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Résumé

Avec le développement de l’Internet des objets (IdO), les smartphones et les capteurs
sont désormais capables de fournir des informations sur l’activité de l’utilisateur et même
sur sa physiologie. Cela a donc suscité un intérêt croissant de la part de la communauté sci-
entifique, notamment dans le domaine de la e-santé avec des applications dans le suivi des
patients en cours de rééducation pour offrir un suivi plus personnalisé. Cependant, outre
le fait de guider le processus de rééducation, la production et la transmission de données
IdO sont également exposées à des atteintes à la vie privée. En effet, la chaîne de traitement
complexe de l’application IdO dans les soins de santé multiplie les risques de menaces sur
la vie privée tout au long du cycle de vie des données IdO, comprenant la collecte, la trans-
mission et le stockage, par un adversaire qui peut récupérer les données et ré-identifier ou
révéler des informations sensibles des patients. Cette thèse s’articule autour des questions
suivantes: Les données collectées sont-elles suffisamment protégées pour que personne ne
puisse en abuser pour ré-identifier le propriétaire ou déduire des informations sensibles
? Les données protégées sont-elles encore suffisamment précises pour les applications de
soins de santé telles que la rééducation ? Atteindre cet équilibre entre l’utilité des données
et la protection de la vie privée est un défi important que nous étudions dans cette thèse
sous différents angles. Plus précisément, la première partie se concentre sur le problème de
l’anonymisation des données par le biais de la minimisation, tandis que la deuxième partie
se concentre sur la prévention de l’inférence d’attributs sensibles par le biais d’une approche
basée sur les Réseaux Génératifs Adversariaux pour assainir les données des capteurs et une
approche exploitant les couches privées dans l’apprentissage fédéré.

Mots clés
traitement du signal, reconnaissance d’activité humaine, prédiction, apprentissage au-

tomatique, deep learning, apprentissage fédéré, réseaux génératifs adversariaux

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



iv

Abstract

With the development of the Internet of Things (IoT), smartphones and sensors are now
able to provide information about the user’s activity and even their physiology. This has led
to a growing interest from the scientific community, particularly in the field of e-health, with
applications in the monitoring of patients undergoing rehabilitation in order to offer more
personalised follow-up. However, in addition to guiding the rehabilitation process, the gen-
eration and transmission of IoT data is also vulnerable to privacy breaches. Indeed, the
complex processing chain of the IoT application in healthcare multiplies the risk of privacy
threats throughout the life cycle of IoT data, including collection, transmission and stor-
age, by an adversary who can retrieve the data and re-identify or reveal sensitive patient
information. This thesis focuses on the following questions: Is the data collected sufficiently
protected so that no one can misuse it to re-identify the owner or infer sensitive information?
Is the protected data still accurate enough for healthcare applications such as rehabilitation?
Achieving balance between data utility and privacy protection is an important challenge
that we explore in this thesis from different angles. More specifically, the first part focuses
on the problem of data anonymisation through minimisation, while the second part focuses
on preventing the inference of sensitive attributes through a Generative Adversarial Net-
works (GAN) to sanitise sensor data and an approach exploiting private layers in Federated
Learning (FL).

Keywords
signal processing, human activity recognition, privacy, prediction, machine learning,

deep learning, federated learning, generative adversarial networks
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2

Introduction

Health is a field that is evolving at the pace of technological progress and where the pen-
etration of digital technology is bringing unprecedented changes in usage and behaviour.
A particularly important innovation is the emergence of the Internet of Things (IoT) based
tools that can be connected sensors (synchronised with a mobile app) or mobile apps (which
use smartphone sensors) to measure a number of lifestyle-related constants. Health domain
and particularly physical monitoring is now being impacted by the development of this
technology whether in terms of health benefits perspectives or the numerous privacy issues
it generates. To introduce this topic, we first present the context of this thesis in Section I.1
based on the health benefits brought by IoT (i.e., utility) and the increasing concerns about
leakage of personal data (i.e., privacy). In Section I.2, we describe the contributions of this
thesis to address the utility and privacy trade-off presented previously in the same section.

I.1 Motivations

I.1.1 Toward personalized medecine

I.1.1.1 Clinical context

Gait activities such as walking or running are the most essential physical activities for
a human, but lots of neurological diseases cause gait impairments. For example ischaemic
stroke is a serious condition caused by an abrupt cessation of blood flow to a part of the
brain. When blood flow stops, brain cells in the affected area of the brain die, depriving
them of a vital supply of oxygen and nutrients. Stroke results in a neurological deficit that
may affect motor skills and gait activities. Stroke is the second leading cause of death and
third leading cause of disability, with one stroke occurring every 5 seconds worldwide, re-
sulting in nearly 15 million cases of stroke each year [156]. The life-threatening and func-
tional risks associated with stroke make it a global public health priority. More widely, the
ageing of the population in most developed countries leads to an increase of chronic dis-
eases and becomes a social problem. Leading to hospitalization and long-term disability, it
consumes a large amount of healthcare resources. Chronic diseases are the health conditions
among the most costly in the United States with almost half of the American population that
suffer from one of them [251]. With this percentage increasing over the years, hospitals and
specialized health centers become crowded with patients and the time of hospitalization is
not compatible with a long rehabilitation which is generally made at home [344]. In addi-
tion to recovering from neurological diseases, physical rehabilitation is also necessary for
the elderly to remain active in the late ages.

Usually the rehabilitation is only made with human resources and can lead to low pre-
cision in the follow-up. Indeed, the clinician does not always have access to a complete
and accurate feedback which leads to a lack of gait metrics that could help them to adapt
the rehabilitation to the patient. Therefore, the effectiveness of current motor rehabilitation
therapies can be questioned. For example concerning rehabilitation after a stroke, during
the acute and sub-acute stages (<6 months after a stroke), patients receive rehabilitation
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Chapter I. Introduction 3

therapies in specialised health centres, consisting of a set of exercises with the aim of gain-
ing maximum independence. After leaving the rehabilitation centre (i.e., after entering the
chronic stage, about 6 months after a stroke), only occasional medical appointments are
scheduled to monitor the patient’s progress. So during this chronic phase, the lack of con-
tinuous follow-up hinders optimal recovery: after returning home, about 65% of patients are
unable to integrate the affected part of their body into activities of daily living again [58].
This points to the need for new therapeutic options that allow patients to train intensively
and extensively after leaving the specialist centre, while ensuring the quality, effectiveness
and safety of the therapy.

Different technological solutions emerged in order to overcome the lack of quantification
and objectivity, such as motion capture with a camera or electronic walkway [297]. These
technologies allow the clinician to have a quantitative monitoring of the rehabilitation with
the acquisition of more indicators. As the data can be stored, the clinician can also follow
the evolution of the movement of the patient through the different sessions. However, these
kinds of technologies remain costly. The rehabilitation sessions need to be done in a ded-
icated laboratory, which requires patients to come. So there is no long time monitoring,
recordings are generally done on a short distance which implies that gait patterns may be
different from daily life [222]. These methods also requires computing skills and calibration.
For these reasons, they are rather used for research rather than clinical monitoring [297].

I.1.1.2 Wearable sensors for rehabilitation

With the emergence of the IoT, more and more people are equipped with smartphones
(60% of the French population) and other connected objects (activity monitoring bracelets,
smartwatches) [309] that provide information on a person’s activity and even on their phys-
iology. Recent studies tend to show that the measurements of these sensors are sufficiently
precise to return reliable information about the gait’s user [90]. Wearable sensors consist
of three main components: 1) hardware to detect and collect physiological or motion data,
2) communication hardware and software to relay the data to a remote center, and 3) data
analysis techniques to extract clinically relevant information from the physiological and mo-
tion data [241]. Recently developed wearable systems incorporate sensors that use wireless,
low-energy, low-cost, and high data rate communication technology. Common technologies
include ZigBee, Bluetooth, Wi-Fi, and Ultra-wideband (UWB) pulse radio [348]. In health-
care, these wearable sensors are worn close to and/or on the surface of the skin, where they
detect, analyze and transmit information about body signals (physiological signal, activ-
ity signal). In some cases, they provide immediate feedback (biofeedback) to the user [83,
84, 237]. These sensors exchange data with other users or connected devices, without hu-
man intervention and via wireless networks. This technology is now integrated in remote
personal monitoring systems which is a complex framework with numerous elements inter-
acting and collaborating with each other for a common task. A conceptual representation of
a basic remote monitoring system is shown in Figure I.1.

Wearable sensors collect physiological and/or motion data to monitor the patient’s con-
dition ¶. When the device used is not directly included in the smartphone, wireless commu-
nication is used to transmit the patient’s data to a mobile phone or access point · and relay
the information to a cloud (i.e., a remote server potentially hosted by an untrusted third
party) ¸ via the Internet. As a huge amount of data is generated per second, cloud com-
puting helps in the storage and analysis of such data. Because the storage and calculations
are performed on the cloud, the device is easy to use, accessible and inexpensive [45, 56].
Once collected, the patient data is processed to extract relevant clinical variables via signal
processing, pattern recognition, data mining and other artificial intelligence-based methods

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés
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FIGURE I.1 – Illustration of a remote health monitoring system based on wear-
able sensors

[133]. In case of emergency (e.g., detected falls) an alarm message can be sent to an emer-
gency service center ¹ to provide immediate assistance to patients. Family members and
caregivers are alerted in case of an emergency but can also communicate regularly with the
patient while remotely monitoring their clinical condition.

These technologies have therefore been the subject of much research in recent years in
the medical field, particularly in chronic disease rehabilitation, with the aim of integrating
them into the home activity monitoring process. Used consistently, wearable sensors can
reduce assessment times and provide objective and quantifiable data on the physical and
physiological capabilities of patients, complementing the expert judgement of rehabilitation
health specialists. Sensors also have the potential to provide continuous information about
activities of daily living. This wealth of information can then be used to fine-tune the pa-
tient’s medical record, which can then lead to more targeted specific care (towards more
personalised medicine). This potentially opens a new era for the field of signal processing
applied to the study of chronic disease. In this context, many challenges remain for the use
of wearable sensors in clinical routine, including the fact that current on-board sensors are
not necessarily recognized as medical devices or that their clinical use is complex (need to
build up patient cohorts outside hospitals).

Among the wearable sensors, the most commonly used are motion sensors (such as gyro-
scopes, accelerometers, pressure sensors, magnetometers) and Inertial Measurement Units
(IMU), that are very useful for monitoring the activity of patients over the long term.

I.1.1.3 Motion sensors for different applications

Considerable research efforts have been made in recent years to assess the accuracy of
these motion sensors in classifying Activities of Daily Living (ADLs) for home monitoring
of the elderly and people with chronic diseases [106]. Studies have already shown that
ADLs can be correctly identified in the elderly, either with accelerometers [204], or with
pressure sensors in the shoe [274]. Fall detection devices have also been proposed, in the
form of wearable sensors [117, 228], or sensors embedded in the telephone [4, 7]. Ongoing
research is focused on the prevention of fall-related injuries. Motion devices have also been
proposed to monitor imbalances in the gait of Parkinson’s patients [31] and patients with
dementia [289], stroke [331, 338], or to monitor potential seizures in epilepsy patients [318].

Clinical studies have shown that the use of motion sensors in home rehabilitation ther-
apy is motivating by providing playful interfaces and encouraging patients to continue exer-
cising regularly, which is beneficial in the long term [12, 249, 320]. Few studies already pro-
posed contributions for home rehabilitation therapy. For example, in Parkinson’s disease,
it is essential to identify motor dysfunctions early enough to determine the optimal drug
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dosage. The use of a sensor-based system therefore appears to be a promising approach to
improve the clinical management of patients . Kostikis and al. [175] proposed a practical
smartphone-based tool to accurately assess upper limb tremor, effective to remotely evalu-
ate the patient’s condition and communicate the results to the clinician. Lipsmeier and al.
[192] used smartphone’s sensors to monitor PD patients during 6 months and used digital
biomarkers such as time spent walking or sit-to-stand transitions to assess disease status and
treatment effects. Ferreira and al. [98] developed stroke rehabilitation exercises in a game-
like structure using a smartphone in order to promote and evaluate different movements of
the upper limbs. After a stroke, intensive rehabilitation is very important to recover motor
functions. This motor activity monitoring is used as a feedback tool to guide the rehabil-
itation process, but also to collect clinically relevant data for rehabilitation staff regarding
the patient’s motor status, assess what the patient is able to endure, what type of exercise is
beneficial to him and finally increase his motivation.

However, still most of the studies have been conducted in the laboratory, with a limited
sample of patients. It would be necessary to validate more of these monitoring methods at
home, under less controlled experimental conditions, and on a larger representative cohort.

I.1.1.4 Validation of the wearable sensors

In spite of their rapid development, the use of wearable sensors for the general public
is sometimes contested in the medical community: the objections concern the quality of the
data collected as well as the reliability of the technologies in a clinical context where the
pathologies are very varied and even combined [43]. It still seems necessary to validate the
sensors in order to remove any reluctance of the medical staff and to integrate them into a
clinical setting dedicated to patient rehabilitation. A first step would be to define precise
validation protocols - in consultation with the medical profession - adapted to the study
of chronic pathologies. Indeed, many studies are content to validate sensors for a given
medical application without even having tested them outside the laboratory [9, 33, 213], on
a very limited number of patients [92, 186, 256], and over a relatively short time window (of
the order of a few hours and even few minutes) [5, 221, 303]. In section II.2, we summarize
a state-of-the-art between 2010 and 2020 in terms of the use of wearable sensors for gait
monitoring in patients and especially their validation protocols.

However the proliferation of these IoT technologies for remote monitoring implies the
production of a huge amount of data, and tends to participate in the increasing quantity of
clinical data available electronically.

I.1.1.5 Gait analysis and Machine Learning (ML)

With the generation of sensor networks where each sensor monitors data at different lo-
cations, sends data to clouds and generates huge amounts of data sometimes in real-time,
this big data configuration needs to use automated process and analysis. ML algorithms
appear to be efficient when the size of data produced is extremely large, with a complex
interaction between numerous variables. ML can extract valuable information and make
useful inferences from data of a multitude of different devices. In Section II.2 we identify
over the last decade an increasing number of ML evaluations in research to predict the evo-
lution of chronic diseases. ML aims to build a model that can make repeatable predictions
in a high-dimensional space and take into account the non-linearity resulting from the com-
plex relationship between the physical sensors and the classification output. ML analysis
can be separated on the following different detection aspects in relation to gait monitoring:
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Gait activity detection corresponds to the basic study in gait analysis. It consists of de-
tection from motion sensor data of various gait activities made by the user such as walking,
jogging, walking upstairs, walking downstairs and also transition phases such as sit to stand
and stand to sit. This study is made both on healthy [20] and pathological groups. For ex-
ample, Leightley and al. [183] use Support Vector Machine (SVM) and Random Forest (RF)
(see Section II.1) to classify ten rehabilitation activities, by extracting the kinematic location,
velocity and energy from sensors located on the skeletal joints. Biomechanical studies on
gait are useful to identify specific impairments and abnormalities, but it is difficult to anal-
yse complex implicit interactions between many variables in a gait system [258]. Thus, ML
models are extremely efficient for the analysis of high-dimensional data with sometimes the
number of input variables exceeding the number of samples, and even for healthy and im-
paired patients. These models are now sufficiently effective to detect different activities in a
short amount of time of a few milliseconds so that it can assist clinicians to plan and refine
rehabilitation of patient’s mobility.

Gait event detection The gait event detection aims at determining the different segments
of a step cycle and mainly the heel strike when the foot is in contact with the ground and the
toe-off when the foot is not in contact with the ground (see Figure I.2). Other segments of
the gait are also analyzed such as stance or swing. Farah and al. [93] evaluate four segments
of gait in different walking conditions (i.e., surface levels, walking speeds) using a decision
tree (see Section II.1) applied on signals from sensors on the thigh and knee. Twenty specific
features were calculated like knee flexion angle or thigh-segment angular velocity. This
analysis can provide information on individual variations and dynamic assessment of one’s
gait. Jung and al. [161] used an exoskeleton for the rehabilitation of stroke patients, which
aims at recognizing the intention of the patient before moving, which segment of the gait
the patient wants to do. The authors use a gait phase recognizer method based on a neural
network trained on hip and knee joint angles and foot status value (whether the foot contacts
the ground or not). Yoo and al. [342] study changes in different gait movements to predict
the severity and prognosis of knee osteoarthritis in patients using SVM model trained on
specific features such as time of stair ascent and kinematic data, including angular features
of the pelvis, hip, knee, and ankle. Gait event detection using ML is then beneficial during
daily living activities to monitor and detect quantifiable shifts in gait patterns that can lead
to clinical interventions specific to each individual.

Gait disorder detection This area aims at detecting gait abnormalities and some devia-
tions from normal walk. One of the interests is the association between neurological con-
ditions and specific gait disorders which is usually the inability to coordinate movements.
Before the arrival of ML models, the quantification of the deterioration of a gait was de-
fined with a normalcy index [261, 278], designed to represent and quantify the deviation
of a subject’s gait from the unimpaired population. Now ML models can determine with
high accuracy (>90% depending on the application [180]) abnormalities in gait and the use
of multimodal data by integrating with inertial sensors, ground reaction forces or electro-
physiological data help models to perform significantly better and seems suitable for the
assessment of gait abnormalities [180]. Gait disorder detection has been applied on several
neurological diseases such as stroke using RF [68], Hierarchical Weighted Classifier [255]
and Neural Network [161], Parkinson’s disease using RF, SVM and Neural Network [184],
multiple sclerosis or cerebral palsy using k-Nearest Neighbors (k-NN) and Neural Network
[13].
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FIGURE I.2 – Illustration of different phases of the gait cycle. The heel strike
and the toe off are respectively the starting and ending of the stance phase.
Illustration reproduced from "Towards Effective Non-Invasive Brain-Computer In-
terfaces Dedicated to Gait Rehabilitation Systems", Castermans and al, 2013, Brain

Sciences 4(1):1-48

Gait asymmetry detection This task concerns the detection of differences in the gait mo-
tion of two lower limbs which can result in an asymmetric gait. Symmetry indices are calcu-
lated following the difference between left and right sides for a given parameter and divid-
ing the result by the bilateral average. The parameters used include vertical ground reaction
forces, plantar pressure distribution, speed and stride frequencies. [267]. This detection is
mainly used as an indication of fall-risk for geriatric studies but also for rehabilitation such
as abnormal heel strike detection using SVM model [242]. The use of multimodal data with
inertial sensor data is also beneficial for this task, Ghasemzadeh and al. [116] used force
plates and Electromyography (EMG) signals to improve fall prediction using k-NN and
neural network on a set of 28 EMG features and 5 inertial features.

In section II.2, we highlight the contribution of ML for gait assessment and give different
recommendations to conduct a study that uses wearable sensors to track patients’ gait.

I.1.2 Security and privacy issues

The complex workflow of collected medical data multiplies the security and privacy
risks all along the life-cycle of the data including the data collection and transmission [23,
334], as well as the processing and the storage [266]. The concept of privacy means that
patients can only reveal information about themselves according to their own choice. In
other words, no unwanted information about a patient is revealed to the public. In 2017,
the number of attacks on IoT devices has increased by 600% [65] showing a high interest for
attackers to compromise IoT systems. With the increased number of IoT devices connected
to the Internet (it is projected to increase to 25 billion devices by 2025 [288]).

I.1.2.1 Personal data leakage

The data extraction and analysis from IoT devices may reveal personal information. In
2018, the General Data Protection Regulation (GDPR) was applied and defined a stricter
privacy legislation by considering health data as very sensitive personal data. Following
GDPR: "personal data means any information relating to an identified or identifiable natural person
(‘data subject’) (see Art. 4 (1) of GDPR [1]) and considers data concerning health as : "personal
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data related to the physical or mental health of a natural person, including the provision of health care
services, which reveal information about his or her health status" (see Art. 4 (15) of GDPR [1]).

When such medical data can be accessed by an adversary, multiple risks of privacy
threats may occur. For example, leakages of user re-identification are very high (e.g., the re-
identification of Governor William Weld’s medical information [181]) but also user sensitive
information leakage with the exploitation of vulnerabilities in smart home devices [22] and
the disclosure of data from wearable fitness tracking devices [353]. Storing and analyzing
all raw data on a cloud may also be problematic and raise privacy risks. Communications
may be vulnerable to eavesdropping (e.g., Man-in-the-middle attack), attackers only have
a unique target to steal data, and more generally moving data to a cloud service provider
make user and clinical entity lose control over sensitive data [11]. Moreover the use of ML
in healthcare systems has paved the way for numerous attacks on ML models directly (e.g.,
poisoning attacks [150], membership inference attack [285], attribute inference attack [110]),
these aspects are further explored in Section II.3.

However, since the new regulation GDPR, different constraints must be taken into ac-
count by the controller who is "the natural or legal person, public authority, agency or other body
which, alone or jointly with others, determines the purposes and means of the processing of personal
data" (see Art. 4 (7) of GDPR [1]). The controller should be able to demonstrate compliance
with a set of six principles including (see Art. 5 of GDPR [1]):

— Data minimisation means that personal data shall be adequate, relevant and limited
to what is necessary in relation to the purposes for which they are processed.

— Personal data shall be processed lawfully, fairly and in a transparent manner in rela-
tion to the data subject which corresponds to lawfulness, fairness and transparency
concepts.

— Data must be processed in a manner that ensures appropriate security of the personal
data, including protection against unauthorised or unlawful processing and against
accidental loss, destruction or damage, using appropriate technical or organisational
measures, which corresponds to integrity and confidentiality concepts.

— Purpose limitation implies that the data are collected for specified, explicit and legiti-
mate purposes and not further processed in a manner that is incompatible with those
purposes.

— Accuracy principle involves that personal data shall be accurate and, where necessary,
kept up to date.

— Storage limitation implies that data must be kept in a form which permits identi-
fication of data subjects for no longer than necessary for the purpose for which the
personal data are processed.

To apply these principles in practice, national independent agencies in charge of data
privacy (such as CNIL in France) give practical tools and appropriate measures to ensure
compliance with GDPR [112]. For example, the agency advises to record all the processing
activities which allows to make an inventory of the data processing and to have an overview
of what is doing with the concerned personal data. The agency also gives some tools to assist
in the realisation of Data Protection Impact Assessment (DPIA) which aims at evaluating the
characteristics of a data processing, the risks and the measures to adopt.

The GDPR does not include a general obligation of anonymization. It is one solution,
among others, to be able to use personal data in compliance with the rights and freedoms
of individuals. Anonymization opens up potential for re-use of data that was initially pro-
hibited due to the personal nature of the data used, and thus allows actors to use and share
their database without violating the privacy of individuals for example data can be shared
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for processing services. It also allows data to be retained beyond their retention period.
Therefore, Chapter III mainly focuses on the development of anonymization frameworks.

Even with strict constraints given by GDPR, the risk is never zero. In February 2021, the
medical data of around 500,000 people, were stolen from 30 medical laboratories in France
[103]. The file contained names of patients, together with their address, telephone number,
email and social security number, but also highly confidential information about some of
the patients’ health, including pregnancies or fertility problems, underlying conditions such
as HIV, and medication prescribed. The files were stolen with a fraudulent access to a server
associated with the software used by the 30 laboratories to collect their patients’ data. In
October 2020, the Council of State in France recognized the existence of a risk transfer of
personal data from the European Union to the United States in the Health Data Hub [305].
The Health Data Hub is an information system designed to gather all health data of the
entire population receiving care in France. As the hosting of the platform has been entrusted
to Microsoft, the Court confirmed that on request from the US intelligence services, the risk
of health data transmission cannot be excluded.

I.1.2.2 Quantified self democratization

Nevertheless, the production of personal data is not limited to the medical field. Since
2007, the movement of Quantified Self [329] has appeared and can be presented as a col-
laboration between users and tool makers who share an interest in self-knowledge through
self-tracking. These practices seem to illustrate a new relationship with the body and data
and probably foreshadow new uses linked to the development of connected objects. This
movement participates in the development of IoT and aims at producing data at the frontier
of well-being and health.

Today there is a wide range of sensors and several thousand applications that mainly
concern the following themes: quantifying an activity or a physical parameter (Runkeeper
[264], Runtastic [265], Fitbit [99], etc.); monitoring nutrition through calorie estimation (My-
Fitness Pal [220], etc.); monitor weight (Withings [333], Terraillon [328], etc.); measure sleep
quality; monitor a risk factor; assess mood, and so on.

These tools can also differ in the way they record and capture data. In some cases, the
data is recorded automatically by a sensor - either external or incorporated into the smart-
phone - and is then sent back to the editor of the application or sensor [99, 264]. In other
cases, the data is entered manually, in a declarative manner, by the user in a dedicated inter-
face such as the application Brightself [47] that assesses and monitors depression and mood
during the antenatal period thanks to the completion of momentary questions.

As soon as it is the users themselves who equip themselves to monitor their state of
health, outside the medical devices, we leave the traditional framework of medical practice.
These measurements carried out outside of a supervision raise several series of concerns
especially as wearables are becoming more and more efficient in collecting, with increased
accuracy, a number of biomechanical parameters (foot strike pattern, stride length, step rate,
etc.) [102] through which to quantify gait and from which applications can derive meaning.
These advances in technology make the data produced sometimes as sensitive as medical
data. However, the companies associated with these technologies provide less guarantees
in terms of security and transparency than a hospital producing medical data using motion
sensors for example. In this context, the issue of data sharing becomes more significant,
especially when an app or device shares data with any number of third parties.
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I.1.2.3 The role of the third parties

Almost all applications collect and send data to third parties companies for different
purposes such as marketing analysis. In these exchanges with third parties, and from the
perspective of privacy protection, the questions concern the possible reuse of data, their se-
curity, and the information and control conferred on users. The study "Mobile health and
fitness apps: what are the privacy risks?" conducted in 2013 and revised in 2016 by Privacy
Rights Clearinghouse [142], by an American privacy protection association on 43 mobile
health and fitness applications, shows that the vast majority of them do not offer sufficient
protection to guarantee the privacy of their users’ data. In particular, the lack of security
of communications (not encrypted), the sharing of personal information with advertisers to
generate targeted advertising and the sending of "aggregated data" (data gathered by com-
bining multiple individual-level data) in which users can be re-identified by third parties are
highlighted. The same "aggregated data" can also be resold for commercial logic: weight-
related measurements may, for example, interest research teams or pharmaceutical labora-
tories. Commercial companies may also be interested in this data in order to set up points
of sale (i.e., a sports shop based on geolocated data from Runkeeper). This data is generally
described in privacy policies as "non-identifying" in the sense that it is not directly linked
to an individual but remains personal data through the geolocation or socio-demographic
information that may be included.

Insurance companies now encourage users to share personal data, because an accurate
indication of customer activities and lifestyle choices can help to customise policies. Indeed,
the insurance industry is imagining insurance policies where the premium would vary ac-
cording to the physical activity or lifestyle of individuals because of their impact on the
risk covered [41]. In recent years, GAFAM industries also entered the market of e-health.
Apple released in 2015 the Apple Watch, a connected watch that takes stock of the state of
health and supports the user in his daily life and in his physical activities [306]. In 2014
Google bought the Lift Lab which had marketed the Liftware spoon [191], a high-tech anti-
tremor spoon to help patients with Parkinson’s disease. These companies collect data on a
large scale with sometimes millions of users (the number of Apple Watch users worldwide
passed the 100 million mark in 2020) and rely on the personal data that consumers generate
with their services or products to create personalised services or offer targeted advertising
space to other companies. That big companies (GAFAM) are collecting medical data on a
large scale raises a number of questions.

I.1.2.4 Data transparency

Once the data has been collected, the provider can only be trusted to process the data
according to the stated purpose. However, beyond the obvious lack of transparency for
individuals on how the data are used, the study "Mobile health and fitness apps what are
the privacy risks?" [142] denounces the discrepancy between the privacy policies presented
to the user and the reality of the practices concerning personal data. For those applications
that do publish their privacy policy, the authors of the study found that the majority of
potentially privacy-risky practices were not described in a clear and understandable way.
The authors even explain that they have identified "a correlation between the level of detail of
a privacy policy and the risk in the use of the application regarding privacy". They add: "the more
detailed an application’s privacy policy was, the more privacy-invasive the practices found were".
This makes it difficult for users to have real control over their personal data. To strengthen
ethics, ensure the protection of the rights, and regulate the practices in companies some
ethics committees have been created, but they are often influenced by conflicts of interest
[307].
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GDPR has now defined different types of information that needs to be provided to the
data subjects such as identity of the controller, purpose of the processing, etc. The recital 58
gives the following requirements : "The principle of transparency requires that any information
addressed to the public or to the data subject be concise, easily accessible and easy to understand, and
that clear and plain language and, additionally, where appropriate, visualisation be used".

However, Morel [217] points out four characteristics of IoT devices that makes infor-
mation and consent difficult in practice. Their ubiquity which means they have invaded
our daily-life, their invisibility combined with their proliferation reinforces the difficulty
of being informed. Their variety means they do not collect the same type of data, do not
communicate with the same protocols and the variety of usage contexts makes it difficult
to retrieve information. Their low computational power means they are fit for a limited num-
ber of tasks which generally consists of collecting data and sending it to a central node.
Lastly, they have inappropriate interface. Due to their small size and the fact that they are
battery-powered, some devices literally do not have the necessary means of communication
to interact with the user.

I.1.2.5 Security and privacy threats

According to Nokia Threat Intelligence Report 2020 [230] IoT infections has increased
by 100%, IoT devices are now responsible for 32.72% of all infections observed in mobile
networks, up from 16.17% in 2019. In practice, the production of data using self-quantified
applications is exposed to numerous attacks at different times of the processing data frame-
work. Starting from the data acquisition, IoT themselves are prone to many attacks, we
introduce here only some of them. The most obvious threat is the use of weak or guessable
passwords. Lots of IoT devices, specifically those that use web interfaces, are not always
reconfigured to let the user change the default password which leaves the device vulnerable
to brute-force attack for example [295]. The code-injection attack aims at introducing mali-
cious code into the system thanks to errors in the program [94, 214]. This attack can be used
to steal data, get the control of the system or even propagate worms [337, 351]. Spoofing
attacks can be easy to implement in an IoT access network by using a faked identity such
as the Media Access Control (MAC) or Internet Protocol (IP) address of the real user. The
attacker then can claim to be a legitimate device and can have access to the IoT network
[324]. Indeed, at the network level which concerns connectivity of an IoT system, the trans-
mission medium is often wireless with Bluetooth, WiFi, 3G, etc. One of the most common
attacks is Denial-of-Service (DoS) attack which consists of flooding the targeted machine
with requests. As a result of sudden incoming traffic, the online service can be unavailable
to users due to resources exhaustion [167]. This attack can be used as a smokescreen to
achieve other attacks to violate the defensive system and therefore the privacy of the user’s
data [94]. Man-in-the-middle attack is also a common attack that occurs when an attacker
intercepts the communication between two systems in order to obtain information of the
two entities [226]. At the cloud level of IoT systems, among the most common attacks the
malware injection attack aims at introducing a malicious service or a virtual machine into
the cloud in order to redirect user’s requests to the malicious module and execute the ma-
licious code. Then the attacker can manipulate or steal data with an eavesdropping attack
[128]. With billions of records stolen worldwide every year [2], stolen data often ends up
being sold online on blacks markets. For example, in 2018 hackers offered for sale more
than 200 million records containing the personal information of Chinese individuals [129].

Beyond security issues, with the high amount of data produced with IoT, the data con-
troller is not always able to ensure that user personal information is hidden and then vul-
nerable to improper sharing and misuse, which makes privacy also a major concern. It is
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known that data from GPS, cameras or microphones are highly sensitive for user’s privacy,
but motion sensors are also concerned. Data extracted from motion sensors can be used
for re-identification [179], location tracking [131], behavior tracking [202], keystroke infer-
ence [51], demographics information inference [212], psychological traits inference [352], etc.
Furthermore the processing framework is also concerned by privacy issues especially when
ML models are used. Indeed, these models are able information in their parameters not
related to the task targeted and then may intentionally contain sensitive information about
the user’s data [347]. These aspects are discussed in more detail in chapter II.3.

I.1.3 Research problematics

More reliable and secure alternatives regarding the collection and processing of
healthcare data and specifically motion sensor data needs to be explored. In the con-
text of activity recognition via wearable sensors, the challenge is then to identify ML
methods that can preserve the privacy of individuals while maintaining sufficient rel-
evant data for ML tasks [290]. This challenge raises two important questions:

• Is the collected data sufficiently protected so that no one can misuse it to infer
sensitive information or re-identify the owner?

• How do we determine if the protected data is still accurate enough for healthcare
applications such as rehabilitation?

Achieving this balance between data utility and privacy is an important goal for send-
ing secure and trusted data via wearable sensors and building end-user trust and
adoption.
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I.2 Fields of investigation and contributions

To answer these two questions, my thesis aims at proposing in the different contri-
butions, a paradigm shift from a centralized strategy where the preprocessing, the
storage and the analysis of data are done on a single location, to a strategy that move
a part of the processing locally (i.e., on the user’s smartphone). These local processes
aims at identifying the relevant information for the gait monitoring (sent to the server)
from information leading to a leak of sensitive information (not disclosed). To assess
the feasibility of this approach, we also evaluate the cost of operating these minimiza-
tion schemes on user’s devices.

We detail in this section my five main contributions. The first one is a systematic re-
view of the validation of commercial wearable sensors for gait monitoring in healthcare that
highlights the contribution of ML over the last decade (see I.2.1). The second contribution
explores different aspects of privacy preserving ML, firstly on the anonymization of data
through minimization and thus limiting the collection and storage of data that allow the re-
identification of patient (see I.2.2 and I.2.3). Then the protection of other sensitive attributes
using Generative Adversarial Networks (GAN) (see I.2.4). Finally we explore the protection
of sensitive attributes on data stored in a decentralized manner (see I.2.5).

I.2.1 Contribution of ML in validation of wearable sensors

Previous research has shown significant differences in spatiotemporal gait parameters
between similar in-lab and in-field studies, illustrating the importance of establishing com-
mercial sensor validity for long-term patient monitoring. Indeed, clinicians are still cautious
to use due to their doubts about the quality of the data collected as well as the reliability of
the sensors. In this context commercial sensors must be validated with rigorous validation
methods.

In chapter II.2, the scoping review summarizes the state of the art between 2010 and
2020 in terms of the use of commercial wearable devices for gait monitoring in patients.
For this specific period, ten databases were searched and 564 records were retrieved from
the associated search. This scoping review included 70 studies investigating one or more
wearable sensors used to automatically track patient gait in the field.

This contribution explains why studies using ML are tending to become more numerous.
ML brings benefits compared to statistical validation methods, as the large amount of data
production makes ML methods robust, efficient and fast to analyse a complex and high-
dimensional data space. ML is particularly adapted to predict the evolution of a disease and
the corresponding rehabilitation.

I.2.2 Data minimization through local pre-processing

Motion sensor data are usually transmitted to analytic applications hosted in the cloud
that use ML models to perform activity recognition but this data also contains private infor-
mation about users without their awareness and may even cause their re-identification.

In chapter III.1, I propose a framework to efficiently recognise the user activity, useful for
personal healthcare monitoring, while limiting the risk of users re-identification from a set
of features calculated based on accelerometer and gyroscope signals. This framework relies
on local processing to minimize the data transmitted to the server. To achieve that, we show
that features in the temporal domain are useful to discriminate user activity while features
in the frequency domain lead to distinguishing the user identity. This protection mechanism
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extracts the most important features for activity detection and limits the ability to re-identify.
These unlinkable features are then transferred to the cloud. We extensively evaluate our
framework with reference datasets. Results show an accurate activity recognition while
limiting the re-identification rate.

I.2.3 Data anonymization based on time-frequency representation

We also explore a novel representation of motion sensor data in two dimensions. Time-
frequency representation gives the frequency evolution of the signal components as a func-
tion of time. In chapter III.2, I propose a privacy-preserving framework for activity recog-
nition based on this representation in order to deal with the non-stationarity of the signals
and therefore allow a better trade-off between activity recognition and user identification.

Acceleration signals (x, y and z axis) are encoded in the time-frequency domain by three
different linear transforms: Short Time Fourier transform, Stockwell transform and Opti-
mized Stockwell transform. Second, we propose a method to anonymize the acceleration
signals by filtering in the time-frequency domain. Finally, we evaluate our approach for the
three different linear transforms with a convolutional neural network classifier adapted to
image processing, with a late fusion strategy of x, y and z axis images.

I.2.4 Data sanitizing to prevent inference of sensitive attributes

Anonymization is not always sufficient, the disclosure of data may also lead to sensi-
tive attribute processing not consented by the data subject and sometimes discriminating
treatment based on social or physiological information between the users. To address this
issue, we propose in chapter IV.1 DySan, a privacy-preserving framework to sanitize mo-
tion sensor data against unwanted sensitive inferences while limiting the loss of accuracy
on the physical activity monitoring. Our approach is inspired from the framework of GAN
to sanitize the sensor data.

DySan builds various sanitizing models, characterized by different sets of hyperparam-
eters and dynamically selects on the smartphone the model which provides the best utility
and privacy trade-off according to the incoming data.

I.2.5 Federated Learning with personalized layers

Lastly, we briefly explore a distributed learning scheme in chapter IV.2. Contrary to
the traditional centralized approach, we specifically use Federated Learning (FL) to train a
learning model across multiple participants without explicitly sharing data samples.

While FL is a clear step forward enforcing users’ privacy, different inference attacks are
still possible. By only sharing learning models and not data, the framework is exposed to
different attacks such as inferring the user’s sensitive attribute based on the model’s param-
eters.

In this chapter IV.2, we quantify the utility and privacy trade-off of a specific FL scheme.
Instead of each user sharing their entire model, only a part of the model is shared (called
upper layers) for the FL and the rest of the model is kept (called personalized layers) for the
local training. While this scheme has been proposed as local adaptation to improve the
accuracy of the model through local personalization, it has also the advantage of minimizing
the information about the model exchanged with the server. However, the privacy of such
a scheme has never been quantified.

Our evaluations using motion sensor dataset show that personalized layers speedup
the convergence of the model and slightly improve the accuracy for all users compared to
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a standard FL scheme while better preventing both attribute and membership inferences
compared to a FL scheme using local differential privacy.
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Chapter II
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Background and Related Work

This chapter aims at exploring in the literature the two main aspects of this thesis which
firstly consists of using ML on complex and large-scale motion data to assess rehabilitation
and secondly also using privacy preserving ML scheme to overcome privacy issues raised
by the production of motion data.

The first section gives a short overview without giving mathematical details of what ML
is and presents several methods used in this thesis. The second section further explores the
benefits of ML to validate the use of motion sensors for gait monitoring. We conducted a
review of the validation methods used by studies in healthcare rehabilitation over the last
decade. The third section focuses on the privacy issues that the large production of motion
sensor data implies and specifically the attacks that aim at inferring sensitive information
on data acquired then, we explore the main defences designed to overcome these attacks.

II.1 Short overview of ML

ML is an automatic method for data analysis that is a revolution in many science aspects
and will significantly influence the research in healthcare in the near future. The hype for
methods around ML is already happening with more and more publications on the subject.
This tendency can be observed by looking at the number of papers published over the years
and especially in Pubmed, a database for biomedical field (Figure II.1)
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FIGURE II.1 – Number of papers published in Pubmed.com using the search
term (ML) OR (deep learning) and choosing a specific year in advanced

search. Pubmed is a database for biomedical field.

II.1.1 A two step process

In general, ML models aim at automatically inferring general relationships on large
datasets for complex tasks that are usually not possible to make by hand. The main way
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to build a ML model relies on 2 steps:

Training phase. By considering a training dataset as a combination between the input data
X = x1; xn (with n the number of training examples and xi the feature vector) and Y =
y1; yn the output space that determines the task that the model wants to infer. Then, the
model is included in a space of functions θ, X : fθ(X) which corresponds to a set of functions
that models the distribution that represents the dataset. The objective of the training phase
is to find the set of parameters θ that best fits the model prediction with the output data
Y. This is done through a loss function L( f , x, y) that quantifies the differences between
the model’s prediction and the true values. Often, the training consists of minimizing the
loss function thanks to the Stochastic Gradient Descent (SGD) method which consists of
iteratively calculating the function f and the loss l for each x ∈ X. The model is evaluated
on a validation dataset disjoint from the training dataset to measure how well the model
generalizes.

Test phase. After the training phase, the model can be used on a test dataset disjoint from
the training and validation dataset in order to make predictions. These predictions are gen-
erally represented by a vector of size the number of classes in the output space. Each element
of the vector corresponds to the probability that an input data belongs to the class.

II.1.2 Three classes of tasks

The ML tasks are generally divided into the three following main classes:

Supervised learning. In this configuration, the input data are labelled with a correspond-
ing output data. The goal of the model is to map the input data to the output labels even
for new input data unseen by the model during the training. If the output data is categori-
cal, we call the task made by the model classification. If the output data is continuous, we
call the task made by the model regression. Our contributions are in majority based on the
classification configuration.

Unsupervised learning. This configuration happens when the input data is not labelled
with a corresponding output data. It generally concerns clustering methods such as k-NN
[69] or dimensionality reduction methods such as Principal Component Analysis (PCA)
[157]. A clusturing task consists of grouping a set a data in such a way that the data in a
group are more similar to each other than the data in the other groups. This similarity is
generally measured with a distance function.

Reinforcement learning. A model built in this configuration does not need input/output
data either but the model learns how an agent can take decisions in an environment with
rewards. The agent learns by exploring the environment and experimenting with decisions.
Generally, the learning process is based on an objective which consists of maximising the
cumulative rewards during the repeated trial-and-error interactions with the environment
[182].

II.1.3 From shallow ML to deep learning

ML domain is composed of numerous methods. In this section, we present different
common methods used along the thesis. We differentiate shallow models and deep learning
models based on neural networks. The first category is generally based on preprocessed
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data to generate new handcrafted features based on the raw data. The identification of ef-
fective features depends on the application requirements, experience in the research field,
or the prior domain knowledge provided by experts. In gait analysis from motion sensor
data, gait features are categorized according to 3 levels: (i) low where the analysis is done
on raw signals without post-processing, (ii) medium where the analysis is based on statis-
tical descriptors extracted from the signals (mainly statistical moments or common signal
processing features) and (iii) high where the analysis is based on descriptors at a high level
of representation which disregard the technical characteristics of the equipment or methods
used (e.g. step length, cadence and number of steps). Concerning shallow ML, medium
features are generally calculated. Unlike deep learning methods which automatically learns
effective features from the raw data thanks to the different layers in the neural network.
Several shallow models are used in the different contributions:

Decision tree is a non-parametric (i.e., no distributional assumptions is made on the data)
supervised learning method that can be used for both classification and regression tasks
[225]. The building of decision tree involves several steps. The splitting of the input data
into subsets from the root to the leaf nodes. Each node is a decision based on a feature
that split the dataset into two subsets. The process of splitting is called Attribute Selective
Measure (ASM) based on the calculation of entropy which measure the homogeneity of
the subsets. We calculate the information gain based on the decrease of entropy after the
dataset split, and choose the feature with the largest information gain as the decision node.
The entropy is calculated with the following formula:

E(S) = 1−
c

∑
i=1
−pilog2 pi

with S the subset, i the class of the data and pi the probability of a data point to belong to
the class i. A last step called pruning aims at removing parts of the tree to avoid overfitting
which means that the model learns too much details and even noise in the training data so
that the performance on new data is negatively impacted.

Random Forest (RF) is an ensemble learning model, an approach that aims to combine
the predictions from multiple models to increase predictive performance. RF is built with
a multitude of decision trees. The model is built with a Bootstrap Aggregating (bagging)
method where data is sampled and distributed to the different decision trees, the different
predictions are then averaged resulting in better performance than any single tree in the
model. When the amount of data is not significant, RF is one of the most efficient choices for
human activity recognition [78], for this reason among others RF is applied in Section III.1.

Support Vector Machine (SVM) is an algorithm that define a space in which the different
classes are maximally separable. SVM finds a hyperplane characterized by support vectors
(i.e, data observations that determine the decision boundary) that maximizes the margin
separating the classes. linear-SVM finds the hyperplane in the feature space of the input
data. When the data are non linearly separable in the input space, nonlinear-SVM trans-
forms the input feature space into a higher-dimensional space, based on a kernel function
defined by the user, where the data are now linearly separable. The decision boundary will
be then a hyperplane in this higher dimensional space.

K-Nearest Neighbors (k-NN) is also based on distance metric to classify data samples
into different classes. We consider a set of data in a multidimensional space and k a constant
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defined by the user. To classify a new unlabeled data, the k-NN method assign the label
which is most frequent among the k data samples nearest to that unlabeled data.

Naive Bayes classifier is a collection of probabilistic classifiers based on the Bayes theo-
rem. Those classifiers consider the features as independent and calculate the probability of a
class output Y given the features X. The input data is classified following the class that gives
the highest probability.

Deep learning This subset of ML is composed by multi-layers neural networks that grad-
ually become the most used approach in ML and outperform previous ML algorithms in
many domains and is now commonly used for gait monitoring [14]. Deep learning ap-
proaches are particularly efficient when the size of the data produced is extremely large,
which requires discovering hidden patterns in the data, a deep understanding of relation-
ships between a large number of interdependent variables and a solution adapted to spe-
cific cases which may update over time. Unlike the methods presented previously, specific
features are not necessary to be designed, the features are calculated automatically by the
model and optimized for the task considered.

We will further explain different deep learning methods used in this thesis, the overview
is not exhaustive and algorithms such as Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) are not presented.

Fully connected neural networks is one of the most common neural networks composed
of multiple layers. The input layer is composed with the input data, the hidden layers
are composed with artificial neurons defined by their weights w, bias b and an activation
function f that aims at transforming the data received by the previous layers in order to
send it to the next layer. There are numerous activation functions (sigmoid, hyperbolic
tangent, Rectified Linear Unit, etc.) that perform a non-linear transformation essential to
produce decision boundaries for nonlinear datasets. The activation function may differ for
each problem statement.

The output of a layer j is defined by the following equation:

oj = f (
n

∑
i=1

wixi + b)

with n the number of neurons in the layer. The architecture of a fully connected neural
network is such that all the neurons of a layer are connected to the neurons in the next layer.

Convolutional neural networks (CNN) has the possibility to exploit local correlation in
the data by constraining a local pattern between neurons in adjacent layers. It is particularly
used for 2D representation data such as images and even 1D representation data such as
time series (i.e., motion sensor data). The model aims at representing in feature maps the
data with low level features such as peaks in 1D, contours and curves in 2D. As you go
through the layers, the representations become more abstract. Figure II.2 represents a simple
CNN model for image classification.

The convolutional layer is composed of filters that independently perform a convolution
across the width and height of the image. The convolution simply computes a dot product
between the filter and the input data. The learning process consists of having filters that
activate when it detects specific patterns in the features at some position in the input data.
The process is defined by 3 parameters: the size of the filter, the stride corresponding to the
number of data points the filter moves for the next position, with a value larger than 1 the
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FIGURE II.2 – An example of CNN architecture for image classification. Il-
lustration reproduced from "Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions" Alzubaidi and al. 2021.

feature map dimension will be downsized compared to the input data. The zero-padding
parameter aims at specifying the number of zeros to pad around the border of the input in
order to preserve the dimension after the process (see Figure II.3).

FIGURE II.3 – An example of convolution process with a stride of 2, a (3x3) fil-
ter size and padding.Illustration reproduced from "Deep Learning Operators Op-
timization in Tiramisu (Sparse Neural Networks and Recurrent Neural Networks)"

Debbagh and al. 2020.

After a convolutional layer we usually apply a Rectified Linear Unit (ReLU) activation
function ( f = max(x, O)) to increase the non-linearity in the data, for an image it extracts
shapes and contours in the feature map. Finally the pooling layer downsample the feature
map by summarizing the presence of features in patches of the feature map. As the convo-
lutional layer, it consists of a window that scans the input data with a window size, stride
and zero-padding parameters. At each time the window is moved, a pooling function is
applied. The most common is max-pooling which extracts the maximum value of the win-
dow. To further model non-linear relationships in the feature map, a fully connected layer
is sometimes added at the end of the network before the output layer.

Autoencoder is a typical unsupervised ML algorithm based on two distinct parts repre-
sented in Figure II.4. The Encoder is a set of layers parameterized by weights and bias
which can be either fully connected or convolutional layers. This part compresses the input
data into a lower dimensional code also called the latent-space representation. The Activation
is a nonlinear function that transforms the encoded data. The Decoder is a set of reverse lay-
ers that produces the reconstruction of the data into the same space representation as input
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data. This algorithm has numerous applications as data denoising, data synthesizing and
so on [176]

FIGURE II.4 – The generic flowchart of autoencoder. Illustration reproduced
from "A Review of the Autoencoder and Its Variants: A Comparative Perspective
from Target Recognition in Synthetic-Aperture Radar Images" Dong and al. 2018.

Generative Adversarial Networks (GAN) is a ML framework used in Section IV.1. It was
designed by Goodfellow and al. [121] and consists of a competition between two models in
zero-sum game where the two models are simultaneously trained and the gain of a model
corresponds to the loss of the other. Figure II.5 represents an architecture of a GAN. The first
model called generative model G aims at generating data G(z) from input random noise z
(usually from an uniform or normal distribution) by capturing a specific data distribution
X. The discriminative model D evaluates the output data given by G by estimating the
probability that a sample of G(z) comes from the training data X rather than G. The objective
function of G aims at maximising the probability of D making a mistake. The idea is that G
is trained to fool D by producing data that D perceive is not synthesized.

FIGURE II.5 – An example of GAN architecture. Illustration reproduced from
"Recent Progress on Generative Adversarial Networks (GANs): A Survey" Zhaoqing

and al. 2019.

II.1.4 Centralized versus distributed learning

Usual learning process uses a centralized setting where the data and the model are lo-
cated in the same place. Even if there are multiple data owners (multiple patients that pro-
duce data), their data are collected in one central server where the model can be trained
using the full dataset. In a distributed setting, the data of the users stays locally on its device
and only a learning model is exchanged with the server which corresponds to a collabora-
tive or FL: iteratively, the server sends a model to devices, this model is trained and refined
with the local data on each device and all local models are sent back to the server which
aggregates them into a single model (such as the average of the weights of the local models
following McMahan and al. [207]).
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At each learning round i, each client k trains its local model mk with its own data using
SGD during several iterations j. In its synchronous version, once all the participants send
their model update m to the server, the server then aggregates all these model updates using
the following equations before to disseminate back this aggregated model to all devices:

Mi+1 =
C

∑
c=1

nc

n
mi+1

c ,

with nc the set of indexes of all the data points n on client c, mi+1
c the local update of a client

c, computed as follow:
mi+1

c = mi
c − ηgi

c,

with η a fixed learning rate (i.e., hyperparameter which controls the step size of the SGD
optimization) for each client and gi

c the average gradient on the local data of the client c at
the epoch i. Those learning rounds continue until the convergence of the central model.

FL architecture is further explored in Section IV.2. The process can also be fully de-
centralized or peer-to-peer (P2P), in these settings there is no central server that manages
and aggregates the local models, the users communicate and exchange their models directly
with other users, which can be interesting for privacy perspectives because the need to trust
a central server is not required [36].

The contributions presented along the chapters of this thesis can be considered as falling
between centralized and distributed architectures, because even if in each framework part
of the data is sent to a cloud, an important part of the processing and the different privacy-
preserving framework are applied locally.
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II.2 ML for gait monitoring in healthcare

After giving an overview of the different ML methods, we can review the benefits of ML
in validation methods of commercial wearable sensors in gait monitoring for healthcare.
There are already many reviews on validation of commercial wearable sensors available in
the literature, most were interested in monitoring activity on healthy subjects [81, 90, 95,
173], while others have taken a descriptive approach centered on a very specific medical ap-
plication [247, 298, 319]. However, few studies focus on the validation methods, the ground
truth used and how the reference data are annotated. A common validation method is to
use inferential statistics, such as a regression analysis to explore and model the relationship
between sensor and ground truth data. These approaches typically assume that the rela-
tionship between sensor and ground truth data follows a linear pattern. Linear regression
has the advantage of being simple to use and to interpret. In comparison with these linear
methods, the nonlinear methods can fit more types of data in terms of shape and are hence
recognized to be more general. Some non-linear approaches such as ML have the advantage
to be less dependent on the assumption of the model and very recently produced promising
results in sensor validation [194, 281]. Non-linearity seems particularly interesting in terms
of patient monitoring in order to integrate networks of several sensors placed at different
places on the patient [38, 250] and for high-level tasks (such as the classification into groups
of patients according to the evolution of a disease) [15, 231] which requires the integration
of various information on locomotion and control systems involved in the complex gait reg-
ulation [122, 245].

In this section, our aim was to conduct a systematic review to i) determine the statistical
methods currently used for the validation of sensors and, ii) determine to what extent ML
is used as a statistical method for this validation step. Our expectation is that ML-based
methods may provide better validation results since they are able to model more complex
boundaries.

II.2.1 Methodology

II.2.1.1 Databases

We conducted a literature search of the PubMed, SCOPUS, ScienceDirect, Web of Sci-
ence, IEEE Xplore, ACM Digital Library, Collection of Computer Science Bibliographies,
Cochrane Library, DBLB, and Google Scholar (first 50 results) databases for all literature
published between 2010 and 2020.

II.2.1.2 Literature search

The literature search strategy included a combination of keywords to identify articles
that addressed (i) gait assessment/detection, (ii) wearable and connected technology, (iii)
chronic pathology monitoring and (iv) validation. Keywords included "gait", "walk", "actig-
raphy", "actimetry"; "smartphone", "wearable", "mobile device", "IoT"; "chronic disease", "re-
habilitation", "medicine"; "validity", "validation", "reliability", "reproductibility". The full
search term strategy that was used for each database is given in Table 1 of Appendix.

After an initial screening, which consisted of reviewing all article titles and abstracts, the
full content of 102 of these articles was screened in more detail for eligibility. After removing
the articles that did not meet the inclusion criteria, 70 articles were deemed eligible for the
review.

We now analyze the selected papers by categorising them following different criteria in
order to extract common patterns and trends.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



Chapter II. Background and Related Work 25

II.2.2 Clinical context

The sample size of the studies ranged from 1 to 130 participants, with a mean of 37.89
participants (SD = 30.68) per study. The length of time for data collection in 2 different condi-
tions (laboratory or free living) varied and was not always reported with an exact numerical
value or unit. Therefore, we only report in Table II.1 ranges of acquisition times which go
from hour to year. Among the selected studies, 33% (N = 25) focused on neurodegenerative
diseases [8, 9, 18, 24, 54, 72, 86, 88, 97, 100, 109, 126, 146, 169, 172, 192, 206, 209, 213, 252,
269, 280, 283, 313, 346], 24% (N = 18) on orthopedic disorders [5, 62, 75, 107, 149, 170, 174,
185, 186, 203, 221, 243, 263, 277, 302, 303, 314, 322], 24% (N = 18) on diseases of vascular
origin [29, 52, 59, 63, 64, 74, 75, 77, 134, 147, 155, 159, 160, 256, 277, 291, 314, 335], 8% (N = 6)
on aging and associated pathologies [21, 92, 154, 259, 277, 315], and 4% (N = 3) on diseases
associated with poor lifestyle [48, 134, 177]. Finally, 5 studies were classified as "others" [33,
60, 219, 227, 279] because they could not be grouped together in an existing group.

Acquisition
Time

t<1 h 1≤t<24 h 1≤t<7 d 1≤t<4 w 1≤t<12 m t≤1 y

Laboratory
(N = 53)

46 3 0 1 2 1

Free Living
(N =17)

1 1 1 8 3 3

TABLE II.1 – Frequency of studies according to conditions of data collection
(laboratory or free living) and acquisition time t (from a few minutes to more
than a year). In bold is shown the most common acquisition time for each data

collection condition.

II.2.3 Wearable sensor types

The most frequently used type of wearable device is the Inertial Measurement Unit
(IMU; N = 39) then almost equally the smartphone (N = 18) and a single sensor (N = 17) .
The majority of studies (N = 56) used multi-sensor systems (incorporating more than 1 sen-
sor) to automatically assess gait in chronic pathologies. On average, 5.78 wearable sensors
(SD = 8.43) were used in the studies, with a range of 1 to 64 sensors (Table 2). As depicted
in Table II.2, the most utilized sensor was accelerometer (95 %) either by itself (N = 17) or
embedded into a device (N = 57). The second most frequently used sensor was gyroscope
(51 %) followed by magnetometer (14 %) and others (16%).

II.2.4 Data acquisition conditions

Most of the papers collected their data in laboratory conditions (N = 53) while a smaller
part did in free living conditions (N = 17) (see Table II.1).

Regarding the positioning of sensors and/or devices (Table II.3), 60% of the studies place
them on the inferior part of the body , generally on the feet (N = 14) or on the hips (N
= 6). Chest location is also widely used (49%) ; 17% of the studies have carried out sensors
positioning on hands and arms (superior) while the other 17% used a trouser or jacket pocket
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Device type Sensor type
IMU 39 Accelerometer 39 (100%)

Gyroscope 30 (77%)
Magnetometer 8 (20%)
Others 7 (18%)

Sensors 17 Accelerometer 14 (82%)
Gyroscope 1 (0.7%)
Magnetometer 1 (0.7%)
Others 4 (3%)

Smartphones 18 Accelerometer 17 (94%)
Gyroscope 7 (38%)
Magnetometer 2 (11%)
Others 1 (5%)

TABLE II.2 – Frequency of devices and sensor types in included studies. The
device is the tracker used by the patient (first column), which may include
different sensors which are detailed in the second column. Note that since a
device can use several sensors, the total number of occurrences in the second

column is much greater than that of the first column.

Superior Inferior Chest Free
12 42 34 12

TABLE II.3 – Frequency of sensor locations reported on the patient from in-
cluded studies.

II.2.5 Gait indicators

A wide majority (70 %) of studies (see Table II.4) use high level features for gait analysis
which can be correlated to the high use of smartphones (in the studies reviewed, see Table
II.2) that already compute this type of features on the device.

A significative part of studies (28 %) use medium level features while low level features
(raw data) are much less exploited (8 %) .

Low level Medium level High level
Total 6 Total 20 Total 49

Magnitude mean 11 Step length 20
Magnitude standard deviation 10 Number of steps 18
Peak frequency 9 Cadence 15
Mean crossing rate 5 Speed 11

TABLE II.4 – Frequency of features extracted from sensor signal reported from
included studies. These different features were classified into three categories

described in section II.1.3.

II.2.6 Ground truth

Ground-truth methods are categorized according to 6 levels: (i) controls where a group
of subjects serves as a reference, (ii) expert where the data is analyzed with regard to anno-
tations made by experts, (iii) med device where the data is analyzed with regard to a portable
device already used in clinical routine, (iv) medical where the data is analyzed with regard
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to a medical examination/test or clinical score, (v) metrologic where other high resolution
equipment is used as reference and (vi) user annotations where the data is analyzed with
regard to annotations made by patients during use of the device.

To evaluate the validity of the commercial wearable sensors for gait monitoring in pa-
tients, all the studies (N = 70) used one or more validation methods in which "ground truth"
data was reported. About half of the studies (53.3%) use annotations and the other half
(46,7%) a reference to validate the results from the sensors. Regarding annotations, most
studies use labeling according to 2 or more groups of subjects (the vast majority of the time
a group of patients and healthy controls) , others use annotations made by experts on data
from videos or measurements during the experiment and finally four studies had partici-
pants self-report via log or diary. As regards the reference to which the studies compare the
data from the sensors, it concerns in equal parts a metrological device (18.3%) or a medical
examination (20.2%) and to a lesser extent (8.3%) a third-party portable medical device

II.2.7 Evaluation methods and metrics

Evaluations methods are categorized according to 5 levels: (i) descriptive stat where eval-
uation is carried out through descriptive statistics only, (ii) descriptive stat + test where eval-
uation is carried out through descriptive statistics with statistical tests, (iii) linear models +
stat test where evaluation is carried out through linear models with statistical tests, (iv) ML
where evaluation is carried out through ML only and (v) ML + stat test where evaluation is
carried out through ML with statistical tests.

Studies often reported multiple and varied evaluation metrics. All reported evaluation
outcomes and their corresponding evaluation method are included in Table 3 and depicted
in Figure II.6. The most common evaluation method was descriptive statistics (61.4%) in-
cluding or not statistical tests where correlations, mean errors or p-values are most com-
monly reported. The other evaluation methods go through modeling either by a linear
model (11.4%) or a ML model (17.2%) . Due to the lack of a standardized evaluation metric
across studies, we do not summarize (calculate mean, standard deviation, etc.) the reported
metrics. However, evaluation metric values – as given in the abstract or the conclusion of
the associated studies – are available in Table 3.

A closer look to studies using ML highlights that ML-based approaches are often used
for high-level validation tasks (see Table II.5), such as distinguishing between different
groups of patients or stages of disease progression [5, 8, 9, 59, 159, 169, 209, 252, 303]. This is
an important point, because ML aims at generalizing a model to patients not included in the
initial dataset. Another point to emphasize, as illustrated in Table 5, is that studies using ML
as a validation method incorporate a large number of variables (the complete raw signal or
a collection of different sensors) [5, 109, 146, 169, 192, 209, 213]. This is not the case in studies
using statistical methods which work with a few dozen of variables at the maximum and
often in a univariate way two by two [18, 92, 107, 269, 335, 346].

Number of studies <10 10-100 >100
Statistical 43 8 0
ML 3 9 7

TABLE II.5 – Frequency of studies using respectively less than 10 descriptors,
between 10 and 100 descriptors and more than 100 descriptors for the valida-

tion on both statistical and ML methods
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12.9 %

14.3 %

11.4 %

50 %

11.4 %

Method and Metrics : 

Descriptive Stat

Descriptive Stat + Stat Test

Linear Models + Stat Test

Machine Learning

Machine Learning + Stat Test

FIGURE II.6 – Pie chart representing the percentage of papers using the differ-
ent levels of evaluation identified among the 70 selected papers.

II.2.7.1 Trends and challenges

Acquisition context. Most of the first studies were restricted to the laboratory environ-
ment and over short acquisition times (of the order of a few minutes). The first papers to
report sensor validation in a free living environment were in 2011 [77, 177]. As seen in Table
2, from 2017, studies of this type become more frequent [60, 72, 74, 75, 88, 107, 134, 154, 192,
252, 283, 302, 313, 346] due to changes in the sensors which are detailed in the following
section.

In this review, we also observe that early research efforts attempted to find improvement
for gait monitoring in patients by experimenting with new sensor types and/or sensor lo-
cations. Over time, research efforts have focused on refining validation protocols, whether
in terms of the number of sensors or their locations with emphasis on two major criteria:
the ability of sensors to capture gait patterns and the practicality of everyday life. This
observation highlights the emergence of commercial wearable devices as a practical and
user-friendly modality for gait monitoring in daily life.

Another trend which emerges from Table 3 is the fact of using several sensors together
and this generally at various on-body locations [18, 64, 75, 86, 88, 92, 109, 146, 149, 155, 169,
174, 185, 206, 221, 256, 269, 279, 291, 303, 313, 314, 335]. However, using a multi-sensor sys-
tem introduces several challenges, including in particular the integration of different sam-
pling rates and signal amplitudes and how to align signals in multiple devices and there-
fore different clock times. Despite these challenges, the multi-sensor approach offers high
potential for real-time monitoring of gait, where multi-sensor fusion can provide context-
awareness (e.g., if the patient stays mainly at home or leaves it from time to time); and can
contribute to the optimization of power (e.g., a low power sensor can trigger a higher power
sensor only when necessary).
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Another trend in ground-truth validation is increasingly in favor of using a reference
(46 %) because of the confidence established from visually confirming the gait pattern being
detected: this can be a metrological device (18 %), a medical examination (20 %) or a third-
party portable medical device (8 %). However, in this case the data is not annotated and
therefore does not allow conventional ML approaches.

Machine learning. The combination of ML algorithms and wearable sensors for gait anal-
ysis has shown promising results in validating the extraction of complex gait patterns [5, 8,
9, 21, 59, 77, 109, 146, 159, 160, 169, 192, 206, 209, 213, 252, 291, 303, 315].

As seen in Table 5, researchers have used ML on sensor data for different tasks : re-
gression for continuous labelled data (speed, step length or distance) [77, 160, 206, 252] and
classification of discrete labelled data such as groups of patients [8, 9, 21, 59, 159, 209, 252,
303] or or medical functional scores [5, 59, 146, 291, 315]. Classification, less commonly
used for the validation of sensors, aims at higher level analysis, namely to identify a ro-
bust methodology able to monitor patients in time while at the same time discriminating
between a pathological and physiological gait or the evolution of the disease studied on the
basis of gait movements.

Type of ML algorithm families has evolved over time, with standard approaches before
2017 and the appearance for the first time in 2018 [192] of deep learning approaches with
automatic feature extraction without human intervention, unlike most traditional ML algo-
rithms. It should be noted that in the context of the papers studied in this review [109, 169,
192, 209], these approaches concern studies with a significant number of patients (> = 30)
or/and relatively long acquisition times [192, 209] in order to guarantee a sufficiently repre-
sentative and realistic sample. The other studies which are based on ML, because of samples
often more limited in number of patients [21, 146, 159, 160, 206, 213, 252, 291, 315] or in ac-
quisition time [5, 8, 9, 59, 303], preferred more standard approaches with a small number
of expert features. Comparing the results of the different studies, in terms of performance,
seems at this stage to be a difficult task because, as stated previously, it depends on the com-
plexity of the task to be performed and the complexity of the ML algorithm implemented.

Finally, it should be mentioned that ML also has drawbacks, the first being the compu-
tational time required to train a model [235]. This is justified for complex analysis tasks
such as classification or significant performance increase for a regression task. Moreover,
ML may require the adjustment of hyperparameters which may demand theoretical knowl-
edge in optimization. Finally, ML tends to be more difficult to interpret for a clinician who
is looking for the most relevant parameters to analyze gait patterns of patients. However, it
should be noted that recent initiatives have been carried out to demystify these two points
[195, 312].

II.2.7.2 Recommendations

Advanced inertial sensors, including accelerometers and gyroscopes, are commonly in-
tegrated into smartphones and smart devices nowadays. So it is very convenient and cheap
to collect the inertial gait data to achieve gait monitoring with high accuracy. Most existing
validation methods ask the person to walk along a specified road (e.g., a straight lounge)
and/or at a normal speed. Obviously, such strict requirements heavily limit its wide ap-
plication, which motivates us to give here some recommendations for future work in this
context.

Data collection and processing. A first step would be to define precisely validation proto-
cols - by consulting the medical staff - adapted to the study of chronic pathologies. Indeed,
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many studies only validate sensors for a given medical application without having tested
them outside the laboratory, on a very limited number of patients, and over a relatively
short time window (at most a few hours). The protocol to be defined should therefore im-
pose experimentation constraints closer to the daily life of patients, namely: the data should
be acquired at home, but also on a sufficient number of patients, over a sufficiently long
acquisition period (several weeks, even months). It is also important to define which types
of sensors would be more suitable according to the studied pathology, how many sensors
would be necessary and where to place them on the patient because there is a clear trade-off
between the accuracy of the recorded data and the invasiveness of the portable system.

It is mandatory to ensure that sensor recordings are accurate and sensitive enough for
medical diagnosis and prognosis. This is crucial not only to ensure the generalizability of
a sensor within a target population, but also its ability to measure day-to-day variability
data which can be corroborated with disease symptoms. To this end, data acquired by com-
mercial wearable sensors should be systematically compared to data acquired by reference
medical devices (i.e., reliable gold standard systems, medical scores or groups of subjects).
ML approaches make it possible to loosen the strict framework of acquisition protocols but
must ensure to collect large, labelled and realistic datasets for training. Deep approaches,
which automatically select features from data, offer very interesting perspectives given that
feature extraction is a task that can take teams of data scientists years to accomplish. It
augments the powers of small expert teams, which by their nature do not scale.

Statistical models versus ML. Statistical models are designed for inference about the re-
lationships between variables within the data and are designed for data with a few dozen
input variables and small sample sizes. On the other hand, ML models are designed to
make the most accurate predictions possible. Statistical models can make predictions, but
predictive accuracy is not their strength. Indeed, no training and test set are necessary. Fur-
thermore, ML aims at building a model that can make repeatable predictions in a high-
dimensional space without formulating a hypothesis on the underlying data generation
mechanism. ML methods are particularly useful when the number of input variables ex-
ceeds the number of samples [50]. Hence, using ML in a validation task highly depends
on the purpose of the study. To prove that a sensor is able to respond to a certain kind of
stimuli (such as a walking speed), then a statistical model should be used. Conversely, to
predict from a collection of different sensors whether a patient is affected by a certain grade
of a disease affecting the musculoskeletal system, ML is probably the best approach. Indeed,
this multi-dimensional space (one or more for each sensor) is in fact difficult to interpret and
therefore to analyze.

These are in fact data-based approaches which, as long as the data collected are numer-
ous, annotated and representative, allow the training of an effective model. It should be
noted that commercial wearable sensors allowing for increased data collection and good
patient adherence through efforts of miniaturization, energy consumption and comfort will
participate in this future success.
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II.3 Security and privacy issues in ML

Although gait monitoring in healthcare is becoming more widespread over the past few
years, these data are exposed to several security and privacy issues. We cover in this section
a wide but non-exhaustive range of attacks and defenses related to sensitive information
leakage from motion sensor data. This discussion allows us to place in a specific context the
contributions in the next sections.

II.3.1 Threat model

It is necessary to define the environment, the actors, and the assets attacked in order
to understand the ML attacks and defences. In general, the assets attacked concern the
sensitive information which are the training dataset or the model itself with his parameters,
hyperparameters and architecture. Four different entities are in most cases identified in
practice, the data owners which correspond to the patient in rehabilitation application, the
model owners which can be identical to the data owners and can share different information
about the models or not. The model consumers, usually the hospital in case of rehabilitation
application, use the model as a service. The last entity is the adversary try to access to
different information depending on the application.

The adversary has access to a range of information which varies from the most limited
without any auxiliary knowledge about the model such as the parameters and architecture
or training data information, which corresponds to black-box attacks. The adversary can
only provide inputs and observe the outputs provided by the model. On the other hand, the
white-box attacks assume that the adversary has a complete access to the model parameters,
hyperparameters and architecture or an access to the full dataset itself. A centralized learn-
ing architecture is concerned either by white-box and black-box attacks and FL architecture
is mainly concerned by white-box attack either when the adversary is the centralized server
or one of the participants.

An attack can be either passive or active. A passive attack occurs when the attackers are
honest-but-curious which means that they do not interfere in the framework or the training
procedure of the ML model, they only perform inferences by observing the system. In case
of active attack, attackers actively modify part of the training process for example by be-
ing a malicious user that sends poisoned data to modify model training and maximise the
misclassification error.

II.3.2 Sensitive inferences on motion sensor data

The main privacy threat concerns the access to sensor data to infer sensitive information.
Some sensors such as GPS, cameras or microphones are well-known to be highly sensitive in
terms of privacy [140, 171], it generally requires explicit permission from the user in order
to be used by applications in smartphones for example [32]. Motion sensors, unlike the
others, are still less known for their impact on privacy and also less protected [42, 336]. It is
still possible to read in the literature some papers that ignore the privacy threats concerning
motion sensors, for example by describing them as "not particularly sensitive" [327], or even
consider the use of accelerometer as a privacy preserving method : "The accelerometer-based
approach does not require capturing privacy sensitive information" [205]. The study of Crager and
al. [66] highlights the fact that unlike traditional privacy issues associated with computers
such as location or cameras, most users are not aware of novel privacy issues linked with
mobile devices and sensors. We therefore present here several inference applications made
on motion sensors data recording.
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Behavior tracking We already saw in the section I.1 different ways to use motion sensors
to track activities of patients, the number of steps, the distance walked or the energy ex-
penditure. However, many other inferences less related to a rehabilitation program may be
done to disclose potential sensitive information that the patient may not consent to give.
Mannini and al. [202] showed that it is possible to detect more complex activities than walk-
ing or running, such as painting, writing, reading or sorting paperwork, and also if a person
is carrying a load thanks to accelerometers placed on the wrist or ankle. Williamson and al.
[330] estimate from a body-worn accelerometer the weight of carried objects in different con-
figurations of walking condition and body types. Other researchers used devices worn on
the wrist to detect even more specific activities such as eating and drinking moments [308,
350], smoking [270, 300]. Singh and al [286] used motion sensors worn inside a car to mea-
sure the behavior of a driver and identify events while driving such as sudden acceleration,
breaking. Vaiana and al. [316] were able to identify aggressive and unsafe ways of driving,
Dai and al. [70] predict if a person is drunk while driving. Accelerometer can also be used
for voice detection and specifically detecting hotwords [349], indeed an acoustic signal can
strike the inertial mass of the accelerometer that is sensitive enough to detect small changes
in acceleration.

User re-identification The use of motion sensors at different locations on the patient’s
body to record for example hand gestures [292], head movements [189] or the gait directly
with a smartphone on the waist or in the pocket [179], is also useful to uniquely recognize
user from others. The methods previously described that use acoustic vibrations thanks to
accelerometer for hotwords detection, have also shown that capturing such data allows the
re-identification of different speakers with great precision [87]. Device fingerprinting is an
approach that uses characteristics and features of devices to distinguish the users. Sanorita
and al. [76] show that the hardware imperfections are made during the manufacturing of the
sensors so that every sensor has his own response to the same motion stimulus with very
subtle differences. Those differences are too small to impact higher functionalities but it
allows researchers to discriminate different sensors with high accuracy. Those small anoma-
lies in the signal response can be used to track users on the Internet and specifically the
different websites visited even in private browsing mode or with cookies blocked [71].

Location and traffic patterns The leakage of location information on a user is a major issue
as it can lead to the leakage of many sensitive information such as re-identification, social
habits, home and work location, etc. That’s why operating systems for smartphones devel-
oped mechanisms for users to manage control access to location services relying on Global
Positioning Systems (GPS) or Wi-Fi. However, accelerometers, gyroscopes and magnetome-
ters sensors on a smartphone can be used to infer vehicular users’ location, traveled routes
and the starting point by associating the sensor data with a map truth [131] or a graph gen-
erated from public database roads [223]. Han and al. [131] demonstrate that results obtained
with motion sensors are similar to those obtained with a GPS, with an accuracy of 200 meter
radius of the true location. Hua and al. [144] also reveals the device’s location in the metro
by only using the accelerometer sensor of smartphones. Results show an inference accuracy
that reaches 94% if the user takes the metro for 6 stations.

Keystroke inference The inference of information concerning what a user is writing on his
smartphone is obviously a highly sensitive threat as it concerns login credentials, personal
notes, text messages. Motion sensors in smartphones such as gyroscopes, are able to detect
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vibrations when typing on the screen and precisely the location of the vibration [51]. Fea-
tures such as striking force of the fingers when typing, the resistance force of the supporting
hand or the location of the supporting hand has influences on the shift and rotation of the
smartphone captured by the gyroscope. Similarly to these methods, Aviv and al. [30] used
accelerometers in smartphones to infer PINs and graphical password patterns. In the same
way, Owusu and al. [236] could infer entire sequences of text.

Demographics parameters The estimation of demographic parameters such as age or gen-
der has already been done thanks to descriptive statistic analysis: for example Menz and al.
[212] discriminate young (22-39 years) and elder (75-85 years) users based on significant dif-
ferences of step length, velocity and step timing variability. With ML, Davarci and al. [73]
aimed at distinguishing child and adult users based on how they hold their hand and touch
the smartphone while they are using an application. The inference of gender based on spe-
cific movement patterns has also been well studied with the extraction of hip movements
[326], gait features [152] and different patterns of physical activity [151]. Weiss and al. [326]
could estimate that gender recognition remains efficient regardless of the height and weight
of the users.

Psychological traits inferences The emotional states of users has also been studied through
the use of motion sensor data. Zhang and al. [352] could differentiate with high accuracy test
subjects between three emotional states (happy, neutral and angry) based on accelerometer
data recording on the wrist. Depressive mood has also been assessed [127], different stress
levels [111] and arousal levels with smartphone carried on a pocket [234]. Some studies have
also explored the inference of different personality traits such as extraversion, agreeableness,
conscientiousness or neuroticism [26, 332].

II.3.3 Privacy risks on ML model

Recent research has shown that ML models are able to memorize sensitive information
from training data and may occur unintentionally which means the sensitive information
memorized is irrelevant for the learning task [53, 104, 110, 139, 287]. Artificial neural net-
works, in particular, have an enormous capacity to memorize arbitrary information [347].

When the adversary has no access to the data, he can attack the ML model itself during
the training phase or the inference testing phase. Attacks on training aim at either learning
information about the model or altering the model itself by injecting malicious training data.
Attacks during the inference phase aims at inferring information by sending specific inputs
to the model and observing the model’s prediction without any knowledge about the model.
Stealing a model can generally have two benefits, reuse the model for personal financial
benefits, or to conduct other attacks that go further such as inferring information on the
data itself. In the following paragraphs, we further describe some of these attacks on ML
models.

Membership Inference Attack This adversary attack aims at inferring whether or not a
specific data sample was used to train the targeting model or not. This information can
raise privacy risks, for example it can identify the participation of a user to a health study
training set in a hospital and then reveal that he was once a patient of this hospital. In the
same way if the study is related to a specific disease, this attack may reveal that the patient
has this disease. Membership inference attack can also measure the risk of potential privacy
breaches that lead to other attacks. If the adversary, thanks to membership inference attack,
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can infer that the victim’s data is partly included in the information the adversary has access,
then she can proceed to other attacks such as property inference [143].

The membership inference attack was firstly studied in a black-box context by Shokri and
al. [285] in a supervised learning context. The attack exploits the fact that models generally
behave differently to input data used for training and those never seen during training. It is
commonly due to the overfitting effect of the model. Overfitting appears when the objective
function fits a set of data points so closely that the model has better predictions on training
inputs than inputs similar to the training population during the testing phase [272] (see
Figure II.7). This results in higher confidence values (probability of the input class in the
prediction vector) for training input than with data that does not belong to the training set.
The method is further described with Figure II.8.

FIGURE II.7 – The concept of overfitting classification. In this case, the training
error is much lower than test error. Illustration reproduced from "From Big Data

to Precision Medicine" Hulsen and al. 2019

The goal is then to train a binary neural network called attack model in the Figure II.8,
able to predict based on output’s model if the input data belong to the training set Dtrain. To
train the attack model, the adversary create k shadow models that reproduce the behavior of
the target model. The adversary trains each shadow model with a dataset D′k then produces
a set of prediction Pm

k and Pnm
k based on the inputs D′k and Tk a test set not used for the

shadow model training. Once the output prediction sets are labeled, the target model can be
trained to recognize whether or not an input data is a member of a training set, and finally
test this model on target model output.

Salem and al. [271] propose a similar method than Shokri and al. [285] by relaxing
two strong assumptions. Firstly, by showing that the attack does not need several shadow
models and with only one the attack remains similarly efficient. Secondly, the dataset used
to train the shadow models should no longer be from the same distribution as the target
data through a data transfer method. These improvements tend to show that membership
inference attack is widely applicable at a low cost.

the dataset used to train the shadow models should no longer be from the same distri-
bution as the target data through a data transfer method.

Property inference attack consists of extracting dataset properties related to the users
not explicitly correlated with the learning task, such as biometric information which can
be learned by the model unintentionally. Even if the model is well trained, the property
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FIGURE II.8 – Membership inference attack based on shadow training. Illus-
tration reproduced from "Membership Inference Attacks on Machine Learning: A

Survey" Hongsheng and al. 2021

targeted may be relevant for the learning process and contribute to the high prediction per-
formance of the model. This property can concern the entire dataset, for example an image
classification model that aims at inferring the mood of a person (happy or sad) and can
be used to infer the gender. The property targeted can also be inferred on a subset of the
training dataset or even a specific user. Melis and al. [139, 210] performed an attack on
a collaborative learning model as an adversary participant that tries to infer information
about training data of a target participant. They especially focus on properties that are inde-
pendent of the class characteristics. The authors take the following example: for an image
classification that aims at inferring the gender, and for the subset of images that belongs to
Bob, they infer that Alice appears in some photos.

Parisot and al. [239] propose a framework similar to membership inference attack with
an attack model trained on shadow models specifically crafted to contain the target property
or not. The training set is composed of the weights of the models of the shadow models. The
attack model then infer whether or not the target model has the target property based on his
weights.

In collaborative learning, this attack can be either passive or active. A passive adversary
simply consists of observing the updates and performing inference without changing the
training procedure. In the active way, the adversary trains his model to simultaneously infer
the main task and the targeted property. By uploading these new updates for the aggregated
model, this one learns a separable representation for the data with and without the targeted
property [210].

This attack is further explored in Section IV.2 with an evaluation of the privacy issues of
a specific FL configuration.

Model extraction attack This attack aims at stealing parameters of a model without prior
knowledge about the model or the training data. Tramer and al.[310] was the first to present
this attack by considering an adversary that can query a model in order to obtain the predic-
tion vectors of input data . This attack can affect a wide variety of models such as decision
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tree, logistic regression, SVM or perceptron. Other work go further by reconstructing archi-
tectures and hyperparameters of deep neural networks [232, 321].

Model inversion attack Model inversion attack aims at partially or fully recreating train-
ing data with the associated class label thanks to a black-box or white-box access to the
model. Fredikson and al. [104] introduced this concept on decision trees and neural net-
works applied on facial recognition. Their method uses prediction outputs of the model
and estimates the probability for each possible input data to be the correct one that corre-
sponds to the output. Other work, instead of reconstructing the training data, create class
representatives or sensitive features that do not directly corresponds to the training data
[105, 138, 339].

Evasion and Poisoning attacks Here, we focus on adversary attacks that aim at corrupting
a target model and tempering his output. Two well-known types of attack are Evasion and
Poisoning attacks.

An evasion attack aims at modifying the expected behaviour of a model by changing the
input data [145]. This setting does not assume any influence over the training data. It can be
done by adding an imperceptible noise to a normal testing sample such that the model gives
incorrect predictions. A Poisoning attack alter the training dataset by inserting, modifying
or deleting points in order to modify the decision boundaries of the targeted model [35,
166] and deteriorate the classification performance. The second possible objective is, as with
evasion attacks, to modify the behaviour of the model in the direction that interests the
adversary. In this latter case the Poisoning of the model preserves performance with one
exception (a back-door), which has been chosen by the adversary [268].
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II.4 Privacy-preserving ML schemes

This section introduces different common privacy preservation models. We focus on
defence mechanisms directly related to the different contributions of the thesis: the contri-
bution of Section III focus on data anonymization, Section IV.1 on data sanitization through
adversarial networks methods and Section IV.2 explore the concept of differential privacy.
Those aspects of privacy defences are then further detailed here.

II.4.1 Anonymization

Anonymization is the process of removing personal identifiers that lead to user identi-
fication. In practice, there is no universal anonymization solution that would apply to all
types of applications and data. An anonymization solution must therefore be developed on
a case-by-case basis and adapted to the intended use and the data to be processed. Thus,
in order to demonstrate that a solution is correct and compliant with the GDPR, it must
be shown that the anonymised data no longer allows the isolation of data belonging to an
individual, no longer allows the linking together of distinct data sets relating to the same
individual, nor does it allow the inference of information about an individual.

The anonymization techniques started in the late 1990s with several publications about
the idea of k-anonymity model [299], which aims to prevent the unique identification of
individuals from a small subset of their attributes, called a quasi-identifier. The subset of at-
tributes to protect, which is not part of the quasi-identifier, represents the sensitive attributes.
For example, within medical records, the birth date, sex and zip code triplet form a quasi-
identifier that is enough to uniquely identify some individuals, while the disease is a sen-
sitive attribute. k-anonymity states that to be protected, a user must not be distinguishable
among at least k − 1 other users. To do that, all k indistinguishable users must have the
same values for all attributes forming their quasi-identifier. This makes them look similar
and forms an anonymity group. Therefore, the probability of an adversary without external
knowledge to re-identify someone among k similar users is at most 1/k.

We denote a dataset d composed of points X = {x1, ..., xn} and A = {a1, ..., an} features.
We consider a quasi-identifier Qd = {ai, ..., aj} ⊆ {a1, ..., an} associated with d and r[Qd] the
projection of record r ∈ d on Qd. d respects k-anonymity if and only if each unique sequence
of values in the quasi-identifier appears with at least k occurrences in d, or formally [248]:

∀s ∈ {r[Qd], r ∈ d}, |{i ∈N|di[Qd] = s}| ≥ k.

k-anonymous data is however vulnerable to several attacks. For example with back-
ground knowledge attacks, the combination of external information with a k-anonymous
dataset can lead to privacy issues. With homogeneity attack, if each member of a given
combination of identity-revealing traits has the same sensitive value, that value is revealed.
These weaknesses of k-anonymity have been addressed by the introduction of `- diversity
[197]. It extends k-anonymity by ensuring a particular distribution of values for sensitive
attributes across each anonymity group. The simplest way to do so is called distinct `-
diversity and states that there must be at least ` distinct values for each sensitive field for
each anonymity group. t-closeness proposed by Liu et al. [187] is a further extension of
`-diversity. Instead of just guaranteeing a good representation of sensitive values, this ap-
proach enforces that the distribution of every sensitive attribute inside anonymity groups
must be the same as the distribution of this attribute in the whole dataset, modulo a thresh-
old t. The question of the usefulness of the data then begins to arise. Under the constraint
of t-closeness, the data do not necessarily appear to be directly usable. However, it is still
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possible to identify trends, or to perform general calculations or correlations on the whole
dataset [188].

II.4.2 Differential privacy

Differential privacy firstly introduced by Dwork [82] is not an anonymization model,
but the characteristic of an operation (or execution of an algorithm) on data that has certain
guarantees of confidentiality. The idea is that an observer seeing the output of a differen-
tially private algorithm is not able to tell if a particular individual’s information was used
in the computation. In other words, the addition or removal of one single element shall
not significantly change the probability of any outcome of the aggregate function. Unlike
k-anonymity, the differential privacy definition is not affected by the external knowledge an
attacker may have. To formally define the differential privacy, we denote the privacy pa-
rameter ε ≥ 0, XQ,d a randomized output of a query Q on a dataset d and EQ the range of
Q. ε-differential privacy is satisfied when for all dataset d and d′ differing from one element
and for all measurable subsets A ⊆ EQ :

Pr(XQ,d ∈ A) ≥ eεPr(XQ,d′ ∈ A).

One method to practically achieve differential privacy using numerical values relies on
adding random noise following a Laplace distribution, whose magnitude depends on the
sensitivity of the query function issued on the dataset. Intuitively, the sensitivity of a query
function quantifies the impact that the addition or removal of a single element of a dataset
could have on the output of this function [323].

Differential privacy has generated an important literature these last few years with new
models and inter-model connections [79], as well as new techniques such as randomised
response [325] and its combination with sampling [178] which achieves zero-knowledge
privacy [113] (a privacy bound tighter than differential privacy).

II.4.3 Homomorphic encryption (HE)

Encryption process consists of encoding information by converting the original repre-
sentation (called plaintext) into an unreadable format (called ciphertext) using a key, a piece
of information when processed in the encryption algorithm can encode or decode data. In
public-key cryptosystem the cryptography is asymmetric, the encryption key is public and
distinct from the decryption key which is kept private. HE can be considered as an exten-
sion of a public-key cryptosystem and has the specificity to allow users of encrypted data to
perform computations without decrypting the data. This scheme is quite suitable for cloud
computing because a user can store encrypted data on an untrusted server that can perform
computations without learning anything about the original data. A fully homomorphic en-
cryption ) has the following properties. We consider ciphertexts ci and the corresponding
plaintexts mi. The decryption Decrypt is described by those two properties:

Decrypt(c1 + c2) = c1 + c2

Decrypt(c1c2) = c1c2

which means that the decryption is doubly homomorphic, with respect to the addition and
multiplication. This properties can be generalized with any function f a finite composition
of addition and multiplication:

Decrypt( f (c1, ..., ct)) = f (m1, ..., mt)
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FHE was then used with ML methods to maintain confidentiality [27, 123]. Dowlin et
al. [118] was the first to propose a neural network based on encrypted data called Cryp-
toNets. Several other initiatives start to leverage HE for ML [114, 136, 137]. For instance,
[44] describes a method that consists of building blocks of homomorphic functions which
they later use to compose several ML schemes. Although recent advances in HE schemes
improve the performances [61, 80], these solutions are still resource consuming and face to
scalability problems. In terms of available libraries, TFHE [304] provides the best perfor-
mance for binary encoding while HEEAN [141] is the best one for floating point operation
support.

II.4.4 Secure Multi-Party Computation (SMPC)

SMPC is a generic protocol used for distinct devices (or parties) to carry out a joint com-
putation of functions knowing that each device wants to keep his input private. Yao and al.
[340] was the first to propose a SMPC with 2 parties and Goldreich and al. [120] generalize
it for a multiparty case. A SMPC protocol must respect several requirements:

— The privacy in the sense that devices needs to learn their output and nothing more

— The correctness means that each device is guaranteed that the output received is correct

— The independence of input means that the input of a corrupted device must be indepen-
dent of the inputs of the other honest devices

— The guarantee of output means that a corrupted device is not able to prevent the other
honest devices from receiving their outputs.

— The fairness guarantees that a corrupted device can receive his own output if and only
if the other honest devices receive their outputs.

In an ideal world, the devices securely compute functions by sending their inputs to a com-
pletely trusted party that returns the output to all devices. In this configuration, an adver-
sary can attack and take control of any devices but not the trusted party. This ideal world
can be used as a benchmark reference to judge the security of a protocol. But in reality there
is no trusted party. Instead, all devices communicate with each other with a specific proto-
col generally based on encryption methods [115]. ML as a service is an appropriate use case
of SMPC as it would allow companies to propose their models to make inferences on the
private data sent by their customers, while ensuring a privacy protection [273].

II.4.5 ML-specific approaches

ML techniques are also used to reduce information available to the adversary to mount
their attacks. For instance, dropout is a famous technique often used to mitigate overfitting
in neural networks. It consists of randomly setting neurons that make up hidden layers
to 0 at each update of the training phase. This technique can also be used to reduce the
effectiveness of Membership Inference Attacks based on overfitting [89].

Other techniques use GAN (see Section II.1) and the notion of adversarial networks com-
peting in a mini-max game to build privacy-protection mechanisms. The objective of such
methods is to learn in a competitive manner several neural networks that present different
objectives. The auto-encoder mainly aims at generating, transforming or sanitizing the in-
put data into a novel representation. This transformation is guided by the objectives of the
other neural networks, which aims at preventing inferences on a specified sensitive attribute
while still preserving the useful information contained in the data.

Several researches focus on preserving the task of activity recognition on motion sensors
data. [200] is the only one which focuses on gender as the sensitive information. [198] in
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their case, focus on the re-identification only while [253] apply their approach on several
applications like object recognition or action recognition with several data types such as
images or motion sensors. For these adversarial approaches that use autoencoders, the sen-
sitive information can be extracted from the representation produced by the encoder [193],
the decoder [253], or both the encoder and the decoder [198] for data sanitization. Specific
to the sensor data generation, SenseGen [16] is a deep learning architecture for protecting
users privacy by generating synthetic sensor data.

To enlarge with other applications protecting sensitive information using adversarial
methods, [57] use a VGAN to transform face images in order to hide facial expression of the
users that can be used to reveal their identity while preserving generic expressions. Adver-
sarial approaches can also be used to hide sensitive information such as text in images [85]
or identity information in the fingerprints [233].

From a broader privacy perspective, [311] proposes an adversarial network technique
to minimize the amount of mutual information between a sensitive attribute and useful
data while bounding the amount of distortion introduced. They applied their solution on
a synthetic and a computer vision dataset. Inspired from [311], authors in [260] have de-
veloped a method for learning an optimal privacy protection mechanism also inspired from
GAN, which they have applied to location privacy. In [240], authors have proposed an ap-
proach called table-GAN, which aims at preserving privacy by generating synthetic data.
By suppressing one-to-one relationship and limiting the quality of dataset reconstruction,
re-identification attacks are rendered less efficient.

Apart from techniques using adversarial approach to transform data representation to
overcome privacy issues, [211] proposes two privacy preserving mechanisms based on clus-
tering algorithms called Hierarchical Agglomerative Clustering to compress amount of dis-
closed data so that the amount of sensitive information can be reduced. [345] in their case,
develop a framework for images data made on wearable cameras that can protect sensi-
tive information such as face, objects or locations thanks to a neural network that detects
the sensitive objects which will then be blurred or deleted. Rather than focusing on re-
identification, [55] investigate what data to share, in such a way that certain kinds of infer-
ences cannot be done. They propose ipShield that obfuscates data according to the quantifi-
cation of an adversary’s knowledge regarding a sensitive inference.

To summarize, this chapter provides an overview of research dealing with the two as-
pects of my thesis. The gait monitoring in healthcare and the impact of ML in this domain,
and the different privacy issues implied by the production of motion sensor data and the use
of ML models. The following chapter is dedicated to the first contribution in anonymization
of motion sensor data.
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Anonymisation through data
minimization approaches

The two contributions presented in this chapter focus on the anonymization issue of mo-
tion sensor data. Both of them assume the configuration presented in Figure III.1. A user
records motion data through IoT devices managed by a smartphone. We assume that the
user application and the smartphone on which the application is run are trusted. Then the
data are sent to an application server where they are processed and analysed. We assume
that the application server runs on public cloud platforms. We consider that this cloud
platform is honest but curious [119]. This means that the application server behaves cor-
rectly when it comes to processing data received from clients. More precisely, this means
that the data is stored correctly in the database, that no forged information can be injected
in the database, and that the classifier model cannot be maliciously tampered. However,
we assume that the adversary is able to collect part or the entire information stored in the
database and may also try to re-identify the user. In this context, re-identification is associ-
ated with the ability of a ML model to determine how different one user data is from other
users [135, 246]. Each framework presented in this chapter tends to apply transformation
and minimization methods in the sense given by the GDPR by limiting the "collection of per-
sonal information to what is directly relevant and necessary to accomplish a specified purpose" (see
Article 5(1)(c) of GDPR [1]).

FIGURE III.1 – Illustration of a remote health monitoring system based on
wearable sensors

III.1 Privacy framework for motion sensor data anonymization

In this section, we propose a privacy-preserving framework by firstly extracting well-
known multiple features [284, 290] from raw signal and deeply analyse their impact on
both the activity recognition and the user re-identification. We show that features in the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



Chapter III. Anonymisation through data minimization approaches 43

temporal domain are useful to discriminate user activity while features in frequency the
domain lead to discriminating the user identity.

Based on this observation, we design a novel privacy-preserving framework. In this
framework, data records are processed locally on the user device and only relevant features
are extracted and sent to the server. Additionally, features in the frequency domain (i.e.,
features leading to discriminate users) are normalized. This normalization can be viewed
as a generalization-based approach. However compared to other generalization-based ap-
proaches based on k-anonymity that are well known to drastically reduce the utility of the
protected data [124], our solution keeps a high utility (i.e., activity recognition) while pro-
viding a good privacy (i.e., small user re-identification). Once normalized, this information
is periodically uploaded to the application server. Each batch of features is stored inde-
pendently on the server (i.e., with a different pseudonym) to avoid linking both batches to
individuals and batches together.

Moreover, to avoid centralizing both the data and the associated identity of their owners
on the same node, the mapping between the pseudonyms and the user identities is only
retained by the hospital practitioners.

We exhaustively evaluated our ML framework with the use of two reference datasets.
Results show an average accuracy of 87% in activity recognition while limiting the user
re-identification rate up to an accuracy of 33%. We also compared our solutions against
different baselines. Our solution provides a better privacy-utility trade-off with a slight
decrease of utility (9% drop in accuracy) against a large increase of privacy (53% drop in ac-
curacy). In addition, by processing the signals at the edge of the network on the smartphone
of users, our framework drastically reduces the operational costs on the application server
(a decrease of 81% for computational cost). Lastly, we assess our framework with another
dataset containing signals more perturbed by noise. In this case, we show that the impact on
the accuracy of our framework remains limited and mostly impacts the static activities (e.g.,
standing activity). However, this impact can be removed by adapting the preprocessing step
with filters according to the considered signals.

Our contributions can be summarized as follow:
— We quantify both the risk assessment associated with the re-identification of users

(90% in average) and the capacity to detect the user activity (97% in average) from
signals from mobile devices. Knowing that the state of the art in activity recognition is
almost at the same accuracy [19]

— We deeply analysed the impact of multiple features on both the activity recognition
and the user re-identification. We show that features in the temporal domain tend
to discriminate the user activity while features from the frequency domain tend to
discriminate users.

— We propose an efficient workflow and ML technique to recognise user activity with
high utility while limiting the risk of user re-identification. Our solution provides
a better privacy-utility trade-off with a slight decrease of utility (9%) against a large
increase of privacy (53%) compared to state-of-the-art baselines, while reducing the
computational cost on the application server.

— We test the capacity of our approach to be generalized by showing that the privacy-
utility trade-off is better regardless of the considered classifier and also by assessing
our framework with another smartphone dataset containing signals more perturbed
by noise. We show a limited impact on the accuracy provided by our framework and
we show that this impact can be removed by adapting the preprocessing according to
the considered signals.
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III.1.1 Methodology

This section explains the methodology we followed for activity recognition and user re-
identification using IoT mobile devices. Although this description is specific to our method-
ology, it is typical and provides background on IoT healthcare workflow.

The whole workflow is depicted in Figure III.2 and includes data acquisition (Section III.1.1.1),
signal preprocessing (Section III.1.1.2), segmentation (Section III.1.1.3), feature extraction
(Section III.1.1.4), and classification (Section III.1.1.5). Figure III.2 also shows that the pur-
pose (i.e., the activity recognition) and one privacy risk (i.e., user re-identification) are made
through a common pipeline. These two tasks are done on the basis of classification with joint
approaches (descriptors and ML algorithms). Section III.1.2 provides more details about the
privacy risk assessment and the considered adversary model.

FIGURE III.2 – Traditional IoT healthcare workflow for activity recognition,
an adversary can misuse the classifier to re-identify users.

III.1.1.1 Data acquisition

Data acquisition relies on sensors that are present in IoT devices, such as smartphones,
smartwatches, smart wristbands, tablets and medical sensors. For the recognition of physi-
cal activities, we use here the inertial sensors accelerometer and gyroscope.

The data acquisition process is accomplished by a specific module in the mobile device
and consists of the measurement and conversion of the electrical signals received by each
sensor into a readable format [275]. Several challenges are associated with the data acqui-
sition process when recognizing physical activities, including the positioning of the mobile
device, the data sampling rate and the number of sensors to be used and hence managed
[40]. All these factors directly influence the correct extraction of meaningful features. As the
sensors are embedded in the mobile device, they cannot be located separately in different
parts of the body; rather, the mobile device needs to be situated in a usual and comfortable
position.

III.1.1.2 Signal preprocessing

Sensor signals are typically preprocessed by the application of a series of filters. First,
noise was reduced with a median filter and a third order low-pass Butterworth filter with
a cutoff frequency of 20 Hz. This frequency threshold was selected from the work pre-
sented in [164] which states that the energy spectrum of the human body motion is below
15 Hz. The resulting signals were further filtered to break them down into channels that
make sense from a physical point of view as displayed in Figure III.3. For example, linear
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FIGURE III.3 – Channels considered for feature extraction.

acceleration signal was decomposed in two principal channels: gravitational and body mo-
tion components. This step was performed using another low-pass filter and assuming that
the gravitational component mainly refer to the lowest frequencies [19]. Subsequently, body
motion acceleration and gyration signals were derived in time to obtain jerk that reflect the
temporal variations of the signals. Finally, signals were decomposed according to their ac-
quisition axes (x, y, z, respectively) in order to observe them in a specific direction (vertical,
lateral or longitudinal) as depicted Figure III.4. The magnitude of associated signals has also
been calculated to produce an average signal less sensitive to how the device is fixed on the
person. This filtering step allowed us to reach 20 channels in total.

FIGURE III.4 – Visualization of accelerometer signals in x, y and z dimensions
and associated activities.
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III.1.1.3 Segmentation

Channel signals are typically segmented using a fixed sliding window technique. Win-
dows with a span of 2.5 seconds and an overlap of 50% were captured. An overlap degree of
50% means that the window is shifted by half of its size, in other words 50% of the previous
data are included in the next window. The choice of the window size is not trivial especially
for an activity recognition algorithm. A small window size could split an activity signal
while large window size could contain multiple activity signals. We decided to calibrate
our window size on the most complex activity: walking. Hence, the window size has been
chosen to take into account at least a full walking cycle of two steps: the cadence range of an
average person walking corresponds to minimum speed of 1.5 steps by second according to
[37].

FIGURE III.5 – List of measures for computing feature vectors. N: signal vec-
tor length, Q: quartile.

FIGURE III.6 – A sample dataset with features and labels, input of the classi-
fication step.
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III.1.1.4 Feature Extraction

From each window of each channel signal, a feature vector was extracted which con-
tained 17 measures estimated in the time and frequency domains respectively. The Discrete
Fourier Transform (DFT) was used to extract the descriptors of each window in the fre-
quency domain. The choice of these descriptors was made on the basis of an earlier review
on effective descriptors for gait recognition [290] : e.g. for time domain mean, standard
deviation (STD), signal magnitude area (SMA) and signal-pair correlation (Corr); and for
frequency domain energy and entropy. The selected measures to obtain the feature vector
are depicted in Figure III.5. A feature vector was calculated from each experiment window
sample and labeled according to the user and activity it belongs. Figure III.6 shows an ex-
ample of the dataset format, where lines correspond to window samples and columns to
features (except the two last ones which correspond to the labels). Such dataset is used as
an input for the classification task. A total of 340 features (20 channels x 17 measures) are
extracted. The notation for naming a descriptor in the rest of this article is the following
{orientation}_{channel}_{descriptor}.

III.1.1.5 Classification

ML algorithm There are multiple ML algorithms that can effectively handle these features
(e.g., Decision Tree, Support Vector Machine, RF). We evaluated a number of them (one rep-
resentative for each ML family) as illustrated in Table III.1. In order to make a fair compar-
ison, the different algorithms were optimized independently. From this analysis, it follows
that it is RF that provided the best results for our use case. Consequently, RF was chosen for
the multi-class classification tasks in the remainder of this study.

In general, the RF algorithm is a supervised classifier having fast training time and very
high performance without fine-tuning [208]. The function "RandomForestClassifier" of the
Python Scikit Learn package [244] was used to build the RF classifier and related to its op-
timization, 700 was chosen as the number of trees in the forest,

√
n random features were

considered in building each tree and 10 was set as the maximum depth of each tree.

Utility and privacy measures To measure the classification quality based on the proposed
features with RF, we computed the accuracy from the confusion matrix [130]:

Accuracy =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN| ,

where |TP| (True Positive): is the number of correct predictions for a specific event value,
|TN| (True Negative): is the number of correct predictions for non-event values, |FP| (False
Positive): is the number of incorrect of predictions for a specific event value, and |FN| (False
Negative): is the number of incorrect predictions for non-event values.

Accuracy reflects the number of correct predictions made by the model over all kinds of
predictions made. Accuracy is comprised in [1 : 0] where a value of 1 corresponds to a per-
fect prediction. We prefer the accuracy rather than the f-score because the variable classes in
the data are nearly balanced. We use this metric to compute the quality of our classification
to predict both the activity of the user and the user identity. We leverage this metric to de-
fine a utility and a privacy measurement. Specifically, we called Accuracy(activity) the result
of the accuracy when it is applied to the activity recognition (utility metric), and we call
Accuracy(re-identification) the result when it is applied to the user identity (privacy metric).
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Algorithme 1 : Feature selection
Input : List of features sorted by importance f and associated initial accuracy a;

threshC = 0.7; threshA = 0.03
Output : List of selected features

1 for each feature fi ∈ f do
2 Compute the Pearson correlation values C for each feature in { f − fi} : fcorre
3 for each feature f j ∈ fcorre do
4 if | C( f j) |> threshC then
5 Compute accuracy newA of classification for { f − f j} : newa
6 if a− newA < threshA then
7 Erase feature f j from f
8 end
9 end

10 end
11 end

Feature ranking and selection The RF algorithm can also be used to rank features accord-
ing to their importance in the classification. When training a tree, it can be computed how
much each feature decreases the Gini impurity index [153] in a tree. For a forest, the im-
purity decrease from each feature can be averaged and the features are ranked according to
this measure.

The RF algorithm can also be used for feature selection [46]. This is done via measuring
the mean decrease of accuracy when a particular feature is removed from the set of features
in the trees. If the accuracy deterioration after feature exclusion is negligible, the feature is
less important and vice versa. The importance scores of the features in the RF classifier [46,
125] can therefore be evaluated and used as a feature selection criteria. For more details,
see the Algorithm 1: It consists of two nested loops, one corresponding to features ranked
by importance (line 1) and one corresponding to features correlated to each of the features
of the first loop (line 3). The correlation is calculated using the Pearson coefficient (line
2). If the correlation between two features is greater than a certain threshold (line 4), then
the accuracy of the RF algorithm is recalculated after removal of the correlated feature (line
5) and if the corresponding decrease in accuracy is below a certain threshold (line 6) this
feature is eliminated for good (line 7).

III.1.2 Adversary model

This section presents the architecture of a traditional centralized system without any
protection and the potential attack we want to protect the system from (Section III.1.2.1).
Then we present the assumptions made to design our solution (Section III.1.2.2).

III.1.2.1 Traditional architecture

In this traditional architecture, (¶) IoT devices or directly the smartphones perform the
data collection from sensors and (·) send the raw data to the application server which stores
them. (¸) The server then performs all the remaining tasks including the preprocessing,
the segmentation, feature extraction, and the classification of the activity. Finally, (¹) the
hospital practitioner requests the application server to have an analysis of the activity of
patients.
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This centralization of the raw data exposes users to many privacy risks in case of data
leak. Indeed, if the server is compromised or if some data are stolen, raw data are revealed
leading to the possibility to do many sensitive inferences including re-identification. In this
work, we focus our privacy assessment on this user re-identification risk.

FIGURE III.7 – A traditional architecture: the user smartphone send directly
the raw data to the application server that upload it periodically.

III.1.2.2 Technical assumptions

Before presenting our privacy-preserving framework in Section III.1.4 and after giving
some common assumptions at the beginning of the chapter, we further describe our as-
sumptions and the adversary model against which this solution is designed. The framework
presented in this section involves three premises: the client running on the smartphone of
users, the application server storing the features and performing the classification, and the
hospital practitioner monitoring the patient activity. First, a trusted client application means
that the data acquisition, the preprocessing, the segmentation, the feature extraction, and the
normalization cannot deviate from a correct behaviour. Moreover, we do not consider limi-
tations on the sampling rate of the data acquisition as in [301].

Second, each information stored on the application server corresponds to independent
batches of data unlinked to users (i.e., with a different random pseudonym for each batch).
Additionally, we assume that the adversary is able to collect data relative to the gestures of
each user from a malicious IoT device for instance. This prior knowledge on each user is
used by the adversary to build a classifier model. This classifier exploits the same prepro-
cessing, segmentation, and features than our classifier but with the objective to predict the
identity of the user for each batch of data stored in the database.

Third, we assume that the server used by the hospital practitioner is trusted. This server
is used to store the mapping between the batches of data sent to the application server and
the identity of the users.

Lastly, all communications between nodes (i.e., clients, the application server, and server
of the hospital practitioner) are secured. We assume that no information can be inferred
from these secured communications.

III.1.3 Quantifying activity recognition and user re-identification

We carried out an extensive evaluation of the capacity to recognise the activity of users
and to re-identify them. We show that following the methodology described in Section III.1.1,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



Chapter III. Anonymisation through data minimization approaches 50

we are able to predict the activity of the user with a very high rate of success. In addition,
we show that without any protection scheme, data from mobile devices act as a personal fin-
gerprint and lead to re-identify users. We first describe the dataset used in this evaluation
(Section III.1.3.1) before to quantify the activity recognition and the user re-identification
(Section III.1.3.2). Finally, we analyse the impact of extracted features (Section III.1.3.3).

III.1.3.1 Dataset

The dataset used in this work is available online for public use as the "Human Activity
Recognition using Smartphones" dataset in the UCI Machine Learning Repository [19]. This
dataset represents a reference for evaluating activity recognition learning models. It is com-
posed of the 3-axial raw data from accelerometer and gyroscope sensors read at a constant
frequency of 50 Hz. A group of 30 volunteers were selected to follow a protocol of activities
while wearing a smartphone on their waist. The experiment was planned in order to contain
six basic activities: three static postures (standing, sitting, lying-down) and three ambula-
tion activities (walking, walking-downstairs and walking-upstairs). Figure III.4 displays
accelerometer signal of one of the experiments and the associated activities. The protocol of
activities is detailed in [257]. The duration of an entire experiment was around 15 minutes
and was repeated ten times. All the experiments were recorded on video to have a ground
truth to annotate the performed activities on acceleration and gyration signals.

Algorithm Accuracy (activity) Accuracy (identity)
Decision Tree 0.94 0.73

K-nearest Neighbors 0.78 0.36
Support Vector Machine 0.58 0.23
Gaussian Naive Bayes 0.80 0.14

Random Forest 0.96 0.82
Quadratic Discriminant Analysis 0.88 0.63

TABLE III.1 – Comparison of different well-known algorithms in terms of
activity and identity performance.

Activity Accuracy(activity)
Walking 0.97

Walking upstairs 0.95
Walking downstairs 0.94

Sitting 0.97
Standing 0.98
Laying 0.99

TABLE III.2 – User activities can be recognised with a high success rate (recog-
nition using the methodology presented Section III.1.1).

III.1.3.2 Activity Recognition and User Re-Identification

We firstly evaluated the accuracy of different well-known classification schemes for the
activity recognition and the user re-identification in order to select the best one for our use
case (Table III.1). Without optimizing parameters (i.e., using standard values), RF outper-
forms other schemes for both classification tasks with 0.96 and 0.82 of accuracy for activity
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recognition and user re-identification, respectively. Once the most adapted classification
scheme identified, we then optimized parameters to further increase the accuracy.

Table III.2 summarizes the accuracy for the recognition of the different activities. Results
show that our ML framework is able to highly recognise activities with an average accuracy
of 0.97 which is comparable to state-of-the-art performance [165]. As the table indicates, the
accuracy is lower for ambulatory activities in stairs. A possible explanation for this is that
these activities correspond to the smallest acquisition times (Figure III.4).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96

C
D

F
 (

%
)

Accuracy(re-identification)

FIGURE III.8 – Cumulative distribution of the accuracy for the user re-
identification task: users can be easily re-identified from their data.

Figure III.8 depicts the cumulative distribution of the accuracy for the user re-identification
task. Accuracy ranges from 0.82 to 0.96 among the 30 users with an average of 0.90. These
results indicate that the data collected from the gesture of users characterizes each indi-
vidual and can lead to re-identify them with a high success rate. However, the task of
re-identification is slightly more difficult than that of recognizing activities with lower accu-
racy.

III.1.3.3 Impact of Features

The previous experiments are also used to rank features (from the 340) according to their
importance. Eight and eleven features were respectively selected for the activity recognition
and user re-identification tasks given the correlation and accuracy analysis (see Algorithm 1
for methodology and Tables III.3 and III.4 for results) with one temporal feature in common
(Magn_grav_max). Indeed, many features are alike and contain similar information on the
original sensor data. Compared to using all 340 features, using only these 19 relevant fea-
tures lowers only slightly (< 4%) the two classification tasks performance (97% vs 96% for
activity classification and 90% vs 86% for user re-identification).

This can be observed more precisely in the Figures III.9a and III.9b, where the importance
of each selected feature is independently tested for the task of interest: there is a strong corre-
lation between the importance of a specific feature and the performance of the RF algorithm
after removing it.
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FIGURE III.9 – Impact of the number of features (depicted in Table III.3 and
Table III.4) retained in the RF learning process on user’s privacy and utility

metric (features were sorted by increasing order of importance).

Features Importance
Y_grav_std 0.175

Z_grav_med 0.163
Z_grav_energy 0.137

X_grav_max 0.128
Magn_grav_max 0.123

Y_gyro_mean 0.107
Y_gyro_irq 0.088

Y_body_zcross 0.079

TABLE III.3 – Most
important features for
user re-identification
(frequency-based fea-

tures are in grey).

Features Importance
X_grav_max 0.144
X_grav_min 0.127

Magn_grav_max 0.109
X_gyro_min 0.104
X_body_var 0.098

Magn_body_var 0.085
X_gyro_max 0.082
Y_gyro_irq 0.078

X_gyro_mean 0.077
Magn_gyro_mean 0.074
Y_body_entropy 0.020

TABLE III.4 – Most
important features
for activity classifica-
tion (frequency-based

features are in grey).

Based on these ranking results, it is interesting to note that the task of activities recog-
nition (i.e., utility) is almost exclusively (9 of the 11 selected features) operated in the time
domain whereas the task of user identification (i.e., privacy) is based (5 of the 8 selected
features) on features in the frequency domain. These results can be explained by the fact
that the activities are mainly distinguished from each other by their level of amplitude in
acceleration and gyration (Figure III.4) and therefore their associated statistics. Conversely,
the user identification is more related to the pace or cadence at which this person performs
the activity and is strongly related to biomechanics (e.g., age, size, weight).

III.1.4 Privacy preserving activity recognition framework

To ensure privacy, our framework relies on both an architecture limiting the exposure
of sensitive information and a data normalisation applied on features leading to re-identify

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



Chapter III. Anonymisation through data minimization approaches 53

users (Section III.1.3.3). These normalisations act as a form of generalisation-based obfus-
cation. In this section, we first present the architecture of our framework (Section III.1.4.1)
before to describe the normalisation of each sensitive feature (Section III.1.4.2).

FIGURE III.10 – Architecture of our framework: the user smartphone is lever-
aged to extact relevant features and only these features are uploaded periodi-

cally to the application server.

III.1.4.1 Architecture

The design of our privacy-preserving framework comprises three main elements: a client
application running on the user smartphone communicating with its IoT environment, the
application server, and the hospital practitioner. To limit the exposition of sensitive infor-
mation, the application server does not store identified data but only batches of features
where each batch is randomly pseudo-anonymized. Only the hospital practitioner retains
the mapping between the user identities and pseudonyms, and requests the application
server to monitor the activity of users.

The architecture of our privacy-preserving activity recognition framework is depicted
Figure III.10. Firstly, (¶) IoT devices (e.g. smartwatch) or directly the smartphones perform
the data acquisition. In both cases, these raw data are stored locally on the smartphone. The
client application then performs the preprocessing, the segmentation and the features ex-
traction following the methodology described in Section III.1.1. On the basis of our analysis
on the importance of features, this feature extraction only concerns the 19 features identi-
fied as important (Section III.1.3.3). Moreover, the client conducts the normalisation of the
features identified as leading to the re-identification of users. All these normalisations are
described in the following sub-section. As all the aforesaid actions performed on the smart-
phone only concern the associated user on one batch of data (i.e., one day for instance), the
resulting computational cost is cheap (Section III.1.5.3).

Secondly, (·) the client application associates a random pseudonym to each timestamped
batch of features before to periodically upload them to the application server. (¸) The client
application then sends to the hospital practitioner the list of pseudonyms associated to its
identity.

(¹) When a batch of features is received by the application server, it stores this informa-
tion in a database. Consequently, each batch in this database does not contain the identity
of the user but a random pseudonym. The application server then periodically performs the
classification to detect the activity associated with each batch of features.

Finally, when the hospital practitioner wants to monitor the activity of a specific user,
firstly it retrieves locally all the pseudonyms associated with the specified user and then
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requests the application server to have the activity history of the specified pseudonyms
(º). In this approach, the requests from hospital practitioners could lead to link different
pseudonyms to the same patient. To overcome this problem, fake requests could be sent to
hide the ones targeting the expected patient.

III.1.4.2 Normalisation

In order to limit the re-identification of users, we propose a normalisation approach
which generalises the effect of the different descriptors identified as important for the task
of user re-identification. Similar to k-anonymity which ensures anonymity group gathering
k different users with the same quasi-identifier, our normalisation approach aims at erasing
the characteristics of a single specific user (i.e., leading to the re-identification) and trans-
forming the data so that, after normalisation, the data of all users share the same statistical
characteristics.

Given the data from the sensors noted S and of size n, applying the normalisation ap-
proach on S will output the so-called "normalised data" noted S∗. In this work, we distin-
guished five normalizations, each of them referring to the features in the frequency domain
listed in Table III.3 (the feature corresponding to the normalisation is given in parentheses).

For the three temporal features that remain in Table III.3, we proposed to delete the two
of them that were not used for activity recognition. We kept the last one because it was also
selected for activity recognition in Table III.4.

Normalisation by mean (Y_gyro_mean)

S∗i = Si − µ + µ∗, i ∈ [0, n], µ∗ = 0, (III.1)

with µ and µ∗ being respectively the data means before and after normalization.

Normalisation by interquantile range (Y_gyro_irq)
The interquantile range (IQR) is a measure of statistical dispersion, being equal to the differ-
ence between 75th and 25th percentiles.

S∗i =
Si

IQR
IQR∗, i ∈ [0, n], IQR∗ = 1, (III.2)

with IQR and IQR∗ being respectively the data interquartile ranges before and after nor-
malisation.

Normalisation by standard deviation (Y_grav_std)

S∗i =
Si

σ
σ∗, i ∈ [0, n], σ∗ = 1, (III.3)

with σ and σ∗ being the data standard deviations before and after normalisation.
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Normalisation by root mean square (Z_grav_energy)

S∗i =
Si√

1
n ∑n

j=1S2
j

, i ∈ [0, n]. (III.4)

Normalisation by maximum and minimum (X_grav_max)

S∗i = (Si−Min)
newMax− newMin

Max−Min
+newMin, i ∈ [0, n], newMax = 20, newMin = 0,

(III.5)
with Max and Min being respectively the maximum and minimum of the original data and
newMax and newMin the maximum and minimum of the normalised data.

III.1.5 Evaluation of the framework

We carried out an extensive evaluation of our framework. In this section,
we start with a description of the comparison baselines (Section III.1.5.1) before evaluat-

ing the performance of our approach in terms of utility-privacy trade-off (Section III.1.5.2).

III.1.5.1 Comparison Baselines

To highlight the benefits of our approach, we compare the performance of our frame-
work with that of three alternatives. The first alternative follows a perturbation scheme.
Similarly to the differentially private approach described in [6] that applies a perturbation
scheme in the frequency domain of aggregated time series in the context of location privacy,
this alternative (called perturbation) adds a Gaussian noise in the signal in frequency domain
before the extraction of features. The second alternative is based on simply the removal of
features identified as leading to the user re-identification (Section III.1.3.3). The incentive be-
hind this alternative (called suppression) is that without these features, the re-identification
is harder. The last alternative is a privacy-preserving classification based on homomorphic
encryption. This alternative implements a RF classifier working over encrypted data similar
to [44]. In this solution (called homomorphic) the input data (i.e., the features used by the
RF model used in Section III.1.3.2) are encrypted by the smartphone before to be sent to the
server which is able to do the classification of the activity directly from these encrypted data.
To achieve that, the multiple decision trees of the RF classifier are expressed as a polynomial
P whose output is the result of the classification. More precisely, each node in the trees is a
boolean variable defined at 1 if, on input x, one should follow the right branch, and 0 other-
wise (i.e., the value of a variable b1 is 1 if the input x1 is smaller than the threshold w1, and 0
otherwise).

Consequently, P is a sum of terms, where each term t corresponds to a path in a tree
from root to a leaf node c. A term t evaluates to c only if an input x is classified along that
path in the tree, else it evaluates to zero. Hence, the term corresponding to a path in the tree
is naturally the multiplication of the boolean variables on that path and the class at the leaf
node. We use TFHE [304] to implement this solution in C++ and the value of the inputs as
well as the threshold are coded in 16 bits.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI074/these.pdf 
© [T. Jourdan], [2021], INSA Lyon, tous droits réservés



Chapter III. Anonymisation through data minimization approaches 56

III.1.5.2 Privacy Improvement

Figure III.11 reports for our solution and the baseline approaches the trade-off between
the utility captured by the accuracy to recognise the activity and the privacy captured by
the accuracy to re-identify users. For the baseline based on the suppression of features, each
point of the curves corresponds to the deletion of a feature (from the 8 selected ones for
the re-identification task). For the baseline based on perturbation, in turn, each point refers
to the addition of an increasing fixed amount of noise (noise is centered on zero and its
standard deviation is, for each point, increased by 2). Finally, in our framework, each point
corresponds to the normalization of a growing number of features (in order of increasing
importance).

Results show that the suppression approach (slope: 0.12) seems the most advantageous
in terms of compromise between utility and privacy. However it is very quickly limited by
the number of selected features and therefore in privacy and utility metrics; for instance the
best obtained performance are respectively 0.66 and 0.93. The perturbation approach (slope:
0.34) is very effective in loss of identification however at the cost of a very important loss
of utility too, with for best performance in privacy and utility metrics respectively 0.51 and
0.84. Our approach is between the two (slope: 0.21) and provides the best utility and privacy
trade-off (respectively 0.87 and 0.33).

Our approach based on normalization gives a better control on the weight of each feature
in the protection, unlike the suppression approach which limits their impact to consideration
or not.

Lastly, we also considered an adversary that trains a classifier only with features leading
to the re-identification (Table III.3), in this case the accuracy in terms of re-identification is
less efficient than with our framework (0.17).
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FIGURE III.11 – Our framework provides a better utility and privacy trade-off
than baseline approaches.
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III.1.5.3 Cost Improvement

We now compare the cost of running our framework with a traditional centralized so-
lution based on an application server processing all the data. As described Section III.1.2.1,
in a such solution, all the data collected by the IoT devices are sent to the application server
which performs all the operations including signal preprocessing, segmentation, feature ex-
traction, and classification as described Figure III.7. In comparison, our framework lever-
ages the users smartphone to perform the signal preprocessing, the segmentation and the
feature extraction, leaving to the application server only the classification task, it signifi-
cantly reduces the computational cost of this server.

We measured the time spent by the application server for both the traditional approach
and our approach. For our dataset (i.e., 30 users and 15 minutes of data per user), the appli-
cation server spent almost 52 seconds to perform all processing against almost 10 seconds
with our framework (i.e., classification only). That represents a time reduction of 81%. With
a large number of users, this time reduction drastically saves the resources needed for op-
erating an application server. Considering an application server running on a cloud infras-
tructure such as Amazon EC2 services [17], this reduction in terms of computational cost
highlights the economic advantage of our framework.

We also measured the time spent by the application server when a homomorphic en-
cryption scheme is used. Results show that using such a scheme to protect data generates
important computational overhead. The added time introduced by the computation of the
preprocessing (versus classification only) is negligible compared with this overhead.

Lastly, we evaluated the cost of running our framework on the user machine. A user only
affords the cost of its activity by taking into account the preprocessing, the segmentation
and the feature extraction on its smartphone. On a commodity computer, these operations
applied on all the data of one user spent in average 2.5 seconds. This cost (paid every
15 minutes) remains low. In addition, these processing can be scheduled during the night
when the user is inactive.

III.1.5.4 Impact of ML Scheme

To assess the generalization of results obtained by our approach with RF to other classi-
fiers, we evaluate the utility-privacy trade-off with the classifiers considered in Section 2.5
(see Table 1). Table III.5 reports the privacy improvement and the utility loss of our approach
according to the considered classifier.

Results depicted a similar behavior with an important decrease of the re-identification
while maintaining the high level of activity recognition. There is an exception for Gaussian
Naive Bayes classifier where the re-identification accuracy was already low before normal-
ization. We also observe an increase of activity recognition after normalization for Support
Vector Machine classifier probably due to the selection of features that significantly reduced
the complexity of the data dimensionality that was too high on raw data for this basic clas-
sifier (i.e., we go from 340 features to 19 features after application of our approach).

III.1.5.5 Impact of the Dataset

We now evaluate the capacity of our approach to be used on another dataset. In the
previous experiments, the data acquisition protocol was done with volunteers wearing a
smartphone on their waist. In this section, we use another dataset (i.e., the "MotionSense
Dataset" [200]) following a data acquisition done with a smartphone in the pocket of the vol-
unteers. Consequently, the collected signals include more noise than in the previous dataset.
Otherwise, this dataset is similar to the first one. It contains time-series data generated by
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Algorithm Utility loss Privacy improvement
Decision Tree -0.13 (0.81) +0.54 (0.19)

K-nearest Neighbors -0.07 (0.71) +0.274 (0.09)
Support Vector Machine +0.10 (0.68) +0.16 (0.07)
Gaussian Naive Bayes -0.16 (0.64) +0.077 (0.06)

Random Forest -0.09 (0.87) +0.49 (0.33)
Quadratic Discriminant Analysis -0.32 (0.56) +0.555 (0.08)

TABLE III.5 – The tendency of our approach to drastically improve the pri-
vacy while maintaining the utility is generalized to other classifiers.

3-axial raw data from accelerometer and gyroscope sensors read at a constant frequency of
50 Hz. A group of 24 participants performed 6 different activities: dowstairs, upstairs, walk-
ing, jogging, sitting and standing. All these activities were made in 15 trials per user, with
9 long trials (i.e., around 2-3 minutes duration) and 6 short trials (i.e., around 30 seconds-1
minute duration).

Noise Sensibility To quantify the noise present in a collected signal, we measured the
Signal-to-Noise Ratio (SNR for short). SNR is expressed in decibels as the ratio of the mean
signal (µ) to the standard deviation (σ) of the signal over a given neighborhood using the
logarithmic scale [49] :

SNR = 10 log(
µ

σ
).

This ratio compares the level of a desired signal to the level of background noise con-
sidering that the noise in the signal is stationary in time. A SNR higher than 0 indicates
more signal than noise. Table III.6 reports the SNR for each activity for both datasets. Re-
sults show an important difference between the SNR of both datasets meaning a stronger
presence of noise for all activities in the second dataset. This difference is significantly more
important for statics activities (e.g., SNR at 25.4 versus 0.4 for standing activity). Indeed, the
power of the desired signal for static activities is smaller, leaving more impact on noise.

Activity Dataset 1 Dataset 2
(smartphone on waist) (smartphone in the pocket)

Walking downstairs 5.05 3.8
Walking upstairs 6.6 0.1

Sitting 23.4 8.3
Standing 25.4 0.4
Walking 6.4 -3.0

TABLE III.6 – Signal-to-Noise Ratio (SNR) of collected signals of all activities
for both datasets in decibels (dB) : the second dataset contains stronger noise

on all activities, especially for static ones.

We now evaluate the impact of the presence of noise in the collected signal on the accu-
racy of our framework. Table III.7 reports the accuracy of the activity recognition. Results
show that our framework is still able to highly recognise dynamic activities (i.e., ranges from
0.79 to 0.89 of accuracy for walking and jogging activities) even if the collected data contains
important levels of noise. However, the impact of noise on the signal of static activities
drastically reduces the accuracy (e.g., 0.30 of accuracy for standing activity).
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Activity Accuracy (activity)
Walking downstairs 0.84

Walking upstairs 0.89
Sitting 0.16

Standing 0.30
Walking 0.80
Jogging 0.79

TABLE III.7 – Even if the collected data contains important level of noise,
our framework is still able to highly recognise dynamic activities, while the
impact of noise drastically reduces the accuracy for the recognition of static

activities.

Figure III.12, in turn, depicts the cumulative distribution of the accuracy for the user
re-identification task on this second dataset. This distribution shows that users can be still
re-identified from their data even if the signals are perturbed by noise but with a smaller
success rate than with the previous dataset (0.90 versus 0.48 of accuracy on average for the
previous and the new dataset, respectively).
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FIGURE III.12 – Cumulative distribution of the accuracy for the user re-
identification task: users can be still re-identified from their data even if the
signals are perturbed by noise but with a smaller success rate than with a

dataset containing less noise.

The impact of this noise can be mitigated by refining the preprocessing with an addi-
tional filter. For instance, we experimented adding a Savitzky–Golay filter that smooths the
collected signal and consequently increases the SNR of each activity.

Feature selection To demonstrate the validity of our approach, it is important to ensure
that the most important features used in the two classification tasks are mostly indepen-
dent. Tables III.8 and III.9 lists for this new dataset the features selected for respectively
the re-identification and the activity classification, ranked following their importance in the
classification task. Results show a majority of features in the frequency domain lead to the
re-identification and a majority of temporal features lead to the activity recognition.
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Features Importance
X_grav_mean 0.179
Y_grav_mean 0.153
Z_gyro_max 0.152
Z_grav_max 0.151
X_grav_max 0.138
Z_grav_max 0.113
Z_grav_var 0.112

TABLE III.8 – Fea-
tures in the frequency
domain also lead to
the re-identification
with the MotionSense
dataset (frequency-based

features are in grey)

Features Importance
Y_gyro_mean 0.193
Y_body_std 0.184
Z_grav_std 0.167

Z_grav_mean 0.157
X_gyro_zcross 0.151

Magn_grav_min 0.148

TABLE III.9 – Temporal
features also lead to
the activity recognition
with the MotionSense
dataset (frequency-based

features are in grey).

Framework analysis Our approach applied on MotionSense dataset provides on average
an accuracy for activity recognition of 0.97 and an accuracy of 0.37 for re-identification.
These results are similar to the ones obtained with the previous dataset (0.87 of activity
recognition and 0.33 of re-identification). In summary, to get the best performances from
our framework, the denoising has to be designed according to the SNR of raw data before
applying the feature extraction. However, our framework still provides good activity recog-
nition while reducing the users re-identification.

III.1.6 Conclusion

Our framework processes the signal and extracts relevant features locally on the user
smartphone. In addition, accordingly to the observation that the frequency domain prevails
in the user identification task, a normalization is performed on the frequency-based features
to obfuscate the re-identification of users. Finally, only a set of features unlinked to the
identity of its owner is uploaded to the application server which is then able to recognise the
activity of the users with a high accuracy while reducing the risk of user re-identification. An
extensive validation of our framework has been performed on 2 reference datasets yielding
good results in terms of privacy-utility trade-off and suggesting that the approach could be
generalized.

However, the different datasets were collected from a smartphone and it would therefore
be necessary to evaluate our approach on data recorded via other mobile devices such as
objects connected to the smartphone (e.g., smartwatch). Finally, despite these promising
results, the method is limited to further decrease re-identification accuracy due to the limited
number of features removable and also the potential decrease of activity accuracy if too
many features are removed or normalized.
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III.2 Motion sensor data anonymization by time-frequency filter-
ing

The framework presented in the previous section allowed us to reduce the re-identification
accuracy nevertheless the results were still far from the lowest achievable accuracy corre-
sponding to a random guess 1

n with n the number of users. Furthermore, by minimizing
information with a few number of features, the possibility to have a better trade-off than the
one obtain in the previous section, is very reduced because the utility would be too much
impacted. However, based on one of the main result concerning the feature discrimination
between temporal and frequency for both activity and identity recognition, we could ex-
plore in this section a new method for anonymizing motion sensor data while preserving
the remainder of the activity pattern.

As information patterns are contained in the temporal and in the frequency domain,
our approach relies on time-frequency (TF) representation where sensitive information is
removed to improve privacy. More precisely, since motion sensors respond to both fre-
quency and intensity of movements and their outputs are non-stationary signals, a Fourier
transform that provides frequency components of the whole signal is not sufficient to de-
scribe the signal properly. In this context, we propose to use a TF encoding of the signal
to learn to recognize activity on one side and identity on the other. This learning step is
based on a neural network which allows good learning performance and the automatic se-
lection of descriptors of interest in the encoding space. Finally, we propose to filter sensitive
identity information in this representation by canceling the highest value coefficients which
correspond to the person’s activity rate (see Figure III.13). The validity of our framework is
extensively demonstrated on a public dataset and related to a state-of-the-art baseline.

FIGURE III.13 – Overview of the proposed pipeline, divided in 4 steps: A.
Signal transformation into a time-frequency (TF) image, B. Anonymization
method based on image filtering, C. Activity recognition and D. User identi-

fication

III.2.1 Material and Method

III.2.1.1 Dataset

We used the public dataset Motion-Sense to assess the performance of our approach. It
includes data sensed from 3-axis motion sensors at a constant frequency of 50 Hz collected
with an iPhone 6s kept in the participant’s front pocket [257]. Overall, a total of 24 partici-
pants have performed six activities during 15 trials in the same environment and conditions.
The considered activities are going downstairs, going upstairs, walking, jogging, sitting and
standing. To enable both classifications over time (i.e., the activity and the identity), the raw
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motion data are split in sliding windows, where each sliding window is a sample of a single
activity. Knowing that on average the cadence range of walking is not less than 1.5 steps per
second [37], the window length is chosen to be 2.5 seconds with an overlap of 50 %.

For this study, we focused on the four dynamic activities (going upstairs, going down-
stairs, walking and jogging): they are the most difficult to analyze and their complex fre-
quency content is adapted to TF representation. Also, we only focused on the user accelera-
tion signal, which is adapted for dynamic activities [254].

III.2.1.2 Time-frequency domain

The time-frequency domain tries to overcome the limitations of the classical Fourier
transform, which only provides frequency content without any time information. Indeed,
in the context of non-stationary signals, we need to know the frequency evolution of the sig-
nal components as a function of time. There are several approaches to project the signal in
the TF domain. In this work we will focus on 3 different linear transforms: The Short-Time
Fourier Transform (STFT) [108], the Stockwell transform [296] and the optimized Stockwell
transform [218].

The Short-Time Fourier Transform (STFT) Given a signal x(t), its STFT can be given as:

S f x(t, f ) =
+∞∫
−∞

x(τ)w∗(τ − t)e−2jπ f τdτ, (III.6)

where w(t) is the analysis window which has a fixed width (mono-resolution analysis).
The window w(t) is chosen in this work as a Gaussian function with a standard deviation
σ = 0.05.

The Stockwell transform The Stockwell transform (S-transform) can be considered as a
hybrid between the STFT and the Continuous Wavelet Transform (CWT) [201]. It preserves
a direct relation with the Fourier’s kernel as the STFT, while performing a multiresolution
analysis as the CWT. The S-transform of signal x(t) can be expressed as follows:

Sx(t, f ) =
∫ +∞

−∞
x(τ)w∗(τ − t, f )e−2π j f τdτ, (III.7)

where w(t, f ) is the analysis window which is a Gaussian function of two variables: time
and frequency. It can be given as:

w(t, f ) =
1

σ( f )
√

2π
e
−t2

2σ( f )2 (III.8)

The standard deviation σ( f ) is inversely proportional to the frequency:

σ( f ) =
1
| f | , (III.9)

to promote temporal resolution for low frequencies and frequency resolution for high fre-
quencies.
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Optimized S-transform To better adapt the analysis window to the nature of the signal be-
ing analyzed, many authors tried to optimize the S-transform representation by introducing
new parameters on the Gaussian window [28, 282]. Among these proposals, a generalized
Gaussian window controlled by a set of parameters was proposed in [218] as follows :

wpi(t, f ) =
| f |r

(m f p + k)
√

2π
e
−(τ−t)2 f 2r

2(m f p+k)2
. (III.10)

The idea is to choose the set of parameters pi ∈ {r, m, p, k} that maximizes an energy con-
centration function. This energy concentration can be measured by several approaches. The
concentration measurements (CM) used in this work are given as follows [294]:

CM(pi) =
1

+∞∫
−∞

+∞∫
−∞

∣∣∣Spi
x (t, f )

∣∣∣ dtd f
, (III.11)

with Spi
x (t, f ) a normalization of Spi

x (t, f ) [282]:

Spi
x (t, f ) =

Spi
x (t, f )√

+∞∫
−∞

+∞∫
−∞

∣∣Spi
x (t, f )

∣∣2dtd f

. (III.12)

The parameters pi which maximize CM(pi) are chosen to compute the optimized S-transform.
In this study, the optimization is carried out on the whole signal and the optimal parameters
were calculated for a sample of the signals in the dataset. This allows to observe the trend of
the variation of these parameters particularly for the various activities where no significant
variation is observed. In our case, the parameters are fixed as follows: r = 0.7, m = 0, p = 0
and k = 0.4.

III.2.1.3 Identity filtering

TF images generated from the different TF transformations have a size of 62 and 128
pixels in spectral (frequency voices) and temporal domains respectively. As depicted on
Figure III.14, TF images for walking activity present different patterns from TF images for
running activity, and can be discriminated in terms of texture: especially the number of
vertical salient peaks. On the other hand, two different users can present differences in
the contrast of their TF image as shown in Figure III.14, where peaks of user #8 are more
contrasted than those of user #15. These observations stress the interest of filtering high
coefficients to remove user information.

In agreement with these observations, identity filtering consists in setting different per-
centages x of the total TF image coefficients (sorted in descending order) to zero : x ranging
from 10% to 90% with a step of 10%. This method allows us, in agreement with [158], to
ensure that information relevant to re-identification is removed first.

III.2.1.4 CNN classifier

We propose two distinct convolutional neural networks as classifier to assess the perfor-
mance of our framework: one that classifies signals into 4 classes (corresponding to the 4
activities) called CNN activity, and another that classifies the same signals into 24 classes
(corresponding to the 24 subjects in the study) called CNN identity. These two models have
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FIGURE III.14 – Representation of optimized S-transform for 2 different users
(#8 and #15) for two different activities (walking and jogging).

the same architecture, but are trained separately.

CNN Architecture Multi-inputs image classification based on CNNs can be addressed
using early fusion strategy, where all input images are combined at the beginning of the
network. This fusion strategy present low computational complexity and is an easy imple-
mentation [215]. However, it has been shown in other contexts that the late fusion better
accounts the complexity of each input and outperforms the early fusion [229, 293]. The late
fusion strategy consists in processing each input image independently on distinct convolu-
tional branches, and merging features at a higher level.

In our case, each signal window was defined by three different TF images, standing for
the acceleration along the x, y and z axes (TFx, TFy, TFz, respectively). The detailed archi-
tecture is depicted in Figure III.15.

CNN implementation For both CNN activity and CNN identity, signals in the dataset
have been split according to trials: 90% of signals from trials 1,2,3,4,7,8,9 were used as train-
ing set, and the remaining 10% as validation set. Signals from trials 11,12,15,16 were used as
testing set. For both CNNs, we used a categorical cross-entropy loss function that produced
weights to equally penalize under or over-represented classes in the training set. The opti-
mizer was set with Adam, the batch size was set to 128, and the number of epochs was set
to 150 but was regulated by early stopping. The total number of weights to train was 23,044
for CNN activity and 46,104 for CNN identity.

III.2.2 Evaluation

III.2.2.1 Classification metric

To assess the classification performances of the two CNNs (activity and identity), we
computed for each class the accuracy metric acc, defined as:

acc =
TP + TN

TP + TN + FP + FN
, (III.13)
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FIGURE III.15 – Overview of the proposed CNN architecture. The network
takes three TF images (TFx, TFy, TFz) as input. Each input image is processed
independently on 3 separate branches. Pink, yellow and green feature maps
result from 2D-convolutions and maxpooling. The output of the 3 branches
are then concatenated, and passed through a hidden layer of N nodes, with

N = 4 for CNN activity and N = 24 for CNN identity.

where TP stands for true positives, TN for true negatives, FN for false negatives and FP
for false positives.

We called the result respectively Activity acc (i.e., data utility) and Identity acc (i.e., pri-
vacy) when it is applied to the activity recognition and to the user identity. The given accu-
racies systematically corresponds to the results averaged over ten experiments.

III.2.2.2 State-of-the-art baseline

To compare the performance obtained from the different TF representations, we pro-
posed a baseline based on the Fourier transform of the acceleration signal. In this baseline,
just like our filtering approach, we filtered different percentages x of the transform coeffi-
cients in descending order (x ranging from 10% to 90% with a step of 10%). Once Fourier
transform was filtered, as did [158], the signal was classified into activity and identity classes
based on frequency domain features using a RF classifier.
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III.2.2.3 Optimal representation metric

We defined the best TF representation as the one that maximizes the Area Under the
utility-privacy Curve (AUC) using the trapezoidal rule. The AUC is an effective and com-
bined measure of utility and privacy that describes the inherent validity of the anonymiza-
tion approach. The AUC used here was bounded in x between the minimum and maximum
performance in identity. As these bounds changed between the different TF representations,
we normalized the AUC by the size of the rectangle relating to the bounds.

III.2.2.4 Optimal filter

The optimal filter was defined as the filter minimizing the Euclidean distance between
a point from the utility-privacy curve and the upper left corner of normalized area – that
corresponds to the intersection of the upper edge of the Figure III.16 (maximal performance
of 100% in activity) and the minimum bound in performance for the identity. This optimal
filter guarantees a good activity recognition while limiting identity identification.

III.2.3 Results and discussion

III.2.3.1 Interest of the time-frequency representation

Figure III.16 shows the filtering effect on activity and identity recognition for the three
different TF representations and the baseline. It appears that working only in the frequency
domain (cross markers in Figure III.16) leads quickly to a significant loss of activity recog-
nition. This loss in data utility is explained by the fact that Fourier transform is not able
to correctly analyze the non-stationary nature of signals, where frequency content changes
over time especially in the activity pattern. On the other hand, TF representations seem to
be able to deal with the non-stationarity of the signals and therefore allow a better trade-off
between activity recognition and user identification. The more coefficients are filtered from
the TF images, the worse identification performance is. Conversely, filtering has much less
impact on activity recognition performance: whether no filtering is applied or that 70% of
the image is filtered, activity accuracy seems to be stable between 80% and 90%. This trend
is observed whatever the TF representation (STFT, S-transform or optimized S-transform
respectively round, square and triangle markers in Figure III.16). These results demonstrate
that high coefficients in the TF images carry specifically the person’s activity rate and hence
the identity information. Activity, on the other hand, seems less specific to a range of coeffi-
cients and corresponds more to the general texture observed in the TF images.

III.2.3.2 Optimal representation

Table III.10 summarizes the normalized AUC for each curve in the Figure III.16. Among
the three TF representations, STFT has the lower AUC (AUC = 0.83), hence offering a worse
trade-off between utility and privacy. This observation can be linked to the fact that this
transform is mono-resolution and therefore provides a lower time-frequency resolution of
the associated signal. On the other hand, the S-transform is multi-resolution which allows a
better encoding of the analyzed signal and hence higher activity recognition (AUC = 0.84).
Activity recognition is further improved when the S-transform of the acceleration signal
is optimized according to an energy concentration criterion (AUC = 0.85). Differences
between S-transform and optimized S-transform could possibly be even more marked if
the S-transform optimization would have been done on individual sliding windows rather
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TABLE III.10 – Normalized Area Under the utility-privacy Curves (AUC) for
each representation

Fourier STFT S-transform Opti. S-transform

0.69 0.83 0.84 0.85

than the whole signal. Unsurprisingly, the better is the energy concentration in the time-
frequency plane – which means a better tonal resolution of the TF image – the faster the
neural network converges.
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FIGURE III.16 – Activity accuracy according to identity accuracy for differ-
ent representations: the Fourier transform (cross markers in green), the STFT
(round markers in blue), the S-transform (square markers in orange) and the
optimized S-transform (triangle markers in red). Each point corresponds to
an average classification result over 10 experiments. The upper left corner
represents the ideal trade-off between utility and privacy. For each curve, the
high performance points in activity and in identity correspond to cases with-
out filtering while the others (as one tends to the left of the graph) correspond

to filtering cases with a step of 10%.

III.2.3.3 Optimal filter

Table III.11 shows that the optimal filter that guarantees a good utility-privacy trade-off
is 60% for the Fourier, STFT and S-transform representations and 70% for the optimized S-
transform representation. These observations suggest that given the better tonal resolution
of the optimized S-transform representation, it is possible to filter more coefficients of the
TF image without losing too significantly in activity performance (as observed for the other
TF representations in the Figure III.16.
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TABLE III.11 – Optimal filter in % for each representation, and the associated
performances in % (activity acc/identity acc)

Fourier STFT S-transform Opti. S-transform
60 (66/22) 60 (83/37) 60 (85/33) 70 (85/32)

III.2.4 Conclusion

In this work, we presented a new proof of concept method for preserving individual pri-
vacy in motion sensor data. This method uses time-frequency representation of acceleration
signals and filters the resulting TF images by setting the highest coefficients to zero be-
fore the machine-learning step. The evaluations demonstrated that our method successfully
anonymized identity, and preserved a high activity recognition ratio by better encoding of
the non-stationary aspect of the signals than the Fourier transform. More specifically, we
determined that the optimized S-transform gives the best utility-privacy trade-off by filter-
ing its TF coefficients at 70%. The proposed filtering privacy-preserving mechanism was
intentionally simple, but shows promising results. More advanced filtering methods [101]
could be considered to improve performance, which could be the subject of future research.
Moreover, other time-frequency transforms can be applied and compared with the results
obtained in this contribution.

The contributions of this chapter focused on anonymization and the development of
manual methods to prevent data from re-identification. These methods were based on the
fact that information extracted from the temporal and frequency domains of the data are
used either for activity recognition or re-identification. Thus, each framework focused on
normalising and removing information related to re-identification in the form of features
extracted from signals in the first contribution and TF images in the second contribution.
However, the methods presented are specific to anonymization and then could not be ap-
plied on any other sensitive attribute.
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Sanitizing and FL scheme against
inference attacks

This chapter aims at focusing on other sensitive inferences information that the user
not necessarily consented to disclose and that can also be used as indirect re-identifiers by
linking different information about the user on different datasets.

To do so, we firstly propose a solution based on deep neural networks that will automat-
ically identify the features related to a specific sensitive information in order to obfuscate it
in the motion sensor data. Secondly, we explore the distributed learning architecture and
specifically we evaluate the privacy aspect of a FL scheme designed for heterogeneous data
with private personalized layers.

IV.1 Dynamically sanitizing motion sensor data against sensitive
inferences through adversarial networks

In this work we propose a solution sanitizing the motion sensor data in such a way that
it hides sensitive attributes while preserving the activity information contained in the data.

To achieve this objective, we designed DYSAN, inspired from the framework of GAN [238]
to sanitize the sensor data. By learning in a competitive manner several networks, DYSAN

is able to build models for sanitizing motion data to prevent inferences on a specified sensi-
tive attribute while maintaining a high level of activity recognition. One of the objectives of
DYSAN is also to limit the distortion between the raw and sanitized data, thus also maintain-
ing a high level of utility with respect to other analysis tasks related to activity monitoring
(e.g., steps counting). DYSAN has thus to learn sanitizing models in order to find the best
trade-off to deal with these conflicting optimizing goals.

Furthermore, our approach aims at addressing the heterogeneous aspect of data col-
lected by motion sensors. Indeed, these sensor data are user dependent and inherently
reflect the way each user moves, to the characteristics of the sensors used for data collec-
tion and to the evolution of activity during the day. Thus, one unique sanitizing model
cannot cope with the heterogeneity of data and provide the best utility/privacy trade-off
for all users over time. To solve this issue, DYSAN builds a set of diverse sanitizing mod-
els by exploring different combinations of hyperparameters leading to different balance in
privacy protection with respect to sensitive inference, utility preservation in terms of the
loss induced for activity recognition, and the data distortion. By doing so, DYSAN is able to
assess the trained sanitized models and to dynamically select the model providing the best
trade-off over time according to the incoming sensor data.

The evaluation of DYSAN on real datasets, in which the gender is considered as the sensi-
tive information to hide due to the possible risk of discrimination, demonstrates that DYSAN

can drastically limit the gender inference up to 41% while only inducing a drop of 3% on the
accuracy of activity recognition. In addition to preserving activity recognition, DYSAN, by
limiting data distortion, also preserves the sensor data utility for other analytical tasks such
as estimating the number of steps. Moreover, we show that the dynamic model selection of
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DYSAN successfully provides an adaptation of the sanitization according to the incoming
user data. This dynamic model selection is especially useful to generalize the sanitization
capacity learnt from the dataset used to build the sanitizer models to another dataset with
new users with potentially different behaviours. Our dynamic sanitizing method overcomes
several shortcomings of the state-of-the-art approaches, namely the use of the same sanitiz-
ing model for all users over time, which may lead to a poor privacy-utility trade-off for
atypical users. Lastly, we evaluate the cost of operating DYSAN on a smartphone and show
that the introduced overhead is compatible with real-time processing and that the energy
consumption remains reasonable.

IV.1.1 Problem definition and system model

IV.1.1.1 Overview and system model

The system configuration is based on similar hypothesis to those presented in the previ-
ous chapter. We consider a mobile application installed on the user’s smartphone aiming to
monitor its physical activity. The smartphone of the user is assumed to be under the control
of the user and thus trusted while the service provider responsible for activity monitoring is
not. In the “classical” (i.e., non-private) version of activity monitoring, the data is acquired
by sensors (e.g., accelerometer, gyroscope), retrieved by a dedicated mobile application and
then send to a server hosted in the cloud (i.e., no classification is made locally). This server
leverages ML models to identify the activity of the user or to estimate other physical activity
features (e.g., number of steps). The server is considered to follow the honest-but-curious
adversary model in the sense that it may also try to infer additional sensitive information
from the sensor data.

For the rest of the section, we consider the gender as being the sensitive attribute to pro-
tect as it could lead to risk of discrimination. In addition, the gender could be inferred from
the list of performed activities and their associated frequencies in case of unbalanced data
distribution between men and women (which is not the case in the datasets considered in
this section). However, our approach is much more generic and could be applied to protect
other sensitive attributes (e.g., handicap or race).

FIGURE IV.1 – DYSAN locally sanitizes the motion sensor data on the smart-
phone to prevent the cloud-based service from inferring an unwanted sensi-
tive attribute while allowing this service to detect the activity performed by

the users as well as compute statistics related to their physical activity.

An overview of DYSAN is shown in Figure IV.1. To avoid an unwanted exploitation
of the motion sensor data, these data are sanitized by DYSAN before being transmitted to
the mobile application. This sanitizing process removes the correlations with the sensitive
attribute in the sensor data while preserving the information necessary to detect the activity
performed by a user. In addition, DYSAN also aims at limiting the distortion between the
raw and sanitized data to preserve the utility for other analytical tasks. Finally, the resulting
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sanitized data are sent to an analytics application hosted in the cloud, exploiting ML models
to classify the users activity and compute statistics related to their physical activity.

Ideally to limit the privacy risks, the sanitizing step should be done as early as possible
to prevent other applications to have access to the raw sensor information. For instance,
we consider that DYSAN could be deployed in the trusted environment of the smartphone
to prevent the mobile application to have a direct access to the sensor data but only from
the output of DYSAN (thus ensuring that the mobile application uses only sanitized data).
Afterwards, the mobile application sends the sanitized data to a server hosted in the cloud
similarly to the non-private scenario.

IV.1.1.2 Problem statement

More formally, we consider raw motion sensor data (denoted by A) captured through ac-
celerometer and gyroscope that sample 3-axial signals with a frequency of 50 Hz. To enable
activity recognition over time, the raw sensor data are split in sliding windows, in which
each sliding window is considered to be a sample of a single activity (i.e., by assumption the
user cannot perform two different activities during a single sliding window). The choice of
the window size is not trivial, especially for an activity recognition task and has to be well
calibrated. Indeed, a small window size could split an activity signal while a large window
size could contain multiple activity signals. Knowing that on average the walking pace is
not less than 1.5 steps per second [37], the window length T is chosen to be 2.5 seconds with
an overlap of 50 % to match that of a walking cycle of two steps.

We assume a population of N users contained in a dataset X storing all user’s data.
This dataset includes the raw sensor data as well as the label associated with the activity
performed by the user (denoted by a multi-valued attribute Y), the binary sensitive attribute
(denoted by S) and a timestamp. Thus, the dataset X = {A, Y, S} in which A = (A1, . . . , AT).

The objective of DYSAN is to protect the user motion sensor data against sensitive at-
tribute inferences while maintaining data utility. More formally, we aim at learning a set
of sanitizers Sanα,λ,β for various values of the hyperparameters α, λ and β. Each sanitizer
will transform the original data X into X̄ = Sanα,λ,β(X) = {Ā, Y, S}; Ā = (Ā1, ¯. . ., ĀT). This
set of sanitizers is learned so that it is difficult to build a discriminator Disc trained to pre-
dict S from the sanitized data and activities {ĀY} while an activity predictor Pred trained
on the same sensor data (Ā) is able to maintain an accuracy close to the original one (more
details in the following section). To preserve further the utility of X̄, the sanitizing process
is constrained to minimize the distortion between the original and sanitized data.

Furthermore, DYSAN aims to dynamically adapt over time the hyperparameters of the
model according to the incoming data of each user. Indeed, while a particular model could
provide the best utility/privacy trade-off on average for all users with respect to the training
dataset, the model leading to the best trade-off can change when testing on new user (e.g.,
when the new user data does not fit the data distribution of the training dataset). More
formally, the objective is to find for each window of data the sanitizer Ŝanα,λ,β providing the
best utility/privacy trade-off for the current incoming data. This trade-off is defined by a
metric combining the accuracy of the activity recognition and the inference of the sensitive
attribute.

IV.1.2 Dynamic Sanitizer

Before exploiting DYSAN, multiple sanitizers corresponding to various utility and pri-
vacy trade-offs are built during the offline training phase. These models are then deployed
on the smartphone. During the online phase, DYSAN dynamically selects on the smartphone
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the best sanitizer for the incoming sensor data. Both the training and the online phases are
summarized in Figure IV.2 and explained in the following subsections.

FIGURE IV.2 – DYSAN is composed of two phases: an offline training phase
(left) and an online phase (right). The training phase is performed only once
and aims to build different sanitizer models that are distinguished by their
hyperparameters. Once these sanitizer models deployed on the smartphone,
the online phase aims to dynamically choose among these models the most

adapted one for each batch of incoming data.

IV.1.2.1 Building multiple sanitizers

The offline training phase is performed only once and aims at learning multiple sani-
tizers. This training is performed with a reference dataset used in activity recognition, the
MotionSense dataset that we describe in Section IV.1.3.1. As shown in Figure IV.2, DYSAN

is composed of multiple building blocks that we detail hereafter: 1) a sanitizer, 2) a discrim-
inator, 3) a predictor, 4) a distortion measurement and 5) a multi-objective loss function.
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— Discriminator: The discriminator Disc guides the sanitizer through the process of re-
moving information related to the sensitive attribute S ∈ {0, 1}. In practice, we use a
CNN, which is well-suited to capture time-invariant features in time series [148]. This
CNN is described by the architecture in the following Table IV.1.

TABLE IV.1 – Discriminator architecture

Type Parameter
Input 125,6

Conv1D 64, kernel_size=6, stride=1, activation=ReLU
AvgPool1D kernel_size=2, stride=2

BatchNorm1D 100, eps=1e-05, momentum=0.1
Dropout p=0.5

Dense 64, activation=ReLU
Dense 2, activation=softmax

The training of the discriminator is based on a loss function measuring the Balanced
Error Rate BER [96] between the output of the discriminator and the ground truth
sensitive attribute, which is defined as:

BER(Disc(Ā, Y), s) =
1
2
(

1

∑
s=0

P(Disc(Ā, Y) 6= s|S = s)). (IV.1)

The value of BER ranges between 0 and 0.5, in which a value close to 0 corresponds
to a perfect accuracy for the prediction of the sensitive attribute while 0.5 means the
discriminator is unable to retrieve any information about the sensitive attribute from
the sanitized data. Hereafter, we will refer to this loss by LossSensitive.

— Predictor: The predictor Pred aims at helping the sanitizer in preserving as much in-
formation as possible with respect to the activity recognition task. We also use a CNN
for the predictor that has been optimized for predicting the user activity from the san-
itized data. The architecture of this CNN is presented in the following Table IV.2.

TABLE IV.2 – Predictor architecture

Type Parameter
Input 125,6

Conv1D 64, kernel_size=6, stride=1, activation=ReLU
AvgPool1D kernel_size=2, stride=2

BatchNorm1D 100, eps=1e-05, momentum=0.1
Conv1D 100, kernel_size=5, stride=1, activation=ReLU

AvgPool1D kernel_size=2, stride=2
Conv1D 160, kernel_size=5, stride=1, activation=ReLU

AvgPool1D kernel_size=2, stride=2
Conv1D 160, kernel_size=5, stride=1, activation=ReLU

AvgPool1D kernel_size=2, stride=2
Dropout p=0.5

Dense 64, activation=ReLU
Dense 4, activation=softmax
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Thus, the predictor is trained to maximize the accuracy in inferring activities from the
output of the sanitizer. We also use the balanced error rate as the loss function that
should minimize the error between the output of the predictor and the ground truth
of the activity: BER(Pred(Ā), y). For the rest of the section, we will refer to the predictor
loss as LossActivities.

— Distortion measurement: The last constraint on the sanitizer is the minimization of
data distortion between the raw and sanitized data. Specifically, this distortion should
be limited to keep as much information as possible in the sensor data for subsequent
analytical tasks. The data distortion is measured through the L1 loss function denoted
l1, applied independently on each attribute. For two vectors Ai and Āi, correspond-
ing respectively to the raw and sanitized sensor data, the loss function is defined as
follows:

l1(Ai, Āi) =
1

NA

NA

∑
j=1
|aij − āij|, (IV.2)

in which NA is the number of possible values for a particular attribute (e.g., the num-
ber of axes of the accelerometer or the gyroscope), aij ∈ Ai and i denotes a single
observation in the window of length T.

— Sanitizer: The sanitizer San modifies the raw data taken as input to remove informa-
tion correlated with the sensitive attribute while maintaining useful information for
activity detection. Since the raw and sanitized data belong to the same space, we have
implemented the sanitizer as an auto-encoder. In a nutshell, an auto-encoder is a neu-
ral network performing a dimension reduction of the signal to compress information
before trying to reconstruct the input. The sanitizer takes into account the feedback of
the discriminator, predictor and distortion measurement to output the sanitized ver-
sion of the input raw data. More precisely, these different feedbacks are integrated
into a multi-objective loss function that should be minimized. The architecture of the
auto-encoder is given in the following Table IV.3.

— Multi-objective loss function The multi-objective loss function JSan drives the trans-
formation performed by the auto-encoder to generate the sanitized data X̄. This loss
function takes into account three components, the capacity to detect the activity of the
user (i.e., the output of the predictor), the capacity to detect the sensitive attribute (i.e.,
the output of the discriminator), and the level of distortion introduced in the sanitized
data compared to the original one. More formally, the multi-objective is defined as
follows:

JSan(X, San, Disc, Pred) = {α ∗ ds(S, Disc(San(X))),
λ ∗ dp(Y, Pred(San(X))),
β ∗ dr(X, San(X))},

(IV.3)

in which ds(x) =
1
2
− LossSensitive, dp = LossActivities and dr = {l1(a:,j, ā:,j), . . .}with a:,j

representing a dimension of all timesteps of a single sliding window. The term
1
2

in

ds(x) comes from the objective of maximizing the error of the discriminator, since the
sanitizer aims at modifying the data so that the discriminator is no more able to infer
sensitive information.
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A gradient descent is applied on JSan to minimize the global loss function following
a similar approach as in [10]. Note that each loss term is weighted with a hyperpa-
rameter. More precisely, ds, dp and dr are weighted respectively with α, λ and β. The
parameter α represents the relative importance given to the privacy while λ controls
the utility (i.e., the quality of activity detection). As we impose the constraint that
α + λ + β = 1, we only adjust α and λ hyperparameters, leaving β = 1− (α + λ).

TABLE IV.3 – Sanitizer architecture

Type Parameter
Input 125,6

Conv1D 64, kernel_size=6, stride=1
Conv1D 128, kernel_size=5, stride=1
Dense 128
Dense 64, activation=LeakyReLU(0.01)
Dense 64
Dense 128

Deconv1D 128, kernel_size=5, stride=1
Deconv1D 64, kernel_size=5, stride=1

IV.1.2.2 Training Phase

During the training phase, we build a sanitizer for each set of possible values for the
hyperparameters α and λ to explore the domain of the multi-objective loss function. This
exploration will allow DYSAN to select the best model for each user during the online phase.
The training procedure is summarized in Algorithm 2.

In order to optimize the utility and privacy trade-off for a specific set of α and λ (line 1,
Algorithm 2), the three neural networks are trained in an adversarial manner. This adver-
sarial training can be seen as a game between the sanitizer on one side and the predictor and
the discriminator on the other side. These neural networks compete against each other with
opposing objectives until an equilibrium is reached. More precisely, the sanitizer is trained
to fool the discriminator and maintain a high activity detection quantified with the predic-
tor while limiting the data distortion. We follow the standard training procedure of GANs
consisting in alternating in an iterative manner (at each batch of data) the training of each
model with their respective loss function until convergence or until a maximum number of
epoch (i.e., we do not consider Competitive Gradient Descent [276]).

Specifically, after initialization (lines 1− 6) the training of the sanitizer starts with JSan

while the discriminator and the predictor are frozen (lines 9 − 10). Once the training of
the sanitizer has converged, the predictor and the discriminator are trained independently
with their respective loss function while the sanitizer is frozen (lines 11− 18). These two
neural networks are trained until convergence (i.e., until the loss no longer decreases) or if
a maximum number of iterations, respectively Kpred and Kdisc, is reached. This two-steps
process is performed iteratively until an equilibrium is reached.

IV.1.2.3 Online Phase

Once deployed on the smartphone, DYSAN is composed of four components as depicted
in Figure IV.2: the sanitizer, the discriminator, the predictor and an activity detection compo-
nent. Specifically, DYSAN knows all the sanitizer, predictor and discriminator models built
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Algorithme 2 : DYSAN training algorithm
Input : X, λ, α, max_epoch, batch_size, Kpred, Kdisc
Output : San, Disc, Pred

1 train(M, **trParams): Train the model M using trParams.
2 freeze(M): Freeze the model M parameters and avoid modifications.
3 Initialisation
4 San, Disc, Pred, Xd = shuffle(X), Xp = shuffle(X)

5 Iterations = |D|
batch_size

6 Training Procedure
7 for e = 1 to max_epoch do
8 for i = 1 to Iterations do
9 Sample batch B of size batch_size from X

10 train(San, B, JSan , α, λ, freeze(Pred), freeze(Disc))
11 for k = 1 to Kpred do
12 Sample batch B of size batch_size from Xp
13 train(Pred, B, LossActivities, freeze(San))
14 end
15 for k = 1 to Kdisc do
16 Sample batch B of size batch_size from Xd
17 train(Disc, B, LossSensitive, freeze(San))
18 end
19 end
20 end

during the training phase. This set of models corresponds to the different possible utility
and privacy trade-offs (i.e., set of values explored for the α and λ hyperparameters). The
selection of the model is performed by maximizing S(P, U) = xU + yP, in which x and y
are positive weight coefficients with x + y = 1, U the evaluation of the activity done by
the predictor, and P the accuracy in terms of privacy as P = 1 − |0.5 − p|, in which P is
the evaluation of the gender done by the discriminator. Consequently, P is higher when the
evaluation of the gender accuracy corresponds to a random guess (i.e., an accuracy of 0.5).
According to the expected utility and privacy trade-off, the coefficients x and y can be tuned
(the impact of these parameters is assessed in Appendix IV.1.4.2).

To find the best sanitizer over time (according to coefficients x and y), DYSAN evaluates
the utility and the privacy of all models to select the best one. This evaluation requires
to know the actual activity performed by the user and the sensitive attribute. While the
sensitive attribute can be given by the user, the motion sensor data are not labeled with the
activities as it is rather the objective of the activity recognition task to perform this inference.

We use the activity detection component (see Figure IV.2) to annotate some motion sen-
sor data with their activities on the smartphone. More precisely, we ask the user to follow
a specific calibration process at the installation of DYSAN. During this process, the user is
asked to perform a series of different activities for short periods to learn a specific super-
vised classifier to detect his activities. As the quantity of data available to train this classifier
is limited, we rely on the use of RFs that are adapted to this context [158]. This RF classi-
fier is then used to label the raw data in order to evaluate the utility of all sanitizers. This
evaluation is performed on a regular basis (e.g., each period of p windows) and we compute
the average accuracy over this basis. By following this process, DYSAN is able to identify
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over time the sanitizer providing the best utility and privacy trade-off defined as a mea-
sure combining the accuracy of the activity recognition and the inference of the sensitive
attribute.

IV.1.3 Experimental setting

IV.1.3.1 Datasets

We used two real datasets, which are both publicly available and heavily used in the
literature: MotionSense and MobiAct. These datasets contain motion sensor data of subjects
doing cyclo- stationary activities (i.e., based on step pattern).

— MotionSense [257] contains data captured from an accelerometer (i.e., acceleration and
gravity) and gyroscope at a constant frequency of 50Hz collected with an iPhone 6s
kept in the front pocket. Overall, a total of 24 participants have performed six activities
(i.e., going downstairs, going upstairs, walking, jogging, sitting and standing) during
15 trials in the same environment and conditions.

— MobiAct [317] records the data from 58 subjects during more than 2500 trials, all cap-
tured with a smartphone in a pocket. This dataset includes signals recorded from the
accelerometer and gyroscope of a Samsung Galaxy S3 smartphone with subjects per-
forming nine different types of activities of daily living. For our experiments, we only
used the trials corresponding to the same activities as MotionSense.

Both datasets are balanced and contain an equal number of males and females. However,
the walking activity is more represented compared to others (Section IV.1.4.4). Each activity
is performed equally by all subjects in both datasets, making any correlation between the
gender and the activity impossible. The datasets are split between training and testing, with
2/3 of trials used for training and validation and 1/3 for testing. These two datasets share
similar characteristics, which allows to test the transferability of the models from one dataset
to the other. More precisely, the models learned on one dataset can be used to sanitize data
from the other dataset. This evaluation corresponds to a more realistic use case and to the
best of our knowledge was never considered in previous work related to the sanitization of
sensor data.

IV.1.3.2 Baselines

To assess the performance of DYSAN, we considered a set of baselines that we detail
hereafter. One of these baselines is based on a RF classifier [158] while the others are based
on GANs [198, 200, 253]. Regarding GAN approaches, authors use an architecture of neural
networks slightly different from ours. To provide a fair comparison, we propose to imple-
ment their functionalities in our architecture (number of layers, type of CNN, . . . ). This
methodology allows us to assess the main characteristics adopted in the baselines without
depending on their choice of architecture that can also have an impact on performance.

— ORF: To limit the exposure of the data, in [158] the raw data is preprocessed on the
user’s smartphone and only relevant features are transmitted to the application hosted
in the cloud. The relevant features are first identified according to the target applica-
tion (e.g., activity recognition) and selected either in the temporal or the frequency
domain. Originally proposed to avoid users re-identification, we adapt this approach
to prevent the inference of the sensitive attribute, namely gender. More specifically,
we first detect the features that are the most correlated with the gender before normal-
izing the features in the frequency domain and removing the features in the temporal
domain that are not used for the activity classification.
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— GEN: Similarly to DYSAN, GEN (Guardian Estimator Neutralizer) [200] also relies
on an adversarial approach to optimize the utility and privacy trade-off. However,
this solution does not follow the standard iterative training procedure of GANs as de-
scribed in Section IV.1.2.2. More precisely, the first network, a classifier, is learned once
on the raw data to identify both sensitive (e.g., the gender) and non-sensitive informa-
tion (e.g., the activity). Then the second network, an auto-encoder, is also trained only
once through a loss function that does not take into account the data distortion. Fi-
nally, the model used in the online phase is the same for all users and corresponds to
the best set of hyperparameters identified during the training phase. While this solu-
tion relies on a neural network architecture slightly different from ours, we implement
GEN by using our architecture. However, to evaluate the performance of GEN in a
context of transfer learning, we also use their original neural networks (learned on
MotionSense 1) to assess its performance on MobiAct.

— Olympus: This approach [253] is similar to GEN with the exception that two different
neural networks are used to learn the sensitive attributes and to learn non sensitive
information. In addition, these classifiers are trained using sanitized data by following
an iterative process similar to DYSAN described in Section IV.1.2.2. However, the loss
function does not account for data distortion and the model deployed is the same for
all users (i.e., only one sanitizing model trained and used in the online phase). While
this approach is used for a different objective (i.e., to avoid users re-identification), we
adapt it for activity recognition by using our architecture.

— MSDA: This solution [198] can be viewed as an evolution of Olympus in which the loss
function driving the training of the auto-encoder accounts for data distortion. How-
ever, the model used in the online phase is still the same for all users. While this
approach was originally developed with a different purpose in mind (i.e., to avoid
re-identification), we adapt this solution for activity recognition by using our architec-
ture. This baseline is the closest to DYSAN but without the training of multiple sets of
hyperparameters and the dynamic sanitizing model selection in the online phase.

As described in Section IV.1.2.3, in the online phase DYSAN selects the sanitizing model
which provides the best utility and privacy trade-off controlled by parameters x and y. The
reported results in the evaluation correspond to an unbalanced trade-off to improve privacy
(i.e., x = 0.1 and y = 0.9). The impact of different parameters is assessed in Section IV.1.4.2.

IV.1.3.3 Evaluation metrics

We evaluated DYSAN along both utility and privacy metrics, and a couple of system-
level metrics.

— Utility: In our context of physical activity monitoring, the first considered utility met-
ric is the accuracy of a classifier for activity recognition. More precisely, we use the con-
fusion matrix derived by this classifier to measure the number of correct predictions
made by the classifier over all predictions made. The value of the accuracy ranges from
0 to 1, in which 1 corresponds to perfect accuracy. In addition, analytics applications
monitoring physical activity usually compute and present many estimators to users.
To evaluate this aspect, we compute the number of steps detected from the sanitized
data and compare it with the number of steps in the raw data. To realize this, we first
normalize the raw and sanitized data to compare them in the same range of values,
and then compute a Peak Acceleration Threshold [3] from the raw data to estimate

1. https://github.com/mmalekzadeh/motion-sense/tree/master/codes/gen_paper_codes
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the number of peaks. More precisely, we used Adaptiv: An Adaptive Jerk Pace Buffer
Step Detection Algorithm (https://github.com/danielmurray/adaptiv) for estimat-
ing the number of steps detected by the analytics application from the received data.

— Privacy: To assess the level of privacy of DYSAN, we rely on the accuracy of inferring
the sensitive attribute. In our case, we consider the gender of the users as the sensi-
tive attribute (personal information available in public datasets). An accuracy of 0.5
corresponds to a random guess as our dataset is balanced.

— System-level: To assess the overhead of operating DYSAN on a smartphone, we mea-
sure both the CPU time spent to sanitize the raw data on the smartphone and the
energy consumption over time during a real-time processing of DYSAN.

IV.1.3.4 Methodology

DYSAN is trained only with the MotionSense dataset while the results reported for Mo-
biAct evaluate the transfer learning (i.e., using sanitizing models trained on MotionSense to
sanitize data from MobiAct). In the training phase, we explore a range of values between 0.1
and 0.9 with a 0.1 step for both α and λ, which corresponds to 36 different sanitizing mod-
els. The sanitizer models of DYSAN are trained for 300 epochs and the size of a data batch
is set to 256 samples. In the online phase, we select a privacy and utility trade-off focusing
primarily on privacy (i.e., ensuring the protection of the gender at the cost of the accuracy).
This trade-off is controlled by the parameters x (utility) and y (privacy) (Section IV.1.2.3)
which are set respectively to 0.1 and 0.9.

The RF classifier applied during the online phase of DYSAN uses a feature vector ex-
tracted from the raw signal. The choice of these descriptors was made on the basis of an ear-
lier review on effective descriptors for gait recognition [290]. We use 4-fold cross-validation
in which the testing set is randomly partitioned into 4 equal sized subsamples. Reported re-
sults correspond to average over 10 repetitions of each experiment. The computation of the
different global models (each corresponding to a precise set of hyperparameters) has been
parallelized on a hybrid GPU/CPU computing farm.

IV.1.4 Evaluation

In this section, we report the results obtained for the evaluation of DYSAN by highlight-
ing important features, namely the good utility and privacy trade-off (Section IV.1.4.1), the
low distortion of the sanitized data (Section IV.1.4.3), the better performances compared to
state-of-the-art approaches (Section IV.1.4.4), the advantage of dynamically select the best
sanitizing model according to the incoming data (Section IV.1.4.5), and the limited cost of
operating DYSAN on a mobile (Section IV.1.4.6).

IV.1.4.1 Utility and privacy trade-off

In this section, we evaluate the capacity of an analytics application to infer the gender of
the user and its activity from the sanitized data provided by DYSAN and sent by the mobile
application. We compare the performance of several classifiers that could be used by the
analytics application, namely a gradient boosting classifier (GB), a multi-layer perceptron
(MLP), a Long Short-Term Memory (LSTM), a decision tree (DT), a RF, a logistic regression
(LR) and also two CNNs with the same architectures than the predictor and the discrimina-
tor of DYSAN (referred as Raw on the figures).

Figure IV.3 reports the accuracy for both datasets for predicting the gender and the ac-
tivity with the different classifiers as well when using the raw data. First, the results show
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FIGURE IV.3 – The sanitized data provided by DYSAN drastically decreases
the privacy risk compared to using the raw data while limiting the loss of

activity detection, and this regardless of the classifier used.

that without any protection (i.e., on raw data) the application is able to infer the gender
with 98.5% accuracy. In addition, the activity is also inferred from the raw data with 97% of
accuracy on average. Secondly, we can observe that DYSAN successfully decreases the pri-
vacy risk with respect to inferring the sensitive attribute while limiting the loss of activity
detection. Indeed, with the sanitized data, an analytics application is only able to infer the
gender up to 61% and 57% of accuracy, respectively for MotionSense and MobiAct. In terms
of utility, depending on the classifier, the accuracy of the activity recognition varies between
78% and 92%, which represents only a small drop compared to using the raw data. Remark
that the LSTM, a recurrent neural network architecture commonly used for temporal signal,
does not provide best results as one could expect.

IV.1.4.2 Impact of weight coefficients on DYSAN

As described in Section IV.1.2.3, the best sanitizer model is selected according to the
definition of the utility and privacy trade-off defined by weight coefficients x and y. Fig-
ure IV.4 depicts the evolution of the utility and privacy trade-off according to x and y for
both datasets.
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FIGURE IV.4 – The variation of the Privacy coefficient y from 0.1 to 0.9 implies
a variation of the trade-off between Utility and Privacy.
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Steps DTW
Raw data 14387 -
DYSAN 15321 (+6.49 %) 12.96
GEN 12817 (-12.25%) 14.28
Olympus 23658 (+64.44%) 156.03
MSDA 18624 (+29.45%) 23.37

TABLE IV.4 – The sanitized signal provided by DYSAN appears to be less dis-
torted and more useful for step detection than other approaches.

For both dataset, when y increase, the Privacy increase (the gender accuracy decrease)
and the Utility decrease (the activity accuracy decrease).

IV.1.4.3 Distortion of the sanitized signal

The utility of the sanitized data is not just about the activity recognition but also with
respect to more fine-grained information related to the activity. In this section, we demon-
strate that DYSAN keeps relevant information in the signal enabling us to conduct further
analysis. More precisely, we consider the computation of the number of steps from the
signal for MotionSense dataset. Following the step detection method presented in IV.1.3.3,
Table IV.4 shows that with DYSAN the estimation of the number of steps only suffers from
a 7% error compared to the raw data. With the different baselines, the sanitized signal ap-
pears to be much more noisy and the step detection is greatly impacted with an overestimate
number of the steps of more than 64% for Olympus, more than 29 % for MSDA and more
than 12% of errors for GEN. While GEN does not take into account data distortion compared
to MSDA, its signal appears to be less noisy with a smaller error rate. This smaller utility
loss is balanced by a smaller privacy guarantee as shown in Figure IV.5. Moreover the data
distortion improvement of DYSAN compared to MSDA (while ensuring a better privacy)
is provided by the dynamic model selection that adapts the sanitization according to the
incoming signal at the user level in order to have the best utility-privacy trade-off. This
fine-grain sanitization is not possible through a single sanitizing model for all users and
whatever the performed activity (i.e., the incoming signal). The method ORF is not consid-
ered here because it only extracts features and the signal is not preserved, which prohibits
possibility to conduct further analysis.

To evaluate the deformation of the signal, we also report the Dynamic Time Warping
(DTW) [39] between the raw and the sanitized data from each baseline (Table IV.4). This
metric measures the distortion between two temporal signals. If this metric has a small
value then it means that the two signals are quite similar to each other, which is a sign of a
small distortion. The results obtained show that the sanitized data produced by DYSAN is
more similar to the raw data compared to other baselines. Similarly to step detection, the
sanitizing process of Olympus depicts a large data distortion making further analysis of the
signal impossible.

Table IV.5 gives complementary results concerning the similarity analysis of the data
sanitized between the different baselines, with simple quantitative measures. Here the raw
measures plus the percentage relative error are given for each baselines. Even if those met-
rics give few information about the shapes of the signals, we can still observe that Olympus,
the only baselines that does not take into account the distortion of the data during train-
ing, is the one that has his measures very far from the raw data. For example the standard
deviation is almost five times higher than the original data showing a very noisy signal.
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Mean Std Skewness Kurtosis Energy
Raw 0.81 0.47 1.65 4.81 139.06

DySan 0.68 (-15.9%) 0.77 (+62.9%) 0.40 (-75.7%) 1.28 (-73.5%) 230.87 (+66.0%)
GEN 0.28 (-65.4%) 0.12 (-74.7%) 0.51 (-69.2%) 0.08 (-98.3%) 12.11 (-91.3%)

Olympus 5.40 (+566.4%) 2.52 (+433.1%) 0.61 (-62.8%) 0.29 (-94.0%) 4631.47 (+3230.5%)
MSDA 0.54 (-33.5%) 0.24 (-49.9%) 0.41 (-75.2%) -0.11 (-102.2%) 51.87 (-62.7%)

TABLE IV.5 – Similarities metric between the raw data and the different base-
lines. Mean, standard deviation (std), skewness, kurtosis, energy are given in

percentage of relative error.

IV.1.4.4 Comparative analysis

We compare DYSAN against baseline approaches (Figure IV.5). Two versions of DYSAN

are given to represent, DYSAN where the annotations of the activities are known and the on-
line version, DYSAN(o), where the activities are not given but inferred from the RF classifier.
The first version has been added for a more fair comparison to state-of-the-art that does not
evaluate models as we suggest.

For MotionSense (Figure IV.5), the privacy improvement of DYSAN occurs at the cost of
a slight decrease of utility (gender inference limited to 51% and an activity recognition of
92%). For the online version, which works blindly without annotations, the performance is
a little worse, with a gender inference of 57% and accuracy in activity of 75%. This utility
mitigation comes from the imperfect accuracy of the RF classifier used in the online phase to
select the best sanitized model. Indeed, to dynamically select the sanitizer model, DYSAN

needs to estimate the model providing the best utility and privacy trade-off with respect to
the considered parameters (Section IV.1.2.3). To achieve this, DYSAN relies on a calibration
process to build a RF classifier on the smartphone using the raw data used as a reference
to predict the current activity performed by the user. This local RF classifier provides an
average accuracy of respectively 96% and 94% on the activity recognition for MotionSense
and MobiAct datasets. While these accuracies are high, an activity wrongly predicted by
this classifier leads to a selection of the sanitizer model that does not correspond to the best
utility and privacy trade-off.
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FIGURE IV.5 – DYSAN provides the best privacy protection compared to state-
of-the-art approaches at the cost of a slightly smaller accuracy in term of ac-

tivity detection.
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As depicted in Figure IV.5, results for MobiAct show that DYSAN and DYSAN(o) outper-
form other approaches by limiting the gender inference to 55% and 54% while only reducing
the accuracy of activity recognition by respectively 2% and 5% compared to using the raw
data. Although GEN and ORF also significantly limit the gender inference, the accuracy of
the activity detection is drastically impacted (respectively, 43% and 32%). For MSDA, both
utility and privacy are not impacted compared to Olympus and GEN due to the distortion
limitations that force the model to avoid large transformations on the data.

The accuracy of the classification is not uniform for all activities. Table IV.6 details the
True Positives and False Positives of this classification for DYSAN on MotionSense dataset.
This table also reports the percentage of data in the dataset for each activity. We observe
that the accuracy of the classification depends on the performed activity. This heterogeneity
is a direct result of the unbalanced classes. Specifically, the walking activity has the highest
precision which corresponds to the activity with the largest amount of data, while other ac-
tivities contained less data and depicted lower good predictions. This difference in terms of
good prediction between walking and other activities can also be explained by a calibration
of the size window adapted for the walk (Section IV.1.1).

TP FP Precision Data percentage
Downstairs 221 112 66.4 17.2

Upstairs 223 198 53.0 20.5
Walking 918 74 92.5 44.9
Jogging 216 212 50.5 17.4

TABLE IV.6 – True Positive, False Positive, Precision and percentage of data
for each activity of Dysan (MotionSense dataset).

Results also show the performance improvement provided by each baselines approach
based on adversarial networks. Specifically, GEN, Olympus and MSDA gradually improve
the utility and privacy trade-off. However, our utility analysis (Table IV.4) shows that the
sanitized data is very distorted, which harms the possibility to perform signal processing
for further analysis. MSDA integrates the data distortion in its loss function, which leads
to less distorted data. This feature improves the quality of signal processing but does not
significantly improve the trade-off between utility and privacy compared to Olympus (Fig-
ure IV.5). By dynamically selecting the best sanitizer model for each window of raw data,
DYSAN(o) makes the gender inference close to a random guess while preserving an accurate
activity detection.

The results of GEN reported in [200] mention an accuracy of 94% for the activity recog-
nition and 64% for the gender inference for MotionSense dataset compared to 95% and 96%,
respectively in our experiments. This difference comes from our implementation that ex-
ploits two neural networks for each classification task (i.e., for activity recognition and gen-
der inference) versus only one neural network for both classification tasks in the original
baseline as explained in Section IV.1.3.2). However, this difference also tends to assume
an over adaptation of the underlying neural network to the considered dataset. This over-
adaptation is also pointed by the completely different trend for the accuracy provided for
MobiAct compared to MotionSense.

IV.1.4.5 Dynamic selection of sanitizing model

During the training phase, DYSAN computes the sanitizer models corresponding to all
possible utility and privacy trade-offs by exploring the range of values for the hyperpa-
rameters α and λ. We evaluate here the benefit to dynamically adapt the sanitizing model
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FIGURE IV.6 – The dynamic sanitizing model selection of DYSAN significantly
improves the activity recognition in case of transfer learning (i.e., MobiAct

dataset).
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FIGURE IV.7 – By dynamically adapting the sanitizing model for each user ac-
cording to the incoming data, DYSAN greatly improved the protection against
gender inference (the distribution of the gender accuracy is more centered

around 0.5, which corresponds to a random guess).

according to the incoming data of each user compared to two static baseline approaches.
Firstly, we compute the accuracy for both the gender inference and the activity recognition
when the sanitizer model is fixed for all the users. This case represents the behaviors of
all comparative baselines where the considered model is the one providing the best per-
formance (i.e., the utility and privacy trade-off) on average for all the users. Secondly, we
consider a personalized solution in which the sanitizer model is personalized for each user.
In this case, the sanitizing model is the one which provides the smallest accuracy in terms
of gender inference and the best accuracy in terms of activity recognition according to the
whole models set for a specific user. This solution provides a sanitizer model personaliza-
tion but the selected model is static and does not change according to the evolution of the
incoming data (and the associated changes in terms of performed activity).

We compare these static solutions against DYSAN in which the considered sanitizer
model for each user changes according to the incoming data in order to maximize the utility
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FIGURE IV.8 – The limited cpu overhead of the sanitation of DYSAN is com-
patible to real-time processing on smartphone.

and privacy trade-off over time. Figures IV.6 and IV.7 depict for both datasets the cumulative
distribution (i.e., CDF) of the accuracy of the activity recognition and the gender inference
respectively, when a fixed, a personalized and a dynamic sanitizing model is considered.
Results show that the accuracy in both classification tasks is highly heterogeneous over the
population of users. This high heterogeneity reflects the fact that a static model is not well
adapted for all users or for all activities performed by the user, thus motivating the need for
a dynamic approach.

Specifically, results show that dynamically adapting the sanitizing model significantly
improves the activity recognition compared to using a static model in case of transfer learn-
ing (i.e., MobiAct dataset, Figure IV.6b). For MotionSense dataset (Figure IV.6a), most users
benefit from an important accuracy with a static model fixed for all users. This result can
be explained by the fact that the sanitizing models have been learned with the same users,
leading to a learning of the motion characteristics of all the considered users.

For the gender inference, the objective of the sanitizer is to provide an accuracy around
0.5 which corresponds to a random guess for all users. However, results depicted in Fig-
ure IV.7 clearly show that a fixed model for all users fails to protect against gender inference.
Indeed, the distribution reports a wide range of accuracy over the users where it is possible
to infer the gender with 80% of confidence for 60% and 20% of the users for MobiAct and
MotionSense dataset, respectively. Adopting a personalized sanitizer model for each user
decreases the accuracy of the gender prediction compared to a fixed model for all users but
the distribution of the accuracy is still large (from 0.3 to 0.75 for MotionSense and from 0.3 to
0.8 for MobiAct). By dynamically adapting the sanitizing model according to the incoming
data, DYSAN greatly improves the protection against gender inference compared to using a
fixed model with a sharper distribution centered around 0.5.

These results also show the capacity of DYSAN to transfer the learning performed on Mo-
tionSense to MobiAct (an activity recognition accuracy around 92% on average for a gender
accuracy around 57%). For comparison, we evaluated the transfer learning of GEN using
the original sanitizing model learned on MotionSense (and publicly available) to the Mobi-
Act dataset. In this case of transfer learning GEN provides an accuracy in terms of activity
recognition and gender detection around 43% and 56%, respectively. This result shows the
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limited capacity of GEN to transfer learning from MotionSense to another dataset assum-
ing an over adaptation of the underlying neural network and parameters to the considered
dataset.

To go further, we evaluate the variation of the sanitizer model selection of DYSAN com-
pared to static approaches using either one model fixed for all users or one personalized
model for each user. To achieve that, we measure the distance between the hyperparame-
ters α and λ corresponding to the best privacy and utility trade-off on average for all users
(i.e., the model fixed for all users) and the model selected for each user (i.e., a personalized
model) or according to the incoming data (i.e., the model dynamically selected by DYSAN).
Figure IV.9 reports the distribution of this distance for both datasets. Results show that al-
most 40% of the users of MotionSense dataset have a personalized sanitized model which
corresponds to the model providing the best trade-off on average for all users. In addition,
for both datasets, results show a large variability in terms of distance over all users high-
lighting the necessity to provide a variety of models to adapt the sanitization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Distance

Fixed
Personalized

DySan

(A) MotionSense

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Distance

Fixed
Personalized

DySan

(B) MobiAct

FIGURE IV.9 – DYSAN provides a large variability in terms of distance over
all users highlighting the necessity to provide a variety of models to adapt the

sanitization.

To complete this analysis, we also counted the number of different models used by
DYSAN for each user. Figure IV.10 depicted for both datasets the distribution of the per-
centage of all possible sanitized models (36 in our experiment as presented Section IV.1.3.4)
selected by DYSAN for each user. Results show a large range of different models selected
ranging from 20% to 50%. This result shows that DYSAN successfully adapts the sanitization
according to the evolution of the incoming data.

We also quantify the possibility to use the set of selected models as a fingerprint to iden-
tify each user in Appendix IV.1.4.7.

IV.1.4.6 Performance as measured on devices

We now evaluate the cost of operating DYSAN on a smartphone. DYSAN protects the
sensitive attribute while ensuring an accurate activity recognition and minimal data distor-
tion. However, applying the sanitizing at run time on the mobile introduces an overhead.
We do not consider the overhead of the learning as it is a one time operation. DYSAN eval-
uates multiple sanitizing models (i.e., according to each α and λ hyperparameter explored)
before selecting the one that produces the best compromise between utility and privacy.
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FIGURE IV.10 – The data of each user is sanitized with a wide variety of mod-
els (from 20% to 50% of all the models) showing that DYSAN successfully

adapts the sanitization according to the evolution of the incoming data.

Consequently, the overhead associated with the sanitizing of raw data depends on the num-
ber of considered models.

Figure IV.8 describes the time (ms) spent by a Xiaomi Redmi Note 7 (equipped with a
Qualcom Snapdragon 660 and 3 GB of memory running a java application using Pytorch 1.6)
on each task associated to a single sanitizing model of a window of incoming data (i.e., 2.5
seconds of data). Specifically, these tasks include the pre-processing of signals, the sanitizing
of raw data, the evaluation of the privacy and the utility on the sanitized data respectively
by the discriminator and the predictor, and the classification of the activity performed by
the user from the raw data. Excepting the pre-processing, which is performed only once for
a window of data, the other tasks have to be repeated for each explored sanitizing model.
Results show that applying a sanitizing model once spends most of the time while all oper-
ations require 19 ms. Considering 20 or 36 sanitizing models increases this time to 366 ms
and 658 ms, respectively. Although this processing is compatible with real-time processing
(i.e., data processed after each data window), the number of models deployed on the smart-
phone should be chosen to limit the overload. The number of considered sanitizer models
deployed on the smartphone has also an impact on the storage space requirement. On av-
erage, the size of a single model is around 15 MB. Considering 36 models results in 540 MB
which is not a limitation with regards to the storage capacities of current smartphones.

We also evaluate the impact of the considered number of sanitizing models. Consider-
ing less sanitizing models leads to cover less hyperparameter values and thus limiting the
achievable utility and privacy trade-off. Consequently, a degradation of the accuracy for
both the activity detection and the gender interference is observed. Table IV.7 presents the
performances obtained with different numbers of sanitizing models available for the selec-
tion. Results show that from 36 to 20 sanitizing models, the accuracy in activity recognition
decreases by only 3% and increases by 2% the gender inference.

Finally, we evaluate the impact of running DYSAN on the energy consumption on the
smartphone. Figure IV.11 reports the decrease in the battery charge over time for a base-
line where no operation is performed on the smartphone, and for a real-time processing of
DYSAN (i.e., after each window of raw data, and exploring 36 sanitizing models before to
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Activity accuracy (%) Gender accuracy (%)
36 models 92 57
20 models 89 59
16 models 88 63
8 models 86 66

TABLE IV.7 – Reducing the number of sanitizing models available for the se-
lection decreases the accuracy in activity recognition while increasing the ac-

curacy in gender inference.
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FIGURE IV.11 – The impact of DYSAN on energy consumption is limited (1%
less battery after 1 hour).

select the best one). In both cases, the screen remained on during the experiment. Results
show that DYSAN consumed 1% more battery after 1 hour, which stays a reasonable energy
consumption.

IV.1.4.7 Information leakage in model selection

As DYSAN dynamically selects the sanitizing model to use for each window of incom-
ing data, the set of selected models could be leveraged to identify each user. Indeed, this
set of sanitizing models chosen by a user could act as a unique fingerprint. To evaluate
this potential information leakage, we quantify the uniqueness following the methodology
presented in [216]. More precisely, the uniqueness for each user is estimated as the percent-
age of 100 random sets of p selected sanitizing models that are unique. Figure IV.12 reports
for MobiAct dataset the distribution of the uniqueness with p (i.e., the size of fingerprint)
from 1 to 5 and with different number of sanitizing models available for the selection. As
expected, results show that the larger the fingerprint, the more unique the behaviour of a
user becomes. However, at least 5 models are needed to have a strong confidence (around
80% of uniqueness) when 36 sanitizing models are exploited. To reduce this uniqueness, a
lower number of sanitizing models (i.e., through the hyperparameters values explored in
the training phase) should be proposed. Indeed, less choice for model selection leads to
having more users who share common models. Results show that exploiting less available
sanitizing models reduces the uniqueness.
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FIGURE IV.12 – The uniqueness of the selected models remains low for fin-
gerprints with less than 5 models, and depends on the number of available

sanitizing models for the selection.

Information leakage in model selection leading to user re- identification is only possible
if the adversary is able to characterize each selected sanitizing model from the sanitized
data. In this case, the adversary could maintain a fingerprint per user to conduct its re-
identification attack. To evaluate this capability, we measure the level of distortion using the
Dynamic Time Warping of the sanitized data for each sanitizing model. Over all sanitizing
models, our results show a very low standard deviation of the DTW. This low value indicates
a small difference in terms of distortion when different sanitizing models are exploited, thus
making it difficult for an adversary to identify the selected model from the sanitized data.
This re-identification attack consequently seems difficult to achieve.

IV.1.5 Conclusion

Globally this privacy-preserving framework by sanitizing motion sensor data presents
several benefits compared to the previous contributions.

By adapting the architectures of the different neural networks and their corresponding
objective functions, the method can be used for different privacy issues. The method is not
specific to only one privacy objective such as the gender or the identity as in the previous
chapter.

Moreover, by comparing with the approaches detailed in the previous chapter, here one
of the objectives was to limit as much as possible the level of transformation of the raw
data. DYSAN preserves as much as possible the useful information for activity recognition
and other estimators of physical activity monitoring. Results show that DYSAN drastically
reduces the risk of gender inference without impacting the ability to detect the activity or to
monitor the number of steps.

We also showed that the dynamic sanitizing model selection of DYSAN could provide a
personalized privacy protection by adapting the protection to each user over time accord-
ing to the evolution of the incoming data. This method is particularly effective in a transfer
learning case unlike the other baselines that have a unique sanitizing model for all the users.
Moreover, the overhead introduced on the smartphone to sanitize the data is compatible
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with real-time processing while keeping a reasonable energy consumption. By comparing
our approach with existing approaches, we demonstrated that DYSAN provides better con-
trol over privacy-utility trade-off.

Concerning limitations, the framework is based on the hypothesis that the dataset to be
sanitized is balanced, which means that there is no direct correlation between the utility clas-
sification (i.e., activity recognition) and the sensitive information targeted. If this assumption
is not respected for a specific application, the sanitization would probably not be effective.
In addition, the framework specifically focuses on one sensitive information at one time, the
privacy objective of DYSAN only focuses on gender and no other sensitive attribute.

Sharing sanitizing data with an application server remains unsafe concerning any other
sensitive attribute inference not concerned by the sanitization. Another solution consists
in using a distributed framework. Instead of sending the data to the application server,
FL propose to keep the user’s data locally and only share ML models. However, sharing
models can also raise other privacy issues which will be developed in Section IV.2).
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IV.2 Privacy Assessment of FL using Personalized Layers

This section is a short evaluation of a specific FL method that (as the previous contribu-
tions) minimize the quantity of information communicated to the cloud and provide at the
same time a personalized response to each user’s data.

FL involves combining ML models from distributed partitions of data and Federated
Averaging [207] is the leading optimization method in case of data sharing a similar distri-
bution. However, with practical deployment scenarios such as the presence of non inde-
pendent and identically distributed data, the performance of Federated Averaging can be
severely degraded especially with atypical users.

At the same time, while FL improves privacy by reducing the exposition of the personal
data, it remains vulnerable to threats such as poisoning attacks, membership inference at-
tacks, etc. To mitigate the risks, several approaches have been proposed from using Differ-
ential Privacy locally at user level or server level [224], Homomorphic Encryption (HE) and
Secure Multiparty Computation (SMC) [91] (See Section II.3).

The development of FL highlighted other challenges [190] such as the heterogeneity of
data across user devices leading to a degraded accuracy for less represented users. To over-
come this limitation, [25] studied an FL scheme using personalization layers. In this scheme,
the local model on each participant is composed of lower layers (capturing coarse grain in-
formation) trained following classical FL learning round, and upper and personalization layers
(capturing fine grain information) trained locally and which stay private on the device and
not exchanged with the server (Figure IV.13). This scheme is known to improve the accuracy
of the model in presence of heterogeneous data across users.

FIGURE IV.13 – Personalized FL approach: only the upper layers (colored
in grey) are shared with the server while the personalization layers are kept

private on the device.

However, the privacy impact of sharing only a sub part of the model has never been
measured. We quantify in this section the utility and privacy of a FL scheme using private
personalized layers [25]. To assess privacy leakage, we consider both an attribute and a
membership inference attack. Evaluations have been conducted using two datasets of mo-
tion sensor data collecting in real-life conditions.

IV.2.1 Evaluation

We exhaustively evaluate the utility and privacy of a FL scheme using private person-
alized layers in the context of activity recognition (details of the methodology are given
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Section IV.2.1.1). In this section, we show that personalized layers improves the utility (Sec-
tion IV.2.1.2) and privacy (evaluated through attribute inference Section IV.2.1.3 and mem-
bership inference Section IV.2.1.4) compared to both a vanilla FL and a defense scheme using
local differential privacy.

IV.2.1.1 Experimental setting

System model: We consider a FL scheme using SGD addressing activity recognition. The
learning model is based on 2 convolutional layers, and 3 fully connected layers. Only the
2 lower convolutional layers are exchanged with the server which aggregates and dissemi-
nates model updates to devices, the 2 upper fully connected layers stay private on the device
and are personalized with the user data. The devices of users are considered as trusted but
it is not the case of the server which is considered as an adversary trying to infer personal
information of participants from their model updates.

Datasets: Two real-life condition datasets are used for the evaluation. They are both
publicly available and heavily used in the literature. These datasets come from the extraction
of motion sensor data during gait activities (i.e., based on step patterns) of different subjects.

— MotionSense [199] contains motion data captured from an accelerometer (i.e., acceler-
ation and gravity) and gyroscope of an iPhone 6s kept in the front pocket at a frequency
rate of 50Hz. Overall, six activities (i.e., walking, jogging, going upstairs, going down-
stairs, sitting and standing) have been made by 24 users during 15 trials in the same
conditions and environment.

— MobiAct [317] records the motion data from 58 subjects during more than 2500 trials,
all captured with a smartphone also in the front pocket. This dataset includes signals
recorded from the accelerometer and gyroscope of a Samsung Galaxy S3 smartphone.
Nine different activities of daily living are performed by the users. We only used the
trials corresponding to the same activities as MotionSense in order to do the evaluation
with the exact same settings.

Both datasets contain an equal number of men and women, and each activity is per-
formed according to the same conditions by all subjects. However, the walking activity is
more represented than the others. For each user, we also have access to physical information
such as the gender, weight, height and age.

Baselines: We considered two baseline approaches to compare FL scheme using private
personalized layers (FedPer) [25]:

— Standard FL (Vanilla) [207] This is the most common FL scheme using SGD training
on the device and average aggregation of all models at each learning round on the
central server.

— Local Differential Privacy (LDP) [224] We consider an implementation based on an
introduction of noise following a Gaussian distribution (N (0,0.01)) to the model up-
dates computed through a classical learning phase (i.e., Vanilla).

Evaluation metrics: We evaluated FedPer and the different baselines along both utility
and privacy metrics.

— Utility: To measure the utility, we considered the accuracy of the predicted activity.
More precisely, we produce a confusion matrix based on the output of the classifier and
measure the number of correct predictions made by this classifier over all predictions
made. The value of the accuracy ranges from 0 to 1, in which 1 corresponds to perfect
accuracy.

— Privacy: To assess the level of privacy, we rely on the accuracy of both the inference of
sensitive attributes and the inference to be a member of the training set. These infer-
ence attacks implement the solution proposed by [110] which leverages an invariant
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permutation representation of nodes at each layer to classify model updates received
by the server through a RF of 1000 trees with a maximum depth of 10. We consider the
gender and the Body Mass Index (BMI) of the users as sensitive attributes. The BMI
is a value defined by the weight of the user divided by the square of her height. This
value allows to categorize a person as underweight, normal weight, overweight or
obese. In our case we only focus on a binary classification: overweight (BMI > 25) or
not (BMI < 25) for the sake of class balance. For the membership inference, the accu-
racy refers to the percentage of correct prediction (that a participant has been involved
in the training of the model) over all predictions made. In both attacks, an accuracy of
0.5 corresponds to a random guess as our dataset is balanced.

Implementation details: For each experiment, we run 10 times of 5-fold cross validation
where each fold is tested based on the training of the other four. We considered 200 learning
rounds and an early stopping that stops the learning process if the average test loss of the
aggregated model sent locally on the user data does not decrease during 30 learning rounds.
During each learning round, the training with SGD is done locally at the user’s level during
10 epochs. A constant learning rate is used with η = 0.001 for all the users.

IV.2.1.2 Utility Evaluation

We measure the accuracy of the activity detection of FedPer and the baselines. Fig-
ure IV.14 reports the Cumulative Distribution Function (CDF) of this accuracy over the pop-
ulation of users for MotionSense and MobiAct dataset. First, results show that the local
adaptation of FedPer on the upper layers slightly increases the accuracy compared to the
Vanilla approach (from 1% to 7% of increase on average for MotionSense and MobiAct, re-
spectively). Second, results show that LDP baseline degrades significantly the accuracy for
both datasets (10% on average of MotionSense and 6% on average for MobiAct). Indeed,
by introducing noise, the convergence of the model is greatly degraded leading to a loss of
prediction for all users. This result comforts previous results [196, 343].
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FIGURE IV.14 – By personalizing upper layers of the model, FedPer sightly
increases the accuracy of the activity prediction compared to a FL vanilla ap-

proach; local differential privacy, in turn, greatly degrades the accuracy.
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We also measured the convergence speed of the learning. Figure IV.15 depicts the accu-
racy of the activity detection as a function of learning rounds for FedPer and the Vanilla ap-
proach. Results show that FedPer drastically speeds up the convergence. For instance, Fed-
Per achieves 90% of accuracy after 12 learning rounds on MotionSense where the Vanilla ap-
proach achieves the same accuracy after 100 learning rounds. For MobiAct, FedPer achieves
90% of accuracy after 35 learning rounds where the Vanilla approach only reaches 86% of
accuracy after 200 learning rounds. By using its personalized layers at each learning round
instead of starting the learning from the aggregate model sent by the server, the accuracy
increases faster. For LDP, we can observe that the noise introduced prevents the model from
converging.
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FIGURE IV.15 – By using personalized layers instead of aggregated informa-
tion, the learning is drastically speeds up.

IV.2.1.3 Privacy evaluation through attribute inference

We conducted an attribute inference attack to infer the gender and the BMI of users from
their model updates sent to the server. In this attack, participants train their local model
on 80% of their data. Once all the models are sent to the server, only the models from one
class of the targeted attribute are aggregated (in our case, models from women for gender
inference, and models from overweight users for BMI inference). Then the server sends back
the aggregated model to all the users that fine-tune locally on the remaining 20% of their
data (e.g., training from a model aggregating model updates from women) before returning
the update to the server. The adversary then trains an RF classifier on these model updates
to infer the sensitive attribute. This training exploits 80% of all the updates and the testing
is done on the remaining 20%, with cross validation.

Figure IV.16 evaluates, for both datasets, the accuracy of these both sensitive attribute
inferences over the epochs of local learning. Firstly, results show that without any protec-
tion (i.e., the Vanilla approach), all sensitive attributes can be inferred with high accuracy for
both datasets (e.g., around 90% of accuracy for the gender on MotionSense). FedPer reduces
this accuracy between 10% and 20% according to the dataset and the sensitive attribute. Re-
sults also show that FedPer better protects users against inference attack compared to LDP
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FIGURE IV.16 – The increase of number of learning epochs per user increases
the accuracy of the attack on both sensitive attributes.

regardless of dataset and sensitive attributes (from 5% to 10% of accuracy loss for Motion-
Sense).

Secondly, results show that the inference accuracy tends to increase over the epochs for
all approaches. This is explained by the fact that attribute inference attack is closely related
to overfitting [341], the more the model learns on user’s data, the more it adjusts the param-
eters to data structure and the more it may incorporate sensitive information.

Figure IV.17 reports the CDF of the inference accuracy over the participants. Results
show that while each attribute can be inferred with high accuracy for a large part of the
users, this accuracy drops for few percent of users. FedPer and LDP increase the percentage
of users with a small inference accuracy.
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FIGURE IV.17 – FedPer and LDP increase the number of users with a small
inference accuracy.

IV.2.1.4 Privacy evaluation through membership inference

Lastly, we conduct a membership inference attack to evaluate privacy. In this attack, 50%
of the users follow a normal FL learning round with 80% of their data. The models are sent
to the server which disseminates back the aggregated model to all the users. All of them
fine-tune the aggregated model on their remaining 20% of data. The server then trains a RF
to classify membership from model updates for all users (using 80% of all these updates for
the training and 20% for the testing with cross validation as described in section IV.2.1.1).

Figure IV.18 depicts the accuracy of this inference attack for both datasets and for all
approaches. Similarly to the attribute inference attack, results show that the membership
inference attack is more efficient on the Vanilla approach. FedPer provides the best pro-
tection compared to LDP (20% on average for MotionSense dataset). Interesting enough,
FedPer depicts an accuracy close to 50% which corresponds to a random guess (if the data
of a specific user has been used to train the model) for MotionSense dataset.
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FIGURE IV.18 – FedPer and LDP significantly decrease the accuracy of the
membership inference attack compare to Vanilla method

IV.2.2 Conclusion

In summary, this chapter focused on the protection against sensitive attribute inference
by firstly using a framework based on deep neural networks to automatically sanitize data
and obfuscate a targeted attribute while keeping the sanitized data as close as possible to
the raw data.

Secondly, we experimentally quantified the utility and privacy trade-off of FL using pri-
vate personalized layers proposed by [25] in a context of activity recognition. We consider
both an attribute and a membership inference attack to measure privacy leakage. Results
show that using private personalized layers provides a better utility and privacy trade-off
compared to a FL vanilla approach and a defense scheme using local differential privacy. Re-
sults show that FL with personalized layers speeds up the convergence compared to vanilla
FL and slightly increases the activity accuracy between 1% and 5%, while decreasing the
gender and the overweight inference between 10% and 20% and 15% on average for mem-
bership inference. This utility and privacy trade-off is better than a defense scheme using
local differential privacy which decreases the inference of the gender and the overweight up
to 12% but at the cost of the activity accuracy which reduces up to 10%.

These results tend to show that minimizing the information exchanged with the server
is an interesting avenue for both personalizing the model (i.e., improving accuracy) while
limiting potential inferences (i.e., improving privacy).
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Conclusions and perspectives

This chapter summarises the main results developed during the three years of my the-
sis, and emphasises the associated research perspectives that appear to be in line with the
contributions presented in this manuscript.

In this thesis, we investigated different aspects of privacy through ML utilized in the
context of gait monitoring. Each contribution developed has two correlated objectives: 1)
Giving privacy protection that can preserve motion sensor data from exposure to sensitive
information theft (i.e., re-identification, gender or BMI inference). 2) Maintaining the use-
fulness of this protected data for a gait monitoring application such as activity recognition.
Each contribution aimed at giving the most effective trade-off between these two objectives
and also intended to overcome some limitations given by the previous contribution.

V.1 Overview of contributions and perspectives

A review on the contribution of ML in the validation of commercial wearable sensors for
gait monitoring in patients. On the basis of the review in the chapter II.2, we could ob-
serve that wearable sensors validation with ML takes an increasingly important place in the
literature, with a number of studies having gradually increased since 2010. In these stud-
ies, a significant part of the validation was based on traditional statistical approaches (75%)
with a smaller contribution of ML-based approaches (25%). This scoping review highlights
the current state of the ability of commercial sensors to enhance traditional methods of gait
assessment and identified different recommendations for data acquisition, collection, pro-
cessing and validation, in order to use sensors in a good way. As long as the data collected
are numerous, annotated, and representative, ML is the best approach to interpret and ex-
tract valuable information in multi-dimensional data space.

Anonymization framework through minimization. In the chapter III.1, we presented a
framework which relies on a ML technique to efficiently recognise the user activity pattern,
useful for personal healthcare monitoring, while limiting the risk of re-identification of users
from biometric patterns that characterizes each individual. To achieve that, we firstly deeply
analysed different features extraction schemes in both temporal and frequency domains. We
highlighted that features in the temporal domain are useful to discriminate user activity
while features in the frequency domain lead to distinguish the user identity. On the basis
of this observation, we secondly designed a novel protection mechanism that processes the
raw signal on the user’s smartphone and transfers to the application server only the relevant
features unlinked to the identity of the users. In addition, a generalisation-based approach
is also applied on features in the frequency domain before being transmitted to the server
in order to limit the risk of re-identification. We extensively evaluated our framework with
a reference dataset: results show an accurate activity recognition (87%) while limiting the
re-identification rate (33%). This represents a slight decrease of utility (9%) against a large
privacy improvement (53%) compared to state-of-the-art baselines.

However, by minimizing information with a few features, the possibility to have a better
trade-off than the one obtained in this contribution, is very reduced. The accuracy of 53% of
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re-identification shows that the features used for activity recognition contains information
that allow a model to perform part of the re-identification. This limitation can be addressed
in two ways. Either applying other statistical transforms on the remaining features follow-
ing a similar approach or searching for another representation of the data in order to apply
a finer minimization method that could better target the re-identification task. The first way
presents the risk of over-damaging the features so that the trade-off would not be so benefi-
cial, so that the second way was chosen. The next contribution was then a direct answer to
the limitations raised by the first contribution. By still considering that the temporal and fre-
quency domains contain activity and identity information, the objective was to find a data
representation that includes both domains in order to apply anonymization methods that
could perform a better trade-off. Finally, it would be useful to do a deployement on real-life
cases on hospital to benefit from the feedback of clinicians.

Motion sensor data anonymization by time-frequency filtering. The chapter III.2 pro-
posed a novel anonymization framework which consists of a two-step process. First, ac-
celeration signals are encoded in the time-frequency domain by three different linear trans-
forms: the Short Time Fourier transform, the Stockwell and Optimized Stockwell transform.
Second, we proposed a method to anonymize the acceleration signals by filtering in the
time-frequency domain. Finally, we evaluated our approach for the three different linear
transforms with a neural network classifier by comparing the performances for activity ver-
sus identity recognition. We extensively studied the validity of our framework with a ref-
erence dataset: we determined that the optimized S-transform gives the best utility-privacy
trade-off by filtering its TF coefficients at 70%. Results show an accurate activity recognition
(85%) while limiting the re-identification rate (32%).

Although this contribution presents interesting results similar to the previous contri-
bution by a few percent, it depicts several limitations that can be overcome with different
extensions which could lead to the improvement of the trade-off.

Firstly, only accelerometer signal was considered and using gyroscope signal could im-
prove the utility-privacy trade-off. Rouget and al. [262] proposed a direct extension of this
method by including gyroscope TF images. Different scenarios were covered by using differ-
ent combinations of input data with the x, y, and z axis of the accelerometer and gyroscope,
and also by using two configurations of the CNN with the early and late fusion strategies.
The first one consists in combining images from the 3 axes at the entry of the network and
the second one consists in using three independent convolutional branches to process each
input independently.

Secondly, the anonymizing method consisting in filtering high coefficients of the spec-
tograms to remove user’s information to prevent re-identification was intentionally naive
and allows us to show that the framework provides promising results. Rouget and al. [262]
also extended this method by considering STFT and a recent link made by Flandrin al. [101]
between STFT and the distribution of zeros in this spectrogram. Moreover, Bardenet and al.
[34] explicitly characterize the statistical distribution of the zeros by showing that the zeros
of the STFT correspond to the zeros of the Bargmann transform which also correspond to
the zeros of Gaussian analytic functions (GAFs) (see mathematical details and properties of
these connections in [34]), so that they can establish a precise meaning between the zeros of
the spectrogram and white noise signature. In this sense, the distribution of zeros can pro-
vide information on the presence of noise or signal for the development of filtering schemes.
The intuition behind this idea is that the presence of a signal will modify the distribution of
the zeros in the time-frequency domain and mark this distribution by the signal signature, as
we can observe by comparing the STFT spectrogram of a white noise and a signal in Figure
V.1.
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FIGURE V.1 – Representation of the zeros of STFT transform for a white noise
and linear chirp signal with a white noise. The signal reveals specific patterns
in the zeros while random zeros pattern is associated with the white noise.

Illustration reproduced from Bardenet and al. [34]

After detecting the zeros in the STFT representation, a graph is created with the zeros
localisation as nodes thanks to the Delauney triangulation method [101] (see Figure V.2).
Based on this graph, numerous features are calculated on the spectrograms of each axis
of each sensor type. Some global features represent statistics of the distribution of zeros,
while other local features focused on the zero itself, by calculating its intensity, its coordi-
nates in the image, and the Haralick features [132] that investigate the patterns in the region
surrounding the zero. Around 1700 features are then calculated and used for activity and
identity classification. Finally, a selection of the features used for activity recognition make
it possible to improve the utility-privacy trade-off.

FIGURE V.2 – Examples of STFT representations superposed with the associ-
ated graph formed the zeros of the STFTs for different activities (walking and

jogging). Illustration reproduced from Rouget and al. [262]

This method is specific to anonymization as it is based on the fact that temporal and
frequency features are each related to activity and identity information. This framework
then could not be applied to other sensitive attributes.

The output data is characterized by a set of features that can only be used for activity
recognition. The transformation representation is too far from the raw data that any other
observation useful for a clinician could hardly be done. For example, calculating the number
of steps, detecting fall, evaluating instabilities in the gait, etc. could not be done with the re-
maining features. The DYSAN framework in chapter IV.1 aims at overcoming this limitation
by maintaining the transformed signal as close as possible to the raw signal.
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Dynamically sanitizing motion sensor data against sensitive inferences through adver-
sarial networks. The chapter IV.1 proposed DYSAN, a framework that sanitizes motion
sensor data against unwanted sensitive inferences while limiting the loss of accuracy on the
physical activity monitoring. Our approach is inspired from the framework of GANs to
sanitize the sensor data for the purpose of ensuring a good trade-off between utility and
privacy. More precisely, by learning in a competitive manner several networks, DYSAN is
able to build models that sanitize motion data against inferences on a specified sensitive
attribute (e.g., gender) while maintaining an accurate activity recognition. DYSAN builds
various sanitizing models, characterized by different sets of hyperparameters in the global
loss function, to propose a transfer learning scheme over time by dynamically selecting the
model which provides the best utility and privacy trade-off according to the incoming data.
Although we have shown that it is possible to run this solution on smartphones, a calibra-
tion phase is needed to label the user data. Experiments conducted on real datasets demon-
strated that DYSAN can drastically limit the gender inference up to 41% (from 98% with raw
data to 57% with sanitized data) while only reducing the accuracy of activity recognition by
3% (from 95% with raw data to 92% with sanitized data).

DYSAN framework is constrained to sanitize only one feature at one time. We investi-
gated the possibility of extending DYSAN to take into account multiple sensitive attributes.
Our preliminary results by adding two discriminators accounted for in the loss function
of the sanitizer’s training are encouraging. However, we are limited by the small size of
the available datasets. Indeed, making the sanitizing models more complex requires more
data to capture the specificity of each use case. Moreover, having numerous sensitive at-
tributes to sanitize suppose either a neural network assigned to each sensitive attribute or a
Multi-task neural network [67]. Optimizing simultaneously several objective functions can
be tough when the different objectives are conflicting. In this case, the Pareto solutions (set
of optimal solutions) to a multi-objective problem are those for which the performance of
one objective can only be improved by deteriorating the performance of another objective
[67]. Another limitation is the dependency of the features between each other. If one of
the sensitive attributes is highly correlated to the activity, finding the optimal solution is all
the more difficult. Considering the limitations on multiple sensitive attributes protection,
collaborative learning is a way to overcome any sensitive inference on the data at the cloud
level.

Privacy Assessment of FL using Private Personalized Layers. The chapter IV.2 is a pre-
liminary work on FL, where we quantified the utility and privacy trade-off of a FL scheme
using private personalized layers. While this scheme has been proposed as local adapta-
tion to improve the accuracy of the model through local personalization with non-identical
client distributions, it has also the advantage to minimize the information on the model ex-
changed with the server. However, the privacy of such a scheme has never been quantified.
Our evaluations using motion sensor dataset tended to show that personalized layers speed
up the convergence of the model and slightly improve the accuracy for all users compared
to a standard FL scheme while better preventing both attribute and membership inferences
compared to a FL scheme using local differential privacy.

This numerical evaluation needs further exploration to extend this contribution by using
several datasets and several ML models. Another way is to use a hybrid approach such as
combining personalizing layers sharing with LDP methods. It is known that preserving util-
ity with LDP methods is challenging [162] due to the fact that the magnitude of the random
noise introduced is often comparable with the magnitude of the signal in the data. Com-
bining LDP and personalizing layers could lower the quantity of noise introduced while
keeping privacy guarantees.
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V.2 Discussion and research openings

In the introduction of this work we wondered if it would be possible to design a ML
framework able to protect motion sensor data from sensitive inference information while
ensuring utility of this data for healthcare applications. The thesis provides a positive an-
swer of this question but under certain conditions on the privacy-utility trade-off.

Indeed, each contribution provided hypotheses on the privacy threats that each frame-
work designed intends to address. Future research direction should tend to systems that
address several privacy issues in the same time, whether at the user’s level on the smart-
phone, during communications or at the server’s level, whether for data or model leakages,
and so on. Achieving all this desired privacy properties probably requires composing many
different strategies into an end-to-end system. A recent publication proposes PriMIA [163]
an open-source framework that uses differentially private federated model training with
encrypted aggregation of model updates as well as encrypted remote inference applied on
medical imaging analysis. This is one of the first approaches that proposes an end-to-end
framework that can potentially be deployed in practice.

Moreover, there is a need for a more thorough assessment on how defences operate in
practice, facing realistic use cases and datasets rather than the standard public ones, with
clinical data that record gait users with pathologies. This thesis is also indeed limited by
this aspect, as we could only assess our contributions on benchmark datasets. Activity de-
tection is an important aspect of gait monitoring that has been explored, but other type of
monitoring such as event detection (i.e., stance, fall) should be considered with the use of
Recurrent Neural Networks as they have demonstrated a great accuracy in some problems
that require analyzing sequential inputs [168].

The concept of privacy-utility trade-off also needs to be further explored and specifically
when this trade-off is considered as viable. Indeed specifically optimizing this trade-off may
impacts other aspects such as fairness, robustness and efficiency. In this thesis, we specifi-
cally focused on the personalization of the privacy framework, by observing that maximis-
ing a utility metric in average for an entire group of users, could lead to high inequalities
between users. In practice, a same framework could provide a strong privacy protection to
one user and a lower privacy protection to another one. Chapter IV specifically focuses on
this personalizing aspect by attempting to provide privacy protection to every user. To go
further in this direction, it could be interesting to design flexible solutions that allow a cer-
tain trade-off involving utility, efficiency, privacy, and ability to address different constraints
and requirements following the application considered. In practice, to provide sufficient
privacy guarantees, the privacy framework must understand the user’s privacy needs in
relation to the specific analysis task and data collection procedure. The framework could be
modified to allow each user to specify what inferences are allowed or not. These restrictions
could be processed on device, by sharing with the server only the information allowed by
the user. Future works should then develop methods to incorporate user preferences into
the privacy framework, and adapt it to potential updates made by a user on his own privacy
policy. Collaborative learning methods seem particularly adapted to this aspect of personal-
izing privacy, because it allows the preservation of data sovereignty and application of local
governance for each user. Exploring this aspect could bring privacy ML framework closer to
the legal requirements of the GDPR regarding the consent of each individual (see Art.4(11)
[1]), which must be freely given, specific, informed and unambiguous.
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Appendices

A Extraction from databases in state-of-the-art Section II.2
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Database Search string Records
ACM [[Abstract: gait] OR [Abstract: actimetry] OR [Abstract: actigraphy] 17

OR [Abstract: walk]] AND [[[Abstract: smartphone] OR [Abstract: wearable]
OR [Abstract: iot]] AND [[Abstract: "chronic disease"] OR [Abstract: rehabilitation]

OR [Abstract: medicine]] AND [[Abstract: validity] OR [Abstract: reliability]
OR [Abstract: reproductibility or validation] OR [Publication Title: gait]

OR [Publication Title: actimetry] OR [Publication Title: actigraphy]
OR [Publication Title: walk]] AND [[Publication Title: smartphone]

OR [Publication Title: wearable] OR [Publication Title: iot]
AND [Publication Title: "chronic disease"] OR [Publication Title: rehabilitation]

OR [Publication Title: medicine]] AND [[Publication Title: validity]
OR [Publication Title: reliability] OR [Publication Title: reproductibility or validation]]

AND [Publication Date: (01/01/2010 TO 10/31/2020)]
Cochrane ((gait OR actimetry OR actigraphy OR walk) AND (smartphone OR wearable OR iot) AND 15

("chronic disease" OR rehabilitation OR medicine) AND (validity OR reliability OR
reproductibility OR validation)) in Title Abstract Keyword - between Jan 2010 and October 2020

DBLB (gait | walk | actimetry) (smartphone | device | iot) (valid | rehabilitation) 31
IEEE Xplore ((gait OR actimetry OR actigraphy OR walk) AND (smartphone OR wearable OR iot) 54

AND ("chronic disease" OR rehabilitation OR medicine) AND (validity
OR reliability OR reproductibility or validation))

PubMed ((gait OR actimetry OR actigraphy OR walk) 52
AND (smartphone OR wearable OR iot) AND

("chronic disease" OR rehabilitation OR medicine) AND
(validity OR reliability OR reproductibility or validation))

Filters: from 2010 - 2020
Scholar title:(gait smartphone "wearable device" rehabilitation validity) 1010

ScienceDirect ((gait OR actimetry) AND (smartphone OR iot) AND 3
#1 ("chronic disease" OR medicine) AND

(validity OR validation))
ScienceDirect ((gait OR walk) AND (smartphone OR wearable) AND 10

#2 (rehabilitation OR medicine) AND
(validity OR reliability))

ScienceDirect ((gait OR walk) AND (smartphone OR iot) AND 1
#3 AND ("chronic disease" OR medicine) AND

(validity OR validation))
ScienceDirect ((gait OR walk) AND (smartphone OR wearable) AND 16

#4 AND (rehabilitation OR medicine) AND
(validity OR validation))

ScienceDirect ((gait OR actimetry OR walk) AND 12
#5 (smartphone OR wearable OR iot) AND

rehabilitation AND validation)
SCOPUS TITLE-ABS-KEY((( gait OR actimetry OR actigraphy OR walk ) 155

AND ( smartphone OR wearable OR iot ) AND
( "chronic disease" OR rehabilitation OR medicine ) AND

( validity OR reliability OR reproductibility OR validation)))
AND PUBYEAR ≥ 2010 AND PUBYEAR ≤ 2020

Web of Science (TS = ((gait OR actimetry OR actigraphy OR walk) 148
AND (smartphone OR wearable OR iot) AND ("chronic disease" OR

rehabilitation OR medicine) AND (validity OR reliability OR
reproductibility OR validation))) AND LANGUAGE: (English)
AND DOCUMENT TYPES: (Article) Indexes=SCI-EXPANDED,

SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI,
CCR-EXPANDED, IC Timespan=2010-2020

TABLE 1 – Search term strategy.
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B Criteria selection for state-of-the-art Section II.2
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Author Year Pathology
Cohort
size

Length
data collection

Condition
data collection

Salarian et al. [269] 2010 Parkinson 12 min Laboratory

Dobkin et al. [77] 2011 Stroke 12
min (Lab),
days (FL)

Both

Kozey-Keadle et al. [177] 2011 Obesity 20 hours Free living
Munguía-Izquierdo et al. [219] 2012 Fibromyalgia 25 min Laboratory
Item-Glatthorn et al. [149] 2012 Osteoarthritis 26 min Laboratory
Grimpampi et al. [126] 2013 Hemiplegia/Parkinson 24 min Laboratory
Schwenk et al. [280] 2014 Dementia 77 days Free living
Juen et al. [159] 2014 Lung disease 30 min Laboratory
Juen et al. [160] 2014 Lung disease 25 min Laboratory
Sprint et al. [291] 2015 Diverse 20 min Laboratory
Capela et al. [52] 2015 Lung disease 15 min laboratory
Schwenk et al. [279] 2016 Cancer 22 hours laboratory
Isho et al. [147] 2015 Stroke 24 min Laboratory
Wuest et al. [335] 2016 Stroke 26 min Laboratory
Raknim et al. [252] 2016 Parkinson 1 years Free living
Ferrari et al. [97] 2016 Parkinson 14 min Laboratory
Brinkløv et al. [48] 2016 Diabete 27 min Laboratory
El-Gohary et al. [86] 2017 Multiple sclerosis 52 min Laboratory
Ilias et al. [146] 2017 Parkinson 19 min Laboratory
Maqbool et al. [203] 2017 Amputee 2 min Laboratory
Terrier et al. [302] 2017 Chronic Pain 66 weeks Both
Rogan et al. [259] 2017 Old-age 23 min Laboratory
Chiu et al. [62] 2017 Ankle instability 15 min Laboratory
Cheng et al. [59] 2017 Cardiopulmonary disease 25 min Laboratory
Kobsar et al. [174] 2017 Osteoarthritis 39 months Laboratory
McGinnis et al. [206] 2017 Multiple sclerosis 30 min Laboratory
Lipsmeier et al. [192] 2018 Parkinson 44 months Free living
Kleiner et al. [172] 2018 Parkinson 30 min Laboratory
Carpinella et al. [54] 2018 Diverse 30 min Laboratory
Jayaraman et al. [155] 2018 Spinal Cord Injury 18 hours Laboratory
Jang et al. [154] 2018 Old-age 22 years Free living
Derungs et al. [75] 2018 Hemiparesis 11 weeks Free living
Mileti et al. [213] 2018 Parkinson 26 min Laboratory
Aich et al. [9] 2018 Parkinson 51 min Laboratory
Cheong et al. [60] 2018 Cancer 102 months Free living
Ata et al. [29] 2018 Artery disease 114 min Laboratory
Kim et al. [169] 2018 Parkinson 32 min Laboratory
Vadnerkar et al. [315] 2018 Old-age 16 min Laboratory
Rosario et al. [74] 2018 Cardiac disease 66 months Free living
Lemoyne et al. [186] 2018 Hemiplegia 1 min Laboratory
Dasmahapatra et al. [72] 2018 Multiple Sclerosis 114 weeks Free living
Schliessmann et al. [277] 2018 Diverse 41 min Laboratory
Ummels et al. [314] 2018 Diverse 130 years Laboratory
Banky et al. [33] 2019 Diverse 35 hours Laboratory
Flachenecker et al. [100] 2019 Multiple sclerosis 102 min Laboratory
Gadaleta et al. [109] 2019 Parkinson 71 min Laboratory
Teufl et al. [303] 2019 Arthroplasty 20 min Laboratory
Angelini et al. [18] 2019 Multiple sclerosis 26 min Laboratory
Antos et al. [21] 2019 Old-age 20 min Laboratory
Compagnat et al. [64] 2019 Stroke 35 min Laboratory
Newman et al. [227] 2020 Brain injury 12 min Laboratory
Ullrich et al. [313] 2020 Parkinson 128 min Both
Wang et al. [322] 2020 Post Sternotomy 22 min Laboratory
Pavon et al. [243] 2020 Disability 46 days Laboratory
Arcuria et al. [24] 2020 Cerebellar ataxia 40 min Laboratory
Erb et al. [88] 2020 Parkinson 34 weeks Free Living
Aich et al. [8] 2020 Parkinson 48 min Laboratory
Rubin et al. [263] 2020 Diverse 78 min Laboratory
Henriksen et al. [134] 2020 Obesity 16 years Free living
Shema-Shiratzky et al. [283] 2020 Multiple Sclerosis 44 min Both
Abdollahi et al. [5] 2020 Chronic pain 94 min Laboratory
Kim et al. [170] 2020 Amputation 17 min Laboratory
Lemay et al. [185] 2020 Spinal cord injury 18 min Laboratory
Meisel et al. [209] 2020 Epilepsy 69 months Laboratory
Fantozzi et al. [92] 2020 Old-age 9 min Laboratory

Zhai et al. [346] 2020 Multiple Sclerosis 67
min (Lab),
weeks (FL)

Both

Revi et al. [256] 2020 Stroke 5 min Laboratory
Compagnat et al. [63] 2020 Stroke 26 min Laboratory

Furtado et al. [107] 2020 Amputation 34
hours (Lab),
weeks (FL)

Both

Na et al. [221] 2020 Osteoarthritis 39 min Laboratory

TABLE 2 – Data acquisition criteria through the 70 selected papers. Abbre-
viations used in column "Length of data collection" : min (t<1 hour), hours
(1≤t<24 hours), days (1≤t<7 days), weeks (1≤t<4 weeks), months (1≤t<12
months), year (t≥1 year). Finally, the cohort size is given in number of pa-

tients.
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Author No. of device(s)
Sensor
type(s)

Location of
device(s)

Sensor model, Brand

Salarian et al. [269] 7 (IMU) A,G Forearms, shanks, thighs, sternum Physilogs, BioAGM
Dobkin et al. [77] 2 (S) A Both ankles GCDC, LLC

Kozey-Keadle et al. [177] 2 (S) A Right leg, right side of the hip
activPAL, PALF
GT3X, ActiGraph

Munguía-Izquierdo et al. [219] 1 (IMU) A,O Arm SenseWear, Bodymedia
Item-Glatthorn et al. [149] 5 (S) A Chest, thigh, forefoot MiniSun, IDEEA
Grimpampi et al. [126] 1 (IMU) A,G Lumbar spine Freesense, Sensorize
Schwenk et al. [280] 1 (IMU) A,G chest Physilog, GaitUp
Juen et al. [159] 1 (SPHN) A pants pocket or in fanny pack Galaxy Ace, Samsung
Juen et al. [160] 2 (SPHN and S) A L3 vertebra Galaxy Ace/4, Samsung
Sprint et al. [291] 3 (IMU) A,G Lumbar spine, shank Shimmer3, Shimmer
Capela et al. [52] 1 (SPHN) A,G,M Rear pocket Z10, BlackBerry
Schwenk et al. [279] 5 (IMU) A,G,M Shank, thigh, lower back LegSys, BioSensic
Isho et al. [147] 1 (SPHN) A Torso Xperia Ray SO-03C, Sony
Wuest et al. [335] 8 (IMU) A,G Wrists, shanks, trunk, feet, back Physilog, GaitUp

Raknim et al. [252] 1 (SPHN) A
Free (pocket, during phone call,
on the bag during walk)

HTC and Samsung

Ferrari et al. [97] 2 (IMU) A,G Shoes EXLs1 and EXLs3, EXEL
Brinkløv et al. [48] 1 (SPHN) A Pants pocket, jacket pocket Iphone 5C, Apple
El-Gohary et al. [86] 3 (IMU) A,G Lumbar vertebra, feet, ankles Opal, APDM
Ilias et al. [146] 4 (IMU) A,G Upper, lower limbs, wrists, legs Shimmer3, Shimmer
Maqbool et al. [203] 1 (IMU) A,G Shank MPU 6050, InvenSense
Terrier et al. [302] 1 (S) A Right hip wGT3X-BT, ActiGraph
Rogan et al. [259] 1 (IMU) A,G Lateral malleolus RehaWatch, Hasomed
Chiu et al. [62] 1 (SPHN) A Shin Zenfone 2, ASUS

Cheng et al. [59] 1 (SPHN) A Carried in ’fanny pack
Galaxy S5, Samsung
Optimus Zone2, LG

Kobsar et al. [174] 4 (IMU) A,G Foot, shank, thigh, lower back iNEMO, STmicroelectronics
McGinnis et al. [206] 5 (IMU) A Sacrum, thighs, shanks BioStampRC, MC10
Lipsmeier et al. [192] 1 (SPHN) A,G,M,O Hand, trouser pocket, belt Galaxy S3 mini, Samsung
Kleiner et al. [172] 1 (IMU) A,G,M L5 verterbra BTS G-walk, BTS G-Sensor
Carpinella et al. [54] 1 (IMU) A,G,M Sternum MTw, Xsens

Jayaraman et al. [155] 4 (S) A,O Arm, waist, ankle
wGT3X-BT, ActiGraph
Metria-IH1, Vandrico

Jang et al. [154] 1 (IMU) A,O Wrist Mi band 2, Xiaomi
Derungs et al. [75] 6 (IMU) A,G,M Wrists, arms, thighs Shimmer3, Shimmer
Mileti et al. [213] 10 (IMU and S) A,G,M,O feet Mtw, MTw, Xsens
Aich et al. [9] 2 (S) A knees Fit Meter, Fit.Life
Cheong et al. [60] 1 (IMU) A Wrists Urban S, Partron Co

Ata et al. [29] 2 (SPHN and S) A Hand, hip
iPhones SE/6/7/7+, Apple
GT9X, ActiGraph

Kim et al. [169] 3 (SPHN) A,G Waist, pocket, ankle Nexus 5, Google
Vadnerkar et al. [315] 1 (IMU) A,G Feet Shimmer 2r, Shimmer
Rosario et al. [74] 1 (SPHN) A,G Trouser pocket Galaxy S3, Samsung
Lemoyne et al. [186] 1 (SPHN) A Malleolus iPhone, Apple
Dasmahapatra et al. [72] 1 (S) A Belt, pocket or bra Fitbit One, Fitbit
Schliessmann et al. [277] 2 (IMU) A,G,M Feet RehaGait, HASOMED GmbH

Ummels et al. [314] 9 (IMU and S) other Leg, belt, wrist

UP24, Jawbone
Lumoback, Lumo Bodytech
Moves, ProtoGeo Oy
Accupedo, Corusen LLC
Walking Style X, Omron

Banky et al. [33] 1 (SPHN) G Galaxy S5, Samsung
Flachenecker et al. [100] 2 (IMU) A,G Shoes Shimmer 3, Shimmer
Gadaleta et al. [109] 3 (IMU) A,G,M L5 lumbar vertebrae, ankles Opal, APDM
Teufl et al. [303] 7 (IMU) A,G Pelvis, both foot, both thighs MTw Awinda, Xsens

Angelini et al. [18] 3 (IMU) A,G L5 lumbar vertebra, ankles
MTw Xsens
Opal, APDM

Antos et al. [21] 2 (S and SPHN) A,G Waist, wrist
Nexus 5 , Google
wGT3X-BT, Actigraph

Compagnat et al. [64] 9 (S) A,O Wrists, ankles, hip, arm, neck
GT3x, Actigraph
Sensewear, Body Media

Newman et al. [227] 1 (IMU) A,G Interclavicular notch Opal, APDM
Ullrich et al. [313] 3 IMU A,G Ankles, shoes Shimmer2R, Shimmer
Wang et al. [322] 2 (IMU) A,G Pectoralis major BioStampRC, MC10
Pavon et al. [243] 2 (S) A Ankle GT3x+, ActiGraph
Arcuria et al. [24] 1 (SPHN) A Breastbone Galaxy J3, Samsung
Erb et al. [88] 7 to 16 (IMU) A,G,M,O wrists, torso, thigh, feet Shimmer, Shimmer
Aich et al. [8] 2 (S) A Knees Fit Meter, Fit. Life
Rubin et al. [263] 1 (SPHN) A,G Pants pocket, belt iPhone 6, Apple
Henriksen et al. [134] 1 (IMU) A,O Wrist M430 AT, Polar
Shema-Shiratzky et al. [283] 1 (IMU) A Lower Back Opal, APDM and AX3, Axivity
Abdollahi et al. [5] 1 (IMU) A,G Sternum 9DOF Razor IMU, Sparkfun
Kim et al. [170] 2 (IMU) A,G Shoe, ankle GT9X Link, ActiGraph
Lemay et al. [185] 5 (IMU) A,G,O Feet, shanks, sacrum Physilog, GaitUp
Meisel et al. [209] 1 (S) A,O Wrist or ankle E4, Empatica
Fantozzi et al. [92] 5 (IMU) A,G,M Trunk, pelvis, thigh, shank, foot Opal, APDM

Zhai et al. [346] 2 (SPHN and S) A Wrist, pocket
Galaxy S4 mini, Samsung
GT3X+, ActiGraph

Revi et al. [256] 3 (IMU) A Shank, thigh, pelvis MTw Awinda, Xsens
Compagnat et al. [63] 2 (S) A Non-paretic hip GT3x, ActiGraph

Furtado et al. [107] 1 (S) A
L5 lumbar vertebrae within
the pocket of a belt

AX3, Axivity

Na et al. [221] 5 (IMU) A,G Femur, tibia, pelvis, sacral ridge 3D Myomotion, Noraxon

TABLE 3 – Criteria related to commercial wearable devices through the 70 se-
lected papers. Abbreviations used in column "No. of device(s)": IMU (Inertial
Motion Unit), S (Sensor), SPHN (Smartphone). Abbreviations used in column
"Sensor Type(s)" : A (accelerometer), G (gyroscope), M (magnetometer), O

(others).
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Author Ground truth method
Gait
descriptors

# of
descriptors

Evaluation
method

Evaluation outcomes

Salarian et al. [269] controls, medical high 20 stats + test p-value<0.023
Dobkin et al. [77] controls, metrologic medium 8 ML + test r=0.98
Kozey-Keadle et al. [177] expert high 3 stats R2=0.94
Munguía-Izquierdo et al. [219] med device high 1 stats + test r=0.87-0.99
Item-Glatthorn et al. [149] metrologic high 6 stats + test ICC =0.815-0.997
Grimpampi et al. [126] metrologic low, medium 3 stats + test r=0.74-0.87
Schwenk et al. [280] controls, user high 9 stats + test AUC=0.77, sen/spe=72%/76%
Juen et al. [159] medical medium 8 ML acc=89.22-94.13%
Juen et al. [160] med device medium 9 ML error<10.2%
Sprint et al. [291] medical medium,high 18 ML + test r=0.97
Capela et al. [52] expert high 10 stats time difference=0.014 s
Schwenk et al. [279] controls, user high 6 LM + test p-value<0.022
Isho et al. [147] controls, user medium 3 ML + test AUC=0.745
Wuest et al. [335] controls, medical high 13 stats + test p-value<0.02
Raknim et al. [252] controls high 2 ML acc=94%
Ferrari et al. [97] metrologic high 4 LM + test error=2,9%
Brinkløv et al. [48] med device medium 6 LM + test R2=0.45-0.60
El-Gohary et al. [86] metrologic, controls high 7 stats + test r=0.592-0.992
Ilias et al. [146] expert medium 152 ML + test r=0.78-0.79
Maqbool et al. [203] metrologic, controls high 1 stats time difference=50 ms
Terrier et al. [302] controls, medical high 4 LM + stats R2=0.44
Rogan et al. [259] metrologic high 6 stats + test p-value<0.05
Chiu et al. [62] controls medium 1 stats + test p-value<0.027
Cheng et al. [59] med device, medical medium,high 10 ML NA
Kobsar et al. [174] medical medium 38 LM + test acc=74-81.7%
McGinnis et al. [206] metrologic, controls medium 32 ML + test speed difference=0.12-0.16 m/s
Lipsmeier et al. [192] controls, medical high 6 ML + test p-value<0.055
Kleiner et al. [172] metrologic, medical high 1 stats time difference=0.585 s
Carpinella et al. [54] medical, controls high 5 stats + test r=-0.367-0.536
Jayaraman et al. [155] expert, metrologic high 3 stats + test p-value<0.05
Jang et al. [154] controls high 5 stats + test p-value<0.02
Derungs et al. [75] expert medium 8 LM + test sen/spe=80%/94%
Mileti et al. [213] controls, medical low 3 ML + test AUC=0,48-0,98
Aich et al. [9] metrologic, controls high 28 ML acc=88%
Cheong et al. [60] controls high 1 stats + test p-value<0.04
Ata et al. [29] expert, med device high 3 stats R2=0.9-0.92
Kim et al. [169] expert medium 8 ML sen/spe=93.8%/90.1%
Vadnerkar et al. [315] expert low 1 LM + test acc=84%, sen/spe=75.9%/95.9%
Rosario et al. [74] controls, medical high 2 stats + test r=0.472
Lemoyne et al. [186] controls high 5 stats + test p-value<0.05
Dasmahapatra et al. [72] controls, medical high 6 LM + test p-value<0.05
Schliessmann et al. [277] controls high 4 stats + test p-value<0.05
Ummels et al. [314] metrologic high 1 stats + test r=-0.02-0.33
Banky et al. [33] metrologic, controls low 3 stats + test r=0.8
Flachenecker et al. [100] controls, medical high 8 stats + test r=-0,583-0,668
Gadaleta et al. [109] metrologic low 24 ML bias=-0.012-0.000, IQR=0.004-0.032
Teufl et al. [303] metrologic, controls high 10 ML + test acc=0.87-0.97
Angelini et al. [18] expert, controls high 14 stats + test p-value<0.05
Antos et al. [21] expert, controls medium 56 ML + test acc=0.90-0.95
Compagnat et al. [64] expert high 2 stats + test p-value<0.05
Newman et al. [227] controls, medical high 9 stats + test p-value<0.05
Ullrich et al. [313] expert medium 7 stats + test sen/spe=98%/96%
Wang et al. [322] controls medium 1 stats + test p-value<0.05
Pavon et al. [243] controls, medical high 3 stats + test p-value<0.16

Arcuria et al. [24]
metrologic, controls,
medical

high 1 stats + test r=-0.72-0.91

Erb et al. [88] user, expert high 2 stats + test FN=35%, FP=15%

Aich et al. [8]
metrologic, controls,
medical

high 5 ML acc=88.46%

Rubin et al. [263] med device high 1 stats + test R2=0.72
Henriksen et al. [134] med device high 4 stats r=0.446-0.925
Shema-Shiratzky et al. [283] controls, expert high 5 stats + test p-value<0.05
Abdollahi et al. [5] medical medium 920 ML acc=60-75%
Kim et al. [170] controls high 5 stats + test p<0.05
Lemay et al. [185] medical, controls high 6 LM + test r=-0.49-0.498
Meisel et al. [209] expert low 6 ML + test acc=43%
Fantozzi et al. [92] controls high 14 LM + test NA

Zhai et al. [346]
med device, controls,
medical

medium 14 stats + test r=0.43-0.605

Revi et al. [256] metrologic high 8 stats R2=0.90-0.93
Compagnat et al. [63] med device high 1 stats + test r=0.44-0.87

Furtado et al. [107]
metrologic, controls,
medical

medium,high 10 stats + test p-value<0.024

Na et al. [221] metrologic, controls high 6 stats + test p-value<0.04

TABLE 4 – Evaluation criteria through the 70 selected papers. Abbreviations
used in column "Evaluation method" : stats (descriptive statistics), stats +
test (descriptive statistics + statistical tests), LM + test (linear models + sta-
tistical tests), ML (machine learning), ML+test (machine learning + statistical
tests). Abbreviations used in column "Evaluation outcomes" : r (correlation
coefficient), R2 (coefficient of determination), ICC (intraclass correlation co-
efficient), AUC (area under curve, sen (sensitivity), spe (specificity), IQR (in-

terquartile range), FN (false negatives), FP (false positives), acc (accuracy).
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Author Task Model type Training size
# of
descriptors

Outcome

Dobkin et al. [77] Speed prediction Naive Bayes NA 24 r=0.98
Juen et al. [159] Healthy/Patient SVM 10-20 8 accuracy=89.22-94.13%

Juen et al. [160]
Speed prediction
Distance prediction

GPR
NN
SVM

24 60
error rate = 2.51%
error rate = 10.2%

Sprint et al. [291] FIM motor score prediction
SVM
RF

19 18 NRMSE = 10%-30%

Raknim et al. [252]
Step length estimation
Before/After PD

SVM 1 2
accuracy=98%
accuracy=94%

Ilias et al. [146] Motor function prediction SVM 6 152
RMSE = 0.46-0.70
r=0.78-0.79

Cheng et al. [59] 3 pulmonary severity stages SVM 22-25 10 NA
McGinnis et al. [206] Walking speed SVM 16 32 RMSE = 10%-20%
Lipsmeier et al. [192] Activities LSTM 44 6 (*n) accuracy=98%

Mileti et al. [213] 4 Gait phases HMM 1-11 3 (*n)

AUC=0.48-0.98
sens= 80%-100
spe=70%-90%
goodness Index = 10%-40%

Aich et al. [9] Healthy/Patient

SVM
Decision tree
Naive Bayes
kNN

36 28
accuracy=91.42%
sens/spe = 90.9%/91.2%

Kim et al. [169] Walking/Freezing CNN 29 8 (*n)
f1-score = 91.8
sen/spe=93.8%/90.1%

Vadnerkar et al. [315] Gait quality ROC decision boundary 8 1
accuracy=84%
sen/spe=75.9%/95.9%

Gadaleta et al. [109] Right/Left foot events CNN 138 24 (*n)
bias=-0.012-0.000
IQR=0.004-0.032

Teufl et al. [303] Healthy/Patient SVM 40 10 accuracy=87-97%

Antos et al. [21] With/without assistance

RF
SVM
Naive Bayes
Logistic regression
LDA

1-13 56 accuracy=90-95%

Aich et al. [8] Healthy/Patient

kNN
SVM
Naive Bayes
Decision tree

62 10
accuracy=88.5%
sens/spe=92.9%/90.9%

Abdollahi et al. [5] Risk of disability
SVM
Perceptron

93 920 accuracy=60-75%

Meisel et al. [209] Seizure/Healthy LSTM 68 6 (*n) accuracy=43%

TABLE 5 – Selection of papers that use machine learning methods in valida-
tion. Abbreviations used in column "Model type": SVM (support vector ma-
chine), GPR (gaussian process regression), NN (neural network), RF (random
forest), LSTM (long short time memory), HMM (hidden markov model), kNN
(k-nearest neighbors), CNN (convolutional neural network), ROC (receiver
operating characteristic), LDA (linear discriminant analysis). Abbreviations
used in column "Outcome": r (correlation coefficient), NRMSE (normalized
root mean square error), RMSE (root mean square error), AUC (area under
curve), sens (sensitivity), spe (specificity), IQR (interquartile range). Studies
that use raw data as input have a number of descriptors that corresponds to
the number of sensors and/or axes multiplied by the length of the recorded

data (n).
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