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abstract

The end of Moore’s Law and the breakdown of Dennard’s scaling mean that increasing hard-

ware complexity and optimizing code efficiently are indispensable tomaintain the exponential

performance improvements of the past decades. Hand optimizing code is not suited to the

sheer number of configurations of many code optimization problems, but fitting these prob-

lems into the mathematical optimization and learning frameworks enables applying methods

from these domains to automatically optimize code for performance, a process called auto-

tuning. Commonly used autotuning methods are either not conducive to statistical analysis,

such as genetic algorithms, or reliant on restrictive hypotheses about the target search space,

such as gradient descent. In this thesis we develop and evaluate the performance of an auto-

tuning method based on the Design of Experiments, a branch of statistics that is not widely

studied or applied in autotuning problems, and which aids in the parsimonious production

of statistically interpretable and accurate surrogate models.

We present a series of descriptions and discussions of various optimization methods,

from the perspective of performance tuning. We describe heuristics from mathematical

optimization, and parametric and nonparametric statistical modeling methods, describing

how these surrogate models can be used to minimize an unknown function. We then discuss

how the Design of Experiments enables managing the compromise between experimental

budget and model quality, establishing a link with Online Learning methods, focusing on

parsimony, progressive model improvement, uncertainty, and robustness, the properties that

are most relevant for a method’s applicability to autotuning problems.

The key contribution of this thesis is the development of a transparent and parsimo-

nious autotuning approach based on the Design of Experiments, which we apply to diverse

problems such as optimizing the configuration of GPU and CPU kernels and finding mixed-

precision bit quantization policies for neural networks. We also present a series of empirical

evaluations of other methods on autotuning problems from different High Performance Com-

puting domains, such as search heuristics coordinated by a bandit algorithm to optimize the

configuration of compilers for several GPU and FPGA kernels. Although some experimental

scenarios eluded the detection and exploitation of search space structure, regardless of the

chosen method, we demonstrate how autotuning methods based on the Design of Experi-

ments can aid in interpretable, efficient, and effective code optimization.
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résumé

La fin de la loi deMoore et de la loi de Dennard entraînent une augmentation de la complexité

du matériel informatique qui implique d’adapter et d’optimiser les codes scientifiques très

régulièrement. Une optimisation manuelle de code n’est pas adaptée en raison du nombre

considérable de configurations, mais en se plaçant dans le cadre de l’optimisation mathéma-

tique et de l’apprentissage, il est possible d’appliquer des méthodes issues de ces domaines

pour optimiser automatiquement les performances des codes scientifiques, un processus ap-

pelé autotuning. Cependant, les méthodes d’autotuning couramment utilisées sont souvent

peu propices à l’analyse statistique, comme les algorithmes génétiques, ce qui rend leur résul-

tat difficile à interpréter, ou dépendantes d’hypothèses restrictives sur l’espace de recherche,

comme la descente de gradient, ce qui peut conduire à des solutions sous-optimales. Dans

cette thèse, nous développons et évaluons la performance d’une méthode d’autotuning utili-

sant des plans d’expériences, une branche des statistiques qui a encore été peu utilisée dans

ce contexte, et qui a pour objectif de produire des modèles interprétables et précis tout en

restant parcimonieux sur le plan expérimental.

Cette thèse commence par une présentation des principales méthodes d’optimisation et

d’apprentissage. Nous décrivons en particulier les principales heuristiques issues de l’op-

timisation mathématique, les méthodes de modélisation statistique paramétriques et non

paramétriques ainsi que comment ces modèles peuvent être utilisés pour minimiser une fonc-

tion inconnue (surrogate optimization), puis nous expliquons en quoi les techniques de plan

d’expériences permettent de contrôler le compromis entre le budget expérimental et la qualité

du modèle, et enfin, nous faisons le lien avec les techniques d’apprentissage en ligne, en nous

concentrant sur les propriétés les plus importantes (parcimonie, transparence, incrémentalité,

confiance, robustesse) pour leur applicabilité aux problèmes d’autotuning.

La principale contribution de cette thèse est le développement d’une approche d’auto-

tuning transparente et parcimonieuse basée sur les plan d’expériences. Nous appliquons

cette approche à différents problèmes comme l’optimisation de la configuration de noyaux

GPU et CPU, et la discrétisation de la précision numérique dans des réseaux de neurones.

Nous évaluons également empiriquement d’autres méthodes (par exemple des heuristiques

de recherche coordonnées par un algorithme de bandit) sur des problèmes d’optimisation

de configuration de compilateurs pour des noyaux de calcul sur GPU et sur FPGA. Même

s’il n’est pas possible de détecter et d’exploiter la structure de l’espace de recherche en toute

généralité, nous montrons comment les méthodes d’autotuning basées sur des plans d’expé-

riences peuvent permettre de réaliser une optimisation de code à la fois interprétable, efficace,

et peu coûteuse sur le plan expérimental.
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resumo

O fim da lei de Moore e a quebra da lei exponencial descrita por Dennard significam que o

aumento da complexidade de hardware e a otimização de código são indispensáveis para sus-

tentar as melhorias exponenciais de desempenho das últimas décadas. A otimização manual

de código não é adequada para o grande número de configurações encontrado em muitos

problemas, mas interpretar esses problemas segundo os arcabouços da otimização e apren-

dizagem permite a aplicação de métodos desses domínios para de otimização automática

de código orientada a melhorar seu desempenho, um processo chamado de autotuning. Os

métodos de autotuning comumente usados nem sempre são propícios a análises estatísticas,

como os algoritmos genéticos, ou então dependem de hipóteses restritivas sobre o espaço

de busca alvo, como o método do gradiente. Nesta tese desenvolvemos e avaliamos o de-

sempenho de um método de autotuning baseado no Desenho de Experimentos, um ramo da

estatística que não é amplamente estudado ou aplicado a problemas de autotuning, e que

auxilia na produção parcimoniosa de modelos precisos e interpretáveis.

Apresentamos uma série de descrições e discussões de vários métodos de otimização,

a partir da perspectiva do autotuning. Descrevemos heurísticas provenientes do campo

da otimização matemática, e métodos paramétricos e não paramétricos para modelagem

estatística, descrevendo como esses modelos podem ser usados para otimizar uma função não

conhecida (surrogate optimization). Discutimos também como a metodologia do Desenho de

Experimentos permite balancear o compromisso entre custo experimental e qualidade de um

modelo, e estabelecemosuma ligação commétodos de aprendizagem online, nos concentrando
nos conceitos de parcimônia, incrementalidade, incerteza, e robusteza, as propriedades mais

relevantes para a aplicabilidade a problemas de autotuning.

A contribuição principal desta tese é o desenvolvimento de uma abordagem transparente

e parcimoniosa para autotuning, baseada no Desenho de Experimentos, que aplicamos a

diversos problemas, tais como a otimização da configuração de programas para GPU e CPU,

e a busca por políticas de quantização de bits de precisão mista para redes neurais. Também

apresentamosumasérie de avaliações empíricasdeoutrosmétodos aproblemasde autotuning

em diferentes domínios da computação de alto desempenho, como heurísticas de busca

coordenadas por um algoritmo do bandido para otimizar a configuração de compiladores

para vários programas para GPU e FPGA. Embora alguns cenários experimentais tenham

escapado à detecção e exploração de estruturas do espaço de busca, independentemente

do método escolhido, demonstramos nesta tese como métodos de autotuning baseados no

Desenho de Experimentos podem contribuir com uma otimização de código interpretável,

eficiente, e eficaz.
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Chapter 1. Hardware Design Trends and Consequences for Code Optimization

Chapter 1

Hardware Design Trends and
Consequences for Code Optimization

High Performance Computing has been a cornerstone of scientific and industrial progress

for at least five decades. By paying the cost of increased complexity, software and hardware

engineering advances continue to overcome several challenges on thewayof the sustainedper-

formance improvements observed during the last fifty years. A consequence of this mounting

complexity is that reaching the theoretical peak hardware performance for a given program

requires not only expert knowledge of specific hardware architectures, but also mastery of

programming models and languages for parallel and distributed computing.

Ifwe stateperformanceoptimizationproblemsas searchor learningproblems, by converting

implementation and configuration choices to parameters which might affect performance, we

can draw from and adapt proven methods from search, mathematical optimization, and

statistical learning. The effectiveness of these adapted methods on performance optimization

problems varies greatly, and hinges on practical and mathematical properties of the problem

and the corresponding search space. The application of such methods to the automation of

performance tuning for specific hardware, under a set of constraints, is named autotuning.

Improving performance also relies on gathering application-specific knowledge, which

entails extensive experimental costs since, with the exception of linear algebra routines, the-

oretical peak performance is not always a reachable comparison baseline. When adapting

methods for autotuning we must face challenges emerging from practical properties, such as

restricted time and cost budgets, constraints on feasible parameter values, and the need tomix

categorical, continuous, and discrete parameters. To achieve useful results we must also choose

methods that make hypotheses compatible with problem search spaces, such as the exis-

tence of discoverable, or at least exploitable, relationships between parameters and performance.

Choosing an autotuning method requires balancing the exploration of a problem, that is,

seeking to discover relationships between parameters and performance, and the exploitation

of known or discovered relationships, seeking only to find the best possible performance.
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Machine learning and search heuristics are often not the best candidates for autotuning

domainswheremeasurements are lengthy and costly, such as compiling industrial-level FPGA

programs, because these methods rely on the availability of a large number of measurements.

Search heuristics in particular also assume that good code optimizations are reachable from

a starting position, and that local trends observed in a search space are exploitable. These

assumptions are not usually true in common autotuning domains, as shown in the work

of Seymour et al. [164]. Autotuning search spaces usually have non-linear constraints and

undefined regions, which are also expected to decrease the effectiveness of search heuristics

and machine learning. An additional downside is that, usually, optimization choices cannot

be explained, and knowledge gained during optimization with machine learning and search

heuristics is not reusable. In this thesis we study how to overcome the reliance on these

assumptions about autotuning search spaces, using parsimonious optimization methods that

can be transparently explained within the statistical framework of the Design of Experiments
(DoE), or Experimental Design.

One of the first detailed descriptions and mathematical treatment of DoE was presented

by Ronald Fisher [85] in his 1937 book TheDesign of Experiments, where he discussed principles

of experimentation, latin square sampling and factorial designs. Later books such as the ones

from Jain [51], Montgomery [138] and Box et al. [36] present comprehensive and detailed

foundations. Techniques based on DoE are parsimonious because they allow decreasing the

number ofmeasurements required to determine certain relationships betweenparameters and

metrics, and are transparent because parameter selections and configurations can be justified

in many settings by the results of statistical tests.

In DoE terminology, a design is a plan for executing a series of measurements, or experi-
ments, whose objective is to identify relationships between factors and responses. While factors

and responses can refer to different concrete entities in other domains, in computer experi-

ments factors can be configuration parameters for algorithms and compilers, for example, and

responses can be the execution time or memory consumption of a program.

Designs can serve diverse purposes, from identifying the most significant factors for

performance, to fitting analytical performance models for the response. The field of DoE en-

compasses the mathematical formalization of the construction of experimental designs. More

practical works in the field present algorithms to generate designs with different objectives

and restrictions.

The contributions of this thesis are strategies to adapt and apply the DoE methodology to

program autotuning. This thesis presents background and a high-level view of the theoretical

foundations of each method, and detailed discussions of the challenges involved in special-

izing the general definitions of search heuristics and statistical learning methods to different

autotuning problems, as well as what can be learned about specific autotuning search spaces,

and how that acquired knowledge can be leveraged for further optimization.
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Chapter 1. Hardware Design Trends and Consequences for Code Optimization
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Figure 1.1: 49 years of microprocessor data, highlighting the sustained exponential increases

and reductions on transistor counts and fabrication processes, the stagnation of frequency

scaling around 2005, and one solution found for it, the simultaneous exponential increase on

logical core count. Data fromWikipedia [187, 186]

This chapter aims to substantiate the claim that autotuning methods have a fundamental

role to play on the future of program performance optimization, arguing that the value and

the difficulty of the efforts to carefully tune software became more apparent ever since ad-

vances in hardware stopped leading to effortless performance improvements, at least from the

programmer’s perspective. The remainder of this chapter is organized as follows. Section 1.1

discusses the historical context for the changes in trends on computer architecture. Section 1.2

presents the consequences of these changes for code optimization. Section 1.3 characterizes

the search spaces found when optimizing performance on different domains. Section 1.4

presents the structure of this thesis and highlights our contributions.

1.1 Historical Hardware Design Trends

The physical constraints imposed by technological advances on circuit designwere evident

since the first vacuum tube computers that already spanned entire floors, such as the ENIAC

in 1945 [58]. The practical and economical need to fit more computing power into real estate

is one force for innovation in hardware design that spans its history, and is echoed in modern

supercomputers, such as the Summit supercomputer fromOak Ridge National Laboratory [124],
which spans an entire room.

Figure 1.1 highlights the unrelenting and so far successful pursuit of smaller transistor

fabrication processes, and the resulting capability to fit more computing power on a fixed

chip area. This trend was already observed in integrated circuits by Gordon Moore et al.
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1.1. Historical Hardware Design Trends

in 1965 [139], who also postulated its continuity. The performance improvements produced

by the design efforts to make Moore’s forecast a self-fulfilling prophecy were boosted until

around 2005 by the performance gained from increases in circuit frequency.

Robert Dennard et al. remarked in 1974 [72] that smaller transistors, in part because

they generate shorter circuit delays, decrease the energy required to power a circuit and

enable an increase in operation frequency without breaking power usage constraints. This

scaling effect, named Dennard’s scaling, is hindered primarily by leakage current, caused by

quantum tunneling effects in small transistors. Figure 1.1 shows a marked stagnation on

frequency increase after around 2005, as transistors crossed the 10
2
nm fabrication process.

It was expected that leakage due to tunneling would limit frequency scaling strongly, even

before the transistor fabrication process reached 10nm [87].

Current hardware is now past the effects of Dennard’s scaling. The increase in logical

cores around 2015 can be interpreted as preparation for andmitigation of the end of frequency

scaling, and ushered in an age of multicore scaling. Still, in order to meet power consumption

constraints, up to half of a multicore processor could have to be powered down, at all times.

This phenomenon is named Dark Silicon [80], and presents significant challenges to current

hardware designers and programmers [178, 62, 111].

The Top500 [175] list gathers information about commercially available supercomputers,

and ranks them by performance on the LINPACK benchmark [74]. Figure 1.2 shows the peak

theoretical performance '%40:, and the maximum performance achieved on the LINPACK

benchmark '"0G, in ) 5 ;>?B/B, for the top-ranked supercomputers on TOP500. Despite the

smaller performance gains from hardware design that are to be expected for post-Dennard’s

scaling processors, the increase in computer performance has sustained an exponential climb,

sustained mostly by software improvements.

Although hardware accelerators such as GPUs and FPGAs, have also helped to support

exponential performance increases, their use is not an escape from the fundamental scaling

constraints imposed by current semiconductor design. Figure 1.3 shows the increase in

processor and accelerator core count on the top-ranked supercomputers on Top500. Half of

the top-ranked supercomputers in the last decade had accelerator cores and, of those, all had

around ten times more accelerator than processor cores. The apparent stagnation of core

count in top-ranked supercomputers, even considering accelerators, highlights the crucial

impact software optimization has on performance.

Advances in hardware design are currently not capable of providing performance im-

provements via frequency scaling without dissipating more power than the processor was

designed to support, which violates power constraints and risks damaging the circuit. From

the programmer’s perspective, effortless performance improvements from hardware have not

been expected for quite some time, and the key to sustaining historical trends in performance

scaling has lied in accelerators, parallel and distributed programming libraries, and fine tun-
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Figure 1.2: Sustained exponential increase of theoretical RPeak and achieved RMax perfor-

mance, highlighted for the supercomputer ranked 1
st
on TOP500 [175], and shown in gray for
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Figure 1.3: Processor and accelerator core count highlighted for the supercomputer ranked

1
st
on TOP500 [175], and shown in gray for the other 30 ranks. Core count trends for super-

computers are not necessarily bound to processor trends observed on Figure 1.1

ing of several stages of the software stack, from instruction selection to the layout of neural

networks.

The problem of optimizing software for performance presents its own challenges. The

search spaces that emerge from autotuning problems grow quickly to a size for which it

would take a prohibitive amount of time to determine the best configuration by exhaustively

6



1.2. Consequences for Code Optimization: Autotuning Loop Nest Optimization

evaluating all possibilities. Although this means we must seek to decrease the amount of

possibilities, by restricting allowed parameter values, or dropping parameters completely, it

is often unclear how to decide which parameters should be restricted or dropped. The next

sections introduce a simple autotuning problem, present an overview of the magnitude of the

dimension of autotuning search spaces, and briefly introduce the methods commonly used to

explore search spaces, some of which are discussed in detail in Part I.

1.2 Consequences for Code Optimization: Autotuning Loop Nest
Optimization

Algorithms for linear algebra problems are fundamental to scientific computing and statis-

tics. Therefore, decreasing the execution time of algorithms such as general matrix multipli-

cation (GEMM) [76], and others from the original BLAS [126], is an interesting and well

motivated example, that we will use to introduce the autotuning problem.

One way to improve the performance of such linear algebra programs is to exploit cache

locality by reordering and organizing loop iterations, using source code transformationmeth-

ods such as loop tiling, or blocking, and unrolling. We will now briefly describe loop tiling

and unrolling for a simple problem involving transposing and adding matrices, illustrating

how memory access patterns open up possibilities for performance tuning. After this ini-

tial example, we will discuss an autotuning search space for blocking and unrolling applied

to General Matrix Multiplication (GEMM), and how these code transformations generate a

relatively large and complex search space, which we can explore using autotuning methods.

Figure 1.4 shows three versions of code in the C language that, given three square matrices

�, �, and �, computes � = � +�+ �Ç. The first optimization we can make is to preemptively

load to cache, or prefetch, as many as possible of the elements we know will be needed at any

given iteration, as is shown in Figure 1.4a. The shaded elements on the top row of Figure 1.5

represent the elements that could be prefetched in iterations of Figure 1.4a.

Since Cmatrices are stored in row-major order, each access of an element of � forces loading

the next row elements, even if we explicitly prefetch a column of �. Since we are accessing �

in a column-major order, the prefetched row elements would not be used until we reached the

corresponding column. Therefore, the next column elements will have to be loaded at each

iteration, considerably slowing down the computation.

We can solve this problem by reordering memory accesses to request only prefetched

elements. It suffices to adequately split loop indices into blocks, as shown in Figure 1.4b.

Now, memory accesses are be performed in tiles, as shown on the bottom row of Figure 1.5. If

blocks are correctly sized to fit in cache, we can improve performance by explicitly prefetching

each tile. After blocking, we can still improve performance by unrolling loop iterations, which
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Chapter 1. Hardware Design Trends and Consequences for Code Optimization

int N = 256;
float A[N][N], B[N][N], C[N][N];
int i, j;
// Initialize A, B, C
for(i = 0; i < N; i++){
// Load line i of A to fast memory
for(j = 0; j < N; j++){
// Load C[i][j] to fast memory
// Load column j of B to fast memory
C[i][j] += A[i][j] + B[j][i];
// Write C[i][j] to main memory

}
}

(a) Regular implementation

int N = 256;
int B_size = 4;
int A[N][N], B[N][N], C[N][N];
int i, j, x, y;
// Initialize A, B, C
for(i = 0; i < N; i += B_size){
for(j = 0; j < N; j += B_size){
// Load block (i, j) of C to fast memory
// Load block (i, j) of A to fast memory
// Load block (j, i) of B to fast memory
for(x = i; x < min(i + B_size, N); x++){
for(y = j; y < min(j + B_size, N); y++){
C[x][y] += A[x][y] + B[y][x];

}
}
// Write block (i, j) of C to main memory

}
}

(b) Blocked, or tiled

int N = 256;
int B_size = 4;
int A[N][N], B[N][N], C[N][N];
int i, j, k;
// Initialize A, B, C
for(i = 0; i < N; i += B_size){
for(j = 0; j < N; j += B_size){
// Load block (i, j) of C to fast memory
// Load block (i, j) of A to fast memory
// Load block (j, i) of B to fast memory
C[i + 0][j + 0] += A[i + 0][j] * B[i][j + 0];
C[i + 0][j + 1] += A[i + 0][j] * B[i][j + 1];
// Unroll the remaining 12 iterations
C[i + Bsize - 1][j + B_size - 2] += A[i + Bsize - 1][j] * B[i][j + B_size - 2];
C[i + Bsize - 1][j + B_size - 1] += A[i + Bsize - 1][j] * B[i][j + B_size - 1];
// Write block (i, j) of C to main memory

}
}

(c) Tiled and unrolled

Figure 1.4: Loop nest optimizations for � = � + � + �Ç, in C
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Figure 1.5: Access patterns for matrices in � = �+�+�Ç, with loop nest optimizations. Panel

(a) shows the access order of a regular implementation, and panel (b) shows the effect of loop

tiling, or blocking

forces register usage and helps the compiler to identify regions that can be vectorized. A

conceptual implementation of loop unrolling is shown in Figure 1.4c.
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1.2. Consequences for Code Optimization: Autotuning Loop Nest Optimization

Looking at the loop nest optimization problem from the autotuning perspective, the two

parameters that emerge from the implementations are the block size, which controls the stride,

and the unrolling factor, which controls the number of unrolled iterations. Larger block sizes

are desirable, becausewewant to avoid extra comparisons, but blocks should be small enough

to ensure access to as few as possible out-of-cache elements. Likewise, the unrolling factor

should be large, to leverage vectorization and available registers, but not so large that it forces

memory to the stack.

The values of block size and unrolling factor that optimize performance will depend on

the cache hierarchy, register layout, and vectorization capabilities of the target processor, but

also on the memory access pattern of the target algorithm. In addition to finding the best

values for each parameter independently, an autotuner must ideally aim to account for the

interactions between parameters, that is, for the fact that the best value for each parameter

might also depend on the value chosen for the other.

The next loop optimization example comes from Seymour et al. [164], and considers 128

blocking and unrolling values, in the interval [0, 127], for the GEMM algorithm. The three

panels of Figure 1.6 show conceptual implementations of loop blocking and unrolling for

GEMM in C. A block size of zero results in the implementation from Figure 1.6a, and an

unrolling factor of zero performs a single iteration per condition check.

It is straightforward to change the block size of the implementations from Figure 1.6, but

the unrolling factor is not exposed as a parameter. To test different unrolling values we need

to generate new versions of the source code with different numbers of unrolled iterations.

We can do that with code generators or with source-to-source transformation tools [179, 109,

8]. It is often necessary to modify the program we wish to optimize in order to provide a

configuration interface and expose its implicit parameters. Once we are able to control the

block size and the loop unrolling factor, we determine the target search space by choosing the

values to be explored.

In this example, the search space is defined by the 128
2 = 16384 possible combinations

of blocking and unrolling values. The performance of each combination in the search space,

shown inMflops/s in Figure 1.7, was measured for a sequential GEMM implementation, using

square matrices of size 400 [164]. We can represent this autotuning search space as a 3D
landscape, since we have two configurable parameters and a single target performance metric.

In this setting, the objective is to find the highest point, since the objective is to maximize
Mflops/s, although usually the performance metric is transformed so that the objective is its

minimization.

On a first look, there seems to be no apparent global search space structure in the landscape

on Figure 1.7, but local features jump to the eyes, such as the “valley” across all block sizes for

low unrolling factors, the “ramp” across all unrolling factors for low block sizes, and the series

of jagged “plateaus” across themiddle regions, with ridges for identical or divisible block sizes

and unrolling factors. A careful look reveals also that there is a curvature along the unrolling
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int N = 256;
float A[N][N], B[N][N], C[N][N];
int i, j, k;
// Initialize A, B, C
for(i = 0; i < N; i++){
// Load line i of A to fast memory
for(j = 0; j < N; j++){
// Load C[i][j] to fast memory
// Load column j of B to fast memory
for(k = 0; k < N; k++){
C[i][j] += A[i][k] * B[k][j];

}
// Write C[i][j] to main memory

}
}

(a) Regular implementation

int N = 256;
int B_size = 4;
float A[N][N], B[N][N], C[N][N];
int i, j, k, x, y;
// Initialize A, B, C
for(i = 0; i < N; i += B_size){
for(j = 0; j < N; j += B_size){
// Load block (i, j) of C to fast memory
for(k = 0; k < N; k++){
// Load block (i, k) of A to fast memory
// Load block (k, y) of B to fast memory
for(x = i; x < min(i + B_size, N); x++){
for(y = j; y < min(j + B_size, N); y++){
C[x][y] += A[x][k] * B[k][y];

}
}

}
// Write block (i, j) of C to main memory

}
}

(b) Blocked, or tiled

int N = 256;
int B_size = 4;
float A[N][N], B[N][N], C[N][N];
int i, j, k;
// Initialize A, B, C
for(i = 0; i < N; i += B_size){
for(j = 0; j < N; j += B_size){
// Load block (i, j) of C to fast memory
for(k = 0; k < N; k++){
// Load block (i, k) of A to fast memory
// Load block (k, y) of B to fast memory
C[i + 0][j + 0] += A[i + 0][k] * B[k][j + 0];
C[i + 0][j + 1] += A[i + 0][k] * B[k][j + 1];
// Unroll the remaining 12 iterations
C[i + Bsize - 1][j + B_size - 2] += A[i + Bsize - 1][k] * B[k][j + B_size - 2];
C[i + Bsize - 1][j + B_size - 1] += A[i + Bsize - 1][k] * B[k][j + B_size - 1];

}
// Write block (i, j) of C to main memory

}
}

(c) Tiled and unrolled

Figure 1.6: Loop nest optimizations for GEMM, in C
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Figure 1.7: An exhaustively measured search space, defined by loop blocking and unrolling

parameters, for a sequential GEMM kernel. Reproduced from Seymour et al. [164]

factor axis. Also of note is the abundance in this landscape of local minima, that is, points with

relatively good performance, surrounded by points with worse performance. By exhaustively
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evaluating all possibilities, the original study determined that the best performance on this

program was achieved with a block size of 80 and an unrolling factor of 2.

In this conceptual example, all ≈1.64 × 10
4
configurations were exhaustively evaluated,

but it is impossible to do so in most settings where autotuning methods are useful. The

next section provides a perspective of the autotuning domains and methods employed in

current research, presenting a selection of search spaces and discussing the trends that can be

observed on search space size, targeted HPC domains, and chosen optimization methods.

1.3 Autotuning Approaches and Search Spaces

Autotuning methods have been used to improve performance in an increasingly large

variety of domains, from the earlier applications to linear algebra subprograms, to the now

ubiquitous construction and configuration of neural networks, to the configuration of the

increasingly relevant tools for the re-configurable hardware of FPGAs. In this setting, it is not

far-fetched to establish a link between the continued increases in performance and hardware

complexity, that we discussed previously in this chapter, to the increases in dimension and

size of the autotuning problems that we can now tackle.

Figure 1.8 presents search space dimension, measured as the number of parameters in-

volved, and size, measured as the number of possible parameter combinations, for a selec-

tion of search spaces from 14 autotuning domains. Precise information about search space

characterization is often missing from works on autotuning methods and applications. The

characterization of most of the search spaces in Figure 1.8 was obtained directly from the text

of the corresponding published paper, but for some it was necessary to extract characteriza-

tions from the available source code. Still, it was impossible to obtain detailed descriptions of

search spaces for many of the published works on autotuning methods and applications, and

in that way the sample shown in this section is biased, because it contains only information

on works that provided it.

The left hand panel of Figure 1.8 shows search spaces with up to 60 parameters. The

over-representation of search spaces for linear algebra domains in this sample stands out on

the left hand panel, but the domain is not present on the remaining portion of the sample,

shown on the right hand panel. The largest search spaces for which we were able to find

information on published work are defined for the domains of neural network configuration,

High-Level Synthesis for FPGAs, compiler parameters, and domain-specific languages.

None of the largest search spaces in this sample, that is, the ones outside the zoomed

area of the left hand panel, come from works earlier than 2009. The sustained performance

improvementswe discussed previously have enabled and pushed autotuning research toward

progressively larger problems, which has also been done to most research areas. Increased

computing power has made it feasible, or at least tolerable, to apply search heuristics and

statistical learning methods to find program configurations that improve performance.
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Figure 1.8: Dimension and search space size for autotuning problems from 14 domains [24,

7, 53, 148, 25, 48, 44, 43, 182, 135, 1, 191, 174, 115, 64, 176, 198, 93, 123, 183, 143, 164] The left

panel shows a zoomed view of the right panel

It is straightforward to produce an extremely large autotuning search space. Compilers

have hundreds of binary flags that can be considered for selection, generating a large set

of combinations. Despite that, regarding performance improvements, it is likely that most

configuration parameters will have a small impact, that is, that only a handful of parameters

are responsible for changes in performance. Search spaces are often much more restrictive

than the one we discussed in Section 1.2. Autotuning problem definitions usually come with

constraints on parameter values and limited experimental budgets, and runtime failures for some

configurations are often unpredictable. In this context, finding configurations that improve

performance and determining the subset of significant parameters are considerable challenges.

Search heuristics, such as methods based on genetic algorithms and gradient descent,

are a natural way to tackle these challenges because they consist of procedures for exploiting

existing and unknown relationships between parameters and performancewithoutmaking or

requiring explicit hypotheses about the problem. Despite that, most commonly used heuristics

make implicit hypotheses about search spaces which are not always verified, such as assuming

that good configurations are reachable from a random starting point.

Autotuning methods that make explicit hypotheses about the target program, such as

methods based on Design of Experiments, require some initial knowledge, or willingness to

make assumptions, about underlying relationships, and are harder to adapt to constrained

scenarios, but have the potential to produce explainable optimizations. In general, methods

based on Machine Learning have enough flexibility to perform well in complex search spaces

and make few assumptions about problems, but usually provide little, if any, that can be used

to explain optimization choices or derive relationships between parameters and performance.
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Table 1.1: Autotuning methods used by a sample of systems, in different domains, ordered by

publishing year. Methods were classified as either Search Heuristics (SH), Machine Learning

(ML), or more precisely when the originating work provided detailed information. Earlier

work favored employing Search Heuristics, which are less prominent in recent work, which

favors methods based on Machine Learning.

System Domain Method Year

PhiPAC [31] Linear Algebra SH (Exhaustive) 1997

ATLAS [75] Linear Algebra SH (Exhaustive) 1998

FFTW [88] Digital Signal Processing SH (Exhaustive) 1998

Active Harmony [171] Domain-Specific Language SH 2002

OSKI [181] Linear Algebra SH 2005

Seymour, K. et al. [164] Linear Algebra SH 2008

PRO [174] Linear Algebra SH 2009

ParamILS [115] Combinatorial Auctions SH 2009

PetaBricks [8] Domain-Specific Language SH (Genetic Algorithm) 2009

MILEPOST GCC [92] Compiler Parameters ML 2011

Orio [24] Linear Algebra ML (Decision Trees) 2012

pOSKI [53] Linear Algebra SH 2012

INSIEME [118] Compiler Parameters SH (Genetic Algorithm) 2012

OpenTuner [7] Compiler Parameters SH 2014

Lgen [169] Linear Algebra SH 2014

OPAL [16] Parallel Computing SH 2014

Mametjanov, A. et al. [135] High-Level Synthesis ML (Decision Trees) 2015

CLTune [142] Parallel Computing SH 2015

Guerreirro, J. et al. [102] Parallel Computing SH 2015

Collective Mind [90] Compiler Parameters ML 2015

Abdelfattah, A. et al. [1] Linear Algebra SH (Exhaustive) 2016

TANGRAM [59] Domain-Specific Language SH 2016

MASE-BDI [65] Environmental Land Change SH 2016

Xu, C. et al. [191] High-Level Synthesis SH 2017

Apollo [28] Parallel Computing ML (Decision Trees) 2017

DeepHyper [25] Neural Networks ML (Decision Trees) 2018

Tuzov, I. et al. [176] High-Level Synthesis Design of Experiments 2018

Periscope [93] Compiler Parameters SH 2018

SynTunSys [198] High-Level Synthesis SH 2019

Kwon, J. et al. [123] High-Level Synthesis ML 2019

FuncyTuner [183] Compiler Parameters SH 2019

Ol’ha, J. et al. [143] Parallel Computing Sensitivity Analysis 2019

Petrovic, F. et al. [148] Linear Algebra SH 2020

Chu, Y. et al. [64] Search/MVWCP SH 2020

Table 1.1 lists some autotuning systems, their target domains, and the employed method,

ordered by publication date. Some systems that did not provide detailed search space descrip-

tions and could not be included in Figure 1.8, especially some of the earlier work, provided

enough information to categorize their autotuning methods. In contrast, many more recent

works, especially those using methods based on Machine Learning, did not provide specific

method information. Earlier work often deals with search spaces small enough to exhaus-
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tively evaluate, and using search heuristics to optimize linear algebra programs is the most

prominent category of earlier work in this sample. Later autotuning work target more varied

domains, with themost prominent domains in this sample being parallel computing, compiler

parameters, and High-Level Synthesis. Systems using methods based on Machine Learning

become more common on later work than systems using heuristics.

Chapter 3 provides more detailed definitions and discussions of the applicability, effec-

tiveness, and explanatory power of stochastic autotuningmethods based on search heuristics.

The remainder of this chapter details the contributions of this thesis and the structure of this

document.

1.4 Structure and Contributions of This Thesis

This thesis is organized in two parts. Part I presents high-level descriptions of different

optimization methods, highlighting meaningful features for their application to autotuning

problems. Part II presents five separate studieswherewe apply distinct optimizationmethods

to a series of autotuning problems from different domains. The remainder of this section

presents the structure of the two parts in further detail and discusses the contributions of this

thesis.

Chapter 2 opens Part I describing, from the point of view of autotuning problems, the

mathematical notation we used in the method expositions of later chapters, and present-

ing fundamental concepts of search spaces. Chapter 3 presents some methods for function

minimization from the optimization domain, from derivative-based to stochastic methods.

Chapter 4 presents two methods for surrogate-based optimization, linear models and Gaus-

sian Process regression, which are widely used to learn relationships between factors and

responses, but assume that the data come from a fixed set of observations. Chapter 5 presents

the Design of Experiments methodology, a statistical framework for improving the accuracy

and quality of fit of surrogate models, while simultaneously decreasing experimental costs,

by carefully choosing which experiments should be conducted. Chapter 6 presents Online

Learning methods, which explicitly model and seek to optimize the compromise between

exploring a search space seeking to learn new relationships between factors and responses,

and exploiting known relationships to find the optimal factor configuration. Chapter 7 closes

this part presenting, in light of the previous expositions, the method choices composing the

path we took in this thesis.

Part II begins with a presentation of our research methodology in Chapter 8, which

describes the efforts made over the duration of the work on this thesis to establish a workflow

that promotes reproducible science, using computational documents, versioning, and archival

for code, results, and statistical analyses. The other chapters of Part II present the contributions

of this thesis, in the form of performance optimization case studies. Our contributions
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are summarized in the remainder of this section. After Part II, Chapter 14 concludes this

document, summarizing the contributions of this thesis and highlighting future work.

Case Studies with Search Heuristics

Initial work on this thesis, carried out at the University of São Paulo, studied the effective-

ness of classical and standard search heuristics, such as Simulated Annealing, on autotuning

problems. The first target autotuning domain was the set of parameters of a compiler for

CUDA programs. The search heuristics for this case study were implemented using the

OpenTuner framework [7], and consisted of an ensemble of search heuristics coordinated by

a Multi-Armed Bandit algorithm. The autotuner searched for a set of compilation parame-

ters that optimized 17 heterogeneous GPU kernels, from a set of approximately 10
23

possible

combinations of all parameters. With 1.5h autotuning runs we have achieved up to 4 times

speedup in comparison with the CUDA compiler’s high-level optimizations. The compilation

and execution times of programs in this autotuning domain are relatively fast, and were in

the order of a few seconds to a minute. Since measurement costs are relatively small, search

heuristics could find good optimizations using as many measurements as needed. This work

was published in the Concurrency and Computation: Practice and Experience journal [43], and
Chapter 9 presents a detailed discussion and extends the original work with a study using

screening designs.

The next case study in this thesis was developed in collaboration with researchers from

Hewlett Packard Enterprise, and consisted of applying the heuristics-based autotuning approach

from our previous study to the configuration of parameters involved in the generation of

FPGA hardware specification from source code in the C language, a process called High-Level
Synthesis (HLS). The main difference from our work with GPU compiler parameters was the

time to obtain the hardware specification, which could be in the order of hours for a single

kernel. In this more complex scenario, we achieved up to 2 times improvements for different

hardware metrics using conventional search algorithms. These results were obtained in a

simple HLS benchmark, for which compilation times were in the order of minutes. The

search space was composed of approximately 10
123

possible configurations, which is much

larger than the search space in our previous work with GPUs. Search space size and the

larger measurement cost meant that we did not expect the heuristics-based approach to

have the same effectiveness as in the GPU compiler case study, but we were still able to

optimize multiple hardware metrics for a set of kernels, using a normalized weighted sum

user-defined weights. This work was published [47] at the 2017 IEEE International Conference
on ReConFigurable Computing and FPGAs, and is described in detail in Chapter 10.

Approaches using classicalmachine learning and optimization techniqueswould not scale

to industrial-level HLS, where each compilation can take hours to complete. Search space

properties also increase the complexity of the problem, in particular its structure composed of

binary, factorial and continuous variables with potentially complex interactions. Our results
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Chapter 1. Hardware Design Trends and Consequences for Code Optimization

on autotuning HLS for FPGAs corroborate the conclusion that the empirical autotuning of

expensive-to-evaluate functions, such as those that appear on the autotuning of HLS, require

a more parsimonious and transparent approach, that can potentially be achieved using the

Design of Experiments methodology.

A Transparent and Parsimonious Approach to Autotuning

The key contribution of this thesis is an adaptation of the Design of Experiments method-

ology to autotuning, which we apply to different problems. The method we propose is based

on linear regression and its extensions, Analysis of Variance (ANOVA), and Optimal Design.

The strategy requires the formulation of initial assumptions about the target autotuning prob-

lem, which are refined with data collected by efficiently selected experiments. The objective

of this approach is to identify and exploit relationships between factors and response, sug-

gesting regions for further exploration in a transparent way, that is, in a way that is supported

by statistical tests of significance. The effectiveness of the proposed strategy, and its abil-

ity to explain the optimizations it finds, are evaluated on autotuning problems in the code

generation and source-to-source transformation domains. This work was partially published

at the IEEE/ACM CCGrid [48] conference. Chapter 11 presents our first complete study of

DoE to an autotuning problem, where we compare our method’s results with those of other

autotuning methods, demonstrating how our method is capable of consistently finding the

global optimum under certain conditions.

Case Studies with DoE and Gaussian Process Regression

Because the Design of Experiments methodology requires the specification of a class of

initial performance models, our methodology can sometimes achieve worse prediction capa-

bilities when there is considerable uncertainty on initial assumptions about the underlying

relationships. We observed this in our work published at CCGRID, and we extend this work

in Chapter 12, attempting to describe precisely what can be learned about the target search

spaces from the application of our method, and to refine the differentiation of the approach

for the sometimes conflicting objectives of model assessment and prediction.

In Chapter 12 we also describe the application to autotuning ofGaussian Process Regression,
an approach that trades some explanatory power for a much larger and more flexible class

of underlying models. We evaluate the performance of this approach on the code gener-

ation problem from Chapter 11 and, again in collaboration with Hewlett Packard Enterprise
researchers, on a larger autotuning problem regarding the mixed-precision quantization of

Convolutional Neural Networks (CNN), unpublished at the time of the writing of this thesis,

and described in detail in Chapter 13.
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Optimization Methods for Autotuning
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Chapter 2

Notation and Search Spaces

The following chapters present the optimization methods that we applied to autotuning

problems in different domains. Each chapter presents a group of methods, briefly discussing

each method in the group and their underlying hypotheses. The objective of each chapter is

to provide high-level descriptions of optimization methods, presenting clear definitions tied

to the autotuning context.

Each chapter concludes with a discussion of the applicability of each group of methods to

autotuning problems. The methods we discuss have significant differences but employ basic

concepts. We will use the same mathematical notation to discuss all methods when possible.

The remainder of this chapter presents common basic concepts and the associated notation

to be used in subsequent chapters, which are summarized in Table 2.1. Completing this

introduction to optimization in the context of autotuning, the chapter ends with a discussion

of common search space properties.

2.1 Notation

We will call optimization the minimization of a real-valued function with a single vector

input. For a function 5 : X → R, we wish to find the input vector x∗ = [G1 . . . G?]Ç in
the parameter space, or search space X for which 5 (x∗) is the smallest, compared to all other

x ∈ X. The function 5 represents, in the autotuning context, the performance metric we wish

to optimize, such as the execution time of some application, and the parameter space X
represents the set of possible configurationswe can explore, such as compiler flags. Therefore,

we define optimization in the autotuning context as finding the configuration that minimizes

the target performance metric. For the sake of simplicity, we assume we can use the opposite

of the performance metrics that should be maximized.

As an example of an autotuning problem, consider optimizing the choice of flags for a

compiler with ? = |x| flags, where a configuration x = [G1 . . . G?]Ç consists of a vector of
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2.1. Notation

? boolean values, denoting whether each flag G1 , . . . , G? is turned on for the compilation of

a specific application. To find the compiler configuration that generates the binary with the

smallest execution time, we conduct a set of = = |X| experiments, chosen according to some

criterion, generating the = × ? experimental design matrix X = [x1 . . . x=]Ç. Each experiment

consists of compiling the target application using the specified compiler configuration, and

measuring the execution time of the resulting binary.

In this example, evaluating 5 (x) involves generating the compiler configuration corre-

sponding to the vector x of selected flags. This involves writing a shell command or a config-

uration file, running the configured compiler, checking for compilation errors, measuring the

execution time of the resulting binary, and verifying the correctness of its output.

In practice, we may never be able to observe the true value of 5 (x). In fact, empirical tests

of this nature are always subject to unknown or uncontrollable effects, and to inherent impre-

cision in measurement. In practice, we settle for observing H = 5 (x) + �, where � encapsulates

all unknown and uncontrollable effects, as well as the measurement error. Returning to the

compiler flag example, suppose that we could conduct = = |X| = 2
?
experiments, measuring

the performance of the binaries generated with all possible flag combinations. With such

experimental design we would obtain the measurements

y = [H8 = 5 (x8) + �8 , 8 = 1, . . . , 2?]Ç. (2.1)

The measurement H8 is an estimate of 5 (x8), with error �8 . If the error is reasonably small, an

estimate of the global optimum x∗ in this example is the x8 that produces the binary with the

smallest estimated execution time H∗, the smallest H8 ∈ y.

Assumingwe are capable of cheaply evaluating 5 for a large set of experiments X, and that

we are not interested in building statistical models for the performance of our application,

we can directly optimize 5 using stochastic descent methods, or gradient- and hessian-based

methods if 5 is suitably convex and differentiable. These function minimization methods are

discussed in Chapter 3.

If we are not capable of directly measuring 5 , if it is unreasonably expensive or time-

consuming to do so, or if constructing statistical performance models for our application is of

crucial importance, we can employ the surrogate-based methods discussed in Chapters 4, 5,

and 6. These methods use different strategies to construct a surrogate model

5̂� : X → R, with � ∈ Θ, (2.2)

where � is a parameter vector usually estimated from measurements (X, y). The function

� : X= × R= → Θ represents the estimation process, that uses the observations y ∈ R= from an

experimental design X = [x1 . . . x=]Ç. The parameter vector �(X, y) in the parameter space Θwill

be used to compute the estimate.
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The constructed surrogate model 5̂�(X,y) can be used as a tool to attempt to describe and

optimize the underlying real function 5 , provided we are able to construct a useful estimate

of �(X, y). We will discuss in Chapters 4 and 5 methods that use the < individual parameter

estimates �(X, y) = [�1 . . . �<]Ç to assess the significance of specific factors.

If we use the Ordinary Least Squares (OLS) estimator for � in our compiler flag example,

the parameter estimates �2 , . . . , �< could correspond to each one of the ? flags. In this case, �1

is the estimate of the intercept of the linearmodel, and< = ?+1. Optimizationmethods using

the Bayesian inference framework, such as Gaussian Process Regression, which we discuss in

Chapter 4, associate a probability distribution to �(X, y), which propagates with 5̂� and can

be exploited in our optimization context.

Chapter 4 differentiates between parametric methods which make the hypothesis that the

number < = |� | of estimated parameters is finite and often interpretable, and nonparametric

methods, which operate in parameter spaces of infinite dimension.

Table 2.1 summarizes the notation and concepts we have discussed so far, tying those

concepts to the compiler flag example we used in the discussion. The notation and the basic

concepts we have described in this section, although referring to abstract entities, enable a

uniform discussion of different optimization methods in the next chapters.

Table 2.1: Summary of the notation, concepts, and examples discussed in this chapter, and

common to the autotuning methods discussed in further chapters

Symbol Concept Example

X Search space All possible compiler flag assignments

x = [G1 . . . G?]Ç ∈ X Input variable A specific flag assignment

X = [x1 . . . x=]Ç ⊆ X Experimental design A set of flag assignments

? = |x| Search space dimension The number of flags to assign

= = |X| Number of experiments Size of the set of flags to compile and measure

5 : X → R Function to minimize Performance metric, such as the execution time of a binary

H8 = 5 (x8) + �8 Observable quantity Execution time with flags x8 , with error �8
y = [H1 . . . H=]Ç ∈ R= Observations List of execution times for all flags

x∗ : H∗ = 5 (x∗) ≤ 5 (x),∀x ∈ X Global optimum Flag assignment with smallest execution time

Θ Parameter space All possible values of the coefficients of a linear model

�(X, y) ∈ Θ Parameter vector OLS estimate of the coefficients of a linear model

< = |� | Number of parameters Number of OLS coefficient estimates

5̂� : X → R Surrogate for 5 A linear model fit used for predictions
Ĥ = 5̂�(x) Estimate of 5 at x A prediction of execution time for a flag assignment

Beforemoving on to thedescriptions of derivative-based and stochastic functionminimiza-

tion methods and their application to autotuning problems, we discuss in the next section

some of the properties of search spaces that are relevant for both autotuning andmathematical

optimization.

2.2 Search Spaces

Consider a more abstract optimization problem than the compiler flag selection from the

last section, consisting of finding the global optimum of the paraboloid surface defined by the
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Figure 2.1: Contour plots and slices through the global optimum, marked with a ×, for

search spaces defined by variations of the Booth function. Panels (a) and (d) correspond to

Equation 2.3, panels (b) and (e) to Equation 2.4, and panels (c) and (f) to Equation 2.5.

Booth function,

H0 = 5 (x = [G1 , G2]Ç) = (G1 + 2G2 − 7)2 + (2G1 + G2 − 5)2 , G1 , G2 ∈ [−10, 10]. (2.3)

In our notation, the search space for this example isX = (G1 , G2) ∈ R2 , G1 , G2 ∈ [−10, 10], with

global optimum H∗ = 5 (x∗ = [1, 3]) = 0.

Besides the search space defined by the observations H0 , we will consider search spaces

for two variations

H1 = 5 (x) + �, with � ∼ N(0, �2), and (2.4)

H2 = 5 (x) + �, with G1 ∈ [3,−6]. (2.5)

The underlying objective function in this example has a closed-form expression, but in the

context of our applications we consider that we can never observe the true 5 (x), even in ideal

experimental conditions. In that sense, the observations H1 closer to a real application, and

incorporate the unknown effects and measurement errors to which the underlying objective

function is subject, represented by the normally distributed random variable �, with mean 0

andvariance �2
. There are often algorithmic, theoretical, or practical constraints on the allowed
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Figure 2.2: Illustrating the relationship between convexity of a function over a compact set

and the presence of local minima. Panels (a) and (b) match the functions on the same panels

of Figure 2.1

combinations of parameters of a given objective function. The observations H2 represent this

scenario by incorporating constraints on the parameter G1.

Panels (a), (b), and (c) of Figure 2.1 show contour plots for our search space variations in

Equations 2.3, 2.4, and 2.5 respectively. The global optimum in each variation is represented

by a red cross, and its location changes between scenarios because of �. Panels (d), (e), and

(f) show slices of panels (a), (b), and (c), respectively, that pass through the global optimum

x∗ = (G∗
1
, G∗

2
) for fixed G1 = G

∗
1
.

The noise-free example shown in panel (a) has no local optima, and its smooth surface can

be quickly navigated by the derivative-based methods discussed in Chapter 3. Such methods

aim to follow the direction of greatest descent in the neighborhood of a given point. In a contour

plot, this direction is always orthogonal to the contour lines. The panel (a) from Figure 2.2

illustrates the convexity of our noise-free function. Informally, a line segment connecting any

twopoints in the graph of a convex functionwill not cross the graph of the function. Convexity

of a function over a compact set implies the existence of a single global optimum, whereas

lack of convexity implies the existence of local optima, as happens in our noisy functions, and

is highlighted in panel (b) of Figure 2.2.

Local optima are by definition surrounded by higher values of the objective function, and

can thus trap optimization methods that do not plan for such situations, such as a naive

implementation of a derivative-based method. Adapting and randomizing the step size of a

derivative-based method is one way to deal with functions with many local optima, such as

the ones on panels (b) and (c) of Figure 2.1.

Objective functions including constraints can present much harder problems to optimiza-

tion methods, if certain conditions are met. For example, on panel (c) of Figure 2.1, we have

constraints that cut contour lines in such a way that prevents attempts to move inside the

feasible space in the direction of greatest descent. A derivative-based method would have
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to drastically decrease its step size upon reaching the constraint border, and coast along the

border in small steps until it finds a more appealing direction of descent.

This more abstract and simple example aimed to illustrate that it can be non-trivial to

find the global optimum of the simplest of search spaces, if we consider the significant

challenges introduced by unknown effects andmeasurement error. The additional challenges

introduced by the time cost to obtainmeasurements, which are discussed in Chapter 5, guided

the selection of the optimization methods studied in this thesis. The next chapter discusses

derivative-based and stochastic methods for function minimization.
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Chapter 3

Methods for Function Minimization

This chapter aims to present the intuition guiding the construction of derivative-based

and stochastic methods for function minimization. We discuss the key hypotheses of these

groups of methods, and for which autotuning problems they can be most effective.

We will put aside for the moment the idea of using observations to estimate a parameter

vector and construct a surrogate function 5̂ (x, �(X, y)). This idea will return in later chapters.

Themethods discussed in this chapter do not construct a surrogate function, and thus attempt

to directly optimize the objective function 5 (x). In this sense, because they need to know how

to evaluate it during optimization, these methods make the hypothesis that the objective

function is known. The effectiveness of methods based on derivatives requires additional

properties of 5 (x) to be known or estimable, such as its first and second order derivatives,

which imposes additional constraints on objective functions.

Evaluating derivatives to determine the next best step or using heuristics to explore a

search space cannot be done parsimoniously, because a large number of function evaluations

is required to estimate derivatives when closed-forms are unknown, and to explore a search

space in the expectation of leveraging unknown structure. We will discuss Design of Ex-

periments in Chapter 5, and present optimization strategies for situations where the cost of

evaluating the objective function is prohibitive.

Methods based on derivatives can be powerful, provided their strong hypothesis are re-

spected. Wenowbrieflydefine anddiscuss thesemethods and their application to autotuning.

3.1 Methods Based on Derivatives

The derivatives of a function 5 at a point x provide information about the values of 5 in

a neighborhood of x. It is straightforward to construct optimization methods that use this

local information, although iteratively leveraging it requires closed-form expressions for the

derivatives of 5 , or estimates obtained by evaluating 5 at the neighborhoods of each point.
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Figure 3.1: Contour plots and direction of greatest descent −∇ 5 (x), for search spaces defined

by variations of the Booth function. Panels (a), (b), and (c) correspond to Equations 2.3, 2.4,

and 2.5 respectively. The global optimum is marked with a ×. To aid visualization, vector

magnitude was encoded by color intensity, so that darker vectors have larger magnitude. The

gradient along the function’s basin is near zero.

This section discusses gradient descent and Newton’s method, optimization methods us-

ing first and second derivatives of 5 respectively, which for convex functions quickly converge

to the global optimum. We will use examples with Booth’s function to discuss how noise and

uncertainty impact these methods.

3.1.1 Gradient Descent

The gradient ∇ 5 (x) of a function 5 : X → R at point x = [G1 . . . G=]Ç is defined as

∇ 5 (x = [G1 . . . G=]Ç) =
[
5 ′G1

(x) . . . 5 ′G= (x)
]Ç
, (3.1)

where 5 ′G8 (x) is the partial derivative of 5 at x, with respect to variable G8 . The vector ∇ 5 (x8)
points to the direction of greatest ascent in which, from the perspective of 5 (x8), the value of 5
increases the most.

The gradient descentmethod is one of the simplestways to leverage derivative information

for optimization. It consists in moving iteratively in the direction of greatest descent, opposite
the gradient, from a starting point x1. If we follow the opposite of the gradient at x1 for

additional points x2 , . . . , x= , each iteration is written

x: = x:−1 − :∇ 5 (x:−1), : = 2, . . . , =, (3.2)

where : is the step size at iteration :. The step size for each iteration can be a parameter fixed

at the beginning of optimization, but the best : can alternatively be determined by searching

along the direction of greatest descent. Equation 3.5 in the next section shows how to leverage

higher order derivative information to determine : analytically.
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Figure 3.2: Representation of paths taken by the gradient descent method, with adaptive

choice of : , on the search spaces defined by variations of the Booth function. Panels (a), (b),

and (c) correspond to Equations 2.3, 2.4, and 2.5 respectively. Contour plots and direction of

greatest descent −∇ 5 (x) are also shown, and the global optimum is marked with a ×.

Figure 3.1 shows the opposites of the gradients of the three variations of Booth’s function,

described by Equations 2.3, 2.4, and 2.5, in panels (a), (b), (c), respectively. Figure 3.2 shows,

in equally marked panels, the paths taken by a gradient descent algorithmwhere : is chosen

at each step, according to the values of 5 in the neighborhood G:−1.

The gradient descent method iterates along the direction of greatest descent at each point

and easily reaches the optimum on the search space of panel (a), unless we make an unlucky

choice of : . Thedescent paths onpanels (b) and (c) are not so straightforward since the several

local minima, represented by the crests and loops on the contour lines, trap the descent path

if : is not carefully chosen.

The situation is thornier in panel (c), where an unlucky choice of x1 or : throws the

descent path against the top constraint border, forcing the method to zigzag along the border

in short steps. This happens in this particular situation in panel (c) because all gradient

information guides the descent across the constraint border, but the method cannot cross

it. Gradient descent has a harder time on panels (b) and (c) even upon reaching the basin

where the optimum lies, because gradient information there is also conflicting due to noise �.

Gradient descent gets stuck in our example paths, but restarting strategies picking new x1 or

: could help escaping the local minima along the basin, as is shown in Figure 3.3.

3.1.2 Newton’s Method

With Newton’s method we can improve upon the intuition of descending along the oppo-

site of the gradient of 5 by using the second partial derivatives 5 ′′x:−1

to approximate 5 in the

neighborhood of x:−1 using its second Taylor polynomial

5 (x) ≈ 5 (x:−1) + ∇ 5 (x:−1)Ç(x − x:−1) +
1

2

(x − x:−1)ÇH 5 (x:−1)(x − x:−1), (3.3)
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Figure 3.3: Representation of paths taken by the gradient descent method with 4 restarts,

with adaptive choice of : , on the search spaces defined by variations of the Booth function.

Panels (a), (b), and (c) correspond to Equations 2.3, 2.4, and 2.5 respectively. Contour plots

and direction of greatest descent −∇ 5 (x) are also shown, and the global optimum is marked

with a ×.

where x is in the neighborhood of x:−1, and H 5 (x:−1) denotes theHessian of 5 , a squarematrix

of second derivatives of 5 , with elements

(H 5 (x:−1))8 , 9 = 5 ′′G8 ,G 9 (x:−1). (3.4)

We are not going to consider the approximation of 5 by the second Taylor polynomial to

be an estimation process in the statistical sense, because it does not involve dealing with

measurement or modeling error.

The second Taylor polynomial uses information about the partial derivatives of 5 at x:−1

to produce an approximation of 5 for points x around x:−1. If we compute the gradient of

this approximation polynomial and set it to zero, we obtain the next point x: , as well as the

iterative step of Newton’s method. Starting at x1, for points x2 , . . . , x= , we have

x: = x:−1 −H 5 (x:−1)∇ 5 (x:−1). (3.5)

Note that H 5 (x:−1) is the optimal : from Equation 3.2.

Provided the stronghypotheses of convexity anddifferentiability are respected, derivative-

basedmethods are extremely effective. In particular, Newton’smethod converges to the global

optimum in a single step if 5 is quadratic and H 5 is positive definite. This happens in the

following example with Booth’s function

H = 5 (x = [G1 , G2]Ç) = (G + 2H − 7)2 + (2G + H − 5)2 , G1 , G2 ∈ [−10, 10]. (3.6)
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The following example was adapted from Kochenderfer and Wheeler [122]. If we start

with x1 = [9, 8]Ç and plug

∇ 5 (x1 = [9, 8]Ç) = [10 · 9 + 8 · 8 − 34, 8 · 9 + 10 · 8 − 38]Ç = [120, 144]Ç, (3.7)

and

H 5 (x1 = [9, 8]Ç) =
[
10 8

8 10

]
(3.8)

into the Newton’s method update step in Equation 3.5, we reach x∗ = [1, 3]Ç in the next step

x2 =

[
9

8

]
−

[
10 8

8 10

]−1
[
120

144

]
=

[
1

3

]
= x∗. (3.9)

Function minimization methods work very well if the objective function respects their

strong hypotheses of convexity and differentiability. Unfortunately, autotuning problems

seldom fulfill the conditions necessary for the application of such methods.
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Figure 3.4: An exhaustively measured search space, defined by loop blocking and unrolling

parameters, for a sequential GEMM kernel. Reproduced from Seymour et al. [164]

Typical autotuning search spaces, such as the one we encountered in Chapter 1, which is

reproduced in Figure 3.4, clearly present considerable challenges to derivative-basedmethods,

due to the abundance of local minima, valleys, and ridges. Since we have closed-form

expression for the search space in Figure 3.4, wewould have to perform a considerable number

of evaluations of 5 in order to estimate its derivative at each step. Although gradient descent

and other derivative-basedmethods can be effective and are historically important, measuring

5 is usually not cheap for autotuning search spaces. Therefore, minimizing experimentation

cost is also a strong concern.
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Before discussing methods to construct surrogate models in Chapter 4, and how to use

such surrogates to minimize experimental cost on Chapter 5, we will relax the convexity

and differentiability requirements on objective functions and discuss stochastic methods for

function minimization, and their applicability to autotuning.

3.2 Stochastic Methods

In this sectionwe discuss some stochasticmethods for functionminimization that drop the

convexity and differentiability requirements of gradient-basedmethods, becoming applicable

to a wider range of autotuning problems at the cost of providing no convergence guarantees.

In fact, these methods have no clearly stated hypotheses and are based on search space

exploration heuristics. Often the best possible understanding of how these heuristics work

comes from the intuition and motivation behind their definition, and from the analysis of

empirical tests.

There are multiple ways to categorize heuristics. Our choice was to make a distinction

between single-state and population-based methods. In summary, single-state methods have

update rules mapping a single point x: to a point x:+1, while rules for population-based

methodsmap a populationP: = {x1 , . . . , x=} to a populationP:+1, whichmay retain, combine,

and modify elements from P.

We will first discuss single-state methods, building up to Simulated Annealing from

RandomWalk, then we discuss Genetic Algorithms and Particle Swarm Optimization, repre-

senting widely used population-based methods.

3.2.1 Single-State Methods: RandomWalk and Simulated Annealing

Random Sampling is arguably the simplest exploration heuristic, consisting of picking

uncorrelated samples from a uniform distribution over the search space X. There is no

guarantee of finding local or global minima, but the chances of improving over a starting

point increase if the objective function hasmany local minima. Despite its simplicity, Random

Sampling can be surprisingly effective.

A simpleway to derive a single-state heuristic fromRandom Sampling is to take correlated

samples, so that each sample lies in a neighborhood of its predecessor, which is called Random

Walk. The neighborhood #(x) of a point is the set of points within distance 3 from x. One

way to define it is

#(x) = {x8 ∈ X : x8 ≠ x, ‖x8 − x‖2 ≤ 3}. (3.10)
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As long as it is possible to compute distances between the elements of X, we will be able to

construct the neighborhood of a point and employ the stochastic methods we discuss in this

section.

A random walk of length = starting at x1 produces a sequence where each point x:>1 is a

random variable with uniform distribution over #(x:−1). There is no guarantee that we will

ever find a better point with respect to the objective function than the one we started with.

A straightforward extension of Random Walk is to pick at each step : > 1 the first point x:
we come across in #(x:−1) for which 5 (x:) < 5 (x:−1). This greedy strategy would require

measuring the value of 5 for possibly many elements of #(x:−1) but it ensures that we will

only move toward a better point.

If are willing to pay the cost to measure all the points in #(x:−1)we can choose the x∗
:
that

brings thebest improvement, forwhich 5 (x∗
:
) < 5 (x) for all x ∈ #(x:−1). This best improvement

strategy always moves to the best point in a neighborhood, but it can still get stuck in lock

minima if the current point is already the best one in its neighborhood. Adapting the distance

that defines a neighborhood can help escape local minima, but the best improvement strategy

still requires measuring the entire neighborhood of a point.

Simulated Annealing is a probabilistic improvement heuristic inspired by the process of

annealing, where temperature is carefully controlled to first agitate a material’s crystalline

structure with higher temperature, and then settle it into more desirable configurations.

Adapting this idea to optimization, Simulated Annealing makes a compromise between a

greedy approach to exploration and a random walk. At each step :, we pick a random

uniformly distributed x: ∈ #(x:−1) and move to it if 5 (x:) < 5 (x:−1). In contrast to a greedy

approach, we also move if 5 (x:) ≥ 5 (x:−1)with probability ?.

In analogy to the real annealing process, ? starts high to enable exploration of the search

space and then decreases to force a descent towards an optimum. All through the process,

a nonzero value of ? permits the heuristic to leave a local minimum. The probability ?: of

moving to a worse point at iteration : is

?: = 4G?

(
−
5 (x:) − 5 (x:−1)

C:

)
, (3.11)

where C: is the temperature at iteration :, and can follow different decaying rates. For a

starting temperature C1 the logarithmic annealing schedule is

C: =
C1

;>6(: + 1) . (3.12)

Figure 3.5 shows the paths taken by Simulated Annealing on search spaces defined by

variations of Booth’s function. In panel (a) we can see the effects of the annealing schedule,

which enables large detours to worse points early on, but forces descent on later iterations.

Since this search space has no local minima, the descent eventually reaches the optimum. In
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Figure 3.5: Representation of paths taken by the Simulated Annealing method on the search

spaces defined by variations of the Booth function. Panels (a), (b), and (c) correspond to

Equations 2.3, 2.4, and 2.5 respectively. Contour plots and direction of greatest descent are

also shown, and the global optimum is marked with a ×.

panel (b) the higher initial temperature also allows escaping the many local minima found

during exploration, but as the path approaches the global optimum with the lower temper-

ature of later iterations it gets trapped by one the local minima around the global optimum.

Likewise, encountering a constraint border early on in panel (c) is not a challenge for Sim-

ulated Annealing, since it can bounce back toward worse points, but on later iterations the

method is forced to wander around the border like gradient descent, also getting trapped at

local minima.

Single-state methods for optimization provide heuristics for exploring a search space,

usually based on the neighborhoods of the points that compose a path. The cost of measuring

the objective function 5 for an entire neighborhood is prohibitive in large dimensional search

spaces, butmethods such as SimulatedAnnealingprovide strategies for escaping localminima

without completely evaluating a neighborhood. Despite that, the local nature of single-state

methods means that the final results are heavily reliant on the starting point. Restarting and

performing parallel searches are among the strategies to reduce dependence on initial choices,

as is the idea of using a population of points, which we discuss next.

3.2.2 Population-Based Methods: Genetic Algorithms and Particle Swarm
Optimization

Instead of progressing from a single starting point x1 toward a final state x= , we can use

heuristics for moving a starting set of points, or population, P1 = {x1 , . . . , x=} toward a final

population P= . For simplicity, we keep the population size constant. The inspiration for

population-based methods for function minimization comes in general from observations of

processes such as evolution by natural selection and animal group behavior.
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Figure 3.6: Some ways of producing offspring from two parents with binary chromosomes.

Crossover splits parent chromosomes and combine the resulting pieces. In general, pieces

from multiple splits can be combined. Mutations are introduced randomly and correspond

to flipping bits on binary chromosomes.

The intuition behind population-based methods is that the points in a population would

provide variability that, when combined in specific ways, would eventually lead to better

values of the objective function 5 . Genetic Algorithms, in analogy to the process of evolution

by natural selection, select the fittest points in a population for generating offspring.

Individuals can be selected according to multiple metrics, aiming to produce the best

possible combinations in an iteration but also to maintain population variability. Since we

do not know how mutations and chromosome combinations might impact the fitness of an

individual, keeping worse individuals during optimization could pay off later.

The new population is generated by combining the chromosomes of each parent, using

strategies that are also inspired by natural processes such as mutation and crossover. To be

able to perform these operations, chromosomes must be encoded in a suitable representation.

Individuals in the search space defined by compiler flags, for example, a binary array indicat-

ing whether each flag is used could be a suitable representation. Figure 3.6 shows what the

mutation and crossover operations could look like on a binary encoding.

Genetic Algorithms have the potential to explore a search space more globally, simulta-

neously maintaining several populations distributed over a search space, and have also the

potential of escaping local minima by mutation and combination of chromosomes of differ-

ent individuals. Figure 3.7 shows a representation of the paths a population in a Genetic

Algorithm could take while searching for the global minimum on three variations of Booth’s

function. Each region marked by dashed lines represents the spread of a generation on a

given optimization step, and previous individuals are marked by hollow points. The final

generation is marked by the filled points. In contrast to Gradient Descent and Simulated

Annealing, a Genetic Algorithm do not seek to measure and minimize local properties of 5 ,

and consequently its behavior would be less impacted by the noisy scenarios on panels (b)

and (c). Since the population can spread across the search space, it could still be possible to

end the process with individuals in different local minima, which is represented in panel (b).

Differential Evolution presents an alternative to the strategies of mutations and crossover,

represented in Figure 3.6. Consider a population P:−1, and individuals x0 , x1 , x2 uniformly

distributed over the population at step : − 1. The update step in Differential Evolution sets

the parameters, or components, of an offspring x: to a corresponding component of x0 or
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Figure 3.7: Color-coded generation snapshots of a Genetic Algorithm on the search spaces

defined by variations of the Booth function. Hollow points and dashed lines mark members

of previous populations and the regions they covered, while filled points and complete lines

mark the final population. Panels (a), (b), and (c) correspond to Equations 2.3, 2.4, and 2.5

respectively. Contour plots and direction of greatest descent are also shown, and the global

optimum is marked with a ×.

x3 = F · (x1 − x2), according to

x:,8 =


x3,8 if 8 = 9 , or with probability ?

x0,8 otherwise

, (3.13)

where 9 is a dimension favored for updating picked at random, and F is a weight given to

the difference between x1 and x2 . The offspring x: replaces x0 in the population at step : if

5 (x:) < 5 (x0).

A different approach to leveraging a population for optimization is to think of it as an

analogy for a swarm, in a method called Particle Swarm Optimization. Each individual x: in
the swarm keeps track of its velocity v: . The velocity is updated at each step, and points to a

combination of x14BC , the best position found by the swarm so far, and x14BC
:

, the individual’s

personal best. At each step, individual x: updates its position to

x′: = x: + v: , (3.14)

and its velocity v: according to

v′: = 1v: + 2(x14BC − x:) + 3(x14BC:
− x:), (3.15)

where 1, 2, and 3 are chosen beforehand. The intuition behind this method is that the

momentum of each particle toward the best points found so far would accelerate convergence

and allow escaping from local minima.

In whichever way we choose to combine individuals in population-based methods, these

heuristics require extensive exploration and, consequently, abundant evaluation of the objec-
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tive function. Bymaking virtually no hypotheses thesemethods inspired by natural processes

become applicable to a much broader range of search spaces than derivative-based methods,

while abdicating from convergence guarantees. Population-based methods perform a more

global optimization, reliant on the initial distribution of individuals over the search space to

provide variability.

3.3 Summary

The methods for function minimization we have discussed in this chapter do not are

not parsimonious. To be effective they require many estimates of values of 5 and may

require additional information, such as ∇ 5 and H 5 . The strong hypotheses of derivative-

based methods restrict their applicability by invalidating convergence guarantees. Stochastic

methods have no such guarantees to begin with, and thus require costly exploration.

Figure 3.8 shows representations of optimization trajectories for Booth’s function made by

Gradient Descent with restarts, on panels (a), (b), and (c), Simulated Annealing, on panels (d),

(e), and (f), and a Genetic Algorithm, on panels (g), (h), and (i). Restarting optimization from

a different point, seen on panels (a), (b), and (c), is a common and widely used technique to

reduce reliance on starting conditions.

Despite the high cost of exploration and strong hypotheses, methods for function mini-

mization are used for autotuning and can indeed achieve interesting results in certain prob-

lems. We will present our results with these methods on Chapters 9 and 10, where we also

review their application to autotuning problems in different domains. The explorations per-

formed by these methods are not structured in a way that favors statistical analysis. We will

postpone the discussion of how to obtain well-structured experimental data until Chapter 5,

and in the following chapter we will discuss learning methods that enable building surro-

gate models 5̂ and identifying relationships between parameters X in the search space X and

observations of the objective function 5 .
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Figure 3.8: Representation of paths taken by the gradient descent method, with adaptive

choice of : , on the search spaces defined by variations of the Booth function. Panel groups

(a,d,g), (b,e,h), and (c,f,i) correspond to Equations 2.3, 2.4, and 2.5 respectively. Panel groups

(a,b,c), (d,e,f), and (g,h,i) correspond to Gradient Descent with restarts, Simulated Annealing,

and aGenetic Algorithm, respectively. Contour plots and direction of greatest descent−∇ 5 (x)
are also shown, and the global optimum is marked with a ×.
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Chapter 4

Learning: Building Surrogates

This chapter discusses twomethods for building surrogate models. Linear Regression is a

parametricmethodcapable ofmodelinga restricted class of surrogates, forwhich it is relatively

simple to interpret significance. Gaussian Process Regression is a flexible nonparametric

method capable of modeling a large class of surrogates, for which interpreting significance is

possible, but costly.

The surrogate 5̂� : X → R depends on the parameter vector �(X, y) in the parameter space

Θ constructed using the pair (X, y), where X is a set of experiments, and y the corresponding

vector of observations of the objective function 5 . The process of using the available data to

construct a surrogate model is called learning and involves fitting the surrogate model, which

can also be called training. The class of surrogates we can fit depends on each method’s

definition of Θ.

In this chapter we assume that an initial pair of (X, y) is given, and that we can no longer

observe 5 (x) for new x outside of X. In this sense, we do not know 5 but we can still make

hypotheses about it in order to construct surrogate models. For the two methods we discuss,

we present the hypotheses embedded in each parameter space Θ and how each method fits

a surrogate. We also discuss strategies to evaluate the quality of fit of a surrogate, and to

interpret parameter significance.

We assume for now that X ∼ Uniform(X), and we discuss how we can construct better

distributions of experiments over a search space on Chapter 5. We will now discuss Linear

Regression, a method to build surrogates using linear models on the parameters �.

4.1 Linear Regression

We will build a surrogate 5̂� for a function 5 : X → R using a fixed experimental design

X and observations y. We make the hypothesis that 5 is a linear model on � with error �,
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4.1. Linear Regression

written

5 (x) = xÇ�(X, y) + �. (4.1)

The experimental design X is an =×?matrix of column vectors, where each element x1 , . . . , x=
is an experiment. We do not know how well the linear model hypothesis represents the

true 5 , but we assume that each experiment in X was run, producing the response vector

y = [H1 . . . H=]Ç, where each element is an observation of 5 subject to measurement error.

Using y we can construct parameter vectors � in the parameter space

Θ = {(�0 , . . . , �<−1) : �0 , . . . , �<−1 ∈ R}. (4.2)

For linear models we can construct the optimal parameter vector �̂ using the Ordinary Least

Squares (OLS) estimator, which we discuss in the next section, and use it to write the linear

model surrogate

5̂�(x) = xÇ�̂(X, y). (4.3)

The vector ŷ = [ 5̂�(x1) . . . 5̂�(x=)]Ç is called the prediction of the surrogate model for experi-

ments X, and the distance between y and ŷ can be used to optimize the parameter vector and

estimate the quality of fit of the surrogate.

A key advantage of a surrogate model is that we can use 5̂� to estimate the value of 5 for a

new design X′ without evaluating 5 . For well chosen X and well fitted �, these estimates can

be accurate and useful. We will discuss how to choose experiments on Chapter 5, and how to

evaluate the quality of fit for linear models on Section 4.1.2.

4.1.1 Fitting the Model: The Ordinary Least Squares Estimator

For simplicity, we will from now on use � to refer to �(X, y). The sum of the squared

differences between 5 and 5̂� for all points in X is the squared model error

‖�‖2 = ‖y − ŷ‖2 = (y − X�)Ç(y − X�), (4.4)

which is a quadratic function of �, and where ŷ = X�. We can therefore differentiate it with

respect to � and set it to zero to obtain the OLS estimator

�̂ = (XÇX)−1XÇy. (4.5)
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First, we differentiate Equation 4.4 with respect to �, writing

% ‖y − ŷ‖2

%�
=
% (y − X�)Ç(y − X�)

%�
=
%

(
yÇy − yÇX� − (X�)Ç y + (X�)Ç X�

)
%�

=
%

(
yÇy − 2 (X�)Ç y + (X�)Ç X�

)
%�

= −2XÇy + 2XÇX�

= −XÇy + XÇX�. (4.6)

Provided XÇX is invertible, setting Equation 4.6 to zero gives Equation 4.5

The variance of the OLS estimator is written

Var(�̂) = (XÇX)−1�2

, (4.7)

assuming the observations y are uncorrelated and homoscedastic, with constant variance

�2
. Since we assume in this chapter that X is fixed, the variance of �̂ shows explicitly how

uncertainty in measurements due to error propagates to the linear model surrogate, and we

can use this uncertainty to compute confidence intervals for the surrogate’s predictions. We

will use the fact that the variance of �̂ depends on (XÇX)−1
when we discuss Optimal Design

on Section 5.3.

An interesting interpretation of the OLS estimator is that it approximates the observation

vector y by its orthogonal projection into the vector space spanned by the columns of X.
Substituting Equation 4.5 on the matrix from of the surrogate model from Equations 4.3, we

obtain

ŷ = X�̂ = X(XÇX)−1XÇy = �y, (4.8)

where � is called the projection matrix mapping the observations y to the surrogate’s predic-

tions ŷ. The difference between y and ŷ is the model error �, orthogonal to the column space

of X, as represented in Figure 4.1. The OLS estimator can also be derived as a special case of

the Maximum Likelihood Estimator with � ∼ N(�, �2).

We assumed that the design matrix X was used directly in the surrogate model 4.3, but

this limits the models we can represent with �0,...,<−1 to those with< = ? linear terms on each

factor x1,...,? , without an intercept term. More generally, we can have a linear model surrogate

with< ≠ ? terms. In a straightforward expansion of the linear model, we can obtain<model

terms from an = × ? design matrix X by using a basis function set ℋ = {ℎ0,...,<−1 : X → R},
generating the = × < model matrix

ℳ
©«X =


x1

...

x=

=×?
ª®®®¬ =


ℎ0(x1) . . . ℎ<−1(x1)
...

. . .
...

ℎ0(xn) . . . ℎ<−1(xn)

=×< . (4.9)
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Figure 4.1: In Linear Regression, the prediction vector ŷ is the projection of the observations

vector y into the vector space spanned by the columns of X. The vector 9 = y− ŷ is the model

error, and is minimized when we ensure it is orthogonal to X�

The OLS estimator does not change if we write the linear model surrogate in Equation 4.3

withℳ(X). Unless we need to discuss the underlying model terms, we assume from now on

that X represents a suitable model matrixℳ(X). We will now discuss how to evaluate the

quality of fit of a linear model surrogate.

4.1.2 Assessing the Quality of Fit of Linear Model Surrogates

We will construct three linear model surrogates for the Booth function and use the model

fits to discuss the assessment ofmodel quality. Figure 4.2 shows the three surrogatemodel fits,

constructedusing the samedesignXwith = = 10 randomuniformlydistributedmeasurements

of the Booth function

5 (x = [G1 , G2]Ç) = (G1 + 2G2 − 7)2 + (2G1 + G2 − 5)2 , G1 , G2 ∈ [−10, 10], (4.10)

subject to measurement error �. Panel (a) shows the surface produced by measuring 5 in its

entire domain. The 10 random measurements composing X are highlighted. Panels (b), (c),

and (d) show the three surrogates, which used the basis function sets

ℋ(1) = { ℎ0(x) = 1, ℎ1(x) = G1 , ℎ2(x) = G2) }, (4.11)

ℋ(2) = ℎ(1) ∪ { ℎ3(x) = G2

1
, ℎ4(x) = G2

2
) }, and (4.12)

ℋ(3) = ℎ(2) ∪ { ℎ5(x) = G1G2) }. (4.13)
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Panels (b), (c), and (d) also show the training, testing, and true Mean Squared Error (MSE)

for each surrogate on the design X, written

"(�
5̂�(X) =

1

=

=∑
8=1

(
( 5 (x8) + �) − 5̂�(x8)

)
2

, (4.14)

"(�
5̂�
=

1

|X|

|X|∑
8=1

(
( 5 (x8) + �) − 5̂�(x8)

)
2

, and (4.15)

"(� 5 =
1

|X|

|X|∑
8=1

(
5 (x8) − 5̂�(x8)

)
2

. (4.16)

The training error"(�
5̂�(X) can be computed with the design points and the fitted model.

In real applications we can sometimes compute the testing error "(�
5̂�
for the entire search

space, but usually we settle for the error on a testing set distinct from X. We can almost never

compute the true error "(� 5 of our surrogate, but in our toy example we can use the Booth

functionwithout the error term to get a sense of howwell our models generalize. As we could

expect, since the true 5 in our example can be represented by the basis functions on setℋ(3),
the surrogate from panel (d) has the smallest MSE and the generalizes the best, although it

still differs from the true 5 .
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Figure 4.2: Three linear model surrogates for the Booth function, with a ×marking the global

optimum and best surrogate predictions. The fixed experimental design X used to fit all

surrogates is marked by × s. Panel (a) shows noisy measurements of Booth’s function, panels

(b), (c), and (d) show surrogate predictions for models fit with basis functions sets from

Equations 4.11, 4.12, and 4.13, respectively
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We can use the mean ȳ of the observations of experiments in X as a surrogate, for which

the MSE is written

"(�ȳ =
1

=

=∑
8=1

(( 5 (x8) + �) − ȳ)2, (4.17)

shown in panel (a) from Figure 4.2. We can use this surrogate to compute the adjusted

coefficient of determination

'̄2 = 1 −
(

= − 1

= − ? − 1

·
"(�

5̂�(X)
"(�ȳ

)
, (4.18)

which compares the squared error of a given linear model with the error of the model that

predicts themeanof all observations, adjustedby theflexibility introducedbynewparameters.

In general, we can measure the complexity of a surrogate model by the number of param-

eters that we need to estimate when fitting it to experimental data. The bias of a surrogate, for

a fixed point x0, is the expected value of the distance between the surrogate’s prediction and

5 (x0), over surrogate fits using a large number of different experimental designs. The squared

bias is written

Bias
2

(
5̂�(x0)

)
=

(
�

[
5̂�(x0)

]
− 5 (x0)

)
2

, (4.19)

because �[ 5 (x0)] = 5 (x0). As we increase the flexibility of a model by adding parame-

ters we allow the surrogate model to better approximate design points, reducing its bias.

Concomitantly, we increase the number of different parameter vectors that can describe the

experimental data, increasing the surrogate’s variance

Var

(
5̂�(x0)

)
= �

[
5̂�(x0) − �

[
5̂�(x0)

] ]
2

. (4.20)

The total model error for the prediction of x0 still has to factor in the irreducible error �

associated with the measurements of 5 , and is written

Error (x0) = Var(�) + Bias2

(
5̂�(x0)

)
+ Var

(
5̂�(x0)

)
. (4.21)

Increasing surrogate complexity reduces bias but increases variance, and this trade-off is

central to selecting and assessing the quality of surrogate models, however we define the

parameter space Θ.

4.1.3 Inference: Interpreting Significance with ANOVA

The variance of the OLS estimator enables us to compute confidence intervals and p-values
for the effects of each model term, or factor, for a single surrogate model fit. In a frequentist

interpretation a 95% confidence interval for the estimate of a mean of a factor’s effect is
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interpreted as the interval that would contain 95% of our estimates, were we to repeat the

estimationmultiple times. The p-value of a factor effect’s estimate is interpreted in frequentist

inference as the probability of observing an effect at least as large as what was observed, if the

factor’s true effect is zero. When they can be computed, confidence intervals are in general

more useful than p-values for judging the accuracy of a factor effect’s estimate, because they

are explicitly defined in the context of the magnitude of that estimate.

Analysis of Variance (ANOVA) is a more refined statistical tool for significance testing,

able to estimate relative factor significance. The steps of an ANOVA test are grouping the

observations y by factors and factor levels, computing separate group means, and testing the

significance of the differences between group means with an F-test.

The ANOVA test can be understood as a special case of the linearmodel we have discussed

in this section, in which case its formal hypotheses are the same as the linear model’s, that

is, that the observations y are uncorrelated, the residuals are normally distributed, and the

variances of each group are homoscedastic.

Running an ANOVA test as a special case of the linear model consists of running F-tests
for multiple models y = X8�, with specially constructed model matrices of indicator variables

for group and group interaction membership. A detailed description of ANOVA in relation

to linear models can be found Chapter 6 of Dobson et al. [73], among other reference texts [4,

160].

4.1.4 Linear Models: Interpretable but Biased Surrogates

Linear regression can be successful in learning and interpreting relationships between

factors and an objective function 5 . If the underlying functions have complex structure that

cannot be sufficiently well represented by a finite number of parameters, linear models might

not be useful beyond identifying the strongest factor effects. The following sectionwill discuss

Gaussian Process Regression, a nonparametric approach that fits a model by conditioning a

probability distribution over functions.

4.2 Gaussian Process Regression

Similarly to the surrogate model we built using linear models, in this section we will fit

a surrogate 5̂� : X → R to a fixed experimental design X and observations y. We make the

hypothesis that the observations H1 , . . . , H= are normally distributed. This is a reasonable

hypothesis to make, especially after our discussion on linear models, where our hypothesis

over 5 was

5 (x) = xÇ� + �, (4.22)
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Figure 4.3: Effects of three covariance matrices on a multivariate normal distribution with

mean vector - = [0 0]Ç and covariance matrix � as shown on the upper right corner of each

plot

with � ∼ N(0, �2), whichmakes y = [ 5 (x1) . . . 5 (x=)]Ç amultivariate randomvariable, written

y ∼ N(X�, �2I), (4.23)

where I is the = × ? identity matrix.

Anotherway to state this key idea is to say thatwemake the hypothesis that 5 is a Gaussian

Process, that is, that it belongs to the class of models containing all the functions whose values

on any set of experiments X can be represented by a single sample of a multivariate normal

distribution, with dimension = = |X|. We can write this hypothesis as a prior probability

distribution

5 (x) ∼ N(-0 ,�0), (4.24)

where the mean vector -0 is usually a vector of = zeros and the covariance matrix �0 is

computed using a kernel and depends on X. Note that by interpreting our hypothesis like

so we move practically all of the information describing the prior to the covariance matrix �,

which is illustrated by the different matrices in Figure 4.3.

This prior is more general than the linear model hypothesis in Equation 4.23, but it gener-

alizes even further. In Chapter 6 of Gaussian Processes for Machine Learning [188], Rasmussen

and Williams describe relationships and equivalences of Gaussian Processes to other meth-

ods such as Splines, Support Vector Machines, and OLS estimation. They also describe how

Neural Networks can be represented by specific Gaussian Processes in Section 4.2.3.

In contrast to the linear model, the definition and exploration of a parameter space Θ for

a Gaussian Process surrogate is done indirectly, by controlling kernel parameters and noise

amplitudes. A first approach to define the parameter space could be explicitly searching for

the covariance matrix and mean vector that best fit the data, where the size of the parameter

space would increase as more training data becomes available. For a given design X of size =,
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Dimensions d1,…,d20
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Single sample of N(µ,Σ)

d1,…,d20 interpreted as x1,…,x20

f̂θ

Single sample of f̂θ(x1,…,x20)

Figure 4.4: Reinterpreting the unrolled dimensions of 100 samples of a 20 dimension multi-

variate normal, on the left panel, to obtain 100 samples of functions evaluated on 20 different

input points, on the right panel

this parameter space would be

Θ0 =
{ (

-X,y , �X
)
, -X,y ∈ R= , �X ∈ R=×=

}
. (4.25)

Note that themeanvector depends on the observationsy, while the covariancematrix depends

only on X. In a multivariate Gaussian, the diagonal of the covariance matrix contains the vari-

ances associated with its dimensions, and the off-diagonal elements contain the covariances

between pairs of dimensions. Figure 4.3 shows the impact of three covariancematrices, which

must always be symmetric and positive semi-definite.

Instead of looking for the best parameter vector in Θ0, we will condition the prior Gaus-

sian distribution to the observed data, obtaining a posterior distribution. The conditioned

distribution representing our surrogate model is also a multivariate normal written

5̂�(x) ∼ 5 (x) | X, y. (4.26)

We will see how to compute this posterior in the next section. Note that it would require an

infinite parameter vector to fit a Gaussian Process for all points in a search spaceX consisting

of a single real number. In this sense, Gaussian Process Regression is a nonparametricmethod.

To build an intuitive understanding of Gaussian Processes it can be helpful to think of

them as a reinterpretation of the dimensions of a sample of amultivariate normal distribution.

If we take 100 samples of a 20-dimension Gaussian and unroll each dimension into a single

axis, we end up with the left panel of Figure 4.4. Each column of points contains the 100

values on each dimension of our samples, and each dimension is correlated according to the

distribution’s covariance matrix. The values for one arbitrary sample are marked in larger red

dots.
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Chapter 4. Learning: Building Surrogates

Table 4.1: Expressions for the covariance functions, or kernels, shown in Figure 4.5. The

variables E and ; are kernel parameters that can themselves be estimated. The Matérn kernel

depends on the gamma function Γ and on the Bessel function of the second kind  E . We

refer the reader to Chapter 4 of Rasmussen and Williams [188] for detailed definitions and

discussions

Kernel Expressions

Exponential :(x, x′) = 4G?
(
−‖x − x′‖

;

)
Squared Exponential :(x, x′) = 4G?

(
−‖x − x′‖2

2;2

)
Matérn :(x, x′) = 1

2
E−1Γ(E)

(√
2E

;
‖x − x′‖

)E
 E

(√
2E

;
‖x − x′‖

)

The right panel of Figure 4.4 shows the same data in the left panel but we now interpret the

values of each dimension 38 , for all 100 samples, as a distribution of values for the surrogate

5̂� evaluated at point x8 . Each 5̂�(x8) is correlated to other values of the surrogate function,

with covariance given by the distribution’s covariance matrix. In this example we used the

Matérn kernel, discussed in the next section, to compute the covariance matrix. This prior

over functions directly estimates a mean and its associated variance, for each value of the

surrogate. We will now discuss how to fit a Gaussian Process to observed data, generating

predictions of means and variances conditioned to observations.

4.2.1 Fitting the Model: Posterior Distributions over Functions

Before fitting our surrogate, we must compute the covariance matrix of the prior Gaussian

distribution from Equation 4.24 using a covariance function, or kernel,  : X2 → R. For any
pair (x, x′) ∈ X2

, the kernel determines how strong the covariance between 5̂�(x) and 5̂�(x′)
should be, based on the distance ‖x − x′‖. Figure 4.5 shows four exponential kernels, also

called radial basis functions, whose formulas are shown in Table 4.1.

The actual parameter space Θ over which optimization is performed when fitting a

Gaussian Process surrogate is composed by the parameters of the chosen covariance ker-

nel, called hyperparameters. Typical hyperparameters are the Section 5.1 of Rasmussen and

Williams [188]. Explicitly listing the hyperparameters for a Gaussian Process fit using the

exponential kernel from Table 4.1 would result in

:(x, x′) = �2

5
4G?

(
−‖x − x′‖

;

)
, (4.27)
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|| x −  x′ ||

C
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(x
, x

′)

Exponential
Matérn 3/2
Matérn 5/2
Squared Exponential

Figure 4.5: Covariance of points (x, x′) according to four covariance functions based on the

distance ‖x− x′‖. Expressions for each kernel are shown in Table 4.1, and Matérn kernels use

parameters E1 , E2 = { 3

2
, 5

2
}

and the parameter space Θ would be defined as

Θ =
{
� 5 , ; ∈ R

}
. (4.28)

We can then use the conditioned posterior distribution, discussed below, to determine the

best specific hyperparameter values by minimizing the cross-validated mean squared error,

for example, which we discuss in Section 4.2.2, or by maximizing the posterior likelihood.

The posterior distribution 5̂� is computed by conditioning the prior distribution from

Equation 4.24 to observed data (X: , y:), obtaining the distribution in Equation 4.26, which is

also a Gaussian distribution, and can be written

5̂�(x) ∼ N(-: ,�:), (4.29)

where the conditioned vector mean, of size |X: |, is

-: = K(X: ,X:−1) K(X:−1 ,X:−1)−1 yÇ:−1
, (4.30)

and the conditioned |X: | × |X: | covariance matrix is written

�: = K(X: ,X:) − K(X: ,X:−1) K(X:−1 ,X:−1)−1 K(X:−1 ,X:). (4.31)

The function K in Equations 4.30 and 4.31 produces the covariance matrices corresponding

to applying one of the covariance kernels :(x, x′) from Table 4.1 to all pairs of points on the

input designs for K. The complete text of Rasmussen and Williams [188], the Chapter 6

of Bishop [33], and the Chapter 15 of Kochenderfer and Wheeler [122] are among the texts

that present detailed discussions and derivations of important properties of Gaussian Process

Regression.
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Figure 4.6: Fitting a Gaussian Process to three noise-free observations. The left panel shows

300 samples from aGaussian prior, using theMatérn kernel to compute the covariancematrix.

The center and right panels show 300 samples from the posterior distributions conditioned

by one, then two more, successive noise-free observations

The left panel of Figure 4.6 shows 300 sampled functions from the prior in Equation 4.24,

for a 50-dimension Gaussian distribution, with covariance matrix Σ0 given by the Matérn

kernel from Table 4.1, with E = 5

2
. The starting mean vector -0 is zero. We see that, for all

radial basis functions shown in Figure 4.5, the covariance between inputs decreases as the

distance between inputs increases, approaching zero. Using different kernels we can control

properties of sampled functions, such as smoothness and periodicity. The center panel of

Figure 4.6 shows samples from the conditioned posterior after a single observation (x, y),
computed using Equations 4.29, 4.30, and 4.31. The right panel shows samples from the

posterior after observing two additional observations. Note that all 300 functions sampled

from the conditioned distributions pass exactly through the observations on the center and

rightmost panels.
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Figure 4.7: Fitting a Gaussian Process to three noisy observations, in the same conditions and

with the same panel structure in Figure 4.6

Although in specific autotuning applications involving deterministic or extremely fast

processes we can observe consistent measurements and produce useful models with fits

that assume noiseless measurements, such as in Figure 4.6, we can also produce a Gaussian
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4.2. Gaussian Process Regression

Process fit that incorporates the uncertainty from noisy data. Figure 4.7 shows 300 prior

samples, in the left panel, and results of conditioning the prior distribution to one and then

three observations, under the assumption that the underlying objective function is subject to

measurement error � ∼ N(0, �2), as described in Equation 4.22. In this scenario, we write the

mean vector and covariance matrix for Equation 4.29 as

-: = K(X: ,X:−1) (K(X:−1 ,X:−1)−1 + �2I) yÇ:−1
, (4.32)

and

�: = K(X: ,X:) − K(X: ,X:−1) (K(X:−1 ,X:−1)−1 + �2I) K(X:−1 ,X:). (4.33)

Before discussing quality of fit assessment metrics for Gaussian Process surrogates, we

will discuss how to incorporate hypotheses over the search space to fitted surrogates using

basis functions, which we described when we discussed linear regression. Trend functions

can be added to the surrogate’s predicted mean to leverage underlying trends in data, that

should be followed on prediction regions far from measurements.

Figure 4.8 showsGaussian Process surrogates fittedwith andwithoutmodel trends. Black

circles represent sixmeasurements of a single-input function, and each line represents amodel

trend. We are considering noise-freemeasurements in these fits, so all surrogates agree on the

predictions at themeasurements. We can see that predictions for input between or sufficiently

far from measurements present stronger influence from the underlying trend. A trend can

help leverage previous knowledge of the relationships between factors and the values of the

objective function, especially when the cost of measuring a single point is expensive, or when

new experiments cannot be performed. However, if we can choose which measurements

to perform we can use space-filling designs, which we discuss on Chapter 5, to decrease or

sometimes remove the need for a model trend.

The fits and predictions shown in Figure 4.8 were computed using the DiceKriging R
package [155]. We refer the reader to the detailed descriptions of trend functions and their

application to Gaussian Process Regression presented in Section 2.1 of the package’s accom-

panying paper [154].

As we did for the linear model surrogates discussed earlier in this chapter, in the next

section we will assess the quality of fit of Gaussian Process surrogates, and quantify their

prediction error on a testing set outside of the measurements used for fitting.

4.2.2 Assessing the Quality of Fit of Gaussian Process Surrogates

We will construct three Gaussian Process surrogates for the Booth function and use the

model fits to discuss the assessment ofmodel quality. Figure 4.9 shows the three surrogate fits,

constructedusing the samedesignXwith = = 10 randomuniformlydistributedmeasurements
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Figure 4.8: Gaussian Process surrogates using three differentmodel trends, fit to six noise-free

observations of a single-input objective function, marked with black circles

of the Booth function

5 (x = [G1 , G2]Ç) = (G1 + 2G2 − 7)2 + (2G1 + G2 − 5)2 , G1 , G2 ∈ [−10, 10], (4.34)

subject to measurement error �. Panel (a) shows the surface produced by measuring 5

in its entire domain and the MSE of the constant mean predictor "(�ȳ. The 10 random

measurements in X are highlighted. Panels (b), (c), and (d) show the three surrogates, which

used model trends using the basis function sets described by Equations 4.11, 4.12, and 4.13.

Panels (b), (c), and (d) show the testing "(�
5̂�

and true "(� 5 prediction errors for each

surrogate, described by Equations 4.15 and 4.16.

We have assumed noisy measurements when fitting the Gaussian Process surrogates in

this example. In this setting, we could compute the training prediction error "(�
5̂�(X) as

described by Equation 4.14, but this would not work for a surrogate assuming noise-free

measurements. Since all surrogates would interpolate the observations, the prediction error

for points in the training set would always be zero. Still, analogously, in our example we also

controlled the variances representing the measurement errors, as described by Equations 4.32

and 4.33.

The strategy we used for computing test prediction error for linear models would not be

accurate for this example, and we used a Leave-One-Out (LOO) cross-validation strategy to

compute the testing error "(�!$$
5̂�
(X). The strategy consists of computing the mean of all

"(�
5̂�(X) for different surrogates, with the same model trend, fit to the testing sets generated

by removing one distinct training point at a time, for all training points. This strategy also

works to compute the testing prediction error for noise-free Gaussian Process fits.
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4.2. Gaussian Process Regression

Figure 4.9: Three Gaussian Process Regression surrogates with noisy fits for the Booth func-

tion, with a × marking the global optimum and best surrogate predictions. The fixed ex-

perimental design X used to fit all surrogates is marked by × s. Panel (a) shows noisy

measurements of Booth’s function, panels (b), (c), and (d) show surrogate predictions for

models fit with linear, quadratic, and quadratic plus interactions trends, respectively
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4.2.3 Inference: Interpreting Significance with Sobol Indices

Sobol indices [167] are a variance-based global sensitivity analysis method, which com-

putes the relative importance of the input factors G1 , . . . , G? of an objective function 5 by

decomposing the variance observed in measurements of 5 . The first-order Sobol index (8 for

each factor column x8 represents the normalized variance of the expected value of 5 given a

fixed factor value, written

(8 =
+x8

(
�X\x8 (y | x8)

)
+ (y) . (4.35)

The variance of a function can be further decomposed to produce 2
? − 1 indexes that measure

the sensitivity of factor interactions of up to the ?th level. Additionally, we can aggregate the

effects of the interactions of a factor and compute total-effect indices, in order to decrease the

total number of indices to compute.

Sobol sensitivity indices can be estimated using #(? + 2) evaluations of the objective

function, where # controls the accuracy of the estimate and is typically in the order of

thousands. TheMonteCarlomethoddescribed in Section 4.1.6 of Saltelli et al. [157] determines

how to construct the experimentmatrices containing all samples, and computes the sensitivity

indices using the estimators described in the book and later reviewed and summarized by the

authors [158].

4.2.4 Gaussian Processes: Flexible but Hard to Interpret Surrogates

Gaussian Process Regression is a nonparametric learning method with low bias and high

variance, that can produce surrogate models capable of describing observations with essen-

tially arbitrary precision, without entirely committing to structure outside of observations.

Although we can attempt to interpret the results produced by a Gaussian Process fit with

Sobol indices, it is not always possible or viable to collect sufficient data to reach accurate re-

sults. Recent work interprets Gaussian Process fits by identifying the contribution of different

covariance kernels to the fitted model [78]. Such approaches help constructing useful models

in high-dimensional spaces, and are valuable to experimental research, such as the studies

we present in this thesis.

4.3 Summary

This chapter presented Linear and Gaussian Process Regression, two large classes of

surrogatemodel constructionmethods. From the point of view of an experimenter, a practical

difference between these two classes lies in their balance of interpretability and generality.

Linear models are easier to interpret, they have high bias and low variance, and can be used

to test hypotheses about search space structure, or leverage known relationships. Gaussian
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Process Regression is hard to interpret, has low bias and high variance, and can be used

to model search spaces for which it is hard to elaborate clear hypotheses, or where simple

structure does not exist to be exploited.

In this chapter we assumed that the design matrix X is a given, or is sampled from a fixed

set of observations. In the next chapter we will discuss methods of Design of Experiments

that enable the construction of carefully chosen design matrices for different purposes, such

as testing hypotheses, improving model fits, or minimizing the objective function.
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Chapter 5

Design of Experiments

This chapter presents some of the fundamental elements of the Design of Experiments

(DoE). Complementing the learning methods we discussed in the previous chapter, DoE

methods enable choosing the experiments that should be included in a design matrix X
according todifferent needs andcriteria. Awell-constructeddesign enables testinghypotheses

about the objective function 5 , which can lead either to a useful model or to a set of questions

to ask and new hypotheses to test.

This chapter is organized as follows. Section 5.1 introduces key concepts and presents

2-level full and fractional factorial designs. Section 5.2 presents screening designs, an efficient

way to detect linear effects. Section 5.3 presents the Optimal Design methodology, which

enables constructing efficient designs for more complex hypotheses. Section 5.4 presents

space-filling designs, useful for balanced search space exploration andmore complex learning

methods. Section 5.5 compares different sampling strategies, and Section 5.6 summarizes the

discussion and concludes the chapter.

5.1 Estimating Linear Effects

Wehave been using theDesign of Experiments terminology in this thesis, where the vector

y, with observations of an objective function 5 in an input set X, is called a response. The input
set is an = × ? matrix called a design, where each row is an experimentwith ? factors. Choosing
an adequate design depends on characteristics of the factors, of the objective function, and of

the statistical analysis or learning methods we wish to use.

In this chapter we discuss methods for constructing experimental designs with the as-

sumption that the analysis of the results will be made using linear models. This section will

present the difficulties of estimating coefficients for linear model terms in settings with high

levels of error or noise, heteroscedasticity, and interactions between factors.
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5.1.1 2-Level Factorial Designs

Figure 5.1 shows measurements of an objective function whose input is a single real-

number factor G1 ∈ [0, 1]. Each of the six panels represents an experimentwherewe fit a series

of linear models to distinct data, using a limited experimental budget of two observations of

5 . Hollow points in each panel represent a much larger sample of values of 5 , to aid the

visualization of each experimental condition, and each linear model is represented by a gray

line. A single model is highlighted in blue, and its experiments in red.

Our objective is this example is to distribute our 2-point budget so as to produce a linear

model fit for 5 which will guide future experiments in the correct direction for minimizing it.

The direction in which we would explore if we followed the highlighted model is represented

by vertical dashed red lines. Such a budget restriction will not provide sufficient data to

estimate the confidence intervals for the predictions of our linear model, but this example

enables discussing the impact of the choice of design points in a single prediction. We later

look at experiments with more measurements.

The first row of Figure 5.1 shows measurements subject to small measurement error. In

these conditions we can produce a fairly good fit regardless of how close we pick our two

experiments. This experiment with small noise reveals that the “true” shape of 5 is linear,

minimized by G1 = 0.

The experiments in the second row have larger measurement error. This could happen

if we were measuring 5 in a shared machine, for example, while in the first row we might

have had exclusive access. In this new setting, picking experiments too close to each other

can invert the direction in which the model tells us to explore, as is shown by the highlighted

model, and we would be better off spending our two measurements at the interval extremes.

The last row shows an experimental setting where measurement error depends on the

value of G1, violating one of the core hypotheses the linear model. Although we could still fit

a model indicating the right exploration direction in this scenario, chances are high that we

wont, even if we pick extreme points, as shown in the highlighted model. Heteroscedastic

error can be produced in real conditions by resource management overhead, for example, and

the simplest way to deal with it in practice is to fit a model to the logarithm of the response.
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Figure 5.1: Fitting linear models using 30 distinct random sets of two measurements, in

experimental settings with different properties of the error �. One arbitrary model fit is

highlighted to show the distance between the design points
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Figure 5.2: Modeling linear effects in different experimental settings
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Table 5.1: A 2-level full factorial design for 3 factors, with response H = 5 (G1 , G2 , G3) + �

G1 G2 G3 H

-1 -1 1 1.82

1 1 1 -3.30

1 1 -1 0.01

-1 -1 -1 5.36

1 -1 1 0.09

1 -1 -1 3.29

-1 1 -1 -1.07

-1 1 1 -2.46

In general, picking far-apart points will help estimating linear effects. This principle keeps

working in higher-dimensional search spaces, and is the motivation for 2-level full factorial

designs. The first step to construct such a design is to choose extreme levels for each of the ?

factors, as we did in the right column of Figure 5.1, and then encode these levels, mapping their

original values to the [−1, 1] interval. The design is produced by listing all 2
?
combinations

of factor levels.

Table 5.1 shows a 2-level full factorial design for a search spacewith ? = 3 factors and 2
? = 8

experiments. We added a fourth column to the experimental design matrix, representing the

8 measurements. To produce a linear model surrogate 5̂�, it suffices to estimate � as we did

in Section 4.1, by computing

�̂ = (XÇX)−1XÇy, (5.1)

where X contains the G1 , G2 , G3 columns from the design matrix, plus a first column of ones

representing the intercept term, and y consists of the H column. With this design we are able

to estimate eight model coefficients: one for the mean or intercept; three for the linear effects

of each factor; three for the two-way interactions; and one for the three-way interaction G1G2G3.

If we fit models to distinct sets of two points picked at random, considering distant and

close sets separately, wewould get muchmore variance in the predictions of themodels using

close point sets, as we see in the gray lines in all panels of Figure 5.1. In other words, the

linear model lacks robustness when designs are not constructed properly, especially for noisy

or heteroscedastic measurements.

We can fitmore robust linearmodels if we allow an expansion of our experimental budget,

and evaluate eight additional points in each experiment. Figure 5.2 shows the resultingmodel

fits, this time accompanied by 95% confidence intervals for predictions. We observe great

improvements in the heteroscedastic scenario due to the extra samples of 5 wewere able to get,

butwe see that the confidence intervals are not at all capable ofmodeling theheteroscedasticity

in the observations, producing inaccurate uncertainty estimates. This example allowspointing

out that the uncertainty in our model fits, which is proportional to the narrowness of the
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confidence intervals, is related to the distribution of the experiments and to the variance

associated with measuring 5 .

Figure 5.2 also shows the determinants of the matrices XÇX, associated with the designs in

each panel. Note that determinants are larger for designswithmore distant points. Combined

with the confidence intervals for predictions, this example illustrates that the choice of the

design matrix X impacts the variance of the estimator of � in the model fit in Equation 5.1.

We will present a more precise statement of this interpretation in Section 5.3, and in the

next section we will discuss the impact of interactions on our estimates, and present fractional
factorial designs.

5.1.2 Interactions and Fractional Factorial Designs

Figure 5.3 shows two different objective functions with two input factors G1 and G2, which

can take real values in the interval [0, 1]. The top and bottom panels show the measures from

a full factorial design using the interval extremes of both factors. We see the impact on the

measured values of 5 when we change G1 from zero to one while keeping G2 fixed to zero,

shown in the red line, or fixed to one, shown in the blue line.

The function on the top panel has no interaction between G1 and G2, and we see that

changing G2 from zero to one increases the value of the measured 5 , but does not change the

slope of the line. These parallel lines can be represented in a linearmodel using one coefficient

for G1, and another for G2. The bottom panel shows measurements using the same design,

evaluated for an objective function where an interaction between G1 and G2 is present. There

is still an additive effect, since the two lines start at different values, but now the slopes do not

match. In a linear model we can represent this interaction as a multiplicative effect, that is,

in addition to coefficients for each factor, we include a third coefficient for the multiplication

G1G2.

All interactions can be estimated with full factorial designs, but the cost of evaluating

all combinations of extreme levels is prohibitive for most high-dimensional problems. It is

common practice, at least on the initial stages of the statistical modeling of a problem, to

consider that higher order interactions, such as those between three or more factors, are not

of practical significance. This hypothesis supports the construction and analysis of fractional
factorial designs.

A fractional factorial design for ? factors consists of a full factorial design for ? − : factors,
augmentedwith : columnsproducedbymultiplying twoormore of the original ?−: columns.

Table 5.2 shows a fractional factorial design for ? = 5 and : = 2, said to have resolution 3, with

2
5−2 = 8 experiments.

We can use this design to estimate the six coefficients we need for the for the main

effects of each factor plus the intercept, but the estimates for the main effects of G4 and

G5 will be multiplied by the interaction effects of the combined columns. Effects that are
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Figure 5.3: Effect of interactions in the slopes for extreme values of factors

indistinguishable because of the way the design is constructed are said to be aliased by, or

confounded with, each other. We will only be able to accurately estimate main effects in this

setting if the interaction confounded with a main effect has small or nonexistent impact on

the response. Note that we can multiply any set of two or more columns to produce a new

one, which allows choosing which interactions will be confounded with the estimate of a new

effect.

Fractional factorial designs enable reducing the cost of estimating main effects, but the

quality of the estimates relies on weak factor interactions. In the next section we will see

how we can reduce the experimental costs even more, while simultaneously solving the

confounding problem, by carefully constructing orthogonal arrays.

5.2 Parsimony for Linear Effects with Screening Designs

Screening designs identify parsimoniously the main effects of 2-level factors in the initial

stages of studying a problem. While interactions are still not considered at this stage, identify-

ing main effects early enables focusing on a smaller set of factors on subsequent experiments.

A specially efficient design constructionmethod for screening designswas presented by Plack-

ett and Burman [150] in 1946. Despite having strong restrictions on the number of factors

they support, Plackett-Burman designs enable the identification of main effects of ? factors

with = = ? + 1 experiments. Factors may have many levels, but Plackett-Burman designs can

only be constructed for 2-level factors. Therefore, like we did for fractional and full factorial
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Table 5.2: A 2-level fractional factorial design of resolution 3 for 5 factors, with response

H = 5 (G1 , G2 , G3 , G4 , G5) + �. The main effects for G4 and G5 are aliased by, or confounded with,

the interaction effects G1G2 and G1G3

G1 G2 G3 G4 = G1G2 G5 = G1G3 H

-1 -1 -1 1 1 1.18

1 1 -1 1 -1 0.59

1 -1 1 -1 1 -0.26

1 1 1 1 1 -0.61

-1 1 -1 -1 1 -1.75

-1 1 1 -1 -1 0.36

-1 -1 1 1 -1 -2.28

1 -1 -1 -1 -1 -0.26

designs, before constructing a Plackett-Burman design we must identify and encode high and
low levels for each factor.

This section presents an example of screening, an interesting first stage on the sequential

approach to building a linear model for a given objective function. The first step in the

sequential approach is to build a design for the factors we wish to study. Then, we run

experiments and analyze the results to find significant factors, using a statistical analysis

method such as ANOVA. Next, we restrict the target search space by fixing significant factors

to their best predicted levels, and start the process again. There are many caveats to the

effectiveness of this approach, as we will discuss in Part II. In the next section we will go

beyond screening, anddiscuss howwe can exploremore complex linearmodels usingOptimal

Design.

Because we are only looking at the two extreme levels for each factor, we must start from

the hypothesis of linear relationships between factors and the response. This is always the

case when using Plackett-Burman designs and two-level screening in general. We the present

how the screening approach works the example that follows. Suppose we wish to minimize

an objective function written

5 (x) = −1.5 G1 + 1.3 G3 + 3.1 G5 + −1.4 G7 + 1.35 G2

8
+ 1.6 G3G5 + �, (5.2)

where G1, . . . , G8 are real numbers in the [−1, 1] interval. For the purpose of this example,

suppose themeasurement of each point 5 (x) is very expensive. Note that factors G2, G4, and G6

have no contribution to the response, and we can think of the error term � as representing not

only measurement noise, but our uncertainty regarding the model. Constructing a Plackett-

Burman design will minimize the experiments needed to identify significant linear effects,

and the analysis of this design will enable decreasing the dimension of the search space of

interest.
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Table 5.3: Randomized Plackett-Burman design for factors G1 , . . . , G8, with experiments

x1 , . . . , x12, and added “placeholder” factors 31 , 32 , 33. The response H is subject to mea-

surement error �

G1 G2 G3 G4 G5 G6 G7 G8 31 32 33 H = 5 (x) + �
1 1 -1 1 1 1 -1 -1 -1 1 -1 8.00

1 1 -1 -1 -1 1 -1 1 1 -1 1 8.45

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.67

1 -1 1 1 1 -1 -1 -1 1 -1 1 12.48

-1 1 1 1 -1 -1 -1 1 -1 1 1 11.93

-1 -1 1 -1 1 1 -1 1 1 1 -1 14.27

1 -1 1 1 -1 1 1 1 -1 -1 -1 11.70

-1 -1 -1 1 -1 1 1 -1 1 1 1 2.96

1 1 1 -1 -1 -1 1 -1 1 1 -1 7.53

1 -1 -1 -1 1 -1 1 1 -1 1 1 10.69

-1 1 1 -1 1 1 1 -1 -1 -1 1 8.85

-1 1 -1 1 1 -1 1 1 1 -1 -1 10.39

Our initial modeling hypothesis for the screening experiment is written

5̂�(x) = xÇ� + �, (5.3)

and Table 5.3 shows the Plackett-Burman design we generated for testing it. The design

consists of an orthogonal matrix with twelve rows an eleven columns, containing the extreme

levels of factors G1 , . . . , G8 plus three “placeholder” factors 31 , 32 , 33, completing the columns

needed to construct a Plackett-Burman design for 8 factors [150]. The final design matrix also

contains a column for the computed response, subject to measurement error.

We fit a linear model corresponding to our initial hypothesis in Equation 5.3, and identify

themost significant factorswith anANOVA test. The test results are shown in Table 5.4, where

the significance of each factor is interpreted from p(> F) values. We interpret this p-value as

the probability that we would observe a value of the F statistic at least as large as what we did

if the corresponding factor did not have an impact on the response. This approach is subject

to the usual caveats regarding p-values, and it does not consider the practical significance of

an effect.

Table 5.4 uses a “∗”, as is convention in R, to represent significance levels for each factor.

The table shows that factors G1, G3, G5, G7, and G8 have at least two “∗” of significance,

corresponding to a p-value smaller than 0.01. For the purpose of this example, this will be

sufficient reason to include them in our linear model for the next step. We decide as well to

discard factors G2, G4, and G6 from the next model, due to their low significance.

Now, we fit a linear model with factors G1, G3, G5, G7, and G8, using the measurements of H

we obtained when running our design in Table 5.3, and use the estimated model coefficients

to predict the levels of each factor that minimize the real response. We can do that because

these factors are numerical, even though only discrete values are allowed in the screening

design.
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We now proceed to the prediction step, where the objective is to identify the factor levels

that minimize our fitted model, without running any new experiments. This can is done

in practice by generating a large sample of experiments, predicting the value of 5 for each

one using the estimated coefficients, and picking the experiment with the smallest predicted

response. Table 5.5 compares the prediction for the best value of 5 , made with our linear

model with significant factors, with the actual global optimum of 5 .

Using only 12 measurements and a simple linear model, the predicted best value of 5

was around nine times larger than the global optimum. Despite that, note that our model

predicted the correct levels for G3, G5, and G7. The linear model predicted wrong levels for

G1, perhaps due to this factor’s interaction with G3, and for G8. It would be impossible to

predict the correct level for G8 using only linear terms since a quadratic term composes the

true formula of 5 , shown in Equation5.2.

We can improve upon this result if we introduce some information about the problem

and use a more flexible design construction technique. Next, we will discuss the construction

of efficient designs using problem-specific formulas and continue the optimization of our

example.

5.3 Increasing Flexibility: Optimal Design

The application of DoE to autotuning problems requires design construction techniques

that support factors of arbitrary types and number of levels. Autotuning problems typi-

cally combine factors such as binary flags, integer and floating point numerical values, and

unordered enumerations of abstract values. Because Plackett-Burman designs only support

2-level factors, we had to restrict factor levels to interval extremities in the example of the

previous section. We have seen that this restriction makes it impossible to test hypotheses

using quadratic terms. We will continue to explore the search space of our example by us-

ing D-Optimal designs, which increase the number of levels we can efficiently screen for and

enables testing more complex linear model hypotheses.

Table 5.4: ANOVA table for the fit of the initial model, with default significance levels from R

Term Sum of Squares F-value p(> F) “Significance”

x1 2.78 35.91 9.3 × 10
−3 ∗∗

x2 0.22 2.79 1.9 × 10
−1

x3 38.90 501.80 1.9 × 10
−4 ∗ ∗ ∗

x4 0.75 9.67 5.3 × 10
−2 ·

x5 25.35 327.08 3.7 × 10
−4 ∗ ∗ ∗

x6 0.99 12.83 3.7 × 10
−2 ∗

x7 4.93 63.59 4.1 × 10
−3 ∗∗

x8 43.84 565.55 1.6 × 10
−4 ∗ ∗ ∗
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Table 5.5: Comparison between the response H predicted by our linear model fit and the true

global optimum. Factors that were used in the model are in bold

x1 G2 x3 G4 x5 G6 x7 x8 H

Global Optimum 1.00 – -1.00 – -1.00 – 1.00 -0.40 -8.998

Screening Prediction -1.00 – -1.00 – -1.00 – 1.00 -1.00 -1.258

Like we did for screening, to construct a D-Optimal design we must first determine initial

modeling hypotheses, which can be done based on previous experiments and analyses, or on

knowledge about the problem. This initial model can be more complex than in the screening

example, using any basis function set for linear models, as we discussed in Section 4.1.1,

including polynomial terms of higher orders, interactions, and other non-linear relationships

between factors.

We can then use exchange algorithms to construct an optimal design for our selected

hypothesis, optimizing different criteria related to the trace, determinant, condition number,

and other properties of the design’s model matrix. We refer the reader to Chapters 9 through
12 of Atkinson et al. [14] for discussions on Optimal Design theory, the general equivalence

between design optimality criteria, and the construction of D-Optimal designs using the KL
Exchange algorithm. In the following examples, and in our work with optimal designs for

autotuning, we have used D-Optimal designs constructed with Fedorov’s algorithm [82], a

particular case of KL Exchange, implemented in the AlgDesign R package [185].

Exchange algorithms for optimal designs build a design model matrix X by selecting

experiments x1 , . . . , x= in a search spaceX that optimize a given designmetric. TheD-Criterion
is one such metric, which measures the variance of the estimator �̂ for the coefficients of a

linear model, written

Var(�̂) = (XÇX)−1�2

, (5.4)

where �2
is the variance of measurements of the objective function. The D-Criterion �(X)

of an = × ? design model matrix is a measure of the determinant of the information matrix

related to the linear model we wish to test, and is written

�(X) = det

(
XÇX
?

) 1

=
. (5.5)

The higher the value of the D-Criterion, the smaller will be the variance of estimators. The

search for the best design model matrix is done by swapping experiments from the current

candidate design with experiments from a pool of possible experiments until some stopping

criterion is met.

Returning to our screening example from the previous section, suppose that, in addition

to using our previous screening results, we decide to consult an expert in the problem repre-
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Table 5.6: D-Optimal design with 12 experiments, constructed for the surrogate 5̂� ∼ G1+ G3+
G5 + G7 + G8 + G2

8
+ G1G3, with corresponding measurements

G
1

G
3

G
5

G
7

G
8

H = 5 (x) + �
-1.0 -1.0 -1.0 -1.0 -1.0 1.85

1.0 1.0 1.0 -1.0 -1.0 7.36

-1.0 1.0 -1.0 1.0 -1.0 -2.22

1.0 -1.0 1.0 1.0 -1.0 -1.54

1.0 -1.0 -1.0 -1.0 0.0 -6.30

-1.0 1.0 1.0 -1.0 0.0 5.55

-1.0 -1.0 -1.0 1.0 0.0 -2.92

1.0 1.0 1.0 1.0 0.0 2.86

1.0 -1.0 -1.0 -1.0 1.0 -4.78

-1.0 1.0 1.0 -1.0 1.0 7.03

1.0 1.0 -1.0 1.0 1.0 -1.60

-1.0 -1.0 1.0 1.0 1.0 4.39

sented by our objective function, in Equation 5.2. The expert mentions that factor G1 typically

interacts strongly with factor G3, and also that we should replace include a quadratic term for

G8, because there are some management overheads related to it. In Chapter 11 we will see a

real example of the impact of such expert-guided models on the effectiveness of autotuning.

Using this improved performance model, built with a screening experiment and expert

knowledge, we can construct a D-Optimal design using Fedorov’s algorithm. We have much

more flexibility than screening when using exchange algorithms, being able to choose more

model terms and also how many experiments we would like to run. We still need sufficient

degrees of freedom to fit our new model, and we use Fedorov’s algorithm to produce the 12

experiments shown in Table 5.6. Note that the design includes levels −1, 0, and 1 for factor G8.

Because we have added a quadratic term, the optimal design will contain factor levels other

than the extremes.

Table 5.7 shows the results of the new ANOVA test, where all factors lie below our chosen

p-value threshold of 0.01. Note that if we consider that G2

8
is significant we also include the

corresponding linear term. We can then fit this model using the results of the optimal design

we constructed. Table 5.8 show how close the coefficients estimated by this model fit are to the

truemodel coefficients, fromEquation 5.2. This example illustrates that theDoEmethodology

Table 5.7: ANOVA table for the fit of the improved model, with default significance levels

from R

Term Sum of Squares F-value p(> F) “Significance”

G1 26.10 701.66 1.2 × 10
−5 ∗ ∗ ∗

G3 66.73 1794.21 1.9 × 10
−6 ∗ ∗ ∗

G5 97.13 2611.61 8.8 × 10
−7 ∗ ∗ ∗

G7 11.51 309.40 6.1 × 10
−5 ∗ ∗ ∗

G8 0.02 0.57 4.9 × 10
−1

G2

8
6.11 164.28 2.1 × 10

−4 ∗ ∗ ∗
G1G3 30.75 826.70 8.7 × 10

−6 ∗ ∗ ∗
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Table 5.8: Model fit comparing real and estimated coefficients , with significance measure-

ments as standard in R

True Coefficient Estimate t-value p(> |t|) “Significance”

Intercept 0.00 -0.20 -2.11 1.0 × 10
−1

G1 -1.50 -1.47 -26.49 1.2 × 10
−5

***

G3 1.30 1.35 22.90 2.2 × 10
−5

***

G5 3.10 3.02 51.10 8.8 × 10
−7

***

G7 -1.40 -1.55 -26.17 1.3 × 10
−5

***

G8 0.00 -0.05 -0.76 4.9 × 10
−1

G2

8
1.35 1.51 12.82 2.1 × 10

−4
***

G1G3 1.60 1.70 28.75 8.7 × 10
−6

***

can help experimenters produce accurate models while using few measurements, provided

the modeling hypotheses are correct.

Table 5.9 compares the true global optimum to the predictionsmade by the initial screening

model from the previous section, and to the improved model fit to the experiments from

the optimal design. Using screening, D-Optimal designs, and domain knowledge to guide

modeling hypotheses, we predicted a set of factor levels whose response lies within 10% of

the global optimum, performing 24 measurements of 5 . We did that by first reducing the

problem’s dimension when we eliminated insignificant factors in the screening step. Then,

we performed a more careful exploration of this new subspace, aided by domain knowledge

provided by an expert. Note that we could have reused some of the 12 experiments from the

previous step to reduce even further the size of the new design.

Because of the carefully constructed experiments, we are able to explain the improvements

we obtained in each step of the process using results of statistical tests. If we needed to

optimize a similar problem, we could start by exploiting the relationships we have discovered,

but we could also attempt to explore new hypotheses for the factors we did not include at first.

This balance between exploitation and exploration will be discussed further in Chapter 6.

In the absence of reasonable hypotheses about the search space, we can still construct

designs that favor a balanced exploration, enabling tests for more complex hypotheses and

increasing the effectiveness of nonparametric optimizationmethods. Thenext sectionpresents

some methods for constructing such designs.

Table 5.9: Comparison between the response H predicted by our screening and optimal design

model fits and the true global optimum. Factors that were used in the models are in bold

x1 G2 x3 G4 x5 G6 x7 x8 H

Global Optimum 1.0 – -1.0 – -1.0 – 1.0 -0.4 -8.998

Screening Prediction -1.0 – -1.0 – -1.0 – 1.0 -1.0 -1.258

Optimal Design Prediction 1.0 – -1.0 – -1.0 – 1.0 0.0 -8.894
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Uniform Random Approx. Latin Hypercube Sobol Halton Torus

x2

x 1

Figure 5.4: Comparison of 1000 samples obtainedwith different samplingmethods. The Latin
Hypercube design was produced with the DiceDesign R package [77], and was optimized after

an initial sampling, with Simulated Annealing. Sobol, Halton, and Torus are low-discrepancy

sequences from the randtoolbox R package [63].

5.4 Exploration with Space-Filling Designs

For large integers n, most of the volume of an n-sphere lies in a thin outer shell. Therefore,

in search spaces with a large number of p factors, such as the ones we find in some autotuning

search spaces, uniform random samples concentrate in the extreme levels, which can make it

impossible to test more complex linear models and to properly evaluate lack of fit.

Space-filling designs are capable of generating better-distributed samples, even for high-

dimensional search spaces, enabling more precise measurements of model quality. These

designs also help to improve the accuracy of acquisition functions for nonparametric opti-

mization methods, such as the Expected Improvement, which we discuss in Chapter 6.

Figure 5.4 compares 5 sampling methods in a two-dimensional search space. Even in low

dimension, we can see how uniform random sampling produces clusters of points and leaves

large regions unsampled. Latin Hypercube Sampling [56] (LHS) is one kind of space-filling

design, constructed by partitioning the search space and attempting to distribute samples

evenly across partitions. It is still hard to cover high-dimensional spaces, and it is common to

have to optimize an LHS design with function minimization methods.

Discrepancy is one criterion typically used to evaluate how evenly a sample is distributed.

For a given region of a search space, discrepancy can be described intuitively as the ratio

between the number of samples that lie in the region and the size of the region. In a low-
discrepancy design, any arbitrary small region of a high-dimensional search space contains

a proportionately small number of samples. Sobol, who is also responsible for sensitivity

indices [167] from the previous chapter, andHalton introduced deterministic quasirandom low-

discrepancy sequences [168, 105] that are extensively used. Figure 5.4 shows these sequences,

implemented in the randtoolboxRpackage [63], which also implements aTorus low-discrepancy

sampler.
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Optimal Design: Linear Optimal Design: Quadratic Optimal Design: Interactions

Uniform Random Latin Hypercube Sobol

x2

x 1

Figure 5.5: Exploring the search space for Booth’s function with different methods, using a

fixed budget of 30 measurements. A × marks the global optimum, a � marks the best point

found by each strategy, and •s mark measurements

5.5 Comparing Sampling Methods

Figure 5.5 shows the contour of the search space defined by the Booth function from

previous examples, and its exploration by six different sampling methods restricted to 30

measurements. Here a uniform random sample finds points close to the global optimum,

even though measurements are not particularly distributed and there is no attempt to exploit

search space structure. An LHS sample covers the search space more evenly, but still does

not exploit structure. The Sobol sample is not much more useful than the others for such

a low-dimensional space, but we can clearly see the impact of the optimal designs built for

different models.

The D-optimal design for a model with linear terms samples the corners of the search

space, and adding quadratic and interaction terms to the model adds samples to the inner

regions. Predictions for models with these added terms are closer to the global optimum, but

the selection of the experiments included in the designs is still made over an initial sample

of the search space. Therefore, combining optimal design and space-filling designs should

always be considered.
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5.6 Summary

This chapter presented an introduction to Design of Experiments, a collection of meth-

ods dedicated to planning measurements, which is fundamental to empirical research. We

discussed how we can construct screening and optimal designs tailored to estimate factor

effects parsimoniously, and how we can generate more expensive space-filling designs to aid

in the exploration of high-dimensional search spaces. Space-filling designs are best suited for

testing quality of fit and exploring with nonparametric surrogates, while optimal design and

screening rely on linear model hypotheses to estimate factor effects and significance transpar-

ently and parsimoniously, provided we use good starting model hypotheses. We presented

examples of theDoEmethodology, highlighting the separation between the stages of sampling

search spaces, fitting linear models, and interpreting results, with the objectives of reducing

dimension and restricting further experimentation to promising regions of the search space.

During our study of design construction methods we have implemented versions of the

Paley construction for screening designs [145], the KL Exchange algorithm, as described

in Atkinson et al.[14], factorial designs, and design sampling methods based on mixes of

distributions. These functions were collected in a Design of Experiments package [40] written

in Julia [30].

The next chapter presents online learning, a class ofmethods adapted to a different problem,

where the choice of which experiment to run is made after each observation, enabling the

search for a balance between exploiting known relationships and exploring unknown regions

of the search space.
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Chapter 6

Online Learning

The methods described in the previous chapters assumed either that the data was a fixed

experimental set (X, y), or that we could carefully design X, and then run all experiments to

obtain y, in order to improve the quality of fit of our models. For the purposes of the exposi-

tions on this thesis, Online Learningmethods can be understood as strategies to progressively

decide which experiments should be performed next, based on uncertainty regarding the

search space, modeled from previous experimental data.

The different sampling strategies we discussed in Chapter 5 can be effectively used for

improving the quality of fit of linear models and other surrogates by, for example, efficiently

covering the search space with space-filling designs, or using optimal designs to sample

specific regions and check the significance of a modeling hypotheses. These are approaches

to explore search spaces, seeking to find out significant relationships between factors and

response, and building surrogate models that can aid in optimization. In our DoE approach,

this exploration stage is separated clearly from the subsequent attempts to exploit the identified
relationships, whenwe become concernedwith improvingmodel accuracy by fitting a smaller

model with significant factors, finding the best prediction, and restricting the subspace of

interest.

This chapter will present three approaches that explicitly model uncertainty and attempt

to mix and balance the exploration and exploitation steps. The chapter is organized as

follows. Section 6.1 presents independentmulti-armedbandit algorithms, Section 6.2 presents

Reinforcement Learning, and Section 6.3 presents Expected Improvement, an acquisition

function used with Gaussian Process Regression. Section 6.4 summarizes the discussion and

concludes the chapter.
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6.1 Independent Multi-Armed Bandits

The Multi-Armed Bandit (MAB) problem consists of choosing a sequence of actions that

maximizes the cumulative rewardobtainedover a periodof time. Choicesmade in expectation

of a reward can be compared to pulling the levers, or arms, of slot machines in a casino, an

analogy that inspired the MAB name. In a discrete time period with ) instants, a solution

to the MAB problem provides at each instant C ∈ {1, . . . , )} a choice �8 from a set with :

possible actions �1 , . . . , �: leading to sequence of rewards '1,�1 , . . . , '),�) . A sequence of

actions for each instant can be called a policy, and we wish to find policies, or strategies to

construct them, that maximize the sum of rewards obtained over time. In the discussion that

follows we assume that rewards are independent and static over time, although general MAB

solutions can deal with dynamic rewards [18, 20, 162]. For the moment, we also assume that

optimization occurs within a finite number ) of instants.

Bernoulli bandits are a special case when rewards for each of the : arms are indepen-

dent Bernoulli random variables with parameters ?1 , . . . , ?: , giving a reward 'C ,�8 = 1 with

unknown probability ?8 , and 'C ,�8 = 0 with complementary probability. In this problem, if

we denote ?∗ = max8 ?8 , the best cumulative reward we can expect over a period with ) in-

stants is ?∗), corresponding to always making the choice that gives a reward with the highest

probability ?∗ in %. In this context, we can write the expected regret of a policy as

Regret(ℐ) = E
[
?∗) −

)∑
C=1

'C ,�C

]
, (6.1)

where ℐ = (�1 , . . . , �)) is the sequence of choices made at each instant, and 'C ,�C the reward

associated with action �C at instant C. Minimizing the regret is similar to maximizing the sum

of rewards, but incorporates information about the best possible policy. Beyond problems

with Bernoulli rewards, MAB solutions seek to minimize regret for any unknown reward

distribution.

We list below three simple policies for choosing an action at instant C whose regret as a

function of time is $()) and Ω()):

1. exploring by uniformly choosing a random action for instant C;

2. exploiting by picking the action for which we observed the best mean reward up to

instant C; and

3. mixing exploitation and exploration, by picking the best action so far with probability

1 − & and a random action with probability &.

Approaches 2 and 3 are not guaranteed to explore enough, in the sense that they tend

to always favor the action with the highest observed mean reward, which could lead to
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suboptimal policies, with strictly positive probability. The Upper Confidence Bound (UCB)

algorithm [17, 19] includes the confidence interval of the observed reward for each action as

a component to decide which choice to make. The regret of the UCB algorithm is $(log)),
which is asymptotically optimal. At each interval, the algorithm chooses the action for which

the upper bound of a confidence interval of a specified level is the highest. The confidence

levels required should increase as a function of time, resulting in a greedy strategy which

exploits the best observed mean rewards and explores, enforced by increased thresholds,

ensuring that we balance exploitation and exploration and preventing missing opportunities

by concentrating on a suboptimal arm that produced good results by chance in the past.

TheOpenTuner [7] framework provides aMAB example applied to the autotuning context,

where actions are represented by choices of search heuristics to run for a small number of

iterations, and the rewards are computed as the number of times that a configuration that

improves performance was found by the chosen heuristic, in a sliding time window. The

hypothesis of static and independent rewards is arguably violated in the OpenTuner applica-

tion because, although the optimizations performed by each heuristic could be independent

if there was no communication between them, the results a heuristic finds are typically de-

pendent on the previous regions of the search space that it explored. Additionally, the default

configuration of the framework implements a centralizedmanager that shares results between

heuristics and maintains a shared global best configuration. It is still possible to implement

and use a different strategy to share resources between heuristics in the framework.

Algorithms for the MAB problem model choices over time and balance exploitation and

exploration directly. Although they have been used to distribute the experimental budget

between optimization methods in the OpenTuner framework, they are not the best fit for

direct application to autotuning problems. Suppose we modeled an autotuning problem as a

set of choices with distinct rewards, for example, including each possible configuration as an

action, with a corresponding performance metric as reward. In this setting, we would have to

run many tests with each configuration in order to build a confidence interval that we could

leverage. Still, many configurations would have to remain unevaluated in high dimensional

search spaces. Alternatively, it would possible to model rewards for each arm as a linear

model, using knowledge about search space structure that can be updated as optimization

progresses. The LinUCB algorithm introduced by Li et al. [130] implements such contextual

approach and applies it to a news recommender system that adapts to different users.

6.2 Reinforcement Learning

Reinforcement Learning (RL) is a class of algorithms for online learning based on Markov
Decision Processes (MDP), which consist of a series of states connected by actions. Each action

taken when the process is in a certain state at instants C ∈ {1, . . . , )} can lead to different states

with different probabilities, and can produce a reward.
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Figure 6.1: A Markov Decision Process with state set ( = {(1 , (2}, and action set � = {01 , 02}.
The transition probabilities of each action are shown near the corresponding dashed red
arrows. Rewards are either +, −, or zero, in which case no value is shown. The objective is

to maximize the cumulative reward over a time period by finding a policy to choose which

action, represented by the green arrows, should be taken in each state

More formally, anMDP is described by the sets ( and�, and the functions %, ', and�. The

sets ( = {(1 , . . . , (8} and � = {01 , . . . , 0 9} represent respectively the 8 states and 9 actions. The

function %(0, B, B′) gives the probability that, when in state B at instant C, taking action 0 leads

to state B′ at instant C+1. The function '(0, B, B′) gives the corresponding reward. Completing

the specification of an MDP, the third function is the policy � : ( → �, determining which

action should be taken at each state. Figure 6.1 shows an example of an MDP with two states

and two actions, with known % and '.

Reinforcement Learning algorithms operate when the functions % and ' are completely or

partially unknown, and seek to learn these functions by testing different policies �. Instead of

directly modeling and optimizing % and ', we optimize a function & : ( × �→ R, a method

namedQ-learning [184], which provides the expected reward of a state-action combination. If

optimization is performed for a known, finite, and fixed number of instants), we can compute

& by defining its recurrence function and filling a table of rewards for each successive state-

action combination using dynamic programming.

Successful algorithms must balance the exploitation of known effective policies, aiming

to maximize the cumulative reward, and the exploration of new policies, aiming to learn %

and '. When the objective is to optimize for a very large or unbounded duration, building a

table for dynamic programming is not anymore viable, and the function Q must be modeled

using different approaches. Optimal policies exist for special cases when an MDP has a

finite number of states and actions [52], and other approaches exist for general cases which

model Q by adapting, among others, the gradient-based and function minimization methods

we discuss in Chapter 3 to an objective function that receives a policy and computes the

regret. Another approach is to model the function Q using a neural network, as is done, for
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example, in theDeep Deterministic Policy Gradient (DDPG)method [132], used as a comparison

baseline [182] for our work in Chapter 13.

6.3 Expected Improvement for Gaussian Process Regression

We end this chapter with a discussion on howwe can balance exploitation and exploration

in Gaussian Process Regression, deciding where to measure next by computing the Expected
Improvement (EI) of unobserved points in the search space.

Suppose we have fitted a GP surrogate model to a set X with 4 observations of an objective

function 5 . Each experiment is marked by a brown point in Figure 6.2, with the true 5

marked in red. As we described in Section 4.2, the fitted surrogate provides a vector -̂

of predicted means for each 5 (x), represented by the blue line, with associated variances

vector 2̂2
. Prediction variances are represented by the shaded areas, and go to zero at each

observation. Analogously to the three approaches we described for MAB algorithms, we

could decide to explore, by choosing the x with the largest predicted variance in 2̂2
, exploit

by choosing the x with the smallest predicted mean in -̂, or mix exploitation and exploration

in the same manner as the UCB approach, by choosing the x with the smallest lower bound

of a 95% confidence interval constructed using the mean predictions -̂ and the variances 2̂2
.

Figure 6.2 shows the points that would be picked by each approach. We see that focusing

on exploration is the worst choice in our example, but it is often the case for GP surrogates,

since predicted variances grow quickly the farther from the observations we look. Exploiting

by following the mean would produce the best point in this example, but notice that we

would measure a point right next to a previous observation, and we would likely get trapped

in a nearby local minimum if we continued betting on the mean predictions. In this section

we present an approach for balancing exploitation and exploration that is better suited to

autotuning problems, where we:

4. mix exploitation and exploration by picking the x that maximizes the Expected Im-

provement of 5 (x).

The pointwewould evaluate by following the highest expected improvement is also shown

in Figure 6.2 might not be an immediate improvement on the current best observation, but it

is the choice that will dynamically balance exploitation and exploration in the long run.

The improvement brought by a new observation 5 (x), in relation to our current best

observation H∗ = <8=(y) is written

�(x) =

H∗ − 5 (x), if 5 (x) < H∗

0, otherwise

. (6.2)
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Figure 6.2: A surrogate Gaussian Process, whose mean is shown in blue, fit to four obser-

vations, shown in brown, of an objective function represented by the red line. The dashed

vertical lines show which x would be chosen for the next observation if we followed the sur-

rogate’s minimum mean, its minimum mean minus its confidence interval lower bound, its

maximum variance, or if we picked the x that maximizes its Expected Improvement

Before committing to actually measuring 5 (x), we can use the prediction vectors from our

surrogate model to compute EI for every unobserved x, that is, the expected value of �(x),
written

E[�(x)] =
(
H∗ − -̂(x)

)
Φ

(
H∗ − -̂(x)
2̂(x)

)
+ 2̂(x))

(
H∗ − -̂(x)
2̂(x)

)
, (6.3)

where Φ and ) denote the standard normal cumulative distribution and probability density

functions.

The EI computation was used by Jones et al. [117] in their Efficient Global Optimization
(EGO) algorithm, and we refer the reader to their original paper and to Chapter 16 of Kochen-
derfer and Wheeler [122] for further details and derivations of Equation 6.3. In contrast to

the regret discussed in the previous sections, the Expected Improvement strategy arguably

has a stronger focus on exploring the underlying search space structure, especially when

coupled with Gaussian Processes, since these surrogate models make specific hypotheses

regarding covariance structures encoded in the kernels and objective function continuity and

smoothness.
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6.4 Summary

In this chapter we presented methods for determining which measurements should be

made at each instant during the optimization of an unknown objective function. We presented

strategies tomix exploration and exploitation in the context ofMulti-Armed Bandit problems,

Reinforcement Learning, and Gaussian Process Regression.

A model of regret over time was used in the first two sections, and we discussed how it is

not necessarily applicable to autotuning problems. For the problems studied in the context

of this thesis, the Expected Improvement is a better suited metric for balancing exploitation

and exploration, although it emphasises exploration more and relies on the hypotheses of

Gaussian Processes.

The next chapter closes Part I, summarizing the discussions of the previous chapters and

presenting an overview of the optimization methods we apply to autotuning problems in this

thesis.
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Chapter 7

Optimization Methods for Autotuning:
An Overview

In the previous chapters we have presented a subset of optimization methods that can

be applied to autotuning problems. We chose to discuss methods and concepts that provide

interesting insight to our perspective, centered around applying these methods to autotuning

problems.

The methods for function minimization we discussed in Chapter 3 attempt to directly

optimize a target function, requiring many objective function evaluations and sometimes

requiring strong hypotheses to hold, such as differentiability. Despite having interesting

results on autotuning problems, the results produced by function minimization methods are

not easy to interpret, and are not conducive to building insight about the target problem.

In Chapter 4 we discuss linear models and Gaussian Process regression, methods that

build surrogates 5̂� using a set X of observations of the objective function 5 . Linear models

are for the most part easy to interpret but strongly biased, while regression using Gaussian

Processes can essentially interpolate observations but provides a surrogate that is not clearly

interpretable in regions of high uncertainty. We discussed in that chapter how to measure a

surrogate’s quality of fit usingANOVAand Sobol indices, which can be used for deciding how

to interpret the models and where to focus next experiments. Statistical learning methods

have been and still are widely used in all of experimental science, but it is common to find

descriptions and derivations of these methods that assume a fixed experimental design X.

In Chapter 5 we present Design of Experiments methods that are specifically concerned

in selecting the set X of experiments that is best suited for the intended analysis method.

Screening enables identifying significant linear main effects with a very restricted number of

observations, and Optimal Design provides methods to expand the screening idea to exploit

more complex hypotheses about the target search space. If we have no clear hypotheses about

search space structure, Space-filling designs can be a goodbut costlyway to uniformly explore,
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especially for high-dimensional problems, and to decrease the variance of more complex

surrogate models. In the studies that follow, wewill see that, although Design of Experiments

methods are not yet widely applied in autotuning research, they can significantly reduce the

experimental cost building surrogate models, while simultaneously decreasing variance of

estimates and increasing accuracy.

Chapter 6 presents methods to balance the exploitation-exploration trade-off. Online

learningmethods are not easy to directly adapt to our context, since the autotuning problem is

more easily stated in termsof a batch of observations to bemodeled and the target problemand

machine are static for each tuning run. Despite that, we discussed how Multi-armed Bandit

algorithmshelpeddecidingwhich functionminimizationmethod to use during an autotuning

run, how the Expected Improvement metric helps mixing exploration and exploitation in

Gaussian Process regression, and howReinforcement Learningmethods can be used tomodel

problems with strong interactions between optimization choices.

In this thesis we built, applied, and evaluated optimization methods based on Design of

Experiments in different autotuning contexts, described in detail in the next chapters, and

compared our methods to others that are commonly applied. The inner workings and the

interpretation of the results produced by our DoE approach are transparent to statistical

analysis and user intervention, and we strive to be parsimonious regarding experimental

costs. Figure 7.1 attempts to represent the hypotheses and relationships between the subset

of optimization methods we discussed in the previous chapters, viewed through the prism

of the studies and experiments we performed in this thesis. Annotations mark the chapters

were we present and apply each method.

We used twomain approaches to balance exploitation and exploration. The first approach

is sequential and breaks down exploration and exploitation in two phases. It fist explores

to identify factor significance and then exploits the identified relationships, reducing the

problem dimension. This approach is described in Chapter 11, and applied in Chapters 9,

11, and 12. The second approach is based in Gaussian Process regression and Expected Im-

provement. Its first stage explores using Space-filling designs, and subsequent measurements

mix exploration and exploitation seamlessly using EI and additional Space-filling designs for

small neighborhoods of observations.

We believe combinations of these two approaches could be intercalated depending on the

kinds of search space structure revealed during optimization, and on the specific objectives

at hand, that is, whether we need to simply find the best possible optimization in the shortest

time, build an accurate surrogate model for observed data, or identify global search space

structure.
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Part II

Applications
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Chapter 8

Research Methodology: Efforts for
Reproducibility

This chapter presents our efforts to ensure that the results we produce and the conclusions

we reach in this thesis are reproducible. In most of the search spaces we explored it was not

possible to compare our optimizations with the global optimum because, save for the results

presented in Chapter 11, it was not even possible to know whether one existed. Under these

conditions it was sometimes hard to evaluate if there were optimizations to be found, and if

the geometry hypotheses we made were sound.

The chapter is organized as follows. Section 8.1 discusses reproducible science, Section 8.2

presents the set of tools we used to produce computational documents, and Section 8.3

discusses version control and the efforts to archive our research. Section 8.4 summarizes the

discussion.

8.1 Reproducible Research

Conclusions derived from experimental data can only be considered validated after it is

possible to reproduce them under independent experimental conditions. Formal methods

and theories in the experimental sciences must be accompanied by accurate, careful, and

reproducible technique, a principle that guides experimental research and scientific progress

since its earliest recorded accounts, going at least as far back as Aristotle’s chicken embryology

studies described in Rom Harré’s book [108].

Today, experimental researchers on computer science are in a singular position to promote

and practice reproducible research, since computational experiments in certain situations can

be monitored, registered, and repeated with precision and control that are extremely hard

to achieve, or even impossible, in other experimental fields such as chemistry, physics, and

biology.

81
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Recent efforts [13] from the Association for Computing Machinery (ACM), impelled in no

small part by the work of Grigori Fursin [92, 91, 90, 89], are a great start in the direction

of rewarding and promoting reproducible research in computer science. Multiple ACM

conferences now adopt a badge system, awarding badges to works that make significant

efforts to ensure reproducibility. The ACM badge system is inspired by the concepts and

terms from the Vocabulaire Internacional de Métrologie (VIM) [32], which makes distinctions

between the repeatability, replicability, and reproducibility of results and conclusions.

According to the VIM, research is repeatable if it can be reproduced by the same research
team in the same experimental conditions, and replicable if it can be reproduced in different

experimental conditions. Research is only reproducible if the same results can be produced, and

the same conclusions can be arrived at, by a different research team, in different experimental

conditions.

We hope that in the future it becomes standard practice to provide the code and data

that support the conclusions of a study, in such a way that we can browse and reproduce the

code execution, results, and statistical analyses as easily as we do today with pdf files, often
the sole survivor of the research process. We already see motivating initiatives such as the

ReScience’s [152] 10 Years Reproducibility Challenge [153].

8.2 Literate Programming and Laboratory Journals

We produced computational notebooks for most of the work we did during this thesis,

including presentations, papers, laboratory notebooks, and this thesis. The key tools we have

used were the Emacs editor [97] and its orgmode plugin [144]. Although these tools require

a non-negligible amount of configuration and learning, they more than pay off the initial

time investment with powerful features and versatility. An orgmode computational notebook

enables Literate Programming [121], intertwining scripts in several programming languages

with markdown and inline LAT
E
X when needed.

A properly configured Emacs editor turns orgmode notebooks into an integrated research

environment where we can gather scripts for data generation, analysis, and plotting. We

can then and export the document to properly formatted pdf files. Collapsible headers enable
isolating eachpart of thework intomeaningful sections, as shown in Figure 8.1, which contains

a portion of the notebook for this thesis.

We have produced a paper, shown partially in Figure 8.2, presentations, and reports using

this workflow, but a fundamental part of our day-to-day work included a laboratory journal.
Keeping a journal aids in tracking experiments, discussions, and meetings, annotating and

linking papers, and testing ideas with code snippets. This is not yet widespread in computer

science research, but keeping a physical laboratory journal has been a common practice in

other fields, such as biology. Illustrating an additional advantage of this methodology, entire

82



8.3. Versioning and Archiving for Code, Text, and Data

Table 8.1: Projects archived in Zenodo, and corresponding thesis chapters where they are

mentioned

Project Archive Publication Thesis Chapter

CCPE paper [45] [43] 9

ReConFig paper [42, 41] [47] 10

CCGRID paper [37, 38, 39] [48] 11,12

Thesis journal [46] – 8

DoE package [40] – 5

chapters and many sections in this thesis were adapted or directly reproduced from our

journal.

8.3 Versioning and Archiving for Code, Text, and Data

In addition to keeping notebooks we maintained version control using remote and local

git repositories for all our projects, which were backed up to public hosting services. We have

used Docker images to facilitate the environment configuration for running our code when

applicable, and we have made Zenodo [81] archive releases of published work and software

packages, as shown in Table 8.1. We also kept laboratory notebooks for the work done

during our two-month visit to HPE’s research lab in Palo Alto, and for the work presented in

Chapter 13, which have not yet been published at the time of writing.

8.4 Summary

Archiving and maintaining version control for computational notebooks, code, environ-

ments, text, and data were the steps we took to improve the reproducibility of the work

performed during this thesis. These steps are not future-proof and do not guarantee repro-

ducibility, but we believe they are of great value and help, and have ourselves benefited from

keeping such records when we had to revisit past work. Section 9.5 gives an example of one

such occasion, where we expanded work done in 2015 by running new experiments with the

DoE methodology. The next chapters will discuss applications of the methods we presented

in the previous chapters, performed during this thesis.
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Figure 8.1: Excerpt of the org file generating this pdf document. Collapsed regions mark

chapters and sections written in markdown, with inline scripts to generate figures and LAT
E
X

code
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Figure 8.2: Excerpt of the org file generating our CCGRID paper [48, 37], showing code,

generated output, and markdown text
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Chapter 9

Compiler Parameters for CUDA
Kernels

AGraphics ProcessingUnit (GPU) is a parallel computing coprocessor specialized in accel-

erating vector operations such as graphics rendering. General Purpose computing on GPUs

(GPGPU) depends on accessible programming interfaces for languages such as C and Python

that enable the use of GPUs in different parallel computing domains. The Compute Unified

Device Architecture (CUDA) is a GPGPU toolchain introduced by the NVIDIA corporation.

In this study we measured the performance improvements obtained with an ensemble

of stochastic methods for function minimization applied to the parameters of the CUDA

compiler. We implemented an autotuner using the OpenTuner framework [7] and used it to

search for the compilationparameters that optimize theperformance of 17heterogeneousGPU

kernels, 12 of which are from the Rodinia Benchmark Suite [61]. We used 3 different NVIDIA

GPUs in the experiments, the Tesla K40, the GTX 980, and the GTX 750. We published the

results of this study, which we summarize in this chapter, at the Concurrency and Computation:
Practice and Experience journal [43].

The optimizations we found often beat compiler high-level optimization options, such as

the -O2 flag. The autotuner found compilation options that produced speedups, in relation

to -O2, of around 2 times for the Gaussian Elimination problem from the Rodinia Benchmark

Suite, 2 times for Heart Wall problem, also from Rodinia, and 4 times for one of the matrix

multiplication code optimizations we implemented. We observed that the compilation pa-

rameters that optimize an algorithm for a given GPU architecture would not always achieve

the same performance in different hardware, which evidences there are significant differences

between the targeted GPUs.

Figure 9.1 shows a representation of the autotuner implemented in this study, and illus-

trates the time scale of our experiments. The autotuner, in light blue, receives as input a

GPU kernel, a target GPU, input data for the kernel, and a search space composed of NVCC
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Flag Selection for Each Application & GPU

Autotuner Iteration: seconds

NVCC
Flags (~106)Data (GB)

Rodinia
Appication GPUs

Figure 9.1: Autotuner representation and time scale of the experiments

flags. After running an ensemble of stochastic search methods, the autotuner outputs a flag

selection. The compilation of the kernels we targeted in this study takes few seconds, so it

was possible to test thousands of flag combinations per hour using a sequential autotuner.

The rest of this chapter is organized as follows. Section 9.1 discusses NVIDIA GPU archi-

tecture and programming toolchain, and presents related work on GPU performance tuning

and modeling. Section 9.2 presents the search space of CUDA parameters and discusses the

autotuner we implemented. Section 9.3 presents GPUs and the kernels whose compilation

we attempted to optimize. Section 9.4 presents and discusses the performance improve-

ments achieved by the autotuner, and attempts to identify significant flags using clustering.

Section 9.5 was written at a later moment, after studying Experimental Design methods,

and revisits this problem with a screening experiment. Finally, Section 9.6 summarizes the

discussion and presents perspectives for future work.

9.1 General-Purpose Computing on NVIDIA GPUs

9.1.1 NVIDIA GPUMicro-Architecture

NVIDIA GPU architectures have multiple asynchronous and parallel Streaming Multi-

processors (SMs) which contain Scalar Processors (SPs), Special Function Units (SFUs) and

load/store units. Each group of 32 parallel threads scheduled by and SM, or warp, is able to

read from memory concurrently. NVIDIA architectures vary in a large number of features,

such as number of cores, registers, SFUs, load/store units, on-chip and cache memory sizes,

processor clock frequency, memory bandwidth, unified memory spaces and dynamic kernel

launches. Those differences are summarized in the Compute Capability (C.C.) of an NVIDIA

GPU.

The hierarchical memory of an NVIDIA GPU contains global and shared portions. Global

memory is big, off-chip, has a high latency and can be accessed by all threads of the kernel.

Shared memory is small, on-chip, has a low-latency and can be accessed only by threads in a

same SM. Each SM has its own shared L1 cache, and new architectures have coherent global

L2 caches. Optimizing thread accesses to different memory levels is essential to achieve good

performance.
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9.1.2 Compute Unified Device Architecture (CUDA)

The CUDA programming model and platform enables the use of NVIDIA GPUs for

scientific and general purpose computation. A singlemain thread runs in the CPU, launching

and managing computations on the GPU. Data for the computations has to be transferred

from the main memory to the GPU’s memory. Multiple computations launched by the main

thread, or kernels, can run asynchronously and concurrently. If the threads from a same warp

must execute different instructions the CUDA compiler must generate code to branch the

execution correctly, making the program lose performance due to this warp divergence.

The CUDA language extends C and provides a multi-step compiler, called NVCC, that
translates CUDA code to Parallel Thread Execution code (PTX). NVCC uses the host’s C++

compiler in several compilation steps, and also to generate code to be executed in the host.

The final binary generated byNVCC contains code for the GPU and the host. When PTX code

is loaded by a kernel at runtime, it is compiled to binary code by the host’s device driver. This

binary code can be executed in the device’s processing cores, and is architecture-specific. The

target architecture can be specified using NVCC parameters.

9.1.3 GPU Performance Models and Autotuning

The accuracy of a GPU performancemodel is subject to low level elements such as instruc-

tion pipeline usage and small cache hierarchies. A GPU’s performance approaches its peak

when the instruction pipeline is saturated, but becomes unpredictable when the pipeline

is under-utilized [195, 6]. Considering the effects of small cache hierarchies [69, 149] and

memory-access divergence [159, 21] is also critical to a GPU performance model.

Guo and Wang [103] introduce a framework for autotuning the number of threads and

the sizes of blocks and warps used by the CUDA compiler for sparse matrix and vector mul-

tiplication GPU applications. Li et al. [131] discuss the performance of autotuning techniques

in highly-tuned GPU General Matrix to Matrix Multiplication (GEMMs) routines, highlight-

ing the difficulty in developing optimized code for new GPU architectures. Grauer-Gray et
al. [99] autotune an optimization space of GPU kernels focusing on tiling, loop permutation,

unrolling, and parallelization. Chaparala et al. [60] autotune GPU-accelerated Quadratic As-

signment Problem solvers. Sedaghati et al. [161] build a decision model for the selection of

sparse matrix representations in GPUs.

9.2 Autotuner and Search Space for the NVCC Compiler

This section discusses our autotuner implementation and the search space of NVCC com-

piler parameters.
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C++ Code

NVIDIA CUDA Compiler

Compiler
Parameters

Object Code

Autotuner

Time

Figure 9.2: Simplified view of NVCC compilation

9.2.1 An Autotuner for CUDA Parameters using OpenTuner

The autotuner was implemented using the OpenTuner framework [7], and used a multi-

armed bandit algorithm that aims to maximize the successes across the autotuning process.

A success is defined as finding a program configuration that improves upon the best perfor-

mance found so far. The stochastic method which finds such a configuration gets its score

increased for that tuning session. A bandit algorithm, called MABAUC in the paper, for

Multi-Armed Bandit Area Under the Curve, considers a sliding window covering a given

number of measurements to compute the scores of methods in an ensemble, and to decide

which method, or “arm”, to play next. The ensemble of methods we used was composed by

implementations of the Nelder-Mead algorithm and three variations of genetic algorithms.

Figure 9.2 shows a simplified version of the steps necessary to generate the object code that

will be measured later. The code for our autotuner and all the experiments and results is

available [94] under the GNU General Public License.

9.2.2 Search Space for CUDA Parameters

Table 9.1 presents a subset of the CUDA configuration parameters [68] used in this study.

Parameters can target different compilation steps, namely the PTX optimizing assembler,

the NVLINK linker, and the NVCC compiler. We compared the performance of programs

generated by tuned parameters with the standard compiler optimizations opt-level equal to 0,
1, 2, 3. Different optimization levels could also be selected during tuning. We did not use

compiler options that target the host linker or the library manager since they do not affect

performance. The size of the search space defined by all possible combinations of flags is in

the order of 10
6
, making hand-optimization or exhaustive searches unwieldy.

9.3 Target GPUs and Kernels

This section presents the GPU testbed, the algorithm benchmark, the autotuner imple-

mentation and its search space.
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Table 9.1: Description of flags in the search space

Flag Description

no-align-double Specifies that malign-double should not be passed as a compiler argument

on 32-bit platforms. Step: NVCC

use_fast_math Uses the fast math library, implies ftz=true, prec-div=false, prec-
sqrt=false and fmad=true. Step: NVCC

gpu-architecture Specifies the NVIDIA virtual GPU architecture for which the CUDA input

files must be compiled. Step: NVCCValues: sm_20, sm_21, sm_30, sm_32,
sm_35, sm_50, sm_52

relocatable-device-code Enables the generation of relocatable device code. If disabled, executable

device code is generated. Relocatable device code must be linked before it

can be executed. Step: NVCC

ftz Controls single-precision denormals support. ftz=true flushes denormal

values to zero and ftz=false preserves denormal values. Step: NVCC

prec-div Controls single-precision floating-point division and reciprocals. prec-
div=true enables the IEEE round-to-nearest mode and prec-div=false
enables the fast approximation mode. Step: NVCC

prec-sqrt Controls single-precision floating-point squre root. prec-sqrt=true en-

ables the IEEE round-to-nearest mode and prec-sqrt=false enables the

fast approximation mode. Step: NVCC

def-load-cache Default cache modifier on global/generic load. Step: PTX Values: ca, cg,
cv, cs

opt-level Specifies high-level optimizations. Step: PTX Values: 0 - 3

fmad Enables the contraction of floating-point multiplies and adds/subtracts into

floating-pointmultiply-addoperations (FMAD, FFMA, orDFMA).Step: PTX

allow-expensive-optimizations Enables the compiler to perform expensive optimizations using maximum

available resources (memory and compile-time). If unspecified, default be-

havior is to enable this feature for optimization level >O2. Step: PTX

maxrregcount Specifies themaximumnumber of registers thatGPU functions canuse. Step:
PTX Values: 16 - 64

preserve-relocs Makes the PTX assembler generate relocatable references for variables and

preserve relocations generated for them in the linked executable. Step:
NVLINK

9.3.1 Target GPU Architectures

To be able to show that different GPUs require different options to improve performance,

and that it is possible to achieve speedups in different hardware, wewanted to tune our bench-

mark for different NVIDIA architectures. Table 9.2 summarizes the hardware characteristics

of the three GPUs.

9.3.2 Benchmark of CUDA Algorithms

We composed a benchmark with 17 heterogeneous GPU kernels. The benchmark contains

4 code optimizations for matrix multiplication counted as a single kernel, 1 vector addition

problem, 1 solution for themaximum sub-array problem [84], 2 sorting algorithms and 12 kernels

from the Rodinia Benchmark Suite [61].
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Table 9.2: Hardware specifications of the target GPU architectures

Model C.C. Global Memory Bus Bandwidth L2 Cores/SM Clock

Tesla-K40 3.5 12 GB 384-bit 276.5 GB/s 1.5 MB 2880/15 745 Mhz

GTX-750 5.0 1 GB 128-bit 86.4 GB/s 2 MB 512/4 1110 Mhz

GTX-980 5.2 4 GB 256-bit 224.3 GB/s 2 MB 2048/16 1216 Mhz

Table 9.3 shows the Rodinia kernels contained in our benchmark and the corresponding

three-letter code. The other kernels in the benchmark were the following CUDA implemen-

tations:

• Matrix multiplications using:

– Global memory with non-coalesced accesses (MMU)

– Global memory with coalesced accesses (MMG)

– Shared memory with non-coalesced accesses to global memory (MSU)

– Shared memory with coalesced accesses to global memory (MMS)

• Simple vector addition algorithm (VAD)

• Solution for the Maximum Sub-Array Problem (MSA) [5, 84]

• Quicksort (QKS) and Bitonicsort (BTN)

9.4 Performance Improvements and Parameter Clustering Attempt

This sectionpresents the speedups achieved for all algorithms in the benchmark, highlights

the most significant speedups, and discusses the performance and accuracy of the autotuner.

Table 9.3: Rodinia [61] kernels used in the experiments

Kernel Berkeley Dwarf[12] Domain

B+Tree (BPT) Graph Traversal Search

Back Propagation (BCK) Unstructured Grid Pattern Recognition

Breadth-First Search (BFS) Graph Traversal Graph Algorithms

Gaussian Elimination (GAU) Dense Linear Algebra Linear Algebra

Heart Wall (HWL) Structured Grid Medical Imaging

Hot Spot (HOT) Structured Grid Physics Simulation

K-Means (KMN) Dense Linear Algebra Data Mining

LavaMD (LMD) N-Body Molecular Dynamics

LU Decomposition (LUD) Dense Linear Algebra Linear Algebra

Myocyte (MYO) Structured Grid Biological Simulation

Needleman-Wunsch (NDL) Dynamic Programming Bioinformatics

Path Finder (PTF) Dynamic Programming Grid Traversal
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9.4.1 Performance Improvements

Figure 9.3 compares the means of 30 measurements of the tuned results for each kernel

to the high-level optimization opt-level set to 2. We see that that the autotuned solution for

the Heart Wall problem (HWL) in the Tesla K40 achieved over 2 times speedup in comparison

with the high-level CUDA optimizations. The tuned kernel for the GTX-980 reached almost

2.5 times speedup for Gaussian Elimination (GAU). We also found smaller speedups for most

kernels, such as a 10% speedup for Path Finder (PTF) in Tesla K40, and around 10% speedup

for Myocyte (MYO) on GTX-750.

Figure 9.4 summarizes the results for the other CUDA kernels we implemented. The

autotuner did not improve upon the high-level optimizations for BTN, VAD, and QKS in any

of the GPUs in the testbed, but it found solutions that achieved speedups for at least one GPU

for the other kernels.

We were not able to determine the hardware characteristics that impacted performance.

We believe that the Maxwell GPUs, the GTX-980 and GTX-750, had differing results from the

Tesla K40 because they are consumer grade GPUs, producing less precise results, and config-

ured with different default optimizations. The similarities between the compute capabilities

of theGTXGPUs could also explain the observed differences from theK40. The overall greater

computing power of the GTX-980 could explain its differing results from the GTX-750, since
the GTX 980 has a greater number of Cores, SMs/Cores, Bandwidth, Bus, Clock and Global

Memory.
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KMN

LMD

LUD

MYO

NDL

PTF

1.0 1.5 2.0 2.5

Speedup against −O2

GTX−750
GTX−980
Tesla−K40

Figure 9.3: Mean speedup over 30 repetitions of the tuned solutions for Rodinia kernels versus

the opt-level = 2 baseline
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Figure 9.4: Mean speedup over 30 repetitions of the tuned solutions for kernels we imple-

mented versus the opt-level = 2 baseline

9.4.2 CUDA Compiler Autotuner Performance

This section presents an assessment of the autotuner’s performance. Figures 9.5 and 9.6

present the speedup of the best solution found across tuning time. Points in each graph

represent the performance, in the y-axis, of the best configuration found at the corresponding

tuning time, shown in the x-axis. The leftmost point in each graph represents the performance

of a configuration chosen at random by the autotuner. Each subsequent point represents the

performance of the best configuration found across optimization. Note that the autotuner is

able to quickly improve upon the initial random configuration, but the rate of improvement

also decays quickly. The duration of all tuning runs was two hours, or 7200 seconds. The

rightmost point in each graph represents the performance of the last improving configuration

found by the autotuner.
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Figure 9.5: Mean speedup over 30 repetitions of the tuned solutions for Rodinia kernels versus

the opt-level = 2 baseline, across two hours of tuning. Notice the difference in the y-axis scales
for each panel
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Flag Cluster 0 (17%) Cluster 1 (83%)

no-align-double on on

use_fast_math on on

preserve-relocs off off

relocatable-device-code true false

ftz true true

prec-div true false

prec-sqrt true true

fmad false false

allow-expensive-optimizations false true

gpu-architecture sm_20 sm_50

def-load-cache cv ca

opt-level 1 3

maxrregcount 42 44.6

Table 9.4: Parameter clusters for all Rodinia problems in the GTX 750

9.4.3 Clustering Parameters found by Stochastic Experiments

Weattempted to associate compilation parameters to kernels andGPUs using theK-means

clustering algorithm. Although we could not find significant relations for most kernels we

detected that the ftz=true in MMS and the Compute Capabilities 3.0, 5.0 and 5.2 in GAU

caused the speedups observed in the GTX 980 for these kernels. Table 9.4 shows clusters

obtained for autotuned parameter sets for the Rodinia Benchmark in theGTX 750. Unlikemost

clusters found for all GPUs and problems, these clusters did not contain an equal number of

instances. Analysis of the unstructured explorations performedby the heuristics implemented

in OpenTuner did not permit finding relationships between compiler optimizations, kernels,

and GPUs, and motivated the application of the screening method described in the next

section.

9.5 Assessing Parameter Significance with Screening

This study was done in 2015, the first year of this thesis. Since at that time we did not have

experience with the methods for statistical modeling which we later studied, and since the

measurement time for each kernel was sufficiently small, we did not deal with the problem of

building a performance model for the CUDA compiler in this study, and originally attempted

to find good compiler configurations using stochastic methods for function minimization.

Since then, we performed a new experiment using screening and targeting the same problem,

in anattempt to identify theflags responsible for any improvementsweobserve. In this section,

before closing the chapter, we will present and discuss this new screening experiment.

The data in this section has not yet been published at the time of the writing of this thesis.

We designed and ran screening experiments for the CUDA compiler, adding the parameters

described in Table 9.5 to the search space defined in Table 9.1. We no longer had access to
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Table 9.5: Flags added to the search space from Table 9.1

Flag Description

force-store-cache Force specified cache modifier on global/generic store. Step: PTX Values:
cs, cg

force-load-cache Replaces def-load-cache, force specified cache modifier on global/-

generic load. Step: PTX Values: cs, cg

optimize Specificy optimization level for host code. Step: NVCC Values: 2, 3

the GPUs from the testbed described in the previous section, and we targeted the two GPUs

described in Table 9.6.

For this experimentwepickedHeartWall (HWL),GaussianElimination (GAU), andNeedleman-
Wunsch (NDL), the three Rodinia [61] kernels for which we found the largest speedups in the

last study. Table 9.3 gives more details on each kernel. We constructed a Plackett-Burman

design for the 15 parameters in the search space, defining aminimum andmaximumvalue for

each parameter. For categorical parameters we fixed two arbitrary levels, for the optimization

level parameters we picked the equivalents of -O2 and -O3 for both host and device code,

and for the parameter that controls the number of available registers, we picked the largest

number and the midpoint.

Table 9.6: Hardware specifications of the GPU architectures targeted in the screening experi-

ments

Model C.C. Global Memory Bus Bandwidth L2 Cores Clock

Quadro M1200 5.0 4 GB 128-bit 80.19 GB/s 2 MB 640 1148 Mhz

Titan X 5.2 12 GB 384-bit 336.5 GB/s 3 MB 3072 1075 Mhz

The Plackett-Burman design for 15 2-level factors contains 20 experiments, and we per-

formed 20 repetitions of each parameter assignment for each of the three kernels. The top and

bottom panels of Figure 9.7 show for each target GPU themeans and 95% confidence intervals

for the coefficients of a linear model fit to the screening measurements, which represent the

main effect estimates for each factor.
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Figure 9.7: Main effects estimates and 95% confidence intervals for the high level of the 15

factors in the Plackett-Burman design, for target kernels measured on the Titan X and Quadro

M1200 GPUs
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Figure 9.8: Execution time of baseline and model-predicted NVCC flag configurations for

three Rodinia kernels on the Titan X and Quadro M1200 GPUs. Circles mark each of the 20

measurements of each flag configuration, filled dots and whiskers mark the mean and 95%

confidence intervals. The experiments marked OT were made with OpenTuner using the

same number of measurements used in screening, and experiments marked OT:200 used 200

measurements

Note that because the Plackett-Burman design matrix is orthogonal the confidence inter-

vals for the effect mean estimates all have the same size. In opposition to the exploration

of stochastic methods, this well-balanced design allows the detection of factor main effects,

which are mostly small, except in the HWL kernel on the Quadro GPU, where two factors

present large effects. The linear models we built for each kernel using screening results do

not account for interactions between factors, and thus their predictions favor turning on the

factors whose mean estimates are negative and have confidence intervals that do not cross

zero.

We generated a large set of points in the CUDA parameters search space and picked

the points for which the models predict the smallest execution time. Figure 9.8 shows the

performances of the points picked by the models and the baseline for comparison, for each

Rodinia kernel. The baseline for comparison consisted of using only the PTX-stage opt-level=3
high-level compiler optimization. Therewas no significant difference in performance between

second and third levels of opt-level in these experiments.

The left panel shows results for the Titan X GPU, where we found small speedups for the

GAU and NDL kernels, but small slowdowns for HWL. The right panel shows results for the

QuadroM1200 GPU, where we found statistically significant but small speedups for GAU and

NDL, and 8 times speedup for the HWL kernel. The speedups obtained using screening are

highlighted in Figure 9.9.
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Figure 9.9: Mean speedups found using the predictions of the screening model and Open-

Tuner, for three Rodinia kernels on the Titan X and QuadroM1200 GPUs. The vertical dashed

lines mark the PTX-stage opt-level=3 comparison baseline

9.6 Summary

This study provides evidence that it is possible to improve the performance of GPUkernels

with by selecting CUDA compiler parameters and flags. The inconclusive clustering attempts

for the data obtained fromheuristic and stochastic explorations of the search spaces emphasize

the importance of well-designed experiment. Later experiments with screening reproduced

the interesting speedups found for some kernels in different GPUs, while simultaneously

allowing the identification of the flags responsible for performance improvements. Future

work in this direction will explore the impact of adding host compiler optimizations and

kernel-specific parameters. In this larger search space it would be more interesting to employ

the more flexible Optimal Design methods we discuss in Chapters 11 and 12.
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Chapter 10

High-Level Synthesis Kernels for
FPGAs

A Field-Programmable Gate Array (FPGA) is a reprogrammable circuit that enables writ-

ing specialized hardware specifications for a variety of applications without changing the

underlying chip. In recent years High Performance Computing tasks that require low power

and latency have increasingly switched to FPGAs. Hardware specifications are written using

low-level languages such as Verilog and VHDL, creating a challenge for software engineers

to leverage FPGA capabilities. Developing strategies to decrease the effort required to pro-

gram FPGAs is becoming more relevant with the overspread adaptation of FPGAs for data

centers [57, 193, 172, 165, 194, 173], with direct vendor backing [177, 2].

Essential support for software engineers can be provided by High-Level Synthesis (HLS),

where hardware descriptions are generated from high-level code. HLS compilers intend to

lower the complexity of hardware design and have become increasingly valuable as part

of the FPGA design workflow, with support from vendor HLS tools [166, 83] for C/C++

and OpenCL. The benefits of higher-level abstractions often come with the cost of decreased

performance, making FPGAs less viable as accelerators. Thus, optimizing HLS still requires

domain expertise and exhaustive or manual exploration of design spaces and configurations.

High-Level Synthesis is a challenging problem, and a common strategy for its solution

involves the divide-and-conquer approach [66]. The most important sub-problems to solve

are scheduling, where operations are assigned to specific clock cycles, and binding, where

operations are assigned to specific hardware functional units, which can be shared between

operations. LegUp [54] was an initially open-source HLS tool, that has since gone paid

and closed-source [128], and was implemented as a compiler pass for the LLVM Compiler

Infrastructure [125]. LegUp receives code in LLVM’s intermediate representation as input and

produces as output a hardware description in Verilog, exposing configuration parameters of

its HLS process, which are set with a configuration file.
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This chapter presents our implementation of an autotuner for LegUpHLS parameters, also

using theOpenTuner framework, whichwe published at ReConFig in 2017 [47]. The autotuner

we implemented in this study targeted 8 hardware metrics obtained from Altera Quartus, for

applications of the CHStoneHLS benchmark suite [107] targeting the Intel StratixV FPGA. The

programwhose configurations are explored in this study is the LegUp HLS compiler, and the

search space is composed of approximately 10
126

possible combinations of HLS parameters.

One of the obstacles we faced was the impossibility of making accurate predictions for

hardware metrics from a set of HLS parameters, or even for the generated Verilog, requiring

that we run the autotuner using the metrics reported by the lengthier process of complete

hardware synthesis instead. To mitigate the extra time cost, we implemented a virtualized

deployment workflow which enabled launching several distributed tuning runs at the same

time. We present data showing that the autotuner using stochastic methods from OpenTuner

found optimized HLS parameters for CHStone applications that decreased the Weighted Nor-
malized Sum (WNS) of hardware metrics by up to 21.5%, in relation to the default LegUp

configuration.

It takes a considerable time to synthesize hardware from specifications in hardware de-

scription languages, ranging from minutes to hours. The process of generating those specifi-

cations from high-level C code is much faster in comparison, taking only seconds. Section 10.2

describes in more detail the High-Level Synthesis process.

Configuration for Each Application & FPGA

Autotuner Iteration: minutes

HLS Config.
(~10128)

Data (KB)
CHStone

Appication FPGAs

Figure 10.1: Autotuner representation and time scale of the experiments

Figure 10.1 shows a representation of our autotuner for this experiment, and highlights

the time scales involved. The autotuner, represented by the light blue box, receives as input a

CHStone kernel, a target FPGA, input data for the kernel in the order of Kilobytes and a search

space composed of LegUp’s HLS parameters. The autotuner outputs an HLS configuration

for each kernel and FPGA.

Configuration for Each Application & FPGA

Autotuner Iteration: hours

HLS Config.
(~10128)

Data (KB)
Large

Appication FPGAs

Figure 10.2: Autotuner representation and time scale of more complex FPGA applications
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The kernels from CHStone presented further in Table 10.3 are very simple benchmark

kernels, and generating hardware for them takes time in the order of minutes. Generating

hardware for more complex FPGA applications can take several hours. Figure 10.2 shows a

representation and time scale for an autotuner that targets complex FPGA applications. Each

iteration now takes several hours, and limits the configurations that can be tested per hour.

Weworked around this limitation in this experiment by implementing a virtualized autotuner

using Docker containers, which enabled parallel measurements of different configurations.

The rest of this chapter is organized as follows. Section 10.1 discusses the background

on HLS tools and autotuning. Section 10.2 presents the search space defined by LegUp HLS

parameters and the autotuner we implemented using OpenTuner. Section 10.3 introduces

the optimization scenarios balancing different hardware metrics we targeted in this study,

discusses the HLS kernels we optimized, and presents the settings in which the experiments

were performed. Section 10.4 presents and discusses the results on each scenario. Finally,

Section 10.5 summarizes the chapter and discusses future work.

10.1 Autotuning High-Level Synthesis for FPGAs

In this section we discuss background work related to HLS tools, and autotuning for

FPGAs.

10.1.1 Tools for HLS

Various research and vendor tools for High-Level Synthesis have been developed [166,

83]. Villareal et al. [180] implemented extensions to the Riverside Optimizing Compiler for

Configurable Circuits (ROCCC), which also uses the LLVM compiler infrastructure, to add

support for generating VHDL from C code. Implemented within GCC, GAUT [67] is an

open-source HLS tool for generating VHDL from C/C++ code. Other HLS tools such as

Mitrion [120], Impulse [9] andHandel [133] also generate hardware descriptions from C code.

We refer the reader to the survey fromNane et al. [141] for a comprehensive analysis of recent

approaches to HLS.

10.1.2 Autotuning for FPGAs

Recent work studies autotuning approaches for FPGA compilation. Xu et al. [191] uses

distributed OpenTuner instances to optimize the compilation flow from hardware description

to bitstream. They optimize configuration parameters from the Verilog-to-Routing (VTR)

toolflow [134] and target frequency, wall-clock time and logic utilization. Huang et al. [113]
study the effect of LLVM pass ordering and application in LegUp’s HLS process, demonstrat-

ing the complexity of the search space and the difficulty of its exhaustive exploration. They

exhaustively explore a subset of LLVM passes and target logic utilization, execution cycles,
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frequency, and wall-clock time. Mametjanov {et al.} [135] propose a machine-learning-based

approach to tune design parameters for performance and power consumption. Nabi and

Vanderbauwhede [140] present a model for performance and resource utilization for designs

based on an intermediate representation.

10.2 Autotuner and Search Space for the LegUp HLS Compiler

This section describes our autotuner implementation, the LegUpHLS parameters selected

for tuning, and the autotuning metrics used to measure the quality of HLS configurations.

10.2.1 Autotuner

We implemented our autotunerwith OpenTuner [7], using ensembles of search techniques

to find an optimized selection of LegUp [55] HLS parameters, according to our cost function,

for 11 of the CHStone [107] kernels.

C Code

Quartus

Synthesis Mapping Place and
Route

Configuration
Parameters

LLVM

Optimization
Passes

LegUp

Ordering &
Parameters

HLS
Parameters

Verilog Hardware

Autotuner

Time

Figure 10.3: High-Level Synthesis compilation process. The autotuner search space at the

HLS stage is highlighted in blue

Figure 10.3 shows the steps to generate a hardware description from C code. It also

shows the Quartus steps to generate bitstreams from hardware descriptions and to obtain the

hardware metrics we targeted. Our autotuner used LegUp’s HLS parameters as the search

space, but it completed the hardware generation process to obtain metrics from Quartus, as

represented by the blue boxes in Figure 10.3.

HLS
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Figure 10.4: Autotuner Setup

Figure 10.4 shows our setup using Docker containers running LegUp and Quartus. This

virtualization setup enabled portable dependencymanagement and can be used to run exper-
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iments in distributed environments. The arrows coming from the autotuner to the containers

represent the flow of new configurations generated by search techniques, and the arrows

coming from the containers to the autotuner represent the flow of measurements for a set of

parameters. For CHStone kernels measurements take approximately 10 minutes to complete,

and the majority of this time is spent in Quartus’s synthesis, mapping, and place and route

steps.

10.2.2 High-Level Synthesis Parameters

We selected an extensive set of LegUp High-Level Synthesis parameters, shown partially

in Table 10.1. Each parameter in the first two rows of Table 10.1 has an 8, 16, 32 and 64 bit

variant. Operation Latency parameters define the number of clock cycles required to complete

a given operation when compiled with LegUp. Zero-latency operations can be performed

in a single clock cycle. Resource Constraint parameters define the number of times a given

operation can be performed in a clock cycle. Boolean orMulti-Valued parameters are used to set

various advanced configurations. For example, the enablepatternsharing parameter can be set to

enable resource sharing for patterns of computational operators, as is described by Hadjis et
al. [104]. For a complete list and description of each parameter, please refer to LegUp’s official

documentation [129].

Type Parameters

Operation

Latency

altfp_[divide, truncate, fptosi, add, subtract, multiply, extend, sitofp],
unsigned_[multiply, divide, add, modulus], signed_[modulus, divide, multiply,
add, comp_[o, u]], [local_mem, mem]_dual_port, reg

Resource

Constraint

signed_[divide, multiply, modulus, add], altfp_[multiply, add, subtract, di-
vide], unsigned_[modulus, multiply, add, divide], [shared_mem, mem]_dual_port

Boolean or

Multi-value

pattern_share_[add, shift, sub, bitops], sdc_[multipump, no_chaining, prior-
ity], pipeline_[resource_sharing, all], ps_[min_size, min_width, max_size,
bit_diff_threshold], mb_[minimize_hw, max_back_passes], no_roms, multi-
plier_no_chain, dont_chain_get_elem_ptr, clock_period, no_loop_pipelining,
incremental_sdc, disable_reg_sharing, set_combine_basicblock, en-
able_pattern_sharing, multipumping, dual_port_binding, modulo_scheduler,
explicit_lpm_mults

Table 10.1: Subset of All Autotuned LegUP HLS Parameters

10.2.3 HLS Autotuning Metrics

To obtain values for hardware metrics we needed to perform the synthesis, mapping and

place and route steps. We used Quartus to do so, and selected 8 hardware metrics reported

by Quartus to compose our cost or fitness function. From the fitter summary we obtained 6

metrics. Logic Utilization (LUT) measures the number of logic elements and is composed of

Adaptive Look-Up Table (ALUTs), memoryALUTs, logic registers or dedicated logic registers.

The Registers (Regs.), Virtual Pins (Pins), Block Memory Bits (Blocks), RAM Blocks (BRAM) and

DSP Blocks (DSP) metrics measure the usage of the resources indicated by their names.
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From the timing analysis we obtained the Cycles and FMax metrics, used to compute the

Wall-Clock Time metric. This metric composed the cost function, but Cycles and FMax were

not individually used. We chose to do that because all of our hardware metrics needed to be

minimized except for FMax, and computing Wall-Clock Time instead solved that restriction.

The Wall-Clock Time F2C is computed by F2C = Cycles × (/FMax), where  = 10
6
because

FMax is reported in MHz.

The objective function used by the autotuner to evaluate sets of HLS parameters is written

5
(
m0 ,m,w

)
=

8∑
8=1

F8<8

<0

8

8∑
8=1

F8

, (10.1)

and computes aWeighted Normalized Sum (WNS) of themeasuredmetrics<1,...,8 ∈ m, where m
is a vector with measurements of the 8 hardware metrics described previously, corresponding

to a single experiment. Each weight F1,...,8 ∈ w corresponds to one of the scenarios in

Table 10.2. A value is computed for each metric <8 in relation to an initial default value

<0

8
∈ m0

, measured for each metric in a given kernel, using LegUp’s default configuration.

For a given measurement vector m9 , in an optimization scenario : described by the weight

vector w: , observing 5 (m0 ,m9 ,w:) = 1.0 means that there was no improvement relative to

the default HLS configuration.

10.3 Target Optimization Scenarios and HLS Kernels

This section describes the optimization scenarios, the CHStone kernels, and the experi-

mental settings.

10.3.1 Optimization Scenarios

Table 10.2 shows the assigned weights in our 4 optimization scenarios. The Area-targeting
scenario assigns low weights to wall-clock time metrics. The Performance and Latency scenario
assigns high weights to wall-clock time metrics and also to the number of registers used. The

Performance scenario assigns low weights to area metrics and cycles, assigning a high weight

only to frequency. The Balanced scenario assigns the sameweight to everymetric. Theweights

assigned to themetrics that do not appear on Table 10.2 are always 1. The weights are integers

and powers of 2.

We compared results when starting from a Default configuration with the results when

starting at aRandom set of parameters. The default configuration for the StratixVwas provided

by LegUp and the comparison was performed in the Balanced optimization scenario.
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Table 10.2: Weights for Optimization Scenarios

(High = 8,Medium = 4, Low = 2)

Metric Area Perf. and Lat Performance Balanced

LUT High Low Low Medium

Registers High High Medium Medium

BRAMs High Low Low Medium

DSPs High Low Low Medium

FMax Low High High Medium

Cycles Low High Low Medium

10.3.2 Kernels

To test and validate our autotuner we used 11 kernels from the CHStone HLS benchmark

suite [107]. CHStone kernels are implemented in the C language and contain inputs and

previously computed outputs, allowing for correctness checks to be performed for all kernels.

Table 10.3: Autotuned CHStone Kernels

Kernel Short Description

blowfish Symmetric-key block cypher

aes Advanced Encryption Algorithm (AES)

adpcm Adaptive Differential Pulse Code Modulation dec. and enc.

sha Secure Hash Algorithm (SHA)

motion Motion vector decoding from MPEG-2

mips Simplified MIPS processor

gsm Predictive coding analysis of systems for mobile comms.

dfsin Sine function for double-precision floating-point numbers

dfmul Double-precision floating-point multiplication

dfdiv Double-precision floating-point division

dfadd Double-precision floating-point addition

Table 10.3 provides short descriptions of the 11 CHStone kernels we used. We were not

able to compile the jpeg CHStone kernel, so did not use it. All experiments targeted the Intel
StratixV 5SGXEA7N2F45C2 FPGA.

10.3.3 Experiments

We performed 10 tuning runs of 1.5ℎ for each kernel. Section 10.4 presents the mean

relative improvements for each kernel and individual metric. The code needed to run the

experiments and generate the figures, as well as the implementation of the autotuner and all

data we generated, is open and hosted at GitHub [95].

The experimental settings included Docker for virtualization and reproducibility, LegUp
v4.0,Quartus Prime Standard Edition v16.0, andCHStone [107]. All experimentswere performed

on a machine with two Intel Xeon CPU E5-2699 v3 with 18 x86_64 cores each, and 503GB of
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RAM. The instructions and the code to reproduce the software experimental environment are

open and hosted at GitHub [96].

10.4 Performance Improvements using Stochastic Methods

This section presents summaries of the results from 10 autotuning runs of 1.5ℎ in the

scenarios from Table 10.2. Results are presented in heatmapswhere each row has one of the 11

CHStone kernels in Table 10.3 and each column has one of the 8 hardware metrics and their

Weighted Normalized Sum (WNS) as described in Section 10.2.3.

Cells on heatmaps show the ratio of tuned to initial values of a hardware metric in a

CHStone kernel, averaged over 10 autotuning runs. The objective of the autotuner is to

minimize all hardware metrics, except for FMax, whose inverse is minimized. Cell values less

than 1.0 alwaysmark an improvement on a givenmetric. Darker blue squares in the following

heatmaps mark improvements, and darker red squares mark worse values in relation to the

starting point.

LUTs Pins BRAM Regs Blocks Cycles DSP FMax

blowfish

dfadd

dfdiv

dfmul

dfsin

gsm

mips

motion

sha

adpcm

aes

– – – – – – – –

1.00 0.94 1.00 0.82 1.00 0.71 1.00 0.93

0.83 1.07 0.80 0.73 0.80 0.65 1.32 1.49

1.00 1.06 0.90 0.47 0.90 0.47 1.31 1.10

0.79 0.97 1.00 0.61 1.00 0.60 1.49 1.53

0.83 1.17 1.00 0.48 1.00 0.56 0.52 0.99

1.00 0.93 1.00 0.44 1.00 0.45 0.98 1.24

1.02 1.00 0.60 0.85 1.00 0.57 1.00 0.94

1.00 1.03 1.00 0.82 1.00 0.55 1.00 0.89

0.68 1.13 1.00 0.54 1.00 0.56 0.60 0.98

0.79 0.91 1.00 0.56 1.00 0.47 1.00 1.12

Figure 10.5: Comparison of the absolute values for Random and Default starting points in the

Balanced scenario

Figure 10.5 compares the ratios of absolute values for each hardware metric for Default
and Random starts, in the Balanced scenario. Cell values less than 1.0 mean that the Default
start achieved smaller absolute values that the Random start. Cells with “–” mean that the

Default start could not find a set of HLS parameters that produced valid output during any of

the 1.5ℎ tuning runs. The Default start found better values for most metrics.

The Random start found better values for DSP, Pins and FMax for some kernels. For

example, it found values 49% smaller, 6% smaller and 53% larger for DSP, Pins and FMax,
respectively, for the dfsin kernel. The Default start found better values for Regs and Cycles for
all kernels. For example, it found values 53% smaller for Regs and Cycles for the dfmul kernel,
and 56% and 55% smaller for Regs and Cycles, respectively, for the mips kernel.

The Random start found worst values in most cases because of the size of the search

space and the stochastic nature of the explorations performed by OpenTuner methods. In

such scenarios, knowing and leveraging a reasonably good starting configuration for a given
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kernel is extremely important. The remaining results in this Section used one of the Default
starting configurations provided by LegUp, specifically targeted to Stratix V boards.

Figure 10.6 shows the results for the Balanced scenario. These results are the baseline

for evaluating the autotuner in other scenarios, since all metrics had the same weight. The

optimization target was the Weighted Normalized Sum (WNS) of hardware metrics, but we

were also interested in changes in other metrics, as their relative weights changed. In the

Balanced scenario we expected to see smaller improvements ofWNS due to the competition of

concurrent improvements on every metric.

The autotuner found values of WNS 16% smaller for the adpcm and dfdiv kernels, and

15% smaller for dfmul. Even for the Balanced scenario it is possible to see that some metrics

decreased while others decreased consistently over the 10 tuning runs. FMax and DSP had

the larger improvements for most kernels, for example, 51% greater FMax in adpcm and 69%

smaller DSP in dfmul. Cycles, Regs and Pins had the worst results in this scenario, with 34%

larger Cycles in dfdiv, 15% larger Regs in dfdiv and 17% larger Pins in gsm. Other metrics had

smaller improvements or no improvements at all in most kernels.

WNS LUTs Pins BRAM Regs Blocks Cycles DSP FMax

blowfish

dfadd

dfdiv

dfmul

dfsin

gsm

mips

motion

sha

adpcm

aes

0.99 1.00 1.00 1.00 0.98 1.00 0.98 1.00 0.99

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97

0.84 1.00 1.07 0.80 1.15 0.80 1.34 0.41 0.57

0.85 1.00 1.13 0.90 0.88 0.90 1.06 0.31 0.76

0.93 1.03 1.03 1.00 1.05 1.00 1.07 0.65 0.73

0.95 0.95 1.17 1.00 0.99 1.00 0.95 0.49 1.08

0.95 1.00 1.07 1.00 0.90 1.00 1.01 0.80 0.89

0.98 0.97 1.00 1.00 0.99 1.00 0.95 1.00 0.95

0.98 1.00 1.03 1.00 0.96 1.00 0.86 1.00 0.97

0.84 0.73 1.13 1.00 0.91 1.00 1.05 0.63 0.49

0.94 0.90 1.00 1.00 0.97 1.00 0.98 1.00 0.76

Figure 10.6: Relative improvement for all

metrics in the Balanced scenario

WNS LUTs Pins BRAM Regs Blocks Cycles DSP FMax

blowfish

dfadd

dfdiv

dfmul

dfsin

gsm

mips

motion

sha

adpcm

aes

0.99 1.00 1.00 1.00 0.97 1.00 0.91 1.00 1.01

0.99 1.00 1.11 1.00 0.94 1.00 1.00 1.00 1.04

0.77 1.00 1.22 0.67 1.03 0.67 1.62 0.28 0.77

0.82 1.00 1.06 1.00 0.90 1.00 1.21 0.27 0.86

0.94 1.00 1.06 1.00 1.00 1.00 1.02 0.76 0.80

0.89 0.83 1.06 1.00 0.86 1.00 0.89 0.82 1.14

0.91 1.00 1.06 1.00 0.89 1.00 1.00 0.72 0.84

0.97 0.94 1.00 1.00 0.97 1.00 0.92 1.00 0.95

0.96 1.00 1.06 1.00 0.84 1.00 0.83 1.00 1.08

0.83 0.78 1.11 1.00 0.96 1.00 1.04 0.63 0.52

0.96 0.92 1.00 1.00 0.93 1.00 0.97 1.00 0.86

Figure 10.7: Relative improvement for all

metrics in the Area scenario

Figure 10.7 shows the results for theArea scenario. We believe that the greater coherence of

optimization objectives is responsible for the greater improvements of WNS in the following

scenarios. The autotuner found values of WNS 23% smaller for dfdiv, 18% smaller for dfmul,
and smaller values overall in comparison with the Balanced scenario. Regarding individual

metrics, the values for FMax were worse overall, with 14% smaller FMax in gsm and 62%

greater Cycles, for example. As expected for this scenario, metrics related to area had better

improvements than in the Balanced scenario, with 73% and 72% smaller DSP for dfmul and
dfdiv respectively, 33% smaller Blocks and BRAM in dfdiv and smaller values overall for Regs
and LUTs.

Figure 10.8 shows the results for the Performance scenario. The autotuner found values

of WNS 23% smaller for dfmul, 19% smaller for dfdiv, and smaller values overall than in the

Balanced scenario. FMax was the only metric with a High weight in this scenario, so most

metrics had improvements close overall to the Balanced scenario. The values for FMax were
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best overall, with better improvements in most kernels. For example, 41%, 30%, 44% and 37%

greater FMax in dfdiv, dfmul, dfsin and aes respectively.

Figure 10.8: Relative improvement for all

metrics in the Performance scenario

WNS LUTs Pins BRAM Regs Blocks Cycles DSP FMax

blowfish

dfadd

dfdiv

dfmul

dfsin

gsm

mips

motion

sha

adpcm

aes

0.96 1.00 1.00 1.00 0.97 1.00 0.93 1.00 0.97

0.98 1.00 1.17 1.00 0.94 1.00 0.98 1.00 1.01

0.82 1.00 1.11 1.00 0.84 1.00 0.96 0.34 0.83

0.86 1.00 1.22 1.00 0.89 1.00 1.01 0.33 0.84

0.97 1.00 1.17 1.00 0.99 1.00 0.99 0.61 1.00

0.92 0.92 1.11 1.00 0.87 1.00 0.90 0.67 1.11

0.95 1.00 1.11 1.00 0.91 1.00 0.99 0.89 0.96

0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95

0.88 1.00 1.06 1.00 0.85 1.00 0.77 1.00 1.00

0.76 0.78 1.11 1.00 0.95 1.00 0.98 0.62 0.47

0.83 0.83 1.00 1.00 0.88 1.00 0.89 1.00 0.73

Figure 10.9: Relative improvement for all

metrics in the Performance and Latency sce-

nario

Figure 10.9 shows the results for the Performance and Latency scenario. The autotuner found
values of WNS 24% smaller for adpcm, 18% smaller for dfdiv, and smaller values overall than

in the Balanced scenario. Regs, Cycles and FMax had higher weights in this scenario, and

also better improvements overall. For example, 16% and 15% smaller Regs in dfdiv and sha
respectively, 23% and 11% smaller Cycles in sha and aes respectively, and 53% greater FMax in
adpcm. Although FMax had the worst improvements in relation to the Balanced scenario, the

Wall-Clock Timewas still decreased by the smaller values of Cycles.

Figure 10.10 summarizes the average improvements on WNS in the 4 scenarios over 10

runs. Only the Weighted Normalized Sum of metrics directly guided optimization. With the

exception of dfadd in the Balanced scenario, the autotuner decreasedWNS for all kernels in all

scenarios by 10% on average, and up to 24% for adpcm in the Performance and Latency scenario.
The figure also shows the average decreases for each scenario.

Figure 10.10: Relative improvement forWNS in all scenarios

10.5 Summary

This study highlights the importance of starting positions for an autotuner based on

stochasticmethods. This becomesmore relevant as the size of the search space and the number
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of targeted metrics increase. The flexibility of our virtualized approach is evidenced by the

results for different optimization scenarios. Improvements in WNS increased when higher

weights were assigned to metrics that express a coherent objective such as area, performance

and latency. The improvements of metrics related to those objectives also increased.

Kernels with large measurement time still presented a challenge for the autotuning ap-

proach we used in this problem, even with distributed measurements, because the stochastic

methods implemented in OpenTuner reach better results if longer explorations of the search

space are performed. A Design of Experiments approach such as the one we later developed

and applied to other problems, as described in Chapter 11, would be ideal for this type of

problem. Since the HLS toolchain used in this study became proprietary software and FPGA

programming is still a very closed domain, requiring paid licenses and still expensive hard-

ware, we did not have the opportunity to revisit this study with the Design of Experiments

methods we later studied.

Future work in this direction will study the impact of different starting points on the final

tuned values in each optimization scenario, for example we could start tuning for Performance
at the best autotuned Area value. We expected that starting positions tailored for each target

kernel will enable the autotuner to find better WNS values faster. We will also apply this

autotuning methodology to HLS tools that enable a fast prediction of metric values. These

tools will enable the exploration of the trade-off between prediction accuracy and the time to

measure an HLS configuration.
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An OpenCL Laplacian Kernel

This chapter introduces our Experimental Design approach to autotuning, and presents

an application were we continued the exploration, started by Masnada [136], of performance

optimization methods for the search space defined by the parameters of a Laplacian GPU

kernel. Thekernelwas implementedusingBOAST [179], a framework that enableswriting and

optimizingHPCapplications usingmetaprogramming, and is publicly hosted onGitHub [35].

We targeted the Nvidia K40c GPU, and the objective function we minimized was the time to

compute each pixel. We evaluated the performance of nine optimization methods for this

kernel, including sampling strategies, stochastic methods, variations on linear regression, our

Design of Experiments approach, and Gaussian Process Regression. Our transparent and

parsimonious Experimental Design approach achieved the most consistent results across the

methods we tested, which motivated searching for a more comprehensive set of applications

in which we could evaluate the performance of our approach. This more comprehensive

study is described in Chapter 12. The initial steps of the studies presented in this chapter and

the next were published together in the CCGRID conference [48].

The remainder of this chapter is organized as follows. Section 11.1 presents the target

kernel and the associated search space exposed by the BOAST implementation. Section 11.3

presents our adaptation of a sequential approach to autotuning, starting with modeling as-

sumptions about the search space and iteratively refining models based on ANOVA tests.

Section 11.2 discusses our initial modeling hypotheses. Section 11.4 looks at a single run of

our approach, linking the factor levels that were chosen at each step to ANOVA p-values, and
comparing to the levels of the global optimum. Section 11.5 evaluates the performance of

each method. Finally, Section 11.6 the discussion and concludes the chapter.
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Figure 11.1: Edge-detection effect of a Laplacian of Gaussian filter

11.1 The Laplacian Kernel

The Laplacian Δ 5 of a function 5 with inputs G and H is written

Δ 5 =
%2 5

%G2

+ %2 5

%H2

, (11.1)

and can be interpreted as providing ameasure of howmuch the values of 5 in a neighborhood

of a point (G, H) deviate, on average, from the value of 5 (G, H). The discrete Laplacian operator

is commonly used in image processing algorithms such as edge detection, where it is typically

composed with smoothing filters. In the discrete setting the Laplacian of an image can be

computed by a convolution filter, where a single kernel encodes the smoothing and Laplacian

filters. Figure 11.1 shows the effect of applying a Laplacian of Gaussian convolution filter to

detect edges in a picture.

11.1.1 BOAST Code and the OpenCL Kernel

Our Experimental Design approach can be applied to any autotuning domain that ex-

presses optimization as a search problem, but the performance evaluations we present in

this thesis were obtained in the domain of source-to-source transformation. Several frame-

works, compilers, and autotuners provide tools to generate and optimize architecture-specific

code [109, 179, 174, 192, 8]. We used BOAST [179] to generate code for GPUs by generating an

OpenCL Laplacian kernel, optimizing parameters controlling vectorization, loop transforma-

tions, and data structure size and copying.

Figure 11.1.1 shows a Laplacian kernel naively written in C. In this code, the RGB channels

of an image are stored a single int array, representing a color image. A three by three

convolution kernel is applied to each color channel separately.
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void kernel(int width, int height, uint8_t *source, uint8_t *destination){
int i, j, d, ii, jj, tmp;
for (j = 1; j < height - 1; j++) {

for (i = 1; i < width - 1; i++) {
// Process RGB components separately
for (d = 0; d < 3; d ++) {

tmp = 0;
for(jj = -1; jj < 1; jj++) {

for(ii = -1; ii < 1; ii++) {
if(ii == 0 && jj == 0) {

tmp += 9 * source[d + (3 * (i + (width * j)))];
} else {

tmp -= source[d + (3 * ((i + ii) + (width * (j + jj))))];
}

}
}
// Clamp to valid pixel values
destination[d + (3 * (i + (width * j)))] = tmp < 0 ? 0 :

(tmp > 255 ? 255 : tmp);
}

}
}

}

Figure 11.2: A CPU Laplacian kernel written in C

For comparison, the BOAST Ruby script for generating a parameterized Laplacian kernel

is partially shown in Figure 11.2.2. A sample of the resulting OpenCL kernel is shown in

Figure 11.2.2. The difference in complexity between the naive implementation in Figure 11.1.1

and the parameterized generated version helpsmotivate the usage of automated optimization

methods for autotuning.

11.2 Building a Performance Model

This section describes the search space exposed by the BOAST Laplacian kernel and our

initial modeling hypotheses.

11.2.1 Search Space

The factors and levels defining the search space are listed inTable 11.1. The complete search

space contains 1.9×10
5
configurations, but removing invalid configurations, or configurations

that fail at runtime, yields a search space with 2.3×10
4
configurations. The valid search space

took 154 hours to be completely evaluated on an Intel Xeon E5-2630v2 CPU, with gcc version
4.8.3 and Nvidia driver version 340.32.

11.2.2 Modeling the Impact of Each Factor

This section briefly describes each factor and our modeling hypotheses regarding their

impact on performance.
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Table 11.1: Parameters of the Laplacian Kernel

Factor Levels Short Description

vector_length 2
0 , . . . , 24

Size of vectors

load_overlap true, false Load overlaps in vectorization

temporary_size 2, 4 Byte size of temporary data

elements_number 1, . . . , 24 Size of equal data splits

y_component_number 1, . . . , 6 Loop tile size

threads_number 2
5 , . . . , 210

Size of thread groups

lws_y 2
0 , . . . , 210

Block size in H dimension

Linear Terms

The effects of the following factors were modeled with linear terms, whether because

they are categorical binary factors or to attempt to exploit the simplest relationship under

uncertainty of the effects.

• The vector_length factor controls the vector size used during computation. Architectures

supporting vectorization provide speedups by saving instruction decoding time, but

vectors must be properly sized. Although NVIDIA GPUs did not support vectorization

at the time of this study, vectorization can still impact performance via cache effects

• The load_overlap factor is binary, and its effect is consequently modeled with a linear

term. The parameter encodes the choice of whether to save memory load instructions

by overlapping vectors in memory

Linear plus Inverse Terms

The effects of the following factors were modeled with a linear term plus an inverse term.

In our initial model we assumed that these factors had a linear effect on performance, but also

that a more complex relationship existed due to different kinds of overhead. In all cases, we

modeled the expected overhead as an inverse term.

• The elements_number factor controls the size of image portion that will be processed by

each thread, and using smaller portions implies using more threads. As more threads

are used we expect an improvement on performance, but also an overhead due to extra

memory loads and to the cost of managing threads

• The lws_y factor controls the size of a thread block, in the y-axis. We did not have

assumptions about the behavior of this factor, other than a possible overhead due to

thread management, so we attempted linear plus inverse terms

• The y_component_number factor controls tiling on the y-axis of the target image, inside

each thread. The optimal tiling size is a compromise between fitting a tile in cache and

providing enough prefetched memory to not slow computation down
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• The threads_number parameter controls the size of an OpenCL thread work group.

Threads in the same group share data and can be scheduled together. Using more

smaller groups can improve performance from better scheduling, but imply in more

management overhead

The Complete Initial Model

Putting together the terms for all factors, the complete initialmodel for the time to compute

a single pixel is written

time_per_pixel ∼y_component_number + 1

y_component_number
+

temporary_size + vector_length + load_overlap +

lws_y + 1

lws_y
+ elements_number + 1

elements_number
+

threads_number + 1

threads_number
, (11.2)

where coefficients were omitted. This model was pruned at each iteration of our method,

fixing significant factors to their best predicted level.
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def laplacian(options)
default_options = {:x_component_number => 1,

:vector_length => 1,
:y_component_number => 1,
:temporary_size => 2,
:vector_recompute => false,
:load_overlap => false}

# [...] (Omitted)
# Begining of the generated procedure, based on the baseline
p = Procedure("kernel", [psrc, pdst, width, height]) {
# [...] (Omitted)
# Using vector_length to compute the number of vectors
vector_number = (x_component_number.to_f/vector_length).ceil
total_x_size = vector_recompute ? vector_number *

vector_length : x_component_number
# [...] (Omitted)
# Using y_component_number to compute offsets
y_offset = y_component_number + 1
# Controlling load_overlap
if not load_overlap then
total_load_window = total_x_size + 6
tempload = []
ranges = split_in_ranges(total_load_window, vector_length)
ranges.each { |r|
tempload.push( Int("tempload#{r.begin}_#{r.end}", :size => 1,

:vector_length => (r.end - r.begin + 1), :signed => false) )
}
decl *(tempload)

else
tempnn = (0..2).collect { |v_i|
(0...vector_number).collect { |x_i|
(0...(y_component_number+2)).collect { |y_i|
Int("temp#{x_i}#{v_i}#{y_i}", :size => 1,

:vector_length => vector_length, :signed => false)
}

}
}
decl *(tempnn.flatten)

end
# [...] (Omitted)
# Using temporary_size to allocate data
tempcnn = (0..2).collect { |v_i|
(0...vector_number).collect { |x_i|
(0...(y_component_number+2)).collect { |y_i|
Int("tempc#{x_i}#{v_i}#{y_i}", :size => temporary_size,

:vector_length => vector_length)
}

}
}
decl *(tempcnn.flatten)
# [...] (Omitted)
# Generate kernel and clamp to valid pixel values
(0...vector_number).each { |v_i|
(0...y_component_number).each { |y_i|
pr rescnn[v_i][y_i] === - tempcnn[0][v_i][y_i] -

tempcnn[1][v_i][y_i] -
tempcnn[2][v_i][y_i] -
tempcnn[0][v_i][y_i + 1] +
tempcnn[1][v_i][y_i + 1] *
"(#{temp_type})9" -
tempcnn[2][v_i][y_i + 1] -
tempcnn[0][v_i][y_i + 2] -
tempcnn[1][v_i][y_i + 2] -
tempcnn[2][v_i][y_i + 2]

pr resnn[v_i][y_i] === clamp(rescnn[v_i][y_i],
"(#{temp_type})0",
"(#{temp_type})255",
:returns => rescnn[v_i][y_i])

}
}
# [...] (Omitted)

}
# Variable p contains the complete generated OpenCL code
pr p
k.procedure = p
return k

end

Figure 11.3: Excerpts of the BOAST code, in Ruby, that generates the Laplacian OpenCL

kernel. The code is publicly hosted at GitHub [34]
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__kernel void kernel(const __global uchar * psrc, __global uchar * pdst,
const int width, const int height){

int y, x, w;
x = (get_global_id(0)) * (1);
y = (get_global_id(1)) * (3);
w = (width) * (3);
x = (x < 3 ? 3 : (x > w - (11) ? w - (11) : x));
y = (y < 1 ? 1 : (y > height - (4) ? height - (4) : y));
uchar8 tempload0_7, tempload8_11, tempload12_13,

res00, res01, res02, tempc000;
int8 tempc001, tempc002, tempc003, tempc004, tempc010, tempc011, tempc012,

tempc013, tempc014, tempc020, tempc021, tempc022, tempc023, tempc024,
resc00, resc01, resc02;

tempload0_7 = vload8(0, &psrc[x + -3 + (w) * (y + -1)]);
tempload8_11 = vload4(0, &psrc[x + 5 + (w) * (y + -1)]);
tempload12_13 = vload2(0, &psrc[x + 9 + (w) * (y + -1)]);
tempc000 = convert_int8( (uchar8)(tempload0_7.s01234567) );
tempc010 = convert_int8( (uchar8)(tempload0_7.s345,tempload0_7.s67,tempload8_11.s012) );
tempc020 = convert_int8( (uchar8)(tempload0_7.s67,tempload8_11.s0123,

tempload12_13.s01) );
tempload0_7 = vload8(0, &psrc[x + -3 + (w) * (y + 0)]);
tempload8_11 = vload4(0, &psrc[x + 5 + (w) * (y + 0)]);
tempload12_13 = vload2(0, &psrc[x + 9 + (w) * (y + 0)]);
tempc001 = convert_int8( (uchar8)(tempload0_7.s01234567) );
tempc011 = convert_int8( (uchar8)(tempload0_7.s345,tempload0_7.s67,tempload8_11.s012) );
tempc021 = convert_int8( (uchar8)(tempload0_7.s67,tempload8_11.s0123,

tempload12_13.s01) );
tempload0_7 = vload8(0, &psrc[x + -3 + (w) * (y + 1)]);
tempload8_11 = vload4(0, &psrc[x + 5 + (w) * (y + 1)]);
tempload12_13 = vload2(0, &psrc[x + 9 + (w) * (y + 1)]);
tempc002 = convert_int8( (uchar8)(tempload0_7.s01234567) );
tempc012 = convert_int8( (uchar8)(tempload0_7.s345,tempload0_7.s67,tempload8_11.s012) );
tempc022 = convert_int8( (uchar8)(tempload0_7.s67,tempload8_11.s0123,

tempload12_13.s01) );
tempload0_7 = vload8(0, &psrc[x + -3 + (w) * (y + 2)]);
tempload8_11 = vload4(0, &psrc[x + 5 + (w) * (y + 2)]);
tempload12_13 = vload2(0, &psrc[x + 9 + (w) * (y + 2)]);
tempc003 = convert_int8( (uchar8)(tempload0_7.s01234567) );
tempc013 = convert_int8( (uchar8)(tempload0_7.s345,tempload0_7.s67,

tempload8_11.s012) );
tempc023 = convert_int8( (uchar8)(tempload0_7.s67,tempload8_11.s0123,

tempload12_13.s01) );
tempload0_7 = vload8(0, &psrc[x + -3 + (w) * (y + 3)]);
tempload8_11 = vload4(0, &psrc[x + 5 + (w) * (y + 3)]);
tempload12_13 = vload2(0, &psrc[x + 9 + (w) * (y + 3)]);
tempc004 = convert_int8( (uchar8)(tempload0_7.s01234567) );
tempc014 = convert_int8( (uchar8)(tempload0_7.s345,tempload0_7.s67,tempload8_11.s012) );
tempc024 = convert_int8( (uchar8)(tempload0_7.s67,tempload8_11.s0123,

tempload12_13.s01) );
// Kernel computation
resc00 = -(tempc000) - (tempc010) - (tempc020) - (tempc001) + (tempc011) *

((int)9) - (tempc021) - (tempc002) - (tempc012) - (tempc022);
res00 = convert_uchar8( clamp(resc00, (int)0, (int)255) );
resc01 = -(tempc001) - (tempc011) - (tempc021) - (tempc002) + (tempc012) *

((int)9) - (tempc022) - (tempc003) - (tempc013) - (tempc023);
res01 = convert_uchar8( clamp(resc01, (int)0, (int)255) );
resc02 = -(tempc002) - (tempc012) - (tempc022) - (tempc003) + (tempc013) *

((int)9) - (tempc023) - (tempc004) - (tempc014) - (tempc024);
res02 = convert_uchar8( clamp(resc02, (int)0, (int)255) );
vstore8( res00, 0, &pdst[x + 0 + (w) * (y + 0)] );
vstore8( res01, 0, &pdst[x + 0 + (w) * (y + 1)] );
vstore8( res02, 0, &pdst[x + 0 + (w) * (y + 2)] );

}

Figure 11.4: A sample OpenCL Laplacian kernel generated by BOAST
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Figure 11.5: Overview of the DoE approach to autotuning we implemented

11.3 A Transparent and Parsimonious Approach to Autotuning
using Optimal Design

In this section we discuss in detail our iterative, transparent, and parsimonious Experi-

mental Design approach to autotuning. Figure 11.5 presents an overview. In step 1 we define

the factors and levels that compose the search space of the target problem, in step 2 we select

an initial performance model, and in step 3 we generate an experimental design. We run the

experiments in step 4 and then, aswe discuss in the next section, we identify significant factors

with an ANOVA test in step 5. This enables selecting and fitting a new performance model in

steps 6 and 7. The new model is used in step 8 for predicting levels for each significant factor.

We then go back to step 3, generating a new design for the new problem subspace with the

remaining factors. Informed decisions made by the user at each step guide the outcome of

each iteration.

Step 1 of our approach is to define target factors and which of their levels are worth

exploring. Then, the user must select an initial performance model in step 2. Compilers

typically expose many 2-level factors in the form of configuration flags, and the performance

model for a single flag can only be a linear term, since there are only 2 values to measure.

Interactions between flags and numerical factors such as block sizes in CUDA programs or

loop unrolling amounts are also common. Deciding which levels to include for these kinds of

factors requires more careful analysis. For example, if we suspect the performance model has

a quadratic term for a certain factor, the design should include at least three factor levels. The

ordering between the levels of other compiler parameters, such as -O(0,1,2,3), is not obviously
translated to a number. Factors like these are named categorical, andmust be treated differently

when constructing designs in step 3 and analyzing results in step 5.

After the design is constructed in step 3, we run each selected experiment in step 4.

This step can run in parallel since experiments are independent. Not all target programs run

successfully in their entire input range,making runtime failures common in this step. The user

118



11.4. Looking at a Single DLMT Run

can decide whether to construct a new design using the successfully completed experiments

or to continue to the analysis step if enough experiments succeed.

After running the ANOVA test in step 5, the user should apply domain knowledge to

analyze the ANOVA table and determine which factors are significant. Certain factors might

not appear significant and should not be included in the regression model. Selecting the

model after the ANOVA test in step 6 also benefits from domain knowledge.

A central assumption of ANOVA is the homoscedasticity of the response, which can be

interpreted as requiring the observed error onmeasurements to be independent of factor levels

and of the number of measurements. Fortunately, there are statistical tests and corrections

for lack of homoscedasticity. Our approach uses the homoscedasticity check and correction

by power transformations from the car package [86] of the R language.

We fit the selected model to our design’s data in step 7, and use the fitted model in step 8

to find levels that minimize the response. The choice of the method used to find these levels

depends on factor types and on the complexity of the model and search space. If factors have

discrete levels, neighborhood exploration might be needed to find levels that minimize the

response around predicted levels. Constraints might put predicted levels on an undefined

or invalid region on the search space. This presents challenge, because the borders of valid

regions would have to be explored.

In step 8 we also fix factor levels to those predicted to achieve best performance. The user

can also decide the level of trust placed on the prediction at this step, by keeping other levels

available. In step 8 we perform a reduction of problem dimension by eliminating factors and

decreasing the size of the search space. If we identified significant parameters correctly, we

will have restricted further search to better regions.

In this chapter and in Chapter 12 we evaluate the performance of this Design of Ex-

periments approach to autotuning in different applications. The next section discusses the

implementation of a Laplacian kernel for GPUs and the resulting search space.

11.4 Looking at a Single DLMT Run

This section presents a more detailed look at the iterative process performed during the

optimization of the Laplacian kernel by our method. Table 11.2 shows the ANOVA tests

performed at each step in Figure 11.6, highlighting the factors identified to be significant at

each step, which were subsequently fixed to their best predicted levels. Note that the size

of the model being tested decreases at each step, as factors are fixed. These progressive

restrictions to slices of the search space enable the ANOVA test to detect differences in means

that were previously unclear.

Factors were chosen based on ANOVA tests where factors with p-values below a threshold

of ? < 0.05 were considered significant. The threshold for significance must be adjusted
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Table 11.2: ANOVA tests at each step. Red lines mark model terms that were considered

significant, with ? < 0.05, and fixed in a given step

Step Term Sum Sq. F-value p(>F)

1
st

y_component_number 2.1 × 10
−18

7.3 × 10
−1

4.1 × 10
−1

1/y_component_number 4.4 × 10
−18

1.6 × 10
0

2.4 × 10
−1

vector_length 1.3 × 10
−17

4.4 × 10
0

4.7 × 10
−2

lws_y 6.9 × 10
−17

2.4 × 10
1

3.5 × 10
−4

1/lws_y 1.8 × 10
−17

6.2 × 10
0

2.8 × 10
−2

load_overlap 9.1 × 10
−20

3.2 × 10
−2

8.6 × 10
−1

temporary_size 7.1 × 10
−18

2.5 × 10
0

1.4 × 10
−1

elements_number 3.1 × 10
−19

1.1 × 10
−1

7.5 × 10
−1

1/elements_number 1.3 × 10
−18

4.4 × 10
−1

5.2 × 10
−1

threads_number 7.2 × 10
−18

2.5 × 10
0

1.4 × 10
−1

1/threads_number 4.3 × 10
−18

1.5 × 10
0

2.4 × 10
−1

2
nd

y_component_number 1.2 × 10
−19

2.1 × 10
1

1.4 × 10
−3

1/y_component_number 1.4 × 10
−20

2.4 × 10
0

1.5 × 10
−1

load_overlap 4.1 × 10
−21

7.3 × 10
−1

4.1 × 10
−1

temporary_size 1.4 × 10
−21

2.6 × 10
−1

6.2 × 10
−1

elements_number 6.0 × 10
−22

1.1 × 10
−1

7.5 × 10
−1

1/elements_number 2.7 × 10
−21

4.8 × 10
−1

5.0 × 10
−1

threads_number 7.2 × 10
−21

1.3 × 10
0

2.9 × 10
−1

1/threads_number 2.9 × 10
−20

5.1 × 10
0

4.0 × 10
−2

3
rd

load_overlap 7.4 × 10
−25

3.8 × 10
0

1.1 × 10
−1

temporary_size 1.1 × 10
−22

5.7 × 10
2

2.4 × 10
−1

elements_number 9.3 × 10
−22

4.7 × 10
3

1.2 × 10
−8

1/elements_number 3.1 × 10
−22

1.6 × 10
3

1.9 × 10
−7

to better fit the target problem, and could be dispensed with altogether, according to the

desired degree of automation and trust in the initial modeling assumptions. All experiments

with this method presented in this thesis were completely automated using fixed significance

thresholds.

Figure 11.6 shows the factors that were eliminated in each of the 3 steps performed by

DLMT, and compares each factor’s predicted best level with the level for that factor in the

global optimum.

We see in this experiment that the chosen factor level matches the level on the global

optimum in all factor fixing steps, except for the number of threads. This seems to have a

small effect in the final results, but could be fixed in this specific case by dropping the inverse

term, since the level on the global optimum is the highest one possible. This is an example

of how this transparent approach can help learning about the problem begin optimized by

challenging initial modeling assumptions. In this case, perhaps thread group management is

a larger overhead than expected, and it is better to have larger groups.
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Figure 11.6: Overview of a single DLMT run. Each panel shows a view of the completely

evaluated search space, from the perspective of one of the factors eliminated in a given

step. A × marks the predicted best level of each factor, a × marks the factor level on the

global optimum, ×s mark the design points measured at each step, and gray points mark the

completely evaluated search space
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11.5 Evaluation of Optimization Methods

This section presents a more thorough performance evaluation of the approach described

in Section 11.3, comparing this approach to eight other optimization methods. The perfor-

mance model described in the previous section was used by the Iterative Linear Model (LM)

and the Quantile Regression (QR) methods, as well as by our approach, named D-Optimal
Designs, with Linear Model and heteroscedasticity correction Transform (DLMT). The LM method

is almost identical to our approach, described in Chapter 11, but it uses a fixed-size random

sample of the search space instead of generatingD-Optimal designs. Likewise, theQRmethod

used random samples and Quantile Regression, in an attempt to decrease the impact of noisy

outliers in the final fit and to target theminimum instead of themean performance. Addition-

ally, we compared the performance of our approachwith nine othermethods, namely uniform

RandomSampling (RS), LatinHypercube Sampling (LHS),GreedySearch (GS),GreedySearch

with Restart (GSR), and a Genetic Algorithm (GA). At a later date, after the CCGRID pub-

lication, we added to this performance comparison an implementation of Gaussian Process

Regression with Expected Improvement acquisition function (GPR). Each method performed

at most 125 measurements over 1000 repetitions, without user intervention.

Since wemeasured the entire valid search space for this kernel, we could use the slowdown
relative to the global optimum to compare the performances of eachmethod. Table 11.3 shows

themean,minimum, andmaximumslowdowns in comparison to the global optimum for each

method. It also shows the mean and maximum budget used by each method. Figure 11.7

presents histograms with the count of the slowdowns found by each of the 1000 repetitions.

Arrowspoint themaximumslowdown foundbyeachmethod. Note thatmaximumslowdown

of the GS method was left out of range to help the comparison between the other method.

All methods performed relatively well in this kernel, with only GS not being able to find

slowdowns smaller than 4 times in some of the runs. As expected, other search algorithms

had results similar to RS. LMwas able to find slowdowns close to the global optimum onmost

runs, but some of the runs could not find slowdowns smaller than 4 times. TheDLMTmethod

reached a slowdown of 1% from the global optimum in all of the 1000 runs while using at

most less than half of the allotted budget. Notice that the GPR with EI method produced

rather good results in this kernel, but not as good as DLMT for this particular application.
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Figure 11.7: Distribution of slowdowns in relation to the global optimum for 7 optimization

methods on the Laplacian Kernel, using a budget of 125 points over 1000 repetitions
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We implemented a simple approach for the prediction step in this problem, choosing the

best value of our fitted models on the complete set of valid level combinations. This was

possible for this problem since all valid combinations were known. For problems where the

search space is too large to be generated, we would have to either adapt this step and run the

prediction on a sample, or use another optimization method over a fitted surrogate.

This kernel provided ideal conditions for using our approach, where the performance

model is approximately known and the complete valid search space is small enough to be

used for prediction. The global optimum also appears to not be isolated in a region of points

with bad performance, since our approach was able to exploit search space geometry. In

Chapter 12 we present a more comprehensive performance evaluation of our approach in a

larger benchmark suite.

11.6 Summary

This chapter described a transparent and parsimonious approach to autotuning, based on

D-Optimal Designs, ANOVA tests, and Linear Regression. We dealt with the heteroscedas-

ticity that could violate modeling assumptions by using standard detection tests and trans-

formation procedures. This approach produced optimizations consistently within 1% of the

global optimum of an OpenCL Laplacian kernel run in an NVIDIA GPU, using half of the

allotted measurement budget for optimization.

We demonstrated how the choices made during optimization are completely transparent,

in such a way that it is straightforward to envision how users could interfere with and learn

from the optimization process by, for example, selecting specific factors that should be treated

differently, and changing initial modeling assumptions based on the results produced.

The development, testing, and tweaking of this approach relied heavily on the availability

of a completely evaluated search space, with known global optimum. Having access to

this sort of search space is not possible in real applications, as we will see in the next two

Table 11.3: Slowdown and budget used by 7 optimization methods on the Laplacian Kernel,

using a budget of 125 points with 1000 repetitions

Slowdown Budget

Method Mean Min. Max. Mean Max.

Random Sampling (RS) 1.10 1.00 1.39 120.00 120

Latin Hypercube Sampling (LHS) 1.17 1.00 1.52 98.92 125

Greedy Search (GS) 6.46 1.00 124.76 22.17 106

Greedy Search w. Restart (GSR) 1.23 1.00 3.16 120.00 120

Genetic Algorithm (GA) 1.12 1.00 1.65 120.00 120

Linear Model (LM) 1.02 1.01 3.77 119.00 119

Quantile Regression (QR) 1.02 1.01 2.06 119.00 119

D-Opt., Linear Model w. Transform (DLMT) 1.01 1.01 1.01 54.84 56

Gaussian Process Regression w. EI (GPR) 1.04 1.01 1.27 71.45 120

124



11.6. Summary

chapters, but it is also unfortunately uncommon in the autotuning literature. We hope the

studies presented in this thesis, and the one in this chapter in particular, help arguing for and

justifying the elaboration and evaluation of well-defined and completely-evaluated search

spaces for autotuning, composed of high-interest computing kernels, that could be used for

the development and comparison of optimization methods for autotuning.
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Chapter 12

SPAPT Kernels and Orio

This chapter presents an application of Optimal Design and Gaussian Process Regression

to theoptimizationof source-to-source transformationkernels from theSPAPT [24] benchmark

suite.

The chapter is organized as follows. Section 12.1 discusses our choice of using D-Optimal

designs, considering its applicability to autotuning among other Experimental Design meth-

ods. Section 12.2 presents theCPUkernels towhichwe applied our approach, and Section 12.3

discusses the results. The work presented up to Section 12.3 was published at CCGrid [48] in

2019. The studies we performed later were not yet published at the writing of this thesis. In

Section 12.4 we explore the optimization of one of the target kernels and identify the factors

and levels thatwhere responsible for the observedperformance improvements. In Section 12.5

we discuss the application of Gaussian Process Regression with Expected Improvement to the

same kernel. Finally, Section 12.6 summarizes the chapter and discusses future work.

12.1 Choosing a Design of Experiments Method for Autotuning

Our application of the DoE methodology requires support for factors of different types

and numbers of levels, such as binary flags, integer and floating point numerical values and

enumerations of categorical values. We also need designs that minimize the number of ex-

periments needed for identifying the most relevant factors of a problem, since at this moment

we are not interested in a precise analytical model. The design construction techniques that

fit these requirements are limited. The first DoE approach we studied was screening which,

despite being extremely parsimonious, does not have enough flexibility to explore the search

spaces which we wished to study.

Despite being parsimonious, screening designs are extremely restrictive Algorithms for

constructing Optimal Designs can adapt to our requirements, being able to mix factors of

different types and optimizing a starting designs. Before settling onD-Optimal designs, which
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we use in this study, we explored other design construction techniques such as extensions

to Plackett-Burman [150] designs that use random factor levels, the contractive replacement
technique presented by Addelman-Kempthorne [3], and the direct generation algorithm by

Grömping and Fontana [101]. These techniques have strong requirements on design size and

level mixing, so we opted for a more flexible technique that would enable exploring a more

comprehensive class of autotuning problems.

The modified screening method provides a strategy to use factors with more than two

levels by, instead of encoding fixed high and low levels, sampling two levels uniformly, each

time the factor is included in a Plackett-Burman design. This approach has the advantage of

a small design size with good main effect estimation capability, but it is still not capable of

estimating interactions.

The contractive replacementmethod starts with a large 2-level design and generates mixed-

level designs by re-encoding and replacing pairs of columns with a new column for a multi-

level factor. The contractive replacement method presented by Addelman-Kempthorne [3] is

a strategy of this kind. In addition to small design size and good estimation capability, their

method maintains the orthogonality of starting designs, although it places strong require-

ments on initial designs, such that only orthogonal 2-level matrices can be contracted with

their method.

The direct generation algorithm introduced by Grömping and Fontana [101] enables the

direct generation of multi-level designs that minimize theGeneralizedMinimumAberration [71]

optimality criterion by solving mixed integer problems. We did not pursue this method

because of the limitations it imposes on the size and the shape of the designs that can be

generated, and also because it relied on proprietary MIP solvers that we did not have access

to.

Weighting flexibility, effectiveness, parsimony, and the cost and availability of algorithmic

construction, we pickedD-Optimal Designs among themethods that fulfilled the requirements

for application to autotuningproblems. Inparticular, weused theKL-exchange algorithm [15],

which enablesmixing categorical andnumerical factors in the samedesign, while biasing sam-

pling according to the performance model we wish to explore. This enables the exploitation

of global search space structures, if we use the right model. We can safely optimize for the D
optimality criterion among other criteria without loosing quality of designs [119].

12.2 The SPAPT Benchmark Suite

TheSearchProblems inAutomatic Performance Tuning (SPAPT) [24] benchmark suite provides

parametrized CPU kernels from different HPC domains. The kernels shown in Table 12.1 are

implemented using the code annotation and transformation tools provided by Orio [109].

Search space sizes are larger than in the Laplacian Kernel example. Kernel factors are either
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Table 12.1: Kernels from the SPAPT benchmark used in this evaluation

Kernel Operation Factors Size

atax Matrix transp. & vector mult. 18 2.6 × 10
16

dgemv3 Scalar, vector & matrix mult. 49 3.8 × 10
36

gemver Vector mult. & matrix add. 24 2.6 × 10
22

gesummv Scalar, vector, & matrix mult. 11 5.3 × 10
9

hessian Hessian computation 9 3.7 × 10
7

mm Matrix multiplication 13 1.2 × 10
12

mvt Matrix vector product & transp. 12 1.1 × 10
9

tensor Tensor matrix mult. 20 1.2 × 10
19

trmm Triangular matrix operations 25 3.7 × 10
23

bicg Subkernel of BiCGStab 13 3.2 × 10
11

lu LU decomposition 14 9.6 × 10
12

adi Matrix sub., mult., & div. 20 6.0 × 10
15

jacobi 1-D Jacobi computation 11 5.3 × 10
9

seidel Matrix factorization 15 1.3 × 10
14

stencil3d 3-D stencil computation 29 9.7 × 10
27

correlation Correlation computation 21 4.5 × 10
17

integers in an interval, such as loop unrolling and register tiling amounts, or binary flags that

control parallelization and vectorization.

We used the Random Sampling (RS) implementation available in Orio and integrated an

implementation of our approach (DLMT) to the system. We omitted the otherOrio algorithms

because other studies using SPAPT kernels [23, 22] showed that their performance is similar

to RS regarding budget usage. The global minima are not known for any of the problems, and

search spaces are too large to allow complete measurements.

12.3 Performance Improvements using Optimal Design

We used the performance of each SPAPT kernel compiled with the gcc -O3 flag, with no

code transformations, as a baseline for computing the speedups achieved by each strategy. We

performed 10 autotuning repetitions for each kernel using RS and DLMT, using a budget of

at most 400 measurements. DLMT was allowed to perform only 4 of the iterations shown in

Figure 11.5. Experiments were performed using Grid5000 [27], on Debian Jessie, using an Intel
Xeon E5-2630v3 CPU and gcc version 6.3.0.

The time to measure each kernel varied from a few seconds to up to 20 minutes. In

testing, some transformations caused the compiler to enter an internal optimization process

that did not stop for over 12 hours. We did not study why these cases delayed for so long,

and implemented an execution timeout of 20 minutes, considering cases that took longer than

that to compile to be runtime failures.

We automated factor elimination based on ANOVA tests so that a comprehensive evalua-

tion could be performed. We also did not tailor initial performance models, which were the

same for all kernels. Initial models had a linear term for each factor with two or more levels,

plus quadratic and cubic terms for factors with sufficient levels. Although automation and
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Figure 12.1: Cost of best points found on each run, and the iteration where they were found.

RS andDLMT found no speedupswith similar budgets for kernelsmarkedwith “[0]” and blue
headers, and similar speedups with similar budgets for kernels marked with “[=]” and orange
headers. DLMT found similar speedups using smaller budgets for kernels marked with “[+]”

green headers. Ellipses delimit an estimate of where 95% of the underlying distribution lies

identical initial models might have limited the improvements at each step of our application,

our results show that it still succeeded in decreasing the budget needed to find significant

speedups for some kernels.

Figure 12.1 presents the speedup found by each run of RS and DLMT, plotted against the

algorithm iteration where that speedup was found. We divided the kernels into 3 groups

according to the results. The group where no algorithm found any speedups contains 3

kernels and is marked with “[0]” and blue headers. The group where both algorithms found

similar speedups, in similar iterations, contains 6 kernels and is marked with “[=]” and orange
headers. The groupwhereDLMT found similar speedups using a significantly smaller budget

than RS contains 8 kernels and is marked with “[+]” and green headers. Ellipses delimit an

estimate of where 95% of the underlying distribution lies, and a dashed line marks the -03
baseline. In comparison to RS, our approach significantly decreased the average number of

iterations needed to find speedups for the 8 kernels in the green group.

Figure 12.2 shows the search space exploration performed by RS and DLMT. It uses the

same color groups as Figure 12.1, and shows the distribution of the speedups that were

found during all repetitions of the experiments. Histogram areas corresponding to DLMT

are usually smaller because it always stopped at 4 iterations, while RS always performed 400

measurements. This is particularly visible in lu, mvt, and jacobi. We also observe that the

quantity of configurations with high speedups found by DLMT is higher, even for kernels

on the orange group. This is noticeable in gemver, bicgkernel, mm and tensor, and means that
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Figure 12.2: Histograms of explored search spaces, showing the real count of measured

configurations. Kernels are grouped in the same way as in Figure 12.1. DLMT spent fewer

measurements than RS in configurations with smaller speedups or with slowdowns, even

for kernels in the orange group. DLMT also spent more time exploring configurations with

larger speedups

DLMT spent less of the budget exploring configurations with small speedups or slowdowns,

in comparison with RS.

Analyzing the significant performance parameters identified by our automated approach

for every kernel, we were able to identify interesting relationships between parameters and

performance. In bicgkernel, for example, DLTM identified a linear relationship for OpenMP

and scalar replacement optimizations, and quadratic relationships between register and cache

tiling, and loop unrolling. This is an example of the transparency in the optimization process

that can be achieved with a DoE approach.

Our approach used a generic initial performance model for all kernels, but since it itera-

tively eliminates factors and model terms based on ANOVA tests, it was still able to exploit

global search space structures for kernels in the orange and green groups. Even in this auto-

mated setting, the results with SPAPT kernels illustrate the ability our approach has to reduce

the budget needed to find good speedups by efficiently exploring search spaces.

12.4 Identifying Significant Factors for the bicg Kernel

The discussion on the following sections was not yet published at the time of writing of

this thesis. We continued to study the application of Design of Experiments methods to the

optimization of SPAPT kernels, modifying the original DLMT algorithm by removing cubic

terms to simplify the target performance model, fixing binary parameters to look for other
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Figure 12.3: Summary of our DLMT results, compared to uniform Random Sampling (RS),

showing the configurations with smallest speedups, found in 10 independent runs. The top

panel compares execution time, with color-encoded iterations, and the bottompanel compares

iterations where configurations were found, with color-encoded execution times.

significant effects, leveraging data collected in previous designs, running more optimization

steps, and assessing the performance of quantile regression as an alternative to the linear

model. In this study we sought to expose and analyze the inner workings of our approach.

In a non-automated setting, it becomes more clear how users could interfere and guide

search space restriction and exploration, by intervening at each ANOVA step, for example.

We started with the bicg SPAPT kernel because our approach achieved equivalent solutions

using a smaller budget than a random sampling approach.

Figure 12.3 shows the execution times of the best kernel configurations, and the corre-

sponding iterations where each of these points was found. Results are shown for Random

Sampling, for our DLMT implementation from the CCGRID paper, and for four variations

that we later explored, attempting to interpret and improve the optimization process. The

y-axis on the top panel shows the execution time of the best points found in 10 distinct runs,

and lighter colors mark points found with fewer iterations. Similarly, the y-axis on the bottom

panel shows the iterations where points were found for the same data, with lighter colors

marking points with lower execution times.
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The next sections discuss incremental modifications to the algorithm published at CC-

GRID, which were performed to help identify significant factors and attempt to find better

speedups. Although we did not significantly improve the speedups found by our method,

we were able to present a deeper look into the inner workings of this white-box autotuning

approach. The next section describe in detail the two incremental modifications below:

Removing Cubic Terms We initially used third-degree polynomials for the performance

models of all kernels. Cubic terms were never eliminated when following significance levels

reported byANOVA, sowe decided to drop cubic terms and fit a quadratic polynomial, which

reduced the necessary design size and produced equivalent results.

Reusing Data In our initial approach, we performed ANOVA in each iteration using only

the data from the subspaces to which we restricted exploration. This can increase flexibil-

ity because the models are free to vary outside the restricted regions, but this also wastes

experimental data. In this modification we reused all measurements performed during opti-

mization, leveraging all measurements regardless of their position in the search space, which

increases the benefits of multiple runs.

The two other modifications shown in Figure 12.3 are:

Quantile Regression We identified a substantial amount of noise on the performance mea-

surements of non-binary parameters. Models accounting for factor interactions could help,

since there is a good chance that interactions are responsible for the noise. In this study, we

decided to try Quantile Regression, which is a modification of Linear Regression where it is

possible to weight points based on the quantiles they belong to, allowing the model to fit to

a different quantile, opposition to fitting to the mean. We explored multiple quantiles, and

Figure 12.3 shows results using the 5% quantile.

Runningmore Steps This is less of amodification, and involved simply running the original

approach for twice the number of steps.

12.4.1 Removing Cubic Terms

The data in the figures shown next were obtained with a new set of 10 repetitions of

the bicg kernel experiment from Figures 12.1 and 12.2, but using a performance model with

only linear and quadratic terms. The results are similar to the ones from the CCGRID paper,

but our approach found slightly better configurations slightly faster. Random sampling also

found a much better configuration much faster than before in one experiment. Figure 12.4

shows the count of model terms that were eliminated at each color-codedDLMT step. As before,

we see that OMP and SCRwere the most eliminated factors, especially on the first step.
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Figure 12.4: Count of the model terms eliminated in each of the 4 steps of 10 independent

runs, without cubic terms

Figure 12.5 shows the factors that were identified as significant by ANOVA, with signifi-

cance threshold of 0.01, at each DLMT step. Identifying a factor removes the corresponding

parameter from the model, regardless of the model term that was identified. Figures are

grouped by each of the 10 experiments. Figure headers identify each run, and correspond to

the names of the Grid5000 machines where experiments were run.

It is interesting that only parasilo-19, parasilo-20, and parasilo-9 eliminated any factor other

thanOMP and SCR on the first step where any factor was eliminated, and also that those runs

fixed the factor RTI to the same value. We can also see that OMP seems to be the parameter

behind the most extreme changes in the execution time of tested configurations. This is

specially clear at parasilo-13 and parasilo-10, where the explored configurations have relatively

high execution time until after step 3, where OMP is fixed. A slight worsening of execution

times, an increase, that is, can be seen at the fourth step at parasilo-11, after RTI was fixed. The

minimum execution time seems to be higher than in the third step.
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Figure 12.6: Fitting linear models and quadratic quantile regression, with � = 0.05, 0.25, and

0.5, to separate factors for 10 uniform random sampling runs

U_J U1_I VEC1 VEC2

T1_J T2_I T2_J U_I

RT_I RT_J SCR T1_I

0 10 20 30 0 10 20 30 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0 3 6 9 0 3 6 9 0 3 6 9 0 10 20 30

0 1 2 3 4 5 0 1 2 3 4 5 0.00 0.25 0.50 0.75 1.00 0 3 6 9

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

0.6

0.8

1.0

1.2

1.4

Factor Levels

E
xe

cu
tio

n 
T

im
e 

(s
)

Figure 12.7: Same as above, for 10 uniform sampling runs with OMP fixed to on
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Figures 12.6 and 12.7 contain all points measured in 10 uniform random sampling runs.

Each panel the same execution time data in the y-axis, viewed from the perspective of the

changes in a single factor, shown in the x-axis. The blue lines in both figures represents a

linear model fit, using only linear terms for each factor separately. The green lines denote

three quantile regression fits using quadratic model terms for each factor separately. We used

the 5%, 25%, and 50% quantiles. Red dots mark the values of each factor in the point with the

best performance across the 10 runs.

The OMP parameter controls whether OpenMP is used to run multithreaded execution,

and has clearly the largest impact when its level is 1.0, which encodes the binary level corre-

sponding to turning parallelization on. All measurements larger than 1.4 seconds happened

when the parallelization flag was off, as can be seen on Figure 12.7, which shows all data

collected in 10 uniform random sampling runs with the OMP factor fixed on the on level.

The SCR parameter also has a strong effect. This parameter controls scalar replacement, which

consists of moving array references to the stack, preferably into registers.

Fixing OMP to onmakes the effects of other factors more pronounced and easier to detect

using ANOVA. Most of the best factor levels in this example were near the limits of the

search space. The RTI factor controls tiling of one of the loops in bicg, and its best level was

exceptionally at the middle of the range.

We can also verify that the optimal design approach is restricting the exploration of the

search space to regions with faster configurations. Figure 12.8 compares the performance

predicted by the fitted model, represented by the green line, with the performance of the best

point found at each design, represented by the blue line. The red line marks the best point

found so far.

It is only at the fourth step of parasilo-17 that the point with the best predicted performance

was better than the best point on the design for that step, while also being better than the best

point found so far. Although we seem to be effectively restricting the search space with our

exploration, which is evidenced by the improvement that occurs as steps progress and by the

best points being found inside designs, the models fit using experiment data are not able to

improve the current best on the majority of cases. This is an indication that the model might

not be capable of describing the relationships between factors and response, perhaps because

of the presence of interactions between parameters.

12.4.2 Reusing Data from All Steps

Significant changes were performed on the initial DLMT implementation. We decided

that there was no good reason to not reuse the data obtained from evaluating designs at

each step, and the various samples of the search space taken at different points. Now, all

evaluated experiments compose a single growing design used by aov to identify the best

factors, and all samples from the search space compose a single data set used by optFederov
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Figure 12.8: Performance of best points, step-by-step, by experiment

to select experiments. The data set is pruned in both aov and lm analyses, to guarantee only

experiments with the correct levels of fixed factors are used. This is crucial for both analyses,

since having different fixed values of factors that are not in the model would imply that we

would have inexplicable variance in the data set.

Using all experimental data on aov is interesting because it is always worth it to consider

additional information on the factors that are currently being studied. On one hand, it

might not allow for enough flexibility when we consider regression only on a small restricted

subspace, because points outside the subspace would impact regression, and we would be

interested in the significance of the factor inside the subspace at the moment. On the other

hand, using all data available makes sense because we are also interested in exploring any

global structures of the search space, and keeping points from other subspaceswould increase

the chance of “catching” the significance of a factor globally.

Using all sampled space, across all steps, as a candidate for optFederov has no downsides,

providedwe prune the search space to account for current constraints on factor levels fixed on

previous steps. We increase the size of the available set of configurations that can compose a

new design each time we sample a new subspace. This would hopefully improve the quality

of designs produced as we progress.

12.4.3 Summary: Tuning SPAPT Kernels with Optimal Design

We could not significantly improve upon the speedups found by the uniform random

sampling strategy, although we did find good speedups using a significantly smaller budget.
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Chapter 12. SPAPT Kernels and Orio

This happens mainly because the DLMT approach quickly detects the large effect of theOMP
binary parameter. Subsequent parameters that are detected as significant have much smaller

effects, so consequently the performance does not improve by much.

We can conclude that the SPAPT search space structures defined by kernel parameters

exposed and modified by Orio cannot be fully exploited by models based on second or third

degree polynomials, even with well designed experiments. We could not determine whether

kernel configurations with better performance than the ones we found exist in these search

spaces. Additionally, the strongly biasedmodels we used could be responsible for not finding

better configurations. Thus, we attempted to find better configurations using a much more

flexible approach, based on Gaussian Process Regression and Expected Improvement, which

we discuss next. We also compared the performance of the dgemv SPAPT kernel with the

peak theoretical performance for the Xeon 2630v3 processor, indicating that better kernel

configurations might exist.

12.5 Autotuning SPAPT kernels with Gaussian Process Regression
and Expected Improvement

We used Gaussian Process Regression with an Expected Improvement acquisition func-

tion, denoted GPR, to try and find bicg kernel configurations improving upon those found

by the uniform Random Sampling (RS) method. We found statistically but not practically

significant improvements upon RS.

GPR RS
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Figure 12.9: Best bicg configurations and iterations that found them, for Gaussian Process

Regression with Expected Improvement acquisition function (GPR), and uniform Random

Sampling (RS), with a budget of 400 measurements.

We used two R packages to construct our GPR algorithm [154]. We used the DiceKriging
package to fit Gaussian Processes using Matérn covariance functions, and the DiceOptim
package to compute the Expected Improvement metric at each step. Figure 12.9 compares

the performance of the best points found by GPR and RS, across 20 independent tuning runs.
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The figure also shows the iteration finding the best point at each run. Dashed lines mark the

estimate of the mean execution time of the best points across the 20 experiments, and the gray

bands show the 95% confidence intervals for the mean estimate.

The GPR method found statistically significant better configurations than RS, but the

practical difference is less than 0.1 seconds. SinceGaussian Process Regression is amuchmore

flexible method than our previous Design of Experiments approach, not finding expressively

better configurations hints that it might not be possible to improve this kernel much more, in

comparison to RS.

Figures 12.10 and 12.11 show the progression of all configurations evaluated during each

of the 20 runs of GPR and RS, respectively. We can see that after an initial Sobol sample the

GPR method quickly finds regions with better configurations. The RS method, as expected,

continues to randomly explore the search space.

139



Chapter 12. SPAPT Kernels and Orio

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

1

3

10

1

3

10

1

3

10

1

3

10

Iteration

E
xe

cu
tio

n 
T

im
e 

(s
)

Sobol sample Optimization −O3

Figure 12.10: Execution time of points measured by GPR along iterations, with pareto border

in red
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Figure 12.11: Execution time of points measured by RS along iterations
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Figure 12.12: Best dgemv3 configurations and iterations that found them, for Gaussian Process

Regression with Expected Improvement acquisition function (GPR), and uniform Random

Sampling (RS), with a budget of 400 measurements.

12.5.1 Peak Performance for the DGEMV kernel

We also performed GPR experiments with the dgemv3 SPAPT kernel which, since we can

compute its theoretical performance, allowed determining that the best kernel configuration

we have found is still around 20 times slower than the theoretical peak, despite being around

two times faster than the -O3 flag. We did not perform a detailed analysis of the SPAPT

kernel, which could find out whether more performance can be obtained from this kernel

implementation.
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Figure 12.13: Theoretical Roofline graph for the Xeon E5-2630v3 processor [10, 116], showing

the best point we found during all experimentswith thememory-bound dgemv3 SPAPT kernel

Figure 12.12 shows the best kernel configurations found across 20 repetitions of the GPR

and RS methods. GPR could not find statistically or practically significant speedups in

relation to RS for this kernel, although one specific GPR run found an outlier configuration.
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Figure 12.13 shows the theoretical Roofline [189] graph for the processor targeted by our

experiments, which was the same from our CCGRID paper, and the performance that was

achieved by the best configuration we found for the dgemv3 SPAPT kernel, the red outlier in

Figure 12.12.

12.6 Summary

We have implemented a Design of Experiments approach to autotuning based on ANOVA

and D-Optimal Designs. We have applied this approach to a set of configurable kernels from

the SPAPTbenchmark suite and, althoughour approach found significant speedups in relation

an -O3 compiler baseline, we could not significantly improve upon the results found by an

uniformRandom Sampling algorithm using the same exploratory budget. Other experiments

with the same kernels also showed than uniform random sampling [23, 22] performs well,

especially when budgets are short.

We could identify and eliminate significant factors using our approach, but the largest

effect was consistently that of the binary flags, especially OMP, which controlled paralleliza-

tion. We could consistently detect significant albeit small effects for a few other numerical

parameters.

The polynomial models coupled with optimal design construction have the potential for

low prediction variance, but tend to have strong biases. We explored a Gaussian Process

Regression approach which is much more complex, implying in high variance, but has small

bias. We found small improvements upon Random Samplingwith this new approach, but it is

still unclear if Orio configurations are capable of further improving the kernel configurations

we already found. Although it is a simplification of the actual processor behavior, and

although it exaggerates actual achievable performance for the dgemv kernel, the theoretical

Roofline graph for our target CPU hints that tweaks to the kernel implementation could be

needed to improve the current performance.

A possible future direction for exploring the potential of this Design of Experiments ap-

proach could involve developing a lower level set of configurable kernels, where performance

measurements are always tied to a theoretical peak or to a known global optimum. As we

discussed in Chapter 11, knowing the global optimum helps evaluating the performance of

an autotuning approach.
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Mixed-Precision Quantization for
ResNet50

This chapter presents an application of Gaussian Process Regression with Expected Im-

provement acquisition function (GPR) to bit precision tuning for a Convolutional Neural

Network (CNN).We compareGPR to aReinforcement Learning approachwhichuses an actor-

critic model (RL) [182], to a uniform random sampling algorithm, and to a low-discrepancy

sampler using Sobol sequences. The objective function we attempted to optimize was the

network accuracy over the ImageNet dataset [70, 156], subject to a limit imposed on network

size. Our GPR approach achieved comparable results to the baseline RL approach, but the

random samplers also performed well, especially the low-discrepancy Sobol sequence.

This work started during a two-month stay at Hewlett Packard Enterprise (HPE), former

HP Labs, in Palo Alto, California. The problem of tuning mixed-precision quantization for

CNNs is of interest to HPE researchers because it produces smaller and more energy-efficient

networks, which are especially suited to embedded and custom-built hardware. We expanded

the initial study in the last year of this thesis, still in collaboration with HPE researchers, but

this work is still unpublished at the time of writing.

The remainder of this chapter is organized as follows. Section 13.1 describes the HAQ
framework [182] for mixed-precision bit quantization, which we used to change the bitwidth

of network layers, and which implements the baseline RL approach. Section 13.2 presents the

ResNet50 network used in our experiments and the ImageNet dataset. Section 13.4 discusses

the implementation details of the methods we compared, and Section 13.5 evaluates their per-

formance with respect to network accuracy. Section 13.6 presents a more detailed assessment

of the GPR method we implemented. Section 3.3 summarizes the discussion and concludes

the chapter.
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Figure 13.1: Optimizing nonuniform weight quantization policies for the ResNet50 network,

keeping total weight size below 10 MB, and attempting to keep accuracy. The optimization

methods we compared were a Sobol Sampler, Reinforcement Learning [182], and Gaussian

Process Regression with Expected Improvement

13.1 Autotuning Bit Precision for Convolutional Neural Networks

A Neural Network is composed of interconnected layers of neurons. Each neuron can be

interpreted as an agent that receives weighted inputs from connections with other neurons,

combines them, and produces an output if the combined input crosses an activation threshold.

The process of quantization of a network consists in choosing, according to a performance

metric, the best bit precision for data representing weights and activation thresholds in each

layer. Quantizing a network consequently determines the bit precision of the computations

performed during training and inference. Quantization is increasingly relevant inNeuralNet-

work research [182, 79, 197, 106, 137, 196] because it reduces energy and space requirements,

enabling deployment in embedded, mobile, or custom-engineered hardware.

Figure 13.1 shows the bit precision tuning experimentswe present in this chapter. We used

different methods to optimize quantization policies for the layer groups of the PyTorch [146]

implementation of a Residual Network [110] with 50 residual blocks, called ResNet50. We used

theHAQ framework [182] to quantize each layer with a bitwidth in the [1, 8] interval, produc-
ing a smaller network that was retrained on NVIDIA GPUs. We ensured that quantization

policies respected size constraints, keeping total weight size under 10 MB, and allowing the

comparison of our results to a reproduction of the approach of the original paper [182].

144



13.2. ResNet50 and ImageNet

13.1.1 Further Applications of Autotuning to Neural Networks

Autotuning methods can be applied to optimize networks targeting different stages and

structures. Online Gradient Descent coupled with backpropagation is a well established

approach to network training [190, 127], but fine tuning of the network architecture and its

parameters is also a promising target for the application of optimization methods.

A recent survey and taxonomy by Talbi [170] discusses work on Neural Architecture Search
(NAS), andHyperparameter Tuning. Neural Architecture Search consists of using optimization

methods to find the modifications of the layers and connections of a network that best adapt

to resource constraints or hardware architecture features. Hyperparameter Tuning refers to

the optimization of any network parameters that have an impact on performance without

necessarily requiring structure modification.

13.2 ResNet50 and ImageNet

13.2.1 ResNet50 Architecture

Residual Networks, orResNets, were introduced byHe et al. [110], and the intuition behind

the idea is to add the original layer input, or residual, to the output of a stack of convolution

layers. Keeping this residual component in a layer output enables better global optimization

of the network. Figure 13.2 shows thePyTorch implementation of a 50-blockResidualNetwork,

called ResNet50.

We generated this visualization of ResNet50’s structure with theHiddenLayer library [112],

adding the underlying structure of Bottleneck Residual Blocks in panel (a), and of Residual
Blocks in panel (b). Bottleneck blocks serve the same purpose as Residual blocks, adding

an input component to layer output, but are favored in larger networks because they are

computationally less expensive.
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Figure 13.2: ResNet50 architecture, implemented in pytorch
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mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 13.3: Images sampled from some of the categories in ImageNet, adapted from Deng et
al. [70]

13.2.2 The ImageNet Dataset

In this study we were interested in maintaining the accuracy of ResNet50 on the ImageNet
dataset as we decreased the bit precision for a set of network layers. ImageNet [70] is a massive

image dataset, with 3.2 million labeled and semantically categorized images. Figure 13.3

shows a sample of the dataset. ImageNet iswidely used to validateworks on image recognition,

and the dataset version we obtained for the work presented in this chapter came from a series

of visual recognition challenges [156].

In each repetition the experiments discussed in Section 13.5 we used distinct subset of 30

thousand uniformly sampled images, of which 20 thousand were used for training and 10

thousand for validation.

13.3 Search Space and Objective Function

The search space we explored consisted of 54 convolutional layers, that is, 54 component

layers of the 50 residual blocks in the PyTorch ResNet50 implementation. We optimized only

the bit precision for weights, since the code that quantized activation precision was only

released by the authors after this study was completed.

Choosingbetweenabit precision in the [1, 8] interval for the 54quantizable layers generates
a search space with 8

54 ≈ 10
49

configurations. This search space is relatively large, although

not the largest we studied in this thesis. Completely evaluating it is unfeasible, consideringwe

would have to retrain and validate the quantized network on our 30 thousand image sample

of ImageNet, which took tens of minutes for each quantization on an NVIDIA K80 GPU.

The accuracy of a network is typically measured by its Top1 and Top5 accuracy measures.

Both metrics measure the ratio between right and wrong network predictions in the test-

ing dataset, but the Top1 accuracy considers as a prediction only the class with the highest

predicted probability, while the Top5 metric considers the classes with the top five highest
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predicted probabilities. For example, if a network predicts a picture of a Chihuahua is in the

"Muffin" class with 85% probability and in the "Dog" class with 80% probability, this would

be considered a miss in Top1 accuracy but a hit in Top5.

In this work we were interested in minimizing the distance between the 8-bit uniformly

quantized Top5 accuracy and the Top5 for a quantized network whose total weight size was

under 10 MB. We targeted Top5 because, from the perspective of the HPE researchers we

collaborated with, it was more interesting that the network was made to fit on the smallest

possible device, perhaps at the cost of some Top1 accuracy, because then it would be cheap to

run a larger set of predictions. In the end, suggesting the two metrics are linked, optimizing

for Top5 produced Top1 results comparable to the ones found by the original paper [182] and

by our replication of their results in our settings.

We also performed experiments that added the total weight size to the objective function

and dropped the 10MB restriction, but we found it hard to compare the results we produced

with the original paper, so the main discussion that follows will regard the performance of

optimization methods on the Top5 distance minimization.

13.4 Optimization Methods

This section describes the optimization methods we applied to the quantization policy

optimization for ResNet50. The performance comparison between methods is presented in

the next section.

13.4.1 Random and Sobol Sampling

Although practically impossible, in order to properly explore the ResNet50 quantization

search space it would be ideal know the global optimum. In the absence of this knowledge, it

is useful to compare the performance of the optimization methods we wish to use to simple

uniform random sampling. Since in high dimensional spaces almost all uniformly sampled

points would lie in the extremes of the search space, we also compare the performance of

methods with a sampling algorithm using Sobol sequences, that produce low-discrepancy,

space-filling, samples.

13.4.2 Gaussian Process Regression with Expected Improvement

We used the same two R packages we used in Chapters 12 and 11 to implement the GPR

algorithm [154]. The DiceKriging package provided Gaussian Processes Regression fits using

the Matérn covariance kernel, and the DiceOptim package provided functions to compute the

Expected Improvement (EI) metric at each step, as described in Section 6.3. Additionally, we

used the future.apply package [29] to run EI computations in parallel.
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Respecting the Size Constraint with Sobol Samples

We used the implementation of the Sobol sequence low-discrepancy sampling algorithm

from the randtoolbox [63]Rpackage. Low-discrepancy sampling and space-fillingdesignswere

discussed in Section 5.4. To ensure all samples respected the size constraint, we progressively

doubled the sample size until enough valid configurations were produced.

Pseudocode for the GPRMethod

Figure 13.4 shows the pseudocode for our adaptation of GPR to the bit precision tuning

problem, including the constrained Sobol sampling algorithm. The algorithm starts with a

smaller valid Sobol sample which is completely evaluated and used to fit a Gaussian Process.

This model fit enables computing the Expected Improvement for a much larger valid Sobol

sample.

We pick the three configurations with the highest EI from this sample and compute addi-

tionally the EI for a sampled neighborhood around these configurations. The neighborhood

is also generated using the Sobol sampling algorithm.

We then measure the unique configuration with the highest EI over this larger sample,

augmented with a targeted neighborhood, and keep a backlog of the 200 other configurations

with the highest EI in the sample. The EI of the configurations in the backlog is constantly

reevaluated, and the backlog is used if the highest EI in the current sample is smaller than the

EI of any configuration in the backlog.

13.4.3 Reinforcement Learning: The Baseline Method

We reused the Reinforcement Learning (RL) Python implementation provided by the au-

thors of the HAQ paper [182]. Reinforcement Learning using the actor-critic model was

discussed in Section 6.2, and the implementation inHAQ employed additionally theDeep De-
terministic Policy Gradientmethod fromLillicrap et al. [132]. The cumulative regret tominimize

is the distance of the quantized accuracy from the initial 8-bit uniform quantization, across

all tested quantization policies.

Respecting the Size Constraint

To respect the constraint imposed on the sum of network weights, the original paper

implementation used a round-robin algorithms to decrease the weight bitwidth for each layer

sequentially, starting with the first, until the total sum crossed the 10 MB threshold. After

analyzing our results with RL and other methods, our hypothesis for this implementation

choice is that it encodes the implicit knowledge that the bit precision of the initial layers of

the PyTorch ResNet50 implementation has a smaller impact on accuracy.
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1: function Filter_Sobol(38<4=B8>=, C0A64C_B8I4 , <0G_F486ℎC)
2: B0<?;4_B8I4 ← 10

6

3: B0<?;4B ← ∅

4: while Size(B0<?;4B) ≤ C0A64C_B8I4 do
5: B0<?;4B ← Sobol(38<4=B8>=, B0<?;4_B8I4)
6: B0<?;4B ← Filter(B0<?;4B, ≤ <0G_F486ℎC)
7: B0<?;4_B8I4 ← 2 ∗ B0<?;4_B8I4
8: end while

9: return B0<?;4B
10: end function

11: function GPR(1D364C, 38<4=B8>=, BC0AC8=6_B8I4 , B0<?;4_B8I4 , <0G_F486ℎC)
12: BC0AC8=6_B0<?;4 ← Filter_Sobol(38<4=B8>=, BC0AC8=6_B8I4 , <0G_F486ℎC)
13: CA08=8=6_B4C ←Measure(BC0AC8=6_B0<?;4)
14: <40BDA4<4=CB ← Size(CA08=8=6_B4C)
15: ��_102:;>6 ← ∅

16: while <40BDA4<4=CB ≤ 1D364C do
17: <>34; ← FitGP(CA08=8=6_B4C)

18: =4F_B0<?;4 ← Filter_Sobol(38<4=B8>=, B0<?;4_B8I4 , <0G_F486ℎC)
19: 20=3830C4B ← ComputeEI(<>34;, =4F_B0<?;4)
20: =486ℎ1>AB ← ComputeEI(<>34;, Neighborhood(20=3830C4B))

21: =4F_<40BDA4<4=C ←MaxEI(20=3830C4B ∪ =486ℎ1>AB ∪ ��_102:;>6)
22: ��_102:;>6 ← (��_102:;>6 ∪ 20=3830C4B ∪ =486ℎ1>AB) \ =4F_<40BDA4<4=C

23: CA08=8=6_B4C ← CA08=8=6_B4C ∪Measure(=4F_<40BDA4<4=C)
24: <40BDA4<4=CB ← Size(CA08=8=6_B4C)
25: end while

26: return MaxTop5(CA0=8=6_B4C)
27: end function

Figure 13.4: Pseudocode implementation of the GPR method using Expected Improvement

(EI), and of the constrained sampler using Sobol sequences. In our experiments, variables

were 1D364C ← 245, 38<4=B8>= ← 54, BC0AC8=6_B8I4 ← 64, B0<?;4_B8I4 ← 3240, and

<0G_F486ℎC ← 10 MB
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with 95% confidence intervals for estimates of the mean

13.5 Performance Evaluation and Comparison

This section presents our evaluation of the performance of our implementation ofGaussian

Process Regression with Expected Improvement (GPR) and of the baseline Reinforcement

Learning (RL) [182] on the optimization of quantization policies for ResNet50, targeting the

ImageNet dataset. We compare the performance of GPR and RL with a uniform random

sampling method and with a low-discrepancy space-filling sampler using Sobol sequences.

The simple samplers performed interestingly well in comparison with more complex

approaches, a pattern we have already observed in many of the studies presented in this

thesis. This time, the more complex methods were able to improve upon the results of the

simpler approaches. Under the same budget, our GPR implementation achieved accuracy

statistically indistinguishable from the original RL implementation. In comparison with the

RL algorithm, we argue that our approach produces more consistent quantization policies

between repetitions, and that it is more extensible and perhaps more robust to changes in the

objective function.

13.5.1 Optimizing Top5 for Constrained Total Weight

Figure 13.5 compares the best quantization policies found by each optimization method

across 10 repetitions, with a fixed budget. The total ResNet50 weight size was constrained

to be no larger than 10 MB. Comparing the 95% confidence intervals for the estimates of the

mean best configuration for each method we see that GPR and RL have similar results, but

that the Sobol sampler produces policies with good accuracy. Figure 13.6 shows the accuracy
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Figure 13.6: Best quantization policy found by each method during optimization, across 10

repetitions

metrics of the best configurations found at each iteration, for the 10 repetitions of GPR and

RL.

Figures 13.7 and 13.8 present four columns with more detailed looks into the quantization

policies explored by GPR and RL and the corresponding network configuration, in the first

column, total weight size, in the second column, and Top5 and Top1 accuracy metrics in the

last two columns.

The first columns of both Figures show stacked ResNet50 layers in the y-axis, in similar

fashion towhat is presented in Figure 13.2. The x-axis, as in all columns, shows each of the 245

measurements. Each square represents a layer at a given time, and is colored with a gradient

between red for 1-bit and green for 8-bit quantization. Initial blocks of measurements for all

experiments consist of 64warm-upmeasurements, generating visually distinct starting regions

in all images.

The three horizontal dashed lines in the second column, from top to bottom, mark the size

of ResNet50 with all layers quantized with 8, 2, and 1 bit for all layers. Likewise for the third

and fourth columns, the horizontal line marks the accuracy of the 8-bit quantized network.

The vertical lines in all columns mark the iteration that found the point with the highest Top5
accuracy, for each repetition.

Figure 13.7 shows that the policies arrived at by RL have different quantization distri-

butions. Experiments 3, 5, 6, and 10 have clearly defined red bands in similar regions,

corresponding to layers that were quantized with fewer bits. Fainter bands in the same places

can be seen in the other experiments, but we can identify other features as well, such as

green bands or more uniform orange policies. The original RL implementation used random
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sampling and round-robin decrease of weights to obtain the warm-up set, while our GPR

implementation used Sobol sequences and filtering, resulting in different-looking starting

stages.

Figure 13.8 shows clear red bands in the same top layers, and less variable policy choices

than RL across experiments. We see regions that abruptly change from darker to light greens

in experiments 2, 4, 9, and 10, which could be due to the algorithm using a configuration on

the EI backlog and picking a new region of the search space to explore.
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Figure 13.7: Results with the baseline Reinforcement Learning method
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Figure 13.8: Results with Gaussian Process Regression
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Figure 13.9: Running optimized quantization policies with new ImageNet samples, with 95%

confidence intervals for the mean estimate. Diamond shapes mark the measured accuracy on

the original sample. The baseline is the uniform 8-bit ResNet50 quantization

Comparing Policy Variability on Different Samples

Figure 13.9 shows the result of running some of the policies produced by GPR, and all

produced byRL, in new random ImageNet samples. Wewanted to check if the “homogeneous”

RL experiments, that is, the oneswithout clear red bands, had a different behaviorwhen pitted

against new datasets. We did not see any difference between RL experiments, but we were

surprised to find that RL experiments were consistently better, and outside of the confidence

intervals, for new datasets, although differences are not practically significant. Experiment

numbering is the same from Figures 13.7 and 13.8, and diamond shapes mark the accuracy

measured in each experiment in the original ImageNet sample.
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Figure 13.10: Execution time of the different steps of our GPR implementation. The initial

sample measurement is not shown, and the y-axis is logarithmic

13.6 Measuring Performance and Detecting Significance for GPR

In this section we analyze the performance of our GPR implementation, discuss our

attempts to detect the significance of the quantization impact of each layer on Top5 accuracy,

and present perspectives on future explorations of GPR for CNN quantization.

13.6.1 Performance of the GPRMethod

Figure 13.10 shows the performance of six executions of the GPR algorithm described

in Figure 13.4, broken down by step. Most steps of the algorithm have fixed computational

cost, since Sobol samples and neighborhoods have fixed sizes across the optimization process,

but fitting the model takes more time as the size of training data grows. The accuracy

measurement time for a quantization policy on an ImageNet sample depends on the policy.

We did not explore the reasons why this happens, but we suspect that training a network

using operations with less precision is faster.

13.6.2 Detecting Significance with Sobol Indices

We used the sensitivity R package [163] to compute Sobol indices, using Gaussian Process

surrogate models, for the impact on Top5 of quantizing each ResNet50 layer. Figure 13.11

shows the indices computed for the ensemble of Sobol samples we collected, in the left panel,
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and for the Sobol samples plus the search space exploration performed by GPR, in the right

panel.

It is expected that the first and last layers have the most impact, since they determine the

precision of all computations that follow, and the precision of the final output, respectively.

The confidence intervals for the means of the other indices in the Sobol sample all cross zero

but we know that we can impact accuracy by changing them, so the interpretation is unclear.

Likewise, it is unclear how to interpret that all indices seem to have an equally large impact

when the explored search spaces are added on the right panel, since we see clear bands of

strongly quantized layers on the GPR results.
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Figure 13.11: Sobol indices computed for the impact on Top5 accuracy of the quantization of

each ResNet50 layer using only Sobol samples, in the left panel, and Sobol samples plus the

search spaces explored by GPR, in the right panel

13.6.3 Perspectives for Further Exploration

Running GPR with Data from Past Experiments

An interesting feature of Gaussian Process Regression is that, due to its stability, we can

leverage past executions by keeping only a .csv file with the previous measurements. It is

more expensive to relaunch GPR with each added past exploration, since we need to fit a

model for more data, but the way in which new experiments are picked does not change.

The top row of Figure 13.12 shows a GPR instance that was launched with the ensemble

of data from all past GPR experiments. On the last two columns we can see each peak in

accuracy, corresponding to the end of each experiment from Figure 13.8. The bottom row

shows the same GPR instance, but focuses only on the experiments picked after fitting the

model with the data ensemble.

We see that all newly picked configurations have around 95% Top5 accuracy, and that

accuracy seems to continue to increase. A long-running optimizer could be continuously
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fed with new experiments as tests are made, even during prototyping, and could be used to

produce configurations similar to the best known ones, which could help understanding the

impact of each controllable parameter.

Figure 13.12: Running GPR with the gathered ensemble of GPR experiments. The bottom

row shows only the new measurements performed after fitting a Gaussian Process with the

ensemble of experiments, and the top row shows all the data that were used

Optimizing Accuracy and Weight

We ran preliminary experiments with adding the total weight size as a component of

the performance metric for GPR and RL, but this made it unclear how to compare the GPR

results to the original RL implementation, because to add the new metric we removed the

round-robin weight decrease used in the original paper.

Figures 13.14 and 13.13 show the results for GPR and RL, respectively. We see that this

expanded problem is a much harder task for both methods, but RL is especially impacted by

it. This might be a good reason for the original paper’s usage of the round-robin procedure

for weight decrease. Experiments 2, 3, and 4 with the RL method show quirky features that

we are not able to explain, but we hypothesize that some emerging restarting strategy has

taken place, especially for experiment 4. Experiment 2 is the only one that seems to behave as

expected.

The experiments with GPRwere much more stable. We show two of them in Figure 13.14,

and we can see red bands that resemble the ones from Figure 13.8. Although this modified
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version does not achieve the same Top5 accuracy, it does find interesting configurations pro-

ducing quantization policies equivalent to using less than 2 bits per layer, without letting

Top5 go below 80%. This hints that policies exist that generate much smaller networks with a

manageable compromise in accuracy.
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Figure 13.13: Optimizing accuracy and weight with the modified baseline Reinforcement

Learning method

Figure 13.14: Optimizing accuracy and weight with Gaussian Process Regression with EI.
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13.7 Summary

This chapter presented an application of Gaussian Process Regression with Expected

Improvement to the problem of finding the smallest mixed-precision quantization policies for

the layers of a neural network, subject to keeping the accuracy comparable to the 8-bit per

layer network version, and the total weight size below 10MB.

We compared our GPR approach with a baseline Reinforcement Learning method, and

with uniform and space-filling samplers. The sampling methods performed relatively well,

but worse than the more complex approaches. Our implementation produced policies with

comparable accuracy to the Reinforcement Learning approach, with the advantage of more

consistent explorations.

Although our attempts to estimate Sobol indices were inconclusive, we believe that the

choicesmade by theGPRmethod are overall easier to interpret andunderstand, in comparison

with the results produced by the RL.

The GPR method was also capable of leveraging past executions to produce policies with

similar accuracy. Additionally, we argue that GPR was more robust to the addition of the

total weight size to the objective function. Accurately estimating Sobol indices, performing

multi-objective GPR optimization, and learning more about high-performing configurations

using past data are possibly interesting paths that we could point to during this chapter, but

that we do not explore in this thesis.
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Conclusion
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Chapter 14

Conclusion

Computer performance has sustained exponential increases over the last half century, de-

spite current physical limits on hardware design. In this context, software optimization has

performed an increasingly substantial role on performance improvement, especially in the last

15 years, demanding the exploration of larger and more complex search spaces than ever be-

fore. Autotuning methods are one approach optimization in complex search spaces, enabling

exploitation of existing relationships between program parameters and performance. We can

adapt autotuning methods from well-established statistics and mathematical optimization,

although, as is the case for the Design of Experiments, their usage is not always common in

autotuning research.

We introduced the autotuning problem in Chapter 1, presenting an overview of recent

work from the point of view of the dimension of the search spaces involved. We then

presented a subset of optimization methods and discussed their application to autotuning

problems in Part I, where we aimed to show that the methods most commonly applied to

autotuning are not transparent to statistical analysis, due to the unbalanced way in which

they explore search spaces, and not parsimonious regarding the experimental budget, as-

suming that measurements of the objective function are cheap, which is often not the case

for autotuning problems. We then presented how the Design of Experiments can effectively

address both problems by parsimoniously determining a balanced set of experiments to run

and transparently analysing the results to identify significant and exploitable relationships.

We also presented Online Learning methods, which are not necessarily directly applicable

to autotuning problems, but provide strategies to balance exploitation and exploration, such

as the Expected Improvement, which help in the optimization of high-dimensional search

spaces and of problems for which it is unclear how to formulate modeling hypotheses.

Part II presented our efforts to apply different optimization methods to different autotun-

ing problems, and highlighted the development and application of our main contribution,

a transparent and parsimonious autotuning approach based on the Design of Experiments.

Chapter 11 introduced our approach and demonstrated its transparent and parsimonious
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operation using optimal designs and ANOVA. We performed a more comprehensive study

in Chapter 12, in which we could still refine initial models based on factor significance but

we could not practically exploit the relationships we identified. We performed a small-scale

screening study expanding upon the previous results of Chapter 9, which motivates apply-

ing the screening methodology to compiler parameter tuning for other architectures, since

compilers expose many binary factors that could be efficiently studied with Plackett-Burman

designs. We effectively applied Gaussian Process Regression with space-filling designs and

Expected Improvement to mixed-precision bit quantization of neural networks, and although

the quantizations we found were consistent, identifying significant factors with Sobol indices

was inconclusive. In initial studies of the bit quantization problem, we performed ANOVA

tests with designs constructed for quadratic terms and found interesting significance mea-

surements for some layers of large networks. We did not pursue this line of exploration,

but applying DoE methods to this problem, such as optimal design and screening, could be

fruitful.

We did not include some of the projects in which we participated during this thesis,

notably the ones where we helped others to apply the Design of Experiments to their own

autotuning problems. In the last year of this thesis, we helped advise a group composed of

six masters students and one undergraduate student, at the University of São Paulo. During

the nine months of this project’s duration, we continued the development of our DoE Julia

library [40], implemented a prototype of a web application to use our library to help defining

and exploring autotuning search spaces using virtualized environments, and helped students

to specify search spaces and construct designs and performance models for different auto-

tuning problems. Students brought their own problems from the context of their research

projects at the time, giving us opportunity to apply Optimal Design and screening to prob-

lems such as optimizing parameters of the Rust compiler and of the PETSc library [26], and

optimizing hyperparameters and feature selection of machine learning algorithms from the

Scikit-learn [147] Python library. These and other collaborations were omitted from this thesis

due to time and space constraints, but the experiencewith applyingDoEmethods to problems

of interest to other researchers aided in the consolidation of our understanding, in the writing

of this document, and in demonstrating the potential of DoE methods on domains we did

not explore directly during this thesis. A complete list of our collaborations is presented in

Appendix A.

14.1 Future Work

The autotuning method that best fit each of the studies presented in this thesis was differ-

ent, and so were the magnitude of the optimizations that we produced. It was necessary to

construct different experimental and analysisworkflows for each problemwe studied, because

each one targeted different hardware, worked on a different level of the hardware-software

stack, and had different constraints and experimental budgets. Finding a reasonable baseline
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of comparison was done differently for each problem and relied on consensus established

among the users of a program, with the exception of the work presented in Chapter 11, where

the global optimum was known.

Because applying a method for a new problem requires adapting the method to a specific

environment, comparing the performance of methods in similar experimental conditions was

not possible during this thesis. An extensive set of representative, parameterized, and ex-

haustively measured programs for specific hardware would therefore enable comparing the

optimizations produced by differentmethodswith known global optima, subject to controlled

budgets and environments. Additionally, it was not always clear that we were manipulating

program parameters at the most effective abstraction level to achieve performance improve-

ment. Thus, studies of the impact of parameters from different abstraction levels should also

be considered in the production of a set of problems for comparing autotuning methods. The

elaboration of such a set would present a considerable challenge for a single research project,

but it would favourably impact the reproducibility of autotuning research. Still, due to char-

acteristics intrinsic to the evolution of hardware design, which require constant increases in

complexity, we believe that this effort is recurring, and that it would benefit from social and

collective approaches.

By addressing common issues, the differences we have encountered in our studies expose

a set of common steps that must be taken, which can be abstracted to produce a standard

for collective autotuning research. Efforts toward establishing such a standard [89] and using

collective explorations of search spaces to aid further optimization by others [91] have been

performed by Grigori Fursin and others, and are highly motivating.

We believe that producing well specified sets of exhaustively and collectively measured

search spaces, targeting an evolving array of hardware architectures at the most effective

abstraction levels, and striving for reproducibleworkflows and results, wouldprovide support

for further advancing the research on automated performance tuning. Future work on the

directions we believe this thesis has pointed to would involve contributing to devise and

improve collective solutions to the exploration of search spaces, guided by statistics well-

studied and established in other domains.
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List of Collaborations

This thesis started at the University of São Paulo (USP), in Brazil, and continued as

a cotutelle double-degree agreement between the University of Grenoble Alpes (UGA), in

France, and USP. We also collaborated extensively with researchers from Hewlett Packard

Enterprise (HPE) in different moments during this thesis. Below we list the people who we

have collaborated with and a short summary of collaborations and results.

At USP

Marcos Amarís Gonzales was a PhD student at USP at the time of our collaboration.

He worked with performance modeling for GPUs, and we applied methods for function

minimization to optimize parameters of the CUDA compiler. This work was published [43],

and is presented in Chapter 9. We also collaborated with other former USP students in

other projects. With Rogério Gonçalves, Thiago Okada, and Marcos Amarís Gonzales, we

published a study on teaching languages and libraries for parallel programming [98], which

was later expanded upon [50].

Dejan Milojicic and Sai Rahul Chalamalasetti are researchers at HPE at Palo Alto, Cali-

fornia. Our first remote collaboration during this thesis was within a research project at USP,

where we applied methods for function minimization to optimize High-Level Synthesis for

FPGAs. This work was published [47], and is presented in Chapter 10. We also collaborated

with a larger group of researchers from different universities, resulting in a publication [49].

We participated in three graduate and undergraduate courses as a TA at USP, with Pro-

fessor Alfredo Goldman, namely:

• Introduction to Concurrent, Parallel, and Distributed Programming (2017);

• Introduction to Programming (2019), where we collaborated with Anderson Andrei da
Silva; and
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• Introduction to Concurrent, Parallel, and Distributed Programming, also with Anderson
Andrei da Silva (2020, remote).

Also with Alfredo Goldman, we gave small-scale technical short courses on GPU pro-

gramming and autotuning to a larger community inside USP, at:

• Introduction to GPU Programming (INFIERI, 2017);

• Autotuning NVCC Parameters in the Julia Language (NVIDIA GPUWorkshop, 2017);

• Introdução à Programação de GPUs com a plataforma CUDA (ERAD-SP, 2016); and

• Ciência Reprodutível para Experimentos em Computação de Alto Desempenho, in collaboration

with Lucas Schnorr from UFRGS (ERAD-SP, 2021, remote).

At UGA

Wemet StevenQuinitoMasnada (Inria), Brice Videau (ANL), Jean-Marc Vincent (UGA)

at the Laboratoire d’Informatique de Grenoble (LIG), and we have collaborated from the start of

this thesis’s cotutelle between USP and UGA, advised by Professors Alfredo Goldman and

Arnaud Legrand. We have developed and applied the DoE methodology [48] described in

Chapters 11 and 12, and continued collaborating, meeting weekly with Brice Videau for the

duration of this thesis.

At HPE Palo Alto

We have spend two months, between November 2019 and January 2020, as a visiting

researcher at HPE Palo Alto, where we collaborated with Sitao Huang (University of Illinois

at Urbana-Champaign), Dejan Milojicic (HPE), Sai Rahul Chalamalasetti (HPE), and Xu
Cong (HPE). We collaborated on the mixed-precision bit quantization work presented in

Chapter 13, and we collaborated with a larger group on another paper [114].

At HPE Fort Collins (Remote)

After the final presentation of the work we did at HPE as visiting researcher, we were con-

tacted by Daniel Dawue, Darel Emmot, Vipin Kumar Kukkala, and Ryan Menhusen from

HPE Fort Collins, who were interested in applying DoE methods to model the performance

of a network congestion simulator. We collaborated with them for a few months during 2020,

aiding in search space definition and performance modeling using optimal design and linear

models. This work was still not published at the time of the writing of this thesis.
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Design of Experiments Project at USP/HPE

We helped manage and advise a group composed of six masters students and one un-

dergraduate student at USP. Students brought their own problems from the context of their

research projects at the time, and we conducted weekly group meetings that helped devise

the best exploration andmodeling strategies for each case. Wemaintained a project page with

additional information [11]. The students we advised, and the titles of the works they did in

the context of this project, were:

• Luciano Antonio Siqueira: Configuring the PETSc Library for Heterogeneous Com-

puting, submitted to iWAPT;

• Giuliano Augusto Faulin Belinassi: Parallelized Compile Time Modeling for GCC;

• Carlos Enrique Paucar Farfán: Hyperparameter Tuning for Cognitive State Classifica-

tion, submitted to iWAPT;

• Nathan Benedetto Proença: Design Space Exploration as a Service: a Prototype;

• Emanuel Lima de Souza: LLVM Pass Selection for Rust Programs;

• Alan Barzilay: Optimizing Clustering Algorithms for Staying Point Extraction; and

• Vinícius Bitencourt Matos: Optimizing Remainder and Kernel Computation in On-

tologies.
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