
of these knots.
We will end the manuscript with a conclusion which englobes our research and open several per-
spectives for future work in this field.
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Chapter 1

PROBLEM STATEMENT

In this chapter we present the general formulation of the problem that will be used all along
the manuscript.

1.1 Mathematical background

Let V be the set of all vectors, V has the structure of a real vector space [GS08]:

a + b ∈ V ∀ a,b ∈ V and αa ∈ V ∀α ∈ R, a ∈ V . (1.1)

Einstein summation: All along this manuscript whenever an index occurs twice in a term a sum
is implied over that index.
Conventional summation: We abbreviate the arguments in functions depending on the three
components (a1, a2, a3) or merely on the first two components (a1, a2) of a vector a ∈ V by ai or
aα, respectively.
Euclidean scalar product of two vector a and b is:

a · b := aibi.

Vector product of two vector a and b is denoted by:

a × b,

where (a × b)k = aibjϵijk with ϵijk =


1, if ijk = 123, 231 or 312,

−1, if ijk = 321, 213 or 132,

0, otherwise (repeated index).

.

Triple scalar product is given by:

(a × b) · c = det(a,b, c), (1.2)

where (a,b, c) is the 3×3 matrix with columns a,b and c. By properties of the permutation symbol
under cyclic permutation of its indices:

(a × b) · c = (b × c) · a = (c × a) · b. (1.3)
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Chapter 1 – Problem statement

The triple vector product is given by:

a × (b × c) = (a · c)b − (a · b)c. (1.4)

A second-order tensor T on the vector space V is a linear mapping T : V −→ V . The set of
second-order tensors is denoted by V2.
The dyadic product of two vectors a and b is the second-order tensor a ⊗ b defined by:

(a ⊗ b)v = (b · v)a, ∀ v ∈ V ,

having the following property:

(a ⊗ b)(c ⊗ d) = (b · c)a ⊗ d. (1.5)

Hence any second order tensor T could be represented using dyadic product as

T = Tijei ⊗ ej,

with the Cartesian frame e = (e1, e2, e3).
To any tensor S we associate a transpose ST , which is the unique tensor with the property

Su · v = u · ST v, ∀u,v ∈ V .

S is symmetric if S = ST and S is skew-symmetric if S = −ST .
Trace of a tensor S is a scalar function denoted by tr(S) and given by

tr(S) = Sii,

with the following properties

tr(T + S) = tr(T) + tr(S), ∀ T,S ∈ V2. (1.6)

tr(αT) = α tr(T), ∀ α ∈ R,∀ T ∈ V2. (1.7)

tr(TT ) = tr(T), ∀ S ∈ V2. (1.8)

tr(TS) = tr(ST), ∀ T,S ∈ V2. (1.9)

Theorem 1.1.1. Given any skew-symmetric tensor W there is a unique vector w such that

Wv = w × v, ∀v ∈ V .
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1.2. Beam model

Analogous to the scalar product for vectors, we define an inner scalar product for second-order
tensors by

S : D = tr(ST D). (1.10)

1.2 Beam model

This section is based on the work done by Le Marrec et. al. in [LMLR18].
In this manuscript, we aim to study a straight, elastic, isotropic and homogenous Timoshenko

e1

e3
e2

d3
d1

d2

f
ρ0b

G

ΦO

∂B S

φ

Φ0

ρ0b

f

S

∂S

C

B

G

Figure 1.1 – Reference configuration Φ0 (left) and current configuration Φ. A priori the force
densities may change along the transformation. The cross-section is normal to the centerline C in
the reference configuration but not necessarily in the current configuration : d3 is not tangent to C.

beam. A suitable way to model this beam is to consider it as a bounded material body B. Its
reference configuration Φ0 is defined as the configuration where the body is at rest (stress-free)
in absence of external load. Let ∂B be the surface boundary of B where traction f is eventually
prescribed (per unit initial area of the reference configuration). The body is subjected to a body
force field ρ0b, where ρ0 is the mass density in the reference configuration (see figure 1.1).
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Chapter 1 – Problem statement

Cosserat continuum

Given the fact that beams are slender structures, so it is considered as one dimensional Cosserat
body [CC09] with two degree of freedom: one that controls the position of the centerline and another
that governs orientation of the section. Namely, we define a spatial material curve C. Practically the
curve corresponds to the positions of the section center of mass G. In the reference configuration
(t = 0) the beam is straight, so this curves is a straight segment of length L. A fixed origin O and
a Cartesian frame (e1, e2, e3) is chosen in such a way that OG = Se3 in the initial configuration.
Here S ∈ [0, L] is a material curvilinear coordinate of C. At each time t, the placement of G is
defined by

(S, t) ∈ [0, L] × [0,+∞[−→ φ(S, t) := OG(S, t).

Lastly, as S is a material coordinate it always belongs to [0, L], G spans the center line C even if
the true length of C is modified in the actual configuration.
Sections of the beam S are supposed to be rigid and normal to the spatial curve in the reference
configuration. Hereafter, the section is supposed to be uniform all along the fiber.
For such a Cosserat-like structure it is justified to use a moving director frame basis (d1,d2,d3)
for which this basis is a principal basis and d3 is always normal to the cross-section. In reference
configuration (d1,d2,d3) coincides with the Cartesian frame. After transformation, as the orien-
tation of the section is not necessarily uniform, this basis depends on the curvilinear abscissa S of
the beam and on time. In contrary to Euler-Bernoulli model d3 is not necessarily tangent to the
center line. However, this basis is always orthonormal d3 = d1 × d2.
We define (ξ1, ξ2) as the local coordinates of any point M of the cross-section:

GM = ξ1d1 + ξ2d2 := ξαdα. (1.11)

The position of any material point M of the beam in the deformed configuration is defined by
[Rak09]:

OM(ξ1, ξ2, S, t) = φ(S, t) + ξαdα(S, t). (1.12)

Displacement of M is given by
u = OM − OM0, (1.13)

whereas OM0 = φ0 + G0M0 = Se3 + ξαeα is the position in the reference configuration.

1.2.1 Curvature and spin

By construction, a rotation tensor R(S, t) is intrinsically defined along the curve C of the beam
at rest and relates each director to the reference one: di(S, t) = R(S, t)ei then ei = RT (S, t)di(S, t).
The rotation determines the twist and spin of directors.
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1.2. Beam model

Twist

As ei = RT di, spatial derivation of directors writes :

∂di

∂S
= ∂R
∂S

RT di, (1.14)

where ∂R
∂S

RT is a skew-symmetric tensor. Its axial vector κ is defined as the twist vector or gener-
alized curvature. Accordingly, spatial derivation of directors can be obtained by

∂di

∂S
= κ × di. (1.15)

We can write (1.15) as

∂di

∂S
= Kdi, where K =


0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

 . (1.16)

Therefore, we obtain the following non linear first order system of nine partial differential equations
with respect to di:

∂d1

∂S
= κ3(S, t)d2(S, t) − κ2(S, t)d3(S, t),

∂d2

∂S
= κ1(S, t)d3(S, t) − κ3(S, t)d1(S, t),

∂d3

∂S
= κ2(S, t)d1(S, t) − κ1(S, t)d2(S, t).

(1.17)

Where κ1 and κ2 are curvatures with respect to (d1,d2) and κ3 is twist vector that defines the
amount of rotation of the local basis (d1,d2,d3) around d3 as S increases.

Spin

The same procedure is performed for time derivation:

∂di

∂t
= ∂R

∂t
RT di, (1.18)

and spin ω is the axial vector associated with the skew-symmetric tensor of ∂R
∂t

RT . Then

∂di

∂t
= ω × di. (1.19)
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Chapter 1 – Problem statement

So, by letting W =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 we obtain:

∂d1

∂t
= ω3(S, t)d2(S, t) − ω2(S, t)d3(S, t),

∂d2

∂t
= ω1(S, t)d3(S, t) − ω3(S, t)d1(S, t),

∂d3

∂t
= ω2(S, t)d1(S, t) − ω1(S, t)d2(S, t).

(1.20)

Remark. ω and κ are related due to the Maurer-Cartan form [Nak03]:

∂κ

∂t
− ω × κ = ∂ω

∂S
. (1.21)

1.2.2 Deformation and strains

Strain is the local stretching of a body caused by a deformation. Beam is considered as a 3D-
body, so using the standard continuous mechanics model, a natural way to quantify strain is the
deformation gradient given by F = ∇XOM where X = (ξ1, ξ2, S) is the material coordinates,
therefore

F = d1 ⊗ e1 + d2 ⊗ e2 + (ξ1
∂d1

∂S
+ ξ2

∂d2

∂S
+ ∂φ

∂S
) ⊗ e3. (1.22)

Using (1.11) F is written as:

F = dα ⊗ eα + (κ × GM + ∂φ

∂S
) ⊗ e3. (1.23)

Since κ × GM + ∂φ

∂S
=
((

κ × GM + ∂φ

∂S

)
· di

)
di, so, we can rewrite F as:

F = di ⊗ ei +
(
(κ × GM + ∂φ

∂S
) · d1

)
d1 ⊗ e3 +

(
(κ × GM + ∂φ

∂S
) · d2

)
d2 ⊗ e3+(

(κ × GM + ∂φ

∂S
) · d3 − 1

)
d3 ⊗ e3.

(1.24)

This motivates us to write F := R(I + H) where, R = di ⊗ ei and H is a tensor given by:

H =
(
(κ×GM+ ∂φ

∂S
)·d1

)
e1⊗e3+

(
(κ×GM+ ∂φ

∂S
)·d2

)
e2⊗e3+

(
(κ×GM+ ∂φ

∂S
)·d3−1

)
e3⊗e3.

(1.25)
It should be mentioned that F provides local information of the deformation and it is not symmetric
in general, this motivates us to introduce the right Green-Cauchy strain tensor C = FT F. Notice
that C is symmetric but C doesn’t vanish at rest, therefore, Green-Lagrange strain tensor

E := 1
2(C − I), (1.26)

28



1.2. Beam model

is a better way to define strain for finite transformation.
According to [Sim85] generalized strain is given by:

ε̃(S, t) := ∂φ

∂S
− d3. (1.27)

The component of this strain in the frame of directors have to be clearly distinguished as they have
two distinct physical meaning :

ε̃ · d1 : shear strain,
ε̃ · d2 : shear strain,
ε̃ · d3 : longitudinal strain.

(1.28)

Using the fact that F := R(I + H), therefore:

E = 1
2

(
(R(I + H))T (R(I + H)) − I

)
,

E = 1
2

(
H + HT + HT H

)
.

(1.29)

Hence E takes the form of an anti-plane tensor [Rak09]:

E =
3∑

i=1

(
(ε̃ + κ × GM) · di

)ei ⊗ e3 + e3 ⊗ ei

2 + 1
2 ∥ε̃ + κ × GM∥2 e3 ⊗ e3. (1.30)

And deformations are defined entirely with respect to κ and ε̃.
Remark. By observing (1.30), we can remark that the relation between the Green-Lagrange de-
formation tensor E and the uni-dimensional deformations ε̃ as well as κ is not linear, so these
deformations do not obey the same laws: a linear constitutive law in terms of E is not necessary
linear with respect to κ and ε̃. To ensure linearity, an additional condition should be guaranteed,
this idea will be illustrated in section (1.3.2).

1.2.3 Stress, forces and moments

Stress is the internal resistance to external loads. An intuitive way to describe combined stresses
is the cauchy stress tensor σ. This tensor expresses the stress relative to the deformed configuration.
One can also define a stress tensor with respect to the reference configuration known as the first
Piola-Kirchhoff stress P := detFσF−T . P is not symmetric in general, hence in order to associate
a stress to the Green-Lagrange strain, the second Piola-Kirchhoff is introduced:

P = FS. (1.31)

Law of angular momentum imposes PFT = FPT . As a consequence, S is symmetric.
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Chapter 1 – Problem statement

Forces and moments

Beam dynamics requires the definition of associated internal forces and moments. The resultant
force N and the moment M per unit reference length acting on the section S are given in terms of
the nominal Piola-Kirchhoff stress tensor:

N :=
∫

S
P(e3)dA = Nidi,

M :=
∫

S
GM × P(e3)dA = Midi.

(1.32)

1.2.4 Principle of virtual work

The principle of virtual work forms the foundation for the variational principles of mechanics
and it could be used to find the fundamental laws of motion (equilibrium equations). A virtual
displacement is an infinitesimal displacement of any point of a mechanical system that may or may
not take place but that is compatible with the constraints of the system and a virtual work is the
work done by a real force acting through a virtual displacement, or a virtual force acting through
a real displacement.
The principle of virtual work states that:

∫
B
ρ0b · δu dV +

∫
∂B

f · δu dA =
∫

B
ρ0
∂2u
∂t2

· δu dV +
∫

B
P : δF dV, ∀ δu ∈ W. (1.33)

Where u is the displacement of any point of the three-dimensional body and W is the space of kine-
matically compatible virtual displacement, usually called the space of variation of the continuum.
The various terms in the preceding equation are:

Pacc(Φ, δΦ) =
∫

B
ρ0
∂2u
∂t2

· δu dV. Virtual work of acceleration,

Pe(Φ, δΦ) =
∫

B
ρ0b · δu dV +

∫
∂B

f · δu dA. Virtual work of external loading,

Pi(Φ, δΦ) =
∫

B
P : δF dV. Virtual internal work,

(1.34)
for which

Φ(S) =
(
φ(S), Q(S)

)
, ∈ R3 × SO(3),

δΦ(S) =
(
δφ(S), Q̃(S)

)
, ∈ R3 × SO(3).

(1.35)

For a beam-structure the kinematics of any point is constrained by the rigid motion of the section.
In particular, the displacement u (respectively δu) may be written in terms of φ and Q (respectively
δφ and Q̃) as u = φ−φ0 +(Q − I)G0M0. Small variations with respect to the kinematics is given
by

δu = δφ + δω × GM. (1.36)
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1.2. Beam model

Where δω is the axial vector associated to the skew-symmetric tensor Q̃.
Time differentiation of the beam structure gives:

∂2u
∂t2

= ∂

∂t

(∂φ

∂t
+ ∂GM

∂t

)
,

= ∂

∂t

(∂φ

∂t
+ ω × GM

)
.

(1.37)

It should be mentioned that another formulation of the internal virtual work may be obtained
according to the dual tensor S and E. In fact, since P = FS, so, on one hand

P : δF = tr(PT δF),

= tr((FS)T δF),

= tr(ST FT δF),

(1.38)

and on the other
δE = 1

2δ
(
(F)T F − I

)
,

= 1
2
(
(δF)T F + FT δF

)
,

(1.39)

therefore:

S : δE = tr(ST δE) = tr(SδE) (1.7)= 1
2

(
tr(SδFT F + SFT δF)

)
,

(1.6)= 1
2

(
tr(SδFT F) + tr(SFT δF)

)
,

(1.8)= 1
2

(
tr
(
(SδFT F)T

)
+ tr(SFT δF)

)
,

(1.8)= 1
2

(
tr(FT δFS) + tr(SFT δF)

)
,

(1.9)= 1
2

(
tr(SFT δF) + tr(SFT δF)

)
= P : δF.

(1.40)
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Virtual work of acceleration

According to the kinematical variables, the virtual work of acceleration takes the following form:

Pacc(Φ, δΦ) =
∫

C

∫
S
ρ0
∂

∂t

(
∂φ

∂t
+ ω × GM

)
·
(
δφ + δω × GM

)
dA dS,

=
∫

C

∫
S
ρ0

(
∂φ2

∂t2
+ ∂ω

∂t
× GM + ω × ∂GM

∂t

)
·
(
δφ + δω × GM

)
dA dS,

=
∫

C

∫
S
ρ0

(
∂φ2

∂t2
+ ∂ω

∂t
× GM + ω × (ω × GM)

)
·
(
δφ + δω × GM

)
dA dS,

=
∫

C

∫
S
ρ0

(
∂φ2

∂t2
· δφ + ∂φ2

∂t2
·
(
δω × GM

)
+
(∂ω

∂t
× GM

)
· δφ+

(∂ω

∂t
× GM

)
·
(
δω × GM

)
+ ω × (ω × GM) · δφ+

(
ω × (ω × GM)

)
· (δω × GM)

)
dA dS.

(1.41)
However,

∫
S

GM dA = 0, therefore,

∫
C

∫
S
ρ0

(
∂φ2

∂t2
·
(
δω × GM

)
+
(∂ω

∂t
× GM + ω × (ω × GM)

)
· δφ

)
dA dS =∫

C
ρ0

(
∂φ2

∂t2
·
(
δω ×

∫
S

GM dA
)

+
(∂ω

∂t
×
∫

S
GM dA+ ω × (ω ×

∫
S

GM dA)
)

· δφ
)

dS = 0.

(1.42)

Moreover, in order to simplify computation, we consider uniform cross-section, then
∫

S ρ0dA = ρ0A

and using the relation of triple product (a × b) · c = (b × c) · a to obtain

Pacc(Φ, δΦ) =
∫

C
ρ0A

∂2φ

∂t2
· δφ +

∫
S
ρ0

(
GM ×

(∂ω

∂t
× GM

)
+ GM ×

(
ω × (ω × GM)

))
dA · δω dS .

Hence,

Pacc(Φ, δΦ) =
∫

C
ρ0A

∂2φ

∂t2
· δφ +

∫
S
ρ0
∂

∂t

(
GM ×

(
ω × GM

))
dA · δω dS . (1.43)

Introducing I, the tensor of quadratic moment of the section, we have for any vector a∫
S

GM ×
(
a × GM

)
dA = I a.

For uniform mass density in the section, the virtual work of acceleration becomes:

Pacc(Φ, δΦ) =
∫

C
ρ0A

∂2φ

∂t2
· δφ + ρ0

(∂(Iω)
∂t

)
· δω dS. (1.44)

Keeping in mind that {di} is the principal basis of the section, the tensor of quadratic moment is
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1.2. Beam model

diagonal I = Iidi ⊗ di, written in matrix form as

I =


I1 0 0
0 I2 0
0 0 I3

 , (1.45)

with
I1 =

∫
S
ξ2

2 dA, I2 =
∫

S
ξ2

1 dA, I3 =
∫

S
ξ2

1 + ξ2
2 dA.

External virtual work

Now considering the external virtual work using the kinematics of rigid body of any section:

Pe(Φ, δΦ) =
∫

B
ρ0b · (δφ + δω × GM) dV +

∫
∂B

f · (δφ + δω × GM) dA. (1.46)

Using invariance of the scalar triple product under a circular shift we obtain:

Pe(Φ, δΦ) =
∫

B
δφ · ρ0b + δω · (GM × ρ0b) dV +

∫
∂B
δφ · f + δω · (GM × f) dA. (1.47)

Keeping in mind that
∫

B
dV =

∫
C

∫
S

dAdS and
∫

∂B
dA =

∫
C

∫
∂S

dLdS, therefore,

Pe(Φ, δΦ) =
∫

C

∫
S
δφ · ρ0b + δω · (GM × ρ0b) dAdS +

∫
C

∫
∂S
δφ · f + δω · (GM × f) dLdS. (1.48)

However, δφ and δω are independent of the local coordinates (ξ1, ξ2) of the section, they are not
affected by the integration over S. Hence:

Pe(Φ, δΦ) =
∫

C
q · δφ + m · δω dS, (1.49)

for which the external applied force q (S, t) per unit length is:

q :=
∫

S
ρ0b dA+

∫
∂S

f dL, (1.50)

and the external applied couple m (S, t) per unit reference length is:

m :=
∫

S
GM × ρ0b dA+

∫
∂S

GM × f dL. (1.51)
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Internal virtual work

The local increment of the deformation is given by:

δF = δ
(
dα ⊗ eα + (∂φ

∂S
+ κ × GM) ⊗ e3

)
,

= δdα ⊗ eα + δ(∂φ

∂S
+ ∂GM

∂S
) ⊗ e3,

= δdα ⊗ eα + δ(∂φ

∂S
+ ξα

∂dα

∂S
) ⊗ e3.

(1.52)

Keeping in mind that δ and ∂

∂S
commute, we obtain

δF = (δω × dα) ⊗ eα +
(
∂

∂S
(δφ + δω × GM)

)
⊗ e3. (1.53)

In order to simplify notations, we introduce pi such that pi = P(ei) then P = pi ⊗ ei. Hence
density of virtual work becomes:

P : δF = pα · (δω × dα) + p3 ·
(
∂

∂S
(δφ + δω × GM)

)
,

(1.3)= δω · (dα × pα) + p3 ·
(
∂

∂S
(δφ + δω × GM)

)
.

(1.54)

At this stage, no specific information is explicitly given on pα. However, symmetry of second Piola-
Kirchhoff stress tensor imposes FPT − PFT = 0. This can be written explicitly as:

(
dα ⊗eα +(∂φ

∂S
+κ×GM)⊗e3

)(
ei ⊗pi

)
−
(
eα ⊗dα +e3 ⊗ (∂φ

∂S
+κ×GM)

)(
pi ⊗ei

)
= 0. (1.55)

Using (1.5) to obtain:

dα ⊗ pα − pα ⊗ dα +
(

∂φ
∂S

+ κ × GM
)

⊗ p3 − p3 ⊗
(

∂φ
∂S

+ κ × GM
)

= 0 . (1.56)

However, a zero tensor is a skew-symmetric tensor. So (1.56) is equivalent to :

pα × dα + p3 ×
(
∂φ

∂S
+ κ × GM

)
= 0 ,

that gives a relation between pα and p3 imposed by the angular momentum conservation law.
Introducing this relation in the virtual internal work density (1.54):

P : δF = δω ·
(

p3 ×
(∂φ

∂S
+ κ × GM

))
+ p3 ·

(
∂

∂S
(δφ + δω × GM)

)
.
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Expanding each term, we obtain:

P : δF = δω · p3 × ∂φ
∂S

+ δω ·
(
p3 ×

(
κ × GM

))
+ p3 · ∂δφ

∂S
+ p3 · ∂δω

∂S
× GM + p3 · δω × ∂GM

∂S

(1.3)= p3 · (∂ δφ
∂S

− δω × ∂φ
∂S

) − p3 ·
(
δω × (κ × GM)) + p3 · δω × κ × GM

+ (GM × p3) · ∂ δω
∂S

(1.57)
Therefore,

P : δF = p3 ·
(
∂ δφ

∂S
− δω × ∂φ

∂S

)
+ (GM × p3) · ∂ δω

∂S
. (1.58)

Keeping in mind that variation of strain is frame-indifferent (e.g.[CJ99]), corotational variation
must be prescribed. For any vector a = aidi this variation is:

δRa := δa − δω × a = (δai) di .

These corotational variations are well defined in (1.58) and closely related to Maurer-Cartan form,
according to (1.27)

δRε̃ = δ
(∂φ

∂S
− d3

)
− δω ×

(∂φ

∂S
− d3

)
,

= ∂δφ

∂S
− δd3 − δω × ∂φ

∂S
+ δω × d3,

= ∂δφ

∂S
− δω × d3 − δω × ∂φ

∂S
+ δω × d3,

= ∂ δφ

∂S
− δω × ∂φ

∂S
.

(1.59)

And according to (1.21):
δRκ = δκ − δω × κ = ∂ δω

∂S
. (1.60)

These corotational variations are uniform along the beam-section and are not affected by inte-
gration over the beam section. Hence, according to 1.32 (with P(e3) = p3) this integration make
appears the force and torque per unit length. Then, virtual internal work becomes [Sim85]:

Pi(Φ, δΦ) =
∫

C
N · δRε + M · δRκ dS . (1.61)

In other words, for beam structures the dual quantities associated to forces and torques per unit
length are corotational deformation and curvature, respectively.
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1.2.5 Equilibrium relations

The Principle of Virtual work gives us the variational equation of a beam:

Pacc(Φ, δΦ) + Pi(Φ, δΦ) = Pe(Φ, δΦ). (1.62)

Considering a bounded beam of length L, we have after integrating by parts:

Pi(Φ, δΦ) =
[
N · δφ + M · δω

]L

0
−
∫

C

∂N
∂S

· δφ +
(
∂φ

∂S
× N + ∂M

∂S

)
· δω dS.

Using the previous results, we obtain ∀ (δφ, δω) ∈ W:

[
N · δφ + M · δω

]L

0
=

∫
C

(
∂N
∂S

+ q − ρ0A
∂2φ

∂t2

)
· δφ dS (1.63)

+
∫

C

(
∂M
∂S

+ ∂φ

∂S
× N + m − ρ0

∂(Iω)
∂t

)
· δω dS. (1.64)

This equation may help to obtain the strong formulation of dynamic equation of the beam-structure
under finite transformation. Since (1.63) is valid for any motion (δφ, δω), therefore:

∂N
∂S

+ q = ρ0A
∂2φ

∂t2
,

∂M
∂S

+ ∂φ

∂S
× N + m = ρ0

∂(Iω)
∂t

.

(1.65)

With the boundary conditions

N(0, t) = N0(t), or ∂φ

∂S
(0, t) = 0,

M(0, t) = M0(t), or ω(0, t) = 0,

N(L, t) = NL(t), or ∂φ

∂S
(L, t) = 0,

M(L, t) = ML(t), or ω(L, t) = 0.

(1.66)

In the following and for the sake of brevity, q and m are set to zero, unless stated otherwise.

Remark. Our approach is written as a Lagrangian problem where a coordinate material (ξ1, ξ2, S)
was introduced. In addition, kinematical and dynamical variables were written in the material basis
(d1,d2,d3).
One can adapt an Eulerian mechanical approach where we can describe the fiber in the Carte-
sian mechanics, also one can solve the problem of a beam subjected to dead load using Eulerian
formulation.
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1.2. Beam model

Scalar equilibrium

Keeping in mind that we have a moving director frame, so, the derivative of any vector function
f(S, t) is written in the director frame as f(S, t) = fi(S, t)di(S, t) is:

∂f
∂S

= ∂fi

∂S
di + fi

∂di

∂S
. (1.67)

However, ∂di

∂S
is given by (1.17), therefore,

∂f
∂S

· d1 = ∂f1

∂S
− f2κ3 + f3κ2,

∂f
∂S

· d2 = ∂f2

∂S
− f3κ1 + f1κ3,

∂f
∂S

· d3 = ∂f3

∂S
− f1κ2 + f2κ2.

(1.68)

Repeating the same procedure for the time variable t, one obtains:

∂f
∂t

· d1 = ∂f1

∂t
− f2κ3 + f3κ2,

∂f
∂t

· d2 = ∂f2

∂t
− f3κ1 + f1κ3,

∂f
∂t

· d3 = ∂f3

∂t
− f1κ2 + f2κ2.

(1.69)

So first, we observe that
∂κ

∂t
= ∂κi

∂t
di + κi

∂di

∂t

(1.15)= ∂κi

∂t
di,

∂ω

∂t
= ∂ωi

∂t
di + ωi

∂di

∂t

(1.19)= ∂ωi

∂t
di.

(1.70)

Furthermore, variables in (1.65) could be written after projection as

∂N
∂S

=



∂N1

∂S
−N2κ3 +N3κ2,

∂N2

∂S
−N3κ1 +N1κ3,

∂N3

∂S
−N1κ2 +N2κ1.

∂M
∂S

+
(
ε̃+d3

)
×N =



∂M1

∂S
−M2κ3 +M3κ2 −N2

(
ε̃3 + 1

)
+N3ε̃2,

∂M2

∂S
−M3κ1 +M1κ3 −N3ε̃1 +N1

(
ε̃3 + 1

)
,

∂M3

∂S
−M1κ2 +M2κ1 −N1ε̃2 +N2ε̃1.

(1.71)
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∂2φ

∂t2
=



∂2φ1

∂t2
− 2∂φ2

∂t
ω3 + 2∂φ3

∂t
ω2 − φ1(ω2

2 + ω2
3) + φ2(ω1ω2 − ∂ω3

∂t
) + φ3(ω1ω3 + ∂ω2

∂t
),

∂2φ2

∂t2
+ 2∂φ1

∂t
ω3 − 2∂φ3

∂t
ω1 + φ1(ω1ω2 + ∂ω3

∂t
) − φ2(ω2

1 + ω2
3) + φ3(ω2ω3 − ∂ω1

∂t
),

∂2φ3

∂t2
− 2∂φ1

∂t
ω2 + 2∂φ2

∂t
ω1 + φ1(ω1ω3 − ∂ω2

∂t
) + φ2(ω2ω3 + ∂ω1

∂t
) − φ3(ω2

1 + ω2
2).

(1.72)

∂(Iω)
∂t

=



I1
∂ω1

∂t
+ (I3 − I2)ω2ω3,

I2
∂ω2

∂t
+ (I1 − I3)ω1ω3,

I3
∂ω3

∂t
+ (I2 − I1)ω1ω2.

(1.73)

Where (1.27) has been used. Equilibrium equations written in a scalar form will be:

∂N1
∂S

− N2κ3 + N3κ2 = ρ0A
(∂2φ1

∂t2 − 2∂φ2
∂t

ω3 + 2∂φ3
∂t

ω2 − φ1(ω2
2 + ω2

3) + φ2(ω1ω2 − ∂ω3
∂t

) + φ3(ω1ω3 + ∂ω2
∂t

)
)
,

∂N2
∂S

− N3κ1 + N1κ3 = ρ0A
(∂2φ2

∂t2 + 2∂φ1
∂t

ω3 − 2∂φ3
∂t

ω1 + φ1(ω1ω2 + ∂ω3
∂t

) − φ2(ω2
1 + ω2

3) + φ3(ω2ω3 − ∂ω1
∂t

)
)
,

∂N3
∂S

− N1κ2 + N2κ1 = ρ0A
(∂2φ3

∂t2 − 2∂φ1
∂t

ω2 + 2∂φ2
∂t

ω1 + φ1(ω1ω3 − ∂ω2
∂t

) + φ2(ω2ω3 + ∂ω1
∂t

) − φ3(ω2
1 + ω2

2)
)
.

(1.74)

∂M1

∂S
−M2κ3 +M3κ2 −N2

(
ε̃3 + 1

)
+N3ε̃2 = ρ0

(
I1
∂ω1

∂t
+ (I3 − I2)ω2ω3

)
,

∂M2

∂S
−M3κ1 +M1κ3 −N3ε̃1 +N1

(
ε̃3 + 1

)
= ρ0

(
I2
∂ω2

∂t
+ (I1 − I3)ω1ω3

)
,

∂M3

∂S
−M1κ2 +M2κ1 −N1ε̃2 +N2ε̃1 = ρ0

(
I3
∂ω3

∂t
+ (I2 − I1)ω1ω2

)
.

(1.75)

1.2.6 Hyperelastic materials

For elastic material stress is related to strain by a constant elasticity tensor C:

S = CE, where C = ∂S
∂E

. (1.76)

Since we are interested in large transformation, we adapt hyper-elastic material with an energy
density function that relates stress and strain known as Helmotz free energy ψ(E), stress in this
case is given by S = ∂ψ

∂E
. Furthermore, C has a major symmetry CIJKL = CKLIJ . Then

δEIJ = ∂EIJ

∂ε̃l

δε̃l + ∂EIJ

∂κl

δκl.
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1.2. Beam model

Where κi and ε̃i are components of the strain vectors in the current configuration: κ = κidi and
ε̃ = ε̃idi.

Keeping in mind that P : δF = S : δE, so, computation of virtual work gives:

Pi(Φ, δΦ) =
∫

B
S : δE dV =

∫
C

∫
S

∂ψ

∂ε̃i

δε̃i + ∂ψ

∂κi

δκi dAdS. (1.77)

Direct identification with Eq.1.61 gives the components on the {di}-basis:

Ni =
∫

S

∂ψ

∂ε̃i

dA, Mi =
∫

S

∂ψ

∂κi

dA. (1.78)

Because, ε̃i and κi are uniform on the section S, the integration and derivation may be switched
to give:

N = ∂Ψ
∂ε̃i

di, M = ∂Ψ
∂κi

di, (1.79)

where Ψ is the free energy density per unit length of the beam-structure:

Ψ :=
∫

S
ψ dA.

This formulation is valid for any hyperelastic model.
A large variety of hyperelastic models is possible (e.g.[GS08]) such as:
— St. Venant-Kirchhoff model:

ψ(E) = λ

2 (Tr(E))2 + µ(Tr(E2)), (1.80)

with the standard Lamé coefficients λ, µ > 0.
— Neo-Hookean model:

ψ(C) = a(Tr(C)) + Γ(
√
detC), (1.81)

with C = FT F,Γ(x) = cx2 − d ln(x) and a, c, d > 0.
— Mooney-Rivlin model:

ψ(C) = a(Tr(C)) + b Tr(det(C)C−1)) + Γ(
√
detC), (1.82)

with a, b, c, d > 0.
For example, St. Venant-Kirchhoff model is applied for metalic material and Neo-Hookean and
Mooney-Rivlin model are mainly used for rubber-like material.
Remark. Our main objective is to study elastic behaviour, so it seems convenient to focus only on
St. Venant-Kirchhoff model for which stress is given linearly in terms of E:

S = λtr(E)I + 2µE. (1.83)
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1.2.7 Energy, internal forces and moments

The aim of this section is to find internal forces and moments, hence it is essential to calculate
Ψ(E). Knowing that

E = 1
2


0 0 Z1

0 0 Z2

Z1 Z2 Z2
1 + Z2

2 + 2Z3 + Z2
3

 . (1.84)

With Z = Z1d1 + Z2d2 + Z3d3 := ε̃ + κ × GM, therefore, by (1.80) energy is given by:

ψ(E) = 1
8

(
λ(Z2

1 + Z2
2 + 2Z3 + Z2

3)2 + 2µ
(
2Z2

1 + 2Z2
2 + (Z2

1 + Z2
2 + 2Z3 + Z2

3)2
))
. (1.85)

Noting the fact that:
Z1 = ε̃1 − κ3ξ2,

Z2 = ε̃2 + κ3ξ1,

Z3 = ε̃3 + κ1ξ2 − κ2ξ1.

(1.86)

We rewrite the volumic density of energy at any point (S, ξ1, ξ2) of the beam with respect to (κi, ε̃i):

ψ(ε̃,κ) = 1
2µ(ε̃2

1 + ε̃2
2) + 1

2(λ+ 2µ)ε̃2
3 + 1

2(λ+ 2µ)(κ2
1ξ

2
2 + κ2

2ξ
2
1) + 1

2µ(ξ2
1 + ξ2

2)κ3 + Ψ∗(ε̃,κ). (1.87)

Integrating (1.87) on the section we obtain the energy density per unit length of the beam-structure:

Ψ(ε̃,κ) = 1
2µ(Aε̃2

1 + Aε̃2
2) + 1

2(λ+ 2µ)Aε̃2
3 + 1

2(λ+ 2µ)(I1κ
2
1 + I2κ

2
2) + 1

2µI3κ
2
3 +

∫
S

Ψ∗dS. (1.88)

Where
∫

S
Ψ∗dS is a higher order polynomial that depends highly on the shape of the section, S is

the cross-section, A is the area of the cross-section and I1, I2 and I3 are the quadratic moments of
acceleration. Note that we model our problem by assuming that the sections are rigid, this leads
to I3 = I1 + I2. This is not true in the general case (e.g. [Lur05]).
Keeping in mind that forces and moments are given by:

Ni = ∂Ψ
∂ε̃i

, Mi = ∂Ψ
∂κi

, (1.89)
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1.3. Dimensionless procedure

therefore,

N1 = µAε̃1 +
∫

S

∂Ψ∗

∂ε̃1
dS N2 = µAε̃2 +

∫
S

∂Ψ∗

∂ε̃2
dS, shear forces.

N3 = (λ+ 2µ)Aε̃3 +
∫

S

∂Ψ∗

∂ε̃3
dS, normal force.

M1 = (λ+ 2µ)I1κ1 +
∫

S

∂Ψ∗

∂κ1
dS M2 = (λ+ 2µ)I1κ2 +

∫
S

∂Ψ∗

∂κ2
dS, bending moments.

M3 = µI3κ3 +
∫

S

∂Ψ∗

∂κ3
dS, torsional moment.

(1.90)

1.3 Dimensionless procedure

We introduce a non-dimensional formulation of the problem thanks to the gyration radius and
Timoshenko cutoff frequency:

ϱ =
√
I1 + I2

A
, ωc = 1

ϱ

√
µ

ρ0
. (1.91)

A non-dimensional bulk-shear ratio is introduced too:

g := λ+ 2µ
µ

.

In term of magnitude ϱ = O(R), where R is a typical size of the cross-section. In the same
spirit, ωc around the frequency of a elastic shear wave (celerity ∼

√
µ/ρ0) having for wavelength ϱ.

It is worthy to mention the relation between Lamé constants, Poisson’s ration ν, Young modulus
E and the shear modulus G := µ (including eventually a shear correction factor [Tim21]). In fact

λ = Eν

(1 + ν)(1 − 2ν) , 2(1 + ν) = E

µ
.

E = µ
3λ+ 2µ
λ+ µ

, ν = λ

2(λ+ µ) .
(1.92)

Hence, g ≃ 2(1 + ν), in addition:
2 ≲ g ≲ 3.

Regarding the geometrical shape of the cross-section and without loss of generality, we suppose that
I1 ≤ I2 < I3, therefore, a cross-section parameter e is eventually introduced [For+16], satisfying:

e = I1

I2
(1.93)
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In which e measures the slenderness of the section shape, we have:

0 < e ≤ 1 .

1.3.1 Non-dimensional variables and relations

The non dimensional length (slenderness ratio), abscissa and time are:

ℓ = L

ϱ
, s = S

ϱ
, t = ωct.

where t is the physical time and the notation t is now used for the non-dimensional time. With
the same convention, for any physical variables v(S, t) previously mentioned, we can associate a
non-dimensional companion v(s, t) as follows:

ε̃i(s, t) = ε̃i(S, t), κi(s, t) = ϱ κi(S, t), ωi(s, t) = 1
ωc

ωi(S, t),

φi(s, t) = 1
ϱ
φ

i
(S, t), θi(s, t) = θi(S, t).

(1.94)

1.3.2 Non-dimensional forces, moments and energy density

It is interesting to observe that physical force and moment N(S, t) and M(S, t) have also non-
dimensional form N(s, t) and M(s, t) related by

N = 1
GA

N, M = 1
ϱ

1
GA

M.

Remark. In addition to linear material constitutive laws, we consider all along this manuscript
linear constitutive laws in terms of κ and ε̃, so, it seems convenient to impose Ψ∗ = 0.

In this case λ+ 2µ ≃ E and
g := E

G
.

For later convenience, let us introduce

ε := ∂φ

∂S
= ε̃ + d3. (1.95)

Hence, non-dimensional quadratic density energy per unit length is given by:

Ψ = 1
2

(
ε2

1 + ε2
2 + g(ε3 − 1)2 + eg

1 + e
κ2

1 + g

1 + e
κ2

2 + κ2
3

)
. (1.96)
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And, non-dimensional dynamical components will be:

N1 = ε1, M1 = ge

1 + e
κ1.

N2 = ε2, M2 = g

1 + e
κ2.

N3 = g(ε3 − 1), M3 = κ3.

(1.97)

It should be mentioned that our approach is general, therefore, we can also adapt a non-linear

Figure 1.2 – Circular cross-section.

constitutive laws. As an example, we consider a beam with circular cross-section
for which I1 = I2, therefore, e = 1. So, by taking the polar coordinates we define ξ as:

ξ1 = r cosα,
ξ1 = r sinα.

(1.98)

Where 0 ≤ r ≤ R and 0 ≤ α ≤ 2π (Figure 1.2). Straight forward calculation gives

N1 = 1
4
(
ε1
(
g
(
κ2

1 + κ2
2 + 4κ2

3 + 2ε2
2 + 2(ε2

3 − 1)
)

+ 4
)

− 2gε3κ1κ3 + 2gε3
1

)
,

N2 = 1
4
(
ε2
(
g
(
κ2

1 + κ2
2 + 4κ2

3 + 2ε2
1 + 2(ε2

3 − 1)
)

+ 4
)

− 2gκ2κ3ε3 + 2gε3
2

)
,

N3 = 1
4gε3

(
2κ2

3 − 2κ3 (κ1ε1 + κ2ε2) + ε3
(
3
(
κ2

1 + κ2
2

)
+ 2ε2

1 + 2ε2
2 + 2

(
ε2

3 − 1
)))

,

M1 = 1
12g

(
3κ3

1 + κ1
(
4κ2

3 + 3
(
κ2

2 + ε2
1 + ε2

2 + 3ε2
3 − 1

))
− 6κ3ε1ε3

)
,

M2 = 1
12g

(
3κ3

2 + κ2
(
4κ2

3 + 3
(
κ2

1 + ε2
1 + ε2

2 + 3ε2
3 − 1

))
− 6κ3ε2ε3

)
,

M3 = 1
6
(
4gκ3

3 + κ3
(
g
(
2
(
κ2

1 + κ2
2

)
+ 6ε2

1 + 6ε2
2 + 3

(
ε2

3 − 1
))

+ 6
)

− 3gε3 (κ1ε1 + κ2ε2)
)
.

(1.99)
This is out of our scope and from now on, we focus only on linear constitutive laws.
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1.3.3 Non-dimensional equilibrium equations

Using the fact that ∂f
∂S

= 1
ϱ

∂f

∂s
and ∂f

∂t
= ωc

∂f

∂t
for any function f(s, t) and by injecting (1.94)

into (1.74)-(1.75) one obtains:

GA

ϱ
(ε′

1 − ε2κ3) + EA

ϱ
(−1 + ε3)κ2 = ρ0Aω

2
cϱ
(
φ̈1 − 2φ̇2ω3 + 2φ̇3ω2 − φ1(ω2

2 + ω2
3)+

φ2(ω1ω2 − ω̇3) + φ3(ω1ω3 + ω̇2)
)
,

GA

ϱ
(ε′

2 + ε1κ3) + EA

ϱ
(−1 + ε3)κ1 = ρ0Aω

2
cϱ
(
φ̈2 + 2φ̇1ω3 − 2φ̇3ω1 + φ1(ω1ω2 + ω̇3)−

φ2(ω2
1 + ω2

3) + φ3(ω2ω3 − ω̇1)
)
,

EA

ϱ
ε′

3 + GA

ϱ
(ε2κ1 − ε1κ2) = ρ0Aω

2
cϱ
(
φ̈3 − 2φ̇1ω2 + 2φ̇2ω1 + φ1(ω1ω3 − ω̇2)+

φ2(ω2ω3 + ω̇1) − φ3(ω2
1 + ω2

2)
)
. (1.100)

EI1

ϱ2 κ′
1 + EAε2(ε3 − 1) − GAε2ε3 + EI3

ϱ2 κ2κ3 − EI2

ϱ2 κ2κ3 = ρ0ω
2
c

(
I1ω̇1 + (I3 − I2)ω2ω3

)
,

EI2

ϱ2 κ′
2 − EAε1(ε3 − 1) + GAε1ε3 − EI3

ϱ2 κ1κ3 + EI1

ϱ2 κ1κ3 = ρ0ω
2
c

(
I2ω̇2 + (I1 − I3)ω1ω3

)
,

GAκ′
3 + EAI2κ1κ2 − EAI1κ1κ2 = ρ0ω

2
c

(
I3ω̇3 + (I2 − I1)ω1ω2

)
.

where the conventions ∂f
∂s

≡ f ′ and ∂f

∂t
≡ ḟ are used.

Now multiplying the first three equations by ϱ

GA
we obtain:

ε′
1 − ε2κ3 + g(−1 + ε3)κ2 = φ̈1 − 2φ̇2ω3 + 2φ̇3ω2 − φ1(ω2

2 + ω2
3) + φ2(ω1ω2 − ω̇3) + φ3(ω1ω3 + ω̇2),

ε′
2 + ε1κ3 − g(−1 + ε3)κ1 = φ̈2 + 2φ̇1ω3 − 2φ̇3ω1 + φ1(ω1ω2 + ω̇3) − φ2(ω2

1 + ω2
3) + φ3(ω2ω3 − ω̇1),

gε′
3 + ε2κ1 − ε1κ2 = φ̈3 − 2φ̇1ω2 + 2φ̇2ω1 + φ1(ω1ω3 − ω̇2) + φ2(ω2ω3 + ω̇1) − φ3(ω2

1 + ω2
2).

(1.101)
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Multiplying the last three equations by 1
GA

and taking into consideration that I1 = eAϱ2

1 + e
, I2 =

Aϱ2

1 + e
, I3 = Aϱ2 and ρ0ω

2
cϱ

2

G
= 1 to get:

ge

1 + e
κ′

1 + gε2(ε3 − 1) − ε2ε3 + 1 + e− g

1 + e
κ2κ3 = e

1 + e

(
ω̇1 − ω2ω3

)
,

g

1 + e
κ′

2 − gε1(ε3 − 1) + ε1ε3 + e(g − 1) − 1
1 + e

κ1κ3 = 1
1 + e

(
ω̇2 − ω1ω3

)
,

κ′
3 + g(1 − e)

1 + e
κ1κ2 = ω̇3 − 1 − e

1 + e
ω1ω2.

(1.102)

Remark. We can rewrite (1.101) and (1.102) in terms of φi and ωi by using the fact that (1.95)
in a non-dimensional form is:

ε1 = φ′
1 + φ3κ2 − φ2κ3,

ε2 = φ′
2 + φ1κ3 − φ3κ1,

ε3 = φ′
3 + φ2κ2 − φ1κ2.

(1.103)

Remark. As seen in (1.101) and(1.102), static equilibrium is a first order differential system with
respect to strains, so this equilibrium is controlled only by κi and εi, this idea will be essential in
our analysis in Chapter three and four.

1.3.4 Planar case

For motion in the plane (d1,d3), the kinematics of the beam is governed by the placement

φ(S, t) = φ1d1 + φ3d3. (1.104)

And a rotation tensor, that is controlled by a unique scalar angle θ(S, t) measuring the rotation of
the section around d2 (in a trigonometric way). Hence, R(S, t) is

R =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 . (1.105)

Therefore,

∂R
∂S

RT =


0 0 ∂θ

∂S
0 0 0

− ∂θ

∂S
0 0

 ,
∂R
∂t

RT =


0 0 ∂θ

∂t
0 0 0

−∂θ

∂t
0 0

 . (1.106)
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In consequence, spin and twist may be expressed as :

κ(S, t) = κ2d2, with κ2(S, t) = ∂θ

∂S
.

ω(S, t) = ω2d2, with ω2(S, t) = ∂θ

∂t
.

(1.107)

Note that for this plane motion d2 = ey is neither time nor space dependent.
Straight forward computations show that for large transformation, the components of ε in the
moving directors frame are:

ε1(S, t) =
∂φ1

∂S
+ φ3κ2, ε2(S, t) = 0, ε3(S, t) =

∂φ3

∂S
− φ1κ2. (1.108)

Internal energy, forces and moments, equilibrium relations

Keeping in mind that a Kirchhoff-Saint Venant model of isotropic material is used for which
the Helmholtz free energy per unit length is quadratic with regard to strain measures:

Ψ = 1
2AGε1

2 + 1
2AE(ε3 − 1)2 + 1

2EI2κ
2
2. (1.109)

Hence, the stress resultants depend linearly on the conjugate strains:

N1 = GAε1, shear force.
N3 = EA (ε3 − 1), normal force.
M2 = EI2 κ2 bending moment.

(1.110)

In the directors frame, force and moment vectors are:

N(S, t) = N1d1 +N3d3, M(S, t) = M2d2.

Equilibrium relations are (e.g. [LMLR18]):

∂N
∂S

+ q = ρ0A
∂2φ

∂t2
,

∂M
∂S

+ ε × N + m = ρ0I2
∂2θ

∂t2
.

(1.111)
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1.4. Conclusion

Using (1.15) and projecting the first equation onto d1 and d3 and the second onto d2 one obtains
respectively:

GA
∂ε1

∂S
+ EA(ε3 − 1)κ2 + q1 = ρ0A

(∂2φ1

∂t2
+ 2

∂φ3

∂t

∂θ

∂t
− φ1

∂θ

∂t

2
+ φ3

∂2θ

∂t2

)
,

EA
∂ε3

∂S
−GAε1κ2 + q3 = ρ0A

(∂2φ3

∂t2
− 2

∂φ1

∂t

∂θ

∂t
− φ3

∂θ

∂t

2
− φ1

∂2θ

∂t2

)
,

EI
∂κ2

∂S
− EAε1(ε3 − 1) +GAε1ε3 +m2 = ρ0I2

∂2θ

∂t2
.

(1.112)
where (1.110) has been used.

Dimensionless form

In this case one choose ϱ =
√
I2

A
and e = 0, therefore, dimensionless equilibrium (1.112) will

be:
ε′

1 + g(ε3 − 1)κ2 + q1 = φ̈1 + 2φ̇3θ̇ − φ1θ̇
2 + φ3θ̈,

gε′
3 − ε1κ2 + q3 = φ̈3 − 2φ̇1θ̇ − φ3θ̇

2 − φ1θ̈,

gκ′
2 + ε1ε3 − gε1(ε3 − 1) +m2 = θ̈.

(1.113)

Note that q and m will play an essential role in the next chapter.

1.4 Conclusion

In this chapter, we gave the general formulation of our problem in a dimensionless way, equi-
librium equations of a Timoshenko beam was obtained by using the principal of virtual work. This
equilibrium is given for hyperelastic material by using the Saint Venant Kirchhoff model.
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Chapter 2

TIMOSHENKO BEAM AND WINKLER

FOUNDATION

The most common model for the elastic foundation is the Winkler model [Win67], which re-
gards the foundation as a series of separated springs without coupling effects between each other.
Many scientists aimed to study this foundation. Among them, Lee [Lee98] conducted the dynamic
response of a Timoshenko beam on a Winkler foundation subjected to a moving mass. He found
that the separation of the mass from the beam may be avoided by the presence of an Elastic
foundation of large stiffness. Later on, Ergüven and Gedikli [EG03] presented a fast and accurate
finite element method for Timoshenko beam on winkler foundation. A while later, Ruge and Birk
[RB07] compared infinite Timoshenko and Euler–Bernoulli beam models on Winkler foundation in
the frequency- and time-domain and concluded that Timoshenko beam is more advantage when
dealing with transient dynamic problems in unbounded domains. Latter, Ghannadiasl and Mofid
[GM15] conducted vibration of elastically restrained Timoshenko beam on a partially Winkler by
the mean of dynamic green function where numerical examples are shown to illustrate the efficiency
and simplicity of the new formulation based on the Green function.

In this chapter, we consider planar Timoshenko beam with linear constitutive laws and linear
geometrical stress-strain relations that lie on Winkler foundation.
We start by studying in a dynamical way the impact of the rigid wall on a Timoshenko beam where
exact solutions were found by applying the modal analysis and by imposing choc type boundary
conditions. Then we deduce the dispersion relation when this wall is elastic, this relation will depend
highly on the wall rigidity. Later, a finite longitudinal load is imposed at the boundary but the
beam is surrounded by two-parameters foundations. In many practical case this foundation have
to increase the critical buckling stress. Furthermore, this foundation exerts an external force and
moment per unit length (for example by means of springs that act on the boundary of the cross-
section) in order to control displacement and rotation behaviour of the cross-section [DR95; RS91].
Geometrical general problem under these hypotheses is presented in a dimensionless form that leads
to Haringx approach in the first section. The Engesser model is presented in a dimensional form and
for the same two-parameter foundation too. A comparison between the two problems is performed
where buckling loads and buckling modes are exhibited in a general way first and for pinned-pinned
boundary conditions in a second time. A finest analysis of buckling load was introduced where both
values of the foundation stiffness and slenderness ratio are involved. This discussion is enriched by
incorporating the yield limit of the material constituent of the beam. It leads to a simple criterion
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Chapter 2 – Timoshenko beam and Winkler foundation

that may be exploited by engineering analysis.

2.1 General ingredients

The kinematics of the beam is governed by the displacement u(S, t) = u1(S, t)d1(S, t) +
u3(S, t)d3(S, t) of any point of the center-line and rotation θ(S, t) of the section around d2. With the
same formalism, the internal force acting on the beam is of the form N(S, t) = N1d1 +N3d3 where
N1(S, t) is the shear force and N3(S, t) is the normal force and the moment M(S, t) = M2d2 where
M2(S, t) is the bending moment. Linear constitutive laws and geometrical relations are assumed:

N1 = GA(∂u1

∂S
− θ), N3 = EA

∂u3

∂S
, M2 = EI

∂θ

∂S
. (2.1)

2.1.1 Equilibrium relations

Reminding that equilibrium relations states :

∂N
∂S

+ q = ρ0A
∂2u
∂t2

,
∂M
∂S

+
∂φ

∂S
× N + m = ρ0I2

∂2θ

∂t2
,

where, according to [HLML21]:
∂φ

∂S
= ε̃ + d3 ,

and for which ε̃ = ε̃1d1 + ε̃3d3, where ε̃1(S, t) = ∂u1
∂S

− θ is the shear strain and ε̃3(S, t) = ∂u3
∂S

is the
longitudinal strain. So projecting along directors, one obtains the following system:

∂N1

∂S
+ ∂θ

∂S
N3 + q1 = ρ0A

(
∂2u1

∂t2
+ 2∂u3

∂t

∂θ

∂t
+ u3

∂2θ

∂t2
− u1

∂θ

∂t

2)
,

∂N3

∂S
− ∂θ

∂S
N1 + q3 = ρ0A

(
∂2u3

∂t2
− 2∂u1

∂t

∂θ

∂t
− u1

∂2θ

∂t2
− u3

∂θ

∂t

2)
,

∂M2

∂S
+ (1 + ε̃3)N1 − ε̃1N3 +m2 = ρ0I2

∂2θ

∂t2
.

(2.2)

The present analysis concerns an infinitesimal perturbation, so, in this case u1, ε̃1, θ and their
derivatives are infinitesimal quantities. Neglecting ε̃3N1 in (2.2) is usually interpreted as an inex-
tensible approximation. Accordingly, a linearized version of (2.2) is obtained:

GA
(∂2u1

∂S2 − ∂θ

∂S

)
+ q1 = ρ0A

∂2u1

∂t2
,

EA
∂2u3

∂S2 + q3 = ρ0A
∂2u3

∂t2
,

EI2
∂2θ

∂S2 +GA(∂u1

∂S
− θ) +m2 = ρ0I2

∂2θ

∂t2
.

(2.3)
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2.2. Rigid wall

The dimensionless form of (2.3) is given by

u′′
1 − θ′ + q1 = ü1,

gu′′
3 + q3 = ü3,

gθ′′ − θ + u′
1 +m2 = θ̈.

(2.4)

Where the fact that ui(s, t) = ui(S, t)
ϱ

, q1 =
ϱq1
GA

, q3 =
ϱq3
EA

and m2 = m2

GA
have been used.

2.2 Rigid wall

In this section we study in a dynamical way, a Timoshenko beam surrounded by a rigid wall that
exerts a kinematical constraint. Noticing that the equation satisfied by u3 is a scalar autonomous
equation, we focus hereafter on the coupled system (u1, θ). Therefore, orientation of the section is
the only degree of freedom in this case, this will lead to a scalar problem that depends uniquely on
one variable. The force exerted by the wall on the beam could be expressed in terms of this variable.
In order to solve this dynamical problem, we are interested first in the modal analysis given for a
specific boundary conditions that respects Sturm-Liouville criterion. For these boundary conditions,
eigenmodes are given in an analytical way. By imposing a choc type initial value condition, we
deduce the temporal solutions.

Rigid wall Rigid wall

Rigid wallRigid wall

Rigid wallRigid wall

Rigid wallRigid wall

Figure 2.1 – Beam surrounded by a rigid wall.
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Chapter 2 – Timoshenko beam and Winkler foundation

2.2.1 Problem statement

The rigid wall exerts a transverse constraint on the beam (figure (2.1)) that is given by:

u1(s, t) = m2(s, t) = 0, ∀s ∈ [0, ℓ], ∀t ∈ R+. (2.5)

We deduce directly from (2.5) that q1 = θ′ and:

gθ′′ − θ = θ̈. (2.6)

By using the separation of variable and letting θ(s, t) = Φ(s)T (t) we can deduce that differential
equations satisfying by Φ(s) and T (t) are given by:


g

Φ′′

Φ − 1 = −ω2,

T̈ + ω2T = 0.
(2.7)

Looking at the spatial equation we can remark that the equation is of the form:

Φ′′(s) + 1
g

(ω2 − 1)Φ(s) = 0. (2.8)

Therefore, our solution will be of the form

Φ(s) = C1e
ks + C2e

−ks If ω2 < 1 where k2 = 1
g

(1 − ω2) > 0, (2.9)

and

Φ(s) = C3 cos(ks) + C4 sin(ks) If ω2 > 1 where k2 = 1
g

(ω2 − 1) > 0. (2.10)

2.2.2 Modal decomposition: Sturm-Liouville criterion

In this section we introduce a modal decomposition method to solve the problem without any
numerical approach. This modal has an orthogonal character given by Sturm-Liouville criterion.
To do so, let us introduce first the scalar product defined by

< Φ,Γ >=
∫ ℓ

0
ΦΓds.

We will consider a basis mode {Φn, ωn} where each mode is a solution of:

Φ′′
n + 1

g
(ω2

n − 1)Φn = 0. (2.11)
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2.2. Rigid wall

We can apply Sturm-Liouville criterion and after multiplying by Φm and integrating we get
∫ ℓ

0
Φ′′

nΦmds+ 1
g

(ω2
n − 1)

∫ ℓ

0
ΦnΦmds = 0, (2.12)

and by integration by part we get

−
∫ ℓ

0
Φ′

nΦ′
mds+ 1

g
(ω2

n − 1)
∫ ℓ

0
ΦnΦmds = −

[
Φ′

nΦm

]ℓ

0
. (2.13)

Repeating the procedure with Φm we get

−
∫ ℓ

0
Φ′

nΦ′
mds+ 1

g
(ω2

m − 1)
∫ ℓ

0
ΦnΦmds = −

[
Φ′

mΦn

]ℓ

0
. (2.14)

When subtracting (2.13) and (2.14) we get

(ω2
n − ω2

m) < Φn,Φm >= g
[
Φ′

mΦn − Φ′
nΦm

]ℓ

0
. (2.15)

To ensure the orthogonality basis, we should impose some boundary conditions (for example, for
glued beam Φ = 0 and for free beam Φ′ = 0).

2.2.3 Discussion

The solution of (2.11) is given by Φn(s) = a cosh(kns)+b sinh(kns) if 0 < ω2
n < 1 (low frequency

domain) and Φn(s) = c cos (kns) + d sin(kns) if ω2
n > 1 (high frequency domain). Where kn =

±
√
ω2

n − 1
g

for high frequency and kn = ±
√

1 − ω2
n

g
for low frequency.

To ensure orthogonality, we impose the boundary condition

θ(0, t) = 0 M2(ℓ, t) = 0 ∀t. (2.16)

We can remark that the low frequency case is impossible. In fact θ(0, t) = Φ(0)T (t) = 0 implies
a = 0, therefore, Φn(s) = b sinh(kns). Now M2(ℓ, t) = gΦ′(ℓ) = 0 gives knb cosh(kns) = 0 but
cosh(kns) and kn are different from zero, hence, b = 0 so, Φn(s) = 0, ∀n.
Repeating the same procedure for high frequency case we deduce that c = 0 and kd cos(kℓ) = 0.

— If d = 0 therefore, Φn = 0.
— If k = 0 so, ω = 1 and Φ′′(s) = 0 so, Φ(s) = as + b and since Φ(0) = 0 and Φ′

n(ℓ) = 0 so,
Φn(s) = 0

Therefore, d ̸= 0 and it is supposed d = 1 hereafter, and k ̸= 0, so

Φn(s) = sin(kns), where kn = (2n+ 1)π
2ℓ = ±

√
ω2

n − 1
g

. (2.17)
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Chapter 2 – Timoshenko beam and Winkler foundation

We know that our temporal solution is given by Tn(t) = ancos(ωnt) + bnsin(ωnt) so

θ(s, t) =
∑

n

Φn(s)Tn(t) =
∑

n

sin(kns)(an cos(ωnt) + bnsin(ωnt)). (2.18)

2.2.4 Dynamics after a choc

We impose a choc type initial conditions

θ(s, 0) = 0, θ̇(s, 0) = Ω0ℓδ(s− ℓ) ∀t. (2.19)

Where Ω0 is constant and δ is the dirac function. We notice first that θ(s, 0) = 0 implies
∑

n

anΦn(s) =

0, therefore,
<
∑

n

anΦn(s),Φm >= 0, for an arbitrary m, (2.20)

where < ., . > is the dot product.
By using Sturm-Liouville and the boundary conditions we can remark that our basis is orthogonal
and therefore, we get an = 0 ∀n, hence θ(s, t) =

∑
n

bnΦn(s) sin(ωnt).

By time derivation θ̇(s, t) =
∑

n

bnΦn(s)ωn cos(ωnt), so, using now (2.19) and projecting along modal

basis, we have
< θ̇(s, 0),Φm > = <

∑
n

bnΦnωn,Φm >,∫ ℓ

0
Ω0ℓδ(s− ℓ) sin(kns)ds =

∑
n

bnωn

∫ ℓ

0
ϕnϕmds.

(2.21)

Keeping in mind that Φn is an orthogonal basis:
∫ ℓ

0
Ω0ℓδ(s− ℓ) sin(kns)ds = bnωn

∫ ℓ

0
sin(kns)2ds. (2.22)

Using the fact that
∫ ℓ

0
sin(kns)2ds = ℓ

2(1 − sin(2knℓ)
2knℓ

) = ℓ

2, we obtain:

bn = 2Ω0

ωn

sin((2n+ 1)π
2 ). (2.23)

Therefore, the general form of the solution will be

θ(s, t) = 2Ω0
∑

n

(−1)n

ωn

sin(kns) sin(ωnt). (2.24)

This solutions is illustrated in figure (2.2).
It should be mentioned that the dimensionless dynamical variables are given by

N1 = u′
1 − θ, N3 = gu′

3, M2 = gθ′. (2.25)
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2.3. Elastic wall

So using (2.24) and the fact that u1 = 0 we obtain:

N1(s, t) = 2Ω0
∑

n

(−1)n−1

ωn

sin(kns) sin(ωnt),

M2(s, t) = 2gΩ0
∑

n

(−1)n

ωn

kn cos(kns) sin(ωnt),

q1(s, t) = 2Ω0
∑

n

(−1)n

ωn

kn cos(kns) sin(ωnt).

(2.26)

We conclude that load supported by the rigid wall is explicitly obtained

Figure 2.2 – Influence of the boundary condition on the orientation θ(s, t).

Remark. Euler-Bernoulli beam model have the kinematical constraint u′
1 = θ, so, our approach

for rigid wall is not valid for this model because u′
1 = 0 =⇒ θ = 0 and we obtain zero solution in

this case.

2.3 Elastic wall

We suppose now that this beam is surrounded by an elastic wall that controls the transversal
displacement. This relaxation will lead to two degrees of freedom in terms of displacement and
orientation of the section. Therefore, we obtain a coupled system in terms of u1 and θ and a wave
equation for u3. By re-writting the system as an eigenvalue problem, we find, in an analytical way
the dispersion relation, we also present a criterion of solutions that depends on the rigidity of the
wall and on the material of the beam.
Kinematical constraint will be in this case (in a dimensional form):

q1(S, t) = −Ku1(S, t), q3 = m2 = 0. (2.27)
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Chapter 2 – Timoshenko beam and Winkler foundation

Figure 2.3 – Beam surrounded by an elastic wall that controls the displacement.

Where K is the translational stiffness. So we write (2.4) as:

u′′
1 − θ′ − gκu1 = ü1,

gu′′
3 = ü3,

gθ′′ − θ + u′
1 = θ̈,

(2.28)

Where κ = KI

EA2 is the dimensionless stiffness. To solve gu′′
3 = ü3, we impose the change of variable:

v = s− gt, w = s+ gt. (2.29)

That changes the equation into:
∂2u3

∂v∂w
= 0, (2.30)

Therefore, general equation is given by

u3(s, t) = F (s− gt) +G(s+ gt). (2.31)

In other words, solutions are sums of a right traveling function F and a left traveling function
G ("Traveling" means that the shape of these individual arbitrary functions with respect to s stays
constant), however, the functions are translated left and right with time at the speed g.
Now we aim to solve the coupled equation

u′′
1 − θ′ − gκu1 = ü1,

gθ′′ − θ + u′
1 = θ̈.

(2.32)
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

Since we are interested in harmonic vibrations, solutions of the previous system are defined by

u1 = Uei(ks−ωt), θ = Θei(ks−ωt),

where U,Θ are constant and k ∈ C and ω ∈ R+ are wavenumber and angular frequency. Therefore,
space(resp. time) derivation gives a factor ik(resp. −iω). The system becomes of the form

(K − ω2M)U = 0, (2.33)

where

K =
k2 + gκ ik

−ik 1 + gk2

 , M =
1 0

0 1

 , (2.34)

are the rigidity matrix and the mass matrix and U = (Uei(ks−ωt),Θei(ks−ωt)).
Since we are searching for non trivial U so, first we need to solve the dispersion relation P(k2, ω2) =
0, where

P(k2, ω2) = det(K − ω2M) = gk4 +
(
g2κ− (g + 1)ω2

)
k2 + ω4 − (gκ+ 1)ω2 + gκ. (2.35)

Hence for W = ω2 fixed we get a second degree polynomial with respect to K = k2 where the
discriminant of this polynomial is given by:

∆ = (g − 1)2W 2 + 2g
(
2 − gκ(g − 1)

)
W + g2κ(g2κ− 4). (2.36)

Solving ∆ = 0 with respect to W we notice that:

W1 =
g
(
(g − 1)gκ− 2

)
− 2

√
g2(κ+ 1 − gκ)

(g − 1)2 ,

W2 =
g
(
(g − 1)gκ− 2

)
+ 2

√
g2(κ+ 1 − gκ)

(g − 1)2 .

(2.37)

So, by using (2.37) and plotting the dispersion curve in fig.(2.4) we remark that:
∗ For free motion i.e. κ = 0 we have 2 distinct real roots of opposite signs.
∗ For 0 < κ ≤ 4

g2 we obtain complex solutions.

∗ For κ > 4
g2 we re-observe two distinct real roots.

Indeed this approach needs potentially more investigation.

2.4 Buckling of Timoshenko beam under two-parameters
Winkler foundations

We aim in this section to expose buckling solutions of a plane, quasi-static Timoshenko beam
with small transformation subjected to a longitudinal force and surrounded by an elastic wall mod-
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Figure 2.4 – Dispersion curves for various κ.

eled by two-parameters Winkler foundation. To do so, we impose a finite longitudinal compression
load:

P = −Pd3, P ≥ 0 .

This load causes the buckling of the beam. This is countered by the foundations. For elastic foun-
dation, the external applied force per unit length and external applied moment per unit length are
respectively:

q(S) = −K1u1d1, m(S) = −K2θ d2 ,

where K1 and K2 are translational and rotational stiffness [CP88; WXK91]. The motivation of the
applied moment m(S) may be surprising. In Fig.2.5 a discrete construction of such external load is
justified. If the distance between each rigid transversal bar is small enough, a continuous modeling
leads to incorporate m(S) = −K2θ d2 in the model. This stiffness can be caused by the tension in
an elastic membrane connecting the ends of the Winkler springs (Filonenko-Borodich model), or
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

as the shear stiffness of a shear layer (Pasternak model) [DR95]. Such load may be observed in real
life as for auger blade embedded into the soil.

Figure 2.5 – Motivation for the rotational reaction of the soil. Left: a beam structure in blue with
glued rigid transversal blades embedded in an elastic media is modeled by a discrete system of
springs. Right: an auger blade (Photo courtesy of N.Belhabchi.)

2.4.1 Equilibrium relations

Static equilibrium in this case is given by:

∂N3

∂S
− ∂θ

∂S
N1 = 0 ,

∂N1

∂S
+ ∂θ

∂S
N3 −K1u1 = 0 ,

∂M2

∂S
+ (1 + ε̃3)N1 − ε̃1N3 −K2θ = 0 .

(2.38)

The present analysis concerns an infinitesimal perturbation superimposed on a finite longitudi-
nal compression induced by a finite force P. So repeating the same linearisation stated before, a
linearized version of (2.38) is obtained:

GA(∂
2u1

∂S2 − ∂θ

∂S
) − ∂θ

∂S
P −K1u1 = 0,

EI
∂2θ

∂S2 + (∂u1

∂S
− θ)(GA+ P ) −K2θ = 0,

(2.39)

this corresponds to the application of Haringx model for Winkler foundation [Ced+10; Cha+13].
More precisely, if P is set to zero we recover the model from [DR95] in its static version.
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Chapter 2 – Timoshenko beam and Winkler foundation

2.4.2 Non-dimensionalization procedure

Non-dimensional formulation of the problem (2.39) is introduced thanks to the following vari-
ables:

ϱ =
√
I

A
, g = E

G
, κ1 = K1

E

I

A2 , κ2 = K2

EA
, ϵ = P

EA
. (2.40)

For compression in the elastic regime 0 < ϵ < ϵyield where ϵyield is nothing else than the strain limit
for which irreversible transformation occurs. For translational and rotational stiffness κi, κi = 0
in absence of foundation and κi = ∞ for a rigid foundation. This section focuses on the cases for
which κi < 1 that corresponds to foundations softer than the structures.
Note that ϱ = R/2 for circular cross-section of radius R therefore ℓ is twice the standard slenderness
ratio. More generally, beam model is justified for ℓ ≳ 20. The terminology slender beam is used if
ℓ ≳ 40 whereas 20 ≲ ℓ ≲ 40 characterizes a thick beam.
Therefore (2.39) takes the form:

u′′ − gκ1u− (1 + gϵ)θ′ = 0,
gθ′′ + (1 + gϵ)u′ − (1 + gϵ+ gκ2)θ = 0,

(2.41)

Another model widely used for buckling is proposed by Engesser [Eng91] for which the non-
dimensional equilibrium relations are in case of two-parameter foundations:

(1 − gϵ)u′′ − gκ1u− θ′ = 0,
gθ′′ + u′ − (1 + gκ2)θ = 0.

(2.42)

Figure (2.6) represents the difference between Haringx and Engesser’s hypothesis for beam defor-
mation where it is clear that these two hypotheses are identical for Euler Bernoulli’s beam.

u′

γ := u′ − θ
N3 ≃ P

θ

P

N3 ≃ −P
γ := u′ − θ

θ

P

u′

Figure 2.6 – Left, the assumption for the normal force in the Engesser beam–column model. The
normal force is parallel to the beam axis. Right, the assumption for the normal and shear forces
in the Haringx beam–column model. The normal force is parallel to the normal of the deformed
cross-section.

2.4.3 Buckling modes

Secular relations and eigenfunctions

For harmonic solution u(s) = Ueiks and θ(s) = Θeiks, the linear differential system becomes
KV = 0 where V = (U,Θ)T and the (hermitian) rigidity matrix is, for (2.41) and (2.42) respec-
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

tively:

KH =
 k2 + gκ1 ik(1 + gϵ)

−ik(1 + gϵ) 1 + g(k2 + ϵ+ κ2)

 ,
KE =

k2(1 − gϵ) + gκ1 ik

−ik 1 + g(k2 + κ2)

 .
(2.43)

Non-trivial solutions arise if det (K) = 0 what may be written as a secular equation:

PH(ϵ, k) = g
(
k2
(
κ2 + k2 − ϵ(gϵ+ 1)

)
+ κ1

(
gκ2 + g

(
ϵ+ k2

)
+ 1

))
,

PE(ϵ, k) = g
(
k2
(
κ2(1 − gϵ) − ϵ

(
gk2 + 1

)
+ k2

)
+ κ1

(
gκ2 + gk2 + 1

))
.

(2.44)

By solving P(ϵ) = 0 (for a fixed k), one finds a polynomial with respect to ϵ whose real positive
roots are

ϵH =
gκ1 +

√
(gκ1 + k2)

(
gκ1 + (1 + 4gκ2)k2 + 4gk4

)
− k2

2gk2 ,

ϵE = κ2 + k2

1 + g(κ2 + k2) + κ1

k2 .

(2.45)

Hence explicit expressions of the critical strain are obtained for a given structure (the material
parameter g and the stiffnesses κi of the foundations) and a given wavenumber k. This latter will
be fixed by boundary conditions. Without foundation the Euler critical load is k2EI/L2, where
k = k/ϱ is the dimensional wavenumber. In a non-dimensional form the critical strain associated
to Euler critical load is ϵeu = k2. By taking κ1 = κ2 = 0 and applying Taylor expansion to (2.45)
for small k and taking first approximation one gets:

ϵ = k2 + O(k4), (2.46)

for both models. Hence the two models are in first approximation equal to Euler’s critical load if
no foundation is present and if k ≪ 1.

Figure 2.7 presents the variation of ϵH and ϵE for various stiffnesses ; the non-dimensional Euler’s
critical strain ϵeu = k2 is presented too. For k ≪ 1 Haringx and Engesser’s models give the same
estimation of critical strain ϵ. Of course, this estimation is sensible to the stiffnesses κi. On the other
hand, for 1 ≲ k, the Haringx and Engesser’s models gives distinct estimations of ϵ but curiously
these estimations are in first approximation independent of the stiffness of the foundation. Note
that ϵE < ϵH in this regime as mentioned in [LL18].

Conversely, for fixed ϵ, P is a second degree polynomial with respect to k2. Hence u(s) and θ(s)
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Figure 2.7 – Variation of the buckling load ϵ = P

EA
with respect to the wavenumber k for various

κ1 and κ2 where g = 5/2.

have the general form:

u(s) = aeik1s + be−ik1s + ceik2s + de−ik2s,

θ(s) = Ξ(k1)(aeik1s − be−ik1s) + Ξ(k2)(ceik2s − de−ik2s),
(2.47)

where a, b, c and d will be defined by boundary conditions. Here, (k1)2 and (k2)2 are the two roots
of P(k2) = 0. The expression of θ(s) is obtained by solving K11U + K12Θ = 0 therefore Θ = iΞU
where iΞ = −K11/K12. In details:

ΞH = k
1

1 + gϵ
+ gκ1

k

1
1 + gϵ

, ΞE = k(1 − gϵ) + gκ1

k
. (2.48)

Taylor expansion in terms of ϵ gives:

ΞH = ΞE + O(κ1ϵ

k
, kϵ2). (2.49)

By construction κ2 is not explicit in Ξ but intervenes implicitly through ϵ.

Pinned-pinned beam

Without loss of generality, we consider a pinned-pinned beam for which (non-dimensional)
boundary conditions are in terms of kinematical variables u(s) = 0, θ′(s) = 0 at s = 0 and
s = ℓ. This forms a set of four linear equations in terms of X = (a, b, c, d)T that may be written
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

algebraically as MX = 0 with

M =


1 1 1 1

k1Ξ(k1) k1Ξ(k1) k2Ξ(k2) k2Ξ(k2)
eik1ℓ e−ik1ℓ eik2ℓ e−ik2ℓ

k1Ξ(k1)eik1ℓ k1Ξ(k1)e−ik1ℓ k2Ξ(k2)eik2ℓ k2Ξ(k2)e−ik2ℓ

 . (2.50)

Again, non trivial solutions exist if det (M) = 0 that gives the following relation:

(
k1Ξ(k1) − k2Ξ(k2)

)2
sin(k1ℓ) sin(k2ℓ) = 0. (2.51)

Direct computation shows that k1Ξ(k1) ̸= k2Ξ(k2). First it is observed that k1 and k2 play a similar
role therefore one focuses on k ≡ k1 in the following. According to (2.51) non-trivial solutions exist
only if sin(kℓ) = 0, this implies that k must be chosen among an infinite countable set of values,
more precisely:

kn = nπ

ℓ
, n ∈ N∗. (2.52)

One should note that in order to respect beam hypotheses the dimensional wavelength λ has to
satisfy λ > 2R = 4ϱ for circular cross-sections, or in a non-dimensional way λ = λ/ϱ > 4 and since
λn = 2π/kn > 4 so the following conditions are obtained:

n <
ℓ

2 , kn ≤ 1 . (2.53)

From this information, it means that even for a thick beam, k must be explored in a variation domain
]0, 1]. According to equation (2.50), the modal amplitude may be obtained up to an arbitrary
constant, by solving:

AY = −aZ, where Y = (b, c, d)T ,

with Aij = Mij and Zi = Mi1 for 1 ≤ i ≤ 3 and 2 ≤ j ≤ 4. Fixing a = 1 and kn = nπ/ℓ one
obtains:

u(s) = sin(nπ
ℓ
s),

θ(s) = Ξ(nπ
ℓ

) cos(nπ
ℓ
s).

(2.54)

Hence ϵ and κi intervenes in the modes chapes only through the parameter Ξ(k, ϵ, κ). In other words,
the general shape of the eigenmode is not qualitatively modified by the loads ϵ and the stiffnesses
κi of the foundations. As Ξ is distinct for Haringx and Engesser models, the mode shapes may
differ for the two models even if the value of critical load obtained for each model is similar.
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Chapter 2 – Timoshenko beam and Winkler foundation

General case

For a general boundary conditions k could still be organized as an increasing countable sequence
{kn}n where kn = O(n

ℓ
). In the following, it is considered that the variation domain ]0, 1] of k,

obtained for pinned-pinned boundary conditions, is valid for other boundary conditions. From
Fig.2.7, it is observed that in this domain, the estimation ϵ(k) mainly coincides for Engesser and
Haringx models.
The expression of the eigenmodes still refers to (2.47) but the detailed expression may be less clear
than (2.54). However, the general methodology explained above (2.54) holds.

2.4.4 Buckling limit

Till now the buckling mode is not fixed. As this latter must respect the boundary conditions, the
buckling mode is associated to a wavenumber kb among the list {kn}. Even if {kn} is an increasingly
sorted list, kb is not a priori k1. Indeed, as kb prescribes the first buckling mode, it must be chosen
in such a way that it corresponds to the minimal critical strain:

ϵb := ϵ(kb) = min
n

(ϵ(kn)) . (2.55)

Continuous approximation of the critical strain

Solving (2.55) consists on a discrete optimisation. In order to have a first overview of the solution,
the problem is here explored in its continuous version. Indeed, from Fig.2.7, ϵ(k) is a strictly convex
function for any model (and for fixed κi). This ensures the existence and uniqueness of a global
minimum of ϵ(k).
Finding in R∗+ such position kmin of the minimum leads to calculate ∂ϵ

∂k

∣∣∣
kmin

= 0. According to
(2.45) one obtains for Haringx and Engesser respectively:

∂ϵH

∂k
=

2k6 − κ1
(
gκ1 + 2gκ2k

2 +
√

(gκ1 + k2) (gκ1 + 4gk4 + 4gκ2k2 + k2) + k2
)

k3
√

(gκ1 + k2) (gκ1 + k2 (4gκ2 + 4gk2 + 1))
= 0,

∂ϵE

∂k
= 2k

(gκ2 + gk2 + 1) 2 − 2κ1

k3 = 0 .

(2.56)

Knowing that g > 0, κ1 > 0 and κ2 > 0, we deduce the solution of (2.56)

kH
min =

√
1
2

√
κ1

(
1 +

√
1 + 4g (κ2 + √

κ1)
)
,

kE
min =

√√√√√
κ1 (1 + gκ2)
1 − g

√
κ1

.

(2.57)
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

As κi < 1, leading terms approximation with respect to κ1 and κ2 gives, for both models:

kmin ∼ κ
1/4
1 . (2.58)

This behaviour of kmin is illustrated in Figure (2.8).
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Figure 2.8 – Solutions kmin of (2.57) versus κ1 for various κ2. Comparison between Haringx and
Engesser models with g = 5/2.

Euler buckling model

One can obtain the rigidity matrix, the critical strain as well as the wavenumber by applying
the same procedure mentioned before to Euler beam model. A detailed analysis concerning this
calculation will be given in the appendix where the relation κ1 = k4 is obtained for this model.
This relation was presented in Figure (2.8).

Discrete analysis of the critical strain

The preceding analysis may be used to define the buckling wavenumber kb ∈ {kn} and then ϵb.
Practically, two cases have to be studied.

Thick beam on soft foundations

Considering first the case where kmin ≤ k1 (and k1 ≤ 1). Since ϵ(k) is an increasing function
for k ≥ kmin then the criterion (2.55) is satisfied for kb = k1. Note that kb could be far larger than
kmin and the only attainable information is kb = O(π/ℓ) < 1.
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Chapter 2 – Timoshenko beam and Winkler foundation

According to (2.58) and the discussion in the section 2.4.3, kmin ≤ k1 is satisfied only if κ1/4
1 <

O(π/ℓ), or in a more proper (non-dimensional or dimensional) version, if:

κ1ℓ
4 ≪ 1, K1L

4

EI
≪ 1 .

Such situation appears if the foundation is soft or if the beam has a moderate slenderness ratio.
This regime is called small-regime hereafter, as both the length and the stiffness are small numbers.
From (2.45) and since κ1 ∼ k4

min < k4
b ≤ 1 and κ2 < 1, the buckling strains estimated by the two

model are similar. It may be approached by:

ϵb(kb) = k2
b

1 + gk2
b

+ κ1

k2
b

+ κ2

(1 + gk2
b )2 , (2.59)

for thick or slender beam. For thin structure, kb ≪ 1, allows some simplification:

ϵb(kb) = k2
b + κ1

k2
b

+ κ2 . (2.60)

Buckling shape is illustrated in Fig.2.10 for pinned-pinned boundary conditions.

Figure 2.9 – Shape of a pinned-pinned beam under a Winkler foundation. g = 5/2, ℓ = 40, κ1 =
10−8, κ2 = 10−4. The buckling mode is associated to the smallest strain that is the first one: kb = π/ℓ
with a critical strain ϵb = 0.0063.
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

Thin beam on stiff foundations

For kmin ≫ k1, the situation is different. This regime appears for slender structure or for stiff
foundations. It is called large-regime, and is controlled by κ1ℓ

4 ≫ 1. In that case kb = O(kmin)
in order to minimize the buckling strain ϵ(kb). Note that one observes the following hierarchy
kb = O(kmin) = O(κ1/4

1 ) ≫ O(1/ℓ), however as κ1 < 1 then 1/ℓ ≪ kb ≤ 1.
The wavelength λb = 2π/kb of the buckling mode satisfies

λb ∼ 2π
κ

1/4
1
. (2.61)

It is controlled by κ1 = K1I/(EA2) only, in particular it is independent of the length of the structure.
The buckling appears with a pattern having several arches. The number of arches observed on a
buckled structure is N := 2ℓ/λb (a wavelength is considered as composed of two arches). The order
of magnitude of this parameter is:

N ∼
⌊
ℓ

π
κ

1/4
1

⌋
, (2.62)

where ⌊·⌋ denotes the floor function.
In terms of strain criterion, since κi ≪ gk, one obtains:

ϵb = O(2√
κ1 + κ2) , (2.63)

for both models.
For pinned-pinned beam the modal amplitudes are approached by (2.49) that gives:

Ξ ∼ κ
1/4
1 (1 − gκ2) . (2.64)

This shows the high influence of foundation stiffness in this large-regime: it uniquely defines the
buckling load (2.63), the modal amplitude (2.64) and the buckling’s wavelength (2.61). An illus-
tration of the buckled shape in the large-regime is given in Fig.2.10 for pinned-pinned boundary
conditions.

L

4̺

−PP

Figure 2.10 – Shape of a pinned-pinned beam under a Winkler foundation. g = 5/2, ℓ = 100,
κ1 = 10−4, κ2 = 10−2. The buckling mode associated to the smallest strain that is the third one:
kb = 3π/ℓ with a critical strain ϵb = 3 · 10−2.
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Chapter 2 – Timoshenko beam and Winkler foundation

Remark. By examining (2.54), we remark that θ′ ∼ kΞ(k), hence for buckling θ′ ∼ k2
b ≪ 1 and

the limit κ2(S) = 1
R

is not attained.

Discussion

The estimations of ϵb for large and small regimes (in (2.63) and (2.60), respectively) are given
in Fig.2.11. The given approximations are clearly justified for both models. It is the occasion to
highlight that the large-regime approximation (2.63) of ϵb is included in (2.60) as:

lim
kb→κ

1/4
1

(
k2

b + κ1

k2
b

+ κ2

)
= 2√

κ1 + κ2 .

This fundamental equation (2.60) corresponds to the differential equation:
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Figure 2.11 – Report of Fig.2.7 where all previous curves are in black. The new superimposed curves
are the small-regime and large-regime estimations of ϵb given in (2.63) and (2.60), respectively.

u(4) + (ϵb − κ2)u′′ + κ1u = 0 .

This corresponds to the superposition of the Euler-buckling equation with the Pasternak foundation
model. In the non-dimensional form used in this section, these latter are respectively:

u(4) + ϵb u
′′ = 0, u(4) − κ2u

′′ + κ1u = 0 .

2.4.5 Yield limit

It must be recalled that the proposed models are accompanied by some physical hypotheses such
as ϵ < ϵyield. For steel-like material ϵyield ≃ 2 · 10−3 and for fiber reinforced composite ≃ 5 · 10−2.
If this hypothesis is respected the Engesser and Haringx predictions of ϵ for a given wavenumber k
coincide (see Fig.2.11).
Let us consider first the small-regime where κ1ℓ

4 ≪ 1 (sec-2.4.4). As (2.60) is the sum of three
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2.4. Buckling of Timoshenko beam under two-parameters Winkler foundations

positive terms, the criterion ϵ < ϵyield implies that three constrains have to be satisfied a minima:
k2

b < ϵyield, κ1/k
2
b < ϵyield and κ2 < ϵyield. The first involves 1 < ϵyieldℓ

2 that is already present
in the Euler model without foundation: this criterion is satisfied for most of the slender structure
but could be violated for thick beam. The second may be rewritten as κ1ℓ

2 < ϵyield, however if
the preceding criterion is satisfied the following hierarchy is observed κ1ℓ

4 < 1 < ϵyieldℓ
2 then

κ1ℓ
2 < ϵyield is verified. Lastly, the third criterion κ2 < ϵyield gives a constraint on κ2 for a given

material but independently of the length of the beam.
For the situation where 1 ≪ κ1ℓ

4 (2.63) gives two constraints on the foundation stiffness that have
to be satisfied a minima :√κ1 < ϵyield and κ2 < ϵyield.
If the material of the structure (and then ϵyield) is known, these analyses exhibit non-trivial necessary
condition on κi and ℓ for-which buckling may appear before irreversible transformation:

κ2 < ϵyield, in all the cases and
ℓ >

1
√
ϵyield

if κ1ℓ
4 ≪ 1

κ1 < ϵ2
yield if 1 ≪ κ1ℓ

4
(2.65)

In the small-regime, combining ℓ > 1/√ϵyield and κ1ℓ
4 ≪ 1 leads to κ1 < ϵ2

yield. Hence the preceding
constraints may be easily synthesized, regardless of the regime, by:

ℓ >
1

√
ϵyield

, κ1 < ϵ2
yield, κ2 < ϵyield

equivalently max
( 1
ℓ2 ,

√
κ1, κ2

)
< ϵyield

(2.66)

From the point of view of the authors, such bounds may be of particular interest for engineering
design of slender structures subjected to elastic foundation.
The constraints (2.66) have motivated the choice of the values of κ1 ≤ 10−4 and κ2 ≤ 10−2 in
Fig.2.7, Fig.2.8 and Fig.2.11 as ϵyield ≤ 5 · 10−2 for most of the standard material.
Of course, because (2.66) are necessary conditions, for a given problem the more restrictive sufficient
condition ϵ < ϵyield has to be checked even if (2.66) is respected. Hence, note that even if (2.66) are
satisfied in Fig.2.11, the criterion ϵ < ϵyield doesn’t look systematically satisfied. This is particularly
true if κ1 = 10−4 where ϵb is systematically larger than 10−2 while ϵyield > 10−2 is not necessarily
obtained for large range of material. This illustrates the non-sufficient character of conditions
(2.66). Note also that Engesser and Haringx models differ in a regime for which ϵ > ϵyield for most
of the standard material.
At last, for κ1 < 10−4, (2.61) induces λb > 20π in the small-regime. In a dimensional point of view
the wavelenght is λb > 20πϱ (for a cylindrical beam of radius R, λb > 10πR).
It should be mentioned that another buckling model for large transformation will be presented in
chapter 3 (section (3.7.2)).
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Chapter 2 – Timoshenko beam and Winkler foundation

2.5 Conclusion

In this chapter, we offered an analytical study of small transformation of a planar elastic,
isotropic, homogeneous Timoshenko beam with linear constitutive law and linear geometrical rela-
tions.
The problem was formulated in a non-dimensional way in order to reduce the number of indepen-
dent parameters such as allowing a general statement.
We started first by examining a beam subjected to a rigid wall where exact solutions were obtained
using a model decomposition method and by imposing an initial and a choc type boundary condi-
tion.
Then, we let this wall to be elastic, in this case we obtained a coupled wave equations were disper-
sion relations were discussed in details for different wall rigidity.
Furthermore, a study of buckling of a beam supported by foundation has been performed. The
problem was stated for plane, quasi-static and infinitesimal motion of a straight and uniform Tim-
oshenko beam superimposed to a finite longitudinal force such as Haringx and Engesser models
were used. Foundations operate external densities of moment and transversal force. These densities
are linearly related to rotation and transverse displacement of the beam in accordance with the
two-parameters Winkler model of foundations.
For both models, buckling analysis was performed by investigating, in an analytical way, the re-
lation between the critical buckling load and the wavenumber of buckling modes according to the
foundation parameters. The explicit expression of the buckling mode and critical stress were given
for pinned-pinned beam and general formulation was exhibited for general boundary conditions.
Introducing the yield stress of the material of the beam completes the discussion by introducing a
criterion for which buckling prevails over irreversible transformation. The non-dimensional form of
this simple criterion makes it particularly suitable for engineering design. In the buckling-regime
the Engesser and Haringx model converge to the same estimation of the critical buckling stress and
buckling modes have the same behaviour.
In the regime for which the effect of foundation is relevant, the equation used to determine buck-
ling stress and eigenmodes coincides with the superposition of the Euler-buckling equation with
the Pasternak foundation model. These two models were build on Euler-Bernoulli beam theory
and then the Timoshenko theory proposed through the Engesser or Haringx models looked too
sophisticated for the description of the problem of buckling of beam supported by two-parameter
foundations. As a corollary consequence, the discussion about the meaning of the second parameter
of the generalized Winkler foundations (whether it is associated to rotation θ of the section or slope
u′ of the centerline) is not relevant as the kinematical constraint u′ −θ = 0 holds for Euler-Bernoulli
beam.
One can study the several approaches presented in this chapter by adapting a variational formu-
lation (e.g. [DP11]). This variational approach is very powerful to solve numerically the problem
using finit element methods.
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Chapter 3

EXPLICIT ANALYSIS OF LARGE

TRANSFORMATION OF A TIMOSHENKO BEAM:
POST-BUCKLING SOLUTION, BIFURCATION

AND CATASTROPHES

Post buckling analyses of a Timoshenko beam subjected to external loads and moments were
conducted by many scientists in the last century, such as Reissner [Rei72], Humer [Hum13; HP19]
and Batista [Bat13; Bat14; Bat16a] where remarkable results were obtained. We consider this chap-
ter as an extension of these analyses by focusing on a straight Timoshenko beam supporting a large
and quasi-static plane transformation with linear constitutive relation and loading that is imposed
only at the boundaries. General problem under these hypotheses is presented in a dimensionless
form in the first section. In order to embrace wide applications, the situations for quasi-static
follower or dead load are examined and domain of variation of each dimensionless parameters is
examined in the second section. In the third section, our approach leads to a Cauchy initial prob-
lem on contrary to most previously conducted studies (based on boundary value problem). This
imposes a meticulous analysis (values, variation domain) of each component of the problem. Two
invariants of the problem are exhibited. Existence and uniqueness of the solution for a prescribed
load is addressed in the same section. The next section focuses on explicit and analytical solutions
of the problem for any given load (force and moment) at one end. The problem of regularity of
these solutions in regards to a smooth (and quasi-static) evolution of the load at one end is tackled
through a deep analysis of the analytical expressions. After an illustrating example, the problem
of a pure-shear follower load is presented and shows how asymptotic solutions can be recovered
through Taylor expansion of the attainable expression. In the following section, the problem of
quasi-static stability problem is addressed as a driven parametric oscillator in a general situation.
At last, section seven shows how the proposed approach is able to face the problem of quasi-static
instability in a more general manner than bifurcation (buckling) as catastrophe. The conclusion
underlines the main points of the work.
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Chapter 3 – Explicit analysis of large transformation of a Timoshenko beam: Post-buckling solution,
bifurcation and catastrophes

3.1 Kinematical and dynamical variables

As seen in section (1.3.4), dimensionless kinematical variables are:

Placement : φ = φ1d1 + φ3d3.

Strain : ε = ε1d1 + ε3d3.

Curvature : κ = κ2d2 = θ′d2.

(3.1)

Dimensionless energy per unit length (1.109) becomes:

Ψ = 1
2ε

2
1 + 1

2g(ε3 − 1)2 + 1
2gκ

2
2. (3.2)

Hence, forces and moment:
N1 = ε1,

N3 = g(ε3 − 1),
M2 = gκ2.

(3.3)

3.1.1 Static equilibrium

In this chapter, we assume that q = m = 0, therefore the static dimensionless form of (1.111)
becomes

N′ = 0,

M′ + ε × N = 0.
(3.4)

And the strain formulation (1.113) will be:

ε′
1 + g(ε3 − 1)κ2 = 0,

gε′
3 − ε1κ2 = 0,

gκ′
2 + ε1ε3 − gε1(ε3 − 1) = 0.

(3.5)

Consitutive relation (3.3) and equilibrium relation (3.4) (or its projection (3.5)) are our starting
points for the analysis of solutions of the static equilibrium problem of the beam.

Remark. Due to large transformation, a non linear geometrical relations appear, namely:

ε1 = φ′
1 + φ3κ2,

ε3 = φ′
3 − φ1κ2.

(3.6)
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3.2. Remark on the boundary conditions

So injecting (3.6) into (3.5) we obtain a second order system of differential equations with respect
to the placement φ1,3(s) and the rotation θ(s). This equation is hard to solve analytically, so we
will present later another way to find these variables.

3.2 Remark on the boundary conditions

The static problem is posed up to a translation and a rigid rotation. It is then natural to observe
that the problem (3.4) is perfectly described thanks to dynamical (stresses or strains) quantities.

3.2.1 Parametrization of the boundary conditions

The boundary conditions are prescribed at a given end, say s = ℓ. Then consider the known
quantities

Nℓ = N(ℓ), Mℓ = M(ℓ) .

Of course, Mℓ = Mℓd2 is oriented along ey and Nℓ belongs to the (ex, ez)-plane (equivalently
(d1,d3)-plane). Hence, orientation and magnitude of Nℓ have to be described properly. Let us
define ϕℓ = ̂d3(ℓ),Nℓ the relative angle of the load respectively to the normal d3(ℓ) of the last
section. By convention ϕℓ is measured in a trigonometric way, such that (see fig.(3.1)):

N1(ℓ) = Nℓ sin (ϕℓ) , N3(ℓ) = Nℓ cos (ϕℓ) , (3.7)

d1(ℓ)

ϕℓ

Nℓ

d3(ℓ)
Figure 3.1 – Variation of N1(ℓ) and N3(ℓ) with respect to ϕ(ℓ) in the plan of motion.

where Nℓ = ∥Nℓ∥ and ϕℓ ∈] − π, π]. This convention emphasizes the crucial role of ϕℓ that
prescribes the shear or normal character of the external force at this specific end. For ϕℓ = ±π/2
the external force is a shear, for ϕℓ = π it is a compression, last for ϕℓ = 0 it is a traction.
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Remark. [Cauchy problem] It must be stressed that under this point of view the boundary con-
dition is the set (Nℓ, ϕℓ,Mℓ): an assignation of the variables (or their derivatives) at a specific
end. In that context the problem has the structure of a Cauchy initial value problem from which
the solution is known as unique [CL55]. It is clear that for most of the physical problem, distinct
constraints are imposed at each end and then the problem has mainly the structure of a Cauchy
boundary value problem for which the solution is not necessarily unique. The next sections are
mainly related to Cauchy initial value problem associated to the set (Nℓ, ϕℓ,Mℓ). The last section
would be devoted to the Cauchy boundary value problem.

3.2.2 Follower and dead load

At the end s = ℓ, the rotation of the section θ(ℓ) and the angle ϕℓ between the section and the
load Nℓ are related by

ϕℓ = ϕ̂− θ(ℓ). (3.8)

According to Fig.3.2, ϕ̂ = êz,Nℓ is the angle between the external force and the normal of the last

N(s)

Nℓθ(s)

ϕ(s)

s = ℓ

G

C

S
ez

ez

ex

ex

d3(s) d1(ℓ)
ϕ̂

d1(s)

d3(ℓ)
ϕ̂

ϕℓ

θℓ

Figure 3.2 – Parametrization of a current configuration of a Timoshenko beam. At a given curvilin-
ear abscissa s, the center of mass G and the section S are given. The directors d1(s) and d3(s) of
this section are obtained by a rotation θ(s) around ey. At s = ℓ the external force Nℓ has an angle
ϕ(ℓ) = ϕℓ with the normal d3(ℓ) of the last section and ϕ̂ with ez.

section at rest (in such a sense, it can be seen as a Lagrangian quantities).
Let us suppose that the magnitude Nℓ and Mℓ of the external efforts vary in a quasi-static way. A
priori this may imply a possible reorientation of the last section or of the load. Indeed, prescribing
the angle ϕℓ during this variation has a large physical impact. More precisely, during this slow
evolution, standard situations appear for such special cases:

— If ϕℓ is held constant, the external force is a follower load. In particular if ϕℓ is maintained
equal to π the external force is a purely compressive follower load and if ϕℓ = ±π/2 this force
acts as a pure shear follower load. Note that during this evolution the value of ϕ̂ changes in
order to respect (3.8).

— If ϕ̂ is held constant, the external force is a dead load. In particular if ϕ̂ is maintained null
or equal to π the external force is a pure vertical (along ez) dead load and if ϕ̂ = ±π/2, this
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force acts as a pure horizontal dead load. Here ϕℓ has to change during the loading process
in order to respect (3.8).

3.2.3 Domain of variation

A priori, Nℓ ≥ 0, ϕℓ ∈ [0, 2π[ and Mℓ ∈ R but physical considerations may help to limit these
bounds.
First of all, it can be observed that non-overlapping of the section of the beam during a large
bending imposes |κ2| ≲ 1/2. Second, it is justified to limit the analysis to a total force lower
than a certain multiple of the Euler critical load. For pinned boundary conditions this latter is
physically P e = EIπ2/L2, then its dimensionless form is Pe = gπ2/ℓ2. As beam model is justified
for slenderness ratio ℓ ≳ 20 and 2 ≲ g ≲ 3, one gets Pe ≲ 0.1. Hence, it is convenient to focus on
the following bounds for boundary conditions variables

0 ≤ Nℓ ≤ 0.1, −0.1 ≤ Mℓ ≤ 0.1 . (3.9)

These bounds are particularly large, especially for elongated structures. It must not be considered
as an indicator of the order of magnitude of these variables, but rather as a maximum bounds
(physically unreachable in general). However, the bounds Nℓ ≤ 0.01 and |Mℓ| ≤ 0.01 are attainable
in most of the cases.
These bounds may be used to prescribe some bounds for strains at s = ℓ, and more generally at
any s according to (3.3). One gets:

−0.1 ≤ ε1(s) ≤ 0.1, 0.95 ≤ ε3(s) ≤ 1.05, −0.05 ≤ κ2(s) ≤ 0.05.

3.3 Problem analysis

3.3.1 First integration

The system (3.4) may be easily integrated. Considering the first line, one gets directly

N(s) = Nℓ, ∀ s ∈ [0, ℓ].

In other words, the internal load is constant along the beam. However, as the orientation of the
directors d1(s) and d3(s) are not uniform, the shear and longitudinal component are not uniform
along s, but controlled by

N1(s) = Nℓ · d1(s), N3(s) = Nℓ · d3(s). (3.10)
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Considering now the second equation of (3.4), its integration is trivial too. First as ε = φ′, one
gets

M′ + φ′ × Nℓ = 0,

then, after integration

M(s) − M(0) + (φ(s) − φ(0)) × Nℓ = 0, ∀ s ∈ [0, ℓ]. (3.11)

In particular, one gets a momentum relation between the bending moment at both ends:

M(0) = Mℓ +
(

φ(ℓ) − φ(0)
)

× Nℓ.

Inspired by (3.7) and (3.10), a new variable ϕ(s) is introduced such that

N1(s) = Nℓ sin (ϕ(s)),
N3(s) = Nℓ cos (ϕ(s)).

(3.12)

Then, ϕ(s) is the relative angle between the normal of the section at s and the external load. Of
course ϕ(ℓ) = ϕℓ. The relation (3.8) can be extended too (see Fig.3.2):

ϕ(s) = ϕ̂− θ(s). (3.13)

As θ′ = −ϕ′, the internal couple M2 = gθ′ along the beam becomes

M2(s) = −gϕ′(s). (3.14)

Lastly, all strains may be written in terms of ϕ according to (3.3):

ε1(s) = Nℓ sin (ϕ(s)),

ε3(s) = 1 + Nℓ

g
cos (ϕ(s)),

κ2(s) = −ϕ′(s).

(3.15)

To simplify further notation ϕ′
ℓ will be used instead of ϕ′(ℓ) in the following.

3.3.2 Non-homogeneous equation

The two first equations of (3.5) are directly satisfied, the last one becomes

g2ϕ
′′ − gNℓ sin (ϕ) + (g − 1)N2

ℓ sin (ϕ) cos (ϕ) = 0. (3.16)
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Let us consider that ϕ′′ ̸= 0. By multiplying (3.16) by 2ϕ′ one obtains after integration (e.g.
[YTM90]):

(gϕ′)2 + 2gNℓ cos (ϕ) − (g − 1)N2
ℓ cos2 (ϕ) = µ. (3.17)

where µ is a constant related to set (Nℓ, ϕℓ,Mℓ) of boundary conditions

µ = M2
ℓ + 2gNℓ cos (ϕℓ) − (g − 1)N2

ℓ cos2 (ϕℓ) . (3.18)

Remark. [Invariants] The magnitude Nℓ is the first invariant of the beam as, for any s:

N2
ℓ = N1(s)2 +N3(s)2.

In the first integral (3.17) of (3.16) the parameter µ appears as a second invariant of the beam
configuration. Indeed, in terms of internal load, as M2(s) = −gϕ′ and N3(s) = Nℓ cos (ϕ(s)), one
gets all along the beam:

µ = M2(s)2 + 2gN3(s) − (g − 1)N3(s)2.

These two invariants are presented graphically in Fig.3.3
Equation (3.17) is a scalar, first order and non-linear ordinary differential equation. Its coefficient is

Figure 3.3 – Representation of the two invariants (Nℓ in green and µ in purple) in the configuration
space (N1(s),M2(s), N3(s)). The solutions N1(s), M2(s) and N3(s) of the problem is along the
intersection of the two surfaces.

written in terms of the invariants µ and Nℓ of the problem. Its resolution can be performed thanks
to some special change of variable that will be developed in the next section.

Remark. [Existence and unicity of the solution] According to Cauchy theorem, the ordinary dif-
ferential equation (3.17) has a unique solution if ϕℓ or ϕ′

ℓ is prescribed (e.g. [CL55]). Existence and
unicity is then obtained if the invariants (µ,Nℓ) are prescribed. As the load properties (Nℓ, ϕℓ,Mℓ)
at s = ℓ defines (Nℓ, µ, ϕℓ) or (Nℓ, µ, ϕ

′
ℓ) in a unique manner, existence and unicity of the solution

are ensured by the prescription of the load at one end.

77



Chapter 3 – Explicit analysis of large transformation of a Timoshenko beam: Post-buckling solution,
bifurcation and catastrophes

Remark. [Discussion on the regularity of the solution] As the set (Nℓ, ϕℓ,Mℓ) contributes to define
both the initial condition and the coefficients µ, Nℓ of the differential equation, the regularity of the
solution may be (a prioiri) strongly affected by even a smooth change of Nℓ, ϕℓ or Mℓ. This very
special character of the problem explains (at least in a part) the attention of scientists on behaviour
of beam under large transformation. This problem will be adressed more deeply in section 3.4.6.

3.3.3 Homogeneous equation

Let us consider the special case ϕ′′ = 0 for all s (then ϕ′ = cste). From (3.16) and according
to the domain of variation of g, this situation appears only if Nℓ sin (ϕ) = 0, which corresponds to
two distinct cases:

— If Nℓ = 0 the last end supports only a non-null couple Mℓ. In that case ϕ(s) = as+ b where
a and b depends on boundary conditions. Since Mℓ = −gϕ′(ℓ), a = −Mℓ/g and imposing
arbitrarily ϕ(ℓ) = 0 implies b = Mℓℓ/g and by (3.8) one gets ϕ̂ = θ(ℓ), therefore, by (3.13)
one obtains

θ(s) = Mℓ

g
(s− ℓ) + θ(ℓ). (3.19)

Dynamical variables are given by N1(s) = 0, N3(s) = 0 and M2(s) = Mℓ. Using (1.108),(3.3)
one gets:

φ1(s) = φ1(0) + g

Mℓ

(cos (θ(s)) − 1),

φ3(s) = φ3(0) + g

Mℓ

sin (θ(s)).
(3.20)

This problem is a standard solution in Elastica theory.
— If sin(ϕ(s)) = 0 then ϕ(s) = 0 or π: the load is a pure longitudinal force. Therefore, by using

(3.13) one gets N1(s) = 0, N3(s) = ±Nℓ and M2(s) = 0. So, kinematical variables are given
for pure traction or compression by:

φ1(s) = φ1(0), θ(s) = θ(0), φ3(s) = φ3(0) + (1 ± Nℓ

g
)s.

For other situations, ϕ′ is necessarily not uniform and the problem consists in the resolution of
(3.17).

3.3.4 Analysis of µ

As it has been observed µ plays an important role as first variable integration depending on
(Nℓ, ϕℓ,Mℓ). More precisely, the shear load does not affect this parameter that is controlled by Mℓ

and the longitudinal part of the force Nℓ cos (ϕℓ) (see (3.18)). The behaviour of µ with respect to
these parameters is given in Fig.3.4.
In practice, µ is positive for a longitudinal traction or a moderate longitudinal compressive force
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Figure 3.4 – Variation of µ according to the parameter of the boundary conditions.

associated to non null couple Mℓ. The following bounds for µ are obtained

M2
ℓ − 2gNℓ − (g − 1)N2

ℓ ≤ µ ≤ M2
ℓ + 2gNℓ − (g − 1)N2

ℓ , (3.21)

and −0.5 ≲ µ ≲ 0.5 according to the numerical values proposed in section 3.2.3. Let us introduce

µa = −2gNℓ − (g − 1)N2
ℓ , µc = 2gNℓ − (g − 1)N2

ℓ . (3.22)

Remark that in contrary to µ, the parameters µa and µc depends only on Nℓ. The equality µ = µa

is obtained only for pure compressive load. For a pure traction µ = µc however, the equality µ = µc

may be observed for other configurations for which ϕℓ ̸= 0 and Mℓ ̸= 0. There is always µa ≤ µ but
in the special cases for which Mℓ = 0 the bounds are more restrictive: µa ≤ µ ≤ µc.

3.4 Jacobian elliptic functions

In this section the problem (3.17) is solved using a series of transformations that leads to
Jacobian elliptic functions. The study concerns non-homogeneous solutions of (3.17).

3.4.1 Problem statement

Let us first use the tangent half-angle substitution for ϕ:

t(s) = tan
(
ϕ(s)

2

)
, (3.23)

where t(s) is a real valued function. Therefore,

cos (ϕ) = 1 − t2

1 + t2
, sin (ϕ) = 2t

1 + t2
, ϕ′ = 2t′

1 + t2
. (3.24)
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Injecting (3.24) into (3.17), the differential equation is written as:

t′2 = a t4 + b t2 + c. (3.25)

— If a ̸= 0, the roots of the t-polynomial at the right-hand side can be computed in order to
obtain:

t′2 = a (t2 − α−)(t2 + α+). (3.26)

— If a = 0, then
t′2 = b t2 + c. (3.27)

All these formulations need a deep analysis of each parameter a, b, c and α± that are intrinsically
related to the set of boundary conditions (Nℓ, ϕℓ, Mℓ), and more precisely to two independent
coefficients µ and Nℓ:

a = µ− µa

4g2 ,

b = 2µ+ µa + µc

4g2 ,

c = µ− µc

4g2 ,

and

α+ =
g+

√
g2−(g−1)µ
g−1 −Nℓ

g+
√

g2−(g−1)µ
g−1 +Nℓ

,

α− =
Nℓ − g−

√
g2−(g−1)µ
g−1

Nℓ + g−
√

g2−(g−1)µ
g−1

.

(3.28)

3.4.2 Parameter analysis

According to (3.3.4) µa ≤ µ then a ≥ 0.

Remark. Equality a = 0 corresponds to a pure longitudinal compression for which an homoge-
neous solution has been found already. Notice that if a = 0, then µ = µa and, as µa ≤ 0 ≤ µc,
both b and c are strictly negative. In other words, the right hand side of (3.27) is negative and
then no real non-homogeneous solutions t(s) may exist. For pure compressive external force, the
homogeneous solution is the only real-valued solution. It is now justified to focus hereafter on
(3.26) with strictly µ > µa then a > 0 . However, sign of b and c may change according to Mℓ, ϕℓ

and Nℓ.

The roots α± are real as g2 − (g − 1)µ is always positive. The values of α+ according to Nℓ

and µ is presented in Fig.3.5-left (the values of α+ are presented in a domain such that µ > µa).
This root is strictly positive and close to 1. First order Taylor expansion gives:

α+ = 1 − g − 1
g

Nℓ + O(N2
ℓ , µ

2). (3.29)

The values of α− according to Nℓ and µ are presented in Fig.3.5-right. As α− has a large domain
of variation the log10(|α−|) is plotted and the sign of α− is specified in each domain. In practice
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Figure 3.5 – Variation of α+ (left) and log10(|α−|) (right) according to Nℓ and µ. The curves
µ = µa(Nℓ) and µ = µa(Nℓ) are presented too.

α− > 0 if µa < µ < µc and α− < 0 if µc < µ. α− = 0 if µ = µc and for small values of µ, Nℓ:

α− = 1 − 2µ
µ+ 2gNℓ

+ O(Nℓ, µ).

3.4.3 Resolution of the elliptic differential equation

As a > 0 and α+ > 0 in all the domain of variation, the following formulation of (3.26) is
proposed: (

1
√
aα+

t′
√
α+

)2

=
(

( t
√
α+

)2 + 1
)(

( t
√
α+

)2 − α−

α+

)
. (3.30)

This motivates the following change of variable associated to a rescaling of the curvilinear abscissa

h(ζ) = t(s)
√
α+

where ζ = √
aα+(s+ s0), (3.31)

where the constant s0 will be related to the boundary conditions. As d
ds

= √
aα+

d
dζ

, (3.30) becomes:

(
dh
dζ

)2

= (h2 + 1)(h2 − α−

α+
), (3.32)

for which solutions are a Jacobian elliptic function [Olv+10]:

h(ζ) = ±cs(ζ |m), with m = 1 + α−

α+
. (3.33)

3.4.4 Class of solutions

Particular attention must be drawn to the values of m presented in Fig.3.6-left. For moderate
parameters µ and Nℓ:

m = 4gNℓ

µ+ 2gNℓ

+ O(µ,Nℓ). (3.34)

81



Chapter 3 – Explicit analysis of large transformation of a Timoshenko beam: Post-buckling solution,
bifurcation and catastrophes

This is illustrated in Fig.3.6-right, where it can be observed that this approximation is well justified.
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Figure 3.6 – Left: Variation of log10(m) according to Nℓ and µ. The curves corresponding to µa(Nℓ)
and µc(Nℓ) are presented too. Right: Variation of m and 1/m according to µ for fixed Nℓ. The
approximation (3.34) is presented too. The vertical lines depict the position of µa(Nℓ) (left) and
µc(Nℓ) (right).

In a classical formulation of Jacobian elliptic functions, the second argument m belongs in [0, 1].
Here, it is observed that m belongs to ]0,+∞[. Moreover, some analyses are given in order to link
the two formulations:

— If µa < µ < µc, we have α− > 0 and α+ > 0 then m > 1. For this situation, one may use
[Olv+10]

cs(ζ | 1
m

) = 1√
m

ds( ζ√
m

|m),

to obtain a more standard formulation:

h(ζ) = ±
√
α+ + α−

α+
ds(
√
α+ + α−

α+
ζ | α+

α+ + α−
),

then
t(s) = ±

√
α− + α+ ds(

√
a(α− + α+)(s+ s0) | α+

α+ + α−
). (3.35)

— If µ = µc, α− = 0 and m = 1, then

h(ζ) = ±cs(ζ | 1) = ± 1
sinh(ζ) .

Alternatively, this can be obtained by observing that c = 0, then the differential equation
(3.25) becomes t′2 = t2(at2 + b).

— If µ > µc we have 0 < m < 1 then

t(s) = ±√
α+ cs(√aα+(s+ s0) | α+ + α−

α+
). (3.36)
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This last formulation is always justified if one considers for convention m ∈ R.
In Fig.3.7 the function cs(ζ |m) and ds(ζ |m) are presented for m = 1/2. These odd functions have
distinct periodicity. Introducing the complete elliptic integral of the first kind K(m), the period-
icity is 2K for cs(ζ |m) and 4K for ds(ζ |m). Remark that K(m) → ∞ as m → 1. As m passes
through 1, the transition between cs(ζ |m) to ds(ζ |m) through 1/ sinh (ζ) is then smooth as the
non-periodic function 1/ sinh (ζ) is asymptotically considered as a periodic function with infinite
period. This anodyne remark leads to more crucial remarks detailed in sec.3.4.6.
Lastly, it is observed that ds(ζ |m) belongs to ] − ∞,−

√
1 −m] ∪ [

√
1 −m,+∞[ if 0 < m < 1. Ac-

cording to (3.23) and (3.35), this means that |ϕ(s)| does not belong to the interval [0, 2 arctan(√α−)[
if µa ≤ µ ≤ µc.

ζ

-2K 0 2K 4K
-5

0

5

cs(ζ| 12)
ds(ζ| 12)
1/ sinh(ζ)

Figure 3.7 – cs(ζ |m), ds(ζ |m) and 1/ sinh (ζ) for m = 1/2. Numerically K(m) ≃ 1.85. The
horizontal dashed lines corresponds to ±

√
1 −m ≃ 0.71.

3.4.5 Determination of the unknown s0

The shifting parameter s0 has to be adjusted such that

t(ℓ) = tan (ϕℓ

2 ), 2t′(ℓ)
1 + t(ℓ)2 = ϕ′

ℓ, (3.37)

where ϕ′
ℓ is just determined by the bending moment according to (3.14): Mℓ = −gϕ′

ℓ. In practice
s0 is determined numerically by an optimisation algorithm associated to the following statement

find s0 ∈ D such that ∥t(ℓ) − tan(ϕℓ

2 )∥2 + ∥ 2t′(ℓ)
1 + t(ℓ)2 − ϕ′

ℓ∥2 = 0. (3.38)

The domain D and the function t(s) have to be adjusted according to the boundary condition:
— If µ < µc, D =]0, 1√

a(α−+α+)
4K( α+

α++α−
)[ and t(s) = √

α− + α+ ds(
√
a(α− + α+)(s+s0) | α+

α++α−
)

(the sign − is not necessary as ds(ζ + 2K(m) |m) = −ds(ζ |m)).
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— If µ > µc and ϕ′
ℓ < 0, then D =]0, 1√

aα+
2K(α++α−

α+
)[ and t(s) = √

α+ cs(√aα+(s+s0) | α++α−
α+

)
— If µ > µc and ϕ′

ℓ > 0, then D =]0, 1√
aα+

2K(α++α−
α+

)[ too but t(s) = −√
α+ cs(√aα+(s +

s0) | α++α−
α+

)
Indeed with such domain D, the discussion associated to Fig.3.7 shows that the solution s0 in D
of the problem (3.38) is unique in all the cases.

3.4.6 Regularity of the solutions

The existence and unicity of the problem (3.4) have already been underlined in rem-3.3.2. How-
ever, regularity of the solution relatively to a smooth change of the boundary conditions parameters
Nℓ, ϕℓ,Mℓ was just interrogated in rem.3.3.2.
According to the discussion of Fig.3.7 the function t(s) is regularly varying according to the pa-
rameters α±, a and s0 in all the variation domain of µ, Nℓ and ϕℓ. It is then the case for ϕ(s) too.
In other words ϕ(s) is regularly dependent on the set (µ,Nℓ, ϕℓ) or (µ,Nℓ, ϕ

′
ℓ). On one hand the

map (Nℓ,Mℓ, ϕℓ) → (µ,Nℓ, ϕℓ) is smooth and surjective, on the other hand (N1(s), N3(s),M2(s))
are regular function of ϕ(s) thanks to (3.15). This leads to the following important result:

The solutions N1(s), N3(s), M2(s) (or equivalently ε1(s), ε3(s), κ2(s)) of the problem (3.4) are
regularly dependent on the boundary conditions (Nℓ, ϕℓ,Mℓ). No bifurcation may occurs if the load
is completely controlled (prescription of the couple intensity, force intensity and of the orientation
of the force relatively to the section) in a smooth and quasi-static way at one end of the beam.
Reciprocally, some bifurcation may occur only if one of these load properties is held free (standard
buckling problem of beam by a dead-load) or if a kinematical variable (position or orientation of the
section) are controlled.

This result is valid for any large transformation, any shape of the beam and any isotropic and
elastic material.
In term of instabilities, the preceding result shows that quasi-static instabilities cannot appear if
the loads are controlled at one end in a smooth way. This is the case for follower loads. However, as
this work do not invoque dynamical effect, this analysis do not allow any conjecture on dynamical-
instabilities. In particular, fluttering effect is not included in the scope of the chapter.

At this stage all unknown functions and parameter are determined. It is then possible to have
explicit expression of strains and shape of the beam without any approximation. This is now illus-
trated through a practical example.

3.5 First illustrating example

Let us consider a beam of length ℓ = 50 and material ratio g = 5/2 supporting the following
boundary conditions Nℓ = 0.01, Mℓ = 0.05, ϕℓ = 3π/4. The beam is glued at s = 0 on the origin of
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3.5. First illustrating example

the Cartesian frame, then θ(0) = 0 and φ(0) = 0.

3.5.1 Determination of each parameters

According to the set (Nℓ, Mℓ, ϕℓ), one obtains µ ≃ −0.03, µa ≃ −0.05, µc ≃ 0.05 and m ≃ 5.86
then µa < µ < µc and m > 1. The solution t(s) corresponds to (3.35) but can still be written as
t(s) = √

α+cs(√aα+(s+s0) |m), if one accepts that m > 1. In Fig.3.8 t(ℓ) is presented as a function
of s0. Intersections with the level set tan (ϕℓ/2) respecting the constraints (3.37) are highlighted by

s0

-100 -50 0 50 100

-4

-3

-2

-1

0

1

2

3

4

t(ℓ)

tan(φℓ

2 ) s ℓ0

Figure 3.8 – Graphs of t(ℓ) according to s0. The level-set tan (ϕℓ/2) is presented too. The graph of
t(s) for an admissible s0 is presented in red (the corresponding abscissa is given in red too).

a dot. The possible values of s0 form a periodic set but any value may be chosen as position of the
dot and t(s) share the same periodicity. This illustrates that the definition of a restrictive domain
D in (3.38) does not affect the generality of the resolution.

3.5.2 Determination of the internal forces and moments

According to (3.12), (3.14) and (3.24)

N1(s) = Nℓ
2t

1 + t2
, N3(s) = Nℓ

1 − t2

1 + t2
, M2(s) = −g 2t′

1 + t2
, (3.39)

that is easily computed as t(s) is given in (3.36) and because the derivation rule d
dz

cs(z|m) =
−ns(z|m)ds(z|m) holds true for any m ∈ R [Olv+10]. One obtains t′(s) = −

√
aα+ ns(ζ |m)ds(ζ |m)

and then:

N1(s) = Nℓ

2√
α+cs(ζ |m)

1 + α+cs2(ζ |m) ,

N3(s) = Nℓ
1 − α+cs2(ζ |m)
1 + α+cs2(ζ |m) ,

M2(s) =
√
ag

2α+ ns(ζ |m)ds(ζ |m)
1 + α+cs2(ζ |m) ,

ζ = √
aα+(s+ s0),

m = α+ + α−

α+
.

(3.40)
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The internal forces and moment are illustrated in Fig.3.9-left.
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Figure 3.9 – Left: N1(s), N3(s) and M2(s) for the example. Right: θ(s).

3.5.3 Determination of the rotation and placement

The rotation θ(s) of the section is directely obtained by (3.13) as ϕ(s) is now-determined
univocally by (3.23) as ϕ(s) = 2 arctan (t(s)). Then

θ(s) = ϕ̂− 2 arctan
(
t(s)

)
.

The constant ϕ̂ can be chosen with a great liberty for a given set of boundary conditions as the
static problem is unchanged up to a rigid rotation. For a quasi-static loading, details are exposed
in sec.3.2.2. As the beam is glued at s = 0 in this example, one imposes θ(0) = 0 and then
ϕ̂ = 2 arctan (t(0)). The result of this typical case are presented in Fig.3.9-right.
The situation is more complex for the placement function φ(s). The two components of this vector
have to be determined. In practice φ(s) belongs to the (ex, ez)-plane. The choice of a proper
orthonormal basis is crucial. A Cartesian frame can be chosen such that φ = φx(s)ex + φz(s)ez

or a mobile director frame such that φ = φ1(s)d1(s) + φ3(s)d3(s). However, another orthogonal
frame is naturally introduced into the problem, let us denote it (et, ey, en), where

en = Nℓ

∥Nℓ∥
, et = ey × en.

It is a fixed frame induced by the direction of the external force Nℓ = Nℓen. Of course this
direction is known if the external force is perfectly described. In this frame, the placement is
expressed by φ = φt(s)et + φn(s)en. Note that ̂d3(s), en = ϕ(s), then en · d3(s) = cos (ϕ(s)), and
en · d1(s) = sin (ϕ(s)).
The relation (3.11) gives M(s) − M(ℓ) + (φ(s) − φ(ℓ)) × Nℓ = 0 which is written in this frame:
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3.5. First illustrating example

M2(s) −Mℓ − (φt(s) − φt(ℓ))Nℓ = 0, hence

φt(s) = φt(ℓ) + M2(s) −Mℓ

Nℓ

.

Remark that M2(0) is now determined, hence the following expression holds too:

φt(s) = φt(0) + M2(s) −M2(0)
Nℓ

. (3.41)

and seems more appropriate, as φ(0) is generally imposed.
In order to determine φn(s), a more tricky strategy is necessary as an integration is needed. One
starts with (1.95) that is written as

φ′
nen + φ′

tet = ε1(s)d1(s) + ε3(s)d3(s).

After projection along en:

φ′
n = ε1(s) sin (ϕ(s)) + ε3(s) cos (ϕ(s)),

= N1(s) sin (ϕ(s)) + (1
g
N3 + 1) cos (ϕ(s)),

= Nℓ

( 2t
1 + t2

)2
+ Nℓ

g

(
1 − t2

1 + t2

)2

+ 1 − t2

1 + t2
,

where (3.3), (3.39) and (3.24) have been used successively. Integration is then performed as

φn(s) − φn(0) =
∫ s

0
φ′

n(σ) dσ,

which implies

φn(s) = φn(0) +
∫ s

0
Nℓ

( 2t
1 + t2

)2
+ Nℓ

g

(
1 − t2

1 + t2

)2

+ 1 − t2

1 + t2
ds, (3.42)

where t(s) =
√

|α+|cs(
√
a|α+|(s + s0) |m) is perfectly known. For this general case, no simple

explicit formulation of a primitive of φ′
n can be obtained (a simplified expression is given in sec.3.6

for a particular case). However, the smooth behaviour of such function allows us to use a simple
integration technic in order to obtain a numerical solution. In practice one uses a rectangular
integration on a fine discretization of the length (∆s = ℓ/1 000).
As mentioned earlier, φn(0) = φt(0) = 0 is considered. The placement function is now completely
determined as φ(s) = φt(s)et + φn(s)en. However, if a Cartesian frame is privileged, one has of
course to remind that the angle between ez and Nℓ satisfies θ(ℓ) + ϕℓ = ϕ̂ (see Fig.3.2). Then

en · ez = cos ϕ̂, en · ex = sin ϕ̂,
et · ez = − sin ϕ̂, et · ex = cos ϕ̂.
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The Cartesian components φx = φ · ex and φy = φ · ey become:

φx(s) = cos (ϕ̂)φt(s) + sin (ϕ̂)φn(s),

φy(s) = cos (ϕ̂)φn(s) − sin (ϕ̂)φt(s) .

This result is plotted on Fig.3.10 where the sections (oriented along d1(s)) are also presented for
the sake of the clarity. Knowing that the physical radius of the section is ϱ, these sections are
plotted in a dimensionless way with one unit radius. Hence this picture is completely dimensionless
with a respected slenderness ratio.

z
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Figure 3.10 – Dimensionless deformed shape of the beam glued at s = 0 and supporting a follower
load Nℓ making an angle ϕℓ = 3π/4 with the normal of the last section (s = ℓ). The intensity of
the force is Nℓ = 0.01 and a bending moment Mℓ = 0.05 is imposed on this last section too. The
length of the beam is ℓ = 50. No extra-amplification is used except for the force Nℓ.

3.6 Pure-shear follower load

The beam (ℓ = 50, g = 5/2) is still glued at s = 0, then θ(0) = 0 and support at the other
end a pure shear-follower load. Then the boundary conditions at s = ℓ are: Nℓ ̸= 0, ϕℓ = π/2 and
Mℓ = 0 (Figure (3.11)). For such type of control all the configurations presented on this section
(3.6) are quasi-statically stable according to the sec-3.4.6.
The objective of this example is to analyze the qualitative and quantitative behaviour of the beam

as Nℓ increases. Some simplified asymptotic expressions are given in the case of moderate shear
force Nℓ.

3.6.1 Parameter analysis

In this example µ = 0. In particular, according to (3.26), one gets α− = 1 then α− > 0, t(s)
is given by (3.35). One has explicitly α+ = ( 2g

g−1 − Nℓ)/( 2g
g−1 + Nℓ) but if 0 < Nℓ ≪ 1 (which is
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3.6. Pure-shear follower load

Figure 3.11 – Beam subjected to follower load.

almost always justified) first order Taylor (3.29) can be used. In the same spirit, Taylor expansion
of √

α− + α+,
√
a(α− + α+) and α+

α++α−
in terms of Nℓ exhibits a first order approximation:

t(s) =
√

2 ds(
√
Nℓ

g
(s+ s0) | 1

2) + O(Nℓ).

Within this approximation, one obtains directly M2(s) by (3.39) and φt(s) thanks to (3.41):

M2(s) ≃
√

2gNℓ cn(
√
Nℓ

g
(s+ s0) | 1

2),

φt(s) ≃ φt(0) +
√

2g
Nℓ

cn(
√

Nℓ

g
(s+ s0) | 1

2)
.

The expression of φn is highly simplified by applying leading term approximation with respect to
Nℓ. In fact by (3.42) one gets:

φn(s) ≃ φn(0) +
∫ s

0

1 − t2

1 + t2
ds.

Integration is explicit in such a case and gives

φn(s) ≃ φn(0) + s− 2
√
g

Nℓ

E(
√
Nℓ

g
(s+ s0) | 1

2),

where E(x |m) is the Jacobian epsilon function.

3.6.2 Qualitative and quantitative analyses

Figure (3.12) represents successive configurations as the magnitude of the transverse shear load
increases. These 20 simulations have been computed with the exact formulation (in particular
numerical integration of (3.42)). The computation cost for these 20 simulations is 0.23 s on a
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2.2 GHz Intel Core i7 (without plotting curves). This analytical approach clearly allows real-time
simulations.
In Fig.3.12 one observes qualitatively that the beam wrinkles with a periodicity controlled by the
magnitude of the force. The asymptotic approach developed in the preceding section provides some
tools in order to characterize this wrinkle.

z

x

Nℓ = 0.15

Nℓ = 0.2

Nℓ = 0.1

Nℓ = 0.05

Nℓ = 0.01

Figure 3.12 – Dimensionless deformed shape of the beam glued at s = 0 and supporting a follower
shear load Nℓ at s = ℓ (ϕℓ = π/2 and Mℓ = 0). The properties of the beam are ℓ = 50 and g = 5/2.
The figure represents successive snap shot for Nℓ = [0.01, 0.2] (with regular step of 0.01). Some
values or Nℓ are given and the directions of the external load are represented as well in order to
help the reader.

The periodicity P (along s) of φ is given by the complete elliptic integral of the first kind K(m)
that is the quarter period of the Jacobian elliptic functions too. According to the approximation
proposed in the preceding section, the periodicity of φ is

P = 4
√
g

Nℓ

K(1
2) ≃ 7.41

√
g

Nℓ

.

Hence the number of wrinkles along the beam is ℓ/P .
On the one hand, the size A of the wrinkle is related to the magnitude of φt: A = 2

√
2g/Nℓ. On the

other hand the spatial periodicity B (indeed P is the material periodicity) of this wrinkle may be
computed as B = |φn(P ) − φn(0)|. Focusing on the leading terms, and detailing the computation,
one obtains:

B =
∣∣∣∣∣P − 2

√
g

Nℓ

E(4K(1
2) | 1

2)
∣∣∣∣∣ ,

=
∣∣∣∣∣4
√
g

Nℓ

K(1
2) − 8

√
g

Nℓ

E(1
2)
∣∣∣∣∣ ,

= 4
√
g

Nℓ

(
2E(1

2) −K(1
2)
)
,

= 2π
K(1

2)

√
g

Nℓ

,
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where the complete elliptic integral E is introduced thanks to the relation E(4K(1
2) | 1

2) = 4E(1
2)

([Olv+10]-22.16.29) and [Olv+10]-19.7.1 has been used too. Lastly, the size ratio B/A (see Fig.3.13)
of the wrinkle pattern is independent of any material, geometrical or loading parameter:

B

A
= π√

2K(1
2)

≃ 1.2.

These properties of the deformed shape can been seen as a particular signature of such solicitation
by a pure-shear load.
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Figure 3.13 – dimensionless deformed shape of the beam glued at s = 0 and supporting a pure shear
load at s = ℓ (Nℓ = 0.01, ϕℓ = π/2 and Mℓ = 0). The properties of the beam are ℓ = 500 and
g = 5/2. The wrinkles are clearly visible. For this loading B ≃ 53.6 and A ≃ 44.7 and P ≃ 117.3.
There are 4.25 wrinkles.

3.7 Quasi-static stability

Let us consider a given static configuration. Let us denote the associated quantities V (for
example Nℓ, θ(s), di(s)). These quantities are supposed to be known, they are solutions of the
problem (3.4) for a given boundary condition. The quasi-static stability problem consists of the
analysis of the behaviour of a perturbed solution V = V + δV keeping invariant some boundary
conditions. The perturbation δV is infinitesimal, then all quadratic terms in δV would be neglected
in the following, leading to a linear analysis of the unknowns δV.

3.7.1 Problem statement

Let us focus first on the vectorial quantities N(s) = N(s) + δN(s), M(s) = M(s) + δM(s) and
ε(s) = ε(s) + δε(s). The prescribed initial quantities V(s) satisfy (3.4). In particular N(s) = Nℓ is
a fixed vector. The perturbed quantities solve (3.4) too. Written as follows (linear δ-order):

δN′(s) = 0,
δM′(s) + ε(s) × δN(s) + δε(s) × Nℓ = 0.

(3.43)
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According to the first line, δN(s) is a constant vector, so, let it be δNℓ (= δN(s)) where δNℓ is
indeed prescribed by boundary conditions. It is then natural to focus on

δM′(s) + ε(s) × δNℓ + δε(s) × Nℓ = 0 . (3.44)

Considering now the components of vectorial quantities. Constitutive relations motivate the use of
initial (respectively current) basis for the prescribed (respectively perturbed) configuration:

Nℓ = N1(s) d1(s) +N3(s) d3(s),
M(s) = M2(s) d2,

ε(s) = ε1(s) d1(s) + ε3(s) d3(s),
with

N1(s) = N ℓ sinϕ(s),
N3(s) = N ℓ cosϕ(s),
M2(s) = g θ

′(s),
(3.45)

N(s) = N1(s) d1(s) +N3(s) d3(s),
M(s) = M2(s) d2,

ε(s) = ε1(s) d1(s) + ε3(s) d3(s),
with

N1(s) = ε1(s),
N3(s) = g (ε3(s) − 1),
M2(s) = g θ′(s).

(3.46)

Lastly, the perturbations are arbitrary defined on the new basis:

δNℓ = δN1(s) d1(s) + δN3(s) d3(s),
δM(s) = δM2(s) d2,

δε(s) = δε1(s) d1(s) + δε3(s) d3(s).

Even if d2 = d2 = ey, this is not the case for the other directors that may undergo an in-
finitesimal rotation: θ(s) = θ(s) + δθ(s). Then d1(s) = cos(δθ(s)) d1(s) − sin(δθ(s)) d3(s) and
d3(s) = sin(δθ(s)) d1(s) + cos(δθ(s)) d3(s) may be approximated in this first order approach by:
d1(s) = d1(s) − δθ(s) d3(s) and d3(s) = d3(s) + δθ(s) d1(s) respectively.
The constitutive relation for the perturbation of the moment is trivial δM2(s) = g δθ′(s) but this
is not the case for the strains. This is obtained by considering that Ni(s) may be defined by two
equivalent ways:

for N1(s) (Nℓ + δNℓ) · d1(s) = (ε(s) + δε(s)) · d1(s),
for N3(s) (Nℓ + δNℓ) · d3(s) = g ((ε(s) + δε(s)) · d3(s) − 1) .

(3.47)

Expanding each side and using first δ-order approximations, one obtains, respectively:

N1(s) − δθ(s)N3(s) + δN1(s) = ε1(s) − δθ(s) ε3(s) + δε1(s),
N3(s) + δθ(s)N1(s) + δN3(s) = g (ε3(s) + δθ(s) ε1(s) + δε3(s) − 1) .

(3.48)
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Using (3.45), a constitutive relation depending on the initial state is obtained for the perturbation:

δε1(s) = cos (ϕ(ℓ) − ϕ(s))δN1(ℓ) − sin (ϕ(ℓ) − ϕ(s))δN3(ℓ) −
(

g−1
g
N3(s) − 1

)
δθ(s),

δε3(s) = 1
g

(
sin (ϕ(ℓ) − ϕ(s))δN1(ℓ) + cos (ϕ(ℓ) − ϕ(s))δN3(ℓ)

)
− g−1

g
N1(s) δθ(s),

(3.49)

where ϕ(ℓ) + θ(ℓ) = ϕ(s) + θ(s) (= ϕ̂) has been used. Hence strain perturbations δεi(s) are all
related to the field of micro-rotation δθ(s) and controlled by both the prescribed configuration and
boundary conditions imposed on the force perturbation δNℓ at the last section. This observation
induces that (3.44) may be written merely in terms of a single degree of freedom δθ(s) of the
perturbation with parameters controlled by the prescribed configuration and boundary conditions.
Straight forward calculation gives:

δθ′′(s) + k2(s) δθ(s) = f(s), (3.50)

where k2(s) and f(s) are

k2(s) = −1
g
N3(s) + g − 1

g2

(
N

2
3(s) −N

2
1(s)

)
,

f(s) = 1
g

(
g − 1
g

N3(s) − 1
)(

cos (ϕ(ℓ) − ϕ(s))δN1(ℓ) − sin (ϕ(ℓ) − ϕ(s))δN3(ℓ)
)

+ . . .

. . .
g − 1
g2 N1(s)

(
sin (ϕ(ℓ) − ϕ(s))δN1(ℓ) + cos (ϕ(ℓ) − ϕ(s))δN3(ℓ)

)
.

(3.51)
δθ(s) is a solution of a linear, non-homogeneous, second order differential equation with non-
constant coefficients. This differential equation is of the class of driven parametric oscillators for
which analysis is well-documented but beyond the scope of the present chapter.
Boundary conditions affect only the non-homogeneous term. Indeed, the prescription of δNℓ is of
particular physical importance. This is detailed in the next paragraph for dead and follower load
cases.

3.7.2 Dead-load

For a dead-load one gets Nℓ = Nℓ then δNℓ = 0. The equation (3.51) becomes:

δθ′′(s) + k2(s) δθ(s) = 0. (3.52)

Boundary conditions at s = 0 or s = ℓ are either δθ(s) = 0 for constant orientation of the section
or δθ′(s) = 0 if the moment kept constant.
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Example for a pure longitudinal compression For this initial configuration ϕ(s) = π and
k(s) is constant:

k2 = Nℓ

g
+ g − 1

g2 N2
ℓ . (3.53)

In that case k2 is strictly positive, hence, solutions of (3.52) are of the form

δθ = C1 cos (ks) + C2 sin (ks), (3.54)

for which the constants Ci depend on the boundary conditions.
— For simply supported beam, δθ′(0) = 0 and δθ′(ℓ) = 0 (Figure (3.14) left). The trivial

solution Ci = 0 is imposed except if k = nπ/ℓ (with n ∈ N∗) for which δθ(s) = C1 cos (ks) is
a possible solution. A straightforward computation shows that this buckling solution occurs
for

Nℓ = g

2(g − 1)

(√
1 + 4(g − 1)(nπ

ℓ
)2 − 1

)
. (3.55)

This non-linear relation may be simplified in first approximation as nπ
ℓ

≪ 1. This leads to
the standard Euler critical-load Nℓ = g(nπ

ℓ
)2 for buckling of simply supported beam.

— For clamped-hinged beam δθ(0) = 0 and δθ′(ℓ) = 0 (Figure (3.14) center). Again the trivial
solution is imposed except if k = (2n+ 1)π/(2ℓ) (with n ∈ N) for which δθ(s) = C2 sin (ks)
is a possible solution. In that case the critical load becomes:

Nℓ = g

2(g − 1)

√1 + (g − 1)((2n+ 1)π
ℓ

)2 − 1
 , (3.56)

which corresponds in first approximations to the standard Euler critical loadNℓ = g((2n+ 1)π
2ℓ )2

for cantilever beam.

Simply supported beam. Clamped-Hinged beam.

Figure 3.14 – Particular boundary conditions of a beam.

3.7.3 Follower load

If the force acting on the last section is a follower load, then Nℓ ̸= Nℓ. However, the components
of the actual force at this end are unchanged: N1(ℓ) = N1(ℓ) and N3(ℓ) = N3(ℓ). Applying (3.47)
at s = ℓ leads to:

δN1(ℓ) = N3(ℓ) δθ(ℓ), δN3(ℓ) = −N1(ℓ) δθ(ℓ) . (3.57)
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Injecting these expressions in (3.51), the equation (3.50) written after rearrangement as:

δθ′′(s) + k2(s)
(
δθ(s) − δθ(ℓ)

)
= 0, (3.58)

where δϕ(s) + δθ(s) = δϕ(ℓ) + δθ(ℓ) has been used. For a follower-load, the angle between the
normal of the last section and the external force is the same before and after perturbation, then
δϕ(ℓ) = 0. In other words: δθ(s) − δθ(ℓ) = −δϕ(s). According to this change of variables, the above
differential equation becomes:

δϕ′′(s) + k2(s) δϕ(s) = 0, (3.59)

where the boundary condition at s = ℓ is already prescribed δϕ(ℓ) = 0 even if δθ(ℓ) is unknown
(note that δθ(ℓ) may be a boundary condition prescription).

Example for a pure longitudinal compression As already mentioned k2 is, in that case, a
positive constant specified in (3.53). As δϕ(ℓ) = 0, solution of (3.59) is of the form

δϕ(s) = C1 sin (k(ℓ− s)). (3.60)

However, the boundary conditions imposed on the beam still play an important role, as it is
highlighted by the three following examples:

— If the couple remains null at the last end δM2(ℓ) = 0 then δθ′(ℓ) = 0 or equivalently
δϕ′(ℓ) = 0. Direct calculation shows that no solution δϕ(s) may respect this condition
except the trivial ones: δϕ(s) = 0, then δθ(s) = δθ(ℓ). Physically speaking any perturbation
of the beam induced an instability in the form of a rigid rotation. Note that this observation
is valid for any constraint imposed on s = 0. In particular if the beam is clamped at the
origin δθ(s) = 0: no transverse perturbation are possible.

— If the beam is simply supported at s = 0 but δθ′(ℓ) ̸= 0 at the other end, the problem reads
in terms of δϕ: δϕ′(0) = 0 and δϕ(ℓ) = 0. These boundary conditions imposes non-trivial
solution if k = (2n+ 1)π/(2ℓ) (with n ∈ N). A buckling appears for a critical load presented
in (3.56) and the mode of buckling may be written as

δθ(s) = δθ(ℓ) − C1 sin
((2n+ 1)π

2ℓ (ℓ− s)
)
,

where the constant C1 is arbitrary.
— If δθ(0) = 0 the beam is clamped at s = 0 then δϕ(0) = δθ(ℓ) and still δϕ(ℓ) = 0. According

to (3.60), C1 sin (kℓ) = δθ(ℓ). For moderate compression (0 < kℓ < π) solution (3.60) is
always possible and reads:

δϕ(s) = δθ(ℓ)sin (k(ℓ− s))
sin (kℓ) , then δθ(s) = δθ(ℓ)

(
1 − sin (k(ℓ− s))

sin (kℓ)

)
.

Then, for any infinitesimal perturbation of the orientation of the last section (and then of the
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follower load), a perturbed solution exists. No brutal bifurcation is observed. In conclusion
the clamped beam is particularly unstable under the loading of a follower compressive force
(even if this latter is infinitesimal).

3.8 Boundary problem

Assuming now that the same beam (ℓ = 50, g = 5/2) supports a pure dead-load Nℓ = Nℓez,
Mℓ = 0 (Figure (3.15)). Of course ϕ′

ℓ = 0 as Mℓ = 0 however, ϕℓ is not prescribed. Indeed, the last
boundary condition is the orientation of the section at s = 0: θ0 = θ(0). Let us define in the same
spirit M0 := M2(0), ϕ0 := ϕ(0) and ϕ′

0 := ϕ′(0) (= −M0/g). From (3.13) θ0 = ϕ̂−ϕ0 and according
to the section (3.2.2) ϕ̂ = 0.
The questions are the following:

What is the configuration of the beam as θ0 varies according to a command, for a fixed pure
dead-load ?

Is this solution unique ?

In order to address these questions, one must first consider the initial condition problem which has
unique solution:

What is the configuration of the beam as ϕℓ varies for a prescribed Nℓ and such that Mℓ = 0,
ϕ̂ = 0 ?

In a second step the map of the solution associated to θ0 ∈ C → ϕℓ is studied according to the
command C of the boundary condition.

3.8.1 Parameter analysis

First observe that µ = 2gNℓ cos (ϕℓ) − (g − 1)N2
ℓ cos2 (ϕℓ) then µa ≤ µ ≤ µc and t(s) is of

the form (3.35). Second, as ϕ′
ℓ = 0 we have t′(ℓ) = 0 and according to Fig.3.7 and the associated

analysis:
√
a(α− + α+)(ℓ+ s0) = +K, if 0 ≤ ϕℓ < π√
a(α− + α+)(ℓ+ s0) = −K, if π ≤ ϕℓ < 2π

, where K := K( α+

α+ + α−
).

Then, for a fixed ϕℓ, s0 can be determined directly. In other words, t(s) is perfectly determined and
then ϕ(s). In particular θ0 := −2 arctan (t(0)) becomes:

θ0 = −2 arctan
(√

α− + α+ ds(
√
a(α− + α+)s0 | α+

α+ + α−
)
)
,

= 2 arctan
(√

α− + α+ ds(±K +
√
a(α− + α+)ℓ | α+

α+ + α−
)
)
,

= ±2 arctan
( √

α−

cn(
√
a(α− + α+)ℓ | α+

α++α−
)

)
.
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Figure 3.15 – Beam subjected to a pure dead load.

According to the preceding results and using translation rules [Olv+10]-22.4.(iii). The sign ± is −
if ϕℓ ∈ [0, π[ and + if ϕℓ ∈ [π, 2π[. Recall that a and α± depend explicitly on ϕℓ according to (3.28)
and (3.18).

3.8.2 Catastrophic instablities

The evolution of θ0 versus ϕℓ is presented in Fig.3.16. The map ϕℓ → θ0 is bijective only for
moderate magnitude Nℓ of the dead-load. For moderate Nℓ the angle ϕℓ is uniquely determined for
a given θ0 hence, the associated configuration of the beam is unique. For larger Nℓ, more than one
value of ϕℓ is associated to a given value of θ0. This lack of uniqueness induces a non-uniqueness of
the configurations for a fixed θ0.
Supposing that the command C is "θ0 increases from 0". The initial state is then associated to
the point (ϕℓ = 0, θ0 = 0) for which the beam supports a pure traction. Afterwards, the graph in
Fig.3.16 has to be read from right to left and the first configurations are defined by the increasing
branch initiated at (0, 0). For large Nℓ, this branch has an inflection point (for ϕℓ ≃ −π/3 if
Nℓ = 0.01 see in Fig.3.17-left). In order to respect the command imposed on θ0, the values of ϕℓ has
to present a large jump (its magnitude is higher than 3π/2 if Nℓ = 0.01). This jump corresponds
to a large and brutal change of the configuration of the beam as it is observed in Fig.3.17-right.
This phenomena is known as a catastrophe in instability theories ([Tho18; PS14; Gol78]).
The analytical and dimensionless approach followed along the present chapter allows to tackle this
type of problem through explicit solution without a priori approximations or hypotheses [HLML21].
This methodology may be seen as a complementary approach to those more usually based on the
internal energy.
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Figure 3.16 – Evolution of θ0 according to ϕℓ for various magnitude of the dead-load (ℓ = 50,
g = 5/2, Nℓ = Nℓez, Mℓ = 0, ϕ̂ = 0). If C is θ0 increases linearly from 0, the graph has to be read
from right to left.
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Figure 3.17 – Left: evolution of θ0 according to ϕℓ if Nℓ = 0.01. In orange bold the history of the
ϕℓ and θ0 for the command C. The arrows help to read the quasi static evolution and underline
the gap associated to the catastrophe. Right: the successive configurations for various values of θ0
respecting the command C. The colors of the dots in the left figure are associated to the colors of the
corresponding configurations. The purple arrow highlights the brutal transition of the configurations
during the catastrophe.

Comparison between Timoshenko, Euler and Kirchhoff’s model in terms of Catastrophic instabilities
is given in the appendix (4.20.5).
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3.9 Conclusion

We presented in this chapter, an analytical study of a large, but plane, transformation of a Tim-
oshenko beam with linear constitutive law where non-linear geometrical relations appeared due to
this transformation. Equilibrium relations in non-dimensional form were found.
The followed formulation in the present chapter chooses to emphasize a Cauchy problem formalism
where all strains are prescribed at one end, in contrast to most studies in this field. More precisely,
at one end, the moment and force intensities are supposed to be known as well as the orientation
of the load with respect to the normal of the section.
This approach ensured existence and uniqueness of the solution. Furthermore, explicit formulation
of the solution was obtained thanks to Jacobian elliptic functions for which coefficients are smoothly
dependents on the invariants of the problem. This methodology allowed us to tackle several theo-
retical and physical problems since explicit solutions were obtained without any approximation.
Several examples were then presented to illustrate this methodology. In the case of a pure-shear
follower load, force was completely prescribed at one end, and a quasi-static evolution was straight-
forwardly addressed. In such a case, the explicit analysis was the opportunity to exhibit a universal
size ratio of a wrinkle pattern: this size-ratio is independent of the material and the geometrical
properties of the beam but independent of the intensity of the load too.
For mixed boundary conditions, the perturbation of the problem was presented in a general way
for any type of boundary condition, allowing us to compute the perturbed solutions under these
various conditions. This general perturbed problem written as a driven parametric oscillator for
which each (space-varying) parameters is explicitly available.
In the last example, the kinematic control of a beam supporting a dead-load was presented. For
such a problem, the usual perturbation methodology could be used to detect eventual instability.
The present chapter however, focus on an alternative nonlinear method which depicted the whole
equilibrium solution. Emergence of even more critical instability than fork bifurcation (as usual
buckling) was observed. Indeed such so called catastrophe remained reachable in a straightforward
and explicit way.
Finally, this approach was also valid for Euler Bernoulli beam as well as Kirchhoff rod model, where
comparison between these models was detailed in the appendix.
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Chapter 4

BEHAVIOUR OF A KIRCHHOFF ROD UNDER

PURE MOMENTS

Experience is the collecting of what is
similar in different particular perceptions

Gustav Kirchhoff

4.1 Overview

Rotation of a rigid body was first introduced by Euler in the 18th Century with a description
based on a vectorial quasi-linear first order differential equation. This approach led to several
applications. Kovaleskaya [Kow89] identified the rotation of a rigid body around a fixed point and
gave the solution in terms of hyper-elliptic integrals. Then, Arnold applied Euler’s method in order
to find mathematical methods of classical mechanics [Arn13]. After that, Agrachev et Sachkov
[AS13] used rotations of a rigid body in control theory. A while later, Van damme et al.. [VDMS17]
examined the tennis racket effect in a three-dimensional rigid body where they described the flip
of the head of the racket.
Kirchhoff filaments were first presented by Kirchhoff [Kir59] who gave a general theory of elastic
filaments. This theory openend a vast application in Biology such as finding stability of DNA
[TSC00], and also in Physics and Engineering, where scientists aimed to solve the problem in
an analytical or numerical way. For example, Nizette and Goriely [NG99] classified the shapes
of Kirchhoff filaments and gave complete description of solutions in the symmetric Rods case.
Henceforth, Goriely and Tabor gave numerical solutions by applying perturbation scheme to the
Kirchhoff equations [GT00].
Equilibrium equations of a thin elastic ribbon are derived by adapting the classical theory of thin
elastic rods. Among others, Antman conducted the Kirchhoff’s problem for nonlinearly elastic rods
[Ant74]. Goriely and Nizette [GN00] linked rods and ribbons by the so-called "Kirchhoff analogy"
which identifies inextensible elastic filaments with circular cross-sections. Coming after, Audoly,
Clauvelin and Neukirch invested the mechanical response of elastic rods bent into open knots
[ACN07]. Later on, Audoly and Seffen [AS16] tested buckling instabilities of metallic strips and
related elastic Rods to Ribbons. In addition, Starostin and Heijden [SH18] proved that Forceless
Sadowsky strips are spherical. Numerical modeling of inextensible elastic ribbons was suggested by
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Charrondière et al. [Cha+20] who obtained perfect agreement between experiments for ribbon and
elastica.
In this chapter, we study the static problem of a straight Timoshenko beam subjected to moments
at the boundaries without external forces. Domain of variation of each dimensionless parameters
is examined, furthermore, two invariants that depend on moments and energy density govern the
problem, these invariants are similar to the invariants in the rotation of a rigid body problem
with the only difference regarding the variables and the applications between these two different
approaches. Four regimes model arise that depends on the thickness of the cross-section. Solutions
are found in an analytical way (in terms of Jacobian elliptic functions). A detailed discussion is made
regarding the role of the control parameters. In the last section, we implicate physical applications
to give a better understanding of the problem.

4.2 Kinematics

Kinematics of the beam in this chapter are given by:

Placement : φ = φ1d1 + φ2d2 + φ3d3.

Strain : ε = ε1d1 + ε2d2 + ε3d3.

Generalised curvatures : κ = κ1d1 + κ2d2 + κ3d3.

(4.1)

4.3 Internal energy, forces and moments

Keeping in mind that Kirchhoff-Saint Venant energy per unit length is given by:

Ψ = 1
2
(
GAε2

1 +GAε2
2 + EA(ε3 − 1)2 + EI1 κ

2
1 + EI2 κ

2
2 +GI3 κ

2
3

)
. (4.2)

Hence, the resultant stress depends linearly on the conjugate strains:

N1 = GAε1, N2 = GAε2, shear forces.
N3 = EA (ε3 − 1), normal force.
M1 = EI1 κ1, M2 = EI2 κ2, bending moments.
M3 = GI3 κ3, torsional moment.

(4.3)

In the directors frame, force and moment vectors are:

N(S) = N1d1 +N2d2 +N3d3, M(S) = M1d1 +M2d2 +M3d3.
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4.4 Equilibrium relations

By imposing q = m = 0, static equilibrium relations will be:

dN
dS

= 0,
dM
dS

+ ε × N = 0.
(4.4)

Integrating the first equation of (4.4) gives N(S) := N that is a constant imposed by external force
imposed at one end.

M

e1

e2

d1

d3

d3

e3

C

O

G

φ(S)
S

Figure 4.1 – Reference configuration (left) and current configuration. d3 is always tangent to C.

All along this chapter we consider N=0 (see fig.(4.1)). Using stress-internal forces relation eq.
(4.3) we deduce:

ε1(S) = 0, ε2(S) = 0, ε3(S) = 1. (4.5)

As a conclusion, equation (4.4) could be written as:

dM
dS

= 0. (4.6)
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Keeping in mind that we have a moving director frame, one obtains after projecting along di(S):

EI1
dκ1

dS
+ (GI3 − EI2)κ2κ3 = 0,

EI2
dκ2

dS
+ (EI1 −GI3)κ1κ3 = 0,

GI3
dκ3

dS
+ E(I2 − I1)κ1κ2 = 0.

(4.7)

4.5 Beam-rod relation

In this section we aim to relate our equilibrium equations to Rod equilibrium described by
Kirchhoff in [Kir59]. Namely, the static Kirchhoff Rod model is given by (e.g.[NG99]):

dN
dS

+ q = 0, (4.8)

dM
dS

+ d3 × N + m = 0. (4.9)

This model doesn’t impose gliding, so, we obtain the kinematical assumption:

∂φ

∂S
= d3 . (4.10)

The quadratic energy density for this model is given by:

Ψ = 1
2

(
EI1κ

2
1 + EI2κ

2
2 +GI3κ

2
3

)
. (4.11)

With the linear constitutive laws with respect to moments:

M1 = EI1κ1, M2 = EI2κ2, M3 = GI3κ3. (4.12)

And N could be determined from (4.8).
So, by exerting only a moment load type, a beam behaves exactly as a rod and our structure will
be considered as a rod later on.
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4.6 Dimensionless parameters

As mentioned before, dimensionless parameters in this case are given by:

Gyration radius: ϱ =
√
I1 + I2

A
.

Bulk ratio: g := E

G
.

Eccentricity: e = I1

I2
.

(4.13)

4.6.1 Non-dimensional quantities

Dimensionless kinematical variables are:

εi(s) = εi(S), κi(s) = ϱ κi(S), φi(s) = 1
ϱ
φ

i
(S). (4.14)

It is interesting to observe that physical moment M(S) has also non-dimensional form M(s) related
by

M = 1
ϱ

1
GA

M.

In particular, in term of non-dimensional components :

M1 = r1κ1, M2 = r2κ2, M3 = κ3,

with r1 := eg

1 + e
, r2 := g

1 + e
.

(4.15)

The non-dimensional bending stiffnesses ri play a major role all along the analysis. They combine
the material parameter g with the geometrical slenderness e of the section. Note that thanks to
this non-dimensional procedure, the torsional stiffness is one.
Non dimensional energy per unit length is given by:

Ψ(s) = 1
2

(
M1κ1 +M2κ2 +M3κ3

)
,

= 1
2

( 1
r1
M2

1 + 1
r2
M2

2 +M2
3

)
,

= 1
2

(
r1 κ

2
1 + r2 κ

2
2 + κ2

3

)
.

(4.16)
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4.6.2 Domain of variation

By construction ϱ = O(R), where R is a typical size of the cross-section. Accordingly ℓ ≳ 20 for
a short beam and is even higher for a slender beam. In terms of cross-section one has by convention

0 < e ≤ 1.

As g ≃ 2(1 + ν) where ν is the Poisson’s ratio:

2 ≲ g ≲ 3.

Due to non-overlapping of beam section, the curvature radius of the beam must be greater than
the typical size of the section along direction of curvature, therefore:

|κ1(S)| <
√
A

I1
, |κ2(S)| <

√
A

I2
, |κ3(S)| <

√
A

I1 + I2
. (4.17)

Written in non-dimensional form as

|κ1(s)| <
√

1 + e

e
< +∞, |κ2(s)| <

√
1 + e ≤

√
2, |κ3(s)| < 1. (4.18)

And employing (4.15) we conclude that:

|M1(s)| < g

√
e

1 + e
≤ g√

2
, |M2(s)| < g

√
1

1 + e
≤ g, |M3(s)| < 1. (4.19)

Remark. It is worthy to mention that we adapted a material approach for which we have a moving
director frame (d1,d2,d3) where (d1,d2) is attached to the rigid cross-section S and d3 is normal
to S, hence, torsional warping effect does not exist in our approach.

4.6.3 Non-dimensionnal relation

Using the fact that df

dS
= 1
ϱ

df

ds
and the convention f ′ := df

ds
for any function f(S) and injecting

(4.14) into (4.7) one gets:

r1 κ
′
1(s) − (r2 − 1)κ2(s)κ3(s) = 0,

r2 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = 0,

κ′
3(s) + (r2 − r1)κ1(s)κ2(s) = 0.

(4.20)

Note that all coefficients in parenthesis or in front of κ′
i are related to e and g. They are positive

or null expect (r1 − 1) for which sign may depend on the beam. As this latter element has crucial
consequences in the present work, the following definitions are introduced:
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Definition 4.6.1 (Cross-section properties).

e = 1. Symetric cross-section.

1 < r1, i.e e >
1

g − 1 . Thick cross-section.

r1 < 1, i.e e <
1

g − 1 Thin cross-section (ribbon-like beam).

(4.21)

Note that these definitions involve both a geometrical parameter e and a material parameter
g. It could be observed that for small Poisson parameter, i.e. g ≃ 2, the section is mainly defined
as thin and the beam as ribbon even if the slenderness of the section is moderate (i.e. e close to
unity).

4.7 Homogeneous and trivial solutions

Some trivial solutions of (4.20) may be revealed according to the domain of variation of each
parameters (see Def.(4.6.1)). Hereafter, the notations Mi0 := Mi(0) and κi0 := κi(0) will be used
as constant of integration satisfying the boundary conditions.

1. If 1 − e ̸= 0 and r1 ̸= 1:

(a) κ1(s) = κ10 and κ2(s) = 0, κ3(s) = 0. It is a pure flexion in the (ey, ez)-plane: elastica-1
solution.

(b) κ2(s) = κ20 and κ1(s) = 0, κ3(s) = 0. It is a pure flexion in the (ex, ez)-plane: elastica-2
solution.

(c) κ3(s) = κ30 and κ1(s) = 0, κ2(s) = 0. It is a pure torsion around the axis ez of the beam:
torsional solution.

2. If r1 = r2 (i.e. e = 1) and r1 ̸= 1 then κ3(s) = κ30 and

κ1(s) = κ10 cos
(g − 2

g
κ30 s

)
+ κ20 sin

(g − 2
g

κ30 s
)
,

κ2(s) = κ20 cos
(g − 2

g
κ30 s

)
− κ10 sin

(g − 2
g

κ30 s
)
.

(4.22)

3. If r1 = 1 and e ̸= 1 then κ2(s) = κ20 and

κ1(s) = κ10 cos
(
(g − 2)κ20 s

)
+ κ30 sin

(
(g − 2)κ20 s

)
,

κ3(s) = κ30 cos
(
(g − 2)κ20 s

)
− κ10 sin

(
(g − 2)κ20 s

)
.

(4.23)

4. If r1 = r2 = 1, what implies g = 2 and e = 1, then

κ1(s) = κ10, κ2(s) = κ20, κ3(s) = κ30.
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4.8 Invariants

In order to find non trivial solutions we remark that direct integration of (4.6) leads to a constant
vector along the fibre M(s) = M. Its norm M := ∥M∥ is then the first invariant of the problem
and according to (4.15):

M2 = M1(s)2 +M2(s)2 +M3(s)2,

=
(
r1 κ1(s)

)2
+
(
r2 κ2(s)

)2
+ κ3(s)2.

(4.24)

Now by multiplying the first equation of (4.20) by κ1, the second equation by κ2 and the third
equation by κ3 and adding them we obtain:

r1 κ1κ
′
1 + r2 κ2κ

′
2 + κ3κ

′
3 = 0 (4.25)

According to (4.16), this relation is nothing else than Ψ′(s) = 0. In other words (4.25) states that
the densities of strain energy is conserved along the beam: Ψ(s) := Ψ that is the second invariant
of the problem:

Ψ = 1
2

(
r1 κ1(s)2 + r2 κ2(s)2 + κ3(s)2

)
, (4.26)

where the s dependence presents only in the right side of the equation. Note that even if the den-
sity of energy is conserved along the beam, torsion energy is converted into bending energy and
vice-versa all along the beam.
These two invariants could be found also in the work of Euler and they where presented by Nizette
and Goriely [NG99], as well as Kehrbaum and Maddocks [KM97].

According to (4.19):
M2 ≤ g2 + 1, Ψ ≤ g + 1

2 . (4.27)

These bounds are particularly large, especially for elongated structures. It must not be considered
as an indicator of the order of magnitude of these variables, but rather as a maximum bounds
(physically unreachable in general).

4.8.1 Geometrical interpretation

In the configurational space (M1,M2,M3), the invariants M and Ψ correspond to sphere and
ellipsoid respectively. So, solutions of (4.20) belongs to their intersections. If such intersection exists,
it is composed of smooth and close curves in the configurational space. As a consequence, solutions
M1(s), M2(s) and M3(s) of (4.20) are expected to be described by periodic functions.
For later convenience lets introduce the positive constant µ such that:

µ2 := 2Ψ.
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The second invariant is then driven by:

1
r1
M2

1 + 1
r2
M2

2 +M2
3 = µ2, (4.28)

corresponding to a centered elipsoid for which semi-axis are √
r1 µ,

√
r2 µ and µ respectively along

the axis M1, M2 and M3 of the configurational space. As the first invariant is a centered sphere
with radius M , some (non-ponctual) intersections exists if and only if

min
i=1,2

(ri, 1) ≤ η := M

µ
≤ max

i=1,2
(ri, 1).

This criteria can be easily expanded and questioned as µi and M are all explicit in terms of Mi(s)2,
e and g. Practically, 1 < r1 < r2 for thick section, and r1 < 1 < r2 for thin section. This leads to
the following result:

Proposition 4.8.1 (Existence conditions). Non-trivial solutions of (4.20) exist if and only if

1 < η <
√
r2, when 1 < r1.

√
r1 < η <

√
r2, when r1 < 1.

(4.29)

For a given beam, hence, given a set (e, g), this existence criteria is only controled by the loading
η.
Invariants M and µ are presented in the configuration space for thick or thin cross-section in Fig.4.2.
The intersections are then highlighted and define the supports of any solutions M1(s), M2(s) and
M3(s) for each presented cases. These supports are systematically composed of two symmetric,
close, smooth, and non-intersecting curves.
Independently to the section type, the behaviour of the solutions is highly dependent on the value
of the loading-ratio η with regards to e and g.

For thick section, the two invariants are always intersecting in the (M2,M3)-plane. This inter-
section is obtained explicitly by solving the linear system:

M2
2 +M2

3 = M2,
1
r2
M2

2 +M2
3 = µ2,

what gives some potential initial conditions for the solutions for thick section:

M20 = ±µ
√
r2(η2 − 1)
r2 − 1 , M30 = ±µ

√
r2 − η2

r2 − 1 . (4.30)

For the thin section, the two invariants always intersect in the (M1,M2)-plane. Some potential
initial conditions for the solutions for thin section are then:

M10 = ±µ
√
r1(r2 − η2)
r2 − r1

, M20 = ±µ
√
r2(r1 − η2)
r1 − r2

. (4.31)
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

(a) 1 ≤ η ≤
√

r1 <
√

r2. (b) 1 <
√

r1 ≤ η ≤
√

r2.

(c) √
r1 ≤ η ≤ 1 <

√
r2. (d) √

r1 < 1 ≤ η ≤
√

r2.

Figure 4.2 – Invariants M (red) and µ (blue) for various section types and loading. For all the
case g = 2.5, µ = 0.1. Top: thick-section e = 0.8 with η = 1.03 (a) and η = 1.09 (b). Bottom:
thin-section e = 0.4 with η = 0.95 (left) or η = 1.2 (right).

4.9 Resolution of the elliptic differential equations

Equilibrium equations (4.20) are similar to Euler’s rotation equations where solutions were
found in terms of Jacobian elliptic functions (e.g. [LL76],[GPS80],[Cel+08],[Law13]). For thick
beam, solutions are given by:

— If 1 ≤ η ≤ √
r1 <

√
r2:

κ1(s) = κ1 sn
(
λ(s+ s0) | m

)
, κ1 = µ

√√√√ η2 − 1
r1(r1 − 1) , m = (η2 − 1)(r2 − r1)

(r1 − 1)(r2 − η2) .

κ2(s) = κ2 cn
(
λ(s+ s0) | m

)
, κ2 = µ

√√√√ η2 − 1
r2(r2 − 1) , λ = µ

√
(r2 − η2)(r1 − 1)

r1r2
.

κ3(s) = ±κ3 dn
(
λ(s+ s0) | m

)
, κ3 = µ

√
r2 − η2

r2 − 1 .

(4.32)
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4.9. Resolution of the elliptic differential equations

— If 1 < √
r1 ≤ η ≤ √

r2:

κ1(s) = κ1 sn
(
λ(s+ s0) | m

)
, κ1 = µ

√√√√ r2 − η2

r1(r2 − r1)
, m = (r1 − 1)(r2 − η2)

(η2 − 1)(r2 − r1)
.

κ2(s) = ±κ2 dn
(
λ(s+ s0) | m

)
, κ2 = µ

√√√√ η2 − 1
r2(r2 − 1) , λ = µ

√
(r2 − r1)(η2 − 1)

r1r2
.

κ3(s) = κ3 cn
(
λ(s+ s0) | m

)
, κ3 = µ

√
r2 − η2

r2 − 1 .

(4.33)
Similarly for thin beam, two regimes are presented:

— If √
r1 ≤ η ≤ 1 < √

r2:

κ1(s) = ±κ1 dn
(
λ(s+ s0) | m

)
, κ1 = µ

√√√√ r2 − η2

r1(r2 − r1)
, m = (η2 − r1)(r2 − 1)

(1 − r1)(r2 − η2) .

κ2(s) = κ2 cn
(
λ(s+ s0) | m

)
, κ2 = µ

√√√√ r1 − η2

r2(r1 − r2)
, λ = µ

√
(r2 − η2)(1 − r1)

r1r2
.

κ3(s) = κ3 sn
(
λ(s+ s0) | m

)
, κ3 = µ

√
η2 − r1

1 − r1
.

(4.34)
— If √

r1 < 1 ≤ η ≤ √
r2:

κ1(s) = κ1 cn
(
λ(s+ s0) | m

)
, κ1 = µ

√√√√ r2 − η2

r1(r2 − r1)
, m = (1 − r1)(r2 − η2)

(η2 − r1)(r2 − 1) .

κ2(s) = ±κ2 dn
(
λ(s+ s0) | m

)
, κ2 = µ

√√√√ r1 − η2

r2(r1 − r2)
, λ = µ

√
(r2 − 1)(η2 − r1)

r1r2
.

κ3(s) = κ3 sn
(
λ(s+ s0) | m

)
, κ3 = µ

√
r2 − η2

r2 − 1 .
(4.35)

Figure (4.3) represents the variation of the jacobian functions where it is remarkable that sn
and cn are 4K(m) periodic where dn is 2K(m) periodic.

-5 0 5

-0.5

0

0.5

1

Figure 4.3 – sn(ζ | m), cn(ζ | m) and dn(ζ | m) for m = 1
2 .
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

4.10 Determination of s0

In order to determine the translation parameter s0, we should mention that κ2 = κ2(0) for thick
and thin beam. This leads directly to cn

(
λs0 | m

)
= 1 (or dn

(
λs0 | m

)
= 1), so, referring to

[Olv+10] we obtain

s0 = 4nK(m)
λ

, n ∈ M. (4.36)

Remark. Without loss of generality, we assume hereafter that s0 = 0 and for simplicity we abbre-
viate pq

(
λs | m

)
by pq for any Jacobian function.

4.11 Moments

0 100 200 300

-0.05

0

0.05

0.1

1 ≤ η ≤
√
r1 <

√
r2.

0 100 200 300
-0.1

-0.05

0

0.05

0.1

1 < √
r1 ≤ η ≤ √

r2.

0 100 200 300
-0.1

-0.05

0

0.05

0.1

√
r1 ≤ η ≤ 1 < √

r2.

0 100 200 300
-0.1

-0.05

0

0.05

0.1

0.15

√
r1 < 1 ≤ η ≤ √

r2.

Figure 4.4 – Moments for various section types and loading. For all the case g = 2.5, µ = 0.1. Top:
thick-section e = 0.8 with η = 1.03 (a) and η = 1.09 (b). Bottom: thin-section e = 0.4 with η = 0.95
(left) or η = 1.2 (right).

Keeping in mind that

M1 = r1κ1, M2 = r2κ2, M3 = κ3. (4.37)

Using explicit solutions presented in Sec.(4.9) we find moments. Figure (4.4) represents the variation
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of moments for different regimes.

4.12 Role of η

To investigate the influence of η on the curvature, we first start by plotting the moments in
(M1,M2,M3) configuration. We should remark first that to move from thick regime (a) to thick
regime (b) in figure (4.2) we should increase M for µ fixed, the same procedure applies to thin
regimes (c) and (d). So, figure (4.5) represents the shifting between regimes for thick and thin
cross-section where it is clear that this shifting is continuous. In addition, we can remark that by

Various curvature regime for thick beam with
e = 0.8.

Various curvature regime for thin beam with
e = 0.4.

Figure 4.5 – Pattern shifting with g = 2.5 and µ = 0.0845.

increasing η we obtain different curvature form so, η controls the type of the solution. Further study
on rod shapes will give a better understanding of the role of η.

4.13 Impact of µ

In this section, we give the impact of µ on the curvature and shapes. To do so, we repeat exactly
figure (4.5) for bigger µ. Figure (4.6) gives this approach, we can remark that by increasing µ the
same pattern is repeated. Therefore, µ is a scaling parameter and it controls the size of the solution.
Note that µ will be considered as constant hereafter.
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

µ fixed. increasing µ.

µ fixed. increasing µ.

Figure 4.6 – Pattern shifting for µ different Top: thick-section e = 0.8 Bottom: thin-section e = 0.4.

4.14 Orientation of the section

In this section we aim to relate the moving director frame di to the Frenet frame attached to
the centerline. So, reminding first Frenet-Serret relations:

t(s) = φ′(s) = d3(s),

n(s) = t′(s)
∥t′(s)∥ ,

b(s) = t(s) × n(s),
κf (s) = ∥t′(s)∥ ,
|τ(s)| = ∥b′(s)∥ ,

t′(s) = κf (s)n(s) = φ′′(s),
n′(s) = −κf (s)t(s) + τ(s)b(s),
b′(s) = −τ(s)n(s).

(4.38)

This motivates us to introduce ξ(s) that relates the moving director frame (d1,d2) to Frenet’s triad
(n,b) as follows (Figure (4.7)):
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4.14. Orientation of the section

d2 b

n

d1

ξ(s)

Figure 4.7 – di with respect to Frenet’s basis.

d1 = cos (ξ)n + sin (ξ)b,
d2 = − sin (ξ)n + cos (ξ)b.

(4.39)

Since
d3

′ = κ × d3 = −κ1d2 + κ2d1. (4.40)

And d3
′ = κfn therefore, using the fact that n = cos(ξ)d1 − sin(ξ)d2 we obtain

κ1 = κf sin(ξ),
κ2 = κf cos(ξ).

(4.41)

Since b = sin(ξ)d1 + cos(ξ)d2, so, using again d′ = κ × d we obtain:

b′ = ((ξ′ − κ3) cos(ξ))d1 + (sin(ξ)(κ3 − ξ′))d2 + (cos(ξ)κ1 − sin(ξ)κ2)d3. (4.42)

However, b′ = −τn, therefore, we obtain the following relation:

τ + ξ′ = κ3. (4.43)

So, to conclude:
κ2

f = κ2
1 + κ2

2,

θ := tan(ξ) = κ1

κ2
,

τ = κ3 − ξ′.

(4.44)

Hence, for thick beam solutions are given by:
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— If 1 < η <
√
r1 <

√
r2:

κf = µ

√
(η2 − 1)

( 1
r1(r1 − 1)sn2 + 1

r2(r2 − 1)cn2
)
,

θ =
√
r2(r2 − 1)
r1(r1 − 1)sc,

τ = µ

√
r2 − η2

r2 − 1 dn − µ(r1 − 1)

√
(r2 − η2)(r2 − 1)dc nc

r1(r1 − 1) + r2(r2 − 1)sc2 .

(4.45)

— If 1 < √
r1 < η <

√
r2:

κf = µ

√
η2 − r2

r1(r1 − r2)
sn2 + η2 − 1

r2(r2 − 1)dn2,

θ =
√
r2(r2 − 1)(η2 − r2)
r1(r1 − r2)(η2 − 1)sd,

τ = µ

√
r2 − η2

r2 − 1 cn − µ(r1 − r2)(η2 − 1)

√
(r2 − η2)(r2 − 1)cd nd

r1(r1 − r2)(η2 − 1) + r2(r2 − 1)(η2 − r2)sd2 .

(4.46)

And for thin beam:

— If √
r1 < η < 1 < √

r2:

κf = µ

√
r1 − η2

r2(r1 − r2)
cn2 + η2 − r2

r1(r1 − r2)
dn2,

θ =
√
r2(η2 − r2)
r1(r1 − η2)dc,

τ = µ

√
η2 − r1

1 − r1
sn − µ(η2 − 1)(r1 − r2)√

r1 − 1

√
r1 − η2nc sc

r1(r1 − η2) + r2(η2 − r2)dc2 .

(4.47)

— If √
r1 < 1 < η <

√
r2

κf = µ

√
r1 − η2

r2(r1 − r2)
dn2 + η2 − r2

r1(r1 − r2)
cn2,

θ =
√
r2(η2 − r2)
r1(r1 − η2)cd,

τ = µ

√
r2 − η2

r2 − 1 sn − µ(η2 − 1)(r1 − r2)√
r2 − 1

√
r2 − η2nd sd

r1(r1 − η2) + r2(η2 − r2)cd2 .

(4.48)

Where relation between Jacobian elliptic functions were used and will be detailed in the appendix.
Furthermore, particular cases will also be provided in the appendix.
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4.15 Rod shapes

In order to determine the shape of the beam we should recall first that φ′ = d3 (of course
∥φ′∥ = 1 and

∫ ℓ

0
∥φ′∥2

ds = ℓ). Projecting along directors to obtain:

φ′
1 − φ2κ3 + φ3κ2 = 0,

φ′
2 − φ3κ1 + φ1κ3 = 0,

φ′
3 − φ1κ2 + φ2κ1 = 1.

(4.49)

Of course directors and placement respect the following dimensionless relation:

d1
′ = κ3d2 − κ2d3,

d2
′ = κ1d3 − κ3d1,

d3
′ = κ2d1 − κ1d2,

φx = φ · ex,

φy = φ · ey,

φz = φ · ez.

(4.50)

In the following section, we will illustrate the general case for different loads and cross-sections, all
the particular cases will be given explicitly in the appendices.

4.15.1 General case:η influence on rod shapes

In the general case curvatures are given by Jacobian functions where different regimes are
represented by the four different interior area in (4.8). To find the rod shapes we should solve (4.49)
and (4.50). These two equations are first order linear system with variable coefficients. Existence
and uniqueness of solutions are guaranteed thanks to Picard fixed point [Jea10], however, solutions
are hard to solve in an analytical way, we can solve them using a numerical method (example
Runge-Kutta method).

Figure 4.8 – Illustration of Jacobian solutions in (η, e) plan.

We aim to reply to the following question:

What is the behaviour of the beam by changing the load parameter η for µ fixed?
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

First, it should be mentioned that for µ fixed, varying η is exactly the variation of M .
In order to answer to our main question, we first represent in figure (4.9) the rod for different
regimes and different values of η.
We can remark that by increasing η, we change the curvature of the rod. Therefore,

• η controls the shape of the beam.
• Increasing η switch rod shape from torsion to bending and vice versa in a continuous way.

1 ≤ η ≤
√
r1 <

√
r2. 1 < √

r1 ≤ η ≤ √
r2.

√
r1 ≤ η ≤ 1 < √

r2.
√
r1 < 1 ≤ η ≤ √

r2.

Figure 4.9 – Beam shapes for various section types and loading. For all the case g = 2.5, µ = 0.082.
Top: thick-section e = 0.8 with η = 1.0268 (a) and η = 1.1471 (b). Bottom: thin-section e = 0.4
with η = 0.9218 (left) or η = 1.2514 (right).
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4.16. Möbius strip

4.15.2 Deformed curvature parametrisation

In this section, we rewrite the deformed curvature in terms of Frenet curvature by using the
invariants and the fact that κ2

f = κ2
1 +κ2

2. To do so, we first remark that invariants difference gives

r1(r1 − 1)κ2
1 + r2(r2 − 1)κ2

2 = µ2(η2 − 1). (4.51)

Using κf we deduce that:

κ2
1 =

µ2(η2 − 1) − r2(r2 − 1)κ2
f

r1(r1 − 1) − r2(r2 − 1) . (4.52)

And
κ2

2 =
r1(r1 − 1)κ2

f − µ2(η2 − 1)
r1(r1 − 1) − r2(r2 − 1) . (4.53)

Hence, using invariants we deduce that

κ2
3 =

µ2(r1 + r2 − η2) − r1r2κ
2
f

r1 + r2 − 1 . (4.54)

It is clear that (4.52),(4.53) and (4.54) should not be negative. So, keeping in mind that r1(r1 −1) <
r2(r2 − 1) we obtain three different cases:

• If r1 > 1:

µ2(η2 − 1)
r2(r2 − 1) ≤ κ2

f ≤ µ2 min
(

η2 − 1
r1(r1 − 1) ,

r1 + r2 − η2

r1r2

)
∀ s ∈ [0, ℓ]. (4.55)

• If r1 < 1 and η < 1:

max
(
µ2(η2 − 1)
r1(r1 − 1) ,

µ2(η2 − 1)
r2(r2 − 1)

)
= µ2(η2 − 1)
r2(r2 − 1) ≤ κ2

f ≤ µ2(r1 + r2 − η2)
r1r2

∀ s ∈ [0, ℓ].

(4.56)
• If r1 < 1 and η > 1:

max
(
µ2(η2 − 1)
r1(r1 − 1) ,

µ2(η2 − 1)
r2(r2 − 1)

)
= µ2(η2 − 1)
r1(r1 − 1) ≤ κ2

f ≤ µ2(r1 + r2 − η2)
r1r2

∀ s ∈ [0, ℓ].

(4.57)
So Frenet’s curvature is bounded, we can find explictly this bound for a given structure and load.

4.16 Möbius strip

A Möbius strip is a geometrical shape with only one side and only one boundary curve.
One of the first attempts to treat a Möbius strip as a mechanical object was made by Mahadevan
and Keller [MK93] who employed an elastic rod model and found in a numerical way asymptotic
solution of a Möbius band with "almost circular" centerline. A while later, Starostin and Van Der
Heijden [SVDH07] used the invariant variational bicomplex formalism to derive the first equilibrium
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

equations for a wide developable strip undergoing large deformations and pointed of divergence of
the bending energy that may serve as indicators of positions where out-of-plane tearing is likely to
be initiated. Later on, Starostin et al. [SVDH16] deployed equilibrium shapes of a Möbius strip.
Afterward, Bartels et al. [BH15] obtained some qualitative properties of developable Möbius strips
which minimized the bending energy. Along with others, Levyakov [Lev15] tried to relate a Möbius
strip to beam deformation and offered a finite element method based on kinematic-group approach
to study a Möbius band obtained by exerting a moment and a rotation on a cantilever beam.

By applying our approach, we can identify a Möbius with a centerline φ (defined as a smooth
function) and a cross-sections that verify:

φ(0) = φ(ℓ), λ = 2K(m)
ℓ

,
∫ ℓ

0
κ3(s)ds = π. (4.58)

Where φ(ℓ) = φ(0) implicates the reattachment condition, λ = 2K(m)
ℓ

gives the curvature pe-

riodicity (with K(m) an elliptic integral defined in [Olv+10]) and
∫ ℓ

0
κ3(s)ds = π is related to

directors orientation .

4.16.1 Symmetric cross-section

In this section, we explain in details why a Möbius strip couldn’t be obtained by imposing only
moments at the extremity. An additional force is needed to maintain equilibrium.

To do so, we first start by imposing

τ = 0, and κ3 = π

ℓ
. (4.59)

Direct application to equation (4.43) gives

ξ(s) = π

ℓ
s. (4.60)

Therefore, in this case a Möbius strip (if it exists) is planar. So, a direct integration of (4.38)
with the fact that

(
n(0),b(0), t(0)

)
=
(
ex, ey, ez

)
gives:

t(s) =
(

sin (sκf ), 0, cos (sκf )
)
, n(s) =

(
cos (sκf ), 0,− sin (sκf )

)
, b(s) =

(
0, 1, 0

)
.

(4.61)
Using the fact that φ′ = t, we get after integration:

φx(s) = 1 − cos (sκf )
κf

, φy(s) = 0, φz(s) = sin (sκf )
κf

. (4.62)
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4.16. Möbius strip

The reattachment condition φ(0) = φ(ℓ) is given by the fact that:

κf = 2nπ
ℓ
. (4.63)

Where n ∈ N∗ and we suppose that n = 1 hereafter.
Using (4.39) and (4.61) we obtain the directors:

d1(s) =
(

− cos (π
ℓ
s) cos (2π

ℓ
s),− sin (π

ℓ
s), cos (π

ℓ
s) sin (2π

ℓ
s)
)
,

d2(s) =
(

sin (π
ℓ
s) cos (2π

ℓ
s),− cos (π

ℓ
s),− sin (π

ℓ
s) sin (2π

ℓ
s)
)
,

d3(s) =
(

sin (2π
ℓ
s), 0, cos (2π

ℓ
s)
)
.

(4.64)

We rewrite the deformed curvatures using (4.41):

κ1(s) = 2π
ℓ

sin (π
ℓ
s), κ2(s) = 2π

ℓ
cos (π

ℓ
s). (4.65)

But curvature should verify the equilibrium (4.20), so injecting κ1, κ2 and κ3 into (4.20), with the
fact that r1 = r2, we obtain:

r1 κ
′
1(s) − (r1 − 1)κ2(s)κ3(s) = 2π2

ℓ2 cos (π
ℓ
s),

r1 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = −2π2

ℓ2 sin (π
ℓ
s),

κ′
3(s) = 0.

(4.66)

It is clear that the equilibrium M(s)′ = 0 is not satisfied in this case and an additional internal
force exists.
We remind that for Kirchhoff rod

N(s)′ = 0, (4.67)

M(s)′ + d3 × N = 0. (4.68)

So from the second equation we deduce that

M(s)′ = −d3 × (N1d1 +N2d2 +N3d3),

= −N1d2 +N2d1.
(4.69)
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We deduce by identification that

N1(s) = 2π2

ℓ2 sin (π
ℓ
s),

N2(s) = 2π2

ℓ2 cos (π
ℓ
s),

N3(s) = 0.

(4.70)

Hence
N(s) = N1(s)d1(s) +N2(s)d2(s) (4.64)= 2π2

ℓ2 e2. (4.71)

4.16.2 Non-symmetric cross-section

For non-symmetric cross-section we should also impose an additional force in order to satisfy
Möbius conditions. This idea is out of our scope in this manuscript.

4.17 Circular helices

Helix is a space curve in which the tangent at every point of the curve makes a constant angle
with a fixed direction. Lancret stated that a necessary and sufficient condition to obtain a general
helix is when the ratio of curvature to torsion is constant [Lan06]. Simple classification of uniform
helical equilibria could be found in [CGM06]. A circular helix is a curve having non-zero constants
τ and κf [Bar97].
In this section, we discuss circular helices for a Kirchhoff rod subjected to pure moments ( N = 0).

• If e = 1, by looking at (4.86), we remark that a circular helix is directly obtained since

κf = µ

√
(η2 − 1)
r1(r1 − 1) and τ = ± µ

r1

√
η2 − r1

1 − r1
.

• For r1 = 1 we have

κ2 = µ

√
(η2 − 1)
r2(r2 − 1) ,

κ1 = κ1 cos
(
(g − 2)κ2 s

)
+ κ3 sin

(
(g − 2)κ2 s

)
,

κ3 = κ3 cos
(
(g − 2)κ2 s

)
− κ1 sin

(
(g − 2)κ2 s

)
,

κf =
√
κ2

2 +
(
κ1 cos

(
(g − 2)sκ2

)
+ κ3 sin

(
(g − 2)sκ2

))2
,

ξ = arctan
(κ1

κ2

)
,

τ = κ3 − ξ′.

(4.72)

So, by imposing η2 = 1, we obtain κf = κ1 and τ = κ3 and a circular helix.
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• If r1 = r2 = 1 we have a circular helix satisfied by κf =
√
κ2

1 + κ2
2 and τ = κ3.

Note that in the general case, a helix could only exist for 1 ≤ η ≤
√
r1 <

√
r2 (see figure (4.9)),

where curvature and torsion were given in eq.(4.45). κf is constant only for λ = 0 or equivalently
r2 = η2 or r1 = 1. However, these two conditions are unattainable in eq.(4.45) and a circular helix
could not exist in the general case.

4.18 Torus knot

In this section, we aim to study the stability of a Torus knot.
Torus is a three dimensional shape that is parametrized by:

(θ, ϕ) −→ Ξ(θ, ϕ) = (R + r cos(ϕ)) cos(θ)ex + (R + r cos(ϕ)) sin(θ)ey + r sin(ϕ)ez. (4.73)

The normal vector to the surface is given by the product of both tangent directions:

n(θ, ϕ) = ∂Ξ
∂θ

× ∂Ξ
∂ϕ

= cos(θ) cos(ϕ)ex + sin(θ) cos(ϕ)ey + sin(ϕ)ez. (4.74)

Torus knots are closed symmetric curves that lie on the surface of a mathematical torus. A torus
knot Tp,q wraps the torus p times along the longitudinal direction, and q times along the meridian
direction, with p and q co-prime integers.

Tp,q torus knot is computed from (4.73) by parametrizing the curve with a single parameter.
This parametrization is given by:

ζ −→ φ̃(ζ) =
(
R + r cos(qζ)

)
cos(pζ)ex +

(
R + r cos(qζ)

)
sin(pζ)ey + r sin(qζ)ez . (4.75)

Where ζ ∈ [0, 2π]. Admitting the following change of variables:

S = L

2πζ, (4.76)

where S ∈ [0, L]. Now using dimensionless method mentioned before we obtain the dimensionless
placement:

s −→ φ(s) = R cos (a)
(
1 + λ cos (a)

)
ex +R sin (a)

(
1 + λ cos (a)

)
ey +Rλ sin (a)ez (4.77)

Where λ = r

R
and a = 2πqs

ℓ
.

Since Tp,q and Tq,p are topologically equivalent [OR16], so, from now on we suppose p < q.
Fig.(4.10) represent Torus knot that lies on a Torus for two different knots.
Keeping in mind that placement is given explicitly, so using Frenet’s relation, curvature and torsion
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

Figure 4.10 – Torus knot on a Torus with ℓ = 50, λ = 0.1 and R = 10. Left (2, 3) Torus Knot and
right (3, 5) Torus Knot.

are given by:

κf (s) =
2π
√

2q2(4λp2 cos(a)+λ2(2p2+q2)+p2)
λp2(λ cos(a)+4 cos(a))+(λ2+2)p2+2λ2q2 + 4λ2q4(2λp2 cos(a)+λ2(p2+q2)+p2)

(λp2(λ cos(a)+4 cos(a))+(λ2+2)p2+2λ2q2)2 + p2 − q2

ℓ
,

|τ(s)| =
√

2π
ℓ

√
4q2(4λp2 cos(a)+λ2(2p2+q2)+3p2)

λp2(λ cos(2a)+4 cos(a))+(λ2+2)p2+2λ2q2 + 8λ2q4(2λp2 cos(a)+λ2(p2+q2)+p2)
(λp2(λ cos(2a)+4 cos(a))+(λ2+2)p2+2λ2q2)2 − p2 cos (2a) + p2 − 4q2.

(4.78)
We should mention that κf (s) and τ(s) are periodic with T = ℓ

q
.

Now, we aim to reply to the following question:

What condition should be imposed on the knot in order to maintain the rod equilibrium?

Given the fact that
κf (T − s) = κf (T + s) (4.79)

So s = ℓ

2q is an axis of symmetry and since κf is a combination of cosine functions so we can

restrict our study to a domain of length ℓ

2q . Therefore, κf is strictly monotonic ∈ [0; ℓ2q ] and

κf (0) = 2π
ℓ

√√√√((λ+ 1)p2 + λq2)2

(λ+ 1)2p2 + λ2q2 ,

κf ( ℓ
2q

) = 2π
ℓ

√√√√((λ− 1)p2 + λq2)2

(λ− 1)2p2 + λ2q2 .

(4.80)

Therefore, κf (0) > κf ( ℓ
2q

) and κf is a decreasing function. Knowing that κf > 0 therefore, κ2
f is an

increasing function (and of course periodic), hence
• If r1 > 1:

µ2(η2 − 1)
r2(r2 − 1) ≤ 4π2 ((λ+ 1)p2 + λq2)2

ℓ2((λ+ 1)2p2 + λ2q2) ≤ min
(
µ2(η2 − 1)
r1(r1 − 1) ,

µ2(r1 + r2 − η2)
r1r2

)
. (4.81)
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• If r1 < 1 and η < 1:

µ2(η2 − 1)
r2(r2 − 1) ≤ 4π2 ((λ+ 1)p2 + λq2)2

ℓ2((λ+ 1)2p2 + λ2q2) ≤ µ2(r1 + r2 − η2)
r1r2

. (4.82)

• If r1 < 1 and η > 1:

µ2(η2 − 1)
r1(r1 − 1) ≤ 4π2 ((λ+ 1)p2 + λq2)2

ℓ2((λ+ 1)2p2 + λ2q2) ≤ µ2(r1 + r2 − η2)
r1r2

. (4.83)

Thus, for a given (p, q), we obtain a necessary condition relation between the shape of the knot
λ and the external moments η and µ.

4.19 Work in progress

We are currently developping a way to determine the sufficient condition to impose on the knot
in order to obtain the equilibrium, since necessary condition is chosen by invariants intersection,
so one can choose one of the three equations presented in (4.20), as an example:

κ′
3 + (r2 − r1)κ1κ2 = 0. (4.84)

Note that κi could be found explicitly thanks to (4.52),(4.53) and (4.54) where κf is given by (4.78).
So, the necessary condition is a value of λ that vanishes κ′

3 + (r2 − r1)κ1κ2, difficulty lies in the fact
that this value of lambda is hard to solve explicitly for any torus knot due to the complex form
of κf . Of course to overcome this difficulty one can solve (4.84) numerically in order to obtain the
value (or values) of λ. Asymptotic analysis is also a way to better understanding the behaviour of
these knots in order to respect the equilibrium.
It should be mentioned that Once we find this condition, we can use (4.41) and (4.43) to find the
deformed curvature κi and (4.39) to find the directors di.

4.20 Conclusion

This chapter investigated the behaviour of a rod subjected to moments where in this case the
structure was similar to Timoshenko beam. Two invariants governed the problems: moments and
energy per unit length. These two invariants were exactly the same as invariants of Euler’s rotation
of a rigid body. These invariants dictated the existence of the solutions and impose four regimes
depending on load parameters.
Explicit solutions for deformed curvatures and Frenet’s curvature and torsion were given in terms
of Jacobian elliptic functions. This is not the case for placement and directors where we obtained a
nonlinear system of ordinary differential equations that is hard to solve analytically, these solutions
were given by using a numerical method proposed by Matlab and rod shapes where given numer-
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

ically for different cases, also a detailed approach for the influence of each control parameter was
introduced.
In order to validate our theoretical approach, we presented some applications, such as the classifi-
cation of helical shapes, equilibrium of a circular Möbius strip and explicit analysis of the stability
of a Torus knot.
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APPENDICES

Appendix A: Frenet’s Particular cases

First, it looks interesting to find Frenet’s variables for particular cross-section geometry e and
material g:

— If r1 = r2 in this case invariants are given by:

r2
1

(
κ2

1 + κ2
2︸ ︷︷ ︸

κ2
f

)
+ κ2

3 = (ηµ)2,

r1
(
κ2

1 + κ2
2︸ ︷︷ ︸

κ2
f

)
+ κ2

3 = µ2.
(4.85)

Hence:
κf = µ

√
(η2 − 1)
r1(r1 − 1) ,

ξ = κ3(r1 − 1)
r1

s+ nπ, n ∈ N,

κ3 = ±µ
√
η2 − r1

1 − r1
,

τ = κ3 − ξ′ = κ3

r1
.

(4.86)

— If r1 = 1 invariants are given by:

κ2
1 + r2

2κ
2
2 + κ2

3 = (ηµ)2,

κ2
1 + r2κ

2
2 + κ2

3 = µ2.

(4.87)

Hence:
κ2 = µ

√
(η2 − 1)
r2(r2 − 1) ,

κf =
√
κ2

2 +
(
κ1 cos

(
(g − 2)sκ2

)
+ κ3 sin

(
(g − 2)sκ2

))2
,

θ =
κ1 cos

(
(g − 2)sκ2

)
+ κ3 sin

(
(g − 2)sκ2

)
κ2

,

τ = κ3 − ξ′.

(4.88)
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— If r1 = r2 = 1 therefore:
κf =

√
κ2

1 + κ2
2,

θ = κ1

κ2
,

τ = κ3.

(4.89)

Also it is interesting to look at these variables for extreme load η:

— If η = 1 < √
r1:

κf = 0,

θ not defined,

τ not defined.

(4.90)

— If η = √
r2 >

√
r1 > 1:

κf = µ
√
r2
,

θ = 0,

τ = 0.

(4.91)

— If η = √
r1 < 1:

κf = µ
√
r1
,

θ = ∞,

τ = 0.

(4.92)

— If η = √
r2 > 1 > √

r1:
κf = µ

√
r2
,

θ = 0,

τ = 0.

(4.93)

Therefore, we can assume that for thick beam if η = 1 we have torsion and if η = √
r2, we have

pure elastica. But, for thin beam if η = √
r1 and η = √

r2, we have elasticas in different planes.
These ideas will be given in details in appendix B. Furthermore for η = √

r1 and thick cross-section
we have m = 1 for the two regimes. Using the fact that cn(z | 1) = dn(z | 1) = 1

cosh z , for the two
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regimes we have:

λ =
√

(r2 − r1)(r1 − 1)
r1r2

,

κf = µ

√
(r1 − 1)

( 1
r1(r1 − 1)sin(λs)2 + 1

r2(r2 − 1)cos(λs)2
)
,

θ =
√
r2(r2 − 1)
r1(r1 − 1)tan(λs),

τ = µ

√
r2 − r1

r2 − 1 − µ(r1 − 1)

√
(r2 − r1)(r2 − 1)

r1(r1 − 1)cos(λs)2 + r2(r2 − 1)sin(λs)2 .

(4.94)

In the same spirit, for thin beam we have m = 1 for η = 1 and:

λ =
√

(r2 − 1)(1 − r1)
r1r2

,

κf = µ

√
r1 − 1

r2(r1 − r2)
cos(λs)2 + 1 − r2

r1(r1 − r2)
,

θ =
√
r2(1 − r2)
r1(r1 − 1) ,

τ = µ

√
η2 − r1

1 − r1
sin(λs).

(4.95)

Appendix B: Particular rod shapes

Here we discuss the different rod shapes.

4.20.1 Homogeneous solutions

Figure 4.11 – Illustration of homogeneous solutions in a (η, e) plan.
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η = 1

This is a particular case of (4.32) represented by the black curve in Figure (4.11) with:

κ1(s) = 0, κ2(s) = 0, κ3(s) = µ. (4.96)

By a straight forward calculation with the fact that di(0) = ei we obtain:

φ1(s) = φ1(0) cos (sµ) + φ2(0) sin (sµ),

φ2(s) = −φ1(0) sin (sµ) + φ2(0) cos (sµ),

φ3(s) = s+ φ3(0),

d1(s) =
(
cos (sµ) sin(sµ) 0

)
,

d2(s) =
(
− sin (sµ) cos(sµ) 0

)
,

d3(s) =
(
0 0 1

)
.

(4.97)

Cartesian placement is given by:

φx(s) = φ1(0),

φy(s) = φ2(0),

φz(s) = s+ φ3(0).

(4.98)

η = √
r2

This case is obtained by using (4.33) or (4.35) represented by the green curve in Figure (4.11).
Curvatures are given by:

κ1(s) = 0, κ2(s) = u
√
r2
, κ3(s) = 0. (4.99)

Repeating the same procedure to obtain:

φ1(s) = φ1(0) cos( µs√
r2

) − φ3(0) sin( µs√
r2

) +
√
r2

µ

(
cos( µs√

r2
) − 1

)
,

φ2(s) = φ2(0),

φ3(s) = φ1(0) sin( µs√
r2

) + φ3(0) cos( µs√
r2

) +
√
r2

µ
sin( µs√

r2
),

d1(s) =
(
cos ( u√

r2
s) 0 − sin( u√

r2
s)
)
,

d2(s) =
(
0 1 0

)
,

d3(s) =
(
sin ( u√

r2
s) 0 cos( u√

r2
s)
)
.

(4.100)
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Cartesian placement is given by:

φx(s) = φ1(0) −
√
r2

µ

(
cos( µs√

r2
) − 1

)
,

φy(s) = φ2(0),

φz(s) = φ3(0) +
√
r2

µ
sin( µs√

r2
).

(4.101)

η = √
r1

This case is obtained by using (4.34) shown by the orange curve in Figure (4.11):

κ1(s) = u
√
r1
, κ2(s) = 0, κ3(s) = 0. (4.102)

And
φ1(s) = φ1(0),

φ2(s) = φ2(0) cos( µs√
r1

) + φ3(0) sin( µs√
r1

) +
√
r1

µ

(
1 − cos( µs√

r1
)
)
,

φ3(s) = −φ2(0) sin( µs√
r1

) + φ3(0) cos( µs√
r1

) +
√
r1

µ
sin( µs√

r2
),

d1(s) =
(
1 0 0

)
,

d2(s) =
(
0 cos ( u√

r1
s) sin( u√

r1
s)
)
,

d3(s) =
(
0 − sin ( u√

r1
s) cos( u√

r1
s)
)
.

(4.103)

Cartesian placement is given by:

φx(s) = φ1(0),

φy(s) = φ2(0) +
√
r1

µ

(
cos( µs√

r1
) − 1

)
,

φz(s) = φ3(0) +
√
r1

µ
sin( µs√

r1
).

(4.104)

Figure (4.12) represent the beam for the particular loads where it is clear that η = 1 represents
a torsion and η = √

r2 (respectively η = √
r1 ) is an elastica in (d1,d3) plan (respectively (d2,d3))

4.20.2 Trigonometric solutions

r1 = r2

This particular case is represented by the blue curve in Figure (4.13) where the curvatures are
given by (4.22) and (4.86)
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η = 1. η = √
r2. η = √

r1.

Figure 4.12 – Particular beam shapes with g = 2.5, µ = 0.082. Left and center: thick-section e = 0.8.
Right: thin-section e = 0.4.

Figure 4.13 – Illustration of trigonometric solutions in a (η, e) plan.

By numerical simulations, we can present the rod shapes for different values of η.
Figure (4.14) represents rod shapes for two different values of η with fixed κ10 where it is clear

η = 1.006 η = 1.1133

Figure 4.14 – Rod shapes for symmetric cross-sections (1 < r1 = r2) where g = 2.5 and κ10 = 0.0005.

that in this case we have helical shapes (e.g. [NG99]).
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r1 = 1

η = 1.006. η = 1.1133.

Figure 4.15 – Rod shapes for critical cross-sections (r1 = 1) where g = 2.5 and κ10 = 0.0005.

This is the silver line in Figure (4.13), where curvatures are given by (4.23) and (4.88).
Figure (4.15) represents rod shapes for two different values of η with fixed κ10 where we obtain

two different rod behaviour

4.20.3 Hyperbolic solutions

Thick section with η = √
r1. Thin section with η = 1.

Figure 4.16 – Rod shapes for hyperbolic cross-sections.

Hyperbolic solutions in our case are particular case of the general Jacobian solutions shown in
figure (4.17) and for which m = 1 and frenet solutions are given in eq.(4.94) and eq.(4.95)

The left panel of figure (4.16) represents the particular thick rod that is the quasi bending orange
curve in figure (4.17), whereas the right panel represents the particular thin rod that corresponds
to quasi torsion black curve in figure (4.17).
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Figure 4.17 – Illustration of hyperbolic solutions in a (η, e) plan.

Appendix C: Jacobian elliptic functions

In this section we give in details the relation between Jacobian elliptic functions that have been
used in the manuscript using [Olv+10].

4.20.4 Glaisher’s Notation

The Jacobian functions are related in the following way. Let p,q,r be any three of the letters
s, c, d, n. Then

pq = pr
qr (4.105)

with the convention that functions with the same two letters are replaced by unity; e.g. ss = 1.

4.20.5 Relation between the square of functions

sn2 + cn2 = m sn2 + dn2 = 1,

ns2 = m+ ds2 = 1 + cs2,

1 +m′sc2 = dc2 = m+m′nc2,

m′ −m′nd2 = −mm′ sd2 = mcd2 −m.

(4.106)

Where m′ = 1 −m.

Appendix D: Model comparison

In this part, we compare the three models: Timoshenko model, Euler-Bernoulli beam model
and Kirchhoff’s rod model, for large transformation.
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4.21 Equilibrium

Equilibrium equations for the three models are given by:

dN(S)
dS

= 0,

dM(S)
dS

+
dφ(S)
dS

× N(S) = 0.
(4.107)

Where,

Timoshenko Euler Kirchhoff

dφ(S)
dS

= ε1(S)d1(S) + ε3(S)d3(S)
dφ(S)
dS

= ε3(S)d3(S)
dφ(S)
dS

= d3(S)

By projecting along directors, one obtains:

Timoshenko Euler Kirchhoff

dN1

dS
+N3(S)κ2(S) = 0,

dN3

dS
−N1(S)κ2(S) = 0,

dM2

dS
+N1(S)ε3(S) −N3(S)ε1(S) = 0.

dN1

dS
+N3(S)κ2(S) = 0,

dN3

dS
−N1(S)κ2(S) = 0,

dM2

dS
+N1(S)ε3(S) = 0.

dN1

dS
+N3(S)κ2(S) = 0,

dN3

dS
−N1(S)κ2(S) = 0,

dM2

dS
+N1(S) = 0.

Linear constitutive laws are given by:

Timoshenko Euler Kirchhoff

N1(S) = GAε1(S),

N3(S) = EA(ε3(S) − 1),

M2(S) = EIκ2(S).

N3(S) = EA(ε3(S) − 1),

M2(S) = EIκ2(S).

M2(S) = EIκ2(S).
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4.22 Dimensionless equilibrium

We adapt a unified non-dimensional formulation thanks to the slenderness ratio ϱ =
√
I

A
, so

dimensionless curvilinear abscissa is given by :

s = S

ϱ
.

For any physical variables v(S) previously mentioned, we can associate a non-dimensional variable
v(s) as follows:

εi(s) = εi(S), θ(s) = θi(S), φi(s) = 1
ϱ
φ

i
(S), κ2(s) = ϱκ2(S). (4.108)

Physical force and moment N(S) and M(S) have also non-dimensional form N(s) and M(s) related
by:

N(s) = N(S)
EA

, M(s) = M(S)
ϱEA

. (4.109)

Now using the fact that d

dS
= 1
ϱ

d

ds
, we re-write the equilbrium in a dimensionless form:

Timoshenko Euler Kirchhoff

ε′
1
g

+
(
ε3 − 1

)
κ2 = 0,

ε′
3 − ε1κ2

g
= 0,

κ′
2 + ε1 + ε1ε3

(1
g

− 1
)

= 0.

N ′
1 +

(
ε3 − 1

)
κ2 = 0,

ε′
3 −N1κ2 = 0,

κ′
2 +N1ε3 = 0.

N ′
1 +N3κ2 = 0,

N ′
3 −N1κ2 = 0,

κ′
2 +N1 = 0.

Non-dimensional dynamical components are:

N1(s) = N1(S)
EA

= GAε1(s)
EA

= ε1(s)
g

,

N3(s) = N3(S)
EA

= EA(ε3(s) − 1)
EA

= ε3(s) − 1,

M2(s) = M2(S)
ϱEA

= EIκ2(S)
ϱEA

= κ2(s).

(4.110)
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4.23 Problem analysis

The same formulation mentioned in sections (3.2) and (3.3) could be applied to the three models:

N1(s) = Nℓ sin (ϕ(s)), N3(s) = Nℓ cos (ϕ(s)), M2(s) = −ϕ′(s). (4.111)

4.23.1 Non-homogeneous equation

Keeping in mind that

ε1(s) = gNℓ sin (ϕ(s)), ε3(s) = 1 +Nℓ cos (ϕ(s)), κ2(s) = −ϕ′(s). (4.112)

We remark that the two first equations of the equilibrium are directly satisfied, the last one becomes

Timoshenko Euler Kirchhoff

−ϕ′′+Nℓ sin (ϕ)
(
1+(1−g)Nℓ cos (ϕ)

)
= 0. −ϕ′′+Nℓ sin (ϕ)(1+Nℓ cos (ϕ)) = 0. −ϕ′′+Nℓ sin (ϕ) = 0.

It is clear that:

• By imposing g = 0 in Timoshenko model we obtain Euler’s model.
• By imposing g = 1 in Timoshenko model we obtain Kirchhoff’s model.

Let us consider that ϕ′′ ̸= 0. By multiplying the previous equations by −2ϕ′ one obtains after
integration:

Timoshenko Euler Kirchhoff

ϕ′2+2Nℓ cos (ϕ)+(1−g)N2
ℓ cos2 (ϕ) = µ.

Where,

µ = M2(ℓ)2 + 2N3(ℓ) + (1 − g)N3(ℓ)2.

ϕ′2+2Nℓ cos (ϕ)+N2
ℓ cos2 (ϕ) = µ.

Where,

µ = M2(ℓ)2 + 2N3(ℓ) +N3(ℓ)2.

ϕ′2+2Nℓ cos (ϕ) = µ.

Where,

µ = M2(ℓ)2+2N3(ℓ).
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These scalar differential equations are written as:

t′2 = a t4 + b t2 + c. (4.113)

Where,

Timoshenko Euler Kirchhoff

a = µ− µa

4 , µa = (1 − g)N2
ℓ − 2Nℓ

b = 2µ+ µa + µc

4 ,

c = µ− µc

4 , µc = (1 − g)N2
ℓ + 2Nℓ

α+ =
1+

√
1+(1−g)µ
1−g

+Nℓ

1+
√

1+(1−g)µ
1−g

−Nℓ

,

α− =
1−

√
1+(1−g)µ
1−g

+Nℓ

−1+
√

1+(1−g)µ
1−g

+Nℓ

.

a = µ− µa

4 , µa = N2
ℓ − 2Nℓ

b = 2µ+ µa + µc

4 ,

c = µ− µc

4 , µc = N2
ℓ + 2Nℓ

α+ = 1 +
√

1 + µ+Nℓ

1 +
√

1 + µ−Nℓ

,

α− = Nℓ + 1 −
√

1 + µ

Nℓ − 1 +
√

1 + µ
.

a = µ− µa

4 , µa = −2Nℓ

b = 2µ+ µa + µc

4

c = µ− µc

4 , µc = 2Nℓ

α+ = 1,

α− = 1 − 2µ
2Nℓ + µ

,

It should be mentioned that all the remaining previous analysis mentioned in chapter three
could be applicable on the three models. One should be aware that the Jacobian parameters vary
from one model to another.

4.23.2 Placement

As seen in section (3.5.3) , to find the placement, we adapted an approach that is related to
Timoshenko beam. Namely:

φ′
nen + φ′

tet = ε1(s)d1(s) + ε3(s)d3(s).

Where the relation
φt(s) = φt(0) + M2(s) −M2(0)

Nℓ

. (4.114)

Is true for the three models.

This is not the case for φn. In fact, using our first table of comparison we remark that for Euler
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4.24. Illustrating example

model we have φ′
nen + φ′

tet = ε3(s)d3(s). Hence after projecting along en we obtain:

φ′
n = ε3(s) cos (ϕ(s)),

= (N3 + 1) cos (ϕ(s)),

= N2
ℓ

(
1 − t2

1 + t2

)2

+ 1 − t2

1 + t2
,

repeating the same procedure for Kirchhoff rod, we deduce that

φ′
n = 1 − t2

1 + t2
.

To illustrate these differences, we will give the following illustrating example.

4.24 Illustrating example

We wish to compare in this section, the behaviour of the three previous models when the force
applied at the extremity is important. To do so, we consider:

φ(0) = 0, θ(0) = 0, Nℓ = 0.2, Mℓ = 0.2, ϕℓ = 2π
3 , ℓ = 20, g = 2.5.

(4.115)
Since we have explicit analysis for the three models. We can plot the placement with the cross
section.
Looking at figure (4.18), we remark that these three models differ.

Figure 4.18 – Dimensionless deformed shapes of a Timoshenko beam (blue curve), Euler beam
(purple curve) and Kirchhoff’s rod (green curve) glued at s = 0 and making an angle ϕℓ = 2π/3
with the normal of the last section (s = ℓ). The intensity of the force is Nℓ = 0.2 and a bending
moment Mℓ = 0.2 is imposed on this last section too.
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

4.25 Boundary problem: Comparison between models

In this section we study the difference between models in the dead load case mentioned in
section (3.8). Of course the relation

θ0 = ±2 arctan
( √

α−

cn(
√
a(α− + α+)ℓ | α+

α++α−
)

)
.

holds for the three models, so, it looks interesting to compare the evolution of θ0 according to ϕℓ.

Euler model ( dot curves) versus
Timoshenko model (straight curves).

Kirchhoff model ( dashed curves) versus
Timoshenko model (straight curves).

Figure 4.19 – Evolution of θ0 according to ϕℓ for various magnitude of the dead-load where ℓ = 50
and g = 2.5.

Figure (4.19) represent this evolution for the three different models, where it is clear that these
models are similar in terms of rotation.
To complete the analysis, we will in figure (4.20) illustrate the placement for the three previous
models. It is clear that these models are similar in terms of placement also. So for this example, the
three models give similar results in terms of strain, stress and kinematics (placement and rotation).
These results match the study stated by C. Armanini, et.al. in [Arm+17; Arm18].

4.26 Conclusion

In conclusion, these three models highly depend on the boundary conditions. In other terms,
for some boundary conditions we obtain similar results, where for other conditions we might have
different ones.
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4.26. Conclusion

Timoshenko beam. Euler beam. Kirchhoff rod.

Figure 4.20 – Placement for various models

Appendix E: Buckling of Euler Timoshenko beam under
two-parameters Winkler foundations

In this section we analyse the effect of a Winkler foundation on an Euler beam. Equilibrium in
this case is given by:

∂N3

∂S
− ∂θ

∂S
N1 = 0 ,

∂N1

∂S
+ ∂θ

∂S
N3 −K1u1 = 0 ,

∂M2

∂S
+ (1 + ε̃3)N1 −K2θ = 0 .

(4.116)

A linearised form of (4.116) will be:

∂N1

∂S
− ∂θ

∂S
P −K1u1 = 0,

EI
∂2θ

∂S2 +N1 −K2θ = 0,
(4.117)

Where M2 = EI
∂θ

∂S
. Non-dimensional formulation of the problem is introduced thanks to the

following variables:

ϱ =
√
I

A
, g = E

G
, κ1 = K1

E

I

A2 , κ2 = K2

EA
, ϵ = P

EA
, N = N

EA
(4.118)

Using the fact that u′
1 ≡ u′ = θ for Euler beam, (4.117) written in a dimensionless form will be:

N ′
1 − ϵu′′ − κ1u = 0,

u(3) +N1 − κ2u
′ = 0,

(4.119)
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Chapter 4 – Behaviour of a Kirchhoff rod under pure moments

For harmonic solution u(s) = Ueiks and N1(s) = N eiks, the linear differential system becomes
KV = 0 where V = (U,N )T and the rigidity matrix is:

K =
 k2ϵ− κ1 ik

−ik(k2 + κ2) 1

 . (4.120)

Non-trivial solutions arise if det (K) = 0 what may be written as a secular equation:

P(ϵ, k) = k4 + k2(κ2 − ϵ) + κ1. (4.121)

By solving P(ϵ) = 0 (for a fixed k), one finds a polynomial with respect to ϵ whose real positive
root is

ϵ = k2 + κ1

k2 + κ2. (4.122)

By a direct calculation we deduce:
∂ϵ

∂k
= 2(k4 − κ1) (4.123)

Hence
kmin =

√√
κ1. (4.124)
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CONCLUSIONS AND PERSPECTIVES

We conclude this thesis by summarizing the main contributions and suggesting some related
perspectives.

Timoshenko beam model

In this thesis, we studied in an analytical way, the behaviour of an isotropic and homogeneous
straight Timoshenko beam subjected to external forces and moments, and surrounded potentially
by foundations. To do so, we considered the beam as one dimensional Cosserat body where kine-
matical and dynamical variables depend uniquely on two variables: the curvilinear abscissa S and
the time t. Thanks to the principal of virtual power, we obtained the equilibrium stated in the
general form.
Another way to model our problem, is to apply intrinsic calculation on a Lie group. One could eas-
ily express the equilibrium using differential geometry of Lie groups [Ala92]. This approach helps
us to investigate vibration and dynamics of curvilinear systems [Ler03; Ler05b; Ler08] as well as
kinematics and dynamics of rigid body systems [CL17]. An application to acoustics could also be
treated using this approach [Ben13]. This methodology is a way to tackle hard questions such as
the three-dimensional aspect, large displacements and non linear elasticity.
The two-dimensional analogue of a Timoshenko beam is the Reissner–Mindlin plate theory. This
theory is applied for thick plates, where the shear deformation and rotary inertia effects are in-
cluded. So, Reissner–Mindlin theory does not require the cross-section to be perpendicular to the
axial axes after deformation. Another plate type model used in applications is the Kirchhoff–Love
theory of plates. This theory is an extension of Euler-Bernoulli beam theory and was developed
in 1888 by Love using assumptions proposed by Kirchhoff. Difference between these two models
is presented in [Eli20]. Furthermore, one could also study the dynamical analysis of these models
[Rak09], as well as buckling and post-critical behaviour [Ced+10].
Many scientists investigated the problem of a discrete granular system that can be referred to
discrete Cosserat chain, among them Massoumi et.al. [MCL21]. An interesting research is to inves-
tigate the asymptotical behaviour of these granular system and to compare it to our continuous
Cosserat body.
One of the main assumption in this work was that the beam is homogeneous. This hypothesis
does not affect the micro-structures behaviour. This hypothesis involve that no mircro-structure is
taken into account. If such micro-structure exists, and additional constitutive laws is needed and
the equilibrium is eventually more rich. (e.g. [Bar+18]).
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Hyper-elasticity

The study of elastic behaviour was our main objective, so it seems reasonable to choose hyper-
elastic materials for which the stress–strain relationship derives from a strain energy density func-
tion. We adapted a specific type of these materials known as Saint-Venant Kirchhoff model for
which the energy is quadratic with respect to Green-Lagrange tensor E. But, as seen in chapter
one, the relation between E and the uni-dimensional strains was not linear, so in order to obtain
analytical solutions, it appeared appropriate to take only the linear term in order to obtain linear
constitutive laws with respect to the uni-dimensional strains κ and ε.
As mentioned before, one can also consider the non-linear constitutive laws, we only gave an ex-
ample of circular cross-section but the same methodology could be applied for a straight beam
with general cross-section, this approach could be complementary to the study performed by Forgit
et.al. in [For+16].
For practical applications, scientists use rubber-like material supporting large transformation. For
this type of material one can apply the Neo-Hookean model. So, the study of equilibrium using this
model could be important to understand more in depth the behaviour of a beam (see for example
[CWD20], [dSS17]).
In addition to elastic behaviour, one can also investigate the viscosity property of a Timoshenko
beam. A well known model in this case is the Kelvin–Voigt viscoelastic model [LAF13].

Statics of a Timoshenko beam

The second chapter of this thesis was dedicated to the study of a Timoshenko beam with
linear constitutive laws and small transformation subjected to Winkler foundation. By imposing
a longitudinal compression load, we studied the buckling where interesting results were obtained
regarding wall rigidity. As seen in this chapter, elastic behaviour is limited by yield’s limit, once we
surpass this limit we obtain a plastic behaviour, so a more detailed study of this plastic behaviour
could widen our search and our understanding of a beam subjected to this particular foundation.
One can also generalize this study by regarding the behaviour of this beam surrounded by Reissner
shear-layer model wherein a shear-layer of rigidity is embedded between two spring beds as discussed
in [Nob12].
In addition, one could also impose an external applied force per unit length on a Timoshenko beam
such as a beam subjected to its own weight [Yok90; DC+19]. This type of load is considered as a
dead load, another type of load could be applied such as follower load per unit length. One could
apply numerical methods to study the behaviour of a beam subjected to these different load types.
To expand our study, we presented in the last two chapters the large transformation of a Timoshenko
beam. In particular, we investigated in chapter two a planar Timoshenko beam subjected to forces
and moment, we found post buckling solutions in an analytical way and we presented an example
for a beam subjected to pure shear follower load. Since we obtained exact solutions, so we can
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apply our approach to several real time applications. As an example, we will investigate in the near
future, the explicit analysis of a clapping of a Timoshenko beam. This case could be studied in
details by imposing dynamical constraints on the control parameters.
Another important aspect that was presented in this chapter is the study of instability by applying
quasi-static perturbation, this approach led to a scalar equilibrium in terms of a single degree of
freedom δθ(s):

δθ′′(s) + k2(s) δθ(s) = f(s). (4.125)

This equation known as driven parametric oscillator is highly important because it is given in a
general way and we can apply it to any type of boundary condition. Although this equation is hard
to solve analytically in the general case, one can use simple numerical implementation to find the
solutions.
A particular case of this oscillator that is widely used in mechanics is Van der Pol oscillator, a vast
analysis was made in this domain, we choose to cite a recent numerical study that use the time
perturbation method [Tay+21].
However, in this chapter we treated only the planar solutions of this planar problem, of course
one could analyze the out-plane solutions of this problem. As an example, one can investigate the
perturbation in all directions. Of course in this case (4.125) will no longer be true, it will be replaced
by a coupled equation in terms of stains and curvatures.
The fourth chapter investigated a Timoshenko beam subjected to pure moment where equilibrium
is given in terms of curvatures only, we presented the two invariants that control the problem and
we found curvatures in an analytical way, in addition, rod shapes where found (in a numerical way)
and a detailed discussion concerning the role of each control parameter was reported.
This approach helped us tackle several applications. We established a classification of circular helices
and we proved that an helix (circular) could not exist by imposing only moments in the general
case. One can classify helices by imposing forces and moments at the extremity [CGM06]. We also
presented an explicit analysis of the equilibrium of a Torus knot, this idea will be given in details
in our future research paper. Another interesting application that was detailed in this manuscript
is the examination of the equilibria a Möbius strip with symmetric cross section. One can also
consider a Möbius strip for any type of cross section by adding a force as a boundary condition.
This addition seems difficult to investigate in an analytical way because one would obtain a system
of non linear differential equations that is hard to solve, but of course a numerical approach by
using a finite element method could be useful to further understand the Möbius strip [MK93]. In
addition, the second invariant in this chapter was of high importance, namely, the conservation
of energy. This conservation exists vastly in nature because energy is transformed from one form
to another. So our approach could be applied to several real time problems such as the study of
DNA helical shapes, the behaviour of the during chromatin condensation and microtubule bundles
[Nov+18]. It could also be applied in Chemistry, specifically to inspect the bonds between atoms
and to study the shapes of carbon nano-tubes [Sil+15].
It is worthy to mention that for the planar problem, rotation was found directly by integrating the
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curvature. This is not the case for the three-dimensional problem where rotation tensor is hard to
solve explicitly by simple integration. This difficulty arises by assuming a moving director frame.
Furthermore, in this problem we considered a beam subjected to pure moments only, by adding
additional force, we realise that the problem is hard to solve analytically. A detailed numerical
approach is effective to better understand this static problem.

Dynamics of a Timoshenko beam

Dynamics in this thesis was only treated in chapter two by studying explicitly the behaviour of
a Timoshenko beam with linear constitutive laws and small transformation subjected to Winkler
foundation subjected to rigid wall. Solutions were found for choc type initial value problem. By
letting this wall to be elastic, we obtained an eigenvalue problem where explicit analysis of dispersion
curves was made. To complete our approach in chapter two, one can study the dynamical behaviour
of a beam subjected to foundation. Solutions could be found by applying Fourier transformation
and convolution integral theorems [KY04].
For large transformation of a planar Timoshenko beam, dynamic instabilities, such as fluttering
which is one of the interesting issues that may be addressed by extending our work.
It is worthy to mention that the dynamical problem of a Timoshenko beam could be treated by
applying the formalism of differential geometry and Lie groups. We can rewrite equilibrium in
a simple manner rather than using complex formalism. So, we aim in the near future to study in
details this intrinsic formulation for large transformation of a beam subjected to linear or non-linear
constitutive laws and submitted to boundary and initial conditions.

Main results

In this section, I will remind briefly the main results obtained in my PhD thesis.
The main objective of my thesis was to give explicit/analytical analysis of a large transformation
of a Timoshenko beam subjected to external loads, so I detailed in my thesis the following results:

• Explicit analysis of a static/dynamic Timoshenko beam with linear constitutive laws and
small/large transformation.

• Three variables governs the problem, these variables are (ε1, ε3, κ2) in the planar deformation
and (κ1, κ2, κ3) for the non-planar beam subjected to pure moments.

• Two invariants governs the problem where solution could be interpreted as intersection of
these variables in the configuration space.

• General explicit solutions for Timoshenko, Euler and Kirchhoff model in the planar static
problem.
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Titre : Étude non-linéaire d’une structure unidimensionnelle sous chargement.

Mot clés : Poutre de Timoshenko, tige de Kirchhoff, solutions exactes, bifurcation et catas-

trophe, grande transformation, fondation de Winkler.

Résumé : Nous discutons dans cette thèse
une poutre de Timoshenko élastique, isotrope,
homogène et droite avec des lois de com-
portements linéaires, soumise à des forces
et moments extérieurs et entourée éventuel-
lement par des fondations. Plus précisément,
nous nous intéressons d’une part à l’analyse
de l’effet des fondations de Winkler sur une
poutre de Timoshenko. Nous donnons des so-
lutions pour le problème dynamique, puis en
imposant une force longitudinale, nous ana-
lysons le modèle de Haringx et Engesser
d’une manière analytique en offrant une re-
lation entre la rigidité de la paroi et les solu-
tions de flambement. D’autre part, nous expo-

sons les solutions quasi-statique d’une poutre
de Timoshenko en grande déformation. Nous
proposons des solutions analytiques de post-
flambement pour différents régimes governés
explicitement par les deux invariants du pro-
blème. Dans le cas d’une poutre plane, le pro-
blème est d’abord reformulé comme un pro-
blème de Cauchy. Nous discutons également
des problèmes de bifurcation tels que le flam-
bage et la catastrophe. Dans le cas non plan,
nous imposons uniquement un moment à l’ex-
trémité afin d’obtenir différents régimes qui dé-
pendent de l’épaisseur de la section transver-
sale et de la charge externe.

Title: Nonlinear study of a one-dimensional structure under loading.

Keywords: Timoshenko beam, Kirchhoff rod, exact solutions, bifurcation and catastrophe,

large transformation, Winkler foundation.

Abstract: In this thesis, we discuss an elas-
tic, isotropic and homogeneous straight Timo-
shenko beam with linear constitutive laws sub-
jected to external forces and moments and
surrounded eventually by foundations.
On one hand, we are interested in analysing
the effect of Winkler foundation on a Timo-
shenko beam. We give solutions for the dy-
namical problem, then by imposing a longitu-
dinal force, we analyse Haringx and Engesser
model in an analytical way where relations be-
tween rigidity of the wall and buckling solutions
were made.

On the other hand, we expose solutions of
a quasi-static but large transformation of a
Timoshenko beam. We offer analytical post-
buckling solutions for different regimes driven
explicitly by two invariants of the problem.
In the planar case, the problem is first re-
formulated in the form of a Cauchy initial value
problem. We discuss also bifurcation prob-
lems such as buckling and catastrophe. In the
non-planar case, we impose moment only at
the boundaries to obtain different regimes that
depend on the thickness of the cross section
and on the external load.


	Introduction
	Problem statement
	Mathematical background
	Beam model
	Curvature and spin
	Deformation and strains
	Stress, forces and moments
	Principle of virtual work
	Equilibrium relations
	Hyperelastic materials
	Energy, internal forces and moments

	Dimensionless procedure
	Non-dimensional variables and relations
	Non-dimensional forces, moments and energy density
	Non-dimensional equilibrium equations
	Planar case

	Conclusion

	Timoshenko beam and Winkler foundation
	General ingredients
	Equilibrium relations

	Rigid wall
	Problem statement 
	Modal decomposition: Sturm-Liouville criterion 
	Discussion
	Dynamics after a choc

	Elastic wall
	Buckling of Timoshenko beam under two-parameters Winkler foundations
	Equilibrium relations
	Non-dimensionalization procedure
	Buckling modes
	Buckling limit
	Yield limit

	Conclusion

	Explicit analysis of large transformation of a Timoshenko beam: Post-buckling solution, bifurcation and catastrophes
	Kinematical and dynamical variables
	Static equilibrium

	Remark on the boundary conditions
	Parametrization of the boundary conditions
	Follower and dead load
	Domain of variation

	Problem analysis
	First integration
	Non-homogeneous equation
	Homogeneous equation
	Analysis of 

	Jacobian elliptic functions
	Problem statement
	Parameter analysis
	Resolution of the elliptic differential equation
	Class of solutions
	Determination of the unknown s0
	Regularity of the solutions

	First illustrating example
	Determination of each parameters
	Determination of the internal forces and moments
	Determination of the rotation and placement

	Pure-shear follower load
	Parameter analysis
	Qualitative and quantitative analyses

	Quasi-static stability
	Problem statement
	Dead-load
	Follower load

	Boundary problem
	Parameter analysis
	Catastrophic instablities

	Conclusion

	Behaviour of a Kirchhoff rod under pure moments
	Overview
	Kinematics
	Internal energy, forces and moments
	Equilibrium relations
	Beam-rod relation
	Dimensionless parameters
	Non-dimensional quantities
	Domain of variation
	Non-dimensionnal relation

	Homogeneous and trivial solutions
	Invariants
	Geometrical interpretation

	Resolution of the elliptic differential equations
	Determination of s0
	Moments
	Role of 
	Impact of 
	Orientation of the section
	Rod shapes
	General case: influence on rod shapes
	Deformed curvature parametrisation

	Möbius strip
	Symmetric cross-section
	Non-symmetric cross-section

	Circular helices
	Torus knot
	Work in progress
	Conclusion
	Homogeneous solutions
	Trigonometric solutions
	Hyperbolic solutions
	Glaisher's Notation
	Relation between the square of functions

	Equilibrium
	Dimensionless equilibrium
	Problem analysis
	Non-homogeneous equation
	Placement

	Illustrating example
	Boundary problem: Comparison between models
	Conclusion

	Conclusion
	Bibliography

