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  General Introduction 

     Once a metal is submerged into seawater, interactions between metal, living organisms and 

marine environment result in biofouling and in corrosion of metal components, almost at the same 

time. The development of micro and macro-organisms is the origin of the biofouling, which causes 

a significant industrial problem. To develop an antibiofouling coating system, one should take into 

account the environment, the engineered coating and the substrate.  

     At the same time that biological changes give rise to biofilm accumulation, a sequence of 

inorganic changes occurs on the metal surface instantly after submerging it in an aggressive 

aqueous medium. This consists in the process of metal dissolution and development of corrosion 

product. While corrosion and corrosion product accumulation develop from the metal surface 

towards the solution, biofilm development is the result of accumulation processes directed from 

the bulk towards the metal surface. In this thesis, we propose a novel multi-functional bilayer 

coating composed of Al-Zr and TiO2 as an antibiofouling system on steel substrates. 

     Aluminum-transition metal alloys have demonstrated to be potential candidates for protection 

of steel parts against galvanic corrosion. The transition metals are added to compensate the weak 

mechanical characteristics of pure aluminum.  An optimized aluminum alloy with a homogeneous 

microstructure is deposited before the antifouling layer. 

     The material chosen as antibiofouling is based on titanium dioxide (TiO2), a promising 

candidate thanks to its photocatalytic activity and the hydrophilic / hydrophobic behavior in order 

to slow down the biofouling process in the marine structures.  

     PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) processes are 

suitable industrial technologies for the deposition of functional and protective thin films. Indeed, 
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the maturity of these techniques allows controlling the deposition parameters of these processes to 

achieve the best performance according to the application. 

     Magnetron sputtering and CVD aerosol techniques were selected to deposit Al-Zr and TiO2 

bilayer films, respectively. The bilayers were characterized in terms of morphology, 

crystallographic structure, texture and roughness, surface wetting, corrosion electrochemical 

behavior, photocatalytic activity and biofouling behavior.  

     This thesis is focused on development of Al-Zr films providing cathodic protection for steel 

parts, TiO2 films providing photocatalytic and antibiofouling properties, and finally the 

combination of both films in order to develop a multi-functional coating able to avoid corrosion 

and biofouling of structures used in marine environment. The thesis manuscript is organized into 

five chapters:  

     Chapter I presents the state of the art for the chosen materials and their functionalities, Firstly, 

the use of aluminium transition metals as sacrificial anodes and the corrosion of aluminium alloys 

in aqueous solutions are discussed. The choice of Al-Zr coating for corrosion applications is 

exposed. In a second part, the discussions are based on mechanisms and applications of 

photocatalysis by titanium dioxide semiconductors. Major aspects of biofouling and corrosion in 

marine structures are also presented.  

     Chapter II describes the mechanisms of magnetron sputtering coating process and presents an 

overview of the magnetron sputtering reactor employed to produce Al-Zr films in LASMIS 

laboratory. Firstly, optimal processing conditions for depositing Al-Zr films are discussed. In a 

second part, structural characterizations, nanohardness measurements and electrochemical tests are 

analyzed in order to choose the Al-Zr alloy providing the best compromise between mechanical 

reinforcement and electrochemical properties. 

      Chapter III presents the aerosol assisted metalorganic chemical vapor deposition (AAMOCVD) 

technique employed to deposit TiO2 thin films in LMGP laboratory. The choice of TiO2 precursor, 

description of AAMOCVD reactor and deposition parameters are discussed in this chapter. 

Physical and chemical characterizations of TiO2 films are described in the second part.  

     Chapter IV presents the functional properties of Al-Zr/TiO2 bilayer coatings. Structure, 

electrochemical behavior, photocatalysis properties, hydrophilicity and TEM analysis of the 

bilayer coatings are developed in this chapter.  
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    Chapter V introduces new Cu-Ti-O films deposited by the AAMOCVD technique using a 

combination of two precursors in order to improve photocatalytic and antibiofouling properties. 

Morphological and structural characterizations are firstly analyzed. Photocatalysis and marine 

biofouling field test were employed in order to check the performance of Cu-Ti-O and TiO2 films 

as a new promising solution for biofouling problem. 

     This manuscript ends with a conclusion summarizing the major results obtained during this 

thesis and the prospects of this work. 

     This thesis is a collaboration project between the following research units: Université de 

Technologie de Troyes (UTT), centre de recherche CEA Saclay, Laboratoire des Matériaux et du 

Génie Physique (LMGP – Grenoble INP), SIMAP – Grenoble INP, Nanyang Technological 

University (NTU in Singapore) and LBCM – Université Bretagne Sud. 

     Magnetron sputtering depositions were carried out in the Laboratory of Life Assessment of 

Structures, Materials, Mechanics and Integrated Systems (ICD - LASMIS – UTT) in Nogent, and      

Chemical Vapor depositions were performed in LMGP – Grenoble INP in Grenoble.  

Electrochemical tests were carried out in CEA, localized in Saclay; Some TEM measurements were 

performed in NTU and biofouling field tests were executed in collaboration with LBCM – 

Université Bretagne Sud.  
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     In this chapter I the state of the art for the chosen materials and their functionalities are 

presented. Firstly, the use of aluminium-transition metals as sacrificial anodes and the corrosion of 

aluminium alloys in aqueous solutions are discussed. The choice of Al-Zr coating for anti-corrosion 

applications is exposed. In a second part, the discussions are based on mechanisms and applications 

of photocatalysis by titanium dioxide semiconductors. Major aspects of biofouling and corrosion 

in marine structures are also presented.  
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I.1. Corrosion of aluminium and aluminium alloys in aqueous 

environment 

     Corrosion of Al alloys is normally presented as a local nature, since there is a separation of 

anodic and cathodic reactions.  

The basic anodic reaction is metal dissolution: 

Al → Al3++ 3e-    I. 1 

Whereas the cathodic reactions are oxygen reduction: 

O2+2H2O + 4e- → 4OH-   I. 2 

Or hydrogen reduction in acidified solution being the result of Al ion hydrolysis: 

2H++ 2e → H2    I. 3 

     So the corrosion of Al can be described as the interaction between local anodes and cathodes 

and the alloy matrix that leads to all forms of corrosion in Al alloys [1].  It includes pitting 

corrosion, selective dissolution, trenching and intergranular attack.  

     Al and its alloys are known to be resistant against corrosion in moderately aggressive aqueous 

environments. The thermodynamic strength of Al alloys in corrosive environment is due to the 

protective oxide layer, which acts as a physical barrier and is capable to repair itself in oxidizing 

environments if damaged [1], although the passive layer breakdown mechanism by chloride ions 

is still in debate [2] as a result of the complexity of the process [3]. 

     In general, localized attack initiates the adsorption of destructive anions and creation of soluble 

transitional compounds with the cations at the oxide surface. The passivity aspect that rules the 

corrosion behavior of Al is summarized by Pourbaix-type analysis. A plot of potential (VSCE) vs. 

pH in accordance with the electrochemical reaction of the species involved, known as Pourbaix 

diagram [4], is presented in Figure I- 1. 
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Figure I- 1. Potential-pH diagram for pure Al at 25˚C in aqueous solution (Reproduced from Pourbaix, 

1974 [4]). The lines (a) and (b) are the water stability and its decomposed product. 

 

     Al is slightly passive in the pH range of ~ 4 to 9 as a result of the existence of an Al2O3 film. In 

environments that diverge from the neutral range, the permanence of Al2O3 film can be disrupted. 

Consequently, the film becomes soluble, making it easier the rapid dissolution of the alloy. In the 

acidic range, Al is oxidized by creating Al3+, while AlO2
- happens in alkaline range. 

     Corrosion prediction can be interpreted as a straightforward process when Pourbaix diagram is 

taken in account. On the other hand, in actual engineering applications, there are numerous 

variables that weren’t taken into account by Pourbaix. These comprise (i) the existence of alloying 

elements in the vast majority of engineering metals (ii) the presence of substances, like chloride, 

in the electrolyte, (iii) the working temperature of the alloy, (iv) the mode of corrosion, and (v) the 

reaction rate. Gimenez et al.[5] have taken these factors into account and they have created a 

revised version of a potential (VSCE) vs. pH diagram for 5000 series aluminium alloys in 0.5 M 

sodium chloride as represented  in Figure I- 2. 
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Figure I- 2. Mode of corrosion based on experimental data for AA5086 in saline solution (Reproduced 

from Gimenez, Rameau et al., 1981[5]). 

 

     The conditions where localized attack is strongly possible in the theoretical passive region is 

shown in Figure I- 2. Gimenez et al.[5] reported that localized attack is possible over the whole 

range of pH according to the specific potential.  

     Cathodic polarisation provides alloy degradation in two manners. Primarily, the accumulation 

of hydroxyl ions at the Al surface induces chemical dissolution of the Al. In the second place, Al 

is a strong hydride former, and hydrogen from the cathodic reaction at such negative potentials will 

associate with Al to create hydrides [6]. 

 

I.2. Electrochemical basis of corrosion  

     Corrosion generally takes place at an equilibrium level determined among the different 

electrochemical reactions. The anodic reaction is one of the reactions, in which a metal is oxidized, 

releasing electrons inside the metal. The other type is known as the cathodic reaction, in which 

solution species (usually O2 or H+) are reduced, extracting electrons from the metal. When both 
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reactions are in equilibrium, the flow of electrons from respective reaction is balanced, and there 

is no electrical current. Both reactions can occur on one metal or on two different metals that are 

electrically linked. 

     Figure I- 3 exposes this process. The vertical axis represents the electrical potential and the 

horizontal axis is the logarithm of absolute current. The straight lines correspond to the theoretical 

current for the anodic and cathodic reactions. The sharp point in the curve corresponds to the point 

in which the current reverses polarity as the reaction alters from anodic to cathodic, or vice versa 

[7].  

     The open-circuit potential Eoc is defined as an equilibrium potential assumed by the metal when 

there is no electrical connections to the metal. In the majority of electrochemical corrosion tests, 

the first step is the measurement of Eoc. The value of both anodic and cathodic current at Eoc is 

named the corrosion current, Icorr. The Icorr is used to determine the corrosion rate of the metal. 

Classic Tafel analysis is carried out by extrapolating the linear portions of a logarithmic current 

against potential plot back to their intersection, as represented in Figure I- 3. The value of either 

the anodic or the cathodic current at the intersection is Icorr. The measured data are fit to Eq. I.4 by 

setting the values of Ecorr, Icorr, βa, and βc [7]. 

𝐼 =  𝐼𝐶𝑜𝑟𝑟   (𝑒
2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)

𝛽𝑎 − 𝑒
−2.303(𝐸−𝐸𝑐𝑜𝑟𝑟)

𝛽𝑐 )     I. 4    

Where  

I is the measured current from the cell in A (amperes). 

Icorr is the corrosion current in A (amperes). 

E is the electrode potential. 

Ecorr is the corrosion potential in V (Volts). 

βa is the anodic β Tafel constant in V/ decade. 

Βc is the cathodic β Tafel constant in V/ decade. 
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Figure I- 3.  Corrosion process presenting anodic and cathodic components of current. 

 

I.2.1. Anodic polarization scan  

     A schematic view of anodic polarization curve is presented in Figure I- 4. The open circuit 

potential is situated at point A. At this potential the sum of the anodic and cathodic reaction rates 

on the electrode surface is equal to zero. When the potential increases, it moves towards the region 

B, which is the active region. In that zone, metal oxidation is the principal reaction taking place. 

The passivation potential is represented by the point C, and as long as the applied potential rises 

over this value the current density decreases with increasing potential (region D) until a low, 

passive current density is achieved (Passive region - Region E)[8]. 
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 Figure I- 4. Theoretical anodic polarization scan. [8] 

 

     When the potential reaches an adequate positive value (Point F) the applied current quickly 

increases (region G). This increase can be a result of different phenomena, depending on the alloy 

and environment. For some systems such as aluminium alloys in salt water, this sudden increase in 

current may be pitting, which means a localized breakdown of passivity, whereas for others it may 

be transpassive dissolution. Transpassivation occurs when a passivated metal starts rapid 

dissolution (increase in corrosion rate) if the metal's electrode potential becomes too positive.  

 

I.3. Al-transition metal coatings used as sacrificial anodes 

     Sacrificial Anodes are highly active metals used to protect a less active material surface from 

corroding. Sacrificial Anodes are made from a metal alloy with a more negative electrochemical 

potential than the metal which should be protected: the anode mentioned "sacrificial" will be 

consumed instead of the protected metal. 

     Since the sacrificial anode works by introducing another metal surface with a more negative 

and much more anodic surface, the current will move from the recently introduced anode and the 

protected metal becomes cathodic forming a galvanic cell. The oxidation reactions are transferred 

from the metal surface to the galvanic anode and will be sacrificed in favor of the protected metal 

structure. 
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     Carbon steels are susceptible to corrosion in most environments and will, unless protected, 

oxidize spontaneously in state of high thermodynamic stability. The integrity of steel structures in 

marine environments can be ensured by Cathodic Protection (CP) [9]. The cathodic protection links 

the base metal at risk (steel) to a sacrificial metal that corrodes instead of the base metal.   The 

technique of supplying cathodic protection to steel preserves the metal by providing a highly active 

metal that can work as an anode and supply free electrons. 

     In order to ensure a general protection of carbon steel immersed in seawater, a protection 

potential Ep equal to or less than -850 mV/SCE is needed [10]. Normally, pitting corrosion, stress-

corrosion cracking, and intergranular corrosion may be annihilated by maintaining the electrode 

potential below a given critical value, known as the protection potential [11].  Aluminium and its 

alloys are extensively used in many industrial applications, mainly in automotive and aerospace 

industries. Its open circuit potential is more negative than that of steel implying its use as sacrificial 

materials for protection of steel substrates. It has been demonstrated that nanostructured aluminium 

alloys show high mechanical properties and corrosion resistance in contrast to their bulk 

counterparts due to the very great number of crystallizations germs, stable intermetallic compounds 

and increasing of the germination velocity due to a rapid solidification process [12,13]. The 

usefulness of pure Al as an anode material in seawater is reduced significantly due to the formation 

of a protective oxide film, which limits both its current and potential output. In order to improve 

the efficiency of Al anodes they are typically alloyed with other elements to encourage 

depassivation (breakdown of the oxide film) and/or shift the operating potential of the metal to a 

more electronegative direction. The incorporation of alloying elements has been reported as a 

possible method to improve the corrosion resistance of Al coatings, essentially for limiting the 

sensitivity to localized corrosion in saline environments [14,15]. 

     The transition metals (TM) have a low solubility in Al, so, when a PVD method is used, it leads 

to deposition of extended supersaturated solid solutions of TM in Al, which are associated with 

enhanced mechanical properties. Additionally, TM are characterized by a low diffusivity in Al, 

leading to a better thermal stability of these metastable alloys. Nevertheless, high TM content in 

Al alloy conducts also to the detriment of sacrificial properties [16,17]. The ideal solution in terms 

of steels protection is a compromise between mechanical and corrosion properties.  

Over the last decades, a lot of researches focused on the nanocrystalline Al-based coatings 

reinforced by addition of transition metals (TM) e.g. Al-Cr [18–24] , Al-Mo [25] , Al-Ti [19–21,26] 
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and Al-Mn [15,27]. Regarding Al-Cr alloys, the best compromise has been achieved for amorphous 

coatings with approximately 20 at.% Cr [22]. Addition of Mo or Mg in Al led to an improvement 

of mechanical properties and the pitting resistance of Al-Mo and Al-Mn coatings [16,25] . 

 

I.3.1. Influence of transition metal elements including Zr, Cr, Sc, Ti, W 

and Sr 

 

     As previously explained, alloying elements are added to pure Al for various purposes, mainly 

for the enhancement of mechanical properties. Alloying elements induce the heterogeneity of 

microstructure, which is the main cause of localized corrosion starting in the form of pitting.  

    Zr, Cr, Sc, Ti, W and Sr  are normally added individually in small amounts in order to refine 

grain size, reduce crystallisation and decrease the effect of intermetallic compounds [28].  

    Intermetallic compounds can be produced at high temperatures in the Al melt with adding Zr 

and Ti, presenting dispersed particles of Al3Zr and Al3Ti inside the solidified matrix. These 

particles with fine size (i.e << 1 µm) show a minimal impact on corrosion [29]. Al3X particles 

where X can be Zr, Ti, Sc, W, Ti and Sr, take the form of fine insoluble dispersoids which are 

efficient in grain inoculation and refinement.  

 

I.3.2. Kinetic stability of aluminium and its alloys  

     Kinetics is defined as the reaction during corrosion. Metals tend to stabilize to a value of 

electrochemical potential, characteristic of the material and its composition for a given electrolyte, 

when subjected to an aqueous environment. This potential can be described as the potential at 

which anodic and cathodic reactions over the metal surface are the same, and the value of this 

potential is strongly influenced by elements that may change the relative rates of anodic or cathodic 

reaction effectiveness over the metal surface. 

     Generally, a potentiodynamic polarization test is applied in order to characterize the corrosion 

performance of an alloy. This technique provides essential kinetic information, for example, 

current density over a range of potentials, corrosion potential, pitting potential, passive current 

density, etc.  Alloy behavior and dominant reactions can be compared in a quantitative way. 
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     The anodic part of the polarization curve provides information related to the anodic/ dissolution 

reaction, whereas the cathodic part symbolizes the reduction reaction, known as oxygen reduction, 

as explained before.  

     Figure I- 5 presents the potentiodynamic polarization curve for pure Al in aerated aqueous 

solution containing 0.1 M of NaCl. Aluminium displays a passive region in which current remains 

unchanged by the modification in applied potential. It is noticed as a current density plateau, as 

shown in Figure I- 5. Nevertheless, the current density suddenly increased after achieving a specific 

value of electrode potential which is known as the pitting potential (Epit) [30]. 

 

 
Figure I- 5. Potentiodynamic curve of pure Al in aerated aqueous solution 0.1 M NaCl [30]. 

 

     Addition of more noble alloying elements normally boosts the corrosion potential to more noble 

values [31]. This ennoblement is not necessarily correlated to the corrosion rate. Moreover, the 

major threat for Al alloys is the localized attack, in particular pitting. Therefore, more noble value 

of pitting potential does not necessarily indicate a better corrosion resistance [32]. Normally, the 

electrochemical reactions of Al-alloys are greatly influenced by the microstructure and the 

chemistry. In order to understand better the overall kinetic stability of a metal over the potential-

pH space, the staircase potentio-electrochemical impedance spectroscopy (SPEIS) method can be 

employed to determine kinetic stability diagrams, as demonstrated for pure Al [30]. 
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I.4. Choice of Al-Zr coating for corrosion applications 

 

     Zirconium is a transition metal known as a great grain refiner in traditional aluminium alloys 

[33]. It boosts mechanical properties [33] and improves considerably the corrosion resistance in 

deaerated borate-boric acid solution containing Cl- [34]. Contrary to the traditional methods where 

the Zr solid solubility is very low (maximum solubility is 0.083 at.% in the peritectic reaction [35]), 

the non-equilibrium processing methods like rapid solidification [36], mechanical alloying [37] 

and sputtering technique [34,38,39] offer the possibility to achieve an extended supersaturated 

single solid solution with high Zr contents. 

     Chaudhury et al. [36,40] have shown that rapid solidification and vapour deposition results in 

an enlargement of the solid solubility of zirconium up to 3 at.%. Ho et al. [38] have produced, by 

alternate sputtering deposition, a face-centered cubic phase supersaturated solution of  7.3 at. %  Zr 

in Al. Yoshioka et al. [34] obtained a supersaturated phase with Zr content up to 11 at. % by sputter 

deposition. 

     Creus et al. presented the open circuit potential classification in saline solution of metals and 

Al based alloys deposited by PVD as represented in Figure I- 6[14]. The corrosion potentials of 

Al–Zr coating are more negative than the potential threshold needed to obtain cathodic protection 

of steels in saline solution. It was reported that the addition of elements such as V, Mn, Cr, Ti, Mo, 

Si or Zr induces an ennoblement of the corrosion potential compared with pure Al when the 

alloying element content is increased. The reaction of hydrogen evolution (REH) corresponds to a 

new cathodic reaction which takes place on the alloy surface for high negative potentials. In fact, 

very negative corrosion potentials contribute significantly to this cathodic reaction that could 

degenerate the subjacent substrate. Consequently, it is essential to limit the mass content of these 

alloying elements. 
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Figure I- 6.  Open circuit potential classification in saline solution of binary Electron-beam physical 

vapor deposition of metals and Al based alloys deposited by PVD( Reproduced from J. Creus et al., 2012 

[14]). 

     The polarization curves for several binary Al–X alloys are represented in Figure I- 7. The shapes 

of the polarization curves are quite similar in all cases. The presence of a large passivity domain is 

observed, followed by a brutal increase of anodic current representing the initiation and 

propagation of pits. The incorporation of these TMs improves the corrosion resistance of material 

by reinforcing the stability of passive film. Many works in the literature, in particular those of 

Crossland [41] on the anodization of different binary Al–X alloys showed an improvement of the 

resistance of passive film in saline medium. This improvement was mainly associated to the 
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incorporation of more stable oxide in the passive film that is initially mainly composed of 

aluminium oxide or oxo-hydroxide, and which will permit to modify the net oxide charge in contact 

with the corrosive medium and will affect the stage of adsorption of the chloride ions during the 

passive film growth [14].  

 

 Figure I- 7. Polarization curves after 1 h of immersion in saline solution of binary Electron-beam 

physical vapor deposition and magnetron sputtering Al–X alloys deposited on glass substrates with 

concentration close to 20 wt.% ( Reproduced from J. Creus et al.,2012 [14]). 

 

     Some researchers found that Zr has a tendency to be enriched in the passive film, because of its 

low electro-negativity and high oxygen affinity compared to Al [42]. Zr addition enhances the 

protective efficiency of the passive film most likely due to the corrosion products formed on Al 

alloys [43]. Yoshioka et al. have detected, by XPS analysis, the presence of Zr4+ species 

incorporated in the aluminium based passive film when they studied the passive film formed from 

Al-Zr alloys in deaerated borate-boric solid solution containing chloride ions at pH=8.4. The 

passive film consists in a solid solution of Al3+ and Zr4+ ions containing a small amount of OH– 

[43]. 

     Sanchette et al. [44] have shown that for Zr content up to 12 at.% in Al, the microstructural 

characterisation reveals the formation of a fcc supersatured extended solid solution of Zr in Al with 

a significant decrease of the mean grain size when increasing Zr content. The substitution of Al by 
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Zr leads to increase the lattice parameter. This increase is related to a gradual refinement of the 

grain size. For higher Zr contents, the coatings are expected to be a mixture of fcc solid solution of 

Zr in Al and an amorphous phase. The electrochemical measurements in 5 wt. % NaCl solution 

performed on Al-Zr films deposited on glass, show an increase of the intrinsic corrosion resistance 

for Zr alloys and are correlated with microstructures of as-deposited films. The refinement of grain 

size increases the corrosion resistance and reduces the electrochemical activity of alloys through 

the development of a dense passive film containing Zr. When Zr is added, the compactness of 

alloys increases the Cl- blocking effect and consequently inhibits the pit propagation. The improved 

pitting corrosion resistance is ascribed to the more compact structure and also to the Zr enrichment 

in the passive film.  

     The coupling between Al-Zr and steel was studied by Sanchette et al. [44] in 5 wt.% NaCl 

solution using potentiodynamic polarisation, linear polarisation resistance and electrochemical 

impedance spectroscopy (EIS). The results have shown an enhancement of corrosion resistance 

and a decrease of corrosion kinetics with Zr content. In addition, they reported that the corrosion 

resistance of Al-Zr coatings is influenced by structure and porosity of coatings [44]. 

Liu et al. [45] reported that permeable defects like pores or pinholes are prejudicial to the corrosion 

performance as they afford direct paths to permit the corrosive electrolyte to access to the steel 

substrate.  

 

I.5. The heterogeneous photocatalysis: principles and generalities 

 

     Photocatalysis is employed as an environmentally friendly, versatile and low-cost treatment 

alternative for water and air purification [46], destruction of microorganisms such as bacteria [47] 

and viruses [48], nitrogen fixation [49], the inactivation of cancer cells [50], the clean-up of oil 

spill [51] and the water splitting to generate molecular hydrogen as high-energy and ecologically 

clean fuel [52]. Palmisano and Sclafani [53] described the heterogeneous photocatalysis as a 

“catalytic process during which one or more reactions steps occur by means of electron-hole pairs 

photogenerated on the surface of semiconductor materials illuminated by light of suitable energy”. 

When a photocatalyst is irradiated, it creates excited states that can provide resulting processes 

such as reduction-oxidation reactions and substrate transformations. The fundamental mechanism 

of heterogeneous photocatalysis, studied by many researchers [54,55], is presented in Figure I- 8. 
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Figure I- 8. Simplified reaction scheme of photocatalysis for TiO2 anatase.  

 

     When a semiconductor is irradiated with light of energy equal or higher than its band gap energy 

(Eg), electrons (e-) from the valence band jump to the conduction band, at the same time leaving 

positive holes (h+) in the valence band [56]. The photogenerated electron-hole pairs are able to 

induce oxidation-reduction reactions with electron donor and electron acceptor adsorbed on the 

catalyst surface. The redox process competes with a potential electrons-holes recombination that 

takes place during a few nanoseconds. Consequently of electron-hole recombination phenomena, 

an input energy dissipation is formed. The thermodynamic prerequisite required for the occurrence 

of this process is a more negative potential of the electron acceptor, and a more positive potential 

for the holes of the valence band against the oxidation potential of the donor.  

     An ideal photocatalyst must present the following characteristics [52]: 

 High photoactivity. 

 Biological and chemical inactivity. 

 Stability against corrosion. 

 Mechanical robustness. 

 Suitability towards visible or near UV light. 

 Low cost. 

 Lack of toxicity. 
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     A wide range of inorganic semiconductors is used for photocatalytic applications. Band gap 

energies of the widely used semiconductors are presented in Table I. 1.  

 

Table I. 1. Band gap energies of semiconductors employed in photocatalytic processes [57]. 

 

     Some of the photocatalysts do not guarantee long-term activity within the photocatalytic 

process. Binary metal sulfides like CdS, CdSe or PbS, with narrow band gap providing the 

advantage of absorbing the visible light, illustrate an example of unstable semiconductor for 

catalysis in aqueous media when they experience photo-anodic corrosion. To prevent this 

drawback, numerous works suggest the addition of sulfide and sulfite to the contacting solution 

[58]. These materials are worldwide known as toxic compounds.  

     Hematite (α – Fe2O3), presenting a band gap of about 2.2 eV, could be a potential photocatalyst 

in the visible range, but demonstrates much lower activity than TiO2 or ZnO, certainly because of 

corrosion or the creation of short-lived metal-to-ligand or ligand-to-metal charge-transfer states as 

demonstrated by Trillas et al [59]. Both  ZnO and TiO2 anatase have band gap energy of about 3.2 

eV, but zinc oxide is known to be more unstable in illuminated aqueous solution, with hydroxide 

species being created on the particle surface allowing the catalyst deactivation [60]. Wu et al [61] 

also detected a higher TiO2 photocatalytic activity in comparison to that of SnO2.  

     Heterogeneous photocatalysis based on oxide semiconductors is a promising technique for the 

inhibition of microbial proliferation and to reduce the growth of microorganisms. Titanium dioxide 
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is capable to catalyze the degradation of organic substances and it becomes highly hydrophilic 

under UV illumination, which turns TiO2 to be an interesting antifouling material [62]. 

 

I.6. TiO2 structures, electronic properties and photocatalysis 

 

     Titanium dioxide (TiO2) presents high photocatalytic activity and chemical stability, non-

toxicity and low cost, and consequently it has become the most widely used photocatalyst. TiO2 

has been widely used as white pigment in paints, plastic, paper, cosmetics and foodstuffs.  

     TiO2 has three crystalline forms in nature: anatase (tetragonal), rutile (tetragonal) and brookite 

(orthorhombic) as represented in Figure I- 9. The majority of these phases appear exclusively at 

high pressure. The unit cells of the TiO2 crystal structures are presented in Table I. 2 [63].  

     Rutile is stable and chemically inert. Rutile is able to be excited by both UV and visible light 

[64]. Anatase can be converted into rutile at high temperatures between 400 and 700 °C, and is 

able to be excited by UV light. Both phases show a tetragonal, ditetragonal and dipyramidal crystal 

structure; although they diverge from each by the different space group lattices. Brookite goes 

through a non-reversible phase transformation into rutile when heated at high temperatures between 

700 °C and 900 °C. Additionally, TiO2 can exist in less common crystal forms, for example, 

baddeleyite, columbite, ramsdellite, hollandite and monoclinic structures [65]. 

 

                      Figure I- 9.  Crystal structures of TiO2 rutile, brookite and anatase , from left to right 

(Reproduced from Esch et al., 2014 [63]). 
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                  Table I. 2. Crystal structure parameters of anatase and rutile TiO2 [66]. 

 

     Rutile form presents a more stable thermodynamic behavior and a higher refractive index than 

anatase, which makes it more suitable for optical applications. In contrast, anatase is the most 

adequate form for the photocatalytic process, solar cells and gas sensing, as a result of greater 

charge carrier mobility and its catalytic properties [67]. The crystal structure parameters of the TiO2 

anatase and rutile are given in Table I. 2 [66]. The anatase-rutile phase transformation is affected 

by several causes, for example, particle size, stress, texture and also pressure. It has been found 

that the temperature of anatase-rutile transformation increases when the particle size is increased. 

Li et al. [68] showed that a decrease in the nanoscale particle size, e.g. from 23 to 12 nm, resulted 

in a higher anatase stability.  

     TiO2 presents a band gap energy of approximately 3.2 eV, therefore, its photoactivation 

demands radiation with light of wavelength less than or equal to approximately 380 nm, having a 

maximum activation at approximately 340 nm [66]. The valence band of wide-gap rutile and 

anatase is formed by O2p states, whereas the conduction band is made of Ti 3d states [69]. The 

electrical properties are dependent on the crystallographic direction. Titania crystals are considered 

a wide-gap semiconductor, which present high resistivity (~1015 Ωcm) [70] and present various 

sorts of ionic imperfections: titanium interstitials, titanium vacancies, bulk oxygen vacancies and 

reduced crystal surfaces that are considered to create shallow electron donor levels cooperating 

with the electric conductivity of TiO2 [71].  
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I.6.1. Mechanisms of TiO2 photocatalytic activity  

 

     Photocatalyst properties of TiO2 are strongly based on its hydrophilic character and ability to 

catalyze the degradation of organic substances. Both of them are induced by UV illumination. The 

UV radiation provided by a strong daylight presents enough intensity to maintain the strong 

hydrophilicity and photocatalytic degradation. Photocatalytic decomposition is the major cleaning 

mechanism in applications such as water and air purification [72]. The photocatalysis performance 

depends on the quantity of radicals created from the reactions of H2O and O2 on defect sites of UV 

illuminated TiO2 surfaces. Radicals (such as O2 −, •OOH, •OH), other active species (H2O2), 

electrons or electron holes of TiO2 can react with organic matters. Moreover, dissolved oxygen 

plays a considerable function in the degradation reactions [73]. The end products are predominantly 

CO2 and H2O. Depending on the decomposed compound, numerous intermediate products can be 

formed during the degradation [74].  TiO2 being a semiconducting oxide that, under irradiation, 

behaves as a powerful oxidizing material, reducing the activation energy for the decomposition of 

organic/inorganic molecules. The necessary energy to promote electrons is influenced by the 

semiconductor band gap that represents the lowest energy required to transform the material into 

an electrically conductive material. TiO2 anatase presents a band gap of about 3.2 eV and rutile 

phase presents a band gap of approximately 3.0 eV, which corresponds to photons with a 

wavelength of 388 nm and 413 nm, respectively [75].  

     The adsorption of organic compounds or water on TiO2 surface is advantaged by the 

superhydrophilicity of the TiO2 surface that leads to a contact angle less than 5° under UV light 

irradiation. The superhydrophilicity originates from modifications in the chemical configuration of 

the semiconductor surface [76]. As presented above, the major part of the photogenerated holes 

produces hydroxyl radicals by reacting with the adsorbed species, whereas the others are grabbed 

by lattice oxygen vacancies and, reacting with the titania molecules, induce a weakening of the 

lattice titanium-oxygen ions bonds. The inhibition of these bonds allows water to produce 

additional hydroxyl groups on the TiO2 surface under UV light irradiation[77].  

     The effect of light modifications on the titania photo-induced performance and its structure 

changes has received considerable attention from researchers, whose objective is to improve the 

semiconductor performance. It is possible to understand better water and air pollution control, self-

cleaning glasses and antifogging by controlling the hydrophilicity phenomenon.  
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I.6.2.  Self-cleaning properties of TiO2 

 

     A photocatalytic material can be considered self-cleaning if the rate of destruction/removal of 

the surface contaminants is higher than the rate of deposition of the contaminants. If a too thick 

layer of contaminants is accumulated on the surface, it will eventually impede all the essential UV 

light and the photocatalytic reactions will finish. 

     In several situations, photocatalysis alone is not sufficient to provide the surface self-cleaning 

in practice. TiO2 surfaces have another property, in addition to photocatalysis, which leads to the 

self-cleaning ability: the photoinduced superhydrophilicity. This effect was first reported in 1997 

by Wang et al. [76].  Many studies have shown that under UV irradiation the surface of TiO2 

becomes highly hydrophilic. The contact angle between a water droplet and the surface approaches 

zero and instead of forming droplets water forms a thin film on the surface which remains clear 

and transparent. 

     Different explanations for the photoinduced superhydrophilic effect have been given in the 

literature. The first proposed model assumes the ejection of oxygen atoms from the TiO2 lattice 

leading to the production of surface oxygen vacancies [76]. These defects are known to induce 

water splitting which would then lead to increase the number of surface hydroxyl groups and 

improve the surface hydrophilicity [78]. The second model suggests that an important 

reconstruction in the surface hydroxyl groups happens under UV irradiation [79]. A more 

hydrophilic surface is produced when an increased quantity of metastable weakly bound hydroxyl 

groups are presented after UV irradiation. The third explication, and the most simple, proposes that 

superhydrophilicity is an intrinsic property of clean TiO2 surfaces and that decrease in water contact 

angles under UV irradiation is just created by the photocatalytic oxidation of surface hydrocarbon 

impurities [78]. 

     Although the ongoing discussion about the current mechanisms, the revelation of the 

superhydrophilic property resulted in a big interest towards TiO2 surfaces and many applications 

began emerging on the market. Photocatalytic TiO2 thin films can be applied as self-cleaning 

surfaces to combat fouling problems in many types of environments.  

     The most famous examples are self-cleaning windows fabricated by Pilkington, PPG and Saint 

Gobain. Photocatalytic reactions on the surface of TiO2 decompose the accumulated organic dirt, 

and consequently clean the surface with the presence of UV light. Superhydrophilicity of the 
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irradiated TiO2 facilitates the removal of any dirt on the surface by washing with water. 

Additionally to the windows, photocatalytic self-cleaning surfaces impede fouling in many other 

applications like bathroom tiles, lamp covers in highway tunnels, building walls, etc [80].  

 

I.6.3. Structural design and properties of TiO2 photocatalysts 

 

     TiO2 nanostructures in various shapes are used in multiple applications because of their 

particular size-related properties. The energy band structure becomes discrete for nanometer-scale 

TiO2, and its surface, photochemical, and photophysical properties are rather different from those 

of the bulk ones as a result of the quantum size effect. For this reason, a lot of works have focused 

on targeted synthesis of nanocrystalline TiO2 with a large specific surface area [81,82]. 

Many aspects have been considered with the maximized surface area. The diffusion of reactants in 

and out of the surface region must be quick. Since light is necessary for the photocatalytic reactions 

the piece geometry must allow the light to reach the surface area as more as possible. Thus, 

photocatalysts having high surface areas have been made by introducing materials with nanoscale 

geometries. Thin film deposition process can be employed to develop nanostructured 

photocatalysts but because of large surface areas and complex three-dimensional structures 

involved, highly conformal film growth is necessary. 

     The construction of TiO2 nano- or micro-structures with interesting morphologies and 

properties has recently attracted considerable attention [83] and many TiO2 nanostructural 

materials, such as spheres [84], nanorods [85], fibers [86], tubes [87], sheets [88], and 

interconnected architectures [89], have been fabricated. Nanostructured TiO2 materials are widely 

used not only in photocatalysis, but also in dye-sensitized solar cells (DSSCs) [90], lithium-ion 

batteries [81], and electrochromic displays [91]. 

     In the different TiO2 applications, its antimicrobial action has attracted a lot of interest in the 

last few decades. A lot of works have been published on the efficiency of TiO2 thin films as 

antimicrobial systems, for bacteria, viruses, fungi and algae disruption. The TiO2 unification also 

allows the reduction of fouling and at the same time highly improves water permeability and self-

cleaning ability. 

     It is widely known that various elements influence significantly the photocatalytic performance 

of TiO2, such as the crystallite size, specific surface area, pore volume, pore structure, crystalline 
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phase, and the exposed surface facets. Consequently, the enhancement of this performance by 

setting these elements remains the aim of photocatalysis research. Structural dimensionality is also 

an element that can influence the photocatalytic performance, and presents an important effect on 

the properties of TiO2 materials as represented in Figure I- 10. For instance, a sphere with zero 

dimensionality presents a high specific surface area, leading to a higher rate of photocatalytic 

decomposition of organic pollutants [92]. One-dimensional fibers or tubes have advantages with 

respect to less recombination as a result of the short distance for charge carrier diffusion [93], light-

scattering properties [94], and fabrication of self-standing nonwoven mats [95].  

     Two-dimensional nanosheets present  high adhesion and smooth surfaces [96], as long as three-

dimensional monoliths can have high carrier mobility as a consequence of their interconnecting 

structure and be used in eco-friendly decontamination. TiO2 materials with the appropriate 

dimensionalities allow us to take full advantage of the extraordinary properties provided by TiO2 

materials. 

 

 

Figure I- 10. Illustration of structural dimensionality of materials with expected properties (Reproduced 

from K. Nakata and A. Fujishima, 2012 [97]). 
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I.6.4. Role of crystal size and surface area of TiO2 on its photoactivity 

 

     It has been reported that thin films having a large surface area with high porosity and good 

transparency to the visible light can be efficient photocatalyst materials [98]. 

 Increasing the light absorption is well-known in small nanocrystals where the surface to volume 

ratio is very high. The interface improvement of the absorption becomes significant when the 

particle size is about 20 nm [67]. An extra advantage acquired in nanoparticles in the few nanometer 

size regimes is that the large surface-to-volume ratio allows the timely usage of photogenerated 

carriers in interfacial process [99]. 

     As photocatalysis is a surface phenomenon, surface area is crucial in determining the quantity 

of reacting sites, and charge carriers have to be employed correctly to enhance their ability to launch 

surface reactions. At the same time, TiO2 crystallinity must be high to avoid the recombination of 

charge carriers (e- and h+). The energy conversion efficiency on TiO2 is influenced by many factors, 

for example, surface area, e-- h+ recombination rate, and solar energy spectrum [67]. The surface 

area and crystallinity of the TiO2 powder must to be improved in order to have an efficient 

photocatalysis. 

     Gerischer [100] created a model based on the mechanistic stages in photocatalysis on TiO2 that 

concludes an important increase in quantum yield (defined as the ratio of electron–hole pairs 

involved in redox reactions at the surface of the titanium dioxide particles to total electron–hole 

pairs produced) when particle size decreases from 1000 to 10 nm. As long as the performance of 

light absorption reduces with decreasing the particle size, less electron–hole pairs are generated. 

The increase in quantum yield predicated by Gerischer’s model depends on a large portion of 

electron–hole pairs participating in redox reactions at the surface when few electron–hole pairs are 

created inside the particle. 

     Grela and Colussi [101] created a computer stochastic model that indicates an increase in 

quantum yield when the particle size increases from 3 to 21 nm. The increasing of quantum yield 

was also accompanied with  a slow rate of electron–hole recombination at the surface [102]. 

     Grela and Colussi model shows that slower electron–hole recombination when particle size 

increased to 21 nm is a consequence of two hypotheses made in the model: (i) the average initial 

distance between electron–hole pairs is proportional to the radius of the TiO2 particle (R), and (ii) 
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the average number of jumps before a free hole at the surface recombined with a trapped electron 

is proportional to R2 [101]. 

 

I.6.5.  Synthesis of TiO2 nanomaterials 

     Nanostructure of TiO2 can be synthesized through several methods. The most used methods are 

sol-gel, hydrothermal method, direct oxidation, microwave method, chemical or physical vapor 

deposition and also atomic layer deposition. 

     Generally, liquid phase deposition methods take place at low temperature and create amorphous 

TiO2; a separate annealing step is essential in order to crystallize the film. TiO2 thin films made by 

the sol-gel technique usually require annealing at around 400-500 °C in order to be crystallized 

[103]. Polycrystalline TiO2 can be produced directly more easily by vapor phase methods, as 

crystalline anatase TiO2 at much lower temperatures, close to 200 °C. Besides, gas phase methods 

normally ensure high quality thin films with lower impurity and higher film densities. 

     In the present work, TiO2 films were synthetized by aerosol assisted chemical vapor deposition 

method (AACVD).  

   

I.6.6.  Synthesis of TiO2 films by Chemical Vapor Deposition and its 

photocatalysis properties 

 

     Chemical vapor deposition (CVD) is a widely employed material-processing technology, based 

on a deposition method where chemical precursors are transferred in a vapor state to decompose 

on a heated substrate to create a film as illustrated in Figure I- 11. The films ca be epitaxial, 

polycrystalline or amorphous as a function of materials characteristics and reactor conditions. This 

technology is able to deposit films with a conformal and complex coverage. The CVD can be 

performed in various environments with improved equipment and different products in order to 

deposit a large diversity of materials. CVD has become the main method of film deposition for the 

semiconductor industry as a result of its high capacity, high purity and low cost operation. 

Moreover, CVD is commonly used for optoelectronics, optical and wear resistant coatings. 
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Figure I- 11: Schema of CVD system. 

     In general, CVD may be conducted in hot-wall or cold-wall reactors usually bellow 10-6 Pa and 

up to atmospheric pressure, with or without carrier gases, and at temperatures normally varying 

from 200 to 1600°C. The advanced CVD methods include the use of plasma, ions, photons, laser 

or combustion reactions in order to boost deposition rate and/or decrease deposition temperature. 

The CVD derivatives involve metal-organic CVD, organo-metallic CVD and inorganic CVD 

[104]. CVD has been employed in various studies to develop photocatalytic TiO2 thin films [105] 

[106]. Generally, CVD reaction is employed where a titanium alkoxide vapor is controllable over 

the substrate at a defined temperature where the titanium precursor molecules decompose leading 

to TiO2 growth [107] [108]. During the chemical reaction,  O2 reacts with the titanium precursor 

[109]. Plasma enhanced CVD (PECVD) has been applied to deposit photocatalytic TiO2 thin films 

using Ti(iOPr)4 and O2 plasma [110]. A halide precursor, TiCl4, in conjunction with ethyl acetate 

as the oxygen source can also be employed in the CVD of photocatalytic TiO2 thin films [106], 

[111]. The films were photocatalytically active in the degradation of stearic acid by UV light and 

also become superhydrophilic after irradiation. 

It was reported that when the CVD deposition temperature is increased for TiO2 thin films with 

about 1- 2 µm of thickness, the layer presents a (112) preferential orientation and it corresponds to 

an optimum photocatalytic Benzene decomposition rate. As the deposition temperature increases, 

columnar structure is formed in vertical direction from the interface between the film and substrate 

that leads to a higher degree of the (112)-preferred orientation [109]. This agrees well with 

Weinberger and Garber [112]  who said that the columnar structure of TiO2 films grown with 
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preferred orientation revealed more surface area for photocatalytic reaction  (columns with 

preferred orientation are separated by small voids). 

     Krumdieck et al [74] reported that the photocatalytic activity of the coatings is greatly dependent 

on deposition temperature. The films deposited by CVD at 375°C had very low photocatalytic 

activity and the films deposited at 400°C and 425°C were slightly more active but the film 

deposited at 450°C presented the highest photocatalytic activity [74]. The high temperature of rod 

sample presenting very small diameter expands through the film thickness, and leads to high 

growth rate in the preferred growth direction. Consequently, the surface-to-volume ratio of the 

samples increases, which according to Manna et al. [113] ensures higher interfacial charge carrier 

transfer rate and increases the delocalization of carriers in the samples, hence reduces the electron-

hole recombination probability. This is consistent with the increasing of methylene blue dye 

reduction rate for the films deposited at 450 °C [74]. 

     Maury et al. [114] reported that decomposition rate of Orange G by TiO2 films increases strongly 

with TiO2 thickness until approximately 300 nm for coatings deposited by AP-MOCVD on 

stainless steel. It was reported that when the film is dense and too thick, most of the electron-hole 

pairs are generated too deeply in the bulk of TiO2 and they never reach the surface. On the other 

hand, if the film is too thin, only a small part of the incident light is absorbed by the TiO2 film and 

the photocatalysis is low. Maury et al showed that the critical thickness necessary to obtain super-

hydrophilic films seems to be the same one found for the maximum photocatalytic activity [114]. 

They have also reported that TiO2 film deposited at 400°C containing only anatase phase with (1 0 

1) preferred orientation presents a higher decomposition rate of Orange G solution compared to 

films deposited at higher temperatures containing rutile phase.  

    Some researchers have compared the photoconductivity between anatase and rutile phases, and 

they have shown that charge carrier, electrons and positive holes lifetime are higher for anatase.   

The rate of recombination is significantly higher for rutile. This recombination slows the 

photodegradation of the pollutants because it limits the formation of oxidizing species necessary 

for the mineralization of organic matter on the surface [115,116]. 

     Neatu et al reported [117] several important features, which make photocatalysts more efficient, 

as represented in Table I. 3. 
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Table I. 3. Desirable properties of a photocatalyst. Adapted from Neatu et al, 2014 [117].  

How to accomplish the property Property Effect 

Small particle size                                             High surface area                  High adsorption 

Crystalline material                                          Single site structure               Homogeneity 

Engineering band gap                                       Light absorption                    Higher efficiency 

Preferential migration along                Efficient charge separation                 Low recombination 

certain direction 

High crystallinity                    High mobility of charge carries   More efficient charge separation 

 

 

I.7. Biofouling and corrosion in marine structures 

 

     Biofouling can be clearly defined as the growth of very small organisms (microorganisms) and 

macroorganisms such as bacteria, fungi, and algae on surfaces. If these organisms provoke an 

accumulation, it will induce the formation of destructive biofilms that cause problems in a wide 

range of industrial processes[118]. Different methods are used such as membrane filtration 

systems, cooling towers in the energy sector, and ship hulls in the marine environment. It menaces 

food safety, food security, health, safe drinking water, and electricity production.   

    A lot of research has been made in order to investigate the mechanisms of bacterial attachment 

to surfaces and biofilm formation leading to biofouling [119].  

    Biofouling consists in two main aspects: microfouling and macrofouling. Microfouling means 

the formation of biofilm and adhesion to the surface, and macrofouling is described as the adhesion 

of organisms like barnacles, diatoms and sea weed to create a fouling community. The growing 

bacteria and the chemicals produce microfouling, also mentioned as ‘slime’ that expands on objects 

immersed in water. After few days, macrofouling expands as unicellular eukaryotes, such as 

protozoa and diatoms that colonize the surface. Multicellular eukaryotes start colonizing the 

surface during many weeks and include colonization of meroplankton larvae and algal spores. 

     Marine environment is a hard milieu that causes corrosion and biofouling for marine structures. 

Biofouling creates large operational losses for the shipping industry. A great extent of fouling on 

the ship’s hull notably increases the requested drag force, contributing to the drop in the whole 
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hydrodynamic performance of the vessel and increasing the fuel consumption. For these reasons, 

ships’ owners are concerned with using high-performance coatings that inhibit corrosion and 

fouling development on the ships’ hull. Rigorous environmental legislations and the needs to 

reduce fuel consumption have led to the development of new antifouling technologies. It has been 

demonstrated that the increase of roughness made by a heavily fouled ship hull may lead to get a 

penalty of up to 86 % at cruising speed and rather light fouling by diatom slimes can produce 10 -

16 % of penalty [120]. 

     Marine coating producers are in general careful in adopting new technologies. Nevertheless, 

more and more strict environmental legislation, accompanied by customer inclination for more 

eco-friendly solutions, is pushing innovation in the market. 

    Diverse methods have been employed to minimize and control the accumulation of biofilms on 

surfaces. The employ of chemical products has been dominating for a long time, although their use 

is under serious inquiry as a result of injurious effects they have on the environment. Tributyltin 

oxide (TBT) for example was used as an additive to coatings for more than 40 years and it was 

very efficient. The use of this chemical agent has been prohibited in almost all countries because 

of its detrimental effects on the environment causing the toxicity of organisms and marine fauna 

leading consequently to carcinogenicity in human beings [121]. Physical methods such as manual 

cleaning are not appropriate for all surfaces and these limit their applicability. 

     Research over the last two decades was mostly concentrated on surface modification in order to 

develop self-cleaning surfaces.  

     Fouling can be divided in four main forms such as scaling, silting, biofouling and organic 

fouling [122,123], as shown in Figure I- 12. The various types of fouling usually happen at the 

same time and may interact with each other [124]. For all these types, controlling of biofouling is 

complicated, which is due to the antimicrobial resistance. 

 

 



Chapter I: State of the art 

 

33 

 

 

Figure I- 12.  Different types of fouling [125]. 

 

I.7.1.  Biofouling process 

 

     Wet environments provide best conditions for the increase of microorganisms. In the natural 

mediums, the majority of bacterial mass exists in biofilms attached onto surfaces. This can be 

explained by the fact that nutrients are adsorbed on surfaces. As a biofilm, bacteria are less likely 

to be swept off to aggressive circumstance and are less susceptible to antibiotics [126]. A lot of 

environmental parameters, for example, temperature, pH, iron availability and oxygen tension can 

stimulate the development of microorganisms from planktonic cells (individual microorganisms) 

to biofilm mode [127]. 

     The consecutive steps of biofilm development seem to be preserved among a large extent of 

bacteria [128]. As reported by Flemming and Schaule [129], the process of biofouling can be 

separated in various stages. The processes from first surface settlement to a full biofilm maturation 

are illustrated in Figure I- 13 [130]. 
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Figure I- 13.  Sequential steps in biofilm formation (Reproduced from M. Tiranuntakul, 2011 [130]). 

 

     All industrial systems except operating under sterile conditions, are vulnerable to biofilm 

formation [131]. This generates hygienic and functional issues to several kinds of devices and 

equipment, resulting in important financial losses. Metals and their alloys are quite susceptible to 

microbial colonization and this induces biofouling and finally material failure. 

 

I.7.2. Current research in antibiofouling fields 

     Nowadays, the dominant tendency to resolve the biofouling is to do modifications in the surface 

characteristics. Developing of self-cleaning surfaces presenting antimicrobial function is the main 

objective to remove the attached microbial compounds. When the biofilms colonize a surface, they 

change the surface properties and establish adhesion properties. Consequently, the modification of 

surfaces to avoid the first steps of biofilm attachment is indispensable for biofouling controlling. 

     Many researchers develop advanced materials with hydrophilic surfaces as a good method to 

control fouling [132]. It is generally considered that hydrophilic surfaces present lower fouling 

potential compared to their hydrophobic counterparts [133]. It is supported by the fact that a 

hydrophobic material may generate other nonpolar or hydrophobic compounds to be adsorbed onto 

its surface generating fouling [134]. 



Chapter I: State of the art 

 

35 

 

     The principal challenge in developing an active fouling-resistant coating is that the variety of 

fouling organisms is enormous, as represented in Figure I- 14, and the type of mechanisms applied 

is diversified. The settlement steps of fouling organisms vary in size from few micrometers to 

hundreds of micrometers or millimeters [135]. The surface size and topography are important in 

order to avoid the growth of fouling organisms. 

 

 

Figure I- 14. Variety and size scale of typical fouling organisms (Reproduced  from J.A Callow and M.E 

Callow, 2011 [135]).  

     When an organism settles its needs to colonize a surface and grows into adult, its growth in a 

violent marine environment is influenced by the capacity of the macromolecular adhesive polymers 

secreted by the settled organisms. This is related to the interfacial molecular interactions that are 

in turn depend on the properties of the surface or coating at the molecular or nanoscale level [135]. 

     The vast majority of commercial fouling resistant coatings are made with poly 

(dimethylsiloxane) elastomers (PDMSe). These polymers are hydrophobic, non-polar and present 

low surface energy (~22 mN m− 1) and for this reason they are presumed to have low adhesion of 

polar molecules because of limited opportunities for H-binding and polar interactions [136]. 

     Despite the fact that PDMSe show the requested association of low surface energy (to reduce 

the work of adhesion) and low modulus, these types of coatings present some disadvantages. They 

are complex to bond to a substrate without an adequate tie coat as they present low surface energy. 

At the same time, they are less durable, more easily broken than other sorts of coatings and they 



Chapter I: State of the art 

 

36 

 

are not capable to decompose slimes governed by diatoms that bind strongly to  hydrophobic 

surfaces [137]. 

     The antifouling technology is considered potent when employed in high-activity for fast-

moving ships (> 15 knot) and is less appropriate for ships that spend long time in a port or that use 

lower speeds to keep fuel efficiency. For these interests, there are extensive studies to develop 

antifouling technologies [136]. 

     Field immersion test in natural seawater is required to examine the antifouling property as 

revealed in laboratory circumstances because there are several environmental conditions that 

cannot be reproduced in the laboratory [138]. The majority of static field test, not directly affected 

by high current velocities, and conducted in coastal or port waters is touched by turbulence 

generated by wind and boat wakes that can influence larval growth [139]. 

     Short-term field tests are commonly employed in field exposures having a duration of not more 

than one month. This test may be enough to expose the coating to a great number of fouling 

organisms in the field and investigate the physical integrity of the coating over short period under 

real conditions. Short-term field testing is mostly employed to collect initial fouling settlements. 

The best coating performer can be elected after screening quickly the large-scale arrays [134]. 

Following the first evaluation of activity, the next step would implicate a scale-up and 

implementation of inspiring coatings onto huge panels composed of thick multi-layered coatings 

that agree with the ASTM requirements [140]. Promising coatings can be put in normal 10 by 12 

inches panels using ASTM [140] rules for coating field characterization. Smaller panels 4 by 8 

inches can be employed if dimensions and cost are limited.  The effective time of the field 

immersion tests can differ from one test to another due to the variation in composition and density 

of fouling communities according to seasonality. Whatever the experiment, it is crucial to compare 

the results with a controlled coating.  

     Priyankha et al.[141] reported that ZnO nanorods (nanocoating) synthesized by sol-gel process 

prevents biofouling by producing reactive oxygen species under visible light irradiation. Other 

works have also reported that  photocatalytic materials like TiO2 and ZnO are able to degrade an 

extensive variety of contaminants [142]. 

     It is reported that under irradiation, ZnO generates reactive oxygen species (ROS) which cause 

microbial cell membrane damage and increase oxidative stress ultimately leading to cell death as 

represented in Figure I- 15 [141].   
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Figure I- 15.  Mechanism of antifouling action (Reproduced from S. Priyanka et al., 2017 [141]). 

 

I.8.  An additional advantage of TiO2 on steel substrates: photocathodic 

protection 

 

     TiO2 films coated on metallic substrates like steel can perform a source of electrons under UV 

light and can provide a cathodic protection [143].   

     Yuan et al.[144] reported that the TiO2 coatings can be applied to cathodic protection of metal 

upon illumination. It implies that a semiconductor materials as TiO2 act as a photoanode, which is 

known as the photocathodic protection. During this process, the photoelectrons created in the 

conduction band can be moved to the metal to be protected under UV illumination. Consequently, 

the potential of the metal can be shifted in the negative direction [145]. If the potential is more 

negative than the potential of the metal to be oxidized, the metal can be protected against corrosion.  

     Ohko et al. [146] showed that TiO2 film coated stainless steel produces photoelectrons which 

are transferred directly to the metal substrate to provide a cathodic protection of the stainless steel 

substrate under UV irradiation as represented in Figure I- 16. 
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Figure I- 16: Mechanism of the photoelectrochemical anticorrosion effect of TiO2 for metals (Reproduced 

from Y. Bu and J.P Ao, 2017[143]).  

     Bamoulid et al.[147] studied the performance of TiO2 films for improving the anticorrosion 

properties of a metallic substrate. They combined the use of a conversion coating and a sol-gel 

TiO2 top-coat to protect a ferritic stainless steel against corrosion. The TiO2-coated samples resisted 

the salt spray test within 500 h whereas the bare samples and the samples coated with a single 

conversion coating presented clear signs of corrosion. 

     Gluszek et al. [148] employed plasma assisted chemical vapor deposition (PACVD) to grow 

TiO2 coatings on the surface of surgical grade 316L samples. The corrosion resistance of the coated 

samples was evaluated through polarization curves and EIS (Electrochemical Impedance 

Spectroscopy) measurements in Ringer’s solution. The presence of the TiO2 layer eliminated 

pitting corrosion, expanding the passivity region of the 316L samples up to 3 V. The bare alloy 

presented a breakdown potential at approximately 0.2 V. The corrosion potential was shifted to 

nobler values and the corrosion current density decreased two orders of magnitude. 

     Krishna et al.[149] prepared TiO2 coatings on stainless steel, and they found that the corrosion 

resistance of stainless steel was improved with TiO2 coatings. 

     Shen et al.[150] reported the corrosion protection of 316 L stainless steel by uniform TiO2 

nanoparticulate coatings prepared by sol–gel method. They found that the TiO2 coatings exhibited 

very good corrosion resistance by acting as a protective barrier on the steel surface.  

     Antunes et al.[151] investigated the effect of the deposition temperature on the corrosion 

performance of the TiO2 films deposited by MOCVD on Silicon wafers. The TiO2 films were stable 

during the polarization tests, independently of the deposition temperature. The current density 

decreased sharply at the beginning of the test, indicating the passive nature of the TiO2 films. 
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I.9. Objective of PhD thesis 

 

     The rising demands for eco-friendly materials presenting antibiofouling and anticorrosion 

properties for marine applications present a challenge to develop advanced coatings. In this context, 

the main objective of this thesis is to employ high quality DC magnetron sputtering and chemical 

vapor deposition techniques to deposit Al-Zr/TiO2 bilayer coatings combining anticorrosion and 

antibiofouling properties. Al-Zr is known for protection of metallic structures against corrosion 

and TiO2 films improve their photocatalytic activity under UV illumination. As well, biofouling 

field tests in natural seawater, at a depth of 50 cm (Atlantic Ocean, Kernevel Harbour, France) 

were carried out in order to evaluate the films performance in the real environment. Given the 

promising characteristics of Al-Zr/TiO2 films, this work will focus on the elaboration and 

characterizations of TiO2 and Al-Zr bilayer films.  
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     Physical Vapor Deposition (PVD) technologies are widely used for the synthesis of thin layers. 

In PVD processes, the coating is deposited by condensation from a flux of neutral or ionized atoms 

of metals. The different PVD processes can be distinguished via the type of the transfer of  metallic 

species and the plasma conditions employed during the deposition process [1]. 

      Magnetron sputtering is a PVD technology commonly used because of its high deposition rate 

and good film performance (reproducibility, homogeneity, etc.). This technique is compatible with 

the synthesis of films on large surfaces. Sputtering method uses argon ions for bombarding a 
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cathodically connected target made of the coating material. Sputtered target species are condensed 

on the cold substrate surface leading to layer growth. 

      In order to develop new Al-Zr coatings as sacrificial anodes we first studied the effect of the 

zirconium content on the properties of Al-Zr alloys deposited by DC magnetron sputtering. 

     The first part of this chapter will be devoted to the description of the production process as well 

as the deposition conditions for the coating synthesis. The microstructural and physical properties 

will be discussed in the second part. 

 

II.1. Direct Current Magnetron Sputtering  

II.1.1. Principle of magnetron sputtering 

 

     Nowadays, sputtering technique is used at industrial scale for many applications. An abnormal 

glow discharge is produced by applying a voltage in the order of 1 to 3 kV between the cathode 

(the target) and the anode (the walls of the grounded reactor) in a rarefied atmosphere of argon at 

a pressure reduced generally between 0.1 and 10 Pa. As a result, partially ionized plasma composed 

of electrons, ions and neutral species is formed between the two electrodes. Positive ions are 

accelerated towards the negatively polarized target under the effect of a local electric field and 

these ions bombard the target's surface. Several mechanisms can be produced on the surface of the 

target: 

- Ejection of an atom from the target by momentum transfer. 

- Implantation of the incident ion. 

- Reflection of the incident ion neutralized by charge transfer. 

- Emission of secondary electrons which ensure the self-maintenance of the discharge. 

     The ejected atom acquires enough energy to cross the plasma and finally condenses on the first 

surface encountered. The growth of a thin layer takes place in many stages: 

- Adsorption of atoms on the substrate surface. 

- Interaction between deposited species and / or those of the substrate forming a stable bond. 

- Nucleation. 

- Volume growth. 

- Diffusion of atoms in volume in the layer and / or in the substrate. 
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     Close to the surface, the incident atom is subjected to a potential energy formed by the atoms 

of the surface. The interactions involved are Van der Waals interactions. This atom diffuses on the 

substrate surface during a time that depends on the interactions between the adatoms, the substrate, 

the temperature and the deposition rate. During its diffusion, it chemically binds with the substrate 

on a favorable site (Chemisorption). This type of site is called germination site. When the adatom 

arrives on one of the sites already occupied, it binds to the germ in the course of formation. 

Nucleation of germs is preferably carried out at the level of the defects present on the substrate 

surface.  

     The growth of films can be divided into different stages of germination and growth. These 

processes are determined by thermodynamic parameters as well as kinetic parameters. The actual 

growth mode is determined mostly by the conditions such as deposition rate, temperature and 

pressure. 

     A thermodynamic criterion developed by Bauer [2] for the growth mode in equilibrium 

conditions is given by the following equation: 

Δσ = σf + σi – σs    II. 1 

 

With:  

σs = surface energy of the substrate,  

σi = free enthalpy of the film-substrate interface, 

σf = free enthalpy of the film surface 

     It is possible to distinguish three growth modes from this criterion (Figure II- 1). 

     If Δσ ≤ 0, the atoms are bound more strongly to the substrate than the ones to the others and the 

films tend to extend over the substrate to minimize total energy. In this condition, a full recovery 

of the substrate by the films is favorable and the growth mode of Frank van der Merwe (layer-by-

layer type) is observed. 

     If Δσ ≥ 0, the atoms are bonded to each other more strongly than they are bound to substrate. In 

this case, the Volmer-Weber growth mode (of the island type) is obtained. There is a third 

possibility: Δσ can change from a negative value to a positive one depending on the thickness of 

the film. This comes from the strain energy, proportional to the thickness of the film, which can 

bring additional energy to Δσ. In in this case, the growth mode of Stranski-Krastanov (mixed type) 

is obtained. 
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Figure II- 1. Diagram of the three growth modes of thin films: Morphology of a film by the mechanisms of 

(a) Frank van der Merwe, (b) Stranski-Krastanov and (c) Volmer- Weber. 

 

 

     In most practical cases, the growth of the films takes place in conditions out of thermodynamic 

equilibrium, and is strongly influenced by kinetic processes. Therefore, the final macroscopic state 

of the film is not necessarily the most stable thermodynamically but the most favorable from the 

kinetics point of view. Morphology of thin layers strongly depends on the deposition conditions 

and is the subject of a so-called structure zone model (the SZMs). The first model of structure zone 

for metallic thin films was proposed by Thornton in 1977 [3]. In this model, the most important 

deposition parameters are the working pressure and the homologous temperature (the ratio of the 

substrate temperature and the melting temperature of the deposited material was used: Ts / Tm). 

The SZM's concept was extended to a more generalized situation by Anders in 2010 [3] as 

presented in Figure II- 2. In this model, Anders proposed three axes: the generalized homologous 

temperature (T *, the homologous temperature as well as the temperature shift caused by the 

potential energy of particles arriving on the surface), the normalized flow of kinetic energy of the 

particles arriving on the surface (E *, the initial energy from the plasma as well as the variation 

related to the acceleration in the reactor), and the thickness of the film (t *).  

     For magnetron sputtering, T * and E * are mainly influenced by substrate temperature and 

working pressure. During the deposition, the substrate temperature influences the mobility of the 

surface adatoms. The increase of the substrate temperature leads to increase the mobility of species 

adsorbed on the substrate surface and increasing their diffusion in volume leads to densify the 

deposited layer. The deposition pressure impacts the energy and angles between the normal of the 
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substrate and the trajectory of the incident particles. Decreasing the deposition pressure has the 

same effect as increasing the deposition temperature. Anders' model, presented in Figure II- 2, 

shows four different zones. 

 

 

 
Figure II- 2. Anders’s Structure zone diagram.[4] 

 

     Zone 1 (T / Tf < 0.25): this zone is composed of grains in the form of porous fibers separated 

by gaps. This porous morphology is due to the shading effect, which occurs during growth, and at 

a very limited surface diffusion. 

     Zone T (transition): the film growth takes place in the form of assembled fibers in a dense 

morphology, and the shading effects are minimized compared to zone 1. Consequently, the surface 

appearance is relatively smooth. 

     Zone 2 (0.25 < T / Tf < 0.5): the width of the columns is fixed on the thickness of the layer and 

the columns are organized in a dense manner separated by well-defined grain boundaries. Shading 

effects are very little present in this area where surface diffusion is important. 
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     Zone 3 (T / Tf > 0.5): The volume diffusion is predominant in this zone. Consequently, the 

recrystallization produces grains that are no longer columnar but equiaxed. 

 

II.1.2. Description of DC magnetron sputtering reactor 

 

     The Dephis 4 reactor (Figure II- 3) allows the placement of four targets with a diameter of 200 

mm. The targets are placed on the bottom of the chamber. A carbon paper spacer ensures electrical 

and thermal conduction and provides sufficient mechanical clamping of the target to the cathode. 

The rotating substrate holder consists in a stainless steel tray with 600 mm in diameter. The distance 

between the substrate holder and the targets is adjustable and could be varied between 6 and 45 

cm. In our study, we kept this distance constant at 10 cm. 

     A base vacuum of about 10-4 Pa is reached through a pumping system consisting of a primary 

pump and a turbomolecular pump.  

     The gases are introduced and controlled using brand mass flow meters Tylan. In order to allow 

stripping and bias of the substrate, the sample holder is connected to a RF power supply. This 

reactor, equipped with 4 targets, allows deposition of alloys with controlled chemical composition. 

The working pressure is controlled by either argon flow or a throttle valve. 
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                Figure II- 3.  View and scheme of the DC magnetron sputtering machine Dephis 4. 
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II.1.3. Substrates  

 

     Al-Zr alloy films were deposited on three types of substrates to be used for performing multi 

types of characterizations. Glass slides with dimensions 76 × 26 × 1 mm3 were used for 

characterizations by XRD and electrochemical measurements. High speed steel disc substrates (Φ 

30 mm x 1 mm thick) were polished and used for nanoindentation and electrochemical 

characterizations. Silicon wafers were also used to perform observations using a scanning electron 

microscope (SEM). 

     The substrates were cleaned with ethanol and acetone in an ultrasonic bath and then dried in hot 

air before ion cleaning and film deposition. 

 

II.2. Al-Zr films deposited by DC magnetron sputtering 

 

     Al-Zr alloy films were deposited from pure metallic Al and Zr targets in a pure argon 

atmosphere at floating temperature (< 80°C). The total mass flow of argon and working pressure 

were kept constant at 50 sccm and Par = 0.33 Pa, respectively. The deposition system is shown in 

Figure II- 3. 

     The substrates were positioned on a rotating substrate-holder (10 rounds per minute) ensuring a 

good homogeneity in thickness and composition of coatings.  

Bias voltage of the substrate holder allowed an ion etching with applying a power of 500W at an 

argon pressure of 0.3 Pa for 30 minutes before each deposition stage in order to improve the film 

adhesion.  

     Evolution of Zr content was ensured by fixing the aluminium discharge current at 2.0 A and by 

changing that of the Zr one between 0 and 1.3 A. The deposition conditions of Al-Zr alloys are 

shown in Table II. 1.   

     Film thickness was measured using fused quartz substrates by a tactile method using an Altysurf 

500 profilometer produced by ALTIMET. This device is equipped with an inductive sensor, 

allowing a precision of the order of 10 nm.  

     The chemical composition of Al-Zr alloy films deposited on silicon were evaluated by means 

of EDS (Figure II- 4). 
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Table II. 1: Deposition conditions of Al-Zr films. 

Samples 
I Al 

(A) 
I Zr 

(A) 
Al (V) Zr (V) 

Power Al 

(W) 
Power Zr 

(W) 
Time  

(min) 
Pression (Pa)   Ar (Sccm) 

I Al 

2.0 

- 

255 

- 

515 

- 

150 0.33 50 

II Al-Zr  0.22 180 39 

III Al-Zr  0.35 195 67 

IV Al-Zr 0,5 205 102 

V Al-Zr  1 214 214 

VI Al-Zr 1.3 215 280 

 

      

Figure II- 5 shows the variation of film thickness and Zr content as a function of current applied to 

the Zr target. It is possible to accurately control the zirconium content and confirms that the ratio 

between the atomic percentages of Zr and Al increases almost linearly with the intensity applied to 

the zirconium target.  

     Thickness also increased with the zirconium content, reaching 4.3 m for a zirconium content 

greater than 27 at. %. The incorporation of zirconium in aluminium coating increases the deposition 

rate, which is obviously associated with the increase of the total power dissipated on both targets. 
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Figure II- 4. EDS analysis of Al-Zr films deposited on silicon substrate. 
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Figure II- 5. Evolution of thickness and Zr content in films as a function of the intensity of current applied 

to Zr target (I Al = 2 A). 
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     In general, most of coatings presents stresses, which depend on the deposition parameters as 

well as on the differences in properties between the coating and the substrate. The appearance of 

compressive and tensile stresses is generally observed in films deposited by PVD[5].  

From a qualitative perspective, thin film total stress can be written as follow:  

σtot = σext + σth + σint                                     II. 2 

 where σext means the external stress due to the external loading, σth the thermally-induced stress 

and σint the internal stress[6]. In the case of our coatings σext is equal to zero, because no external 

load was applied and σth is negligible since our substrates were not heated during deposition. 

     There are several methods that can be exploited for the determination of internal residual 

stresses. As part of our study we chose Stoney's formula [6]. The following hypotheses were 

considered in order to apply this method: homogenous substrate and coating, isotropic and linear 

elastic behavior, substrate much thick compared to the film thickness, infinitesimal deformations 

and rotations, constant stress and curvature radius on the whole surface of the sample [6]. 

     The Stoney’s formula can be expressed according to the following formula: 

𝜎 =
𝐸𝑆

6 ( 1− 𝑣𝑠)
 
ℎ𝑠2

ℎ𝑓
 (

1

𝑅
−

1

𝑅0
)                             II. 3 

Where,  

𝐸S : Young’s Modulus of the substrate = 200 Gpa 

𝜈S : Poisson’s ratio of the substrate = 0.3  

hs : thickness of the substrate = 220 µm 

hf : thicknesses of the film.  

R: Curvature radius of the substrate after deposition. 

𝑅0: Curvature radius of the substrate before deposition. 

     Iron wires were used a substrate to determine the residual stresses. Before deposition, a heat 

treatment at 550°C was carried out on these samples, in a Mo device, in order to start from a zero 

stress state.  

     The curvature radius was measured by an optical profilometer Altysurf 500 before and after 

deposition considering the whole surface of the sample. A tensile stress is achieved when the 

curvature of the sample is concave and a compressive stress is considered when this curvature 

radius is convex. The positive sign is used respecting the international convention for tensile stress. 

In the opposite case, a compressive film stress is obtained corresponding to a negative value.      
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Figure II-6 shows the internal residual stresses calculated by Stoney’s formula as a function of 

zirconium content in Al-Zr alloys. The films containing 4 and 7 at. % Zr present low tensile stress. 

By increasing the zirconium content above 10 at. %, the internal residual stresses are compressive 

reaching a value of -260 MPa for Al-Zr film containing 27 at. % of zirconium.  

 

Figure II- 6. Variation of residual stress as a function of zirconium content in Al-Zr alloy films. 

 

     Generally, the residual compressive stresses are measured when a growing coating is 

bombarded by ions having energies between ten and hundreds of eV.  

     It was noticed that residual stresses take place as a result of a decrease in spacing between 

growing crystallites [7]. It will be described in more detail in the morphology discussion which 

follows in section II.3. 

 

II.3. Structural characterization and morphology of Al-Zr thin films 

 

     The structure and lattice parameters of the Al-Zr films were studied by standard X-ray 

diffraction technique using a Bruker AXS D8-Advance diffractometer with Cu Kα (λCu = 0.15418 

nm) radiation, working at 40 KV and 40 mA. The measurements were carried out with 2θ varying 
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from 35° to 90°. The acquisition time was 1 s with steps of 0.03° in θ-2θ configuration (Figure II-

7).  

     Films morphology was observed by scanning electron microscopy (SEM) using a FEI Quanta 

250 field-emission scanning electron microscope (FESEM) for high-resolution images. 

     X-ray diffraction patterns of Al-Zr films deposited on glass by magnetron sputtering are shown 

in Figure II- 6. For Zr contents below 10 at. %, the diffractograms show the well-defined diffraction 

peaks, which correspond to fcc structure, indicating the growth of a supersaturated solid solution 

of Zr in Al. When Zr contents are higher than 10 at. % diffraction peaks are broader. The peaks 

broadening is the result of grain refinement occurred when Zr content increased. Simultaneously, 

a shift of the diffraction peaks to lower values of 2θ angles was observed, which is due to a 

progressive increase of lattice parameter. The estimation of average lattice parameter of these Al-

Zr alloys from the θ angles corresponding to the (111) planes confirms that the lattice parameter 

increased from a= 4.050 Å for pure Al to a= 4.060 Å for Al-Zr alloy having 27 at. % Zr. As far as 

Zr atomic radius (0.218 nm) is greater than that of Al (0.182 nm), the lattice increase is associated 

to the substitution of aluminium atom by zirconium atom in the fcc lattice.  

     Above 10 at.% Zr, according to previous results on Al-Transition Metal (TM) coatings, the Al-

Zr films are probably a mixture of the solid solution of Zr in fcc-Al and an amorphous phase. This 

evolution is consistent with binary Al-TM (Transition Metal) alloys deposited by magnetron 

sputtering [8–12].  

      The intermetallic compounds like Al3Zr, stable in Al-Zr alloys made by conventional 

techniques are not observed in these Al-Zr films, which can be explained by the non-equilibrium 

character of magnetron sputtering technology [13]. 

     Yang et al.[14] have developed a thermodynamic model concerning the structure of Al-Zr alloys 

deposited by co-sputtering. They showed that Al-Zr alloys having a zirconium content between 

23.5 and 67.5 at. % present an amorphous phase thermodynamically more stable compared to the 

crystalline phases. Co-sputter-deposited Al-Zr alloys containing 7 at. % Zr presents a 

polycrystalline fcc structure and for films containing a Zr content higher than 22 at. %, an 

amorphous structure is detected. 

     The structure of Al-Zr (4 at. % Zr) as-deposited film after annealing at 500 °C was studied by 

X-ray diffraction in order to check its thermal stability at temperature conditions used for 

depositing TiO2 top coating by aerosol CVD. 



Chapter II: Deposition and characterization of Al-Zr thin films 

 

68 

 

     Figure II- 8 shows the XRD patterns for the high speed steel substrate and Al-Zr (4 at. % Zr) 

film deposited by DC magnetron sputtering before and after annealing in air at 500°C.  

     The well-defined diffraction peaks seem to show that there is no effect of annealing of Al-Zr (4 

at. % Zr) in air at 500 °C; in both cases, the (111) diffraction peak of aluminum at 38° is observed, 

suggesting the presence of the -Al solid solution. Nevertheless, TEM analysis of the Al-Zr layer 

after TiO2 deposition shows precipitation of the metastable Al3Zr phase (see Chapter IV/ Section 

IV.6). 

 

Figure II- 7. XRD patterns of Al-Zr coatings deposited on glass. 
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Figure II- 8.  XRD patterns of Al-Zr film deposited on high speed steel substrate before and after 

annealing at 500 °C in air. 

 

     The morphology of as-deposited Al-Zr films observed by Scanning Electron Microscopy is 

presented in Figure II- 9 and Figure II- 10. A clear dependence of the fracture cross-section 

morphology on Zr content is detected. At low Zr content, the coatings grow with a columnar 

morphology, while for Al-Zr films with higher Zr contents the films are more compact and the 

grain refinement is observed.  

     A low working pressure favors the growth of compact films. In our case the working pressure 

was about 0.3 Pa, which is considered low for magnetron sputtering technique.  In this study, the 

coatings become more compact as the transition metal content, Zr in our case, increases. 

Microstructure, morphology and stress evolutions depend on the same mechanisms. The atomic 

penning, which is the bombarding effect on the growing film surface by an energetic particle-flux 

of working gas and sputtered species, favors compactness of films, compressive stress and grain 

size refinement [15].  

     Flux and energy of neutralized and reflected working gas atoms are proportional to Mt/ Mg ratio 

where Mt is the atomic mass of the target material and Mg that of the gas, Argon in our case. The 

transition metal (Zr) is heavier than Al and consequently, increasing the Zr target power is 
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equivalent to increase the Mt / Mg ratio, which increases the in situ bombardment of the growing 

film[16]. When Zr discharge current was increased with the objective of adding more Zr, the Mt / 

Mg ratio raised up and the bombardment of the growing film was enhanced. 

 

 

                   Figure II- 9. Morphology evolution of Al-Zr alloys deposited on silicon substrates. 

 

 

 



Chapter II: Deposition and characterization of Al-Zr thin films 

 

71 

 

 

Figure II- 10. Cross-section SEM images of Al-Zr films deposited on silicon wafers. 

 

II.4. Nanohardness measurements of Al-Zr coatings 

 

     The nanohardness of Al-Zr as-deposited films were measured by a TI 980 TriboIndenter using  

dynamic nanoindentation technique to provide a continuous measurement of elastic-plastic 

properties related to indentation depth. The nanoidentation was performed at an ambient 

temperature of 20°C with an applied load of 10 mN. Twenty indentations were performed per 

measurement. 

     The main constituents in a nanoindentation test are the test material, the sensors used to apply 

and measure the mechanical load and indenter displacement, and the indenter tip. The indenter tip 

is made of diamond having a sharp and symmetric shape such as the three-sided Berkovich 

pyramid. During the nanoindentation test, force and displacement are registered during the time 

that the indenter tip is penetrated into the test material's surface with a pre-set load. The response 

of interest is the load-displacement curve [17]. 
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     The Hardness of the films is defined as its resistance to plastic deformation and were deduced 

using the equation II.4. 

𝐻 =  
𝑃𝑚𝑎𝑥

𝐴
      II. 4 

     Where H is hardness, Pmax is the peak load, and A is the projected area at peak load. 

     Evolution of nanohardness with the Zr content is presented in Figure II- 11. It is clear that an 

increase in Zr content leads to a significant rise of nanohardness. This evolution is due to the 

combined effect of the diminution of the average grain size (Hall-Petch effect), and also to the solid 

solution hardening effect.  
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Figure II- 11. Evolution of nanohardness of Al-Zr films as a function of Zr content. 

 

II.5. Electrochemical tests  

 

     Samples were degreased in ethanol, rinsed in Mili-QTM water and dried before electrochemical 

tests. The active surface was delimited using an insulating varnish and the area was 2.25 cm2. The 

electrochemical measurements were performed in an aerated and stirred chlorine solution, 5 wt.% 

NaCl, using an EG&EG 273 A potentiostat driven by M352 software. The solution temperature 

was controlled at 25°C using a Julabo F32 cryothermostat and the pH was fixed at 7 by adding a 
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dilute NaOH solution. The reference electrode was a saturated calomel electrode (SCE) and the 

counter electrode was a large platinum grid.  

     The polarisation curves were registered using a potential range of ± 150 mV around the open 

circuit potential (OCP) with a scan rate of 0.2 mV/s after 1h of immersion in the saline solution. 

The corrosion potential Ecorr and the corrosion current density icorr were predicted using Tafel 

extrapolation [20]. The evolution of OCP was recorded during 48h.  

 

II.5.1.  Electrochemical behaviors of Al-Zr alloys deposited on glass  

  

     Al-Zr films deposited on glass were prepared in order to analyze their intrinsic electrochemical 

behavior.  

     The electrochemical performances fully depend on zirconium content. Figure II- 12 shows the 

polarisation curves after 1 h of immersion in saline solution.  

     The polarisation curves present a stable passive region followed by an abrupt rise in current at 

the pitting potential, which is correlated with the breakdown of the passive film and the beginning 

of pitting corrosion. It is clear that the passive region is well defined and the corrosion current 

density depends on the Zr content.  

    The ennoblement of the alloys is related to the addition of Zr, which is characterized by an 

increase of the corrosion potential and also by the decrease of the corrosion current density. When 

Zr content was increased, an extension of the passive region was observed, which is correlated with 

an improved pitting resistance. Table II. 2 presents the electrochemical values of Al-Zr films 

deposited on glass. The corrosion current density decreased from 0.11 µA/cm2 for pure Al to 0.06 

µA/cm2 for Al-Zr with the highest Zr content. 
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Figure II- 12. Polarisation curves of Al-Zr films deposited on glass after 1h in saline solution (5wt. % 

NaCl). 

Al-Zr 

alloys 

Zr (at. %) 

Eocp 

(mV/SCE) 

Ecorr 

(mV/SCE) 

Jcorr 

(µA/cm2) 

Epiq 

(mV/SCE) 

0 -1013 -1053 0.11 -671 

3 -930 -984 0.10 -599 

4 -747 -784 0.04 -595 

7 -945 -979 0.08 -532 

27 -890 -918 0.06 -350 

 

Table II. 2. Electrochemical measurements of Al-Zr films deposited on glass substrates (deduced from 

polarization curves). 

     The decrease of the current density seems to be a result of improvement of the quality of passive 

film formed on Al-Zr alloys. The incorporation of Zr in the passive film reduces films reactivity 

and, consequently, decreases the corrosion rate.  

     Yoshioka and al. have shown that Zr has a tendency to be enriched in the passive film as a 

consequence of its lower electronegativity and higher oxygen affinity compared to Al [21]. Zr also 

increases the protective efficiency of the passive film since corrosion products are formed on Al 
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alloys [22].  It was identified by XPS analysis, the existence of Zr4+ species integrated in the Al 

passive film when they analyzed the passive film formed on Al-Zr alloys in deaerated borate-boric 

solid solution having chloride ions.  

     The grain size refinement when Zr content increases also contributes to the corrosion resistance 

improvement. Song and al. have shown the influence of zirconium grain refinement on the 

corrosion performance of magnesium-rare earth alloy in saline solution. They have noticed a better 

corrosion resistance of alloy as a result of the increase of the barrier effect of the grain boundary 

phase [23].  

     In the present work, Al-Zr film containing 4 atomic percent of Zr shows lower open circuit 

potential and corrosion current density compared to others Al-Zr alloys. An ennoblement of 

corrosion potential is also noticed for this film.    

 

II.5.2. Corrosion performance of Al-Zr films deposited on high speed steel 

(HSS) substrates  

 

     The corrosion performance of Al-Zr films deposited on HSS was studied by potentiodynamic 

polarisation. Figure II- 13 shows the polarisation curves of Al-Zr alloys after 1h of immersion in 

the 5 wt. % NaCl solution. It is shown that the Al-Zr coatings corrosion is under cathodic control 

and the general aspect of polarisation curves indicates a passive corrosion. This aspect decreases 

as Zr content increases.   

    A significant reduction of cathodic and anodic current takes place when Zr content increases 

and, consequently, the corrosion current. For Al-Zr alloys having the lowest content of Zr, the 

corrosion potentials are more negative in comparison with that of high speed steel, which reveals 

a sacrificial protection of Al-Zr coatings. For Al-Zr alloys having Zr content higher than 10 at. %, 

the corrosion potential reaches that of high speed steel, and consequently the sacrificial protection 

is not preserved. The coating becomes progressively nobler than the speed steel substrate when Zr 

content increases. As a result, the coating depends on the presence of imperfections that locally 

favors electrolyte penetration on the steel substrate, representing a risk of confinement of corrosion 

phenomena situated on these defects [24].  

     The coating ennoblement is followed by decrease of corrosion current densities. The pitting 

potential of Al-Zr alloys increases with Zr content. Tsuda and al.[25] obtained similar results when 
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they analyzed the corrosion resistance of the electrodeposited Al-Zr coatings on Cu substrates in 

deaerated 0.1 mol/L NaCl solutions. They found an increase of pitting potential for coatings having 

Zr content between 0 and 8 at. %. A stabilization of pitting potential was noticed for Zr content up 

to 17 at. %.  

     In order to study the stability of sacrificial behavior in function of time, the OCP potential of 

Al-Zr alloys was verified for long immersion time. Figure II- 14 presents the evolution of OCP 

potential versus time in 5 wt. % NaCl during 48 h of immersion.  

     The OCP potential grows fast for all Al-Zr alloys and remains constant for six hours. The abrupt 

increase of OCP values can be attributed to the fast growth of a passive film on coatings surface. 

OCP decreases lightly with immersion time suggesting the dissolution of the passive film. 

Numerous OCP fluctuations were noticed for pure aluminium coating and Al-Zr coating having 3 

atomic percent of Zr. It is due to the fact that these coatings are more porous and the increase of 

zirconium content leads to a passivation of coatings by the formation of a dense and more stable 

passive film.  

     Pores and defects are generally the pitting initiation sites on coatings because when the 

immersion increases, the pitting corrosion is situated at these pores and propagates by dissolving 

the steel. The detrimental defects like pores or pinholes are prejudicial to the corrosion performance 

since they offer paths to allow the corrosive electrolyte to entry to the steel substrate [26].  
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Figure II- 13. Polarisation curves of Al-Zr films deposited on high speed steel after 1h in saline solution 

(5wt% NaCl). 

 

 

Figure II- 14. Evolution of Open Circuit Potential (OCP) of Al-Zr films deposited on high speed steel in 

saline solution (5wt/% NaCl). 
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II.6. Conclusions 

 

     Al-Zr films with Zr contents between 0 and 27 at. % were deposited on both glass slides and 

high speed steel (HSS) substrates by DC magnetron sputtering. Films were deposited from pure 

metallic Al and Zr targets in a pure argon atmosphere at floating temperature (< 80°C). Evolution 

of Zr content was ensured by fixing the aluminium discharge current at 2.0 A and by changing that 

of the Zr one between 0 and 1.3 A. 

     Al-Zr films having Zr content below 10 at. % present well-defined diffraction peaks, which 

correspond to fcc structure, indicating the growth of a supersaturated solid solution of Zr in Al. For 

Zr contents above 10 at. %, the diffraction peaks becomes broader. The peak broadening is the 

result of a grain refinement occurred when Zr content increases. Above 10 at.% Zr, Al-Zr films are 

probably a mixture of the solid solution of Zr in fcc-Al and an amorphous phase. 

SEM shows that at low Zr content, the coatings grow with a columnar morphology, while for Al-

Zr films with higher Zr contents the films are more compact and the grain refinement is observed.  

A low working pressure favors the growth of compact films. In our case the working pressure was 

about 0.3 Pa, which is considered low for magnetron sputtering technique. Microstructure, 

morphology and stress evolutions depend on the same mechanisms. 

     Evolution of nanohardness with the Zr content is due to a combined effect of the diminution of 

the average grain size (Hall-Petch effect), and also to the solid solution hardening effect. 

    The corrosion performance of Al-Zr films deposited on glass and HSS substrates was studied by 

potentiodynamic polarisation. The ennoblement of the alloys is related to the addition of Zr. For 

Al-Zr alloys having Zr content higher than 10 at. % deposited on HSS, the corrosion potential 

reaches that of high speed steel, and consequently the sacrificial protection is not preserved. The 

coating becomes progressively nobler than the speed steel substrate when Zr content increases.  

     Besides, Al-Zr film deposited on glass containing a zirconium content of 4 at. % shows an 

optimal corrosion resistance after 1 hour of immersion in saline water, as it presents lower current 

density and a higher corrosion potential. As Al–Zr with 4 at.% Zr led to the best compromise 

between intrinsic corrosion resistance, sacrificial character/ steels, and mechanical reinforcement, 

it is chosen as the first layer in order to provide anti-corrosion properties. 
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     The chemical vapor deposition technique (Chemical Vapor Deposition or CVD) allows the 

deposition of a material on a substrate through precursors gases that chemically react under the 

influence of temperature. The deposition conditions are strongly dependent on the precursor nature 

and the reactor setup, for instance, the pressure can vary from atmospheric pressure to high vacuum 

(10-7 Pa). In particular, CVD systems working at atmospheric pressure (without vacuum system) 

are very attractive for industrial applications. 
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    As previously mentioned, CVD is a deposition method based on a chemical reaction that allows 

to grow films if the reaction takes place in heterogeneous phase vapor-solid at the interface between 

the heated substrate and the reactive gases. This method can be used to grow different types of 

materials: metals, nitrides, sulphides, carbides and oxides[1]. 

     In this work we have used an aerosol-assisted metalorganic chemical vapor deposition 

(AAMOCVD) to synthetize TiO2 films as photocatalysts top layer. The first part of this chapter 

will be dedicated to the study of the influence of the deposition parameters on the growth process 

of TiO2 films on silicon. The microstructural, physical properties and photocatalytic activity will 

be discussed in the second part. The objective is to define the deposition parameters to grow TiO2 

films in anatase phase, corresponding to the optimal photocatalyst conditions.  

     Deposition of TiO2 films on high speed steel (HSS) substrate is presented at the end of the 

chapter for comparison with TiO2 films deposited on silicon. 

     TiO2 films were deposited by AAMOCVD technique working at atmospheric pressure in order 

to develop optimal films presenting a good photocatalytic activity before depositing it on Al-Zr 

alloy to produce bilayer films, which will be discussed in greater detail in chapter IV.  

 

III.1.  Deposition of TiO2 films by aerosol assisted metalorganic 

chemical vapor deposition (AAMOCVD) 

III.1.1.  Principle and reactions of CVD  

     Metal Organic Chemical Vapor Deposition: One variant of CVD is using Metal organic 

precursors for the CVD reaction, then the process is named Metal Organic Chemical Vapor 

Deposition (MOCVD). These precursors are composed of one or more metal atoms connected to 

organic functional groups by either directly metal-carbon (called organometallics) or through a 

nitrogen-oxygen coordination. 

     Implementation: Generally, a CVD reactor is divided in 2 main zones: a pre-treatment 

precursor zone to generate the precursor vapors (evaporation of liquid precursors, sublimation of 

solid precursors) and a reaction zone at the substrate. A carrier gas transports the precursor vapors 

to the reaction zone, while a reactive gas is usually delivered directly in the reaction zone. This 

area can be heated independently of the evaporation zone to activate the chemical reactions or to 

achieve a determined crystallographic phase. 
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     Method used at LMGP: Aerosol-assisted CVD (AAMOCVD), also known as aerosol 

pyrolysis or pyrosol process, is based on the transport of precursor in liquid phase by generating 

an aerosol from the source solution. These small droplets are transported by a carrier gas to the 

reaction zone. The reaction zone is heated provoking in a very small region the evaporation of 

solvent and precursors, and the CVD reaction on the substrate.  

     As in all CVD process, the process depends on the deposition temperature and the nature of the 

chemical species. The specific parameters that influence the kinetics of the thin layer growth are 

the temperature gradient around the substrate and the speed and size of the aerosol droplets.  

     Figure III- 1 shows the behavior of aerosol according to the temperature: 

- In the regime A, at low temperatures, the droplet remains liquid when arriving on the substrate. 

Solvent evaporates and leaves a dry precursor that can decompose in powder. 

- In the B mode, at medium temperature, solvent evaporates before the droplet reaches the area. 

Precursor arrives on the surface and decomposes there. 

- In the regime C, at high temperatures, solvent and precursor vaporize during the course of the 

droplet to the surface of the substrate. Precursor vapor reacts through a heterogeneous chemical 

reaction at substrate surface. This process is the CVD itself. 

- In the regime D, at higher temperature, the solvent and the precursor vaporize before reaching the 

surface of the substrate. The chemical reaction takes place in gas or homogeneous phase and results 

in a non-adherent powdery deposit.  

 

              Figure III- 1. Behavior of the aerosol as a function of temperature. 
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We will seek to place ourselves in the regime C to deposit the TiO2 layers. This will allow us to 

obtain adherent layers on the substrate. 

      Aerosol production: The aerosol can be generated by three techniques [2]:  

- Electrostatic spraying; this technique involves charging the solution a narrow duct raised to 

high potential facing a pierced plate connected to the ground.  The effect of electrostatic forces 

leads to the formation of droplet droplets from the solution. This technique makes it possible 

to obtain droplets of size controlled. 

- Pneumatic spraying; this technique involves passing the solution under pressure through a 

nozzle. The Venturi effect makes it possible to create and transport the aerosol. 

- The ultrasonic spraying (used in this work). 

     Ultrasonic spray pyrolysis involves generating ultrasound in the precursor solution. It will 

produce capillary waves at the free surface of the solution. The effect of electrostatic forces leads 

to the formation of droplets as shown in Figure III- 2. This technique allows to create droplets of 

controlled size and relatively mono-disperse.  

 

 

Figure III- 2. Solution atomization[3]. 

     The average diameter of the droplets (dg) is proportional at the wavelength λc of the capillary 

wave. The experimental work of E.G Lierke and G. Griesshammer [4] resulted in formula: 

𝑑𝑔 = 0.34 𝜆 𝑐 = 0.34 (
8𝜋 𝜎𝑆

𝜌𝑆   𝑓2
)

1/3

   III. 1 

     The surface tension of the solution is symbolized by σs, its density by ρs and the excitation 

frequency is f. Solution of butanol and ethanol such as used in these works (σs = 24.20 mN·m-1 and 

ρs = 810kg · m-3) for butanol and (σs = 21.82 mN·m-1 and ρs = 790kg · m-3) for ethanol with a 
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working frequency of 800 kHz lead to an average diameter of droplets of 3.6 μm if it is assumed 

that the precursors used have no surfactant effects. 

𝜎𝑆 = 𝑋 
4 𝜇𝑠

𝜆𝑐 𝑓 𝑝𝑠
    III. 2 

     Spraying occurs from a certain vibration amplitude of the surface of the piezoelectric transducer. 

This amplitude αs can be estimated by empirical formula III-2 [5], where X is a coefficient between 

3 and 6, and μs is the viscosity of the solution. For a solution of butanol this amplitude is between 

4.55 μm and 9.11 μm in taking the extremal values of the coefficient X. 

 

III.1.2.  TiO2 precursor and substrates 

     AAMOCVD precursor have to be soluble in the solvent, and stable if other precursors are 

present in the solution. It must be volatile and should decompose at growth temperatures while 

being stable at room temperature.  

     The titanium precursor used in these work is titanyl (bis) acetylacetonate (TiOAcAc)2, also 

known as  Bis(acetylacetonato)titanium(IV) oxide, Bis(2,4-pentanedionato)titanium(IV) 

oxide, Bis(acetylacetonato)titanium(IV) oxide, or  Bis(2,4-pentanedionato)titanium(IV) 

oxide.  

Its chemical formula is TiO (CH3COCHCOCH3)2, (see Figure III- 3), purchased from Strem 

Chemicals and used without treatment additional. It is a white powder with a melting point at 

200°C. It dissolved easily in alcohols.  

     Solvent must have several specifications to be used in AAMOCVD, it must:  

- Dissolve easily the precursors, (in our case, we work with a concentration of 0.03mol·l-1). 

- Evaporate at a temperature below sublimation or evaporation temperature of the precursors. 

- Have a low surface tension to be sprayed by ultrasound. 

     In this work, we used Butanol or Ethanol. To prepare a precursor solution with a concentration 

of 0.03 mol·l-1, we add 4.71 g of precursor in 600 ml of alcohol solvent (butanol-01 or ethanol). 

The mixture is stirred until complete dissolution using a magnetic bar with speed 300 cycle/min. 

The precursor solution becomes clear yellow right after 30 minutes stirring: then the solution is 

ready for deposition. Once completed, the precursor solution is stable for several months. 
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Figure III- 3. Titanyl(bis)acetylacetonate. 

Table 1: Precursor properties. 

Precursor Molar mass (g/mol) Melting temperature (°C) Purity CASS Registry number 

TiO AcAC 262.08 184 > 95% 14024-64-7 

                      

     The substrates used for depositing TiO2 films were (100) Si, corning glass substrates (reference 

C1737-S111) and polished high speed steel substrates. The substrates were cleaned before 

deposition through ultrasonication for 10 minutes 

  

III.1.3.  Principle and description of AAMOCVD reactor  

     Aerosol Assisted CVD has the ability to use less volatile metal organic precursors during CVD 

deposition [2].  Previous works on the TiO2 deposition confirms the ability to obtain crystalline 

films [6–8]. In particular, Biswas et al [9] studied the growth of TiO2 microflowers structures for 

specific deposition conditions. 

     We used for this work a homemade AAMOCVD reactor, presented in Figure III- 4. On left, a 

scheme of the reactor and, on right, a picture of the actual system. 

     The precursor solution is placed in a vessel. The ultrasounds is generated by a piezoelectric 

membrane, with a certain power and frequency. As a result, a white mist containing tiny droplets 

of the precursor solution is created at the surface of the solution. The frequency generator has been 

provided by the company RBI and allows to provide frequencies between 640 kHz and 870 kHz to 

the piezoelectric transducer. Two knobs regulate the frequency and power on an arbitrary scale 

between 0 and 10 units. The optimal frequency is settled by observing the surface of the solution 

while changing the potentiometer. When we approach the resonance frequency, the surface is 

covered by concentric waves of maximum intensity in the center of the pot. The optimal frequency 
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is achieved at the maximum deformation of the surface. In the standard parameters of these works 

the potentiometer is set at 2.0 which coincides to a frequency of 800 kHz.  The mist is then carried 

by a gas flow used as the carrier gas (CG#1) towards the reaction chamber. In our case, the carrier 

gas is an oxidizing gas flow consisting in 3 L min-1 of air (12% of O2). Before entering in the 

reaction zone, a process gas consisting in 3 L min-1 (CG#2) of air is added to the precursor flow. 

This second flow is introduced from the middle part for sake of security, and accelerates the 

precursor onto the top heating plate, where the reaction takes place.  A funnel at the top the substrate 

allows to spread the precursor aerosol in a bigger surface. The heating plate of 20 x 20 cm2 allows 

to heat up to 550°C.  

     The decomposed precursor wastes and evaporated solvent are ventilated from the bottom, going 

through a liquid nitrogen cooled solvent trap.  

 

 

Figure III- 4. Details of AACVD configuration. 

     A ventilation system exhaust is placed at the bottom right below the hot plate. In our working 

conditions, an extraction pressure of 3 mm.H2O is used for all the depositions.  

 

III.2. Effect of deposition temperature on the TiO2 films deposited on 

silicon 

     The goal of this study was to evaluate the effect of the deposition temperature on TiO2 films 

grown on silicon substrate as a first step to evaluate the best conditions for the deposition on 
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metallic substrates. We will present here the results obtained by different characterization 

techniques.  

     The deposition temperature was varied between 350 °C and 550 °C, the other deposition 

parameters are represented in Table III. 1.  

 

Table III. 1. AAMOCVD deposition parameters used in this work. 

Precursor 

Concentration 

(mol·l-1) 

T 

Surface 

Holder 

(°C) 

Total 

carrier 

gas flow 

rate 

(Lmin-1) 

Extraction 

pressure 

(mm.H2O) 

Deposition 

Duration 

(min) 

Vibration 

Frequency 

(kHz) 

Power 

(a.u) 

0.03 350-550 6 3 40 800 5-6 

 

 

III.2.1. Scanning Electron Microscopy (SEM) 

     Analysis of the microstructure of the samples and the evaluation of their thickness were acquired 

by means of a scanning electron microscope (SEM). The SEM was performed in a FEI Quanta 250 

MEB FEG ESEM tool. 

    Biswas et al. [9] previously proved that AAMOCVD employing Titanium(IV) oxide bis- 

acetylacetonate as the precursor allows the deposition of  TiO2 films  crystallized in the anatase 

phase and containing hierarchical microflowers on the surface by adjusting the deposition 

conditions.  

     As this microstructure can be interesting for our application because it presents a very large 

active surface, optimal deposition parameters are needed to tune the morphology and density of the 

microflowers. The deposition temperature was determined to be the main parameter providing the 

development of TiO2 microflowers, maintaining all the other parameters constant, such as a 

solution feeding rate of 3 ml min−1, a precursor solution concentration of 0.03 mol L−1 and a 

deposition time of 40 min. Microflowers characteristics revealed to be definitely sensitive to the 

temperature. SEM images of the deposited TiO2 films (Figure III- 5) demonstrate that, at lower 

temperatures, such as 400°C, no flower is created. At 500 °C, some flowers can be observed, but 
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much smaller and in smaller quantity than those developed at 550°C. At 550 °C, TiO2 microflowers 

of about 7-8 μm in diameter are clearly detected. Finally, at temperatures higher than 570 °C (not 

shown) bigger nanoparticles agglomerates are formed instead of flowers. 

     Biswas et at.[9] also demonstrated that a feeding rate higher than 3 ml min−1 is crucial to the 

development of microflowers. 

     Figure III- 5 presents SEM images of TiO2 films deposited at a range of temperature from 400°C 

to 550° that mostly comprise of two parts: one is a thin layer immediately over the substrate and 

the other is composed of the microflowers that are dispersed at the top of the layer. The flowers 

having an average diameter of about 7 µm are characterized by a homocentric association of TiO2 

nanopetals forming a corolla as if growing from the receptacle of a flower (Figure III- 5b). Figure 

III- 5a) presents de cross-section of TiO2 film containing microflowers. It is noticed that 

microflowers rise from the layer, at first as single nanopetals to develop subsequently into a bundle 

of interconnected petals. The principal characteristics of these microstructure is that petal have a 

nanometric thickness (~ 5 nm) and are formed by nanocrystal of anatase phase [9].  

     ImageJ was used to quantify the density of the flowers by calculating the area fraction coverage 

of the substrate covered by the flowers (in percentage) from the images. The area fraction coverage 

by microflowers is about 40 % for TiO2 thin films samples obtained deposited at 550°C. 
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         Figure III- 5. SEM images of microstructured TiO2 thin films deposited by AA-MOCVD at 400°C, 

500°C and 550°C on silicon substrate a) cross section showing the interfaces between the substrate, TiO2 

film and microflowers and b) zoomed in image of petals to show their nanometric thickness. 

 

     The creation of TiO2 nanopetals is associated to the metastable conditions that take place at the 

surface when the aerosol evaporates developing supersaturation circumstances, which perform as 

a leading force for TiO2 crystallization. During the evaporation of the solvent, the precursor is 

under supersaturation conditions in the droplet. The excess of the precursor can result in a 

spontaneous agglomeration process or a reaction in the homogeneous phase by reacting with 

oxygen and consequently crystallizing in a very thin structure. The petal thickness seems to be 

independent of the deposition parameters and it is not preferentially oriented; it have changed only 

when a second deposition on the microflowers is made [10]. 

     Following the evaporation of the solvent, the precursor has a tendency to precipitate in the 

created petals in place of keeping moving in the gas phase. When a long deposition time is carried 

out, the precursor provides a growth of microflowers in the density and also the height. However, 
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supersaturation happens far away from the surface, rendering impossible the creation of new 

nucleation sites.  

     The influence of deposition temperature on deposition rate of TiO2 films deposited by AACVD 

is shown in Figure III- 6. Since our films are not homogenous in thickness, an average thickness is 

calculated using cross section SEM images for all the films deposited on silicon presenting a 

percentage error of +- 5 %. 

     An evolution is observed as the deposition rate increases from 5.5 nm/min for films deposited 

at 350 °C to about 8 nm/min for films deposited at temperatures higher than 450 °C. It should be 

noticed that surface reaction phenomena are thermally-activated processes that have an visible 

dependence on temperature only at low values (the lower the T values, the lower the rate of the 

process), but at higher temperatures there is enough energy for any surface reaction to be achieved, 

and the dependence on T decreases. 

     The deposition rate is often an important processing variable in CVD processing. Not only can 

the rate affect the film growth; along with the deposition time, it is often used to control the total 

amount of material deposited. 

 

Figure III- 6. Evolution of deposition rate over deposition temperature for TiO2 films deposited by 

AACVD. 
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III.2.2. Fourier transform infrared spectroscopy (FTIR)  

     Fourier transform infrared spectroscopy (FTIR) is a technique that allows the identification of 

chemical bounds in the films as a consequence of the absorption of infrared light. In this context, 

an infrared beam consisting of various wavelengths goes over the film, interacting with the 

chemical species. In the case of one specific chemical bond presents the same energy of the infrared 

light, it will be absorbed. The light beam is divided in two distinct beams, using a Michelson 

Interferometer that will goes through the sample and produce an interferogram (interference 

pattern) in the detector. The Fourier transform of the generated pattern will produce an infrared 

spectrum, employed for the identification of chemical bonds.  

     In the analysis of TiO2 films, this technique is interesting for the detection of Ti–O and Ti–O–

Ti bonds. In case of incomplete decomposition of the precursor, residual organic substances can 

indeed be present in the film, which can lead to meagre physical properties. Fourier-transform 

infrared (FTIR) measurements were conducted in a Bruker Vertex 70V spectrometer, equipped 

with a CsI beamsplitter and working under vacuum. Spectra were recorded with a resolution of 4 

cm-1 by accumulating 64 scans in transmission mode using silicon substrates, transparent to 

infrared light.  

     The FTIR spectrum was used to identify various functional groups present in the TiO2 thin films 

deposited at a substrate temperatures range from 400 °C to 550 °C as represented in Figure III- 7. 

The scanning range was 200–4000 cm−1, but no absorption peak was noticed in the range of 2000–

4000 cm−1. Only small peaks in the region of 1200 to 1800 cm−1 were visible, mainly at 1425, 

1600, 1718 cm−1 and with a lower intensity at 1250 cm−1. These peaks correspond to characteristic 

absorption bands of acetylacetonate [11,12]. Also C-O-C stretch is detected at 1150 cm-1.The bands 

for the Ti–O and Ti–O–Ti bonds are present in the 800–400 cm−1 region. These infrared bands are 

detected at 440 cm−1 and 265 cm−1 with a small shoulder at 660 cm−1. These absorptions are related 

to the stretching vibration of Ti–O–Ti in anatase [9]. 
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Figure III- 7. FTIR spectra of thin film samples on the Si substrate. 

 

III.2.3. X-Ray diffraction (XRD) 

     The crystallinity and phase identification of the samples were studied by X-ray diffraction 

(XRD) in θ–2θ scanning mode using a Bragg–Brentano configuration between 10° and 80° at 

0.011° intervals with an acquisition time of 2 s  using a Bruker D8 Advance diffractometer with 

monochromatic CuKα1 radiation (λ = 0.15406 nm).  

     Figure III- 8 shows the diffraction patterns obtained for as-deposited films deposited at a range 

from 400 °C to 550 °C on silicon substrate with a deposition time of 40 min. The XRD patterns 

show that the obtained films are crystalline and consisted of pure anatase phase. 

     The diffraction peaks were observed at 25.5°, 37.5°, 48° and 55.3° 2θ degrees, corresponding 

to the anatase (101), (004), (200) and (211) planes (JCPDS- 21-1272). No evidence for rutile phase 

was found by XRD, even for TiO2 films deposited at 550 °C. 
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Figure III- 8. XRD of TiO2 films deposited at silicon substrate at a) 400 °C b) 500 °C and c) 550 °C.  

 

III.2.4. Raman Spectroscopy analysis 

     Regarding the chemical composition of the films, Raman spectroscopy is an effective tool to 

cover vibrational, rotational, and diverse low-frequency modes in a material. This type of 

spectroscopy technique is based on the Raman scattering (inelastic) taking place inside the samples 

over illumination with a monochromatic light source. Once a high intensity monochromatic light, 

in this matter a laser, strikes a material, the majority of  photons are scattered with the same energy 

as the incident light. This elastically scattering technique is named Rayleigh scattering. 

Nevertheless, a certain number of the scattered photons, around 1 in 10 millions, present a shift of 

energy compared to the original energy. In the case of a lower or higher energy, this inelastic 

technique is named Raman scattering. In this technique, it is normal to employ wavenumber, cm-1, 

in place of wavelength, as long as we always present the shift from the original light source. 

Concerning TiO2 thin films, this technique was important for the detection of the anatase phase. 

     Raman spectra were collected using a Jobin-Yvon/Horiba LabRam multichannel spectrometer 

equipped with a liquid N2 cooled CCD detector. Experiments were carried out in the micro-Raman 

mode at room temperature in a backscattering geometry. The 514.5 nm line of an Ar+ laser (2.6 

mW) was focused giving a spot size of about 1 μm. The recorded spectra were calibrated using Si 
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spectra at room temperature. The integration times were adjusted in order to obtain a high signal-

to-noise ratio. 

     Many works have been reported in the literature about the Raman signature of the different TiO2 

phases [13]. Moreover, this technique is more sensitive to anatase, rutile and amorphous phases of 

TiO2 films than XRD [14]. In addition, this technique is used to perform local measurements, 

allowing to probe the different microstructure phases of the sample surface.  

     Figure III- 9 shows the Raman spectra of TiO2 films deposited on silicon at different 

temperatures ranging between 400 °C and 550 °C. The Raman spectra of the films show 

characteristic modes of the TiO2 anatase phase [15]: two Eg modes at 141 cm−1 and 635 cm−1, one 

A1g mode at 513 cm−1 and one B1g mode at 397.5 cm−1. The sharp peak at 144 cm−1 clearly identifies 

the anatase phase of TiO2. Smaller peaks at 398 and 639 cm−1 can also be assigned to the anatase 

phase. No band corresponding to the rutile phase of TiO2 was observed. Moreover, the absence of 

a broad band background in the Raman spectra allows to discard the growth of amorphous TiO2.  

 

 

Figure III- 9. Raman spectra for TiO2 films deposited on silicon by aerosol CVD at a) 550 °C, b) 500 °C 

and c) 400 °C. 
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III.2.5. X-ray Photoelectron Spectroscopy (XPS)  

       XPS is a non-destructive surface analysis method that characterize the binding energy between 

atoms. The analyzed depth is about 10 nm. 

     A monochromatic beam of X-Ray bombards the sample, causing the ionization of the atoms. 

By absorbing an X-ray photon of energy hv, a core electron is ejected: it is called a photoelectron. 

To return to its initial stable state, the electronic levels are rearranged: a higher energy electron 

replace the vacant core electron. To do so, the atom gets rid of an excess of energy via the emission 

of an X-ray photon (X-ray fluorescence) or of high energy level electron (Auger electron).  

     The XPS spectra acquired represent the number of photoelectrons collected per unit of time 

depending on their binding energy. These energies are a characteristic of an element and are 

computed with the equation III. 3.  

Ebinding = hv −  EC      III. 3 

where hv is the energy of the photon,  𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is the binding energy of the electron and Ec the 

kinetic energy measured by the detector. Integrating the electrons at different binding energy 

generates a spectrum where the peaks correspond to characteristic orbitals of each element. In the 

context of this study, XPS was fundamental to detect alterations in titanium oxidation state, in order 

to identify the presence of Ti+4 in the films.  

     The analysis was conducted in Vacuum Generator XR3E2 device at SIMAP – Grenoble INP 

using Al Kα radiation (energy 1486.6.6 eV) as an X-ray source. Before acquisition, the samples 

are placed during 12 hours in an introduction chamber at the pressure of 10-8 mbar in order to obtain 

a state desorption equilibrium, then introduced into the analysis chamber whose pressure is 10-10 

mbar. 

     XPS spectra were made between 100 and 1100 eV with a resolution of 0.5 eV allowing to 

determine all the elements present. 

     Figure III- 10 shows high resolution XPS spectrum of a TiO2 film deposited at 550°C on silicon 

substrate after rising with ethanol and distilled water. 

     The peak at binding energy 530.3 eV imply that the oxygen atoms exist as crystal lattice oxygen 

in Ti-O-Ti. Secondly, the peak at 531.9 eV is attributed to hydroxyl groups chemisorbed on the 

surface [16].   
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     The Ti2p peaks are constituted of a doublet that arises from spin orbit-splitting. The doublet 

Ti2p3/2 presents a binding energy of 459.2 eV and Ti2p1/2 presents a binding energy of 464.9 eV. 

The literature shows that these peaks are consistent with Ti4+ in TiO2 lattice, since Ti2p3/2 shows a 

binding energy of 458.6 eV and Ti2p1/2 shows a binding energy of 464.4 eV [17]. In our case, the 

contributions Ti2p3/2 and Ti2p1/2  with a splitting energy of 5.7 eV confirms a normal state of 

Ti4+ion in the sample [18].  XPS proves that Ti3+ is not presented in the film. 

 

Figure III- 10. XPS for a) Ti2p configuration, b) O1s configuration and c) C1s configuration for TiO2 film 

deposited at 540°C on silicon substrate. 

 

III.2.6. UV-VIS-IR transmittance  

      The optical characterization of the TiO2 layers consisting in measuring the total transmittance 

thanks to an integrated sphere of a diameter of 150 mm. The measurements from Ultraviolet to 

near-infrared were carried out in a Lambda 950 spectrophotometer from Perkin Elmer in the range 

of 250 nm to 2500 nm, displaying a wavelength step of 5 nm. The spectra were employed to 

calculate the band gap by tracing the Tauc plot using the equation III. 4 [19].  

     The transmittance of the films was measured on samples deposited on corning glass, and the 

bandgap of TiO2 films was determined by extrapolating the slope of the curve to the photon energy 

axis. 

(αhv)n = A(hv − Eg)     III. 4 

where α is the absorption coefficient, hv is the photon energy (eV), A is the proportionality 

constant, Eg (band gap energy) while n stands for the type of transition, which may be direct or 

indirect. In this case, the transition was indirect and as such n = 2.  
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     The total optical transmittance and optical band gap calculated using Tauc plot of (αhv)2 versus 

photon energy of TiO2 deposited on corning glass at different temperatures are shown in Figure 

III- 11 a) and Figure III- 11 b). 

     Figure III- 11 a) shows that TiO2 films presents a high transmission ( > 60 – 80 %) in the visible 

range, films are highly transparent in the visible. The oscillation observed are the result of 

interferences with the interfaces air – film and film – substrate.  

     The band gap energies of TiO2 films are higher than the bulk value (3.2 eV) [20] of anatase. 

Moses et al. [21] obtained a band gap of 3.65 eV for TiO2 films deposited at 450 °C by spray 

pyrolysis using  titanyl (bis) acetylacetonate as precursor and it was explained that the band gap is 

larger than the bulk TiO2 (3.2 eV) due to the presence of nano-sized grains.  

     It is noticed that the optical band gap of TiO2 films varies from 3.78 eV to 3.55 eV when the 

deposition temperature increases from 400 °C to 550 °C .This can be explained by an increase of 

the crystallinity with deposition temperatures, which is supported by the XRD patterns of TiO2 

films deposited at different temperatures. The optical absorption of samples demonstrates that 

absorption is located mainly in UV region as a consequence of its wide band gap. The strong UV 

absorption of TiO2 sample is due to electronic transition of an electron from valence band to the 

conduction band. 

      Fan Zhang et al [22]  demonstrated that electron life time τ and band gap Eg decrease at elevated 

temperature. It is due to the thermal expansion of the lattice and renormalization of the band 

structure by electron-phonon interaction [23].   

 

Figure III- 11. a) Total transmittance of TiO2 films deposited at different temperatures. b) Optical band 

gap calculated using Tauc plot of TiO2 films deposited at different temperatures. 
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III.3.  Photocatalytic characterization 

     Photocatalysis is based on photo-induced oxidation-reduction mechanisms leading to the 

decomposition (e.g. mineralization) of organic molecules adsorbed on the surface of a 

semiconductor. The kinetics of photocatalytic decomposition of molecules in aqueous solution 

generally follow a Langmuir-Hinshelwood mechanism, modified to account for the reactions 

taking place at the interface between the solid photocatalyst and the liquid,  assimilating the liquid 

to a gas under strong pressure. Under these conditions, the rate of degradation of the reactant (r) is 

written: 

𝑟 =  − 
𝑑𝐶

𝑑𝑡
=  𝑘𝑐 .

𝐾𝑎𝑑𝑠 . 𝐶

1 + 𝐾𝑎𝑑𝑠. 𝐶
 

   III. 5  

where kc is the kinetic constant of the reaction, Kads is the adsorption constant of the reactant, and 

C the reactant concentration at time t. The ability to photocatalytic degradation (photocatalytic 

activity) of different materials can be quantified comparatively according to the degradation rate 

of the same model molecule. 

     The model molecule studied in this work is an azo dye named orange G (OG, marketed by 

Aldrich and of empirical formula: C16H10N2Na2O7S2) whose chemical structure is illustrated in 

Figure III- 12. Studies published by other authors showed that the OG is not only decolorized by 

photocatalytic reactions but fully mineralized [24]. The mineralization is a set of chemical reactions 

including the dissociation of the central azo group and its elimination in the form of dediazote gas, 

as well as the multi-stage reduction of aromatic rings in carboxylic species, then CO2.  

 

 

Figure III- 12. The molecular structure of orange G. 
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     It is important to fix two geometrical parameters to ensure the comparison of results from one 

sample to other. One parameter is the exposed area of the sample has to be the same for all the 

experiments. In our work the area was of 7.06 cm2 for films deposited on round high speed steel 

substrate (d=3 cm) and 9 cm2 for films deposited on silicon substrate. The second parameter is the 

distance of the layer to the bottom of the beaker. This distance fixes the volume of the solution in 

contact with the layer, and the distance to the UV lamps. We use a polymeric holder imposing a 

distance of 8 mm from the sample to the beaker bottom, which is placed at 20 mm of the UV lamps.  

We insert the sample in the holder and then the sample and its support are placed at the bottom of 

the beaker. The face covered by the layer TiO2 (active face) is directed towards the bottom of the 

beaker as represented in Figure III- 13. The whole is placed in an oven regulated in humidity (RH 

= 40 %) and temperature (T = 20 °C). In order to homogenize the solution and maintain constant 

adsorption/desorption conditions during UV exposure, the solution is stirred constantly during 

irradiation via a magnetic bar and a magnetic stirrer set at 500 rpm. 

      For our measurements of photocatalytic activity, 50 ml of an aqueous solution of OG 

(concentration 5.10-5 M) are poured into a beaker. The beaker is then positioned on a support 

allowing it to be held an above three UV lamps (Philips PLS 11W).  These lamps emit a continuous 

spectrum in the UV-A range (negligible UV-B and UV-C emission), with a maximum emission at 

365 nm, and provide a light intensity at the sample level of approximately 5 mW/cm2.  

Before irradiation, the system is kept in the dark for one hour in order to obtain a balance of 

adsorption of the OG on the surface of the photocatalyst. However, no significant variation in the 

concentration of OG in solution was observed during this preliminary stabilization step, regardless 

of the nature of the samples analyzed. It can be inferred that, under our conditions, not only the 

amount of GO adsorbed on the surface of the thin film photocatalyst is extremely weak but also 

that OG is chemically stable in the absence of UV and photocatalyst. After this step, the whole is 

irradiated for three hours via the device described above. A small amount of solution 

(approximately 3 ml) is taken every thirty minutes in order to measure the evolution of the 

concentration of OG by UV-Vis spectrometry and then reinjected into the solution.  
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Figure III- 13. Diagram of the device used for the measurement of photocatalytic activity. 

 

     We used UV-visible spectrophotometer (Lambda 950 from Perkin Elmer) in order to obtain the 

measured absorbance of the orange G dye, as represented in Figure III- 14. The UV-vis 

measurements were carried out using a wavelength range from 400 to 600 nm with a scan speed of 

480 nm/min. 

     According to the Beer-Lambert law, the concentration of OG (C) is a function of the measured 

absorbance A (equation III. 6): 

𝐴 =  𝛼. 𝑙. 𝐶        III. 6 

where α is the molar absorption coefficient at the measured wavelength and l the light path in the 

solution (1 cm in our case). In this study, the measurement of A is performed at 480 nm, which 

corresponds to the maximum absorption of the Orange G dye (and confers its orange color to this 

compound). Under our conditions, the parameters l and α are constant, which means that A is 

directly proportional to C.   

     Calibration measurements under irradiation carried out in the presence of the substrate alone 

have shown that the concentration of Orange G in the solution increases slightly during the time 

due to slow evaporation of the water as a dilution medium (reconcentration mechanism). A 

reconcentration correction has therefore been done in order to determine the changes in Orange G 

concentration actually induced by the photocatalytic decomposition (Figure III- 15). 
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Figure III- 14. UV-visible absorbance spectra of decomposed Orange G-dye solution over TiO2 film 

deposited at 550 °C on silicon under UV light illumination. 

 

Figure III- 15. Kinetics of photocatalytic decomposition of OG on the surface of a thin layer of TiO2 after 

reconcentration correction (a). Kinetics in the presence (b) and in the absence (c) of the photocatalyst. 

     Monitoring the photocatalytic decomposition of the OG over three hours makes it possible to 

deduce the photocatalytic activity according to the relationship. Given the low concentration of OG 

of the aqueous solutions used during this work (5.10 M-5), the term Kads. C is much lower than 1 

and can be neglected in this equation, which becomes: 

𝑟 = − 
𝑑𝐶

𝑑𝑡
= 𝑘𝑐  . 𝐾𝑎𝑑𝑠 . 𝐶 = 𝑘. 𝐶 III. 7 

Where k describes an apparent kinetic constant of the system. By integrating the equation III. 7, 

we obtain: 
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𝑙𝑛 (
𝐴0

𝐴
) = (

𝐶0

𝐶
) = 𝑘. 𝑡𝑈𝑉 III. 8 

where C0 represents the OG concentration deduced from a measurement of absorbance A0 at 480 

nm at the start of irradiation and C is the concentration measured from the absorbance A after an 

exposure of duration tUV. The representation of ln (A0/A) = f (tUV) must therefore give a straight 

line passing through the origin whose slope makes it possible to determine the kinetic constant k.    

The constant k will be used to compare the photocatalytic activity of the different samples studied 

in this work. It should be noted that the linearity predicted by equation III. 8 has been systematically 

verified after reconcentration correction in the general case of TiO2 thin layers (Figure III- 15). 

 

 

 

Figure III- 16.a) Relative photocatalytic activity of different TiO2 films deposited on silicon (about 250 nm 

thick) as deposited. b) Kinetics of photocatalytic decomposition of orange G measured for different TiO2 

films. 

     The evolution of the absorption band at 480 nm corresponding to Orange G allowed to quantify 

the concentration variation with UV exposure time. The concentration of orange G decreases when 

exposed to TiO2 films as represented in Figure III- 16 a).  Figure III- 16 b) shows plots of Ln(C/C0) 

as a function of UV light irradiation time. The photocatalytic activity of three different TiO2 films 

deposited at 400 °C, 500 °C and 550 °C on silicon was analysed in order to evaluate the films 

performance. For films containing TiO2 microflowers, deposition temperature presents an 

influence on the degradation rate, with a maximum value in the case of the film deposited at 550 

°C, which shows almost 30 % of mineralization after 240 min of UV light exposure. For the film  
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deposited at 500 °C the value is 20 % of mineralization for the same exposition time, and only of 

10% for the film deposited at 400°C.  

     The k constant for Orange G degradation calculated from the slope with formula III.8 is 

presented in Figure III- 16 b). It is important to notice that microflowers structure were mainly 

present in samples deposited ant 550 °C, creating a higher roughness and a higher surface  area for 

chemical exchange or reaction. For films without microflowers deposited at 400°C the k constant 

is one order of magnitude lower than films containing microflowers deposited at the same range of 

temperature. 

     It can be also explained by the fact that the band gap shift in the absorption band edge for TiO2 

film deposited at 550 °C is attributed to the higher rate of electron-hole pairs on the photocatalyst 

surface, leading to higher photocatalytic activity [25].  

     The photocatalytic activity of Al-Zr/TiO2 bilayer films deposited at different temperatures with 

different deposition feeding rates (mL/min) will be presented and further analysed in chapter IV. 

 

III.4. Reproducibility of TiO2 films on high speed steel substrates 

     Since TiO2 films is used as a top layer on Al-Zr coated High Speed Steel (see chapter IV) it is 

important to evaluate the reproducibility of TiO2 films presenting hierarchical microflowers on the 

surface when deposited on high speed steel substrates. Indeed, the presence of microflowers on the 

surface is important to improve the photocatalytic activity. 

     Deposition was carried out on different substrates like high speed steel, FTO and ITO-coated 

substrates. The same microstructure is obtained in all the cases as represented in Figure III- 17.  

     XRD measurements were also performed in order to confirm the same crystalline structure for 

films deposited on high speed steel. 

     Figure III- 18 shows the diffraction patterns obtained for as-deposited films deposited at a range 

from 500 °C to 550 °C on high speed steel with a deposition time of 40 min.  

     The XRD patterns show that the obtained films are crystalline and anatase single phased. For 

films deposited on high speed steel at 540 °C and 550 °C, we observed a much higher intensity of 

the diffraction peaks compared to film deposited at 500 °C. The effect of temperature and presence 

of microflowers on the surface with regard to crystallite size is discussed in chapter IV. 
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Figure III- 17. a) SEM image of TiO2 microflowers on films deposited at 550 °C on a) FTO-coated glass 

b) ITO-coated glass and c) high speed steel substrate. 

 

Figure III- 18. XRD of TiO2 films at deposited at high speed steel substrate at a) 500 °C, B) 540 °C and C) 

550 °C. 

III.5. Conclusions  

     AA-MOCVD using titanyl (bis) acetylacetonate as precursor and working at atmospheric 

pressure allows the direct synthesis of TiO2 microflowers dispersed at the top of a thin film of TiO2. 

Optimum growth conditions are acquired by the combining the deposition temperature, precursor 

concentration and precursor feeding rate. The formation of the microstructure occurs at a specific 

thermal window that depends on the precursor concentration; more precisely when working with a 

0.03 mol L-1 concentration solution and an aerosol feeding rate of 3 ml min−1, flower-like structures 

are generated at 550 °C. At this temperature, the maximum flower density is about 40 %, in terms 
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of area fraction coverage. The development of microflowers is definitely sensitive to the 

temperature.  At lower temperatures, such as 400 °C, no flower is created. At 500 °C, some flowers 

can be observed and at 550 °C, TiO2 microflowers of about 7-8 μm diameter are clearly detected. 

      XRD and Raman Spectroscopy confirm the flowers and the thin film to be in the anatase phase.  

     TiO2 samples deposited at 550 °C shows better photocatalytic with a higher k (0.00153 min-1) 

and 30 % of mineralization of Orange G dye after 240 min under UV light when compared to others 

films deposited at lower deposition temperatures (500 and 400 °C). This chapter confirms the 

fundamental role of microflowers with an average size of 7 µm and its density on the surface layer 

on the photocatalysis process. 

     The optical band gap of TiO2 films decreases from 3.78 eV to 3.55 eV when the deposition 

temperature increases from 400 °C to 550 °C. It is related to the band gap shift in the absorption 

band edge for TiO2 film deposited at 550 °C, which is attributed to a higher rate of electron-hole 

pairs on the surface of the film, leading to higher photocatalytic activity. 
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     The corrosion of metals in natural seawater is a consequence of interactions between the metal, 

living organisms and seawater composition [1]. When a metal is submerged into seawater, 

corrosion and biofouling take place simultaneously [2]. This is usually pursued by the development 

of biofilm within some days after submersion [3] and after a continuous exposure, macrobiota like 

invertebrate larvae may combine with the biofilm and settle on the surface [4]. In order to solve 

this problem we focus on two different functional properties: photocatalysis, which is related to the 
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surface properties to avoid initial step of attachment, and corrosion, to protect the steel used in the 

mechanical system. 

     This chapter presents the physico-chemical and functional properties of a multi-functional 

bilayer coating combining Al-Zr (4 at.% Zr) alloy deposited by DC Magnetron Sputtering on high 

speed steel substrates and TiO2 deposited on the top by AAMOCVD. Al-Zr (4 at.% Zr) film was 

used to provide sacrificial corrosion resistance of steels as presented in chapter II and, TiO2  was 

added as a top layer to induce photocatalytic activity and hydrophilic behavior which can generate 

antifouling properties in order to slow down the biofouling process. 

     The first part of this chapter will be dedicated to the microstructural and physical properties of 

the bilayer films. The functional properties such as the electrochemical behavior and the 

photocatalytic properties of bilayer films will be treated in the second part. 

 

IV.1. Deposition conditions  

     Polished round High Speed Steel (HSS) substrates with 30 mm in diameter and 1 mm thick 

were systematically covered with a previously optimised composition of Al-Zr coating having 4 

atomic percent of zirconium and a thickness of 3 microns, as explained in chapter I. Then, TiO2 

films were deposited at different temperatures in order to achieve the optimal deposition conditions 

allowing the formation of flower-like microstructures as described in chapter III. Figure IV-1 

presents HSS substrates coated with Al-Zr alloy and Al-Zr/TiO2 bilayer film.  

 

Figure IV- 1. Al-Zr (4 at. % Zr) alloy, on the left, and Al-Zr/TiO2 bilayer film on the right. 

 

     As presented in chapter III, the titanium precursor (titanyl (bis) acetylacetonate) was dissolved 

in ethanol with a concentration of 0.03 mol L-1 and the solution consumption was around 3mL 

min−1 in order to develop microflowers in the TiO2 layer. A solution consumption between 3 and 

4mL min-1 allows the formation of hierarchical microflowers. However, less than 3mL min-1 
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microflowers are not developed. The oxidizing gas flow rate was obtained by using 6 L min−1 of 

air (12% of O2) and the deposition temperature was varied between 500 °C and 550 °C for a 

deposition time of 40 minutes. The substrates used were Al-Zr coated HSS substrates. 

 

IV.2. Morphology and roughness of HSS/Al-Zr/TiO2films 

     The morphology of as-deposited Al-Zr films observed by a SEM is shown in Figure IV- 2 (a-b) 

for low and high magnification conditions in the upper and lower pictures respectively, and in cross 

section represented in Figure IV- 2 c). For low Zr content like in our case and in our deposition 

conditions, the coatings grow with a columnar morphology forming big grains of around 500 nm 

of diameter, as explained in chapter II. The Al-Zr thickness is 3 µm. When TiO2 was deposited by 

AACVD as a second layer on the Al-Zr coating, two kinds of features appeared. On one hand, a 

film consisting in small needle-like (dendritic microspheres) grains of 50 nm covered the Al-Zr 

grains in a very conformal way. This morphology can be observed in Figure IV- 2 (e-h-k), for the 

three deposition temperatures used. We cannot see any difference or significant changes between 

these morphologies. The Al-Zr grains can be still identified even if TiO2 film thickness is around 

400 nm. On the other hand, microflowers started to grow at deposition temperature higher than 500 

°C, as explained before in chapter III. At 500 °C, represented in Figure IV- 2 (d-f), some sparse 

flowers can be observed but much smaller than those shown in Figure IV- 2 (g-i) and (j-l) for films 

deposited at 540 °C and 550 °C, respectively.  For films deposited at 540 °C and 550 °C, the flowers 

density increases and a quite high density of microflowers is observed on the surface. Flowers 

having an average diameter of about 7 µm can be described by a homocentric association of TiO2 

nanopetals forming a corolla as if growing from the receptacle of a flower. The main characteristics 

of these microstructures are that petals have a nanometric thickness (~ 5 nm) and are formed by 

nanocrystal of anatase phase as shown in the next section.  
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Figure IV- 2. SEM images of samples: a-b-c) Al-Zr (4 at.% Zr) coating and TiO2 deposited at d-e-f) 500 

°C,  g-h-i) 540 °C and j-k-l) 550 °C. 

     Images d, g and j were used to quantify the density of the flowers by calculating the area fraction 

covering the sample by the flowers (in percentage) as shown in Figure IV- 3. The area fraction 

covered by microflowers was about 43 % for TiO2 thin films samples deposited at 550°C, 23 % for 

films deposited at 540°C and 8 % for TiO2 films deposited at 500°C. 

 

 

Figure IV- 3. SEM images processed by ImageJ for TiO2 films deposited at a) 500 °C, b) 540 °C and c) 

550 °C. 
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     Surface roughness profiles of samples were obtained using a Form Talysurf 50 (Taylor Hobson 

Co Ltd) surface Profilometer and measured 25 mm crossing the centre along the surface of the 

sample. For these measurements, the pre-race length used was 0.30 mm, the spacing (y) was 0.1 

mm, the measuring speed was 1 mm/ s and the number of points was 5000. As described in ASME 

B46.1, Ra is the arithmetic average of the absolute values of the profile height deviations from the 

mean line, recorded within the evaluation length. Ra is the average of a set of individual 

measurements of surface peaks and valleys[5]. 

     Figure IV- 4 presents the surface roughness profiles for the HSS/Al-Zr film and for the HSS/Al-

Zr/ TiO2 bilayer films deposited at 500 °C and 550 °C. Ra values were measured using contact 

mode, where the measuring instrument was in direct contact with the surface. 

     Al-Zr monolayer film presents a surface with a Ra value of 87 nm. The roughness increases 

when TiO2 layer is added and also when the deposition temperature increases. The TiO2 film 

deposited at 500°C, reproduces the Al-Zr baseline, with sparse peaks corresponding to the presence 

of microflowers. For TiO2 deposited at 550 °C, the density of microflowers is so high that causes 

a high roughness with an average Ra= 524 nm. The highest peaks correspond to the height of the 

biggest microflowers dispersed at the top of the layer (about 7 µm in size).  
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Figure IV- 4. Surface roughness profiles measured 25 mm along the surface. 
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IV.3. Structural properties 

IV.3.1. X-Ray Diffraction (XRD) analysis 

     The crystallinity and phase identification of the samples were studied by X-ray diffraction 

(XRD) in θ–2θ scanning mode using a Bragg–Brentano configuration between 10° and 80° at 

0.011° intervals with an acquisition time of 2 s using a Bruker D8 Advance diffractometer equipped 

with monochromatic CuKα1 radiation (λ = 0.15406 nm).  

     The crystallite size was determined using the Scherer’s formula based on the FWHM (Full 

Width At half Maximum) of (101), (200) and (211) anatase peaks in XRD patterns (Eq. IV.1): 

 

Dp = (K x λ) / (β x Cosθ)                 IV. 1                                 

where DP is the crystallite size in nanometers, λCu = 0.15418 nm is the X-ray wavelength, θ is the 

diffraction angle of the (101), (200) and (211) peaks and β is defined as the peak width of the 

diffraction peak profile at half maximum height resulting from small crystallite size in radians and 

K is Scherrer’s constant related to crystallite shape (in our study, K = 0.9). To determine the 

evolution of crystallite size with temperature on the dense TiO2 film without flowers, we performed 

XRD analysis on HSS/Al-Zr/TiO2 films deposited on polished HSS substrates. In this case, the 

grain size values obtained by Scherer’s method given by formula IV.1 were 44 nm for film 

deposited at 500°C and 53 nm for films deposited at 550°C. However, if we calculate crystallite 

size from the samples containing flowers, these values are 18 nm and 20 nm for films deposited at 

500 and 550°C respectively. As the mean value includes the crystallites size from the film that 

should be equivalent to previous values in TiO2 films, we can infer that crystallites size contained 

in the microflowers are rather smaller to 18 nm. The crystallite size values for TiO2/Al-Zr coatings 

deposited at 500°C and 550°C are resumed in Table IV- 1. 
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Table IV- 1: Effect of presence of microflowers on the crystallite size in TiO2 coatings deposited at 500°C 

and 550°C. 

 

Samples with microflowers 

 

Bilayer films Crystallite Size (nm) 

HSS/Al-Zr/TiO2 Tdep=500°C 18 

HSS/Al-Zr/TiO2 Tdep=550°C 20 

Samples without microflowers 

HSS/Al-Zr/TiO2 Tdep=500°C 44 

HSS/Al-Zr/TiO2 Tdep=550°C 53 

 

     XRD characterisation was also performed after deposition of TiO2 at 500, 540 and 550°C on 

HSS/Al-Zr substrates. The XRD patterns of these TiO2 coatings with and without microflowers are 

shown in Figure IV- 5 and Figure IV- 6, respectively. They reveal only anatase phase in all cases, 

mainly detected by the (101) and (200) diffraction peaks at 25° and 48° respectively. The XRD 

pattern of TiO2 thin film is also dominated by anatase phase with a preferential orientation of (101), 

without presence of rutile phase, even for the highest deposition temperature of 550 °C. This is 

favourable because rutile has a lower charge-transfer rate and higher recombination rate of 

photogenerated electron–hole pairs than anatase [6].  
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Figure IV- 5. XRD patterns for Al-Zr/TiO2 films with microflowers deposited at a) 550°C, b) 540°C and c) 

500°C on d) Al-Zr. 
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Figure IV- 6.  XRD Patterns for Al-Zr/TiO2 thin films without microflowers deposited at a) 500°C, b) 

550°C on c) Al-Zr. 

 

IV.3.2. Raman Spectroscopy analysis 

     Figure IV- 7 shows the Raman spectra of HSS/Al-Zr/TiO2 bilayer films deposited at different 

temperatures ranging between 500 and 550°C. The Raman spectra of the films containing 

microflowers on the surface show characteristic modes of the TiO2 anatase phase[7]: two Eg modes 

at 141 cm−1 and 635 cm−1, one A1g mode at 513 cm−1 and one B1g mode at 397.5 cm−1. The sharp 

peak at 144 cm−1 clearly identifies the anatase phase of TiO2. Smaller peaks at 398 and 639 cm−1 

can also be assigned to the anatase phase. No band corresponding to the rutile phase of TiO2 was 

observed. Moreover, the absence of a broad band background in the Raman spectra allows to 

discard the growth of amorphous TiO2.  
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Figure IV- 7. Raman spectra for HSS/Al-Zr/TiO2 films deposited by aerosol CVD at a) 550°C, b) 540°C 

and c) 500°C. 

 

IV.4.  Photocatalytic properties of HSS/Al-Zr/TiO2 bilayer films  

     Evolution of the absorption band at 480 nm corresponding to Orange G allowed to quantify the 

variation of its concentration under UV light. Figure IV- 8 shows plots of Ln(C/C0) as a function 

of UV light irradiation time.  

ln(C0/C) = kc. Kads .t = Kappt      IV. 2                          

where C0 is the concentration of Orange G after the adsorption – desorption equilibrium, Kapp is the 

apparent first-order rate constant (h−1). 

     The constant k was used to compare the photocatalytic activities of the different samples. k 

describes an apparent kinetic constant of the system as explained before in chapter III.  

     Al-Zr coating was tested for verification and, as expected, this layer did not present any 

photocatalytic activity as indicated in Figure IV- 8. On the contrary, the concentration of orange G 

decreased when exposed to TiO2 films. Two kinds of TiO2 films were deposited to highlight the 

influence of microflowers on phtotocatalytic properties. Using the same deposition temperature, 

the solution consumption is decreased to less than 3L.min-1 by decreasing the frequency of the 
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piezoelectric ceramic, which allows to deposit TiO2 films without flowers. These layers present the 

same morphology and crystallised also in anatase phase.  

     The photocatalytic activities of these two series are represented in Figure IV- 8. For films 

containing TiO2 microflowers, deposition temperature has an influence on the degradation rate, 

with a maximum value in the case of the film deposited at 550 °C, which shows 50 % of 

mineralization after 400 min of UV light exposure. For the film  deposited at 540 °C the value is 

30 % of mineralization for the same exposition time, and only of 20 % for the film deposited at 

500 °C. The k constant for Orange G degradation calculated from the slope with formula IV.2 is 

given in Table IV- 2. It is important to notice that microflowers were mainly present in samples 

deposited ant 540 and 550 °C, creating a higher roughness and a higher active surface for chemical 

exchange or reaction. For films without microflowers deposited at 500 °C and 550 °C, as 

represented in Figure IV- 8 (2) and table IV-2, the k constant is one order of magnitude lower than 

films containing microflowers deposited at the same range of temperature. 

 

 

 

Figure IV- 8. Linear regression of kinetics of orange G degradation by the HSS/Al-Zr/TiO2 thin films 

under UV light (371 nm) irradiation: On left, films with microflowers deposited at 1a) 550 °C, 1b) 540 °C, 

1c) 500 °C; films without microflowers (on right) deposited at 2a) 500 °C and 2b) 550 °C; and (1d and 

2c) Al-Zr films. 
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Table IV- 2. Constant k (kinetic constant of the system) for HSS/ Al-Zr/ TiO2 coatings deposited at 

different temperatures. 

Samples with microflowers Constant  k (min-1) 

Al-Zr/TiO2   Tdep=500°C 0.00063 

Al-Zr/TiO2 Tdep=540°C 0.00102 

Al-Zr/TiO2  Tdep=550°C 0.00156 

Samples without 

microflowers 

Constant  k (min-1) 

     Al-Zr/TiO2  Tdep=500°C 0.00066 

Al-Zr/TiO2  Tdep=550°C 0.00059 

 

     The decomposition rate (DR) was calculated by multiplying the initial concentration of Orange 

G (C0 = 5x10-5 M) by the constant k. These values are also shown in Table IV- 3  for the Al-Zr/TiO2 

coatings deposited at 500 °C and 550 °C. 

 

Table IV- 3. Effect of presence of microflowers on the decomposition rate of orange G and crystallite size 

for the TiO2 /Al-Zr coatings deposited at 500°C and 550°C. 

 

Samples with microflowers 

 

Bilayer films DR (10-10 mol L-1 min-1) Crystallite Size (nm) 

Al-Zr/TiO2  Tdep=500°C 510 18 

Al-Zr/TiO2  Tdep=550°C 780 20 

 

Samples without microflowers 

Al-Zr/TiO2  Tdep=500°C 332 44 

Al-Zr/TiO2  Tdep=550°C 297 53 
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     F. Maury et al.[8] reported a maximum DR of Orange G solution (10 ppm) of about  280 X 10-

10mol L-1 min-1 for TiO2 films deposited at 400 °C by AAMOCVD containing pure anatase phase. 

    In our work, the increase in decomposition rate from 510 X 10-10mol L-1 min-1 for the TiO2/Al-

Zr film deposited at 500 °C to 780 X 10-10mol L-1 min-1 for the sample deposited at 550 °C was 

observed only for films with microflowers. For samples without flowers, the DR was similar or 

even lower for the film deposited at the highest temperature 550 °C (297-332 X 10-10mol L-1 min-

1).  

     The presence of microflowers and small crystallite size contribute to a large specific surface, 

which enhances the photocatalytic activity and improves the degradation rate of organic pollutants 

by multiplying the active sites for absorption in TiO2 [9,10]. By increasing the surface area, 

adsorption of the reactants upon the photocatalyst and absorption of the light will increase. This is 

the double interest of the microflowers activity [11]. 

 

IV.5. Wettability of HSS/Al-Zr/TiO2 bilayer films 

     The film wettability was evaluated by measuring the contact angle and surface energy with 

water droplets. These measurements were performed with a goniometer KRÜSS G10 equipped 

with an image analysis system consisting of a CCD video camera, a card of acquisition connected 

to a PC computer and DROP SHAPE image processing software ANALYSIS (DSA), represented 

in Figure IV- 9. This software first determines the baseline of the drop using its reflected mirror 

image on the surface of the sample, then measures the contact angles of the drop at the intersection 

with the baseline via the 'Circle fitting' method (Figure IV- 10).  

     A droplet of distilled water of 0.5 µl volume was placed on the film surface and the first contact 

angle was measured immediately. The contact angle was measured before and after the incidence 

of light in the UV-C region used for the evaluation of photocatalytic activities. Each value was an 

average of 3 measurements on different areas of the sample surface. 
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Figure IV- 9. Schematic representation of the contact angle measuring device. 

  

Figure IV- 10. Determination of the contact angle using the DSA software. 

 

     Hydrophilicity is usually associated with photocatalytic activity [12]. This property can be 

enhanced, and even restored, by UV light. The self-cleaning property is directly related to this 

material ferature[12]. Al-Zr/TiO2 thin films were irradiated with UV light during 4 hours and the 

water contact angle was measured at different exposure times. The results are presented in Figure 

IV- 11. For all samples, the contact angle decreased sharply with the time from about 60° to 0° 

after 4 hours indicating a photoinduced superhydrophilicity. After six months in the absence of UV 

irradiation, the samples remained superhydrophilic presenting a contact angle of about 5°, as shown 

in Figure IV- 12. 

     For a sample in contact with water, its high photoactivity means that the photogenerated holes 

attract hydroxyl groups from water and produce hydroxyl radicals (•OH). The higher the number 

of hydroxyl molecules on the surface, the higher its hydrophilicity is. This is presented as a small 

contact angle between the water droplet and the TiO2 surface.   
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Figure IV- 11. Variation of water contact angles under UV illumination for HSS/Al-Zr/TiO2 bilayer films 

with TiO2  deposited at a) 500°C, b) 540°C and c) 550°C. 

 

Figure IV- 12. Water contact angles as a function of TiO2 deposition temperature for HSS/Al-Zr/TiO2 

bilayer films before UV illumination, after UV illumination and after six months without UV illumination. 

 

IV.6. TEM Analysis of HSS/Al-Zr/TiO2 bilayer films 

     The equipment used for TEM imaging was a JEM - ARM 200F Cold FEG TEM/STEM 

operating at 200 kV and equipped with a spherical aberration (Cs) probe and image correctors 

(point resolution 0.12 nm in TEM mode and 0.078 nm in STEM mode). 

     Figure IV- 13 shows the microstructure of the TiO2 layer deposited by AA-MOCVD. The 

composition appears to be homogeneous (Elemental X-ray X-maps, Figure IV- 14). The electron 

diffraction pattern confirms that TiO2 grows with the anatase structure. 
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     X-ray diffraction patterns of as-deposited Al-Zr coatings (4 at.% Zr) and annealed at a 

temperature of about 550 °C during TiO2 deposition (Figure II-8 in chapter II) do not show 

significant change. So, it seems that the structure and microstructure of the Al-Zr layer are stable 

up to this temperature. 

     Before the AA-MOCVD process step, the Al-Zr alloy has a columnar microstructure (Figure 

IV- 15). EDS analysis has shown that zirconium is homogeneously distributed throughout the layer.    

The columns are approximately 450 nm wide and the growth is not systematically from the 

interface to the surface of the film. This coating is clearly single-phased; it is an extended 

supersaturated solid solution of zirconium in aluminum. This solid solution grows without 

preferential orientation, which is not surprising for an aluminum coating deposited at low 

temperature without bias. 

     After the AA-MOCVD process step at substrates temperature of about 550 °C, the Al-Zr coating 

has a different microstructure (Figure IV- 14a, b). Indeed, dark precipitates appear clearly in the      

Bright field scanning transmission electron microscopy (STEM BF, Figure IV- 14 a) 

      Scanning-mode transmission electron microscopy coupled to a High-Angle Annular Dark-

Field Detector (STEM-HAADF), due to the dependence of signal strength with Z, increases the 

contrast between phases with different atomic numbers. Figure IV- 14a, b confirm that these 

precipitates are richer in zirconium than the matrix. These precipitates have essentially two 

morphologies; rod and spherical. The spherical ones crystallize mainly at the solid solution grains 

boundaries. EDS analyzes have shown that the zirconium content of these precipitates is in the 

range 15.0 to 17.5 at. %. The compound with the highest aluminum content in the phase diagram 

is Al3Zr. Its stable structure is of type DO23 (Figure IV- 16). 
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Figure IV- 13.TEM Bright field (a) and SAED (b, anatase TiO2) of TiO2 layer deposited on the Al-Zr 

coating. 

 

Figure IV- 14. STEM bright field (a); STEM HAADF (b) images and associated X-maps of HSS/Al-Zr 

/TiO2 bilayer. 
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Figure IV- 15. TEM Bright field (a) and SAED (b, [110] zone axis) of Al-Zr layer deposited before AA-

MOCVD process (before annealing). 

 

 

Figure IV- 16. Unit cell of D023 type for Al3Zr. 

     The DO23 structure has a parameter a = 4.001 Å [13] to be compared with a = 4.032 Å for Al 

and a ratio of tetragonality c/a = 4.31. Because of this ratio c/a significantly higher than 4, such an 

Al3Zr coherent precipitate with the aluminum matrix will therefore be subjected to high elastic 

stresses. This makes it unlikely to precipitate this structure in the Al-Zr coating. 

     The Al3Zr compound also has an ordered metastable structure based on FCC cell but which has 

the symmetries of a simple cubic; the L12 type structure (Figure IV- 17). The parameter of this 

phase is very close to that of aluminum; a = 4.093 Å. The elastic effects related to the coherence 
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of the small precipitates with the low zirconium-loaded matrix are therefore weak and we should 

rather expect the precipitation of metastable Al3Zr. 

 

Figure IV- 17. Unit cell of L12 type for Al3Zr. 

     Figure IV- 18 shows the TEM bright field images and selected area electron diffraction (SAED) 

patterns corresponding to zone axis [110]. The structure is clearly biphased; an FCC solid solution 

of zirconium in aluminum and an ordered Al3Zr compound of L12 type, which confirms the 

hypothesis of the precipitation of this ordered metastable phase. 

 

Figure IV- 18. TEM bright field (a, b zoomed) images, associated SAED pattern with the [110] zone axis 

(c) and darkfield (d) obtained from sport corresponding to Al3Zr precipitates. 
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          Figure IV- 19 clearly confirms that L12 type ordered Al3Zr precipitates are fine coherency 

with the Al(Zr) solid solution matrix in cube on cube relationship with [100]Al3Zr // [100]Al(Zr), [010] 

Al3Zr // [010] Al(Zr) and [001] Al3Zr // [001] Al(Zr).  

     Precipitation of this metastable phase has already been observed in conventional alloys after 

annealing at temperatures below 500 °C[14–16] while annealing at higher temperatures can lead 

to the precipitation of the stable phase [17,18]. These precipitates have either a spherical or rod 

shape. Image obtained by high resolution STEM-HAADF (Figure IV- 20) shows the coherent 

interfaces, with adaptation of the parameter between the supersaturated solid solution matrix of Zr 

in Al, and the Al3Zr precipitates with higher zirconium content. There is a very small difference in 

the parameter between the f.c.c. aluminum matrix and the f.c.c. L12-type Al3Zr compound; and 

since the mismatch is slight, the L12-type compounds form coherent precipitates [19]. 

   Scully et al. reported that these particles is an important grain refiner in commercial structural Al 

base alloys and presents a minimal impact on corrosion properties [20].  

 

Figure IV- 19. Model (red: Al3Zr and black: Al(Zr)) and SAED diffraction pattern of Al-Zr after AA-

MOCVD process for TiO2 deposition (after annealing). [001]Al3Zr // [001]Al(Zr). 
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Figure IV- 20. High resolution STEM-HAADF of Al-Zr coating after AA-MOCVD process for TiO2 

deposition (after annealing). 

 

IV.7. Electrochemical tests  

     The electrochemical measurements were carried out in an aerated and stirred chlorine solution 

(5 wt. % NaCl solution) in a polarization cell with a total volume of 200 mL, as represented in 

Figure IV- 21. The measurements were made using an Autolab potentiostat driven by NOVA 2.0 

software.  

     A polarization cell was composed of an electrolyte solution, a reference electrode, a counter 

electrode and the metallic sample placed with a sample holder. The sample presented the working 

electrode and the other electrodes were connected to an electronic instrument named a potentiostat. 

The working reference and counting electrodes were located in the electrolyte solution, normally a 

solution that most closely represents the real application environment of the material being 

analysed. In the solution, an electrochemical potential (voltage) was produced between the various 

electrodes.  

     In this work, the pH of the solution was adjusted to 6 by addition of 0.5 M HCl solution and 

each measurement was performed at room temperature. The potentials were referenced against an 

Ag/AgCl electrode and the counter electrode was a large platinum grid. The effective area of 
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working electrode was 1.327 cm2. The polarisation curves were recorded in the potential range of 

±150 mV around the open circuit potential (OCP) with a scan rate of 0.2 mV/s after 1 h of 

immersion in the saline solution. The corrosion potential Ecorr and corrosion current density Icorr 

were estimated from the cross-over point of the two tangents drawn on linear portion of anodic and 

cathodic polarization curves. The evolution of Open Circuit Potential was recorded during 1 h. 

 

 

Figure IV- 21. Schema of polarization cell used for electrochemical measurements. 

 

     In this work, Al-Zr films containing 4 at. % Zr were deposited on HSS substrate where this 

composition has shown the best compromise between mechanical properties, electrochemical 

behavior and sacrificial character, as explained before in chapter II.  

     Figure IV- 22 shows the evolution of the open circuit potential (OCP) versus time during 1h of 

immersion in 5 wt.% NaCl for different samples: HSS, HSS/Al-Zr, HSS/TiO2, and the HSS/Al-

Zr/TiO2. The steel OCP was reported as a reference. The steel OCP rapidly decreased and then 

stabilized at around -0.55 V/Ag-AgCl. This evolution is typical for the progressive formation of 

iron based corrosion products on the steel surface[21]. The TiO2 coated steel presents a quite 

similar OCP evolution during the immersion suggesting that this evolution is directly related to the 

steel degradation through the open defects of the oxide film. However, the OCP values are nobler 

in presence of the titanium oxide layer. Ramaprakash et al.[22] also observed a slight ennoblement 

of the steel corrosion potential when is covered with TiO2 in 3.5% NaCl solution. This ennoblement 
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was attributed to the modification of the electronic charge transfer during the steel dissolution due 

to the presence of the oxide film. 

     The OCP of the Al-Zr coating is quite constant during the immersion at around -0.62 V/Ag-

AgCl, which seems to be closed to the pitting potential as mentioned in [23] for similar Al based 

coatings in saline solution. The OCP of HSS/Al-Zr/TiO2 bilayer coating is also quite constant 

during the immersion at around – 0.69 V/Ag-AgCl, which is slightly more negative compared with 

the Al-Zr coating. The shift of the OCP towards more negative values was also reported by Dias et 

al. on TiO2 thin films deposited by atomic layer deposition on Al-Mn alloys[24].  

     The OCP measurements prove that Al-Zr and HSS/Al-Zr/TiO2 bilayer coatings keep the 

sacrificial character. It seems that the presence of the TiO2 coatings acts differently when is 

deposited on steel or aluminium based materials. This could be due to the intrinsic properties of 

the titanium oxide film [11]. 

 

Figure IV- 22. OCP evolution of steel coated with Al-Zr (4 at. % Zr ), TiO2 and Al-Zr/TiO2 bilayer films vs 

immersion time in 5 wt.% NaCl. 

 

     The polarization curves of the coated steels with Al-Zr, TiO2 and Al-Zr/TiO2 are presented in 

Figure IV- 23 and compared with the bare steel. Corrosion potential (Ecorr) and corrosion current 

density (Icorr) were determined from the polarization curves by imposing a straight line along the 

linear portion of the anodic and cathodic curve and extrapolate it through Ecorr. Table IV. 4 presents 

the corrosion current density and corrosion potential values extracted from the potentiodynamic 

test for all the samples. 

0 500 1000 1500 2000 2500 3000 3500
-0,75

-0,70

-0,65

-0,60

-0,55

-0,50

-0,45

-0,40

-0,35

E
O

C
P
 (

V
 v

s
 A

g
/A

g
C

l)

Immersion time (s)

AlZr ( 4,0 at.% Zr, 3 µm)

High speed steel

TiO2

AlZr + TiO2



Chapter IV: Characterizations of Al-Zr/TiO2 bilayer thin films 

 

135 

 

-0,8 -0,7 -0,6 -0,5 -0,4 -0,3
1E-8

1E-7

1E-6

1E-5

1E-4

0,001

0,01

Potential / V vs (Ag/AgCl)

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

A
/c

m
2
)

AlZr ( 4,0 at.% Zr, 3 µm) / HSS

AlZr + TiO2 / HSS

TiO2 / HSS

HSS

 

Figure IV- 23. Polarisation curves of Al-Zr (4 at. % Zr), TiO2 and Al-Zr/TiO2 bilayer films deposited on 

HSS after 1h of immersion in 5 wt. % NaCl. 

 

Table IV. 4. Icorr and Ecorr values for Al-Zr, TiO2, Al-Zr/TiO2 films and HSS substrate. 

Samples Icorr (A/cm2) Ecorr (V /( Ag/AgCl)) 

HSS substrate 18 -0.52 

HSS/TiO2 9.25  -0.48  

HSS/Al-Zr ( 4 at.% 

Zr) 
2.49  - 0.59  

HSS/Al-Zr/TiO2 0.41 -0.61  

 

     The corrosion potential of the bare steel after one hour of immersion in stirred saline solution 

was around -0.52 V vs Ag/AgCl. A diffusional plateau is observed in the cathodic domain 

corresponding to the dioxygen reduction and a uniform corrosion is observed in the anodic domain. 

The TiO2 film induces a shift of the corrosion potential towards more positive values as observed 

by Ramaprakash et al. [22]. The cathodic branch is not affected by the presence of the titanium 

oxide film, whereas the steel dissolution mechanism is modified. The anodic slope is decreased 

suggesting that the oxide film affect the charge transfer reactions during the steel dissolution.  

     Al-Zr coating presents a corrosion potential at around -0.59V vs Ag/AgCl which is slightly more 

negative compared to the HSS substrate. The anodic polarisation curve presents a sudden rise in 
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current close to the corrosion potential corresponding to the initiation of pitting corrosion as 

presented by Juan Creus et al. [23]. We can notice that the initiation of the pitting corrosion occurs 

at a potential value that is close to the corrosion potential. 

     The polarization curve for the bilayer coated sample (HSS/Al-Zr/TiO2) is quite different from 

the other configurations. The influence of the TiO2 film on the corrosion behavior is different from 

HSS and Al-Zr material, probably due to the fact that steel suffers from a uniform corrosion 

whereas pitting corrosion is the main degradation observed on Al-Zr coating. The oxide film affects 

the cathodic domain with an increase of the cathodic reaction slope associated to the dioxygen 

reduction suggesting that the charge transfer reaction is slow down. The TiO2 film permits to reduce 

the contribution of the cathodic reactions leading to the decrease of the corrosion current density, 

down to 4.1 X 10-7 A/cm2. As observed for the Al-Zr coating, the pitting corrosion occurs at 

potential values very close to the corrosion potential, but in the bilayer coating, we can suppose 

that the pit initiation is mainly localised at the oxide film defects. An important decrease of the 

anodic reaction kinetics is observed and probably due to the increase of the surface impedance 

associated to the TiO2 layer. So the pit propagation seems to be reduced in presence of the oxide 

film. 

     The optical observations of the corroded surfaces of the coated samples after the 

potentiodynamic polarization tests are presented in Figure IV- 24. It shows that the mean pit 

diameter decreases when TiO2 is added as a second layer. It suggests that the TiO2 coating impedes 

the growth of pits. It seems that the TiO2 layer is able to increase the pitting resistance because of 

the low cathodic reaction kinetics.  
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Figure IV- 24. Optical micrographs of pits formed on a) Al-Zr (4 at.% Zr),  b) TiO2 and c) Al-Zr/TiO2 

bilayer films deposited on HSS after 1h of immersion in 5 wt.% NaCl. 

 

IV.8. Conclusions 

     The potential functionality of HSS/Al-Zr/TiO2 bilayer coating combining anticorrosion and 

photocatalysis properties was tested using High speed steel (HSS) substrates.  The Al-Zr thin films 

containing a saturated solid solution with 4 at. % Zr were deposited on HSS substrates by DC 

magnetron sputtering. Then, TiO2 coatings were deposited by Aerosol Assisted CVD in optimised 

conditions to grow a microstructure characterised by the presence of TiO2 microflowers physically 

attached to the TiO2 thin film. Optimal growth conditions were obtained by the combination of 

deposition temperature, precursor concentration and precursor feeding rate.  XRD and Raman 

spectroscopy confirm that TiO2 microflowers and thin film reveal anatase phase. The presence of 

TiO2 microflowers having a size of about 7 µm and a crystallite size of 20 nm plays a crucial role 

in photocalysis of Orange G compound. This behaviour was enhanced on  TiO2 samples deposited 

at 550 °C, showing a higher decomposition rate of Orange G (780 X 10-10 mol L-1 min-1) under UV 

light when compared to other films deposited at lower deposition temperatures (500 and 540 °C).   

This study confirms the fundamental role of roughness and superhydrophilicity on the 
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photocatalysis process and encourage the application of TiO2 nano-coatings for the fabrication of 

components to avoid algal adhesion on underwater structures.      

     TEM analysis revealed that after the AA-MOCVD process step at 550 °C, Al-Zr (4 at.% Zr) 

presented precipitates, which are richer in zirconium than the matrix. EDS analyzes have shown 

that the zirconium content of these precipitates is in the range 15.0 to 17.5 at. %. The structure 

formed after deposition at 550°C is clearly biphased ; an FCC solid solution of zirconium in 

aluminum and an ordered metastable Al3Zr compound.  

     Finally, HSS/Al-Zr/TiO2 bilayer coatings were found to be an interesting alternative to preserve 

sacrificial character for the protection of steel structures in saline environment, showing a corrosion 

potential of – 0.61 V vs Ag/AgCl. Al-Zr/TiO2 bilayer coatings deposited on steel substrates offer 

good protection through the preferential oxidation of the bilayer presenting a lower corrosion 

current density of 4.01 X 10-7 A/cm2. TiO2 as a second layer reduces the electrochemical activity 

of the films through the formation of a dense passive film, and also increases the pitting resistance 

when the cathodic reaction kinetics is lower.  
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     In order to improve the characteristic properties of wide band gap semiconductor, the 

incorporation of transition metals is an efficient method. Consequently, several studies have been 

directly concerned in doping with the transition metals (Mn, Ni, Cu, Fe) to improve and control the 

characteristic properties of TiO2 films [1,2].  
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     Zhang et al. [3] reported that the substitution of Ti4+ by Cu2+/Cu1+ in the TiO2 lattice induces 

the creation of oxygen vacancies and additional impurity band that results in a significant reduction 

of  both band gap and recombination rate of photo electron-hole pair. Thus, photocatalytic 

performance and the ability of visible light absorption of TiO2 have been improved.  

     Indeed, most single phase materials do not meet all the requirements to be an efficient visible-

light-active photocatalysts, comprising high surface area for adsorption of targeted species, high 

conductivity, long-charge lifetimes, direct pathways to carry photogenerated charge, and good 

chemical stability in water. Mixed phase or doped materials, tough, present higher charge 

separation at the interfaces leading to higher photocatalytic activities and have begun to attract 

greater attention as visible light-active photocatalysts [4][5].  

     For environmental recovery and solar-energy conversion applications, TiO2 and CuxO mixtures 

reveal great potential, in part as a result of their low toxicity but also in lieu of their suitable energy 

band positions [6]. 

     In this chapter the influence of incorporation of high contents of copper into TiO2 thin films on 

structural, optical, photocatalytic activity and antibiofouling properties of TiO2 thin films is 

proposed as new Cu-Ti-O films. Cu-Ti-O films with different Cu contents were deposited by 

aerosol-assisted metalorganic chemical vapor deposition using the same parameters used for 

depositing pure TiO2 films as presented in chapter III. 

     The properties of the compounds obtained were evaluated by measurements of X-ray diffraction 

(XRD), Raman spectroscopy, X-ray Photoelectron Spectroscopy, UV-vis spectrometry, 

Transmission and Scanning Electron Microscopy, and Photocatalytic degradation of Orange G. 

Marine biofouling field test were carried out in Lorient’s Harbor in France in order to evaluate the 

antifouling performance of the coatings.  

 

V.1. AAMOCVD parameters and preparation of starting precursor 

solutions 

V.1.1. Preparation of starting precursor solutions 

    The preliminary step in the deposition process is the preparation of the solution. The precursor 

chosen for copper deposition was Cu(II) acetylacetonate (Cu(AcAc)2) (98%, STREM Chemicals). 

This precursor has been already used in LMGP for Cu2O films deposition by AACVD [7]. Starting 
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solutions with a concentration of 0.01 M and 0.03 M were prepared by adding 1.3 g and 3.9 g of 

precursor respectively, in 500 ml of absolute ethanol followed by a constant stirring. Since 

Cu(AcAc)2 has low solubility in alcohol solvents, ethylendiamine was added to increase the 

solubility, at a double concentration in relation with the total molar concentration of precursors[8]. 

In our case, at least 0.01 M ethylene diamine (99%, Sigma Aldrich) was added as dispersant (2.5 

ml of ethylene diamine for 500 ml of 0.01 M solution). The solution became dark blue right after 

addition the dispersant, as represented in Figure V- 1. After adding ethylendiamine, the solution 

was stirred with speed of 300 cycle/min until complete dissolution. The temperature of the solution 

is also increased to 50 ºC to promote the precursor dissolution. The stirring lasted 15 hours until a 

homogenously solution was obtained.  

     The precursor molecule structure is shown below: 

 

     The Cu(II)(AcAc)2 prepared solutions was then mixed with a Ti(IV)O(AcAc)2 solutions at a 

concentration of 0.03 M in ethanol, prepared as explained in chapter III. In this way, we obtained 

two different cation concentration starting solutions in ethanol: Solution I) a solution of 0.01M of 

Cu and 0.03 M of Ti, Solution II) 0.03 M of Cu and 0.03 M of Ti. The mixture was stirred until 

complete mixing using a magnetic bar with speed 300 cycle/min at room temperature. After 3 hours 

the solution was ready for deposition. 

 

Figure V- 1 Effect of the addition of the dispersant in the Cu(acac)2 solution a) before and  b) after 

addition. 
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V.1.2. Deposition conditions  

     The substrates used for depositing copper-titanium oxide films were (100)-oriented silicon 

single crystal and alkaline earth boroaluminosilicate glass (reference Corning C1737-S111). In 

some experiments, Al-Zr on HSS (d= 30 mm) were also used as substrates. Substrates were cut 

with a diamond pen into squares with size of about 1.5 x 5 cm2 and 5 x 5 cm2 and washed in an 

ethanol solution with ultrasounds for 10 minutes, rinsed with deionized water and dried with N2 

flow.  

     The substrate deposition temperature was fixed at 550 °C with a deposition time of 40 minutes.    

In this work, an extraction pressure of 3mm of H2O was used in order to homogenize the air in the 

deposition chamber. As explained in chapter III, air as carrier gas #2 was introduced with flow rate 

of 3 L/min and, consequently, when temperature reaches the set point, air as carrier gas #1 was 

introduced with flow rate 3 L/ min. Once precursor flow achieves the heating place the timer can 

be set.  

     The analysis of the microstructure and chemical composition of Cu-Ti-O films deposited by 

aerosol-assisted CVD using the two starting solutions were performed by scanning electron 

microscope SEM in a FEI Quanta 250 MEB FEG ESEM tool. Energy dispersive spectroscopy 

(EDS) analysis was conducted in order to investigate the chemical composition of the sample at 

the microscopic scale. 

     Table V. 1 shows the at.% Cu in film measured by EDS for films deposited on silicon, corning 

glass and Al-Zr coated high speed steel using the two different solutions. 

     One mean value of Cu content is given in Table V. 1 for each substrate for samples deposited 

using solution 1 and solution 2. 

     For Cu-Ti-O films deposited using the lowest Cu concentration (solution 1), the Cu content in 

film is 16 at.% Cu for films deposited on Si and corning glass substrates. This solution leads to 

reproducible films from run to run.  

     For Cu-Ti-O films deposited using the highest Cu concentration (solution 2), the film 

composition are less reproducible. Three runs were performed from the same solution and films 

present a Cu content that varies between 50 and 66 at.% Cu for films deposited on silicon, between 

50 and 75 at.% Cu for films deposited on corning glass and between 25 and 50 at.% Cu for Al-Zr 

coated high speed steel (HSS). Figure V- 2 a) presents the evolution of the amount of copper on 
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the film with the percentage of copper in solution. Figure V- 2 b) exhibits the evolution of film 

thickness when the concentration of copper increases. The evolution is clearly not linear. 

 

Table V. 1. Cu-Ti-O films deposited on silicon, corning glass and Al-Zr coated high speed steel measured 

by EDS for Ti(AcAc)2 solutions mixed with Cu(AcAc)2 at a concentration of 0.01M or 0.03 M. 

Solutions 
% Cu in 

solution 

Cu/(Cu/Ti) for 

films deposited 

on Si (at.%) 

Cu/(Cu/Ti) for 

films deposited 

on Corning 

glass (at.%) 

Cu/(Cu/Ti)for 

films deposited 

on Al-Zr 

coated HSS 

(at.%) 

Solution 1 

Ti(AcAc)2 0.03 M + 

Cu(AcAc)2 0.01 M 

33 

16  16 

- 

Name:CuTiO16S Name:CuTiO16C 

Solution 2 

Ti(AcAc)2 0.03 M + 

Cu(AcAc)2 0.03 M 

50 

50  50 25  

Name:CuTiO50S Name:CuTiO50C Name:CuTiO25A 

55 58 50 

Name:CuTiO55S Name:CuTiO58C Name:CuTiO50A 

66 75 
- 

Name:CuTiO66S Name:CuTiO75C 

 

     Since our films are not homogenous in thickness, an average thickness is calculated using cross 

section SEM images for all the films deposited on silicon presenting a percentage error of +- 10 %. 

Films containing 55 at.% Cu shows the maximum thickness of 500 nm for a deposition time of 40 

minutes. Secondly, pure TiO2 films presented the smallest thickness presenting an average 

thickness of about 300 nm. This can be explained because the Ti solution has a molar concentration 

of 0.03 M, lower than mixed solutions. 

    It is important to emphasise that the molar concentration is not the same in the two mixed 

solutions since solution 1 has a total of 0.04 M and solution 2 has a total of 0.06 M. The total molar 

concentration does not seem to have influence on the deposition rate of films.   
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Figure V- 2. a) Evolution of at.% Cu on the film with the % of Cu in solution for the three substrates. b) 

Evolution of film thickness measured on silicon with at.% Cu. 

 

V.2. Morphological characterization 

     The microstructure morphology of Cu-Ti-O films deposited on silicon and glass observed by 

SEM is shown in Figure V- 3. Figure V- 3 a) presents pure TiO2 films containing the typical 

microflowers. Morphology is rather different for films containing copper in their composition and 

microflowers are no longer presented. When at.% Cu increases, the morphology becomes granular 

and rough as represent in Figure V- 3 b, c, d, e and f. The same feature is noticed for Cu-Ti-O films 

deposited on silicon, corning glass and on Al-Zr coated high speed steel substrate (Figure V- 4).  

No significant influence of the substrate was found on the morphology of these Cu-Ti-O films. 
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Figure V- 3. SEM images of microstructures corresponding to a) pure TiO2 film, b) Cu-Ti-O - 16 at.% Cu 

film c) Cu-Ti-O - 50 at.% Cu film d) Cu-Ti-O – 55 / 58 at.% Cu film and e) Cu-Ti-O – 66 / 75 at.% Cu film 

deposited by AA-MOCVD on silicon and corning glass substrates. 
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Figure V- 4. SEM images of a) Cu-Ti-O - 25 at.% Cu film and b) Cu-Ti-O - 50 at.% Cu film deposited on 

Al-Zr coated high speed steel substrate. 

 

     In the group of microscopy analysis, another technique used in this work was atomic force 

microscopy to measure the roughness of the samples. The analysis was performed in Veeco D3100 

AFM with 5μm x 5μm images. Cu-Ti-O films deposited on corning glass were also characterized 

by AFM, which allows to quantify the roughness through the root-mean-square (RMS) of height 

deviation, visible in Table V. 2. This quantitative technique agrees with the SEM observation 

indicating higher roughness with the increase of Cu content. The images of the AFM are 

represented in Figure V- 5. 

Table V. 2. Roughness of Cu-Ti-O thin films. 

at.% Cu RRMS (nm) 

16 23.77 

58 30.30 

75 36.90 
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Figure V- 5. AFM images 5μmx5μm of the Cu-Ti-O films – a) CuTiO16C, b) CuTiO58C and c) 

CuTiO75C. 

V.3. Structural properties 

     Wang et al. have pointed out that the addition of high concentration Cu to TiO2 causes to phase 

transformation from anatase to rutile at low temperature [9]. Horzum et al. investigated the effect 

of Cu incorporation at a high concentration (up to 50 wt %) on the properties of TiO2 films. They 

showed that Cu is incorporated homogeneously into the TiO2 matrix until 12.5 wt% . On the other 

hand, for 25 wt% and 50 wt% Cu-incorporated films presented CuO in its composition [10].  Celik 

et al. identified the presence of anatase TiO2, CuO, Cu4Ti, Cu3TiO4 and Ti3O5 phases for Cu-doped 

TiO2 films [11]. Saha et al. revealed the presence of anatase TiO2 and Cu3TiO4 phases for a Cu-Ti 

composite oxide catalyst [12]. 

V.3.1. X-Ray Diffraction (XRD) analysis 

     The XRD patterns of TiO2 film and Cu-Ti-O films with various at.% Cu were acquired using 

X-ray diffraction (XRD) in θ–2θ scanning mode using a Bragg–Brentano configuration between 

10° and 80° at 0.011° intervals with an acquisition time of 2 s using a Bruker D8 Advance 

diffractometer with monochromatic CuKα1 radiation (λ = 0.15406 nm). The results are represented 

in Figure V- 6 a) for corning substrate and in Figure V- 7 a) for silicon. To have an increased 

sensibility to secondary phases, GIXRD was performed on Cu-Ti-O films and the diffraction 

patterns are shown in Figure V- 6 b) and Figure V- 7 b). GIXRD patterns were acquired with a 

Bruker C40 D8 with incidence and exit angles maintained around 0.5°. All samples exhibits 

diffraction peaks for the TiO2 anatase phase. TiO2 diffraction peaks are in agreement with JCPDS 



Chapter V: New Cu-Ti-O films for photocatalysis and antibiofouling applications 

 

152 

 

Card No.21-1272 [13]. The presence of Cu2O is confirmed in films presenting at.% Cu higher or 

equal to 50 %  and diffraction peaks are in agreement with JCPDS card No. 05-0667. A small 

amount of CuO is detected for films deposited on both substrates for Cu content equal or higher to 

50 %. This phase is particularly visible in the GIXRD diagrams, presenting CuO peaks 

corresponding to the crystal planes (-1 1 1) and (1 1 1) at 2θ = 35.55° and 38.75° (JCPDS card 

No.07-1375). No other secondary phase were found in the diffraction diagrams at any composition.  
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Figure V- 6. XRD diagrams of TiO2 and Cu-Ti-O films deposited on corning glass substrates at 550°C 

obtained. a)  in a Bragg-Brentano configuration and b) in GI-XRD configuration. 
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Figure V- 7. XRD diagrams of TiO2 and Cu-Ti-O films deposited on silicon substrate at 550°C obtained. 

a)  in a Bragg-Brentano configuration and b) in GI-XRD configuration. 
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V.3.2. Raman Spectroscopy analysis 

     Raman spectroscopy was used to clarify the early stage of phase transformation in these sets of 

samples. This technique is complementary to XRD analysis, but allows for a more local analysis. 

Raman spectra of as-deposited Cu-Ti-O thin films are represented in Figure V- 8 a), Figure V- 8 

b), and Figure V- 8 c) for films deposited on corning glass, silicon and Al-Zr coated substrates, 

respectively.  

     The prominent Raman peaks observed for all samples at 144, 400, 519 and 639 cm−1 are related 

to typical anatase phase of TiO2 as already presented in Chapter III. These peaks correspond to 

following Raman vibration modes: Eg modes at 143 and 639 cm−1, B1g mode at 400 cm−1 and 

overlapped A1g and B1g modes at 519 cm−1. The anatase phase of Cu-Ti -O films is retained well 

by the incorporation of Cu in the films.  

     Besides, Raman spectroscopy confirmed the formation of the Cu2O phase based on the presence 

of standard associated modes, which were detected in all films with at.% Cu greater than 50 as 

represented in Figure V- 8. Several vibrational active modes of Cu2O are identified: 

(T2u) ~ 88 cm−1, (Eu) ~ 106 cm−1, (T1u) ~ 148 cm−1, (2Eu) ~ 215 cm−1 and (T1u) ~ 625 cm−1[14]. 

     Finally, CuO phase are barely detected for Cu-Ti-O films with at.% Cu greater than 50,  

independently of the substrate.  298 cm-1 (Ag), 346 cm-1 (Bg) and 632 cm-1 (Bg) modes are presented 

for this films [15,16]. 

     Films deposited with a mixed solution of Ti and Cu are mainly constituted of TiO2 and Cu2O. 

However, as observed in Figure V- 8 a) and Figure V- 8 b), the intensity of the anatase peaks 

decreased and broadened for films containing more than 50 % of Cu, which indicates an increment 

in structural disorder [9].  

     The incorporation of Cu distorts the lattice structure of TiO2 since the ionic radius of Cu+ (0.77 

Å) is slightly larger than that of Ti+4 (0.68 Å). Furthermore, because of the charge difference 

between Cu+ and Ti+4, the addition of Cu+ into the TiO2 matrix creates the oxygen vacancies to 

protect the charge neutrality in the lattice [14] and the higher concentration of Cu+ compose more 

oxygen vacancies in the TiO2 lattice. Since these oxygen vacancies are formed, the lattice distorts 

and the all Raman peaks shift and broaden, with increasing Cu content. 

     An extra peak is observed at 755 cm−1 for Cu-Ti-O films with a Cu content greater than 16 at.% 

Cu for films deposited on silicon substrate and greater than 50 at.% Cu for films deposited on Al-

Zr coated high speed steel substrate and corning glass substrates.  
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     To evaluate if this band appears only for thick films, we characterized by Raman spectroscopy 

a big sample of CuTiO58C film. As can be seen in Figure V- 9, the sample presents an 

inhomogeneous thickness. Nevertheless, the composition was confirmed at each point by EDS. 

The spectra obtained at the defined points are represented in the figure, and all of them are similar. 

The presence of TiO2, Cu2O and CuO bands are confirmed in all measured regions together with 

the absorption band at 755 cm-1. We can infer that this band is not thickness dependent.  

     One hypothesis is that this extra peak existed with high Cu concentration can be related to A2u 

IR active mode of anatase TiO2 [17,18]. In our case, the A2u mode (755 cm-1) of anatase is more 

prominent when the Cu content increases. Thus frequency band corresponds to the longitudinal 

optical (LO) phonons. There are six Raman active modes (A1g +2B1g +3Eg) and three IR active 

modes (A2u + 2Eu) for anatase TiO2. The Eg Raman modes originate from oxygen vibrations. 

According to M. Grujić-Brojčin et al. [18], the additional modes can be understood in terms of IR-

forbidden modes [19], since the oscillator frequencies are very similar to the two strongest Eg 

modes in the Raman spectrum of anatase TiO2. In our case, the addition of Cu+ could remove the 

neutrality of charges in the Eg vibrational modes, causing a slight lattice distortion and appearance 

of IR-forbidden modes. 
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Figure V- 8. Raman spectra for Cu-Ti-O films deposited by aerosol CVD at 550°C on a) Corning glass 

substrate, b) Silicon substrate and c) Al-Zr coated high speed steel. 
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Figure V- 9. Raman spectra for CuTiO50C film measured at different points on the film surface, described 

on the picture on the right. 

V.4. Fourier transform infrared spectroscopy (FTIR)  

     FTIR was used as a complementary technique to Raman, and was performed on films deposited 

on silicon substrates which are transparent in the Mean infrared region (MIR). The absorption 

spectra obtained after subtraction of silicon substrate signal are shown in Figure V- 10. The bands 

presented at 420 cm-1 and 270 cm-1 correspond to Ti-O bonds. These bands are characteristics of 

the anatase phase  at  262 cm-1,  435 cm-1 [20]. When increasing Cu content, the intensity of these 

bands decreases and a new band at 618 cm-1 appears, which corresponds to the stretching band of 

Cu2O. For the highest Cu contents a band at 500 cm−1 corresponds to the phonon spectrum of CuO 

[21].  

     FTIR results confirm XRD interpretation that Cu-Ti-O films are composed of a mixing of TiO2 

and Cu2O, and CuO for higher Cu contents. However, the band detected by Raman spectroscopy 

at 755 cm-1 and attributed to a FTIR forbidden band could not be confirmed in these spectra.  
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Figure V- 10.  FTIR spectra of TiO2 film and Cu-Ti-O films deposited on silicon substrate at 550°C. 

 

V.5. UV-VIS-IR transmittance  

     The optical properties of the Cu-Ti-O films deposited on corning glass at 550 °C were 

determined by UV-Visible-Near Infrared spectrometry. These measurements were carried out in a 

Lambda 950 spectrophotometer from Perkin Elmer in the range of 250 nm to 2500 nm working in 

transmission mode. Figure V- 11 a) presents the total transmission spectra obtained for pure TiO2, 

CuTiO16C and CuTiO75C films using an integrating sphere.   

     It is seen that for pure TiO2 film as being colorless and transparent, the absorption starts at 390 

nm in the UV-region. As the Cu atom is incorporated into the films, the color becomes darker, 

transmittance decreases and the absorption edge shifts to visible region. 

     The pure TiO2 thin film is transparent to visible light with an expected band gap energy of 3.2 

eV [22] ,  thus enabling the absorption of only UV light with the wavelengths shorter than 390 nm. 

When adding Cu in the film, a striking change is observed in the UV–vis absorption spectra of the 

Cu-Ti-O films. The absorption band of the Cu-Ti-O films shifted to longer wavelength region in 

visible light. It can be seen that the steep absorption edges shifted to the visible region obviously 

as the at.% Cu increases, which indicates a narrowing in the optical band gap. This behavior is 

correlated to the formation of Cu2O with an indirect gap energy of 2.17 eV [23]. 
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     The spectra were employed to calculate the band gap by tracing the Tauc plot using the equation:  

(αhv)n = A(hv − Eg) V-1 [24]. 

where α is the absorption coefficient, hv is the photon energy (eV), A is the proportionality 

constant, Eg (band gap energy) while n stands for the type of transition, which may be direct or 

indirect. In this case, the transition was indirect and as such n = 2. The bandgap of Cu-Ti-O films 

deposited on corning glass was determined by calculating the value of the intercept of the straight 

line at α = 0, as deduced from the Tauc plot of (αhv)2 versus photon energy . The Tauc 

representation and curves fittings are shown in Figure V- 11 b). 

 

Figure V- 11. a) Total transmittance of TiO2 and Cu-Ti-O films deposited at 550C° on corning glass 

substrate. b) Optical band gap calculated using Tauc plot of pure TiO2 and Cu-Ti-O films.  

 

     We obtained a gap energy of 3.55 eV for pure TiO2.  The optical band gap energy shifted toward 

a visible regime with increasing Cu content, being of 3.4 eV for CuTiO16C and 2.88 eV for 

CuTiO75C. This last value is still higher than values reported for Cu2O films, probably to the effect 

of TiO2 mixing structure. Navas et al.[25] reported greater band gap reduction with increases in 

copper concentration due to the covalent character of the Cu-O interaction leading to new states at 

the valence band maximum.  
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V.6. X-ray Photoelectron Spectroscopy (XPS)  

     XPS is chemical sensible method widely used to study the composition and the oxidation state 

of elements at the surfaces, probing the top 10 nm of a film. The surface of the as-deposited films 

deposited by AAMOCVD at 550°C on silicon substrate were investigated by XPS in order to 

determine the possible changes induced in Ti oxidation state by the Cu incorporation in the film, 

together with the determination of the Cu oxidation state.  

     XPS (X-ray Photoelectron Spectroscopy) analyses were carried out in Thermo Scientific™ K-

Alpha™ XPS spectrometer. Sample surfaces were irradiated with Al Kα radiation at 15 kV for a 

current of 20 mA. To correct for any charging effect, all the binding energies were calibrated to the 

C-C component of the C1s core spectrum at 285.0 eV. Peak deconvolutions were performed using 

ThermoAvantage software using Gaussian-Lorentzian functions 

     The energy windows used for the analyses of the elements were 448 - 475 eV for Ti2p, 925- 

965 eV for Cu2p, 525 - 545 for O1s, and 279 - 298 eV for C1s. The XPS spectra for three 

compositions are presented Figure V- 12. The samples are pure TiO2, CuTiO50S and CuTiO66S. 

     The Ti2p1/2 and Ti2p3/2 spectra were analysed using two components at binding energy of 464.7 

eV and 459 eV, respectively, with a separation of 5.7 eV between the two peaks.  These energy 

values were close to those reported in the literature for the TiO2 films at 458.9 and 464.6 eV [26]. 

When adding Cu to the films the area of the Ti2p components decrease and the FWHM values 

slightly increases, but not shift in energy is detected. We can so deduce that the oxidation state of 

Ti doesn’t change with Cu incorporation and the Ti is in the Ti4+state [27,28].  

     The O1s spectrum (second column in Figure V- 12) shows a main peak at 530.3 eV, indicating  

Ti−O and Cu−O bonds , and a second component at 531.7 eV could be ascribed to hydroxyl groups 

on the surface [28]. The intensity of the main peak, and so the total intensity of the O1s band, 

decreases with Cu content. This can be explained by the decrease in the oxygen ration when 

replacing TiO2 by Cu2O. 

     Concerning Cu2p spectra presented in the third columns of Figure V- 12, any curve is presented 

for the pure TiO2 sample because, as expected, Cu signal was not detected. The main issue in the 

Cu2p spectra is the absence of satellites around 945 eV, which are the signature of the CuO 

presence. The main peak in the  Cu2p3/2 band is  located at 933 eV, attributed to reduced copper 

species, Cu1+or Cu0 [29]. In our case, taking into account the phase identification by other 

techniques, we can assume that this peak is related to Cu+1. The intensity of the Cu2p peak increases 
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when at.% Cu is increased from 50 to 67 % Cu, but the formation of Cu2p satellites is only 

distinguished for the highest Cu content. As the presence of CuO was detected by Raman and XRD; 

we can infer that the CuO formation takes place inside the film and not essentially at the surface.  

     C1s bands are characteristics of surface contamination, mainly C=C at 285 eV, and small 

contribution around 289 eV is also detected, attributed to C=O or C-O ligands, but not specific 

trends were found with Cu content. This contribution can be associated to a less efficient 

decomposition of the organic precursors. As in previous results, no evidence of the formation of a 

ternary phase was detected in the Cu-Ti-O films.  

 

Figure V- 12. XPS spectra of Ti2p and O1s in the left and center columns respectively, and C 1s and Cu 2p 

in the right column. Three compositions are presented: the first row corresponds to pure TiO2 (except last 

one), the second to CuTiO50S film and third row to CuTiO66S film. C1s spectra compares in the same 

graph the signal for the three samples.  
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V.7. TEM Analysis  

     In order to assess the location of Cu2O and TiO2 within the film structure (complete mixing or 

a two phase compound), CuTiO55S film was prepared in cross section by grating and by the tripod 

method for TEM observation. The equipment used for TEM imaging was a JEOL JEM 2010 

microscope,  operating at 200 kV (0.19 nm resolution), provided with an EDS system, INCA 

Energy TEM 100 X-Max 65T. Cross-section samples were prepared from films deposited on 

silicon.  

     The cross section of the sample can be seen in Figure V- 13a), and confirms the roughness of 

the film. The film is formed by a dense structure of around 150 nm covered with an open structure 

of around 300 nm. These rough structures at the top-layer are indeed agglomerates of smaller 

crystals with sizes ranging from 10 to 30 nm, as visible in Figure V- 13 b). 

     The diffraction pattern obtained from this region can be interpreted as a mixing of Cu2O in 

Figure V- 13 c) and TiO2 anatase in Figure V- 13 d). 
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Figure V- 13.  HRTEM image of a Cu-Ti-O film with 55 at.% Cu: a) cross section view on the silicon 

interface region, b) ) detail of the film top part removed by scratching ; c) same diffraction pattern 

showing the presence of  Cu2O structure and d) corresponding diffraction pattern identified as TiO2 

anatase . 

     STEM was used to analyse the composition of the CuTiO55S film in cross section.  Moreover, 

EDS was performed punctually using spot analysis in STEM to identify the local distribution of 

Cu and Ti. Mappings for each element obtained from the CuTiO55S as deposited film are presented 

in Figure V- 14. This analysis confirms the presence of Cu and Ti through all film without 

significant segregation in the grain boundaries. 
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Figure V- 14. a) Bright-field STEM image of Cu-Ti-O film with 55 at.% Cu deposited on silicon, b-e) 

Corresponding EDS-STEM elemental mapping of the b) Ti, c) Si, d) Cu, and e) O elements, respectively. 

The 250 nm scale bar is valid for all images. 

 

V.8. Contact angle measurements of TiO2 and copper-doped films  

     Wettability measurements were performed for films deposited on corning glass substrate using 

a goniometer KRÜSS G10 equipped with an image analysis system consisting of a CCD video 

camera, a card of acquisition connected to a PC computer and DROP SHAPE image processing 

software ANALYSIS (DSA), as explained in chapter IV. As presented in chapter IV, pure TiO2 as 

deposited films shows a contact angle of 15°, and after 2 hours under UV irradiation these films 

become superhydrophilic with a contact angle of about 5°. This films remains superhydrophilic 

after 6 months without UV irradiation. 

     Figure V- 15 shows the contact angle for Cu-Ti-O films as deposited on corning glass before 

and after 2 hours of UV irradiation. Cu-Ti-O films, behave in a completely different way; they are 

hydrophobic as deposited (angle contact of ~100 °) and remain hydrophobic after 2 hours under 

UV irradiation. 
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     It has been already reported  that copper oxides, such as Cu2O and CuO exhibit hydrophobicity 

[30]. The hydrophobic behavior can be so attributed to the presence of Cu2O in Cu-Ti-O films, in 

accordance with the XPS and XRD results.  

 

Figure V- 15. Variation of water contact angle for the Cu-Ti-O and TiO2 films deposited on corning glass 

at 550°C as deposited and after 2 hours of UV irradiation. 

 

V.9. Photocatalysis properties 

     The photocatalytic activity of each samples was performed using the same protocol explained 

in chapter III, measuring the decomposition of Orange G dye under UV visible light.   

     Pure TiO2 films was used as our internal reference. We remind that the high photocatalytic 

activity of these films was explained by the formation of microflowers with nanopetals that increase 

the efficient surface and decrease the crystal size.  

     The photocatalytic activity was tested on Cu-Ti-O films deposited on silicon substrates with 

different compositions. The degradation kinetics with UV irradiation are represented in Figure V- 

16 a). CuTiO50S and CuTiO55S films presented the best performance in photocatalytic 

decomposition of Orange G dye.  Figure V- 16 b) presents the evolution of the k constant for 

Orange G degradation calculated from the slope of the degradation rate as a function of copper 

content in films.   

     CuTiO50S film presents a maximum k value of 0.00168 min-1 compared to pure TiO2 film and 

CuTiO55S film that present a value of k equal to 0.00144 min-1. Nevertheless, the difference is 

very small so we can consider that both films shows photocatalytic response comparable to our 
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best TiO2 films. The photocatalytic activity decreases for CuTiO66S film that presents a higher 

copper content. The film with low Cu content (16 at.% Cu) shows an intermediate value.  

 

Figure V- 16. a)  Kinetics of orange G degradation by the TiO2 and Cu-Ti-O films with different Cu 

content under UV light (371 nm) irradiation. b) Evolution of the k constant for Orange G degradation 

calculated from the slope in figure a as a function of Copper content. 

     This result indicated there is an optimal value for the copper content and that the presence of a 

greater content of Cu is detrimental to the photocatalytic ability. It has been reported in the literature 

that loading with copper on TiO2 particles can lead to about twice higher photocatalytic activity 

than pure TiO2. Nevertheless most of the references concerned low loading values of Cu in TiO2 

nanoparticles [31,32]. Nevertheless, they also found a decreases of photocatalytic activity with Cu 

content and they proposed two possible reasons for this decrease. Firstly, the active sites on the 

catalyst are covered with the excessive Cu. Secondly, the charge-recombination rate increases with 

the increase in the amount of Cu. Furthermore, these phenomena may be related to the formation 

of recombination center of CuO which accelerate the recombination of electron-hole pairs; because 

the conduction band of (CuO/Cu2O) is lower than that of TiO2. Hence, the excited electrons in 

TiO2 will be inclined to transfer to CuO instead of staying in TiO2 to recombine with 

holes[33]. This last explanation is maybe the most adapted to our case.  

 

https://www.sciencedirect.com/topics/physics-and-astronomy/holes-electron-deficiencies
https://www.sciencedirect.com/topics/chemistry/conduction-band
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V.10. Marine biofouling field test 

     Immersion in seawater enables the most authentic test to evaluate antibiofouling efficacy 

providing a propitious site to the development of different successive colonisers. In this work, 

biofouling tests were carried out in order to compare coatings with different compositions. 

V.10.1. Evaluation of antifouling activity following standard test 

     The antifouling activity of pure TiO2  films and Cu-Ti-O films  deposited on corning glass 

substrates was tested by exposing  the coatings in natural seawater and observing the degree of 

fouling by visual inspection after several months of immersion (ASTM D 3623)[34]. Fay et al.[35] 

reported that the Kernevel Harbour seems to be extremely favorable to the settlement of biofouling.    

All of the species, which are considered as representative of biofouling can be observed. In 

addition, the degree of fouling, determined by visual inspection, distinguishes microfouling, 

barnacles, tubeworms, etc. Almeida et al.[36] also reported that the adhesion of the main kinds of 

macroorganism species can be evaluated by visual inspection.  

     Confocal laser scanning microscopy (CLSM) and SEM were used as complementary analytical 

tools in order to study microfouling behavior. The purpose is to link the observations of the marine 

microfouling with the macrofouling activity of samples. Scanning electron microscopy (SEM) has 

become an usual method to visualize and identify  organisms directly attached to coated 

surfaces[37]. Nevertheless, SEM can be a laborious method that demands complicated sample 

preparation protocols, comprising the chemical fixation and dehydration of the sample 

accompanied by freeze drying with the purpose of conserving the 3D-structure of micro-foulers. 

     CLSM is a computerized microscope that produces three-dimensional images of 

microorganisms. This technique, combined with the use of fluorescent probes has proven to be 

useful for the analyses of the three-dimensional distribution of the total and active cells in solid 

structures such as biofilm [38].  

     Three different films were tested: pure TiO2 films, CuTiO16C and CuTiO50C films. Samples 

with two differ rent sizes were prepared: Square samples of 1.5 x 1.5 cm2 for microfouling tests 

and 5 x 5 cm2 for macrofouling. To take into account the variability of the experience, three samples 

were prepared for each composition on the large substrate and 12 samples for each compositon on 

small substrates. These samples were pasted on polycarbonate panels, which were stuck onto a 
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support, and then they were immersed in natural seawater in April 2019, at a depth of 50 cm 

(Atlantic Ocean, Kernevel Harbour, France), as represented in Figure V- 17. 

 

Figure V- 17.  Pure TiO2 films, CuTiO16C and CuTiO50C samples pasted on polycarbonate panels and 

immersed in natural seawater (Atlantic Ocean, Kernevel Harbour, France). We can identify the three kind 

of samples by the colors as represent on the diagram. 

 

     In this work, the estimated percentage of the sample area covered by biofouling is obtained after 

using ImageJ image processing program.  

 

V.10.2. Evaluation of microfouling adhesion by microscopy 

     Microfouling was evaluated after 38 days of immersion on small size coated substrates. Samples 

were taken out and the observations were conducted by two interdependent microscopic methods: 

SEM and CLSM.  

     Regarding the microfouling analysis, four samples for each type of films were observed by SEM 

on a JEOL 6460LV microscope and eight others by CLSM on a Zeiss LSM 710 microscope using 

the oil immersion 40× objective.  
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     Samples for SEM observations were prepared using a protocol adapted from Coy et al.[39]. 

Initially, samples were immersed in 3% glutaraldehyde solution during all the night and then 

dehydrated by several washings: phosphate buffer (10 min, 3 times); ethanol 70% (10 min, 3 

times); ethanol 90% (10 min, 3 times) and absolute ethanol (10 min, 3 times). Therefore, the 

samples were dried by the carbon dioxide critical point method. Finally, a gold deposit is done in 

order to make samples conductive [35]. Images were obtained with a magnification of 500×, under 

an acceleration voltage of 7 keV, from secondary electrons. A representative area of the coating 

was chosen to be analyzed by microscopic methods.  

     As a representative example of the overall nature and degree of fouling found on films, SEM of 

both films after 1–5 weeks of immersion is shown in Figure V- 18. All coatings were subjected to 

the same immersion conditions. Consequently, variations in microfouling communities indicates 

differences in the coating performances. 

 

1. After 10 days of immersion just a few diatoms were observed for all the films.  

2. After 25 days a diverse community of microorganisms, which included bacteria and 

diatoms, is observed in all the films, especially in CuTiO50C films. This composition 

presented a greater amount of microorganisms compared to the other coatings.  

3. A few diatoms were observed after 38 days of immersion for pure TiO2 films and 

CuTiO16C films, which is in contrast with films containing higher Cu content. CuTiO50C 

films were almost totally covered by diatoms and bacteria. It is important to notice that the 

presence of microflowers on the surface is observed even after 38 days of immersion for 

pure TiO2 films deposited at 550°C. It confirms that the TiO2 microflowers are resistant to 

seawater and are also mechanically stable, which is quite important since microflowers are 

responsible for ensuring a better photocatalytic activity, as showed in chapters III and IV.   
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Figure V- 18. Observation of coatings colonisation by SEM after 38 days of immersion in the Atlantic 

Ocean. 

 

     Figure V- 19 presents the film’s surface covered by diatoms in red after 38 days of immersion. 

The number of diatoms was counted for each sample and the TiO2 pure film presents approximately 

133 diatoms on surface. Besides, CuTiO16C and CuTiO50C films presents approximately 183 and 

260 diatoms, respectively. 

 

 

Figure V- 19. SEM images of pure TiO2 films and Cu-Ti-O films covered by diatoms in red. 
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     These results were confirmed by CLSM. For CLSM experiments, adherent cells on coatings 

were stained by inserting Syto 9 stains (Molecular Probes. They are noted after 10 min of 

incubation. Syto 9 (5 µM) was employed as a nuclear stain for live cells. It was excited at 488 nm, 

and the emission was gathered at 498–550 nm (red fluorescence). Microalgae were observed by 

their fluorescence at 633 nm, and the emission was collected at 638-720 nm. 

     Figure V- 20 presents micrographs of the different coatings taken at different immersion time. 

After 4 weeks of immersion in seawater, the microfouling present on coatings with different 

compositions was clearly different.  

    After 10 days of immersion bacteria are presented in all the films. Indeed pure TiO2 films and 

CuTiO16C films presented a small amount of bacteria on the surface compared to CuTiO50C films. 

After 17 days of immersion all the coatings developed a biofilm composed of bacteria, diatoms and 

micro-algae. Additionally, the presence of micro-algae on the surface are better noticed for 

CuTiO50C films. 

    In our case, CuTiO16C showed a clearly better resistance to biofilm and micro-algae 

development since SEM and CLSM observations presented a smaller growth potential. 

 



Chapter V: New Cu-Ti-O films for photocatalysis and antibiofouling applications 

 

173 

 

 

Figure V- 20. Observation of coatings colonisation by CLSM after 10, 17 and 25 days of immersion in 

Atlantic Ocean. Bacteria were stained with Syto 61 red/Sytox green allowing live and dead cells to appear 

in red and green, respectively. Micro-algae were observed in red by autofluorescence. 

 

      Cassé and Swain showed that, an understanding of the development of microfouling is an 

important feature concerning the choice of new antifouling coatings 40]. Some authors have 

demonstrated that the microbial film may boost macro-organism colonization [41,42].Additionally, 

they forward better understanding of the microfouling (bacteria and diatoms) development on the 

coatings particularly by examination of colonisation kinetics. Therefore, the microscopic methods 

and the tests in natural seawater can give complementary information on antifouling activity. 
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V.10.3. Evaluation of macrofouling adhesion by visual inspection and 

image analysis  

     The percentage of surface covered by different fouling types was visually assessed at periodical 

time during 13 weeks after the static immersion. Figure V- 21 summarizes the macroscopic 

observations of surfaces after 7, 8, 9, 10 and 13 weeks of immersion in natural seawater. 

 

 

Figure V- 21. Images showing the evolution of biofouling of the sample surfaces on TiO2 and Cu-Ti-O films 

deposited on corning glass at different immersion time during a tota immersion of 13 weeks in Kernevel 

Harbour. 

     Figure V- 22 presents the evolution of fouling development with immersion time by quantifying 

with ImageJ software the surface area of sample covered by biofouling.  

     After 4 weeks pure TiO2 films shows the best performance, presenting the smallest percentage 

of surface area covered by biofouling, with an average value of 20 %. On the other hand, 

CuTiO16C and CuTiO50C films presented an average value of 27 % and 29 %, respectively. It is 
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importance to notice that TiO2 sample placed on the top of the panel showed a better performance 

compared to samples placed on the bottom of the panel as represented in Figure V- 22 a). It can be 

explained by the fact that the sample are closer to the water surface allowing it to receive more 

UV/VIS radiation and then to be more photocatalytic active.  

     On the contrary, CuTiO16C presented a best performance for the samples placed on the bottom 

during the first 10 weeks. After 13 weeks all the samples showed an important growth of algae on 

the surface (Figure V- 22 b). 

     For CuTiO50C films, all the samples presented almost the same performance independently of 

the location, as shown in Figure V- 22 c.   

Some particular numbers have to be given: 

 After 8 weeks pure TiO2 films presented an average value of 46% against 52% and 60% 

for CuTiO16C and CuTiO50C films, respectively. 

 After 10 weeks, it is observed a self-cleaning effect in one of CuTiO16C films which show 

clearly a decrease of biofouling from 54 % to 24 % of surface area covered.  

 After 10 weeks CuTiO16C films showed better performance compared to the other 

compositions with an average value of 50 %. One of pure TiO2 coatings presented a good 

performance after 10 weeks showing 29 % of surface area covered by biofouling.  

 After 10 weeks CuTiO50C presented a higher average percentage of surface covered with 

an estimated value of 80 % due to the growth of macro and micro-algae on the surface.  

     Figure V- 22 shows that after static immersion for 13 weeks all the coatings tested presented a 

percentage of surface covered by fouling higher than 70 %, which is dominated by macro-algae. 

Actually, juvenile barnacles and a calcareous tubeworms were not settled on coatings. 
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Figure V- 22. Evolution of surface area of samples covered by biofouling with immersion time obtained 

from pictures shown in Figure V- 21 for a) TiO2 films, b) CuTiO16C films and c) CuTiO50C films. 

Comparison of macro and microfouling 

     In this experiment, the observation of biofilms on antifouling coatings revealed a good 

correlation between microscopic observation (microfouling observation) and visual inspection 

following ASTM standard testing (macrofouling observation). 
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     In particular, CuTiO16C films showed a better resistance to the development of biofilms and 

micro-algae and also a lower percentage of the area covered by macroorganisms after 13 weeks of 

immersion. Pure TiO2 films are also coherent in the observation and the macrofouling results 

indicate a possible influence of photocatalytic activity. Nevertheless, CuTiO50C films present the 

worst resistance to microfouling and macrofouling activities. 

     These results revealed that TiO2 films and CuTiO50C films that presented a good performance 

in photocatalysis under UV radiation do not show the same resistance to the development of 

biofouling in seawater after 13 weeks. On the other hand, TiO2 films show better behavior up to 8 

weeks of immersion, which can be explained by a higher photocatalytic activity in these films since 

the sample placed at the top of the panel showed better performance. The CuTiO16C films with a 

lower photocatalytic activity seems to enhance self-cleaning properties after 10 weeks of 

immersion. These results are encouraging but they are only a preliminary study that needs further 

investigation. Nevertheless, they allow to propose a not toxic approach to the marine biofouling 

problem.  
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V.11. Conclusions  

 

   New Cu-Ti-O films with high contents of copper were deposited by AAMOCVD at 550 °C with 

a deposition time of 40 minutes in order to develop an efficient visible-light-active photocatalyst 

material, presenting a high surface area for adsorption of targeted species, high conductivity, long-

charge lifetimes, direct pathways to carry photogenerated charge, and good chemical stability in 

water.  

     Cu(AcAc)2 solutions with a concentration of 0.01 M and 0.03 M were prepared and then mixed 

with a TiO(AcAc)2 solutions dissolved in ethanol at a concentration of 0.03 M. For Cu-Ti-O films 

deposited using Cu(AcAc)2 as a start solution at a concentration of 0.03M, the Cu content  in film 

varies between 50 and 66 at.% Cu for films deposited on silicon, between 50 and 75 at.% Cu for 

films deposited on corning glass and between 25 and 50 at.% Cu for Al-Zr coated high speed steel 

(HSS). Cu-Ti-O films deposited using Cu(Acac)2 as a start solution at a concentration of 0.01M, 

the Cu content  in film is 16 at.% Cu for films deposited on Si and corning glass substrates.  

     XRD and Raman spectroscopy revealed that films with at.% Cu greater than 50 present Cu2O, 

TiO2 anatase and CuO phases on its composition. The UV-Visible study showed that the optical 

band gap energy decreases with increasing Cu content. CuTiO75C film presented a lower band gap 

of 2.88 eV. 

     Cu-Ti-O films remain hydrophobic after 2 hours under UV irradiation, contrary to pure TiO2 

films which presents a superhydrophilic behavior. 

     CuTiO50S and CuTiO55S films present a good performance on photocatalytic activity 

compared to CuTiO16S and CuTiO66S films. CuTiO50S film presents a maximum k value of 

0.00168 min-1 compared to pure TiO2 film and CuTiO55S film that present a value of k equal to 

0.00144 min-1. Nevertheless, the difference is very small so we can consider that both films shows 

a photocatalytic response comparable to our best TiO2 film.  

      Marine biofouling field tests reveals that pure TiO2 films show better behavior up to 8 weeks 

of immersion, which can be explained by a higher photocatalytic activity in these films since the 

sample placed at the top of the panel showed better performance. CuTiO16C films showed a lower 

percentage of the area covered by macroorganisms after 13 weeks of immersion. This composition 

also presented a better resistance to the development of biofilms and micro-algae compared to other 
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films. These preliminary studies propose a non- toxic approach to the marine biofouling problem 

and encourage a further investigation in order to check the reproducibility. 
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Conclusions and future works 

          The rising demands for eco-friendly materials presenting antibiofouling and anticorrosion 

properties for marine applications present a challenge to develop advanced coatings. Two different 

coatings, Al-Zr and TiO2, were successfully prepared in order to develop a potential bifunctional 

Al-Zr/TiO2 bilayer coating combining anticorrosion and photocatalytic properties using high-speed 

steel (HSS) as substrates. 

     First, the anticorrosion performance of Al-Zr films was studied. Al-Zr films with different Zr 

contents were deposited on HSS, glass and silicon substrates by direct current magnetron 

sputtering.  Al-Zr films having Zr content below 10 at. % present well-defined diffraction peaks, 

which correspond to fcc structure, indicating a supersaturated solid solution of Zr in Al. Al-Zr (4 

at.% Zr) was chosen to be used as an underlayer since it presents the best compromise between 

intrinsic corrosion resistance, sacrificial character/steels and mechanical reinforcement.  

     Secondly, TiO2 films proposed as photocatalysts were deposited by AACVD using TiO(AcAc)2 

as precursor under optimized conditions to develop a microstructure characterized by the presence 

of TiO2 microflowers physically attached to TiO2 film surface. Formation of this microstructure 

occurs at a specific thermal window that depends on the precursor concentration; more precisely 

when working with a 0.03 mol L-1 concentration solution and an aerosol feeding rate of 3 ml min−1. 

The maximum flowers density was achieved for films deposited at 550 °C, presenting an area 

fraction coverage of about 40 %.   

     TiO2 with different structural and morphological characteristics were deposited on Al-Zr (4 at.% 

Zr) as a second layer in order to produce multifunctional Al-Zr/TiO2 bilayer films. X-ray diffraction 

and Raman spectroscopy show that the TiO2 micro-flowers as well as the TiO2 thin film crystallize 
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in the anatase phase. This TiO2 phase presents higher charge mobility and consequently a better 

photocatalytic response.  

    Photocatalytic performance of bilayer films was evaluated by means of degradation of Orange 

G dye under UV illumination. The presence of TiO2 microflowers having a size of about 7 µm and 

a crystallite size of 20 nm plays a crucial role in photocatalysis. The photoefficiency of TiO2 films, 

quantified in terms of kinetic rate constant increases with microflowers area fraction coverage. This 

behavior was clearly noticed for TiO2 samples deposited at 550 °C, showing a higher 

decomposition rate of Orange G (780 x 10-10 mol L-1 min-1) under UV light as compared to other 

films obtained at lower deposition temperatures (500 and 540 °C).              

     TEM analysis revealed that after the AA-MOCVD process performed at 550 °C, Al-Zr (4 at.% 

Zr) presented precipitates, which are more rich in zirconium than the matrix. The structure formed 

after deposition at 550°C is clearly biphased; an FCC solid solution of zirconium in aluminum and 

an ordered metastable Al3Zr compound. Literature shows that these particles are an important grain 

refiner in commercial structural of Al-based alloys and present a minimal impact on corrosion 

properties.  

    Electrochemical tests were carried out in an aerated and stirred chlorine solutions (5 wt.% NaCl). 

They revealed that Al-Zr/TiO2 bilayer coatings is an attractive alternative for preserving the 

sacrificial protection of steel structures in saline environments. These films offer good protection 

thanks to the preferential oxidation of the bilayer presenting a lower corrosion current density of 

4.01 × 10-7 A/cm2. TiO2 as a second layer reduces the electrochemical activity of the films through 

the formation of a dense passive film and also increases the pitting resistance when the cathodic 

reaction kinetic is lower. 

    In order to improve the properties of TiO2 wide band gap semiconductor, the incorporation of 

transition metals such as Cu was proposed as an efficient method. The influence of incorporation 

of copper into TiO2 thin films on structural, optical, photocatalytic activity and antibiofouling 

properties was studied. New Cu-Ti-O films with high copper contents were deposited by 

AAMOCVD at 550 °C in order to develop an efficient visible-light-active photocatalyst material. 

TiO2 and CuxO mixtures reveal great potential due to their low toxicity and their suitable energy 

band positions. 

    Cu-Ti-O films were deposited on corning glass, silicon and Al-Zr coated substrates. Cu-Ti-O 

films are composed of Cu2O, TiO2 anatase and for films with a Cu content higher than 50 at.%  the 
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CuO phase also appear. Besides, band gap decreased for Cu-Ti-O films starting from a Eg TiO2 

value of 3.55 eV, to the lowest value near to 2.88 eV  with the higher Cu content (75 at.% Cu). 

     Cu-Ti-O films showed hydrophobic behavior even after 2 hours under UV irradiation, contrary 

to superhydropilic TiO2 films. Hydrophobic surfaces are known to show good ‘fouling release’ 

properties, whereas the hydrophilic surfaces show resistance to protein adsorption and cell 

adhesion. 

     Photocatalysis activity was evaluated using the decomposition of Orange G dye under UV 

visible light. The photocatalytic activity of Cu-Ti-O film with 50 at.% of Cu is remarkable high 

and presents a maximum k value of 0.00168 min-1 compared to 0.00144 min-1 for pure TiO2 film 

and Cu-Ti-O film with 55 at.% Cu. Cu-Ti-O films a very promising materials for the photocatalytic 

degradation of organic compounds under visible light. Indeed, photocatalytic oxidation processes 

using TiO2 based catalysts appear to be a very useful technique for the antifouling properties, 

leading to the mineralization of the pollutants or to their conversion to more biodegradable 

compounds. 

     Marine biofouling field tests were carried out in Lorient’s Harbor in order to evaluate the 

antifouling properties of pure TiO2, Cu-Ti-O (16 at.% Cu) and Cu-Ti-O (50 at.% Cu) films 

deposited on corning glass. Pure TiO2 films showed better behavior until 8 weeks of immersion, 

which can be explained by a higher photocatalytic activity while the sample placed at the top of 

the panel showed better performance. SEM images showed that TiO2 microflowers were present 

even after 38 days of immersion, which confirms that microflowers are resistant to seawater and 

mechanically stable. This fact is quite important since TiO2 microflowers are essential for ensuring 

a better photocatalytic activity. 

     Biofouling tests revealed that after 13 weeks of immersion in seawater, Cu-Ti-O (16 at.% Cu) 

films presented a better resistance to the development of biofilms, microalgae and macroalgae on 

the surface confirmed by SEM and CLSM analyzes, and also the visual observations. 

     New biofouling tests are in progress in order to validate the reproducibility of the anti-fouling 

behavior of these coatings. Pure TiO2 films with different densities of micro-flowers on the surface 

are being test in order to check the real role of flowers on anti-fouling properties since this films 

have shown a good performance on photocatalysis. Moreover, the chemical stability of Cu-Ti-O 

films and TiO2 films in sea water needs to be evaluated in order to know if these films degrade 

when they are immersed.  
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    Additionally, more understanding of coatings surface properties in the immersed condition, 

rather than in dry is necessary, as immersion changes the dynamics of self-assembly and surface 

organization. When the coated samples are immersed in the natural marine environment, their 

properties might change further as a result of surface conditioning by adsorption of 

macromolecules and microorganisms, which will also change according to the season and 

geographic location. The anti-fouling behavior of novel Cu-Ti-O and TiO2 films for fouling-release 

needs to be tested more times in order to understand the adhesion mechanisms of micro and macro-

organisms. Interdisciplinary studies combining chemistry, biology and advanced physical 

techniques for interfacial characterization will be crucial for advancing this research work. 

     The control of biofouling of surfaces in the marine environment is a challenge: the fouling 

organisms present the capability to attach and proliferate on the material surfaces in the highly 

turbulent marine environment. Regarding this aspect, dynamic test system is necessary to check 

the efficacy of coatings. 

      Moreover, the HSS/Al-Zr/TiO2 bilayer coatings combining both corrosion and antifouling 

properties need to be tested in real conditions. 

     Other antifouling approaches range from biocidal and self-cleaning coatings to various 

disinfecting techniques. For instance, medical devices use antimicrobial coatings to inhibit biofilm 

formation. Developing non-toxic foul-release films for medical, marine and industrial applications 

is the particular appeal of this thesis. Future research could focus on gathering the best properties 

from each coating and combining them to produce an effective antifouling surface resistant to a 

variety of foulers. 

     Finally, regarding the scalability, the development of low cost, non-vacuum CVD-based 

techniques like aerosol assisted CVD offers the potential to be scaled up for large area or mass 

production. This can widen the scope of engineering applications of CVD technique.        
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  Introduction  

     Une fois qu'un métal est immergé dans l'eau de mer, les interactions entre le métal, les 

organismes vivants et l'environnement marin provoquent un bio-encrassement et une corrosion des 

composants métalliques, presque simultanément. Le développement de micro et macroorganismes 

à l'origine de la bio-salissure est un problème industriel important qui  touche au secteur des 

transports maritimes, à la purification de l’eau, à l’industrie automobile, aux produits 

pharmaceutiques, à la microélectronique et aux industries alimentaires. Afin de développer un 

système antisalissure, il faut prendre en compte l'environnement, le revêtement et le substrat, 

comme montré sur la Figure 1, proposée par R.Holland et al [1]. 
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Figure 1. Paramètres affectant un système de revêtement antisalissure [1].  

     En même temps que les changements biologiques donnent lieu à l'accumulation de biofilms, 

une séquence de changements inorganiques se produit instantanément à la surface du métal après 

l’immersion dans un milieu aqueux agressif. Cette séquence induit un processus de dissolution du 

métal et la formation de produits réactionnels liés à la corrosion. Alors que la corrosion et 

l’accumulation de produits se développent de la surface métallique vers la solution, le 

développement de biofilms est un procédé inverse qui se développe de la solution vers la surface 

métallique. 

     Dans cette thèse, nous proposons un nouveau revêtement multicouche multifonctionnel 

composé d’une première couche d’Al-Zr et une deuxième couche de TiO2. Il combine ainsi deux 

fonctionnalités : une couche antisalissure, le TiO2, déposé sur une couche anticorrosion Al-Zr, qui 

protège le substrat en acier. 

     En effet, les alliages d'aluminium-métal de transition sont des candidats potentiels pour la 

protection contre la corrosion. Les métaux de transition sont ajoutés pour compenser les faibles 

caractéristiques mécaniques de l'aluminium pur. Un alliage d'aluminium optimisé avec une 

microstructure homogène a été utilisé dans ces travaux de thèse. 

     Le dioxyde de titane (TiO2), candidat prometteur pour son activité photocatalytique et son 

comportement hydrophile/hydrophobe, ralentit le processus de bio-salissure dans les structures 

marines. 

     Le dépôt physique en phase vapeur (PVD) et le dépôt chimique en phase vapeur (CVD) sont 

des méthodes appropriées pour le dépôt de couches minces fonctionnelles et protectrices. Ces 
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méthodes permettent de contrôler les paramètres de dépôt afin d’obtenir les meilleures 

performances en fonction de l'application visée. Les techniques de dépôt par pulvérisation 

cathodique magnétron et CVD assistée par aérosol (AAMOCVD), également appelée pyrolyse 

d’aérosol, ont été sélectionnées pour le dépôt de films bicouches TiO2 /Al-Zr. Les films ont été 

caractérisés en termes de morphologie, structure cristallographique, texture, rugosité, mouillabilité 

de la surface, comportement électrochimique à la corrosion, l’activité photocatalytique et les 

propriétés antisalissures.  

     La demande croissante de matériaux écologiques présentant des propriétés antisalissure et anti-

corrosion pour les applications marines fait face à un défi pour le développement de revêtements 

avancés. Dans ce contexte, l’objectif principal de cette thèse est d’utiliser des techniques de 

pulvérisation cathodiques magnétron à courant continu et  dépôt chimique en phase vapeur afin de 

déposer un nouveau revêtement bicouche Al-Zr/TiO2 combinant les deux propriétés. Al-Zr est 

connu pour la protection des structures métalliques contre la corrosion et les films de TiO2 pour 

ses propriétés photocatalytiques sous radiation UV. Compte tenu des caractéristiques prometteuses 

des films Al-Zr/TiO2, ces travaux porteront sur l’élaboration et la caractérisation des films 

bicouches TiO2 et Al-Zr, afin de développer un revêtement multifonctionnel permettant d'éviter la 

corrosion et les biosalissures des structures utilisées en milieu marin. De plus, des essais de bio-

encrassement en eau de mer naturelle, à une profondeur de 50 cm (océan Atlantique, port de 

Kernevel, France) ont été effectués afin d'évaluer la performance des films de TiO2 dans 

l'environnement réel.  

     Le manuscrit de thèse est organisé en cinq chapitres. 

 

I Etat de l’art  

     Ce chapitre présent un état de l’art sur les matériaux choisis et leurs fonctionnalités. Tout 

d'abord, l'utilisation des alliages d'aluminium-métal de transition, comme anodes sacrificielles, et 

la corrosion d'alliages d'aluminium dans des solutions aqueuses sont discutées en détail. Le choix 

du revêtement Al-Zr pour les applications de corrosion est exposé. Dans une seconde partie, les 

discussions portent sur les mécanismes et les applications de la photocatalyse par les semi-

conducteurs en dioxyde de titane. Les principaux aspects de l'encrassement biologique et de la 

corrosion dans les structures marines est également présentée. 
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     La salissure marine est définie comme la croissance et l’accumulation de micro et 

macroorganismes sur des surfaces mouillées dans un environnement salin. C’est un problème 

mondial qui affecte les industries aquatiques car cela peut réduire la vitesse des navires, augmenter 

la consommation de carburant et stimuler la corrosion, ce qui provoque la détérioration mécanique 

des structures statiques [2]. 

     Le développement de la salissure a lieu sur presque toutes les surfaces. Ce processus  commence 

par la fixation de molécules organiques. Il se poursuivit ensuite par l’adhérence de bactéries, 

diatomées et de microalgues afin de créer un biofilm qui est suivi de l’adhésion de macro-

organismes, tels que les balanes, les bivalves et les macro-algues, comme indiqué sur la Figure 2. 

 

Figure 2.  Étapes dans la formation de biofilms. (Reproduit de M. Tiranuntakul,2011 [3]). 

 

     Priyanka et al.[4] ont démontré que les matériaux photocatalytiques peuvent prévenir la bio-

salissure biologique en générant des espèces réactives à l’oxygène sous irradiation par la lumière 

visible. Dans un environnement marin, ce mécanisme peut entraîner la mort cellulaire de nombreux 

contaminants [5,6]. 

     Le titane est le métal de transition le plus abondant sur Terre et son oxyde métallique TiO2 est 

un semi-conducteur à large bande interdite offrant une stabilité chimique élevée, un coût abordable, 

une toxicité faible et une productivité de conversion photoélectrique élevée. Au cours des dernières 

années, le dioxyde de titane (TiO2) a fait l’objet de recherches approfondies pour ses remarquables 

propriétés photocatalytiques aux UV et autonettoyantes, qui peuvent, par exemple, favoriser la 
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décomposition des substances organiques présentes en produits inoffensifs, grâce aux rayons 

UV[7]. L'étendue de la photoactivité dépend d'une grande variété de propriétés, telles que la 

morphologie, la cristallinité et la surface. 

     Le TiO2 possède des propriétés électroniques uniques combinées à la possibilité d’une 

nanostructuration et d’une stabilité chimique. En règle générale, lorsque la surface d'un matériau 

semi-conducteur est exposée à des photons ayant une énergie supérieure ou égale à son énergie de 

bande interdite, des photo-électrons e– et des photo-trous h+ sont produits [8]. Le photocatalyseur 

étant à la fois capable d’adsorber les réactifs et d’absorber les photons, les e– et h + photogénérés 

peuvent alors réduire et/ou oxyder les polluants adsorbés à la surface du photocatalyseur [9], 

comme illustré sur la Figure 3. 

 

 

                                 Figure 3.  Schéma réactionnel simplifié de la photocatalyse. 

     Les nanostructures et les microstructures jouent un rôle important dans l'amélioration des 

performances des dispositifs, principalement en raison de l'augmentation de la surface spécifique 

[10], comme dans le cas des réactions photocatalytiques. Les structures de TiO2 qui ont une 

mésoporosité et une surface spécifique élevées sont attractives, car elles augmentent l'efficacité des 

phénomènes de photocatalyse qui se produisent en surface. La morphologie, la structure, la phase 

et la dimensionnalité ajustent les propriétés physiques et chimiques des nanostructures de TiO2.      

Tian [10] a démontré que le TiO2 en forme de fleur 3D présentait la plus grande absorption de la 

lumière UV lorsqu'il était intégré dans des cellules solaires à pigment photosensible comparé à des 

nanosphères et à des structures de nanorodes. L'activité photocatalytique (efficacité de dégradation 

de 97%) pour les fleurs était supérieure à celle des sphères ou des structures en forme de bâtonnets 
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(respectivement 60% et 55%). Celles-ci sont principalement dues au fait que les structures 3D en 

forme de fleurs hiérarchiques sont facilement accessibles à la lumière et aux réactifs grâce à une 

surface effective accrue. 

     Zhu et al.[10] ont également démontré que les matériaux de TiO2 anatase ayant des 

morphologies en forme de fleur avec une surface spécifique élevée présentaient d'excellentes 

performances lors d'essais en photodégradation du bleu de méthylène.  

     Il a déjà été démontré que le procédé dépôt chimique en phase vapeur assisté par aérosol (AA-

MOCVD) permettait de déposer des films de TiO2 composé des micro-feuilles hiérarchisées de 

TiO2. Biswas et al.[11] ont montré que ce procédé de dépôt, fonctionnant à la pression 

atmosphérique, permettait la synthèse de micro-fleurs de TiO2 liées physiquement à un film mince 

de TiO2. Nous proposons d'utiliser ces microstructures en tant que couche active de TiO2 dans le 

revêtement bicouche. 

     L'aluminium et ses alliages sont largement utilisés dans de nombreuses applications 

industrielles comme matériau sacrificiel pour la protection de l'acier, car leur potentiel en circuit 

ouvert est plus négatif. Les revêtements en alliage à base d’aluminium ont fait l’objet de 

nombreuses études et ont été proposés comme candidats potentiels à la protection contre la 

corrosion galvanique des pièces en acier mécaniques [12–15]. Par exemple, des métaux de 

transition (TM) peuvent être ajoutés pour renforcer mécaniquement l'aluminium. La faible 

solubilité des métaux de transition dans l'aluminium permet le dépôt d'une solution solide 

sursaturée dans l'aluminium. De plus, une bonne stabilité thermique due à la faible diffusivité du 

métal de transition dans l'aluminium est attendue. L'ajout d'une teneur élevée en métal de transition 

conduit généralement à des propriétés mécaniques élevées par rapport à l'aluminium pur, mais au 

détriment des propriétés sacrificielles[16,17]. La solution idéale en matière de protection des aciers 

doit être un compromis entre propriétés mécaniques et propriétés anticorrosion. 

     Le zirconium est un métal de transition connu comme raffineur de gros grains dans les alliages 

d'aluminium traditionnels[18]. Il renforce les propriétés mécaniques [18] et améliore 

considérablement la résistance à la corrosion dans une solution désaérée d'acide borate-borique 

contenant du Cl- [19]. Contrairement aux méthodes traditionnelles où la solubilité solide du Zr est 

très faible (la solubilité maximale est de 0,083 at.% dans la réaction péritectique[20] ), les méthodes 

de traitement hors équilibre telles que la solidification rapide[21], l'alliage mécanique et les 
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technique de pulvérisation cathodique [19,22,23] offrent la possibilité d’obtenir une solution mono-

solide sursaturée à haute teneur en Zr.  

     Afin d’améliorer l’efficacité des anodes en aluminium, celles-ci sont généralement alliées à 

d’autres éléments pour favoriser le retrait de la couche de passivation (rupture du film d’oxyde) et 

/ou déplacer le potentiel de fonctionnement du métal dans une direction plus négative. L'ajout 

d'éléments comme Zr engendre une augmentation du potentiel de corrosion. De plus, 

l'augmentation de la teneur en Zr dans Al permet également de réduire la densité du courant de 

corrosion, ce qui est associé à une meilleure résistance à la corrosion. 

     Creus et al. ont [24] présenté la classification du potentiel en circuit ouvert de métaux et 

d'alliages à base d'Al déposés par PVD dans une solution saline comme représenté à la Figure 4. 

Les potentiels de corrosion du revêtement Al – Zr sont plus négatifs que le seuil de potentiel 

nécessaire pour obtenir la protection cathodique des aciers en solution saline. Il a été signalé que 

l’ajout d’éléments tels que V, Mn, Cr, Ti, Mo, Si ou Zr induit un ennoblissement du potentiel de 

corrosion par rapport à celui de l’Al pur lorsque la teneur en éléments d’alliage est augmentée. 
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Figure 4.Classification du potentiel en circuit ouvert de métaux et des alliages à base d’Al déposes par 

PVD dans une solution saline (Reproduit de J. Creus et al., 2012 [24]).  

 

II  Dépôt et caractérisation des films d’Al-Zr 

     Les technologies de dépôt physique en phase vapeur (PVD) sont largement utilisées pour la 

synthèse de couches minces. 

     Dans les procédés physiques en phase vapeur, le revêtement est déposé par condensation à partir 

d'un flux d'atomes neutres ou ionisés de métaux. Les différents processus PVD peuvent être 

distingués par le type d'évaporation des espèces métalliques et les conditions de plasma utilisées 

lors du processus de dépôt [1]. 

     La pulvérisation magnétron est une technologie PVD couramment utilisée en raison de sa 

vitesse de dépôt élevé et de ses bonnes performances (reproductibilité, homogénéité, etc.). Cette 

technique est compatible avec la synthèse de films sur de grandes surfaces. Le procédé de 
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pulvérisation utilise des ions argon pour bombarder une cible composé du matériau de revêtement.     

Les atomes cibles pulvérisés se déposent à la surface du substrat, ce qui entraîne la croissance de 

la couche. 

     Des alliages Al-Zr ont été déposés à partir de cibles métalliques en Al et Zr dans une atmosphère 

d'argon pur à une température de flottement (< 80 °C). Le débit massique total d'argon et la pression 

de travail ont été maintenus constants à 50 sccm et Par = 0,33 Pa, respectivement. Le système de 

dépôt est illustré à la Figure 5. 

     Les substrats ont été placés sur un porte-substrat rotatif (10 tours par minute) assurant une bonne 

homogénéité d'épaisseur et de composition des revêtements. 

     Une gravure ionique (puissance de 500W, pression d’argon de 0,3 Pa, durée de 30 min) est 

systématiquement réalisée avant chaque dépôt pour améliorer l’adhérence du film. 

 

 

Figure 5. Schéma de la machine pulvérisation cathodique magnétron Delphis 4. 
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      L’évolution de la quantité en Zr a été assurée en fixant le courant de décharge de l’aluminium 

à 2,0 A et en ajustant celui du Zr entre 0 et 1,3 A. 

     Afin de développer de nouveaux revêtements Al-Zr en tant qu'anodes sacrificielles, nous avons 

d'abord étudié l'effet de la teneur en zirconium sur les propriétés des alliages Al-Zr déposés par 

pulvérisation cathodique  magnétron en courant continu. 

     Des films Al-Zr avec des teneurs en Zr comprises entre 0 et 27 at.% ont été déposés sur des 

lames de verre et sur des substrats en acier rapide (HSS) par pulvérisation cathodique magnétron. 

     Des films Al-Zr ayant une teneur en Zr inférieure à 10 at. % ont présenté  des pics de diffraction 

bien définis correspondant à la structure cubique à faces centrées. Cela indique que c’est une 

croissance d'une solution solide sursaturée de Zr dans Al. Pour les contenus supérieurs à 10 at. %, 

les pics de diffraction deviennent plus larges. L'élargissement du pic résulte d'un raffinage du grain 

lorsque la teneur en Zr augmente. La morphologie des alliages Al-Zr confirme que les revêtements 

deviennent plus compacts à mesure que la teneur en zirconium augmente. 

     L'évolution de la nanodureté avec la teneur en Zr est due à un effet combiné de la diminution 

de la taille moyenne des grains (effet Hall-Petch), ainsi qu'à l'effet de durcissement en solution 

solide. 

     Le film d'Al-Zr déposé sur du verre contenant une teneur en zirconium de 4 at. % présente une 

résistance optimale à la corrosion après 1 heure d'immersion dans  l'eau salée, car elle présente une 

densité de courant plus basse et un potentiel de corrosion plus élevé. Pour cela, Al-Zr (4% at. Zr) 

a été choisi comme première couche afin d’apporter des propriétés anticorrosion. 

 

III  Dépôt et caractérisation de couches minces de TiO2 

     La première partie de ce chapitre est consacrée à l'étude de l'influence des paramètres de dépôt 

chimique en phase vapeur sur le processus de croissance des films de TiO2 sur silicium. La 

microstructure, les propriétés physiques et l'activité photocatalytique seront traitées dans la 

deuxième partie. L'objectif est de définir les paramètres de dépôt pour faire croître des films de 

TiO2 en phase anatase, correspondant aux conditions optimales du photocatalyseur. Le dépôt de 

films de TiO2 sur un substrat en acier rapide (HSS) est présenté à la fin du chapitre à des fins de 

comparaison. 
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     Le dépôt chimique en phase vapeur assisté par aérosol est basé sur le transport du précurseur en 

phase liquide en générant un aérosol à partir d’une solution source. Des petites gouttelettes sont 

transportées par un gaz vecteur dans la zone de réaction. La zone de réaction est chauffée, 

provoquant dans une très petite région l'évaporation du solvant et des précurseurs, ainsi que la 

réaction sur le substrat. Le précurseur de titane utilisé dans ces travaux de thèse est le titanyl (bis) 

acetylacetonate (TiOAcAc)2. Ce précurseur se dissout facilement dans les alcools. 

     Dans ce travail, nous avons utilisé du butanol ou de l'éthanol comme solvant. Pour préparer une 

solution de précurseur avec une concentration de 0,03 mol·l-1, 4,71 g de précurseur sont ajoutés 

dans 600 ml de solvant alcoolique (butanol-01 ou éthanol). Le mélange est agité jusqu'à dissolution 

complète à l'aide d'un barreau magnétique à une vitesse de 300 cycles/min. Une fois que la solution 

de précurseur devient jaune claire après 30 minutes d’agitation, elle est prête pour le dépôt. Elle est 

alors stable pendant plusieurs mois. 

     Les substrats utilisés pour le dépôt de films de TiO2 étaient des substrats en Si (100), en verre 

de corning (référence C1737-S111) et des substrats en acier à haute vitesse. Avant chaque dépôt, 

les substrats ont été nettoyés par ultrasons dans une solution d’éthanol pendant 10 minutes. 

     Nous avons utilisé pour ce travail un réacteur AAMOCVD fait maison, présenté en Figure 6 . 

La Figure 6a illustre un schéma du réacteur et la Figure 6b représente l’image du système réel. La 

solution de précurseur est placée dans un pot de pulverisation. Les ultrasons sont générés par une 

membrane piézoélectrique, avec une certaine puissance et fréquence. En conséquence, un 

brouillard blanc contenant des gouttelettes de la solution de précurseur est créé à la surface de la 

solution. Le générateur de fréquence a été fourni par la société RBI et permet de produire des 

fréquences comprises entre 640 kHz et 870 kHz. 

     Deux boutons règlent la fréquence et la puissance sur une échelle arbitraire entre 0 et 10 unités. 

La fréquence optimale est déterminée en observant la surface de la solution tout en changeant le 

potentiomètre. Lorsque nous approchons de la fréquence de résonance, la surface est recouverte 

d'ondes concentriques d'intensité maximale au centre du pot. La fréquence optimale est atteinte 

lorsque la déformation de la surface est maximale. Durant ces travaux, le potentiomètre est réglé 

sur 2,0, ce qui correspond à une fréquence de 800 kHz. 

     Le brouillard est ensuite transporté par un flux de gaz utilisé comme gaz vecteur (CG # 1) vers 

la chambre de réaction. Dans notre cas, le gaz vecteur est un flux de gaz oxydant constitué d’air 

(20% de dioxyène) avec un débit de 3 L.min-1. Avant d’entrer dans la zone de réaction, un gaz 
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constitué d’air et avec un débit de 3 L.min-1 (CG # 2) est ajouté au flux de précurseur. Ce second 

flux est introduit à partir de la partie centrale pour des raisons de sécurité et accélère le précurseur 

sur la plaque chauffante supérieure, où se déroule la réaction. Un entonnoir au sommet du substrat 

permet d'étendre le flux de précurseur sur une plus grande surface. La plaque chauffante de 20 x 

20 cm2 permet de chauffer jusqu'à 550 °C.  

     Un système d’extraction  est placé en bas à droite sous la plaque chauffante. Dans ce travail de 

thèse, nous avons utilisé une pression d'extraction égal à 3 mmH2O. Les sous-produits de la réaction 

et le solvant évaporé sont ainsi extraits et  passent par un piège à solvant refroidi à l'azote liquide. 

 

Figure 6. Schéma de la machine dépôt chimique en phase vapeur. 

 

     L’optimisation des paramètres de dépôt permet le développement et la croissance de micro-

fleurs de TiO2, de phase anatase, dispersées sur une couche mince de TiO2. Les conditions de 

croissance optimales ont été obtenues en ajustant la température de dépôt et le débit de précurseur 

(vitesse de consommation de la solution). 

     Les paramètres optimaux de dépôt sont : le précurseur titanyl (bis) acétylacétonate avec une 

concentration de 0,03 M, une gamme de température comprise entre 500 °C à 550 °C, une vitesse 

de consommation de solution supérieure à 3 mL/min et une durée de dépôt de 40 minutes. Pour ces 

températures, des micro-fleurs de TiO2 d’environ 7 à 8 µm de diamètre sont formées. La diffraction 

des rayons X confirme la phase anatase des films de TiO2. Il est important de noter que la formation 

des micro-fleurs est très sensible à la température de dépôt. À des températures inférieures, telles 

que 400°C, aucune fleur n'est créée.  
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     Les mesures d’activité photocatalytique de nos échantillons en couche mince ont été faites afin 

de comparer et comprendre le comportement photocatalytique des différents films. La molécule 

modèle étudiée dans ce travail est un colorant azoïque nommé orange G (OG, commercialisé par 

Aldrich et de formule brute : C16H10N2Na2O7S2). Pour nos mesures d’activité photocatalytique, 100 

ml d’une solution aqueuse d’OG (de concentration 5.10-5 M) sont versés dans un bécher.      

L’échantillon est inséré dans un support en verre, à une distance de 8 mm par rapport au bas du 

porte échantillon. Ensuite, l’échantillon et son support sont disposés au fond du bécher. La face 

recouverte par la couche TiO2 (face active) est orientée vers le fond du bécher. Le bécher est ensuite 

positionné sur un support permettant de le maintenir à 20 mm au-dessus de trois lampes UV (Philips 

PLS 11W). Ces lampes émettent un spectre continu dans le domaine des UV-A (émission UV-B et 

UV-C négligeable), avec un maximum d’émission situé à 365 nm, et fournissent une intensité 

lumineuse au niveau de l’échantillon d’environ 5 mW/cm2. Le tout est placé dans une étuve régulée 

en humidité (RH = 40%) et température (T = 20 °C). La solution est agitée continuellement via un 

barreau aimanté et un agitateur magnétique fixé à 500 tr/min. 

     Une faible quantité de solution (environ 3 ml), comparée au volume total, est prélevée toutes 

les trente minutes afin de mesurer par spectrométrie UV-Visible l’évolution de la concentration 

d’OG, puis réinjectée dans la solution.  

     La loi de Beer-Lambert montre que la concentration d’OG (C) est une fonction de l’absorbance 

mesurée A (Équation 1) : 

A = α .l.C   Équation 1 

où α est le coefficient d’absorption molaire à la longueur d’onde mesurée et l le trajet de lumière 

dans la solution (1 cm dans notre cas). Dans cette étude, la mesure de A est effectuée à 480 nm, ce 

qui correspond au maximum d’absorption de l’OG. Dans nos conditions, les paramètres l et α sont 

constants ce qui signifie que A est directement proportionnel à C. 

     La vitesse de dégradation du réactant r est écrite par l’équation 2 où la constante k décrit une 

constante cinétique apparente du système. Etant donné la faible concentration en OG des solutions 

aqueuses utilisées lors de ce travail (5.10-5
 M), le terme Kads.C est très inférieur à 1 et peut donc 

être négligé dans l’équation 2 qui devient : 

𝑟 = − 
𝑑𝐶

𝑑𝑡
= 𝑘𝑐  . 𝐾𝑎𝑑𝑠 . 𝐶 = 𝑘. 𝐶 Équation 2 
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     Par intégration de l’équation 2 on obtient l’équation 3, responsable pour déterminer la constante 

cinétique k. 

𝑙𝑛 (
𝐴0

𝐴
) = (

𝐶0

𝐶
) = 𝑘. 𝑡𝑈𝑉 Équation 3 

 

où C0 représente la concentration en OG déduite d’une mesure de l’absorbance A0 à 480 nm au 

début de l’irradiation (après la période de maintien dans le noir) et C est la concentration mesurée 

à partir de l’absorbance A après une exposition de durée tUV. La représentation de ln(A0/A) = f(tUV) 

doit donc donner une droite passant par l’origine dont la pente permet de déterminer la constante 

cinétique k. 

     Les films de TiO2 déposés à 550 °C montrent une meilleure performance photocatalytique, avec 

une valeur de k supérieure (0,00153 min-1), comparés aux films déposés à des températures de 

dépôt plus basses (500 et 400 °C). Le niveau de minéralisation du colorant Orange G est de 30% 

après 240 min sous lumière ultraviolette p, comme illustré par la Figure 7. Ces films présentent une 

plus grande densité des micro-fleurs sur la surface du film, qui génèrent une surface rugueuse et 

une plus grande surface spécifique. Ces caractéristiques sont importantes pour assurer une 

photoactivité.  

 

Figure 7.a) Activité photocatalytique relative de différents films de TiO2 déposés sur du silicium (d’une 

épaisseur d’environ 250 nm). b) Cinétique de décomposition photocatalytique de l'orange G mesurée pour 

différents films de TiO2 sous radiation UV. 
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Ce chapitre confirme le rôle fondamental des micro-fleurs d’une taille moyenne de 7 µm et de sa 

densité sur la surface du film dans le processus de photocatalyse. 

 

IV  Caractérisations de bicouches Al-Zr / TiO2 

     Ce chapitre présente les propriétés fonctionnelles d’un revêtement bicouche associant l’alliage 

Al-Zr (4 at. % Zr) déposé pulvérisation cathodique magnétron et le TiO2 déposé par dépôt chimique 

en phase vapeur assisté par aérosol sur des substrats d’acier rapide. Le film Al-Zr (4 at.% Zr) a été 

utilisé pour apporter des propriétés anticorrosion destinées à assurer une protection sacrificielle de 

l’acier. Le film TiO2 a été ajouté en tant que seconde couche pour induire une activité 

photocatalytique et un comportement hydrophile pouvant générer des propriétés antisalissure afin 

de ralentir processus de bio-encrassement. 

     Dans un premier temps les propriétés microstructurales et physiques des films bicouches sont 

analysées. Dans un deuxième temps, les propriétés fonctionnelles telles que le comportement 

électrochimique et les propriétés de photocatalyse de films bicouches sont traitées. 

     La morphologie des films d'Al-Zr, observée par MEB, est illustrée sur la Figure 8 (a-b) avec un 

grossissement faible et élevé, respectivement. Une coupe transversale est représentée sur la Figure 

8c. Pour une faible teneur en Zr, les revêtements se développent avec une morphologie en colonne 

formant de gros grains d'environ 500 nm de diamètre. L'épaisseur d'Al-Zr est de 3 µm. 

     Lors du dépôt de TiO2 par AACVD sur le revêtement Al-Zr, deux types de caractéristiques sont 

apparus. D'une part, un film constitué de petits grains de 50 nm en forme d'aiguille (microsphères 

dendritiques) recouvre les grains d'Al-Zr de manière conforme. Cette morphologie peut être 

observée sur la Figure 8 (e-h-k), pour les trois températures de dépôt utilisées. 
 

     Les grains d'Al-Zr peuvent encore être identifiés même si l'épaisseur du film de TiO2 est 

d'environ 400 nm. D'autre part, les micro-fleurs ont commencé à croître à une température de dépôt 

supérieure à 500 °C. Sur la Figure 8 (d-f), on peut observer que les micro-fleurs obtenues à 500°C 

sont beaucoup plus petites que celles obtenues à 540-550°C (Figure 8 (g-i) et (j-l)). Par ailleurs, 

pour les films déposés à 540 ° C et à 550 ° C une densité de micro-fleurs assez élevée est observée 

à la surface. Les films de TiO2 déposés à 500 °C, 540 °C et 550 °C ont un pourcentage de surface 

couverte par micro-fleurs égal à 8 %, 23 % et 43 %, respectivement. 
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Figure 8. Clichés MEB des films: a-b-c) Al-Zr (4 at.% Zr) et bicouche Al-Zr/TiO2 déposé à d-e-f) 500 °C,  

g-h-i) 540 °C and j-k-l) 550 °C. 

 

     Les fleurs ayant un diamètre moyen d’environ 7 µm peuvent être décrites par une association 

homocentrique de nano pétales de TiO2 formant une corolle comme si elle poussait dans le 

réceptacle d’une fleur. Ces pétales ont une épaisseur nanométrique (~ 5 nm) et sont formés par des 

nanocristaux d’anatase. 

     La diffraction des rayons X et la spectroscopie Raman confirment que les micro-fleurs de TiO2 

et les films sont constitué d’une phase d’anatase pure pour les films déposés dans une gamme de 

température comprise entre 500 °C et 550 °C.  

     Concernant l’activité photo catalytique, la température de dépôt a une influence sur le taux de 

dégradation du colorant pour les films contenant des micro-fleurs de TiO2.  Elle a  une valeur 

maximale dans le cas du film déposé à 550 °C, qui montre 50% de minéralisation après 400 min 

d'exposition aux rayons ultraviolets. Pour le film déposé à 540 °C, la valeur est de 30% de 

minéralisation pour le même temps d'exposition et le film déposé à 500 °C montre 20% de 

minéralisation du colorant Orange G. Pour les films sans la présence de micro-fleurs déposées à 
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500 °C et à 550 °C la constante k est inférieur d'un ordre de grandeur à celle des films contenant 

des micro-fleurs déposées à la même gamme de températures. Les micro-fleurs, constituées d’une 

petite taille de cristallites, augmentent grandement la surface spécifique et renforcent ainsi l'activité 

photocatalytique.  En effet, elles améliorent le taux de dégradation des polluants organiques en 

multipliant les sites actifs d'absorption dans TiO2. Par ailleurs, l’augmentation de la surface 

spécifique permet également l’absorption des réactifs sur le photocatalyseur et une augmentation 

de l’absorption de la lumière. 

     Les films bicouches Al-Zr /TiO2 ont été irradiés avec une lumière UV pendant 4 heures et l'angle 

de contact avec l'eau a été mesuré à différentes durée d'exposition. Pour tous les films, l'angle de 

contact a fortement diminué avec le temps d'environ 60° à 0° après 4 heures, indiquant un caractère 

superhydrophile photo-induit. Il est intéressant de noter que, même après six mois sans aucune 

irradiation UV, les échantillons restent superhydrophiles  avec un angle de contact d'environ 5°. 

Afin de tester la résistance à la corrosion des films, des mesures électrochimiques ont été effectuées 

dans une solution saline aérée et agitée. Les courbes de polarisation des aciers revêtus avec Al-Zr, 

TiO2 et bicouche Al-Zr /TiO2sont présentées à la Figure 9 et comparées à celles de l'acier nu.  

Les revêtements bicouches Al-Zr/TiO2 se sont révélés être une alternative intéressante pour 

préserver le caractère sacrificiel de la protection des structures en acier en milieu salin, montrant 

un potentiel de corrosion de -0,61 V vs Ag/AgCl. Ces revêtements bicouches Al-Zr /TiO2 déposés 

sur des substrats en acier offrent une bonne protection grâce à l'oxydation préférentielle de la 

bicouche. Ces échantillons présentent une faible densité de courant de corrosion avec une valeur 

égale à 4,01 x 10-7 A /cm2. L’échantillon formé par une bicouche d’Al-Zr/TiO2 réduit l’activité 

électrochimique des films par la formation d’un film passif et dense, et augmente également la 

résistance aux piqûres lorsque la cinétique de la réaction cathodique est plus basse.  

 

 



Résumé: Développement de revêtements  multifonctionnels combinant les propriétés anti-

corrosion et antisalissure 

  

213 

 

-0,8 -0,7 -0,6 -0,5 -0,4 -0,3
1E-8

1E-7

1E-6

1E-5

1E-4

0,001

0,01

Potential / V vs (Ag/AgCl)

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

A
/c

m
2
)

AlZr ( 4,0 at.% Zr, 3 µm) / HSS

AlZr + TiO2 / HSS

TiO2 / HSS

HSS

 

Figure 9. Courbes de polarisation des films Al-Zr (4 at. % Zr), TiO2 et TiO2/Al-Zr déposés sur acier 

rapide après 1h d'immersion dans une solution 5 wt.% NaCl.  

 

V  Nouveaux films de Cu-Ti-O pour des applications photocatalytiques et  

anti-encrassement 

     Dans ce chapitre, l’influence de l’incorporation de cuivre dans des couches minces de TiO2 sur 

l’activité structurelle, optique, photocatalytique et les propriétés antisalissure des films TiO2 a été 

étudiée. Les films Cu-Ti-O avec des différentes teneur en cuivre ont été déposés par dépôt chimique 

en phase vapeur assisté par aérosol en utilisant les mêmes paramètres que ceux utilisés pour le 

dépôt des films de TiO2, mais à partir de solutions qui contenaient une mélange de précurseurs. Les 

propriétés des composés obtenus ont été évaluées par diffraction des rayons X, spectroscopie 

Raman, XPS, spectromètrie UV- Visible et MET, ainsi que par des tests de dégradation 

photocatalytique d’Orange G. Les tests de biossalisure in-situ ont été réalisés sur le port de Lorient 

en France afin d’évaluer les performances antisalissure des revêtements. 

     Cu(II) acetylacetonate (Cu(AcAc)2) a été utilisé comme précurseur de cuivre et des solutions de 

départ avec une concentration de 0,01M et 0,03M ont été préparées en utilisant de l’éthanol comme 

solvant. Ethylène diamine à 0,01M a été ajouté en tant que dispersant. La solution préparée de 

Cu(AcAc)2 (0,01M ou 0,03M) est ensuite mélangée à une solution de Ti(AcAc)2 dissoute dans de 

l’éthanol à une concentration de 0,03M. 

     La spectroscopie de rayons X à dispersion d'énergie (EDS) a été utilisée afin de quantifier la 

quantité de Cu présent dans les films (Tableau 1). Les solutions contenant 33% de cuivre produisent 
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des films avec une quantité de cuivre égal à 16 at.% Cu lorsqu’ils sont déposés sur des substrats de 

silicium et verre.  

      De plus, les solutions contenant 50 % de cuivre produisent des films avec un teneur en cuivre 

comprise entre 50 at.% Cu et 66 at.% Cu pour le substrat de silicium, entre 50 at.% Cu et 75 at.% 

Cu pour le verre et entre 25 at.% Cu et 50 at.% Cu pour les substrats d’acier rapide revêtus d’Al-

Zr. 

Tableau 2. Cu-Ti-O films déposes sur Si, verre et Al-Zr/HSS. 

Solutions 
% Cu dans 

solution 

Cu/(Cu/Ti ) 

pour films 

déposés sur  Si 

(at.% Cu) 

Cu/(Cu/Ti) 

pour films 

déposés sur 

verre (at.% 

Cu) 

Cu/(Cu/Ti) 

pour films 

déposés sur Al-

Zr /HSS 

(at.% Cu) 

Solution 1 

Ti(AcAc)2 0.03 M + 

Cu(AcAc)2 0.01 M 

33 16  16 - 

Solution 2 

Ti(AcAc)2 0.03 M + 

Cu(AcAc)2 0.03 M 

50 

50  50 25  

55 58 
50 

66 75 

 

     La morphologie est assez différente pour les films contenant du cuivre. Les micro-fleurs ne sont 

plus présentes et lorsque la teneur en cuivre augmente, la morphologie devient granuleuse et 

rugueuse.  

     La Figure 10 montre que tous les échantillons présentent des pics de diffraction pour la phase 

anatase, comme en témoignent les pics dominants à 2θ = 25.5°, 37.9°, 47.9 °, 54.1° et 55.1° 

correspondant au (1 01), (0 0 4), (2 0 0), (1 0 5), (2 1 1), (2 0 4), (2 2 0) et (2 1 5) plans respectifs 

de diffraction. 

     Cu-Ti-O films avec un teneur en cuivre égal ou supérieur à 50 at.% Cu ont montré la présence 

de Cu2O par des mesures de diffraction des rayons X dans la configuration Bragg-Brentano et en 

incidence rasante. Le spectre a montré des pics de Cu2O correspondant aux plans cristallins (110), 

(1 1 1), (2 0 0), (2 2 0) et (3 1 1) à 2θ = 29.57°, 36.43°, 42.31°, 61.38° et 73.53°. Les films avec un 

avec un teneur en cuivre égal ou supérieur à 50 at.% Cu ont révélé une petite quantité de CuO 

correspondant aux plans cristallins (-1 1 1) et (1 1 1) à 2θ = 35.55° et 38.75°. 



Résumé: Développement de revêtements  multifonctionnels combinant les propriétés anti-

corrosion et antisalissure 

  

215 

 

 

 

Figure 10. Spectres DRX  des films de TiO2 et Cu-Ti-O déposés sur verre à 550 °C a) en mode Bragg-

Brentano. b) En incidence rasante. 

 

     La spectrométrie UV/VIS a été effectuée dans un spectrophotomètre Lambda 950 de Perkin 

Elmer, dans la gamme de 250 nm à 2500 nm à fin de mesurer les énergies de bande interdite. 

     L'étude par spectroscopie UV-Visible a montré que l'énergie de bande interdite diminue avec 

l'augmentation de la teneur en Cu. L’ajout de  Cu a entraîné une réduction de la bande interdite de 

3,55 eV pour le film de TiO2 pur à 3,40 eV et 2,88 eV pour les films  Cu-Ti-O 75 at.% Cu déposés 

sur un substrat de verre, respectivement. Il a également été découvert qu’une fois que la teneur en 

cuivre  augmente, cela décalait le bord d’absorption du TiO2 vers un régime visible décrivant la 

modification possible de la structure de la bande électronique. 
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     Les mesures de photocatalyse ont montré que le film de TiO2 pur avec des micro-fleurs sur la 

surface, les films Cu-Ti-O 50 at.% Cu et  Cu-Ti-O 55 at.% Cu présentent les meilleures 

performances de dégradation photocatalytique du composé organique Orange G, comme représenté 

sur la Figure 11 . 

     Ces résultats montrent qu’une forte teneur en cuivre est préjudiciable à l’activité 

photocatalytique.  

     Cela peut être expliqué par le  taux de recombinaison électron-trou qu’augmente une fois 

l'augmentation de la concentration en Cu[25,26].  

 

Figure 11. a) Cinétique de décomposition photocatalytique de l’OG à la surface des films TiO2 et Cu-Ti-O 

avec différentes teneurs en Cu sous irradiation UV (371 nm). b) Evolution de la constant k avec la teneur 

en Cu.  

     L'immersion dans l'eau de mer permet d’avoir le plus authentique test afin d'évaluer l'efficacité 

antisalissure, offrant un site propice au développement de différents micro et macro-organismes. 

Dans ce travail, des tests d’encrassement biologique ont été réalisés afin de comparer des 

revêtements avec différentes compositions. 

     Des films de TiO2 purs et les films  Cu-Ti-O ont été déposés sur un substrat de verre (Corning 

glass reference C1737-S111) puis immergés dans de l'eau de mer. Pendant les trois mois 

d'immersion, le degré de salissure par inspection visuelle a été estimée chaque semaine (ASTM D 

3623) [27]. 

     Trois films différents ont été testés : TiO2 pur, Cu-Ti-O 16 at.% Cu et Cu-Ti-O 50 at.% Cu. 
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     Des échantillons de 1,5 x 1,5 cm et de 5 x 5 cm ont été collés sur des panneaux de polycarbonate. 

Les panneaux sont d'abord collés sur un support, puis immergés dans la mer, à une profondeur de 

50 cm (océan Atlantique, port de Kernevel, France), comme représenté à la Figure 12. 

 

Figure 12. Films de TiO2 pur, Cu-Ti-O 16 at% Cu et Cu-Ti-O 50 at% Cu collés sur des panneaux de 

polycarbonate et immergé dans l’eau de mer naturelle (Océan Atlantique, Port de Kernevel, France). 

Trois échantillons pour chaque type de revêtement ont été immergés pour évaluer l’aptitude des 

films à empêcher la salissure par les macroorganismes. Dans un deuxième temps, douze 

échantillons pour chaque type pour analyser le potentiel pour empêcher la salissure par micro-

organismes. L'étude a débuté en avril 2019. 

     Dans ce travail, le pourcentage estimé de la surface de l’échantillon couverte par l'encrassement 

biologique est obtenu après un traitement d'image à l’aide du logiciel ImageJ. 

     Microscope confocal à balayage laser (MCBL) et le Microscope électronique à balayage 

(MEB)  ont été utilisés comme outils analytiques complémentaires pour étudier le comportement 

des micro-organismes. L’objectif est de relier les observations de salissure par micro-organismes 

marins à l’activité de macroorganismes sur les échantillons. 

     En ce qui concerne l’évaluation de la salissure par micro-organismes, après 10 jours 

d’immersion l’analyse MEB a permis de voir que seulement quelques diatomées ont été observées 
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pour tous les films, comme montré sur la Figure 13. Après 25 jours d’immersion, on observe dans 

tous les films une diversité de microorganismes comprenant des bactéries et des diatomées, en 

particulier dans les films Cu-Ti-O 50 at.% Cu. Cette composition a présenté une plus importante 

quantité de micro-organismes en comparaison avec les autres compositions. Quelques diatomées 

ont été observées après 38 jours d’immersion pour les films de TiO2 pur et les films Cu-Ti-O 16 

at.% Cu, ce qui contraste avec les films contenant une teneur plus élevée en Cu dont la surface était 

presque totalement recouvert de diatomées et bactéries.  

     Il est important de mentionner que la présence de micro-fleurs à la surface est observée même 

après 38 jours d'immersion pour des films de TiO2 pur déposés à 550 °C. Cela confirme que les 

micro-fleurs de TiO2 résistent à l'eau de mer et présentent également une bonne stabilité mécanique.     

C’est un résultat majeur car les micro-fleurs sont indispensables pour améliorer  l'activité 

photocatalytique des films de TiO2.  

 

Figure 13. Clichés MEB de la colonisation des films après 38 jours d’immersion dans l’océan Atlantique. 

     Ces résultats ont été confirmés par le Microscope confocal à balayage laser. Après 4 semaines 

d'immersion dans l'eau de mer, les micro-organismes présents sur des films de compositions 

différentes sont clairement différents. 
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     Après 10 jours d'immersion, les bactéries sont présentées dans tous les films. En effet, les films 

de TiO2 purs et les films Cu-Ti-O 16 at.% Cu présentent une faible quantité de bactéries à la surface 

en comparaison avec les films  Cu-Ti-O 50 at.% Cu. Après 17 jours d'immersion, tous les films ont 

développé un biofilm composé de bactéries, diatomées et de micro-algues. De plus, la présence de 

micro-algues à la surface est mieux notée pour les films Cu-Ti-O 50 at.% Cu.  

     Dans notre cas, les films Cu-Ti-O 50 at.% Cu ont montré une résistance nettement meilleure au 

développement de biofilms et de micro-algues après les observations MEB et CLSM. 

     Le pourcentage de la surface couverte par différents types de macroorganismes a été évalué 

visuellement après l'immersion statique.  

     La Figure 14 présente l'évolution du développement de l'encrassement avec le temps 

d'immersion en calculant la surface de l'échantillon couvert par l'encrassement biologique. Après 

4 semaines, les films de TiO2 purs montrent la meilleure performance, présentant le plus faible 

pourcentage de surface couverte par bio-encrassement, avec une valeur moyenne de 20%. En 

revanche, les films Cu-Ti-O 16 at.% Cu et Cu-Ti-O 50 at.% Cu présentaient une valeur moyenne 

de 27% et 29%, respectivement.  
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Figure 14. Evolution de la surface des échantillons recouverts de bio-encrassement avec le temps 

d'immersion pour a) TiO2 films, b) Cu-Ti-O 16 at.% Cu films et c) Cu-Ti-O 50 at.% Cu films. 

 

     Le échantillon de TiO2 placé en haut du panneau a montré une meilleure performance par 

rapport aux échantillons placés en bas du panneau, comme illustré à la Figure 14a. Cela peut-être 

expliqué par le fait que l'échantillon est plus proche de la surface de l'eau, il reçoit alors plus de 

rayons UV/VIS et il a donc une activité photocatalytique plus intense. Il est important de noter que, 

depuis le début de l’essai (soit 9 semaines plus tard), la partie supérieure des échantillons a connu 

une croissance plus lente des algues par rapport à la partie basse, ce qui peut être associé au 

phénomène précédemment expliqué. 
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     Au contraire, les films Cu-Ti-O 16 at.% Cu ont présenté une meilleure performance pour les 

échantillons placés en bas du panneau pendant les 10 premières semaines. Après 13 semaines, tous 

les échantillons ont révélé une croissance importante d'algues à la surface (Figure 14b). 

     Pour les films Cu-Ti-O 50 at.% Cu, tous les échantillons montrent presque les mêmes 

performances indépendamment de l'emplacement, comme le montre la Figure 14bc.  

     Après 8 semaines, les films de TiO2 purs présentent une valeur moyenne de 46 % contre 52 % 

et 60% pour les films Cu-Ti-O 16 at.% Cu et les films Cu-Ti-O 50 at.% Cu, respectivement. 

     Après 10 semaines, on constate un effet d'auto-nettoyage sur l'un des revêtements Cu-Ti-O 16 

at.% Cu qui montre clairement une diminution de l'encrassement biologique de 54 % à 24 % de la 

surface couverte par bio-encrassement. Après 10 semaines, les revêtements Cu-Ti-O 16 at.% Cu 

ont révélé  de meilleures performances par rapport aux autres compositions avec une valeur 

moyenne de 50 %. L'un des revêtements de TiO2 pur placé en haut du panneau a présenté une 

bonne performance après 10 semaines, montrant 29% de la surface couverte par l'encrassement 

biologique. 

     Après 10 semaines,  Cu-Ti-O 50 at.% Cu films présentaient un pourcentage moyen plus élevé 

de surface couverte d'une valeur estimée à 80 % en raison de la croissance de macro et de micro-

algues à la surface. 

     La Figure 14 montre qu'après une immersion statique de 13 semaines, tous les revêtements 

testés présentaient un pourcentage de surface recouverte d’encrassement supérieur à 70 %, dominé 

par les macro-algues.  

     Cu-Ti-O 16 at.% Cu films ont montré un pourcentage plus faible de la surface couverte par 

macroorganismes après 13 semaines d’immersion. Cette composition a également montré  une 

meilleure résistance au développement de biofilms et de micro-algues. De plus, dans notre cas, 

l’observation de biofilms sur des revêtements antisalissure a révélé une bonne corrélation entre 

l’observation microscopique des différents micro-organismes et l’inspection visuelle pour 

l’observation de macroorganismes.  

     Ces résultats montrent que les films de TiO2 et Cu-Ti-O 50 at.% Cu  qui ont montré une bonne 

activité photocatalytique sous radiation UV ne montrent pas la meilleure résistance au 

développement de la biosalissure dans l’eau de mer après 13 semaines. Par contre, les films de 

TiO2 montrent un meilleure comportement jusqu’à 8 semaines d’immersion, ce qui peut être 
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expliqué par une activité photocatalytique plus élevée dans ces films vu que l’échantillon placé en 

haut du panneau a montré une meilleure performance. 
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  Conclusion 

     La fonctionnalité potentielle d’un revêtement bicouche Al-Zr /TiO2combinant les propriétés 

anticorrosion et photocatalytiques a  été testée en utilisant de l'acier rapide (HSS) comme substrat. 

Des films Al–Zr contenant de différents pourcentages atomiques de Zr ont été déposés sur des 

substrats d’acier rapide, verre et silicium par pulvérisation cathodique magnétron. Al–Zr (4 at.% 

Zr) montre le meilleur compromis entre le la résistance à la corrosion, le caractère sacrificiel et le 

renforcement mécanique du revêtement.  

     Les films de TiO2 ont été élaborés par déposition chimique en phase vapeur assisté par aérosol 

dans des conditions optimisées afin de développer une microstructure caractérisée par la présence 

de micro-fleurs de TiO2 physiquement attachés au film de TiO2. Les conditions de croissance 

optimales ont été obtenues par la combinaison de température de dépôt, concentration en précurseur 

et vitesse d'alimentation en précurseur. La diffraction des rayons X et la spectroscopie Raman 

confirme que les micro-fleurs de TiO2 et le film mince sont constitués de TiO2 en phase anatase.    

La présence de micro-fleurs de TiO2 ayant un diamètre et une hauteur d’environ 7 µm et une taille 

moyenne de cristallite de 20 nm joue un rôle crucial dans la photocatalyse du composé Orange G. 

Ce comportement est amélioré sur des films de TiO2 déposés à 550 °C qui montrent un taux de 

décomposition plus élevé d’Orange G sous irradiation UV par rapport aux autres films déposés à 

plus faible températures (500 et 540 °C). 

     Les revêtements bicouches Al-Zr /TiO2se sont révélés être une alternative intéressante pour 

préserver le caractère sacrificiel pour la protection des structures en acier dans les environnements 

salins. Ces films déposés sur des substrats en acier offrent une bonne protection grâce à l'oxydation 

préférentielle de la bicouche présentant une faible densité du courant de corrosion avec une valeur 
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égale à 4,01 x 10-7 A /cm2. La bicouche d’Al-Zr/TiO2 réduit l’activité électrochimique des films 

par la formation d’un film passif et dense, et augmente également la résistance à la corrosion par 

piqûres lorsque la cinétique de la réaction cathodique est plus basse. 

     Des tests d’encrassement biologique ont été réalisés dans la mer afin d’évaluer les propriétés 

antisalissure des films de TiO2 pur, Cu-Ti-O 16 at.% Cu et Cu-Ti-O 50 at.% Cu.. Les films de TiO2 

et Cu-Ti-O 16 at.% Cu  ont montré dans un premier temps une meilleure résistance à la formation 

de biofilms, micro-algues et macro-algues à la surface des échantillons confirmés par les analyses 

MEB, CLSM et l’inspection visuelle en comparaison avec les films Cu-Ti-O 50 at.% Cu. Après 13 

semaines d’immersion dans l’eau de mer naturelle les films Cu-Ti-O 16 at.% Cu  ont montré une 

résistance nettement meilleure au développement de biofilms et de micro-algues et un pourcentage 

plus faible de la surface couverte par macro-algues. 

     Des nouveaux tests sont envisagés afin de valider la reproductibilité du comportement 

antisalissure de ces revêtements et il faudra aussi évaluer les propriétés antisalissure et corrosion 

des revêtements bicouche dans l’eau de mer. 
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Développement de revêtements multi-
fonctionnels combinant les propriétés 
anti-corrosion et antisalissure 
 
 
Quand un métal est immergé dans l'eau de mer, les 
interactions entre le métal, les organismes vivants et 
l'environnement marin provoquent un bio-
encrassement et une corrosion des composants 
métalliques, presque simultanément. Cette thèse est 
focalisée  sur  le  développement  d’un  film  anticor-
rosion basé sur un alliage Al-Zr qui a une fonction 
de protection cathodique de l’acier, et d’un film TiO2 
qui a des propriétés photocatalytiques. La combinai-
son de ces deux films permet de développer un 
nouveau revêtement multifonctionnel capable 
d’éviter la corrosion et l’encrassement biologique 
des structures marines.  
Le film d’Al-Zr (4 at.% Zr) est d’abord déposé sur 
acier par pulvérisation cathodique, et le film de TiO2 
est ensuite déposé par CVD afin de ralentir le pro-
cessus de bio-encrassement.  
Le film de TiO2 en phase anatase contient des mi-
cro-fleurs spontanément générées à partir du film et 
présente un taux de dégradation très élevé du colo-
rant organique Orange G. Cette performance photo-
catalytique  est  associée  à  la  grande  surface 
effective  développée.  Des  tests  électrochimiques  
en solution  saline  ont  révélé  que  les  bicouches  
Al-Zr/TiO2 offrent une bonne protection par 
l’oxydation préférentielle et une résistance à la cor-
rosion par piqûres. 
Finalement, films de Cu-Ti-O ont été déposés par 
AAMOCVD  en  utilisant  une combinaison  de  deux  
précurseurs  afin d’améliorer les propriétés photoca-
talytiques et anti-bioencrassement. Des tests de 
biossalisure in situ sur le port de Lorient en France 
ont été réalisés afin d’évaluer les performances 
antisalissure des revêtements. 
 
 
Mots clés : photocatalyse – corrosion – salissures 
biologiques – dépôt chimique en phase vapeur – 
pulvérisation cathodique. 
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Development of Multifunctional Coatings 
Combining Anticorrosion and Antibio-
fouling Properties 
 
 
Once a metal is submerged into seawater, interac-
tions between metal, living organisms and marine 
environment result in biofouling and corrosion of 
metal components, almost at the same time.  
This thesis is focused on the development of an anti-
corrosion Al-Zr film providing cathodic protection for 
steel parts and of a TiO2 film providing photocatalyt-
ic properties. The combination of both films is per-
formed in order to develop a novel multi-functional 
coating able to avoid corrosion and biofouling of 
marine structures.  
An optimized Al-Zr (4 at.% Zr) underlayer  film was 
deposited by magnetron sputtering, and TiO2 was 
added as a top layer by aerosol CVD in order to slow 
down the biofouling process.  
Anatase TiO2 films containing microflowers physi-
cally attached to the TiO2 films presents high de-
composition rate of Orange G dye. The enhanced 
photocatalytic performance is associated with the 
high effective surface associated to the TiO2 micro-
flowers. Electrochemical tests in saline solution 
have revealed that Al-Zr/TiO2 bilayers provide good 
protection through the preferential oxidation and an 
increased pitting resistance. 
Finally, films of Cu-Ti-O were deposited by AAMO-
CVD using a combination of two precursors in order 
to improve photocatalytic and antibiofouling proper-
ties. Marine biofouling field test, in Lorient’s Harbor 
in France, were carried out in order to evaluate the 
antifouling performance of the coatings.eserunt 
mollit anim id est laborum." 
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