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Abstract

The presence of initial stress in natural and manufactured materials and structures has been known for a long term and it is experimentally well attested in diverse scopes from biomechanics, geophysics, to welded structures and manufacturing. This internal stress has a substantial eect on material and structural behaviour and can be the origin of heterogeneous and anisotropic behaviour. The modelling of initially-stressed materials goes back to Cauchy's work on the classical theory of linear elasticity in its most general form, considering the eect of an initial stress of arbitrary origin. This thesis aims to contribute to the development of dierent formulations and theoretical results in the theory of initially-stressed hyperelasticity. The development of constitutive models for initially stressed hyperelastic materials have permitted to identify the kind of anisotropy generated by the initial stress eld based on the analogy with the constitutive formulation for brous materials. The exploitation of this analogy for linear transverse isotropic elasticity has provided some insight into the use of anisotropy and bre orientation to design some elastic machines by coupling dierent deformation modes in a continuum boundary value problem. In addition, the identication of material parameters of an initially stressed linear elastic model and the residual stress are addressed and an analysis of the dierent parameters inuencing the quality of the reconstructed elds is carried out. Focusing on singular problems, two boundary value problems are considered and analyzed. The rst problem is dedicated to the rigidity contrast (discontinuity) inuence on the asymptotic mechanical eld near a crack tip subjected to an antiplane transformation. Whereas in the second one, a particular generalization of the three-dimensional Linear Elastic Fracture Mechanics (LEFM) to a model of initially-stressed hyperelastic materials is developed. A numerical analysis to the prior problem using an XFEM formulation is realized and a convergence-stability study is achieved. 
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General introduction

The presence of initial stress in natural and manufactured materials and structures has been known for a long time and it is experimentally well attested in diverse scopes, from biomechanics, plants, geophysics, geomechanics, to welded structures and manufacturing.

By initial stress, one means stress eld verifying the equilibrium equation in the reference conguration with a no homogeneous static boundary condition (no zero surface loads) and/or a body force.. Here, the term initial stress should be used in its general sense regardless of its origin. When this initial stress is accompanied by a pre-strain due to the applied load in the reference conguration, the term pre-stress is usually used. In the case of zero applied loads, the term residual stress is commonly adopted according to the denition of [Hoger 1986]. This internal stress has a substantial eect on material and structural behaviour. It aects strength, fatigue life, and dimensional stability and can be the origin of inhomogeneous and anisotropic behaviour. Perhaps the most known initially stressed bodies due to gravity are the Earth and historical buildings from the Babylonians, Mayas, Egyptians, Romans, and other civilizations. In his book "Imaging the Cheops Pyramid" [START_REF] Bui | [END_REF]], for example, H.D. Bui analyzed the eect of this internal stress on the presence of cracks near the King's Chamber of the Cheops Pyramid. In geophysics and during earthquakes, initial stress, developed below the Earth's surface, is generated by gravity and processes such as burying, heating, cooling, and prior tectonic events and its rotations along strike can generate signicant changes in rupture speed as well as distinctive patterns in slip distribution and peak ground motion [Dunham 2003, Duan 2010]. For arteries, residual stress, a consequence of growth and remodelling, reduces the stress gradient distribution and decreases the peak stress [Cardamone 2009]. It prevents dissection and potential rupture of the aorta, which is a serious cardio-vascular disease [Humphrey 2012, Wang 2017].

In multi-network polymers, scission and reformation of networks give rise to initial stress [Rajagopal 1992, Wineman 1990, Huntley 1996]. Through all these problems, the initial stress can have detrimental and/or positive eects on the materials and structures, which need to be better understood, determined and quantied. It is the challenge of this thesis concerned with the modelling and the identication of initially stressed hyperelastic behaviour with the analysis of some continuum and singular boundary value problems.

Following Truesdell [START_REF] Truesdell | The mechanical foundations of elasticity and uid dynamics[END_REF]], there are three approaches, from the born of continuum modelling due to Euler, Cauchy and Green (see [START_REF] Truesdell | The mechanical foundations of elasticity and uid dynamics[END_REF]]), to model initially 2 Contents stressed elastic material behaviour. Recall that these initial stresses are caused by microstructural mists and rearrangement of matter, which can occur as a result of plastic deformations (for example, in metals), thermal processes (for example, rapid solidication in glass), or growth within biological tissues. The rst method focuses on the modelling of the entire process, from the initial unstressed natural state, that creates initial and service stresses in the body. This methodology is popular in the manufacturing scientic community, particularly for modeling metallic products fabrication and life service. Nevertheless, the existence of this hypnotically initial unstressed natural state is a theoretical assumption and all materials and structures contain initial stresses. Thus, the second approach aims to model material behaviour from the initial stressed state where the stress-free conguration is not known. Indeed, the removal of this initial stress by cutting the body is not feasible without destroying the material continuity. Nonetheless, this stress-free conguration is assumed to exist, which is the basis of the concept of natural conguration as discussed by [Rajagopal 1998] by assuming a multiplicative decomposition of the deformation gradient, from the unstressed free conguration, into two contributions: a residual deformation describing the inelastic change of shape induced by the microstructural rearrangement of the matter and a deformation accounting for the elastic deformation of the body [Lee 1969[START_REF] Haupt | [END_REF], Rodriguez 1994]. Thus, the material response is governed by the deformation from the initially stressed conguration to the current one and the residual deformation from the unstressed conguration to the initially stressed one. This stress-free conguration is also called the virtual stress-free state by Hoger and her co-workers, who developed a constitutive representation from the stressed reference conguration to the current one by inverting the constitutive model response between the virtual unstressed conguration and the stressed one [Hoger 1997, Johnson 1995, Johnson 1998, Saravanan 2008, Agosti 2018]. To do this, challenging calculations are needed and rarely yield an analytic explicit model, unless great simplications are assumed. The main drawback of the methodology described below is that it requires prior information about the natural stress-free conguration, which is not always physically accessible. Indeed, from an experimental standpoint, it would necessitate innite cuts to relieve all initial stress [Chuong 1986, Ciarletta 2016a]. Although this technique has been successful in simple system models [Amar 2005]. It is ineective when evaluating the eect of a generic condition of initial stress on the material response.

In the third approach, the problem of the choice of a virtual stress-free conguration is over-Contents 3 come by developing a constitutive theory that includes explicitly the spatial distribution of initial stresses. This is done by the initially-stressed theory, which goes back to Cauchy's work on the classical theory of elasticity in its most general form, linking stress as a function of deformation and an initial stress of arbitrary origin (see [START_REF] Truesdell | The elements of continuum mechanics: Lectures given in august-september 1965 for the department of mechanical and aerospace engineering syracuse university syracuse, new york[END_REF]). Another way to dene initially stressed elasticity was given by Green [START_REF] Truesdell | The elements of continuum mechanics: Lectures given in august-september 1965 for the department of mechanical and aerospace engineering syracuse university syracuse, new york[END_REF]] in which stress is a derivative with respect to a deformation of a strain energy function of a deformation and an initial stress. These two methods of dening elasticity with initial stress were misunderstood, and the nineteenth-century scientic community reported them in a hazy or even erroneous manner, as pointed by [START_REF] Truesdell | The mechanical foundations of elasticity and uid dynamics[END_REF]], who presented the proper theory long later with other authors [START_REF] Truesdell | The mechanical foundations of elasticity and uid dynamics[END_REF], Gurtin 1982, Biot 1965]. Early other contributors who made a signicant contribution to the eld including [Hadamard 1903[START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF]]...

In the context of modern continuum mechanics [Truesdell 2004], it was only after the paper [Hoger 1986] on the determination of residual stress in an elastic body that the theory of elasticity with initial stress received considerable attention. This paper came after another fundamental paper [Hoger 1985] where it was shown that the conditions of the equilibrium equation and boundary condition of zero traction satised by the residual stress, coupled with those implied by material symmetry [START_REF] Truesdell | The elements of continuum mechanics: Lectures given in august-september 1965 for the department of mechanical and aerospace engineering syracuse university syracuse, new york[END_REF], Coleman 1964], restrict the class of possible residual stresses in an elastic body. The work of Anne Hoger in this scope is so powerful that it touches all the aspects of modelling and the identication of initially stressed hyperelastic materials. The rst such contribution is made in [Hoger 1993a, Johnson 1995], assuming the existence of hyperelastic potential depending on both the deformation and the initial stress, despite the fact that this hasn't always been properly acknowledged. The question of the uniqueness of solution for boundary value problems associated with initially stressed hyperelastic models is also addressed by analyzing the tangent elasticity tensors in dierent congurations [Hoger 1993b, Hoger 1994, Johnson 1993]. In fact, the resolution of the boundary value problems depends essentially on the form of the strain energy. Since no restrictions have been imposed on the nature of this function, it may be questionable whether the predicted response caused by the constitutive behaviour is physically reasonable and whether the solution to the initial stressed nite elasticity problem exists and is unique. This is the so-called Truesdell-Haupt problem and is concerned with stability, thermodynamics, and some mathematical conditions. The most known requirements for strain energy are those of Baker-Ericksen inequality, the Coleman-Noll inequality, and ellipticity condition, polyconvexity condition, 4

Contents etc [Ogden 1997]. To this end, some restrictions have been developed to ensure reasonable physical response of initially stressed material and the existence of minimizers: initial stress compatibility (ISC), initial stress symmetry (ISS) and initial stress reference independence (ISRI) [Shams 2011, Gower 2015, Gower 2017, Riccobelli 2019]. Recall that restrictions on constitutive models are probably only those arising from frame indierence and material symmetry, as was mentioned in [START_REF] Saccomandi | Giuseppe Saccomandi. Phenomenology of rubber-like materials. Mechanics and thermomechanics of rubberlike solids[END_REF]].

For the development of constitutive laws for initially stressed elastic materials, the determination of the model's parameters and the initial stress are of paramount importance. This is an inverse problem as mentioned in [Bui 2007]. From an experimental viewpoint, non-invasive techniques like X-ray diraction, semi-invasive techniques like incremental center hole drilling and deep hole drilling, and fully destructive methods like slotting, contour, and inherent strain can all be used to determine the residual stress at surface and/or body points. Due to the cost, time commitment, and dispersion of the measured data, only discrete points of stress in sections are normally measured. In initial stressed linear elasticity theory, all the constitutive models of the rst half of the twentieth century, presented in [ZP 1971], have the same algebraic structure as the model of [Hoger 1986]. This latter model depends on an unknown tangent elasticity tensor function of the initial stress. Dierent forms and identication methodologies of this elasticity tensor have been proposed [Hoger 1986[START_REF] Man | Towards an acoustoelastic theory for measurement of residual stress[END_REF], Man 1994]. A general form was proposed recently in [Gower 2015, Gower 2017]. The identication of the initial stress (or residual stress) can be done by an analytical (or semi-) method determined from its equilibrium equation and its boundary conditions for specic geometries [Hoger 1986, Sburlati 1992, Faghidian 2014].

In addition to its practical importance, determining residual stresses raises a number of difcult mathematical issues. In fact, several forms of the inverse problem of unique residual stress determination were investigated, utilizing several model equations for residual stress and various methods of measurements. The central questions here are those of stability and uniqueness [Man 1994, Rachele 2003, Ivanov 2005, Isakov 2007, Isakov 2008]. In large deformations and for initially residually hyperelastic materials, only the reconstruction of the residual stress is addressed in [Gou 2014] for a specic geometry and a particular form of the residual stress function.

Suppose now that the constitutive law of an initially stressed hyperelastic material is explicitly known and its parameters are determined. Thus, boundary value problems can

Contents 5 be formulated to analyze the eect of this initial stress on mechanical elds and material symmetry. To this end, the semi-inverse method [START_REF] Truesdell | The mechanical foundations of elasticity and uid dynamics[END_REF]], which is based on heuristic ad hoc assumptions and ansatzes on the analytical form of elastostatic elds, is generally used. The eect of initial stress (and residual stress) on elastostatic elds has been analyzed theoretically for continuum problems by [Merodio 2013a, Merodio 2016, Ciarletta 2016a, Ciarletta 2016b, Gower 2015, Gower 2017, Riccobelli 2018, Agosti 2018, Du 2018, Du 2019a, Du 2019b, Liu 2020a, Liu 2020b, Mukherjee 2021, Melnikov 2021]. To our knowledge, the singular boundary value problem associated with initially stressed hyperelastic cracked solids has not been theoretically analyzed.

After this narrative overview to describe the scientic context of our work, it is now necessary to x the objective of this thesis concerned with the modelling and the identication of initially stressed hyperelastic behaviour with the analysis of some continuum and singular boundary value problems. First, the modelling of an initially stressed hyperelastic material should be concisely unied and summarized based on the work of [Gower 2015, Gower 2017] and new results and interpretations will be presented, particularly the link between anisotropy and the initial stress eect. Secondly, the eect of anisotropic behaviour should be analyzed through a continuum and singular problems.

Thirdly, the identication of the general initially stressed linear elastic model presented by [Gower 2015, Gower 2017] should be addressed theoretically and numerically. Finally, asymptotic and X-FEM analysis should be done for an initially stressed hyperelastic threedimensional cracked solid.

The thesis plan will be presented in the following:

The rst chapter is an overview on the nite transformation scope.Focusing on hyperelastic behaviour, a brief recall is made for the mathematical tools for the modeling of such mechanical behaviour.

The second chapter is dedicated for the initially-stressed hyperelastic materials modeling. The rst part of this chapter is like a survey on the dierent approaches to model the initial stress on hyperelastic structures within two classes of materials: initially stressed and initially-strained materials. Multiple theoretical formulations and results are revisited in a dierent way. On the other hand, the second chapter presents the most explicit general model for an initially-stressed linear elastic material which is isotropic in the natural con-Contents guration, and a generalization of the Airy stress function is performed. Also, this chapter discussed the anisotropy generated by the initial stress presence based on an analogy with brous materials.

Since the initial stress can be a source of anisotropy, then by considering a simple boundary value problem for an isotropic transverse cylinder a new kinematic coupling is discussed in the third chapter. The presence of bers permits a coupling between the axial shear and the bers rotation. Such coupling is analyzed in order to exploit it for the design of new devices that we have called elastic machines. In the same chapter, an analogous coupling is obtained using a simple form of initial stress eld.

The fourth chapter is devoted to a set of inverse problems in the case of initially stressed linear elastic materials. This chapter presents multiple stability estimates. Focusing not only on the theoretical results, the fourth chapter provides an ecient direct approach for the identication of the residual stress eld and the material parameters. Exploiting multiple perturbed displacement elds, a parametric analysis is performed to point out the inuence of the dierent variants of this approach on the quality of the identied elds.

The fth chapter discussed the inuence of a constant initial stress eld on a singular problem of a cracked hyperelastic material. An asymptotic analysis is made for the different mechanical elds near the crack tip considering a three dimensional transformation.

Focusing on the plane problem, a numerical analysis for the singular problem using the XFEM method is done for dierent choices of elements formulations and crack-tip enrichment functions.

The idea behind the last chapter is the same as the third one. In fact, the nal chapter treats an antiplane transformation within hyperelastic bimaterial. This chapter gives an asymptotic analysis on the rigidity gap and the geometrical conguration on the different mechanical elds near the crack tip. An analogy with the case of initially stressed materials is pointed out again.

Chapter 1

Introduction to nite elasticity Let consider a body which occupies initially a reference conguration B 0 . The prior conguration is a collection of material particles whose X = (X 1 , X 2 , X 3 ) is the position vector in the undeformed conguration . The body is transformed at an instant t into a new Chapter 1. Introduction to nite elasticity deformed conguration B t where the position vector of the generic material particle is denoted x = (x 1 , x 2 , x 3 ) as it is illustrated in gure (1.1). This motion can be described by a mapping vector function χ and it can be expressed mathematically as:

χ( X, t) = X + u( X, t) (1.1)
u is the displacement eld which characterize the deformation χ between the initial and the current congurations. Each point of the reference conguration B 0 has a unique image in the current conguration B t and vice-versa. Thus the deformation χ must be a one-to-one function (i.e bijective vectorial function). It is essential to distinguish the elds based on the conguration where they are dened. Since, the deformation function φ is dened on the undeformed conguration, such a kinematic approach is called a material or Lagrangian description. Although, when it is referred to the current conguration, then it is called a spatial or Eulerian description.

Deformation gradient

For the sake of local behaviour studying, the mapping function must be a smooth function and have suitable dierentiability properties. Then, the deformation gradient eld can be dened as:

F ( X, t) = Gradχ( X, t) = 1 + H, H = Grad u, [F ij ] = ∂x i ∂X j , (1.2) 
where 1 denotes the identity tensor and Grad is the gradient operator relative to the coordinates of the undeformed conguration. The deformation gradient tensor must avoid the singular values for the local invertibility of the mapping function. Now, we can similarly dene the inverse deformation gradient tensor as:

F -1 ( X, t) = gradχ( X, t), [F -1 ij ] = ∂X i ∂x j , (1.3) 
with grad is the gradient operator relative to the coordinates in the current conguration.

In the following, the dependence on the time variable will be omitted unless it is necessary. The deformation gradient plays an important role in the nite elasticity formulation since it relies the transportation of an innitesimal vector in the reference conguration to the 

d x = F d X (1.4)
Exploiting the bijectivity of the deformation function, the invertibility of the deformation gradient tensor is ensured and it can be considered as a point-to-point tensor relating two dierent congurations. Using the relation (2.4), with some easy algebraic manipulation, an information can be derived about the volume change and hence a relation between the innitesimal volume respectively in the material and spatial congurations, so we can 10 Chapter 1. Introduction to nite elasticity write:

J = det(F ) = dv dV , (1.5) 
with det is the determinant operator for second order tensors. Since the innitesimal volume is a positive quantity, consequently a necessary condition that has to be satised by the deformation gradient tensor is:

J > 0.
(1.6)

J is also called the jacobian. As it is explained gure (1.2), another relation involving F dA da N n Returning to the point of volume change, a considered deformation can be splitted into volumetric and isochoric or distortional parts. Hence, the gradient deformation tensor can be decomposed as:

F = F F v = F v F (1.8)
1. 1. Kinematics 11 where the isochoric part veries: det( F ) = 1 (1.9) and they can be expressed in function of the original deformation gradient tensor like:

F = J -1 3 F , F v = J 1 3 1.
(1.10)

The prior two equations hold in 2D space by replacing "3" by "2". Such decomposition is essential in material modeling to distinguish the eect of every part of the deformation especially when we are dealing with nearly-incompressible materials.

Polar decomposition

The polar decomposition has a great utility in the continuum mechanics. Such result is the decomposing of the gradient deformation tensor into a stretch tensor and a rotation one. It can be expressed mathematically in the reference conguration as: .11) where R is an orthogonal tensor i.e RR T = R T R = 1 and it represents the rotation tensor. Whereas U is a denite symmetric tensor and it is usually called the material stretch tensor (or the right stretch tensor). equivalently, the polar decomposition has the following form in the current conguration:

F = RU , ( 1 
F = V R, (1.12)
with V is a denite symmetric tensor and it can be regarded as the spatial stretch tensor (or the left stretch tensor). Since U and V are both symmetric tensors, then using the spectral theorem, it can be derived that they share the same principal values. Consequently, the two stretch tensor can be presented in theirs following spectral forms: v (i) ⊗ u (i) , (1.14) where {λ i , i = 1..3} are the common principal values (or principal stretch), while { u (i) , i = 1..3} and { v (i) , i = 1..3} are respectively the principal unitary orthogonal vectors for U and V i.e u (i) . u (j) = v (i) . v (j) = δ ij . For the sake of a brief demonstration of the polar decomposition theorem, let us consider a second order tensor A. The demonstration will be restricted to the case of invertible tensors. Using the singular spectral theorem (the generalization of the spectral theorem), the tensor A can be decomposed as the following:

U = 3 i=1 λ i u (i) ⊗ u (i) , V = 3 i=1 λ i v (i) ⊗ v (i) , ( 1 
A = Ũ Σ Ṽ T , (1.15) 
where Ũ and Ṽ are both orthogonal unitary tensors i.e Ũ Ũ T = Ṽ Ṽ T = 1, and Σ is an invertible diagonal second order tensor. This decomposition is unique because A is invertible. Then, it can be derived:

AA T = Ũ ΣΣ T Ũ T , A T A = Ṽ Σ T Σ Ṽ T .
(1.16) Then using the above equations, we can rewrite the tensor A as:

A = A(A T A) -1 2 (A T A) 1 2 = (AA T ) 1 2 (AA T ) -1 2 A (1.17)
Hence, it is easy to derive that:

A(A T A) -1 2 = (AA T ) -1 2 A (1.18)
is a unitary orthogonal tensor which represents the rotation tensor, while (A T A) The incompressibility is a material behaviour property that can be dened by the aptitude of accepting only an isochoric deformations i.e J = 1. In other words, the incompressibility characterizes the non changing in volume when the material is under a prescribed deformation. Such property is ensured by the presence of pressure force inside the material resisting the volume change. The rubber-like materials and the tissues in biomechanics are usually considered as incompressible materials. But, sometimes this hypothesis is relaxed with an asymptotic expansion in the stress-strain law which leads to the construction of the class of quasi-incompressible materials.

Strain

To study the shape change of a considered body, dening a measure of deformation is necessary. The deformation tensors serve to analyse the length and angle variation. To clear up this point let consider two innitesimal material vectors δX 1 and δX 2 which are transformed respectively in the current conguration to δx 1 and δx 2 . Then the stretch or the length change of the both considered innitesimal vectors dened on the undeformed conguration can be calculated as: .19) where C is called the right Cauchy-Green tensor and its is dened as:

|| δx i || 2 = δX i C δX i , i ∈ {1, 2} (1 
C = F T F (1.20)
We can proceed inversely, similarly to the above calculation, to obtain: 1.21) where B is called the left Cauchy-Green tensor and it is mathematically expressed as: 3)), we can exploit the scalar product to obtain:

|| δX i || 2 = δx i B δx i , i ∈ {1, 2} ( 
B = F F T (1.22)
cos(θ 12 ) = 1 δX 1 .C. δX 1 δX 2 .C. δX 2 δX 1 C δX 2 (1.23)
with θ 12 denotes the angle between the two deformed innitesimal vectors in the current conguration. Exploiting the polar decomposition of the deformation gradient F , the left and right Cauchy-Green tensors can be rewritten like:

B = V 2 , C = U 2 (1.24)
Therefore B and V are two measures of deformation in the spatial conguration B t while C and U represents two measures of deformation dened on the material conguration B 0 . Using (2.11-2.14) and (2.24), it is easy to derive that both the left and right Cauchy-Green tensors have the same principal values and which leads to:

C = 3 i=1 λ 2 i u (i) ⊗ u (i) , B = 3 i=1 λ 2 i v (i) ⊗ v (i) (1.25)
The Cauchy-Green and both of the stretch tensors represent the basis elements for the denitions of the dierent class of deformation tensors. For example, the Green-Lagrange tensor E can be dened in B 0 as:

E = 1 2 (C -1) = 1 2 (F T F -1) (1.26)
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Similarly, the Euler-Almansi tensor is dened by:

A = 1 2 (1 -B -1 ) = F -T EF -1 (1.27)
Also, using the right stretch tensor U we can dene the class of Lagrangian strain tensor by:

E (m) = 1 m (U m -1), m ∈ N * E (0) = ln(U ), m = 0.
(1.28)

Stress and equilibrium equations

If we consider a material particle with a surface element da in the spatial conguration, then the force dF associated to the contact with the adjacent rest of the material (cohesion internal force) or related to the loading devices can be expressed in the spatial conguration as:

dF = tda, (1.29) 
where t is called the traction force vector, and it is related to the Cauchy stress tensor σ in the following way:

t = σ n (1.30)
where n denotes the unit normal vector for the surface element da. In the case of small deformations, the material and spatial conguration are the same. Although, in the case of large deformations, it is necessary to transform the Cauchy stress tensor and the equilibrium equations to the reference conguration. That is why, the First Piola Kirchhof stress tensor S will be dened and associated to the same internal force dF as:

dF = S N dA (1.31)
where N denotes the unit normal vector of the surface element dA corresponding to the surface element da in the reference conguration. By means of the Nanson formula (2.7), a relation between the rst Piola Kirchho and Cauchy stress tensors can be conducted:

S = JσF -T (1.32) 16
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The nominal stress tensor denoted by π is related to the First Piola Kirchhof stress tensor by:

π = S T (1.33)
Consider ρ and ρ 0 as the mass density respectively in the current and reference conguration. hence the local equation of the mass conservation leads to: .34) then using the equation (2.5) describing the volume change, an interesting relation can be derived:

dm = ρ 0 dV = ρdv, ( 1 
ρ 0 = Jρ (1.35)
Let f denote the massic density of external forces. Thus the weak equilibrium equation for the considered body in either the reference conguration B 0 or the current one B t will be: .37) where γ represents the acceleration vector and it is related to the displacement eld by:

∂Bt σ nda + Bt ρ f dv = Bt ρ γdv, (1.36) ∂B 0 S N dA + B 0 ρ 0 f dV = B 0 ρ 0 γdV, ( 1 
γ = ∂ 2 χ( X, t) ∂t 2 (1.38)
we notice that in the denition of the acceleration vector in the prior equation , the displacement eld was considered as Langrangian eld (depending of the reference position vector X and the time t) to avoid the complicated expression in the case of the Eulerian formalism. Using the divergence theorem (or Green identity) the integrated form of the equilibrium equations yields to:

divσ + ρ f =ρ γ, (1.39) DivS + ρ 0 f =ρ 0 γ. (1.40)
Div and div are the divergence operators respectively to the current and the reference congurations, and using the Einstein sum convention, they can be dened as:

[divσ] i = ∂σ ij ∂x j , [divS] i = ∂S ij ∂X j (1.41)
Additionally, the balance of the moment implies the symmetry of the Cauchy stress tensor i.e σ = σ T . In consequence, such the prior result can be expressed in terms of the First Piola Kirchho stress tensor as:

F S T = SF T (1.42)
Contrary to the Cauchy stress tensor, the First Piola Kirchho stress tensor is not necessarily symmetric. Another stress tensor which is usually used in the nite elasticity formalism is the second Piola Kirchho stress tensor denoted by P , which is relied to the Cauchy and rst Piola Kirchho stress tensors as:

P = JF -1 σF -T = F -1 S. (1.43) 
If we dene ˜ t as the ctive traction vector in the initial conguration, then the following relations can be deduced:

t = F ˜ t, ˜ t = P N (1.44)
Now, the equation of the virtual work done by both the surface and volume forces combined with the virtual motion δx in the spatial conguration, can be obtained using the equilibrium equation (2.40) and the divergence theorem as the following:

∂B 0 (S N ). δxdA + B 0 ρ 0 f . δxdV = B 0 ρ 0 γ. δxdV + B 0 S : δF dV (1.45)
with δF = Grad δx and ":" denotes the scalar product dened in the space of the second order tensors which can be dened mathematically as

A 1 : A 2 = tr(A T 1 A 2 )
where tr is the trace operator. Considering the prior virtual equation, the work done by the external loadings (in the left side of the equation (2.45)) to which the considered body is subjected, is transformed to a cinetic work and deformation one in the bulk (right side of the equation (2.45)). The term tr(S : δF ) represents the volumetric density of of deformation work 18 Chapter 1. Introduction to nite elasticity and by denition the First Piola Kirchho stress tensor is called the conjugate tensor to the deformation tensor F . Moreover, a stress tensor can be dened for any measure of the deformation eld. For example, in the case of Lagrangian deformation tensor E m dened in (2.28) , a stress tensor T m can be dened as:

S : δF = T (m) : δE (m) .
(1.46)

In the particular case where m = 1 (i.e E (1) = U -1), the corresponding stress measure denoted by T (1) is called the Biot stress tensor and it can be dened as:

T (1) = 1 2 (S T R + R T S) (1.47)

Hyperelastic materials

An elastic material is dened to be a material where every measure of stress T can be described by a function depending only on the deformation gradient tensor F as:

T = T (F ). (1.48)
T is called the response function associated to the stress tensor T and it depends on the choice of the reference conguration B 0 . B 0 is called the natural conguration, when the stress tensor T vanishes in the reference conguration which means:

T (1) = 0. (1.49)
In the case of initially-stressed materials, the prior relation does not hold (see chapter 3 for more details). A material is called hyperelastic, when the work relative to the deformation of the body shape in the bulk can be associated with a considered energy potential W .

Referring to the equation (2.45), an innitesimal variation of the volumetric density of energy W can be expressed as:

δW = S : δF (1.50)
W is also called the strain energy function. Henceforth, the rst Piola Kirchhof can be related to the strain energy as: .51) Using the equations relating the Cauchy and the second Piola Kirho stress tensors to the rst Piola Kirchho stress tensor, a similar result can be obtained:

S = ∂W ∂F . S ij = ∂W ∂F ij . ( 1 
Jσ = ∂W ∂F F . P = F -1 ∂W ∂F . (1.52)
The strain energy W is usually required to fulll some physical requirements that can be summarized into the following points:

• W (1) = 0 to ensure that the strain energy is relative to the reference conguration.

• ∂W ∂F = 0 in the case where the reference conguration is not initially-stressed.

• W (F ) increases with the deformation based on physical observations.

• W (F ) → +∞ when J → +∞ or J → 0: It is called the growth conditions. Otherwise speaking, the strain energy must diverge in the case of extreme strain.

Objectivity

Consider a rigid deformation: .53) which can be decomposed into a rotation motion represented by the orthogonal tensor Q i.e QQ T = 1 and translation motion by the mean of the constant vector c. Now, if the considered rigid deformation is superimposed to the deformation x = χ( X) whose the deformation gradient is denoted by F , then the total deformation gradient becomes:

x * = Q X + c. ( 1 
F * = QF (1.54)
The strain energy has to verify the objectivity principle or what is usually denoted as the frame indierence. Such principle means that the strain energy has to be independent or unchanged under any superimposed rigid motion. This principle can be translated 20 Chapter 1. Introduction to nite elasticity mathematically into:

W (F * ) = W (QF ) = W (F ), ∀Q ∈ Orth, (1.55)
where Orth is the space including the orthogonal tensors. Now, bearing in mind the relations of the Cauchy and rst piola Kirchho stress tensor to the strain energy function, the objectivity property can be expressed in another way into:

S(QF ) = Q S(F ), σ(QF ) = Q σ(F )Q T , ∀Q ∈ Orth.
(1.56)

Material symmetry

The group of symmetry (usually denoted by G) of a considered material is a set of transformations represented by a proper orthogonal tensor Q conserving the strain energy which leads to:

W (F Q ) = W (F ), ∀Q ∈ G ⊂ Orth + , (1.57) 
with Orth + is the proper orthogonal tensors space. In terms of the dierent stress measures, the prior relation of the material symmetry is equivalent to:

σ(F Q ) = σ(F ), S(F Q ) = S(F )Q , P (F Q ) = Q T P (F )Q , ∀Q ∈ Orth + .
(1.58)

Internal constraints

An internal constraint is usually a kinematic condition that must be fullled by the gradient deformation tensor, and it can be represented by the following form:

C(F ) = 0.
(1.59)

Among the most common internal constraint, the incompressibility and the inextensibility in a chosen direction M are equivalent respectively to:

C(F ) = det(F ) -1 = 0, C(F ) = M .C. M -1 = 0 (1.60)
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In presence of an internal constraint, the Cauchy and the rst Piola Kirchho stress tensors can be written as:

σ = ∂W ∂F F T + q ∂C ∂F F T , S = ∂W ∂F + q ∂C ∂F , (1.61)
where q is a Lagrange multiplier associated with the internal constraint C. It is important to notice that the stress part related to the internal constraint does not work i.e ∂C ∂F : δF = 0.

Isotropic materials

Constitutive equations

In the case of isotropic materials, whether the response function or the strain energy do not depend on the direction of the loading and henceforth there is no preferential direction. Thus the symmetry group in this case is the entire group of proper orthogonal tensors. So, by combinating the both objectivity and group symmetry properties then we get: .62) Bearing in mind the polar decomposition of the deformation gradient in equation (1.62) and by choosing

W (QF Q ) = W (F ), ∀Q, Q ∈ Orth + . ( 1 
Q = R T & Q = 1 or Q = 1 & Q = R T , we derive: W (F ) = W (U ) = W (V ) (1.63)
Using similar arguments, it is easy to prove that the strain energy is an isotropic function of the right and left stretch tensors which is equivalent to:

W (QU Q T ) = W (U ), W (QV Q T ) = W (V ), ∀Q ∈ Orth + . (1.64)
Then by using the theorem of invariant (or isotropic functions) as it is described in [Boehler 1987a], the strain energy depends on the common invariant of the both right and left stretch tensor which leads to:

W (U ) = W (V ) = W (i 1 , i 2 , i 3 ), (1.65) 22
Chapter 1. Introduction to nite elasticity with the dierent invariant of the stretches tensors are dened as:

     i 1 = tr(U ) = tr(V ), i 2 = 1 2 ((tr(U )) 2 -tr(U 2 )) = 1 2 ((tr(V )) 2 -tr(V 2 )), i 3 = det(U ) = det(V ).
(1.66) Using the uniqueness of square root tensor for positive symmetric one, thus we can dene similarly a strain energy density depending of the left or the right Cauchy strain tensor which leads to:

W (U ) = W (C) = W (B).
(1.67)

Thus the isotropy of the strain energy function W implies the isotropy of both W and Ŵ . Thus using the invariants theory, it leads to:

W (C) = W (B) = W (I 1 , I 2 , I 3 ), (1.68) 
with the new set of invariants which are the same for the left and right Cauchy-Green strain tensors and they are dened as:

     I 1 = tr(C) = tr(B), I 2 = 1 2 ((tr(C)) 2 -tr(C 2 )) = 1 2 ((tr(B)) 2 -tr(B 2 )), I 3 = det(C) = det(B).
(1.69) Considering a strain energy as the one in equation (2.67), then the Cauchy and the First Piola Kirchho stress tensors can be explicitly expressed as:

S = 2 W1 F + 2 W2 (I 1 1 -B)F + 2I 3 W3 F -T , Jσ = 2 W1 B + 2 W2 (I 1 B -B 2 ) + 2I 3 W3 1, (1.70) with Wi = ∂ W ∂I i , i ∈ {1, 2, 3}.
In the case of incompressible materials I 3 = J = 1. Thus based on the results in the prior section relative to the internal constraint of incompressibility, the Cauchy and the First Piola stress tensors becomes:

S = 2 W1 F + 2 W2 (I 1 1 -B)F -pF -T , σ = 2 W1 B + 2 W2 (I 1 B -B 2 ) -p1, (1.71)
where p is the Lagrange multiplier associated with the constraint of incompressibility. 

Incompressible materials

Ogden model: This model can be seen as a generalized form of the incompressible isotropic hyperelastic material. It was developed by Ogden for the modeling of rubber-like materials (rubber, biomechanical tissues...). The strain energy is a function of the principal stretches and it can be presented in the following mathematical form:

W (λ 1 , λ 2 , λ 3 ) = N i=1 µ i α i (λ α i 1 + λ α i 2 + λ α i 3 -3), λ 1 λ 2 λ 3 = 1, (1.72)
where the shear modulus µ can be expressed as:

N i=1 µ i α i = 2µ. (1.73)
Polynomial form: Inspired by the model of Mooney, Rivlin has a proposed a more general form for the strain energy as a polynomial expansion of the left Cauchy-Green tensor invariants as:

W (I 1 , I 2 , I 3 ) = N i,j=1 C ij (I 1 -3) i (I 2 -3) j (1.74)
where C ij are material parameters and C 00 = 0. Another form can be obtained for the strain energy if we replace the invariant of the Cauchy-Green strain tensors by those of the stretch tensors.

Mooney Rivlin model: As a special case of the polynomial form presented above, the Monney-Rivlin model is a linear combination of the involved invariants for an isochoric deformation. Thus the potential in this case becomes: .75) with C 1 and C 2 are two material parameters and they depend on temperature. This model is usually used for moderate levels of deformations.

W = C 1 (I 1 -3) + C 2 (I 2 -3), ( 1 
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Chapter 1. Introduction to nite elasticity NeoHookean model: Considered as one of the most simple models in nite elasticity, the NeoHookean model is usually used for many analyses in the literature. It is the result of the statistical mechanics if a gaussian distribution is considered for the particles interactions in the microscopic level. the mathematical form of the strain energy relative to this model is:

W = µ 2 (I 1 -3), (1.76)
Here µ is denoted as the innitesimal modulus shear.

Compressible materials

In the case of compressible materials, usually the energy is decoupled into volumetric and distortion parts. For a strain energy depending on the Cauchy-Green strain tensor invariants, its generalization for the compressible materials can be in the following form: .77) In this way, we can generalize the above polynomial class of strain energy forms. one of the classical form of the volumetric strain energy is the one proposed by Ogden:

W (I 1 , I 2 , I 3 ) = W (I 1 , I 2 )) + Wvol (I 3 ). ( 1 
Wvol (J) = κβ 2 (βln(J) + J -β -1), (1.78) 
where κ denotes the bulk modulus and β is an empirical coecient. Moreover, the model of Ogden may be generalized for compressible materials to take the following form:

W (λ 1 , λ 2 , λ 3 ) = W vol (J) + W ( λ1 , λ2 , λ3 ), λi = J -1 3 λ i , i ∈ {1, 2, 3}. (1.79)
Blatz-Ko model Developed by Blatz and Ko in [Blatz 1962], this model was proposed to model the foam behaviour. It is considered one of the few models characterized by the coupling between the isochoric and volumetric parts. The strain energy function for this model is given by: Isotropic transverse material: Let M be a unit vector denoting the preferential direction in the reference conguration B 0 . An isotropic transverse material is a material presenting a single family of bers whose orientation is described by the vector M . The material behaviour is unchanged by any rotation around the ber direction i.e Q M = ± M . The strain energy depends in this case not only on the deformation gradient tensor but also on the ber direction M i.e W = W (F , M ). Using the objectivity of the strain energy implies:

W (I 1 , I 2 , I 3 ) = f µ 2 [(I 1 -3) + 1 β (I -β 3 -1)] + (1 -f ) µ 2 [( I 2 I 3 -3) + 1 β (I β 3 - 1 
W (QF , M ) = W (F , M ), ∀Q ∈ Orth + . (1.81)
If we consider that the deformation χ related to the deformation gradient F is superimposed to a rotation represented by the proper orthogonal Q , then we can deduce:

W (F Q , Q T M ) = W (F , M ), ∀Q ∈ Orth + . (1.82)
As done in the case of isotropic materials above, by choosing Q = R in equation (2.81), which signify:

W (F , M ) = W (U , M ) = W (C, M ). (1.83)
Now by coupling the equations (2.81-2.83), the isotropy of the strain energy is guaranteed:

W (QU Q T , Q M ) = W (QCQ T , Q M ) = W (U , M ) = W (C, M ) (1.84)
Hence, the theory of invariants requires that the strain energy W depends on ve invariants: I 1 , I 2 , I 3 as they are dened in (2.69) added to two supplementary invariants namely I 4 and I 5 which can be expressed as: .85) Chapter 1. Introduction to nite elasticity Therefore, the resulting Cauchy stress tensor becomes:

I 4 = M .C. M , I 5 = M .C 2 . M . ( 1 
Jσ = 2 W1 B + 2 W2 (I 1 B -B 2 ) + 2I 3 W3 1 + 2 W4 m ⊗ m + 2 W5 (B. m ⊗ m + m ⊗ B. m), (1.86) 
with m = F . M and

W i = ∂ W ∂I i for i = 1, 2..5.
For isotropic materials, we recover the same form of the Cauchy stress by putting W4 = W5 = 0. For incompressible materials (J = I 3 = 1), then the formula (2.86) is replaced by:

σ = 2 W1 B + 2 W2 (I 1 B -B 2 ) -p1 + 2 W4 m ⊗ m + 2 W5 (B. m ⊗ m + m ⊗ B. m).
(1.87)

Orthotropic material: In this case the material in its reference conguration B 0 presents two preferred directions associated to two unitary vectors M and M . The material behaviour is independent of all the rotation unchanging one of the two vectors or its reverse.

Then the symmetry group is the set of the rotations around M or M . Then using the same argument type, we can prove that the strain energy is an isotropic function of: C or U , M and M . Consequently, there are more invariants to which the strain energy must depend:

I 6 = M .C. M , I 7 = M .C 2 . M , I 8 = M .C. M , I 9 = M . M , I 10 = M .C 2 . M . (1.88)
Since, the last invariant I 10 can be expressed in terms of the rest of the invariants (see appendix C for the demonstration), the strain energy is considered as a function only of the rst 9 invariants. Henceforth, the Cauchy stress in the case an unconstrained orthotropic hyperelastic material is given by:

Jσ = 2 W1 B + 2 W2 (I 1 B -B 2 ) + 2I 3 W3 1 + 2 W4 m ⊗ m + 2 W5 (B. m ⊗ m + m ⊗ B. m) (1.89) + 2 W6 m ⊗ m + 2 W7 (B. m ⊗ m + m ⊗ B. m ) + 2 W8 ( m ⊗ m + m ⊗ m ),
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where m = F M and Wi = ∂ W ∂I i for i = 1..8. However, when the incompressibility constraint holds, the prior equation is replaced by:

σ = 2 W1 B + 2 W2 (I 1 B -B 2 ) -p1 + 2 W4 m ⊗ m + 2 W5 (B. m ⊗ m + m ⊗ B. m) (1.90) + 2 W6 m ⊗ m + 2 W7 (B. m ⊗ m + m ⊗ B. m ) + 2 W8 ( m ⊗ m + m ⊗ m ). (1.91) 1.3.5.

Examples of strain energy models

Usually in the literature for ber reinforced hyperelastic materials modeling, the volumetric and isochoric parts are decoupled. So in the following we will present only the isochoric part of the strain energy.

polynomial form: Inspired by the polynomial strain energy function for incompressible materials, a polynomial expansion for the volumetric energy density can be given as:

W (I 1 , I 2 , I 4 , I 5 , I 6 , I 7 , I 8 ) = j 1 ,...,j 8
C j 1 j 2 j 4 j 5 j 6 j 7 j 8 (I 1 -3) j 1 (I 2 -3) j 2 (I 4 -1) j 4 (I 5 -1) j 5 (I 6 -1) j 6 ×(I 7 -1) j 7 (I 8 -1) j 8

(1.92)

Humphrey and Yin model: based on the assumption of the non-interacting families of bers in soft tissues, Humphrey and Yin proposed in [START_REF] Humphrey | [END_REF]] a model where the isotropic and anisotropic parts of the strain energy are decoupled and it can be presented in the following mathematical form: .93) with A, a , b and c are material parameters.

W (I 1 , I4)) = c[exp(b(I 1 -3)) -1] + A[exp(a( I 4 -1) 2 ) -1], (1 
Holzapfel model: For the sake of multilayered arterial wall presenting two connected families or bers, Holzapfel and al in [Holzapfel 2000] have proposed the following form for Chapter 1. Introduction to nite elasticity the strain energy:

W (I 1 , I 4 , I 6 ) = µ 2 (I 1 -3) + k 1 2k 2 i=4,6 {exp(k 2 (I i -1) 2 ) -1}. (1.94)
Here, µ, k 1 and k 2 are positive material constants.

Strong ellipticity

The equilibrium equation in the reference conguration as it is mentioned in equation ( 2.40) can be rewritten as:

A 1 kilj ∂ 2 x j ∂X k ∂X l + ρ 0 f i = ρ 0 ∂ 2 x i ∂t 2 (1.95)
whereas in the case of incompressible materials the equilibrium equation ( 2.95) is transformed to:

A 1 kilj ∂x j ∂X k ∂X l - ∂p ∂x i + ρ 0 f i = ρ 0 ∂ 2 x i ∂t 2 (1.96)
with the dierent components of the fourth order tensor A 1 in both cases are dened as:

A 1 kilj = A 1 ljki = ∂ 2 W ∂F ik ∂F jl .
(1.97)

The components A 1 kilj are in general nonlinear functions of the deformation gradient tensor components. In other words, the nonlinearity of the prior partial dierential equation is controlled by the fourth order tensor A 1 . The equation (2.95) is said to be strong elliptic if and only if:

A 1 kilj m i m j N k N l > 0 (1.98)
for all non zero vectors m and N . In the case of incompressible materials, the equation (2.98) holds for the following restriction:

m. n = 0, (1.99)
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where n is considered as the push forward of N and they are related together as:

N = F T n. (1.100)
The strong ellipticity condition is used essentially initially to guarantee the propagation of plane waves (the celerity of the plane wave is real). Then, this condition was added to the constraints discussed above that must be fullled by the strain energy for a general deformation eld.

Linear elasticity

In the scope of small deformations, the displacement eld and its gradient tensor are suciently small i.e: 1.101) so that the reference and current congurations are usually considered as the same. ||.|| and |.| denote respectively two norms for tensor and vector functions, whereas L is a characteristic length for the studied body. If the reference conguration is natural, then all the stress measures presented above are the same. In linear elasticity, the fourth order incremental elastic tensor denoted by C is relied to the fourth order tensor A 1 , dened above, as:

||H|| << 1, |u| << L, ( 
C ijkl = A 1 ijkl = ∂ 2 W ∂ε ij ∂ε kl , (1.102)
where ε is the innitesimal strain tensor and it is dened as:

ε = 1 2 (H + H T ). (1.103)
The Cauchy stress tensor can be expressed as:

σ = ∂W ∂ε .
(1.104) 30

Chapter 1. Introduction to nite elasticity and the strain energy can be considered as quadratic function of the innitesimal strain tensor which is equivalent to:

W = 1 2 ε : C : ε = 1 2 C ijkl ε ij ε kl . (1.105)
Using the symmetry of both the strain and Cauchy stress tensors and the expression of the strain energy in equation ( 2.105), thus the incremental elastic tensor C posses the full symmetries i.e :

C ijkl = C klij = C jikl . (1.106)
Isotropic linear elasticity: For isotropic materials the elastic tensor in the natural conguration becomes:

C ijkl = 2µ(δ ik δ jl + δ il δ jk ) + λδ ij δ kl (1.107)
with µ and λ denote the Lamé coecients and δ is the Kroneker operator. Thus the Cauchy stress tensor can be expressed as:

σ = 2µε + λtr(ε)1 (1.108)
and the linearized strong ellipticity condition leads to:

µ > 0, λ ≥ 0, (1.109) 
Isotropic transverse material:

When there is one family of bers and the bers direction is represented by the unitary vector M , then the stress-strain relation becomes: 1.110) where λ, α, β, µ T and µ L are material parameters.

σ = (λtr(ε) + α M .ε. M )1 + (αtr(ε) + β M .ε. M ) M ⊗ M + 2µ T ε + 2(µ L -µ T )[ε. M ⊗ M + M ⊗ ε. M ], ( 

Orthotropic material:

When the material symmetry become orthotropic which is equivalent to the presence of two families of bers whose the direction is represented by the unitary vectors M and M , 1.3. Hyperelastic materials 31 then in case of orthogonal bers, the expression of Cauchy stress tensor is simplied to:

σ = (λtr(ε) + α 1 M .ε. M + α 2 M .ε. M )1 + (α 1 tr(ε) + β 1 M .ε. M + β 3 M .ε. M ) M ⊗ M + (α 2 tr(ε) + β 3 M .ε. M + β 2 M .ε. M ) M ⊗ M + 2µε + 2µ 1 [ε. M ⊗ M + M ⊗ ε. M ] + 2µ 2 [ε. M ⊗ M + M ⊗ ε. M ], (1.111) 
Although for the more general case, a tension-shear coupling take in place and the stressstrain relation becomes more complicated (see the work of Spencer in [Spencer 1984a] for more details)

Linearization of the hyperelastic models

The linear elasticity theory can be whether constructed mathematically with the choice of quadratic form for the strain energy or by the linearization of the hyperelastic model in the nite elasticity. In this section, we intend to rely the hyperelastic models to the linear stress-strain relation by Linearization. For the sake of generality, the hyperelastic model for orthotropic material is considered and the case of isotropic and isotropic transverse materials can be then deduced. The innitesimal or the Linearized Cauchy stress tensor becomes: (1.113) where Wij = ∂ 2 W /∂I i ∂I j , i, j = 1..8. To ensure that the reference conguration is a natural one which is equivalent to the absence of an initial stress eld, then the following 32 Chapter 1. Introduction to nite elasticity condition must hold: .117) where the index . 0 in the terms W 0 i refers to express these terms in the reference conguration which is equivalent to:

σ = [2 W L 1 + 4 W L 2 + 2 W L 3 + tr(ε)(4 W 0 1 + 4 W 0 3 )]1 + 4( W 0 1 + W 0 3 )ε + [2 W L 4 + 4 W L 5 ] M ⊗ M + [2 W L 6 + 4 W L 7 ] M ⊗ M + 4 W 0 5 [ε M ⊗ M + M ⊗ ε M ] + 4 W 0 7 [ε M ⊗ M + M ⊗ ε M ] + W L 8 [ M ⊗ M + M ⊗ M ] (1.112) with W L i = (2 Wi1 + 4 Wi2 + 2 Wi3 )tr(ε) + (2 Wi4 + 4 Wi5 ) M .ε. M + (2 Wi6 + 4 Wi7 ) M .ε. M + 2 Wi8 M .ε. M , ∀i ∈ {1..8},
W 0 1 + 2 W 0 2 + W 0 3 = 0 (1.114) W 0 4 + 2 W 0 5 = 0 (1.115) W 0 6 + 2 W 0 7 = 0 (1.116) W 0 8 = 0, ( 1 
W 0 i = W i (I 1 = 3, I 2 = 3, I 3 = 1, I 4 = 1, I 5 = 1, I 6 = 1, I 7 = 1, I 8 = I 9 ) (1.118)
When the internal constraint of incompressibility is taken into consideration, thus the linearized stress strain relation becomes:

σ = -p1 + 4( W 0 1 + W 0 3 )ε + [2 W L 4 + 4 W L 5 ] M ⊗ M + [2 W L 6 + 4 W L 7 ] M ⊗ M + 4 W 0 5 [ε M ⊗ M + M ⊗ ε M ] + 4 W 0 7 [ε M ⊗ M + M ⊗ ε M ] + W L 8 [ M ⊗ M + M ⊗ M ] (1.119)
with p is the Lagrange multiplier relative to the incompressibility condition which is equivalent to:

tr( ) = 0 (1.120) and to guarantee the vanishing of any type of initial stress eld the following conditions are transformed to: .124) where p 0 is the value of the Lagrange multiplier eld in the reference conguration. In this chapter, the formalism of nite transformations is presented focusing on the special case of hyperelastic materials. Through the previous sections, a set of multiple theoretical concepts are presented and discussed like the principle of frame indierence or the strong ellipticity. Such concepts or principles are necessary for the materials behaviour modeling. Centering our attention on the case of hyperelastic initially-stressed materials, the behaviour modeling of such class of materials is a real challenge. As well as, more mathematical constraints than the ones presented above are established to be more coherent with the physical behaviour of such materials as we will see in detail in the next chapter.

W 0 1 + 2 W 0 2 -p 0 = 0 (1.121) W 0 4 + 2 W 0 5 = 0 (1.122) W 0 6 + 2 W 0 7 = 0 (1.123) W 0 8 = 0, ( 1 

Introduction

Materials sciences were and still considered one of the pillars of industrial and scientic development in the last two centuries. The technological advancements in dierent areas play the role of driven force behind the evolution in such scientic scope. Despite the long Chapter 2. Modeling of initially-stressed hyperelastic materials steps made in the modeling of material behaviors, many fundamental foundations remain raising a lot of questions. One of the rst fundamental columns, on which is based on the materials sciences, is the theory of elasticity whose the spark idea was coming from Robert Hook in the 17th century. Despite the development of many new complex non-linear theories for materials modeling involving many class of behaviors like plasticity, viscosity and damage, the elasticity still essential for pre-sizing structure and in some sciences like fracture mechanics or fatigue, remains one of the basis.

Among the biggest challenges that the theory of elasticity in particular and the material science in general are facing is the modeling of residual stress which is dened as the remaining stress inside a considered body in a chosen conguration in absence of all exterior loadings. The residual stress can be involved in various examples and scopes. The residual stress plays a key role in the propagations of cracks by fatigue. It is shown in [Nelson 1982] that the nature and the amount of the residual stress have direct eects on the threshold of fatigue, it can be advantageous to the material especially in high cycle regime when the residual stress is of compressive type leading to the brake of the crack propagation and so the delay of failure, and it could be disastrous in the opposite case. In biomechanics many works like [Fung 1991, Holzapfel 2014] cleared out the contribution of residual stress in self-regulation properties of stress and strains in the dierent types of arteries inside various organs in the objective to preserve the ideal mechanical conditions for tissues functions. In geophysics, It is shown that residual stress can possibly aect not only the direction of crack propagation through the stones [START_REF] Holzhausen | [END_REF], Friedman 1970] and the changement of tectonic plates topography [Savage 1986], but also the dynamic properties of seismic waves [Tolstoy 1982]. In the oil and gas industry many techniques are based on the scope of elastodynamics are still used for identifying the oil elds or even stimulating and inuencing the reservoir for better recuperation [Roberts 2003]. But since it is shown the impact of residual stress on wave propagation [START_REF] Guz | [END_REF], it is necessary to take into account the presence of internal stress and its consequences.

The residual stress origins can be multiple, varying from the heterogeneity of the material to the way of loading the structure to even the in-vivo mechanisms. In metals, the residual stress essentially is due to the high gradient of loading like welding process [Deng 2008], multiple manufacturing processes invoking plastic deformations (rolling...) [Treuting 1951] and thermal or surface treatments [Withers 2001]. In composite structures, focusing on the meso-scale, the dierence of thermal expansivity, rigidity or any other material property of dierent parts of the composite structure leads to the residual stress presence near the boundary between the matrix and inclusions or bers. In arteries, residual stress is a result of non-uniform growth and remodeling [Fung 1991] due to the physiological functions. More explicitly, the disorganization of fragmentation and the brous constituents of tissues ,mainly collagens and protein elastin, leads to the presence of residual stress to preserve the mechanical integrity and the optimal functions of the body parts in vivo state [Cardamone 2009].

Since the concept of residual stress touches almost all the areas, the development of a model taking into account the inuence of such a eld on the behaviour of the material is necessary. Also, this concept could be used to have a better physical understanding and explanation to the dierent complex phenomena in material sciences.

In the litterature, the modeling of residual stress began inside a more general category of stress elds, the one of initial stress or in presence of dead loads dened as a non changed loadings in both amplitude and direction. Based on the investigation of Bazant in [ZP 1971], many formulations as constitutive relations in presence of pre-stress were found by many authors in some special cases like Southwell, Biezeno and Hencky, Tretz, and Biot. But essentially, to our knowledge, the rst studies focusing specically on the residual stress were managed by Colman and Noll: One of the interesting properties, they found in [Coleman 1964] the commutation of the residual stress tensor with the tensors elements of the symmetry group. This property was exploited by Anne Hoger to propose the possible form of residual stress within dierent classes of symmetry [Hoger 1985]. Then, Hoger established in [Hoger 1986] one of the most general constitutive stress-strain relations in presence of residual stress for compressible materials in the scope of small deformation.

The same formulation was extended to the case of arbitrary rotations and small strains in [Hoger 1993b], and was generalized by Marlow in [Marlow 1992] to take account of the possible constraints in the material. Jonshon and Hoger in [Johnson 1993], supposing that the residual stress is due to prior elastic deformations, they derived a general stress-strain constitutive relation in the presence of pre-stress for isotropic materials, in the same paper considering a small deformation superimposed to a large one, they found an explicit linearized form of the constitutive relation unlike the relation found by Hoger in [Hoger 1986] where the elastic tensor operator is unknown. Inspired by experimental protocols used to Chapter 2. Modeling of initially-stressed hyperelastic materials release the residual stress from arteries, Johnson and Hoger presented a method for modeling the materials behaviour aected by the residual stress using the concept of virtual conguration where the material could be relieved from all its internal stress [Johnson 1995] and it was generalized in [Hoger 1997] to study the inuence of material symmetry on the previous formulation. The determination of the response function invert in explicit form and the identication of the virtual conguration are among the biggest challenges for the use of the prior method. Far from these constraints, an interesting idea is to consider the strain energy as a function of both the deformation gradient tensor and the residual stress.

In the scope of nite transformations, this idea was introduced in [Hoger 1993a] to focus on the case of isotropic transverse symmetry and later in [Shams 2014] in the objective of studying the wave propagation. The only dierence between the introduced formulations is that the rst one is expressed in function of the right Cauchy strain and residual stress tensors and in the second one the strain measure used is the right Cauchy-Green deformation tensor. Recently, Gower et al in [Gower 2015, Gower 2017] developed two new restrictions on the prior presented strain energy potential. The rst one is based on the symmetry of the response function for both the Cauchy and residual stresses tensors, and is called the initial stress symmetry (ISS). This restriction was made to preclude the inuence of the reference conguration choice on the strain energy. A set of mathematical conditions was proposed to be veried by the potential of energy to satisfy the ISS restriction.

The second restriction, named initial stress reference independence (ISRI), focuses on the energy conservation property. Then a linearized form for the density of energy was deduced.

Introduced by Morgan in [START_REF] Morgan | Some properties of media dened by constitutive equations in implicit form[END_REF]], and developed recently by the group of Rajagopal, the implicit theory could be one of the promising attempts to extend the limits of classical theory of elasticity. It is shown that the implicit theory characterizes a wider class of reversible elastic materials than the Cauchy materials [Rajagopal 2003]. Focusing on the scope of small deformations, Bustamante and Rajagopal through examples of some proposed implicit relations studied the response of such material models to a set of chosen known transformations. Later they studied a special subclass where the strain tensor is derived from the derivation of a strain energy potential relative to the stress tensor [Bustamante 2016, Bustamante 2015]. Recently, the implicit theory was exploited to derive a new formulation for the modeling of residual stress inuence on an elastic solids [Bustamante 2018].

Preliminary equations 39

Here in this chapter, we propose a new formulation to take account of the inuence of residual stress on elastic behaviour proposing a general explicit form of elastic tensor without making any hypothesis on the residual stress source. Also a study for dierent formulations proposed in the litterature for the same objective, are presented as a review. Also, the dierent restrictions that were derived recently (ISS and ISRI) are presented in a detailed way and we show that they are equivalent although the dierent arguments used for each one. On the other hand, it is well known the strong link between the initial stress eld presence and the anisotropy. That's why, in this chapter a detailed study illuminates an explicit analogy between the initially-stressed hyperelastic materials behaviour and the behaviour of some symmetry classes for brous hyperelastic materials.

In the other hand, the plane deformations and/or plane stress hypothesis are among the most used scopes in order to simplify the analysis of complex boundary values problems in mechanics. In both cases, it has been shown that equilibrium equations can be reduced to a single partial dierential equation on a scalar potential eld based on the compatibility of the deformation eld. Such type of formulations like the one invoking the Airy stress function is essential for many problems in mechanics: for example, to derive the asymptotic form of the dierent mechanical elds near a crack tip in an isotropic material, the use of such function was primordial. That is why the third section will be dedicated to the establishment of plane deformations formulation in the case of constant initial stress eld.

Preliminary equations

Let us consider a body B in a reference conguration denoted by B 0 ⊂ R 3 . Consider a oneto-one mapping vector-valued function φ that transforms a point X in B 0 into x = φ(X) in the actual conguration denoted as B t . Besides, we can dene the deformation gradient tensor as:

F = ∇ X φ, (2.1)
where ∇ X is the gradient operator relative to the coordinates system of the reference conguration, and F has to satisfy J = det(F ) > 0 for admissible mathematical transformations. Thus, the deformation measures subsequently denoted as Left and Right Cauchy-Green 40 Chapter 2. Modeling of initially-stressed hyperelastic materials deformation tensors can be dened as the following:

B = F F T , C = F T F . (2.
2)

The First Piola-Kirchho stress tensor S = Ŝ(F ) is related to the Cauchy stress tensor σ = σ(F ), which is dened on the actual conguration, as:

S = JσF -T . (2.3)
If we denote by Orth + the set of proper orthogonal tensors, then the observer independence for both Cauchy stress tensor σ and the rst Piola-Kirchho tensor S is equivalent to:

σ(QF ) = Qσ(F )Q T , S(QF ) = QS(F ), ∀Q ∈ Orth + . (2.4)
The equilibrium equations in presence of a mass density of forces denoted as f and in its static form for both stress measures are:

∇ X .S + ρ 0 f = 0, ∇ x .σ + ρf = 0, (2.5) 
where the indexations by x and X denote the coordinate systems relative to what the derivation of the divergence operator is made. ρ 0 and ρ represent the mass density respectively for the reference and actual congurations.

Modeling of initially-stressed hyperelastic materials

Residual stress can be dened as the remaining stress in a considered body in absence of any external forces. Such kind of internal stress is regarded as a critical and potential phenomenon that can aect the material behaviour. This inuence may touch the mechanical parameters, the heterogeneity or the anisotropy of the material or it can even change the constitutive equation describing the material behaviour itself. In the following the residual stressed bodies will be studied in a more general class denoted by the initially-stressed materials where the stress eld in the chosen conguration is usually called initial stress or initial stress and it is equilibrated not necessarily in absence of external loadings. Now, we dene the initial stress eld τ as the Cauchy stress in the reference conguration. This denition is usually denoted by the initial stress compatibility condition ISC (It will be used in almost the following presentations of the dierent constitutive formulations). Thus it must be symmetric, and it has to satisfy:

∇ X .τ = 0. (2.6)
In the special case where:

τ . N = 0, (2.7)
where N is the unit outward normal vector to the body B in the reference conguration B 0 , then τ is called residual stress: the remaining internal stress when all the external loadings are removed. Based on the theorem of average of Signorini (see [Hoger 1986]), the residual stress is heterogeneous inside the material body, and so the presence of such a eld inside the structure leads to an inhomogeneity in the mechanical behaviour. Considering equation (2.7) implies that the residual stress depends on the shape of the studied structure.

The modeling of the residual stress inuence on the material behaviour was initiated with Coleman and Noll in [Coleman 1964] where they discussed the possible initial stress based on the symmetry group of a material. So far multiple formulations were derived in dierent ways to model such internal stress aecting the constitutive equations of the material behaviour.

Hyperelastic model based on the theory of invariants

In nite elasticity, the modeling of initially-stressed hyperelastic materials has begun to our knowledge with the work of Shams et al in [Shams 2011] where the strain energy is a function of the deformation gradient F and the initial stress eld τ so we can write:

W = W (F , τ ). (2.8)
To ensure that the energy is independent of the rigid deformations, the strain energy W must satisfy:

W (QF , τ ) = W (F , τ ), ∀Q ∈ Orth + .
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Q F B 0 B * 0 τ , p τ τ , p τ B t σ, p
W (F , τ ) = W (U , τ ), (2.10) 
Since the right Cauchy-Green strain tensor C is a denite positive, consequently, the stretch tensor U which represents the square root tensor of C is unique. Hence, the strain energy W depends on F through the right Cauchy-Green strain tensor C. That is why, a new strain energy function W can be dened as: .11) Consider the conguration B * 0 as the result of a rotation of the initial conguration B 0 as it is shown in gure (2.1). The rotation is dened by a proper orthogonal tensor Q. Focusing on gure (2.1) and exploiting the outcomes of the objectivity principle on the Cauchy stress tensor illustrated in equation (2.4) and the invariance of the strain energy under superimposed rigid rotations, we derive:

W (C, τ ) = W (F , τ ) = W (U , τ ). ( 2 
τ = σ(Q) = Qτ Q T , W (F Q T , τ ) = W (F , τ ) (2.12)
As a conclusion, using equation (2.11-2.12), we can deduce that the strain energy W (or W ) is an isotropic function of the right Cauchy-Green strain tensor and the initial stress tensor τ i.e :

W (QCQ T , Qτ Q T ) = W (C, τ ), ∀Q ∈ Orth + (2.13)
Thus, using the theory of invariants and based on the works of Spence and Bohler [Spencer 1971, Boehler 1987a], we can get nally an explicit justication for the formulation established by Shams and al [Shams 2011] where the strain energy W is a function of the following invariants: (2.16) So, we can deduce the Cauchy stress tensor expression as:

I 1 = tr(C), I 2 = 1 2 (tr(C 2 ) -tr(C) 2 ), I 3 = det(C), (2.14) 
I τ 1 = tr(τ ), I τ 2 = 1 2 (tr(τ 2 ) -tr(τ ) 2 ), I τ 3 = det(τ ), (2.15) 
Jσ = 2W 1 B + 2W 2 (I 1 B -B 2 ) + 2I 3 W 3 1 + 2W 4 F τ F T + 2W 5 F (Cτ + τ C)F T + 2W 6 F τ 2 F T + 2W 7 F (Cτ + τ C)F T , (2.17) 
with W i = ∂W/∂I i for i = 1..7. In case of incompressible materials, the expression of Cauchy stress tensor is modied to be: (2.18) where p is the Lagrange multiplier relative to the incompressibility condition.

σ = 2W 1 B + 2W 2 (I 1 B -B 2 ) -p1 + 2W 4 F τ F T + 2W 5 F (Cτ + τ C)F T + 2W 6 F τ 2 F T + 2W 7 F (Cτ + τ C)F T ,
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Chapter 2. Modeling of initially-stressed hyperelastic materials 2.3.2 Constitutive equation based on the concept of virtual conguration

In biomechanics, there are dierent methods to estimate qualitatively or quantitatively the residual stress eld inside the ex-vivo organs or parts of them. Focusing on the destructive and semi-destructive methods, among the most popular and commonly used approaches to measure the residual stress, we nd cutting body into seperate parts, hole drilling, surface grinding and ring coring [START_REF] Hauk | Structural and residual stress analysis by nondestructive methods: Evaluation-application-assessment[END_REF]]. For the sake of introducing a constitutive equation modeling the inuence of the residual stress on elastic behaviour and inspired by these dierent experimental approaches, Johnsen and Hoger in [Johnson 1995] have introduced the concept of virtual conguration. The virtual conguration denotes the stress free conguration which may be attainable by a sequence of sectioning and cutting the considered body to release all the residual stress. To clarify the approach of virtual conguration,

τ P 0 B 0 P 0 P P N F F -1 0 τ. N 0 σ. N F * Figure 2.2:
The dierent congurations for the virtual conguration concept the reference conguration will be denoted as B 0 . Let consider P 0 as a material part of the considered body in the reference conguration. Through the deformation gradient F , the reference conguration B 0 is mapped into a current conguration denoted by B and in particular the material part P 0 is transformed into P as it is illustrated in the gure (2.2). By examining the work of [Johnson 1995], the derivation of the constitutive equation for residual stressed bodies is based on the idea that "for each innitesimal neighborhood in the residual stressed body there exists a corresponding stress free conguration". To simplify the derivation of the constitutive equation, Johnson and Hoger have treated rst the class of initially-stressed material that can be cut in nite volume to release the residual stress. Let consider the material part P as one of these parts that will be stress free when it is separated from the rest of the material body. Thus, implicitly, this implies the existence of gradient deformation tensor denoted by F 0 that describes the transformation of P 0 into a stress free part denoted by P N . F 0 can be either incompatible tensor in the case of residual stress eld presence in the reference conguration or compatible when the internal stress is nothing but a regular elastic initial stress equilibrated by some external tension loadings. Let consider that material body has an elastic behaviour for both transformation from P 0 to P and from P N to P 0 . Therefore, the Cauchy stress tensor σ in the current conguration and the residual stress τ dened in the reference conguration become:

σ = T (F * , X), τ = T (F 0 , X) (2.19) 
with T represents the response function and F * is the resulting deformation gradient tensor obtained from the transformation of P N into P:

F * = F F 0 (2.20)
In the rest of this chapter, the dependence of the response function T through the position will not be shown explicitly unless it is necessary. If the response function is invertible, then the deformation measure F 0 can be expressed in function of the residual stress as:

F 0 = T -1 (τ ), (2.21) 
and consequently by using the elastic constitutive equation (2.20-2.21), the constitutive equation describing the residual stress inuence on the elastic behaviour can be described through the following constitutive relation:

σ = T (F T -1 (τ ), X). (2.22)
It is important to notice that the prior constitutive equation is independent of the history of the process source of the residual stress eld presented in the material. Also, the natural conguration has not to be reachable or known.
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Since, the hypothesis of releasing the residual stress eld by cutting the material body into nite parts can not stands for the residually stressed materials, in [Johnson 1995], the same constitutive equation (2.22) can be derived reasoning on the innitesimal neighborhood of a material point and the same way of Cauchy tetrahedron argument. In this case, every material point in the reference conguration has a corresponding material point in the stress free conguration. The latter will be the sum of all these points which are not necessarily the one near the other. The stress free conguration in this case is just a mathematical concept. That's why the term "virtual" was employed to denote this method.

2.4 Restrictions in initially-stressed materials modeling

Initial stress symmetry (ISS)

The model based on the theory of invariants illustrated above is quite general without any physical restriction. That is why, in this section and the following one, we will present the dierent mathematical conditions based on some physical restrictions that specify more the proposed formulation above. The rst restriction is based on the work of Gower and al in [Gower 2015] and it is denoted initial Stress Symmetry (ISS). If we consider the response function ξ, then the ISS condition can be expressed as: .23) whereas in the case of incompressible materials this conditions is equivalent to:

σ = ξ(F , τ ), τ = ξ(F -1 , σ), ∀F , ∀τ , (2 
σ = ξ(F , τ , p), τ = ξ(F -1 , σ, p τ ), (2.24) 
p = p(σ, F , τ ), p τ = p(τ , F , σ), (2.25)
with p is the response function relative to the Lagrange multiplier associated to the incompressibility condition and p τ is the Lagrange multiplier dened on the reference conguration B 0 . The ISS condition is based on the symmetry of the response function and implies that the behaviour modeling is independent of the reference conguration choice.

If the equations in (2.23-2.25) are rewritten in a way where they are incorporated one in the other, then the ISS restriction implies:

τ = ξ(F -1 , ξ(F , τ , p(σ, F , τ )), p τ ), ∀F , ∀τ . (2.26)
Hence, based on some compulsory algebraic calculations, the prior condition can be summarized into nine mathematical equations that must be satised by the strain energy W (for more details, see [Gower 2015] and the relative electronic supplementary material).

Initial stress reference indierence (ISRI)

Whereas the ISRI restriction is based on the reversibility of the response function, Gower and al in [Gower 2017] have added a new restriction based on the energy conservation (or decomposition) and it has been denoted as ISRI which stands for the initial stress reference indierence. In other words this supplementary condition is established to ensure that the stress-strain relation in the presence of an initial stress eld is independent of the choice of the reference conguration where the initial stress eld is dened. Based on energetic perspective, the ISRI restriction can be formulated in terms of the strain energy W which must fulll:

W ( F F , τ ) = det( F )W ( F , σ( F , τ )), ∀τ , ∀{ F , F }, (2.27) 
where τ is the Cauchy stress tensor in a chosen reference conguration and σ( F , τ ) denotes the Cauchy stress tensor dened on a new conguration result of the transformation of the conguration, where the stress tensor τ is dened, by a transformation relative to the gradient transformation tensor F . The ISRI condition (2.27) is a result of the conservation of the strain energy which can be illustrated through the following equation:

B 0 W ( F F , τ )dV = B W ( F , σ( F , τ ))d V , (2.28)
where B 0 is the reference conguration where the initial stress eld τ is dened, and B is the image of the conguration B 0 by the mapping transformation relied to the transformation gradient tensor F . Thus the innitesimal volume elements in the two congurations are connected by: Proof: If we consider the decomposition of the transformation gradient tensor as it is illustrated in the gure (2.3), then it leads to (2.31) and by consequence, the ratio of volume change can be expressed in function of the same ratios dened between the dierent congurations as:

d V = det( F )dV. ( 2 
F = F F ,
J = det(F ) = det( F )det( F ) = Ĵ J. (2.32)
Now, the Cauchy stress tensor dened in the conguration B can be expressed in terms of the strain energy relatively to both the congurations B 0 and B in the following way:

J σ( F F , τ ) = ∂W ∂F (F , τ )F T , (2.33) Ĵ σ( F , σ( F , τ )) = ∂W ∂ F ( F , σ( F , τ )) F T . (2.34) 
Using the ISRI restriction illustrated by equation ( 2.27) and exploiting the denition of the Cauchy stress tensor in equation (2.34) side to side with some calculus properties for the tensor elds, it leads to:

J σ( F F , τ ) = J ∂W ∂ F ( F , σ( F , τ )) F -T F T = J σ( F , σ( F , τ )). (2.35)
Hence, the equivalent form of the ISRI restriction illuminated by equation (2.30) is nally obtained.

In the incompressible case, the ISRI condition expressed in terms of the Cauchy stress response function and illustrated by equation (2.30) (like it was done in [Gower 2017]), needs to be adapted to take account of the Lagrange multiplier compatibility. Hence, following gure (2.2), it becomes: The ISS and ISRI restrictions are based each one on a dierent perspective: the rst one comes from the reversibility of the response function and its symmetry, whereas the prior restriction is based on energetic constraint decomposition. Although the two restrictions seem to be justied with dierent arguments, they are indeed equivalent. The proof of such a property is trivial if we consider the decomposition as it is illustrated in the gure (2.2), and the similarity of the two stress Cauchy response functions ξ and σ i.e (ξ(., ., .) ≡ σ(., ., .)).

σ( F F , τ , p) = σ( F , σ( F , τ , p), p), ∀τ , ∀ F and ∀ F , ( 2 

Link between the initial stress eld and the anisotropy

The presence of the initial stress eld can be both a source of anisotropy and heterogeneity.

To treat such a point, in the litterature, to our knowledge, Noll and Colemann were the rst to investigate the possible residual stress form in an elastic body with a particular material symmetry [Coleman 1964]. Such investigation was based on an interesting property: the initial stress tensor commutes with the elements of the symmetry group of the considered material i.e

τ Q = Qτ , ∀Q ∈ G, (2.40) 
where G denotes the group of symmetry elements relative to the considered material body.

Based on the work of Coleman and Noll [Coleman 1964], Anne Hoger in [Hoger 1985] exploited the equilibrium equation and the boundary conditions for a residual stress eld, to get more specic properties about the form of the residual stress tensor for some classes of material symmetries. Conversely, in this section, based on the initial stress spectral form, we intend to study its inuence on the generated anisotropy for an isotropic material in the natural conguration which is dened as the conguration where the initial stress eld vanishes. Since the initial stress eld is dened to be the Cauchy stress tensor in the reference conguration, then it has to be symmetric and by using the spectral theorem, we 2.5. Link between the initial stress eld and the anisotropy 51 get:

τ = τ 1 L 1 ⊗ L 1 + τ 2 L 2 ⊗ L 2 + τ 3 L 3 ⊗ L 3 , (2.41) 
with

L 1 ⊗ L 1 + L 2 ⊗ L 2 + L 3 ⊗ L 3 = 1, L i . L j = δ ij , i, j = 1, 2, 3 (2.42)
where (τ i , i = 1..3) and ( L i , i = 1..3) are respectively the eigenvalues and the relative eigenvectors of the initial stress eld τ and δ denotes the Kronecker symbol. Based on the theory of invariants as it was illustrated above, added to the isotropic invariants (I 1 , I 2 , I 3 ) and the invariants of the initial stress eld (I τ 1 , I τ 2 , I τ 3 ), the strain energy depends also on the following set of invariants which can be expressed dierently as:

I 4 = (τ 1 -τ 3 ) Ĩ4 + (τ 2 -τ 3 ) Ĩ6 + τ 3 Ĩ1 , (2.43) 
I 5 = (τ 1 -τ 3 ) Ĩ5 + (τ 2 -τ 3 ) Ĩ7 + τ 3 ( Ĩ2 1 -2 Ĩ2 ), (2.44) 
I 6 = (τ 2 1 -τ 2 3 ) Ĩ4 + (τ 2 2 -τ 2 3 ) Ĩ6 + τ 2 3 Ĩ1 , (2.45) 
I 7 = (τ 2 1 -τ 2 3 ) Ĩ5 + (τ 2 2 -τ 2 3 ) Ĩ7 + τ 2 3 ( Ĩ2 1 -2 Ĩ2 ) (2.46) with Ĩ1 = I 1 , Ĩ2 = I 2 , Ĩ3 = I 3 , (2.47) Ĩ4 = L 1 .C. L 1 , Ĩ5 = L 1 .C 2 . L 1 , (2.48) Ĩ6 = L 2 .C. L 2 , Ĩ7 = L 2 .C 2 . L 2 .
(2.49)

Thus the strain energy which depends previously on the 10 dierent invariants as expressed in the section related to the modeling of hyperelastic initially-stressed materials, can be formulated as function of a new set of invariants equivalent to the previous ones, so we can write:

W (I 1 , I 2 , ..., I 7 , I τ 1 , I τ 2 , I τ 3 ) = W ( Ĩ1 , ..., Ĩ7 , τ 1 , τ 2 , τ 3 ). (2.50)
It is clear that the new set of invariants are analogous to those of the orthotropic material where the bers directions are described by 2 eigenvectors of the initial stress eld and the invariant relative to the shear between the two families of bers is neglected. Thus, based 52 Chapter 2. Modeling of initially-stressed hyperelastic materials on the new set of invariants and theirs relations with the previous ones, we can deduce the following dierent material symmetries for a initially-stressed hyperelastic material where the material body is considered to be isotropic in the natural conguration:

• If τ is spherical tensor (i.e τ = τ 1), then the initially-stressed material has an isotropic behaviour and in the reference conguration the material body is subject to the pressure eld τ .

• if τ has only two dierent eigenvalues (i.e τ = τ 1 L 1 ⊗ L 1 +τ 2 ( L 2 ⊗ L 2 + L 3 ⊗ L 3 )), then
the initially-stressed material has an analogous behaviour to an isotropic transverse material where the bers direction is parallel to the eigenvector L 1 and they are subjected to the tension or compression stress τ 1 along the bers orientation in the reference conguration.

• if the initial stress eld τ has three dierent eigenvalues, the initially-stressed material has an analogous behaviour to an orthotropic material where the two families of bers are described by two among the three eigenvectors and the shear invariant (I 9 ) inuence is neglected. Besides that, in the reference conguration every ber is subjected to the tension stress equal to the corresponding eigenvalue of the initial stress eld.

The new formulation of the initially-stressed hyperelastic materials gives more physical sense to the dierent invariants and presents a clear analogy between the behaviour of both anisotropic brous materials and the initially-stressed hyperelastic ones. Thus using the new strain energy W , the Cauchy stress tensor becomes:

Jσ = 2 W1 B + 2 W2 ( Ĩ1 B -B 2 ) -p1 + 2 W4 l 1 ⊗ l 1 + 2 W5 (B l 1 ⊗ l 1 + l 1 ⊗ B l 1 ) + 2 W6 l 2 ⊗ l 2 + 2 W7 (B l 2 ⊗ l 2 + l 2 ⊗ B l 2 ), (2.51) 
with (2.52) and where Wi = ∂ W /∂I i , i = 1..7 and p = -2 W3 Ĩ3 for compressible materials whereas it represents the Lagrange multiplier when the incompressibility condition holds. To ensure the compatibility of the initial stress tensor denition, some conditions on the strain energy 2.6. Anne Hoger formulation 53 must be satised:

l i = F L i , i = 1..2,
2 W • 1 + 4 W • 2 -p τ = τ 3 , (2.53) 2 W • 4 + 4 W • 5 = τ 1 -τ 3 , (2.54) 2 W • 6 + 4 W • 7 = τ 2 -τ 3 , (2.55) 
where W • i represents the dierent derivatives of the strain energy W evaluated in the reference conguration.

Anne Hoger formulation

In the scope of small deformation the linearization of the dependence of both Cauchy and First Piola-Kirchho stress tensors relative to the displacement gradient tensor leads to:

σ = σ(F ) = σ(1 + H) = τ + L[H] + o(H), L[H] = ∂ σ ∂H (1)[H], (2.56) 
S = Ŝ(F ) = Ŝ(1 + H) = τ + C[H] + o(H), C[H] = ∂ Ŝ ∂H (1)[H], (2.57) 
where L and C are called the elasticity tensors relative respectively to the stress measures σ and S, whereas H denotes the displacement gradient tensor. With the linearization of (2.3) and using equations (2.56-2.57), we can deduce:

C[H] = -τ H T + tr(H)τ + L[H] + o(H) (2.58)
Both of the two elastic tensors depend on the residual stress and they are not equal contrary to the case of classic theory of linear elasticity in absence of residual stress. Based on some results of Gurtin in [Gurtin 1982], Hoger in [Hoger 1985] deduced the following mathematical properties of the elastic tensor relative to the rst Piola-Kirchho stress tensor:

C[W ] = W τ , ∀ω ∈ Skw(Lin), (2.59) skw C[ ] = 1 2 [ τ -τ ], ∀ ∈ Sym(Lin), (2.60) C[QHQ T ] = QC[H]Q T , ∀H ∈ Lin, ∀Q ∈ G, (2.61) 54
Chapter 2. Modeling of initially-stressed hyperelastic materials where Lin denotes the second order tensor space, Skw (Lin) and Sym (Lin) are respectively the space of skew-symmetric and symmetric second order tensors spaces. If the material is hyperelastic, then we get the fourth property:

C[H 2 ] : H 1 = C[H 1 ] : H T 2 , ∀H 1 , H 2 ∈ Lin, (2.62)
where the operator ':' stands for the double contraction of second order tensors which satises:

H 2 : H 1 = tr(H T 2 H 1 ), ∀H 1 , H 2 ∈ Lin. (2.63)
Using the previous properties of the elastic tensor mentioned above, then the linearized form of the rst Piola Kirchho stress tensor becomes:

S = τ + Hτ - 1 2 (τ + τ ) + L[ ] + o(H), (2.64) 
where L[.] is called by Hoger the "incremental elastic operator" and it is dened as:

L[H] = sym C[H], ∀H ∈ Lin. (2.65)
It is important to notice that there is no general explicit form for the operator L[.] in the scope of small deformations. Hoger proposed in [Hoger 1986] a simple form for the incremental elastic operator like the one for isotropic material in absence of residual stresses, so we can write:

L[ ] = 2µ + λtr( )1, (2.66) 
where µ and λ are the Lamé coecients. In the objective to derive a more general form for the Hartig law, Man in [Man 1998] has proposed the following stress-strain relation:

S = τ + Hτ + β 1 tr( )tr(τ )1 + β 2 tr(τ ) + β 3 (tr( )τ + tr( τ )1) + β 4 (τ + τ ) + 2µ + λtr( )1.
(2.67)
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Respecting the formulation introduced in equation ( 2.64), Robertson has proposed a more simple model in [Robertson 1997] where the stress-strain relation can be expressed as:

S = τ + Hτ + 2µ + λtr( )1.
(2.68)

As illustrated above, multiple tentatives took place for the sake of initially-stressed materials modeling in the scope of small deformations. Despite the generality of Anne Hoger formulation, we still need to look for a more general explicit form for the incremental elastic operator which will be the subject of the next section.

General model for linear elastic initially-stressed material

Here, in this section, our objective is to give a more explicit general model for linear elastic initially-stressed material. Returning to the formulation established by Hoger in equation ( 2.64) let's dene:

G[E] = - 1 2 (τ + τ ) + L[ ].
(2.69)

Then exploiting the concept of polynomial isotropic tensor function dened by Spencer [Boehler 1987b], a possible representation of the operator G[.] in the rst order on could be as a function of:

1, τ , , τ + τ , τ τ , τ 2 + τ 2 , τ 2 τ + τ τ 2 , τ 2 τ 2 , (2.70)
and of the invariants:

I τ 1 , I τ 2 , I τ 3 , tr( ), tr( τ ), tr( τ 2 ), (2.71) 
where

I τ 1 = tr(τ ), I τ 2 = 1 2 ((I τ 1 ) 2 -tr(τ 2 )), I τ 3 = det(τ ). (2.72)
Such representation implies implicitly the isotropic behaviour of the material in the natural conguration. In this section, we would like to exploit the work of Gower et al in [Gower 2017] being more consistent to derive a more general explicit form for the elastic tensor taking account of the initial stress inuence.
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If we consider a second order tensor A, then using the theorem of Cayley Hamilton, A must satisfy:

A 3 -I A 1 A 2 + I A 2 A -I A 3 1 = 0, (2.73) 
with

I A 1 = tr(A), I A 2 = 1 2 ((I A 1 ) 2 -tr(A 2 )), I A 3 = det(A). (2.74)
Expressing the tensor A = γτ + , then using the identities of Cayley Hamilton in equation ( 2.73), for the order γ 2 the same equation as it is mentioned in [Gower 2017] is obtained:

τ τ = -[τ 2 + τ 2 ] + I τ 1 [τ + τ ] -I τ 2 -[I τ 1 tr( -tr( τ )]τ -tr( )τ 2 + [tr( τ 2 ) -I τ 1 tr( τ ) + I τ 2 tr( )]1 + o( ). (2.75) 
Exploiting the prior equation ( 2.75) and the theorem of Cayley Hamilton for the initial stress tensor τ , we can derive:

τ 2 τ + τ τ 2 = I τ 1 τ τ -I τ 3 + [tr(Eτ ) -I τ 1 tr(E)]τ 2 + [tr(Eτ 2 ) -I τ 1 tr(Eτ ) + I τ 2 tr(E)]τ , (2.76) τ 2 τ 2 = I τ 2 τ τ -I τ 3 [Eτ + τ E] + [tr(Eτ ) -I τ 1 tr(E)][I τ 1 τ 2 -I τ 2 τ + I τ 3 1] + [tr(Eτ 2 ) -I τ 1 tr(Eτ ) + I τ 2 tr(E)]τ 2 . (2.77)
Contrary to what is said in [Gower 2017], using equation ( 2.75), we can not express tr(Eτ 2 ) as a function of the rest of invariant in equation (2.71). Consequently, the second order linear operator G[.] can be explicitly expressed as:

G[E] = [α 1 tr(E) + α 2 tr(Eτ ) + α 3 tr(Eτ 2 )]1 + [α 4 tr(E) + α 5 tr(Eτ ) + α 6 tr(Eτ 2 )]τ + [α 7 tr(E) + α 8 tr(Eτ ) + α 9 tr(Eτ 2 )]τ 2 + α 10 ( τ + τ ) + α 11 ( τ 2 + τ 2 ) + α 12 + o(E), (2.78) 
where {α i , i ∈ [1.

.12]} are all functions of the initial stress invariants (I τ 1 , I τ 2 , I τ 3 ). It is clear that the new tensorial function G[.] has to satisfy the same property of C[.] in 2.7. General model for linear elastic initially-stressed material 57 equation ( 2.62) for hyperelastic material, and hence it must verify:

α 2 = α 4 , α 3 = α 7 , α 6 = α 8 .
(2.79)

As a conclusion for this section the rst Piola Kirchho stress tensor can be expressed in more general explicit form:

S = τ + Hτ + [α 1 tr(E) + α 2 tr(Eτ ) + α 3 tr(Eτ 2 )]1 + [α 2 tr(E) + α 5 tr(Eτ ) + α 6 tr(Eτ 2 )]τ + α 12 + [α 3 tr(E) + α 6 tr(Eτ ) + α 9 tr(Eτ 2 )]τ 2 + α 10 ( τ + τ ) + α 11 ( τ 2 + τ 2 ) + o(E). (2.80)
Now, we can recover the model established by Man (see equation ( 22) in [Man 1998]) when the only non vanishing parameters α i are set to:

α 1 = β 1 I τ 1 + λ, α 2 = β 3 , α 10 = β 4 , α 12 = β 2 I τ 1 + 2µ. (2.81)
Strong ellipticity is one of the well known mathematical constraints used to make restrictions on the dierent models in the scope of hyperelasticity. In fact, such a condition is a sucient one to guarantee that the celerity for plane waves must remain real, otherwise there will be a dissipation of energy which must not exist in such an elastic medium. The strong ellipticity can be presented through the following mathematical condition:

a ⊗ b : ∂S ∂F : a ⊗ b > 0, ∀ a = 0 and b = 0. (2.82)
Without loss of generality, we can suppose that a and b are unit vectors. In the scope of small deformation Sτ is a linear tensor function of the displacement gradient tensor H. Therefore, the strong ellipticity condition becomes: 

a ⊗ b : (S -τ ) : a ⊗ b > 0, ∀ a = 0 and b = 0. ( 2 
min X∈B 0 1 2 α 12 > max X∈B 0 {|α 1 | + (|α 2 | + |α 4 | + 2|α 10 |)||τ || + |α 5 |||τ || 2 + (|α 3 | + |α 7 | + 2|α 11 |)||τ 2 || + |α 9 |||τ 2 || 2 + (|α 6 | + |α 8 |)||τ ||||τ 2 ||}. (2.84)
For the weak formulation of the equilibrium equation in a initially-stressed material, an analogous inequality has been obtained for the case of Man's model presented in equation (2.63) in the objective to ensure the coercivity of the derived bilinear form [Robertson 1998].

Plane deformations

Plane deformation and/or plane stress are still one of the most used hypotheses for the analysis of many boundary values problems using analytic solutions. In such a case, the equilibrium equation will be reduced to a single partial dierential equation on a scalar function, and the dierent stress components and strain components can be expressed in function of this potential. In other words, the potential or the scalar function we are talking about is the generalization of the Airy stress function (used for isotropic materials) to the class of initially-stressed material in the case of innitesimal deformations. Since this section will be devoted to the case of plane deformations, then the displacement eld will be in the following form:

u = u(X 1 , X 2 ), v = v(X 1 , X 2 ), w = 0. (2.85)
u, v and w are the displacement eld components in the cartesian coordinate system.

Sucient conditions to sustain plane deformations

It is clear that independently of the material parameters α i presented above, the vanishing of the antiplane shear components of the initial stress eld (τ 13 and τ 23 ) is a sucient condition to obtain plane deformations. Thus, using the displacement eld form in equation ( 2.85) and the constitutive relation in equation (2.80), the explicit form of the dierent 2.8. Plane deformations 59 components of the rst Piola-Kirchho stress tensor can be presented as:

S 11 = τ 11 + τ 11 u ,1 + τ 12 u ,2 + G 11 [E],
(2.86)

S 12 = τ 12 + τ 12 u ,1 + τ 22 u ,2 + G 12 [E],
(2.87)

S 21 = τ 12 + τ 11 v ,1 + τ 12 v ,2 + G 12 [E],
(2.88)

S 22 = τ 22 + τ 12 v ,1 + τ 22 v ,2 + G 22 [E],
(2.89)

S 13 = S 31 = S 23 = S 32 , (2.90 
)

S 33 = τ 33 . (2.91)
where

G ij [.] denotes the component ij of the tensorial operator G i.e G ij [E] = [G ij [E]] ij .
Now, by the vanishing of the components τ 13 and τ 23 , the equilibrium equation is transformed into two partial dierential equations:

(τ 11 u ,1 + τ 12 u ,2 + G 11 [E]) ,1 + (τ 12 u ,1 + τ 22 u ,2 + G 12 [E]) ,2 = 0, (2.92) 
(τ 11 v ,1 + τ 12 v ,2 + G 12 [E]) ,1 + (τ 12 v ,1 + τ 22 v ,2 + G 22 [E]) ,2 = 0. (2.93)
Without any hypothesis, it is easy to show that the vanishing of the antiplane shear components and the depending of the initial stress eld on only the plane-coordinates of the deformation eld i.e

τ = τ (X 1 , X 2 ) (2.94)
are sucient conditions to permit sustaining a plane deformation.

Potential formulation for constant initial stress eld

The objective of this section is to generalize the concept of Airy stress function. In fact, in the case of singular problems (crack ..) the displacement gradient becomes singular and the linearization of the relation between the Cauchy and the rst Piola Kirchho stress tensors has no meaning. Thus the constitutive relation can only be expressed in function of the First PIola Kirchho stress tensor. Since the latter stress measure is non symmetric in general, the denition of the classical stress Airy function has to be modied for the formulation of the plane deformation problem within an initially-stressed linear elastic material.
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In this section, we will suppose that the initial stress eld τ is constant. Even with this simplication, this case is still a curious and interesting situation, since the presence of a constant initial stress creates certain classes of symmetries and consequently an anisotropic behaviour. In the following, we will consider the cartesian coordinates (Y 1 , Y 2 , Y 3 ) respectively to the orthonormal basis ( L 1 , L 2 , L 3 ). Then the planar displacement eld will be considered in the following form:

ũ = ũ(Y 1 , Y 2 ), ṽ = ũ(Y 1 , Y 2 ), w = w = 0. (2.95)
Thus the dierent components of the stress tensor S can be simplied to:

S11 = τ 1 + τ 1 ũ,1 + G 11 [ Ẽ], (2.96) S12 = τ 2 ũ,2 + G 12 [ Ẽ],
(2.97)

S21 = τ 1 ṽ,1 + G 12 [ Ẽ], (2.98) 
S22 = τ 2 + τ 2 ṽ,2 + G 22 [ Ẽ], (2.99) 
S13 = S23 = S31 = S32 = 0, (2.100) 
S33 = τ 3 , (2.101) 
where f ,1 and f ,2 denotes the derivatives of a function f relative to the new cartesian system (Y 1 , Y 2 , Y 3 ). Using the diagonal spectral form of the initial stress eld then we can derive:

tr( Ẽ) = ũ,1 + ṽ,2 , tr( Ẽτ ) = τ 1 ũ,1 + τ 2 ṽ,2 , tr( Ẽτ 2 ) = τ 2 1 ũ,1 + τ 2 2 ṽ,2 , (2.102 
)

Ẽτ + τ Ẽ =    2τ 1 ũ,1 1 2 (ũ ,2 + ṽ,1 )(τ 1 + τ 2 ) 0 1 2 (ũ ,2 + ṽ,1 )(τ 1 + τ 2 ) 2τ 2 ṽ,2 0 0 0 0    , (2.103) Ẽτ 2 + τ 2 Ẽ =    2τ 2 1 ũ,1 1 2 (ũ ,2 + ṽ,1 )(τ 2 1 + τ 2 2 ) 0 1 2 (ũ ,2 + ṽ,1 )(τ 2 1 + τ 2 2 ) 2τ 2 2 ṽ,2 0 0 0 0    (2.104)
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Now, the equilibrium equation ( 2.5) for the rst Piola-Kirchho stress tensor in absence of volumetric forces leads to:

τ 1 ũ,11 + (G 11 [ Ẽ]) ,1 + τ 2 ũ,22 + (G 12 [ Ẽ]) ,2 = 0, (2.105) τ 1 ṽ,11 + (G 12 [ Ẽ]) ,1 + τ 2 ṽ,22 + (G 22 [ Ẽ]) ,2 = 0. (2.106)
Let us dene the following stress quantities:

Ŝ11 = τ 1 + τ 1 (ũ ,1 -ṽ,2 ) + G 11 [ Ẽ],
(2.107)

Ŝ12 = τ 2 ũ,2 + τ 1 ṽ,1 + G 12 [ Ẽ],
(2.108)

Ŝ22 = τ 2 + τ 2 (ṽ ,2 -ũ,1 ) + G 22 [ Ẽ]. (2.109)
So we can express the planar components of the initial stress eld in the new coordinates system as:

S11 = Ŝ11 + τ 1 ṽ,2 , (2.110) 
S12 = Ŝ12 -τ 1 ṽ,1 , (2.111) 
S21 = Ŝ12 -τ 2 ũ,2 , (2.112) S22 = Ŝ22 + τ 2 ũ,1 . (2.113)
Exploiting the equilibrium equation (2.5) and the new dened quantities in equations (2.107-2.109), then it leads to:

Ŝ11,1 + Ŝ12,2 = 0, (2.114) Ŝ12,1 + Ŝ22,2 = 0, (2.115) 
which implies the existence of a potential function ψ such that: 

Ŝ11 = ψ ,22 , Ŝ22 = ψ ,11 , Ŝ12 = -ψ ,12 . ( 2 
Ŝ11 = β 11 u ,1 + β 12 v ,2 , (2.117) Ŝ22 = β 21 u ,1 + β 22 v ,2 , (2.118) Ŝ12 = β 31 u ,2 + β 32 v ,1 , (2.119) 
with β ij are functions of the dened parameters α k involved in the stress-strain relation in the previous section. Therefore, we can deduce:

u ,1 = 1 β 22 β 11 -β 21 β 12 [β 22 (ψ ,22 -τ 1 ) -β 12 (ψ ,11 -τ 2 )],
(2.120)

v ,2 = 1 β 22 β 11 -β 21 β 12 [β 11 (ψ ,11 -τ 2 ) -β 21 (ψ ,22 -τ 1 )]. (2.121)
Then by making the derivative of equation ( 2.119) relatively to Y 1 and Y 2 , and by using equations (2.116,2.120,2.121), a partial dierential equation on the unknown potential function ψ is deduced the following way:

γ 1 ψ ,2222 + γ 2 ψ ,2211 + γ 3 ψ ,1111 = 0, (2.122) 
where we can express the constants γ 1 , γ 2 and γ 3 as:

γ 1 = 1 β 22 β 11 -β 12 β 21 β 31 β 22 , (2.123 
)

γ 2 = -1 β 22 β 11 -β 12 β 21 (β 12 β 31 + β 32 β 21 ), (2.124) 
γ 3 = 1 β 22 β 11 -β 12 β 21 β 32 β 11 . (2.125)
In absence of residual stress, the stress-strain relation in equation ( 2.76) is transformed into the classical constitutive equation for isotropic materials, and hence the potential ψ satises the classical biharmonic partial dierential equation:

∆∆ψ = 0. (2.126)
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Concluding remarks

In the beginning of this chapter, some theoretical results about the initially-stressed materials are discussed. Moreover, to widen and enrich the class of models describing the behaviour of initially-stressed materials, we have proposed a more general linear elastic model compared to the existing ones in the literature. Also, we have analyzed explicitly the link between initial stress eld presence and the generated anisotropy. Using a reformulation of the dierent invariants involved in the formulation based on the theory of invariant, we have shown the analogy between such class of initially-stressed hyperelastic materials behaviour and the one of hyperelastic anisotropic brous materials. The last part of this chapter is dedicated to the establishment of a simple formulation for the case of plane deformations in initially-stressed solids. Generalizing the concept of Airy stress function, we have succeeded to transform equilibrium equations into one single dierential partial equation on a scalar potential.

Chapter 3

Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders. 

Introduction

Most materials behaviour exhibit moderate to high anisotropy in macroscopic mechanical properties due to the dependence of their microstructure to one or more preferred directions. This feature is present in many biomaterials, polycrystals, ber-reinforced materials and composites which are usually sorted on the basis of their anisotropic behaviour, 66 Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

i.e., the symmetry elements of the underlying microstructure [Finger 1983, Ting 1996b, Ting 1996a]. As elasticity is concerned in this work, symmetry considerations reduce the number of mechanical properties to a range from 3 (cubic system) to 21 (triclinic system) [Gurtin 1972] and classify the elastic energy into 8 categories [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]]. Material anisotropy emerged as an important aspect of material sciences, and it becomes necessary to use the knowledge of this behaviour to design better products. Otherwise, recent design requirements and constraints of mass reduction cannot be easily fullled. To this end, numerical approaches are usually used. However, analytic methods provide exact solutions for some idealized problems which enable us to have an overall picture of the anisotropy inuence on local and global mechanical elds [Vannucci 2018].

Analysis of the boundary value problems associated to anisotropic elasticity has been often tedious due to the complexity of the constitutive behaviour models. In linear anisotropic elasticity, two stress and displacement based formalisms, due to Lekhnitskii [START_REF] Sg Lekhnitskii | Theory of Elasticity of an Anisotropic Elastic Body. Gostekhizdat[END_REF][START_REF] Sg Lekhnitskii | Anisotropic plates Gordon and Breach Science[END_REF] and Stroh [Stroh 1958, Stroh 1962], are the most used techniques to nd numerical and, if possible, analytical solutions when the mechanical elds depend on only two spatial coordinates. These two formalisms, which have been shown to be equivalent [Barnett 1997], have been applied to study anisotropic solids, for example, in [Horgan 1996, Ting 1996a, Tings 1999, Ting 1996b[START_REF] Ting | Recent developments in anisotropic elasticity[END_REF]]. In anisotropic elasticity coupling general loadings with in-plane and anti-plane deformations, is quite complex.

Let us consider an isotropic linearly elastic cylinder subject to a prescribed axial traction eld on its outer curved boundary whose only nonzero component is axial and which does not vary in the axial direction. In absence of body force, the innitesimal deformation corresponding to this surface traction eld is an anti-plane shear deformation, where the word plane denotes here the cylinder's cross section plane.

On the other hand, it is well known that not all arbitrary anisotropic cylinders can sustain an anti-plane shear deformation when they are subject to axial tractions. Necessary and sucient conditions on the elastic moduli which do allow an anti-plane shear deformation in anisotropic materials have been obtained by [START_REF] Horgan | Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids[END_REF]] who proved that, when the cross-section is circular, the most general elastic symmetry consistent with such a deformation is that with only one plane of symmetry (monoclinic material with 13 elastic moduli).

Introduction 67

The result by Horgan and Miller suggests that an anisotropic hollow elastic cylinder cannot undergo an anti-plane shear deformation when it is subject to axial tractions on its outer curved boundary.

Anti-plane shear deformations of isotropic elastic materials have been the subject of several studies (see [Horgan 1995b] and references therein for a review on the subject). Some recent results on this problem in isotropic nonlinear elasticity are contained in [Pucci 2013b, Pucci 2015a]. In the framework of the linear theory of elasticity, anti-plane shear deformation is much less studied. In the isotropic case, the linear elastic problem is reduced to a single linear partial dierential equation. In the framework of anisotropic elastic materials, some explicit solutions based on the anti-plane shear deformation are given and/or summarised in the book by Ting [Ting 1996b]. Among the works devoted to the study of deformations coupling in the framework of linear anisotropic materials we can cite [Blouin 1989, Crossley 2003] where extension-torsion and bending-exure respectively are considered. These two elds of deformation are dierent from the ones that will be studied in the following of this chapter.

Here, we consider an innite cylindrical hollow tube with inner radius a and outer radius b in the reference conguration Ω.

In cylindrical coordinates r ∈ [a, b], θ ∈ [0, 2π], z ∈ [-∞, ∞].
This cylinder is composed by a ber reinforced elastic material (i.e. transversely isotropic) and is subject to the following tension boundary conditions:

( σ n) | r=b = T e z , (3.1) 
and

u(a) = 0. (3.2)
In this case, the equations of linear elasticity, under the usual standard requirements, admit a unique solution. For isotropic elasticity, this solution can be easily determined by considering just an axial shear deformation and solving an ordinary dierential equation.

In the anisotropic case, this is possible only for special arrangements of the bers, while in the general case, a more complex deformation is produced by the given tension eld on the boundary.
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Clearly, the symmetry of geometry and boundary conditions simplies the problem and makes it solvable by using the semi-inverse method. With this approach, we show that the general solution consists in a superposition to the anti-plane axial shear of an in-plane deformation composed by a radial deformation and an azimuthal shear.

Using this solution, it is possible to show how to control the various deformation modes via their coupling 1 . This fact might be used to create new kinds of actuators that we call elastic machines able to exploit anisotropy to convert forces into moments or vice versa.

The plan of the chapter is as follows. In the next Section, we introduce the basic equations. Section 3 is dedicated to the study of the pure axial shear and the ber arrangements compatible with such deformation. In Section 4, we prove that in the most general setting, the equilibrium conguration is a superposition of anti-plane and in-plane deformations.

The superposition of an in-plane deformation is a necessary and sucient condition for an anti-plane deformation to be sustainable by a transversely isotropic elastic tube with any arrangement of bers. The coupling between the various deformation modes is studied in details via an asymptotic procedure for the compressible materials. In Section 5, some optimisation problems are presented. The sixth section treats the analogy between the initially-stressed and the isotropic transverse elastic materials through the solutions of the studied boundary value problem. The last Section is devoted to some concluding remarks.
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Basic Equations

The constitutive equation for the Cauchy stress tensor σ for a linear elastic transversely isotropic material with a preferred direction M (the ber direction) has the form [Spencer 1984b]:

σ = (λtr + α f ) I + 2µ T + (αtr + β f ) M ⊗ M (3.3) + 2(µ L -µ T ) M ⊗ M + M ⊗ M ,
where I is the identity tensor, is the innitesimal strain tensor, f = tr( M ⊗ M ) is the strain in the ber direction and λ, α, β, µ T , µ L are the constitutive parameters. Clearly, µ T and µ L are the innitesimal shear modulus in the transverse and longitudinal direction relative to the preferred direction. The connection of all these parameters with the longitudinal and transverse Young's modulus can be found in [Spencer 1984b]. From (3.3), the isotropic case can be recovered considering α = β = 0 and µ L = µ T .

In the case of incompressible materials, only isochoric deformations are admissible (i.e. tr = 0) and the constitutive equation is given by [Spencer 1984b]:

σ = -p I + 2µ T + β f M ⊗ M (3.4) + 2(µ L -µ T ) M ⊗ M + M ⊗ M ,
where p is the arbitrary Lagrange multiplier associated with the constraint of incompressibility. To guarantee the uniqueness of the boundary value problem's solution, the strong ellipticity is a sucient and necessary condition [Marsden 1994], i.e.:

µ L > 0, µ T > 0, 2µ L + λ > 0, 2α + β + λ + 4µ l -2µ T > 0 (3.5)
and

|µ L + α + λ| < µ L + (2µ T + λ)(2α + β + λ + 4µ l -2µ T ).
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For the incompressible materials, the above strong ellipticity conditions are replaced by:

µ L > 0, µ T > 0, β + 4µ L -2µ T > 0.
(3.7)

We now assume that the displacement eld is a function only of the radial coordinate and the domain is a circular cylinder. Therefore, in the absence of body forces, the three scalar equilibrium equations become:

d dr (rσ rr ) = σ θθ , d dr r 2 σ rθ = 0, d dr (rσ rz ) = 0. (3.8)

Axial Shear

The axial shear problem is a trivial problem in the framework of the theory of linear isotropic elasticity and for this reason, it is usually not considered into details in the classical textbooks (see for example [Horgan 1995b]). The objective of this section is to identify the possible bers arrangements that can sustain the axial shear deformation.

Considering an axial anti-plane deformation eld u ap whose components are:

u ap r = 0, u ap θ = 0, u ap z = w(r), (3.9) 
the strain tensor relative to the displacement eld mentioned in (3.9) becomes:

ap = 1 2 w ( e r ⊗ e z + e z ⊗ e r ), (3.10) 
where w = dw/dr. To preclude any confusion in the following, we notice here that M is not assumed to be aligned with z-axis of the considered cylinder. Also, the anti-plane nature of the displacement eld u ap is relevant to the tube geometry i.e: u ap is perpendicular to the cross section of the cylinder and it is not necessarily in the same direction of the vector M .

In the isotropic case, the only non zero component of the Cauchy stress tensor is the axial shear stress σ rz and the balance equations (3.8) are reduced to a single dierential equation: (rσ rz ) = 0. The boundary conditions, (1.1) and (1.2), to append to this equation are: σ rz (b) = T, w(a) = 0.
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Therefore, the solution of our problem in the isotropic case is given by:

w(r) = T b µ ln r a , (3.11) 
where µ is the isotropic innitesimal shear modulus.

Compressible transversely isotropic materials

In the absence of any internal constraints in a transversely isotropic material, the use of equation ( 3.10) leads to:

tr ap = 0, ap f = w M r M z . (3.12)
Thus, the explicit form of the stress eld components corresponding to (3.9) is:

σ ap rr = αM r M z + βM 3 r M z + 2(µ L -µ T )M r M z w , (3.13) σ ap θθ = αM r M z + βM r M 2 θ M z w , (3.14) σ ap zz = αM r M z + βM r M 3 z + 2(µ L -µ T )M r M z w , (3.15) 
σ ap rθ = βM 2 r M θ M z + (µ L -µ T )M θ M z w , (3.16 
)

σ ap rz = µ T + βM 2 r M 2 z + (µ L -µ T )(M 2 r + M 2 z ) w , ( 3 
.17)

σ ap θz = βM r M θ M 2 z + (µ L -µ T )M r M θ w . (3.18)
In this case, the three balance equilibrium equations (3.8) compose an overdetermined system where the only unknown is the anti-plane displacement eld w = w(r). The boundary conditions relative to this overdetermined system are:

σ rr (b) = 0, σ rθ (b) = 0, σ rz (b) = T, w(a) = 0. (3.19)
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One important question is to establish when a non-trivial (i.e. w(r) non constant) solution for such a system exists.

Using (3.8-2) and the corresponding boundary condition σ rθ (b) = 0 leads to the vanishing of the azimuthal shear stress component i.e σ rθ (r) = 0.

Assuming that the components of M with respect to the fundamental basis associated with the cylindrical coordinate system are constants, equation (3.19-2) reduces to:

βM 2 r + µ L -µ T M θ M z w = 0. (3.20)
Considering only non-trivial solutions, we get:

i) M θ = 0, ii) M z = 0, iii) βM 2 r + µ L -µ T = 0. (3.21)
Equation (3.8-3) and the corresponding boundary conditions are:

σ rz (b) = T, w(a) = 0, (3.22) 
and therefore the axial displacement eld is:

w(r) = µ T + βM 2 r M 2 z + (µ L -µ T )(M 2 r + M 2 z ) -1 T b ln r a , (3.23) 
in case i) and

w(r) = µ T + (µ L -µ T )M 2 r -1 T b ln r a , (3.24) 
in the remaining cases ii) and iii).

When the axial eld is dened by (3.23) or (3.24), it is remarkable that (rσ rr ) = 0 and therefore (3.8-1) reduces to σ θθ = 0. In so doing, we distinguish three possibilities: 

i) M r = M θ = 0 (gure (3.1.c)) and w(r) = T b µ L ln r a . ( 3 
w(r) = µ T + (µ L -µ T )M 2 r -1 T b ln r a . (3.26) iii) M 2 r = (µ T -µ L )/β and M 2 θ = -α/β. Therefore, M 2 z = 1 + α β + µ L -µ T β
. In this case, once again, the axial displacement component could be written as in in (3.26) (gure (3.1.g)).

Case iii) introduces a link among ber direction of the material and the constitutive parameters. It is necessary to check if this link is compatible with the strong ellipticity condition and the conditions:

(µ T -µ L )/β ≥ 0, -α/β ≥ 0.

Incompressible transversely isotropic materials

Considering the isochoric displacement (3.9), it is interesting to note what happens when the incompressibility constraint is in force. For incompressible materials, the rst equilibrium equation (3.8-1) is used to determine the pressure eld p = p(r) and therefore the previous classication is simplied as follows: iii) 

M 2 r = (µ T -µ L )/β, M 2 θ + M 2 z = 1 + (µ L -µ T )/β,

Coupling the In-Plane and Anti-Plane Deformations

The possibility to have a transverse isotropic material in an anti-plane deformation without restrictions on the ber direction relies on the presence of an in-plane special deformation eld u ip whose components are:

u ip r = f (r), u ip θ = g(r), u ip z = 0.
(3.27) Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

(a Indeed, in this case the corresponding strain tensor eld has the following form:

) M r = 1 (b) M θ = 1 (c) M z = 1 (d) M r = 0, M θ = 0, M z = 0 (e) M r = 0, M θ = 0, M z = 0 (f) M r = 0, M θ = 0, M z = 0 (g) M r = 0, M θ = 0, M z = 0
[ ip ] ij = 1 2    2f rg 0 rg 2 f r 0 0 0 0    . (3.28)
Then, the volumetric dilatation and the stretch in the ber direction, corresponding to the in-plane deformation eld, can both be expressed as:

tr ip = f + f r , (3.29) f = f M 2 r + f r M 2 θ + rg M r M θ .
(3.30) Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

Consequently, the stress distribution relative to the in-plane deformation is given by: .36) .

σ ip rr = (M 4 r β + (4µ L -4µ T + 2α)M 2 r + 2µ T + λ)f (3.31) + [(M 2 θ β + α)M 2 r + M 2 θ α + λ] f r + M r M θ (M 2 r β + α + 2µ L -2µ T )rg , σ ip θθ = [(M 2 r β + α)M 2 θ + M 2 r α + λ]f + [M 4 θ β + (4µ L -4µ T + 2α)M 2 θ + 2µ T + λ] f r (3.32) + M r M θ (M 2 θ β + α + 2µ L -2µ T )rg , σ ip zz = (M 2 r + M 2 z )α + M 2 r M 2 z β + λ f + [(M 2 θ + M 2 z )α + M 2 θ M 2 z β + λ] f r + M r M θ (M 2 z β + α)rg , (3.33) 
σ ip rθ = (M 2 r β + α + 2µ L -2µ T )f + (M 2 θ β + α + 2µ L -2µ T )) f r M r M θ + [(M 2 r β + µ L -µ T )M 2 θ + (µ L -µ T )M 2 r + µ T ]rg , (3.34) σ ip rz = (M 2 r β + α + 2µ L -2µ T )f + (M 2 θ β + α) f r M r M z + M θ M z (M 2 r β + µ L -µ T )rg , (3.35) 
σ ip θz = (M 2 r β + α)f + (M 2 θ β + α + 2µ L -2µ T ) f r M θ M z + (M 2 θ β + µ L -µ T )M r M z rg . ( 3 
Taking advantage of the linearity of the constitutive equation, the composition of the in-plane and anti-plane deformation elds implies: (3.37) where the boundary conditions are:

σ = σ ap + σ ip ,
σ rr (b) = 0, σ rθ (b) = 0, σ rz (b) = T, (3.38) 
and

w(a) = 0, f (a) = 0, g(a) = 0. (3.39)
Bearing in mind that r 2 σ rθ = 0 and σ rθ (b) = 0, it must be σ rθ (r) ≡ 0 i.e.

Γ1 f + Γ2 f r M r M θ + Γ3 rg + Γ4 M z M θ w = 0. (3.40)
On the other hand, from (rσ rz ) = 0 and σ rz (b) = T , the axial shear stress component must be σ rz (r) = T b/r, i.e.

Γ1 f + (M 2 θ β + α) f r M r M z + Γ4 M θ M z rg + Γ5 w = bT r , (3.41) 
with This means that our boundary value problem is well determined and this is for any di-78 Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

           Γ1 = M 2 r β + α + 2(µ L -µ T ), Γ2 = M 2 θ β + α + 2(µ L -µ T ) Γ3 = (M 2 r β + µ L -µ T )M 2 θ + (µ L -µ T )M 2 r + µ T , Γ4 = M 2 r β + µ L -µ T , Γ5 = (M 2 r β + µ L -µ T )M 2 z + (µ L -µ T )M 2 r + µ T . ( 3 
rection of the bers. Moreover, because the system is linear, it is possible to implement its resolution in a numerical code. Instead to pursue this general solution, which is just a simple numerical computation, two special cases are examined: an asymptotic solution in the case of the compressible behaviour and the incompressible case.

An asymptotic solution for the compressible case

When M z = 1 and M r = M θ = 0, the anti-plane shear deformation can be sustained. We now rewrite the ber direction M in spherical coordinates as:

M = sin(ϕ) cos(ψ) e r + sin(ϕ) sin(ψ) e θ + cos(ϕ) e z (3.44)
and assume that the bers have a small deviation from the z-direction i.e.:

     M r = ε cos(ψ) + O(ε 3 ), M θ = ε sin(ψ) + O(ε 3 ), M z = 1 -1 2 ε 2 + O(ε 3 ), (3.45)
where the polar angle ϕ = << 1.

We perform a perturbation analysis of the eld equations with respect to the small parameter ε introducing:

     f (r) = εf 1 (r) + ε 2 f 2 (r) + O(ε 3 ), g(r) = εg 1 (r) + ε 2 g 2 (r) + O(ε 3 ), w(r) = w 0 (r) + εw 1 (r) + ε 2 w 2 (r) + O(ε 3 ). (3.46)
To the leading order, the solution of our problem is clearly given by:

w 0 (r) = T b µ L ln r a . (3.47)
At order O(ε), we have:

σ rθ = ε µ T rg 1 + (µ L -µ T ) sin(ψ)w 0 + O(ε 2 ). (3.48)
From the balance equation (3.8-2) and the corresponding stress boundary condition, we obtain σ rθ = 0. Solving (3.48) imposing g 1 (a) = 0 it is:

g 1 (r) = µ L -µ T µ T sin(ψ) bT aµ L a -r r . (3.49)
From (3.8-1), we obtain:

r 2 f 1 + rf 1 -f 1 = αbT cos(ψ) µ L (λ + 2µ T ) , (3.50) 
whose exact solution is:

f 1 = k 11 r + k 12 r - αbT cos(ψ) µ L (λ + 2µ T ) , (3.51) 
where k 11 and k 12 are integration constants xed by the boundary conditions f 1 (a) = 0 and σ rr (b) = 0 as:

k 11 = {[2µ 2 T + (-2µ L -α + λ)µ T -λµ L ]b + µ T aα}bT cos(ψ) (2µ T + λ)µ L (a 2 µ T + b 2 λ + b 2 µ T ) , (3.52) 
k 12 = {[-2µ 2 T + (2µ L + α -λ)µ T + λµ L ]a + bα(µ T + λ)}ab 2 T cos(ψ) (2µ T + λ)µ L (a 2 µ T + b 2 λ + b 2 µ T ) . (3.53)
On the other hand, the use of equation of (3.8-3), i.e. σ rz (r) = T b/r, implies:

w 1 = 0.
In conclusion at order O( ) the eect of a dispersion of the bers out of the z-direction like in (3.45) produces an in-plane deformation given by (3.49) and (3.51), but it will not change the anti-plane deformation eld. To outline the eect of the bers dispersion on the anti-plane shear deformation mode, it is necessary to consider O(ε 2 ) terms.

In this case, the second order of the asymptotic expansion relative to the axial displacement component w is obtained as it follows: with

w 2 = k 23 k 21 ln a r + k 24 ak 21 a -r r + k 22 k 21 (a -r), ( 3 
k 21 = µ 2 L (2µ T + λ)µ T [(a 2 + b 2 )µ T + b 2 λ], (3.55 
)

k 22 = 2b{2bµ 2 T + [(-2µ L -α + λ)b + aα]µ T -bλµ L } cos(ψ) 2 × (α + µ L -µ T )µ T T, (3.56 
)

k 23 = {[2(β -µ L )µ 2 T + ((β -µ L )λ + 2µ 2 L -α 2 )µ T + λµ 2 L ] cos(ψ) 2 -(2µ T + λ)(µ L -µ T )µ L }bT [(a 2 + b 2 )µ T + b 2 λ],
(3.57)

k 24 = {-4aµ 2 T + [(4µ L + 2α -2λ)a + 2bα]µ T + 2λ(aµ L + αb)} × (µ T -µ L )µ T b 2 aT cos(ψ) 2 , (3.58)
which introduces the direction of the bers inuence on the anti-plane shear component of the displacement. This situation is similar to what happens to the same problem in non-linear isotropic elasticity [Pucci 2013a].

Incompressible case

In the incompressible case a radial displacement is not admissible (i.e f ≡ 0) and the computations are simplied because the displacement eld is directly determined from (3.40) and (3.41). The remaining equilibrium equation in (3.8) must be used to determine the pressure eld and a simple and complete exact solution is derived.

We set:

       Γ 1 = μ + βM 2 r M 2 θ + (1 -μ)(M 2 r + M 2 θ ), Γ 2 = βM 2 r + (1 -μ) M θ M z Γ 3 = μ + βM 2 r M 2 z + (1 -μ)(M 2 r + M 2 z ).
(3.59) So, we can write (3.40) and (3.41) as:

Γ 1 rg + Γ 2 ŵ = 0, Γ 2 rg + Γ 3 ŵ = T r , (3.60)
where the dimensionless variables and parameters are dened as:

μ = µ T /µ L , β = β/µ L , r = r/b, ŵ = w/b, T = T /µ L .
(3.61)
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The solutions of this system, subject to the boundary conditions g(a/b) = 0, w(a/b) = 0, are given by: .62) This means that the axial shear deformation is always coupled with an anti-clockwise azimuthal shear.

ŵ(r) = Γ 1 Γ 1 Γ 3 -Γ 2 2 T ln b a r , g(r) = Γ 2 Γ 1 Γ 3 -Γ 2 2 T 1 r - b a . ( 3 

Optimisation Problems

There are several interesting aspects about the coupling between the in-plane and the antiplane deformations in the anisotropic setting. First of all, by using an axial deformation, it is possible to generate an azimuthal shear (or the converse). This fact allows to create the concept of some simple elastic machines that may be very useful in some frameworks.

The other aspect of this framework is given by the possibility to arrange the bers in such a way that it is possible to optimise some quantities of mechanical interest.

It is well known that in the isotropic case, the moment associated with an anti-plane shear, given by:

M = 2π 0 b a r 2 σ θz drdθ, (3.63) 
is null because σ θz = 0. But, in the anisotropic case the situation is completely dierent.

For example, in case ii) where the distribution of the bers is as in gure (3.1.d), using (3.26), the moment expression is found to be: Therefore, a rectilinear surface traction generates a moment which is a function:

M = (1 -μ)M r M θ μ + (1 -μ)M 2 r T π 1 - a 2 b 2 , (3.64) where μ = µ T µ L , M = M b 3 µ L , T = T µ L . ( 3 
M : S 1 → R.
Since S 1 (dened as the unit circle in the plane (M r , M θ ):

M 2 r + M 2 θ = 1
) is a compact set and M is a continuous function, the Weierstrass extreme value theorem guarantees the existence of optimal arrangements of bers that maximise and minimize the moment. Parametrising M as:

M r = cos( θ), M θ = sin( θ), (3.66) 
the optimal arrangements are attained when:

θ1 = arccos μ μ + 1 , θ2 = π -arccos μ μ + 1 . (3.67) If μ < 1, θ1
is a maximum and θ2 a minimum. The converse situation occurs if μ > 1.

A general treatment of these problems is quite involved. In the incompressible case the solution is known in an explicit form and results in closed form can be obtained.

Indeed, in this case (see subsection 3.2) the torsion stress component σ θz is given explicitly by:

σ θz = βM 2 θ + µ L -µ T M r M z rg + βM 2 z + µ L -µ T M r M θ w (3.68)
and therefore:

M = π(b 2 -a 2 ) b T M r Γ 1 Γ 3 -Γ 2 2 (3.69) × [Γ 1 M θ (βM 2 z + µ L -µ T ) -Γ 2 M z (βM 2 θ + µ L -µ T )].
Introducing the dimensionless variable r = r/b ∈ [a/b, 1], the maximum amount of the azimuthal shear is obtained on the external mantle of the cylinder as:

g(1) = Γ 2 Γ 1 Γ 3 -Γ 2 2 T 1 - b a .
(3.70)
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Reading g(1) as a function:

g(1) : S 2 → R,
where S 2 is the unit sphere (dened by

M 2 r + M 2 θ + M 2 z = 1)
, it is possible to search for arrangements of the bers that optimise the azimuthal displacement, once again, using the classical extreme value theorem of real analysis.

To compute the extrema of the rotation eld g, the following Lagrangian is introduced:

L = Γ 2 Γ 1 Γ 3 -Γ 2 2 -Λ(M 2 r + M 2 θ + M 2 z -1), (3.71) 
and therefore, the following system must be solved:

               M θ ∂L ∂Mr -M r ∂L ∂M θ = 0, M z ∂L ∂M θ -M θ ∂L ∂Mz = 0, M 2 r + M 2 θ + M 2 z -1 = 0.
(3.72)

From (5.10) 2 :

( βM R 2 + 1 -μ)(M 2 z -M 2 θ ) = 0 (3.73)
and since we require Γ 2 = 0, otherwise g ≡ 0, we obtain:

M 2 r = 1 -2M 2 z , M 2 θ = M 2 z . (3.74)
Using this assumption, it is possible to nd a general solution of (5.10) given by:

M r = 0, M θ = ± 1 √ 2 , (3.75) see gure (3.1.f).
Another solution to (5.10) can be obtained only for special values of μ and β, if the 84 Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

algebraic equation:

16 β2 (μ -1)M 8 z + 16 β(μ -1)(μ -β -1)M 6 z (3.76) -4 β(μ -1)(μ -β -3)M 4 z + 4 βM 2 z + μ -β -1 = 0, admits a solution M 2 z ∈]0, 1[.
It is possible to determine the zone of existence or non-existence of solutions of (5.10) in the α, β-plane by a direct numerical method see the left plot of gure (3.2).

(a) Shear's optimisation (b) Moment's optimisation Another optimisation problem can be studied if the moment in (5.7) is considered as a function:

M : S 2 → R.
Now the Lagrangian of interest is:

L = M -Λ((M 2 r + M 2 θ + M 2 z -1)), (3.77) 
3.6. Analogy with initially-stressed materials 85 and the equations to be solved have the same formal structure of (5.10):

               M θ ∂ L ∂Mr -M r ∂ L ∂M θ = 0, M z ∂ L ∂M θ -M θ ∂ L ∂Mz = 0, M 2 r + M 2 θ + M 2 z -1 = 0.
(3.78)

A rst solution of (5.16), valid for any value of the constitutive parameters, is:

M z = 0, M r = ± μ μ + 1 , M θ = ± 1 μ + 1 . (3.79)
Solving (5.16) 2 we obtain the following relation:

M 2 θ = [2μ 2 -( β + 4)μ + 2]M 2 r -2μ 2 + ( β + 3)μ -1 3 β(μ -1)M 2 r -6μ 2 + 3( β + 4)μ -6 , (3.80) 
and introducing it in (5.16) 1,3 , we reduce the problem of the additional solution determination to the search of real roots of a fth order polynomial equation (see Appendix A for details). The existence of this additional solution depends on the values of constitutive parameters (see the right plot of gure (3.2)).

Analogy with initially-stressed materials

As illustrated in chapter 2, the presence of an initial stress leads in general to the material anisotropy. That is why the objective of this section is to point out in a dierent way the analogy between initially-stressed and brous materials behaviours. Let consider that the material cylinder is subjected to a constant initial tensor τ which satises:

divτ = 0, in Ω, τ . n = t, on ∂Ω, (3.81)
where n denotes the outward normal to the boundary ∂Ω, whereas t is the traction force imposed on the boundary ∂Ω to equilibrate the initial stress eld τ .
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to an initial stress eld denoted by τ which is in the following form:

τ = α τ 1 + β τ L ⊗ L (3.82)
where α τ , β τ are constant and the components of the vector L components in the cylindrical coordinates are constant. The Cauchy stress can be divided into two parts as:

σ = τ + δσ, (3.83)
with δσ is a linear tensorial operator depending on the displacement gradient. Then, if we choose the same boundary conditions for the unstressed material in the previous sections with a slight changes as:

(δσ n) | r=b = T e z , u(r = a) = 0. (3.84)
The same structure of the partial dierential equations related to the equilibrium equation are obtained for both compressible and incompressible transformations discussed above. Hence, analogous couplings to the ones studied above can be enlightened in the case of initially-stressed materials. It is important to notice, that in the incompressible case, the radial displacement component vanishes and the equilibrium equation leads to an overdetermined partial dierential equations system which needs to be studied in detail for the possible existence of non-trivial solutions.

Concluding Remarks

Using a simple, but non trivial example, we have illustrated some interesting couplings of the various modes of deformation in a transverse isotropic material. This kind of couplings shows the inherent complexity of anisotropic elasticity and can be exploited to create some elastic actuators.

Arranging the anisotropy of the material, for example, it is possible to turn an axial displacement into an azimuthal deformation and vice versa. A very interesting property to design elastic machines, but also to understand the arrangement of the bers in some biological materials. In the bio-framework, it is possible that these coupling eects have been optimised for the best eciency of the dierent organs functions. Therefore, our 3.7. Concluding Remarks 87 ndings shed a new light on the structure of some ber-reinforced biomaterials.

The dierent couplings studied in this chapter for an anisotropic material can be in an analogous form in the case of initially-stressed materials. Such fact highlights in a dierent way, the analogy between initially-stressed and anisotropic materials behaviours. A generalization of our approach, in presence of nonlinear deformations and residual stresses, is a necessary step to adapt our results for realistic applications in biomechanics.

90

Chapter 4. Identication of linear elastic initially-stressed material parameters tance. This is an inverse problem as mentioned in [Bui 2007]. From an experimental viewpoint, non-invasive techniques like X-ray diraction, semi-invasive techniques like incremental center hole drilling and deep hole drilling, and fully destructive methods like slotting, contour, and inherent strain can all be used to determine the residual stress at surface and/or body points. Due to the cost, time commitment, and dispersion of the measured data, only discrete points of stress in sections are normally measured.

In initial stressed linear elasticity theory, all the constitutive models of the rst half of the twentieth century, presented in [ZP 1971], have the same algebraic structure as the model of [Hoger 1986]. This latter model depends on an unknown tangent elasticity tensor function of the initial stress. Dierent forms and identication methodologies of this elasticity tensor have been proposed [Hoger 1986[START_REF] Man | Towards an acoustoelastic theory for measurement of residual stress[END_REF], Man 1994]. A general form was proposed recently in [Gower 2015, Gower 2017]. The identication of the initial stress (or residual stress) can be done by an analytical (or semi-) method determined from its equilibrium equation and its boundary conditions for specic geometries [Hoger 1986, Sburlati 1992, Faghidian 2014]. The stress function method [Faghidian 2012] and the inverse eigenstrain technique [START_REF] Jun | Evaluation of residual stresses and strains using the eigenstrain reconstruction method[END_REF]] have been developed to date in order to reconstruct residual stress elds. This avoids modelling the mechanisms that cause residual stresses. Both approaches are utilized only when the stress or strain distributions can be stated using a parametric equation, such as when the distribution varies in one direction [Korsunsky 2007], due to the complexity of the hypothesis and debugging of the stress or strain function. In [Ballard 1994], an approximate inverse method to build a residual stress eld is used. These methods, however, do not guarantee that the distributions satisfy the equilibrium and boundary requirements due to a lack of knowledge about additional and signicant constraints.

In addition to its practical importance, determining residual stresses raises a number of difcult mathematical issues. In fact, several forms of the inverse problem of unique residual stress determination were investigated, utilizing several model equations for residual stress and various methods of measurements [Bonnet 2005]. The central questions here are those of stability and uniqueness [Man 1994, Robertson 1997, Robertson 1998, Rachele 2003, Ivanov 2005, Isakov 2007, Isakov 2008] . For the residually stressed linear elastic model proposed by [Hoger 1986], some basic properties for the associated boundary value problem have been established particularly Carleman estimates, which lead to the Cauchy problem's uniqueness and stability [Lin 2003, Isakov 2007].

The objective of this chapter is to study some inverse problems in the scope of initiallystressed linear elastic materials whose constitutive formulation is presented by [Hoger 1986]. This chapter can be divided into two main parts. The rst part includes section 2 and 3 and focuses on the general constitutive relation for initially stressed linear elastic materials with a three-dimensional material body. Whereas the second part gathers the remaining sections and treats a simple behaviour model in the scope of plane deformations with a different reconstruction approach. In fact, The second section is devoted to the reformulation of the general constitutive relation established by [Hoger 1986]. Based on the new form of the constitutive relation established in the second section, the third section illustrates a reconstruction approach for the dierent material parameters and a stability estimate is obtained. Moreover, section 4 presents the theoretical formulation of the direct approach that will be used for the material parameters identication in the case of the considered simplied model. The next section provides a stability estimate for the special case of residual stress reconstruction. The remaining sections detail the numerical aspect of the used approach and show the inuence of multiple parameters on the quality of the dierent elds reconstruction.

Preliminary equations

First, we will denote by M 3 (R) the vector space of 3 × 3 real matrices endowed with the scalar product A : B = tr(A T B). The space M 3 (R) can be decomposed with respect to the dened scalar product as

M 3 (R) = S 3 (R) ⊕ A 3 (R)
, where S 3 (R) and A 3 (R) denote respectively the spaces of symmetric and skew-symmetric matrices. Let consider Ω ⊂ R 3 as a bounded domain with smooth boundary. If we suppose that the material body has a linear elastic behaviour relative to a reference conguration free of any residual stress which is dened geometrically by the domain Ω, then the material behaviour can be formulated through a stress-strain relation usually denoted by Hooke's law and it can be exhibit as:

σ = C : (4.1) with = 1 2 (∇ u + ∇ u T ) = ∇ s u (4.2) 92
Chapter 4. Identication of linear elastic initially-stressed material parameters where σ and denote respectively the Cauchy stress tensor and the strain tensor whereas C is a fourth order tensor and represents the elastic tensor in absence of any initial stress.

C satises the following symmetries:

C ijkl = C jikl , C ijkl = C klij 1 ≤ i, j, k, l ≤ 3, (4.3) 
Hence, the linear elastic behaviour represented through the fourth order tensor C is characterized by a 21 independent scalar material parameters instead of 81.

Based on the Voigt representation, the elasticity tensor C can be represented by a symmetric matrix valued function C in S 6 (R). The components of the C matrix is constructed via the double index mapping:

γ =                      11 → 1, 22 → 2, 33 → 3,
32, 23 → 4, 13, 31 → 5, 12, 21 → 6.

(4.4)
in a way that we can dene the matrix C in function of the elasticity tensor C as:

C mn = C ijkl , with m = γ(ij) and n = γ(kl). (4.5)
Using Voigt representation, the Hooke's law presented above in equation (4.1), can be reformulated as:

σ V = C V (4.6) with σ V = [σ 11 , σ 22 , σ 33 , σ 23 , σ 13 , σ 12 ], V = [ 11 , 22 , 33 , 2 23 , 2 13 , 2 12 ]. (4.7)
In the case of initially-stressed material, the elastic material behaviour is not any more a simple relation between the Cauchy stress tensor and the strain tensor, but a more complex relation, although it is linear, involving the displacement gradient eld ∇ u. Now, we 4.2. Preliminary equations 93 suppose that the reference conguration Ω is subjected to an initial stress eld denoted by τ which is dened as the Cauchy stress tensor in the reference conguration. Consequently, τ is symmetric and it satises the equilibrium equation:

Divτ = 0, in Ω (4.8)
and the boundary conditions:

τ . N = t 0 , on ∂Ω, (4.9)
where Div is the divergence operator dened relatively to the reference conguration Ω, N denotes the outward unit normal to the boundary of Ω whereas t 0 denotes the exterior force vector needed for the equilibrium of the material body in the presence of the initial stress eld τ . When t 0 vanishes, τ is called a residual stress (auto-equilibrated initial stress eld in absence of any exterior loadings). The behaviour of such material can be characterized as a mathematical formulation relating the rst Piola Kirchhof stress tensor S and the displacement gradient tensor ∇ u as:

S = τ + (∇ u)τ + L : (4.10)
with L is a fourth order tensor having the same symmetry properties of the standard elastic tensor C (see equation (4.3)) and it is depending of the initial stress eld τ . Similarly to the elastic tensor C, the initially-stressed elastic tensor L can be represented by a symmetric matrix L in S 6 (R). To have an analogous form of the stress-displacement gradient relation as the one for the Hooke's law using Voigt representation, we will introduce the general vector representation of non symmetric tensors in M 3 (R) as:

     S G = [S 11 , S 12 , S 13 , S 21 , S 22 , S 23 , S 31 , S 32 , S 33 ] T , (∇ u) G = [u 1,1 , u 1,2 , u 1,3 , u 2,1 , u 2,2 , u 2,3 , u 3,1 , u 3,2 , u 3,3 ] T = [(∇u 1 ) T , (∇u 2 ) T , (∇u 3 ) T ] T . (4.11)
In the sake of pure simplication, the general vector representation of a tensor in M 3 (R) will be denoted in the following of this chapter as G-representation. Now, we can express the strain tensor (in Voigt representation) in function of the displacement gradient (in 94 Chapter 4. Identication of linear elastic initially-stressed material parameters G-representation) as:

V = M H (∇ u) G (4.12)
where M H is a constant matrix and it can be explicited as:

M H =           
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

           (4.13)
Furthermore, the equivalence between the general vectorial and Voigt representations for the symmetric Cauchy stress tensor can be illuminated through the following equation:

σ G = M Sσ σ V , (4.14) 
where the constant matrix M Sσ may be presented as:

M Sσ =                  
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

                  = M T H (4.15)
In fact, the rst Piola Kirchho stress tensor can be divided into two parts: a symmetric tensor S (1) expressed in a similar way of the Hooke's law and a second part S (2) depending explicitly on the the residual stress eld τ , so we can write: 1) + S (2) ,

     S = S (
S (1) = L : , S (2) = τ + ∇ uτ , (4.16) 
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Using the G-representation, the dierent tensors S (1) and S (2) can be shown as:

S (1) G = M Sσ S (1) 
V = M Sσ LM T Sσ (∇ u) G , S (2) G = τ G + M τ (∇ u) G , (4.17) 
where the matrix M τ can be displayed in function of the initial stress tensor τ as a blockmatrix in the following form:

M τ =    τ 0 0 0 τ 0 0 0 τ    (4.18)
Consequently, using equations (4.16-4.17) related to the decomposition of the rst Piola Kirchhof stress tensor, we can derive the stress-displacement gradient formulation in the case of an initially-stressed material as:

S G = τ G + C(∇ u) G , (4.19) 
where the matrix C can be written as:

C = M Sσ LM T Sσ + M τ , (4.20) 
It is important to notice that the term τ G is not involved in the equilibrium equation since the initial stress tensor τ satises also the equilibrium equation (4.8). Also, it is clear that C is a symmetric matrix in a subspace of S 9 (R) which will be denoted by V(R) and can be dened as: where Div and div are the divergence operator relative to respectively the reference and the current congurations. Since the scope of small deformations is considered, in the case of smooth deformation elds, as an approximation of rst order, both the current and reference divergence operators can be considered as the same one.

V(R) = {M Sσ LM T Sσ + M τ | L ∈ S 6 (R), τ ∈ S 3 (R)} ⊂ S 9 (R). ( 4 
Hypothesis 1: In the rest of this chapter we will assume that the initially-stressed elasticity tensor L is pointwise stable over Ω as it is dened in [ [Hughes 1983] Chap. 6, Def. 1.9] (for the standard elasticity tensor C) as the existence of a constant β > 0 such that In this section we intend to present a methodology for the reconstruction of both the initially-stressed eld and the initially-stressed elastic tensor L which are both represented by the matrix C. Based on this method, a set of stability results can be derived. First, let dene the operator D G related to the equilibrium equation satised by the First Piola Kirchho and the initial stress as:

: L : > β : , ∀ X ∈ Ω, ∀ ∈ S 3 (R). ( 4 
D G =    ∂ 1 ∂ 2 ∂ 3 0 0 0 0 0 0 0 0 0 ∂ 1 ∂ 2 ∂ 3 0 0 0 0 0 0 0 0 0 ∂ 1 ∂ 2 ∂ 3    (4.25) 4.3.
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where ∂ i denotes the partial derivative relative to the coordinate X i dened in the reference conguration Ω.

In the following, to develop the idea whose the reconstruction of the matrix C is based on, we suppose the existence of N + 9 displacement elds whose the rst 9 elds satises the following hypothesis.

Hypothesis 2.

There exist nine solutions u (1) , ..., u (9) , whose gradient tensors form a basis of M 3 (R) at every X ∈ Ω. This condition can be summarized as:

inf X∈Ω det((∇ u (1) ) G , . . . , (∇ u (9) ) G ) ≥ c 0 > 0, for some constant c 0 . (4.26)
In fact Hypothesis 2 is equivalent to assume that the rst 9 displacement gradient elds construct a basis in M 3 (R), so we can express the rest of the gradient displacement elds in function of this basis elements as:

∇ u (p) ( X) = 9 j=1 µ pj ( X)∇ u (j) ( X), ∀ X ∈ Ω 0 (4.27)
where µ pj is the coordinate of ∇ u (p) relative to the basis element ∇ u (j) . If we dene the operator det G as:

det G (∇ u (1) , . . . , ∇ u (9) ) = det((∇ u (1) ) G , . . . , (∇ u (9) ) G ) (4.28)

then the coordinates functions µ pj can be explicitly dened as: j) is the gradient of the displacement eld u (j) solution of the equilibrium equation i.e D G ( C(∇ u (j) ) G ) = 0 and hence the previous equations is reduced to:

µ pj = det G (∇ u (1) , ..., j ∇ u (p) , ..., ∇ u (9) ) det G (∇ u (1) , ..., ∇ u (9) ) ( 4 
0 = D G ( C(∇ u (p) ) G ) = 9 j=1 D G (µ pj C(∇ u (j) ) G ) = 9 j=1 (D G µ pj ) C(∇ u (j) ) G + µ pj D G ( C(∇ u (j) ) G ) (4.30) ∇ u (
9 j=1 (D G µ pj ) C(∇ u (j) ) G = 0 (4.31)
This last equation can be seen as three scalar orthogonality constraints on the tensor C in the inner product ":" structure of V(R), where the matrices that are orthogonal to C are directly known from the available measurements. For every single displacement eld measurement u (p) , the prior equilibrium equation is equivalent to the following three scalar constraints:

C : M (p),1 = C : M (p),2 = C : M (p),3 = 0 (4.32) with      M (p),1 = 9 j=1 (∂ 1 µ pj , ∂ 2 µ pj , ∂ 3 µ pj , 0, 0, 0, 0, 0, 0) ⊗ ∇ u (j) , M (p),2 = 9 j=1 (0, 0, 0, ∂ 1 µ pj , ∂ 2 µ pj , ∂ 3 µ pj , 0, 0, 0) ⊗ ∇ u (j) , M (p),3 = 9 j=1 (0, 0, 0, 0, 0, 0, ∂ 1 µ pj , ∂ 2 µ pj , ∂ 3 µ pj ) ⊗ ∇ u (j) . (4.33)
Note that since C is orthogonal to A 9 (R), and V(R) is a subspace of M 9 (R) one could replace the matrices M (p),i with the projection of their symmetrized versions on V(R).

If we have a rich enough set of displacement measurements, we can construct a set of linear constraints of the form (4.32) and then construct enough set of matrices as the ones presented in equation ( 4.33) to form a hyperplane in V(R) at every point X in Ω. Then, the matrix C which must be perpendicular to this hyperplane, can be reconstructed up to a multiplicative constant. The reconstruction procedure can be done via a generalization of the cross-product, as used, in [START_REF] Monard | [END_REF]] for the material parameters identication in the context of the conductivity equation or in [Bal 2015] for the sake of the elastic tensor identication.

Dene by {m j } 27 j=1 a basis of V(R), and given set M = {M j } 20 j=1 ⊂ V(R). Now, following [Bal 2015], we can dene dene the generalized version of the cross product operator denoted by

N : V(R) 20 → V(R) as follows [N (M )] i = 1 det(m 1 , . . . , m 27 ) M 1 : m 1 • • • M 26 : m 1 . . . . . . . . . m i M 1 : m 27 • • • M 26 : m 27 , ∀1 ≤ i ≤ 27. (4.34)
Based on its expression in the last equation, N is a 26-linear, alternating map that does not depend on the choice of basis for V(R). N (M ) is a vector that is normal to the hyperplane spanned by M when M is linearly independent; zero otherwise. In particular, if M is a family of matrices known to be orthogonal to a given matrix m , then

N (M ) is either zero (if dim span M < 26) or proportional to m (if dim span M = 26).
In light of this last comment, and assuming that a rich enough set of solutions of the direct problem gives rise to a family of matrices M of the form (4.33), with cardinality greater than 26 and spanning a hyperplane of V(R) at a given point X 0 ∈ Ω, for any given 26-tuple M ⊂ M ,N (M ) is either zero or proportional to C( X 0 ).

Before going deeper in the details of the parameters reconstruction, we will show that we extract both the initially-stressed elastic matrix L and the initial stress tensor τ from the matrix C. To do so, based on equations (4.18,4.20), we can get the matrix C function of matrices L and τ components as: 100 Chapter 4. Identication of linear elastic initially-stressed material parameters 

C =                   L 11 +
                  . (4.35)
Using the components of C expressed only function of L components we can extract directly the following quantities which can be sorted in two sets:

-mixed index components of L: L ij with i = j.

-L 44 , L 55 , L 66 .

Next, using the rst 3 × 3 block of C, we can extract all the components of the initial stress eld τ except τ 11 . Then, knowing C44 we can get the value of τ 11 since L 66 is already determined. Hence, so far all the components of the initial stress eld are determined and we can use the rest of the matrix C components to derive the rest of the matrix L components (which are L 11 , L 22 and L 33 ).

Since the extraction of the matrices L and τ from C is feasible, we will denote by K L and K τ the operators that extract respectively L and τ from the generalized initiallyelastic matrix C.

Based on the Lemma 1 and as it was in the proof of Lemma 2.1 in [Bal 2015], the Hypothesis 1 implies that the components L 11 , L 22 and L 33 must be strictly positive. Thus, to make the reconstruction operator of the matrix C unique, using the Lemma. 

(±) M N (M ) = (det(K L (N (M )))) 1 6 C * , ∀ X ∈ Ω, (4.36) 
for every 27-tuple M ⊂ M , where (±) M is the sign of the top-left entry of K L (N (M )). This equation is either trivial when M is linearly dependent, or reconstructs C( X 0 ) otherwise.

Hypothesis 3 Assuming hypothesis 2 is fullled, there exists N additional solutions u (9+1) , ..., u (9+N ) giving rise to a family M of 3N matrices, whose expressions are explicit in terms of (∇

u (i) , ∂ j ∇ u (i) , 1 ≤ i ≤ 6 + N , 1 ≤ j ≤ 3 (see equation (4. 33 
)) and such that they span a hyperplane of V(R) at every X ∈ Ω. This condition can be summarized as

inf X∈Ω M ⊂M, #M =20 N (M ) : N (M ) ≥ c 1 > 0, for some constant c 1 . (4.37) 
The last hypothesis ensures that at least one subfamily M is linearly independent, so we can sum the last equation over all subfamilies so we can establish the following formula

C * = ( M ⊂M, #M =20 (det(K L (N (M )))) 1 6 ) -1 M ⊂M, #M =26 (±) M N (M ) (4.38)
The reconstruction formula in equation ( 4.38) makes the stability of the problem straightforward to assess, because based on the hypothesis 3, one subfamily linearly independent exists at least, and hence by summution we can reconstruct the generalized initially-stressed elastic tensor up to a multiplicative constant and avoid the trivial null solution.

Stability results

In order to build up our reconstruction method, we have already developed our key hypothesis above. In fact, based on the dierent 3 hypotheses, the unknown generalized initially-stressed matrix is forced to lie on the orthogonal of a vector space constructed by a rich enough set of displacement measurements. And nally, both the couple initial stress and the initially-stressed elastic matrix can be reconstructed up to multiplicative constant.

To follow this approach, 9 + N displacement elds are needed. We should emphasize that N depends on the number of C unknown parameters. In other words, N depends on the anisotropy generated by both the initial stress τ and the initially-stressed elastic matrix , where the number 3 refers to the extra three constraints for every added displacement eld measurement. In the most general case, d param = 21 + 6 = 27 and hence we need to get N + 9 = 18 displacement data elds.

It should be highlighted that Hypotheses 2 and 3 are stable when the boundary conditions generating the displacement elds u (9+1) , ..., u (9+N ) are perturbed smoothly. This is because both of the latter hypotheses are expressed in terms of continuous functionals of their boundary conditions that rely polynomially on the components of displacement elds and their derivatives up to second order. Theorem 1. Suppose that over some open set Ω 0 ⊂ Ω, Hypothesis 2 and 3 hold for two families of displacement elds { u (j) } 9+N j=1 and { u (j) } 9+N j=1 corresponding to the couple elastic tensor-residual stress elds (L * , τ * ) and (L * , τ * ). Then C * and C * each can be uniquely reconstructed over Ω 0 from knowledge of their corresponding solutions, with the following stability estimate:

|| C * -C * || W p,∞ (Ω 0 ) ≤ K N +9 j=1 ||∇ u (j) -∇ u (j) || W p+1,∞ (Ω 0 ) (4.39)
where K is a constant (K > 0) and p is a xed integer depending on the regularity of the displacement elds.

We express the latter stability inequality explicitly in terms of the initially-stressed elastic matrix L and the initial stress eld τ as:

||L * -L * || W p,∞ (Ω 0 ) + ||τ * -τ * || W p,∞ (Ω 0 ) ≤ K N +9 j=1 ||∇ u (j) -∇ u (j) || W p+1,∞ (Ω 0 ) (4.40)
Proof:

Uniquness: Based on equation (4.38) , the matrix C gathering the initially-stressed elastic matrix L and the initial stress tensor τ can be explicitly reconstructed up to multiplicative constant. Using the same refereed reconstruction formula, the uniqueness of the reconstructed matrix C * is ensured by normalizing the matrix L and enforcing the positivity of the diagonal terms of the rst3 × 3-block.
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Stability : The reconstructed matrix C * is a rational function of the displacement gradient components and their partial derivatives. Then if two sets of displacement measurements { u (j) } 9+N j=1 and { u (j) } 9+N j=1 satises the hypotheses ( 2) and ( 3) over some smooth domain Ω, the denominator of the formula (4.38) never vanishes, and its rational expression function of displacement gradient components implies the following local estimate:

|| C * -C * || L ∞ (Ω 0 ) ≤ K N +9 j=1 ||∇ u (j) -∇ u (j) || W 1,∞ (Ω 0 ) (4.41)
for a positive constant K. Now, if the displacement gradient tensor components are in W p+1,∞ (Ω 0 ) for some integer p ≥ 0, then by dierentiating the reconstruction equation (4.41) p times leads to the stability estimates in equation ( 4.38).

Inverse problem for a particular initially-stressed material

In the previous section, the reconstruction of the initial stress eld and the material parameters represented by the generalized initially-stressed elastic matrix is done via a pointwise identication procedure. The motivation behind the analysis of such methods is to have an idea about the quantity of necessary data that can be needed for an elastic initiallystressed material characterization. On the other hand, it permits to obtain a stability result to analyze the regularity of the dierent reconstructed elds.

In practice, the equilibrium equation is always solved using weak formulations in the objective to obtain numerical solution. That is why, in the following of this chapter we will consider a direct method based on the weak formulation related to the equilibrium equation of the direct problem to reconstruct all the elds to be identied. To establish the equilibrium weak formulation, let consider the Sobolev space denoted by H 1 (Ω) and dened as:

H 1 (Ω) = {v ∈ L 2 (Ω, R d ), ∇v ∈ L 2 (Ω, R d×d )}, (4.43) 
Using the denition of H 1 (Ω) and the equilibrium equation ( 4.42) and bearing in mind the Green integral formula lead to:

Ω S : ∇vdΩ = Ω f .vdΩ + Γ=∂Ω (S.N ).vdΓ , ∀v ∈ H 1 (Ω). (4.44)
Here we divide the boundary ∂Ω into two parts based on the type of boundary conditions:

• Γ u : where Dirichlet conditions are imposed,

• Γ t : where Neuman conditions are imposed, with the compatibility constraint Γ u ∪ Γ t = ∂B and measure(Γ u ∩ Γ t ) = 0. Now, the above boundary conditions can be explicitly presented as:

S. N = t, on Γ t , u = u d , on Γ u . (4.45)
By dening the subspace H 1 0 (Γ u , Ω):

H 1 0 (Γ u , Ω) = { v ∈ H 1 (Ω), v = 0 on Γ u }, (4.46) 
the weak formulation presented in equation ( 4.44) can be transformed into: (4.47) and by considering the material behaviour asserted through equation (4.10), both the bilinear and linear operators introduced in the weak formulation (4.47) can be explicitly 4.4. Inverse problem for a particular initially-stressed material 105 presented as:

a( u, v) = l( v), ∀ v ∈ H 1 0 (Γ u , Ω), u = u d on Γ u ,
a( u, v) = Ω [(∇ u)τ + L : ∇ u] : ∇ vdΩ, ∀ (4.48) vecv ∈ H 1 0 (Γ u , Ω), (4.49) l( v) = - Ω τ : ∇ vdΩ + Ω f . vdΩ + Γt t. vdΓ, ∀ v ∈ H 1 0 (Γ u , Ω).
(4.50)

Let us dene the Frobenius norm for a second order tensor A as ||A|| = A 2 ij and the norm associated to the sobolev space

H 1 (Ω) as || v|| H 1 (Ω) = || v|| 2 L 2 (Ω) + ||∇ v|| 2 L 2 (Ω)
. Hence, the continuity of both linear and bilinear operators involved in the weak formulation can be easily ensured since:

|a( u, v)| ≤ (|||L||| ∞ + ||τ || ∞ )|| u|| H 1 (Ω) || v|| H 1 (Ω) , ∀ u, v ∈ H 1 (Ω), |l( v)| ≤ (|| g|| L 2 (Γt) + || f || L 2 (Ω) + ||τ || ∞ )|| v|| H 1 (Ω) , ∀ v ∈ H 1 (Ω), (4.51) 
with

         |||L||| ∞ = Sup Ω |||L|||, |||L||| = Sup A∈M (R d×d ) ||L : A|| ||A|| , ||τ || ∞ = Sup Ω ||τ ||, (4.52) 
whereas the coercivity of the bilinear operator requires extra constraints involving the initial stress eld and the initially-stressed elastic tensor L. For example in the case where the elastic tensor L can be revealed explicitly in function of the residual stress eld τ , to ensure the coercivity of the bilinear operator a(., .), a sucient inequality have been found in [Robertson 1998]. In fact such constraint enforce the residual stress to be suciently small so it cannot perturbate the coercivity of the bilinear operator related to the standard elastic tensor C.

To simplify the analysis of the proposed identication approach that will be presented in details in the following sections, we will consider a relatively simple model which was used by Anne Hoger in [Hoger 1986] in the objective to study the residual stress eect on an isotropic material in the free-conguration (the conguration free of any internal stresses). Such model can be described via the explicit formula for the initially-stressed 106 Chapter 4. Identication of linear elastic initially-stressed material parameters elastic tensor L:

L = 2µI + λ1 ⊗ 1 + L τ , (4.53) 
where I is the identity tensor for the fourth order tensor space, whereas L τ is a fourth order tensor depending explicitly on the residual stress eld and whose components can be written as:

[L τ ] ijkl = τ ik δ jl + τ jl δ ik , (4.54) 
with δ is the Kronecker symbol. Considering the explicit expression of the initially-stressed elastic operator, the First Piola Kirchho-displacement gradient tensor relation is transformed to:

S = τ + ∇ uτ - 1 2 ( τ + τ ) + 2µ + λtr( )1 (4.55) 
The residual stress eld τ involved in the latter formulation is usually subjected to the mathematical constraint of strong ellipticity. Such constraint is not only a sucient condition for the propagation of elastic plane waves, but also it is necessary for the uniqueness of the boundary value problem's strong solution. Such condition implies:

0 < µ 2 -||τ || (4.56)
Whereas, using the mathematical constraint established in [Robertson 1998], to guarantee the coercivity of the bilinear form a(., .) a sucient condition is:

sup X∈Ω ||τ || < inf X∈Ω µ 2 . (4.57)
Thus, using all the previous results above and exploiting the Theorem of Lax-Milgram, the existence and the uniqueness of the displacement solution of the weak problem (4.47) is ensured.

Formulation of the identication approach

Before presenting the reconstruction method, let us dene the Sobolev space H 1 0 (Ω) = H 1 0 (∂Ω, Ω). Considering only the internal part of the displacement data measurements, the weak formulation of the equilibrium equation is still valid in H 1 0 (Ω), since H 1 0 (Ω) ⊂ 4.4. Inverse problem for a particular initially-stressed material 107

H 1 0 (Γ u , Ω).
The equilibrium equation can be seen dierently when we suppose the displacement eld is known and both the initial stress and the initially-stressed elastic tensor L are unknown, and by consequence we introduce the following equivalence:

a( u, v) = a u ( µ λ τ , v) = l( v) ∀ v ∈ H 1 0 (Ω), l( v) = Ω f . vdΩ, ∀ v ∈ H 1 0 (Ω).
(4.58)

In order to remain in the Hilbert space framework relatively to the second equality sign in (4.57-1), we suppose that displacement gradient tensor ∇ u is bounded. In the objective to formulate the identication approach on the set of scalar elds, we can rewrite the residual stress eld as a projection on the canonical basis of symmetric matrices in S 2 (R) in the following form:

τ = τ 11 M (11) + τ 22 M (22) + τ 12 M (12) , (4.59) 
with

M (11) = 1 0 0 0 , M (22) = 0 0 0 1 , M (12) = 0 1 1 0 (4.60)
Hence, the weak formulation of the equilibrium equation (4.57) related to the measures ( u, f ), can be rewritten as the sum of separate terms related to every scalar eld to be identied as:

Ω K I u (µ). vdΩ + Ω K 1⊗1 u (λ). vdΩ + 2 i=1,i≤j Ω K M (ij) u (τ ij ). vdΩ = Ω f . vdΩ, ∀ v ∈ H 1 0 (Ω), (4.61) 
where the dierent stiness-to-force operators involved above read: The general recovery problem with multiple measurements reads as the following system:

K I u (µ) = -Div[µ ] (4.62) K 1⊗1 u (λ) = -Div[λDiv u] (4.63) K M (ij) u (τ ij ) = -Div(τ ij [∇ uM (ij) - 1 2 (M (ij) + M (ij) )]), i, j ∈ {1, 2} ( 
K µ λ τ 11 τ 22 τ 12 T = F , in H -1 (Ω) (4.65)
where the general stiness-to-force and force operators related to the set of displacement and forces measures {( u (i) , f (i) )} n i=1 can be presented as:

K =     K I u (1) K 1⊗1 u (1) K M (11) u (1) K M (22) u (1) K M (12)
u (1) . . . . . . . . . . . . . . .

K I u (n) K 1⊗1 u (n) K M (11) u (n) K M (22) u (n) K M (12) u (n)     , F =    
f (1) . . .

f (n)     (4.66)

Residual stress invertibility and stability

In this section we will focus on the reconstruction of the residual stress eld knowing the Lamé coecients and based on the displacement data elds. In fact, such simplication of the initial inverse problem can be encountered in special cases for the material or structures characterization. For example, we consider a material structure with an isotropic linear elastic behaviour already characterized with known Lamé elds. If the structure is subjected to a process leading to the appearance of a residual stress eld. Then, in the objective to characterize the linear elastic behaviour of the initially-stressed structure, an extra task is to identify the residual stress eld.

Reconstruction of the residual stress eld

Let consider two data sets ( u (1) , f (1) ), ( u (2) , f (2) ). Now, if we consider that the Lamé coecients are known everywhere in Ω, then using the following tensorial identities:

Div(AB) = (∇A) : B + A.(DivB), (4.67) 
∇(αA) = ∇(A) + A ⊗ ∇α, (4.68) A ⊗ c : B = AB. c (4.69)
where A and B are two general 2 × 2 tensors, c is a vectorial function whereas α is a scalar function. Consequently, similarly to what is done in the reconstruction system of equations in [Bal 2014], the equilibrium equation in the reference conguration can be written as a dierential partial system on the residual stress components similar to the 4.5. Residual stress invertibility and stability 109 transport equation and which can be given as:

A    ∇τ 11 ∇τ 22 ∇τ 12    + B    τ 11 τ 22 τ 12    = f (4.70) with A =    M (11) (1) M (22) (1) M (12) (1) M (11) (2) M (22) (2) M (12) (2) M (11) M (22) M (12)    , B =    b (11) u (1) b (22) u (1) b (12) u (1) b (11) u (2) b (22) u (2) b (12) u (2) 0 0 0    , f =    f u (1) f u (2) 0    , (4.71) and b (ij) u (k) = ∇( (k) -2∇ u (k) ) : M (ij) + M (ij) .Div (k) , (4.72) 
f u (k) = Div[4µ (k) + 2λDiv u (k) 1]. (4.73) 
In fact, the rst two block-matrix rows are the origin of the equilibrium equation for the two force-displacement measures, whereas, the last one is a result of the equilibrium equation satised by the residual stress itself. To simplify the partial dierential system in equation ( 4.69), we will suppose the invertibility of the matrix A which implies

   ∇τ 11 ∇τ 22 ∇τ 12    + M    τ 11 τ 22 τ 12    = f , M = A -1 B (4.74)
Based on cumbersome algebraic calculation, we can show that the invertibility of the matrix A is equivalent to the following condition on the displacement data elds:

detA = 0 ⇔ (u (1) 2,2 -u (1) 1,1 )(u (2) 2,1 + u (2) 1,2 ) -(u (2) 2,2 -u (2) 1,1 )(u (1) 2,1 + u (1) 1,2 ) = 0, ∀ X ∈ Ω. (4.75)
The transformation of the system of equations (4.69) is not done for the sole sake of simplication, but also to avoid the attraction points to better reconstruct the initial stress eld over the characteristic curves. That is why we will make the following assumption which will be used in the next section for the stability analysis of the residual stress reconstruction. 110 Chapter 4. Identication of linear elastic initially-stressed material parameters Hypothesis 3: The displacement elds satisfy u (n) ∈ H 1 (Ω) ∩ W 1,∞ (Ω) for n = 1, 2 and satisfy:

(u

(1) 2,2 -u (1) 1,1 )(u (2) 2,1 + u (2) 1,2 ) -(u (2) 2,2 -u (2) 1,1 )(u (1) 2,1 + u (1) 1,2 ) > c 0 , ∀ X ∈ Ω (4.76)
where c 0 is a constant.

ODE-based approach and stability estimate

Focusing only on the stability estimate, we will consider that the reconstruction of the initial stress eld is based on a direct integration method of the dierential system (4.73). So, suppose that Ω is a connected domain, and two points X 0 and X 1 which are related via the smooth curve γ. Such curve can be dened as:

γ : [0 1] → Ω t → ξ(t) with γ(0) = X 0 and γ(1) = X 1 . (4.77) 
Now, using the variable change X = γ(t) and the dierentiation chain rule, the dierential system (4.73) will take the following ODE form:

d φ γ (t) dt + M γ (t) φ γ (t) = f γ (t), φ γ (t) =    τ 11 • γ(t) τ 22 • γ(t) τ 12 • γ(t)    and φ γ (0) =    τ 11 ( X 0 ) τ 22 ( X 0 ) τ 12 ( X 0 )    . (4.78)
Hence, if we know the values of the residual stress τ components in a chosen starting point of the curve γ, by a direct integration of the ODE system illustrated in equation ( 4.77) and by varying the end point X of the curve γ we can reconstruct the residual stress eld at any point of Ω. It is clear that the space of the ODE system in equation ( 4.77) is a vector space of dimension 3. Since the residual stress eld satises equation (4.9) (with t 0 = 0) on the boundary of the domain Ω, we can choose the end points of the curve γ on the boundary ∂Ω so that we obtain 4 scalar relations which can be sucient (based on the choice of γ) to reconstruct the values the residual stress eld components on the curve γ.

After clarifying the reconstruction procedure, we can show that this approach is a stable so we can state the following theorem.
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Theorem 2: Consider that Ω is a convex domain and let suppose the existence of two C 2 displacement data sets ( u (1) , u (2) ), ( u (1) , u (2) ) associated to two residual stress elds τ , τ with the same Lamé coecients µ and λ. Supposing that the considered displacement eld sets satisfy the criteria illustrated in hypothesis 3, then the residual stress elds τ and τ can be determined uniquely over Ω using the data as:

||τ -τ || W 1,∞ (Ω) ≤ K 2 i=1 || u -u || W 2,∞ (Ω) (4.79)
where K is a positive constant.

Proof : Based on PicardâLindelöf theorem and Gronwall s lemma for the error controlling along characteristic curves the proof of the theorem 2 can be established as it was done in [Bal 2014] in the context of isotropic elasticity and with detailed analysis in [Monard 2011] for multi physical problem, but it will be omitted here. The extra major dierence at the proof level illustrated in the later 2 references is that in our context we have exploited the homogeneous boundary condition satised by the residual stress eld.

Numerical approach 4.6.1 Direct problem and data generation

The displacement data are generated by computing the direct problem over the domain Ω using non structured triangular mesh and where the displacement eld is interpolated on Lagrange polynomial functions P 2 . We suppose that the volumetric force density f vanishes. In the case of residual stress identication, for the sake of simplicity, we have chosen homogeneous constant elds for the Lamé parameters. Whereas in the case of the reconstruction of all the material parameters, continuous inhomogeneous Lamé elds are considered. The perturbation of the displacement measures is done by adding a noisy eld to the direct problem solution. To ensure the repeatability of the results, as it is done in [Bal 2014], the noise eld is represented by the following function: 

u noise = δ 1 Sup X∈Ω f f δ,m ( x) (4 

Discrete formulation of the inverse problem

Let suppose that the domain Ω admits an exact triangular mesh denoted by T h for any mesh characteristic length denoted by h. Such hypothesis is to avoid the inuence of the geometrical meshing on the elds reconstruction approach. Now let dene the following nite element spaces:

• P 2 (T h ): the space of continuous scalar piecewise quadratic Lagrange functions associated to the mesh T h .

• P 2 (T h , R 2 ): the space of vector-valued P 2 (T h ) functions in R 2 .

• P 1 (T h ): the space of continuous scalar piecewise linear Lagrange functions associated to the mesh T h .

Let {ξ k } Ns k=1 and { φ} N v k=1 denote respectively the canonical basis of shape functions of P 1 (T h ) and P 2 (T h , R 2 ). Hence the displacement eld and the scalar elds to be reconstructed can be decomposed on the dierent above interpolation spaces as:

a( X) = Ns i a k ξ k ( X), a = τ 11 , τ 22 , τ 12 , µ, λ (4.83) u( X) = Nv i u k φ k ( X), (4.84) 
where N s and N v denote respectively the degrees of freedom number for the scalar material parameters and the displacement eld. In fact, the initial stress eld components and the Lamé parameters are chosen to be projected in a continuous space of interpolation in the sake of the identication approach simplication. In general, the interpolation spaces for the elds to be identied may be chosen to be discontinuous to better account for the discontinuous character of the dierent material parameters that can be encountered (presence of inclusion ...).

Using the interpolation from for the dierent scalar elds as it is illustrated in equations ( 4.82-4.83), the discrete form of the partial dierential system in equation ( 4.64), can be transformed into the following algebraic system:

KV = F, K ∈ M (R nN int v ×5Ns ), V ∈ M (R 5Ns ), F ∈ M (R nN int v ), (4.85) 
with N int v denotes the number of degree of freedom associated to the internal displacement eld, and where V denotes the vector of the coordinates associated to the interpolation of the dierent scalar elds to be identied, whereas F and K are the discrete form of the operators F and K respectively. The matrices K, F and V can be presented as:

K =     K I u (1) K 1⊗ u (1) K M (11) u (1) K M (22) u (1) K M (12)
u (1) . . . . . . . . . . . . . . .

K I u (n) K 1⊗ u (n) K M (11) u (n) K M (22) u (n) K M (12) u (n)     , F =     F u (1)
. . . 4.85), can be expressed as:

F u (n)     (4.86) V = (V µ ) T (V λ ) T (V τ 11 ) T (V τ 22 ) T (V τ 12 ) T T , V µ = [µ], V λ = [λ], V τ ij = [τ ij ], i, j ∈ {1, 2} ( 
[K I u (l) ] ij = Ω ξ j ∇ s u (l) : ∇ φ i dΩ (4.88) [K 1⊗1 u ] ij = Ω ξ j Div u (l) Div φ i dΩ (4.89) [K M (pq) u ] ij = Ω ξ j [∇ u (l) M (pq) - 1 2 (M (pq) ∇ s u (l) + ∇ s u (l) M (pq) )] : ∇ φ i dΩ, (4.90) i = 1..N int v , j = 1..N s , l = 1.
.n p, q = 1..2, p ≤ q.

Least squares approach and regularization

In practice, we compute the identiable elds by minimizing a regularized mean squares functional of the form

J(V) = ||KV -F|| 2 2 + R(V) (4.91)
where the regularization term R(.) is a sum of multiple operators penalizing the variations of the Lamé coecients and the divergence of the residual stress eld as the following:

R(V) = α µ ||∇µ|| 2 L 2 (Ω) + α λ ||∇λ|| 2 L 2 (Ω) + α div ||Divτ || 2 L 2 (Ω) , (4.92) 
with α µ , α λ and α div are 3 chosen scalar regularization parameters. In the case of Lamé coecients and residual stress reconstruction, the optimization of the cost function J is subjected to the positivity of µ and λ and the boundary condition satised by the residual stress eld as it is illustrated through equation ( 4.9) (with t 0 = 0). Since the set of the constitutive parameters are determined to a multiplicative scalar, we can enforce in the optimization problem that min(µ, λ) > α 0 > 0 where α 0 is a chosen constant or eld to preclude the trivial null solution. Consider the matrix L such that L[[τ 11 ][τ 22 ][τ 12 ]] gives the vector of the degree of freedom involved in the boundary condition (τ . N = 0) for the dierent residual stress components. Consequently, the interpolation of the dierent elds to be reconstructed represented through V id can be formulated as the following 4.6. Numerical approach 115 optimization problem:

V id = argmin V J(V) s.b.t LV τ = [0] & V µ > α 0 & V λ > α 0 . (4.93)
where V τ gathers all the degree of freedom associated to the residual stress components i.e

[V τ ] T = [[V τ 11 ] T , [V τ 22 ] T , [V τ 12 ] T ]. (4.94)
Regarding the convexity character of the optimization problem, the minimization of (4.92) was carried out using the cvxopt Python module which is ecient for convex optimization problems under linear constraints.

To enhance the quality of the reconstructed elds, we may use a lter regularizing the perturbed displacement measurements. Two alternatives are studied:

-the classical elastic lter where the gradient of the displacement is penalized and the regularized displacement eld denoted by u f associated to the perturbed displacement measure u p can be obtained as the solution of the following minimization problem:

u f = argmin u {|| u -u d || 2 L 2 (Ω) + α elas ||∇ u|| 2 L 2 (Ω) } (4.95)
where α elas is a regularization scalar parameter.

-the displacement measurement carried out on the reference mesh T h 0 is L 2 -projected on a coarse mesh T h which decrease the noise inuence on the displacement gradient eld which will be regularized. Such lter was used in [Bal 2014] in the objective of the Lamé coecients reconstruction. It can be characterized through the parameter k h = h h 0 .

4.6.4 Numerical results

Reconstruction of the residual stress eld

In this section, we focus on the numerical results of the residual stress eld reconstruction. Before dealing with results, we introduce the used data. In fact, we have exploited two displacement elds resulting from the direct problem associated with dierent boundary conditions: the rst one is a simple tensile test, whereas the second data is the result of a 116 Chapter 4. Identication of linear elastic initially-stressed material parameters simple shear test. The two displacement measurements are presented in the gure (4.2). A (a) u (1) x (b) u (2) x (c) u ( 1) ltering by mesh projection or elastic lter are tested on the displacement data to choose the best one. H 1 error norm for all the ltered displacement data are carried out using the two lters as it is shown in gure (4.4). In fact the H 1 -norm measure is used here to quantify the error measure because simply the displacement eld is involved in the reconstruction formulation through its gradient. For the mesh-projection lter there is always an optimal parameter k h depending on the noise level (see gure (4.4-b) where the optimal values for k h are (3,6) for the noise levels respectively 10 -5 , 10 -4 ). However, this lter has a limitation, when the noise amplitude is very small, the quality of the ltered displacement eld can not be enhanced like it is shown in gure (4.4-b) for the case δ = 10 -7 . Whereas, the elastic lter is not ameliorating the error of the ltered displacement data relative to the exact solution. Such result does not mean that the elastic lter is not useful but it precludes that it is less performant compared to the mesh projection lter at least in the regularization of the used data elds. That is why, only the mesh-projection ltering approach will be considered in the residual stress reconstruction method.

y (d) u (2)
Similarly to the above analysis reserved to the ltering parameter k h , we have examined the regularization parameter α div inuence on the reconstruction quality of the residual stress eld. This investigation is done for dierent noise levels but using the optimal k h for every noise amplitude δ in the objective to eliminate the ltering inuence. In fact, the α div impact on the reconstruction approach is inspected based on three error measures: L 2 -relative error, H 1 -relative error and an error measure on the divergence of the residual stress eld. The divergence of the residual stress eld can be represented in the discrete form by:

f div (V τ ) = i=1,i≤j K M (ij) 0 V τ ij , (4.96) with K M (ij) 0 = K M (ij) u if u = 0.
Then the prior error measure related to the divergence of the reconstructed residual stress eld can be dened mathematically as:

Err div (V τ ) = ||f div (V τ exact ) -f div (V τ id )|| 2 (4.97)
where V τ exact and V τ id denote respectively the discrete coordinates of the exact and the identied residual stress eld. Based on gures-set (4.5), it is clear that for every noise level, there is always an optimal value for the regularization parameter α div to get the lower error. Fixing the noise level, it is remarkable that the optimal regularization parameter value diers slightly from an error measure to another. In fact, the regularization can be seen as a penalty parameter for the equilibrium equation satised by the residual stress. Hence no wonder to the decreasing of the divergence measure of the residual stress if α div become greater and greater like it is illustrated in gure (4.5-c). Also, a stability analysis is performed with a dierent set of regularization and ltering parameters as it is presented in gures-set (4.6), where dierent measures of error are plotted in function of the noise level. In fact, in absence of any regularization or ltering techniques (i.e k h = 1, α reg = 0), the identied residual stress converges to the predened eld as the noise level decreases relatively to the dierent measures of error. Based on gures-set (4.6), it is clear that for every noise level there exists an optimal ltering and regularization parameter. But also xing these both parameters to dierent values than (k h = 1, α reg = 0 implies that the error of the reconstruction method converges to a limit value and by consequence it creates a limitation on the reconstruction approach accuracy. In the remaining part of this section, we present a set of the reconstruction approach results for dierent scenarios by binary game considering-omitting the ltering and the regularization terms.

k h = 3, α reg = 7.5 k h = 6, α reg = 20 k h = 1, α reg = 0 k h = 1, α reg = 7.5 k h = 1, α reg = 20 k h = 3, α reg = 0 k h = 6, α reg = 0 ( 
k h = 3, α reg = 7.5 k h = 6, α reg = 20 k h = 1, α reg = 0 k h = 1, α reg = 7.5 k h = 1, α reg = 20 k h = 3, α reg = 0 k h = 6, α reg = 0 (b) Relative
Such choice of analysis is considered to emphasize the importance of both ltering and regularization terms in enhancing the quality of the reconstructed residual stress eld. The parameters couple (k h = 6, α div = 20) guarantees a quasi-optimal reconstruction of the residual stress components when the noise amplitude is chosen to be δ = 10 -4 . Focusing on the gures set (4.10), we remark that the ellipticity criteria is veried when at least 122 Chapter 4. Identication of linear elastic initially-stressed material parameters (a) (a) one or both of the ltering and regularization procedures are considered. But, we cannot guarantee that such restrictions can be satised if the noise level increases. As a solution we can add an extra constraint to the optimization problem to satisfy the ellipticity criteria. However, such a solution implies the non-linearity of the added inequality-constraint which will complicate the optimization procedure.

k h = 3, α reg = 7.5 k h = 6, α reg = 20 k h = 1, α reg = 0 k h = 1, α reg = 7.5 k h = 1, α reg = 20 k h = 3, α reg = 0 k h = 6, α reg = 0
(a) k h = 1, α div = 0 (b) k h = 6, α div = 0 (c) k h = 1, α div = 20 (d) k h = 6, α div = 20
(a) k h = 1, α div = 0 (b) k h = 6, α div = 0 (c) k h = 1, α div = 20 (d) k h = 6, α div = 20
k h = 1, α div = 0 (b) k h = 6, α div = 0 (c) k h = 1, α div = 20 (d) k h = 6, α div = 20
k h = 1, α div = 0 (b) k h = 6, α div = 0 (c) k h = 1, α div = 20 (d) k h = 6, α div = 20

Reconstruction of residual stress eld and the material parameters

In the case of all parameters reconstruction, we have chosen continuous Lamé coecients elds and the same residual stress as the one considered in the previous section. Regarding the Lamé representation in gures (4.12-d) and ( 4.12-e), their elds can represent an inclusion presence in a heterogeneous material but with a smooth material rigidity variation to avoid the discontinuity character of the problem. Again, the ellipticity criteria presented in equation ( 4.55) is checked through gure (4.12-f). In this section we have used 6 displacement elds that are again results of direct problem solutions perturbation using dierent Dirichlet boundary conditions. To ensure that the noise function has the same inuence on the dierent displacement elds, these measures are chosen to have the same displacement maximum which is xed to the unity value. The number 6 here is a full arbitrary choice. Indeed, following the same ODE approach used in section 4.5, we have shown algebraically that ve displacement elds are in general not sucient for the reconstruction of all the parameters. So, to present our reconstruction method in an ecient way, we have thinked of using a relatively small number of data measures but higher than ve. This is why, we have chosen six displacements elds.

Since the residual stress eld and the Lamé coecients are determined to a multiplicative constant, in the following results we have considered the reconstructed elds as L 2projection of the identied parameters-vector eld on the exact predened one. In the rst step to ensure the eciency of the exploited chosen displacement elds, a stability analysis is done. Through this analysis, without using nor ltering nor regularization terms, we have shown that both relative L 2 , H 1 -norms errors and the residual stress divergence error converges to zero as the noise amplitude decreases as it is illustrated in gures-set (4.11).

Proceeding by the same way as in the previous section, multiple possible cases by changing the ltering and regularization parameters to show they are both necessary to obtain a good reconstruction of the dierent material parameters as it is shown in gures (4.13-4.17) with an amplitude level δ = 10 -4. In addition, the ellipticity criteria is checked also for this inverse problem as it is presented in gures-set (4.18). In short, the ellipticity criteria is satised for the optimal reconstructed elds. Similarly to what proposed in the previous section, we can enforce the strong ellipticity restriction in the optimization problem. However, the added inequality constraint is not only non linear but is also non convex. (a) k h = 1, α div = 0, (a) (a) k h = 1, α div = 0, (a) k h = 1, α div = 0, In this chapter, we have presented a new direct identication approach for the residual stress and the material parameters reconstruction. The approach is based on the variational formulation of the direct problem and it exploits only the internal data of a set of displacement measures. We have presented some stability results for a generalized initially-stress linear elastic material and particular model by dierent methods. Also, we have shown that only two displacement elds , fullling some mathematical restriction, are sucient to the reconstruction of the residual stress eld. Moreover, using only six perturbed displacement elds, we have reconstructed the residual stress eld and the Lamé elds with good accuracy. A variety of numerical results are presented for both the residual stress reconstruction knowing the Lamé coecients and the identication of all the material parameters : residual stress and the Lamé coecients. Couple of regularization techniques are tested for both cases in the objective to analyze the parameters of the reconstruction approach on the quality and the accuracy of the results.
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α L = 0 (b) k h = 3, α div = 0, α L = 0 (c) k h = 1, α div = 100, α L = 10 -4 (d) k h = 3, α div = 100, α L = 10 -4
Chapter 5

XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body 

Introduction

It is well known that natural and manufactured materials and structures contain initial stress in their reference conguration. This initial stress eld can be developed in the earth's crust due to processes such as various past tectonic events, in manufactured materials and mechanical parts during their fabrication and assembly, in composite materials and structures when they are manufactured, in soft tissue when growth and remodelling processes occur, in rock, etc. Here, the term initial stress shall be used in its general sense regardless of the origin of this initial stress eld that veries the equilibrium equation in the reference conguration with a no homogeneous static boundary condition (no zero surface loads). When this initial stress is accompanied by a pre-strain due to the applied load in the reference conguration, the term pre-stress is usually used. In the case of zero applied loads, the term residual stress is commonly adopted according to the denition of [Hoger 1986]. From a physical viewpoint, the initial stress can be a result of incompatible growth and/or plasticity deformation processes and then alters the mechanical properties and the stress distribution. This deformation incompatibility generates singularity due to stress concentration at the micro, meso and macro-scale. Other types of singularities are also present in structures like cracks, corners, voids, inclusions, and other material or geometrical imperfections. The problem here is that the combination of the initial stress and singularities eects can promote or prevent failure and alter the fracture mode by contributing to the crack-driving force. In contrast to metal-like materials, this problem is more complicated and challenging for rubber, rubber-like and soft tissue materials due to their geometrical and material nonlinearities. For example, the residual stress prevents the propagation of aortic dissection, which is a serious cardio-vascular disease and life-threatening event, by reducing stress gradient [Humphrey 2012, Wang 2017]. In contrast, residual stress promotes failure in bush mounting. These two examples, among others, show that residual stress can promote or prevent crack initiation and propagation in soft tissue and rubber. The investigation of fracture behaviours of the above presented problematics are relatively dicult and hence the analysis methods are multiplied: experimental [Drory 1988, Ohayon 2007, Creton 2016, Amabili 2019[START_REF] Brunet | [END_REF], theoretical [He 1994, Radayev 2001, Dal Corso 2008, Bigoni 2008] and numerical [Nagashima 2009, 5.1. Introduction 131 Ebrahimi 2021].

Following these analyses, physical investigations and computational analysis using the nite element method (FEM) have shown that very high stress concentrations can arise in the region of cracks, edges, corners, and near-interface problems when the material characteristics are discontinuous [START_REF] Borret | Sur la propagation de ssure dans les caoutchoucs synthetiques[END_REF]]. In the mechanical community language, the associated problem is said to admit a singular stress which requires the development of crack initiation criteria. In fracture mechanics, the dierent crack initiation or propagation criteria are based on the stress eld in the body and, therefore, a good knowledge of their analytical form is important. Furthermore, it is widely known that in the presence of stress singularities, the convergence rates of classical FEM decrease [Strang 1973]. Here, prior knowledge of the stress eld can be exploited to improve algorithms by including particular singular functions in the FE-spaces [Strang 1973, Destuynder 1982, Moës 1999].

Thus, the purpose of this chapter is threefold. First, the academic paradigm threedimensional boundary value problem (BVP) of an innite initially-stressed hyperelastic cracked cylinder will be formulated. The aim is to give one issue of a generalization of the three-dimensional Linear Elastic Fracture Mechanics (LEFM) to hyperelasticity by superposing an in-plane transformation to an antiplane one. This is a particular "simpler" class of the three-dimensional initially-stressed crack problem with a simple initially-stressed hyperelastic potential which can elucidate the other "more complicated" class of problem.

Secondly, the resolution of this BVP will be done with a neoHookean potential taking into account an initial constant stress. The elastostatic eld results will be analyzed and dierences with LEFM will be elucidated. Third, the XFEM formulation and numerical analysis will be realized. A convergence study will be carried out to show the contribution of the exploitation of such a method.

In linear elasticity, the Linear Fracture Elastic Mechanics (LEFM) based on the superposition principle gives us a three-dimensional analytical elastostatic eld. A criticism and a review of the LEFM can be found in the excellent book of Bui [Bui 2007] in which some three-dimensional linear elastic problems were summarised. In the presence of initial stress and when its magnitude is suciently small, the principle of superposition can be used to provide a useful solution by adding the LEFM stress eld to the initial stress eld. Otherwise, the initial stress linear elastic models presented in chapter 2 should be used in a crack 132 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body boundary value problem. This BVP is resolved and analyzed by using three main methods: asymptotic development, complex variables and transform methods. Some valuable contributions are to be credited to [Parker 1982, Nazarenko 2000, Radayev 2001, Liu 2008, Barsoum 2009, Chaudhuri 2010, Chaudhuri 2012, Wu 2019]. For pre-stressed cracked solid and using the incremental formalism of Biot [Biot 1965[START_REF] Biot | Nonlinear eect of initial stress on crack propagation between similar and dissimilar orthotropic media[END_REF], the representations in the crack plane and antiplane of the incremental displacement and stress elds are given by [GrÁciun 1998, Zhou 2020, Guz 2013, Sadowski 2016[START_REF] Craciun | [END_REF].

Within the framework of nite deformation [Ogden 1997], in the past decades, only a few works have been focused on the analysis of the fully three-dimensional deformation and stress elds. This is due to the mathematics problem's tremendous complexity [Ogden 1997], which, in contrast to the planar problem, makes the boundary-value problem equations very nonlinear and dicult to solve analytically or numerically. A generalisation from a plane to a pseudo-plane deformation problem, with uniform axial extension [Rajagopal 1985, Hill 1986]. and non-uniform axial extension was conducted in [START_REF] Saccomandi | Some generalized pseudo-plane deformations for the neo-Hookean material[END_REF]]. Partial and exact solutions to some three-dimensional problems were done in a series of papers by Hill and his co-authors by exploiting the reciprocal equilibrium equations for particular hyperelastic potentials [Hill 1973, Hill 1989, Hill 2001]]. Coupling between antiplane and plane deformation elds in the boundary value problem was shown to exist for nonlinear hyperelastic potential, which makes it hard to resolve and the uncoupled governing equations hold only for the linear Neohookean material [Horgan 2003b].

Elastostatic elds near the crack front of a isotropic hyperelastic solid were rst analysed by [Knowles 1974, Knowles 1973]for plane deformation, [Knowles 1983] for plane stress and [Knowles 1977a] for antiplane deformation hypothesis. Among other researchers, [Stephenson 1982] is to be credited to have claried the local structure characteristic nature of the elastostatic elds near the crack tip of a generalised Mooney-Rivlin solid under plane deformation kinematic condition and mixed boundary conditions at innity (Mode I and II). It was shown that the crack opens symmetrically, under Mode II conditions, contrary to the predictions of linear theory. In other words, the nonlinear global crack problem can not admit an antisymmetric solution. A review of this topic is presented by [Long 2015].

None of the aforementioned works took account of the possible existence of initial stress.
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Hence, there is now a need to include initial stress to the constitutive model behaviour in concern in this chapter to model the hyperelastic material behaviour and also the effect of initial stresses. The response of initially-stressed materials has been modelled exploiting dierent approaches. One method is based on the modelling of the whole process that develops the initial stress by assuming a multiplicative decomposition of the deformation gradient, from the unstressed free conguration, into two contributions: a deformation describing the inelastic change of shape induced by the microstructural rearrangement of the matter and a deformation accounting for the elastic deformation of the body [Lee 1969, Rodriguez 1994, Skalak 1996, Du 2018]. Using the incremental deformation formalism [Biot 1965] where an innitesimal deformation is superposed to a known initial nite deformation, the inuence of pre-stress in continuum elastostatic elds has been analyzed for continuum boundary values problems by [Fung 1967, Destrade 2012a, Zidi 2000a, Zidi 2000b[START_REF] Zidi | Eects of a prestress on a reinforced, nonlinearly elastic and compressible tube subjected to combined deformations[END_REF]] and for singular boundary values problems (crack, inclusion, etc) by [Kurashige 1969, Kurashige 1971[START_REF] Biot | Nonlinear eect of initial stress on crack propagation between similar and dissimilar orthotropic media[END_REF], Dhaliwal 1979, Radi 2002, Dal Corso 2008, Bigoni 2008]. The second approach to modelling initial stresses is the so-called theory of initially-stressed materials in which the reference conguration is associated with the stressed one. Here, the strain energy density is assumed to depend on both the deformation (thanks to the objectivity principle) and on the initial stress eld. In this second approach adopted in this work, the initial stress is a known eld which can be determined from elastic wave speed [START_REF] Man | Towards an acoustoelastic theory for measurement of residual stress[END_REF], Shams 2011, Shams 2014] or by equilibrium equation and boundary conditions [Hoger 1986]. Some restrictions have been developed to ensure reasonable physical response of initially-stressed material: initial stress compatibility (ISC), initial stress symmetry (ISS) and initial stress reference independence (ISRI) [Shams 2011, Gower 2015, Gower 2017] (see chapter 2). The eect of initial stress (and residual stress) on elastostatic elds has been analyzed theoretically for continuum problems by [Merodio 2013b, Merodio 2016, Ciarletta 2016a, Ciarletta 2016b, Gower 2015, Gower 2017, Riccobelli 2018, Agosti 2018, Du 2018, Du 2019a, Du 2019b, Liu 2020a, Mukherjee 2021, Melnikov 2021]. To our knowledge, the singular boundary value problem associated with initially-stressed hyperelastic cracked solid is not theoretically analyzed apart from this thesis. However, it is to be noted that the eect of anisotropy on elastostatic elds near isotropic transverse hyperelastic cracked solid under plane stress assumption is analyzed in a series of papers [Liu 2020b, Liu 2021a, Liu 2021b].

The numerical analysis of crack problems has long been based on the theory of linear 134 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body elastic fracture mechanics coupled with the nite elements method (FEM). Nevertheless, FEM presents many drawbacks because its ability to detect singularities around the crack tip is very limited and requires ne mesh. To overcome these diculties, many enriched nite element methods, and meshfree methods were introduced. The use of analytical enrichment functions to compute stress intensity factor was performed rst by [Giord Jr 1978]. [Babu²ka 1994] presented a method for elliptic boundary value problems with rough coecients. In [Babu²ka 1997], they introduce a Generalized Finite Element Method named GFEM. They demonstrated that the use of an enrichment function obtained from an analytical solution improves the convergence rate of the nite element method.

Later, [Belytschko 1999] and [Moës 1999] introduced the eXtended Finite Element Method, named XFEM, to treat crack problems numerically without remeshing. The analysis of standard XFEM [START_REF] Stazi | [END_REF]] shows a reduction of the error level in spite of the decline of convergence rate compared to a classical nite element method. This convergence behaviour can be explained by the fact that the topological enrichment is applied only to the rst layer of elements in the crack-tip.

Therefore, when the mesh is rened, the size of the zone of inuence of the enrichment becomes negligible compared to the whole domain. To overcome this failure, geometrical enrichment is adopted by many authors [START_REF] Stazi | [END_REF], Laborde 2005] ; a xed zone around the crack-tip is considered and an enrichment with crack-tip singular function is applied to all the degrees of freedom inside this zone. The analysis of this XFEM variant method shows the same behaviour as the classical XFEM regarding error. To ane this strategy [Chahine 2008] used a cut-o function to smooth the passage between enriched zone and non enriched zones. For mixed formulation enrichment with XFEM, the analysis performed by [Legrain 2008] for curved and straight interface for problems involving material inclusion and incompressible fracture problem leads to a stable mixed formulation with improved convergence rate. [Legrain 2008] used a standard XFEM method which disrupts the linear system conditioning.

Although the analysis of XFEM methods within a linear fracture mechanics frame is very developed as was mentioned, there are a few works that treat this method for nonlinear fracture mechanics in large deformations [Legrain 2005[START_REF] Karoui | [END_REF], u²tari£ 2014, Rashetnia 2015, Huynh 2019, Jansari 2019]. For compressible hyperelastic behaviour, the results of [START_REF] Karoui | [END_REF]] with XFEM cut-o variant are relevant and analogous to linear 5.2. Formulation of the global crack problem 135 theory predictions for improving of numerical convergence and estimate errors, without degrading the linear system conditioning or increasing numerical problem size. For incompressible hyperelastic behaviour, [Legrain 2008] shows that the inf-sup condition is satised for the linearized problem. In [K. 2016], it was shown that this condition remains veried for large deformation.

In the following the second section is devoted to the global formulation of the crack boundary value problem. The third section shows the existence of an analogy between initiallystressed and unstressed material subjected to the same boundary conditions. Such analogy permits the simplication of the asymptotic resolution for both the plane and antiplane problems in the fourth section. Then the asymptotic expansion of the dierent mechanical elds will be discussed in multiple levels through the fth section. Finally, the before last section is devoted to the numerical analysis of a plane cracked problem within an initially hyperelastic material using the XFEM method.

Formulation of the global crack problem

Let consider a body B composed by an homogeneous incompressible hyperelastic material body. The undeformed conguration, denoted by B 0 , is supposed to be an innite cylinder whose generator is characterized by the vector G. Let ( E 1 , E 2 , E 3 ) be the rectangular cartesian basis associated to the coordinates (X 1 , X 2 , X 3 ). The generator vector of the studied cylindrical body is supposed to be parallel to the vector E 3 as it is illustrated in gure (5.1). Now, let Ω 0 denotes the cross section of the material body B in the reference conguration B 0 , so the latter can be dened as:

B 0 = { X/ (X 1 , X 2 ) ∈ Ω 0 , -∞ < X 3 < +∞}.
(5.1)

The cross section Ω 0 in the undeformed conguration is containing a crack whose the tip is the origin of the cartesian coordinates and the crack faces are described locally by the cartesian coordinates as (X 1 = 0, X 1 → 0 -) or by the polar coordinates as (R → 0, θ = ±π) as it is shown in gure (5.2). In the reference conguration B 0 , the considered body B is subjected to an initial stress eld denoted τ . The presence of a such internal stress has a signicant eect on the intrinsic material response as it has been shown for the example of arteries [Holzapfel 2000]. As it is illustrated in [Hoger 1986, Hoger 1985], the initial stress τ , which is not necessarily associated with an elastic deformation, satises 136 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body in absence of volumetric density of forces the following equilibrium equation:

Divτ = 0. (5.2)
and the boundary condition: (5.3) where Div denotes the divergence operator relative to the cartesian coordinates of the reference conguration and N is the outward unit normal vector to the boundary of the region dened by the reference conguration B 0 , whereas the t τ denotes the imposed force vector. If t τ vanishes, the initial stress eld is called residual stress: an equilibrated initial stress eld in absence of all external loadings. Consider that the body B is subjected to a on the the planar coordinates. Consequently, the mapping function y can be represented mathematically as:

τ . N = t τ on ∂B 0 ,
y = χ( X) =      y 1 = y 1 (X 1 , X 2 ) y 2 = y 2 (X 1 , X 2 ) y 3 = X 3 + u(X 1 , X 2 ) (5.4)
where u(., .) denotes the antiplane displacement. The deformation y represents a transformation for a coupled plane deformation with an antiplane shear. Hence the corresponding deformation gradient tensor eld denoted by F becomes:

F =    y 1,1 y 1,2 0 y 2,1 y 2,2 0 y 3,1 y 3,2 1    , (5.5)
with y i,j = ∂y i ∂X j , i, j ∈ {1, 2, 3}. If we consider F p and F a the deformation gradient tensors relative respectively to plane and antiplane deformations which can be expressed 138
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F p =    y 1,1 y 1,2 0 y 2,1 y 2,2 0 0 0 1    , F a =    1 0 0 0 1 0 y 3,1 y 3,2 1   
(5.6)

The deformation gradient tensor F can be expressed in function of the deformation gradient tensors F p and F a as the following:

F = F p F a = F a F p (5.7)
Hence the deformation eld illustrated in equation ( 5.4) can be interpreted as a plane deformation eld superimposed to an antiplane shear deformation. Since the incompressible constraint holds, the material supports only isochoric transformations, which is equivalent to:

J = det(F ) = y 1,1 y 2,2 -y 2,1 y 1,2 = 1.
(5.8) Now, we can dene the left and right Cauchy-Green strain tensors as: (5.9) and by using the expression of the deformation gradient tensor in equation (5.5), the prior two measures of strain can be explicitly expressed as:

C = F T F , B = F F T ,
C =    (y 1,1 ) 2 + (y 2,1 ) 2 + (y 3,1 ) 2 y 1,1 y 1,2 + y 2,1 y 2,2 + y 3,1 y 3,2 y 3,1 y 1,1 y 1,2 + y 2,1 y 2,2 + y 3,1 y 3,2 (y 1,2 ) 2 + (y 2,2 ) 2 + (y 3,2 ) 2 y 3,2 y 3,1 y 3,2 1    , (5.10) B =    y 2 1,1 + y 2 1,2 y 1,1 y 2,1 + y 1,2 y 2,2 y 1,1 y 3,1 + y 1,2 y 3,2 y 1,1 y 2,1 + y 1,2 y 2,2 y 2 2,1 + y 2 2,2 y 2,1 y 3,1 + y 2,2 y 3,2 y 1,1 y 3,1 + y 1,2 y 3,2 y 2,1 y 3,1 + y 2,2 y 3,2 y 2 3,1 + y 2 3,2 + 1    (5.11)
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Both the left and right Cauchy strain tensors share the same invariants which can be expressed as:

           I 1 = tr(C) = 1 + (y 1,1 ) 2 + (y 1,2 ) 2 + (y 2,1 ) 2 + (y 2,2 ) 2 + (y 3,1 ) 2 + (y 3,2 ) 2 = |∇y 1 | 2 + |∇y 2 | 2 + |∇y 3 | 2 I 2 = 1 2 ((tr(C)) 2 -tr(C 2 )) = I 1 + (y 1,1 y 3,2 -y 1,2 y 3,1 ) 2 + (y 2,1 y 3,2 -y 2,2 y 3,1 ) 2 I 3 = 1.
(5.12) Now, it is necessary to specify the constitutive model behaviour in concern with this chapter to model the elastic incompressible material behaviour and also the eect of initial stresses. The response of initially-stressed materials has been modelled exploiting two main approaches. The rst one associates the residual stress to a non compatible deformation (initially-strained materials). This approach is based on a multiplicative decomposition of the deformation gradient, from the unstressed free conguration, into two contributions: a deformation describing the inelastic change of shape induced by the microstructural rearrangement of the matter and a deformation accounting for the elastic deformation of the body [Lee 1969, Rodriguez 1994]. Then using the virtual stress-free state concept [Johnson 1995, Johnson 1998], a hyperelastic constitutive law can be developed for initiallystressed materials. To do this, challenging calculations are needed and rarely yields analytic explicit hyperelastic models, unless great simplications are assumed. The second approach to model initial stresses inuence is the so-called theory of initially-stressed materials, in which the strain energy density is assumed to depend on both the deformation C (thanks to objectivity principle) and on the initial stress eld τ , namely:

W = W (C, τ ) (5.13)
This is an ideal way to overcome the technical diculty of the rst approach and this issue has been discussed by Hoger and her collaborators in [Johnson 1993, Johnson 1995, Johnson 1998]. Within this second approach which is adopted in this work, the development of a constitutive model of strain energy deformation does not need to distinguish between initial stress and residual stress [Merodio 2013b] which are known elds determined from elastic wave speed [START_REF] Man | Towards an acoustoelastic theory for measurement of residual stress[END_REF], Destrade 2013, Shams 2014] or by equilibrium equation and boundary conditions [Hoger 1986].
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The rst Piola-Kircho S and the Cauchy stress σ tensors can be deduced from the strain energy density respectively: (5.14) where p is the Lagrange multiplier associated to the incompressibility condition and 1 is the identity second order tensor. The initial stress eld is dened to be the Cauchy stress tensor in the reference conguration which is equivalent to:

σ = ∂W ∂F F -p1, S = ∂W ∂F -pF -T ,
σ = τ , if F = 1.
(5.15)

The last relation represents the initial stress compatibility condition [Shams 2011, Gower 2015, Gower 2017] and imposes restrictions on the combination of the strain energy W and the initial stress τ . Other restrictions are developed to ensure reasonable physical response of initially-stressed material : initial stress symmetry (ISS) and initial stress reference independence (ISRI) [Gower 2015, Gower 2017] (see chapter 2).

As it was discussed in the second chapter that the presence of the initial stress τ renders the material behaviour anisotropic, even if the material has no intrinsic anisotropy. Thus, the initial stress eect on the constitutive law is analogous to the bre reinforced material behaviour. To more investigate this analogy, recall that the initial stress compatibility condition implies the initial stress tensor symmetry. Then, using the spectral theory, τ can be presented as:

τ = τ 1 L 1 ⊗ L 1 + τ 2 L 2 ⊗ L 2 + τ 3 L 3 ⊗ L 3 (5.16)
where τ i is the eigenvalue associated to the eigenvector L i , (i ∈ {1, 2, 3}). The eigenvectors ( L 1 , L 2 , L 3 ) constructs a direct orthonormal basis i.e

L 1 ⊗ L 1 + L 2 ⊗ L 2 + L 3 ⊗ L 3 = 1, L i . L j = δ ij , i, j ∈ {1, 2, 3}
(5.17)

where 1 denotes the identity tensor in three dimensions whereas δ is the Kronecker symbol.

Thus, the eigenvectors { L i , i = 1..3} of the initial stress τ have a similar roles to the preferred directions of the bre reinforced material and then induce anisotropy and gen-erate invariants in the constitutive law which contribute to the independent variables in the functional dependence of W . This issue was discussed in details in chapter 2 with historically bibliographic references. Now, we assume that the material behaviour is initially isotropic in the natural conguration. Thus, the strain energy density is an isotropic functional of C and τ and then it depends on the invariants of the tensors couple (C, τ ) . This complete list of invariants is given by the invariants of C: (5.18) and the invariants of initial stress τ :

I 1 = tr(C), I 2 = 1 2 (tr(C) 2 -tr(C 2 ), I 3 = det(C),
I τ 1 = tr(τ ), I τ 2 = 1 2 (tr(τ ) 2 -tr(τ 2 ), I τ 3 = det(τ ), (5.19)
with the combined invariants of C and τ :

J 1 = tr(Cτ ), J 2 = tr(C 2 τ ), J 3 = tr(Cτ 2 ), J 1 = tr(C 2 τ 2 ).
(5.20)

For an incompressible material, the strain energy density can be rewritten as:

W = W (I 1 , I 2 , I τ 1 , I τ 2 , I τ 3 , J 1 , J 2 , J 3 , J 4 ) (5.21)
In the absence of the initial stress, the strain energy density W recovers the classical hyperelastic potential model where the determination of an explicit expression is a hard task [START_REF] Saccomandi | Giuseppe Saccomandi. Phenomenology of rubber-like materials. Mechanics and thermomechanics of rubberlike solids[END_REF]]. Since the dependence of material properties on initial stress is not well understood [Gou 2014] and the experiments data to estimate residual stress are qualitative (for example from the opening angle method [Sigaeva 2019]) rather than quantitative, it is not reasonable to choose a very general constitutive law, i.e., a strain energy density that includes all invariants. Since one of the objectives of this chapter is to give analytical solution of the boundary value problem, a simple prototype of strain energy characterizing the hyperelastic behaviour of an initial stressed body based in a simple Neohookean isotropic energy function with an additional term that introduces initial stress is considered:

W = µ 2 (I 1 -3) + 1 2 (J 1 -I τ 1 ) (5.22)
where µ denotes the shear modulus for innitesimal deformations in absence of the initial stress. The potential per unit of volume of the undeformed conguration introduced 142 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body in equation ( 5.22) is a simple potential that describes the inuence of the initial stress on the hyperelastic behavior relative to the reference conguration. This strain energy density is widely used to illustrate the eect of initial stress on some boundary value problems. From an experimental viewpoint, a strain energy including one initial stress invariant is sucient to model the eect of this residual stress on soft tissue (myocardium) behaviour [Wang 2014]. More complex forms of strain energy densities are introduced in [Shams 2011, Merodio 2013b, Shams 2014, Merodio 2016] to illustrate the eect of initial stress on some boundary value problems.

In the sake of problem's simplication, the strain energy in equation ( 5.22) is considered in the remainder of this chapter. Then, the related invariants can be explicitly expressed as:

     J 1 = tr(Cτ ) = τ 11 [(y 1,1 ) 2 + (y 2,1 ) 2 + (y 3,1 ) 2 ] + τ 22 [(y 1,2 ) 2 + (y 2,2 ) 2 + (y 3,2 ) 2 ] +2τ 12 [y 1,1 y 1,2 + y 2,1 y 2,2 + y 3,1 y 3,2 ] + 2τ 31 y 3,1 + 2τ 32 y 3,2 + τ 33 I τ 1 = tr(τ ) = τ 11 + τ 22 + τ 33 .
(5.23)

where µ denotes the shear modulus for innitesimal deformations in absence of the initial stress eld. The potential per unit of volume of the undeformed conguration introduced in equation (5.22) is a simple potential that describes the inuence of the initial stress eld on the hyperelastic behavior relative to the reference conguration. When the initial stress eld τ vanishes, the strain energy density illustrated in equation (5.22) is reduced to the Neohookean potential.

Using equations (5.14,5.22), the rst Piola Kirchho stress tensor can be dened as:

S = µF + F τ -pF -T , (5.24)
Consequently, the Cauchy stress tensor can be explicitly presented as:

σ = SF T = µB + F τ F T -p1 (5.25)
Let consider the potential W expressed as:

W = µ 1 2 (I 1 -3) + µ 2 2 (I 2 -3) + 1 2 (J 1 -I τ 1 )
(5.26)

with µ = µ 1 + µ 2 .
In absence of the initial stress eld τ , the strain energy potential W is reduced to the one of Mooney-Rivlin for incompressible materials. We notice in the case of pure plane deformation or pure antiplane shear deformation, the rst Piola Kirchho stress tensor components are the same for the two potentials W and W . Thus for the case of pure plane deformation and pure antiplane shear deformation, the solutions of the boundary value problem relative to the strain energy densities in equation ( 5.22) and (5.26) are the same.

Hence, using equations (5.17-5.18) associated to the spectral form of τ , the previous expression of the strain energy mentioned in equation ( 5.22) becomes:

W = µ + τ 3 2 (I 1 -3) + τ 1 -τ 3 2 [( L 1 .C. L 1 ) -1] + τ 2 -τ 3 2 [( L 2 .C. L 2 ) -1].
(5.27) by the same way, the Cauchy stress tensor expression can be modied to:

σ = (µ + τ 3 )B + (τ 1 -τ 3 ) l 1 ⊗ l 1 + (τ 2 -τ 3 ) l 2 ⊗ l 2 -p1
(5.28) with

l i = F L i , i ∈ {1, 2}.
(5.29)

Just by examining the strain energy potential and the Cauchy stress expressions, with the analogy of the anisotropic brous materials, the initial stress eld τ is source of anisotropic behaviour if the initial stress eld is not reduced to a spherical tensor, and the eigenvectors of the initial stress eld becomes analogous to bers directions as it is enlightned in details in chapter 2 (section 2.5).

To ensure the existence and unicity of the static boundary values problem solution, the usual mathematical constraint that the strain energy density W must satisfy is the strong ellipticity condition, which can be expressed in the incompressible case as:

a ⊗ b : ∂ 2 W ∂F ∂F : a ⊗ b > 0, ∀ a, b; a. b = 0.
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Consequently by considering the expression of the energy potential in equation (5.22), the strong ellipticity condition implies:

max(|τ 1 |, |τ 2 |, |τ 3 |) < µ.
(5.31)

Using the explicit form of the deformation gradient in equation ( 5.5) and the rst Piola Kirchho stress tensor expression in equation ( 5.24), the dierent components of the First Piola Kirchho stress tensor can be expanded as: (5.32)

                                   S 11 = (µ + τ 11 )y 1,1 + τ 12 y 1,2 -
The equilibrium equation in its static form and in absence of volumetric forces becomes: DivS = 0.

(5.33)

where Div denotes the divergence operator related to the coordinates of the reference conguration B 0 . Considering the explicit form of the First Piola Kirchho stress tensor components, and supposing τ = τ (X 1 , X 2 ) (plane symmetry) the prior equilibrium equation is transformed into the three following partial dierential equations:

     (µ + τ 11 )y 1,11 + (µ + τ 22 )y 1,22 + 2τ 12 y 1,12 + p ,2 y 2,1 -p ,1 y 2,2 + p ,3 [y 3,1 y 2,2 -y 3,2 y 2,1 ] = 0, (µ + τ 11 )y 2,11 + (µ + τ 22 )y 2,22 + 2τ 12 y 2,12 + p ,1 y 1,2 -p ,2 y 1,1 + p ,3 [y 3,2 y 1,1 -y 3,1 y 1,2 ] = 0, (µ + τ 11 )y 3,11 + (µ + τ 22 )y 3,22 + 2τ 12 y 3,12 -p ,3 = 0.
(5.34)

Since the antiplane displacement eld depends only on the planar coordinates, and by using the third partial dierential equation in the system of equations (5.34) related to the 5.2. Formulation of the global crack problem 145 equilibrium equation, then the Lagrange multiplier can be expressed in the following form:

p(X 1 , X 2 , X 3 ) = αX 3 + q(X 1 , X 2 ), (5.35)
where α is a constant and q(., .) is a function depending on the planar coordinates X 1 and X 2 . Now if we consider that the crack faces are free of traction then the local boundary condition near the crack tip is mathematically equivalent to:

S(X 1 → 0 -, X 2 = 0, X 3 ). E 2 = 0 (5.36)
which can be expressed explicitly as:

S i2 = 0 if X 1 → 0 -, X 2 = 0, i ∈ {1, 2, 3}.
(5.37)

We notice that in an incompressible initially-stressed hyperelastic material whose the strain energy is described by the potential in equation (5.22), a pure antiplane deformation can be supported only if the plane initial stress component of shear vanishes (τ 12 = 0), whereas the plane deformation holds only if τ 32 = 0.

If the above boundary conditions hold for every X 3 , then using the incompressibility condition, the constant α vanishes and we can deduce:

p = p(X 1 , X 2 ), (5.38) 
and consequently the plane and antiplane problems become completely decoupled both in the levels of equilibrium equations and boundary conditions. In the remainder of this chapter, the boundary value problem formulation will be simplied using multiple transformations and then an analogy with the same studied deformation for a Neohookean potential is derived.

Some remarks need now to be presented. First, the assumed transformation is clearly induced by the boundary conditions at the crack faces and at innity. It was shown that this transformation is a superposition of two kinematical deformations: rst an anti plane deformation which we superpose a plane deformation. The question here is : since the crack faces are traction-free, what is the loading scenario of the boundary conditions at innity necessary to induce this transformation ? It is obvious that mixed in-plane mode 146 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body I and/or II loadings superposed to antiplane shear mode loading at innity lead to this kinematical deformation. Similar deformation would, in general, be expected to occur due to an antiplane shear mode III loading at innity since not all hyperelastic potentials can sustain antiplane deformation. Consequently, if antiplane kinematical deformation exists, particles will undergo a plane kinematic deformation for the majority of hyperelastic potentials. Also, the decoupling between the system of second order partial dierential equations function of the unknowns inplane and antiplane transformations is due to the use of Neohookean hyperelastic initially-stressed potential. In fact, [Horgan 2003a] showed, in their study of the same problem with generalised Neohookean hyperelastic potential (without residual stress), that this conjecture holds for Neohookean material. One can arm that the precedent result holds if and only if the material is Neohookean.

Analogy with NeoHookean potential

The objective of this section will be devoted to the simplication of the boundary value problem equations in order to put on spot the analagy of the same studied problem in the case of a standard Neo-Hookean potential. In the remainder of this section, the initial stress eld τ is supposed to be constant. Since the initial stress is auto-equilibrated stress eld as it is illustrated through the equation (5.2), and both the Lagrange multiplier, the two planar components of the mapping function y 1 and y 2 and the antiplane displacement u are functions of the planar coordinates, then the equilibrium equation (5.33) is reduced to the following three scalar partial dierential equations:

S i1,1 + S i2,2 = 0, i ∈ {1, 2, 3}.
(5.39)

It is remarkable that only the planar components of the initial stress eld are involved in the partial dierential equations related to the equilibrium equation as it is illustrated in equation (5.34). That's why we will dene the planar restriction of the initial stress eld denoted by τ p and it can be explicited as:

τ p = τ 11 τ 12 τ 12 τ 22
(5.40)
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The planar restriction of the initial stress eld τ p is a symmetric tensor and hence, using the spectral theory, the tensor τ p can be expressed in the following spectral form:

τ p = τ (p) 1 L p 1 ⊗ L p 1 + τ (p) 2 L p 2 ⊗ L p 2 , (5.41) 
where the basis dened through the principal vectors ( L

(p) 1 , L (p) 
2

) is an orthonormal one, which is equivalent to:

L p 1 ⊗ L p 1 + L p 2 ⊗ L p 2 = 1 p , L p i . L p j = δ ij , i, j ∈ {1, 2}.
(5.42)

and with 1 p denotes the planar identity tensor. The new orthonormal basis ( L p 1 , L p 2 , E 3 ) can be seen as a rotation of the cartesian one by an angle φ in the plane (X 1 , X 2 ) which implies that the eigenvectors of τ p can be expressed in the cartesian basis as:

L p 1 = cos(φ) E 1 + sin(φ) E 2 , L p 2 = -sin(φ) E 1 + cos(φ) E 2 , (5.43) 
Exploiting the expression of the eigenvectors in the cartesian basis illustrated through equation (5.43), the spectral form of the tensor τ p in equation (5.41) can be transformed to:

τ p = (τ (p) 1 cos 2 (φ) + τ (p) 2 sin 2 (φ)) E 1 ⊗ E 1 + (τ (p) 1 sin 2 (φ) + τ (p) 2 cos 2 (φ)) E 2 ⊗ E 2 + τ (p) 1 -τ (p) 2 2 sin(2φ)( E 1 ⊗ E 2 + E 2 ⊗ E 1 ) (5.44)
We notice that the expression of τ p is a π-periodic function of φ. If we can dene ( X1 , X2 ) as the new planar coordinates associated to the basis ( L p 1 , L p 2 ), they can be expressed in function of the cartesian coordinates as:

X1 = cos(φ)X 1 + sin(φ)X 2 , X2 = -sin(φ)X 1 + cos(φ)X 2 .
(5.45) 5.3. Analogy with NeoHookean potential 149 whereas the three partial dierential equations relative to the equilibrium equation illuminated in equation (5.39) are transformed to:

Ŝi1, 1 + Ŝi2, 2 = 0, i ∈ {1, 2, 3}.
(5.51)

Using the expressions of the dierent components of the First Piola Kirchho stress tensor components in the new basis ( L

(p) 1 , L (p) 
2 , E 3 ) relative to the coordinate system ( X1 , X2 , X 3 ) as they are illustrated through equation (5.48), the prior equilibrium equations are transformed into explicit dierential equations function of the mapping function components and the initial stress eigenvalues in the following way:

     (µ + τ (p) 1 )ŷ 1, 11 + (µ + τ (p) 2 )ŷ 1, 22 = p , 1 ŷ2, 2 -p , 2 ŷ2, 1 (µ + τ (p) 1 )ŷ 2, 11 + (µ + τ (p) 2 )ŷ 2, 22 = p , 2 ŷ1, 1 -p , 1 ŷ1, 2. (µ + τ (p) 1 )ŷ 3, 11 + (µ + τ (p)
2 )ŷ 3, 22 = 0.

(5.52) Using the variable changements as it was mentioned in equations (5.45-5.46), the incompressibility condition in equation (5.8) becomes:

J = ŷ1, 1 ŷ2, 2 -ŷ1, 2 ŷ2, 1 = 1
(5.53)

Exploiting the incompressibility condition illustrated through equation (5.53), and the previous partial dierential equation related to the equilibrium of plane deformation are transformed to:

ŷ1, î[(µ + τ (p) 1 )ŷ 1, 11 + (µ + τ (p) 2 )ŷ 1, 22 ] + ŷ2, î[(µ + τ (p) 1 )ŷ 2, 11 + (µ + τ (p) 2 )ŷ 2, 22 ] = p , î, i ∈ {1, 2}.
(5.54)

Now, using the following transformation:

     X1 = ξ -1 X1 X2 = ξ X2 X3 = X 3
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       ξ = ( µ + τ (p) 1 µ + τ (p) 2 ) 1 4 , µ eq = (µ + τ (p) 1 )(µ + τ (p)
2 )

(5.56) the equilibrium equation presented in equation (5.52) is equivalent to:

µ eq [ŷ 1, î ∆ŷ 1 + ŷ2, î ∆ŷ 2 ] = p , î, i ∈ {1, 2}, µ eq ∆ŷ 3 = 0, (5.57) 
with ∆ denotes the Laplacian operator using the coordinates ( X1 , X2 ) which is equivalent to:

∆. = . , 11 + . , 22 , (5.58) 
and consequently a similar equilibrium equation is nally obtained as the case of isotropic Neohookean plane-antiplane problem [Arfaoui 2018] with a set of suitable variables changements. This remark does not imply that the material behaviour is isotropic unless the initial stress eld is spheric.

Using the polar coordinates ( R, θ) associated to the cartesian coordinates ( X1 , X2 ) and which can be dened mathematically in relation to the previous polar coordinates ( R, θ) as:

                   R = Rg(θ) cos( θ) = (1/ξ) cos( θ) g(θ) sin( θ) = ξ sin( θ) g(θ) , g(θ) = ξ 2 cos( θ) 2 + (1/ξ) 2 sin( θ) 2 .
(5.59) then equation (5.57-1) related to the equilibrium equation for the plane deformaton can be expressed in terms of the polar coordinates like:

p , R = µ eq (ŷ 1, R ∆ŷ 1 + ŷ2, R ∆ŷ 2 ), p , θ = µ eq (ŷ 1, θ ∆ŷ 1 + ŷ2, θ ∆ŷ 2 ).
(5.60)
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Now, we will focus on the boundary conditions . Using the relation between the azimuthal angles θ and θ through the equation (5.47), the angular crack position becomes characterized by θ = ±πφ. Therefore the equations related to the local boundary conditions become:

cos(φ) Ŝi2 + sin(φ) Ŝi1 = 0, i ∈ {1, 2, 3}, if R → 0, θ = ±π -φ.
(5.61)

Now, using the expressions of the rst Piola Kirchho stress tensor components through the system of equations (5.48) and the relation between the coordinates ( X1 , X2 ) and ( X1 , X2 ) illustrated by equation (5.55), then the above equation (5.61) describing the local boundary conditions can be explicitly shown as:

                 sin(φ)(µ + τ (p) 1 )ξ ŷ1, 1 + cos(φ) µ + τ (p) 2 ξ ŷ1, 2 = p[sin(φ)ξ ŷ2, 2 - cos(φ) ξ ŷ2, 1], if θ = ω, ω -2π sin(φ)(µ + τ (p) 1 )ξ ŷ2, 1 + cos(φ) µ + τ (p) 2 ξ ŷ2, 2 = p[-sin(φ)ξ ŷ1, 2 + cos(φ) ξ ŷ1, 1], if θ = ω, ω -2π sin(φ)(µ + τ (p) 1 )ξ ŷ3, 1 + cos(φ) µ + τ (p) 2 ξ ŷ3, 2 = -τ 23 , if θ = ω, ω -2π
(5.62)

The incompressibility condition using the polar coordinates ( R, θ) is transformed to:

J = 1 R [ŷ 1, R ŷ2, θ -ŷ1, θ ŷ2, R] = 1 (5.63)
The crack faces position can be characterized in the polar coordinates ( R, θ) by { R → 0, θ = ω, ω -2π}, where the angle ω is dened as:

       cos(ω) = -cos(φ) ξγ , sin(ω) = ξ sin(φ) γ , γ = 1 ξ 2 cos 2 (φ) + ξ 2 sin 2 (φ), (5.64) 
Now if we consider the set of equations (5.45,5.47,5.55,5.64), then we get:

∂. ∂ X1 = cos(ω) ∂. ∂ R -sin(ω) R ∂. ∂ θ , if θ = ω. ∂. ∂ X2 = sin(ω) ∂. ∂ R + cos(ω) R ∂. ∂ θ , if θ = ω.
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X 2 X 1 R = constant (a) Initial polar coordinates plane X2 X1 R = constant φ (b) First transformation X2 X1 R = constant π - ω(c) Second transformation if ξ < 1
ξ sin(φ)ŷ i, 2 -cos(φ) ξ ŷi, 1 = γ ∂ ŷi ∂ R , θ = ω, ξ sin(φ)ŷ i, 1 + cos(φ) ξ ŷi, 2 = -γ R ∂ ŷi ∂ θ , θ = ω (5.66) 5.3. Analogy with NeoHookean potential 153 X2 X1 R = constant π - ω(d) Second transformation if ξ > 1 X2 X1 R = constant (e) Third transformation if ξ < 1 X2 X1 R = constant (f) Third transformation if ξ > 1
     p = µeq R2 [( ∂ ŷ1 ∂ θ ) 2 + ( ∂ ŷ2 ∂ θ ) 2 ], R → 0, θ = ω, ω -2π 0 = µeq R [ ∂ ŷ1 ∂ R ∂ ŷ1 ∂ θ + ∂ ŷ2 ∂ R ∂ ŷ2 ∂ θ ], R → 0, θ = ω, ω -2π, µeq R ∂u ∂ θ = β, R → 0, θ = ω, ω -2π,
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β = τ 23 γ (5.68)
It is remarkable that the obtained set of equilibrium equations and local boundary conditions are quasi-similar to the ones for a standard Neohookean incompressible material which are studied in (add reference here) considering the same transformation in equation (5.4) and the same local boundary conditions. The only dierence between the boundary value problem related to the hyperelastic potential (5.22) and the one of classical incompressible Neohookean material is:

• the crack position for the initially-stressed potential in equation (5.22) is characterized by θ = ω, ω -2π, whereas it is characterized by θ = ±π for the classical studies dealing with the standard incompressible Neohookean potential

• the local boundary condition for the antiplane displacement eld is homogenous for the classical NeoHookean potential, whereas it is not for the case of initially-stressed potential

To simplify the asymptotic resolution of the boundary value problem associated with the potential (5.22) and the transformation (5.4), a rotation of the polar coordinates can make the position of local boundary conditions the same for the two boundary values problems.

Thus we dene the new polar coordinates ( R, θ) as:

R = R θ = θ + π - ω (5.69)
The dierent transformations (or variables changes) enlightened in equations (5.47,5.59,5.69) can be graphically illustrated in gure (5.3). Using equation (5.69), the equilibrium equations expressed in the new set of the polar coordinates become:

     p , R = µ eq (ŷ 1, R ∆ŷ 1 + ŷ2, R ∆ŷ 2 ), p , θ = µ eq (ŷ 1, θ ∆ŷ 1 + ŷ2, θ ∆ŷ 
2 ), µ eq ∆u = 0.

(5.70) 5.4. Asymptotic resolution 155 with the laplacian operator denoted by ∆ is dened as:

∆. = ∂ 2 . ∂ R2 + 1 R ∂. ∂ R + 1 R2 ∂ 2 ∂ θ2 (5.71)
whereas for the boundary conditions they can be expressed as:

     p = µeq R2 [( ∂ ŷ1 ∂ θ ) 2 + ( ∂ ŷ2 ∂ θ ) 2 ], R → 0, θ = ±π 0 = µeq R [ ∂ ŷ1 ∂ R ∂ ŷ1 ∂ θ + ∂ ŷ2 ∂ R ∂ ŷ2 ∂ θ ], R → 0, θ = ±π, µeq R ∂u ∂ θ = β, R → 0, θ = ±π.
(5.72)

Since the partial dierential equation associated to the antiplane displacement eld u(., .) in terms of equilibrium equation and local boundary condition is linear, then the nonhomogeneity in the local boundary condition can easily treated by expressing the antiplane solution as:

u = u h + u p , (5.73) 
where u h is the homogenous solution and u p is the particular one. Both u p and u h satisfy the equilibrium equation illustrated through the equation (5.70-3), whereas for the local boundary condition we have:

µeq R ∂u h ∂ θ = 0, R → 0, θ = ±π, µeq R ∂up ∂ θ = β, R → 0, θ = ±π.
(5.74)

Finally, exploiting the the proposed transformations above, the plane-antiplane deformation problem within an incompressible initially-stressed hyperelastic material whose the material behaviour is described through the strain energy illustrated by equation (5.22), the dierential equations for the equilibrium equations and the local boundary conditions becomes similar to the one of incompressible Neohookean material.

Asymptotic resolution

Plane deformation

The asymptotic analysis for plane deformations near a crack tip in incompressible isotropic homogeneous materials was studied by Stephensen in [Stephenson 1982] where a generalized Neohookean potential was adopted to characterize the hyperelastic behaviour. Such a 156 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body study was generalized in [Mansouri 2016[START_REF] Mansouri | On some mechanical and numerical singular problems in incompressible isotropic hyperelastic cracked solids[END_REF] to the case of a wedge in an incompressible Neohookean bimaterial composite. These works also have permitted to investigate the logarithmic singularities which it has shown to appear only in particular cases. Besides, for a crack problem whose incompressible material behaviour is characterized by Neohookean potential, the logarithmic singularities vanishes as it was shown in [Mansouri 2016]. Hence, based on the works of [Stephenson 1982, Mansouri 2016] the analogy between the boundary value problem related to the transformation (5.4) (in particular the plane deformation when u = 0) with the potential of strain energy illustrated in equation ( 5.22) and the boundary value problem related to the same transformation eld with the classical Neohookean potential, the asymptotic expansions of the planar vectorial mapping function components ŷ1 and ŷ2 become:

ŷk ( R, θ) = Rm 1 U k ( θ) + Rm 2 V k ( θ) + Rm 3 W k ( θ) + Rm 4 Z k ( θ) + o( Rm 4 ), k ∈ {1, 2} (5.75) with  
                              U k ( θ) = a k sin( θ 2 ), k ∈ {1, 2} V 1 ( θ) = 1 a 2 [a 1 χ 1 ( θ) -a 2 ψ 1 ( θ)], V 2 ( θ) = 1 a 2 [a 2 χ 1 ( θ) + a 1 ψ 1 ( θ)], W 1 ( θ) = 1 a 2 [a 1 χ 2 ( θ) -a 2 ψ 2 ( θ)], W 2 ( θ) = 1 a 2 [a 2 χ 2 ( θ) + a 1 ψ 2 ( θ)], Z 1 ( θ) = 1 a 2 [a 1 χ 3 ( θ) -a 2 ψ 3 ( θ)], Z 2 ( θ) = 1 a 2 [a 2 χ 3 ( θ) + a 1 ψ 3 ( θ)], a 2 = a 2 1 + a 2 2
(5.76)
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where the functions ψ i , χ i , i ∈ {1, 2, 3} can be dened as:

                               ψ 1 ( θ) = b 2 sin 2 ( θ 2 ), χ 1 ( θ) = b 1 cos( θ), ψ 2 ( θ) = c 2 sin 3 ( θ 2 ) + 2b 1 b 2 a 2 sin( θ 2 ) -4 sin 2 ( θ 2 ) cos( θ 2 ) -4 3 cos 2 ( θ 2 ), χ 2 ( θ) = c 1 sin( 3 θ 2 ) - b 2 2 2a 2 sin( θ 2 ), ψ 3 ( θ) = d 1 sin 4 ( θ 2 ) + 1 a 2 (3b 1 c 2 - b 3 2 a 2 + 8b 2 1 b 2 a 2 + 6b 2 c 1 ) sin 2 ( θ 2 ) + b 2 1 b 2 a 4 -8b 1 a 2 cos( θ 2 ) sin 3 ( θ 2 ) -2b 1 a 2 cos 3 ( θ 2 ) sin( θ 2 ), χ 3 ( θ) = b 2 a 2 [2 sin( θ) -sin(2 θ)] + d 2 cos(2 θ) + b 2 a 2 [ 2b 1 b 2 a 2 + 3c 2 4 ] cos( θ) -b 2 a 2 [ 7 4 b 1 b 2 a 2 + 9 16 c 2 ]
and the power terms exponents are reduced to:

m n = n 2 , n ∈ {1, 2, 3, 4}. 
(5.77)

In the other hand, the asymptotic expansion for the Lagrange multiplier p can be presented as in the following form:

p( R, θ) = Rl 1 P 1 ( θ) + Rl 2 P 2 ( θ) + o( Rl 2 ) (5.78)
where the functions P 1 and P 2 are dened as:

P 1 ( θ) = - 2µeqb 2 a 2 cos( θ 2 ), P 2 ( θ) = 2µeq a 2 [4 -2 sin 2 ( θ 2 ) -( 3c 2 2 + 5b 1 b 2 a 2 ) sin( θ)],
(5.79) whereas the radial power terms exponents l k can be presented as:

l n = n 2 , n ∈ {1, 2}.
(5.80)

By inverting the relations in equation (5.46), the components (y 1 , y 2 ) of the deformation function can be expressed as:

y 1 = cos(φ)ŷ 1 -sin(φ)ŷ 2 y 2 = sin(φ)ŷ 1 + cos(φ)ŷ 2 (5.81)
and by consequence, the asymptotic expansions for both the components y 1 and y 2 can be easily obtained.
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Antiplane deformation

For harmonic problem, as it was discussed in [START_REF] Grisvard | Singularities in boundary value problems[END_REF]], the asymptotic expansion of the displacement eld u will be in the following mathematical form:

u( R, θ) = ∞ i=1 Rm i [U a i ( θ) + log( R)V a i ( θ)].
(5.82)

Since the partial dierential problem associated to the antiplane displacement eld u(., .) is linear, as it was mentioned above the complete solution for the antiplane displacement eld can be the sum of an homogeneous and particular solution denoted subsequently as u h and u p . A simple solution that could be proposed as a particular solution can be on the form:

u p ( R, θ) = β µ eq R sin( θ).
(5.83)

Using the asymptotic form in equation (5.82) and the equilibrium equation (5.70-3), leads to:

m 2 i V a i ( θ) + V a i ( θ) = 0, ∀i ∈ N * , m 2 i U a i ( θ) + U a i ( θ) = -2m i V a i ( θ), ∀i ∈ N * , (5.84) 
where the indexation ". " stands for the derivation relative to the variable θ. Resolving the prior system of dierential equations leads to the following solutions:

V a i ( θ) = A i cos(m i θ) + B i sin(m i θ), ∀i ∈ N * U a i ( θ) = C i cos(m i θ) + D i sin(m i θ) -A i m i θ sin(m i θ) + B i m i θ-A i m i cos(m i θ), ∀i ∈ N * .
(5.85)

Now, exploiting the boundary conditions through the equation (5.74-1) and by separating the logarithmic, we get:

V a i ( θ = ±π) = 0, ∀i ∈ N * U a i ( θ = ±π) = 0, ∀i ∈ N * .
(5.86)

Bearing in mind the explicit form of the functions U a i and V a i illustrated through the equation (5.85), the boundary conditions illustrated in equation (5.92) are equivalent to:

           -m i A i sin(m i π) + m i B i cos(m i π) = 0, ∀i ∈ N * m i A i sin(m i π) + m i B i cos(m i π) = 0, ∀i ∈ N * -m i C i sin(m i π) -B i m i π sin(m i π) + [m i D i + B i ] cos(m i π) -A i m i π cos(m i π) = 0, ∀i ∈ N * m i C i sin(m i π) -B i m i π sin(m i π) + [m i D i + B i ] cos(m i π) + A i m i π cos(m i π) = 0, ∀i ∈ N * .
(5.87) Thus a necessary and sucient condition for the non vanishing of the azimuthal functions V a i related to the logarithmic terms is:

m i = i 2 , ∀i ∈ N * .
(5.88) which leads to:

A 2k+1 = 0, B ki = 0, ∀k ∈ N.
(5.89)

Using the expression of the power terms m i in the last equation (5.99), then the boundary conditions related to the U a i functions leads to:

D 2k = A 2k = 0, C 2k+1 = B 2k+1 = 0, ∀k ∈ N, (5.90) 
which implies the vanishing of the functions V a i which is in contrast with the hypothesis made in the beginning of the asymptotic resolution. Therefore, the logarithmic terms can not be present in the asymptotic expansion of the antiplane displacement eld. Now, by the same way as it was done above, the asymptotic expansion related to the homogenous solution u h is reduced to:

u( R, θ) = ∞ i=1 Rm i U a i ( θ), (5.91) 
with

U a i ( θ) = C i cos(m i θ) + D i sin(m i θ), ∀i ∈ N * , m i = i 2 , ∀i ∈ N * .
(5.92) 160 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body Finally, using the linearity of the antiplane problem, the asymptotic expansion for the antiplane displacement eld can be presented as:

u( R, θ) = β µ eq R sin( θ) + ∞ i=0 Rm 2i+1 D 2i+1 sin(m 2i+1 θ) + ∞ i=1 Rm 2i C 2i cos(m 2i θ).
(5.93)

Discussion of the asymptotic results

The formulation studied above for an incompressible initially-stressed Neohookean is made with an only assumption that the initial stress eld is constant. If we suppose that the initial stress tensor is a pressure eld which means:

τ = p 0 1 (5.94)
Then both the rst Piola Kirchho and the Cauchy stress tensor can be expressed as: S = µ eq F -pF -T , σ = µ eq B -p1.

(5.95) with µ eq = µ + p 0 (5.96)

In other words, in the case of a spherical initial stress eld, the mechanical behaviour of the initially-stressed hyperelastic material described by the potential in equation (5.22) is equivalent to an incompressible Neohookean hyperelastic material where the shear modulus is replaced by the equivalent modulus µ eq . Since the initial stress eld is spheric then the parameters related to it and introduced in the asymptotic expansion becomes: ξ = 1 whereas φ is undetermined. By consequence the asymptotic expansions, derived above for the coupled plane-antiplane deformations, becomes reduced to the classical ones for a hyperelastic incompressible Neohookean material which was studied in many works [Stephenson 1982, Arfaoui 2018, Mansouri 2016, Grine 2019].

In the remainder of this chapter the initial stress is considered on its general form. Now, if we consider a superimposed rigid rotation to the mapping vectorial function y, then the 5.5. Discussion of the asymptotic results
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resulted deformation function y * can be expressed as:

y * = Q y (5.97)
where Q is an orthogonal tensor (i.e QQ T = Q T Q = 1) and it can be seen as a deformation gradient tensor associated to a rigid rotation. Consequently, the derived deformation gradient tensor associated to y * becomes:

F * = ∇ X y * = QF (5.98)
whereas the rst Piola-Kirchho and the Cauchy stress tensor associated to the two deformations functions y and y * can be expressed as:

S * = QS, σ * = QσQ T .
(5.99)

Considering the local boundary condition related to the traction-free of crack faces and illustrated through equation (5.36), then it is clear that the rst Piola Kirchho stress tensor S * associated to the superimposed rigid rotation Q, satises also the same equilibrium equations and local boundary conditions since:

DivS * = Div(QS) = QDivS = Q. 0 = 0, S * . E 2 = QS. E 2 = Q. 0 = 0, ifX 2 = 0, X 1 → 0 -.
(5.100) Thus, if ( y, σ) are the solution of the boundary value problem (considering the equilibrium equation and the local boundary conditions) then ( y * = Q y, σ * = QσQ T ) are also a solution.

To analyze the complicated form of the asymptotic expansion associated to the deformation components, it is convenient to consider a superimposed rigid rotation to the mapping vectorial function as it was done by Stephensen in [Stephenson 1982] for the isotropic incompressible NeoHookean plane problem. In fact, the rigid rotation Q can be interpreted as a change of the observer to spot on the crack rotation or just a simple modication of the constant parameters to get a simple appropriate solution without any eective rotation. Both interpretations can be exploited here to simplify the analysis of the asymptotic form of the transformation eld. In fact, the choice of Q is purely motivated by the idea of having deformation components with dierent orders and by consequence the crack faces 162 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body opening in the deformed conguration can be clearly discussed.

For the boundary value problem treated in this chapter, the considered superimposed rotation will be in the following form:

Q = Q 2 Q 1 (5.101)
with

Q 1 =    a 2 a -a 1 a 0 a 1 a a 1 a 0 0 0 1    , Q 2 =    cos(φ) -sin(φ) 0 sin(φ) cos(φ) 0 0 0 1    , (5.102) 
where the coecients a 1 and a 2 are arbitrary constants and they are involved in the asymptotic form of the plane deformation components illustrated in equation (5.76). It is important to notice that the parameter a cannot vanish because from the beginning of the asymptotic resolution for the plane problem, the works in the literature dealing with such problem (mentioned above) have excluded the vanishing of the rst term of the transformation eld components. Hence the singularity of the rotation tensor Q 1 is avoided. Since Q 1 is an orthogonal tensor, it can be associated to a rotation of an angle ψ, which implies:

Q 1 =    cos(ψ) -sin(ψ) 0 sin(ψ) cos(ψ) 0 0 0 1    (5.103)
and consequently the relation between the rotation angle ψ and the coecients (a 1 , a 2 ) as:

sin(ψ) = a 2 a , cos(ψ) = a 1 a (5.104)
Now, exploiting the representation of the rotation tensors Q 1 and Q 2 in equations (5.99-5.100), then the resulting tensor of rigid rotation Q dened in equation (5.98) can be expressed in the following form:

Q =    cos(ψ + φ) -sin(ψ + φ) 0 sin(ψ + φ) cos(ψ + φ) 0 0 0 1    (5.105)
5.5. Discussion of the asymptotic results
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In the case of unstressed Neohookean material, the crack rotation is induced only by the boundary conditions so far from the crack-tip. Although, in the case of initially-stressed material studied here, the crack rotation is a result of two factors: the so-far boundary conditions and the initial stress eld itself. Such inuence of the initial stress led can be divided in two parts:

• an explicit inuence through the spectral angle φ based on the rotation tensor Q 2 .

• an implicit inuence based on the rotation tensor Q 1 , since the so-far boundary conditions eect on the crack rotation is related to the strain energy potential which depends itself on the initial stress eld τ .

Discussion of the deformation near the crack front

Now, considering the asymptotic expansion of the boundary value problem solution presented in the above sections, the deformation components after the rigid motion described by the tensor Q, can be approximated by the following asymptotic expansions:

     y * 1 = -1 a Rψ 1 ( θ) -1 a R 3 2 ψ 2 ( θ) + o(R 3 2 ), y * 2 = a R 1 2 U ( θ) + 1 a Rχ 1 ( θ) + 1 a R 3 2 χ 2 ( θ) + o(R 3 
2 ),

y * 3 = a 3 R 1 2 U ( θ) + R[b 3 sin( θ) + c 3 cos( θ)] + d 3 R 3 2 sin( 3 θ 2 ) + o(R 3 
2 ).

(5.106)

At the crack faces the components y * 1 , y * 2 and y * 3 are reduced to:

     y * 1 ( R, θ = π) = -b 2 a R -1 a 2 [c 2 a + 2b 1 b 2 ] R 3 2 + o(R 3 2 ), y * 2 ( R, θ = π) = a R 1 2 + o(R 1 2 ), y * 3 ( R, θ = π) = a 3 R 1 2 -c 3 R -d 3 R 3 2 + o(R 3 
2 ).

(5.107)

     y * 1 ( R, θ = -π) = -b 2 a R + 1 a 2 [c 2 a + 2b 1 b 2 ] R 3 2 + o(R 3 2 ), y * 2 ( R, θ = -π) = -a R 1 2 + o(R 1 2 ), y * 3 ( R, θ = -π) = -a 3 R 1 2 -c 3 R + d 3 R 3 2 + o(R 3 
2 ).

(5.108)

To simplify the analysis of the crack opening shape, we will restrict the analysis in the rst place for the plane deformation. Bearing in mind the plane transformation eld components at the level of the crack faces described above in equations (5.107-5.108) and 164 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body considering the case where b 2 = 0 we deduce:

y * 1 ( R, θ = ±π) = - b 2 a 3 (y * 2 ( R, θ = ±π)) 2 + o((y * 2 ( R, θ = ±π)) 2 ), with y * 2 ≥ 0 if θ = π y * 2 ≤ 0 if θ = -π (5.109)
This description shows that the crack faces are transformed into two arcs of the same parabola with a vertical tangent at the crack tip. The concavity of the deforemed crack faces is determined by the sign of the unknown constant b 2 , where it is convex if b 2 < 0 and concave if b 2 > 0 as it is illustrated in gure (5.4-a). In case where b 2 = 0, we can deduce

y * 1 ( R, θ = ±π) = ± c 2 a 4 (y * 2 ( R, θ = ±π)) 2 + o((y * 2 ( R, θ = ±π)) 2 ), with y * 2 ≥ 0 if θ = π y * 2 ≤ 0 if θ = -π (5.110)
The mathematical description of the latter approximation, shows that every crack face is transformed to a parabolic arc. Although the deformed crack faces share the same vertical tangent at the crack tip, they have dierent concavity. Consequently, the crack faces are transformed into a S-shaped curve as it is shown in gure (5.4-c). Finally, if we consider b 2 = c 2 = 0, the mathematical characterization of the deformed crack faces in the plane of the cross section Ω 0 is reduced to: (5.111) In this case, the deformed crack faces have a parabolic-like shape as the case for b 2 = 0 but with faster growing form and with a vertical tangent at the crack tip as it is illustrated through gure (5.4-b). Now, in the following the deformed crack shape will be discussed in the case of pure antiplane deformation. In this case, the asymptotic approximation for the components y * 5.5. Discussion of the asymptotic results 165 and y * 1 at the level of the crack faces become: In fact, we can sort the class of the graphical representation of the deformed crack faces into two cases. the rst class is if the rst non-vanishing order related to the antiplane 166

y * 1 ( R, θ = ±π) = - d 1 a 3 (y * 2 ( R, θ = ±π)) 2 + o((y * 2 ( R, θ = ±π)) 2 ), with y * 2 ≥ 0 if θ = π y * 2 ≤ 0 if θ = -π
y 1 (R, π) = -R y 3 (R, π) = ∞ i=0 Rm 2i+1 D 2i+1 (-1) i + ∞ i=1 Rm 2i C 2i (-1) i (5.112) y 1 (R, -π) = -R y 3 (R, -π) = -∞ i=0 Rm 2i+1 D 2i+1 (-1) i + ∞ i=1 Rm 2i C 2i (-1) i (5.113) X 2 X 1 φ + ψ -: Deformed crack (a) case b 2 = 0 X 2 X 1 φ + ψ -: Deformed crack (b) case b 2 = c 2 = 0 & d 2 = 0 X 2 X 1 -: Deformed crack φ + ψ (c) case b 2 = 0 & c 2 = 0
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X 3 X 1 -: 1 -: 2 -: 3 -: 4 (a) Case 1 of non crack-opening X 3 X 1 -: 1 -: 2 -: 3 -: 4 (b) Case 2 of non crack-opening X 3 X 1 -: 1 2 -: 3
y 1 (R, ±π) = -R y 3 (R, ±π) = ± Rm 2i 0 +1 D 2i 0 +1 (-1) i + o( Rm 2i 0 +1 ) (5.114)
which leads to:

y 3 (R, ±π) = ±(-1) i γ m 2i+1 D 2i+1 (-y 1 (R, ±π)) m 2i+1 + o( Rm 2i+1 ) (5.115)
In this rst class two possible situations are possible:

• if i 0 = 0 then the geometrical shape of the crack faces is a parabola whose the axis is aligned with X 1 -axis, which eludes the opening of the crack in the X 3 direction (see gure (5.5-c)).

• if i 0 > 0, then each crack-face is transformed into a dierent parabolic-arc whose the axis is aligned with the X 3 -axis. in such case the crack has the intention to be closed in the vicinity of the crack-tip (see gure (5.5-c)).

The second class of the deformed crack faces is characterized by a rst asymptotic term of the antiplane component y 3 related to the power term m 2i 0 which is equivalent to:

y 1 (R, ±π) = -R y 3 (R, ±π) = Rm 2i 0 C 2i 0 (-1) i + o( Rm 2i 0 ) (5.116)
which implies:

y 3 (R, ±π) = (-1) i γ m 2i 0 C 2i 0 (-y 1 (R, ±π)) m 2i 0 + o( Rm 2i 0 ) (5.117)
In this case the crack faces are transformed into the same shape which can be a simple straight line (if i 0 = 1) or parabolic-like shape (if i 0 > 1) as it is illustrated in gures (5.5-a) and (5.5-b).

The transformation studied here and illuminated through equation (5.4), is an antiplane deformation followed by a plane deformation as it was illustrated through equation (5.7). Hence, in the case of couple plane-antiplane deformation, the deformed crack shape can be deduced as a combination of plane deformation of the antiplane deformed shape.

We present here some examples for dierent three-dimensional deformed crack shapes illustrated in the table of gures (5.1). 168 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body

In the objective to simplify the analysis of the asymptotic results, we will rewrite the quantities g and γ (dened above in equations (5.59-4,5.64-3)) as functions parametrized by the coecients φ and ξ and we will dene new function f 0 as the following:

       g(ξ, φ; θ) = 1 ξ 2 cos 2 (θ -φ) + ξ 2 sin 2 (θ -φ), γ(ξ, φ) = g(ξ, φ; π), f 0 (ξ, φ; θ) = cos( θ).
(5.118) Such parametrization of the previous functions will be omitted unless it is necessary. Using the set of equations (5.47,5.59,5.64,5.69), we can derive:

sin( θ) = sin(θ) g(θ)γ (5.119) Since θ, θ ∈ [-π, π],
exploiting equations (5.118-5.119) we can deduce that the variables θ and θ have the same sign. Thus, with some trigonometric properties we can deduce:

   sin( θ 2 ) = 1-cos( θ) 2 sign(θ), ∀θ ∈] -π π[, cos( θ 2 ) = 1-cos( θ) 2 , ∀θ ∈] -π π[.
(5.120) Now, we can express the azimuthal function related to the rst order of the component y * 1 of the deformation eld as:

f 1 (ξ, φ; θ) = ( 1 ξ 2 cos 2 ( θ) + ξ 2 sin 2 ( θ)) 1 4
sin( θ 2 ) = g(ξ, φ; θ)

1 2
1f 0 (ξ, φ; θ) 2 sign(θ)

(5.121)

Focusing on the functions f 0 , g and γ, we can derive the following properties:

• if we interchange the order of the eigenvalues (τ

(p) 1 , τ (p) 
2 ) as it is illustrated in gure (5.6), we derive the following mathematical property:

     g(ξ, φ; θ) = g( 1 ξ , φ + π 2 ; θ), f 0 (ξ, φ; θ) = f 0 ( 1 ξ , φ + π 2 ; θ), γ(ξ, φ) = γ( 1 ξ , φ + π 2 ).
(5.122)

• if we made a π-rotation around the X 1 -axis (crack direction), as it is enlightened in Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body gure (5.7), it implies:

     g(ξ, π 4 ; θ) = g( 1 ξ , π 4 ; -θ), γ(ξ, π 4 ) = γ( 1 ξ , π 4 ), f 0 (ξ, π 4 ; θ) = f 0 ( 1 ξ , π 4 ; -θ).
(5.123)

Exploiting the prior mathematical properties, the rst azimuthal function of the component y * 1 satises:

f 1 (ξ, φ; θ) = f 1 ( 1 ξ , φ + π 2 ; θ) (5.124)
In the case where φ = 0, the vertical deformation to the crack plane y * 2 (respectively the aligned deformation to the crack faces y * 1 ) is impair (respectively is pair), and hence the rst order of the deformation eld represent a deformation solution of the mode-I type. Focusing on the gure (5.8-a) and bearing in mind the property presented through equation (5.122), in case where one of the eigenvector of the planar initial stress eld τ p is aligned with crack direction (i.e φ = kπ 2 , k ∈ Z ), the vertical transformation to the crack plane y * 2 reaches its maximum at the level of the crack faces if the eigenvalue associated to eigenvector orthogonal to the crack faces is greater than the other one (i.e ξ < 1 if φ = 0). In other words, in this case, the crack opening is maximum of the vertical displacement near the crack tip. But, in the contrary case where the maximum of the eigenvalues is related to the eigenvector is parallel to the crack faces direction, the maximum of vertical deformation to the crack plane is not reached an azimuthal direction dierent to the crack faces, and which depends on the initial stress eld τ p through the parameters ξ and φ as it is illustrated in the set of gures (5.8).

To simplify the previous assertainment, let us suppose that the crack is only subjected to an initial stress eld orthogonal to the crack faces (φ = 0, τ

(p) 1 = 0, τ (p) 2 = 0). If the initial stress eld is of tensile nature (τ (p) 2 > 0 → ξ < 1) (respectively compressive nature (τ (p) < 0 → ξ > 1)
) then the crack opening increases (respectively decreases) compared to the unstressed case (ξ = 1) as it is illustrated in gures (5.8-a,5.9-a). Such a result is coherent with what is usually "believed" in the literature about the inuence of the residual stress nature on crack problems. When the residual stress is of compressive nature, it participates in the closing of the crack or at least limits the inuence of the so-far loading in the crack opening which brakes the crack propagation. Although, if the residual stress is of tensile nature, it participates in the increasing of the crack opening and hence it promotes the crack propagation. It is remarkable that when the eigenvectors of the initial stress eld τ p is not aligned with the crack faces, the vertical and the horizontal deformations reaches its maximum in absolute value in one direction near the crack tip dierent of those of the crack faces as it is illustrated in gures (5.8-5.9). Focusing on the gures (5.8-5.9), it seems that the initial stress eld creates a sort of perturbation of the deformation eld relatively to the 174 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body 

θ X 1 X 2 X1 X 2 τ (p) 1 τ (p) 2 -θ X 1 X 2 X 1 X2 τ (p) 1 τ (p) 2
-3 -2 -1 0 1 2 3 -1 -0.5 0 0.5 1 θ g(θ) 0.5 sin( θ 2 ) ξ = 1/2 ξ = 3/5 ξ = 3/4 ξ = 1 ξ = 4/3 ξ = 5/3 ξ = 2 (a) φ = 0 -3 -2 -1 0 1 2 
                                     σ * 11 = µeqb 2 2 a 2 sin 2 ( θ 2 ) + o(1), ∀ θ = 0, σ * 11 = µeqb 2 6a R 1 2 + o( R 1 2 ), if θ = 0, σ * 22 = µeqa 2 4 R-1 -µ eq b 1 R-1 2 sin( θ 2 ) + o( R-1 2 ), σ * 12 = - µeqb 2 2 R-1 2 sin( θ 2 ) + o( R-1 2 ), ∀ θ = 0, σ * 12 = - µeqb 1 b 2 2a 2 + o(1), if θ = 0, σ * 13 = - µeqb 2 a 3 2a R-1 2 sin( θ 2 ) + o( R-1 2 ), ∀ θ = 0, σ * 13 = - µeqb 2 2a 3 (2a 3 c 3 -2ab 1 + b 1 ) + o(1), if θ = 0, σ * 23 = µeqaa 3 4 R-1 + R-1 2 [α ( 
                               α (23) 11
= a 2 (µ eq b 3 + τ23 ξ) α (5.127)

Discussing merely the form of the stress Cauchy components shows, that unlike the case of linear elasticity [Seweryn 1996], they have dierent radial and azimuthal terms. Also the singular orders depend on the azimuthal direction (see the example of the components σ * 11 , σ * 12 and σ * 13 ). In the case of plane deformations, the component σ * 22 is most singular component, which means the material element near the crack tip is essentially subjected to a uniaxial traction loading in the rst order in the direction of X * 2 -axis. Hence such a fact permits the planar opening of the crack regardless of the amplitude or the nature of the boundary conditions so at innity (so far from the crack tip). As in the case of the deformations components, the initial stress eld creates a sort of perturbation around the unstressed solution for the azimuthal function associated with the dierent Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body Cauchy stress components (see gures (5.10-12)). For plane deformations, in the case of unstressed Neohookean material, only the shear and normal components σ * 12 and σ * 22 are singular. Whereas in the case of an initially-stressed material, we have the antiplane shear component σ * 23 as an extra singular term due to the coupling generated due to the antiplane initial stress shear components τ 13 and τ 23 .

In the case of pure antiplane deformation, the antiplane axial stress components σ * 33 dominates and the most singular radial term is R -1 . In other terms, the material element near the crack tip under an antiplane deformation is subjected to an out-of-plane tensile loading. Only σ * 32 and σ * 33 are the singular stress components related to the antiplane deformation. If we focus on the coupled plane-antiplane deformations, only the stress components σ * 22 , σ * 32 and σ * 33 dominate through the singular radial term R -1 . This implies that the material element in the vicinity of the crack tip is subjected to a triaxial loading of bi-axial tensile coupled to a plane shear. The triaxial deformation leads to the singular behaviour for all the shear stress components.

When one of the eigenvectors of the initial stress eld τ p is aligned with crack faces, the most singular term of the plane shear is impair function of the azimuthal planar coordinate. If ξ ≥ 1, then the maximum of planar shear component of the stress eld is reached at the crack faces, whereas in the opposite case, the maximum is reached in azimuthal direction dierent of those of the crack faces and depends on both the parameters ξ and φ as it is illustrated in gure (5.15-a). In addition, if φ = kπ 2 , k ∈ Z, the singular term associated to the Cauchy stress component σ * 12 is reached in position dierent of those of the crack faces and it depends on the spectral parameters (ξ, φ) as it is enlightened in gures (5.11-b-c-d).

Discussion of the strain energy near the crack front

Considering the strain energy expression as it is illustrated in equation (5.22) and taking into account the asymptotic expansion of the displacement eld illuminated through equations (5.75-5.77), then the asymptotic expansion of the strain energy becomes:

W = µ eq 2 (a 2 + a 2 3 ) R-1 + o(R -1
).

(5.128) Considering the function g(., .; .), it is remarkable that the strain energy is maximal (respectively minimal) in the direction relative to the eigenvector related to the maximal (re-180

Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body spectively the minimal) eigenvalues of the planar initial stress eld τ p as it is highlighted in gure (5.12). Since the strain energy density is involved in the J-integral calculation Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body To develop the numerical model for a cracked initially-stressed material based on the 184 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body XFEM approach, let us represent the boundary value problem in a brief way. First of all, to simplify the numerical analysis, we consider a plane problem, where the solid body is homogeneous incompressible material containing a crack. The reference conguration is denoted by Ω 0 where the solid body is subjected to an equilibrated initial stress eld.

-3 -2 -1 0 1 2 3 -1 -0.5 0 0.5 1 θ g(θ) -0.5 sin( θ 2 ) ξ = 1/2 ξ = 3/5 ξ = 3/4 ξ = 1 ξ = 4/3 ξ = 5/3 ξ = 2 (c) φ = π 4 -3 -2 -1 0 1 2 
Whereas the deformed conguration will be denoted by Ω t as it is illustrated through gure (5. 

                     divσ = 0, in ω t , σ. n = t d , on γ T , u = u d , on γ u σ. n = 0, on γ\(γ T ∪ γ u ), σ = µB + F τ F T -p1, det(F ) = 1.
(5.129)

the second set is devoted to Lagrangian formulation (relatively to the reference conguration)

                     DivS = 0, in Ω 0 , S. N = t d , on Γ T , u = u d , on Γ u S. N = 0, on Γ\(Γ T ∪ Γ u ), S = µF + F τ -pF -T , det(F ) = 1.
(5.130) whereas the last set is dedicated to the equilibrium of the initial stress eld dened on the reference conguration Divτ = 0, in Ω 0 , τ . N = t 0 , on Γ.

(5.131) 5.6. Numerical analysis of a cracked initially-stressed material 185 5.6.2 Variational formulation and discretization of the problem

The variational formulation of the boundary value problem is usually referred to as the weak formulation or in a more physical interpretation as the virtual work formulation. In the objective to elaborate the variational formulation, in absence of volumetric forces and in the scope of static deformations, the internal energy P in the material body can be modeled through the following integral form: 5.132) where t denotes the force vector to what the material body is subjected in the refernce conguration on the boundary Γ. The displacement eld solution of the boundary value problem minimizes the stored energy P. The incompressible behavior is equivalent to the fact that the material supports only isochoric deformation. Such internal constraint can be represented through the following condition:

P = Ω 0 W (1 + ∇ u) dΩ 0 - Γ t. udΓ ( 
Ψ inc (J) = 0 (5.133)
where Ψ inc is a suciently smooth function. Hence, taking account of the incompressibility condition, the displacement eld u minimize the modied potential P * which can be expressed as:

P * = Ω 0 W (1 + ∇ u) dΩ 0 - Γ t. udΓ - Ω 0 pΨ inc (det(1 + ∇ u))dΩ 0 (5.134)
By consequence, if we consider a 2-dimensional vector eld v that will be denoted as a virtual displacement eld, then the displacement eld u solution of the boundary value problem satises: (5.135) where V denotes the space of virtual displacement eld and it can be dened as: (5.136) 186 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body with W .,. (Ω 0 ) denotes the Sobolov space dened on the domain of the reference conguration Ω 0 whereas s 1 and s 2 depend on the strain energy and the regularity of the virtual displacement elds. Similarly, the weak variational formulation of the incompressibility condition can be presented as:

Ω 0 ∂W ∂F (1 + ∇ u) : ∇ v dΩ 0 - Ω 0 p ∂Ψ inc ∂F (det(1 + ∇ u)) : ∇ vdΩ 0 = Γ T t d . vdΓ, ∀ v ∈ V,
V = { v ∈ W s 1 ,s 2 (Ω 0 ), | v |Γu = 0},
Ω 0 Ψ inc (det(1 + ∇ u)) q dΩ 0 = 0, ∀ q ∈ Q (5.137)
where Q denotes the space of virtual Lagrange multiplier and it is dened as:

Q = { v ∈ W 0,s * (Ω 0 )} (5.138)
where s * characterize the regularity of the virtual Lagrange multipliers. We notice that the Lagrange multiplier p depends on the function Ψ inc choice. For the numerical resolution of the variational formulation highlighted in equations (5.155,5.156), a linearization procedure has to be made. Let us dened the increments of displacement eld and the Lagrange multiplier as the following:

u = u 0 + δ u, p = p 0 + δp (5.139)
where the indexation u 0 and p 0 denote reference values for the described boundary value problem solutions. Thus with suciently small variations for the u and p (||δ u|| << 1, |δp| << 1) result of a small variation of the external loading (|||δ t| << 1 and |||δ u d | << 1), the linearization of both the compressible part of rst Piola Kirchho stress tensor and the incompressibility potential can be presented as:

∂W ∂F (1 + u) = ∂W ∂F (1 + ∇ u 0 ) + ∂ 2 W ∂F ∂F (1 + ∇ u 0 ) : ∇ δu + o(∇ δu).
(5.140)

Ψ inc (J(1 + ∇ u)) = Ψ(J(1 + ∇ u 0 ))+ < D(Ψ inc (J(1 + ∇ u)))( u 0 ), ∇ δu > +o(∇ δu).
(5.141)

To ensure the coherence between the expression of the rst Piola Kirchho stress tensor in equation (5.24) and the variational formulation in equation (5.155), the function Ψ inc representing the incompressibility constraint must satisfy:

Ψ inc (J) = J -1.
(5.142)

Hence, the linearization of the weak formulation of the boundary value problem can be presented in the following equations:

a L (δ u, v) + b L (δp, v) = R u ( v), ∀ v ∈ V (5.143) b L (q, δ u) = R p (q), ∀ q ∈ Q (5.144)
with the linearized form of the bilinear operator a(., .) and the mixed operator b(., .) can be explicitly presented as:

a L (δ u, v) = Ω 0 [ ∂ 2 W ∂F ∂F (1 + ∇ u 0 ) : ∇δ u] : ∇ v dΩ 0 + Ω 0 p 0 [F -T 0 (∇δ u) T F -T 0 ] : ∇ v dΩ 0 .
(5.145) (5.146) whereas the residual terms for both the energy balance and the weak formulation of the incompressibility condition become: (5.148) bearing in mind

b L (δp, v) = - Ω 0 δpF -T 0 : ∇ v dΩ 0 ,
R u ( v) = Ω 0 t. vdΩ 0 - Ω 0 ∂W ∂F (F 0 ) : ∇ v dΩ 0 + Ω 0 p 0 F -T 0 : ∇ v dΩ 0 , (5.147) R p ( u) = Ω 0 q(det(F 0 ) -1) dΩ 0 ,
F 0 = 1 + ∇ u 0 .
(5.149)

Inf-Sup condition

The mixed formulations, based barely on their nomination, are some formulations usually, at least in mechanics, involving the displacement or the velocity elds and some extra elds related to some internal constraints. In the scope of mechanics of solids, the mixed formulation is usually referred to the formulations treating the case of quasi-incompressible or incompressible materials, where the formulation is a function of the displacement eld and an extra scalar eld. The latter scalar eld denotes the pressure eld in the case of quasi-incompressible material, whereas it is denoted as the Lagrange multiplier when the incompressibility constraint is considered. Unlike classical formulation based only on the displacement eld, the convergence of mixed formulation relies not only on the coercivity 188 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body condition (a weak-equivalent condition to ellipticity of the partial dierential equation in the case of static problems) but also on stability criterion. To fulll these requirements, Ladyzhenskaya, Brezzi and Babuska in [Ladyzhenskaya 1969[START_REF] Babu²ka | The nite element method with Lagrangian multipliers[END_REF], Brezzi 1974] have established the Inf-sup condition which is also referred as the LBB condition in relation with the names of authors contributing to the development of this condition. In the scope of linear elasticity, the inf-sup condition can be presented as:

Sup q∈Q q =0 Inf u∈V u = 0 Ω 0 q Div u dΩ 0 ||q|| Q ||v|| V > β 0 > 0 (5.150)
where β 0 is a constant independent of the solution u, whereas ||.|| V and ||.|| Q are two norms associated respectively to the spaces V and Q. This condition was generalized to the case of mixed problems in hyperelasticity by [START_REF] Tallec | [END_REF]. If we consider the function b( u, p) as the weak form of the incompressibility condition, then inf-sup condition can be formulated as: where < ., . > denotes the duality pairing. Since the Inf-Sup condition is dicult to verify analytically to every formulation, Chapelle and Bathe have proposed in [Chapelle 1993] a numerical test to check the inf-sup condition based on the analysis of the algebraic discrete form related to the weak formulation. To perform the stability check, the tangent matrix has to be evaluated in every iteration. The discrete form of the weak linearized formulation enlightened through equations (5.163-5.164) can be presented at a chosen iteration n as:

Sup q∈Q q =0 Inf u∈V, u = 0 < dB d v ( u. v, q > ||q|| Q ||v|| V > β 0 > 0 (5.
A n B T n B n 0 U n P n = R u n R p n (5.153)
Now, let us dene the rigidity matrix K and the mass matrix T dened as: (5.154) where (U, V ) and (P, Q) are the vectors representing the discrete form of the displacement variables ( u, v) and the Lagrange multiplier variables (p, q) respectively.

V T KU = Ω ∇ u : ∇ vdΩ, Q T T P = Ω qpdΩ,
Considering the following eigenvalue problem:

GX = λKX (5.155)
then the inf-sup criteria illustrated in equation (5.171) is equivalent to β stab = min √ λ > 0.

Extended nite element method

The development of the modeling tools have played an important role in the characterization of the materials behaviour with a good accuray. But such advances in the physical behaviour of complex structures lead to the resolution of complex partial dierential equations related to the considered boundary value problem. That is why the nite element method is considered as one of the necessary numerical tools to study mechanical problems. However, the FEM is facing new diculties arising from the new challenges related to the evolution of engineering requirements. In fact, it has been shown that material or mechanical discontinuities can be the source of singular phenomena. Classically, a mesh renement near the region of the singular behaviour source is the usual solution to treat such cases. When the dynamic character of the mechanical problem is pointed out, then the region of singular behaviour may change and the mesh renement has to be updated which increases the cost of the mechanical problem resolution. Introduced by Moes Dolbow and Belytshko in [Moës 2002, Moës 1999] to avoid the mesh renement near a crack tip, the eXtended Finite Element Method is considered as a powerful tool to treat singular problems. The XFEM was developed later in [Stolarska 2001a] based on a technique to represent the crack geometry using level set functions which enables a coupling between the geometrical representation of the crack and the mesh. The XFEM can incorporate not only analytical functions like the ones issued of asymptotic analysis for many physical problems, but also accurate numerical solutions as enrichment functions. The enrichment functions characterize the local behaviour related to the studied singular phenomenon, which enhance the accuracy of the mechanical problem solution without using mesh-renement techniques. Since the XFEM was originally used for crack problems, there is no surprise that there are many works studying the singular behaviour of the mechanical elds near a crack tip, we can cite [Sukumar 2008, Sukumar 2000, Areias 2005, Belytschko 2001, Chahine 2008[START_REF] Duot | The extended nite element method in thermoelastic fracture mechanics[END_REF], Legrain 2005].
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The use of XFEM is not restricted for crack problems, it was applied for dierent mechanical problems with dierent singular natures, like the analysis of dislocation and discontinuity interfaces [START_REF] Ventura | [END_REF], Belytschko 2007], holes and dislocations [Sukumar 2001], uid mechanics and uid-structure interaction [Chessa 2003a, Gerstenberger 2008, Zilian 2008].

To have an overview of the dierent applications of XFEM, we suggest the dierent surveys in [Fries 2010, Belytschko 2009[START_REF] Abdelaziz | [END_REF]].

Discrete formulation of the XFEM method

Before discussing the XFEM formulation, the nite element approximation of weak formulation illustrated through equations (5.155,5.157), can be derived by replacing of the virtual spaces V and Q by nite dimensional subspaces V h and Q h dened on the geometrical approximation of the domain Ω using meshing elements. Hence the approximated nite element solutions will be denoted by u h and p h .

The concept of XFEM is to exploit the partition of unity with the addition of chosen enrichment functions to better describe and t the crack inuence on the mechanical elds behaviour. Focusing on cracked problems, the enrichment functions are usually divided into two sets. The rst set contains the heaviside function to point out the displacement or the Lagrange multiplier jump across the crack faces. Whereas, the second one is a set of singular functions to better represent the singular stress or strain elds near the crack tip. The singular enrichment functions can be rened numerical solutions or some analytical approximations for the two unknowns of the boundary value problem ( u, p). Hence, the approximated solutions ( u h , p h )will be decomposed into two quantities: one inherited from the classical nite element method exploiting Lagrange shape functions ( denoted by ( u f em , p f em )) and a second part using a set of enrichment functions (denoted by ( u enr , p enr )). Such formulation can be mathematically described as:

u h = u f em + u enr , u f em ∈ V f em , u enr ∈ V enr , p h = p f em + p enr , p f em ∈ Q f em , p enr ∈ Q enr (5.156)
with V f em and Q f em are the classical nite element space for the displacement and the Lagrange multiplier respectively. On the other hand, V enr and Q enr are 2 enrichment 192 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body

Thus the XFEM solutions will be in the following mathematical forms:

u h = N dof u i=1 t u (i) φ u i + i∈I H t u (i) Hφ u i + i∈I C N enr u j=1 s u (ij) F u j φ u i } (5.162) p h = N dof u i=1 t p (i) φ p i + i∈I H t p (i) Hφ p i + i∈I C N enr p j=1 s u (ij) F p j φ p i } (5.163)
Moreover, the Heaviside enrichment concerns only the nodes associated to the mesh elements completely cut by the crack. In the classical XFEM approach, only the mesh elements containing the crack tip are enriched by the set of singular functions. Such choice reduces the number of nodes aected by the singular enrichment and leads to a poor computational accuracy as it is shown in [Chessa 2003b]. As a remedy for this limitation, [Béchet 2005] proposed to enrich a xed area around the crack tip which can be characterized by a radius denoted as R enr . The whole strategy of nodes enrichment can be presented in a simple way via gure (5.14).

Levelset method

In the case of XFEM, The geometrical representation of the crack shape is based on the level set method. To our knowledge, this concept is introduced for the rst time in [Osher 1988] to trail moving interfaces. In the case of cracked domain, [Stolarska 2001b] proposed the use of multiple scalar functions to represent the crack geometry. Focusing on the case of cracked plane body, the crack can be dened using two level set functions φ and ψ as:

φ( X) = 0 and ψ( X) < 0 ⇔ X ∈ Γ c φ( X) = 0 and ψ( X) = 0 ⇔ X = X c .
(5.164)

To better understand the geometrical representation of the crack in the case of plane geometry we invite the reader to see gure (5.15). Based on the levelset concept, the Heaviside function can be simplied to:

H( X) = sign(φ( X)).
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Γ c Φ = 0 Ψ = 0 Ψ = 0 Ψ > 0 Ψ > 0 Ψ < 0 Φ < 0 Ψ < 0 Φ > 0
For the numerical analysis, we consider a non cracked square domain Ω = [-0.5 0.5] × [0.5 0.5]. The geometrical crack shape Γ c can be characterized by

Γ c = {X 1 ∈ [-0.5 0], X 2 = 0}.
For the sake of simplication, we have considered a simple uniform tangential initial stress eld which is equivalent to:

τ 1 = 0, τ 2 = 0, φ = 0.
(5.166) which implies that the crack faces are traction-free. The boundary conditions are chosen to be as the ones for a simple tensile test in absence of crack (see gure (5.16)).

To avoid any mesh-arising problems, the domain Ω is uniformly meshed using triangular elements. For the sake of parametric analysis, multiple nite elements are used and

Γ c Γ T Figure 5
.16: Boundary conditions for the boundary value problem used for the numerical test dierent choices for the singular enrichment functions are considered. In analogy with the dierent works done in the context of mixed crack problems, a set of three dierent elements formulations are considered: P 2 /P 1 , P 2 /P 0 and P + 1 /P 1 . The stability of the latter elements are proved within the scope of nite element method in [Brezzi 2012] and numerically in the scope of cracked problems using the extended nite element method within [START_REF] Nicaise | [END_REF], Amdouni 2012]. The objective here is to test the limit of such nite elements in the scope of nite transformation and in the presence of an initial stress eld. Let dene F u and F p as the sets of crack-tip enrichment functions for the displacement and the Lagrange multiplier elds. Then, the dierent discussed choices for the crack-tip enrichment functions can be presented as:

• case U2P0: we have exploited the second order of the asymptotic expansion for the displacement eld without singular enrichment of the Lagrange multiplier which is equivalent to:

F u = {F u 1 , F u 2 }, F p = ∅.
• case U2P1: The second order asymptotic expansion for the displacement eld and the rst order asymptotic expansion for the Lagrange multiplier are considered which implies

F u = {F u 1 , F u 2 }, F p = {F p 1 }.
• case U7P3: the third order of the asymptotic expansion for the displacement eld and the second order of the asymptotic expansion for the Lagrange multiplier are considered which justies the following set of singular enrichment functions sets F u = {F u 1 , . . . , F u 7 }, F p = {F p 1 , . . . , F p 3 }.

where the dierent crack-tip enrichment functions mentioned above can be expressed as:

             F u 1 ( R, θ) = R 1 2 sin( 196 
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(for the calulation of the reference solutions). In gures (5.17) and (5.18), we present the numerical solution for the boundary value problem using the XFEm method using the enrichment functions relative to the U7P3 case.

Stability results

Based on the evolution of the eigenvalue parameter β stab in function of the mesh size as it is presented in gure (5.19-d), we can arm that in the case of the nite element method the dierent elements formulations (P 2 /P 1 , P 2 /P 0 and P + 1 /P 1 ), are stable at least for the case of our numerical solution. However in the case of extended nite element method, the stability of the numerical formulation seems to be dependent not only on the degree of elements interpolation but also the set of employed crack-tip enrichment functions. If we take the example of the U2P0 enrichment case, it is clear that β stab is alternating and decreasing with the mesh size h for the three interpolation cases (see gure (5.20-d)). Thus we can conclude, for all the tested elements in the case of U2P0 enrichment situation, the extended nite element method is completely unstable. Whereas, in the case of Lagrange multiplier enrichment whether U7P3 or U2P1, the XFEM method is stable and the stability degree increases with the number of used crack-tip functions as it is illustrated in gures (5.21-d) and (5.22-d).

Convergence results

In this section a convergence study will be performed to the dierent element formulations and the enrichment cases. To do that, two error measures are considered for the displacement eld (L 2 and H 1 norms) and one single error measure for the Lagrange multiplier eld (L 2 -norm).
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Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body Since it is dicult to have an analytical solution for the complicated nonlinear boundary value problem, a rened numerical solution will be computed for every enrichment case and element formulation to be considered as a reference to perform the dierent error measures. 

numerical results of the FEM model h h h h h h h h h h h h h h h h h h h h h

with U2P0 enrichment h h h h h h h h h h h h h h h h h h h

Convergence rate FEM formulation P 2 /P 1 P 2 /P 0 P + 1 /P 

with U2P1 enrichment h h h h h h h h h h h h h h h h h h h

Convergence rate FEM formulation P 2 /P 1 P 2 /P 0 P + 1 /P 

with U7P3 enrichment h h h h h h h h h h h h h h h h h h h

Convergence rate FEM formulation P 2 /P 1 P 2 /P 0 P + 1 /P 

stressed hyperelastic body h h h h h h h h h h h h h h h h h

Convergence rate Formulation P 2 /P 1 P 2 /P 0 P + 1 /P 1 L 2 -error convergence rate for u 3 2 2 H 1 -error convergence rate for u 1.5 1 1 L 2 -error convergence rate for p 1.5 1 1

Table 5.6: Convergence rates in the XFEM case with rst order enrichment in the scope of incompressible linear elasticity solutions than (P 2 /P 1 ) which conrms in another way the instability of the XFEM method in the U2P0 enrichment. Hence, even if the convergence rate is slightly better than the FEM case as it is illustrated in tables (5.1,5.3) at least for the P 2 /P 0 considering the L 2 -norm error measure relative to the displacement eld, such result is not reliable. Focusing on the tables (5.4-5.5)it is clear that the convergence rates are enhanced compared to those using the FEM method. Also, more enriched functions are considered, slightly better are the convergence rates. This chapter was dedicated to the analysis of the initial stress eld inuence on the mechanical elds near a crack tip through an incompressible hyperelastic material. We have shown that the asymptotic expansion of the dierent mechanical elds are functions of the eigenvectors orientation relative to the crack plane and also a weighting parameter relating the shear modulus and the eigenvalues of the initial stress eld. A comparison between the initially-stressed and the unstressed materials has been done through the dierent asymptotic expansions, and we have shown that the initial stress eld can contribute to the rotation of the crack and it has an inuence on the crack opening. Finally, based on the asymptotic expansion of the displacement eld, a set of enrichment shape functions were chosen to be exploited using the Extended Finite Element Method (XFEM) for the numerical analysis of this singular problem. A convergence and stability studies have been done to point out the inuence of multiple parameters (dierent elements formulations and dierent chosen enrichment functions) on the stability and the convergence rates.

Chapter 6

The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface 

Introduction

Nowadays, reinforced rubber, rubber-like materials and structures are in increasing use in dierent industrial products and engineering applications. In fact, it is well known that the junction between rubber or rubber-like elastomeric materials and other materials with dierent rigidities is usually used to improve the stiness of their design. As an example, the reinforcement of a rubber matrix by transverse bers has been known to enhance the 206 Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface toughness of the composite, to impede eventually crack propagation in the matrix and stop it on the interface rather than grow it into uncracked matrix. However, such coupling causes stress concentration due to the material and/or geometric discontinuities which can aect the product strength.

In this work, a crack terminating at a bi-material interface with arbitrary angles is taken as a geometrical model. The bi-material is composed by two incompressible isotropic Neo-Hookean hyperelastic materials. The anti-plane shear is considered due to its simplicity compared to other types of transformations. Such transformation is not simple as it may look [Destrade 2012b] and it is still a subject of research in the scope of non-linear elasticity [Pucci 2015b]. From historical point of view, the theory of continuum mechanics is used to model the mechanical elds concentration due to cracks presence with singular elastostatic leds: strain and stress.

In linear elasticity, the boundary value problem of the two-dimensional multimaterial wedges or junctions is governed by partial dierential equations with Neumann and/or Dirichlet boundary conditions. Its singular nature is well established in [START_REF] Grisvard | Singularities in boundary value problems[END_REF]] and was analyzed by three methods: asymptotic expansion, complex variables and transform methods. It was shown that the general solution of the linear boundary value problems corresponding is an asymptotic development composed by a linear combination of a power and logarithm types singularities. The unknowns of this asymptotic expansion are considered as eigenvalues (exponent orders) and eigenfunctions.

The plane strain or stress formulation was treated theoretically in [Zak 1963, Bogy 1971a, Bogy 1971b, Cook 1972, Erdogan 1973, Fenner 1976[START_REF] Pinsan | [END_REF], Wang 1994[START_REF] Tzuchiang | [END_REF], Chen 2003, Lin 1997], numerically in [Lin 1976, Ahmad 1991[START_REF] Meguid | [END_REF]] and experimentally in [Wang 1993, Chen 1996]. It was shown that oscillatory singularity in the elastostatic elds can occur except for a crack perpendicular to an interface. The case of an anti-plane shear transformation was analyzed in [Erdogan 1974, Fenner 1976, Chen 2012, Hu 2013, Wang 1996, Chien-Ching 1990] and no oscillatory singularity in the elastostatic elds occurs (see reviews in [Sinclair 2004a, Sinclair 2004b, Paggi 2008] and the associated references).

The plasticity aspect at a crack tip has been given by Rice in [Rice 1966, Rice 1967] for anti-plane problem and by Hutchinson in [START_REF] Hutchinson | Plastic stress and strain elds at a crack tip[END_REF]], Rice and Rosengren 6.1. Introduction 207 in [Rice 1968] for plane problem. It was shown that the asymptotic development is made by a power-type singularity. After that, few papers have been dedicated to solve the crack terminating at bi-material interface problem: in plane strain or stress by [Chao 1993, Romeo 1994[START_REF] P Deln | Eect of elastic mismatch on the growth of a crack initially terminated at an interface in elastic plastic bimaterials[END_REF][START_REF] Yu | [END_REF], Banerjee 2004] and in anti-plane transformation by [START_REF] Li | [END_REF]]. The Linear Elastic Fracture Mechanics (LEFM) and the Elasto-Plastic Fracture Mechanics (EPFM) approaches described below played a prominent role in the investigation and comprehension of the crack, defect and singular problems. However, these approaches are based on the kinematic assumption of small deformations which is in contradiction with the induced unbounded strain eld deduced.

Within the framework of nite deformations, in the past ve decades, only few works have been focused on the analysis of the strain and stress elds around a crack, notch, defect... This is due to the complexity of the mathematical problem, as it is illustrated in [Ogden 1997] which makes the boundary-value problem equations highly nonlinear and very dicult to solve analytically or even numerically. We note that Wong and Shield in [Wong 1969] carried the rst analysis of an innite Neo-Hookean sheet containing a nite crack.

In the early 1970s, Knowles and Sternberg in [Knowles 1973, Knowles 1974] analyzed the asymptotic deformation eld near the tip of a mode-I plane strain crack for generalized Blatz-Ko compressible hyperelastic solids. Their analysis of the crack problem within the framework of nonlinear elasticity is considered as a fundamental work. Later, Knowles in [Knowles 1977a] performed a mode III local crack analysis for generalized Neo-Hookean incompressible hyperelastic material. This class of hyperelastic potential, depending only on the deformation's rst invariant, is capable to sustain nonhomogeneous anti-plane shear transformation as it is demonstrated in [Knowles 1976]. Some necessary and sucient mathematical conditions, restricted the hyperelastic potential form, are given by Knowles in [Knowles 1976, Knowles 1977b] for incompressible and compressible materials to admit non-trivial states of anti-plane shear, (see [Horgan 1995a] for a review and more references).

To the best of our knowledge, the rst analysis of the interface crack of hyperelastic bi-material junction is studied by [START_REF] Knowles | Large deformations near a tip of an interface-crack between two Neo-Hookean sheets[END_REF]]. In two fundamental papers of Herrmann [Herrmann 1989, Herrmann 1992], it was shown the existence of multiple second order asymptotic forms for elastostatic elds for the compress-208 Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface ible generalised Blatz-Ko hyperelastic bi-material interface crack. Other interesting works on the topic using analytical asymptotic expansion, numerical and/or experimental investigations were done by: [Knauss 1970, Ravichandran 1989, Gao 1994, Geubelle 1994a, Geubelle 1994b, Geubelle 1995, Ru 1997b, Ru 2002, Krishnan 2009[START_REF] Lengyel | [END_REF] (see [Gao 2008, Long 2015] for a review and references). The more complicated crack terminating at bi-material interface problem with arbitrary angles was analyzed in [Shanyi 1994] and [Ru 1997a] for a crack perpendicular to interface. All the previous contributions done with dierent hyperelastic potentials and the plane deformation or stress hypothesis have shown no oscillatory singular behaviour (except in [Krishnan 2009]).

In this chapter, the second section is dedicated to the problem formulation for an anti-plane transformation. The third section focuses on the asymptotic solution of the equilibrium equation for dierent special geometrical congurations. Finally an investigation on the presence of logarithmic singularities is made to justify the asymptotic form used in the third section.

Formulation of the anti-plane problem

Consider a solid body C in the form of an innite cylinder. Let C the region of three-space occupied by the considered solid body in the initial conguration. C is characterized by a cross section Ω and a generator vector G as illustrated in gure (6.1). Now, we dene the Cartesian basis ( E 1 , E 2 , E 3 ) which is tied to the undeformed conguration of C relative to the coordinates (X 1 , X 2 , X 3 ). The generator vector G is chosen to be parallel to E 3 . The cylinder is composed of two isotropic incompressible hyperelastic materials, perfectly bonded to each others. A crack is present in the way to split one of the two material sectors into two dierent parts. So that we can divide the domain C into three distinct regions:

C k = { X, (X 1 , X 2 ) ∈ Ω k , -∞ < X 3 < +∞}, k ∈ {1, 2, 3}
, where X denotes the position of each material particle in the undeformed conguration. Let Ω k be the associated cross section to the region C k with k ∈ {1, 2, 3}. {Ω k , k ∈ {1, 2, 3}} is a set of wedge angular sectors dened in the cross section Ω as: Now, the body C is subjected to a prescribed transformation F which can outline the anti-plane shear transformation near the crack tip. Mathematically, F can be described as:

Ω 1 = {(R, Θ), ω U ≤ Θ ≤ π} Ω 2 = {(R, Θ), ω L ≤ Θ ≤ ω U }, 0 < ω U -ω L < 2π with ω L < ω U Ω 3 = Ω\{Ω 2 U Ω 1 } (R , 
x = F(vecX) =      x 1 = X 1 , x 2 = X 2 , x 3 = X 3 + u(X 1 , X 2 ), (6.1) 
where, X i and x i i ∈ {1, 2, 3} are the components of the vectors X and x in the Cartesian basis relied respectively to the undeformed conguration and the deformed one. u(., .) represents the anti-plane shear displacement which must be at least twice continuously dierentiable. The gradient of the F transformation, denoted as F , can be written as:

[F ] ij = [∇ x] ij = ∂x i ∂X j = x i,j , on each C k ; i, j, k ∈ {1, 2, 3}. (6.2)
Using the form of the anti-plane transformation in equation (6.1) and the denition of the gradient transformation in (2), the matrix form of F is concluded as:

[F ] =    1 0 0 0 1 0 u ,1 u ,2 1    . (6.3) 210 
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To describe the state of the deformation related to the transformation F, one measure of

Material 1 Material 2 M ω U ω L Crack X 1 X 2 (C 1 , Ω 1 ) (C 2 , Ω 2 ) (C 3 , Ω 3 ) Θ R (C 2 , Ω 2 )
Figure 6.2: Bi-material section strain can be the left Cauchy-Green tensor B that can be expressed as: 

B = F F T =    1 0 u ,1 0 1 u ,2 u ,1 u ,2 1 + | ∇u| 2    . ( 6 
J = det(F ) = 1, (6.5) 
where det(.) denotes the determinant operator. The previous condition is automatically veried in the case of simple anti-plane transformation as it is explicitly formulated in (1), without adding any additional conditions on the form of the unknown displacement eld. The hyperelastic behaviour of each part of the cylinder C can be elucidated using an energy potential form W. Using the isotropy of each part of the bi-material composite, the potential W depends only on the rst two invariants of the left Cauchy-Green tensor. Here, we consider the Neo-Hookean potential expressed as:

W(I 1 ) = µ k 2 (I 1 -3), µ k > 0, on each C k , k ∈ {1, 2, 3}. (6.9) µ k is a positive coecient denoting the shear modulus of each material for innitesimal deformations. The above potential is a result of the statistical mechanics using a Gaussian distribution [Boyce 2000]. Since the domains C 1 and C 3 are composed by the same material, we have µ 1 = µ 3 = µ 2 . The indexations (. (k) ) or (. k ), unless they are necessary, will be omitted to lighten the following mathematical expressions. We dene also the dimensionless

parameter δ = 1- µ 1 µ 2 1+ µ 1 µ 2
, function of the relative rigidity ratio µ 1 µ 2 , which will play a crucial role in analyzing the singular behaviour as it will be shown later. We remark that this dimensionless parameter δ takes values in ] -1 1[ when the rigidity ratio µ 1 µ 2 belongs to ]0 +∞[ . Thus, δ takes into account all material combinations. The state of the stress eld can be represented using the rst Piola Kirchho tensor related to the energy potential by: S = ∂W ∂F -pF -T , (6.10)

where p is the Lagrange multiplier eld resulting from the incompressibility condition. To have a better physical interpretation of the stress eld, we use the Cauchy stress tensor developed as: ζ denotes the Kronecker delta function. Unlike the case of linear elasticity theory, the axial component of Cauchy stress tensor σ 33 can not vanish. The sucient condition for the cylinder's equilibrium using the material coordinates in the undeformed conguration is: Div(S) = 0, (6.16)

where Div(.) is the divergence operator relative to the coordinates of the initial conguration. Using the expanded form of the rst Piola Kirchho stress tensor illustrated in equations (6.12-6.15) and the transformation's gradient in the matrix form (3) added to the equilibrium equation (6.16), we obtain:

[µp] ,α + p ,3 u ,α = 0, α ∈ {1, 2}, (6.17) µ∆u = p ,3 . (6.18) ∆(.) denotes the Laplace dierential operator. Here, we have 3 dierential equations (6.17-6.18) governing 2 unknown elds. To have a non-trivial solution, in [Knowles 1976] we can nd the sucient conditions which must be satised by the energy potential. In our case, using the energy potential in (9), a non trivial solution is guaranteed based on the results mentioned by Knowles in [Knowles 1976]. Using the displacement's independence of X 3 and combining the equations (6.17-6.18), we can prove the linearity of the Lagrange multiplier p relative to the third coordinate X 3 : p(X 1 , X 2 , X 3 ) = dX 3 + p 0 (X 1 , X 2 ). (6.19)
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d is an unknown constant. The local boundary conditions when R → 0 is chosen to have a traction-free crack faces. These conditions are translated mathematically into:

S(X 1 < 0, X 2 = ±0). N (X 1 < 0, X 2 = ±0) = 0. (6.20)

N is the unit outward normal vector dened in the initial conguration. Since the materials are perfectly bonded, the continuity of the force vector and the displacement eld through the two interfaces between the two considered materials leads to: 

Asymptotic solution

In the literature, there are so many studies focusing on the solution of elastostatic problems using the asymptotic method. The general form proposed in [START_REF] Vladimir | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF] and [Costabel 1982], as it is illustrated in [START_REF] Yosibash | Singularities in elliptic boundary value problems and elasticity and their connection with failure initiation[END_REF]], for the equation (6.25) is: (6.29) Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface where I and J are two chosen integers. In the case where m i is a complex numbrer, the singularity can be in the type O(R ξ i exp(i c η i log(R))(log(R)) n j ) (i 2 c = -1), where ξ i and η i denote respectivelly the real and the imaginary part of m i . When m i has nonnull imaginary part, the radial oscillation of the displacement eld can be pointed out. In this case, the stress eld seems to have no physical behaviour. Thus to preclude this non physical solution, we will suppose in the following that all m i are real cocients. For the case of cracked conguration, based on many works on such case as the one of [START_REF] Grisvard | Singularities in boundary value problems[END_REF]] and [Li 2000], it seems that the logarithmic singularities are absent in the displacement expansion. In the opposite way, in the linear elastic theory, many works of Bogy [Bogy 1970, Bogy 1971a, Bogy 1971b] demonstrated the appearance of the logarithmic power singularities under some material and geometrical conditions for the case of homogeneous and bi-material composite. We can use the method established by Dempsey and[START_REF] Dempsey | On the stress singularities in the plane elasticity of the composite wedge[END_REF]] exploited in the scope of linear elasticity to investigate the presence of logarithmic singularities. Although their concept was used for linear elastic problems, it can be used here since we have a harmonic problem to be solved. Their idea comes from the fact that the dierential operator in the equilibrium equation is linear and independent of the singularity power coecient m. Thus, if u(., .) is a solution of equations (6.25-6.28), then ∂u ∂m must be a solution also. The originality of the study of Dempsey and Sinclair, is the inspection of the logarithmic singularities based on the equations of power singularities. In other words, this technique, which will be discussed in details in the following, makes possible the inquire of the logarithmic singularities without introducing the logarithmic form in the asymptotic expression of the displacement eld. This lightens the algebraic system to solve leading to the eigenvalues equation and reduces it by half. Knowing all these advantages of this method, the new asymptotic expansion of the displacement unknown function u(., .) can be formulated as:

u(R, Θ) = I i J j R m i (log(R)) n j ψ ij (Θ) , m i ∈ C, n j ∈ N,
u(R, Θ) = N i=1 R m i ψ i (Θ) + u reg (R, Θ).
(6.30)

As presented in [START_REF] Yosibash | Singularities in elliptic boundary value problems and elasticity and their connection with failure initiation[END_REF]], u reg (., .) is the regularized part of the displacement eld and N is the number of the eective orders contributing to the singular form of the stress elds, where 0 < m 1 < m 2 < ... < m N . Inserting the asymptotic form of the anti-plane m i R m i -1 (A i cos((m i -1)Θ) + B i sin((m i -1)Θ)) + o(R m N -1 ), (6.33)

σ 23 = µ N i=1
m i R m i -1 (-A i sin((m i -1)Θ) + B i cos((m i -1)Θ)) + o(R m N -1 ), (6.34)

σ 33 = µ N i=1 m i 2 R 2(m i -1) (A i 2 +B i 2 )+2µ N -1 i=1 N j=i+1
m i m j R m i +m j -2 {(A i A j +B i B j )cos((m i -m j )Θ) + (B i A j -A i B j )sin((m im j )Θ)} + o(R 2m N -2 ). (6.35)

As a result of the displacement eld's continuity and using of equation (6.27), the exponent parameters are independent of the position of any considered material particle. In other way, we may write: 2, 3}. (6.36) The traction free conditions and the continuity of both the force vector and the displacement u(., .) expressed in equations (6.26-6.28) lead to:

m (k) i = m i , ∀i, k ∈ {1,
6.3. Asymptotic solution 217 as it is shown in gure (6.3):

• ω L = 0 ,

• ω U = -ω L ,

• ω Uω L = π . The singular terms of the Cauchy stress tensor are dierent from component to another.

For the σ 13 and σ 23 (see equations (6.33-6.34)), the singularity source is derived from the terms R m i -1 . Although, the singularity of the σ 33 is a result of the terms R 2m i -2 and R m i +m j -2 . Then, it is clear that in all cases, σ 33 is the most singular among the Cauchy stress tensor components. Thus, we extract from this remark that in the case of an anti-plane transformation, every material particle locally in the vicinity of the crack tip is essentially in state of tensile in the E 3 direction.

We will focus, in the following analysis for the dierent cases treated here, on the behaviour of the dierent combinations of the m i , eigenvalues equation solutions, relative to the clearance δ of the bi-material composite and the angular variables describing such a particular conguration.

Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface In this instance where ω L = 0, the bi-material composite can be seen as an assembly of an homogenous half plane part bonded to a composite half plane. For every value of ω U varying in ]0 π[, the eigenvalues equation leading to the singularity orders becomes: The existence of one solution to equation (6.45) in ]0 1[ is assured as it is shown in gure (6.4). Otherwise, it may have more than one admissible solution (at most 2 solutions in the gap ]0 1[). To have the second singularity order in the interval ]0 1[, one sucient condition needs to be veried: in the upper-half cylinder, the part which is more rigid has to have the smallest angular sector. In the case where δ > 0 (respectively δ < 0), rst order coecient m 1 (respectively m 2 ) seems to not vary so much near the value m 1 = 1 2 (repectively m 2 = 1) as it is illustrated in gure (6.4) (respectively gure (6.5)). Though, the rst order power's coecient m 1 collapses drastically when the rst material becomes more rigid than the second one (µ 1 > µ 2 ). We notice here the independence of the bi-material composition, for the solutions m 2 = 1 for ω U = π 2 and m 3 = 3 2 for both ω U = π 3 and ω U = 2π 3 . The fact of independence of the material composition for some solutions of the eigenvalues equation might be not surprising, since Ru in [Ru 1997b] found the same thing for special cases to some orders for a dierent geometrical conguration than ours. Whatever the rigidity or the geometrical distribution of the materials constituting the cylinder C, taking into account the assumption ω L = 0, the term R m 1 +m 2 -2 is always singular (see gure (6.7)). However, the term R m 1 +m 3 -2 contributes to the singularity of the component σ 33 in one condition, when the rst material is more rigid than the second one (µ 1 > µ 2 ) (see gure (6.8)). We notice in this case, that the terms R m 3 -1 (see gure (6.6)), R 2m 3 -2 and R m 3 +m 2 -2 (see gure (6.9)) are non singular for every material combination.
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As a conclusion for this particular geometrical conguration, to outline the singular form of the shear components of the Cauchy stress tensor, we need at most the two rst terms of the displacement asymptotic form, and only the rst term in the case where the big part of the upper angular sector is the most rigid. As to the axial component σ 33 , the singular behaviour can be illustrated using between 2 and 3 rst terms of equation (6.31), and in the case where the rst material is softer than the second one (µ 1 < µ 2 ), only the two rst order are needed. As it is illustrated in gure (6.10), the solution m 1 is increasing monotonically with the clearance variable δ. As the case described before, it is always guaranteed to have one solution in the gap ]0 1[. To have the second one in this gap, the sector that has an acute angle has to be the most rigid one as it is presented in gure (6.11). It is remarkable that when the rst material is more rigid than the second one (µ 1 > µ 2 ), for any xed value of δ, m 1 is maximal at ω = π 2 (see gure (6.10)). In the other case m 1 is minimal at ω = π 2 (see gure (6.10)). The singularity of the terms {R m 1 +m 2 -2 , R m 1 +m 3 -2 } can be armative whenever δ < 0 (see gures (6.13) and (6.14)). Whereas, for all material combinations in this case, the terms R m 3 -1 , R 2m 3 -2 and R m 3 +m 2 -2 , found in the expressions of the dierent stress components, become non singular (see gures (6.12) and (6.15)). As found below, we remark that the solutions m 2 = 1 for ω U = π 2 and m 3 = 3 2 for the couple ω U = π 3 and ω U = 2π 3 are independent of the material composition for this special geometrical conguration. In this conguration, the singular terms of the Cauchy stress tensor σ 13 and σ 23 can be well pictured using the two rst orders of the asymptotic form of diplacement eld u(.). When the big part of the upper-half cylinder becomes the most rigid one, the rst order will be sucient. For the component σ 33 , to highlight it singular behaviour, the rst three terms in the asymptotic form of the anti-plane displacement are needed at most. When the second material is more rigid than the rst one (µ 2 > µ 1 ) we need at most the rst two orders.

Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface (6.50) In this case, we have veried numerically, that the rst and the third solutions (m 1 & m 3 ) for equation (6.50) are the same as the previous conguration where ω U = -ω L . It is clear here, that the second order power's coecient m 2 = 1 is independent of δ and ω values. The mixed terms which are considered source of singular behaviour are reduced to only the terms R m 1 +m 3 -2 in the condition where δ is strictly negative and R m 1 +m 2 -2 (see gures (6.13) and (6.14)).

The rst term of the anti-plane displacement's asymptotic form is sucient to feature the singular behaviour of the shear components of the Cauchy stress tensor. However, we need the rst between 2 and 3 terms to outline the same thing of the axial component σ 33 . The third term is only needed when the second material is the most rigid one (µ 2 > µ 1 ) and ω U = π 2 .
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The remark expressed in the presentation of Dempsey and Sinclair work can be reformulated here to be: if u(., .) is a solution of the dierential equations (6.25-6.28), then the derivative of the solution u with respect to the singularity power's coecient m holds as a solution whatever the order of the derivative operator. So if we choose in the beginning for the displacement eld a singular form type of O(R m ), by derivation we can investigate the presence of the singularities having the form O(R m log(R)). By repeating the same process, the asymptotic form postulated in equation (6.30), can be exploited to inquiry the presence of singular forms in the type of O(R m (log(R)) n ). Since it is demonstrated in [START_REF] Grisvard | Singularities in boundary value problems[END_REF]], that the only possible logarithmic singular form for the stress eld in the case of harmonic problem, as in our case, is (R m log(R)). So, our analysis requires the use of the presented method for once. Remarking the linearity of equations (6.25-6.28) describing the solution for the material conguration as it is presented above, we can use the nal result as it is mentioned in [Dempsey 1979]: the singular form of the stress eld can include O(R m i log(R)) in one condition, if m i is a solution of the following system: M V = 0, ∂M ∂m V + M ∂V ∂m = 0.

(6.51)

These two conditions are equivalent to: D(m i ) = ∂D ∂m (m i ) = ... = ∂ (6-s) D ∂m (6-s) (m i ) = 0, (6.52)

where s denotes the rank of the matrix M . The previous investigations for the research of the m i solution of the eigenvalues equation was carried out using the dichothomy method ensuring a scale of accuracy in the order of error = O(10 -15 ). In this stage, to seek the possibility of logarithmic singularities, a Matlab script is used to automate the whole process. For the matrix rank calculation, the Matlab "rank" function [Matlab R2012a User Guide 2012] was used. The algorithm used in Matlab is based on the singular values decompositions SVD which implies the following decomposition for the M matrix: (6.53) 224 Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface where K and E are 6-by-6 orthogonal matrices, and Y is a positive diagonal matrix. And so the rank of the matrix M becomes the number of non-null diagonal terms of the matrix Y . In every case of the three geometrical congurations, for each value of ω U or ω L and δ, we seek the solutions of the eigenvalues equation (6.44), followed by the calculation of the matrix M rank. Then, we need to verify that the solution of equation (6.44) satises the relation (6.52). Consequently, we discovered that the singularity of the stress eld can not be in the form of O(R m log(R)) in the three cases studied above (see the added materials related to this paper), which justies the used asymptotic form for the analysis in the third section.

M = KY E,

Conclusion

In the present chapter, we have examined a particular geometrical conguration for a bimaterial composite in the case of anti-plane shear transformation for a simple potential (Neo-Hookean). Based on the work of Dempsey and Sinclair in the scope of linear elasticity, their method is used here in the scope of large deformations to study the presence of logarithmic singularities. We proove in the case of Neo-hookean cylinder subjected to anti-plane transformation, that the only asymptotic singular form for the stress eld, for the particular cases treated here, are just power form singularities O(R m ). At most, the rst three asymptotic terms are needed to highlight the singular behaviour of the Cauchy stress eld in the vicinity of the crack tip. The power terms of the asymptotic form of the displacement eld depend only on the parameters describing the geometrical distribution of the two materials and the gap of rigidity between the dierent sectors.

General conclusion and outlook

This thesis focuses on the analysis of initially-stressed materials in multiple scopes. Based on theory of invariants and some results of tensors algebra, this PhD presents in a new rigorous way some classical theoritical results related to the modeling of initially-stressed materials. Also a general explicit constitutive relation for initially-stressed linear elastic materials is established. Moreover, the anisotropy generated by the initial stress presence is discussed in analogy with the constitutive formulations used to describe brous materials behaviour. Also, a formulation for the plane deformations is performed generalizing the concept of Airy stress function.

Since the anisotropy is an essential element to study initially-stressed materials, a part of this PhD is devoted to study the anisotropic inuence on some singular and regular boundary value problems. Indeed, in studying the basic constitutive models of elasticity with residual stresses, we have pointed out a certain âequivalenceâ of this theory with the constitutive equations of transverse isotropic or orthotropic materials. By going deep in such a topic, and focusing on the class of isotropic transverse materials, we have realized the possibility to exploit some particularities of these materials to couple various deformation modes in a clever way. This fact suggests using anisotropy to design some elastic machines which can couple dierent kinematic or deformation modes.

In general, the global anisotropic material can be seen locally as the junction of two or more separate isotropic material bodies. Hence, to study the anisotropic eect on the scope of singular problems, we have considered a cracked hyperelastic bi-material composite subjected to an antiplane deformation. An asymptotic analysis is performed to identify the sucient orders contributing to the singular form of the Cauchy stress static elds. This study leads to the absence of logarithmic singularities, and to the fact that the exponent parameters of the singular terms depend on the geometrical conguration of the rigidity distribution of the bi-material composite.

Since the initial stress eld is considered as a predened parameter, the identication of such an internal eld is an essential task for the characterization of initially-stressed materials. Two stability estimates are derived: the rst one concerns the identication of all the material parameters for a generalized initially-stressed linear elastic material, Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface whereas the second one is dedicated to the residual stress reconstruction in the case of a relatively simple model. Also, a direct method is used for the identication of the residual stress and the material parameters using multiple noisy full-eld displacement data. Dierent techniques of regularization are adopted, and an analysis of the dierent parameters inuencing the quality of the reconstructed elds is carried out.

Furthermore, a special attention is dedicated to the analysis of the initial stress eld inuence on the mechanical elds near a crack tip through an incompressible hyperelastic material. We have shown that the asymptotic expansion of the dierent mechanical elds are functions of the eigenvectors orientation relative to the crack plane and also a weighting parameter relating the shear modulus and the eigenvalues of the initial stress eld. A comparison between the initially-stressed and the unstressed materials has been done through the dierent asymptotic expansions, and we have shown that the initial stress eld can contribute to the rotation of the crack and it has an inuence on the crack opening. Finally, based on the asymptotic expansion of the displacement eld, a set of enrichment shape functions are chosen to be exploited using the Extended Finite Element Method (XFEM) method for the numerical analysis of this singular problem. A convergence and stability studies have been done to point out the inuence of dierent numerical formulations on the convergence rate and the stability of the numerical results.

This Phd work can be completed by the generalization of the dierent constitutive formulations for the initially-stressed and initially-strained hyperelastic materials to take account of the inner anisotropy and more complex behaviors (plasticity, viscosity ...). Moreover, for the analysis of singular problems, a non-constant initial stress can be considered to point out in particular the inuence of the residual stress class on the same boundary value problem. Also, dierent boundary conditions can be chosen. On the numerical level, more XFEM formulations can be tested in the objective to enhance the stability and the converce rate of the numerical solutions. Focusing on the identication part, the presented approach can be tested and ameliorated for more complex models. Also, the same work can be adapted for experimental data. Consider {A (ij) } and {B (mn) } the canonical bases of S 6 (R) and S 3 (R) respectively where every matrix A (ij) can be dened as: It is clear that the set M contains 27 matrices (27=21+6). We intend to prove that the family M is linearly independent and hence we can conclude that dim(V(R)) = 27.

[A (ij) ] kl = δ ik δ jl + δ jk δ il , if i = j, δ ik δ il , if i = j , [B ( 
Let us dene the function F which transforms a symmetric N × N matrix into a N ! vector. In fact the operator F will regroup all the major diagonals one after one from the biggest to the smallest one. It is clear that the operator F is bijective. To understand the denition of this operator let us take 3 × 3-matrix A which can be explicitly presented as: 

A =   

1. 1 E

 1 The reference and the current congurations . . . . . . . . . . . . . . . . . 9 1.2 Deformation of an innitesimal element of surface . . . . . . . . . . . . . . . 10 1.3 Transporting of innitesimal vectors from the initial conguration to the current one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 The dierent congurations for the formulation proof of the initially-stressed hyperelastic model based on the invariants theory . . . . . . . . . . . . . . . 42 2.2 The dierent congurations for the virtual conguration concept . . . . . . 44 2.3 The dierent congurations illustrating the ISRI restriction. . . . . . . . . . 47 3.1 Possible bers arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2 Number of the optimal bers arrangements depending on the material parameters (yellow color: existence of two admissible solutions, blue color: existence of unique general solution). . . . . . . . . . . . . . . . . . . . . . . 84 4.1 Noise function components (δ = 10 -5 ) . . . . . . . . . . . . . . . . . . . . . 112 4.2 Displacement elds data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Criteria on the displacement elds data for the identication of the initial stress eld) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4 H 1 -norm error for the set of the ltered displacement data . . . . . . . . . . 117 4.5 Inuence of the regularization parameter α reg on the residual stress recontruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.6 Inuence of the parameters k h and α reg on the stability of the residual stress recontruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.6 Inuence of the parameters k h and α reg on the stability of the residual stress recontruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.6 Inuence of the parameters k h and α reg on the stability of the residual stress recontruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.7 Reconstruction of τ 11 , δ = 10 -4 . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.8 Reconstruction of τ 22 , δ = 10 -4 . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.9 Reconstruction of τ 12 , δ = 10 -4 . . . . . . . . . . . . . . . . . . . . . . . . the rst asymptotic term of σ * 23 (in the case of pure plane deformation and τ13 = 0) function of the azimuthal variable θ . . . . . . . . 5.12 g(θ) -1 , φ = 0: the rst asymptotic term of the Cauchy stress components σ * 22 , σ * 23 , σ * 33 and the strain energy density W function of the azimuthal variable θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii xiv Contents General conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . A Appendix A: Investigation of the logarithmic singularities B Moment Optimisation C Relations between invariants in case of 2 families of bers in hyperelastic material C.1 I 9 function of the rest of invariants . . . . . . . . . . . . . . . . . . . . . . . C.2 I 8 function of the rest of invariants in case of orthogonal bers . . . . . . . D Dimension of the space V(R) in chapter 4 Asymptotic expansion terms on the limit of ellipticity condition E.1 Case1: ξ → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.2 Case2: ξ → +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents 1 . 1

 11 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Deformation gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.2 Polar decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.3 Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.4 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Stress and equilibrium equations . . . . . . . . . . . . . . . . . . . . 15 1.3 Hyperelastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 Objectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Material symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.3 Internal constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.4 Isotropic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.5 Anisotropic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.6 Strong ellipticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.7 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.8 Linearization of the hyperelastic models . . . . . . . . . . . . . . . . . 31 1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 1 :

 11 Figure 1.1: The reference and the current congurations

Figure 1 . 2 :

 12 Figure 1.2: Deformation of an innitesimal element of surface

1 2

 1 denote respectively the right and left stretch tensors. The unicity of the polar decomposition is inherited by the unicity of the singular-value decomposition in the case of invertible tensors.

Figure 1 . 3 :

 13 Figure 1.3: Transporting of innitesimal vectors from the initial conguration to the current one

  β denotes respectively the shear modulus and a positive coecient, whereas f is considered as an interpolation parameter dened in [0

Figure 2 . 1 :

 21 Figure 2.1: The dierent congurations for the formulation proof of the initially-stressed hyperelastic model based on the invariants theory

I 4 =

 4 tr(Cτ ), I 5 = tr(C 2 τ ), I 6 = tr(Cτ 2 ), I 7 = tr(C 2 τ 2 ).

FFigure 2 . 3 :

 23 Figure 2.3: The dierent congurations illustrating the ISRI restriction.

Contents 3 . 1

 31 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Axial Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.1 Compressible transversely isotropic materials . . . . . . . . . . . . . . 71 3.3.2 Incompressible transversely isotropic materials . . . . . . . . . . . . . 73 3.4 Coupling the In-Plane and Anti-Plane Deformations . . . . . . . . 73 3.4.1 An asymptotic solution for the compressible case . . . . . . . . . . . . 78 3.4.2 Incompressible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.5 Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 Analogy with initially-stressed materials . . . . . . . . . . . . . . . 85 3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

  .25) 3.4. Coupling the In-Plane and Anti-Plane Deformations 73 ii) M z = 0 (gures (3.1.a), (3.1.b) and (3.1.d)) and

  i) M θ = 0 (gures(3.1.a),(3.1.c) and (3.1.e)) and the axial shear is dened by(3.25).ii) M z = 0 (gures (3.1.a),(3.1.b) and (3.1.d)) and the axial shear is dened by(3.26).

Figure 3 . 1 :

 31 Figure 3.1: Possible bers arrangements

  .42) From(3.40) and(3.41), whenΓ3 Γ5 -Γ2 4 M θ M z = 0,(3.43)it is possible to determine g and w and then to reduce (3.8-1) to a second order linear dierential equation in the unknown f (r). The boundary conditions for such a dierential equation are provided by σ rr (b) = 0 and f (a) = 0.Once the solution for the radial displacement has been provided, the azimuthal and axial shear components are determined from (3.40) and (3.41) imposing g(a) = 0 and w(a) = 0.

  Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

  .65) 82 Chapter 3. Elastic Machines : a non standard use of the axial shear of linear transversely isotropic elastic cylinders.

Figure 3 . 2 :

 32 Figure 3.2: Number of the optimal bers arrangements depending on the material parameters (yellow color: existence of two admissible solutions, blue color: existence of unique general solution).

Chapter 4 .

 4 .21)Based on the form of the matrix C function of the matrces τ (6 independents components) and L (21 parameters), we can deduce that dim(V(R)) ≤ 27. Furthermore, using the explicit form of the matrix C in function of both L and τ components, we can show that dim(V(R)) = 27 (see appendix D) and we can construct a basis for V(R) exploiting two chosen basis of S 3 (R) and S 6 (R) using the expression of C in equation(4.20).Both Cauchy stress and the rst Piola Kirchho stress tensors satisfy the following equi-96 Identication of linear elastic initially-stressed material parameters librium equations: DivS = 0, divσ = 0, in Ω (4.22)

Lemma 1 :

 1 Based on Hypothesis 1 illustrated through equation (4.23), and based on Lemma 2.1 in [Bal 2015], there exists a constant β such that det(L) > β , ∀ X ∈ Ω. (4.24) 4.3 Inverse problem for a generalized initially-stressed material 4.3.1 Reconstruction of the elasticity tensor

Chapter 4 .

 4 .29) Now, exploiting the decomposition of the displacement gradient elds in equation(4.27) and bearing in mind that the initial stress eld satises the equilibrium equation as it is illustrated in equation (4.8), then the equilibrium equation associated to the rst Piola Kirchho stress presented in equation (4.22) can be reformulated for the set of displacement 98 Identication of linear elastic initially-stressed material parameters elds data as:

102Chapter 4 .

 4 Identication of linear elastic initially-stressed material parameters L. If we denote by d param the number of scalar parameters in the matrix C, then N must satisfy N ≥ d param 3

4. 4 . 1 Chapter 4 .

 414 Weak formulation of the direct problem This section will be dedicated to the development of the variational formulation of the direct problem. Let consider the static version of the equilibrium equation in presence of 104 Identication of linear elastic initially-stressed material parameters a volumetric force density f as: DivS + f = 0, in Ω. (4.42)

4 .

 4 Identication of linear elastic initially-stressed material parameters

Figure 4 . 1 :

 41 Figure 4.1: Noise function components (δ = 10 -5 )

4 .

 4 Identication of linear elastic initially-stressed material parameters with [a] are the vectors of the coordinates associated to the interpolation of the scalar eld "a". The block-matrices involved in the expression of the general discrete form of the identication formulation in equation (

  y

Figure 4 . 2 :

 42 Figure 4.2: Displacement elds data

Figure 4 . 3 :

 43 Figure 4.3: Criteria on the displacement elds data for the identication of the initial stress eld)

Figure 4 . 4 :

 44 Figure 4.4: H 1 -norm error for the set of the ltered displacement data

Figure 4 . 5 :

 45 Figure 4.5: Inuence of the regularization parameter α reg on the residual stress recontruction

  a) Relative L 2 -norm error for the residual stress reconstruction function of the noise amplitude δ

Figure 4 . 6 :

 46 Figure 4.6: Inuence of the parameters k h and α reg on the stability of the residual stress recontruction

H 1 -

 1 norm error for the residual stress reconstruction function of the noise amplitude δ

Figure 4 . 6 :

 46 Figure 4.6: Inuence of the parameters k h and α reg on the stability of the residual stress recontruction

  Figure 4.6: Inuence of the parameters k h and α reg on the stability of the residual stress recontruction

Figure 4 . 7 :

 47 Figure 4.7: Reconstruction of τ 11 , δ = 10 -4

Figure 4 . 8 :

 48 Figure 4.8: Reconstruction of τ 22 , δ = 10 -4

Figure 4 . 9 :

 49 Figure 4.9: Reconstruction of τ 12 , δ = 10 -4

Figure 4 .

 4 Figure 4.10: Checking of the ellipticity condition for the reconstructed initial stress eld, δ = 10 -4

  Relative H 1 and L 2 norms of all the iden-Stability of the Div τ reconstruction

Figure 4 .

 4 Figure 4.11: Stabilty of the parameters reconstruction method

Figure 4 .

 4 Figure 4.12: Reconstruction of λ, δ = 10 -4

Figure 4 . 4 4

 44 Figure 4.13: Reconstruction of τ 11 , δ = 10 -4

Figure 4 .

 4 Figure 4.14: Reconstruction of τ 22 , δ = 10 -4

Figure 4 .

 4 Figure 4.15: Reconstruction of τ 12 , δ = 10 -4

Figure 4 .

 4 Figure 4.16: Reconstruction of µ, δ = 10 -4

Figure 4 . 4 126Chapter 4 .

 444 Figure 4.17: Reconstruction of λ, δ = 10 -4

Figure 4

 4 Figure 4.18: Ellipticity criteria

Contents 5 . 1

 51 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2 Formulation of the global crack problem . . . . . . . . . . . . . . . 135 5.3 Analogy with NeoHookean potential . . . . . . . . . . . . . . . . . . 146 5.4 Asymptotic resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.4.1 Plane deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.4.2 Antiplane deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.5 Discussion of the asymptotic results . . . . . . . . . . . . . . . . . . 160 5.5.1 Discussion of the deformation near the crack front . . . . . . . . . . . 163 5.5.2 Discussion of the stress eld near the crack front . . . . . . . . . . . . 176 5.5.3 Discussion of the strain energy near the crack front . . . . . . . . . . . 178 5.6 Numerical analysis of a cracked initially-stressed material . . . . . 183 5.6.1 Strong form of the problem . . . . . . . . . . . . . . . . . . . . . . . . 183 5.6.2 Variational formulation and discretization of the problem . . . . . . . 185 5.6.3 Inf-Sup condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.6.4 Extended nite element method . . . . . . . . . . . . . . . . . . . . . 189 5.6.5 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.6.6 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.6.7 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 130 Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: Cracked innite cylinder.

Figure 5 . 3 :

 53 Figure 5.3: Dierent used transformations

Figure 5 . 3 :

 53 Figure 5.3: Dierent used transformations

Figure 5 . 4 :

 54 Figure 5.4: Deformed crack shapes in the case of planar deformation

2 -

 2 Figure 5.5: Deformed crack shapes in the case of antiplane deformation

2 Figure 5 . 6 :

 256 Figure 5.6: Graphical representation of equation (5.122)

Figure 5 . 7 :Figure 5

 575 Figure 5.7: Graphical interpretation of equation (5.123): If the cross section in the left gure is subjected to a rotation around the X 1 -axis by an angle π it turns to the one represented in the right gure.

3 Figure 5

 35 Figure 5.8: g(θ) sin 2 ( θ 2 ): the rst asymptotic term of y * 1 function of the azimuthal variable θ

  Figure 5.9: g(θ) 1 2 sin( θ 2 ): the rst asymptotic term of y * 2 function of the azimuthal variable θ

  Figure 5.9: g(θ) 1 2 sin( θ 2 ): the rst asymptotic term of y * 2 function of the azimuthal variable θ

  eq ξ(a 2 c 3 + a 3 b 1 ) + τ13 a 2 ] α [-µ eq ξ(6a 4 + 2a 2 (3a3 c 1 -4b 1 c 3 ) + 3a 3 b 2 2 ) + 8a 2 b 1 τ13 ] α (33) 11 = a 3 (µ eq b 3 + ξτ 23 ) 23 ξ 2 b 3 + (4b 23 + 4c 2 3 -6a 3 + 4)µ eq ξ + 4τ 33 ξ + 8τ 13 c 3 ].

  Figure 5.10: g(θ) -1 2 cos( θ 2 ): the rst asymptotic term of σ * 23 (in the case of pure plane deformation and τ23 = 0) function of the azimuthal variable θ

  Figure 5.10: g(θ) -1 2 cos( θ 2 ): the rst asymptotic term of σ * 23 (in the case of pure plane deformation and τ23 = 0) function of the azimuthal variable θ

  Figure 5.11: g(θ) -1 2 sin( θ 2 ): the rst asymptotic term of σ * 23 (in the case of pure plane deformation and τ13 = 0) function of the azimuthal variable θ

  182

Figure 5
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  13). Let us consider u as 2-dimensional displacement eld and p as the Lagrange multiplier related to the incompressibility condition. Both u and p are the solution of the studied boundary value problem. The boundary of the of both the reference and deformed congurations will be partitioned in three parts: the crack faces represented by (Γ c , γ c ), the boundary region for Neumann condition far from the crack faces (Γ T , γ T ) and the boundary region for Dirichlet conditions (Γ d , γ d ). The mathematical representation of the boundary value problem can be divided in three sets of equations: where the rst set of representation is related to the deformed conguration (Euleurian formulation)
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  Figure 6.1: Studied body in 3D representation

. 4 )

 4 |.| denotes the Cartesian norm of a vector, and the notation . T is used to represent the transpose operator. The incompressibility condition indicates the preserving of the local elementary volume during the governed transformation. It is equivalent to:

  anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface 1 is the identity second-order tensor. If we consider the Neo-Hookean behaviour we can expand the formulation of both rst Piola-Kirchho and Cauchy stress tensors as:S αβ = σ αβ = ζ αβ (µp), α, β ∈ {1, 2},(6.12)S α3 = pu ,α , (6.13)S 3α = σ 3α = µu ,α ,(6.14)S 33 = µp = σ 33 = µ(1 + |∇u| 2 )p. (6.15)

[

  |u(R, Θ = ω(l) )|] = 0, (6.21)[|S(R, Θ = ω (l) )|] N (R, Θ = ω (l) ) = 0, l ∈ {U, L}. (6.22) [|.|] refers to the discontinuity operator. Exploiting the previous equation of boundary conditions in (6.20), the interface conditions mentioned in equations (6.21-6.22) and the form of the rst Piola Kirchho tensor in the equations (6.12-6.15), we can deduce: formulation of the anti-plane shear transformation as it is described above, can be summarized by the following boundary value problem: R, Θ = ±π) = 0, k * ∈ {1, 3}, (6.26)[|u(R, Θ = ω (l) )|] = 0, l ∈ {U, L},(6.27)[|µu ,Θ (R, Θ = ω (l) )|] = 0. (6.28)

R

  m i [A i cos(m i Θ) + B i sin(m i Θ)] + o(R m N ). (6.31) o(R m N ) denotes a negligible function compared to R m N when R → 0.Then, the outspread of Cauchy stress tensor asymptotic form becomes:σ αβ = 0, (α, β) ∈ {1, 2},(6.32)σ 13 = µ N i=1

  Figure 6.3: Dierent cases to be treated
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 64666 Figure 6.4: Case ω L = 0: m 1 = f (δ)
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 66 Figure 6.8: Case ω L = 0:m 1 + m 3 -2 = f (δ)
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 32 Conguration ω U = -ω LThis conguration is characterized by an assembly of two homogeneous equal-angle wedges : a V-notch and totally fractured one. Assuming ω U = -ω L = ω, ω ∈]0 π[, we derive as equation to resolve:sin(2mπ) + 2δsin(2mω)δ 2 sin(2m(π -2ω)) = 0, -1 < δ < 1, ω ∈]0 π[.(6.46) We have proved numerically the following results:m 1 (ω, δ) = m 1 (πω, δ), (6.47) m 2 (ω, δ) = m 2 (πω, -δ),(6.48) m 3 (ω, δ) = m 3 (πω, δ). (6.49)
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 6666 Figure 6.10: Case ω U = -ω L : m 1 = f (δ)
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 66 Figure 6.14: Case ωU = -ω L : m 1 + m 3 -2 = f (δ)
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 45 Figure A.4: Case ω U = -ω L : dD dm (m 1 ) = f (δ, ω)

  mn) ] kl = δ mk δ nl + δ nk δ ml , if m = n, δ mk δ nl , if m = n , m, n = 1..3, (D.1)As illustrated in chapter 4, we can construct a family of matrices that spanned the space V(R) in the following way:M = {M Sσ A (ij) M T Sσ , i, j = 1..6} ∪ {

aFigure E. 2 :

 2 Figure E.1: Limit case when ξ → 0

  

  and once again the axial shear is dened by (3.26) (gure (3.1.g)).

  τ 11 L 16 + τ 12 L 15 + τ 13

				L 16	L 12	L 14	L 15	L 14	L 13
	L 61 + τ 12 L 66 + τ 22 L 65 + τ 23	L 66	L 62	L 64	L 65	L 64	L 63
	L 51 + τ 13 L 56 + τ 23 L 55 + τ 33	L 56	L 52	L 54	L 55	L 54	L 53
	L 61	L 66	L 65	L 66 + τ 11 L 62 + τ 12 L 64 + τ 13	L 65	L 64	L 63
	L 21	L 26	L 25	L 26 + τ 12 L 22 + τ 22 L 24 + τ 23	L 25	L 24	L 23
	L 41	L 46	L 45	L 46 + τ 13 L 42 + τ 23 L 44 + τ 33	L 45	L 44	L 43
	L 51	L 56	L 55	L 56	L 52	L 54	L 55 + τ 11 L 54 + τ L 53 + τ 13
	L 41	L 46	L 45	L 46	L 42	L 44	L 45 + τ 12 L 44 + τ L 43 + τ 23
	L 31	L 36	L 35	L 36	L 32	L 34	L

35 + τ 13 L 34 + τ L 33 + τ 33

  1, we can dene the nal reconstructed matrix C * by normalizing the matrix L enforcing the strict positivity of the components L 11 , L 22 and L 33 . So we can dene the reconstructed generalized 4.3. Inverse problem for a generalized initially-stressed material

	101
	initially-stressed matrix as:

  py 2,2 , S 12 = (µ + τ 22 )y 1,2 + τ 12 y 1,1 + py 2,1 , S 13 = τ 13 y 1,1 + τ 23 y 1,2 + p(y 3,1 y 2,2y 3,2 y 2,1 ), S 21 = (µ + τ 11 )y 2,1 + τ 12 y 2,2 + py 1,2 , S

22 = (µ + τ 22 )y 2,2 + τ 12 y 2,1py 1,1 , S 23 = τ 13 y 2,1 + τ 23 y 2,2 + p(y 3,2 y 1,1y 3,1 y 1,2

), S 31 = (µ + τ 11 )y 3,1 + τ 12 y 3,2 + τ 13 , S 32 = (µ + τ 22 )y 3,2 + τ 12 y 3,1 + τ 23 , S 33 = µ + τ 33 + τ 13 y 3,1 + τ 23 y 3,2p.

Table 5 .

 5 1: Examples of three-dimensional deformed crack shapes.

Table 5 .

 5 3: Convergence rates in the XFEM case with U 2P 0-enrichment In the scope of linear incompressible or compressible elasticity, it has been shown that the XFEM method is stable and leads to an optimal convergence rate[START_REF] Nicaise | [END_REF], Amdouni 2012]. If we take the example of single crack-tip enrichment for the displacement eld and the Lagrange multiplier then the convergence rate for the dierent considered formulations is enhanced and can be presented in table(5.6) 200Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body
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Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body

In the same way, the planar and antiplane components of the vectorial mapping function can be obtained in the following way: The latter transformation has an equivalent form in the polar coordinates which can be described as:

where ( R, θ) are the polar coordinates associated to the cartesian coordinates ( X1 , X2 ).

The components of the rst Piola Kircho stress tensor in the equilibrium equations can be now simplied in the new principal basis ( L p 1 , L p 2 , E 3 ), so they can be presented as:

2 )ŷ 1, 2 + pŷ 2, 1, Ŝ13 = L p 1 .S. E 3 = τ13 ŷ1, 1 + τ23 ŷ1, 2 + p(ŷ 3, 1 ŷ2, 2 -ŷ3, 2 ŷ2, 1), Ŝ21 = L p 2 .S. L p 1 = (µ + τ 2 )ŷ 2, 2pŷ 1, 1, Ŝ23 = L p 2 .S. E 3 = τ13 ŷ2, 1 + τ23 ŷ2, 2 + p(ŷ 3, 2 ŷ1, 1 -ŷ3, 1 ŷ1, 2), Ŝ31 = E 3 .S. L p 1 = (µ + τ (p)

(5.50) Chapter 5. XFEM and asymptotic analysis of the mechanical elds near a crack tip in an initially-stressed hyperelastic body pressie nature and it increases in amplitude then the deformation eld of the non-cracked half plane normal to the corresponding eigenvector L p j (j = i) decreases in amplitude. In such case this half plane looks like it is pinned (see appendix E).

If φ = 0, then if ξ → ∞, the orthogonal eigenvalue decreases to be of compressive nature, the half plane normal to the other eigenvector becomes like a pinned one (see appendix E). Whereas, if ξ → 0, the crack opening becomes weaker and weaker compared to the deformation in the rest of the cross section, which looks like a buckling eect (see appendix E).

Discussion of the stress eld near the crack front

Now, exploiting the asymptotic approximation of the deformation eld subjected to the rigid rotation as it is illustrated in equations (5.101-5.102), and bearing in mind the explicit form of the rst Piola Kirchho stress in (5.32) and the relation between it and the Cauchy stress eld in equation (5.25) , then the dierent Cauchy stress components σij which can be presented as:

(5.125) spaces which can be dened as:

where

i=1 denote the classical Lagrange polynomial shape functions associated respectively to the nite element approximated solutions u f em and p f em ,

• I H : is the set of degrees of freedom enriched by the Heaviside function,

• I C : is the set of degrees of freedom enriched by the crack-tip (or singular) enrichment functions.

• {F }

N enr u j=1 denotes the set of singular enrichment functions.

• H denotes the Heaviside function which can be dened as:

where N denotes the outward normal to the crack faces and X c denotes the crack tip position.

Considering the decomposition of the boundary value problem solutions in equation (5.176), then the resulting XFEM spaces V h and Q h can be expressed as direct sum of the nite element and the enriched subspaces as:

Chapter 6. The anti-plane shear elasto-static elds near a crack terminating at an isotropic hyperelastic bi-material interface

i sin(m i ω U ) + B

(1)

i cos(m i ω U )), (6.37)

i cos(m i ω L )), (6.38)

i sin(m i π) + B

i cos(m i π)) = 0, (6.39)

i cos(m i π)) = 0, (6.40)

i sin(m i ω U ), (6.41)

The algebraic form of the previous equations can be on the from M V = 0, where M is a 6-by-6 matrix and V is a column vector by 6 lines regrouping all the unknown constants for every order. To have a non trivial solution for the harmonic problem taking into account the conditions (26-28), one sucient condition governing the singularity power coecients m i is: (6.43) which can explicitly expressed as:

1 is a dimensionless parameter dened in section 2 which is function of the rigidity ratio µ 1 µ 2 . It is clear that δ is a decreasing function of the relative ratio of rigidity µ 1 µ 2 . Therefore, δ can be seen as a relative measure of the rigidity gap between the two considered materials. The eigenvalues equation governing the singularity exponents {m i } i for a wide range of geometrical and material congurations is a function of geometrical angles (ω U , ω L ) and the dimensionless material parameter δ. In other words, the parameters {m i } i are the exponents of the radial terms in the displacement asymptotic expansion. These parameters evaluate how much singular are the asymptotic terms of the dierent Cauchy stress tensor components (rate of divergence when R → 0). It is diuclt to have analytical solutions for equation (6.44) for every value of δ, ω U and ω L . That is why, we will discuss the numerical solutions for three particular geometrical congurations Appendix A Appendix A: Investigation of the logarithmic singularities

Based on the approach explained in the section 4, here we present the related materials for the investigation on the logarithmic singularities. In fact, we show here the derivative of the eigenvalues equation ∂D ∂m (m i ) function of δ and ω, i ∈ {1, 2, 3}, where m i are the rst three solutions for the eigenvalues equation D. It is remarkable from the accompanying gures (from matlab) that ∂D ∂m (m i ) can not be null for any value of δ and ω, which conrms the absence of logarithmic singularities in the asymptotic expansion of the displacement eld. We note also that you can nd the 3d matlab gures accompanied to this manuscript. Appendix B

Moment Optimisation

The explicit form of the fth order polynomial equation in the M 2 r unknown used in section 5 is given by:

where 

Appendix C

Relations between invariants in case of 2 families of bers in hyperelastic material

C.1 I 9 function of the rest of invariants

Let M 1 and M 2 denote the characteristic vectors to the bers directions in the reference conguration. Hence, if the material body is considered to have a hyperelastic behaviour, then based on the theory of invariants developed by Boehler and Spencer in [Boehler 1987b], the strain energy W is expressed in terms of the following invariants:

2)

I 8 , I 9 and I 10 are usually denoted as semi-invariants because they depend of the vectors orientation for both M 1 and M 2 . Thus to avoid this problem, the dependence of the energy potential W of the semi-invariants has to be through the following quantities:

(C.4)

(C.5)

Using the spectral theory, the Cauchy-Green strain tensor C can be put in the following form:

Relations between invariants in case of 2 families of bers in hyperelastic material with λ i denotes the principal strech relative to the principal vector u i . The vectors ( u 1 , u 2 , u 3 ) constructs an orthonormal basis verifying:

where δ ij denotes the Kronecker operator. Using equations (C.9-C.9), the spectral form of the Cauchy-Green strain tensor becomes:

Now exploiting the spectral form of the C in equation (C.10) and the fact that M 1 and M 2 are two unit vectors, the above invariants are transformed to:

3 )M 2 12 + λ 4 3 , (C.15)

3 )M 2 22 + λ 4 3 , (C.17)

C.1. I 9 function of the rest of invariants 237 whereas for the quantities dened above relative to the semi-invariants, they can be written as: .20,C.21,C.24) can be seen as a system of equations whose the unknowns are (ξ 1 , ξ 2 , ξ 3 ) which can be derived from both the invariants (I 4 , I 5 , I 6 , I 7 , Ĩ81 , Ĩ82 , Ĩ10 ) and the principal streches (λ 1 , λ 2 , λ 3 ). Consequentely, if the resulted equations relying the above quantities to the dierent invariants are injected into the equations (C.22-C.23), it implies: which can be transformed to:

The invaraints (I 1 , I 2 , I 3 , I 4 , I 5 , I 6 , I 7 ) keep the same expressions as they are mentioned in the equations (C.11-C.17),. Althought, the quantities dened relaive to the semi-invaraint I 8 become:

Following the same approach as it is done in the general case in the above section, the quantities ( M 2 11 , M 2 12 , M 2 21 , M 2 22 ) can be deduced from equations (C.14-C.17). Furthermore, the variable ξ 1 can derived from the equation (C.31). Therefore, all the dierent varaible relied to the vectors M 1 and M 2 can be expressed in function of the dierent invaraints and by consequence the only non vanishing invariant Ĩ82 relied to the semi-invariant I 8 can be presented in function of the dierent involved invaraints as: Consequently, if we denote by M the matrix dened as the linear operator related to the restriction of the operator F on the space V(R), then it can be explicitly presented as:

where {E k } 27 k=1 are the matrices of the set M. Due to the cumbersome calculations, the matrix M has been constructed numerically and using the the module numpy.linalg in Python, we have derived that the rank(M ) = 27. Thus, using the bijectivity of F, we can conclude that dim(V(R)) = 27. ] + O(ξ -3 ), if sin( θ) = 0 (E.4)