
HAL Id: tel-03624620
https://theses.hal.science/tel-03624620

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorics in algebraic and logical cryptanalysis
Monika Trimoska

To cite this version:
Monika Trimoska. Combinatorics in algebraic and logical cryptanalysis. Other [cs.OH]. Université de
Picardie Jules Verne, 2021. English. �NNT : 2021AMIE0005�. �tel-03624620�

https://theses.hal.science/tel-03624620
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Mention Informatique

présentée à l’École Doctorale en Sciences, Technologie, Santé (ED 585)

à l’Université de Picardie Jules Verne

par

Monika Trimoska

pour obtenir le grade de Docteur de l’Université de Picardie Jules Verne

Combinatorics in Algebraic and Logical Cryptanalysis

Soutenue le 14 janvier 2021 après avis des rapporteurs, devant le jury d’examen :

Antoine Joux, Professeur Président

Pierrick Gaudry, Directeur de Recherche Rapporteur
Laurent Simon, Professeur Rapporteur

Martin R. Albrecht, Professeur Examinateur
Laure Brisoux Devendeville, Mâıtre de Conférences Examinateur

Gilles Dequen, Professeur Directeur de thèse
Sorina Ionica, Mâıtre de Conférences Co-encadrant

Cette thèse a été effecutée dans le cadre du projet CASSPair. Le projet
CASSPair est cofinancé par l’Union européenne avec le Fonds européen de
développement régional.

2

To my parents

3

Acknowledgements

The greatest thank you goes out to my supervisors Gilles Dequen and Sorina Ionica, that
have worked with me on crypto problems for the past five years. This work would not have
been possible without their guidance and creative ideas. They have been very mindful
about letting me become an independent researcher while, at the same time, making sure
my work stays in the right direction. Any success I hopefully have in the future will also
be a result of the skills that they have transferred to me. Gilles, thank you, first, for
giving me that initial idea and inspiring me to go into research when my dream was to
be a Java architect. For having advice on matters that go beyond the science, teaching
me how to sort which things are important and not to worry about those that are not. It
was a pleasure to work with you and I hope that we have a lot of brainstorming sessions
in front of us. Sorina, thank you for always insisting I do my best work and being an
example of the academic that I wish to become. For working till late in the evening with
me on submissions, for being kind and patient when explaining technical matters that I
still was not very good at, and for thinking (and acting) in advance about what is best for
my professional development. Your support is, and has always been, greatly appreciated.

I big thank you to all of the other professors from the CS department that have played a
huge role in my development, both by their strong encouragements and by enthusiastically
showing me numerous hard problems to think about. Some of them have later become my
colleagues at MIS, where the day always starts with joy and laughter during our morning
coffee break. On that note, a shout out to Juliette for making administration problems
magically disappear. The other PhD students, who have become my friends are the reason
why I have enjoyed coming to work every day. A big thanks to those that were here before
me, Clement, Jordan, Romuald, and Richardson, for all their help at the beginning and
throughout my thesis. I would also like to mention Fabien, Olivier, Clémence, Sébastien,
and Pierre for the fun we have at the office and the way we help each other, as well as
our neighbors from the PR team. I also extend my thanks to all my friends in Amiens
and Skopje for being there for me and for their encouragement.

I am very grateful to the reviewers for taking the time to review my work and for
asking such thoughtful questions during my defense. A big thank you to Pierrick Gaudry,
for reading the manuscript with such attention to detail and for giving valuable insight
on the subject of elliptic curves and index calculus attacks. Secondly, I thank Laurent
Simon, for giving his honest feedback and praise that was indispensable to reassure us in
our counter-intuitive findings on cdcl techniques. I should also like to extend my thanks
to the examiners Antoine Joux and Martin R. Albrecht for their valuable comments, and
finally, to Laure Brisoux Devendeville, who I have known for a very long time and was
particularly happy to have as an examiner for this thesis. Special thanks to Antoine Joux
for coming in person for my thesis defense in spite of the traveling difficulties that arise
due to the current health crisis.

I thank my parents for their support, in every meaning of the word, and for always
putting me first. I am lucky to have parents that are such different people and thus, to
be able to inherit the best of both. My pursuit for excellence in education comes from my

4

mother, as well as my privilege to pursue it, since she has made sure I start off with all
the skills I need, early on. My courage for taking on bigger challenges than I think I can
handle comes from my father, for setting such an example and encouraging me to do so as
well. This thesis is dedicated to them. I also wish to make an honorable mention to their
respective spouses, and, of course, to my younger brother and sister to whom I wish all
the happiness and success in the world. To my grandparents and my other grandmother,
I am very grateful for being the best cheerleaders anyone can have. I often feel like they
are even more excited than I am about my accomplishments.

My final thanks go to Aleksandar, to whom I owe my happiness. Your never-ending
support makes life enjoyable and smooth, which in turn lets me be my best creative self.
For this, and a list of reasons that can never be exhaustive, you play a huge hidden part
in all of my accomplishments.

5

Contents

Résumé 8

Glossary 14

1 Introduction 16

2 Boolean Polynomial Systems 21
2.1 Algebraic solving techniques . 22

2.1.1 Gröbner basis algorithms . 22
2.1.2 Linearization and the XL family . 26
2.1.3 Exhaustive search . 27
2.1.4 Hybrid methods . 27
2.1.5 Algorithms for sparse systems . 28

2.2 Applications in cryptography . 28

I SAT as a tool 30

3 The Satisfiability problem 31
3.1 Preliminaries . 31
3.2 Solving techniques . 33
3.3 Applications in cryptography . 36

3.3.1 Deriving a SAT model from a Boolean polynomial system 37

4 The WDSat Solver 41
4.1 Core algorithm . 42
4.2 Three reasoning modules . 44

4.2.1 CNF module . 44
4.2.2 XORSET module . 47
4.2.3 XORGAUSS module . 49

4.3 Extending the XORGAUSS module . 53
4.4 Complexity discussion . 58

II Cryptographic applications 60

5 ECDLP Preliminaries 61
5.1 Applications in cryptography . 63

5.1.1 Diffie-Hellman key exchange . 63
5.1.2 ElGamal encryption . 64
5.1.3 Pairing-based cryptography . 65

5.2 Known attacks . 66

6

CONTENTS

5.2.1 Generic attacks . 66
5.2.2 Attacks on specific families . 67

6 Parallel Collision Search 69
6.1 Background . 70

6.1.1 Solving discrete logarithms. 71
6.1.2 Many collision applications : the multi-user setting 72
6.1.3 Many collision applications : meet-in-the-middle attacks 74
6.1.4 Computational model and data structure. 74

6.2 Time complexity . 75
6.2.1 Finding one collision . 75
6.2.2 Finding many collisions . 77

6.3 The multi-user setting . 80
6.4 Our approach for the data structure . 83

6.4.1 Radix tree structure . 83
6.4.2 Packed Radix-Tree-List . 85

6.5 Implementation and benchmarks . 87
6.5.1 PRTL implementation . 87
6.5.2 PRTL vs. hash table. 88
6.5.3 ECDLP implementation details and scalability. 91
6.5.4 Multi-collision search computation. 92

7 Index Calculus 94
7.1 Background . 95

7.1.1 Classical index calculus . 95
7.1.2 Index calculus for ECDLP . 98

7.2 Model description . 100
7.2.1 The Algebraic Model . 101
7.2.2 The CNF-XOR Model . 102
7.2.3 The CNF Model . 103

7.3 Symmetry breaking technique . 104
7.4 Branching order . 105

7.4.1 MVC and summation polynomials 108
7.5 Complexity analysis . 110

7.5.1 The third summation polynomial 111
7.6 Experimental results . 112

7.6.1 Whole Point Decomposition Phase Computation 117

8 Other applications of logical cryptanalysis 119
8.1 The Trivium stream cipher . 119

8.1.1 Model generation and experimental results 120
8.1.2 Complexity discussion . 121

8.2 The MQ problem . 122
8.2.1 Generation of the MQ model . 123
8.2.2 Complexity analysis . 124
8.2.3 Experimental results and perspectives 124

9 Conclusion 128
9.1 Open questions and extendibility . 129

7

Résumé

La cryptanalyse a pour objet de vérifier, par la recherche d’affaiblisssements poten-
tiels, si un cryptosystème est suffisamment sécurisé pour être utilisé dans un contexte
de développement expérimental, d’entreprise ou encore grand public. A ce titre, la crypt-
analyse se concentre également sur la bonne compréhension de la complexité calculatoire
d’une attaque cryptographique permettant de corréler la longueur de la clé secrète à la
garantie que l’effort cryptanalytique pour la découvrir, même partiellement, ne puisse se
faire en un temps raisonnable. Ainsi, les recommandations concernant les exigences de
longueur de clé minimale données par diverses organisations universitaires et gouverne-
mentales sont basées sur la complexité des attaques connues.

Les attaques que nous décrivont dans cette thèse reposent sur des approches combina-
toires, relevant notamment de la théorie des graphes et de la satisfaction sous contraintes.
Ainsi, nous présentons plusieurs exemples de modélisation de problème cryptographique
en instances équivalentes de problèmes de satisfaction sous contraintes. Les méthodes em-
ployées pour leur résolution sont dédiées. Bien que cette approche puisse être générique,
notre objectif principal concerne l’étude du problème du logarithme discret sur courbes
elliptiques (ecdlp).

Définition 1 Soit E une courbe elliptique définie sur un corps fini Fq, avec q = pn et n

un nombre premier et soit P ∈ E(Fq). Étant donné un Q multiple de P , le problème du
logarithme discret sur courbes elliptiques consiste à trouver x tel que xP = Q.

La sécurité des systèmes cryptographiques basé sur des courbes elliptiques est sous-
tendue par la difficulté intrinsèque de ce problème. Nous étudions des attaques sur ces
systèmes dans deux catégories distinctes : attaques génériques, attaques dans le cas
spécifique des courbes définies sur un corps de caractéristique 2.

Recherche de collisions Pour le cas général, nous nous concentrons sur l’algorithme
Parallel Collision Search (pcs), proposé par van Oorschot et Wiener [vOW99]. Cet algo-
rithme consiste à modéliser une fonction aléatoire dont les valeurs sont des points sur la
courbe elliptique. Une suite des points trouvés de cette façon est appelée chemin aléatoire.
Lorsqu’un même point de la courbe est trouvé par deux chemins aléatoires distincts, le
problème du logarithme discret est alors résolu pour l’instance considérée, correspondant
par exemple, à une clé de chiffrement secrète. La parallélisation de cette attaque, dans
le cadre du modèle à mémoire partagée, se fait de façon naturelle, où chaque thread
construit, au sein de sa section parallèle, son propre chemin aléatoire.

Les contributions que nous avons proposées dans ce contexte sont les suivantes.

• Proposer une structure de données adaptée. Pour mener l’attaque pcs, il est
nécessaire de stocker une portion des points trouvés. Afin de proposer une struc-
ture de stockage qui optimise la complexité de cet algorithme, nous avons défini les
propriétés nécessaires suivantes : permettre un accès à la mémoire multi-threadé lim-
itant les défauts de cache ainsi qu’une recherche rapide d’un point dans la structure.

8

Résumé

Dans la littérature, ces questions ne sont pas traitées en détails. Communément,
lorsque ce point est abordé, il est fait usage d’une table de hachage. Notre contri-
bution est fondée sur le principe des ”radix tree” tirant également parti des listes
chainées. L’hybridation de ces deux principes offre une occupation optimale de la
mémoire. Cette structure originale est nommée Packed Radix-Tree-List (prtl).

• Analyser la complexité de recherche de collisions. Nous approfondissons l’étude et
la compréhension de la complexité en temps de l’algorithme de van Oorschot et
Wiener. Les travaux réalisés dans le cadre de l’attaque pcs sont exploitables pour
d’autres approches se destinant à la recherche de collisions. A titre d’exemple on
retrouve l’algorithme Meet-In-The-Middle exploitant les vulnérabilités des systèmes
cryptographiques symétriques (e.g 3-DES). La résolution du problème du logarithme
discret constitue un autre exemple, notamment dans le cas où un grand nombre
d’utilisateurs utilisent les mêmes paramètres publiques, couramment appelé le cas
multi-user [KS01; FJM14a]. Ainsi, contrairement au pcs qui nécessite une seule
collision, l’attaque Meet-In-The-Middle ou l’attaque multi-user nécessite l’accès à un
grand nombre de collisions. Dans ce cas, le besoin de ressources mémoire devient plus
important et induit que le choix de la structure de stockage est alors déterminant.
Au final, nous revisitons la preuve de la complexité en temps pour les algorithmes
multi-collision et proposons l’élimination de certaines heuristiques.

Théorème 1 Soit S un ensemble de N élements et f : S → S une fonction
aléatoire. On note θ la proportion de points distingués (des points ayant une pro-
priété définie) dans S. Le temps d’exécution attendu pour trouver m collisions de
la fonction f avec une contrainte mémoire de w mots est:

1

L

(
w

θ
+ (m− w2

2θ2N
)
θN

w
+

2m

θ

)
.

Calcul d’index La méthode du calcul d’index permet d’exploiter certaines faiblesses
algébriques des courbes disposant de propriétés particulières. Nos travaux se concentrent
sur le cas des courbes elliptiques binaires. Au cœur de l’attaque de ces courbes réside la
résolution des systèmes polynomiaux en caractéristique 2. Ainsi, la première phase du cal-
cul d’index, phase de recherche de relations, consiste à résoudre des systèmes d’équations
obtenus à partir de polynômes de Semaev, dont les zéros représentent des coordonnées de
points. La résolution de ces systèmes répond au problème de décomposition de points et
ainsi, elle permet de générer des relations algébriques entre certains points de la courbe.
Les relations sont utilisées dans la deuxième phase dite phase d’algèbre linéaire, nous
permettant de déduire le logarithme discret pour une instance donnée.

La phase de recherche de relations est abordée par la cryptanalyse algébrique. Cette
approche de cryptanalyse consiste à modéliser un cryptosystème sous la forme d’équations
polynomiales, amenant la sécurité de celui-ci à la difficulté de la résolution du système
associé. Les attaques algébriques se déroulent en deux étapes principales. La première
étape consiste en une modélisation (ou encodage), étape déterminante pour la suite de
l’attaque, consistant, en seconde étape, en la résolution du système. La méthode de
résolution, représentant l’attaque à proprement parlé, est adaptée et spécifique au modèle
construit. Cette spécialisation de la résolution est un gage d’efficacité. Cela s’illustre par
exemple par le fait qu’il existe toute une famille d’algorithmes dédiés à la résolution de
systèmes polynomiaux creux, qui ne sont pas bien adaptés à la résolution de systèmes
aléatoires.

9

Résumé

La complexité de la résolution d’un système d’équations polynomiales dépend forte-
ment du nombre de variables, noté n, du nombre d’équations, noté m et, selon les cas, du
rapport entre ces deux paramètres. Une autre mesure cruciale de la difficulté est le degré
maximal des polynômes. Pour les algorithmes qui utilisent les techniques reposant sur les
bases de Gröbner, les estimations de complexité sont basées sur le degré de régularité.

Dans cette thèse, nous étudions le cas spécifique de systèmes d’équations polynomiales
en caractéristique 2. Ces systèmes ont la particularité que les coefficients sont dans F2.

Exemple 1 Ce qui suit est un exemple de système d’équations booléennes en trois vari-
ables.

x1 + x2 · x3 = 0

x1 · x2 + x2 + x3 = 0

x1 + x1 · x2 · x3 + x2 · x3 = 0.

Il existe des nombreuses méthodes algébriques pour la résolution de ces systèmes. Les
plus courants sont les algorithmes utilisant les techniques de bases de Gröbner [BCLA83;
Buc06], notamment les algorithmes F4 [Fau99] et F5 de Faugère [Fau02]. Pour
une description détaillée de ces algorithmes, le lecteur peut se reporter à [BFS15;
Bar04; Spa12; Vit11; Sva14]. D’autres méthodes de résolution algébriques compren-
nent la méthode de linéarisation et la famille d’algorithmes XL [KS99; CKPS00], la
recherche exhaustive [BCC+10] et les méthodes hybrides [YC04; YC05; BFP09; BFSS13;
JV17].

Pour tout système d’équations booléennes, il existe une formule propositionnelle
équivalente. Pour transformer un système polynomial en caractéristique 2 en une for-
mule sous forme normale algébrique (anf), il est nécessaire de remplacer toute multipli-
cation par l’opérateur logique et (∧), et toute addition par l’opérateur xor (⊕). Les
éléments 0 et 1 dans F2 correspondent alors respectivement à ⊥ et >. Une formule anf
peut alors être transformée en forme normale conjonctive (cnf) par des méthodes clas-
siques. Cette modélisation du problème sous sa forme cnf nous permet de bénéficier des
progrès colossaux réalisés ces dernières années dans la résolution pratique du problème
sat. Ainsi, nous exploitons la puissance des solveurs sat de dernière génération afin de
dédier une partie des calculs fastidieux d’une cryptanalyse à un outil automatique. Ce
type d’attaques, dont le formalisme utilisé relève de la logique propositionnelle, forment
la base de la cryptanalyse logique, qui a été décrite pour la première fois au début des
années 2000 dans les travaux de Fabio Massacci [MM00]. Cette première proposition
utilise le (désormais obsolète) Data Encryption Standard (DES) pour montrer une ap-
proche de modélisation d’une attaque cryptanalytique sous la forme d’un problème sat.
Depuis, les solveurs sat sont devenus des outils puissants, de référence, dans l’analyse des
schémas cryptographiques symétriques. Ils ont été utilisés avec succès pour attaquer des
cryptosystèmes à clé secrète tels que Crypto1, Bivium, Trivium, Grain, HiTag2 [MCP07;
LJN14; HJ12a; SNC09; Soo10a]. Leur utilisation dans le cadre des cryptosystèmes à clé
publique a cependant rarement été envisagée. Les travaux de Galbraith et Gebregiy-
orgis [GG14], explorant la possibilité de remplacer les méthodes de bases de Gröbner
avec des solveurs sat génériques dans l’attaque de calcul d’index sur les courbes ellip-
tiques binaires, en sont un exemple. Les solveurs cdcl, tels que MiniSat [SE05] et
Glucose [AS09], se sont révélés être des outils puissants pour résoudre les formules
cnf. Ils ne sont toutefois pas adaptés pour gérer les clauses xor et supposent donc
que de telles contraintes de parité soient traduites sous forme cnf. Cela induit à la
fois lors de la modélisation et lors de la gestion des clauses résultantes une lourdeur de
traitement pénalisant la résolution. Ainsi, des travaux récents se sont concentrés sur

10

Résumé

le couplage de solveurs cdcl avec un module de raisonnement xor. Ces techniques
peuvent, de plus, être améliorées par la méthode d’élimination gaussienne, comme dans
les travaux de Soos et al. (dont le résultat est le solveur CryptoMiniSat) [SNC09;
Soo10a], Han et Jiang [HJ12a], Laitinen et al. [LJN14; LJN11]. Les solveurs sat adaptés
à la résolution xor utilisent généralement des formules sous une forme spécifique, qui est
une conjonction de clauses or et de clauses xor. On parle alors d’une forme cnf-xor.

Dans le cadre de l’attaque de calcul d’index, premièrement, nous avons modélisé le
problème de décomposition de points sous la forme d’une formule logique et nous l’avons
défini comme une instance du problème sat. En ajout de cela, nous avons développé
un solveur sat dédié à ce problème spécifique, que nous avons nommé WDSat. Au
final, nous comparons expérimentalement les performances de résolution des instances
sat issues de l’attaque de calcul d’index avec le solveur WDSat, avec d’autres solveurs
sat génériques de la littérature mais aussi avec la méthode des bases de Gröbner.

Le solveur WDSat Notre solveur est basé sur l’algorithme Davis-Putnam-Logemann-
Loveland (dpll) [DLL62]. L’algorithme dpll procède, grâce au développement d’un
arbre binaire de recherche, à l’énumération implicite de l’ensemble des modèles résultant
de l’affectation des variables de l’instance aux différentes valeurs de vérité. Dans le pire
des cas, la hauteur de cet arbre est donc égale au nombre de variables présentes dans la
formule considérée. Au cours de la résolution, et après chaque affectation de variable, la
formule est simplifiée par un processus de raisonnement automatique nommé propagation
unitaire. Lorsqu’un conflit survient, une procédure de backtracking est lancée et la valeur
de vérité opposée est affectée au littéral. Si la valeur de vérité opposée entrâıne un conflit
également, nous revenons à une supposition antérieure ou nous concluons que la formule
n’est pas satisfaisable.

WDSat est construit autour de 3 modules de raisonnement. Le premier module
raisonne sur la partie de la formule étant sous forme cnf. Ce module applique des
méthodes de propagation unitaire classiques. Le deuxième module, nommé xorset,
applique le raisonnement de parité sur la partie xor. Finalement, le troisième module,
nommé xorgauss, applique une élimination gaussienne, également sur la partie xor.
Par contre, nous avons identifié que dans certains cas, l’élimination gaussienne sur les
instances sat ne fonctionne pas aussi bien que l’élimination gaussienne sur les systèmes
algébriques. Plus précisément, nous avons mis en évidence une propriété d’annulation qui
est présente dans les méthodes de résolution algébriques mais qui n’est pas appliquée dans
les implémentations actuelles d’élimination gaussienne au sein des solveurs sat. Pour
corriger cet oubli dans notre solveur, nous avons développé une extension du module
xorgauss, nommé xg-ext. A ce jour, WDSat a été utilisé dans le cadre de trois
attaques cryptographiques différentes.

1. Calcul d’index. Notre solveur WDSat a été initialement conçu pour résoudre
des instances dérivées du problème de décomposition de points. Par conséquent, il
comprend deux extensions qui, à ce jour, ont donné de meilleurs temps d’exécution
uniquement pour les instances dérivées de ce problème. La première contribution
vise à éliminer les solutions symétriques sans agrandir le modèle sat et sans in-
troduire de coût de calcul supplémentaire. La seconde contribution sur ce sujet
est centrée autour d’une technique originale de prétraitement basée sur le problème
de couverture minimum par sommets (ou problème du transverse minimum) en
théorie des graphes. Plus précisément, cette technique est utilisée avant la phase
de résolution. Par conséquent, elle peut être considérée comme un prétraitement
qui détermine, de manière statique, l’ordre des variables de branchement. Pour les

11

Résumé

instances anf, nous considérons qu’un ordre optimal de variables de branchement
est celui qui conduira le plus rapidement possible à un système polynomial linéaire.

La complexité dans le pire des cas de notre solveur, pour résoudre l’étape de
décomposition de points de l’attaque de calcul d’index dans F2n , en utilisant le
(m+ 1)ième polynôme de Semaev et une base de factorisation définie par un espace
vectoriel de dimension l, est

O(
2ml

m!
),

dans le cas où m ≥ 3. Dans le cas où m = 2, la complexité est donnée par O(2l).

Pour étayer nos affirmations, nous avons conduit des expériences utilisant les courbes
elliptiques de Koblitz [Kob92a] définies sur F2n , où n est un nombre premier.
Les temps d’exécution expérimentaux montrent que notre approche de résolution
utilisant WDSat est significativement plus rapide que les méthodes algébriques
actuelles basées sur le calcul de bases de Gröbner. De plus, notre solveur surpasse
d’autres solveurs sat couramment utilisés, pour ce problème spécifique.

2. Trivium. WDSat a été utilisé pour effectuer une attaque logique sur le système
de chiffrement de flux Trivium [DC06]. L’attaque de ce système peut être réduite à
la résolution d’un système d’équations algébriques booléennes. Les résultats de nos
travaux expérimentaux montrent que la version xg-ext couplée à notre technique
de prétraitement (mvc) améliore les performances de WDSat pour les instances
dérivées du chiffrement Trivium. Cependant, WDSat est dépassé par Crypto-
MiniSat pour la résolution de ces instances, à la fois en termes de temps d’exécution
et de nombre de conflits. À notre avis, cette différence est due au fait que l’approche
cdcl sur laquelle s’appuie CryptoMiniSat est mieux adaptée pour ces instances
que l’approche dpll de base utilisée par WDSat. En particulier, l’algorithme de
backtracking avec apprentissage de clauses implique des techniques de saut arrière,
ce qui entrâıne moins de conflits.

3. Le problème MQ. Les cryptosystèmes à clé publique multivariée (MPKC) sont
des cryptosystèmes dont les clés publiques sont un ensemble de polynômes multi-
variés et leur sécurité est généralement basée sur la difficulté de résoudre un système
d’équations polynomiales de degré supérieur à 1. Un système quadratique multi-
varié (mq) est un système d’équations polynomiales multivariées qui se compose
uniquement de polynômes quadratiques. Ce cas spécifique de système est le plus
couramment utilisé dans la cryptographie multivariée. Le problème mq appartient
à la classe NP et il est considéré difficile (en moyenne) même pour les ordinateurs
quantiques. Par conséquent, mq est le problème sous-jacent de l’une des grandes
familles de candidats NIST pour le processus de standardisation de la cryptographie
post-quantique en cours [Nat].

Pour construire des systèmes mq, nous avons pris comme référence le challenge mq
initié en [YDH+15]. Nous avons expérimenté avec des paramètres m et n différents.
Tout d’abord, nous avons observé que la meilleure version de WDSat est celle qui
utilise la technique xg-ext. Ensuite, nous avons pu constater que CryptoMiniSat
donne de meilleurs résultats lorsque l’élimination gaussienne est activée, cependant,
WDSat dépasse CryptoMiniSat pour ces instances. Le détenteur actuel du
record pour ce type d’instances du challenge mq est l’algorithme hybride de Joux et
Vitse [JV17]. Nous n’avons pas implémenté cet algorithme pour avoir des résultats

12

Résumé

expérimentaux comparatifs, mais selon les temps d’exécution annoncés dans [Tak],
notre solveur serait dépassé par cet algorithme.

Nous espérons que le matériel présenté dans cette thèse encouragera la communauté
cryptographique à utiliser les solveurs sat pour la cryptanalyse sur F2. Pour des corps plus
grands, d’autres techniques de programmation par contraintes peuvent être envisagées.

13

Glossary

AND The and bitwise binary operator.

ANF Algebraic Normal Form.

CDCL The Conflict-driven clause learning algorithm.

CMS The CryptoMiniSat sat solver.

CNF Conjunctive Normal Form.

DH Diffie-Hellman.

DLP Discrete logarithm problem.

DPLL The Davis-Putnam-Logemann-Loveland algorithm.

EC Equivalence class.

ECDH Elliptic curve Diffie-Hellman.

ECDHE Elliptic curve Diffie-Hellman ephemeral.

ECDL Elliptic curve discrete logarithm.

ECDLP Elliptic curve discrete logarithm problem.

GE Gaussian elimination.

Glucose The Glucose sat solver.

MQ The Multivariate Quadratic polynomial problem.

MVC Minimal Vertex Cover.

Magma The Magma computational algebra system.

MiniSat The MiniSat sat solver.

OR The or bitwise binary operator.

PCS The Parallel Collision Search algorithm.

PDP Point Decomposition Problem.

PRTL The Packed Radix-Tree-List structure proposed in this thesis.

SAT The satisfiability problem

UNSAT Unsatisfiable.

14

Glossary

WDSat The name of the sat solver presented in this thesis. Stands for Weil
Descent sat solving.

XG An abbreviation for the xorgauss module.

XG-ext An extention of the xorgauss module of the WDSat solver.

XOR The Exclusive or bitwise binary operator.

XORGAUSS The xorgauss module of the WDSat solver.

XORSET The xorset module of the WDSat solver.

15

Chapter 1

Introduction

Solving hard problems has always been at the center of scientific research. However, cat-
egorizing a problem as hard is very broad and can have a different meaning depending
on the topic of interest. In the field of computational complexity theory, the hardness of
a problem is assessed by the computational cost associated with its resolution, in terms
of resources such as time and memory. Time (resp. memory) complexity quantifies the
amount of time (resp. memory) required to run the algorithm, with respect to the size
of the input. To put this into perspective, we can look at some examples of practical
problems. The problem of finding an occurrence of an element in a list has linear com-
plexity, as in the worst case, the algorithm has to traverse the list from beginning to
end to answer with certainty if the element is present or not. However, when the input
list is sorted, the so-called dichotomic search can solve this problem in logarithmic time.
For other problems, one traversal of the input is not enough. For example, to delete all
duplicates from a list, the list has to be traversed once for each element, which gives us an
algorithm with quadratic complexity. All of these problems fall into the polynomial time
complexity class (P) and as such, they are considered to be practical (easy) problems.
The time complexity of algorithms in the P class is noted O(nc), where n is the size of
the input and c is a constant.

Outside of the P class, we have, for example, the brute force algorithm for breaking a
cryptographic key. This straightforward solution consists in testing all possible combina-
tions and has a complexity of O(2n), where n is the bit-size of the key. Thus, the running
time of this algorithm grows twice for every bit added to the input size. We consider this
algorithm to be in the exponential time complexity class (EXP or EXPTIME).

Table 1.1 shows a comparison of how the running time grows with the size of the
input n for all examples mentioned thus far. For simplicity, we consider that treating
one unit of the input takes 0.01 seconds. This exercise is a textbook practice that makes
understanding the impact of exponential growth easier. Now, let us imagine that the 0.01

Table 1.1: Comparing P class and EXP class complexities.

log2n n n2 2n

n = 2 0.01 0.02 0.04 0.04

n = 10 0.03 0.1 1 10.24

n = 20 0.06 0.2 4 10485

n = 45 0.13 0.45 20.25 351843 · 106

16

Chapter 1. Introduction

value is actually the thickness of a piece of paper in millimeters and that this piece of
paper is infinitely big and can be folded an infinite number of times. The last row, holding
n = 45, is actually the number of times that the paper needs to be folded to (almost)
cover the distance between the earth and the moon. The human mind has a hard time
grasping how big exponential growth is, which is what makes this and other exponential
growth examples so popular.

The example of a brute force algorithm for finding a cryptographic key is actually in
a subclass of exponential algorithms, called the nondeterministic polynomial time (NP)
class. For problems in this class, verifying if a given output is a correct solution can be
done in polynomial time. However, we do not know of a polynomial-time algorithm for
finding a solution or deciding if a solution exists. We talk about a problem being solvable
or decidable interchangeably, as we can show that one implies the other and vise versa.
The implication from solvable to decidable is pretty straightforward. If a polynomial-
time algorithm to find a solution exists, then after execution, this algorithm can answer
whether the solution was found or not. However, the inverse is also true. If there exists
an oracle that can decide, in polynomial time, if a given instance of the problem admits a
solution, then this oracle can also be used to find it. The technique goes as follows. First,
we ask the oracle if a solution exists. If the answer is positive, then one entry from the
solution is chosen arbitrarily. We can assess whether the choice that was made is correct
by asking the oracle if a solution still exists. If we are given a negative answer, we will have
to try another guess. In the worst case, we would have to check all possibilities for one
single entry. This process is repeated n times, as n is the size of the output solution. In
any case, the number of queries to the oracle is a polynomial function, thus this algorithm
for finding a solution has polynomial time complexity. The name of the NP class comes
from the more formal definition which states that all problems in this class can be solved
in polynomial time using a nondeterministic Turing machine.

The Boolean satisfiability problem, abbreviated as sat, is an eminent problem in
the NP class. sat is the problem of determining whether there exists an interpretation
that satisfies a given propositional formula. Historically, this is the first problem to
be proven to be the hardest problem in NP. A problem A is considered to be harder
than B, if we can use a solution for problem A to solve problem B. In this case, we say
that problem B reduces to problem A. According to the Cook-Levin Theorem [Coo71;
Lev73] from the early 1970s, all problems in NP can be reduced to the sat problem and
the transformation can be completed in polynomial time. As a result, sat is said to be an
NP-complete problem. Later, 21 more problems were proven to be NP-complete [Kar72]

and nowadays there are hundreds. To prove that a problem in NP is NP-complete, it is
enough to prove that any one of the members in the NP-complete class can be reduced
to this problem.

To complete our summary of basic complexity classes, we mention the NP-hard class,
a class of problems that are at least as hard as the hardest problems in NP. Problems in
this class are not necessarily decision problems and those that are, may or may not verify
a solution in polynomial time. A prominent example in this class is the halting problem,
which is the problem of deciding whether an arbitrary computer program with a given
input will eventually finish running or will run infinitely.

Polynomial-time decision and solving algorithms for NP problems have never been
found, however the nonexistence of these algorithms remains unproven. This raises the
question of whether all problems in NP are also in P, which is one of the most impor-
tant open questions in theoretical computer science. The importance of this question is
enhanced by the consequences that proving P=NP would have on today’s society. On
a positive note, we would, for instance, be able to efficiently solve the vehicle routing

17

Chapter 1. Introduction

problem or optimal scheduling and thus, save a significant amount of resources. Impor-
tant advances in biotechnology and the science of DNA would be made as well, as most
problems in protein structure prediction are NP. However, P=NP would also invalidate
most of cryptography, as various NP problems are fundamental to constructing existing
cryptosystems. Solving the underlying NP problem is equivalent to breaking the cryp-
tosystem or violating some of its core principles: encryption, authentication, integrity,
and nonrepudiation. Consequently, these problems are the main focus of cryptanalysis.

Academic research in cryptanalysis is focused on deciding whether a cryptosystem is
secure enough to be used in the real world. In addition, a good understanding of the com-
plexity of a cryptographic attack allows us to determine the secret key length, making sure
that no cryptanalytic effort can find the key in a feasible amount of time. Recommenda-
tions for minimum key length requirements given by various academic and governmental
organizations [Blu18] are based on the complexity of known attacks. However, for crypto-
graphic purposes, we have to deviate from the classical notion of complexity that focuses
on the worst case and turn our attention to problems that are hard on average. Indeed,
there exist problems that are hard in the worst case, but that admit easily solvable in-
stances. For example, the 3-coloring problem in graph theory is in the NP-complete class,
but becomes polynomial for graphs with specific characteristics, such as dense graphs,
perfect graphs [GLS84], AT-free graphs [Sta10] and others. The security of public-key
cryptosystems can be threatened by this phenomenon, as was the case with one of the
earliest public-key cryptosystems, the Merkle–Hellman knapsack cryptosystem [MH06].
This cryptosystem is based on the subset sum problem, another problem that is known
to be NP-complete but has a significant subset of polynomial instances. Consequently, it
was broken by Shamir [Sha83], a few years after its publication. Today, it is well known
that to be able to construct a public-key cryptosystem, we need to find a problem for
which we are able to generate hard instances in polynomial time. Also, the generation
of an instance needs to come with a corresponding solution. To find such problems in
cryptography, we turn to one-way functions. A function f is considered to be a one-way
function if it is easy to compute, but the problem of inverting f is hard. Such functions
are the primal focus of many cryptanalytic efforts.

The work presented in this thesis focuses on the cryptanalysis of several cryptographic
schemes by attacking their underlying problem. The greatest portion of our work is
directed at the elliptic curve discrete logarithm problem (ecdlp). This problem1 is of
great interest, not only because it represents a one-way function, but also because of its
random self-reductibility property [AFK87]. According to this property, every instance of
this problem can be transformed into a purely random instance. This serves to prove that,
if there exist hard instances of the ecdlp, the problem is practically hard for random
instances. The ecdlp is defined as follows.

Definition 1.0.1 Let E be an elliptic curve over a finite field Fq, where q = pn and p is
prime and let P ∈ E(Fq). Given a multiple Q of P , the elliptic curve discrete logarithm
problem is to find x such that xP = Q.

We study both the general-group case and the case of elliptic curves over binary extension
fields. In the family of generic attacks, our focus is on the Parallel Collision Search
algorithm (pcs), first introduced by van Oorschot and Wiener [vOW99] and based on
Pollard’s rho algorithm [Pol78]. The complexity of this attack is in the square root of the
size of the field, or more precisely in the square root of its largest prime factor [PH78]. To
date, there are no attacks with a better complexity for the general case. However, when
there is more information on the group structure, this information can be exploited to

1Also, the dlp problem in general.

18

Chapter 1. Introduction

develop a more efficient attack. A prominent example is the index calculus attack which
constitutes our second line of our research. Historically, the index calculus attack was
conceived for integer factorization. Its greatest success, however, comes from its efficiency
in solving the discrete log in the multiplicative group of finite fields. The subexponential
complexity of the index calculus attack for these groups triggered the use of elliptic curves
in cryptography. The switch to elliptic curves for constructing secure cryptosystems,
first suggested by Miller [Mil85] and Koblitz [Kob87] in 1985, became inevitable due to
the need for exceedingly large key sizes when multiplicative groups of finite fields are
used. Ever since, there have been many efforts to adapt the index calculus attack for
the ecdlp. The first contribution that made this line of research possible was Semaev’s
solution for decomposing a point on an elliptic curve [Sem04]. Later, Gaudry [Gau09]

and Diem [Die11] independently proposed a way to put Semaev’s work into practice and
develop an index calculus algorithm for elliptic curves over extension fields. The Gaudry-
Diem algorithm has a better asymptotic complexity than generic methods for solving the
dlp , using the (m+ 1)th summation polynomial, for the case of elliptic curves over Fqn ,
when q is large, n ≥ 3 is small and log q > cm for some constant c. In our work, we are
particularly interested in the special case of elliptic curves over F2n , where n is prime.

We extended our research outside of the realm of the dlp, by analyzing the security
of two other cryptosystems built upon finite fields of characteristic 2: Trivium and multi-
variate public key cryptosystems (MPKC) over F2. Trivium is a stream cipher that uses
keystream generators comprised of Nonlinear-Feedback Shift Registers (NLFSR). It was
designed in 2005 by C. De Cannière and B. Preneel [DC06] as a submission for the eS-
TREAM project and is to this day a common target of cryptanalytic attacks. MPKCs are
cryptosystems whose public keys are a set of multivariate polynomials and their security
is commonly based on the multivariate quadratic polynomial (mq) problem defined as
follows.

Definition 1.0.2 Given m multivariate quadratic polynomials f1, . . . , fm of n variables
over a finite field F, find a tuple w = (w1, . . . , wn) in Fn, such that f1(w) = · · · = fm(w) =
0.

This problem is in the NP class and it is believed to be hard (on average) even on quantum
computers. Consequently, mq is the underlying problem of one of the families of NIST
candidates for the ongoing Post-Quantum Cryptography Standardization Process [Nat].
Even though most of the mq-based encryption constructions have been broken, some
digital signature schemes remain robust. For instance, Rainbow [DS05] is one of three
Round 3 finalists in this category.

What unifies most problems studied in this thesis is that their resolution can be
reduced to the problem of solving a nonlinear multivariate Boolean polynomial system.
This approach is called algebraic cryptanalysis and is usually tackled by using Gröbner
basis algorithms [Fau99], exhaustive search [BCC+13] or hybrid methods [BFP09] for
solving. However, for multivariate polynomial systems over finite fields of characteristic
2, classic algebraic methods can be replaced by sat solving techniques. This approach,
first introduced by Massacci in 2000 [MM00], is commonly known as logical cryptanalysis
and is at the core of our cryptanalysis efforts. One could say that even though we initially
presented sat as a problem, in our work sat it is more of a tool for solving other problems.
In other words, we detect cryptographic problems whose resolution can be aided by sat
solvers and then we look for an efficient modelization and devise sat solving techniques
adapted for the problem at hand. To this end, we first developed a built-from-scratch
sat solver dedicated to solving the point decomposition step of the index calculus attack.
Then, our solver was adapted for and tested against Boolean polynomial systems derived
from other cryptographic problems.

19

Chapter 1. Introduction

When we consider the underlying cryptosystem as a black-box, the worst-case com-
plexity of our solver is exponential in the number of variables in the Boolean polynomial
system from which the sat model was derived. This is a significant difference compared
to other complete sat solvers whose worst-case complexity is exponential in the number
of variables in the sat model itself. Looking at the approach for deriving a sat model (de-
tailed in Chapter 3), it is evident that the number of variables in the Boolean polynomial
system is always lesser than or equal to the number of variables in the sat model derivied
from that system2. We also propose a preprocessing technique that gives a finer analysis
of the complexity even in the case where we have no information about the underlying
cryptosystem. On the other hand, when we know the structure of the underlying cryp-
tosystem, we can determine a more precise bound on the worst-case complexity. Notably,
we have the example of solving the point decomposition step of the index calculus attack
in F2n using the (m + 1)th summation polynomial and a factor base defined by a vector
space of dimension l. The worst-case complexity of our solver for this problem is

O(
2ml

m!
),

when m ≥ 3 and for the case of m = 2, we have

O(2l).

We observe experimentally that the average-case complexity deviates only by a factor
of two and only in the case of systems that have a solution. For these attacks, our
sat solver outperforms all other approaches presented in this thesis, including the best
currently available implementation of Gröbner bases (F4 [Fau99] in Magma [BCP97])
and state-of-the-art sat solvers: MiniSat [ES04], Glucose [AS09], MapleL-
CMDistChronoBT [NR18], CaDiCaL [Bie] and CryptoMiniSat [SNC09].

In our work on the generic pcs algorithm, we explore both one-collision (i.e. discrete
logs) and multi-collision applications, such as meet-in-middle attacks the discrete log
problem in the multi-user setting. Our contributions include:

• presenting a formula for the expected runtime to find any given number of collisions,
with and without a memory constraint,

• proposing a simple storage structure, inspired by radix trees, which saves space and
provides fast look-up and insertion,

• providing benchmarks that show the linear parallel performance of the attack on
elliptic curves discrete logarithms,

• improved running times for multi-collision applications with a memory constraint.

2We have equality only in the case where the Boolean polynomial system is linear.

20

Chapter 2

Boolean Polynomial Systems

Polynomial systems of equations over finite fields have many interesting applications in
cryptography, as well as in other fields. An important application is their use in Mul-
tivariate Cryptography (MC). A core principal for this application is that evaluating a
polynomial at a vector is easy, whereas solving a system of polynomial equations is hard,
resulting in a one-way function. The second application that is significant for our work
is their use in algebraic cryptanalysis. As previously stated, algebraic cryptanalysis de-
notes any technique which reduces a cryptographic attack to the problem of solving a
multivariate polynomial system. Algebraic attacks proceed in two main steps. First,
there is the modeling, or encoding step. This step is crucial for the success of the attack
and strongly influences the next step, which is the solving process. Indeed, choosing the
solving techniques based on the particularity of the model results in better attacks. For
instance, there is a whole family of algorithms dedicated to solving sparse polynomial
systems, that are not well suited for arbitrary systems.

The hardness of solving a multivariate polynomial system of equations strongly de-
pends on the number of variables, denoted n, the number of equations, denoted m and
the ratio between these two parameters. Another crucial measure of difficulty is the maxi-
mum degree of polynomial. For algorithms that use Gröbner basis techniques, complexity
estimates are based on the degree of regularity, which is a notion that will be defined
later.

This chapter is dedicated to the special case of a multivariate Boolean polynomial
system, which, recall, is a system of polynomials in several variables and whose coefficients
are in F2. The following example shows a Boolean polynomial system of three equations
in the variables {x1,x2,x3}:

x1 + x2 · x3 = 0

x1 · x2 + x2 + x3 = 0 (2.1)

x1 + x1 · x2 · x3 + x2 · x3 = 0.

Our research efforts go towards the goal of fully replacing the solving step of an algebraic
cryptanalysis attack by a sat solver. In this chapter, first, we present state-of-the-art
algebraic solving techniques. Gröbner basis algorithms are described in more detail than
other approaches, as they are to be compared to our sat-based approach. Secondly, we
present most notable applications of algebraic attacks in cryptography.

Notation. For simplicity, in the remainder of this dissertation we will omit the multi-
plication operator · whenever its use in monomials is implicit.

21

Chapter 2. Boolean Polynomial Systems

2.1 Algebraic solving techniques

2.1.1 Gröbner basis algorithms

Gröbner bases are extensively used in cryptanalysis as they are a powerful tool for solving
multivariate systems of polynomial equations. Finding a solution of a polynomial system
of equations using Gröbner bases is done in two steps. First, the reduced Gröbner basis
is found, then the solution is extracted from the set of polynomials in the Gröbner basis.
There exist many other applications for Gröbner basis algorithms, however, as our interest
lies in polynomial-system solving, we will present them from this point of view. In this
section, we give an elementary introduction to the notion of Gröbner basis. For further
details the reader can refer to [CLO07].

Definition 2.1.1 Let K be a field and let K[x1, . . . ,xn] be the ring of polynomials in n
variables over K. An ideal I, generated by the set of polynomials {f1, . . . , fs}, is a subset
of K[x1, . . . ,xn], such that

I = {
s∑
i=1

gifi | gi ∈ K[x1, . . . ,xn].}

Suppose that our objective is to determine whether the system of equations f1 = f2 =
· · · = fs = 0 has a solution over the algebraic closure K̄. Usually, we also need to find
the solutions, if there are any. The basic idea behind the Gröbner basis approach is that
the original generating set of the ideal I can be replaced by a different generating set
that is either simpler of has some properties that allow us to extract the solution more
easily. The new generating set with convenient properties is sometimes referred to as a
basis of the ideal. Two classical techniques for solving a polynomial system of equations
that use this reasoning are the Gaussian elimination for the case of linear polynomials,
and Euclid’s algorithm for the case of polynomials in one variable.

Example 2.1.1 Let us consider the following linear polynomials in R[x1,x2,x3]

f1 = x1 + x2 + x3 − 8

f2 = 2x1 + 3x2 − x3 − 17

f3 = −x2 + 5x3 − 1,

and the associated matrix 
1 1 1 −8

2 3 −1 −17

0 −1 5 −1

 .

The most efficient technique for solving the system of equations f1 = f2 = f3 = 0 is to
use Gaussian elimination to obtain the reduced row echelon form of this matrix:

1 0 0 −3

0 1 0 −4

0 0 1 −1

 .

22

Chapter 2. Boolean Polynomial Systems

The new basis of the ideal I =< f1, f2, f3 > that we obtained through Gaussian elimina-
tion is:

f ′1 = x1 − 3

f ′2 = x2 − 4

f ′3 = x3 − 1.

This new set of polynomials allows us to easily compute the solution.

Example 2.1.2 Let us consider the following polynomials in one variable:

f1 = x3 − x2 − 4x− 6

f2 = x2 − 2x− 3.

This is an example of the specific case of polynomials in one variable, and thus, we can use
Euclid’s algorithm to find the solution to the system of equations f1(x) = f2(x) = 0. Using
Euclid’s algorithm, we find that the greatest common divisor of f1 and f2 is f ′ = x − 1.
More specifically, we have that f1 = (x2 + 2x + 2)f ′ and f2 = (x + 1)f ′. Since f ′ divides
both f1 and f2, we conclude that another generating set of the ideal I =< f1, f2 > is {f ′}.
Computing the solution to f ′(x) = 0 is trivial.

These two examples show techniques for finding a basis that can be applied respectively
to the special cases of linear polynomials and polynomials in one variable. The idea behind
Gröbner basis algorithms is to combine key features of Gaussian elimination and Euclid’s
algorithm that can be applied to the general case. For a reader that is accustomed to
linear algebra, it might be interesting to (informally) draw parallels between linear and
nonlinear polynomial systems. From Definition 2.1.1, we can see that an ideal is the set
of all possible linear combinations of polynomials fi, with polynomials gi ∈ K[x1, . . . ,xn]
as coefficients. Hence, the notion of an ideal is analogous to the notion of a vector space
from linear algebra. The set of solutions to a linear system is a linear subspace of Kn,
whereas the set of solutions to a nonlinear system is a geometric object called an algebraic
variety of Kn. The algorithm that transforms a linear system of equations into an upper
triangular system, will be replaced by an algorithm that finds a Gröbner basis of an ideal.
The analogue of Euclidean division is reduction, but to define this, as well as further
notions, we first need to define monomial ordering.

Definition 2.1.2 A monomial ordering ≺ is a relation on the set of monomials in
K[x1, . . . ,xn], such that

• The relation ≺ is a total ordering;

• The relation is compatible with the product, i.e. for a triplet of monomials m1, m2,
m3, if m1 ≺ m2, then m1m3 ≺ m2m3;

• Every nonempty subset of monomials has a smallest element;

We define three of the various monomial orderings that are of interest in computational
algebra. Let xα = xα1

1 . . .xαnn denote a monomial and let |α| = α1 + · · · + αn denote the
monomial degree.

Lexicographic. The lexicographic (lex) order is similar to the usual alphabetical order.
We have that xα ≺lex xβ if the left-most nonzero entry of α− β is strictly negative.

Example 2.1.3 The lex order of all degree 2 monomials in the variables {x1,x2,x3} is

1 ≺ x3 ≺ x2
3 ≺ x2 ≺ x2x3 ≺ x2

2 ≺ x1 ≺ x1x3 ≺ x1x2 ≺ x2
1.

23

Chapter 2. Boolean Polynomial Systems

Graded lexicographic. With the graded lexicographic (glex) order, we first sort by
the total degree and if there is an equality, the lexicographic order applies, i.e. xα ≺glex xβ

if |α| < |β| or |α| = |β| and xα ≺lex xβ.

Example 2.1.4 The glex order of all degree 2 monomials in the variables {x1,x2,x3} is

1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x2

2 ≺ x1x3 ≺≺ x1x2 ≺ x2
1.

Graded reverse lexicographic. With the graded reverse lexicographic (grevlex) order,
we first sort by the total degree and if there is an equality, we use a reversed lexicographic
order, i.e. xα ≺grevlex xβ if |α| < |β| or |α| = |β| and right-most nonzero entry of α− β is
strictly positive.

Example 2.1.5 The grevlex order of all degree 2 monomials in the variables {x1,x2,x3}
is

1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x1x3 ≺ x2

2 ≺ x1x2 ≺ x2
1.

The leading term of a polynomial f is defined with respect to any monomial ordering
and the reduction process depends on a given monomial ordering. Given a polynomial f
and a set of polynomials B = {f1, . . . , fs}, the reduction process returns a polynomial r
such that

f = aif1 + · · ·+ asfs + r,

where ai ∈ K[x1, . . . ,xn], for 1 ≤ i ≤ s and the leading monomials of the fi polynomials
do not divide the leading monomial of r. We say that f reduces to r by B.

Definition 2.1.3 A Gröbner basis of an ideal I ⊂ K[x1, . . . ,xn] for a given monomial
ordering is a finite set B ⊂ I such that any f ∈ I reduces to 0 by B. The basis is called
reduced when the fi polynomials all have leading coefficient 1 and when none of the fi
polynomials involves a monomial which reduces by B \ {fi}.

The notion of a Gröbner basis was first introduced in Buchberger’s PhD thesis in
1965 [BCLA83; Buc06], along with a means to test whether a set of polynomials is a
Gröbner basis. These findings led to the first algorithm for computing a Gröbner basis
from an arbitrary basis of an ideal, called Buchberger’s algorithm. Ever since, there have
been significant efforts to improve Buchberger’s algorithm. Initially, there were Buch-
berger’s own improvements in [Buc79; Buc85]. Then, it was observed by Lazard [Laz83]

that performing row reduction without column pivoting on the Macaulay’s matrix [Mac16]

is equivalent to performing Buchberger’s algorithm.

Definition 2.1.4 Given a set of polynomials {f1, . . . , fs} ∈ K[x1, . . . ,xn], each of degree
di for 1 ≤ i ≤ s, then the Macaulay matrix of degree d is the matrix containing the
coefficients of

M(d) =



f1

x1f1

...

xd−d1n f1

f2

x1f2

...

xd−dsn fs


24

Chapter 2. Boolean Polynomial Systems

where each polynomial fi is multiplied with all monomials from degree 0 up to d− di for
all i, such that 1 ≤ i ≤ s.

Example 2.1.6 Let us consider the following polynomials in variables {x1,x2,x3}

f1 = 3x2
1 − x2

2 + 5x1x3 + x2 − 22

f2 = 2x1 + x2 − x3 − 1

f3 = 2x1x2 + x2 + 8x3.

The Macaulay matrix of degree 2 associated to this system, with respect to the grevlex
order x1 > x2 > x3 is

M(2) =



x2
1 x1x2 x2

2 x1x3 x2x3 x2
3 x1 x2 x3 1

f1 3 0 −1 5 0 0 0 1 0 −22
f2 0 0 0 0 0 0 2 1 −1 −1
f3 0 2 0 0 0 0 0 1 8 0
x1f2 2 1 0 −1 0 0 −1 0 0 0
x2f2 0 2 1 0 −1 0 0 −1 0 0
x3f2 0 0 0 2 1 −1 0 0 −1 0

.

Lazard’s discoveries on the use of linear algebra for computing Gröbner bases led to
the conception of the F4 [Fau99] and F5 [Fau02] algorithms by Faugère. For a detailed
description of these algorithms, the reader can refer to [BFS15; Bar04; Spa12; Vit11;
Sva14].

The application of Gröbner basis that is the main focus of our work is solving a
polynomial system of equations. For solving the system of equations f1 = f1 = · · · = fs =
0, it is most convenient to obtain a Gröbner basis of I =< f1, . . . , fs > with respect to
the lexicographic order, as this order allows us to use elimination theory. For 1 ≤ k ≤ n,
the kth elimination ideal is the ideal Ik = I ∩ K[xk, . . . ,xn]. Finding elimination ideals
results in a system that has a shape similar to the triangular shape of a linear system
obtained from a Gaussian elimination.

Example 2.1.7 Let us consider the ideal

I = (x1,x2 − 1,x3 − 4)(x1 − 2,x2 + 1,x3 − 1),

given by 9 generators. The Gröbner basis of I with respect to the lexicographic order
x1 > x2 > x3 is

Glex = {x1 + x2 − 1,x2
2 − 1,x2x3 + 2x2 − 3x3 + 6, 3x2 − 2x3 + 5,x2

3 − 5x3 + 4}.

The last equation x2
3 − 5x3 + 4 = (x3 − 1)(x3 − 4) contains only x3 and thus, it is trivial

to compute x3 = 1 or x3 = 4. The second to last equation contains only x2 and x3 and
thus, after the substitution of x3 it is trivial to compute x2 = −1 or, respectively, x2 = 1.
We continue this process until all solutions are found.

Computing a Gröbner basis with respect to the lexicographic order is very hard in
practice. Consequently, other orders need to be considered. The most common practice
is to first compute the Gröbner basis with respect to the graded reverse lexicographic
order, and then use the FGLM algorithm [FGLM93] to change the order of the basis to
the lexicographic one. The FGLM algorithm takes as input a Gröbner basis of a zero-
dimensional ideal in the ring of polynomials over a field with respect to a monomial order
and returns a Gröbner basis of the ideal with respect to a different (specified) ordering.

25

Chapter 2. Boolean Polynomial Systems

Similar to sat solvers, Gröbner basis implementations have been optimized with great
care, sometimes even through hand-optimizations of the compiled code. For this reason,
it is recommended that these implementations be used, instead of implementing the algo-
rithms from scratch. Best currently available implementation of F4 is in Magma [BCP97]

and F5 is implemented in the FGb library [Fau10]. For a competitive open source imple-
mentation, we reference the SAGE project [S+].

The complexity of computing a Gröbner basis is strongly linked to the cost of the
linear algebra on the largest Macauley matrix that will appear during the computation.
It is exponential in the degree of regularity, denoted Dreg, which is the maximal degree of
all computed polynomials. Knowing Dreg, one can establish an upper bound on the cost
of computing a Gröbner basis [BFS15; Laz83; Mac02]:(

n+Dreg

Dreg

)w
,

where w is the exponent in matrix multiplication complexity. For Boolean systems, this
estimate simplifies to (

n

Dreg

)w
.

Unfortunately, the degree of regularity is difficult to compute for general polynomial
systems. It is, in fact, as difficult as computing a Gröbner basis. However, the degree
of regularity can be computed efficiently for regular [Mac02] and semi-regular [BFSY05;
Bar04] equations.

Gröbner basis algorithms have exponential theoretical complexity, but they have been
shown efficient in practical applications, where the system to be solved is derived from a
concrete cryptosystem and has some structure. Recall that, in cryptanalysis, the average-
case complexity is more significant than the worse-case complexity. On the other hand,
Gröbner bases computations have huge memory requirements, which can sometimes be
the bottleneck of the resolution.

2.1.2 Linearization and the XL family

The linearization method of a non-linear system consists in replacing all monomials of
degree greater than one by an additional variable. For instance, linearization of the
system in Equation (2.1) results in a linear system of three equations in the variables
{x1,x2,x3,x4,x5,x6}:

x1 + x4 = 0

x5 + x2 + x3 = 0

x1 + x6 + x4 = 0.

The derived linear system is consistent with all the solutions of the initial system. How-
ever, other solutions may have been introduced due to the loss of information. Full
linearization only works if the number of (linearly independent) equations is as big as
the number of monomials in the system. In this case, the derived linear system is not
underdetermined and thus, it either has one solution, which must be consistent with the
initial system, or it has no solution, which means that the initial system is inconsistent
as well.

When we are not in this favorable case of extremely overdetermined systems, nat-
urally, one would try to derive new equations that express the link between the orig-
inal variables and the substitution variables. This is the idea behind the family of

26

Chapter 2. Boolean Polynomial Systems

XL algorithms. The extended linearization (XL) technique was introduced by Cour-
tois et al. in 2000 [CKPS00], inspired by the then recently proposed relinearization
algorithm [KS99]. Initially, the XL algorithm was thought to be subexponential if m
exceeds n by a small number, until this claim was disputed [Die04]. Nevertheless, there
are many variants and analysis of this algorithm in the literature [YC04; YC05; CP02;
CL05], as well as hybrid methods that use the XL technique [JV17].

Interestingly, the XL method also produces a Gröbner basis and bears many similar-
ities to algorithms in the F4/F5 family. Consequently, these two families of algorithms
have similar complexities [AFI+04; YCY13].

2.1.3 Exhaustive search

A straightforward method for solving multivariate polynomial systems is the exhaustive
search method, which consists in enumerating all possible values for the n variables and
testing whether they are consistent with all m equations in the system. According to
the analysis in [Bar04] for solving the worst-case (m = n) quadratic systems over Fq,
a Gröbner basis algorithm, such as the F5, has better asymptotic complexity than the
exhaustive search for q ≥ 20. Consequently, Gröbner basis algorithms are expected to be
slower than enumeration algorithms for the F2 case.

Currently, the fastest enumeration method is the algorithm of Bouillaguet et al., pro-
posed in [BCC+10], resulting in the LibFES open source library [Bou16]. Initially, this
algorithm was implemented for CPU and GPU and was able to solve 48 quadratic equa-
tions in 48 variables in 21 minutes. Later, an FPGA implementation with a lesser energy
consumption was proposed in [BCC+13]. Using this algorithm, solving quadratic systems
over F2 require 4 log n · 2n operations. Note that, this complexity does not depend on the
number of equations in the system.

A quantum version of the exhaustive search method can be developed using Grover’s
algorithm [Gro96]. According to the analysis in [SW16] on pure enumeration for solving
Boolean multivariate quadratic systems, the expected running time of Grover’s algorithm
on a large quantum computer is O(2n/2).

2.1.4 Hybrid methods

A prominent line of research is combining exhaustive search with Gröbner basis or XL
methods. This is commonly known as the hybrid method. The main idea behind this
method is to guess a portion of the variables and then compute several Gröbner bases on
smaller systems. The number of variables that are fixed beforehand is known as the trade-
off parameter. It is well known that the cost of a Gröbner basis computation decreases
when the number of equations is greater than the number of variables, as overdetermined
systems have lower degrees of regularity. The hybrid approach yields a better time com-
plexity than a pure Gröbner basis algorithm when the cost of Gröbner bases computations
is decreased significantly enough to compensate for the cost of exhaustive search on the
fixed variables.

In the family of hybrid methods there are many state-of-the-art algorithms for solving
multivariate polynomial systems. The FXL algorithm [YC04; YC05] is a derivative of the
XL method. For a complexity analysis of this algorithm, see [YCC04]. The hybrid ap-
proach, proposed in 2009 [BFP09], is best adapted for systems over Fq when q > 2. It has
been further studied in [BFP12]. For the special case of q = 2, there is the BooleanSolve
algorithm [BFSS13], which is a combination of exhaustive search and sparse linear algebra.
Finally, we have Joux-Vitse’s hybrid algorithm proposed in 2017 [JV17]. This algorithm

27

Chapter 2. Boolean Polynomial Systems

currently holds the record for solving instances from the MQ challenge [YDH+15]. At the
time of writing, this hybrid algorithms is not open source, however, there is an open source
GPU implementation by Niederhagen et al. [NNY18]. The solving algorithms mentioned
in this paragraph surpass pure enumeration algorithms and are considered state-of-the-art
for solving multivariate polynomial systems.

2.1.5 Algorithms for sparse systems

When solving sparse polynomial systems, it is a common practice to concentrate directly
on the set of solutions. The model that we consider sparse is one where only a small
subset of variables appear in each equation. Systems derived from reduced round block
or stream ciphers are often likely to fall in this category, as variables from one round are
usually related to variables from the previous and the following round. For example, the
Bivium [Rad06] and Trivium [DC06] stream ciphers each have 6 or fewer variables in the
equations of their algebraic cryptanalysis model.

Algorithms dedicated to this type of systems are in the Agreeing-Gluing algorithm
family [RS06; RS07; Sem08; Sem16]. A prominent example in this category is the
Raddum-Semaev algorithm [RS06], which has been used in one of the first attacks on
Trivium [Rad06]. The idea behind it is to consider each equation separately and elimi-
nate all solutions that are invalidating the equation. What is unique about this algorithm
is that the equations are represented as vertices in a graph and the agreeing method is
represented as message-passing on a graph. Later, Raddum and Semaev introduced a
generalized technique with a different representation [RS07]. With this technique, the
equations are represented as a system of Multiple Right Hand Sides linear equations,
hence the name MRHS.

2.2 Applications in cryptography

Algebraic cryptanalysis applies to a variety of cryptosystems, ranging from symmetric
blockciphers like the Advanced Encryption Standard (AES) and stream ciphers like Triv-
ium [DC06], to public-key cryptosystems, where the most prominent example is Hidden
Field Equations (HFE) [Pat96a].

HFE is a public-key cryptosystem based on the problem of solving a multivariate
polynomial system of equations over a finite field. The first HFE challenge, proposed by
Patarin [Pat96b], was broken by Faugère and Joux in 2003 [FJ03]. The challenge consisted
of 80 quadratic equations in 80 variables over F2. The computation was performed using
the F5 algorithm implemented in C and took two days and four hours on a computer
with a 1 Ghz processor and 4 GB of RAM. The huge impact of this computation lies in
its demonstration that the algebraic systems arising from HFE do not behave as random
systems. The challenge was solved for the second time by Steel in 2004 [Ste04]. The latter
computation used the F4 implementation in Magma 2.11 and took 25.4 hours on a 750
MHz processor using 15 GB of memory.

Another public-key cryptosystem that has been a target of algebraic attacks is the
McEliece cryptosystem [McE78], based on the hardness of decoding a random linear
code. McEliece was introduced in 1978, alongside RSA and Diffie-Hellman, but was not
considered as a standard due to the huge public key size. However, the cryptosystem is
now considered for building post-quantum cryptography, as, contrary to RSA and Diffie-
Hellman, it is not theoretically vulnerable to attacks on a quantum computer. There
are recent developments in algebraic attacks on code-based cryptosystems. A new ap-
proach for solving the Rank Metric Decoding problem with Gröbner basis techniques was

28

Chapter 2. Boolean Polynomial Systems

introduced at Eurocrypt 2020 [BBB+20].
Lastly, algebraic cryptanalysis is one of the most common approaches to attack-

ing cryptosystems based on the Multivariate Quadratic problem (mq). Cryptographic
schemes in this family include, for instance, the UOV-based [KPG99] signatures Rain-
bow [DS05] and LUOV [BP17] and encryption schemes, such as ABC [TDTD13;
DPW14], ZHFE [PBD14] and QUAD [BGP06].

29

Part I

SAT as a tool

30

Chapter 3

The Satisfiability problem

The sat problem is part of the wider domain of constraint programming. The idea
behind constraint programming is to use a formal language to describe a problem at a
high level. This allows us to solve the problem using the power of solvers that have already
been developed and whose efficiency has immensely improved due to years of research.
Thus, more often than not, this approach allows us to solve the problem more efficiently
than we would with a novel, dedicated algorithm. To this end, the problem at hand
needs to be described in terms of variables and constraints. The third component that
forms the language of constraint programming is a finite set of potential values for the
variables, called the set of domains. Hence, solving the problem can be defined as finding,
for all variables, an assignment of values from the domain that satisfies all constraints.
Sometimes there is an objective function that needs to be minimized and thus, we are
looking for an optimal solution instead of just any solution. In this case, we have a
constraint optimization problem.

When the domain for all variables is the Boolean set {true, false}, and the con-
straints are described as a propositional formula in a standard form, we have described a
sat problem. Describing a problem at a high level as a sat problem is referred to as sat
modelization or a sat encoding. In this dissertation, we use the former wording.

sat is used as a tool for solving various problems starting from automated deduc-
tion, which is historically the motivation behind developing modern sat solving tech-
niques [Bib07]. Other applications include hardware and software verification, planning,
scheduling, optimal control, protocol design, routing, bioinformatics, combinatorial prob-
lems, and many more. In recent years, sat solvers have been proven to be a powerful tool
in cryptanalysis, making xor constraints a popular area of research. The appeal behind
the use of sat solvers is evident when we look at the progress that has been made to their
efficiency over the last 20 years. They have gone from treating 100 variables with 200
constraints in the early 90s to a million variables with 20 million constraints nowadays.
Propositions for novel solvers or extensions to state-of-the-art solvers are breaking records
in every biennial sat competition [vMF].

3.1 Preliminaries

Propositional variables can take two possible truth values: true and false (> and
⊥). Propositional formulas are built upon binary operators and the unary operator ¬,
the negation. The negation operator changes a value true to false and vice versa.
Table 3.1 represents a truth table giving definitions of five common binary operators in the
following order: logical conjunction (and), logical disjunction (or), logical implication,
logical equivalence and exclusive disjunction (xor).

31

Chapter 3. The Satisfiability problem

Table 3.1: Truth table of common binary operators

x1 x2 ∧ ∨ ⇒ ⇔ ⊕

⊥ ⊥ ⊥ ⊥ > > ⊥

⊥ > ⊥ > > ⊥ >

> ⊥ ⊥ > ⊥ ⊥ >

> > > > > > ⊥

State-of-the-art sat solvers are not adapted to handle all of the operators described in
Table 3.1. They use a standard form, known as conjunctive normal form (cnf), containing
only the negation, logical and, and logical or. Before we give a precise definition of a
cnf formula, we need to define other notions from the sat terminology.

• A literal is a signed propositional variable. Therefore, it can be positive (denoted
by x) or negative (denoted by ¬x). A literal x (resp. ¬x) is satisfied if it is assigned
to true (resp. false). A literal x (resp. ¬x) is falsified if it is assigned to false
(resp. true) ;

• An or-clause is a non-exclusive disjunction (∨) of literals (e.g. x1 ∨ ¬x2 ∨ x3). An
or-clause is said to be falsified if all of its literals are falsified and it is set to be
satisfied if at least one of its literals is satisfied ;

• An interpretation of a given propositional formula consists in assigning a truth value
to a set of its variables ;

• A cnf formula is a conjunction (∧) of one or more or-clauses. A cnf formula is
said to be satisfiable if there exists at least one interpretation which satisfies all of
its or-clauses, and it is said to be unsatisfiable when the opposite is true.

The use of cnf was proposed by Davis and Putnam in 1958 [DP60], along with the
essentials for modern sat solving techniques. For every propositional formula, there is an
equivalent cnf formula that can be obtained using some of the following transformation
techniques.

• Double negations are eliminated: ¬¬x is replaced by x ;

• A negation can only appear in literals. If this is not the case, the negation can be
moved inwards using De Morgan’s law: ¬(x1 ∧ x2) is replaced by ¬x1 ∨ ¬x2 and
¬(x1 ∨ x2) is replaced by ¬x1 ∧ ¬x2 ;

• Implications are eliminated: x1 ⇒ x2 is replaced by ¬x1 ∨ x2 ;

• Equivalences can be transformed to two-way implications and are then eliminated
using the previous step: (x1 ⇔ x2) is replaced by (x1 ⇒ x2) ∧ (x2 ⇒ x1) ;

• The truth table of the xor operator holds the exact opposite values of the truth
table of the equivalence, thus: (x1 ⊕ x2) is replaced by ¬(x1 ⇔ x2) ;

• As per the distributive law for ∨ over ∧: x1∨(x2∧x3) is replaced by (x1∨x2)∧(x1∨x3)
;

32

Chapter 3. The Satisfiability problem

The xor operator is commonly used in cryptography and thus, it is the central focus
of our work. Another transformation technique will be presented in Chapter 2 that can
be applied to bigger-size xor-clauses. A xor-clause is an exclusive disjunction (⊕) of
literals. (e.g. x1 ⊕ ¬x2 ⊕ x3), that is said to be satisfied (resp. falsified) if an even (resp.
odd) number of its literals is satisfied. Due to the rising interest in the xor operator and
xor-handling techniques inspired from algebra, there exist sat solvers that are adapted
to read and handle formulas containing xor-clauses.

3.2 Solving techniques

A straightforward method for solving the sat problem is to complete the truth table
associated with the formula in question. This is equivalent to an exhaustive search method
and thus impractical. Luckily, in some cases, a partial assignment on the set of variables
can determine whether a clause is satisfiable. Assigning l, a literal from the partial
assignment, to true will lead to :

1. Every clause containing l is removed (since the clause is satisfied).

2. In every clause that contains ¬l this literal is deleted (since it can not contribute to
the clause being satisfied).

The second rule above can lead to obtaining a clause composed of a single literal, called
a unit clause. Since this is the only literal left that can satisfy the clause, it must be
set to true and therefore propagated. The described method is called unit propagation.
Unit propagation is classified as an inference technique because it is used to infer new
assignments. Inference techniques are also referred to as simplification techniques as
they reduce the number of variables or clauses in the formula. The reader can refer
to [BHvMW09] for more details.

A conflict occurs when there exists at least one clause with all literals assigned to
false in the formula. If this case is a consequence of a direct assignment, or eventually
of unit propagation, it has to be undone. This is commonly known as backtracking.

Example 3.2.1 For instance, these two atomic operations can be illustrated with the
following example built of a set of 5 clauses numbered C1 to C5:

C1 : ¬x1 ∨ x2 ∨ ¬x4

C2 : x1 ∨ x3 ∨ x4

C3 : x1 ∨ ¬x3

C4 : x1 ∨ x3

C5 : x2 ∨ x4

Assigning the variable x1 to false leads the clause C1 to be satisfied by the literal x1.
Another consequence is that the clauses C2, C3 and C4 cannot be satisfied by the literal
x1. Hence, x1 can be deleted from these clauses. Then, C3 is a unit clause composed of
the literal ¬x3 and as a consequence, x3 has to be assigned to false. We say that the
truth value of x3 is inferred through unit propagation.

When we set x3 to its inferred value false, we apply the second rule to clauses C2 and
C4. As a consequence, clause C4 can not be satisfied by any of its literals. This constitutes
a conflict and it invokes a backtracking procedure. The backtracking procedure consists
in going back to the state that the formula was in before the last assumption was made.
In our example, the last assumption was that x1 is false and thus, we go back to the
initial state.

33

Chapter 3. The Satisfiability problem

x1

X x2

X x3

x4

OK

F T

F T

F

F

Figure 3.1: Binary search tree constructed with the dpll algorithm.

The basic backtracking search with unit propagation that we describe gives the Davis-
Putnam-Logemann-Loveland (dpll) algorithm [DLL62], which is a state-of-the-art com-
plete sat solving technique. dpll works by trying to assign a truth value to each variable
in the cnf formula, recursively building a binary search tree of height equivalent (at worst)
to the number of variables. After each variable assignment, the formula is simplified by
unit propagation. When a conflict occurs, a backtracking procedure is launched and the
opposite truth value is assigned to the last assigned literal. If the opposite truth value
results in conflict as well, we backtrack to an earlier assumption or conclude that the for-
mula is unsatisfiable - when there are no earlier assumptions left. The number of conflicts
is a good measure for the time complexity of a sat problem solved using a dpll-based
solver. If the complete search tree is built, the worst-case complexity is O(2v), where v
is the number of variables in the formula. Figure 3.1 illustrates the binary search tree
resulting from the resolution of Example 3.2.1.

A common variation of the dpll is the conflict-driven clause learning (cdcl) algo-
rithm [MSS96; MSS97]. In this variation, each encountered conflict is described as a
new clause which is learnt (added to the formula). These algorithms use conflict anal-
ysis techniques, and their branching heuristics, responsible for determining the order of
branching variables, are conflict-driven [MMZ+01]. In other words, branching heuristics
receive feedback from the backtrack search to choose the branching order dynamically.
cdcl methods are responsible for rendering sat solvers so efficient in practice, since their
invention in the mid-90s. Most of the modern sat solvers are cdcl-based, including all
solvers used to obtain experimental results in this thesis.

The cdcl algorithm keeps the dpll core that results in a binary search tree, but with
two main differences:

• There is a conflict analysis procedure that is executed each time a conflict occurs
and before the backtracking procedure.

• The backtracking procedure can be non-chronological, which means that when a
conflict occurs on level d, there is a ’jump’ to an upper level that is not necessarily
level d− 1. The exact level is computed by the conflict analysis procedure.

The conflict analysis procedure uses a so-called implication graph to analyze the structure
of the unit propagation that has led to a conflict. The implication graph is constructed
as follows. Vertices in the graph can be either assigned variables or conflicts. Another
information that vertices hold is the level at which the variable was assigned. A directed
edge from one vertex to another exists if the variable assignment corresponding to the
first vertex has led to the propagation of the variable assignment corresponding to the
second vertex. The edges are labeled with the clause that was used for the propagation,
known as the antecendent. This process defines a directed acyclic graph.

34

Chapter 3. The Satisfiability problem

¬x1 @ 0

¬x3 @ 0

X

C3

C4

C4

Figure 3.2: Implication graph corresponding to the first conflict in Figure 3.1.

Example 3.2.2 Using the same set of clauses as in Example 3.2.1, we show an implication
graph in Figure 3.2. This graph describes the unit propagation steps that led to the first
conflict in the dpll algorithm (see the leftmost branch of the tree in Figure 3.1). We
note as ’@ d’ the level at which the assignment of the variable occurred (whether through
an assumption or unit propagation).

We now describe how the implication graph is used for conflict analysis to learn one
or multiple new clauses. In this process, there are intermediate learned clauses that will
not be added to the formula. We will denote both intermediate and final learned clauses
by Ci

L. We start by taking the clause that provoked the conflict. In Example 3.2.2, we
take C4. Then, we take a second clause from one of the clauses that led to an assignment
of a variable at the decision level at which the conflict occurred. The second clause is
C3 in our example. These two clauses may be used to learn a new clause C1

L. Learned
clauses are derived using the resolution operator. This operator takes two clauses that
have exactly one variable xi such that one clause contains the literal xi and the other
contains ¬xi. If there is no such an occurrence, the process of learning clauses will be
stopped. In our example, we have the literal x3 in clause C4 and the literal ¬x3 in clause
C3. Thus, the clause resulting from the application of the resolution operator on clauses
C3 and C4 is the clause C1

L : x1. Since there are no more clauses that have participated in
unit propagation at this decision level, we can end this process and keep the clause C1

L.
Another criterion for ending the conflict analysis is if the latest learned clause contains
exactly one literal that was assigned at the current decision level. This literal is known
as a Unit Implication Point (UIP) and applying this rule allows us to obtain smaller
clauses. UIPs are also useful for backtracking. As per the Chaff proposition [ZMMM01],
it is common practice to always take the first UIP and decide on the backtracking level
according to the learned clauses. Namely, for each literal in the learned clause, we find the
level at which the corresponding variable was assigned, and then we choose the highest
level among them. In our example, x1 is the only literal and thus we backtrack to level 0
without making a ’jump’.

Example 3.2.3 Continuing the resolution of the formula from Example 3.2.1, we en-
counter the next conflict at level 1. The implication graph for this conflict is illustrated
in Figure 3.3. The conflict analysis goes as follows. First, we detect C5 as the clause that
was found unsatisfied through unit propagation. To find this clause using the graph, we
look at the label on an edge that is pointing to the conflict. Then, the only other clause
that participated in this decision level is C1. To find such clauses, we look for edges
pointing to a vertex labeled as ’@ d’, where d is the decision level at which the conflict

35

Chapter 3. The Satisfiability problem

x1 @ 0

¬x4 @ 1

X

¬x2 @ 1

C1

C5

C1

C5

Figure 3.3: Implication graph corresponding to the first conflict in Figure 3.1.

occurred. Here, d is 1. By applying the resolution operator on clauses C5 : (x2 ∨ x4) and
C1 : (¬x1 ∨ x2 ∨ ¬x4), we obtain a learned clause C2

L : (¬x1 ∨ x2). We stop the conflict
analysis and we launch a backtracking procedure. The next implication graph has no con-
flict and we conclude that the formula is satisfiable. For a more elaborate example where
the UIP rule is used and a non-chronological backtracking step occurs, see [BHvMW09].

The techniques explained in this section define the basics of the cdcl method. Modern
sat solvers use additional techniques to fix some issues that arise at an implementation
level or to render sat solvers even more efficient. These techniques include search restarts,
clause deletion strategies, lazy data structures, and, as mentioned, conflict-driven branch-
ing heuristics.

Both dpll and cdcl are complete sat solving algorithms, which means that they are
guaranteed to terminate with a correct answer on the satisfiability of the cnf formula.
Other algorithms in this category are look-ahead based algorithms [BS96; Fre95; Li99;
Li00; DD04]. On the other hand, incomplete algorithms usually have a fixed resource
limit and will either find a satisfiable solution or report failure without declaring the
formula to be unsatisfiable [SLM92; SKC93]. They are generally based on stochastic
local search methods and are most efficient for random sat instances or specific problems
for which complete methods do not scale well. In this chapter, we have only detailed
solving methods that are used in our work or in the solvers that we use for comparing
experimental results. For more details on the methods that are not explained here the
reader can refer to [BHvMW09] or to their respective citations.

3.3 Applications in cryptography

The first proposition of logical cryptanalysis [MM00] uses the (now obsolete) Data En-
cryption Standard (DES) to demonstrate how to model a cryptanalysis attack as a sat
problem. After these first results, sat solvers have been proven to be a powerful tool in
the cryptanalysis of symmetric schemes. They were successfully used for attacking secret
key cryptosystems such as Crypto1, Bivium, Trivium, Grain, HiTag2 [MCP07; LJN14;
HJ12a; SNC09; Soo10a]. However, their use in public key cryptosystems has rarely been
considered. A prominent example is the work of Galbraith and Gebregiyorgis [GG14],
where they explore the possibility of replacing available Gröbner basis implementations
with generic sat solvers in the index calculus attack on binary elliptic curves.

State-of-the-art cdcl solvers, such as MiniSat [SE05] and Glucose [AS09], have
been shown to be a powerful device for solving cnf formulas. However, they are not

36

Chapter 3. The Satisfiability problem

equipped to handle xor-clauses and thus parity constraints have to be translated into
cnf. Since handling cnf-clauses derived from xor constraints is not necessarily efficient,
recent works have concentrated on coupling cdcl solvers with a xor-reasoning module.
Furthermore, these techniques can be enhanced by Gaussian elimination, as in the works
of Soos et al. (resulting in the CryptoMiniSat solver) [SNC09; Soo10a], Han and
Jiang [HJ12a], Laitinen et al. [LJN14; LJN11]. xor-enabled sat solvers usually use
formulas in a specific form, which is a conjunction of or-clauses and xor-clauses. We
refer to this as a cnf-xor form and it will be detailed in the next chapter.

All attacks mentioned thus far are derived from an algebraic cryptanalysis attack.
For some cryptosystems, such as the Advanced Encryption Standard (AES), leading at-
tacks are found in the field of differential cryptanalysis. In this case, other constraint
programming (CP) techniques are used to aid the attack, as the derived constraints are
not Boolean. A first example in the field of differential cryptanalysis is given by the
work of Gerault et al. [GMS17; GLMS18; GLMS20] who showed how to use CP for solv-
ing the optimal related-key differential characteristic problem. We also note the work of
Lui et al. [LCM+17; LCM18], in which a CP model is used to aid the Tolerant Algebraic
Side-Channel Analysis, which is a combination of algebraic and side-channel analysis.

3.3.1 Deriving a SAT model from a Boolean polynomial system

sat solvers are powerful tools that can be used for solving a variety of problems, including
the problem of solving multivariate polynomial systems. This is the most common use of
sat solvers in cryptography. Even though a general knowledge of the solving techniques
is recommended, a sat solver can be used as a black-box. To this end, there is a uniform
representation for the input formula that is given to a sat solver, known as a cnf formula
(see Section 3.1). xor-enabled sat solvers can also read a formula in a so-called cnf-xor
form. Both these models are presented in this section, along with standard techniques for
deriving these models from a Boolean polynomial system.

ANF to CNF-XOR

In Boolean algebra, the closest form to a Boolean polynomial is the algebraic normal form
(anf). In this form, a term is either one variable or multiple variables anded together.
The true/false constants are also considered terms. One or more terms xored together
create an anf. The operator ¬ is not allowed. A Boolean polynomial system can be
rewritten as a conjunction of logical formulas in anf as follows: multiplication in F2 (·)
becomes the logical and operation (∧) and addition in F2 (+) becomes the logical xor
(⊕). The elements 0 and 1 in F2 correspond to ⊥ and >, respectively. Consequently,
solving a multivariate Boolean polynomial system is equivalent to solving a conjunction
of logical formulas in anf form. To date, few sat solvers are adapted to tackle formulas
in anf. A common approach is to transform the anf form in a cnf-xor form, which is
a conjunction of cnf and xor clauses. In order to do this, every conjunction of two or
more literals x1∧x2∧ . . .∧xk has to be replaced by an additional and equivalent variable
x1,...,k such that

x1,...,k ⇔ x1 ∧ . . . ∧ xk

This equivalence can be rewritten in cnf using a three-step transformation, described in
Figure 3.4.

37

Chapter 3. The Satisfiability problem

x1,...,k ⇔ x1 ∧ . . . ∧ xk

x1,...,k ⇒ x1 ∧ . . . ∧ xk

¬x1,...,k ∨ (x1 ∧ . . . ∧ xk)

¬x1,...,k ∨ x1 ¬x1,...,k ∨ xk

x1 ∧ . . . ∧ xk ⇒ x1,...,k

¬(x1 ∧ . . . ∧ xk) ∨ x1,...,k

¬x1 ∨ . . . ∨ ¬xk ∨ x1,...,k. . .

Figure 3.4: A three-step transformation to cnf constraints.

We obtain the following CNF formula:

(¬x1,...,k ∨ x1) ∧
(¬x1,...,k ∨ x2) ∧ (3.1)

. . .

(¬x1,...,k ∨ xk) ∧
(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xk ∨ x1,...,k).

When we substitute all occurrences of conjunctions in an XOR clause by an additional
variable, we obtain a formula in cnf-xor form. This is the form used in the Crypto-
MiniSat solver [SNC09], which is an extension of the MiniSat solver [ES04] specifically
designed to work on cryptographic problems.

Example 3.3.1 Let us consider the Boolean polynomial system:

x1 + x2x3 + x5 + x6 + 1 = 0

x3 + x5 + x6 = 0.

One additional variable x2,3 needs to be introduced to substitute the monomial x2x3. The
corresponding cnf-xor form for this Boolean system is a conjunction of the following
clauses:

¬x2,3 ∨ x2

¬x2,3 ∨ x3

¬x2 ∨ ¬x3 ∨ x2,3

x1 ⊕ x2,3 ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕>.

Complexity discussion

The transformation that we described results in a system composed of two distinct parts.
We will refer to these as the cnf part and the xor part of the system. The substitution
of non-unary terms makes this transformation similar to the linearization method. Unlike
linearization, this transformation method does not result in loss of information. Indeed,
the derived cnf-xor formula is equivalent to the initial anf formula.

38

Chapter 3. The Satisfiability problem

The dpll and other complete sat solving methods can be viewed as an elimination
procedure on the domain of possible solutions. For cnf-xor formulas, this elimination
procedure needs to consider constraints from both parts of the model simultaneously.
This is easier said than done, as the two parts have a different structure and thus, require
different solving techniques. The xor part of the formula is essentially a linear polynomial
system and can be solved in polynomial time using techniques like Gaussian elimination.
Another way to view or represent the xor part is as the Macaulay matrix [Mac16] of the
initial Boolean polynomial system. Surprisingly, the cnf part of this formula can also
be solved in polynomial time due to its specific structure. Indeed, the cnf formula is
comprised only of Horn clauses [Hor51] and solving this formula is a hornsat problem.
A Horn clause is a clause that contains at most one positive literal and any number of
negative literals. The hornsat problem is solvable in polynomial time [DG84] using the
following technique. First, the unit propagation rule is applied for all clauses (if any)
composed of a single literal l. Recall, as per unit propagation, all clauses containing
l are removed (because they are satisfied) and all occurrences of ¬l are removed from
other clauses. If there are new unary clauses introduced as a result of unit propagation,
the process is repeated. When there are no unary clauses left, all non assigned literals
are assigned to false. Note that, a Horn clause remains a Horn clause when a literal
is removed. When there are no unary clauses in the system, all of the remaining Horn
clauses contain at least one negative literal. Thus, assigning all remaining literals to false
is sure to give us a solution that satisfies all clauses. This is not as surprising when we
recall that each block of clauses of the form (3.1), actually describes the multiplication
rules. For more details on Horn-satisfiability, the reader can refer to [BHvMW09], for
example.

Even though finding one solution to the hornsat problem is easy, finding the entire
set of solutions is as hard as the general sat problem. We encounter a similar problem
with the xor part. Unless we are in the favorable case of very overdetermined systems,
there are many solutions to the linearized xor part and thus, enumerating them all
becomes a hard problem. In conclusion, finding a solution to the cnf and to the xor
part separately is easy, however, to date, there is no polynomial-time algorithm that looks
for solutions in the intersection.

Open question 1 Models derived from cryptographic attacks introduce a fundamental
question in sat theory, which is how to combine two sat problems with polynomial
complexity and in which complexity class would such an algorithm be placed.

CNF-XOR to CNF

Since most modern sat solvers read and process cnf formulas, we explain the classical
technique for transforming a cnf-xor model to a cnf model. In fact, this is also the
technique used in Magma’s available implementation for deriving a cnf model from a
boolean polynomial system.

An xor-clause is said to be satisfied when it evaluates to true, i.e. when an odd
number of literals in the clause are set to true and the rest are set to false. The
cnf-encoding of a ternary xor-clause (x1 ⊕ x2 ⊕ x3) is

(x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (3.2)

(¬x1 ∨ ¬x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3)

39

Chapter 3. The Satisfiability problem

Similarly, a xor-clause of size k can be transformed into a conjunction of 2k−1 or-clauses
of size k. Since the number of introduced clauses grows exponentially with the size of the
xor-clause, it is a good practice to cut up the xor-clause into manageable size clauses
before proceeding with the transformation. To cut a xor-clause (x1 ⊕ . . .⊕ xk) of size k
in two, we introduce a new variable x′ and we obtain the following two xor-clauses:

(x1 ⊕ . . .⊕ xi ⊕ x′) ∧
(xi+1 ⊕ . . .⊕ xk ⊕ ¬x′).

To the best of our knowledge, Magma’s implementation adopts a size 5 for xor clauses.
The optimal size at which to cut the xor-clauses depends on the nature of the model and
can be determined by running experiments using different values.

The advantage of this model is its standard form, due to which it can be solved using
any off-the-shelf sat solver. On the other hand, this model is not optimal for solving
formulas arising from cryptographic problems. The xor operator is extensively used
in cryptography and the pure cnf model does not allow for exploiting powerful xor-
reasoning techniques such as Gaussian Elimination and parity reasoning.

40

Chapter 4

The WDSat Solver

sat solvers are powerful tools for solving many practical problems. As we explained
previously, it is usually better to use off-the-shelf sat solvers instead of writing our own
algorithms, as these sat solvers have been optimized over the years. However, in this work,
we built a sat solver from scratch. The motivation behind this endeavor is the need that
we have found for a special purpose sat solver for non-sparse Boolean polynomial systems.
Constraint programming solvers have been successfully used in differential attacks on
AES [GLMS18; GLMS20], but, similarly to Gröbner bases, are not optimal for Boolean
constraints. General-purpose sat solvers such as MiniSat and Glucose are better
suited for Boolean systems. It is common that cryptanalysts turn to these tools as they are
efficient and easy to use. However, these solvers do not handle xor constraints efficiently
due to their input form. Indeed, to use these solvers, one needs to derive a cnf model
and, as we explained in Chapter 3.3.1, transforming xor constraints into or constraints
can often result in huge formulas. Plus, through this transformation process, we lose
some of the structure of the system and we can no longer use efficient xor-handling
techniques. Nevertheless, MiniSat has been used many times to aid a cryptographic
attack with promising results. Recently, MiniSat was used for performing an index
calculus attack on elliptic curves in characteristic two [GG14]. In their work, Galbraith
and Gebregiyorgis observe experimentally that the use of sat solvers may potentially
enable larger factor bases to be considered for point decomposition. This result was one
of the main motivations for our work, as we detected some improvements that can be
made to the model, as well as the solver, for this particular attack. The model that we
propose for this attack is presented in Chapter 7. As our solver was initially conceived
with this model in mind, we have named it WDSat, a sat solver for systems arising from
a Weil Descent. Other extensions to the solver that have, thus far, shown an improvement
only for the index calculus model, are presented in Chapter 7 as well.

There exist sat solvers that are xor-enabled and use xor-handling techniques in-
spired from algebra [SNC09; CSCM19]. Moreover, there is extensive research on integrat-
ing xor-handling in sat solvers [BM00; Che09; HJ12b; LJN11; Li00]. However, we have
detected certain limitations of the Gaussian Elimination (ge) technique in xor-enabled
sat solvers that need to be addressed. Specifically, we have found a canceling property
that is present in algebraic resolution methods but is overseen in current sat-based ge
implementations. Section 4.3 is dedicated to a solution to overcome these limitations,
developed as an extension of WDSat.

Our solver is highly customizable, as we find that, in most cases, it will be used by
cryptanalysts that have a good understanding of the model that needs to be solved. In
the following chapters, we give configuration recommendations for each model that we
propose. The contributions of this work are presented in [TID20b].

41

Chapter 4. The WDSat Solver

4.1 Core algorithm

Our WDSat solver is based on the dpll algorithm [DLL62], described in Section 3.2.
The code for the WDSat solver is written in C and is publicly available [TID20d]. The
solver implements three reasoning modules. These include the module for reasoning on the
cnf part of the formula and the so-called xorset and xorgauss (xg) modules designed
for reasoning on xor constraints. The cnf module is designed to perform classic unit
propagation on or-clauses. The xorset module performs the operation equivalent to
unit propagation, but adapted for xor-clauses. Practically, this consists in checking the
parity of the current interpretation and propagating the unassigned literal. Finally, the
xg module is designed to perform ge on the xor constraints dynamically. We also
implement an xg extension, described in Section 4.3.

As per the dpll paradigm, the WDSat solver assigns a truth value to each variable
in a formula F , recursively building a binary search tree. After each assignment, either
the formula is simplified and other truth values are inferred or a conflict occurs. In the
case of a conflict, the last assignment has to be undone for each module via a backtracking
procedure. This technique, which is at the core of our solver, is illustrated in Algorithm 4.1
as a recursive solve function.

Algorithm 4.1 Function solve(F) : dpll algorithm.

Input: Propositional formula F
Output: true if formula is satisfiable, false otherwise.

1: if all clauses and all xor-clauses are satisfied then
2: return true.
3: end if
4: choose next x.
5: (contradiction, F ′) ← assign(F , ¬x).
6: if contradiction then
7: backtrack().
8: else
9: if solve(F ′) returns false then

10: backtrack().
11: else
12: return true.
13: end if
14: end if
15: (contradiction, F ′) ← assign(F , x).
16: if contradiction then
17: backtrack().
18: return false.
19: end if
20: return solve(F ′).

Algorithm 4.1 uses the assign function, detailed in Algorithm 4.2. The purpose of
the assign function is to syncronize all three modules in the following manner. First,
the truth value is assigned in the cnf module, and truth values of other variables are
propagated. Next, the truth value of the initial variable, as well as the propagated ones
are assigned in the xorset module. If the xor-adapted unit propagation discovers new
truth values, they are assigned in the cnf module, going back to step one. We go back
and forth with this process until the two modules are synchronized and there are no

42

Chapter 4. The WDSat Solver

more propagations left. Finally, the list of all inferred literals is transferred to the xg
module. If the xg module finds new xor-implied literals, the list is sent to the cnf
module and the process is restarted. If a conflict occurs in any of the reasoning modules,
the assign function fails and a backtracking procedure is launched. We briefly detail
the other functions used in the pseudo-code. There is a set in function for each module
which takes as input a list of literals and a propositional formula F and sets all literals in
this list to true in the corresponding modules. Through this assignment, the function
also infers truth values of other literals, according to the specific rules in different modules.
Finally, the last assigned function in each module returns the list of literals that were
assigned during the last call to the respective set in function.

Algorithm 4.2 Function assign(F , x) : Assigning a truth value to a literal x in a
formula F , simplifying F and inferring truth values for other literals.

Input: The propositional formula F , a literal x
Output: false if a conflict is reached, true and a simplified F otherwise

1: to set← {x}.
2: to set in XG← {x}.
3: while to set 6= ∅ do
4: while to set 6= ∅ do
5: if set in cnf(to set, F) → false then
6: return (false, –).
7: end if
8: to set← last assigned in cnf().
9: to set in XG← to set ∪ to set in XG.

10: if set in xorset(to set, F)→ false then
11: return (false, –).
12: end if
13: to set← last assigned in xorset().
14: to set in XG← to set ∪ to set in XG.
15: end while
16: if set in xg(to set in XG, F)→ false then
17: return (false, –).
18: end if
19: to set← last assigned in xg().
20: end while
21: return (true, F).

Input forms

Our solver can read formulas in both forms described in Chapter 3: anf and cnf-xor.
Reading a formula in anf comes with two advantages. The first one is linked to branching
rules and the second is that this form allows us to use the extension of the xg module.

Branching rules

Reading a formula in anf, the solver can store the information of which variables comprise
the initial system, as opposed to variables that are added to substitute a conjunction. In
the remaining of this dissertation, we will refer to these variables as unary variables.
Variables that are introduced as a substitution of a conjunction will be referred to as non-
unary variables, or informally, monomials. Assigning truth values to all unary variables

43

Chapter 4. The WDSat Solver

will necessarily propagate all other variables. Thus, only unary variables are considered in
the binary search. Conflict-driven branching heuristics can not be used in WDSat, as the
solver does not perform conflict analysis. This choice is further discussed in Section 4.2.1
of this chapter.

We have developed a heuristic branching technique specific to sat instances derived
from Boolean polynomial systems. This technique, inspired by the Minimal Vertex Cover
problem from graph theory, is currently used only during preprocessing to provide us
with a predetermined branching order. Thus, the solver does not use heuristics to decide
on the order of branching variables dynamically, but the order can be specified by the
user. This feature is to be used if the user has more information on the system or if the
preprocessing technique was applied. Examples of both uses are given in Chapter 7.

4.2 Three reasoning modules

In this section, we give a description and implementation details of the three mod-
ules that make up the WDSat solver. Each module has its own propagation
stack, called the CNF propagation stack, the XORSET propagation stack and the
XG propagation stack. These stacks are used for communication between the modules.
In fact, their content is provided as input to the respective set in functions by the en-
veloping Algorithm 4.2. For simplicity, we consider that these stacks and all other data
structures relative to the modules are included in the structure F , simply referred to as
the propositional formula.

4.2.1 CNF module

In this module, responsible for unit propagation on or-clauses, we transform the or-
clauses into lists of implications. The unit propagation rule can be informally stated as
follows. If all except one literal in the clause are assigned and none of them satisfies
the clause, then the remaining literal is implied. According to this rule, from a binary
clause (x1 ∨ x2), we derive two implications: ¬x1 implies x2 and ¬x2 implies x1. At the
implementation level, lists of implications are stored in an array indexed by both negative
and positive literals. This idea for fast unit propagation is presented in [HDvZvM04] and
used in the March SAT solver.

Example 4.2.1 Let us consider the following set of 10 clauses numbered C1 to C10.

C1 : ¬x1,2 ∨ x1

C2 : ¬x1,2 ∨ x2

C3 : ¬x1 ∨ ¬x2 ∨ x1,2

C4 : ¬x1,3 ∨ x1

C5 : ¬x1,3 ∨ x3

C6 : ¬x1 ∨ ¬x3 ∨ x1,3

C7 : ¬x1,3,4 ∨ x1

C8 : ¬x1,3,4 ∨ x3

C9 : ¬x1,3,4 ∨ x4

C10 : ¬x1 ∨ ¬x3 ∨ ¬x4 ∨ x1,3,4

The lists of binary implications derived from these clauses are illustrated in Figure 4.1.
Intuitively, we can see that these clauses are part of a model describing a Boolean poly-
nomial system that contains the monomials x1x2, x1x3 and x1x3x4.

44

Chapter 4. The WDSat Solver

¬x1,3,4 ¬x1,3 ¬x1,2 ¬x4 ¬x3 ¬x2 ¬x1 x1 x2 x3 x4 x1,2 x1,3 x1,3,4

¬x1,3,4 ¬x1,3

¬x1,3,4

¬x1,2 ¬x1,2

¬x1,3

¬x1,3,4

x1

x2

x1

x3

x1

x3

x4

Figure 4.1: Lists of binary implications.

Binary implication data structures, such as the one in Figure 4.1, are used by Algo-
rithm 4.3, which propagates binary implications.

Algorithm 4.3 Function add binary implications(l, binary implications) : Function
for adding implied literals to the CNF propagation stack.

Input: A literal l and an array holding lists of binary implications binary implications
Output: The CNF propagation stack is modified.

1: for each l implied in binary implications[l] do
2: add l implied to CNF propagation stack.
3: end for

For clauses of size bigger than two, we store implications in a similar way, the difference
being that instead of a single literal, implications are tuples of literals. For instance, from
a ternary clause (x1∨x2∨x3) we derive three implication: ¬x1 implies (x2∨x3), ¬x2 implies
(x1∨x3) and ¬x3 implies (x1∨x2). See figures 4.2 and 4.3 that show the lists of ternary and
quaternary implications derived from Example 4.2.1. Now, the way we search for implied
literals needs to be adapted accordingly. The function add ternary implications is
shown in Algorithm 4.4. For simplicity, we assume that when we assign a literal ¬x to
true, it is the same as assigning x to false and vice versa. Also, checking whether ¬x
is equal to true is the same as checking whether x is equal to false. In the algorithm,
this is illustrated through the assignment array.

¬x1,3,4 ¬x1,3 ¬x1,2 ¬x4 ¬x3 ¬x2 ¬x1 x1 x2 x3 x4 x1,2 x1,3 x1,3,4

¬x2

x1,2

¬x3

x1,3

¬x1

x1,2

¬x1

¬x2

¬x1

x1,3

¬x1

¬x3

Figure 4.2: Lists of ternary implications. There is a delimiter between the tuples.

Even though these techniques can be generalized for variable-size clauses, this cnf
module was devised for formulas containing relatively short or-clauses. In this work, we
are looking at problems that can be reduced to solving Boolean polynomial systems of
small degrees. Indeed, all models considered in this thesis are systems of degree three at
most. Thus, the size of the derived or-clauses is at most four in all of our models.

Finally, Algorithm 4.5 shows the set in cnf function that was used in Algorithm 4.2

45

Chapter 4. The WDSat Solver

¬x1,3,4 ¬x1,3 ¬x1,2 ¬x4 ¬x3 ¬x2 ¬x1 x1 x2 x3 x4 x1,2 x1,3 x1,3,4

¬x1

¬x3

¬x4

¬x3

¬x4

x1,3,4

¬x1

¬x4

x1,3,4

¬x1

¬x3

x1,3,4

Figure 4.3: Lists of quaternary implications. There is a delimiter between the tuples.

Algorithm 4.4 Function add ternary implications(l, ternary implications) :
Function for adding implied literals to the CNF propagation stack.

Input: A literal l and an array holding lists of ternary implications ternary implications
Output: The CNF propagation stack is modified.

1: for each tuple in ternary implications[l] do
2: if (assignment[tuple[0]] 6= true) and (assignment[tuple[1]] 6= true) then
3: if assignment[tuple[0]] = false then
4: add tuple[1] to CNF propagation stack.
5: end if
6: if assignment[tuple[1]] = false then
7: add tuple[0] to CNF propagation stack.
8: end if
9: end if

10: end for

as part of the synchronization between the models. Note that, if there exist N-ary impli-
cations with N > 3, they should be treated after line 10.

Algorithm 4.5 Function set in cnf(to set, F) : Function that sets a list of literals to
true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: true if formula is satisfiable, false otherwise.

1: CNF propagation stack ← to set.
2: while CNF propagation stack is not empty do
3: l← top element from CNF propagation stack.
4: if assignment[l] 6= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l]← true.
9: add binary implications(l, binary implications)

10: add ternary implications(l, ternary implications)
11: end if
12: end while
13: return true.

What about clause learning?

Our solver is not cdcl-based. Intuitively, we do not believe that clause learning can
speedup the solving process, as the cnf part of the models that we consider only serves

46

Chapter 4. The WDSat Solver

x1,2 @ 0

¬x3 @ 1

¬x1,3 @ 1

C1
L C1

L

(a)

¬x1,3 @ 0

¬x1,2 @ 1

x3 @ 1

C1
L C1

L

(b)

x1,2 @ 0

x1,3 @ 1

x3 @ 1

C1
L C1

L

(c)

Figure 4.4: Implication graphs for the three cases where C1
L is used to imply a variable.

to describe the laws of multiplication in F2. Let us use Example 4.2.1 to analyse possible
outcomes of the cdcl technique. This will allow us to check whether there is a case
where a learned clause can help us propagate an assignment sooner than we would without
applying cdcl techniques.

Recall that learned clauses are derived using the resolution operator on two other
clauses. Applying this operator results in a new clause only if there is exactly one literal
in the first clause, whose negation appears in the second clause. A first step in our analysis
would be to find couples of clauses that satisfy this property and thus can be used to learn
a new clause. Let us call a block, a subset of clauses that describe one monomial from the
initial Boolean polynomial system. For instance, clauses C1 to C3 constitute a block, as
well as clauses C4 to C6 and clauses C7 to C10. Then, two clauses from the same block
can never satisfy the property that we need for the resolution operator. Indeed, the last
clause in the block always has two literals that are the negation of the literals in one of the
binary clauses. This leaves us with the possibility to combine clauses from two different
blocks. This can be done, but only in the case where two blocks share a variable. For
example, applying the resolution operator on clauses C1 and C6 results in a learned clause
C1
L : (¬x1,2 ∨ x1,3 ∨ ¬x3). This learned clause can be used to imply a variable in one of

three cases, whose implication graphs are shown in Figure 4.4.
However, in all three cases the variables would have been implied even without the

existence of the learned clause. Figure 4.5 shows alternative implication graphs for the
three cases. We see that, in all cases, the same variable is implied using only clauses that
are already in the formula before clause-learning techniques are used.

This example enumerates all possible outcomes of applying the resolution operator
on clauses that are present in the initial formula. We have also tried combining learned
clauses with each other or with original clauses. To date, we did not succeed in finding
an example where a learned clause implies a variable that would not have been implied
at the same decision level without clause learning techniques.

Open question 2 We have not yet explored the possibility of using clauses learned from
conflicts in the xor part of the cnf-xor formula. It may be of interest to implement
cdcl techniques in WDSat for this case.

4.2.2 XORSET module

xorset is a simple module for parity reasoning. In other words, this module performs
unit propagation on xor-clauses. The unit propagation rule can be informally defined as
follows. When all except one literal in an xor-clause are assigned, the remaining literal
is given a truth value according to parity reasoning. Recall that an xor-clause is satisfied
if there is an odd number of literals that are set to true. Equivalently, a conflict occurs

47

Chapter 4. The WDSat Solver

x1,2 @ 0

x1 @ 0 x2 @ 0

¬x3 @ 1

¬x1,3 @ 1

C1 C2

C6

C6

(a)

¬x1,3 @ 0

¬x1 @ 1

¬x1,2 @ 1

x3 @ 1

C6 C6

C1

(b)

x1,2 @ 0

x1 @ 0 x2 @ 0

x1,3 @ 1

x3 @ 1

C1 C2

C6

C6

(c)

Figure 4.5: Implication graphs without learned clauses.

48

Chapter 4. The WDSat Solver

when all literals in an xor-clause are assigned and an even number of them are set to
true.

During the solving process, we count the number of literals in a clause that are set to
true, and respectively the ones that are set to false. In order to do this efficiently, we
need to have quick access to the occurrences of each literal. At the implementation level,
we manage a structure called xorset index that keeps this information. This structure
is an array indexed by both positive and negative literals that contains lists of clauses in
which a literal appears. This is a classical technique for implementing basic xor reasoning
in a sat solver.

Example 4.2.2 Let us consider the following set of four xor-clauses numbered Cx
1 to

Cx
4 .

Cx
1 : ¬x2 ⊕ x3

Cx
2 : x1 ⊕ ¬x2 ⊕ x4

Cx
3 : x1 ⊕ x2 ⊕ x3 ⊕ x4

Cx
4 : ¬x2 ⊕ ¬x3 ⊕ ¬x4

Figure 4.6 shows the xorset index structure corresponding to this formula.

¬x4 ¬x3 ¬x2 ¬x1 x1 x2 x3 x4

Cx
4 Cx

4 Cx
1

Cx
2

Cx
4

Cx
2

Cx
3

Cx
3 Cx

1

Cx
3

Cx
2

Cx
3

Figure 4.6: The xorset index structure.

The set in function for this module is detailed in Algorithm 4.6. In this algorithm,
degree T (resp. degree F) is an array that holds counters of the number of literals set
to true (resp. false) for each clause. Similarly, the array named size holds the size of
each clause. Finally, we suppose that there is a function find unset variable() that
takes a clause number and finds one variable from the clause that is not assigned with a
truth value yet.

4.2.3 XORGAUSS module

The xg module is designed to perform Gaussian elimination on the xor constraints
dynamically. In this module, xor-clauses are normalized and represented as equivalence
classes. Recall that an xor-clause is said to be in normal form if it contains only positive
literals and does not contain more than one occurrence of each literal. Since we consider
that all variables in a clause belong to the same equivalence class (ec), we choose one
literal from the ec to be the representative. An xor-clause (x1 ⊕ x2 ⊕ ... ⊕ xn) ⇔ >
rewrites as

x1 ⇔ (x2 ⊕ x3 ⊕ ...⊕ xn ⊕>). (4.1)

We can use this rule to define all equivalence classes. Thus, the initialization process of
the xg module consists in performing the following steps for each xor-clause : (i) put the

49

Chapter 4. The WDSat Solver

Algorithm 4.6 Function set in xorset(to set, F) : Function that sets a list of literals
to true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: true if formula is satisfiable, false otherwise.

1: XORSET propagation stack ← to set.
2: while XORSET propagation stack is not empty do
3: l← top element from XORSET propagation stack.
4: if assignment[l] 6= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l]← true.
9: for each C in xorset index[l] do

10: increment degree T [C]
11: if degree T [C] + degree F [C] = size[C]− 1 then
12: x← find unset variable(C)
13: if degree T [C] is even then
14: add x to XORSET propagation stack.
15: else
16: add ¬x to XORSET propagation stack.
17: end if
18: end if
19: end for
20: for each C in xorset index[¬l] do
21: increment degree F [C]
22: if degree T [C] + degree F [C] = size[C]− 1 then
23: x← find unset variable(C)
24: if degree T [C] is even then
25: add x to XORSET propagation stack.
26: else
27: add ¬x to XORSET propagation stack.
28: end if
29: end if
30: end for
31: end if
32: end while
33: return true.

clause in normal form, (ii) transform the clause into an ec and (iii) replace all occurrences
of its representative in the system with the right side of the equivalence. Applying this
transformation, we obtain a simplified system having the following property: a represen-
tative of an ec will never be present in another ec. Hence, the set of representatives and
the set of literals on the right side of xor-clauses are disjoint.

Example 4.2.3 Let us consider the following set of three xor-clauses.

x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ ¬x4

x2 ⊕ x3 ⊕ ¬x6

The steps of the initialization process of this formula are shown in Table 4.1. The left

50

Chapter 4. The WDSat Solver

column shows the set of equivalence classes that grows with each step. The right column
shows the set of remaining xor-clauses. We consider that all clauses are already put in
normal form. This set becomes smaller as each clause is transformed into an equivalence
class.

Table 4.1: Equivalence classes initialization steps.

Set of equivalence classes Set of xor-clauses

∅
x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ x4 ⊕>
x2 ⊕ x3 ⊕ x6 ⊕>

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>
x2 ⊕ x5 ⊕ x6

x2 ⊕ x3 ⊕ x6 ⊕>
x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>

x3 ⊕ x5
x2 ⇔ x5 ⊕ x6 ⊕>
x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>

∅x2 ⇔ x5 ⊕ x6 ⊕>
x3 ⇔ x5 ⊕>

We denote by k the number of variables in an xor-cnf formula. At the implemen-
tation level, xor-clauses are represented as (k + 1)-bit vectors: a bit for every variable
and one for a >, ⊥ constant. If a variable is present in the clause, the corresponding
bit is set to 1, otherwise it is set to 0. Clauses are stored in an array indexed by the
representatives. For a compact representation of the (k + 1)-bit vector we used an array
of d(k + 1)/64e integers. This array is the core structure of the xg module and it will be
referred to as the EC structure. For an example of the EC structure, see Figure 4.7 that
illustrates the set of equivalence classes that we obtained through the transformation in
Table 4.1. In this illustration, each line represents one equivalency and is labeled with the
representative. The columns are colored in gray if and only if the corresponding variable
belongs to the right side of the equivalency. The constant is referenced in the first column.
The following is a detailed explanation of how this EC structure is used for performing

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

Figure 4.7: The EC structure.

ge and propagation of literals.
Let R be the set of representatives and C be the set of clauses. R and C hold the right-

hand side and the left-hand side of all equations of type (4.1) respectively. We denote by
Cx the xor-clause in C that is equivalent to x. In other words, Cx is the right-hand side
of the ec that has x as representative. Finally, we denote by var(Cx) the set of literals
(plus a >/⊥ constant) in the clause Cx and C[x1/x2] denotes the following substitution
of clauses: for all Ci ∈ C containing x1, Ci ← Ci⊕x1⊕x2, i.e. x1 is replaced by x2 in Ci.
When we replace a literal x1 by a clause Cx2 , we adopt a similar notation: C[x1/Cx2].

51

Chapter 4. The WDSat Solver

Thus, assigning a literal x1 to > leads to using one of the rules in Table 4.2, depending
on whether x1 belongs to R or not. In both cases, propagation occurs when : ∃ xi 6=
x1 s.t. var(Cxi) = >/⊥. Conflict occurs when one constraint leads to the propagation of
xi to > and another constraint leads to the propagation of xi to ⊥.

Table 4.2 presents inference rules for performing ge in the xg module of WDSat.
Applying these rules allows us to maintain the property of the system which states that
a representative of an ec will never be present in another ec. For clarity of the notation,
the first column of this table contains the premises, the second one contains the conclusion
and the third one is an update on the set R which has to be performed when the inference
rule is used.

Table 4.2: Inference rules for the substitution of x1 by a true/false constant.

Premises Conclusions on C Updates on R

x1, C
C[x1/>] N/A

x1��∈R
x1, C Cx2 ← Cx1 ⊕ x2 ⊕> R← R \ {x1}
x1 ∈ R

C[x2/Cx2] R← R ∪ {x2}
x2 ∈ var(Cx1)

Our chosen representation of equivalence classes allows us to implement these infer-
ence rules only by xor-ing bit-vectors and flipping the clause constant. The first rule,
whose pseudo-code is given in Algorithm 4.7, corresponds to the case where x1 is not a
representative. In a bit-vector from the EC structure, individual bits can be set to 0,
set to 1 or their value can be checked. We distinguish variable bits from the constant
bit. Other operations that modify the EC structure are flip constant, used simply to
inverse the value of the constant bit, and the operator ⊕ that denotes the xor-ing of two
bit-vectors. Lines in Algorithm 4.7 that contain operations that modify the EC structure
are in bold. For a better understanding of the infer algorithm, we provide an execution
example in Figure 4.8. In this example, we show the contents of the EC structure after
the execution of each line in bold.

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(a) After line 3.

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(b) After line 5.

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(c) After line 8.

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(d) After line 8.

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(e) After line 18.

Figure 4.8: Setting x6 to true. Stream of changes on the EC structure after execution
of the respective lines of Algorithm 4.7.

The infer function corresponding to the second inference rule, where x1 is in the set

52

Chapter 4. The WDSat Solver

Algorithm 4.7 Function infer non representative(ul, tv, F) : Function that ap-
plies the first inference rule to the EC structure.

Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC[ul]).
4: end if
5: set ul to 1 in EC[ul].
6: for each r in R do
7: if ul is set to 1 in EC[r] then
8: EC[r]← EC[r]⊕ EC[ul].
9: if all variable bits in EC[r] are set to 0 then

10: if the constant bit in EC[r] is set to 1 then
11: add r to XG propagation stack.
12: else
13: add ¬r to XG propagation stack.
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC[ul].

of representatives, is detailed in Algorithm 4.8. In this code, we use a reset vector
function that simply sets all the bits in a given bit-vector to 0. The execution example
for this algorithm is given in Figure 4.9.

Finally, we link everything together in the set in function of the xg module, detailed
in Algorithm 4.9. In this algorithm, we use the get propositional variable func-
tion that extracts the propositional variable from a literal and the get truth value
function that tells us whether l is a positive or a negative literal. For instance,
get propositional variable(¬x1) would return x1 and get truth value(¬x1)
would return false.

4.3 Extending the XORGAUSS module

In this section, we show how we extend our xg module. First, we present the motivation
for this work by giving an example of a case where ge in sat solvers has certain limitations
compared to algebraic ge. Secondly, we propose a solution to overcome these limitations
and we implement it in our solver to develop the xorgauss-extended method (xg-
ext in short). To introduce new rules for this method, we use the same notation as in
Section 4.2.3.

Recall that, ge on a Boolean polynomial system consists in performing elementary
operations on equations with the goal of reducing the number of equations as well as the
number of terms in each equation. We cancel out terms by adding (xor-ing) one equation
to another. ge can be performed on instances in cnf-xor form in the same way that
it is performed on Boolean polynomial systems presented in algebraic writing. However,
we detected a case where a possible cancellation of terms is overseen due to the cnf-xor
form.

53

Chapter 4. The WDSat Solver

Algorithm 4.8 Function infer representative(ul, tv, F) : Function that applies the
second inference rule to the EC structure.
Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: new r ← choose new representative(EC[ul]).
2: add new r to R.
3: EC[new r]← EC[new r]⊕ EC[ul].
4: reset vector(EC[ul]).
5: if tv = > then
6: flip constant(EC[ul]).
7: flip constant(EC[new r]).
8: end if
9: for each r in R do

10: if new r is set to 1 in EC[r] then
11: EC[r]← EC[r]⊕ EC[new r].
12: if all variable bits in EC[r] are set to 0 then
13: if the constant bit in EC[r] is set to 1 then
14: add r to XG propagation stack.
15: else
16: add ¬r to XG propagation stack.
17: end if
18: end if
19: end if
20: end for
21: set new r to 0 in EC[new r].
22: if all variable bits in EC[new r] are set to 0 then
23: if the constant bit in EC[new r] is set to 1 then
24: add new r to XG propagation stack.
25: else
26: add ¬new r to XG propagation stack.
27: end if
28: end if

Example 4.3.1 We will use the following Boolean polynomial system of three equations
to demonstrate a case where a cancellation of a term is missed by an xor-enabled sat
solver.

x1 + x2x3 + x5 + x6 + 1 = 0 (4.2)

x3 + x5 + x6 = 0.

Let us consider that in this system, we try to assign the value of 1 to x2. As the monomial
x2x3 will be equal to 1 only if both terms x2 and x3 are equal to 1, the value of this
monomial now depends only on the value of x3. We get the following result:

x1 + x3 + x5 + x6 + 1 = 0

x3 + x5 + x6 = 0.

After xor-ing the two equations, we infer that x1 = 1.
The system in Equation (4.2) was already used in Chapter 3 as an example of trans-

forming a Boolean polynomial system into a sat model in cnf-xor form. We recall here
the derived cnf-xor formula.

54

Chapter 4. The WDSat Solver

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(a) After line 3

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(b) After line 4

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(c) After line 6

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(d) After line 7

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(e) After line 11

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(f) After line 11

>/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(g) After line 21

Figure 4.9: Setting x1 to true (x5 is chosen as the new representative). Stream of changes
on the EC structure after execution of the respective lines of Algorithm 4.8.

Algorithm 4.9 Function set in xg(to set, F) : Function that sets a list of literals to
true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: true if formula is satisfiable, false otherwise.

1: XG propagation stack ← to set.
2: while XG propagation stack is not empty do
3: l← top element from XG propagation stack.
4: if assignment[l] 6= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l]← true.
9: ul← get propositional variable(l).

10: tv ← get truth value(l).
11: if x1 ∈ R then
12: infer representative(ul, tv, F).
13: else
14: infer non representative(ul, tv, F).
15: end if
16: end if
17: end while
18: return true.

55

Chapter 4. The WDSat Solver

¬x2,3 ∨ x2

¬x2,3 ∨ x3 (4.3)

¬x2 ∨ ¬x3 ∨ x2,3

x1 ⊕ x2,3 ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕>.

When we assign x2 to > in the corresponding cnf-xor clause in Equation (4.3), as per
unit propagation rules, we get the following result:

¬x2,3 ∨ x3

¬x3 ∨ x2,3

x1 ⊕ x2,3 ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕>.

When we xor the second clause to the first one we can not infer that x1 is > at this
point.

Note that (¬x2,3 ∨ x3) ∧ (¬x3 ∨ x2,3) rewrites as x2,3 ⇔ x3, but if the solver does not
syntactically search for this type of occurrences regularly, x2,3 will not be replaced by x3.
Moreover, this type of search adds an additional computational cost to the resolution.

Omissions as the one detailed in Example 4.3.1 can occur every time a variable is set
to true. As a result, we define the following inference rule with the goal to improve the
performance of xor-enabled sat solvers:

x1 x1,2 ⇔ (x1 ∧ x2)
x1,2 ⇔ x2 . (4.4)

This rule can be generalised for the resolution of higher-degree Boolean polynomial sys-
tems:

x1 x1,...,d ⇔ (x1 ∧ x2 ∧ . . . ∧ xd)
x1,...,d ⇔ (x2 ∧ . . . ∧ xd) . (4.5)

Even though these rules are standard in Boolean logic, they are presently not implemented
in xor-enabled sat solvers. Recall that when a solver takes as input an instance in cnf-
xor form, the second premise is lost or has to be inferred by syntactic search. To have
knowledge of the second premise, the solver needs to read the instance in anf. This is
one of the reasons why we defined a new anf input format for sat solvers. Even though
our solver can read formulas in cnf-xor form, the extension of the xg can not be used
in that case.

The following is a detailed explanation of how the rule in Equation (4.4) is applied
in our implementation. Recall that the xg module has the following property: a repre-
sentative of an ec will never be present in another ec. This property will be maintained
in the xg-ext method as well. Using the conclusion in Equation (4.4), we derive in
Table 4.3 six inference rules that allow us to perform the substitution of a variable x1

by a variable x2 while maintaining the unicity-of-representatives property. Applying one
of the inference rules in Table 4.3 can result in conflict or it can propagate a newly
discovered truth value. Note that var(Cx1 ⊕ Cx2) is given by the symmetric difference
(var(Cx1) ∪ var(Cx2)) \ (var(Cx2) ∩ var(Cx1)).

56

Chapter 4. The WDSat Solver

Table 4.3: Inference rules for the substitution of x1 by x2.

Premises Conclusions on C Updates on R

C, x1 ⇔ x2

C[x1/x2] N/Ax1�∈R
x2�∈R
C, x1 ⇔ x2

Cx2 ← Cx1 R← R \ {x1}
x1 ∈ R

x2�∈R
C[x2/Cx2] R← R ∪ {x2}

x2�∈var(Cx1)

C, x1 ⇔ x2
Cx3 ← Cx1 ⊕ x2 ⊕ x3 R← R \ {x1}

x1 ∈ R

x2�∈R
C[x3/Cx3] R← R ∪ {x3}x2 ∈ var(Cx1)

x3 ∈ var(Cx1)

C, x1 ⇔ x2

C[x1/Cx2] N/A
x1�∈R
x2 ∈ R

x1�∈var(Cx2)

C, x1 ⇔ x2
Cx3 ← Cx2 ⊕ x1 ⊕ x3 R← R \ {x2}

x1�∈R
x2 ∈ R

C[x1/x2, x3/Cx3] R← R ∪ {x3}x1 ∈ var(Cx2)

x3 ∈ var(Cx2)

C, x1 ⇔ x2
Cx3 ← Cx1 ⊕ Cx2 ⊕ x3 R← R \ {x1, x2}

x1 ∈ R

x2 ∈ R
C[x3/Cx3] R← R ∪ {x3}

x3 ∈ var(Cx1 ⊕ Cx2)

This extension of the xg module is implemented as part of the set in xg function used
in the assign algorithm. The adapted function set in xg is detailed in Algorithm 4.10
and the lines that were added in comparison to Algorithm 4.9 are in bold. Note our
use of the list monomials and degree monomials structures. list monomials is an array
indexed by unary variables that contains the list of monomials in which a unary variable
occurs. For instance, the monomial x1x2 (or the conjunction x1 ∧ x2 in anf) belongs
both to the list of monomials of x1 and the list of monomials of x2. degree monomials is
an array indexed by non-unary variables and holds, what we informally call, the ’degree’
of each variable. This degree is equal, at first, to the number of unary variables that
compose the monomial. When each of the composing variables is set to true, the degree
decrements and serves as an indicator of when a monomial needs to be substituted by a
unary variable. These structures are initialized when the solver reads the anf formula.

Open question 3 Note that, in our current implementation, we only substitute monomi-
als with unary variables. The case of substituting monomials by lower degree monomials
should also be considered. We have not yet done empirical estimations on whether this

57

Chapter 4. The WDSat Solver

Algorithm 4.10 Function set in xg(to set, F) : Function that sets a list of literals to
true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: true if formula is satisfiable, false otherwise.

1: XG propagation stack ← to set.
2: while XG propagation stack is not empty do
3: l← top element from XG propagation stack.
4: if assignment[l] 6= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l]← true.
9: ul← get propositional variable(l).

10: tv ← get truth value(l).
11: if x1 ∈ R then
12: infer representative(ul, tv, F).
13: else
14: infer non representative(ul, tv, F).
15: end if
16: if ul is a unary variable then
17: for each m in list monomials[ul] do
18: if tv = true then
19: decrement degree monomials[m].
20: if degree monomials[m] = 1 then
21: substitute m by ul in F .
22: end if
23: else
24: degree monomials[m]← −1.
25: end if
26: end for
27: end if
28: end if
29: end while
30: return true.

would yield faster running times, but we believe that the unswer to this would be specific
to the properties of the model, notably its sparsity. For example, consider the monomial
x1x2x3 of degree three. When x1 is set to 1, x1x2x3 can be substituted by x2x3. Whether
computing such a substitution is of interest, depends mostly on the probability that the
monomial x2x3 exists in the system and can potentially be canceled out.

4.4 Complexity discussion

The complexity of our solver strongly depends on the model and will be analyzed individu-
ally for each cryptosystem that we study in this thesis. When the underlying cryptosystem
is considered as a black-box, the worst-case complexity of WDSat is exponential in the
number of unary variables. This result is mainly due to our branching policy. In contrast,
the complexity of sat solvers that use the cnf-xor form is exponential in the number
of, both unary, and substitution variables.

58

Chapter 4. The WDSat Solver

Since the solution usually has a balanced distribution over the domain {0, 1}, every
possible assignment of variables has an equal chance to be the right solution. Whether
this solution is found at the beginning of our binary search or toward the end is completely
arbitrary. Thus, we have no reason to believe that the average complexity of the solver
will differ from the worst-case complexity by more than a factor of two. This assessment
coincides with our experimental results for cases where at least one solution exists. Note
however that, the same reasoning can not be applied for solvers that use the cnf-xor
form. When variables are intertwined by more than xor constraints, there can be a
propagation stream that occurs on each branch and thus the height of the binary search
tree can be inherently smaller on average.

59

Part II

Cryptographic applications

60

Chapter 5

ECDLP Preliminaries

The discrete logarithm problem (dlp) is one of the most studied hard problems in the last
few decades. The huge interest in this problem comes from its versatile nature that has
allowed it to be one of the fundamental building blocks of modern public-key cryptography.
The dlp can be defined for every multiplicative group G. Specifically, when G is a cyclic
group or order N generated by g, and h is an element in G, the dlp consists in finding,
an integer x, such that h = gx.

In this work, we are interested in the case where G is the group of points on an elliptic
curve. The purpose of this chapter is to provide an explanation of the basic notions
needed to understand the cryptographic attacks presented in this thesis. Secondly, we
present a quick survey of state-of-the-art attacks, as well as practical uses of the elliptic
curve discrete logarithm problem (ecdlp). Neither of these is an exhaustive presentation
of the ever-growing literature on this topic.

Let K = Fq denote a finite field. An elliptic curve over K is given by a Weierstrass
equation, i.e. an equation of the form:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

with a1, a2, a3, a4, a6 ∈ K. We generally write the Weierstrass equation for the elliptic
curve using non-homogeneous coordinates x = X/Z and y = Y/Z

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The addition law of two points on an elliptic curve is defined geometrically. Having two
points P and Q on the curve E, first, we draw a line through them. According to a special
case of Bezout’s theorem (see [Har77]), the line intersects the curve E at a third point R.
Then we draw a vertical line through R. This line intersects E in another point, and we
define this point to be the sum of P and Q. However, when we add a point P to itself,
the first step can not be carried out as described, so instead, we draw the tangent line
to E at P . Figure 5.1 is an illustration of performing the operation P + P on an elliptic
curve in Weierstrass form. Note that, for characteristic different from 2, since the curve
is symmetrical on the x-axis, the inverse of a point P is the reflecting point across the
x-axis. Since the vertical line through P and −P does not intersect E, we must include
an extra point on the curve to define P + (−P). This is called the point at infinity and
is denoted by O.

The addition law on E has the following properties:

(a) If a line L intersects E at the (not necessarily distinct) points P , Q, R, then (P +
Q) +R = O.

(b) P +O = P , for all P ∈ E.

61

Chapter 5. ECDLP Preliminaries

Figure 5.1: Addition law on E. The case of doubling a point.

(c) P +Q = Q+ P , for all P,Q ∈ E.

(d) Let P ∈ E. There is a point of E, denoted by −P , satisfying P + (−P) = O.

(e) P + (Q+R) = (P +Q) +R, for all P,Q,R ∈ E.

Let E be an elliptic curve defined over a field of characteristic different from 2 and 3.
E can be described as an algebraic curve given in short Weierstrass form

E : y2 = x3 + ax+ b.

We can write down explicitly the formulas for the addition law on E as follows. Let
P1 = (x1, y1) and P2 = (x2, y2), then P1 + P2 = (x3, y3) = (λ2 − x1 − x2, λ(x3 − x1) + y1),
where

λ =



y2 − y1

x2 − x1

, when P1 6= P2

3x2
1 + a

2y1

, when P1 = P2.

For more details, the reader can refer to [Sil86].
The set of points on an elliptic curve, including the point at infinity, forms a finite

abelian group. In this group, we consider the Elliptic curve discrete logarithm problem
(ecdlp), which is formulated as follows.

Definition 5.0.1 Given points P,Q ∈ E(K), find an integer x such that xP = Q.

Elliptic curves over various fields can be used to define the ecdlp, serving as a one-
way function for cryptographic purposes. The main advantage of using elliptic curves is
that for well-chosen parameters, generic attacks are best known attacks on the ecdlp.
As a result, smaller key sizes can be used for elliptic curve cryptosystems, compared to
previously used systems such as RSA or systems based on the discrete log on finite fields.
The elliptic curve arithmetic comes with some computational cost, but the reduction in key
sizes is sufficient enough to compensate for this cost and make elliptic curve cryptosystems
more efficient.

When q is a large prime, we are working with curves over prime fields. When q = pn,
curves defined over K are elliptic curves over extension fields. In the special case where

62

Chapter 5. ECDLP Preliminaries

p = 2, we say that E is an elliptic curve over a binary extension field or a binary elliptic
curve. This is also referred to as the special case of characteristic 2. For binary curves, it
is common to adopt the following form

E : y2 + xy = x3 + ax2 + 1. (5.1)

Note that, since a ∈ {0, 1}, there are only two curves defined using Equation (5.1). They
are referred to as Koblitz curves [Kob92b] and they are extensively used in cryptography,
since they allow fast scalar multiplication and point counting. For security reasons, it
is better to choose n prime, but on the other hand, there are computational advantages
when n is composite.

5.1 Applications in cryptography

In this section, we detail some of the most notable applications of the discrete log problem.
As this is a chapter on ecdlp, we will use the elliptic curve notation, presented in the
previous section. Other applications that are not described in this section include, for
example, Paillier’s encryption [Pai99] which is additively homomorphic, the elliptic curve
analog of the Digital Signature Algorithm [NIS92] and zero-knowledge proofs used as
authentication protocols, such as the Schnorr’s protocol [Sch90].

5.1.1 Diffie-Hellman key exchange

The Diffie-Hellman key exchange, introduced in 1976 [DH76], is the first application that
popularized the use of the discrete logarithm in cryptography. The initial proposition of
this protocol used F∗p and was later generalized for elliptic curve groups. This method
covers the need for two communicating parties to agree on a shared secret key, which
is the core purpose of public-key cryptography. The shared secret key is to be used for
communication via a symmetric cryptosystem.

The Diffie-Hellman (dh) key exchange is considered to be the foundation of public-
key cryptography and as such, it has been illustrated many times before. Thus, in this
chapter, we will rather use the color metaphor to show an illustration of the protocol in
Figure 5.2. Indeed, the set of colors and the operation of color mixing form an abelian
semigroup. We also have a one-way function, as mixing colors is easy, but finding the
exact original colors from a mixed one is hard1.

When Alice and Bob want to agree on a shared secret, they need to first agree on
public parameters, or more precisely, on a cyclic group and a generator of that group. In
the Elliptic curve Diffie-Hellman (ecdh) protocol, they have to choose an elliptic curve E
and a point P ∈ E. It is advised that P is of prime order equal to the order of E. These
parameters are public. Then, Alice chooses a secret a ∈ Z/NZ and computes the point
A = aP , which is sent to Bob via a public communication channel. Bob performs the
same operation, choosing b ∈ Z/NZ, computing B = bP , and sending it to Alice. After
the exchange, they can both compute S = bA = aB = abP . Note that, the fact that the
points on E form an abelian group is a crucial component in this protocol.

The elements that an eavesdropper Eve can obtain from the communication channel
are A and B. Also, P and E are publicly known. Having A,P ∈ E and finding the secret
a is a discrete log problem. Thus, for the protocol to be considered secure, the discrete
log problem must be hard in E. There exist other problems that arise from the dh key
exchange. The Computational Diffie-Hellman problem (cdh) is defined as follows. Given

1Of course, this does not stand for numerical representations of colors.

63

Chapter 5. ECDLP Preliminaries

Figure 5.2: Diffie-Hellman key exchange with colors.

P , aP and bP , find abP . Solving this problem would allow an attacker to compute the
secret shared key K, without knowing Alice’s secret a or Bob’s secret b. Then, there
is the Decisional Diffie-Hellman problem (ddh). Given P , aP , bP and Q, determine if
Q = abP . In the general case, solving these problems requires solving the ecdlp.

The ecdh as we have described it is not resistant to a man-in-the-middle attack.
This is an active attack where Eve intercepts the communication between Alice and Bob
and acts as one party for the other. Another requirement that the basic implementation
of this protocol does not meet is perfect forward secrecy. In other words, if Eve finally
succeeds in finding the secret key S, she will be able to decrypt all past communications.
To prevent this detrimental result, the Elliptic Curve Diffie-Hellman Ephemeral (ecdhe)
protocol is used in practice. In this case, S is discarded after the communication is done
and if Alice and Bob need to communicate in the future, they have to agree upon a new
secret key.

5.1.2 ElGamal encryption

In 1984, ElGamal [ElG85] showed how the dh key exchange can be used to construct an
encryption scheme that relies on the difficulty of the discrete log. A first notable difference
between performing the dh key exchange followed by a symmetric encryption scheme and
the ElGamal encryption is that the latter does not require both communicating parties
to be online simultaneously. Instead, Alice generates a pair of public and private key,
and then she publishes her public key to be used by anyone that wants to send her an
encrypted message. The key generation process is the same as the first step in the ecdh
key exchange. Alice chooses a ∈ Z/NZ, which will be her secret key, and computes
A = aP which will be her public key. In practice, Alice does not actually choose her
secret key, but instead, she computes it using a cryptographically secure pseudorandom
number generator. Thus, the security of the protocol depends strongly on the security of
this generator. ElGamal also proposed a signature scheme based on the dh key exchange,
that starts with this key generation process.

When Bob wants to send a message to Alice, he can just look up her public key and

64

Chapter 5. ECDLP Preliminaries

perform his part of the key agreement. Specifically, he chooses a secret b ∈ Z/NZ and
computes B = bP and S = bA. He can now use S to encrypt his message using an
agreed-upon symmetric cryptosystem, and then send the encrypted message along with
B to Alice. This is known as noninteractive ecdh . The ElGamal encryption scheme
is similar, but instead of using symmetric encryption, the message is first mapped to a
point M ∈ E using an invertible map that is also agreed-upon. The encrypted message
is computed as C = (M + S), with C ∈ E. The decryption process goes as follows.
Alice receives (B,C) and uses her secret key to compute S = aB. She then computes
M = C + (−S) and uses the map inverse to find the message.

5.1.3 Pairing-based cryptography

A significant extension of elliptic curve cryptography is pairing-based cryptography, which
uses bilinear pairings to construct protocols. A bilinear pairing is an efficiently-computable
map e : G1 ×G2 → GT , where G1 and G2 are additive groups and GT is a multiplicative
group. These three groups are of equal prime order N . For simplicity, let us consider
the case of symmetric bilinear pairings, which is the case where G1 = G2. Thus, we
simply use G to denote the source group. For cryptographic applications, G is usually
the group of points on an elliptic curve and thus we will continue with the notation from
previous sections. We consider that e is an admissible bilinear map if we have the following
properties.

1. Bilinearity: given R, S ∈ G and a, b ∈ Z∗N , e(aR, bS) = e(R, S)ab = e(abR, S) =
e(R, abS).

2. Non-degeneracy: there exist R, S ∈ G, such that e(R, S) 6= 1GT , where 1GT is the
identity of the group GT .

G
•
aR

•
bS

GT

•
e(R, S)ab

Figure 5.3: A symmetric bilinear pairing.

These primitives find many applications in cryptography, both in protocol construction
and in cryptanalysis. As an example, we are going to describe the three-party one-round
key exchange. This protocol, proposed by Joux in 2000 [Jou00], is the first key exchange
between more than two users that does not require more than one round of interaction
between the users. The protocol works as follows. When Alice, Bob, and Charlie need
to agree on a shared secret, they respectively choose secret a, b, and c. Then, they
respectively compute and send aP , bP , and cP to the other parties. Finally, the following
keys are computed.

• Alice: KA = e(bP, cP)a;

• Bob: KB = e(aP, cP)b;

65

Chapter 5. ECDLP Preliminaries

• Charlie: KC = e(aP, bP)c;

As per the properties of bilinear pairings, we have

K = KA = KB = KC = e(P, P)abc.

Another notable application of pairing-based cryptography is the identity-based en-
cryption scheme [BF01], in which the public key of a user is linked to some identifiable
information about the user, such as an email address. Bilinear pairings have also found
their use in group and ring signature schemes.

5.2 Known attacks

The goal of this section is to give a general understanding of the state-of-the-art attacks
on the ecdlp. We divide known attacks into generic and specialized attacks. We mention
some of the most prominent examples in both categories while concentrating on a com-
plexity discussion and on implications that these attacks have on selecting secure elliptic
curves.

5.2.1 Generic attacks

We call generic an attack that can be applied to every cyclic group G. In this case, we can
view G as a black-box, with the group law being the only known element to the attacker.
For the attacks mentioned here, we also consider that we can easily compute the order of
G in practice, which is usually the case for cyclic groups used in cryptography.

The most straightforward generic attack is the exhaustive search method. For the
ecdlp, the exhaustive search consists in choosing, randomly, or in a predetermined order,
an element a ∈ Z and computing R = aP , until we find the case where R = Q and
conclude that x = a. Among all algorithms mentioned here, this algorithm has the best
memory complexity of O(1), and of course, the worst time complexity of O(N), both in
the worst and average case.

The Pohlig-Hellman algorithm, introduced in 1978 [PH78] is useful when we know the
factorization of N . In fact, factoring the order N is practical for all elliptic curve groups
used in cryptography, as their order is small compared to numbers that we can factor
in practice. Groups of orders that are factors of N are subgroups of G. The Pohlig-
Hellman algorithm allows us to reduce the dlp in G to the dlp in a subgroup of G. The
consequence of this reduction is that the dlp of G is only as hard as the dlp of the largest
subgroup of prime order of G. The practical implication is that, for strong security, we
need to select curves such that N is either prime or has a very large prime factor.

The earliest algorithm that has exponential complexity in the square root of N is the
Baby-step giant-step algorithm, proposed by Shanks in 1971. The main idea behind this
method is to apply the divide-and-conquer strategy to solving the discrete log. This idea
is dependent on the observation that the unknown x can be written as x = λ0 +λ1b

√
Nc,

where both λ0 and λ1 are lesser than
√
N . Then, one can compute and store all pairs

(i, Pi), for 0 ≤ i <
√
N , where Pi = iP . These are called baby-steps and require a total

of O(
√
N) computations. Similarly, the giant-steps consist in computing pairs (j,Qj), for

0 ≤ j <
√
N , where Qj = Q − jb

√
NcP . For efficiency, b

√
NcP can be computed only

once at the beginning. As we compute Qj values, we compare them to the stored Pi values,
looking for a match. When we find Qj = Pi, we have than λ0 = i and λ1 = j. Thus, we
compute the discrete log as x = i + jb

√
Nc. Computing all baby-steps and giant-steps

requires a total of O(
√
N) computations, both in the worst and the average case. Thus,

66

Chapter 5. ECDLP Preliminaries

this algorithm is the one that has the best time complexity in the sequential processing
setting. Its main drawback is that we have to store all values from the baby-steps, which
makes the memory complexity O(

√
N), as well.

Pollard’s rho method [Pol78] offers a solution with a complexity comparable to the
Shanks’s algorithm, but with negligible memory requirements. Similarly to the baby-step
giant-step algorithm, Pollard’s algorithm is based on a collision search. This time, the
goal is to find, for any point R on E, two different linear combinations of P and Q.
Namely, when we have R = a1P + b1Q = a2P + b2Q, x can be computed as

x =
a1 − a2

b2 − b1

.

This method will be explained in greater detail in Chapter 6, as its parallel version is the
main point of interest in that chapter. The parallel version of Pollard’s rho method is
due to van Oorschot and Wiener [vOW99], who proposed an efficient way to parallelize
the collision search while compromising on the memory requirements. This algorithm,
referred to as the Parallel Collision Search (pcs), is the universal choice for practical
discrete log computations. Unlike the baby-step giant-step, Pollard’s algorithm and its
parallel variant are both probabilistic and the estimate on the time complexity is based
on the birthday paradox.

In summary, these three algorithms have a time complexity that is exponential in
the square root of N . Coupled with the Pohlig-Hellman algorithm, the complexity of
an attack, using these algorithms, is exponential in the square root of p, where p is the
largest prime factor of N . Thus, the practical implication of these algorithms is that for
b-bit security requirements2, one needs to use elliptic curves where p > 2b. One needs to
also consider that the pcs parallelizes perfectly and thus, its time complexity is reduced
by a linear factor of L when there are L computing resources available for the attack.

The ecdlp is in the NP class. However, the ecdlp is also in the BQP class, which
stands for Bounded-error Quantum Polynomial time. Algorithms in this class are believed
to be solvable in polynomial time by a quantum computer, with an error probability of at
most 1

3
for all instances. This theoretical result is due to Shor [Sho97], who proposed an

efficient quantum algorithm for the dlp in 1997. This algorithm is in the generic family
and thus, the security of elliptic curve cryptography is compromised in the quantum
paradigm.

5.2.2 Attacks on specific families

When we know more about the underlying group structure of G, we can find some weak-
nesses that can be exploited to develop a stronger attack on the dlp in G. In this section,
we mention some of these special attacks on elliptic curves. A recurring theme in these
attacks is the transfer of the dlp in G to a dlp in another group, where it is easier to
solve. This is actually the earliest application of bilinear pairings that were described in
Section 5.1.3. In the MOV reduction [MOV93], for example, we use a bilinear pairing
e : G×G→ GT to transform the discrete log in G, to a discrete log in GT . Recall that,
as per the bilinear property, we have

e(P,Q) = e(P, xP) = e(P, P)x.

Thus, x is the discrete log of e(P,Q) to the base e(P, P). This discrete log is easier, as it
is computed in GT , where GT ⊆ Fqk . The MOV attack uses the Weil pairing and it was
later generalized using the Tate pairing [FR94].

2Having a b-bit security means that the complexity of the best attack is equivalent to a brute force
attack on a b-bit key, i.e. 2b.

67

Chapter 5. ECDLP Preliminaries

Another family of curves that are susceptible to special attacks are anomalous curves.
These are curves over Fp whose order is equal to p. The dlp on an anomalous curve
E(Fp) can be reduced to the dlp in the additive group of integers modulo p, and as a
result, it can be computed in polynomial time with extended Euclid algorithm.

A reduction to the multiplicative group of a finite field (F∗q) is interesting due to the
index calculus algorithm, which is subexponential in this group. Because of its success
in F∗q, there has been tremendous activity in the application of this method for elliptic
curve groups. To date, the index calculus is in the family of special attacks, as it can be
applied only for elliptic curves over extension fields. Our work is widely concentrated on
this attack, and thus, it will be described in detail in Chapter 7.

Considering special attacks, it is clear how important the choice of parameters is for
the construction of secure cryptosystems. In practice, we use elliptic curves that are
recommended by a standardization authority. For instance, NIST defines 15 standard
curves, 10 of which are binary.

68

Chapter 6

Parallel Collision Search

This chapter is dedicated to our work on the parallel collision search (pcs) algorithm,
proposed by van Oorschot and Wiener [vOW99], which is a generic attack on the discrete
log that is most commonly used in practice. Unlike other attacks in this thesis, the pcs
does not use a sat solver. Most of the contributions of this work are presented in [TID17].

Let us first introduce the problem and mention some previous work. Given a function
f : S → S on a finite set S, we call collision any pair a, b of elements in S such that
f(a) = f(b). Collision search has a broad range of applications in the cryptanalysis of
both symmetric and asymmetric ciphers: computing discrete logarithms, finding collisions
on hash functions and meet-in-the-middle attacks. Pollard’s rho method [Pol78], initially
proposed for solving factoring and discrete logs, can be adapted to find collisions for any
random mapping f . The parallel collision search algorithm, proposed by van Oorschot
and Wiener [vW99], builds on Pollard’s rho method, and is expected to have a linear
speedup compared to its sequential version. This algorithm computes multiple walks
within a parallel processing context and stores some of these points, called distinguished
points.

In our work, we revisit the memory complexity of the parallel collision search algo-
rithm, both for applications that need a small number of collisions (i.e. discrete logs)
and those needing a large number of collisions, such as meet-in-middle attacks or the
multiple dlp. In the case of discrete logarithms, collision search methods are the fastest
known attacks in a generic group. In elliptic curve cryptography, subexponential at-
tacks are known for solving the discrete log on curves defined over extension fields, but
only generic attacks are known to work in the prime field case. Evaluating the per-
formance of collision search algorithms is thus essential for understanding the security
of curve-based cryptosystems. Several record-breaking implementations of this algo-
rithm are available in the literature: over a prime field the current record reaches a
discrete log in a 112-bit group on a curve of the form y2 = x3 − 3x + b [BKK+12;
JWB09]. This computation was performed on a Playstation 3. More recently, Bernstein,
Lange and Schwabe [BLS11] reported on an implementation on the same platform and for
the same curve, in which the use of the negation map gives a speed-up by a factor

√
2. Over

binary fields, the current record is an FPGA implementation breaking a discrete logarithm
in a 117-bit group [BEL+]. As for the meet-in-the-middle attack, this generic technique is
widely used in cryptanalysis to break block ciphers (double and triple DES, GOST [Iso11]),
hash functions [KNW09; MRST09], lattice-based cryptosystems (NTRU [HGSW03;
vV16]) and isogeny-based cryptosystems [ACC+18].

Two models of computation can be considered for this algorithm. The first one follows
the shared memory paradigm, in which each thread will compute distinguished points and
store it in the common memory. The second one is a message-passing model, where the

69

Chapter 6. Parallel Collision Search

threads computing points, called the clients, send the distinguished points to a separate
process, running on a different machine called the server, who will handle the memory
and check for collisions.

First, our contribution is to extend the analysis of the parallel collision search algorithm
and present a formula for the expected runtime to find any given number of collisions,
with and without a memory constraint. We show how to compute optimal values of θ -
the proportion of distinguished points, allowing to minimize the running time of collision
search, both in the case of discrete logarithms and meet-in-the-middle attacks. In the case
where the available memory is limited, we determine the optimal value of θ, proving that
the value conjectured by van Oorschot and Wiener was asymptotically correct. Going
further in the analysis, our formulas show that the actual running time of finding-many-
collisions algorithm is critically reduced if the number of words w that can be stored
in memory is larger. A notable application that requires finding many collisions is the
dlp in the multi-user setting. We describe existing algorithms for this setting [KS01;
FJM14b] and present some new insights.

Secondly, we focus on the data structure used for the algorithm. To the best of our
knowledge, all existing implementations of parallel collision search algorithms use hash
tables to organize memory and allow fast look-up operations. In this chapter, we introduce
a new structure, called Packed Radix-Tree-List (prtl), which is inspired by radix trees.
We show that the use of this structure leads to a better use of memory in implementations
and thus yields improved running times for many-collision applications.

Using the prtl structure, we have implemented the parallel collision search algorithm
for discrete logarithms on elliptic curves defined over prime fields and experimented using
a Shared-Memory Parallelism (SMP) system. Our benchmarks demonstrate the perfor-
mance and scalability of this method. While in the case of a single discrete log, the prtl
variant implementation yields running times similar to those of a hash table approach,
our experiments demonstrate that the new data structure gives faster limited-memory
multi-collision attacks.

This chapter is organized as follows. Section 6.1 reviews algorithms for solving the
discrete logarithm problem and for meet-in-the-middle attacks. In Section 6.2, we revisit
the proof for the time complexity of the collision finding algorithm for a small and a large
number of collisions. Furthermore, we show how to minimize the runtime, as a function
of the proportion of distinguished points. Section 6.3 shows our theoretical findings on
the multiple dlp problem. Section 6.4 describes our choice for the data structure and
memory complexity estimates. Finally, Section 6.5 details the implementation of our data
structure and a comparison with classic hash tables. We also give implementation details
of our attack and presents our experimental results.

6.1 Background

In this section, we briefly review Pollard’s rho method and the parallel algorithm for
searching collisions. Let S be a finite set of cardinality N . In order to look for collisions
for a function f : S → S with Pollard’s rho method, the idea is to compute a sequence of
elements xi = f(xi−1) starting at some random element x0. Since S is finite, eventually
this sequence begins to cycle and we therefore obtain the desired collision f(xk) = f(xk+t),
where xk is the point in the sequence before the cycle begins and xk+t is the last point on
the cycle before getting to xk+1 (hence f(xk) = f(xk+t) = xk+1). The sequence defines a
walk in the shape of the letter ρ (see Figure 6.1), thus the name of the method. One may

show that the expected number of steps taken until the collision is found is
√

πN
2

, and

70

Chapter 6. Parallel Collision Search

therefore that the memory complexity is also O(
√

πN
2

). This algorithm can be further

optimized to constant memory complexity by using Floyd’s cycle-finding algorithm [Jou09;
Bre80]. We do not further detail memory optimizations here since they are inherently of
sequential nature and there is currently no known way to exploit these ideas in a parallel
algorithm.

f
•
x0

•
xk+1

•
xk

•
xk+t

Figure 6.1: Pollard’s rho walk.

The parallel algorithm for collision search proposed by van Oorschot and
Wiener [vOW99] assigns to each thread the computation of a trail given by points
xi = f(xi−1) starting at some point x0. Only points that belong to a certain subset,
called the set of distinguished points, are stored. This set is defined by points having an
easily testable property. The proportion of distinguished points in the set is denoted by
θ. Whenever a thread computes a distinguished point xd, it stores it in a common list of
tuples (x0, xd). If two walks collide, this is identified when they both reached a common
distinguished point (see Figure 6.2). We may then re-compute the paths and the points
preceding the common point are distinct points that map to the same value.

x1
0 x2

0

x1
i = x2

j

x1
i+ 1

θ

= x2
j+ 1

θ

Walk of thread 1 Walk of thread 2

Figure 6.2: Collision search by thread 1 and thread 2 starting from point x1
0 and point x2

0

respectively. Nondistinguished points are transparent.

6.1.1 Solving discrete logarithms.

In this subsection, S denotes a cyclic group of order N . We focus on the elliptic curve
discrete logarithm problem (ecdlp) in a cyclic group S = 〈P 〉, but the methods described
in this thesis apply to every finite cyclic group. We will assume that the curve E is defined

71

Chapter 6. Parallel Collision Search

over a finite field Fp, where p is a prime number. Let Q ∈ S and say we want to solve the
discrete logarithm problem Q = xP , where x ∈ Z. To apply the ideas explained above,
we define a map F : S → S which behaves randomly and such that each time we compute
f(R) we can easily keep track of integers a and b such that f(R) = aP + bQ. Pollard’s
initial proposal for such a function was

f(R) =


R + P if R ∈ S1

2R if R ∈ S2

R +Q if R ∈ S3,

(6.1)

where the sets Si, i ∈ {1, 2, 3} are pairwise disjoint and give a partition of the group S.
As a consequence, whenever a collision f(R) = f(R′) occurs, we obtain an equality

aP + bQ = a′P + b′Q. (6.2)

This allows us to recover x = (a− a′)/(b′− b), provided that b′− b is not a multiple of N .
Starting from R0, a multiple of P , Pollard’s rho [Pol78] method computes a sequence Ri

of points where Ri+1 = f(Ri). Since the group S is finite, this sequence will produce a

collision after
√

πN
2

iterations on average. To define distinguished points, we take an easily

testable property, such as a certain number of trailing bits of their x-coordinate being zero.
Whenever a walk computes such a point, this is stored in a common list, together with
the corresponding a and b. When two walks collide, this cannot be identified until the
common distinguished point is computed. Then the discrete logarithm can be recovered
from (6.2).

6.1.2 Many collision applications : the multi-user setting

A first type of application of the van Oorschot and Wiener algorithm computing many
collisions is the multi-user setting of both public and secret key schemes. We will concen-
trate specifically on the case of computing multiple discrete logarithms in a cyclic group
S = 〈P 〉 of order N . The ecdlp in the multi-user setting can be defined as follows. Let
m be the number of users. Given Qi ∈ S, for i ∈ {1, . . . ,m}, compute each xi, such that
Qi = xiP . A straightforward method to solve this problem is to compute individually
each of the discrete logs. We consider that Qi is the public key and xi is the secret key
of user i. The application behind this problem is to find the secret keys of multiple users
that use the same public parameters. Naturally, the use of shared public parameters raises
the question of whether we can exploit the multi-user setting to compute all discrete logs
more efficiently than with the straightforward method.

This problem has been considered by Kuhn and Struik [KS01]. They reason that,
all points that were collected to solve the first k discrete logs, can be used to solve the
(k + 1)st discrete log. We describe the technique in the elliptic curve setting. Thus, we
talk about computing the ecdl corresponding to a secret key of a user, or simply, the
discrete log of a user.

When we are computing x, such that Q = xP , the random map f : S → S is defined
in Equation (6.1). In the multi-user setting, since Qi is different for each user, a different
random map fi is used for each user. Hence, the collected distinguished points for a user
i are of the form R = aiP + biQi. When the random walks of users i and j collide, we
have the following equality

aiP + biQi = ajP + bjQj. (6.3)

72

Chapter 6. Parallel Collision Search

Knowing that Qi = xiP and Qj = xjP , we can substitute Qi and Qj and obtain

aiP + bixiP = ajP + bjxjP. (6.4)

If xi is already known, we can recover

xj =
ai + bixi − aj

bj
,

provided that bj is not a multiple of N .
The algorithm starts with all threads computing points using the random map of the

first user f1. When a collision occurs, an equality of the form (6.2) is obtained and x1

is computed. Then, all threads start computing points for the second user, using the
map f2. From this point on, a discrete log can be computed either by an equality of the
form (6.2) or by an equality of the form (6.3). The first equality is obtained in the case
where two random walks of the same user collide, whereas the second is obtained when
there is a collision on random walks of two different users. Each time a new discrete log
is computed, the random map is updated for all threads.

With this method, the number of collisions that are necessary to compute the discrete
log of all users is equal to the number of users. The time complexity analysis in [KS01] is
based on the problem of finding the number of points we need to choose with replacement
out of a set of N points until we have chosen m points at least twice. The expected number
of collected points, obtained with this analysis is

√
2mN for m � 4

√
N . This coincides

with our Formula in Equation (6.11) for the expected number of computed distinguished
points for finding m collisions, which is obtained using a different analysis and does not
have a restriction on m. Kuhn and Struik also consider the problem of solving any one of
the discrete log instances. However, they conclude that this problem is computationally
as hard as solving one discrete log outside of the multi-user setting.

Another prominent result in the multi-user setting is the work of
Fouque et al. [FJM14a]. The paper shows both public and secret-key cryptana-
lytic applications, but the one that we are interested in is the algorithm for recovering
the discrete logs of m users. What follows is a description of the proposed algorithmic
ideas. First, a distinction is made between the set of distinguished points obtained using
the random map of a user whose discrete log is known and one whose discrete log is
still unknown, called respectively the public and the private set of distinguished points.
Contrary to the method in [KS01], in this algorithm, collisions between points in the
private set are also considered, as they represent a correlation between the two discrete
logs. More precisely, they are used to construct a graph whose vertices are the public
keys and where an edge between Qi and Qj is added if there is a collision between the
random walks of users i and j. The edge is labeled with the linear relation between
xi and xj i.e. an equality of the form (6.4). Furthermore, there are random walks
computed for users whose discrete log is known. These are not existing users, but rather
public keys that we have randomly computed. We will refer to them as infiltrators.
Points computed for these users are in the public set of distinguished points. When a
giant connected component appears in the random graph, and if one of the infiltrators
is in this component, the discrete log of all users in the component is solved. This
giant component appears with high probability when the number of edges, and thus the
number of computed collisions, is cm/2, for a small constant c. For reference, when
c = 4, there is a giant component whose size is almost exactly 0.98m. This estimation is
obtained using results on random graph processes that can be found in [Bol01]. Then,
the birthday paradox is used to estimate the number of computed points needed to find

73

Chapter 6. Parallel Collision Search

cm/2 collisions. The total time complexity of the algorithm is
∼
O(
√
Nm)1.

6.1.3 Many collision applications : meet-in-the-middle attacks

A second type of applications concerns meet-in-the-middle attacks, which require finding
a collision of the type f1(a) = f2(b), where f1 : D1 → R and f2 : D2 → R are two
functions with the same co-domain. As explained in [vW99], solving this equation may
be formulated as a collision search problem on a single function f : S×{1, 2} → S×{1, 2},
where the solution we need is of the type:

f(a, 1) = f(b, 2), (6.5)

and S is a set bijective to D1. This collision is called the golden collision. The number
of unordered pairs in S are approximately N2

2
and the probability that the two points

in a pair map to the same value of f is 1
N

. There are N
2

expected collisions for f and
there may be several solutions to Equation (6.5). Hence one typically assumes that all
collisions are equally likely to occur and that in the worst case, all possible N

2
collisions for

f are generated before finding the golden one. Because so many collisions are generated,
memory complexity can be the bottleneck in meet-in-the-middle attacks and the memory
constraint becomes an important factor in determining the running time of the algorithm.
We further explain this idea in Section 6.2.

6.1.4 Computational model and data structure.

We consider a CPU implementation of the shared memory variant of the algorithm, where
each thread involved in the process performs the same task of finding and storing distin-
guished points. In this case, the choice of a data structure for allowing efficient lookup and
insertion is significant. The most common structure used in the literature is a hash table.
In order to make parallel access to memory possible, van Oorschot and Wiener [vOW99]

propose the use of the most significant bits of distinguished points. Their idea is to divide
the memory into segments, each corresponding to a pattern on the first few bits. Threads
read off these first bits and are directed towards the right segment. Each segment is
organized as a memory structure on its own.

In recent years, with the development of GPUs and programmable circuits, the
client-server model has been widely used for implementing parallel collision search. In
this setting, a large number of client chips are communicating with a central mem-
ory server over the Internet. For computing discrete logarithms, [BBB+09] gives a
comparison between implementations on different architectures in this model. Current
record-breaking implementations of ecdlp also rely on this model [BKK+12; JWB09;
BEL+].

Except for the need for a structure that allows efficient simultaneous access to memory,
all results in this chapter apply to both the client-server and the SMP versions of the pcs
algorithm, even though our experimental results are obtained using a CPU implementa-
tion following the SMP paradigm.

Notation. In the remainder of this chapter, we denote by θ the proportion of distin-
guished points in a set S. We denote by N the number of elements of S. We denote by
E an elliptic curve defined over a prime finite field Fp and by E(Fp) the group of points
on E defined over Fp. Whenever the set S is the group E(Fp), N is the cardinality of this

1The
∼
O notation ignores logarithmic factors.

74

Chapter 6. Parallel Collision Search

group. For simplicity, in this case, we assume that N is prime (which is the optimal case
in implementations).

6.2 Time complexity

Van Oorschot and Wiener [vOW99] gave formulas for the expected running time of parallel
collision search algorithms. In this section, we revisit the steps of their proof and show
a careful analysis of the running time both for computing a single collision or multiple
collision applications. Our refined formulas indicate that the actual running time of the
algorithm depends on the proportion of distinguished points and allow us to determine
the optimal choice of θ for actual implementations.

6.2.1 Finding one collision

Van Oorschot and Wiener [vOW99] proved that the runtime for finding one collision is

O

(
1

L

√
πN

2

)
,

with L the number of threads we use. This is obtained by finding the expected number
of computed points before a collision occurs and then intuitively dividing the clock time
by L when L processors are involved. The proof of the following theorem provides a more
rigorous argument for the linear scalability of the algorithm. The proof techniques are
similar to that of [vOW99].

Theorem 6.2.1 Let S be a set with N elements and f : S → S be a random map. In the
parallel collision search algorithm, denote by θ is the proportion of distinguished points
and tc and ts denote the time for computing and storing a point respectively. The expected
running time to find one collision for f is approximated as

T (θ) = (
1

L

√
πN

2
+

1

θ
)tc + (

θ

L

√
πN

2
)ts, (6.6)

Proof. We call short path the chain of points computed by a thread between two consec-
utive distinguished points. The expected number of distinguished points produced after
a certain clock time T is TLθ. The probability of not having a collision at T = 1, for one
thread is

1− Lθ

Nθ
.

Note that any of the L threads can cause a collision. Thus, the probability for all threads
of not finding a collision on any point on the short walk is:

(1− L

N
)L,

at the moment T = 1.
Let X be the number of points calculated per thread before duplication. Hence:

P (X > T) = (1− Lθ

Nθ
)L · (1− 2Lθ

Nθ
)L · . . . · (1− TLθ

Nθ
)L.

75

Chapter 6. Parallel Collision Search

To do this multiplication we are going to take a shortcut. When x is close to 0, a
coarse first-order Taylor approximation for ex as:

ex ≈ 1 + x.

Now we can rewrite our expression as:

P (X > T) = (e−
L
N · e−

2L
N · . . . · e−

TL
N)L = (e

−(L+2L+...+TL)
N)L =

= (e
−T (T+1)L

2N)L = (e
−T2L
2N)L = e

−T2L2

2N . (6.7)

This gives us the probability

P (X > T) = e
−T2L2

2N ,

thus the expected number of distinguished points found before duplication, is

E(X) =
∞∑
T=1

T · P (X = T) =
∞∑
T=1

T · (P (X > T − 1)− P (X > T)) =
∞∑
T=0

P (X > T).

We approximate

E(X) =
∞∑
T=0

e
−T2L2

2N ≈
∫ ∞

0

e
−x2L2

2N dx ≈ 1

L

√
πN

2
.

Since the expected length of a short walk is 1
θ
, the number of distinguished points before

a collision occurs is
θ

L

√
πN

2
.

However, a collision might occur on any point on the walk and it will not be detected
until the walk reaches a distinguished one. We add 1

θ
to the number of calculations for

the discovery of a collision. Finally, the expected number of calculated points per thread
is:

1

L

√
πN

2
+

1

θ
.

The two main operations in our algorithm are computing the next point on the random
walk and storing a distinguished point. Thus, the time complexity of our algorithm is:

T (θ) = (
1

L

√
πN

2
+

1

θ
)tc + (

θ

L

√
πN

2
)ts. (6.8)

Remark 6.2.1 Note that the analysis above shows that the number of points computed

by the algorithm is O
(
θ
√

πN
2

)
. This was proven by van Oorschot and Wiener in the first

place.

Remark 6.2.2 In the client-server model, clients do not have access to memory, but they
send distinguished points to the server and thus ts stands for cost of communication on the
client-side. We suppose that all the client processors are dedicated to computing points.
On the server-side however, the analysis is different. Theorem 6.2.1 and the means of
finding the optimal value for θ apply both to the shared memory implementation adopted
in our approach, and to the more common distributed client-server model.

76

Chapter 6. Parallel Collision Search

As we can see in Equation (6.6), the proportion of distinguished points we choose will
influence our time complexity. The optimal value for θ is the one that gives the minimal
run complexity. Most importantly, our analysis puts forward the idea that the optimal
choice for θ depends essentially on the choices made for the implementation and memory
management. From this formula, we easily deduce that if the proportion of distinguished
points is too small or too large, the running time of the algorithm increases significantly.

By estimating the ratio ts/tc for a given implementation, one can extrapolate the opti-
mal value of θ by computing the zeros of the derivative of the function in Equation (6.6):

T ′(θ) =
1

L

√
πN

2
ts −

1

θ2
tc.

Figure 6.3 gives timings for our implementation of the attack, using a hash table to
store distinguished points. Timings shown in the figure are averaged over 100 runs on a
65-bit curve and support our theoretical findings.

4 6 8 10 12 14 16 18 20 22 24 26 28

1.5

2

2.5

3

·109

49m29s

29m1s

22m41s 22m1s
20m26s 21m12s

22m38s 21m55s
23m5s

30m8s

50m9s

Trailing zero bits

R
u
n
ti

m
e

(µ
s)

Figure 6.3: Timings of solving ECDLP for different values of θ, 65-bits curve, 28 threads

Note that most recent implementations available in the literature choose the number
of trailing bits giving the distinguished point property in a range between 0.178 logN and
0.256 logN (see [BEL+; BLS11; JWB09]). This value was determined by experimenting
on curves defined over small size fields. Our theoretical findings confirm that these values
were close to optimal, but we suggest that for future record-breaking implementations,
the value of θ should be determined as explained above.

6.2.2 Finding many collisions

Using a simplified complexity analysis, van Oorschot and Wiener [vW99] put forward the
following heuristic.

Heuristic ([vOW99]). Let f : S → S a random map and assume that the memory can
hold w distinguished points. Then in the meet-in-the-middle attack the (conjectured)
optimum proportion of distinguished points is θ ∼ 2.25

√
w
N

. Under this assumption, the
expected number of iterations required to complete the attack using these parameters is

2.5N
L

√
N
w

.

77

Chapter 6. Parallel Collision Search

This heuristic suggests that in the case of many collisions attacks, a memory data structure
allowing to store more distinguished points will yield a better time complexity. To prove
the conjectured runtime, we first give a more refined analysis for the running time of a
parallel collision search for finding m collisions.

Theorem 6.2.2 Let S be a set with N elements and f : S → S a random map. We
denote by θ the proportion of distinguished points in S. The expected running time to find
m collisions for f with a memory constraint of w words is:

1

L

(
w

θ
+ (m− w2

2θ2N
)
θN

w
+

2m

θ

)
. (6.9)

Proof. Let X be the expected number of distinguished points calculated per thread before
duplication. Let T1 be the expected number of distinguished points computed until the
first collision was found, and Ti, for any i > 1, the expected number of points stored in
the memory after the (i− 1)th collision was found and before the ith collision is found.

As shown in Theorem 6.2.1, the expected number of points stored before finding the

first collision is T1 = θ
√

πN
2

. The probability of not having found the second collision

after each thread has found and stored T distinguished points is

P (X > T) = (1− L+ T1

Nθ
)
L
θ · (1− 2L+ T1

Nθ
)
L
θ · . . . · (1− TL+ T1

Nθ
)
L
θ .

As in the proof of Theorem 6.2.1, we approximate this expression by

P (X > T) = e
−T2L2−2LT1T

2Nθ2 .

Hence the expected number of distinguished points computed by one thread before
the second collision is:

E(X) =
∞∑
T=0

e
−T2L2−2LT1T

2Nθ2 ≈
∫ ∞

0

e
−x2L2−2xLT1

2Nθ2 dx =

= e
T2
1

2Nθ2

∫ ∞
0

e
−(xL+T1)

2

2Nθ2 dx =
θ
√

2N

L
e

T2
1

2Nθ2

∫ ∞
T1

θ
√

2N

e−t
2

dt

=
θ
√

2N

L
e

T2
1

2Nθ2

θ√2Ne−
T2
1

2θ2N

2T1

−
∫ ∞

T1
θ
√
N

e−t
2

2t2

 ,

where the last equality is obtained by integration by parts. We denote by

Uk = T1 + T2 + . . . Tk.

By applying repeatedly the formula above (and neglecting the last integral), we have that
Tk = θ2N

LUk−1
. Therefore we have Uk = Uk−1 + θ2N

LUk−1
. By letting Vk = LUk

θ
√
N

, we obtain a

sequence given by the recurrence formula

Vk = Vk−1 +
1

Vk−1

.

We will use the Cesaro-Stolz criterion to prove the convergence of this limit. First, we
note that this sequence is increasing and tends to ∞. Moreover we have that V 2

k =

78

Chapter 6. Parallel Collision Search

V 2
k−1 + 2 + 1

V 2
k−1

. Hence
V 2
k −V

2
k−1

k+1−k → 2 and as per Cesaro-Stolz we have Vk ∼
√

2k. We

conclude that

Uk ∼
θ
√

2kN

L
. (6.10)

Since Uk is the number of distinguished points computed per thread, the total number of
stored points is θ

√
2kN . Hence the memory will fill when θ

√
2kN = w. This will occur

after computing the first kw = w2

2θ2N
collisions and the expected total time for one thread

is w
Lθ

. When the memory is full, the time to find a collision is θN
w

(see [vW99] for detailed
explanation). Finally, to actually locate the collision, we need to restart the two colliding
trails from their start, which requires 2/θ steps on average.

To sum up, the total time to find m collisions is:

1

L

(
w

θ
+ (m− w2

θ22N
)
θN

w
+

2m

θ

)
.

Remark 6.2.3 According to the formula obtained in Equation 6.10, we see that if the
memory is not filled when running the algorithm for finding N

2
collisions, as in meet-

in-the-middle applications, then we store θN distinguished points, i.e. all distinguished
points in S.

Note that the proof of Theorem 6.2.2 relies strongly on our formula for the expected total
number of computed distinguished points for finding m collisions, when m is sufficiently
large and the memory is not limited:

Sm ≈ θ
√

2mN. (6.11)

We confirmed this asymptotic formula experimentally by running a multi-collision algo-
rithm for a curve over a 55-bit prime field. The comparison of our formula with the
experimental results is in Table 6.1. Each value in this Table is an average of 100 runs
where we set θ = 1/213.

Collisions Experimental Avg. Sk Collisions Experimental Avg. Sk

100 238289 231704 500 530493 518107

1000 750572 732714 2000 1062581 1036215

5000 1681831 1638399 7000 1990671 1938581

Table 6.1: Comparing Formula 6.11 to an experimental average.

Finally, recall that in the meet-in-the-middle attack, one needs to compute N
2

collisions.
By minimizing the complexity function obtained in Theorem 6.2.2 , we obtain an estimate
for the optimal value of θ to take, in order to minimize the running time of the algorithm.

Corollary 6.2.1 The optimum proportion of distinguished points minimizing the time
complexity bound in Theorem 6.2.2 is θ =

√
w2+2Nw
N

. Furthermore, by choosing this value
for θ, the running time of the parallel collision search algorithm for finding N

2
collisions

is bounded by:

O

(
N

L

√
1 +

2N

w

)
. (6.12)

79

Chapter 6. Parallel Collision Search

Proof. From Theorem 6.2.2, the runtime complexity is given by:

T (θ) =
1

L

(
w

θ
+ (

N

2
− w2

θ22N
)
θN

w
+
N

θ

)
.

By computing the zeros of the derivative:

T ′(θ) =
N2θ2 − w2 − 2Nw

2Lwθ2
,

we obtain that by taking θ =
√
w2+2Nw
N

, the time complexity is O
(
N
L

√
1 + 2N

w

)
.

This confirms and proves the heuristic findings in [vOW99]. Most importantly, Corol-
lary 6.2.1 suggests that in the case of applications which fill the memory available, the
number of distinguished points we can store is an important factor in the running time
complexity. More storage space yields a faster algorithm by a constant factor. We propose
such a optimization in Section 6.4.

6.3 The multi-user setting

To develop our approach for computing elliptic curve discrete logs in the multi-user setting,
we start from the idea in [FJM14a] of using a graph to represent the correlations between
discrete logs. Vertices in the graph represent users and are labeled vi, for i ∈ {1, . . . ,m}.
As in [FJM14a], an edge represents a collision. However, for demonstrating purposes, the
graph that we construct is a directed graph. An edge (vi, vj) is considered to be directed
from vi to vj, if the user i computes a distinguished point that collides with a distinguished
point that has previously been stored by user j. In other words, user i is the one that
found the collision. In this section, we argue that

• there is no need for infiltrators in the graph;

• exactly one collision per user is required to compute the discrete log of all users;

Both these conditions are met due to our use of cycles in the graph. Recall that, a cycle
of a graph is a subset of edges that forms a trail such that the first vertex of the trail
is the same as the last vertex of the trail. The length of a cycle is the number of edges
in this subset. It can be shown that the occurrence of a cycle in the graph allow us to
recover the discrete logs of all users in the cycle. A cycle of length 1 is obtained when
there is a collision between two distinguished points found by the same user. In this case,
we have an equality of the form (6.2) and the discrete log of the user is computed as in
the single-user setting. A length 2 cycle is obtained when we have two distinct collisions
between two users, say user i and user j. In this case, we have two linear equations of the
form (6.4) with two unknowns, xi and xj. These two cases are illustrated in Figure 6.4.
It stands in the general case that the labels of all edges in a cycle form a linear system
with as many equations as unknowns. Hence, even if none of the discrete logs in a cycle
is known they can all be computed by solving the linear system.

Our goal is to construct a graph that allows us to recover all discrete logs. We have
demonstrated that, when a cycle is obtained, all discrete logs of users involved in the cycle
are recovered. By extension, the discrete log of each user that collides with any of the
users forming the cycle is recovered as well. This reasoning leads us to the conclusion that
a graph G that allows us to recover all discrete logs needs to have the following property.

80

Chapter 6. Parallel Collision Search

Qi

aiP + bixiP = a′iP + b′ixiP

(a) Cycle of length 1.

Qi Qj

aiP + bixiP = ajP + bjxjP

a′iP + b′ixiP = a′jP + b′jxjP

(b) Cycle of length 2.

Figure 6.4: Examples of cycles and their corresponding linear systems.

(a)

(b) (c)

Figure 6.5: Examples of graphs where all connected components contain a cycle.

All connected components in G contain a cycle. Figure 6.5 shows some example topologies
of graphs with this property.

Our second claim is that, to compute the discrete log of all users, we need exactly
one collision per user. This is not to be confused with ”a number of collisions equal to
the number of users”. The difference is that, with the latter wording, we allow the case
where one user finds two collisions and another user finds none. Recall that, in our graph
representation, a collision found by a user is represented as a directed edge from the user
to another user or to himself. Thus, in order to prove that when each user finds exactly
one collision, all discrete logs are recovered, we need to prove the following theorem.

Theorem 6.3.1 Let G(V,D) be a directed graph. If for each vi ∈ V , there exists at least
one vj ∈ V , such that (vi, vj) ∈ D, then all connected components in G contain a cycle.

Proof (by contradiction). Suppose that for each vi ∈ V , there exists at least one vj ∈ V ,
such that (vi, vj) ∈ D, and suppose that there exists a connected component G1(V1, D1)
in G that does not contain a cycle. Let us denote by o the number of vertices in G. The
component G1 contains at least one vertex, say v1. According to the first supposition,
there exists at least one directed edge from v1 to another vertex. Note that, we can not
have (v1, v1) ∈ D1, as this constitutes a cycle. Hence, there are (o − 1) choices for the
vertex at the end of this edge. Let us denote the choice by v2, and derive that (v1, v2) ∈ D1.
Again, according to the first supposition, there exists at least one directed edge from v2

to another vertex. As before, this edge can not be (v2, v2), as it forms a cycle. However,
the edge (v2, v1) forms a cycle as well, since we already have (v1, v2) ∈ D1. Thus, we are
left with (o−2) choices for this vertex. If we continue with this reasoning, we see that the
only way to not contradict the second supposition is to keep adding vertices to G1, such
that for each new vi, we have (vi−1, vi) ∈ D1. When we add the final vertex vo to G1, we

81

Chapter 6. Parallel Collision Search

already have (vi−1, vi) ∈ D1, for i ∈ {1, . . . , o}, and thus a directed edge from vo to any
other vertex forms a cycle in G1. We conclude that the second supposition is false.

To sum up, we propose the following method for computing all discrete logs in a
multi-user setting.

1. Define a graph where each vertex corresponds to a user.

2. For each user i, compute distinguished points using a random map fi, until a collision
is found. Store the collision as an edge in the graph2.

3. Use the graph to compute all discrete logs.

The third step requires several depth-first transversals to discover the cycles of all con-
nected components and then, some linear algebra to compute the discrete logs. However,
for cryptographic field sizes, the overall cost of this algorithm is dominated by the colli-
sion search phase. As per Formula (6.11), the expected number of computations to find
m collisions is

√
2mN . When the memory is limited to w stored points, Theorem 6.2.2

applies.
The complexity of our method corresponds to the one in [KS01]. At the implementa-

tion level, there is a similar problem that arises in both version. In [KS01], when a collision
is found, all threads need to update the random map that they use for computing points
and thus the information that a collision has been found needs to be broadcasted to all
threads, which adds additional communication cost. This setback can be eliminated by
the graph construction method in [FJM14a]. In our version, when a collision is found,
only the thread that found the collision needs to update the currently used random map.
However, this update still requires some management that can lead to additional commu-
nication cost. For instance, all threads need to have a global vision of which users already
have a collision, in order to choose the user that should be treated next. Do we have a
central authority that keeps track of which users don’t have a collision yet? Or do we
attribute a list of users to each thread at the beginning, so that when a collision is found
for one user, we start looking for the next user in the list? The former solution results in
too much communication and with the latter solution, we can have threads that find all
collisions in their list faster than other threads, in which case they would stop computing.
As a result, we end up with unused computational resources. We think that this practical
problem finds a practical solution in multithreading. For m users, we allocate m threads
even if we have L processing units with L < m. In this case, we leave the time manage-
ment task to the CPU. Each thread is dedicated to one user since the start and there is
no need to update the random map. When some threads finish their job, more time will
be afforded to the remaining threads. Note that, in cases where L > m or L . m, this
solution can lead to having unused resources and thus, another solution should be found
to distribute the work in these cases.

Open question 4 Our version requires less collisions, compared to the version
in [FJM14a]. However, whether our version yields faster running times in practice depends
on how significant the cost of the cycle search and linear algebra is. An implementation
of both approaches and experimental running-time comparisons are needed before we can
give a conclusion to our theoretical findings. We set this as a question of future research.

2It is unnecessary to use directed edges. We use a directed graph only to simplify the explanation of
this method.

82

Chapter 6. Parallel Collision Search

6.4 Our approach for the data structure

In this section, we evaluate the memory complexity of parallel collision search algorithms.
As explained in Section 6.1, van Oorschot and Wiener’s [vOW99] proposed to divide
the memory into segments to allow simultaneous access by threads. We revisit this con-
struction, with the goal in mind to minimize the memory consumption as well. Since
in Section 6.2 we showed that the time complexity of collision search depends strongly
on the available amount of memory, we propose an alternative structure called a Packed
Radix-Tree-List, which will be referred to as prtl . We explain how to choose the densest
implementation of this structure for collision search data storing in Section 6.5.

Since the prtl is inspired by radix trees, we first describe the classic radix tree struc-
ture and then we give complexity analysis on why its straightforward implementation is
not memory efficient. The prtl structure has the memory gain of radix tree common
prefixes, but avoids the memory loss of manipulating pointers.

6.4.1 Radix tree structure

Each distinguished point from the collision search is represented as a number in a base
of our choice, denoted by b. For example, in the case of attacks on the discrete logs on
the elliptic curve, we may represent a point by its x-coordinate. The first numerical digit
of this number in base b gives the root node in the tree, the next digit is a child and
so on. This leads to the construction of an acyclic graph which consists of b connected
components (i.e. a forest).

In regard to memory consumption, we take advantage of common prefixes to have a
more compact structure. Let c be the length of numbers written in base b that we store
in the tree and K the number of distinguished points computed by our algorithm. To
estimate the memory complexity of this approach, we give upper and lower bounds for
the number of nodes that will be allocated in the radix tree before a collision is found.

Proposition 6.4.1 The expected number of nodes in the radix tree verifies the following
inequalities:

b

b− 1
K − c− logbK − 1 ≤ Z(K) ≤ (c− logbK +

b

b− 1
)K. (6.13)

Proof. The lower and upper bound in Equation (6.13) are given by the worst-case and
best-case scenario for the number of nodes.

Worst-case scenario. In the worst case scenario, for each new word added in this
structure we will create as much nodes as possible. This means that the x-coordinates
of the added points have the shortest possible common prefix, as shown in Figure 6.6.
For the first b points, we will use bc nodes. After that, the first distinguished point that
we find will take c − 1 nodes, since all possibilities for the first letter in the string were
created. This case is repeated (b− 1)b times, provided that K > b+ (b− 1)b.

More generally, let k = blogbKc− 1. We build the tree by allocating nodes as follows:

• bc nodes for the first b points

• (b− 1)b(c− 1) for the next (b− 1)b points

• (b− 1)b2(c− 2) for the next (b− 1)b2 points etc.

• (b− 1)bk(c− k) for (b− 1)bk points.

83

Chapter 6. Parallel Collision Search

0

2

3

3

1

0

3

1

2

0

0

2

2

2

1

3

3

1

0

Figure 6.6: Example of one of the worst-case scenarios with parameters K = 5 and b = 4

0 1

0

2 3 0 1

1

2 3

1

2

0 1

2

2 3 0 1

3

2 3

Figure 6.7: Example of one of the best-case scenarios with parameters K = 16 and b = 4

For each of the remaining K− (b+
∑k

i=1(b− 1)bi) points we will need c− k− 1 nodes. To
sum up, the total number of nodes that will bound our worst-case scenario is given by:

Z(K) = bc+
k∑
i=1

(b− 1)bi(c− i) + (K − b− b(b− 1)
k−1∑
i=0

bi)(c− k − 1).

We simplify the sums and we approximate by:

Z(K) ≈ b

b− 1
bk+1 +K(c− k − 1).

Since k = blog10Kc − 1, we have that

Z(K) ≈ b

b− 1
bblogbKc +K(c− blogbKc). (6.14)

Best-case scenario. Let K be the number of distinguished points that we need to
store and let k = blogbKc. In the best-case scenario, we may assume without loss of
generality that each time a new point is added in the structure, the minimal number of
nodes is used, i.e. the x-coordinate of the added point has the longest possible common
prefix with some other point that was previously stored. For example, for the first point
c nodes are allocated, for the next (b − 1) nodes, one extra node is allocated and so on,
until all subtrees of depth 1, 2 etc. are filled one by one. Figure 6.7 gives an example of
how 215 points are stored. If K > bc−1, we fill the first tree and start a new one. Let xi,
for i ∈ {0, 1 . . . , k}, denote the i-th digit of K, from right to the left. In full generality,
since c > k, we use:

• xk complete subtrees of depth k and a (xk+1)-th incomplete tree of depth k;

• the (xk+1)-th tree of depth k has xk−1 complete subtrees of depth k − 1 and a
(xk−1+1)-th incomplete tree of depth k − 1;

• c− k − 1 extra nodes.

84

Chapter 6. Parallel Collision Search

Summing up all nodes, we get the following formula:

Z(K) =
k∑
i=0

xi

i∑
j=0

bj + k + c− k − 1 =
1

b− 1

k∑
i=0

xi(b
i+1 − 1) + c =

=
b+ 1

b
K − c− 1

b− 1

k∑
i=0

xi.

We conclude that:

Z(K) ≥ b

b− 1
K − c− k − 1. (6.15)

Traditionally, nodes in a tree are implemented as arrays of pointers to child nodes.
This representation will lead to excessive memory consumption when the data to be stored
follows a uniform random distribution, leading to sparsely populated branches and to the
average distribution of nodes in the tree being closer to the worst case than to the best
case.

The difference between the worst-case value and the best-case value can be approx-
imated as ∆ ∼ K(c − logbK). Depending on the application, this value may be large.
Let us consider the case where a single collision is required for solving the ecdlp. By
a theorem of Hasse [Sil86], we know that the number of points on the curve is given
by N = p + 1 − t, with |t| ≤ 2

√
p. Since we assume that N is prime, we approximate

logN ∼ log p. Hence an approximation of ∆ is:

∆ ∼ θ

√
πN

2
(
1

2
logbN − logb

√
π

2
),

which implies that the tree is sparse. In the case of many collisions algorithms, c ∼
logbK and this standard deviation becomes negligible, resulting into a space-reduced
data structure. We show how to handle sparse trees efficiently in Section 6.4.2.

6.4.2 Packed Radix-Tree-List

Starting from the analysis in Section 6.4.1, we look to construct a more efficient memory
structure by avoiding the properties of the classic radix tree which make it memory costly
for our purposes. Intuitively, we see that the radix tree is dense at the upper levels and
sparse at the lower ones. Hence it would be more efficient to construct a radix tree up
to certain level and then add the points to linked lists, each list starting from a leaf on
the tree. We denote by l be the level up to which we build the radix tree. We call this a
Packed Radix-Tree-List3. Figure 6.8 illustrates an example of an abstract Radix-Tree-List
in base 4.

This idea was considered by Knuth [Knu98, Chapter 6.3] for improving on a table
structure called trie, introduced by Fredkin [Fre60]. Knuth considers a forest of radix
trees that stop branching at a certain level, whose choice is a trade-off between space and
fast access. Indeed, the more we branch, the faster the look-up is, but the more memory
we require. He suggests that the mixed strategy yields a faster look-up when we build a
tree up to a level where only few keys are possible. Starting from this level a sequential
search through a list of the remaining keys is fast.

3The ’packed’ property is addressed in Section 6.5, where we give implementation details.

85

Chapter 6. Parallel Collision Search

Figure 6.8: Radix-Tree-List structure with b = 4 and l = 2

K Value of l
Average nb. of empty lists per run

Level l Level l + 1

5 million 18 0 37

7 million 18 0 0.84

10 million 19 0 75

Table 6.2: Verifying experimentally the optimal level.

In our use case, we favor memory optimization to fast lookup, thus we use a different
technique to decide on the tree level. First, we look to estimate up to which level the tree
is complete for our use case. The number of leaves in a complete radix tree of depth l is
bl. As per the coupon collector’s problem, all the linked lists associated with a leaf will
contain at least one point when the following inequality is verified:

K ≥ bl(ln bl + 0.577). (6.16)

We consider the highest value of l which satisfies this inequality to be the optimal level,
as it allows us to obtain the shortest linked lists while having 100% rate of use of the
memory structure. We verified this experimentally by inserting a given number of ran-
domly obtained points of length 65, with b = 2, in the prtl structure. The results are in
Table 6.2. We performed 100 runs for each value of K and counted the number of empty
lists at the end of each run. None of the 300 runs finished with an empty list in the prtl
structure, which supports the claim that the obtained l is small enough to have at least
one point per list. Then, to confirm that l is the highest possible value that achieves this,
we reproduced the experiments by taking l + 1, which is the lowest value that does not
satisfy Equation (6.16). The results show that l + 1 is not small enough to produce a
100% rate of use of the memory, therefore l is in fact the optimal level to choose. We
notice that in the case of 7 million points, we have very few (or none) empty slots even by
taking the level l+ 1. This is explained by the fact that a prtl of level 19 needs 7207281
points to have all of its lists filled, as per 6.16. Given that 7 million is very close to this
number, some of the runs finish with 100% rate of use.

The attribution of a point to a leaf is determined by its prefix and we know in advance
that all the leaves will be allocated. Therefore, in practice we do not actually have to
construct the whole tree, but only the leaves. Hence, we allocate an array indexed by
prefixes beforehand and then we insert each point in the list for the corresponding prefix.
The operation used to map a point to an index is faster than a hash table function. More
precisely, we perform a bitwise AND operation between the x-coordinate of the point and
a precomputed mask to extract the prefix. Furthermore, the lists are sorted. Since we
are doing a search-and-add operation, sorting the lists does not take additional time and

86

Chapter 6. Parallel Collision Search

proves to be more efficient than simply adding at the end of the list. Figure 6.9 illustrates
the implementation of this structure.

Figure 6.9: prtl implementation. Same points stored as in Figure 6.8.

Remark 6.4.1 When implementing the attack for curves defined over sparse primes, we
advise taking an l-bit suffix instead of an l-bit prefix. Prefixes of numbers in sparse prime
fields are not uniformly distributed and one might end up only with prefixes starting with
the 0-bit, and therefore a half empty array.

Remark 6.4.2 To experiment with this structure, we chose the example of ecdlp. In
this case, we store the starting point of the Pollard walk aP and the first distinguished
point we find, represented by the coefficient a and the x-coordinate correspondingly.
Consequently, we store a pair (x-coordinate, a). However, the analysis and choices we
made for constructing the prtl are valid for every collision search application which
needs to store pairs (key, data) and requires pairs to be efficiently looked up by keys. For
the ecdlp, Bailey et al. [BBB+09] propose, for example, to store a 64-bit seed on the
server instead of the initial point, which makes the pair (x-coordinate, seed).

6.5 Implementation and benchmarks

To support our findings, we implemented the pcs using both prtls and hash tables
for discrete logarithms on elliptic curves defined over prime fields. Our C implementation
relies on the GNU Multiple Precision Arithmetic Library [MM11] for large numbers arith-
metic, and on the OpenMP (Open Multi-Processing) interface [OPE] for shared memory
multiprocessing programming. Our implementation is publicly available [TID19]. Our
experiments were performed on a 28-core Intel Xeon E5-2640 processor using 128 GB
of RAM and we experimented using between 1 and 28 threads. In this section, first we
explain in detail the implementation of the prtl structure and the hash table. Then,
we show experimental results using both structures. For completeness,we enumerate the
choices we made in our implementation and which are common in the literature.

6.5.1 PRTL implementation

An entry in the lists in the prtl stores one (key, data) pair. The intuitive structure
implementation of such a link would be the following:

s t r u c t {
po in t e r to key−s u f f i x ;
po in t e r to data ;
po in t e r to next ;
} l i n k ;

In addition, we have the bytes storing the actual values for the key-suffix and the data.

87

Chapter 6. Parallel Collision Search

In order to have the best packed structure, we look to avoid wasting space on address-
ing, structure memory alignment and unintended padding. Hence we propose to store all
relevant data in one byte-vector. Our compact slot has the following structure:

s t r u c t {
byte vec to r [vec to r s i z e] ;
po in t e r to next ;
} l i n k ;

The key-suffix and data are bound in one single vector. In this way, we have at most
7 bits wasted due to alignment. We designed functions that allow us to extract and set
values in the vector.

Remark 6.5.1 In our implementation, we always use b = 2, and thus, the parameter b
will no longer be specified.

Example 6.5.1 Let E : y2 = x3 + 25x+ 3 be a 15-bit curve over F16411, with N = 16333
and let θ = 1

23
, which means that distinguished points are points whose x-coordinates

have 3 trailling zero bits. To solve a discrete log on this curve, we expect to store K = 20
points and thus, we take l = 2. In this case, it might be wiser to take l = 3, as it needs 22
points to be filled (as per (6.16)) and is closer to our estimated K than l = 2 that needs
only 8 points to be filled. But to avoid confusion, we keep our recommendation to take
the highest l that satisfies (6.16) without exception.

R = (2328, 12535) is a distinguished point on E that has been obtained on a random
walk starting from aP , where a = 10337. Thus, the pair (key, data) that will be stored
is (x-coordinate, a) = (2328, 10337). The binary representation of the x-coordinate is
100100011000, and when we remove the 3 trailling zero bits and the key-prefix with l = 2,
we get the key-suffix 0100011. The binary representation of a, which we concatenate to
the key-suffix, is 10100001100001 and thus we obtain the vector 010001110100001100001
of size 3 bytes. Including the pointer to the next slot4, the point is stored using 11 bytes.

6.5.2 PRTL vs. hash table.

We experimented with the ElfHash function, which is used in the UNIX ELF format for
object files. It is a very fast hash function, and thus comparable to the mask operation
in our implementation. Small differences in efficiency are negligible since the insertion is
the less significant part of the algorithm. Indeed, recall that one insertion is done after 1

θ

computations.
As is the practice with the pcs, we allocate K indexes for the hash table, since we

expect to have K stored points. Recall that this guarantees an average search time of
O(1), but it does not avoid multi-collisions. Indeed, according to [Jou09, Section 6.3.2],

in order to avoid 3-multi-collisions, one should choose a hash table with K
3
2 buckets.

Consequently, we insert points in the linked lists corresponding to their hash keys, as we
did with the prtl. Every element in the list holds a pair (key, data) and a link to the
next element. The prtl is more efficient in this case as we only need to store the suffix
of key.

With this approach, we can not be sure that a 100% of the hash table indexes will
have at least one element. We test this by inserting a given number of random points
on a 65-bit curve and counting the number of empty lists at the end of each run, like
we did to test the rate of use for the prtl. We try out two different table sizes: the
recommended hash table size and for comparison, a size which matches the number of
leaves in the prtl. All results are an average of 100 runs.

4Considering a pointer is 8 bytes for a 64-bit architecture

88

Chapter 6. Parallel Collision Search

Nb. of points Average nb. of empty
lists for size = K

Average nb. of empty
lists for size = 2l

5 million 2592960 (51.85%) 98308 (37.50%)

7 million 3632679 (51.89%) 98304 (37.50%)

10 million 5138792 (51.38%) 196615 (37.50%)

Table 6.3: Test the rate of memory use of a hash table structure.

Results in Table 6.3 show that when we choose a smaller table size, we have fewer
empty lists, but the hash table is still not 100% full. Due to these results, when imple-
menting a hash table we choose to allocate a table of pointers to slots, instead of allocating
a table of actual slots which will not be filled. This is the optimal choice because we only
waste 8 bytes for each empty slot, instead of 24 (the size of one slot).

Since results in Table 6.2 show that the array in prtl will be filled completely, when
using this structure we allocate an array of slots directly. This makes prtl save a constant
of 8K bytes compared to a hash table.

Calculating the exact memory occupation. Let f be the size of the field in bits and
t the number of trailing bits set to zero in a distinguished point. We keep the notation of
K for the expected number of stored points and of l for the level of the PRTL structure.
To calculate the expected memory occupation of the entire PRTL structure, we first
calculate the size of a compact slot. Recall that a compact slot holds one byte-vector and
a pointer to the next slot, because we used linked lists. Thus, one compact slot takes
d(f − l− t+ f)/8e+ 8 bytes (f − l− t bits for the key-suffix and f bits for the data). The
size of the slot is multiplied by K, as K slots will be allocated. To make sure that the
access to the shared memory is asynchronous, we use locks on the shared data structure.
To minimize the time threads spend on locks, there is a lock for every entry in the array,
which makes a total of 2l locks. This adds 8 ·2l bytes to the total memory occupation. Let
us compare the total cost to that of a hash table. Recall that, the entries in our classical
implementation of a hash table are linked lists as well. To store a pair (key, data), every
element in the linked list holds a pointer to the key, a pointer to the data and a pointer
to the next element, which need 24 bytes in total. To this we add d(f − t)/8e bytes for
storing the key and df/8e bytes for storing the data. All this is multiplied by K. Finally,
we allocate 8K bytes for the array of pointers to slots and 8K bytes for the locks (one
lock for each entry in the array). Hence, the total memory occupation of the hash table
is (40 + d(f − t)/8e+ df/8e)K.

Table 6.4 shows examples of memory requirements of large ECDLP computations
calculated in this way. The first two lines in this Table concern the computation in [BEL+]

on the elliptic curve target117 over F2127 . For this example, we suppose that a seed of 64
bits is stored instead of the k-coefficient representing the data (see Remark 6.4.2). On the
first line we give the memory amount needed to store the expected number of distinguished
points, while on the second line we consider the actual computation in [BEL+], that
finished after collecting 968531433 distinguished points. Note that, in the case of the
actual computation, the l parameter was calculated with respect to the estimated value
of K, since l always needs to be set beforehand. Similarly, the size of the hash table and
the number of locks correspond to the estimated value of K, as the table is allocated
beforehand. On the third line, we also give the memory requirements for a discrete log
computation on a 160-bit curve, with an estimated number of stored distinguished points.

89

Chapter 6. Parallel Collision Search

Field θ K l PRTL
Hash

table

117.35-bit
1/230 ∼ 379821956 24 9.6 GB 23.1 GB

[BEL+] estimation

117.35-bit
1/230 968531433 24 24 GB 49.6 GB

[BEL+] computation

160-bit
1/240 ∼ 240 35 43155 GB 82463 GB

estimation

Table 6.4: Memory requirements of large ecdlp computations using prtls and hash
tables.

It is clear that when one implements the prtl, this structure takes the form of a hash
table where the hash function is in fact the modulo of a specific value calculated using
Equation (6.16). It might seem counter-intuitive that the optimal solution for a hash
function is the modulo function. However, collision search algorithms do not require a
memory structure that has hash table properties, such as each key to be assigned to a
unique index.

Indeed, a well distributed hash function is useful when we look to avoid multi-collisions.
With collision search algorithms, the number of stored elements is so vast that we can not
possibly allocate a hash table of the appropriate size and thus we are sure to have longer
than usual linked lists. Fortunately, this is not a problem since the insertion time is, in
this case, not significant compared to the 1

θ
random walk computations needed before

each insertion. For example, 1
θ

would be of order 232 for a 129-bit curve. On the other
hand, as shown in Section 6.2, the available storage space is a significant factor in the
time complexity, which makes the use of this alternative structure more appropriate for
collision searches.

Our implementation of a prtl yields a better memory occupation, but most impor-
tantly, manipulating this structure does not slow down the overall runtime of the attack.
Indeed, as per Equation (6.16), the average number of elements in a chained list cor-
responding to a prefix is K

bl
≈ l log b + 0.577. This shows that the search time in our

structure is negligible. We show experimental results that verify this in Table 6.5, where
we insert a given number of random points on a 65-bit curve, using both a hash table
and the prtl. To have a measurement of the runtime that does not depend on point
computation time, we take θ = 1, meaning every point is a distinguished one. The key
length is thus c = 65. All results are an average of 100 runs.

We show similar experiments in Table 6.6. This time, we performed actual attacks on
the discrete log over elliptic curves, instead of inserting random points. Since the number
of stored points is now random and can be different between two sets of runs, the runtime
per stored point and memory per stored point are more relevant results. The results are
an average of 100 runs and they show that by using a prtl for the storage of distinguished
points we optimize the memory complexity by a factor of 3.

90

Chapter 6. Parallel Collision Search

K
Memory Runtime

prtl Hash table prtl Hash table

5 million 106 MB 324 MB 5.05 s 5.20 s

7 million 148 MB 454 MB 6.74 s 7.01 s

10 million 213 MB 649 MB 9.84 s 10.2 s

Table 6.5: Comparing the insertion runtime and memory occupation of a prtl vs. a hash
table.

Field
Memory Memory per point Runtime Runtime per point

prtl Hash
table

prtl Hash
table

prtl Hash
table

prtl Hash
table

55-bit 402 KB 1172 KB 19 B 59 B 35 s 36 s 1.69 ms 1.81 ms

60-bit 618 KB 1801 KB 20 B 59 B 210 s 212 s 6.88 ms 6.91 ms

65-bit 1856 KB 5212 KB 21 B 60 B 1292 s 1291 s 14.90 ms 14.95 ms

Table 6.6: Runtime and the memory cost for attacking ecdlp using prtls and hash
tables.

6.5.3 ECDLP implementation details and scalability.

Additive walks.

Teske [Tes01] showed experimentally that the walk proposed by Pollard (6.1) originally
performs on average slightly worse than a random walk. She proposes alternative map-
pings that lead to the same performance as expected in the random case: additive walks
and mixed walks. The additive walks are presented as follows. Let r be the number of
sets Si which give a partition of the group G, and let Mi be a linear combination of P
and Q: Mi = aiP + biQ, for i = {1, . . . , r}. We choose the iterating function of the form:

Ri+1 = f(Ri) =


Ri +M1, Ri ∈ S1;

Ri +M2, Ri ∈ S2;

. . .

Ri +Mr, Ri ∈ Sr.

(6.17)

In the case of mixed walks, we introduce squaring steps to r-additive walks. However,
Teske’s experimental results show that apart from the case r = 3, the introduction of
squaring steps does not lead to a significantly better performance. After experimenting
with both of them, we confirmed her conclusion and decided to use additive walks.

In [Tes01], it is shown experimentally that if r ≥ 20 then additive walks are close to
random walks. We therefore chose r = 20 in our implementation.

Use of automorphisms

If the function f is chosen such that f(R) = f(−R) then we may regard f as being defined
on equivalence classes under ±. Since there are N

2
equivalence classes, this would lead to

a theoretical speedup of
√

2. However, it was observed that the use of the negation map
leads to so-called fruitless cycles, cycles that trap the random-walks. In practice, since
these cycles need to be handled, the actual speed-up is significantly less than

√
2 and

actually depends on the platform one uses [BLS11]. In our work, we aim at evaluating

91

Chapter 6. Parallel Collision Search

the performance of our algorithm independently of the platform one may choose for its
implementation. Therefore, we do not use automorphisms in our implementation.

Long walks vs. short walks

As we explained in Section 6.1 every thread selects a starting point, which is a multiple
of P , and computes the random walk until a distinguished point is found. After the
distinguished point is stored in the radix tree, the thread starts a new walk from a new
starting point. We refer to this as a short walk because the walk stops at the first
distinguished point and has an average length of 1/θ. A second possibility is that the
thread would continue the walk from a distinguished point rather than start from a new
one. We refer to this as a long walk. This approach is used in the Pollard’s rho method
because it allows the walk to enter a cycle and is an indispensable factor in finding a
collision using the Floyd’s cycle finding algorithm [Jou09]. However, in the pcs algorithm
every distinguished point is stored, and thus the cycle property is irrelevant.

Furthermore, using the short walk method, we are not required to calculate the co-
efficients a and b every time. We calculate only the value of R for each iteration, and
when we find a distinguished point we store the coefficients of the starting point (only the
coefficient a is stored because the starting point being a multiple of P , the b coefficient is
zero). It is only when a collision is found that we start iterating from the beginning of the
short walk, this time computing a and b. This convenience makes short walks the better
choice. Furthermore, we experimented with both short walks and long walks, finding that
short walks give slightly better runtime results. All our results presented here use short
walks.

Parallel Performance

In the theoretical model [vOW99], the pcs is considered to have linear scalability and our
time complexity in Theorem 6.2.1 confirms this. To assess the parallel performance of our
implementation, we experimented with L ∈ {1, 2, 7, 14, 28} threads, solving the discrete
log over a 60-bit curve. Table 6.7 shows the Wall clock runtime and the parallel perfor-
mance of the attack when we double the number of threads. The parallel performance
is an indication of how the runtime of a program changes when the number of parallel
processing elements increases. It is computed as

L1t1
L2t2

,

where ti is the Wall clock runtime with Li threads and L1 > L2. A program is considered
to scale linearly if the speedup is equal to the number of threads used i.e. if the parallel
performance is equal to 1 (or very close to 1, in practice). From our results, we conclude
that the parallel performance is not as good as expected for a small number of threads,
but gets closer to linear as the number of threads grows.

6.5.4 Multi-collision search computation.

To prove our claims from Section 6.2 that more storage space yields a faster algorithm,
we ran a multi-collision search while limiting the available memory. When the memory
is filled, each thread continues to search for collisions without adding new points. As a
practical application of this computation, we chose the discrete logarithm in the multi-
user setting. Hence, the data that we store for each distinguished point is the coefficient
a, plus an integer representing the user. Note that, this implementation includes only

92

Chapter 6. Parallel Collision Search

L1
Runtime

t1
L2

Runtime
t2

Parallel
performance

1 2459 s 2 1699 s 0.72

7 776 s 14 411 s 0.94

14 411 s 28 210 s 0.97

Table 6.7: Runtime and Parallel performance of the attack on ecdlp. Results are based
on 100 runs per Li ∈ L.

a collision search phase, and is missing the graph generation and the computation of
discrete logs. Results in Table 6.8 show that the prtl yields a better runtime compared
to a classic hash table due to the more efficient memory use. In this table, values for 1GB
memory limit are an average of 100 runs and values for 2GB and 4GB memory limits are
an average of 10 runs.

Collisions Memory limit
Runtime Stored points

prtl Hash
table

prtl Hash
table

4000000 1 GB 34,64 h 58,80 h 46820082 12912177

16000000 2 GB 88,18 h 137,46 h 93640161 25824345

50000000 4 GB 203,24 h 276,80 h 168325978 51648716

Table 6.8: Runtime for multi-collision search for a 55-bit curve using prtls and hash
tables.

93

Chapter 7

Index Calculus

The index calculus algorithm originally denoted a technique to compute discrete loga-
rithms modulo a prime number, but it now refers to a whole family of algorithms adapted
to other finite fields and some algebraic curves. It includes the Number Field Sieve
(NFS) [LJMP93], dedicated to logarithms in Zq and the algorithms of Gaudry [Gau09]

and Diem [Die11] for algebraic curves defined over Fqn , where q = pk. A crucial step of
the latter application is to solve the point decomposition problem (pdp). The pdp can be
reduced to the problem of solving a Boolean polynomial system, which is usually solved
using algebraic techniques, such as the ones described in Chapter 2. In our work, we
take important steps towards fully replacing algebraic techniques for solving pdp with
constraint programming ones. Specifically, this chapter is concentrated on binary elliptic
curves over prime-degree extension fields. First, we model the point decomposition prob-
lem as a logical formula and we define it as an instance of the sat problem. The formula
is then solved with WDSat, as well as with other generic sat solvers and a Gröbner basis
method, for comparison. Our WDSat solver was initially conceived for solving instances
derived from this problem. As such, it includes two extensions that, to this date, have
yielded better running times only for instances derived from the pdp. First, we propose
a symmetry breaking technique, that allows us to eliminate symmetric solutions without
enlarging the model and with no additional computational cost. Secondly, we propose
a novel preprocessing technique based on the Minimal Vertex Cover (mvc) Problem in
graph theory. This technique is used before the solving phase. Hence, it can be considered
as a preprocessing that statically determines the order of branching variables. For anf
instances, we consider that an optimal order of branching variables is the one that will
lead as fast as possible to a linear polynomial system. The contributions of this work are
divided between [TID20c] and [TID20b].

This chapter is organized as follows. Section 7.1 gives an overview of the index cal-
culus algorithm. First, we give a historical background, and then we explain how the
attack is adapted for the ecdlp. Section 7.2 details the logical models used in our exper-
iments. Section 7.3 explains the symmetry breaking technique that we implemented as
an extension of our WDSat solver. Section 7.4 describes our preprocessing technique. In
Section 7.5 we give worst time complexity estimates for solving a pdp instance and derive
the complexity of our sat-based index calculus algorithm. Finally, Section 7.6 presents
benchmarks obtained with our implementation. We compare this against results obtained
using Magma’s F4 implementation and several available best generic sat-solvers.

94

Chapter 7. Index Calculus

7.1 Background

7.1.1 Classical index calculus

Originally, the index calculus denoted a method for computing discrete logarithms in the
multiplicative group of a finite field. It was first formulated as such by Maurice Kraitchik
in 1922 [Kra26]. However, the core ideas behind this algorithm are even older. They can
be traced back to computation methods for discrete logs from the 19th century. In fact,
the name of the algorithm is linked to these origins. Index is just the original term for
the discrete logarithm, and calculus stands for a method of calculation (not to the branch
of mathematics).

Definition 7.1.1 Let p be a prime number. Then a primitive root mod p is a natural
number A < p such that for every natural number B relatively prime to p there exists
some x ∈ N0 such that Ax ≡ B mod p.

Definition 7.1.2 Let A be a primitive root mod p, and let B be a natural number rela-
tively prime to p. Then the index of B mod p to the base A, denoted as indA(B), is the
smallest x ∈ N0 that satisfies Ax ≡ B mod p.

These definitions date from Disquisitiones Arithmeticae by Carl Friedrich Gauss pub-
lished in 1801 [GWC86]. Today, it is common to talk about generators and discrete
logarithms, instead of primitive roots and indices. In the 19th century, tables of indices
were used alongside tables of the usual logarithm. Such tables were published, for in-
stance, in Jacobi’s book Canon Arithmeticus [Jac39]. This book from 1839 contains
tables of primitive roots and indices for primes up to 1000, computed by iteration, by
many contributors.

However, to find an index without the use of modern calculators, it is not necessary
to have an entire table of indices. Having a table of indices of prime numbers is enough.
Given such a table, we can compute other indices using the following observations, which
are at the core of the index calculus method.

• Any natural number can be factored into prime numbers.

• As with the ordinary logarithm, there is a link between the multiplication of natural
numbers and the addition of indices. Namely, we have that

indA(B · C) ≡ indA(B) + indA(C) mod p− 1. (7.1)

Hence, if we know the indices of all prime numbers below a certain bound S and if a
number can be factored into prime numbers below this bound, then we can easily compute
the index of this number. The bound S is usually referred to as the smoothness bound and
the set of primes below the smoothness bound is called a factor base. A number that can
be factored into primes below S is called S-smooth. To compute the index of one number,
without a table of indices, Kraitchik proposed a method based on collecting relations and
linear algebra [Kra26], that later became known as the index calculus method. Let us
introduce this method with a toy example.

Example 7.1.1 Let B = 28 be a natural number and let A = 2 be a primitive root mod
p = 47. We are looking to compute x = indA(B) mod p. Let us fix S = 7 and thus,

95

Chapter 7. Index Calculus

obtain the factor base F = {R1, R2, R3, R4} = {2, 3, 5, 7}. Then, we look for relations of
the form

4∏
j=1

R
rj
j ≡ Ar mod p, (7.2)

and, as per Equation (7.1), we derive linear relations on indices, of the form

4∑
j=1

rj indA(Rj) ≡ r mod p− 1. (7.3)

Such relations form a linear system, that when solved, derives the index of all elements
of the factor base. Thus, to derive a system with a unique solution, we need the number
of relations to be equal to the number of elements in the factor base, which is 4 in our
example. To find these relations, we choose random powers of 2 and check if they can be
split over the factor base. For instance, we start with the trivial relation 21 ≡ 2 mod p.
Then, we choose 27 and obtain

27 ≡ 34 = 2 · 17 (mod 47).

Clearly, 27 can not be split over the chosen factor base, so we discard it. Continuing with
this approach, we end up with the following relations of the form (7.2).

22 ≡ 2 (mod 47)

28 ≡ 21 = 3 · 7 (mod 47) (7.4)

212 ≡ 7 (mod 47)

218 ≡ 25 = 52 (mod 47).

From (7.4), we derive 4 relations of the form (7.3), and we obtain the following linear
system over Z/46Z.

2 3 5 7

1 0 0 0 1

0 1 0 1 8

0 0 0 1 12

0 0 2 0 18

Solving this system, we obtain

2 3 5 7

1 0 0 0 1

0 1 0 0 42

0 0 1 0 9

0 0 0 1 12

and we derive ind2(2) = 1, ind2(3) = 42, ind2(5) = 9 and ind2(7) = 12. The index of B
can be found only if B is S-smooth, which is the case in our example. We conclude with
the following computation

ind2(28) = ind2(22 · 7) = 2 · ind2(2) + ind2(7) = 14.

96

Chapter 7. Index Calculus

Let us summarize the approach that we used in Example 7.1.1 in three steps. More
generally, the method is applied for a finite cyclic group G generated by g, where the
discrete log problem is to compute x, such that for h ∈ G we have that h = [x]g. Let N
be the order of G. We continue with the additive notation.

1. Choice of an appropriate factor base F = {g1, . . . , gs}, such that F ⊆ G.

2. Decomposition phase : compute random integers ai and try to decompose [ai]g into
the factor base. This is also called the relation search phase, since every successful
decomposition of the form [ai]g =

∑s
j=1[pij]gj is called a relation.

3. Linear algebra : when k ≥ s linearly independent relations are found and the
matrices A = (ai) with 1 ≤ i ≤ k and M = (pij) with 1 ≤ i ≤ k and 1 ≤ j ≤ s are
stored, use linear algebra to find a solution to the linear system MX = A mod N .
Vector X = (x1, . . . , xs) contains the discrete logs to the base g of all elements in
the factor base.

After all discrete logs of elements in the factor base are computed, the log of h can be
found either by the method that we used in Example 7.1.1 or by a different relation
involving h. For instance, a commonly used variant is to find a relation of the form

[a]g + [b]h =
s∑
j=1

[pj]gj

and compute the log of h as x = (
∑s

j=1 pjxj − a)b
−1

, provided that the greatest com-
mon divisor of b and N is 1. The variant described in this section is referred to as the
precomputation-and-descent variant and it is much more efficient for the multi-user set-
ting. Indeed, to compute more that one discrete log to the base g, we need to perform
the three precomputation steps only once and then repeat the descent method for each
discrete log.

The choice of the factor base is a significant step that can determine the efficiency
of the overall algorithm. If we choose the S-bound to be too big, or analogously, if we
choose F to be of high order, close to the order of G, then we have a higher probability of
finding a relation, as most elements will split over the factor base. However, with such a
choice, we will need to find many relations. Finding more relations takes more time, but
also, results in a bigger matrix and thus, raises the cost of the linear algebra step. On
the other hand, if we choose the S-bound to be too small, we obtain the opposite effect.
The linear algebra step is easier, but the probability of finding a relation is lower. The
trade-off will be discussed further in this chapter.

When performing the index calculus method in F∗p, we observe that there are elements
that do not split into the factor base because they have one or more factors that are
not below the S bound, called large prime factors. This observation has led to the
idea of a large prime variation of the index calculus algorithm [Pom82]. The main idea
behind the large prime variation is that relations that contain only one large prime should
be kept because when we have two such relations that contain the same large prime,
we can subtract them to obtain one relation over the factor base. According to the
birthday paradox, these couples of relations occur frequently. Later, a double large prime
variation was introduced [LM91]. In this algorithm, we store relations containing up to
two large primes and we make use of a graph to find relation combinations that lead to
the elimination of all large primes and yield a relation over the factor base.

We conclude this historical introduction with a result of Carl Pomerance [Pom87]

which states that the expected running time of the index calculus method described in

97

Chapter 7. Index Calculus

this section for solving the classical discrete log is

exp((
√

2 + o(1)) · (log(p) · log log(p))1/2).

7.1.2 Index calculus for ECDLP

Looking at the success of the index calculus attack in F∗p, a natural question is whether
this method can be applied to attack the discrete log in the group of points on an elliptic
curve. At first glance, we are confronted with two main problems. First, the notion of
primality is not defined for points on an elliptic curve, so there is no obvious choice for
a factor base. Secondly, the analogue of prime factorization is point decomposition and
there is no straightforward method to decompose points on an elliptic curve. Before these
two barriers were addressed, a workaround was found for computing discrete logs in the
Jacobian of hyperelliptic curves defined over finite fields. For hyperelliptic curves, there is
no group law on the points, but instead, the divisor class group of the curve is used. The
polynomial representation of a divisor can be used to define the notions of smoothness
and prime elements, which are the necessary building blocks for an index calculus attack.
These notions were first defined in [ADH94] and the ideas were later used in [Gau00]

to propose an attack that is asymptotically faster than Pollard’s Rho method for curves
of genus greater than 4. The attack for computing discrete logarithms in small genus
hyperelliptic curves was improved by using the double large prime variation [GTTD07].
Another workaround to use the index calculus method for curves over extension fields Fqn
is to transfer the dlp defined on the curve to the Weil restriction of the curve, defined over
Fq. This idea is due to Frey [Fre98] and was used to construct the GHS attack [GHS02]

for binary fields and Diem’s attack [Die03] for the odd characteristic case.
For index calculus attacks, it is common to use a direct variant instead of the

precomputation-and-descent variant that we introduced in Section 7.1.1. With the di-
rect variant, we compute only one discrete logarithm. The following is a basic outline of
the algorithm in additive notation.

1. Choice of an appropriate factor base F = {g1, . . . , gs}, such that F ⊆ G. This step
is not different between the two variants.

2. Decomposition phase : compute random integers ai, bi and try to decompose
[ai]g + [bi]h into the factor base. Every successful decomposition of the form
[ai]g + [bi]h =

∑n
j=1[pij]gj is called a relation.

3. Linear algebra : when k ≥ s linearly independent relations are found and the
matrices A = (ai bi) with 1 ≤ i ≤ k and M = (pij) with 1 ≤ i ≤ k and 1 ≤ j ≤ s
are stored, use linear algebra to find a kernel vector v = (v1...vk) of the matrix M .
The discrete log of h can be solved by computing x = −(

∑
i aivi)/(

∑
i bivi) mod N .

Applying the index calculus algorithm to the group of points on an elliptic curve
became possible in 2004 when Semaev [Sem04] proposed a technique for solving the point
decomposition problem. Solving this problem allows us to perform the second step of
the index calculus method. To this end, Semaev defined summation polynomials that are
related to the arithmetic operation on the curve. Since our work focuses on binary elliptic
curves, we introduce Semaev’s summation polynomials here directly for these curves.

Let F2n be a finite field and E be an elliptic curve with j-invariant different from 0,
defined by an equation

E : y2 + xy = x3 + ax2 + b, (7.5)

98

Chapter 7. Index Calculus

with a, b ∈ F2n . Using standard notation, we take F̄2n to be the algebraic closure of F2n and
E(F2n) (resp. E(F̄2n)) to be the set of points on the elliptic curve defined over F2n (resp.
F̄2n). Let O be the point at infinity on the elliptic curve. For m ∈ N, the mth-summation
polynomial is a multivariate polynomial in F2n [X1, . . . , Xm] with the property that, given
points P1, . . . , Pm ∈ E(F̄2n), then P1 ± . . .± Pm = O if and only if Sm(xP1 , . . . ,xPm) = 0.
We have that

S2(X1, X2) = X1 +X2, (7.6)

S3(X1, X2, X3) = X2
1X

2
2 +X2

1X
2
3 +X1X2X3 +X2

2X
2
3 + b,

and for m ≥ 4 we have the following recursive formula:

Sm(X1, . . . , Xm) = (7.7)

ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xm, X)).

The polynomial Sm is symmetric and has degree 2m−2 in each of the variables.
Semaev’s contribution addressed the problem of point decomposition, but his ap-

proach was not practical due to the lack of appropriate factor base. This obstacle was
addressed in 2008 and 2009, when Gaudry [Gau09] and Diem [Die11] independently pro-
posed a technique to perform the pdp of the index calculus attack for elliptic curves
over extension fields, using Semaev’s summation polynomials. Namely, when E is an
elliptic curve defined over Fqn , the choice of factor base is the set of points whose x-
coordinate lies in Fq. Another idea in these algorithm that is crucial to making the
index calculus attack possible is to combine the new approach with existing Weil de-
scent techniques. Using this technique, the problem of finding the zeros of a summation
polynomial is reduced to the problem of solving a multivariate polynomial system of
equations over Fq. The system is then solved using one of the algebraic techniques de-
scribed in Chapter 2. The resulting algorithm has complexity O(q2−2/n), but this hides
an exponential factor in n which comes from the hardness of solving the point decom-
position problem. Consequently, when q is large, n ≥ 3 is small and log q > cm for
some constant c, the Gaudry-Diem algorithm has a better asymptotic complexity than
generic methods for solving the discrete logarithm problem and Gröbner basis algorithms
have become a well-established technique to solve these systems [JV12; JV13; FPPR12;
PQ12; YJPST13]. Since a large number of instances of pdp needs to be solved, most of
the research in the area has focused on improving the complexity of this step. Several
simplifications such as symmetries and polynomials with lower degree obtained from the
algebraic structure of the curve have been proposed [FHJ+14].

When we consider elliptic curves defined over F2n with n prime, the base field is F2 and
we can not use the choice of a factor base proposed in [Gau09] and [Die11]. A different
choice was proposed in [Die13]. Let V be a vector subspace of F2n/F2, whose dimension
l will be defined later. We define the factor basis F to be :

F = {(x,y) ∈ E(F2n)|x ∈ V }.

Heuristically, we can easily see that the factor base has approximatively 2l elements. Given
a point R ∈ E(F2n), the point decomposition problem is to find m points P1, . . . , Pm ∈ F
such that R = P1± . . .±Pm. Using Semaev’s polynomials, this problem is reduced to the
one of solving a multivariate polynomial system.

Definition 7.1.3 Given s ≥ 1 and an l-dimensional vector subspace V of F2n/F2

and f ∈ F2n [X1, . . . , Xm] any multivariate polynomial of degree bounded by s, find
(x1, . . . ,xm) ∈ V m such that f(x1, . . . ,xm) = 0.

99

Chapter 7. Index Calculus

Using the fact that F2n is an n-dimensional vector space over F2, the Weil descent
method in this case consists in rewritting the equation f(x1, . . . ,xm) = 0 as a system
of n equations over F2, with ml variables. The probability of having a solution to this
system depends on the ratio between n and l. Roughly, when n/l ∼ m the system has a
reasonable chance to have a solution.

A common technique when working with Semaev’s polynomials is to use a symmetriza-
tion process [Gau09] to further reduce the degree of the polynomials appearing in the pdp
system. In short, since Sm is symmetric, we can rewrite it in terms of the elementary
symmetric polynomials

e1 =
∑

1≤i1≤m

Xi1 ,

e2 =
∑

1≤i1,i2≤m

Xi1Xi2 ,

. . . ,

em =
∏

1≤i≤m

Xi.

We denote by S ′m+1 the polynomial obtained after symmetrizing Sm+1 in the first m
variables, i.e. we have S ′m+1 ∈ F2n [e1, . . . , em, Xm+1].

Recent work on solving the decomposition problem has focused on using advanced
methods for Gröbner basis computation such as Faugère’s F4and F5 algorithms [Fau99;
Fau02]. This is a natural approach, given that similar techniques for small degree ex-
tension fields in characteristic > 2 yielded index calculus algorithms which are faster
than the generic attacks on the dlp. However, when we consider elliptic curves defined
over F2n with n prime, solving the pdp system via Gröbner bases quickly becomes a
bottleneck, and index calculus algorithms are slower than generic attacks, from a the-
oretical and a practical point of view. Moreover, it is not known how to define the
factor base in order to exploit all the symmetries coming from the algebraic structure
of the curve, without increasing the number of variables when solving pdp [YJPST13].
Finally, note that for random systems, pure Gröbner basis algorithms are both theoreti-
cally and practically slower than simpler methods, typically exhaustive search [BCC+13;
LMPP18], hybrid methods [BFP09] and sat solvers. Using a sat solver for solving the
pdp has recently been considered in the work of Galbraith and Gebregiyorgis [GG14],
where they explore the possibility of replacing available Gröbner basis implementations
with generic sat solvers (such as MiniSat), as a tool for solving the polynomial system
for the pdp over binary curves. They observe experimentally that the use of sat solvers
may potentially enable larger factor bases to be considered.

7.2 Model description

Since our interest is in elliptic curves defined over F2n with n prime, it is natural that we
turn our attention towards combinatorics tools to solve the dlp. In our approach, the pdp
is solved using a dedicated sat solver, WDSat, however our experimental work includes
the use of state-of-the-art sat solvers as well as Magma’s F4 available implementation.
These different solving methods use a different model of the pdp, and the purpose of
this section is to present in full detail the three models we used in our experiments. The
starting point for deriving all three models is the approach in [YJPST13], where the
authors report on experiments carried on systems obtained using a careful choice of the
vector space V and application of the symmetrization process. Therefore, we start by

100

Chapter 7. Index Calculus

detailing their approach and presenting the algebraic model used when solving the pdp
problem using Gröbner basis. Then we show the model we propose and finally, the cnf
model used by Galbraith and Gebregiyorgis [GG14].

7.2.1 The Algebraic Model

Let t be a root of a defining polynomial of F2n over F2. Following [YJPST13], we choose
the vector space V to be the dimension-l subspace generated by 1, t, t2, . . . , tl−1. Assuming
that m(l − 1) ≤ n we can write:

e1 = d1,0 + . . .+ d1,l−1t
l−1

e2 = d2,0 + . . .+ d2,2l−2t
2l−2 (7.8)

. . .

em = dm,0 + . . .+ dm,m(l−1)t
m(l−1),

where the di,j with 1 ≤ i ≤ m, 0 ≤ j ≤ i(l − 1) are binary variables. After choosing
xm+1 ∈ F2n and substituting e1, . . . , em as in Equation (7.8), we get:

S ′m+1(e1, . . . , em,xm+1) = f0 + . . .+ fn−1t
n−1,

where fi, 0 ≤ i ≤ n − 1 are polynomials in the binary variables di,j, 1 ≤ i ≤ m,
0 ≤ j ≤ i(l − 1) . After a Weil descent, we obtain the following polynomial system

f0 = f1 = . . . = fn−1 = 0. (7.9)

One can see that with this symmetrization approach, the number of variables is in-
creased by a factor m, but the degrees of the polynomials in the system are significantly
reduced compared to a version that does not use symmetrization. Further simplification
of this system can be obtained if the elliptic curve has a rational point of order 2 or
4 [GG14]. However, we did not implement this approach and we used the system in
Equation (7.9).

The elementary symmetric polynomials ei are written in terms of the di,j binary vari-
ables, as in Equation (7.8). Similarly, since we look for a set of solutions (x1, . . . ,xm) ∈
V m, the Xi variables are written formally as follows:

X1 = c1,0+ . . . +c1,l−1t
l−1

X2 = c2,0+ . . . +c2,l−1t
l−1

. . .

Xm = cm,0+ . . . +cm,l−1t
l−1,

where ci,j, with 1 ≤ i ≤ m, 0 ≤ j ≤ l − 1, are binary variables. Using Equation (7.8), we
derive the following equations:

d1,0 = c1,0+ . . . +cm,0

d1,1 = c1,1+ . . . +cm,1 (7.10)

. . .

dm,m(l−1) = c1,l· . . . ·cm,l.

The remaining equations correspond to polynomials fi, 0 ≤ i ≤ n − 1, obtained via the
Weil descent on S ′m+1. Note that these are polynomials in the binary variables di,j. We
now describe how we derive logical formulas from this system.

101

Chapter 7. Index Calculus

7.2.2 The CNF-XOR Model

To derive a cnf-xor model from an algebraic model, we use the techniques described
in Section 3.3.1. Recall that, we first need to create constraints in anf by replacing all
multiplications of variables with conjunctions of literals and by transforming an equation
into a xor-clause. From the two sets of equations in the algebraic model, we obtain two
sets of xor-clauses, where the terms are single literals or conjunctions. To illustrate, the
logical formula derived from Equation (7.10) is as follows:

¬d1,0 ⊕ c1,0 ⊕ . . .⊕ cm,0
¬d1,1 ⊕ c1,1 ⊕ . . .⊕ cm,1 (7.11)

. . .

¬dm,m(l−1) ⊕ (c1,l ∧ . . . ∧ cm,l).

The next step is to substitute all conjunctions in a xor clause by a newly added
variable. In our model, let c′ be the variable substituting a conjunction (ci1,j1 ∧ ci2,j2 ∧
... ∧ cik,jk). We have c′ ⇔ (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk), which rewrites as

(c′ ∨ ¬ci1,j1 ∨ ¬ci2,j2 ∨ ... ∨ ¬cik,jk) ∧
(¬c′ ∨ ci1,j1) ∧
(¬c′ ∨ ci2,j2) ∧ (7.12)

· · ·
(¬c′ ∨ cik,jk)

For clarity, variables introduced by substitution of monomials containing exclusively
the variables ci,j will be denoted c′ and clauses derived from these substitutions are said
to be in the X-substitutions set of clauses. Similarly, substitutions of the monomials
containing only the di,j variables are denoted by d′ and the resulting set is referred to as
the E-substitutions set of clauses.

After substituting conjunctions, we will refer to the set of clauses obtained from Equa-
tion (7.11) as the E-X-relation set of clauses. Finally, the equations corresponding to
polynomials fi, 0 ≤ i ≤ n− 1, are derived in the same manner and the resulting clauses
will be referred to as the F set of clauses. That concludes the four sets of clauses in our
cnf-xor model.

Proposition 7.2.1 Assigning all ci,j variables, for 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1, leads
to the assignment of all variables in the cnf-xor model through unit propagation.

Proof. Let us examine the unit propagation process for each set of clauses separately.

1. Clauses in the X-substitutions set are obtained by transforming c′i ⇔ (ci1,j1 ∧ ci2,j2 ∧
... ∧ cik,jk). We note that on the right of these equivalences there are only ci,j
variables and on the left, there is one single c′i variable. The assignment of all of the
ci,j variables will yield the assignment of all variables on the left of the equivalences,
i.e. all c′i variables.

2. Clauses in the E-X-relations set are obtained by transforming the algebraic system
in (7.10). We observe that on the right of the equations there are only ci,j and c′

variables and on the left there is one single di,j variable. When all ci,j and all c′

variables are assigned, all di,j variables will have their truth value assigned through
unit propagation on the E-X-relation set.

102

Chapter 7. Index Calculus

3. Clauses in the E-substitutions set are obtained by transforming d′i ⇔ (di1,j1∧di2,j2∧
...∧ dik,jk). Similarly as with the X-substitutions set, we have only di,j variables on
the right of these equivalences and one single d′i variable on the left. The assignment
of all of the di,j variables will thus yield the assignment of all d′i variables.

4. At this point, all variables in the parity constraints in the set F were assigned and
we simply check whether the obtained interpretation satisfies the formula.

We conclude that variables in all four types of clauses of our cnf-xor model were assigned
through unit propagation.

This result shows that a dpll-based algorithm only needs to make assignments of ci,j
variables i.e. only ci,j variables are involved in the binary search.

7.2.3 The CNF Model

Most of the solvers used in our experiments read and process cnf formulas. To derive
the cnf model from the cnf-xor model, we used a classical technique that is recalled
in Section 3.3.1. This technique consists in cutting up xor-clauses into manageable size
ones, before applying the cnf-encoding. The cnf model used in our experiments was
obtained after cutting into ternary xor-clauses, since any xorsat problem reduces in
polynomial time to a 3-xorsat problem [BHvMW09]. Magma’s implementation on the
other hand, adopts a size 5 for xor clauses. As we mentioned, the optimal size at which
to cut the xor-clauses depends on the nature of the model and can be determined by
running experiments using different values. Running these experiments was out of the
scope of our work, as the WDSat solver does not use exclusive cnf instances.

We implemented all three models described in this section and we present Table 7.1 to
serve as a comparison on the number of variables, equations and clauses. Note that, the
WDSat solver is also adapted to read anf formulas, such as the one in Equation (7.11).
However, since the anf model is just a different representation of the algebraic model, we
do not consider it separately. To identify the number of literals and xor-clauses in the
anf model from Table 7.1, we can refer to the number of variables and equations in the
Gröbner model. Values for the algebraic and cnf-xor model are exact, whereas those
for the cnf model are averages obtained from experiments presented in Section 7.6. This
concerns the experiments where the value of m is 3 (the fourth summation polynomial).

Table 7.1: The number of variables and equations/clauses for the three models.

Gröbner model cnf model cnf-xor model

l n #Vars #Equations #Vars
#cnf-

#Vars
#cnf- #xor-

clauses clauses clauses

6 19 51 52 5019 19577 767 2364 52

7 23 60 62 8223 32201 1101 3466 62

8 23 69 68 11036 43210 1510 4835 68

9 37 78 88 20969 82721 2000 6495 88

10 47 87 104 32866 130040 2577 8470 104

11 59 96 122 49538 196434 3247 10784 122

In [GG14], the authors used Magma’s implementation to compute the equivalent cnf
logical formulas of the polynomial system resulting from the Weil descent of a pdp system

103

Chapter 7. Index Calculus

and ran experiments using the general-purpose MiniSat solver to get solutions for these
formulas. One can infer from Table 7.1 that the model they used has a significantly larger
number of clauses and variables when compared to the cnf-xor model.

7.3 Symmetry breaking technique

Since Semaev’s summation polynomials are symmetric, if (x1, . . . ,xm) is a solution, then
all permutations of this indexed tuple are solutions as well. These solutions are equivalent
and finding more than one is of no use for the pdp. When a dpll-based sat solver is used,
we observe redundancy in the binary search tree. Indeed, for m = 3 when an indexed
tuple (x1,x2,x3) has been eliminated, (x2,x1,x3) does not need to be tried out. To avoid
this redundancy, we establish the following constraint x1 ≤ x2 ≤ . . . ≤ xm, where ≤ is
the lexicographic order on {false,true}l with false < true.

It would be tedious to add this constraint to the model itself, since this would imply
adding new clauses and complexifying the sat model. Instead, we decided to add this
constraint in the dpll algorithm using a tree-pruning-like technique. In a classical dpll
implementation (see Algorithm 4.1) we try out both false and true for the truth value
of a chosen variable. In our symmetry breaking variation of dpll, in some cases, the
truth value of false will not be tried out as all potential solutions after this assignment
would not satisfy the constraint x1 ≤ x2 ≤ . . . ≤ xm. Our variation of dpll is detailed
in Algorithm 7.1 and the line numbers that distinguish it from the classical dpll method
in Algorithm 4.1 are in bold. Note that one crucial difference between the two algorithms
is the choice of a variable on line 4. While this choice is arbitrary in Algorithm 4.1, in
Algorithm 7.1 variables need to be chosen in the order from the leading bit of x1 to the
trailing bit of xm. If this is not respected, our algorithm does not yield a correct answer.
Indeed, the assignment of variables must be done with respect to the lexicographic order
on {false,true}l with false < true.

Using the notation in Section 7.2, ci,j corresponds to the jth bit of the ith x-vector,
where 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1. We recall from Proposition 7.2.1 that assigning all
ci,j variables in the cnf-xor model leads to the assignment of all variables through unit
propagation. In Algorithm 7.1, we decide whether to try out the truth value of false for
ci,j or not by comparing two x-vectors bit for bit, in the same way that we would compare
binary numbers. When we are deciding on the truth value of ci,j we have the following
reasoning:

• If ci−1,j is false, we try to set ci,j both to false and true (if false fails). When
ci,j is set to false, all of the potential xi solutions are greater than or equal to xi−1,
thus we continue with the same bit comparison on the next level. However, when
ci,j is set to true, all of the potential xi solutions are strictly greater than xi−1 and
we no longer do bit comparison on further levels.

• If ci−1,j is true, we only try out the truth value of true for ci,j and we continue
to do bit comparison since the potential xi solutions are still greater than or equal
to xi−1 at this point.

Lastly, we give further information which explains in full detail Algorithm 7.1. We use
a flag denoted compare to instruct whether to do bit comparison at the current search
tree level or not. On line 6 we reset the compare flag to true since ci,j, when j = 0,
corresponds to a leading bit of the next x-vector. Finally, if-conditions on line 8 have to
be checked in the specified order.

104

Chapter 7. Index Calculus

Algorithm 7.1 Function dpll br sym(F , compare) : dpll algorithm coupled with our
symmetry breaking technique.

Input: Propositional formula F and a flag compare
Output: true if formula is satisfiable, false otherwise.

1: if all clauses and all xor-clauses are satisfied then
2: return true.
3: end if
4: choose next ci,j.
5: if j = 0 then
6: compare← true.
7: end if
8: if (i = 1) or (compare is false) or (ci−1,j is set to false) then
9: (contradiction, F ′) ← assign(F , ¬ci,j).

10: if contradiction then
11: backtrack().
12: compare← false.
13: else
14: if dpll br sym(F ′, compare) returns false then
15: backtrack().
16: compare← false.
17: else
18: return true.
19: end if
20: end if
21: end if
22: (contradiction, F ′) ← assign(F , ci,j).
23: if contradiction then
24: backtrack().
25: return false.
26: end if
27: return dpll br sym(F ′, compare).

The assign procedure, which was detailed in Algorithm 4.2, assigns the specified
literal to true in a formula F , simplifies F and infers truth values for other literals.
Recall that, the backtrack procedure is used to undo all changes made to F after the
last truth-value assignment. For more details on how these procedures are handled in the
WDSat implementation, see Chapter 4.

As an example, in Figure 7.1 we show a pruned binary search tree that is built from
Algorithm 7.1. This tree illustrates the case where m = 3 and l = 2. To show the
complete binary tree, we consider that in this example of execution of Algorithm 7.1,
on each branch, there is no conflict until the leaf is reached. The branches that are not
visited due to the symmetry breaking technique are presented with dashed lines.

7.4 Branching order

For dpll and cdcl-based algorithms, it is well known that the number of conflicts needed
to prove the inconsistency is correlated to the order in which the branching variables are
assigned. Among the state-of-the-art branching rules one can find two categories according
to the type of heuristics. The first are based on Maximum number of Occurrences in the

105

Chapter 7. Index Calculus

X1

X2

X3

Figure 7.1: A complete binary search tree constructed by Algorithm 7.1 when m = 3 and
l = 2

Minimum clauses Size (MOMs), whereas the second adopt the Variable State Independent
Decaying Sum (VSIDS) branching heuristic.

In this work, we were interested in developing a criterion for defining the order of
variables on cnf-xor instances derived from Boolean polynomial systems. We set the
goal to choose branching variables that will lead as fast as possible to a linear polynomial
system, which can be solved using ge in polynomial time. In terms of sat solving,
choosing this order for branching will cancel out all clauses in the cnf part of the formula
as a result of unit propagation. When only the xor part of the cnf-xor formula is left,
the solver performs ge on the remaining xor constraints in polynomial time.

After setting this goal, choosing which variable to assign next according to the number
of their occurrences in the system is no longer an optimal technique. We explain this
idea on an example. For simplicity, we only use the Boolean algebra terminology in this
section. However, the methods described are applicable to both sat solving and algebraic
techniques based on the process of recursively making assumptions on the truth values of
variables in the system (as with the dpll algorithm).

Example 7.4.1 Consider the following Boolean polynomial system:

x1 + x2x3 + x4 + x4x5 = 0 (7.13)

x1 + x2x3 = 0

x1 + x3x5 + x6 = 0

x1 + x2x5x6 + x6 = 0

In this example, the variable with the highest number of occurrences is x1. Following
MOMs criteria, x1 should be assigned first. However, x1 does not occur in any monomial
of degree > 1. Thus, assigning first x1 does not contribute to the linearization of the
system and we need to find a more suitable criterion.

The solution we propose is inspired by graph theory. Particularly, we identified a
parallel between the problem of defining the order in which the variables are assigned and
the Minimal Vertex Cover problem (mvc).

Definition 7.4.1 A vertex cover is a subset of vertices such that for every edge (vi, vj)
of the graph, either vi or vj is in the vertex cover. Given an undirected graph, the Mini-

106

Chapter 7. Index Calculus

Figure 7.2: Graph derived from Example 7.4.1

mum Vertex Cover Problem is a classic optimization problem of finding a vertex cover of
minimal size.

Definition 7.4.2 A monomials connectivity graph is an undirected graph derived from a
Boolean polynomial system as follows.

• Each variable xi from the system becomes a vertex vi in the graph G.

• An edge (vi, vj) is in G if and only if (in the corresponding Boolean system) there
exists a monomial of degree n ≥ 2 which contains both xi and xj.

When we use this representation of a Boolean polynomial system as a graph, a vertex
cover defines a subset of variables whose assignment will result in a linear Boolean poly-
nomial system in the remaining non-assigned variables. Consequently, finding the mvc of
the monomials connectivity graph is equivalent to finding the minimal subset of variables
one has to assign to obtain a linear system.

Figure 7.2 shows the monomials connectivity graph derived from Example 7.4.1. The
mvc of this graph is {v2, v5}. As a result, when all variables in the subset {x2,x5} are
assigned, the remaining polynomial system is linear. We give here the system derived
after the assignment x2 = 1 and x5 = 1.

x1 + x3 = 0

x1 + x3 + x6 = 0

x1 = 0.

For all other possible assignments of x2 and x5, we obtain similar linear systems.
Defining the order of branching variables will serve as a preprocessing technique that

consists in (i) deriving a monomials connectivity graph from a Boolean polynomial system
and (ii) finding the mvc of the graph. During the solving process, variables corresponding
to vertices in the mvc are assigned first. Even though the mvc problem is NP-complete,
its execution for graphs derived from cryptographic models always finishes in negligible
running time due to the small number of variables. Our solver does not use any other
MOMs or VSIDS-based heuristic during the solving process, as the order of the branching
variables is predetermined by the mvc preprocessing technique. This does not limit our
unit propagation in any way.

When variables are assigned in the order defined by this preprocessing technique, the
worst-case time complexity of a dpll-based algorithm drops from O(2k) to O(2k

′
), where

k′ is the number of vertices in the mvc set. Note that the mvc of a complete graph is
equal to the number of its vertices. Consequently, when the monomials connectivity graph

107

Chapter 7. Index Calculus

of a Boolean polynomial system is complete, solving the system using this preprocessing
technique is as hard as solving the system without it.

Finding the mvc corresponding to a Boolean polynomial system can also be used as an
assessment of the security of the underlying cryptosystem. Indeed, an exhaustive search
on a subset of variables, which are the variables in the mvc, results in linear systems
that can be solved in polynomial time. This straightforward approach yields an upper
bound on the complexity of solving the system at hand. In short, to assess the security of
a cryptographic system, assuming that this is based on solving the Boolean polynomial
system first, one computes the mvc of this system and deduces that O(2k

′
) is a bound on

the complexity of the attack.

7.4.1 MVC and summation polynomials

Let us look at the first nontrivial summation polynomial, which is S3. Figure 7.3 shows
the graph of a polynomial system derived from S3 when l is 5. The system derived from a
summation polynomial before symmetrization contains no intermediate variables. Hence,
the number of variables in the system is ml, which is 10 in this example. The monomials
connectivity graph is represented by an adjacency matrix that has the graph vertices in
both the rows and the columns. The row (resp. column) of vertex vi is denoted by (i mod
10). This simply allows us to have a uniform width of rows and columns, which makes
for a better visual representation. The value in each cell shows if there exists an edge
between the pair of vertices of the corresponding row and column. If an edge exists, we
write ◦, otherwise we write •. The graph in Figure 7.3 has two minimal vertex covers,

Figure 7.3: Monomials connectivity graph derived from the model of S3 when l = 5

1 2 3 4 5 6 7 8 9 0

1 • • • • • ◦ ◦ ◦ ◦ ◦
2 • • • • • ◦ ◦ ◦ ◦ ◦
3 • • • • • ◦ ◦ ◦ ◦ ◦
4 • • • • • ◦ ◦ ◦ ◦ ◦
5 • • • • • ◦ ◦ ◦ ◦ ◦
6 ◦ ◦ ◦ ◦ ◦ • • • • •
7 ◦ ◦ ◦ ◦ ◦ • • • • •
8 ◦ ◦ ◦ ◦ ◦ • • • • •
9 ◦ ◦ ◦ ◦ ◦ • • • • •
0 ◦ ◦ ◦ ◦ ◦ • • • • •

which are {v1, . . . , v5} and {v6, . . . , v10}. In general, the mvc of every graph derived from
S3 is either {v1, . . . , vl} or {vl+1, . . . , v2l}. This gives us an mvc of size l when the number
of variables in the corresponding system is 2l. In other words, the preprocessing technique
reveals that when either vector X1 or vector X2 is assigned in all variables, the remaining
polynomial system is linear. This is not surprising when we look at S3 is Equation (7.6).
We observe that in S3, there is no term containing Xd

i with 1 ≤ i ≤ m, where d is not a
power of 2. As a result, in the polynomial system obtained after a Weil descent, there is
no monomial comprised of more than one variable from the same vector Xi. When this
is the case, all variables from this vector can be left outside the mvc and thus, the size of
the mvc is lesser than the number of variables in the polynomial system. Finding such
a case in a summation polynomial is significant, as we have shown that the complexity

108

Chapter 7. Index Calculus

of the pdp is exponential in the size of the mvc of the corresponding polynomial system.
Note that, finding a summation polynomial where two distinct vectors Xi and Xj do not
appear simultaneously in any term, would yield a similar result. However, to the best
of our knowledge, there is no such a case for m > 2. We have computed S4 and S5 to
confirm and we have no reason to believe that we will find such an occurrence for m > 4.

For the fourth summation polynomial, we experimented with both the symmetric
and the non-symmetric version for pdp systems and found, as in [YJPST13], that the
symmetric version yields better results. Since S ′4 is used in our experiments, we computed
the corresponding graph and we show the example of l = 4 in Figure 7.4. We use the
same representation as in Figure 7.3. Using our preprocessing technique, we found that

Figure 7.4: Monomials connectivity graph derived from the model of S ′4 when l = 4

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

1 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
2 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
3 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
4 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
5 ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ •
6 ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ •
7 ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ •
8 ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ •
9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
3 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
4 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
5 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
6 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
7 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
8 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
9 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
0 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
2 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
3 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
4 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
5 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
6 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
7 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦
8 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
9 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
0 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
1 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
2 • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦
3 • • • • • • • • • • • • ◦ •

the mvc of a graph derived from S ′4 is {v1, . . . , vl, vl+1, . . . , v2l, v6l, . . . , v9l−3}. This means
that when vectors X1, X2 and e3 are assigned in all variables, the remaining polynomial
system is linear. In this case, the size of the mvc is (5l− 2). Hence, if we choose the mvc
as a criterion for the branching order, we obtain a linear system after (5l−2) assignments.
However, as per Proposition 7.2.1, we know that in the general case, when vectors Xi with
1 ≤ i ≤ m are assigned in all variables, the values of all other variables in the system

109

Chapter 7. Index Calculus

are propagated. Thus, if we use our findings in Proposition 7.2.1 to determine the order
of branching variables for S ′4, the system is solved after 3l variables are assigned. It
is clear that the second choice yields better results. In a general manner, for m > 2,
the branching order should be chosen as per our findings in Proposition 7.2.1 and our
complexity analysis is based on this choice.

7.5 Complexity analysis

As we explained in Section 3.2, the time complexity of a sat problem in a dpll context
is measured by the number of conflicts. This essentially corresponds to the number of
leaves created in the binary search tree. The worst-case complexity of the algorithm is
thus 2h, where h is the height of the tree.

As per Proposition 7.2.1, we only reason on the ci,j variables from the cnf-xor model.
Therefore, h = ml and the worst-case complexity for the pdp is 2ml. Furthermore, using
the symmetry breaking technique explained in Section 7.3, we optimize this complexity
by a factor of m!. Indeed, out of the m! permutations of the solution set {x1, . . . ,xm},
only one satisfies x1 ≤ x2 ≤ . . . ≤ xm (neglecting the equality). This concludes that the
worst-case number of conflicts reached for one pdp computation is

2ml

m!
. (7.14)

Going further in the time complexity analysis, we observe that to find one conflict we
go through (in the worst case) all clauses in the model during unit propagation. Hence,
the running time per conflict grows linearly with the number of clauses. First, let us
count the number of clauses in the X-substitutions set. For every 2 ≤ d ≤ m there exist(
m
d

)
· ld monomials of degree d given by products of variables ci,j, and they each yield d+1

clauses (see Equation (7.12)). In total, the number of clauses in the X-substitutions set
is

(
m∑
d=2

(
m

d

)
· ld)(d+ 1).

Recall that degree one monomials are not substituted and thus do not produce new
clauses. We can adapt this reasoning for the E-substitutions set as well.

The number of xor-clauses in the cnf-xor model is equivalent to the number of
equations in the algebraic model. We have m(m+1)

2
(l− 1) +m in the E-X-relation set and

n in the F set.

Remark 7.5.1 Using this analysis, we approximate the number of clauses, denoted by
C, for m = 3, as all experiments presented in this chapter are performed using the fourth
summation polynomial.

C ≈
(

3

2

)
· 3l2 +

(
3

3

)
· 4l3 +

((
3

2

))
· 3(3l − 2)2 + (6l − 3) + n ≈ (7.15)

≈ 4l3 + 171l2 − 210l + n+ 69.

In practice, many monomials have no occurrence in the system after the Weil descent.
In fact, the value in Equation (7.15) is a huge overestimate and exact values for l ∈
{6, . . . , 11} are shown in Table 7.1.

Assuming that we take m small, we conclude that the number of clauses in our model
is polynomial in l.

110

Chapter 7. Index Calculus

Let T be a constant representing the time to process one clause. The running time of
the pdp is bounded by

C · T · 2ml/m!.

This allows us to establish the following result on the complexity of our sat-based
index calculus algorithm.

Theorem 7.5.1 The estimated complexity of the relation search phase of the index cal-
culus algorithm for solving ecdlp on a curve defined over F2n, using a factor base given
by a vector space of dimension l, is Õ(2n+l), where the Õ hides a polynomial factor in l.

Proof. In order to perform a whole ecdlp computation, one has to find 2l linearly inde-
pendent relations. Following [Die13], the probability that a random point can be written
as a sum of m factor basis elements is heuristically approximated by 2ml

m!2n
. The time

complexity for the full decomposition phase, using the WDSat solver coupled with the
breaking symmetry technique is CT2n+l.

This worst-case complexity is to be compared to the O(2ω
n
2

+l) complexity of Faugère
et al [FPPR12]. Both approaches rely on the heuristic approximation of the probability
that a random point can be decomposed in the factor base. However, we underline here
that Faugère et al ’s proof of this result is based on an heuristic assumption on the Gröbner
basis computation for pdp, while our analysis for the sat-based approach simply relies
on the rigorously proved worst case for the dpll search tree (see Equation (7.14)).

7.5.1 The third summation polynomial

When the third summation polynomial is used, the choice of branching variables is de-
termined by the mvc preprocessing technique. As shown in Section 7.4, the size of the
mvc is l. Since in the case of S3 the system is solved after the first solution vector is
assigned in all variables, the breaking symmetry technique does not make any difference
in this case. This concludes that the worst-case number of conflicts reached for one pdp
computation when S3 is used is 2l.

The number of or-clauses in sat instances derived from S3 can be computed using
our analysis in Section 7.4.1. As per this analysis, in the Boolean polynomial system
derived from S3, there are exactly l2 different monomials of degree 2, which will in turn
produce 3l2 or-clauses in the cnf part of the cnf-xor model. As we are working with
the non-symmetric version of the third polynomial, the number of xor-clauses is simply
n. We conclude that

C = 3l2 + n.

Theorem 7.5.2 The estimated complexity of the relation search phase of the index cal-
culus algorithm for solving ecdlp on a curve defined over F2n, using the third summation
polynomial and a factor base given by a vector space of dimension l, is Õ(2n+1), where
the Õ hides a polynomial factor in l.

Proof. As previously, the number of linearly independent relations that need to be found
is 2l. When m = 2, the probability that a random point can be written as a sum of m
factor basis elements is heuristically approximated by 22l

2n+1 . The time complexity for the
full decomposition phase, using the WDSat solver coupled with the breaking symmetry
technique is T (3l2 + n)2n+1.

111

Chapter 7. Index Calculus

7.6 Experimental results

To support our claims, we conducted experiments using S3 and S ′4 on binary Koblitz
elliptic curves [Kob92a] defined over F2n . We compare the WDSat solver presented in this
thesis to the following approaches: the best currently available implementation of Gröbner
basis (F4 [Fau99] in Magma [BCP97]), the solvers MiniSat [ES04], Glucose [AS09],
MapleLCMDistChronoBT [NR18], CaDiCaL [Bie] and CryptoMiniSat [SNC09].
Note that MapleLCMDistChronoBT and CaDiCaL are the winners in the main
track of the sat competition [vMF] in 2018. All tests were performed on a 2.40GHz Intel
Xeon E5-2640 processor. Our Weil descent implementation used to generate benchmarks
is open source [TID20a].

The Gröbner basis approach takes as input an algebraic model. We used the grevlex
ordering, as this is considered to be optimal in the literature. Solvers MiniSat, Glu-
cose, MapleLCMDistChronoBT and CaDiCaL process a cnf model input, whereas
CryptoMiniSat (CMS) and WDSat use the cnf-xor model. WDSat can also pro-
cess an algebraic model in anf form directly. Using the cnf-xor model is a huge advan-
tage, as it has far fewer clauses and variables than the cnf model. Gaussian elimination
can be beneficial for sat instances derived from cryptographic problems. However, it
has been reported to yield slower running times for some instances, as performing the
operation is very costly. For this reason, CryptoMiniSat and WDSat do not include
Gaussian elimination by default, but the feature can be turned on explicitly. We experi-
mented with both variants for both xor-able solvers.

With WDSat we set a custom order of branching variables, which allowed us to
make use of unit propagation as explained in Proposition 7.2.1 and branch only on the
ci,j variables. For instances derived from S3, the branching order is defined by the mvc
preprocessing technique. CryptoMiniSat does not allow for custom order of branching
variables in the current version as the authors report that it leads to slower running times
in most cases. We added this feature to the source code of CryptoMiniSat and we ran
tests both with a custom order and with the order chosen by the solver.

For sat models derived from cryptographic problems, the preprocessing technique
is executed only once, since all instances presenting a specific cryptographic problem
are equivalent except for the constant in the xor constraints. Even though the mvc
problem is NP-complete, its execution for graphs derived from our models always finished
in negligible running time, due to the small number of nodes.

In all Tables, half of the instances have a solution and the other half do not. We show
running time and memory averages on satisfiable and unsatisfiable instances separately
since these values differ between the two cases. sat solvers stop as soon as they find a
solution and if this is not the case they need to respond with certainty that a solution
does not exist. Hence, running times of sat solvers are significantly slower when there is
no solution. On the other hand, [YJPST13] indicates that the computational complexity
of Gröbner bases is lower when a solution does not exist. Unless it is otherwise specified,
in all tables in this section, running times are in seconds and memory use is in MB.

Benchmarks derived from S3

Results on solving the third summation polynomial (m = 2) are shown in Table 7.3. The
parameters used to obtain these benchmarks are n = 41 and l = 20. As a result, we
obtained a Boolean polynomial system of 41 equations in 40 variables. In this Table,
results are an average of 100 runs. As different variants of our solver can yield better
results for different benchmarks, we compared all variants to decide on the optimal one.
We also tested the solver with and without our preprocessing technique (denoted by mvc

112

Chapter 7. Index Calculus

Table 7.2: Comparing different versions of WDSat for solving the third summation
polynomial.

l n WDSat version
sat unsat

Runtime #Conflicts Runtime #Conflicts

20 41

WDSatxg 6028.4 200957178 11743.2 354094821

WDSatxg+mvc 639.6 21865963 2973.0 94489361

WDSatxg-ext 375.9 4911099 870.1 10789518

WDSatxg-ext+mvc 4.2 27684 13.5 86152

Table 7.3: Comparing different approaches for solving the third summation polynomial.

l n Solving approach
sat unsat

Runtime #Conflicts Runtime #Conflicts

20 41

Gröbner 16.8 N/A 18.7 N/A

MiniSat > 600 > 600

Glucose > 600 > 600

MapleLCMDistChronoBT > 600 > 600

CaDiCaL > 600 > 600

CMS 29.0 226668 84.3 627539

CMS+mvc 237.4 1263601 > 600

WDSatxg-ext+mvc 4.2 27684 13.5 86152

in the tables). The results in Table 7.2 show that WDSat yields optimal results for these
benchmarks when the xg-ext method is used coupled with the preprocessing technique.
This is due to the fact that the size of the mvc obtained by the preprocessing technique
is 20, whereas the number of variables in the system is 40. We confirm that when the
xg-ext method of WDSat is used coupled with the preprocessing technique, the worst-
case time complexity of the models derived from S3 drops from 2k to 2

k
2 , where k is the

number of variables in the polynomial system.
By analyzing the average running time and the average number of conflicts in Table 7.3,

we see that the chosen variant of the WDSat solver outperforms all other approaches for
solving instances derived from the third summation polynomial. For these experiments,
we set a timeout of 10 minutes. Line CMS+mvc in Table 7.3 corresponds to the case
where CryptoMiniSat is coupled with the mvc preprocessing technique and we report
that in this case, only 9 out of 100 unsatisfiable and 54 out of 100 satisfiable instances
were solved. This confirms that the mvc preprocessing technique is strongly linked to our
xg-ext method. Indeed, when the xg-ext method is not used, one can not guarantee
that when all variables from the mvc are assigned the system becomes linear. This is
confirmed also by looking at the number of conflicts for the CMS+mvc approach, which
is greater than 2

k
2 even for benchmarks that were solved before the timeout. Recall that

k
2

is the size of the mvc. On the other hand CryptoMiniSat without the preprocessing

technique succeeds in solving these instances after less than 2
k
2 conflicts. We conclude

that the searching technique in CryptoMiniSat used to decide on the next branching
variable is optimal for this solver.

The solvers which are not xor-enabled did not solve any of the 200 satisfiable and
unsatisfiable instances before the 10-minute timeout. This is not surprising as instances

113

Chapter 7. Index Calculus

derived from the third summation polynomial are solved a lot faster when a ge technique is
used. For reference, these solvers are able to solve within a day instances with parameters
l = 15 and n = 31.

Benchmarks derived from S ′4

Results on solving the symmetric version of the fourth summation polynomial (m = 3) are
shown in Table 7.5, where we compare different approaches, showing results for optimal
variants of each solving tool. Running times of all variants of CryptoMiniSat and
WDSat are given in Table 7.4. We experimented with different values of n for each l
and we performed tests on 20 instances for each parameter size.

We set a timeout of 10 hours and a memory limit of 200GB for each run. Using
MiniSat and Glucose, we were not able to solve the highest parameter instances (l = 8)
within this time frame. On the other hand, Gröbner basis computations for these instances
halted before timeout because of the memory limit. This data is in line with previous
works. Indeed, [YJPST13] and [ST13] show experiments using the fourth summation
polynomial with l = 6, whereas the highest parameter size achieved in [GG14] is l = 8.

Table 7.5 shows the average runtime in seconds, the average number of conflicts and
the average memory use in MB. The WDSat solver allocates memory statically, according
to predefined constant memory requirements. This explains why memory averages do not
vary much between the different size parameters, or between satisfiable and unsatisfiable
instances.

Table 7.4: Comparing different variations of CryptoMiniSat and WDSat for solving
the pdp.

Solving
l n

sat unsat

approach Runtime #Conflicts Mem. Runtime #Conflicts Mem.

CMS

6
17 133.983 775948 48.4 363.513 1709971 59.5

19 560.080 3396192 64.1 1172.740 5726372 70.1

7
19 1210.612 5713259 85.3 10258.351 26079224 117

23 3637.032 12159752 80.4 19857.454 47086152 130

8
23 9846.554 18509058 123 >10 hours

26 6905.477 13269631 115 >10 hours

CMSGE

6
17 119.866 677336 54.5 436.811 1877699 64.2

19 224.484 1219840 58.7 615.952 2763754 76.5

7
19 893.425 3722805 86.5 3587.929 8642108 107

23 580.007 1753040 82.4 3253.786 8183887 132

8
23 11265.010 19604250 155 >10 hours

26 3933.637 7920920 157 >10 hours

CMS
with

Prop.7.2.1

6
17 15.673 61812 34.5 62.396 260843 39.3

19 14.128 53767 33.2 64.563 259688 42.1

7
19 176.463 484098 41.5 843.367 2077747 72.3

23 300.021 638152 48.9 1012.412 2070190 73.6

8
23 1700.949 2420937 76.7 11959.938 16756106 82.4

26 3000.831 4179236 79.4 14412.193 16783213 81.8

114

Chapter 7. Index Calculus

Table 7.4: Comparing different variations of CryptoMiniSat and WDSat for solving
the pdp.

Solving
l n

sat unsat

approach Runtime #Conflicts Mem. Runtime #Conflicts Mem.

CMSGE

with
Prop.7.2.1

6
17 17.698 62161 39.1 86.049 294428 63.2

19 16.301 52730 39.8 88.738 293859 62.7

7
19 220.037 479197 51.2 2551.277 2418051 72.5

23 367.105 653673 59.4 1329.494 2380614 93.1

8
23 2493.328 2419268 112 19058.671 19359334 164

26 4956.952 4171674 126 19907.670 19534832 167

WDSat
with

Prop.7.2.1

6
17 .601 49117 1.4 3.851 254686 1.4

19 .470 38137 1.4 3.913 255491 1.4

7
19 9.643 534867 16.7 44.107 2073089 16.7

23 9.303 477632 16.7 47.347 2067168 16.7

8
23 68.929 2646071 16.8 525.057 16666331 16.8

26 185.480 6261107 16.9 533.607 16684378 16.9

WDSatGE

with
Prop.7.2.1

6
17 9.193 48178 1.4 56.718 253123 1.4

19 7.041 36835 1.4 58.876 252799 1.4

7
19 169.629 528383 16.7 736.863 2062232 16.7

23 159.101 473223 16.7 779.432 2060501 16.7

8
23 1290.702 2630567 16.8 9124.361 16639322 16.8

26 3404.765 6231289 16.9 9623.677 16636122 16.9

Our experimental results show that performing Gaussian elimination on the system
comes with a significant computational cost and yields a small decrease in the number
of conflicts (see Table 7.4). As this was the case for all instances derived from the Weil
descent on S ′4, we concluded that ge is not beneficial for this model. We attribute this
fallout to the particularly small improvement in the number of conflicts, compared to the
significant computational cost of performing the ge technique. Indeed, the monomials
connectivity graph of the fourth summation polynomial is complete and thus the size of
the mvc is equivalent to the number of variables in the formula. This leads us to believe
there is no optimal choice for the order of branching variables and the system generally
does not become linear until the second-to-last branching.

Choosing the WDSat variant without ge as optimal, we continued experiments for
bigger size parameters using this variant coupled with the symmetry breaking technique.
Table 7.6 shows results for l ∈ {6, 7, 8, 9, 10, 11} and n sizes up to 89. All values are an
average of 100 runs, as running times for satisfiable instances can vary remarkably. If we
compare the number of conflicts for the first three values for l in this Table to that of the
basic WDSat solver without the breaking symmetry extension in Table 7.5, we observe
a speedup factor that rapidly approaches 6.2 This confirms our claims in Section 7.5 that
the symmetry breaking technique that we proposed yields a speedup by a factor of m!.

1The non-prime-degree case of n = 26 is not handled differently. The factor base is an l-dimensional
vector space and the Weil descent does not include specific reductions which can be applied to non-prime
degrees.

2We compare the cases where there is no solution, as these have more stable averages.

115

Chapter 7. Index Calculus

Table 7.5: Comparing different approaches for solving the pdp.

Solving
l n

sat unsat

approach Runtime #Conflicts Mem. Runtime #Conflicts Mem.

Gröbner

6
17 207.220 NA 3601 142.119 NA 3291

19 215.187 NA 3940 155.765 NA 4091

7
19 3854.708 NA 38763 2650.696 NA 38408

23 3128.844 NA 35203 2286.136 NA 35162

8
23 >200GB >200GB

261 >200GB >200GB

MiniSat

6
17 62.702 408189 12.7 270.261 1463309 24.2

19 229.055 1778377 23.6 388.719 2439933 29.8

7
19 406.918 1919565 33.6 6777.431 25180492 105

23 12945.613 61610582 152 13260.586 59289671 163

8
23 8027.974 63384411 256 >10 hours

26 >10 hours >10 hours

Glucose

6
17 81.898 711918 11.9 119.694 815185 18.5

19 299.175 2332066 16.7 269.212 2077689 16.7

7
19 908.091 5357976 19.7 1356.990 5884897 22.0

23 2585.200 12528231 21.8 3760.138 16898505 28.3

8
23 6755.026 20886673 31.9 >10 hours

26 >10 hours >10 hours

CMS with
Prop.7.2.1

6
17 15.673 61812 34.5 62.396 260843 39.3

19 14.128 53767 33.2 64.563 259688 42.1

7
19 176.463 484098 41.5 843.367 2077747 72.3

23 300.021 638152 48.9 1012.412 2070190 73.6

8
23 1700.949 2420937 76.7 11959.938 16756106 82.4

26 3000.831 4179236 79.4 14412.193 16783213 81.8

WDSat
with

Prop.7.2.1

6
17 .601 49117 1.4 3.851 254686 1.4

19 .470 38137 1.4 3.913 255491 1.4

7
19 9.643 534867 16.7 44.107 2073089 16.7

23 9.303 477632 16.7 47.347 2067168 16.7

8
23 68.929 2646071 16.8 525.057 16666331 16.8

26 185.480 6261107 16.9 533.607 16684378 16.9

Comparing results for l = 6 and l = 7 in Table 7.6 with the equivalent results for the
Gröbner basis method in Table 7.5, we observe that WDSat is up to 300 times faster
than Gröbner bases for the cases where there is no solution and up to 1700 times faster
for instances allowing a solution. This is a rough comparison, as the factor grows with
parameters l and n.

To sum up, when WDSat is used for the index calculus attack, our recommendation is
to enable the xg-ext option for instances obtained from the third summation polynomial
and to completely disable the xg module for instances from the fourth polynomial. For
anf instances arising from other cryptographic problems, it would be best to solve smaller
instances of the problem and analyse the number of conflicts. If the number of conflicts
is only slightly better when the xg module is enabled, then disabling the xg module is

116

Chapter 7. Index Calculus

Table 7.6: Experimental results using the complete WDSat solver. Running times are
in seconds and memory use is in MB.

l n
sat unsat

Runtime #Conflicts Mem. Runtime #Conflicts Mem.

6
17 .220 17792 1.4 .605 43875 1.4

19 .243 19166 1.4 .639 44034 1.4

7
19 2.205 130062 1.4 6.859 351353 1.4

23 3.555 189940 1.4 7.478 350257 1.4

8
23 29.584 1145966 17.0 81.767 2800335 17.0

26 39.214 1426216 17.0 85.822 2803580 17.0

9

37 447 10557129 17.1 1048 22396994 17.1

47 609 12675174 17.2 1167 22381494 17.2

59 611 11297325 17.3 1327 22390211 17.3

67 677 11608420 17.4 1430 22388053 17.4

10

47 5847 95131900 17.3 11963 179019409 17.3

59 6849 97254458 17.4 13649 179067171 17.4

67 6530 88292215 17.4 14555 179052277 17.4

79 7221 86174432 17.5 16294 179043408 17.5

11

59 64162 727241718 19.2 135801 1432191354 19.2

67 70075 741222864 19.3 145357 1432183842 19.3

79 61370 599263451 19.4 161388 1432120827 19.4

89 85834 736610196 19.5 175718 1432099666 19.5

likely to yield faster running times for higher scale instances of that problem.

Open question 5 Our experimental work shows comparison only with complete sat
solvers. Another perspective would be to use incomplete sat solvers, such as WalkSat,
coupled with an xor reasoning module.

7.6.1 Whole Point Decomposition Phase Computation

Previously shown experiments for solving pdp are done with arbitrary choices of param-
eters n and l. However, when performing a whole ecdlp attack, choosing the factor base
is a crucial step in the index calculus method. The number of relations that needs to be
found is exponential in l, as is the running time for one point decomposition (see (7.14)).
However, taking a smaller l decreases the probability of successfully decomposing a ran-
domly chosen point, and thus increases the number of times we solve the pdp.

To understand better the optimal ratio n/l, we computed the whole point decompo-
sition phase for n = 24 using different l sizes. The experiment consists essentially in
computing the pdp on instances for randomly chosen Xm+1 until we find 2l valid decom-
positions. Instances that turn out to not have a solution are tossed.

Results from these experiments are in Table 7.7. We present average running times
in hours (Runtime), the number of generated satisfiable (#Generated sat) and unsat-
isfiable (#Generated unsat) instances and the probability that a random point can be
decomposed (P). This probability is, in fact, the ratio between the number of generated

117

Chapter 7. Index Calculus

Table 7.7: Whole Point decomposition phase computation.

n l Runtime #Generated sat #Generated unsat P Papprox #Runs

24

4 2.59 h 16 149475 .00010 .00004 10

5 1.83 h 32 49484 .00064 .00032 10

6 2.49 h 64 11478 .00557 .00260 10

7 6.45 h 128 2994 .04275 .02083 10

8 17.99 h 256 688 .37209 .16666 8

instances that have a solution and the total number of generated instances. We com-
pare this to the heuristically approximated probability 2ml

m!2n
, denoted by (Papprox). #Runs

denotes the number of times we ran the experiment for each n/l ratio.
Further research is needed to fully understand the best choice of l, but current ex-

perimental results suggest that it is not l ≈ n/m. With this ratio, even though there
is a good chance of finding a composition for a randomly chosen point, the runtime of
pdp and the number of relations needed are too high. The cost of the final phase linear
algebra increases with l as well.

At the time of writing of this thesis, we do not have results for bigger values of n and
l. For this reason, we refrain from drawing a conclusion from Table 7.7, as results can
be ambiguous for such small parameters. As an example, the time to compute the Weil
descent and derive the xor model, is not negligible compared to the time to solve the
instance in the cases of l = 4 and l = 5, as in these cases, the time to solve the instance
is less than 60 milliseconds long. This might be the only reason we observe a decrease of
the runtime between l = 4 and l = 5, whereas from the remaining results in Table 7.7 we
observe that the time increases with l.

Open question 6 More research is needed to find the optimal l. For instance, it would
be interesting to find the lower bound of l where 2l linearly independent relations can be
found regardless of the time it takes to find them.

Lastly, we experimented with the collision search [vOW99] generic method, using the
source code that we created for our work in Chapter 6. Recall that, this implementation
solves the discrete log problem in the case of prime field curves. We did not adapt the
code for extension fields and the computation time for scalar multiplication on the curve
might vary between the two cases. Even so, this allows for a rough comparison between
the running times of generic methods and the index calculus method when the WDSat
solver is used. In a uni-thread environment, a whole collision search computation for
parameter n = 59 has an average runtime of 0.8 hours on our platform. Computing
2l successful decompositions for parameters n = 59 and l = 9 would take more than 86
hours according to results in Table 7.6. The estimated running time becomes considerably
higher when we take into account unsuccessful decompositions as well. We conclude that
for the case of prime-degree extension fields, even with the significant speedup that we
achieved for the pdp, index calculus attacks are still not practical compared to the pcs
generic method.

118

Chapter 8

Other applications of logical
cryptanalysis

The WDSat solver was developed for solving systems arising from a Weil descent, with
the goal to be used for index calculus attacks. However, the solver can handle any logical
formula in anf or other standard forms. In this chapter, we investigate the use of WDSat
in attacks on other cryptographic primitives. First, we use our solver to perform a logical
attack on the Trivium stream cipher. Then, WDSat was tested on instances arising from
the Multivariate Quadratic polynomial problem (mq), with various levels of difficulty.
We compare the performance of WDSat against CryptoMiniSat, as they are both
xor-enabled sat solvers conceived for solving Boolean polynomial systems arising from
cryptographic attacks. The two different models studied in this chapter allow us to get a
better understanding of which properties of Boolean polynomial systems are better suited
for WDSat. As we have seen, systems derived from the index calculus attack have few
variables but are highly dense, or in other words, have long xor-clauses. This is also the
case for mq instances. On the other hand, Trivium systems are sparse and have a higher
number of variables.

This chapter is organized as follows. Section 8.1 is dedicated to the Trivium stream
cipher. We show experimental results on attacks using both WDSat and CryptoMin-
iSat, followed by a complexity discussion of logical cryptanalysis of Trivium. In Sec-
tion 8.2 we give initial results of a general attack on multivariate cryptography schemes
using WDSat .

8.1 The Trivium stream cipher

The purpose of stream ciphers is to emulate the functionality of the one-time-pad (OTP),
which is a theoretically unbreakable cipher. In the OTP encryption scheme, the ciphertext
is obtained by combining the plaintext with a keystream using, for instance, the binary
xor operator. The keystream is a random sequence that is at least as long as the plaintext.
The perfect secrecy of this scheme was proven by Shannon in 1949. The greatest challenge
in constructing an OTP encryption scheme is the requirement for the keystream to be
random and of size at least equal to the size of the plaintext. Since the requirement is not
practical, a stream cipher uses a smaller secret key to generate a pseudorandom keystream
of the required size.

Trivium is a stream cipher designed in 2005 by C. De Cannière and B. Preneel [DC06]

as a submission for the eSTREAM project [eST]. Its simple structure is specifically
intended for fast hardware implementation. Trivium is comprised of three Nonlinear-
Feedback Shift Registers (NLFSR). NLFSR is a shift register whose input bit is a non-

119

Chapter 8. Other applications of logical cryptanalysis

linear function of its previous state. In these registers are stored 288 bits representing
Trivium’s internal state, denoted (s1, . . . , s288). This internal state is initialized using
an 80-bit secret key vector K and an 80-bit vector IV holding the initial value. The
initialization is defined as follows:

(s1, . . . , s93)← (K1, . . . , K80, 0, . . . , 0)

(s94, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)

(s178, . . . , s288)← (0, . . . , 0, 1, 1, 1).

At the end of each round, all registers are shifted by one bit and the first bit in each register
is updated using the defined non-linear feedback function. The initialization process of
Trivium consists in loading the state bits into the registers and performing 1152 rounds
without producing an output. After this process, every next round produces one output
bit obtained as a linear combination of six state bits. The iterative process of Trivium
is shown in Algorithm 8.1, where Z denotes the number of generated keystream bits.
The pseudo-code for the initialization process is similar, with the exception that line 5 is
missing and i goes from 1 to 1155.

Algorithm 8.1 Trivium’s iterative function for keystream generation.

Input: The number of bits to be generated, denoted Z.
Output: Keystream vector z.

1: for i = 1 to Z do
2: t1 ← s66 + s93

3: t2 ← s162 + s177

4: t3 ← s243 + s288

5: zi ← t1 + t2 + t3
6: t1 ← t1 + s91 · s92 + s171

7: t2 ← t2 + s175 · s176 + s264

8: t3 ← t3 + s286 · s287 + s69

9: (s1, s2 . . . , s93)← (t3, s1, . . . , s92)
10: (s94, s95 . . . , s177)← (t1, s94, . . . , s176)
11: (s178, s179 . . . , s288)← (t2, s178, . . . , s287)
12: end for

8.1.1 Model generation and experimental results

As most symmetric cryptographic primitives, Trivium can be described by Boolean func-
tions with secret variables in the key bit-vector and public variables in the IV bit-vector.
To generate the sat model for Trivium, we produce a xor constraint for every output
bit, as an output bit is a non-linear combination of internal state bits. Our model contains
only 288 variables corresponding to the bits of the internal state after the initialization
process is finished. Hence, this constitutes an attack on the internal state, in contrast to
attacks on the key. The modelization approach that we described is different from the
one used in the Grain of Salt tool [Soo10b]. In models constructed using Grain of Salt,
each input bit obtained from the non-linear feedback function is an additional variable,
whereas, in the model we use, these input bits are recursively replaced by a non-linear
combination of state bits from previous rounds, until we obtain a clause containing only
bits from the initial state. Both approaches are common in the literature [SPF08; RS06;
Soo10a; LJN14]. The model obtained using the Grain of Salt tool is useful for attacks that

120

Chapter 8. Other applications of logical cryptanalysis

Table 8.1: Comparing different approaches for solving Trivium. Running times are in
seconds.

sat unsat

Solving approach Runtime #Conflicts Runtime #Conflicts

CMSGE 0.03 1336 0.03 1602

WDSatxg 17.73 781202 32.83 1374475

WDSatxg-ext 23.95 696383 44.15 1225498

WDSatxg-ext+mvc 0.68 25982 1.50 58064

suppose the property of sparse polynomial systems [RS06]. In this model, each Trivium
iteration adds three new variables and four equations. All equations are of degree at most
two. Recall that, the number of Trivium iterations corresponds to the number of gener-
ated keystream bits. On the other hand, the model that we use in these experiments has
288 variables, and the number of equations is equal to the number of generated keystream
bits. In this modelization, intermediate variables are substituted recursively, the degree
of the equations increases with the number of Trivium cycles. More specifically, the first
66 equations are linear, then we have 82 degree-two equations, followed by 66 equations of
degree three, and the degree continues to grow from there. We chose this model because,
in general, our mvc preprocessing technique makes more sense with a model that does
not contain intermediate variables.

Table 8.1 shows average running times (100 runs) and average number of conflicts for
solving sat instances derived from Trivium. The number of output bits we used is 148
and thus the derived boolean polynomials system has 148 equations and 288 variables.

The size of the mvc for this model is 122 and the exact variables whose corresponding
vertices are in the mvc are shown in Table 8.2. Note that the size of the mvc grows with
the number of generated output bits, since when more output bits are generated, more
initial state bits are involved in non-linear feedback function outputs. We do not have
a precise estimation of the number of output bits that need to be generated so that the
derived Boolean polynomial system has a unique solution. In any case, the size of the
mvc in this example is still greater than the size of the secret key, which is 80 bits. Thus,
the mvc is an indicator that a sat-based attack on this model for Trivium is unlikely to
give better results than a brute force attack for recovering the entire key.

For benchmarking, we provided both solvers with 160 help bits out of the 288 bits
from the initial state. This is a standard approach in the literature [SNC09; Soo10a].
Results in Table 8.1 show that the xg-ext version coupled with the mvc preprocessing
technique improves the performance of WDSat for instances derived from the Trivium
cipher. However, WDSat is outperformed by CryptoMiniSat for the resolution of
these instances, both in terms of running time and number of conflicts. We believe that
this difference is due to the fact that the cdcl approach that CryptoMiniSat relies on
is better suited for these instances than the basic dpll behind WDSat. In particular,
the backtracking algorithm with clause learning involves backjumping techniques, which
results in fewer conflicts.

8.1.2 Complexity discussion

The technique described in this section is a straightforward modelization of Trivium and
does not result in an attack whose complexity is better than the brute force attack.

121

Chapter 8. Other applications of logical cryptanalysis

Table 8.2: Minimal Vertex Cover of Trivium when 148 keystream bits are generated.

x14, x16, x18, x20, x22, x24, x26, x28, x30, x32, x34, x36, x38,

x40, x42, x44, x46, x48, x50, x52, x54, x56, x58, x60, x62, x64,

x66, x68, x70, x72, x74, x76, x78, x80, x82, x84, x86, x88, x90,

x95, x97, x99, x101, x103, x105, x107, x109, x111, x113, x115,

x117, x119, x121, x123, x125, x127, x129, x131, x133, x135, x137,

x139, x141, x143, x145, x147, x149, x151, x153, x155, x157, x159,

x161, x163, x165, x167, x169, x171, x173, x175, x206, x208, x210,

x212, x214, x216, x218, x220, x222, x224, x226, x228, x230, x232,

x234, x236, x238, x240, x242, x244, x246, x248, x250, x252, x254,

x256, x258, x260, x262, x264, x266, x268, x270, x272, x274, x276,

x278, x280, x282, x284, x286, x91

However, this result is not unusual for Trivium attacks on the internal state, as in this
case, all 288 variables of the state are unknown. In contrast, an algebraic or logical
attack on the key can be considered only for round reduced Trivium [QW15]. The model
generation is not practical for a full round Trivium encryption and consequently, the
Trivium model is often viewed as a black-box polynomial.

To construct a more practical model for attacking Trivium, one should consider ad-
vanced cryptanalytic techniques for stream ciphers, such as Cube attacks [DS09] and Cube
testers [ADMS09]. We explored the possibility of incorporating sat solving techniques
into Cube attacks, however, we did not find an impactful use of sat solvers for these
algorithms. Indeed, the bottleneck of Cube attacks is the preprocessing phase which con-
sists in computing the sum of all cubes and deriving a polynomial system in the unknown
variables from the key vector. The resulting systems are usually linear or quadratic and
are highly sparse with few variables. Most of the time they are solvable by hand.

Trivium and other stream ciphers are still of great interest to the sat community, as
they are useful for generating sat instances with nonrandom properties that can be used
to assess different solving techniques.

8.2 The MQ problem

Public-key cryptographic systems that are currently used in practice are based on the
hardness of integer factorization and discrete logarithm. For instance, the most emi-
nent examples, RSA, ECDHE and ECDSA are implemented in the SSL/TLS protocol.
The underlying problems of these encryption schemes have been researched for decades
and thus, today, we have a solid understanding of their complexity. However, it is well
known that these schemes are not resistant to quantum attacks. It was shown by Shor
in 1999 [Sho97] that the integer factorization, as well as the discrete logarithm problem
are solvable by a sufficiently large quantum computer in polynomial time. Consequently,
in 2016, the NIST launched a standardization process for post-quantum cryptography.
The new schemes that are required to be resistant to attacks on a quantum computer
are divided into five families, namely hash-based, code-based, lattice-based, multivariate
and supersingular elliptic-curve isogeny cryptography. In this work, we concentrate on
the problem of solving a multivariate polynomial (mp) system which is at the core of

122

Chapter 8. Other applications of logical cryptanalysis

multivariate public-key cryptography. This problem is considered to be NP-hard.
There are several signature schemes proposed for the NIST standardization process

that are based on the hardness of the mp problem. Rainbow [DS05], based on the
UOV [KPG99] signature scheme, is part of the recently announced Round 3 finalists.
The Lifted UOV scheme (LUOV) was a serious candidate in the second round, how-
ever, it was recently shown that it has some weaknesses against a subfield differential
attack [DDS+20]. It is still important to consider schemes that are not in the third round
as potential alternatives, in case all of the proposed schemes are proven to be insecure in
the future. These primitives have been a target of cryptographic attacks since recently
and their security is not explored as much as the security of elliptic-curve based systems,
for instance. In this work, we do not concentrate on a particular scheme, but rather, we
attack the underlying mp problem, for different parameter values. The crucial parame-
ters in evaluating the hardness of a multivariate polynomial system are the number of
variables, denoted by n, the number of equations, denoted by m and their ratio. The case
of m = n is considered to be the hardest, whereas overdetermined systems are easier to
solve. Our complexity analysis and experimental results are in line with this well-known
result.

8.2.1 Generation of the MQ model

An mq system is a system of multivariate polynomial equations that consists only of
quadratic polynomials. To use logical cryptanalysis, we will concentrate on systems over
F2. Let a

(t)
i,j , b

(t)
i and c(t) with 1 ≤ i ≤ j ≤ n and 1 ≤ t ≤ m, be elements in F2. An mq

polynomial system is described as follows:

f1(x1, . . . , xn) =
∑

1≤i≤j≤n

a
(1)
i,j xixj +

∑
1≤i≤n

b
(1)
i xi + c(1) = 0

f2(x1, . . . , xn) =
∑

1≤i≤j≤n

a
(2)
i,j xixj +

∑
1≤i≤n

b
(2)
i xi + c(2) = 0

. . .

fm(x1, . . . , xn) =
∑

1≤i≤j≤n

a
(m)
i,j xixj +

∑
1≤i≤n

b
(m)
i xi + c(m) = 0.

To construct such systems, we took as reference the mq challenge initiated in [YDH+15].
Contrary to the case of the index calculus attack, where instances can be both satisfiable
and unsatisfiable, the mq instances that need to be solved in a practical attack always
have a solution. Hence, we generate instances with (pseudo)random solutions, where all
coefficients are random and have an equal probability to take the value of 0 or 1. The
process of generating one random instance follows these steps:

• Fix parameters m and n.

• Choose randomly an n-bit solution vector.

• For each equation 1 ≤ t ≤ m, choose randomly all coefficients except the c(t)

constant, and then compute the c(t) constant according to the solution vector chosen
in the previous step.

Considering these instances, the mq problem is defined as follows

Definition 8.2.1 Given m multivariate quadratic polynomials f1, . . . , fm of n variables
over a finite field F, find a tuple w = (w1, . . . , wn) in Fn, such that f1(w) = · · · = fm(w) =
0.

123

Chapter 8. Other applications of logical cryptanalysis

8.2.2 Complexity analysis

We experimented with the WDSat solver on these instances and the results are in Sec-
tion 8.2.3. Before we show experimental results, we present a complexity analysis. The
following analysis concerns the WDSat xg-ext variant, as this variant was found to be
the most efficient for mq systems. Recall that, the complexity of solving a polynomial sys-
tem using a sat-based approach is strongly linked to the number of conflicts. The earlier
we discover the conflict, the faster we arrive at a solution. Hence, as an initial assessment
of the complexity analysis, it is interesting to look at the dpll-tree level on which conflicts
are found. Since the very first runs that we performed on the mq model, we noticed that
conflicts are always found on the same two levels for a given set of parameters m and n.
For instance, for n = 30 and m = 60 all conflicts are either on level 19 or on level 20.
In other words, the model that performs ge on the system, always finds a solution or
encounters a conflict after 19 or 20 variables are assigned. This has prompted us to think
in terms of the Macaulay matrix [Mac16] associated to the polynomial system. It is well
known that highly overdetermined systems are easy to solve. In a dpll-based setting, as
we descend further in the binary tree, the number of (non-constant) variables decreases,
yet the number of equations remains unchanged. As a result, the system becomes more
and more overdetermined. We argue that the exact level at which the system is solved
using ge, the result of which can be either a conflict or a found solution, is when the
associated Macaulay matrix becomes a square matrix (or very close to one).

The EC structure in the xorgauss module of the WDSat solver can be viewed
as an analog of the Macaulay matrix, with the exception that it does not contain the
square terms, since in F2 we have that x2 = x. The number of columns in the EC
structure, for an mq system, supposing that all monomials have at least one occurrence,
is n(n + 1)/2. The assumption that all monomials have at least one occurrence holds
for random systems generated as described in Section 8.2.1. Let n′ be the number of
remaining variables in the system. Then, at level h of the binary search tree, we have
that n′ = n − h. As per our analysis, the system is solved or a conflict is met when
m ≈ n′(n′ + 1)/2. In our experiments, a conflict is found either for the highest value of
n′ that satisfies m ≥ n′(n′ + 1)/2 or the lowest value of n′ where m ≤ n′(n′ + 1)/2, with
no exceptions.

Even though this analysis is strongly linked to the ge, it does not necessarily hold for
other sat solvers that perform ge, such as CryptoMiniSat. If a solver does not apply
the xg-ext technique, it can not be guaranteed that the number of remaining variables
in the sat instance will be n′(n′ + 1)/2 on level h.

Using this analysis, we computed complexity estimations for various parameters and
our findings are shown in Table 8.3. The complexity is exponential in the level at which
conflicts are found, and thus we consider the complexity to be in the interval between the
two levels that are closest to m ≈ n′(n′ + 1)/2. As in most cases, one level is closer the
approximation than the other, we compute a more precise estimate as well.

8.2.3 Experimental results and perspectives

As in previous chapters, all experiments were performed on a 2.40GHz Intel Xeon E5-2640
processor using 128 GB of RAM, and results are an average of 100 runs. Table 8.4 shows
a comparison between different approaches for solving mq systems. First, we conclude
that the best version of WDSat is the one with the xg-ext technique. Then, we can see
that CryptoMiniSat gives better results when the ge is turned on, however, WDSat
outperforms CryptoMiniSat for these instances. We did not run a Gröbner basis
attack, instead we show results from [YDH+15] for reference. In [YDH+15], Magma’s

124

Chapter 8. Other applications of logical cryptanalysis

Table 8.3: Complexity estimates of the mq problem with different parameters.

n
m = 2n m = n

Interval Precise Interval Precise

30 [219, 220] 219.55 [222, 223] 222.75

35 [223, 224] 223.67 [227, 228] 227.13

40 [227, 228] 227.85 [231, 232] 231.56

128 [2105, 2106] 2105.87 [2112, 2113] 2112.5

145 [2121, 2122] 2121.42 [2128, 2129] 2128.48

implementation of F4 is used and instances are generated using the same approach as in
our model generation. Thus, these results can serve as a rough comparison, even though
they are executed on different platforms. Both experiment sets are performed in a uni-
thread environment. This comparison shows that the Gröbner basis approach is far less
efficient for these parameters than sat solvers, which can be expected in the case of F2.
The current record holder for this type of instances of the mq challenge is the Joux-
Vitse hybrid algorithm [JV17]. We did not implement this algorithm to have comparative
experimental results, but according to running times reported in [Tak], our solver would
be outperformed by this algorithm.

Table 8.4: Comparing different approaches for solving the mq problem.

Solving approach n m Runtime #Conflicts

Gröbner [YDH+15] 25 50 658.157 NA

CMS 25 50 2598.660 9806242

CMSGE

25 50 383.064 2007847

30 60 28954.142 116013784

WDSat
25 50 57.851 14177200

30 60 2774.440 483437900

WDSatGE

25 50 23.772 1046328

30 60 1223.163 34718415

WDSatxg-ext

25 50 0.822 21140

30 60 17.714 379346

Choosing the WDSat xg-ext variant as optimal, we continued with experiments
for bigger parameters and results are shown in Table 8.5. It is clear that logical formulas
derived from polynomial systems where m = 2n are a lot easier to solve than those derived
from systems where m = n. The m = 2n parameter ratio is often used for encryption

125

Chapter 8. Other applications of logical cryptanalysis

schemes, such as ABC [TDTD13; DPW14], ZHFE [PBD14] and the QUAD [BGP06]

stream cipher.

Table 8.5: WDSat xg-ext version solving the mq problem.

n m Runtime #Conflicts

30
60 17.714 379346

30 78.034 2325179

35
70 605.837 7215819

35 3375.770 47649168

40
80 14867.168 124127894

40 105362.775 1059322736

To verify our complexity analysis in Section 8.2.2, we ran experiments on the same
instances, but this time, we asked the solver to find all solutions instead of just the
one. We took this approach because when the solver stops as soon as it finds a solution,
running times and number of conflicts can vary between different instances. When we
look for all solutions, we transverse the whole binary search tree, which is analogous to
the unsat case. Hence, this approach allows us to have an impartial comparison to the
estimated complexity, as the running time does not depend on the solution vector, which
is an arbitrary value. The results of these experiments are in Table 8.6 and are an average
of 100 runs. We observe that the number of conflicts is fairly close to the estimated
complexity.

Table 8.6: WDSat xg-ext version solving the mq problem.

n m Estimated complexity Runtime #Conflicts

30
60 219.55 38.748 809310

30 222.75 245.308 7124700

35
70 223.67 1349.579 15413208

35 227.13 9893.066 132561750

40
80 227.85 32734.160 265041578

40 231.56 315769.284 3067821370

In these randomly generated polynomial systems, each monomial has a 1/2 probability
to appear in each equation and thus has a very strong probability to have at least one
occurrence in the system. As a result, when we use the mvc preprocessing technique,
introduced in Chapter 7, the monomials connectivity graph of these polynomial systems
is complete and using the mvc technique does not yield better running times. Recall
that, when the graph is complete, the size of the mvc is equal to the number of variables.
However, we are hopeful that by building on the mvc preprocessing technique we can
develop improved attacks on mq .

126

Chapter 8. Other applications of logical cryptanalysis

Open question 7 There is a potential for the mvc technique to be used in more elab-
orate ways for mq attacks. Some ideas include computing the mvc dynamically instead
of as preprocessing, and looking for the mvc of a subset of equations.

Open question 8 WDSat can be used for attacks on specific mq-based cryptosystems
and coupled with more advanced mq attacks.

127

Chapter 9

Conclusion

This thesis explores the use of combinatorial techniques, such as graph-based algorithms
and constraint programming, in cryptanalysis. We present several instances where we
discover a reduction from a problem in cryptography to a problem in combinatorics and
then, we use techniques for solving one problem to solve the other. Most notably, since so
many cryptographic problems deal with Boolean constraints, there is a growing number
of cryptographic attacks that use sat solvers. Usually, generic sat solvers are used in
these attacks. Using a state-of-the-art generic sat solver has the advantage of having
a highly optimized implementation that encompasses best solving techniques, and, as a
result, these solvers can tackle huge instances in practice. However, we find that when
one has a solid understanding of the problem and the resulting model, there are specific
techniques that can be used to improve the resolution process. Motivated by the initial
results of a solver-aided attack in [GG14], we decided to take this approach for the index
calculus problem on curves over prime-degree binary extension fields. After developing
a sat solver dedicated to this specific problem, named WDSat, we used the solver as
a tool for attacks on other cryptosystems that yield algebraic and logical models with
similar properties to the index calculus one. As our main focus is on the ecdlp, we also
tackled this problem in the generic case. More specifically, we investigated the use of tree
and graph structures in the pcs attack.

Our original contributions include the following.

• In our work on the pcs algorithm, we proposed to replace the classical hash table
by a simple structure with lower memory requirements, that is inspired by radix
trees.

• We provided a more refined analysis of the running time of a parallel collision
search for finding multiple collisions, eliminating the heuristic in the analysis of van
Oorschot and Wiener [van91].

• We proposed an original xor-reasoning sat solver, dedicated to the problem of
solving the pdp in the index calculus attack.

• We developed a symmetry breaking technique for finding roots of Semaev’s sum-
mation polynomials that, in contrast to other symmetry breaking techniques, is not
applied to the modelization or the choice of a factor base, but to the solving process.
As a result of the simple algorithmic adjustments that we proposed, our technique
comes with no additional computational cost.

• Extending our solver with the xg-ext module yields, to the best of our knowledge,
a first sat solver that fully exploits the power of ge. Specifically, we detected a

128

Chapter 9. Conclusion

limitation of the ge technique in xor-enabled sat solvers that is not present in
algebraic solving techniques. As we proposed a simple solution to fix this oversight,
we are confident that future works will aim at making our solution more efficient at
the implementation level, as well as proposing a similar repair for other xor-enabled
sat solvers.

• We proposed a novel preprocessing technique, that uses the mvc problem to stat-
ically determine the order of branching variables. It is well-known that variables
whose assignment brings the polynomial system closer to a linear system should be
assigned first. In [SPF08], for instance, these are called ”suitable” variables. How-
ever, we formalized this idea by equating the problem of finding the lowest number
of variables that need to be assigned to obtain a linear system to the problem of
finding a Minimal Vertex Cover in a graph.

The complexity analysis and experimental work of this thesis show several results of our
contributions. Notably, our prtl storage structure results in lower memory occupation
for the pcs algorithm, both experimentally and asymptotically. In our work on solving
the pdp for prime-degree extension fields in characteristic 2, we presented experiments
using S ′4 with parameter sizes of up to l = 11 and n = 89. This presents a significant
improvement over the current state-of-the-art, as experiments using l > 8 have never
been shown before for this case. Moreover, memory is no longer a constraint for the pdp
when the Gröbner basis computation is replaced with sat solving. Lastly, we show that
the complexity of the pdp using the third summation polynomial is inherently different
than that of higher summation polynomials. However, using this polynomial is considered
impractical for the linear algebra step. Hence, it is unclear to us whether S3 should be
reconsidered for whole index calculus computations.

In terms of limitations, we ought to discuss our work on the cryptanalysis of the
Trivium cipher. Our experimental results show that the solver which was already used
for attacks on this cryptosystem, CryptoMiniSat, performs better than our solver for
these instances. Furthermore, our attempts to incorporate sat solving in Cube attacks
were unsuccessful. On the other hand, WDSat performs better than CryptoMiniSat
for instances arising from the mq problem. The conclusion that we can draw from these
experiences is that WDSat is more suitable for dense polynomial systems with fewer
variables and longer xor constraints, whereas CryptoMiniSat should be used for sparse
polynomial systems. As CryptoMiniSat does not fully profit from ge, through a xg-
ext-like technique for instance, a merge of best practices between the two solvers might
be of interest.

9.1 Open questions and extendibility

As we find that one of the most important contributions of a PhD thesis is to provide
ideas for future work, we dedicate a separate section to this discussion. In the different
chapters of this thesis, we introduced 8 clearly marked open questions and perspectives.
Some of them are recalled here in more detail.

Complexity of CNF-XOR instance solving. Solving sat instances derived from
cryptographic problems involves two polynomial sat solving algorithms: the hornsat
algorithm for the cnf part, and the ge technique for the xor part. The difficulty comes
from the requirement to find a solution in the intersection of the sets of solutions for these
two problems, which raises the fundamental question of how two polynomial sat problems
can be combined and what would be the resulting complexity of such an algorithm.

129

Chapter 9. Conclusion

WDSat and CDCL. WDSat does not implement clause learning at this time. We
have shown through several core examples that classical cdcl techniques do not improve
the number of conflicts for solving instances derived from multivariate polynomial systems.
However, we have not explored the possibility of using clauses learned from inconsistencies
in xor constraints. It may be of interest to use cdcl techniques coupled with the WDSat
solver and perform ge when the system becomes linear.

XOR reasoning with incomplete SAT solving techniques. This thesis discusses
only complete sat solving approaches. Another perspective would be to use incomplete
sat solvers, such as WalkSat, coupled with an xor reasoning module.

Understand the ml/n ratio for a whole index calculus computation. For the
case of elliptic curves over F2n , with n prime, it is clear that the pdp computation is
the bottleneck of the index calculus attack. The complexity of all existing approaches for
solving the pdp is strongly linked to the choice of the l parameter. Besides, the number of
relations that need to be found is exponential in l. This has prompted us to reason that,
apart from coming up with better algorithms for solving the pdp, the overall complexity
of the index calculus attack can only be improved by determining an optimal choice for
the value of l, with respect to parameters n and m.

Develop more elaborate techniques for using the MVC for solving MQ systems.
Random mq instances usually have complete monomials connectivity graphs. As a result,
the mvc technique can not compute an optimal order of branching variables when it is
used as preprocessing. A natural question that arises is whether computing the mvc
dynamically, i.e. on each, or some levels of the binary search tree, would yield better
results. Recall that, even though the mvc is an NP-complete problem, mvc instances
arising from the problem of finding an optimal branching order are practical. In addition,
one can consider looking for the mvc of a subset of equations or more specifically, of any
subset of polynomials in the vector space generated by polynomials in the initial system.

Use WDSat for attacks on other cryptosystems. After the success of WD-
Sat with instances derived from a Weil descent, and instances of the mq problem,
the solver can be tested against other problems for which Gröbner basis approaches
are used in practice. Such cryptosystems include, for instance, HFE [Pat96a], the
code-based McEliece [McE78], the UOV-based [KPG99] signatures Rainbow [DS05]

and LUOV [BP17] and the mq-based encryption schemes ABC [TDTD13; DPW14],
ZHFE [PBD14] and QUAD [BGP06].

In addition to introducing these open questions, we hope that the material presented
in this thesis will encourage the cryptographic community to use sat solvers extensively
for cryptanalysis over F2. In larger fields, other constraint programming techniques can
be considered.

130

Bibliography

[ACC+18] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred
Menezes, and Francisco Rodŕıguez-Henŕıquez. On the cost of computing
isogenies between supersingular elliptic curves. In Carlos Cid and Michael
J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018 - 25th
International Conference, Calgary, AB, Canada, August 15-17, 2018, Re-
vised Selected Papers, volume 11349 of Lecture Notes in Computer Science,
pages 322–343. Springer, 2018.

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang. A
subexponential algorithm for discrete logarithms over the rational subgroup
of the jacobians of large genus hyperelliptic curves over finite fields. In
Leonard M. Adleman and Ming-Deh Huang, editors, Algorithmic Number
Theory, pages 28–40, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube
testers and key recovery attacks on reduced-round md6 and trivium. In Orr
Dunkelman, editor, Fast Software Encryption, pages 1–22, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison between XL and gröbner basis algorithms. In
Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, 10th
International Conference on the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, December 5-9, 2004, Proceed-
ings, volume 3329 of Lecture Notes in Computer Science, pages 338–353.
Springer, 2004.

[AFK87] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information
from an oracle. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, page 195–203, New York, NY, USA,
1987. Association for Computing Machinery.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009, pages 399–404, 2009.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. PhD thesis, Pierre and Marie
Curie University, Paris, France, 2004.

[BBB+09] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W.
Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo

131

BIBLIOGRAPHY

de Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu,
Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben
Niederhagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uh-
sadel, Anthony Van Herrewege, and Bo-Yin Yang. Breaking ecc2k-130.
Cryptology ePrint Archive, Report 2009/541, 2009. https://eprint.iacr.
org/2009/541.

[BBB+20] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent
Neiger, Olivier Ruatta, and Jean-Pierre Tillich. An algebraic attack on
rank metric code-based cryptosystems. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, pages 64–93, Cham,
2020. Springer International Publishing.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou,
Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search
for polynomial systems in F2. In Stefan Mangard and François-Xavier
Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES
2010, pages 203–218, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BCC+13] Charles Bouillaguet, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
and Bo-Yin Yang. Fast exhaustive search for quadratic systems in F2 on
FPGAs. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors, Se-
lected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, vol-
ume 8282 of Lecture Notes in Computer Science, pages 205–222. Springer,
2013.

[BCLA83] Bruno Buchberger, George E. Collins, Rudiger Loos, and Rudolf Albrecht,
editors. Computer Algebra: Symbolic and Algebraic Computation (2nd Ed.).
Springer-Verlag, Berlin, Heidelberg, 1983.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[BEL+] Daniel J. Bernstein, Susanne Engels, Tanja Lange, Ruben Niederhagen,
Christof Paar, Peter Schwabe, and Ralf Zimmermann. Faster elliptic-curve
discrete logarithms on FPGAs. https://eprint.iacr.org/2016/382.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’01, page 213–229, Berlin,
Heidelberg, 2001. Springer-Verlag.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. J. Mathematical Cryptol-
ogy, 3(3):177–197, 2009.

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polyno-
mial systems over finite fields: Improved analysis of the hybrid approach.
In Proceedings of the 37th International Symposium on Symbolic and Al-
gebraic Computation, ISSAC ’12, page 67–74, New York, NY, USA, 2012.
Association for Computing Machinery.

132

https://eprint.iacr.org/2009/541
https://eprint.iacr.org/2009/541
https://eprint.iacr.org/2016/382

BIBLIOGRAPHY

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity
of the F5 gröbner basis algorithm. J. Symb. Comput., 70:49–70, 2015.

[BFSS13] Magali Bardet, Jean-Charles FaugèRe, Bruno Salvy, and Pierre-Jean Spaen-
lehauer. On the complexity of solving quadratic boolean systems. J. Com-
plex., 29(1):53–75, February 2013.

[BFSY05] Magali. Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degree of regularity of semi-regular polyno-
mial systems. In IN MEGA’05, 2005. EIGHTH INTERNATIONAL SYM-
POSIUM ON EFFECTIVE METHODS IN ALGEBRAIC GEOMETRY,
2005.

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. Quad: A practical
stream cipher with provable security. In Serge Vaudenay, editor, Advances
in Cryptology - EUROCRYPT 2006, pages 109–128, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009.

[Bib07] Wolfgang Bibel. Early history and perspectives of automated deduction. In
Joachim Hertzberg, Michael Beetz, and Roman Englert, editors, KI 2007:
Advances in Artificial Intelligence, pages 2–18, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[Bie] Armin Biere. CaDiCaL Simplified Satisfiability Solver. http://fmv.jku.at/
cadical/. Accessed: 2020-05-27.

[BKK+12] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra,
and Peter L. Montgomery. Solving a 112-bit prime elliptic curve discrete
logarithm problem on game consoles using sloppy reduction. Int. J. Appl.
Cryptogr., 2(3):212–228, 2012.

[BLS11] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. On the Correct Use
of the Negation Map in the Pollard rho Method. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th
International Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 6571 of Lecture Notes in Computer Science, pages 128–146,
Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Germany.

[Blu18] BlueKrypt. Cryptographic key length recommendation. https://www.
keylength.com, 2018. Accessed: 2020-07-08.

[BM00] Peter Baumgartner and Fabio Massacci. The taming of the (x)or. In John
Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Lúıs Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic — CL 2000, pages 508–522, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

[Bol01] Béla Bollobás. Random Graphs. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2 edition, 2001.

133

http://fmv.jku.at/cadical/
http://fmv.jku.at/cadical/
https://www.keylength.com
https://www.keylength.com

BIBLIOGRAPHY

[Bou16] Charles Bouillaguet. LibFES-lite. https://github.com/cbouilla/libfes-lite,
2016.

[BP17] Ward Beullens and Bart Preneel. Field lifting for smaller uov public keys.
Cryptology ePrint Archive, Report 2017/776, 2017. https://eprint.iacr.org/
2017/776.

[Bre80] Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT,
20:176–184, 1980.

[BS96] Max Böhm and Ewald Speckenmeyer. A fast parallel sat-solver - efficient
workload balancing. Ann. Math. Artif. Intell., 17(3-4):381–400, 1996.

[Buc79] Bruno Buchberger. A criterion for detecting unnecessary reductions in the
construction of gröbner-bases. In Edward W. Ng, editor, Symbolic and Al-
gebraic Computation, pages 3–21, Berlin, Heidelberg, 1979. Springer Berlin
Heidelberg.

[Buc85] Bruno Buchberger. Gröbner bases: An algorithmic method in polynomial
ideal theory. Multidimensional Systems Theory, pages 184–232, 01 1985.

[Buc06] Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for
finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. J. Symb. Comput., 41(3–4):475–511, March 2006.

[Che09] Jingchao Chen. Building a hybrid sat solver via conflict-driven, look-ahead
and xor reasoning techniques. In Oliver Kullmann, editor, Theory and
Applications of Satisfiability Testing - SAT 2009, pages 298–311, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate polyno-
mial equations. In Bart Preneel, editor, Advances in Cryptology — EU-
ROCRYPT 2000, pages 392–407, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[CL05] Carlos Cid and Gaëtan Leurent. An analysis of the xsl algorithm. In Bimal
Roy, editor, Advances in Cryptology - ASIACRYPT 2005, pages 333–352,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Com-
mutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-
Verlag, Berlin, Heidelberg, 2007.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, page 151–158, New York, NY, USA, 1971. Association for Com-
puting Machinery.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. In Proceedings of the 8th International
Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, ASIACRYPT ’02, page 267–287, Berlin,
Heidelberg, 2002. Springer-Verlag.

134

https://github.com/cbouilla/libfes-lite
https://eprint.iacr.org/2017/776
https://eprint.iacr.org/2017/776

BIBLIOGRAPHY

[CSCM19] Davin Choo, Mate Soos, Kian Ming Adam Chai, and Kuldeep S. Meel.
Bosphorus: Bridging ANF and CNF solvers. In Design, Automation & Test
in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-
29, 2019, pages 468–473, 2019.

[DC06] Christophe De Cannière. Trivium: A stream cipher construction inspired
by block cipher design principles. In Sokratis K. Katsikas, Javier López,
Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors, Information
Security, pages 171–186, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[DD04] Gilles Dequen and Olivier Dubois. kcnfs: An efficient solver for random
k-sat formulae. In Enrico Giunchiglia and Armando Tacchella, editors,
Theory and Applications of Satisfiability Testing, pages 486–501, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[DDS+20] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang.
Cryptanalysis of the lifted unbalanced oil vinegar signature scheme. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy – CRYPTO 2020, pages 279–298, Cham, 2020. Springer International
Publishing.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. J. Log. Program., 1(3):267–
284, 1984.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22:644–654, 1976. URL:
http://cr.yp.to/bib/entries.html#1976/diffie.

[Die03] Claus Diem. The ghs attack in odd characteristic, 2003.

[Die04] Claus Diem. The xl-algorithm and a conjecture from commutative algebra.
In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, pages
323–337, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Die11] Claus Diem. On the discrete logarithm problem in elliptic curves. Compo-
sitio Mathematica, 147(1):75–104, 2011.

[Die13] Claus Diem. On the discrete logarithm problem in elliptic curves II. Algebra
& Number Theory, 7(6):1281–1323, 2013.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, July 1960.

[DPW14] Jintai Ding, Albrecht Petzoldt, and Lih-chung Wang. The cubic simple
matrix encryption scheme. In Michele Mosca, editor, Post-Quantum Cryp-
tography, pages 76–87, Cham, 2014. Springer International Publishing.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung,
editors, Applied Cryptography and Network Security, pages 164–175, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

135

BIBLIOGRAPHY

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polyno-
mials. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, pages 278–299, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In George Robert Blakley and David Chaum, editors,
Advances in Cryptology, pages 10–18, Berlin, Heidelberg, 1985. Springer
Berlin Heidelberg.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and
Applications of Satisfiability Testing, pages 502–518, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[eST] ECRYPT Stream Cipher Project. https://www.ecrypt.eu.org/stream/. Ac-
cessed: 2020-11-06.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
basis (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
basis without reduction to zero (F5). In Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’02,
pages 75–83, New York, NY, USA, 2002. ACM.

[Fau10] Jean-Charles Faugère. FGb: A Library for Computing Gröbner Bases.
In Komei Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama,
editors, Mathematical Software - ICMS 2010, volume 6327 of Lecture Notes
in Computer Science, pages 84–87, Berlin, Heidelberg, September 2010.
Springer Berlin / Heidelberg.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
Efficient computation of zero-dimensional gröbner bases by change of or-
dering. J. Symb. Comput., 16(4):329–344, 1993.

[FHJ+14] Jean-Charles Faugère, Louise Huot, Antoine Joux, Guénaël Renault, and
Vanessa Vitse. Symmetrized summation polynomials: Using small order
torsion points to speed up elliptic curve index calculus. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 40–57. Springer, 2014.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hid-
den field equation (hfe) cryptosystems using gröbner bases. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, pages 44–60, Berlin, Hei-
delberg, 2003. Springer Berlin Heidelberg.

[FJM14a] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user
collisions: Applications to discrete logarithm, even-mansour and prince. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, pages 420–438, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

136

https://www.ecrypt.eu.org/stream/

BIBLIOGRAPHY

[FJM14b] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user
collisions: Applications to discrete logarithm, Even-Mansour and PRINCE.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part I, volume 8873 of Lecture Notes in Computer Science,
pages 420–438, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer,
Heidelberg, Germany.

[FPPR12] Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Re-
nault. Improving the Complexity of Index Calculus Algorithms in Elliptic
Curves over Binary Fields. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology - Eurocrypt 2012 - 31st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 27–44, 2012.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility
and the discrete logarithm in the divisor class group of curves. Math. Com-
put., 62(206):865–874, April 1994.

[Fre60] Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–499, September
1960.

[Fre95] Jon William Freeman. Improvements to Propositional Satisfiability Search
Algorithms. PhD thesis, USA, 1995.

[Fre98] Gerhard Frey. How to disguise an elliptic curve (weil descent). Talk at the
2nd Elliptic Curve Cryptography Workshop (ECC), 1998.

[Gau00] Pierrick Gaudry. An algorithm for solving the discrete log problem on
hyperelliptic curves. In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, pages 19–34, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[Gau09] Pierrick Gaudry. Index calculus for abelian varieties of small dimension
and the elliptic curve discrete logarithm problem. J. Symb. Comput.,
44(12):1690–1702, 2009.

[GG14] Steven D. Galbraith and Shishay W. Gebregiyorgis. Summation polyno-
mial algorithms for elliptic curves in characteristic two. In Willi Meier and
Debdeep Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT
2014 - 15th International Conference on Cryptology in India, volume 8885
of Lecture Notes in Computer Science, pages 409–427. Springer, 2014.

[GHS02] Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and de-
structive facets of weil descent on elliptic curves. J. Cryptology, 15:19–46,
2002.

[GLMS18] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon.
Revisiting AES related-key differential attacks with constraint program-
ming. Inf. Process. Lett., 139:24–29, 2018.

[GLMS20] David Gerault, Pascal Lafourcade, Marine Minier, and Christine Solnon.
Computing AES related-key differential characteristics with constraint pro-
gramming. Artif. Intell., 278, 2020.

137

BIBLIOGRAPHY

[GLS84] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algo-
rithms for perfect graphs. North-Holland Mathematics Studies, 88(C):325–
356, January 1984.

[GMS17] David Gerault, Marine Minier, and Christine Solnon. Using constraint
programming to solve a cryptanalytic problem. In Carles Sierra, editor,
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
4844–4848. ijcai.org, 2017.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Asso-
ciation for Computing Machinery.

[GTTD07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A
double large prime variation for small genus hyperelliptic index calculus.
Math. Comput., 76(257):475–492, 2007.

[GWC86] Carl Friedrich Gauss, William C. Waterhouse, and Arthur A. Clarke. Dis-
quisitiones Arithmeticae. Springer-Verlag, 1986.

[Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in
Mathematics. Springer, 1977.

[HDvZvM04] Marijn Heule, Mark Dufour, Joris van Zwieten, and Hans van Maaren.
March eq: Implementing additional reasoning into an efficient look-ahead
SAT solver. In Holger H. Hoos and David G. Mitchell, editors, Theory and
Applications of Satisfiability Testing, 7th International Conference, SAT
2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Pa-
pers, volume 3542 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2004.

[HGSW03] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. A meet-
in-the-middle attack on an NTRU private key. Tehnical report, NTRU
Cryptosystems, 2003.

[HJ12a] Cheng-Shen Han and Jie-Hong Roland Jiang. When Boolean Satisfiability
Meets Gaussian Elimination in a Simplex Way. In P. Madhusudan and San-
jit A. Seshia, editors, Computer Aided Verification, pages 410–426, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[HJ12b] Cheng-Shen Han and Jie-Hong Roland Jiang. When boolean satisfiability
meets gaussian elimination in a simplex way. In P. Madhusudan and San-
jit A. Seshia, editors, Computer Aided Verification, pages 410–426, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras. J.
Symbolic Logic, 16(1):14–21, 03 1951.

[Iso11] Takanori Isobe. A single-key attack on the full GOST block cipher. In
Antoine Joux, editor, Fast Software Encryption – FSE 2011, volume 6733
of Lecture Notes in Computer Science, pages 290–305, Lyngby, Denmark,
February 13–16, 2011. Springer, Heidelberg, Germany.

138

BIBLIOGRAPHY

[Jac39] Carl G. J. Jacobi. Canon arithmeticus. Typis academicis, 1839.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie–hellman. In Wieb
Bosma, editor, Algorithmic Number Theory, pages 385–393, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[Jou09] Antoine Joux. Algorithmic Cryptanalysis, chapter 7, pages 225–226. Chap-
man & Hall/CRC, 2009.

[JV12] Antoine Joux and Vanessa Vitse. Cover and Decomposition Index Calculus
on Elliptic Curves made practical. Application to a seemingly secure curve
over Fp6 . In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology - Eurocrypt 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 7237, pages
9–26. Springer, 2012.

[JV13] Antoine Joux and Vanessa Vitse. Elliptic curve discrete logarithm problem
over small degree extension fields - application to the static diffie-hellman
problem on $e(\mathbb{F} {qˆ{5}})$. J. Cryptol., 26(1):119–143, 2013.

[JV17] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving boolean
polynomial systems. In Jerzy Kaczorowski, Josef Pieprzyk, and Jacek
Pomykala, editors, Number-Theoretic Methods in Cryptology - First Inter-
national Conference, NuTMiC 2017, Warsaw, Poland, September 11-13,
2017, Revised Selected Papers, volume 10737 of Lecture Notes in Computer
Science, pages 3–21. Springer, 2017.

[JWB09] Peter L. Montgomery Joppe W. Bos, Marcelo E. Kaihara. Pollard rho on the
playstation 3. Workshop record of SHARCS’09 http://www.hyperelliptic.
org/tanja/SHARCS/record2.pdf, 2009.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd
Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1998.

[KNW09] Dmitry Khovratovich, Ivica Nikolic, and Ralf-Philipp Weinmann. Meet-
in-the-middle attacks on SHA-3 candidates. In Orr Dunkelman, editor,
Fast Software Encryption – FSE 2009, volume 5665 of Lecture Notes in
Computer Science, pages 228–245, Leuven, Belgium, February 22–25, 2009.
Springer, Heidelberg, Germany.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

[Kob92a] Neal Koblitz. CM-Curves with Good Cryptographic Properties. In Joan
Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 279–
287, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[Kob92b] Neal Koblitz. Cm-curves with good cryptographic properties. In Joan
Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 279–
287, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

139

http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf

BIBLIOGRAPHY

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Jacques Stern, editor, Advances in Cryptology
— EUROCRYPT ’99, pages 206–222, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[Kra26] Maurice Kraitchik. Théorie des nombres. Tome II. Analyse indéterminée
du second degré et factorisation. Paris: Gauthier-Villars, 1926.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryp-
tosystem by relinearization. In Michael Wiener, editor, Advances in Cryp-
tology — CRYPTO’ 99, pages 19–30, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[KS01] Fabian Kuhn and René Struik. Random walks revisited: Extensions of
Pollard’s rho algorithm for computing multiple discrete logarithms. In Serge
Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography,
pages 212–229, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Laz83] Daniele Lazard. Göbner bases, Gaussian elimination and resolution of sys-
tems of algebraic equations. In J. A. van Hulzen, editor, Computer Algebra,
EUROCAL ’83, European Computer Algebra Conference, London, England,
March 28-30, 1983, Proceedings, volume 162 of Lecture Notes in Computer
Science. Springer, 1983.

[LCM+17] Fanghui Liu, Waldemar Cruz, Chujiao Ma, Greg Johnson, and Laurent
Michel. A tolerant algebraic side-channel attack on aes using cp. In
J. Christopher Beck, editor, Principles and Practice of Constraint Pro-
gramming, pages 189–205, Cham, 2017. Springer International Publishing.

[LCM18] Fanghui Liu, Waldemar Cruz, and Laurent Michel. A complete tolerant al-
gebraic side-channel attack for aes with cp. In John Hooker, editor, Princi-
ples and Practice of Constraint Programming, pages 259–275, Cham, 2018.
Springer International Publishing.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Infor-
mation Transmission, 9(3), 1973.

[Li99] Chu Min Li. A constraint-based approach to narrow search trees for satis-
fiability. Information Processing Letters, 71(2):75 – 80, 1999.

[Li00] Chu Min Li. Integrating equivalency reasoning into davis-putnam proce-
dure. In Henry A. Kautz and Bruce W. Porter, editors, Proceedings of
the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial Intelligence, July 30
- August 3, 2000, Austin, Texas, USA, pages 291–296. AAAI Press / The
MIT Press, 2000.

[LJMP93] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M.
Pollard. The Number Field Sieve, pages 11–42. Springer Berlin Heidelberg,
1993.

[LJN11] Tero Laitinen, Tommi A. Junttila, and Ilkka Niemelä. Equivalence Class
Based Parity Reasoning with DPLL(XOR). In 2011 IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence, pages 649–658, Nov
2011.

140

BIBLIOGRAPHY

[LJN14] Tero Laitinen, Tommi A. Junttila, and Ilkka Niemelä. Conflict-Driven
XOR-Clause Learning (extended version). CoRR, abs/1407.6571, 2014.

[LM91] Arjen K. Lenstra and Mark S. Manasse. Factoring with two large primes
(extended abstract). In Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques on Advances in Cryptology, EU-
ROCRYPT ’90, page 72–82, Berlin, Heidelberg, 1991. Springer-Verlag.

[LMPP18] Daniel Lokshtanov, Ivan Mikhailin, Ramamohan Paturi, and Pavel Pudlák.
Beating Brute Force for (Quantified) Satisfiability of Circuits of Bounded
Treewidth. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 247–261, 2018.

[Mac02] Francis S. MacAulay. Some Formulæ in Elimination. Proceedings of the
London Mathematical Society, s1-35(1):3–27, 05 1902.

[Mac16] Francis S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
tracts in mathematics and mathematical physics. University Press, 1916.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic Cod-
ing Theory. Deep Space Network Progress Report, 44:114–116, January
1978.

[MCP07] Cameron McDonald, Chris Charnes, and Josef Pieprzyk. An algebraic anal-
ysis of trivium ciphers based on the boolean satisfiability problem. IACR
Cryptol. ePrint Arch., 2007:129, 2007.

[MH06] Ralph Merkle and Martin Hellman. Hiding information and signatures in
trapdoor knapsacks. IEEE Trans. Inf. Theor., 24(5):525–530, September
2006.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology, CRYPTO ’85, page 417–426, Berlin, Heidelberg, 1985. Springer-
Verlag.

[MM00] Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Prob-
lem. J. Autom. Reasoning, 24(1/2):165–203, 2000.

[MM11] Martin Maechler and Maintainer Martin Maechler. GNU Multiple Precision
Arithmetic Library. https://gmplib.org/, 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. In Proceedings of
the 38th Design Automation Conference (IEEE Cat. No.01CH37232), pages
530–535, 2001.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing ellip-
tic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory,
39(5):1639–1646, 1993.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. The rebound attack: Cryptanalysis of reduced Whirlpool and
Grøstl. In Orr Dunkelman, editor, Fast Software Encryption – FSE 2009,
volume 5665 of Lecture Notes in Computer Science, pages 260–276, Leuven,
Belgium, February 22–25, 2009. Springer, Heidelberg, Germany.

141

https://gmplib.org/

BIBLIOGRAPHY

[MSS96] João P. Marques-Silva and Karem A. Sakallah. Conflict Analysis in Search
Algorithms for Satisfiability. In ICTAI, pages 467–469. IEEE Computer
Society, 1996.

[MSS97] João P. Marques-Silva and Karem A. Sakallah. Grasp—a new search algo-
rithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’96, page 220–227, USA,
1997. IEEE Computer Society.

[Nat] National Institute of Standards and Technology. NIST Post-
Quantum Cryptography Standardization. https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization.
Accessed: 2020-07-23.

[NIS92] CORPORATE NIST. The digital signature standard. Commun. ACM,
35(7):36–40, July 1992.

[NNY18] Ruben Niederhagen, Kai-Chun Ning, and Bo-Yin Yang. Implementing joux-
vitse’s crossbred algorithm for solving MQ systems over GF(2) on gpus. In
Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography,
pages 121–141, Cham, 2018. Springer International Publishing.

[NR18] Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf
Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applica-
tions of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Ox-
ford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 111–121. Springer, 2018.

[OPE] Open Multi-Processing Specification for Parallel Programming. https://
gmplib.org/.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, vol-
ume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer,
1999.

[Pat96a] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of
Polynomials (IP): Two New Families of Asymmetric Algorithms. In Ueli
Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 33–48,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[Pat96b] Patarin Jacques. HFE first challenge. http://www.minrank.org/challenge1.
txt, 1996. Accessed: 2020-11-15.

[PBD14] Jaiberth Porras, John Baena, and Jintai Ding. Zhfe, a new multivariate
public key encryption scheme. In Michele Mosca, editor, Post-Quantum
Cryptography, pages 229–245, Cham, 2014. Springer International Publish-
ing.

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for comput-
ing logarithms overgf(p)and its cryptographic significance (corresp.). IEEE
Transactions on Information Theory, 24(1):106–110, 1978.

142

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://gmplib.org/
https://gmplib.org/
http://www.minrank.org/challenge1.txt
http://www.minrank.org/challenge1.txt

BIBLIOGRAPHY

[Pol78] John M. Pollard. Monte carlo methods for index computation ((mod p)).
Mathematics of Computation, 32(143):918–924, 1978.

[Pom82] Carl Pomerance. Analysis and comparison of some integer factoring algo-
rithms. In Computational methods in number theory, Part I, volume 154 of
Math. Centre Tracts, page 89–139. Math. Centrum, Amsterdam, 1982.

[Pom87] Carl Pomerance. Fast, rigorous factorization and discrete logarithm algo-
rithms. In David S. Johnson, Takao Nishizeki, Akihiro Nozaki, and Her-
bert S. Wilf, editors, Discrete Algorithms and Complexity, pages 119 – 143.
Academic Press, 1987.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On Polynomial Systems
Arising from a Weil Descent. In Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, volume 7658 of Lecture Notes in Com-
puter Science, pages 451–466. Springer, 2012.

[QW15] Frank-M. Quedenfeld and Christopher Wolf. Advanced algebraic attack on
trivium. In Ilias S. Kotsireas, Siegfried M. Rump, and Chee K. Yap, editors,
Mathematical Aspects of Computer and Information Sciences - 6th Interna-
tional Conference, MACIS 2015, Berlin, Germany, November 11-13, 2015,
Revised Selected Papers, volume 9582 of Lecture Notes in Computer Science,
pages 268–282. Springer, 2015.

[Rad06] H̊avard Raddum. Cryptanalytic results on TRIVIUM, 2006.

[RS06] H̊avard Raddum and Igor A. Semaev. New technique for solving sparse
equation systems. IACR Cryptol. ePrint Arch., 2006:475, 2006.

[RS07] H̊avard Raddum and Igor A. Semaev. Solving MRHS linear equations.
IACR Cryptol. ePrint Arch., 2007:285, 2007.

[S+] William A. Stein et al. Sage Mathematics Software. The Sage Development
Team. http://www.sagemath.org.

[Sch90] Claus P. Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceed-
ings, pages 239–252, New York, NY, 1990. Springer New York.

[SE05] Niklas Sörensson and Niklas Eén. A SAT Solver with Conflict-Clause Min-
imization. Proc. Theory and Applications of Satisfiability Testing, 2005.

[Sem04] Igor A. Semaev. Summation polynomials and the discrete logarithm prob-
lem on elliptic curves. IACR Cryptology ePrint Archive, 2004:31, 2004.

[Sem08] Igor A. Semaev. On solving sparse algebraic equations over finite fields.
Des. Codes Cryptogr., 49(1-3):47–60, 2008.

[Sem16] Igor Semaev. Maxminmax problem and sparse equations over finite fields.
Des. Codes Cryptography, 79(2):383–404, May 2016.

[Sha83] Adi Shamir. A polynomial time algorithm for breaking the basic merkle-
hellman cryptosystem. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, Advances in Cryptology, pages 279–288, Boston, MA,
1983. Springer US.

143

BIBLIOGRAPHY

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, October 1997.

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics. Springer, 1986.

[SKC93] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies
for satisfiability testing. In David S. Johnson and Michael A. Trick, editors,
Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop,
New Brunswick, New Jersey, USA, October 11-13, 1993, volume 26 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 521–531. DIMACS/AMS, 1993.

[SLM92] Bart Selman, Hector Levesque, and David Mitchell. A new method for
solving hard satisfiability problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAI’92, page 440–446. AAAI Press,
1992.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers
to Cryptographic Problems. In SAT, volume 5584 of Lecture Notes in Com-
puter Science, pages 244–257. Springer, 2009.

[Soo10a] Mate Soos. Enhanced Gaussian elimination in DPLL-based SAT solvers.
In In Pragmatics of SAT, 2010.

[Soo10b] Mate Soos. Grain of Salt — an Automated Way to Test Stream Ciphers
through SAT Solvers. In Tools’10: the Workshop on Tools for Cryptanalysis
2010, pages 131–144, London, United Kingdom, June 2010.

[Spa12] Pierre-Jean Spaenlehauer. Solving multi-homogeneous and determinan-
tal systems: algorithms, complexity, applications. (Résolution de systèmes
multi-homogènes et déterminantiels : algorithmes, complexité, applica-
tions). PhD thesis, Pierre and Marie Curie University, Paris, France, 2012.

[SPF08] Ilaria Simonetti, Ludovic Perret, and Jean Charles FaugÃšre. Algebraic at-
tack against Trivium. In First International Conference on Symbolic Com-
putation and Cryptography, pages 95–102, 2008.

[ST13] Michael Shantz and Edlyn Teske. Solving the Elliptic Curve Discrete Loga-
rithm Problem Using Semaev Polynomials, Weil Descent and Gröbner basis
methods - an experimental study. In Number Theory and Cryptography -
Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birth-
day, pages 94–107, 2013.

[Sta10] Juraj Stacho. 3-colouring at-free graphs in polynomial time. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and
Computation, pages 144–155, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[Ste04] Steel Allan. Allan Steel’s Gröbner Basis Timings Page. http://magma.
maths.usyd.edu.au/users/allan/gb/, 2004. Accessed: 2020-11-15.

144

http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/

BIBLIOGRAPHY

[Sva14] Jules Svartz. Solving zero-dimensional structured polynomial systems.
(Résolution de systèmes polynomiaux structurés de dimension zéro). PhD
thesis, Pierre and Marie Curie University, Paris, France, 2014.

[SW16] Peter Schwabe and Bas Westerbaan. Solving binary MQ with grover’s al-
gorithm. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors,
Security, Privacy, and Applied Cryptography Engineering - 6th Interna-
tional Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016,
Proceedings, volume 10076 of Lecture Notes in Computer Science, pages
303–322. Springer, 2016.

[Tak] Takanori Yasuda and Xavier Dahan and Yun-Ju Huang and Tsuyoshi
Takagi and Kouichi Sakurai. Fukuoka MQ Challenge. https://www.
mqchallenge.org/. Accessed: 2020-11-15.

[TDTD13] Chengdong Tao, Adama Diene, Shaohua Tang, and Jintai Ding. Simple
matrix scheme for encryption. In Philippe Gaborit, editor, Post-Quantum
Cryptography, pages 231–242, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[Tes01] Edlyn Teske. On random walks for Pollard’s rho method. Math. Comp.,
70(234):809–825, 2001.

[TID17] Monika Trimoska, Sorina Ionica, and Gilles Dequen. Time-memory trade-
offs for parallel collision search algorithms. Cryptology ePrint Archive,
Report 2017/581, 2017. https://eprint.iacr.org/2017/581.

[TID19] Monika Trimoska, Sorina Ionica, and Gilles Dequen. Parallel Collision
Search Implementation. https://github.com/mtrimoska/PCS, 2019.

[TID20a] Monika Trimoska, Sorina Ionica, and Gilles Dequen. EC In-
dex Calculus Benchmarks. https://github.com/mtrimoska/
EC-Index-Calculus-Benchmarks, 2020.

[TID20b] Monika Trimoska, Sorina Ionica, and Gilles Dequen. Parity (xor) reasoning
for the index calculus attack. In Helmut Simonis, editor, Principles and
Practice of Constraint Programming, pages 774–790, Cham, 2020. Springer
International Publishing.

[TID20c] Monika Trimoska, Sorina Ionica, and Gilles Dequen. A sat-based approach
for index calculus on binary elliptic curves. In Abderrahmane Nitaj and Amr
Youssef, editors, Progress in Cryptology - AFRICACRYPT 2020, pages
214–235, Cham, 2020. Springer International Publishing.

[TID20d] Monika Trimoska, Sorina Ionica, and Gilles Dequen. WDSat Solver. https:
//https://github.com/mtrimoska/WDSat, 2020.

[van91] Paul C. van Oorschot. A comparison of practical public key cryptosystems
based on integer factorization and discrete logarithms. In Alfred J. Menezes
and Scott A. Vanstone, editors, Advances in Cryptology – CRYPTO’90,
volume 537 of Lecture Notes in Computer Science, pages 576–581, Santa
Barbara, CA, USA, August 11–15, 1991. Springer, Heidelberg, Germany.

145

https://www.mqchallenge.org/
https://www.mqchallenge.org/
https://eprint.iacr.org/2017/581
https://github.com/mtrimoska/PCS
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://https://github.com/mtrimoska/WDSat
https://https://github.com/mtrimoska/WDSat

BIBLIOGRAPHY

[Vit11] Vanessa Vitse. Attaques algébriques du problème du logarithme discret sur
courbes elliptiques. (Algebraic attacks on the elliptic curve discrete loga-
rithm problem). PhD thesis, Versailles Saint-Quentin-en-Yvelines Univer-
sity, France, 2011.

[vMF] Hans van Maaren and John Franco. The International SAT Competition
Web Page. http://www.satcompetition.org/. Accessed: 2020-05-27.

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

[vV16] Christine van Vredendaal. Reduced memory meet-in-the-middle attack
against the NTRU private key. LMS Journal of Computation and Mathe-
matics, 19(Issue A (Algorithmic Number Theory Symposium XII)):43–57,
2016.

[vW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of Cryptology, 12(1):1–28, 1999.

[YC04] Bo-Yin Yang and Jiun-Ming Chen. Theoretical analysis of xl over small
fields. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors,
Information Security and Privacy, pages 277–288, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. All in the xl family: Theory and prac-
tice. In Choon-sik Park and Seongtaek Chee, editors, Information Secu-
rity and Cryptology – ICISC 2004, pages 67–86, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[YCC04] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T. Courtois. On asymptotic se-
curity estimates in xl and gröbner bases-related algebraic cryptanalysis. In
Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, Information and Com-
munications Security, pages 401–413, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[YCY13] Jenny Yuan-Chun Yeh, Chen-Mou Cheng, and Bo-Yin Yang. Operating
degrees for XL vs. F4/F5 for generic mathcalMQ with number of equations
linear in that of variables. Berlin: Springer, 0 edition, 2013.

[YDH+15] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and
Kouichi Sakurai. MQ challenge: Hardness evaluation of solving multivariate
quadratic problems. IACR Cryptol. ePrint Arch., 2015:275, 2015.

[YJPST13] Huang Yun-Ju, Christophe Petit, Naoyuki Shinohara, and Tsuyoshi Tak-
agi. Improvement to Faugère et al.’s method to solve ECDLP. In Kazuo
Sakiyama and Masayuki Terada, editors, Advances in Information and
Computer Security - 8th International Workshop on Security, IWSEC
2013, volume 8231 of Lecture Notes in Computer Science, pages 115–132.
Springer, 2013.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Ma-
lik. Efficient conflict driven learning in a boolean satisfiability solver. In Pro-
ceedings of the 2001 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD ’01, page 279–285. IEEE Press, 2001.

146

http://www.satcompetition.org/

Résumé

Les attaques cryptographiques que nous décrivons dans cette thèse reposent sur des ap-
proches combinatoires, relevant notamment de la théorie des graphes et de la satisfaction
sous contraintes. Notre objectif principal concerne l’étude du problème du logarithme dis-
cret sur courbes elliptiques. Dans un premier temps, nous nous concentrons sur l’attaque
de calcul d’index pour le cas des courbes elliptiques définies sur des extensions de corps
finis de degré premier. Ainsi, la première phase du calcul d’index, phase de recherche
de relations, consiste à résoudre des systèmes d’équations obtenus à partir de polynômes
de Semaev, dont les zéros représentent des coordonnées de points. La résolution de ces
systèmes répond au problème de décomposition de points. Dans le cadre de cette at-
taque, premièrement, nous modélisons le problème de décomposition de points sous la
forme d’une formule logique et nous le définissons comme une instance du problème sat.
En ajout de cela, nous développons un solveur sat dédié à ce problème spécifique, nommé
WDSat. Le solveur est muni d’une extension qui vise à éliminer les solutions symétriques
des polynômes de Semaev sans agrandir le modèle sat et sans introduire de coût de calcul
supplémentaire. Les temps d’exécution expérimentaux montrent que notre approche de
résolution utilisant WDSat est significativement plus rapide que les méthodes algébriques
actuelles basées sur le calcul de bases de Gröbner. De plus, notre solveur a des meilleures
performances que d’autres solveurs sat couramment utilisés, pour ce problème spécifique.
Au final, nous abordons le problème du logarithme discret sur courbes elliptiques dans le
cas générique. Notamment, pour la mise en oeuvre de l’attaque de recherche de collisions
en contexte parallèle de van Oorschot et Wiener, nous proposons une nouvelle structure de
données, ayant des conséquences importantes sur la complexité en mémoire et en temps.

Abstract

In this thesis, we explore the use of combinatorial techniques, such as graph-based al-
gorithms and constraint satisfaction, in cryptanalysis. Our main focus is on the elliptic
curve discrete logarithm problem. First, we tackle this problem in the case of elliptic
curves defined over prime-degree binary extension fields, using the index calculus attack.
A crucial step of this attack is solving the point decomposition problem, which consists
in finding zeros of Semaev’s summation polynomials and can be reduced to the problem
of solving a multivariate Boolean polynomial system. To this end, we encode the point
decomposition problem as a logical formula and define it as an instance of the sat prob-
lem. Then, we propose an original xor-reasoning sat solver, named WDSat, dedicated
to this specific problem. As Semaev’s polynomials are symmetric, we extend the WDSat
solver by adding a novel symmetry breaking technique that, in contrast to other sym-
metry breaking techniques, is not applied to the modelization or the choice of a factor
base, but to the solving process. Experimental running times show that our sat-based
solving approach is significantly faster than current algebraic methods based on Gröbner
basis computation. In addition, our solver outperforms other state-of-the-art sat solvers,
for this specific problem. Finally, we study the elliptic curve discrete logarithm problem
in the general case. More specifically, we propose a new data structure for the Paral-
lel Collision Search attack proposed by van Oorschot and Wiener, which has significant
consequences on the memory and time complexity of this algorithm.

	Résumé
	Glossary
	Introduction
	Boolean Polynomial Systems
	Algebraic solving techniques
	Gröbner basis algorithms
	Linearization and the XL family
	Exhaustive search
	Hybrid methods
	Algorithms for sparse systems

	Applications in cryptography

	I SAT as a tool
	The Satisfiability problem
	Preliminaries
	Solving techniques
	Applications in cryptography
	Deriving a SAT model from a Boolean polynomial system

	The WDSat Solver
	Core algorithm
	Three reasoning modules
	CNF module
	XORSET module
	XORGAUSS module

	Extending the XORGAUSS module
	Complexity discussion

	II Cryptographic applications
	ECDLP Preliminaries
	Applications in cryptography
	Diffie-Hellman key exchange
	ElGamal encryption
	Pairing-based cryptography

	Known attacks
	Generic attacks
	Attacks on specific families

	Parallel Collision Search
	Background
	Solving discrete logarithms.
	Many collision applications : the multi-user setting
	Many collision applications : meet-in-the-middle attacks
	Computational model and data structure.

	Time complexity
	Finding one collision
	Finding many collisions

	The multi-user setting
	Our approach for the data structure
	Radix tree structure
	Packed Radix-Tree-List

	Implementation and benchmarks
	PRTL implementation
	PRTL vs. hash table.
	ECDLP implementation details and scalability.
	Multi-collision search computation.

	Index Calculus
	Background
	Classical index calculus
	Index calculus for ECDLP

	Model description
	The Algebraic Model
	The CNF-XOR Model
	The CNF Model

	Symmetry breaking technique
	Branching order
	MVC and summation polynomials

	Complexity analysis
	The third summation polynomial

	Experimental results
	Whole Point Decomposition Phase Computation

	Other applications of logical cryptanalysis
	The Trivium stream cipher
	Model generation and experimental results
	Complexity discussion

	The MQ problem
	Generation of the MQ model
	Complexity analysis
	Experimental results and perspectives

	Conclusion
	Open questions and extendibility

