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Résumé: Confrontés à l’intégration croissante
d’énergies renouvelables intermittentes et à de
nouveaux mécanismes de marché, les réseaux
électriques sont dans une phase de mutation
profonde. Ainsi, face à une complexité crois-
sante, RTE, le gestionnaire du réseau de trans-
port d’électricité français, étudie les opportunités
offertes par les méthodes issues du Deep Learn-
ing. Les changements de topologie (façon dont les
lignes sont interconnectées) étant quotidiens, il est
essentiel de permettre aux réseaux de neurones de
prendre en compte la structure des données, ce qui
est rendu possible par l’utilisation de Graph Neu-

ral Networks (GNNs). Après avoir démontré la ca-
pacité des GNNs à imiter un simulateur physique
du réseau électrique, cette thèse développe une
approche qui vise à “apprendre à optimiser” de
façon non-supervisée. Un GNN est ainsi appris
par minimisation directe des lois physiques, plutôt
que par imitation. L’approche est par la suite
étayée d’une analyse théorique, puis étendue à
un problème d’optimisation à deux niveaux qui
repose sur l’emploi de deux GNNs distincts, l’un
d’entre eux jouant le rôle d’un opérateur, et l’autre
émulant les lois physiques.

Title: Deep Statistical Solvers & Power Systems Applications
Keywords: Power systems, deep learning, graph neural networks

Abstract: Facing with the growing integration
of intermittent renewable energies and disruptive
market mechanisms, power systems are experi-
encing profound changes. To overcome this in-
creasing complexity, RTE, the French Transmis-
sion System Operator, is investigating the use of
methods arising from the Deep Learning literature.
Topological changes (which affect the way power
lines are interconnected) occur multiple times a
day, and should thus be taken into account by the
considered neural network architecture, which is
made possible by Graph Neural Networks (GNNs).

After having proven the ability of GNNs to imitate
a power grid simulator, this PhD thesis develops
an approach that aims at “learning to optimize” in
an unsupervised fashion. A GNN is thus trained
by direct minimization of physical laws, and not
by imitation. This work is further elaborated by
a theoretical analysis, and then extended to a bi-
level optimization problem which requires the use
of two distinct GNN models, one of them playing
the role of an operator, while the other emulates
physics.



Synthèse

Les réseaux de transport d’électricité sont confrontés à de multiplesmutations, parmi lesquelles on peut citer l’insertion grandissanted’énergies renouvelables intermittentes et difficiles à prévoir, les nou-velles utilisations de l’énergie électrique (véhicules électriques), ouencore la libéralisation du marché de l’énergie qui tend à autoriserles centrales électriques à changer leur plan de production à deséchéances très proches du temps réel. Ces changements rendent lesflux électriques de plus en plus volatiles et difficiles à anticiper, avecpour conséquence de rendre l’exploitation des réseaux électriquesplus complexe. Cette complexité grandissante pouvant à terme de-venir trop importante pour les capacités cognitives humaines, il estnécessaire de développer de nouvelles méthodes pour alléger lacharge de travail des opérateurs du réseau. Dans cette optique, Réseaude Transport de l’Électricité (RTE), le gestionnaire de réseau de trans-port français, étudie la possibilité d’employer diverses techniques is-sues du Deep Learning (DL).
Des travaux antérieurs au début de cette thèse ont été entre-pris dans cette direction. Cependant, dans les approches précédentes,chaque modèle appris était propre à une instance de réseau. De telsmodèles présentent comme limite de mal se généraliser lorsque la to-pologie du réseau électrique étudié est différente de celle qui a étéconsidérée lors de l’entrainement. Or, des travaux de maintenance surles ouvrages du réseau ainsi que des actions de la part des dispatcherspour aiguiller différemment les flux électriques se produisent quoti-diennement sur le réseau électrique. Il existe donc un besoin de faireévoluer les méthodes de Machine Learning (ML) employées jusqu’alorsde sorte à ce qu’elles soient capables de mieux appréhender une to-pologie changeante.
Dans ce but, cette thèse explore l’utilisation des Graph Neural Net-works (GNNs) appliqués au réseau électrique. Les GNNs sont desréseaux de neurones dont l’architecture est particulièrement bienadaptée aux problèmes dont les entrées s’expriment sous formede graphes. L’ensemble des travaux de cette thèse concernent le
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problème d’apprendre à optimiser, c’est à dire créer des réseaux de neu-rones (des GNNs) qui résolvent des problèmes d’optimisation.
Une première contribution de cette thèse concerne l’utilisation deGNNs pour l’imitation d’un simulateur physique utilisé par RTE [1].Les résultats démontrent la capacité des GNNs à apprendre sur desgraphes qui ont des géométries différentes. Ces modèles ne sontpas seulement capables de généraliser à des réseaux dont la topo-logie diffère légèrement de celles vues lors de l’entrainement ; desexpériences démontrent par exemple la capacité à apprendre sur desgraphes de 9 noeuds et à généraliser à des graphes de 1089 noeuds.Par ailleurs, des travaux menés en utilisant des données issues duréseau français réel ont mis en évidence le besoin d’utiliser une des-cription du réseau électrique au moyen de structures de graphs pluscomplexes appelées Hyper Heterogeneous Multi Graphs (H2MGs). Cecipermet de ne pas altérer la structure du réseau électrique par uneétape de pre-processing qui aggrègerait ensemble plusieurs objets,comme cela était fait jusqu’alors.
Une deuxième contribution de cette thèse [2] développe une ap-proche basée sur les GNNs pour apprendre à optimiser de façon nonsupervisée. Elle consiste en l’apprentissage d’un modèle GNN par mi-nimisation directe de la violation des lois physiques, au lieu d’ap-prendre de manière supervisée à partir des résultats d’un autre sol-veur. Cette méthode – que nous appelons Deep Statistical Solver(DSS) – est étayée, dans une troisième contribution [3], d’une analysethéorique fournissant une relation entre l’expressivité d’un modèle, lenombre d’étapes de propagation de messages, et le diamètre maximaldes graphes présents dans les données. Les résultats expérimentauxmontrent que l’approche non-supervisée est viable pour la résolutionde systèmes linéaires issus de la discrétisation de l’équation de Pois-son, ainsi que pour la simulation non-linéaire de réseaux allant de 14 à118 noeuds.
Enfin, une quatrième contribution concerne le problème decontrôle de la tension (en boucle ouverte). Une nouvelle méthode derésolution est proposée et se base sur l’utilisation de deux modèlesGNN. Un premier modèle (contrôleur) prend en entrée une situationde réseau et renvoie des consignes de tension des générateurs qui ga-rantissent la sécurité du système. Un second modèle (solveur) prenden entrée la situation de réseau et la sortie du premier modèle, etrésout les équations physiques du système. Ainsi la fonction de coûtdu contrôleur se base sur l’approximation de la physique fournie parle solveur. Cette approche à double réseau de neurones est d’une cer-taine façon semblable aux approches adversariales, bien qu’ici les ob-
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jectifs des deux modèles ne soient pas nécessairement antagonistes.Des résultats préliminaires qui n’ont pas encore été publiés indiquentque l’approche est viable sur des réseaux jouets.En conclusion, cette thèse s’est intéressée au développementde l’approche DSS qui vise à entrâıner des GNNs à résoudredes problèmes d’optimisation variés de façon non supervisée. Ledéveloppement d’heuristiques basées sur des réseaux de neuronesrapides offre la perspective d’accélérer la résolution de certainsproblèmes coûteux en temps de calculs, voire d’offrir des solutionsà certains problèmes de prise de décision pour lesquels aucuneméthode assez rapide n’existe actuellement.
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Abstract

Power transportation networks are facing multiple changes, which in-clude among others the growing amount of intermittent and hard topredict renewable energies, new ways of using electricity (electric ve-hicles), or the energy market liberalization which allows producers tochange their plans on a short notice. Those changes make power flowsincreasingly volatile and hard to anticipate, with the result that the op-eration of power systems becomes even more complex. As this grow-ing complexity may eventually become overwhelming for human cog-nitive capacities, it is necessary to develop new methods to lightenthe workload of power grid operators. With this in mind, Réseau deTransport de l’Électricité (RTE), the French transmission system oper-ator, is investigating the use of diverse methods stemming from theDeep Learning (DL) literature.
Prior to this work, artificial neural networks had already been usedto perform various tasks on power grids. However, in previous ap-proaches, each trained model was specific to a power grid instance.Therefore, such models suffer from the limitation that they do not gen-eralize well when the topology of the studied electrical network differsfrom the one that has been considered during the training phase. Yet,maintenance work on the network structures as well as actions fromthe dispatchers to redirect the electrical flows are common events thatmay occur multiple times a day in the actual system. Thus, there is aneed to improve the Machine-Learning methods used until now so thatthey are able to better handle systems with changing topology.
To this end, this thesis explores the use of Graph Neural Networks(GNNs) applied to power grids. GNNs are neural networks whose ar-chitecture is particularly well suited to problems whose inputs can beexpressed as graphs. All the works of this thesis concern the prob-lem of Learning to Optimize, which amounts to training neural networks(GNNs) that solve optimization problems.
A first contribution of this thesis concerns the use of GNNs to im-itate the physical simulator used by RTE [1]. The results demonstratethe ability of GNNs to learn on graphs that have different geometries.
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These models are not only able to generalise to networks whose topol-ogy differs slightly from those seen during training; experiments haveshown for example the ability to learn on graphs of 9 nodes and togeneralise to graphs of 1089 nodes. Furthermore, work carried outusing data from the real French network has highlighted the need touse a description of the electrical network by means of more complexgraph structures called Hyper Heterogeneous Multi Graphs (H2MGs).This makes it possible to avoid altering the structure of the electricalnetwork by a pre-processing step that would aggregate several objectstogether, as was done until now.A second contribution of this thesis [2] is to develop an approachbased on GNNs to learn to optimise in an unsupervised fashion. It con-sists in training a GNNs model by direct minimisation of the violation ofphysical laws, instead of building a surrogate model of another solver.This method – which we call Deep Statistical Solver (DSS) – is supported,in a third contribution [3], by a theoretical analysis providing a rela-tionship between the expressivity of a model, the amount of message-passing operations performed by the GNN, and the maximum diame-ter of the graphs in the considered dataset. Experimental results showthat the unsupervised approach is viable for the resolution of linearsystems stemming from the discretization of Poisson’s equation, andfor the non-linear simulation of power grid that are composed of 14and 118 buses.Finally, a fourth contribution concerns the voltage control problem(in open loop). A novel resolution method based upon the use of twoGNN models is proposed. The first model (controller) takes as input apower grid snapshot, and outputs voltage setpoints for generators thatguarantee that the whole system is in security. A second model (solver)takes the snapshot and the output of the controller as input, and solvesthe physical equations that govern the system. Thus, the cost functionof the controller depends on the approximation of physics providedby the solver. This dual neural network approach is somewhat similarto adversarial approaches, although in our case the goals of the twomodels are not necessarily antagonistic. Preliminary results not yetpublished indicate that the approach is viable on toy networks.As a conclusion, this PhD thesis is devoted to developing an ap-proach, called Deep Statistical Solver, which amounts to training GraphNeural Networks to solve various optimization problems in an unsu-pervised fashion. The development of heuristics based on fast neuralnetworks paves the way for accelerating some heavy computations,and providing more tractable solutions to highly complex control prob-lems.
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Introduction

Power Systems (PS) are a key component of modern societies. They en-able energy transportation from places where it is produced (nuclearor fossile power plants, hydro-electric generators, wind turbines, solarpanels, etc.) to places of consumption (houses, factories, public light-ing, etc.). Their use is vital to the well being of a country, its citizensand its economy. It relies on thousands of kilometers of transmissionlines, and on the ongoing work of thousands of people. Power Sys-tems have been running for more than a century, and have enabledthe development of countless improvements in our daily lives. Relyingon electricity has become so common that one may take it for granted.Nonetheless, this domain is currently facing systemic changes whichare driving the Power Systems community to take interest in innova-tions brought by the blooming field of Deep Learning.In order to provide some context to this work, the present in-troductory chapter explains the main causes of the abovementionedchanges, and their impact over power production and consumptionpatterns. It then details how power grid operation adapts to such sys-temic changes, and how the recent emergence of Deep Learning andGraph Neural Networks could contribute to reducing emerging secu-rity issues.

Energy shift

In this section, we provide an overview of the reasons for the currentglobal warming and then detail how policies aimed at mitigating it in-crease the uncertainty of power injection (i.e. power production andconsumption patterns).

Global warming
Our daily lives are filled with a wide range of devices that performmeaningful tasks while requiring very little effort from their users.
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Those machines are able to convert energy from a primary form intoa useful form. For instance, cars transform chemical energy stored infuel into kinetic energy, i.e. into a movement. Energy is available atthe Earth’s surface in various forms: nuclear (uranium), gravitational(water in mountains), kinetic (wind), etc. Centuries of technological de-velopments have enabled the conversion of energy from one form tothe other. Electric power serves as an intermediary form of energy thatcan easily be transported across large distances through transmissionlines. Figure 1 shows how the global production of energy has evolvedover the past two centuries.

(source ourworldindata.org – last accessed July 2021)

Figure 1: Global energy consumed per year, by type of energy
In the late 2010s, around 85% of the energy produced came fromthe combustion of fossil fuels that emit greenhouse gas such as (butnot limited to) CO2. Those emissions have been consistently growingsince the start of the industrial era, as illustrated by Figure 2.It is nowadays commonly admitted that the negative impact of mod-ern societies on the environment has become non-negligible since the1950s [4]. The current era is thus referred to as the anthropocene.Our understanding of the relationship between temperatures and ourgreenhouse gas emissions can be traced back to the XIXth century: in1896, Svante Arrhenius predicted that changes in the concentration ofCO2 in the atmosphere would significantly impact the surface temper-ature [5]. Empirical evidence of such an anthropogenic global warminghave been gathered by Guy Callendar in 1938 [6], and Gilbert Plass for-mulated the Carbon Dioxide Theory of Climate Change [7] in 1956. Figure3 presents the evolution of the temperature anomaly on Earth com-pared to the average of the period 1961-1990, thus sketching a worryingtrajectory for the upcoming decades.The brutal change of climate that we will most likely go through
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(source ourworldindata.org – last accessed July 2021)

Figure 2: Global CO2 emissions per year

(source ourworldindata.org – last accessed July 2021)

Figure 3: Temperature anomaly compared to the average of the 1961-1990 period
should cause the 6th mass extinction in the History of Life on Earth. Inorder to prevent the irreversible destruction of an ecosystem which weneed for our own survival, it has become urgent to drastically reduce,
inter alia, the emission of greenhouse gas.
Moving to a new energy mix
Policy makers have been pushing towards the development of alterna-tive energy conversion devices that exploit renewable and low-carbonforms of energy. A source of energy is said to be renewable if exploit-ing it does not prevent future generations of doing so. Direct radiationof the Sun – which should persist for the next 5×109 years – can be ex-ploited using thermal or photovoltaic devices. The wind, which is also
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indirectly caused by the Sun’s radiation, is another source of energythat can be harnessed by wind turbines. Devices that harness thosesources of energy have drastically improved over the past two decades,which has enabled their large scale deployment, as illustrated in Figure4. A growing amount of research is dedicated to investigating the fea-sibility of a 100% renewable energy system in the medium term [8, 9],and advocate for a massive use of the latter two technologies.

(source ourworldindata.org – last accessed July 2021)

Figure 4: Renewable energy generation per year, by type

Increasingly uncertain power injection patterns
Unfortunately, solar and wind power come with some drawbacks withregards to their integration in power grids:

• Their production is highly dependent on the weather, which is no-toriously known to be hard to predict accurately. This increasesthe uncertainty of actual production patterns, and may cause anunexpected saturation of some areas of the Power Grid.
• Our energy storage capacity being quite low, the productionshould always equate to the consumption. As solar and windpower are intrinsically intermittent, it is mandatory to have con-trollable generation in reserve, so as to compensate for fast vari-ations of renewable generation. For instance, massive invest-ments toward solar energy in California has caused the appari-tion of the so-called duck curve. Since solar panels generationpeaks around noon, the need for other sources of energy is alsoreduced, as illustrated in Figure 5. This causes steep ramps ofapparent demand in the morning and in the evening.
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• Power generation is predominantly ensured by large rotating ma-chines. The inertia of their rotation provides a fast and accurateway of ensuring the stability of the whole system. Devices such assolar panels do not involve the rotation of any of their parts andcannot take part in this critical stability mechanism. Thus, suchdevices actually erode the security of the whole system1.
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Figure 5: Schematic representation of the Californian duck curve, ontypical days of 2015 and 2021.
In addition to challenges posed by renewable energy integrationinto the grid, two other phenomena cause additional uncertainties,namely the rise of the electric vehicle, and novel European regulations:
• While electric vehicles are still a marginal phenomenon in 2021,RTE projects that there should be around 12, 000, 000 electric carson the French roads by 2035 [11]. Car batteries could be used asan additional flexibility for the Power Grid, but their charging mayalso create new and unexpected electric consumption patterns.
• Recent European regulations enforce a strict separation of thedifferent parts of the power grid, so as to give rise to the inter-nal energy market. The energy market pushes suppliers to buyelectricity at the lowest economic price, regardless of the physi-cal reality of the power grid. Thus, energy can be produced veryfar from the place of consumption which can cause importantpower flows across the whole European grid, which can result incongestion issues. In addition, new regulations allow energy pro-ducers to change their plans on a very short notice, which causesan additional source of uncertainty for power grid operation.

1The grid forming domain [10] aims at improving the stability of systems that havea large proportion of renewables.
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Changes in power grid operation

The growing uncertainty over power injection patterns is endangeringpower grids, which pushes their operators to investigate possible solu-tions. In this section, we first succinctly introduce power grids and howthey are operated. Then, we detail some of the currently investigatedsolutions to improve the system’s security with respect to projectedtrends.
Transmission systems in a nutshell
The electric power grid can be broken down into three main functions,as illustrated in Figure 6: production (power generation, in red), trans-port (power lines, in blue and orange), and consumption (end users,in green). The transport part is usually split into the “transmissionsystem” (long distances, in blue) and the “distribution system” (localscale, in orange). This PhD thesis is funded by Réseau de Transportde l’Électricité (RTE), the French Transmission System Operator (TSO),which operates the largest European transmission grid (106, 000 km ofhigh voltage and extra high voltage transmission lines). The presentdocument solely considers the French transmission network, althoughmost of the developed ideas and concepts can be easily transposed toother networks and even to other domains.

Production Consumption
Transport

Transmission Distribution

Figure 6: Overall organization of power grids. Power transportation issplit into the transmission system (Extra High Voltage and High Volt-age), and the distribution system (Medium Voltage and Low Voltage).
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RTE is in charge of managing the French transmission system in realtime, and ensures that the production equates to the consumption. Itanticipates impacts of potential outages, whether these are planned oraccidental, and takes appropriate actions. Highly trained engineers –called dispatchers – ensure the system’s security by monitoring powerflows through transmission lines and voltage magnitudes everywhereacross the grid.
• A power overflow through a transmission line can cause it tostretch and endanger nearby trees, roads, infrastructures orpassers-by. Automatic and decentralized mechanisms can cutopen overflowing lines, which can push the overflow to otherlines. These newly overflown lines are subsequently discon-nected, which then leads other transmission lines to meet thesame fate. This type of cascading failure can then quickly lead to ablackout of the whole system if no action is taken. To counter this,dispatchers can change the interconnection patterns of transmis-sion lines, so as to redirect power flows.
• Voltage magnitude should remain in an acceptable range at alltimes and everywhere. Electric devices are designed to work witha certain voltage amplitude, and can withstand reasonable vari-ations around this value. Thus, straying too far from this nomi-nal value can cause damage to devices, and Transmission SystemOperators. The main levers of action in this regard include thecontrol of voltage set points of some generators and the activa-tion of shunts.

Those two tasks are actually entangled, but presenting them as beingdistinct is a good first-order approximation. In both cases, dispatchershave to rely on their thorough understanding of the system. Currentoptimization-based methods are struggling with the complexity of bothproblems, and some satisfying heuristics exist or are in the process ofbeing experimented.
Investigated solutions and current limitations
RTE and the Power Systems community as a whole anticipate that thesystemic changes evoked in the previous section will bring additionalchallenges to real-time power systems operation, and investigate vari-ous avenues to improve the system’s stability and safety.Several projects aim at expanding the capacity of integration of re-newable energies into the actual power grid without building new ex-pensive transmission lines. For instance, the NAZA project (Nouveaux
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Automates de Zone Adaptatifs, which can be translated as New ZonalAdaptive Automata) prevents the system from saturating in the caseof renewable generation peaks by clipping power generation2. A com-panion project named Ringo aims at employing controllable batterieslocated in three locations far from each other so as to create virtualpower lines: energy is withdrawn by batteries in places where conges-tion might occur, while an equivalent amount of energy is injected ina safer location3. These automata make power grids cyber-physicalsystems where the sole knowledge of physical equations is no longerenough to accurately model reality. Thus, RTE is also pushing in thedirection of improving its simulation tools to better take into accountthe fact that numerous automata take instantaneous decisions on thegrid4.Another line of work aims at better incorporating uncertainties inpower grid operation. The GARPUR consortium [12], in which RTE tookpart, advocates for a novel reliability management approach that takesinto account – among others – uncertainties over production and gen-eration, socioeconomic costs of power supply interruptions and de-mand side flexibilities. To that end, a probabilistic approach to relia-bility management has been developed. However, such approachesneed to perform numerous expensive simulations, making the wholeapproach intractable. As a consequence, they advocate for the use offast proxies based on Machine Learning to quickly estimate the stateof power grids, which would allow expensive Monte Carlo simulations.Current computational methods are unable to advise dispatchers incontrolling voltages and power flows, even though this task is projectedto become largely more complex in the upcoming decades due to in-creasingly uncertain injection patterns. Moreover, some methodolo-gies considered to improve power grid security with respect to renew-ables integration and increasing uncertainties are currently intractablebecause of the slowness of current methods. Thus, the Power Systemscommunity is investigating methods stemming from other domains, inthe hope to find tools that would better suit its current needs.

The Deep Learning opportunity
Resounding successes achieved by the Deep Learning (DL) domainhave drawn the attention of the Power Systems community for two

2https://www.rte-france.com/actualites/naza-rte-developpe-nouvelle-solution-numerique-pour-renforcer-la-flexibilite-du-reseau3https://www.rte-france.com/projets/stockage-electricite-ringo4https://dynawo.github.io/
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main reasons:
• DL methods can deal with extremely complex tasks that requirea very high level of abstraction;
• they are fast and parallelizable, because all the computationalburden is deferred to a training phase.

In this section we first introduce the domains in which DL is included.Secondly, we review some of its early applications to Power Systems.We then introduce the blooming domain of Graph Neural Networks(GNNs), a subdomain of DL that considers graph data, which will proveto be key in applying DL to Power Systems. Finally, we give some ex-amples of how DL can be enhanced by physical knowledge.
From Artificial Intelligence to Deep Learning
As shown in Figure 7, DL is included in a hierarchy of scientific domains,which can be defined as follows:

• Artificial Intelligence: It can be described as “any system that per-ceives its environment and takes actions that maximize its chanceof achieving its goals” [13]. It was founded as an academic dis-cipline in the 1950s and includes a wide variety of approaches:imitating brain cells, problem solving, formal logic, knowledgedatabases, etc.
• Machine Learning (ML) / Statistical Learning: Among all the ap-proaches investigated by researchers, Machine Learning [14] hasbecome prominent since the beginning of the XXIst century. It isaimed at developing algorithms that improve by learning fromdata. It includes a wide variety of algorithms: decision trees [15],k-nearest neighbors [16], linear regression [17], naive bayes [18],support vector machines [19], etc. Some of them have in commonthat they are trained on a dataset, in the hope to achieve goodperformance on another dataset stemming from the same distri-bution. Other approaches that are not discussed in the presentdocument include for instance Reinforcement Learning, whichaims at learning by interaction with an environment.
• Representation Learning: This subset of Machine Learning meth-ods is concerned with automatically discovering a data represen-tation that is relevant for the problem at hand. The underlyingmotivation is that in many real-life problems, data can be veryhard to process. For instance in image classification, being able
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to classify whether there is a cat or not in an image cannot beperformed by a simple linear regression over pixel values. It ismandatory to build a certain level of abstraction and move be-yond the raw data. Methods include neural networks, principalcomponent analysis, restricted Boltzmann machines, etc.
• Deep Learning: This part of Representation Learning considersthe use of artifical neural networks. It is described by Goodfellow,Bengio & Courville in their Deep Learning book [20] as

“... to allow computers to learn from experience and un-
derstand the world in terms of a hierarchy of concepts,
with each concept defined through its relation to simpler
concepts.”

Depending on the problem at hand, this hierarchy of represen-tations can involve many different abstraction levels, thus mak-ing the process of solving it deep. This domain dates back to the1940s, and has known three waves of innovation so far [20]. Thecurrent wave started around 2006, and has been enabled by themassive processing power of modern computers, the availabilityof extremely large datasets, and also by a proactive and creativecommunity of researchers.

Artificial Intelligence
Machine Learning

RepresentationLearning

DeepLearning

GraphNeuralNetworks

Figure 7: Venn diagram showing the hierarchy of scientific fields inwhich Deep Learning and Graph Neural Networks fall [20].
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Deep Learning has achieved multiple major breakthroughs in awide variety of domains. In computer vision, it has surpassed humanperformances in image recognition [21, 22, 23], is able to generate newrealistic images [24] and can identify objects in a scene [25]. In natu-ral language processing, it has become the state-of-the-art techniquein sentiment analysis [26], information retrieval [27], spoken languageunderstanding [28], machine translation [29], writing style recognition[30], and others. Most commercial voice recognition systems [31] arebased on DL. In all of these applications, DL showed its ability to tacklecomplex problems that require a very high level of abstraction. We re-fer readers to Chapter 2 for a succinct introduction to DL techniques.

Applications of Deep Learning to Power Systems

As early as in the 90s, seminal work [32] started applying ideas fromML and DL to issues related to Power Systems operation. A reviewpaper by Duchesne et al. [33] provides a thorough overview of variousapplications of ML, and in particular of DL methods to power grid staticreliability management. In what follows, we review several applicationsof DL to the AC Power Flow (AC-PF) and AC Optimal Power Flow (AC-OPF) problems. Other possible applications are being investigated byRTE, such as the use of Reinforcement Learning [34], although this fallsout of the scope of this PhD thesis.
The AC Power Flow (AC-PF) problem can be framed as follows:knowing power production and consumption, and the way power linesare interconnected to each other, the goal is to compute the power flowthrough lines. In [35], Schaefer et al. investigate the use of various MLmethods to solve the AC-PF, and show that deep neural networks bringthe best performances, a line of work that has been consistently grow-ing over the past few years [36, 37, 38, 39]. Neural networks can also beused to warm start a traditional optimization method [40], or to detectif a grid is in security or not [41, 42].
On the other hand, the AC Optimal Power Flow (AC-OPF) problemis a non-linear and non-convex optimization problem in which a costfunction should be minimized while respecting physical and opera-tional constraints. Deep Learning has already been extensively appliedto this issue so as to directly predict optimal control variables [43, 44,45]. Neural networks have been successfully used to warm start tradi-tional optimization techniques [46, 47, 48], perform fast screenings ofsituations [49, 50, 51, 52], and reduce the computational burden of theAC-OPF by predicting the set of active constraints [53, 54, 55, 56]
Most methods surveyed above assume a fixed topology of the grid,
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i.e. the graph structure does not change. However, the actual gridtopology of power grids changes several times per day under the ac-tion of dispatchers. This raises the following questions:
How can we learn from data that have a changing underlying
structure?

During his PhD thesis, Benjamin Donnot began investigating sucha critical issue by developing the Latent Encoding of Atypical Perturba-tions (LEAP) network [57], also referred to as guided-dropout. This DLarchitecture is able to conditionally activate or deactivate sets of neu-rons depending on the situation. He experimentally showed that thisarchitecture had good generalization properties, even to grid topolo-gies that were never encountered during training. However, this ap-proach only allows a limited amount of perturbations to be considered,and does not completely take into account the fundamental invariantof graph data: permutations. A simple node reordering of the input datashatters the predictive power of the trained neural network. However,a class of neural networks called Graph Neural Networks (GNNs) allowto make a conceptual and experimental leap towards addressing suchissues, as introduced thereafter and further detailed in Chapter 3.
Graph Neural Networks
Power grids have a graph structure which cannot be processed prop-erly by traditional neural networks. Thankfully, the blooming domainof GNNs provides us with a class of neural network architectures thatare purposefully designed to handle graphs. They can intrinsically with-stand any node reordering of their input graph, by directly encodingthe input graph structure into the neural network architecture. As ex-plained by Battaglia et al. [58], they use traditional neural networks aselementary trainable blocks entangled in a much larger architecturethat inherently respects the graph structure of its input.Although this domain has only recently started to become a majorarea of research (2017-2018), early work by Sperdutti et al. [59] on apply-ing neural networks to acyclic graphs can be traced back to 1997. Thenin 2005, Gori et al. [60] first introduced the notion of GNN, although itdoes not quite resemble the approach that currently bears this name.This line of research was then continued in the late 2000s by Scarselliet al. [61] and Gallichio et al. [62]. Motivated by the accomplishmentsof Convolutional Neural Networks (CNNs) on images, research focusedon trying to extend the notion of convolution to graphs, which lead tothe emergence of two distinct approaches.
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The first one is called Spectral GNN [63] and relies on spectral graphtheory. It decomposes input graphs according to a spectral basis whichis then fed to a neural network architecture. While this approach hasbeen applied with success on various problems [64, 65, 66, 67], it suf-fers from a poor generalization capability: as soon as the graph struc-ture is slightly altered, the spectral decomposition can change drasti-cally and the trained neural network model stops being relevant.
The second one is called Spatial GNN [68] and relies on local mes-sage passing operations. No spectral decomposition is required, and atrained neural network easily generalizes to various graph structures.Although the approach fell into oblivion for almost a decade, it has re-cently emerged again [69, 70, 71] and has then become the prominentapproach in many domains.
GNNs have been applied to various non-Euclidean data. In com-puter vision, they are used to generate semantic graphs that explainrelations between objects in a scene [72, 73, 74], or to generate a re-alistic scene knowing a semantic graph [75]. They are also applied tohuman joint detection [76, 77], human-object classification [78, 79] andvisual reasoning [80]. In chemistry, the 3D structure of a molecule be-ing a graph, GNNs can predict their fingerprints [81, 82] and properties[71], proteins interfaces [83] and be used to synthesize organic com-pounds [84, 85, 86].
Ideas and methods involved in GNNs are introduced and succinctlyexplained in Chapter 3. However, since this work solely focuses on Spa-tial GNNs, we refer interested readers to the review paper written byWu et al. [87] and to the book Graph Representation Learning by WilliamL. Hamilton [88] for a more exhaustive presentation of the domain.
Introducing GNNs as a tool to accelerate power grid related compu-tations is one first contribution of this thesis. Another one is describedin the next section, and relates to the methodology employed to trainsuch GNNs.

Merging Deep Learning and physics
In the past few years, the amount of publications dedicated to the ap-plication of DL to physics-oriented problems has consistently grown.In most cases, the goal is to accelerate potentially expensive simula-tions using fast neural networks. Two main approaches can be distin-guished: The supervised “proxy” approach, which consists in imitatingthe output of a classical physical simulator, and the semi-supervisedor unsupervised approach, which aims at incorporating physical lawsdirectly into the neural network architecture or into the training loss.
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The “proxy” approach The former approach, which we refer to asthe “proxy” approach consists in imitating potentially expensive physicssimulators, generally with the aim to find a more suitable balancebetween computational speed and accuracy. For instance, Eulerianfluid simulations were successfully accelerated by replacing a compu-tational block by a neural network approximation [89]. Other appli-cations include the acceleration of various scientific computations us-ing convolutional neural networks [90, 91], and the modelling of high-energy particle physics [92]. As evoked above, early applications of DLto Power Systems [38, 32] also fall into this line of work.The “proxy” approach can be enhanced by Graph Neural Networks:some physics problems are defined on well-structured systems whichare explicitly modelled as graphs. Including the structure directly intothe neural network architecture can improve both the performancesand generalization capabilities of trained models [93, 94].
Incorporating Physical Knowledge Unlike many applications en-countered in Machine Learning, problems stemming from physics areusually well described by a series of equations. Physics-Informed Neu-ral Networks (PINNs), introduced by Raissi et al. in 2019 [95] propose totrain a model using a combination of classical data and of the knowl-edge of physical equations. Such an approach provides a semi super-vised setting and allows for the resolution of both direct and inverseproblems. Applications include for instance fluid mechanics [96]. Inthe present PhD thesis, we propose to go even further by consider-ing a fully unsupervised approach where only the violation of physicalequations is penalized during training.

Main contributions

Applying methods from the DL literature to Power Systems presentsmajor challenges to inspire confidence to the Power Systems commu-nity and meet necessary criteria of testability and reliability, particu-larly because the theory underlying DL methods is still in its infancy.This thesis proposes new problem formulations and DL solutions, as astep towards the adoption of DL methods in this application context.This thesis includes the following main technical contributions:
• We provided the first application of GNNs to power grids [1], ex-perimentally proving the ability of such neural network architec-tures to withstand variations in the amount of nodes, lines, and
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interconnection patterns, and experimentally proving the viabil-ity of the approach.
• We were the first to train GNNs to solve instances of an optimiza-tion problem by direct minimization of physical laws, instead ofrelying on the imitation of classical optimization methods [2].
• We introduced a Universal Approximation Theorem which statesthat GNNs architectures are suitable to solve optimization prob-lems [3].
• We developed a Hyper Heterogeneous Multi Graph (H2MG) for-malism that models power grids more naturally, and a matchingHyper Heterogeneous Multi Graph Neural Network (H2MGNN)architecture to process such data structures.
We call our approach the Deep Statistical Solver (DSS). It consistsin training permutation-equivariant GNNs to solve instances of opti-mization problems in an unsupervised fashion, i.e. without imitatingthe output of a traditional optimization method. As a consequence,our methodology is an optimization technique on its own. Ongoingwork include the development of a bilevel H2MGNN approach to solvebilevel optimization problems.

Concurrent work

Since the beginning of this work, several papers have been publishedthat exploit similar ideas to the ones presented in this document. Afterour paper Graph neural solver for power systems [1], the use of GNNs topower grids has quickly become commonplace [97, 55, 98, 99], and theidea to use of GNNs to perform scientific computation has been suc-cessfully applied to fluid dynamics simulations [100]. After our paper
Neural networks for power flow: Graph neural solver [2], GNNs and phys-ical knowledge were similarly combined on power grid problems [101,102].

PhD thesis outline

This document aims at being self-contained and providing the rightlevel of details to enable any interested reader with a basic backgroundin mathematics and physics to grasp the main ideas. This contribution
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being a bridge between two scientific communities, each domain is in-troduced, and references to the relevant literature is provided. Read-ers from the Power Systems domain are encouraged to skip Chapter1, while readers familiar with the Deep Learning literature should skipChapter 2.
Part I - Background & motivations The first part introduces the do-mains within which this work falls.
• Chapter 1 - Power Systems: introduces power systems, starting frombasic physical phenomenon, sweeping through the electrotechnicalmodelling of the main components of power grids, and further detail-ing some key aspects of how they are operated.
• Chapter 2 - Deep Learning: introduces key statistical learning con-cepts, deep learning basics, and some major ideas at the core of thesuccess of CNNs.
• Chapter 3 - Graph Neural Networks: introduces graph data, and howGNNs manage to accurately process them.
Part II - Deep Statistical Solvers This second part details the corecontribution of the present PhD thesis, which includes both a class ofproblems and a proposed resolution method.
• Chapter 4 - Deep Statistical Solver Architecture: discusses some keyfeatures of real world data, and proposes a suitable H2MGNN architec-ture.
• Chapter 5 - Statistical Solver Problems: discusses the conversionof optimization problems into statistical learning problems, and howtraining can be performed without imitating the output of a traditionaloptimization method.
• Chapter 6 - Universal Approximation Theorem: discusses some keyproperties of the proposed architecture in terms of expressivity, andintroduces our extension of the Universal Approximation Theorem tothe considered class of GNN architectures.
Part III - Applications This third part is devoted to the application ofour proposed Deep Statistical Solver approach to a series of optimiza-tion problems.
• Chapter 7 - Toy Examples: applies our proposed Deep StatisticalSolver approach to a series of toy problems.
• Chapter 8 - AC Power Flow: applies our method to the non-linearproblem of estimating the flows across a power grid knowing powerinjections and the actual power grid topology.
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Part IV - Conclusion & Future Work This final part concludes andexplores some questions that were opened by this work
• Chapter 9 - Discussion & Future Work: discusses ongoing work onvoltage control, and potential extensions of the DSS to problem thatinclude time and uncertainty.
• Chapter 10 - Conclusion: summarizes main contributions and obser-vations of this PhD thesis.
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Chapter 1

Power Systems

This PhD thesis aims at developing DL techniques to solve optimizationproblems defined over power grids. In order to understand the basicprinciples of the latter, and how their components behave and interact,this chapter introduces Power Systems (PS) fundamentals. Firstly, it de-fines power grids as a network of interacting dipoles and quadrupoles.Then it details how Alternating Current (AC) systems rely on oscillationsof electrons to transport electrical power across large distances. Fi-nally, it dives into the physical modelling of the main devices that areconsidered in this PhD thesis.We refer interested readers to the book Power System Stability and
Control by P. Kundur [103] for more details about power grids.

1.1 Transporting power using electricity
Modern power grids are predominantly in Alternating Current: elec-trical power is transported by oscillations of electrons. These oscilla-tions are driven by generators, and slowed down by consumers. Inthis section, we give some insights about the fundamental mechanismsat work in power systems. After having introduced basic principles ofelectricity, we explain the behavior of dipoles and quadrupoles, andhow they can be interconnected into a network called a power grid.
1.1.1 Electricity
The term electricity denotes the phenomenon induced by the motionof electrons in a conductive material. In such materials (mostly met-als), charged particles – called electrons – are loosely attached to atomsand are free to move. Those electrons can be set in motion by de-vices that exploit various forms of energy (chemical, thermal, nuclear,
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kinetic, etc.). Conversely, other devices can convert the motion of elec-trons into another form of energy (lighting, heating, etc.). The motionof electrons is not useful by itself, and only serves as an intermediary.Electrical power can be transported through conductive cables, whichallows to generate energy far from where it is consumed.
1.1.2 Dipoles
A dipole is a electric device that has one port, which is made of two ter-minals: + and −. Electrons can either enter the dipole through the +terminal and get out through the− terminal, or the opposite. As shownin the left part of Figure 1.1, we denote by u in Volt (V ) the voltage drop– which measures the work applied by the dipole over an elementarycharged particle – between the + and − terminals, and by i in Ampere(A) the current of electrons flowing into the + terminal (which necessar-ily equates to the current flowing from the − terminal). In AC systems,electrons oscillate around a fixed position, thus they alternately enterand exit the dipole through each port. The instantaneous power p inWatt (W ) injected by the dipole through its port is given by:

p = ui (1.1)
Generators are dipoles that inject power into the system (p > 0) andloads (consumers) are dipoles that withdraw power (p < 0).
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Figure 1.1: Schematic representation of a dipole (left) and of aquadrupole (right).

1.1.3 Quadrupoles
In power grids, electric power is transported across long distances us-ing cables of conductive materials known as power lines. In order toallow electrons to flow in a closed circuit, transmission lines are made
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of two cables, each allowing electrons to flow in opposite directions.This pair of cables belongs to the category of quadrupoles, which areelectric devices that have two ports. As shown in the right part of Fig-ure 1.1, we index by f quantities defined at the “from” port, and by tquantities defined at the “to” port. Power is injected into one port andretrieved from the other. However, friction between the flow of elec-trons and atoms of the transmission line cause some power to be lostdue to Joule’s effect:
pf + pt + pJoule = 0 (1.2)

The actual equation for Joule’s effect in AC power grids is deferredto the last section in equation (1.23). However, it can be approximatedby pJoule ≈ ri2 where r is the resistance of the cable in Ohm (Ω), and i ≈
if ≈ it. Joule’s effect can be seen as a mandatory tax for the transportof energy. The resistance of a line being proportional to its length, themore production and consumption are spread apart, the more powerwill be lost.
1.1.4 Power grids
Dipoles and quadrupoles can be interconnected together into a net-work called a power grid. The purpose of this power grid is to trans-port electrical power from dipoles that produce it to dipoles that con-sume it. Ports of multiple devices can be connected together to forma “bus”: their respective + and − terminals are connected together, asillustrated in Figure 1.2. Kirchhoff’s laws govern the behavior of inter-connected devices:

• Kirchhoff’s current law: the algebraic sum of currents flowing intocollocated ports is zero. In Figure 1.2 we obtain ig + if = 0 and
it + il + il′ = 0.

• Kirchhoff’s voltage law: all ports connected to the same bus sharethe same voltage. In Figure 1.2 we obtain u1 = ug = uf and u2 =
ut = ul = ul′ .

Power grids can be represented in two distinct ways. The “electric di-agram” displays the detailed electric circuit, showing both terminals +and −. It also clarifies the fact that electrons flow in a closed loop ofconductive material. On the other hand, the “single-line” diagram pro-poses a simplified visualization where both terminals are merged. Itallows for a clearer representation of power flows.
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Figure 1.2: Two representations of the same power grid. It is made ofone generator (indexed by g), two loads (l and l′), and one transmis-sion line (whose ends are indexed by f and t). Devices are connectedtogether via buses. The single-line diagram does not represent the +and− nodes of each bus, and represents buses as perpendicular lines.
Power grids are networks of interconnected dipoles andquadrupoles that allow electrons to flow in a closed loop of con-ductive material. However, electrons do not continuously flow aroundthose loops: they actually oscillate around a fixed position. Electricalpower is thus transported by oscillations of those electrons, just likesound is transported by oscillations of air particles.

1.2 AC Power Systems
As stated before, modern power systems rely on the use of Alternat-ing Current (AC) which allows to transport electrical power without toomuch loss. This section introduces some basic ideas behind the designof AC systems, and how they have been critical to the electrification ofsocieties. Then it provides explanations about the notion of “apparentpower” that arises from the oscillation of both voltages and currents.
1.2.1 Different voltage levels
Joule’s effect can be mitigated by increasing the voltage (and subse-quently decreasing the current). However, in the beginning of com-mercial power grids (1870s-1880s), there was no technological meansto change the voltage level. A significant part of the energy producedwas lost due to Joule’s effect, which prevented electricity from being
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transported too far from generation [104, 105]. Power Systems werevery decentralized, with many small generation facilities located nearplaces of consumption. In addition, not all electric devices required thesame voltage orders of magnitude: there were several power grids inparallel, each having their own voltage level. In the late XIXth centuryhowever, the ability to scale up or down the voltage level was achievedthanks to the combined use of AC and of passive devices called trans-formers.In AC power systems, the force applied by dipoles over electrons isconstantly oscillating. All electrons oscillate around a fixed position andtransmit their motion by pushing and pulling their neighbors. Trans-mission lines act as an oscillation coupling mechanism that transportsenergy through oscillations.Voltage and current oscillations of two disconnected AC circuits canbe coupled using transformers, as illustrated in Figure 1.3. Such de-vices consist in two windings wrapped around a high magnetic perme-ability material: oscillations in one winding create an electromagneticflux through the core which then causes oscillations in the other wind-ing. While electrical power injected into an end is mostly retrieved atthe other end, the ratio of voltage magnitudes depends on the ratio ofturns in both winding, as shown in Figure 1.3.

u u′ = u× n′

nn n′

Figure 1.3: Schematic representation of a transformer. The ratio be-tween voltage u and voltage u′ is imposed by the ratio of turns betweenboth winding.
Power grids are thus made of a series of disconnected circuitswhose oscillations are coupled by transformers. Transformers canscale up voltage amplitudes near places of generation, and scale themdown near places of consumption, so as to reduce Joule’s effect in be-tween1. Moreover, devices that require different voltage levels can now

1See Figure 1.2, power injected by the generator is pg = ifu1, and the power lossesdue to Joule’s effect is pJoule ≈ ri2f if the transmission line is approximated as a
resistance r; by combining both equations we obtain that pJoule ≈ rp2g/u

2
1. Thus,increasing the voltage u1 can decrease power losses.
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be connected to the same grid. Overall, AC power allows for a drasticsimplification of Power grids for both consumers and producers, andquickly became the predominant model for electric power transport.However, high voltage levels cause strong electric fields that maytrigger electric arcs and fires. They require larger and more expen-sive infrastructures to spread power lines apart, and to lift them highenough. Modern power systems are thus designed as a trade-off be-tween Joule’s effect losses and higher costs of high voltage infrastruc-tures. In France, they are composed of the following voltage levels,which can be split into two distinct categories (recall Figure 6):
• The transmission system made of High Voltage (63kV and 90kV )and Extra High Voltage (225kV and 400kV ) power lines, and op-erated by a Transmission System Operator (TSO);
• The distribution system, made of Medium Voltage (20kV ) andLow Voltage (230V and 400V ), and operated by a Distribution Sys-tem Operator (DSO).

In this PhD thesis, we only consider the transmission system.
1.2.2 Oscillations and apparent power
The present PhD thesis is notably interested in using DL techniquesto find equilibrium states of power grids, which are dictated by Kirch-hoff’s laws. However, their formulation in AC is different from what hasbeen previously introduced, and is central to experiments conductedin Chapter 8. In order for readers not familiar with the PS literature tounderstand Kirchhoff’s laws AC formulation, the main underlying con-cepts and intermediate steps are detailed in the following.In AC power grids, voltages and currents oscillate everywhere at thesame frequency $/2π (in Hz). Every bus has its own phase ϑ: somemay be delayed while others may be ahead of phase. The instanta-neous voltage of a bus is written as:

uinst(t) = <(
√

2 uej$t) with u :=
umax√

2
ejϑ (1.3)

where j =
√
−1, and <(x) denotes the real part of complex number x.The current flowing from a bus into a port is delayed by a phase shift

φ compared to the voltage. Thus, the instantaneous current intensityflowing into a port is written as:
iinst(t) = <(

√
2 iej$t) with i :=

imax√
2
ej(ϑ−φ) (1.4)
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The instantaneous power injected from bus into a device can be writtenas:
pinst(t) = uinst(t)× iinst(t) (1.5)

=
umaximax

2
cos (φ)(1− cos (2$t+ 2ϑ))

+
umaximax

2
sin (φ) sin (2$t+ 2ϑ) (1.6)

It is constantly oscillating at a frequency of$/π and with a phase angle
2ϑ, as illustrated in Figure 1.4. It can be decomposed into the two termsof equation (1.6).

• The first term has constant sign (that depends on cos (φ)). Itsmean value p := umaximax cos (φ)/2 is called active power. Thisis the useful part of the power, i.e. the part that is actually trans-mitted to the device.
• The second term has a zero mean. Its amplitude q :=
umaximax sin (φ)/2 is called the reactive power. It bounces on thedipole and is not injected or withdrawn by it. Although it is com-mon to envision this as the useless part of the power, it is never-theless an unavoidable part of the coupling of oscillating systems.

Figure 1.4: Instantaneous power of a device in an AC system. As thevoltage and current intensity are slightly delayed (by a phase shift φ),their product is not necessarily centered around zero.
To represent both active and reactive parts of the power at thesame time, it is common to introduce the notion of apparent power

s ∈ C [103]:
s := p+ jq (1.7)

= ui∗ (1.8)
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where i∗ is the complex conjugate of i. The apparent power does notdepend on the bus phase angle ϑ. To emphasize the distinction be-tween s, p and q, the PS community measures the apparent power sin Volt-Ampere (V A), the active power p in Watt (W ), and the reactivepower q in Volt-Ampere reactive (V Ar).Introducing the notion of apparent power s allows to represent ina single variable both components of the oscillating power. Moreover,Kirchhoff’s laws in AC systems can be rephrased in terms of the sum ofapparent powers injected each bus, as follows:∑
k

sk→l = 0 (1.9)
where l denotes a bus, and the sum is over all devices k that are con-nected to bus l.
1.2.3 Three-phase power grids
So far we have only considered single-phase power grids. Actually, real-life power grids are three-phase systems: power is transported by 3distinct cables, each bearing current and voltage oscillating at the samefrequency, and delayed of one third of a cycle between each other. Thistechnology is more economical than single-phase systems that are pre-sented in this document, and allows to transport the same amount ofpower using a smaller amounts of conductive material. However, it iscommon to convert the actual three-phase system into a single-phaseequivalent system, and use exclusively the latter. As a consequence,all physical models considered in this document make no mention ofthree-phase systems, and consider the equivalent single-phase sys-tem.

1.3 Power grid modelling
Power grids are networks of interacting dipoles and quadrupoles, de-signed to transport electrical power from producers to consumers. Atypical instance of such a grid is displayed in Figure 1.5: the “IEEE case14”power grid, which is an approximation of the American electric powersystem as of February 1962. It is made of 14 buses, 5 generators, 11loads, 17 transmission lines, and 3 transformers.Objects that compose power grids can be split into several cate-gories, each having a distinct behavior in terms of injected apparentpower. In this section, we propose to review all classes of objects by de-tailing their respective set of features, as well as physical and decisional
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load
transmission line
transformer
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Figure 1.5: IEEE case14 – Instance of a 14 buses power grid.
modelling. We consider both active and reactive parts of steady-statepower grids. Finally, we summarize all relevant quantities in Table 1.1,and explain how some of them are linked through optimization prob-lems. This last point is at the heart of the present PhD thesis.
1.3.1 Buses
Buses lie at the interface between interconnected devices.They are usually modelled by the following set of features
(v, v, v̊,1pv,1slack, v̂, ϑ̂). All variables are successively introducedand put in context in the following.The actual complex voltage of a bus is written as:

u := vejϑ (1.10)
Relationships between v and ϑ and the above features are detailed be-low and depend on the role of the bus in the grid.As mentioned in equation (1.9), Kirchhoff’s laws state that the alge-braic sum of apparent powers flowing into a bus should sum to zero.One may estimate the discrepancy with regards to physical laws bycomputing the squared norm of the apparent power mismatch at eachbus. The discrepancy can be decomposed into an active and a reactiveterm:

|∆s|2 = |∆p|2 + |∆q|2 (1.11)
Equations for ∆p and ∆q depend on both the bus and the devices thatare connected to it, as detailed in the following.Both the complex voltage and apparent power mismatches actuallydepend on mechanisms that ensure the security and stability of thesystem: frequency and voltage regulation. We propose to succinctlyintroduce the purpose and means of both processes, and then explainhow they are modelled.
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Frequency regulation

This process aims at ensuring the stability of the oscillation frequencyin the whole system. By injecting power into the grid, generators tendto accelerate the oscillation of electrons. Meanwhile, consumers tendto slow these oscillations by withdrawing power. Thus, if production isnot equal to consumption plus losses, the frequency may vary. In sucha case, dispatchers may resort to disconnecting devices from the gridor even to load shedding (i.e. disconnecting consumers).Thus, frequency regulation aims at keeping oscillations close to afixed frequency (50Hz in Europe), by modulating the amount of ac-tive power injected by generators. This process is decentralized andinvolves multiple sub-mechanisms which operate at different timescales. Many models exist, but all are an over-simplification of the ac-tual process.We propose to choose the simplest model available. It defers to asingle bus – the “slack” bus, identified by the boolean feature 1slack –the task of providing enough power to ensure a global equilibrium ofthe system. Numerically, it is equivalent to alleviating the active powermismatch objective on this bus. For all buses, the active mismatch isgiven by:
∆p = (1− 1slack)

∑
k

pk→l (1.12)
In addition, it is common in the PS literature to set this bus to havea zero phase angle (all phase angles are defined up to translation). Forall buses, the phase angle is given by:

ϑ = (1− 1slack)× ϑ̂ (1.13)
Thus, ϑ takes the value of the feature ϑ̂ only if the bus is not slack, andzero otherwise.
Voltage regulation

The second mechanism involved aims at ensuring that the voltagemagnitude at all buses remains within an acceptable range of values:
[v, v]. High voltage magnitudes may endanger devices connected toit, and low voltage magnitudes can affect the quality of electricity pro-vided to consumers, or even lead to a blackout caused by a voltagecollapse.Generators located at so-called “PV” buses – identified by theboolean feature 1pv – can modulate their reactive production so as to
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ensure that the local voltage magnitude is exactly at a certain set point
v̊. As a consequence, the reactive mismatch at PV buses is necessarilyzero, while the voltage magnitude is forced to be at v̊. For all buses,the reactive mismatch and voltage magnitude is given by the followingequations:

∆q = (1− 1pv)
∑
k

qk→l (1.14)
v = 1pv × v̊ + (1− 1pv)× v̂ (1.15)

We use different variables for v̊ and v̂ to reflect the fact that the formeris controlled by the dispatcher, while the second is a consequence ofphysical equations.
Dispatchers thus monitor voltage amplitude at all buses, even thosewhich are not PV, and ensure that all magnitudes are within acceptablevalues, which is quantified by:

∆v = max(0, |u| − v) + max(0, v − |u|) (1.16)

1.3.2 Loads

Loads (or consumers) are devices that withdraw power from the grid.They are defined by their active power p̊, and reactive power q̊. It isassumed that they cannot be managed in any way, and withdraw thefollowing apparent power:
sload = p̊+ jq̊ (1.17)

1.3.3 Generators

As previously mentioned, generators contribute to both the frequencyand voltage regulation mechanisms. They are defined by their activepower p̊, and reactive power q̊. Furthermore, generators may take partin frequency and/or voltage regulations, which modifies respectivelytheir active and reactive productions compared to the target values.Still, the potential additional apparent power at PV and slack buses hasalready been modelled by equations (1.12) and (1.14), and we assumethat they have no active and reactive limits. Thus, they withdraw thefollowing constant apparent power:
sgen = p̊+ jq̊ (1.18)
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1.3.4 Shunts
A shunt is a device that has a fixed impedance, such as a capacitor oran inductor. It is used as a mean to control the voltage magnitude:dispatchers can disconnect or reconnect shunts so as to modulate thereactive power, which indirectly impacts voltage. It is defined by theirconductance g and susceptance b. The apparent power injected by theshunt is given by:

sshunt = (g − jb)|u|2 (1.19)
1.3.5 Transmission lines
Transmission lines are in charge of transporting electric power overlong distances. They act as a coupling mechanism between oscillationsof their “from” and “to” ends (respectively indexed by f and t). They aremodelled by the electric diagram of Figure 1.6 and are defined by theirresistance r, their reactance x and their total line charging susceptance
bc.
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if r x

bc/2 bc/2

it

ut

Figure 1.6: Electric diagram of a transmission line.
One may define the admittance matrix of a transmission line as:

Y =

[
ys + j b

c

2
−ys

−ys ys + j b
c

2

]
with ys =

1

r + jx
(1.20)

Transmission lines impose the following relationship between thecomplex voltages and currents of their ends:[
if
it

]
= Y

[
uf
ut

]
(1.21)

Recalling the definition of apparent power of equation (1.8), we obtainthe flow sf injected into the bus “from” and the flow st injected into the“to” bus.
sf = uf i

∗
f st = uti

∗
t (1.22)

Both apparent powers depend on complex voltages of both buses,thus inducing a coupling between buses.
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Losses caused by Joule’s effect is the amount of active power thatis injected on one side but not retrieved on the other:
pJoule = |<(sf + st)| (1.23)

1.3.6 Transformers
From an electrical point of view, transformers are akin to transmis-sion lines: they are a coupling mechanism between oscillations of twobuses. The main distinction is that they can scale up or down the volt-age magnitude between their “from” and “to” ends. In addition, sometransformers may induce an additional phase shift between both ends(phase shifting transformers). They are modelled by the electrical dia-gram shown in Figure 1.7, and are defined by their resistance r, theirreactance x, their total line charging susceptance bc, their ratio τ andtheir phase-shift angle ϑshift.
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Figure 1.7: Electric diagram of a transformer
The admittance matrix of a transformer is defined as:
Y =

[
(ys + j b
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with ys =

1

r + jx
(1.24)

Transformers impose the following relationship between the com-plex voltages and currents of their ends:[
if
it

]
= Y

[
uf
ut

]
(1.25)

We obtain the flow sf injected into the bus “from” and the flow st in-jected into the “to” bus.
sf = uf i

∗
f st = uti

∗
t (1.26)

Once again, the injected powers depend on the complex voltage ofboth ends, which induces a coupling between buses.Transformers are also prone to Joule’s effect:
pJoule = |<(sf + st)| (1.27)
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1.3.7 Summary of features and metrics
So far we have assumed no relationship between features. Actually,they are not independent: they are linked together through optimiza-tion problems, which involve the minimization of some metrics.

• For instance, buses features ϑ̂ and v̂ depend on all other fea-tures through the minimization of the violation of Kirchhoff’s laws
|∆s|2 across all buses. Power flows through transmission linesand transformers that appear in this metrics induce a couplingbetween buses. Finding actually realistic values for ϑ and v re-quires to solve a nonlinear optimization program, which is usuallyachieved via a Newton-Raphson method [106].

• Meanwhile, bus voltage set points v̊ are controlled by dispatch-ers. Ideally, they aim at minimizing the sum of electrical losses
pJoule over all lines and transformers, while ensuring that all volt-ages are within acceptable values (i.e. minimize ∆v). The dis-patcher’s decision thus has an impact over the actual state of thesystem.

Table 1.1 summarizes the features and metrics defined over powergrids. Experiments on the AC Power Flow (AC-PF) problem evokedabove are conducted in Chapter 8, and preliminary experiments onthe voltage control problem are detailed in Chapter 9.
Object class Features Metrics
Bus v, v,1pv,1slack, v̊, v̂, ϑ̂ |∆s|2,∆vLoad p̊, q̊ -Generator p̊, q̊ -Shunt g, b -Transmission line r, x, bc pJouleTransformer r, x, bc, τ, ϑshift pJoule

Table 1.1: Summary of features and metrics defined at each class ofobjects in power grids
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Chapter 2

Deep Learning

This chapter briefly introduces foundations of Deep Learning (DL) toreaders who are not familiar with it. Firstly, we explain how the broaderdomain of Machine Learning (ML) aims at exploiting data to learn toperform potentially complex tasks. Secondly, we define the Multi-LayerPerceptron (MLP) – which is the building block of Deep Learning (DL) –as a succession of layers of artificial neurons. We then detail how onemay train deep neural networks in practice. Finally we focus on a spe-cific class of neural networks aimed at processing images, and explainhow their structure actually respects some of the data invariants. Thiswill prove to be important in the next chapter which applies DL to graphdata.
This chapter contains all relevant concepts to understand the re-mainder of the document. Still, it was not written as an exhaustiveoverview of DL, and we refer interested readers to the book Deep Learn-

ing by Ian Goodfellow and Yoshua Bengio and Aaron Courville [20].

2.1 Machine Learning

Machine Learning (ML) is a domain that aims at designing models thatlearn from data to perform certain tasks. In this section we introducethe concept of empirical risk minimization, explain how ML differs frompure optimization, and underline the importance of expressivity of amodel.
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2.1.1 Empirical risk minimization
Let us consider two metric spaces X and Y . We associate a joint prob-ability distribution to the product set X × Y :

(x, y) ∼ p(x, y) (2.1)
Moreover, we assume that when x and y are sampled from p(x, y),there exists a functional dependency between them, written as:

y = f∗(x; ε) (2.2)
where ε is a random variable independent from x that models a noisethat may come from measurements, hidden variables or any other nui-sance factor. In this chapter we only consider regression problems,meaning that Y is a continuous space.We aim at modelling this functional dependency in order to be ableto predict the value of y from the sole knowledge of x. Since it is strictlyimpossible to search in the set of all functions, it is common in ML tosearch among a set of functions fθ : X → Y parameterized by θ ∈
Θ1. We refer to this set of function as the hypothesis space. Ideally, wewould like to find the best function in the hypothesis space, i.e. thefunction that minimizes the so-called risk:

Ex,y∼p(x,y) [L(θ;x, y)] (2.3)
where L(θ;x, y) is a loss function that estimates the quality of themodel fθ with regards to the sample (x, y). For instance, it is commonto take L(θ;x, y) = ‖fθ(x)− y‖2

2. The optimal function may heavily de-pend on the choice of L, although we do not consider this issue in thepresent work.If we had access to the actual distribution p(x, y), then minimizingthe risk would be a “simple” optimization problem. ML differs frompure optimization in the fact that we only have access to a train set
Dtrain = {(xm, ym)}m∈Mtrain

sampled from p(x, y). As a consequence,we can only estimate the empirical risk over this dataset, which is de-fined as:
1

|M |
∑

m∈Mtrain

L(θ;xm, ym) (2.4)
ML thus amounts to minimizing the empirical risk, in the hope thatthe actual risk will also decrease significantly. The Statistical Learning

1Many non parametric methods exist, but they fall out of the scope of the presentdocument.
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Theory domain provides tools to understand under which assumptionsempirical risk minimization actually guarantees a low risk. We referinterested readers to the book Statistical Learning Theory by VladimirVapnik [107].
2.1.2 Generalization
The ability of a model fθ to perform well on data sampled from p(x, y)that do not appear inDtrain is called generalization. In order to quantifythe generalization capacity of a model, we can estimate its risk over theso-called test set Dtest = {(xm, ym)}m∈Mtest also sampled from p(x, y).The risk over the test set is referred to as generalization error.Some models are too “simple” compared to the function f∗ theyaim at imitating. For instance, quadratic functions are poorly approx-imated by linear mappings: even the best linear regression will havea high empirical risk. This phenomenon is called underfitting and is il-lustrated by the left part of Figure 2.1. It appears when the hypothesisspace is not expressive enough and that patterns displayed by f∗ can-not be imitated by any function from the hypothesis space.In some other cases, the hypothesis space may contain functionsthat are too complex compared to f∗. For instance, if we aim at imi-tating a quadratic function with the set of all polynomials based on avery small train set, then there is an infinite number of functions thatachieve a zero empirical risk. However, most of those models will gen-eralize poorly: although they achieve a minimal empirical risk by re-turning exactly the right value of y for any x that is in the train set, theirintrinsic complexity prevents them from generalizing to new data. Thisphenomenon is called overfitting and is illustrated by the right part ofFigure 2.1. It occurs when models “learn by heart” the train set, but areunable to generalize.Overfitting is a major issue in ML and can be mitigated by varioustechniques [108]. Nevertheless, the remainder of the chapter will focuson devising a class of models that are expressive enough to imitate anycontinuous pattern so as to avoid underfitting.

2.2 Artificial Neural Networks
The problem of minimizing the empirical risk requires to first definean hypothesis space. While the domain of ML encompasses variousmethods such as decision trees [15], k-nearest neighbors [16], linearregression [17], naive bayes [18] or support vector machines [19], thepresent work only considers the case of neural networks. This Section
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Figure 2.1: Illustration of the problems of underfitting and overfitting.They occur when an hypothesis space contains only functions that aretoo simple or only functions that are too complex with regards to thefunction to be modelled f∗. Train set is represented by the black dots,in red is shown the best function of three distinct hypothesis spaces:linear function (left), quadratic functions (middle) and all polynomials(right).
first introduces the concept of artificial neuron as a simple model of bi-ological neurons. It then explains how multiple artificial neurons canbe combined to form Single-Layer Perceptrons (SLPs) and then Multi-Layer Perceptrons (MLPs), which are a class of highly expressive func-tions.
2.2.1 Artificial Neurons
Artificial neurons have initially been designed as a simplistic model ofbiological neurons. Neurons – or nerve cells – are the main compo-nents of nervous tissues, and have the ability to communicate witheach others through the transmission of electrical excitations, as illus-trated in Figure 2.2. Actual neurons receive multiple excitations com-ing from multiple other neurons through their dendrites. Messagesare summed in the cell body (soma), so as to obtain a single excita-tory message. Finally, they transmit the resulting excitation to otherneurons through the axons and terminal buttons.Artificial neurons process information in a similar fashion2. Multi-ple scalar inputs x1, x2, . . . are received, weighted and then summed.A scalar quantity called bias is then added. Finally, the result goesthrough a non-linear mapping called activation function, and is sent toother neurons or as an output. Artificial neuron output a scalar quan-

2Other models such as “spiking neurons” mimic more realistically actual neurons.The artificial neurons considered here are only a very rough approximation.
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Figure 2.2: Schematic representation of a biological neuron.
tity in 1D, defined by the following equation:

ŷ = σ(wᵀx+ b) (2.5)
where x ∈ Rdx is the vector of all input scalars, w ∈ Rdx is a vector ofweights, b ∈ R is the scalar bias, and σ : R → R is an activation func-tion. Activation functions are usually continuous, monotonous and dif-ferentiable. Some mappings such as the Rectified Linear Unit (ReLU)illustrated in Figure 2.4 are not differentiable, but one can still define asubderivative3. Figure 2.3 shows the structure of a single neuron.

x1

x2

x3

×w1

σ ŷ

input
output

×w2

×w3

+ b

Figure 2.3: Schematic representation of an artificial neuron. Vectordata x = (x1, x2, x3) is fed to the neuron. Each input is multiplied bya weight, and then summed. A non-linear activation function is thenapplied. A neuron can only return a scalar quantity ŷ ∈ R.

2.2.2 Single-Layer Perceptrons (SLP)
In order to output vectors in multiple dimensions, one can stack mul-tiple neurons to form a Single-Layer Perceptron (SLP). All neurons re-ceive the same input, but process it differently, as they all have differ-ent weights and biases. It is common to consider that all neurons sharethe same activation function, although one may choose not to. There

3a generalization of the gradient for convex functions which are not differentiable.
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Figure 2.4: Commonly used activation functions. From left to right : hy-perbolic tangent (tanh), sigmoid, Rectified Linear Unit (ReLU) and leakyReLU.
is one neuron for each of the dy dimensions of the output space. Theaction of an SLP over an input x is written as follows:

ŷ = σ(W.x+ b) (2.6)
where W ∈ Rdy×dx (resp. b ∈ Rdy ) is the concatenation of weights(resp. biases) of all neurons, and σ activation function. The action of σis element-wise.The main issue with SLPs is that they are not very expressive: theycan only model functions that are almost linear. However, data en-countered in real life are usually non-linear, and require much moreexpressive models.
2.2.3 Multi-Layer Perceptrons (MLP)
In order to improve the expressivity of neural networks, it is possible tostack multiple layers of SLPs, each layer receiving as input the outputof the previous layer. Resulting models are called Multi-Layer Percep-trons (MLPs). An MLP with T layers is defined by the following equa-tions:

h(0) = x (2.7)
∀t ∈ {0, . . . , T − 1}, h(t+ 1) = σt(Wt.h(t) + bt) (2.8)

ŷ = h(T ) (2.9)
where (Wt)t=0,...,T−1, (bt)t=0,...,T−1 and (σt)t=0,...,T−1 are respectively theweight matrices, bias vectors and activation functions of each layer.Variables (h(t))t=1,...,T−1 are often referred to as hidden layers, hidden
variables, or latent variables. We denote by (dt)t=1,...,T−1 their respectivedimensions, and use the conventions d0 = dx and dT = dy. Figure 2.5compares an MLP to an SLP and an artificial neuron, and shows thathidden layers need not be of the same sizes.
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In the case of a sigmoid activation, Cybenko proved in 1989 that a2-layers perceptron is a Universal Approximator [109]. This propertystates that the class of all 2-layers perceptrons is dense in the spaceof continuous functions. In other words, any continuous function canbe approximated with an arbitrarily low error by a 2-layers percep-tron. Hornik then bounded the approximation error as a function ofthe amount of neurons in the hidden layer [110]. MLPs are thus veryexpressive mappings. By stacking multiple layers of neurons, they canbuild gradually more abstract latent representations of the input data,and thus be used for problems that require a high level of abstraction.

x

ŷ

x

h(1)

ŷh(2)

h(3)

x

ŷ

ArtificialNeuron
Single-LayerPerceptron

Multi-LayerPerceptron
Figure 2.5: Schematic representations of an artificial neuron (left), aSingle-Layer Perceptron (middle), and a Multi-Layer Perceptron (right).One can notice that not all hidden variables in an MLP need to be ofthe same size.

2.3 Training Neural Networks
MLPs are a class of highly expressive mappings whose parameters usu-ally fall in one of these two categories:

• Parameters with regards to which the model can be derived:weights (Wt)t=0,...,T−1 and biases (bt)t=0,...,T−1.
• Parameters for which no gradient can be computed: amount oflayers T , hidden dimensions (dt)t=1,...,T−1 and activation functions

(σt)t=0,...,T−1.
This first category is called trainable parameters, and the second hyper-
parameters. Additional parameters that define the training process oftrainable parameters also fall into the category of hyperparameters.
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They will be defined below. Although both types of parameters are in-cluded in θ, it is common to denote only the trainable parameters by θ,and consider hyperparameters as implicit.This section is devoted to explaining how one may search throughthe sets of trainable parameters, and how hyperparameters are tuned.
2.3.1 Learning trainable parameters
For now, let us consider that hyperparameters are fixed. It is commonin the DL literature to rely on first-order gradient descent in the spaceof trainable parameters, so as to minimize the empirical risk. This op-timization process is also referred to as “learning”. We review some ofthe techniques involved in the learning of parameters.We recall that the empirical risk over a single datapoint (xm, ym) isgiven by L(θ;xm, ym). The gradient of the loss with regards to trainableparameters is simply written as∇θL(θ;x, y).In the following, we detail methods to explore the space of train-able parameters using Stochastic Gradient Descent. We also detail theidea behind the back-propagation algorithm [111] which allows for anefficient computation of gradients.
Gradient descent

The simplest way to perform a gradient descent consists in computingthe exact gradient of the empirical risk, and update weights iterativelyuntil a good empirical risk is achieved:
θ ← θ − η × 1

|M |
∑
m∈M

∇θL(θ;xm, ym) (2.10)
where η > 0 is an hyperparameter called the learning rate, which con-trols the size of steps taken in the set Θ.
Minibatch gradient descent Computing the gradient over thewhole dataset can be computationally exhausting, and one may ac-celerate it by estimating the gradient over minibatches Mbatch ⊂ Msampled from the train set [112]:

θ ← θ − η × 1

|Mbatch|
∑

m∈Mbatch

∇θL(θ;xm, ym) (2.11)
This provides an unbiased estimate of the gradient and can drasticallyreduce the computational time. At each update, a different minibatch
Mbatch is sampled from M .
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Momentum The minibatch approach may also be quite slow in thecase of small or noisy gradients. It can thus be accelerated by incorpo-rating some momentum into the exploration of Θ [113]. This methodintroduces an additional variable v which plays the role of a velocitythat accumulates an exponentially moving average of previous gradi-ents.
v ← αv − η × 1

|Mbatch|
∑

m∈Mbatch

∇θL(θ;xm, ym) (2.12)
θ ← θ + v (2.13)

where α ∈ [0, 1] is the exponential decay rate of the velocity. Mo-mentum can also be improved using Nesterov’s accelerated gradientmethod [114], which consists in computing the gradient at θ+αv insteadof estimating it at θ.
Adaptative learning rates All the above methods are highly depen-dent on the choice of the learning rate. Research over the past decadehas been focused on trying to dynamically adapt the gradient for eachcoordinate of θ, which gave rise to multiple optimization methods:AdaGrad [115], RMSProp [116], Adam [117], AdaMax and NAdam [118].Among all the existing methods, Adam is probably the most widelyused. It relies on estimating both the first order and second order mo-ments of the gradients using an exponential averages controlled byparameters β1 and β2.

g ← 1

|Mbatch|
∑

m∈Batch

∇θL(ym,fθ(xm)) (2.14)

s← ρ1s+ (1− ρ1)g r ← ρ2r + (1− ρ2)g � g (2.15)
s captures an estimation of the gradient, while r captures its norm ac-cording to all dimensions of θ. At the beginning of the training process,those estimators have a high bias. This is corrected by considering thefollowing unbiased estimators:

ŝ← s

1− ρt1
r̂ ← r

1− ρt2
(2.16)

where t represents here the time step of the learning process (andshould not be confused with the latent layer index commonly used inthe present document). The trainable parameter θ is then updated asfollows:
θ ← θ − η ŝ√

r̂ + δ
(2.17)
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where δ is usually set to a very small value. Default values of thepresent method are η = 0.001, β1 = 0.9, β2 = 0.999 and δ = 10−8.
Computing the gradient using back-propagation

All the above optimizers rely on the ability to compute the derivative ofmodels with regards to their trainable parameters. Closed-form equa-tions of these gradients can be tedious to obtain. Thankfully, even verydeep neural networks are nothing but a combination of small and sim-ple differentiable operations, as shown in equations (2.7) to (2.9). The
chain rule formula relates the derivative of a composition of functionswith the derivatives of the said functions, allowing to write gradient es-timation as a combination of easily computable terms. For instance,consider the two hidden layers neural network defined by

h(1) = σ0(W0.x) h(2) = σ1(W1.h(1)) ŷ = σ2(W2.h(2)) (2.18)
Biases are disregarded to simplify notations. Gradients of the outputwith regard to the model parameters are given by the following equa-tions:

∇W2loss = ∇W2 ŷ.∇ŷloss (2.19)
∇W1loss = ∇W1h(2).∇h(2)ŷ.∇ŷloss (2.20)
∇W0loss = ∇W0h(1).∇h(1)h(2).∇h(2)ŷ.∇ŷloss (2.21)

Computing gradients amounts to multiplying terms that are easy tocompute, as illustrated in Figure 2.6. Moreover, one can observe thatequations (2.20) and (2.21) share a common term. It appears that esti-mating the gradient of the output with regards to each of the trainableparameters can be done in a computationally efficient manner: theback-propagation algorithm [111] reverses the computational structureof the neural network to have gradient flow from the output to theweights of the model, as illustrated by the red arrows in Figure 2.6.
Weight initialization

Another key aspect of the training process concerns weights initializa-tion. A poor initialization will very likely have the optimizer get stuckin a bad local optimum. Currently, there is no theoretically groundedrule that prescribes weight initialization, but in the case of sigmoid orhyperbolic tangent activation functions, it is common to use the Nor-
malized Xavier [119] heuristic, which is defined by :

wt ∼ U

([
−
√

6

dt + dt+1
,

√
6

dt + dt+1

])
(2.22)
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W0 W1 W2

loss
∇h(2)ŷ ∇ŷloss
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Figure 2.6: Back-propagation of the gradient – During a forward pass(blue arrows), operations go from the input and weights to the output.During the back-propagation (red arrows), gradient flows from the out-put to the trainable weights.

where U is the uniform distribution, and dt, dt+1 are dimensions of theprevious and current hidden layers. In the case of ReLU activation func-tions, it is recommended to use another heuristic called He initialization[120]. An overview of weight initialization techniques is provided in [121].

2.3.2 Hyperparameter tuning

Hyperparameters are the subset of parameters for which no gradientcan be computed. They include both parameters that define the neu-ral network architecture and parameters that define the learning pro-cess of trainable parameters (optimizer, learning rate, minibatch size,weight initialization strategy, etc.).

Validation set

Just like we cannot use the test set to learn trainable parameters ofthe neural network, we cannot use it to select the best set of hyperpa-rameters. Hyperparameters have to be selected against a third datasetcalled called validation set Dval = {(xm, ym)}m∈Mval
. For each set of hy-perparameters we want to evaluate, we fully train a model using thetrain set, then compute its error over the validation set. We then se-lect the best set of hyperparameters with regards to their respectiveperformance over the validation set. Only now can we estimate thegeneralization error of the resulting model over the test set. The testset can only be used to estimate the quality of a fully defined model.Other methods such as cross validation exist, but are not reviewed inthe present document.
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Hyperparameter optimization

There exists multiple techniques to explore the set of possible hyper-parameters, which we propose to succinctly review.
Grid search This widely used method consists in selecting a few pos-sible values for each hyperparameter, and to successively try all pos-sible combinations. It explores the space of hyperparameters througha regular grid, which may be computationally exhausting if too manydimensions of the hyperparameter space are investigated.
Random search This method randomly selects sets of hyperparam-eters [122]. It typically outperforms grid search in the case where onlya few hyperparameters affect the actual performance of the model.
Bayesian optimization It outperforms both grid and randomsearches by making educated guesses about which regions of thehyperparameter space to investigate [123]. It balances exploration(choosing configurations that are far from previous experiments) andexploitation (choosing configurations close to the best past experi-ments) to explore the set of hyperparameters in a thoughtful manner.Other techniques such as early stopping [124] or evolutionary meth-ods also provide additional tools to choose the best set of hyperparam-eters.

2.4 Convolutional Neural Networks
Previous sections have introduced basic MLPs, and how to train them.However, most recent successes of neural networks come from thefact that it is possible to design complex architectures that intrinsicallyencode some invariants or assumptions about the process to be mod-elled. The adequacy between the data structure and the neural net-work architecture is one main reason for most recent achievementsof the DL domain. This principle being at the heart of the reflectionunderlying this thesis, we propose to illustrate it in its most renownapplication, namely Convolutional Neural Networks (CNNs).CNNs [125] are a type of neural network architecture that special-izes in processing data structures that are laid out as a regular grid[126]. They are commonly applied to time series (1 temporal dimen-sion), pictures (2 spatial dimensions) and even videos (2 spatial and 1temporal dimensions), and have achieved various successes in image

46



recognition [22, 127], video analysis [128, 129], natural language process-ing [130, 131], anomaly detection [132], drug discovery [133], Go game[134] and time series forecasting [135, 136].
2.4.1 Learning convolutions
CNNs rely on the use of convolution layers, which scan the input dataand locally apply trainable filters to detect local patterns, and poolinglayers, which compute local statistics over the data so as to reduce itssize. Both types of layers are critical to the aforementioned successes,but we will solely discuss principles of the convolution layer, as someof the underlying ideas will prove essential in the next chapter.Let us consider the case of 2d images. Each sample is denoted by
x ∈ Rdh×dw , where dh is the height and dw is the width of the image.Each pixel is denoted by xi where i ∈ {1, . . . , dh}×{1, . . . , dw} is a multi-index. Coordinates of the pixel in the 2d discrete space are given by
i = (i1, i2). It is common to consider images as the discretization of amultivariate function f , in which case we have xi = f(i), as shown inFigure 2.7.

i1

i2

i

i1

i2

i

Figure 2.7: Discretization of a multivariate function to create a 2d image– The function f is sampled at evenly spread points.
Natural images are known to be equivariant per translation: onecan translate a picture without altering its meaning. Thus, there has tobe a way to represent pictures such that this representation will not bealtered by translations. The mathematical operation called convolutionprovides such a tool, and will have us make a short detour to the Signal

Processing domain.Let f and g be two integrable functions. One can define the convo-lution of f and g as:
(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.23)
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The resulting function measures, for each value of shift t, how similar fand g actually are. If f is the signal of interest, and g is a small elemen-tary pattern (with a comparatively small support), then f ∗ g will tell ifthis elementary pattern appears in f and where.The above formula can be applied to discrete images as follows:
hi =

∑
j

f(j)× g(i− j) (2.24)

where j is also a multi-index. Using the change of variable k = i −
j, introducing wk := g(k), and recalling that f(j) = xj leads to thefollowing equation:

hi =
∑
k

xi−k × wk (2.25)
This equation describes the convolution operation used in CNNs :a small filter w = (wk) is swept across the input picture. It is multi-plied element-wise with each small portion of the input picture, thusgenerating another picture4.An example of convolution for a simple 6 × 6 picture and a 3 × 3filter is shown in Figure 2.8. The more similar the considered portionof the picture is to the filter, the higher the value of the resulting pixel.The blue part (top left) of the input data x is perfectly identical to thefilter w, so the generated pixel has a large value. The orange portion(middle) of the picture is however very different from the filter, so theresulting pixel will have a low value. The generated filtered data h (leftpart of the figure) is a representation of where the elementary patternencoded in the filter actually appears in the input data.This convolution operation is done simultaneously with multiple fil-ters. Some filters can be sensitive to horizontal lines, some to diago-nals, etc. By stacking multiple layers of convolutions, the neural net-work is able to first detect elementary patterns, then detect patternsof elementary patterns, and then patterns of patterns of patterns, andso on. The neural network successively increases its abstraction levelby building representations on top of each others.Those filters are key to detect elementary features that appear inthe previous layer. Although these filters may be manually designed,it is possible to train them as regular weights of a neural network. Bydoing so, the CNN can learn filters that are adapted to the problem athand.

4the resulting picture is smaller, because of edge effect, but methods such as zeropadding exist to account for that.
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filter w

input data x filtered data h
Figure 2.8: Convolution operation – The filter w is swept across the in-put data x, to generate a filtered picture h, which quantifies areas ofthe input that are the most similar to the filter.
2.4.2 Encoding invariants
A part of the success of CNNs can be attributed to their ability to encodedata invariants directly into their architecture. As highlighted by Good-fellow, Bengio and Courville in their book Deep Learning [20], convolu-tion layers exploit three important ideas : sparse interactions, parame-
ter sharing and equivariant representations. These ideas allow to bothincrease the model efficiency, and decrease the amount of weights ofthe architecture.First, the convolution operation is intrinsically local, contrarily tofully connected neural networks shown in Figures 2.5, where each neu-ron of a given layer is connected to each neuron of the next layer. Itallows the neural network to focus on detecting local fundamental pat-terns. This is achieved by considering only reasonably small filtersw (orequivalently by keeping the support of g small enough).Second, weights are shared across the image. Filters are appliedidentically everywhere, regardless of the spatial coordinates. Thus thetrained filters have to be relevant for the whole grid. They are trainedsimultaneously on every part of the input grid.Finally, convolutions create translation-equivariant representations.If one were to translate the input data, the resulting filtered data wouldalso be translated. Instead of working in the raw set of all possible pic-tures, it is as if the dataset was reduced to a set of equivalent classes.This can be seen as a way to fold the definition domain X along sym-metry axes, bringing together dissimilar datapoints whose equivalentclasses are actually very close.Properly encoding invariants will prove crucial in the next chapter,which is devoted to another type of data: graphs.
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Chapter 3

Graph Neural Networks

Power grids such as introduced in Chapter 1 have a quite atypical struc-ture. They are made of the interconnection of a series of objects of var-ious classes, thus forming a network. Modelling these complex struc-tures without altering them is a difficult task, and constitutes a contri-bution of this PhD thesis deferred to Chapter 4. For now, we may as afirst approximation frame power grids as graphs composed of verticeson the one hand (aggregating buses, loads, generators and shunts to-gether), and edges on the other hand (aggregating transmission linesand transformers together), as illustrated in Figure 3.2.In this chapter, we describe graphs, detail some of their proper-ties, and explore how the recent domain of GNNs can handle such datastructures. This work solely focuses on a specific type of GNNs, and werefer interested readers to the review paper written by Wu et al. [87]and to the book Graph Representation Learning by William L. Hamilton[88] for a more exhaustive presentation of the domain.

3.1 Graph data
In the previous chapter, we defined regression problems as trying tofind a mapping fθ that best approximates a target mapping f∗ : X →
Y , when x follows the distribution p(x). In the present chapter, we in-stantiate both input and output spaces X and Y as sets of graphs, andstate the hypothesis that the target mapping f∗ preserves the graphstructure of its input.
3.1.1 Notations
We consider graphs that are made of two parts: a discrete networkstructure, and a set of continuous features. A typical instance of such
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a graph is shown in Figure 3.1, and the conversion of a power grid intoan homogeneous graph is displayed in Figure 3.2.
Structure The structure of a graph [137] is denoted by (V , E), where
V is a set of n ∈ N vertices, and E is a set of directed edges. We considerthe case where vertices are ordered, and use the simplifying notation
[n] := {1, . . . , n}. As a consequence, we have that V = [n] and E ⊆ [n]2.We usually denote vertices by their index i ∈ [n], and edges by theirmulti-index (i, j) ∈ [n]2.
Features In addition to the discrete structure, continuous featuresare associated to each graph. Features are located at vertices or edges.Some can be considered as input features (i.e. directly observable) andencapsulated in x, while others are referred to as output features (i.e.that should be predicted) and encapsulated in y.We denote by xv = (xvi )i∈[n] input features located at vertices, and
xe = (xeij)(i,j)∈E input features located at edges, such that x = (xv, xe).Similar notations are used for output features y = (yv, ye). The dimen-sion of input (resp. output) features at vertices is denoted by dv,x (resp.
dv,y), while the dimension of input (resp. output) features at edges isdenoted by de,x (resp. de,y).We denote byXn,E andYn,E the set of input and output features thatare defined over the graph structure ([n], E). Moreover, we denote by
X and Y the sets of all input and output features defined over anygraph structure.

(x, y) x = (xv, xe) y = (yv, ye)

1

3

2 1

3

2 1

3

2

Figure 3.1: Example of a graph (x, y), with V = {1, 2, 3} and E =
{(1, 3), (2, 3)}. Input (resp. output) features are in dv,x = 2 (resp.
dv,y = 1) dimensions at vertices and in de,x = 1 (resp. de,y = 2) di-mensions at edges. We use the convention that output features arerepresented above the graph, while output features are displayed be-low it.
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Figure 3.2: Power grid instance and its conversion into an homoge-neous graph. Input features are in the following dimensions: dv,x =
3, de,x = 5. Generators and loads are aggregated together on the onehand, and lines and transformers on the other hand. For the sake ofreadability, only input features are considered.

Dense and sparse representations Edge features can be numer-ically represented in two distinct ways: dense or sparse. Figure 3.3presents the two approaches
In the dense representation, all possible edges in [n]2 are repre-sented. Thus, edge features are concatenated in a n× n× de,x tensor,and it is required to associate a default feature for edges that are notin E (usually 0). Moreover, it makes it impossible to consider paralleledges that share the same vertex connections, but not necessarily thesame features. Nevertheless, we use this representation in some fig-ures of the present document (see Figure 3.1), because it makes theimpact of vertex ordering clearer.
The sparse representation on the other hand consists in treatingedge features as a list of tuples (i, j, xeij)(i,j)∈E . Thus, edge features xeare represented as a m × (2 + de,x) matrix. When considering graphsthat have relatively few edges (i.e. m� n2), the sparse representationprovides a consequent gain in terms of memory. Moreover, it allowsto consider parallel edges that are connected to the same vertices.
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Figure 3.3: Dense and sparse representations of a graph. The denserepresentation associates a default value to edges that are not in E ,while the sparse representation only considers existing edges. Sparserepresentation can also directly handle parallel edges, while the denserepresentation has to convert them into single edges, which requires adeep understanding of the problem at hand. Edges directions are notdisplayed for the sake of readability.
3.1.2 Invariance & equivariance under permutations
The above definition of graphs relies on the ordering of vertices [n].However, in the general case, there is no unique or natural way to ordervertices: Why should the vertex corresponding to Brussels be rankedabove the vertex corresponding to Paris (or the other way around)?Still, the numerical representation of graph data heavily depends onthe choice of vertex ordering, while the underlying structure remainsunaltered.Permutations (bijective mappings from [n] to [n]) allow to switchfrom one vertex ordering to another, consequently changing the nu-merical representation. When applied to a graph input x, a permuta-tion σ ∈ Σn changes the vertex ordering, while preserving the features:

σ ? xv = (xvσ−1(i))i∈[n] (3.1)
σ ? xe = (xeσ−1(i)σ−1(j))(i,j)∈E (3.2)

Permutations over outputs y are analogous. Figure 3.4 presents theimpact of a permutation over a small graph, and over its numericalrepresentation.While the numerical representation of (x, y) is inevitably altered bypermutations, there exist functions that are able to withstand such per-turbations.
Definition 1. Let d ∈ N and f : X → Rd. f is said to be invariant per
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Figure 3.4: Permutation of a graph (x, y). The vertex ordering is al-tered, thus modifying the numerical representation of the data. How-ever, the underlying graph (structure and attached features) remainsuntouched, as highlighted by the left part of the figure.
permutation if

∀n ∈ N,∀E ⊆ [n]2, ∀x ∈ Xn,E ,∀σ ∈ Σn,f(σ ? x) = f(x) (3.3)
A typical instance of such a mapping would be a function that out-puts some global statistics about the graph structure (amount of ver-tices, amount of edges, diameter, etc.): regardless of the vertex or-dering, the output is strictly identical. The dimension of the outputspace is not critical. See Figure 3.5 for a graphical representation ofpermutation-invariance.

Definition 2. Let f : X → Y . f is said to be equivariant per permutation
if

∀n ∈ N,∀E ⊆ [n]2,∀x ∈ Xn,E ,

{
f(x) ∈ Yn,E
∀σ ∈ Σn,f(σ ? x) = σ ? f(x)

(3.4)
The condition f(x) ∈ Yn,E enforces that the function f preservesthe graph structure of its input. A typical instance of such a mappingwould be a function that outputs for each vertex its amount of neigh-bors. See Figure 3.6 for a graphical representation of permutation-equivariance.The notions of invariance and equivariance will prove to be centralin the remainder of this document.
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Figure 3.5: Permutation-invariant mapping. Regardless of the vertexordering, the mapping f produces the exact same output. The dimen-sion of the output of f is not critical.

xv xe

σ ? xv σ ? xe
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f

f(σ ? x)

f(x)

σσ
1→ 3
2→ 1
3→ 2

Figure 3.6: Permutation-equivariant mapping. The ordering of the out-put f(x) reflects the ordering of the input x. While the output of f isdifferent when applied to x and σ ? x, the underlying graph is strictlyidentical, and the same permutation σ allows to switch from one out-put to the other.

3.1.3 Distributions & Hypotheses

In the case of power grid applications, graphs are sampled according toa distribution that makes the discrete structure ([n], E) and the continu-ous features vary altogether. We denote by p(x, y) the joint probability
56



associated with the graph instance (x, y) ∈ X × Y . Indeed, the sup-port of this probability distribution is strictly restricted to pairs x and ythat have the same graph structure. Additionally, all input and outputfeatures at vertices and edges should share the same dimensions. Atypical distribution of graph data is illustrated in Figure 3.7.
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xv yvxe ye

xv yvxe ye

p(x, y)

Figure 3.7: Representation of a graph probability distribution p(x, y).Both the graph discrete structure and the continuous features vary.
Similarly to the hypothesis stated in equation (2.2), we assume thatthere is a functional relationship between inputs and outputs:

y = f ∗(x) (3.5)
Moreover, we assume that the problems we are interested in are notbound to any vertex ordering, i.e. that f ∗ is permutation-equivariant.Our goal is to approximate this relationship using a function fθ. Thepermutation equivariance property is extremely important: we do notwant the quality of our prediction to be altered by a simple change ofvertex ordering.A possible approach could be to train a fully-connected neural net-work fθ to be permutation-equivariant. This would require to performsome data-augmentation by considering all permuted versions of sam-ples (x, y) ∼ p(x, y). While this strategy is not necessarily a bad op-tion on small graphs, it becomes intractable for large ones (there are
n! permutations for graphs with n vertices). Moreover, regular neuralnetworks are bound to the size of their input: it would be impossible
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to use a trained model on a graph that is of different dimensions thanthe ones it was trained on.A more viable solution lies in the growing field of Graph Neural Net-works (GNNs), a class of neural networks that are built to process graphdata: they are inherently permutation-equivariant, and output graphsthat have the same structure as their input.

3.2 Graph Neural Networks

To sum things up, we are interested in imitating a mapping fθ : X → Y ,that maps input graphs to output graphs, while preserving the struc-ture in a permutation-equivariant way. Thankfully, the domain of GNNsdefines a class of parameterized permutation-equivariant mappings,which thus provide good candidates for the imitation of fθ. In this sec-tion we introduce the elementary operations upon which GNNs arebuilt and provide an instance of such a neural network architecture.

3.2.1 Of images and graphs
Before diving into the proper definition of the GNN architecture, let uscompare images and general graphs in the context of DL.The convolution operation has proven to be extremely efficient forprocessing image data (or any data laid out as a regular grid). It relieson the fact that each pixel can naturally be associated with Euclideancoordinates in a low dimensional space. In such a case relative posi-tions between pixels can be defined, as shown in equation (2.25). More-over, pixels coordinates lie on a regular grid, thus enforcing that rela-tive positions take a finite amount of values: instead of learning theconvolution function over a continuous set, one only has to learn itsvalues on a regular grid.Working with general graphs is very different. First of all, there areno Euclidean coordinates associated with each vertex: there are no rel-ative positions between vertices. Secondly, the only kind of distance wecan work with stems from the notion of neighborhood. As explained inthe previous section, there is no intrinsic way of ordering neighbors of avertex. Moreover, vertices do not necessarily have the same amount ofneighbors, as shown in Figure 3.8. In order to compute local statisticsabout the neighborhood of a vertex, one has to aggregate informationusing operations such as the sum, mean, max, etc.As to the down-sampling operation commonly used in computervision, it usually relies on the idea that one can aggregate local groups
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of pixels together, so as to reduce the complexity of the data. Thosegroups are easy to select because of the regular structure of the input.For general graphs, there is no intrinsic way of clustering vertices soas to create smaller and simpler graphs. Thus, all latent representationused by a neural network should stick to the graph structure of theinput.

Figure 3.8: Structure of an image (left) vs. Structure of a graph (right).While both can be considered as graphs, the structure of images is aregular grid that can naturally be embedded in a low dimensional Eu-clidean space.

3.2.2 Graph Neural Network architecture
As mentionned in the Introduction, there exist multiple ways of imple-menting GNNs. Some rely on a fixed-point method, some on a spectraldecomposition of the input graph, and others rely on a series of lo-cal operations. In this document, we only describe the latter method,which is called Spatial Graph Neural Network (GNN). For the sake ofreadability, we simply refer to it as Graph Neural Network (GNN).This type of neural network architecture relies on an iterative pro-cess where vertices and edges of the input graph exchange messagesbetween direct neighbors. It can be decomposed into three main steps:

• Encoding: each vertex and edge embeds its own input into a la-tent space.
• Message Passing: vertices and edges iteratively exchange infor-mation between direct neighbors.
• Decoding: each vertex and edge converts the result of the mes-sage passing into actual output values.

All those steps involve the use of multiple trainable neural networks,which are trained jointly.
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In order to properly explain the main ideas to readers that are notfamiliar with this approach, we propose to explain it from multiple per-spectives. First, we show the whole neural network architecture in theform of Algorithm 1. Then, each step is further detailed by both anexplanatory paragraph and a figure. Finally, Figure 3.12 shows how in-formation flows from the input x to the prediction ŷ through the neuralnetwork architecture. Moreover, the latter figure outlines the way neu-ral network blocks are laid out and shared across the architecture.
Algorithm 1 GNN forward pass

1: procedure fθ(x = ((xvi )i∈[n], (x
e
ij)(i,j)∈E))

2:
3: . Encoding
4: for i ∈ [n] do
5: hvi ← φv,encoderθ (xvi )

6: for (i, j) ∈ E do
7: heij ← φe,encoderθ (xeij)

8:
9: . Message passing

10: for t = 0, . . . , T − 1 do
11: for i ∈ [n] do
12: hvi ← φv,tθ (hvi , {heij}(i,j)∈E , {heji}(j,i)∈E)

13: for (i, j) ∈ E do
14: heij ← φe,tθ (heij, h

v
i , h

v
j )

15:
16: . Decoding
17: for i ∈ [n] do
18: ŷvi ← φv,decoderθ (hvi )

19: for (i, j) ∈ E do
20: ŷeij ← φe,decoderθ (heij)

21:
22: return ŷ = ((ŷvi )i∈[n], (ŷ

e
ij)(i,j)∈E)

Encoding (See Algorithm 1, lines 3 to 7) The first part of the GNN ar-chitecture consists in embedding features of the input graph into a la-tent space of dimension d – which is an hyperparameter of the GNNarchitecture. Each vertex i ∈ [n] applies the exact same neural net-work φv,encoderθ to its input xvi , thus creating a latent variable hvi ∈ Rd.Similarly, each edge (i, j) ∈ E applies the exact same neural network
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φe,encoderθ to its input xeij , thus creating a latent variable heij ∈ Rd. It isimportant to notice that those operations are performed in parallel:
• there is no exchange of information between vertices and / oredges;
• the vertex encoder φv,encoder is shared across vertices, and theedge encoder φe,encoder is shared across edges.

It is possible to choose different dimensions for vertex and edge la-tent spaces. However, we choose to use d for both so as to alleviatenotations. This hyperparameter should be sufficiently large to allowvertices and edges to store and exchange enough information.

x = (xv, xe) h0 = (hv,0, he,0)

encoding

Figure 3.9: Encoding step: a vertex encoder is applied to all vertices inparallel, while an edge encoder is applied to all edges in parallel. Thegraph structure is indeed preserved.

Message Passing (See Algorithm 1, lines 9 to 14) The second part ofthe GNN architecture consists in iteratively exchanging information be-tween vertices and edges1. Edges receive information from the verticesthey are connected to, while vertices receive information from edgesthat are connected to them. As it appears, there is an asymmetry be-tween edges and vertices: edges are connected to exactly two vertices,while vertices can be connected to a varying amount of edges. Verticesand edges are alternatively updated T times – where T is an hyperpa-rameter of the GNN architecture. Vertices and edges are updated asfollows :
• Each vertex i ∈ [n] is updated using the trainable neural network
φv,tθ , which takes as input hvi and latent variables of edges thatare connected to it. Since some edges are connected to i throughtheir first index, and others through their second index, we make

1In this implementation, we only consider interactions between edges and ver-tices, so as to alleviate notations. It is however very common in the GNN literature toalso have vertices that are connected through an edge to directly interact.
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a distinction between both cases. Thus the latent state is updatedaccording to {heij}(i,j)∈E on one side and {heji}(j,i)∈E on the otherside. Those being unordered sets, they should be embedded intovectors, using basic operations such as the sum, mean, product,etc.
• Each edge (i, j) ∈ E is updated using the trainable neural network
φe,tθ , which takes as input heij and the updated states of the twovertices to which it is connected: hvi and hvj .

In the GNN literature, φe,tθ ,φv,tθ can be different at each t, or exactly thesame (creating a recurrent architecture).

Figure 3.10: Message passing: first, vertices are updated depending onthe latent variable of the edges to which they are connected (left), andthen edges are updated depending on the latent variables of the ver-tices to which they are connected (right).

Decoding (See Algorithm 1, lines 16 to 20) The last past of the neuralnetwork architecture is akin to the first part. Trainable neural networks
φv,decoderθ and φe,decoderθ are applied in parallel to the latest latent vari-able of all vertices and all edges. These mapping output vectors of di-mension dv,y at vertices, and de,y at edges. Moreover, since all previousoperations also preserve the input graph structure, the final output isindeed in the right space: ŷ ∈ Yn,E .
Training The 2 + 2T + 2 (2 + 2 + 2 in the recurrent case) neural net-works are commonly instantiated as standard MLPs, and are trainedjointly. Each of these neural networks have their own hyperparame-ters: depth, width and activation function. In this regard, GNNs are notdifferent to other deep learning architectures and do not require anyspecific algorithm with regards to training.

In this chapter, we have introduced a data formalism that canrepresent power grids. The relationship between the consideredinputs and outputs is permutation-equivariant, which is a major issue
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decoding

hT =
(
hv,T , he,T

) ŷ = (ŷv, ŷe)

Figure 3.11: Decoding step: edge and vertex decoders are applied inparallel to all edges and vertices, so as to produce an actual predictiondefined in Yn,E .
for directly using regular neural networks. Then we have detailed atype of GNN architecture that is intrinsically permutation-equivariant,and that adapts the structure of its output to its input. Shortcomingsof both the data formalism and the corresponding GNN architecturewill be investigated in Chapter 4. This class of function is a naturalcandidate for modelling the functional relation between inputs andoutputs of graph data. This intuition will be further entailed by ourtheoretical contribution in Chapter 6.
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φv,encoderθ
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φv,0θ

φv,0θ
φv,0θ

φe,0θ φe,0θ
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φv,2θ
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φv,decoderθ

φe,decoderθ φe,decoderθ
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Figure 3.12: Example of a GNN applied to the graph shown in Figure 3.1.Information flows from the top (input) to the bottom (output).
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Chapter 4

Deep Statistical Solver
Architecture

Traditional graphs introduced in Chapter 3 do not allow for a seamlessrepresentation of power grids. The former are exclusively composedof vertices and edges, while the latter are made of a series of objectsof various classes. Even worse, it is impossible to consider multipleobjects located at the same vertex in parallel. Unfortunately, it is ex-tremely common in power grids to have multiple objects of the sameclass (generators, loads or shunts) connected to the exact same bus. Inorder to fit the traditional graph formalism, these can be aggregated to-gether, which most likely implies some information loss. For instance,it is not equivalent to control two collocated shunts or a single shuntthat is twice as large. This conceptual deadlock uncovers the limits ofmodelling power grids with traditional graphs, and pushes in favor ofthe definition of a graph formalism that is able to handle power gridsas is.In this chapter, we detail the notion of Hyper Heterogeneous MultiGraph (H2MG), a type of graph structure that represents power gridsmore easily. In addition, we propose a GNN architecture called theHyper Heterogeneous Multi Graph Neural Network (H2MGNN), thatdraws inspiration from dynamical systems and the Neural OrdinaryDifferential Equation (NODE) literature. It is natively compatible withH2MGs. We also detail key ideas that help improve the stability andperformance of the model.

4.1 Hyper Heterogeneous Multi Graphs
Power grids are made of a series of objects that can be organized intothe following classes: buses, generators, loads, shunts, transmission
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lines and transformers. Depending on its class, an object is defined bya varying amount of parameters of various units, and is located at oneor two vertices (Section 9.2 investigates the case of objects located atfour vertices).In this section, we propose a data formalism called Hyper Hetero-geneous Multi Graph (H2MG), which allows for a simpler integrationwith power grid data compared to traditional graphs, and that doesnot cause any loss of information.
Objects and vertices We consider a structure composed of objectson the one hand, and vertices on the other hand. Objects are con-nected to vertices, and therefore connected to each others via vertices:In such networks, vertices play the role of interfaces between objects.Moreover, objects that belong to the same class share some character-istics: They are connected to the exact same amount of vertices, andbear feature vectors of the same sizes. Meanwhile, vertices do not bearany feature vector, and only play the role of addresses (or interfaces).The proposed formalism lies at the interface of the following kindsof graphs:

• Hyper-graphs: Graphs that have hyper-edges, which can be con-nected to any number of vertices [138].
• Heterogeneous graphs: Graphs that are made of multiple classesof objects [139].
• Multi-Graphs: Graphs that allow multiple objects to have thesame addresses [137].

Hyper-edges and classes Let n ∈ N, and C be the set of consideredclasses. We denote by Ec the set of hyper-edges of class c. All suchhyper-edges are connected to the same amount of vertices throughtheir ordered ports Oc. Thus, Ec ⊆ [n]|O
c|. Classes such that |Oc| = 1represent objects that are located at exactly one vertex (such as gen-erators or loads in power grids). Classes such that |Oc| = 2 representobjects that are located at exactly two vertices (such as transmissionlines or transformers in power grids).

Multi objects Let c ∈ C and e ∈ Ec. We denote by Mc
e the set ofobjects of class c that lie on hyper-edge e. Those objects may bear dif-ferent feature vectors, and cannot be simply aggregated into an equiv-alent object.
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Structure A H2MG is composed of a structure that defines the inter-connection patterns of objects, and some features that are attachedto each object. We denote the structure of a H2MG x as (n, C, E ,M),where E = (Ec)c∈C andM = ((Mc
e)e∈Ec)c∈C . Moreover, we use the fol-lowing simplifying notation:

Gx = {(c, e,m)|c ∈ C, e ∈ Ec,m ∈Mc
e} (4.1)

Let i ∈ [n]. We call hyper-edge neighborhood of a vertex the set ofhyper-edges that are connected to it.
Nx(i) = {(c, e,m, o)|(c, e,m) ∈ Gx, o ∈ Oc, eo = i} (4.2)

One may observe that this set returns the class, the hyper-edge, themulti-object id and the port through which each object is connected to
i.
Features Contrarily to standard graphs, H2MGs exclusively bear fea-tures at hyper-edges: vertices only play the role of addresses to whichhyper-edges can be connected. In that sense, vertices should be seenas an interface between hyper-edges. The corresponding graph datacan still be written as (x, y) where x is the input and y the output. Figure4.1 shows how a power grid can seamlessly be framed as a H2MG.

x = (xce,m)(c,e,m)∈Gx (4.3)
y = (yce,m)(c,e,m)∈Gy (4.4)

All input and output features of hyper-edges of a given class c ∈ Care in dc,x and in dc,y dimensions. We denote by Xn,C,E,M and Yn,C,E,Mthe set of input and output graphs defined over the graph structure
(n, C, E ,M). We denote by X and Y the sets of all possible input andoutput graphs defined over all possible structures.We define a pair of H2MG (x, y) to be compatible, if they share thesame graph structure (n, C, E ,M).
Permutations The impact of permutations over H2MGs is analogousto that on standard graphs:

σ ? x = (xcσ−1(e),m)(c,e,m)∈Gx (4.5)
σ ? y = (ycσ−1(e),m)(c,e,m)∈Gx (4.6)

with σ−1(e) = (σ−1(eo))o∈Oc . Definitions of permutation-invariant andpermutation-equivariant mappings are also analogous to Definitions 1and 2 introduced in Chapter 3.
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Standard graph

Power grid
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generator
load

line
transformer

H2MG
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3

1 2 4
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bus
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Figure 4.1: Power grid instance and its conversions into a H2MG,and into a H2MG. Standard graphs require to aggregate togethervertex-like objects on the one hand and edge-like objects on theother hand. Meanwhile, H2MG allow to seamlessly representpower grids, without any information loss. In this example C =
{generator, load, line, transformer}. Input features are in the follow-ing dimensions: dgen,x = 1, dload,x = 2, dline,x = 2, dtransfo,x = 3. Lines andtransformers are of order 2, while generators and loads are of order 1.For the sake of readability, only input features are considered.

In addition to permutations that affect vertices, one may also con-sider permutations over classes C, over ports Oc and over collocatedobjects of the same classMc
e. Those permutations are all commuta-tive as they all affect orthogonal aspects of the data representation.However, these are not critical aspects of the problem. In the follow-ing, for the sake of simplicity, we shall only consider permutations oververtices.
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Connections with standard graphs H2MGs allow for a more naturalmodelling of power grids and explicit the fact that they are composedof multiple classes of objects. The process of converting an hetero-geneous graph into an homogeneous one constitutes a surjective butnot injective mapping: aggregating multiple objects of the same classtogether causes information loss.

4.2 H2MGNN Architecture
In this section, we introduce the Hyper Heterogeneous Multi GraphNeural Network (H2MGNN) architecture to handle Hyper Heteroge-neous Multi Graphs, and detail the main differences with the standardGNN introduced in Chapter 3. First, we provide a short introduction tothe key ideas behind the Neural Ordinary Differential Equation (NODE)literature [140], that was inspirational for the H2MGNN architecture.We then define the H2MGNN architecture as a system of interactingentities. And finally, we detail the actual implementation of the pro-posed model.
4.2.1 Neural Ordinary Differential Equations
Before diving into the H2MGNN architecture, let us introduce some im-portant concepts from the recent domain of NODE [140]. Consider afully-connected neural network with T hidden layers, such that eachhidden layer h(t) is defined by the following recurrence equation:

h(t+ 1) = φtθ(h(t)) (4.7)
where (φtθ)t=0,...,T−1 are trainable neural networks. The variable t repre-sents the iteration step, and shall also abusively be referred to as time.If T is too large, the architecture is prone to vanishing gradient issues,and a possible solution is to use “skip connections” (ResNet) [23], thattransform the previous equation into:

h(t+ 1) = h(t) + φtθ(h(t)) (4.8)
This closely resembles a Euler scheme [141] used to solve the followingdifferential equation over the interval [0, T ]:

dh

dt
= φθ(t, h(t)) (4.9)

The key idea of NODEs is thus to rephrase deep neural networks as dy-namical systems of latent variables. Inference amounts to solving the
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differential equation (4.9) for the interval [0, T ]. For the sake of sim-plicity, we shall equivalently consider the resolution of this differentialequation for the interval [0, 1], using a step size ∆t = 1/T . In the NODEliterature, the neural network mapping φθ is trained using an adjoint
sensitivity method [142], which falls off the scope of the present work.While our approach cannot be considered as part of the NODE lit-erature, it still inherits its formulation and underlying ideas from thisdomain, as shown below.
4.2.2 Dynamical system
Inspired by the NODE literature, we propose to describe the H2MGNNarchitecture as a dynamical system of interacting entities. This con-tinuous time dynamical system will then be discretized (see followingsubsection) so as to form the actual H2MGNN architecture.We consider the following time-dependent variables:

• Vertex latent variables (hvi )i∈[n];
• Hyper-edge latent variables (hce,m)(c,e,m)∈Gx ;
• Hyper-edge outputs (ŷce,m)(c,e,m)∈Gx

Latent variables are in d dimensions – which is a hyperparameter ofthe architecture – while predictions are already in the required outputdimensions.Since latent variables have no intrinsic meaning, they are initializedwith zero values. In contrast, predictions have a meaning with regardsto the problem at hand, so it makes sense to initialize them at a train-able and class-dependent value (ŷcθ)c∈C .
∀i ∈ [n], hvi (0) = [0, . . . , 0] ∈ Rd (4.10)
∀(c, e,m) ∈ Gx, hce,m(0) = [0, . . . , 0] ∈ Rd (4.11)

ŷce,m(0) = ŷcθ ∈ Rdc,y (4.12)
Latent variables interact according to the following differential sys-tem, involving trainable mappings φθ:
∀i ∈ [n],

dhvi
dt

=
∑

(c,e,m,o)∈Nx(i)

φc,oθ (t, hve , h
c
e,m, ŷ

c
e,m, x

c
e,m) (4.13)

∀(c, e,m) ∈ Gx,
dhce,m
dt

= φc,hθ (t, hve , h
c
e,m, ŷ

c
e,m, x

c
e,m) (4.14)

dŷce,m
dt

= φc,yθ (t, hve , h
c
e,m, ŷ

c
e,m, x

c
e,m) (4.15)

where hve = (hveo)o∈Oc and should not be confused with hce,m.
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Vertices latent variables – equation (4.13) Vertices being con-nected at a varying amount of hyper-edges, their latent variables de-pend on a varying amount of unordered variables. We choose to ag-gregate their respective impacts by summing them. The action of eachhyper-edge over its vertices depends on local information: its latentvariable hce,m, its prediction ŷce,m, its input xce,m and the latent variablesof its vertices hve = (hveo)o∈Oc . Additionally, it is important to use a differ-ent trainable mapping depending on the hyper-edge class c ∈ C and onthe port o ∈ Oc through which it is connected to the considered vertex.Thus, a set of trainable mappings ((φc,oθ )o∈Oc)c∈C is used in this step.
Hyper-edges latent variables – equation (4.14) The latent variableat hyper-edge (c, e,m) depends on itself hce,m, on its local input xce,m,on its local prediction ŷce,m, and on latent variables of its vertices hve =
(hveo)o∈Oc . Thus, for a given class, all hyper-edges depend on the sameamount of variables, which allows us to use a single trainable neuralnetwork φc,hθ .
Hyper-edges predictions – equation (4.15) Predictions are com-pletely analogous to latent variables. The only difference is that theirsize is set by the problem at hand. Still, the formulation is analogousto equation (4.14), using this time the trainable neural network φc,yθ
4.2.3 Architecture
The H2MGNN architecture amounts to integrating the dynamical sys-tem of equations (4.10 - 4.15) over the interval [0, 1]. The final outputserves as a prediction. Contrarily to NODE models, it relies on a simpleEuler scheme by using a fixed time step size ∆t, which implicitely definethe amount of steps (given by 1/∆t). Thus, our method is a recurrentand residual GNN architecture, which shall be trained using standardback-propagation methods. Implementing an actual NODE should beinvestigated in future work.Algorithm 2 details the pseudo-code of the H2MGNN architecture.Trainable neural network blocks ((φc,oθ )o∈Oc ,φ

c,h
θ ,φc,yθ )c∈C can be im-plemented as simple fully-connected neural networks. Contrarily tothe architecture presented in Algorithm 1, the trainable mappings takethe continuous time variable t as input. Hyperparameters of the archi-tecture include the latent dimension d, the time step size ∆t, and allthe hyperparameters of each trainable neural network block. Unlessexplicitly stated otherwise, this architecture is used by default in theexperiments.
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Algorithm 2 Proposed Heterogeneous Graph Neural Network
1: procedure fθ(x = (xce,m)(c,e,m)∈Gx)
2:
3: . Initialization
4: for i ∈ [n] do
5: hvi ← 0d

6: for (c, e,m) ∈ Gx do
7: hce,m ← 0d

8: ŷce,m ← ŷcθ

9:
10: . Latent interaction
11: t← 0
12: while t < 1 do
13: for i ∈ [n] do
14: hvi ← hvi + ∆t×

∑
(c,e,m,o)∈Nx(i)

φc,oθ (t, hve , h
c
e,m, ŷ

c
e,m, x

c
e,m)

15: for (c, e,m) ∈ Gx do
16: hce,m ← hce,m + ∆t× φc,hθ (t, hve , h

c
e,m, ŷ

c
e,m, x

c
e,m)

17: ŷce,m ← ŷce,m + ∆t× φc,yθ (t, hvl , h
c
e,m, ŷ

c
e,m, x

c
e,m)

18: t← t+ ∆t

19:
20: return ŷ = (ŷce,m)(c,e,m)∈Gx

In order to make things clearer, we propose to illustrate the algo-rithm on a simple case. Consider the input graph displayed in Figure4.2. It has 2 vertices, and one instance of each of the following classes:
C = {α, β, γ}. We observe that the class β is of order 2, while others areof order 1. Moreover, there are no collocated hyper-edges of the sameclass, we may thus drop the index m to simplify notations. An iterationof the algorithm is made of the three following steps:

• Figure 4.3 displays what happens when the latent variables of ver-tices is updated (line 14 of Algorithm 2). Each vertex is updatedaccording to the information contained in the hyper-edges con-nected to it.
• Figure 4.4 displays the process of updating latent variables athyper-edges. They are updated according to the informationcontained in the hyper-edge, and to the |Oc| ordered vertices towhich the hyper-edge is connected.
• Figure 4.5 displays the process of updating output at hyper-
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edges. This step is akin to the previous one, but uses a differenttrainable mapping.
These figures underline the asymmetry between vertices and hyper-edges. Vertices can be seen as interfaces through which hyper-edgescan interact, thus propagating their respective influence to the wholegraph.

4.2.4 Inference complexity
Assuming that each neural network block has a single hidden layer withdimension d, that d is much larger than input and output feature di-mensions and denoting by u the average neighborhood size, one in-ference has computational complexity of order O(und3/∆t), scalinglinearly with n. Furthermore, many problems involve very local inter-actions, resulting in small u. However, one should keep in mind thathyperparameters 1/∆t and d should be chosen according to the chara-teristics of distribution p(x), as detailed in Chapter 6. For instance, thestep size ∆t should be appropriate with regards to the diameters ofconsidered graphs, so as to allow information to propagate enoughtimes.

4.3 Implementation considerations

The H2MGNN architecture requires additional attention in order to ac-tually work seamlessly. Because both inputs and outputs of the neuralnetworks actually have a physical meaning, and can thus have atypi-cal distributions, it is important to add some pre and post processing.Moreover, if no precautions are taken, the architecture is prone to nu-merical instability, which we address by using normalization layers.

4.3.1 Input pre-processing
Neural networks are known to be especially sensitive to input data dis-tribution. It is thus generally recommended to pre-process the data sothat the values are approximately contained in the range [−1, 1]. Wethus propose to use a pre-processing function ζ : X → X .Input of this pre-processing mapping are physically meaningfulquantities. Thus, normalizing them distorts the input space and shat-ters their physical meaning. Figure 4.6 details how the pre-processingfunction ζ is included in the whole process.
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Figure 4.2: Instance of an input heterogeneous graph x.
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Figure 4.3: Updating vertex latent variables.
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12

hv2

hβ12←h
β
12+∆t ×φβ,hθ

(
t,[hv1, h

v
2],hβ12,ŷ
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Figure 4.4: Updating hyper-edge latent variables.
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Figure 4.5: Updating hyper-edge outputs.
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Since this mapping serves as a pre-processing step to apermutation-equivariant structure, it is preferable to have ζ alsobe permutation-equivariant, so as not to break the input graph struc-ture. We propose to decompose it as ζ = (ζc)c∈C , such that each classhas its own pre-processing function. Such class-specific functions arethen applied identically to each instance of each class. We denote by x̃the pre-processed version of the input data x, which is then fed to theneural network.
x̃ = (ζc(xce,m))(c,e,m)∈Gx (4.16)

This function is built before the start of the training process and sothat distributions of all input features of all classes are well-distributedin the training set.
x

x̃

ŷ

ỹ
fθ

ζ η

Physicallymeaningfulquantities
Abstract andwell-distributedvalues

Figure 4.6: Data pre-processing ζ and post-processing η allows to con-vert physically meaningful and poorly-distributed data, to abstract andbetter-distributed (see text) quantities. ζ and η being permutation-equivariant, we have that η ◦ fθ ◦ ζ is also permutation-equivariant.

4.3.2 Output post-processing
Neural networks also have difficulties predicting quantities that haveeither too large or too small orders of magnitudes. Thus, manuallyscaling the output of the neural network fθ can greatly facilitate thelearning process. We propose to apply another function η : Y → Y toconvert the abstract output of neural networks into physically mean-ingful quantities. Figure 4.6 shows of the post-processing function ηfits into the whole framework.Similarly to the pre-processing mapping, it is important to have apermutation-invariant function. We decompose the post-processingas η = (ηc)c∈C , such that each class has its own post-processing func-tion. Such mappings are applied identically to each instance of eachclass. We denote by ỹ = fθ(x̃) the raw output of the neural network,
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and by ŷ the actual post-processed output data, which is defined by:
ŷ = (ηc(ỹce,m))(c,e,m)∈Gx (4.17)

The post-processing function can also be used to initialize the out-put of the neural network at the beginning of the training, or even tomanually force predictions to remain within an acceptable range of val-ues.This function is built before the start of the training process, andrequires some knowledge about the problem at hand.
4.3.3 Numerical stability
Regardless of pre and post-processing considerations, the proposedarchitecture is prone to exploding or vanishing gradient issues. The re-current formulation tends to create numerical instabilities. We normal-ize all abstract latent variables before feeding them to neural networkusing the following mapping1:

u 7→ u

‖u‖+ 1
(4.18)

This allows neural networks inputs to remain in a reasonable range.Contrarily to other approaches such as batch-normalization [143], thismapping is local and does not require to compute statistics over thewhole batch of data. It preserves the permutation-equivariant prop-erty of the GNN architecture.This simple trick, combined with suitable pre and post processingfunctions significantly improve the stability and efficiency of the train-ing process.

Throughout this chapter, we have introduced a formalism that canmodel power grids without any information loss, and then detailed aneural network architecture called H2MGNN that is able to seamlesslyprocess such structures. In the next chapter, we develop a methodol-ogy to train such neural network mappings to solve optimization prob-lems.

1as suggested by our colleague Dr. Victor Berger
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4.A Historical DSS architecture
The data formalism and neural network architecture introduced in thepresent chapter result from a process of iterative refinements, . Whileexperiments from Sections 7.1 and 8.2 rely on the latest version of theapproach, Sections 7.2, 8.1 and 9.1 detail experiments conducted us-ing an earlier version of both the data formalism and neural networkarchitecture, which we detail in the present appendix section.
Graph data Previous versions used to consider traditional homoge-neous graphs as input and output. Moreover, only vertex featureswere considered as output. Using similar notations as Chapter 3, thedata was denoted by x = (xv, xe), and the output by y = (yv). Thenotion of neighborhood was quite straightforward and denoted by
Nx(i) := {j ∈ [n]|(i, j) ∈ E or (j, i) ∈ E}. Moreover, we used thefollowing convention: N ∗x (i) = N (i;x)\i.
Architecture Previously used GNN architectures were not recurrent:they iteratively updated latent variables using each time a different setof trainable neural network mappings (φt→,θ,φ

t
←,θ,φ

t
	,θ,ψ

t
θ, ξ

t
θ)t=1,...,T ,as detailed in Algorithm 3. Instead of producing a single output simi-larly to the current version, it used to output T different outputs, whichare then all used during training, as illustrated in Figure 4.7. The coef-

h0 h1 ht ht+1 hT

ŷ1 ŷt ŷt+1 ŷT

ξ1
θ ξtθ ξt+1

θ ξTθ

` (x, ŷ1) ` (x, ŷt) ` (x, ŷt+1) `
(
x, ŷT

)

x

M1
θ

. . .

x

M1
θ

. . .

Trainablefunction
Input

Finaloutput

Fθ

x

ŷT

ŷt Intermediateoutput

Figure 4.7: Previously used neural network architecture. The opera-tor M t
θ encompasses all the message passing operations performed inlines (10-13) of Algorithm 3. All intermediate predictions appear in theloss of equation 4.19, while the current H2MGNN only penalizes the fi-nal prediction.
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Algorithm 3 Previously used Graph Neural Network architecture
1: procedure fθ(x = (xv, xe))
2:
3: . Initialization
4: for i ∈ [n] do
5: h0

i ← 0d

6:
7: . Message passing
8: for t = 1, . . . , T do
9: for i ∈ [n] do

10: φt→,i ←
∑

j∈N ∗x (i)φ
t
→,θ(h

t−1
i , xeij, h

t−1
j )

11: φt←,i ←
∑

j∈N ∗x (i)φ
t
←,θ(h

t−1
i , xeji, h

t−1
j )

12: φt	,i ← φt	,θ(h
t−1
i , xeii)

13: hti ← ht−1
i + α×ψtθ(ht−1

i , xi, φ
t
→,i, φ

t
←,i, φ

t
	,i)14: ŷti ← ξtθ(h

t
i)

15:
16: return (ŷt)t=1,...,T

ficient α in line 13 of Algorithm 3 is a scaling factor that improved thenumerical stability.
Training The training loss consists in a discounted sum over the Tdifferent costs of intermediate predictions2, using a discount factor γ ∈
[0, 1]:

T∑
t=1

γT−t`(x, ŷt) (4.19)
This loss, combined with the use of gradient clipping and a reason-ably small α, allowed to mitigate a recurring problem of gradient ex-plosion. Since the latest H2MGNN version does not suffer from suchissues thanks to the tricks introduced in Section 4.3, there is little ben-efit in using a discounted sum.

2` is the cost function that is to be minimized by the neural network mapping, aswill be further detailed and justified in Chapter 5
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Chapter 5

Statistical Solver Problems

Power grid operation involves various forms of optimization processes:power flows are estimated by solving equations derived from Kirch-hoff’s laws, generators voltage setpoints and interconnection pat-terns are controlled by dispatchers to optimize a security objective,power generation dispatch is dictated by a market equilibrium, etc.Whether these quantities are obtained through a well-posed optimiza-tion program, or left to human decisions, there is always some formof optimization, which creates a coupling between various quantitiesthroughout the grid.
In this chapter, we propose a method to train neural networks suchas introduced in Chapter 4 to solve instances of an optimization prob-lem – referred to as the “target” problem – through the definition of aStatistical Solver Problem (SSP). Instead of learning to imitate anotherresolution method, the proposed methodology amounts to training aneural network in an unsupervised fashion, by directly minimizing thecost function of the target problem. In that sense, the proposed ap-proach, which we call Deep Statistical Solver (DSS), is a full-fledged op-timization process. It relies on similar ideas as those underlying thePhysics-Informed Neural Network (PINN) literature.
In a first section, we consider the case of single-level unconstrainedoptimization problems. For instance, it includes the case of the ACPower Flow (AC-PF) problem, which consists in computing power flowsthroughout the grid, given power injections and transmission lines in-terconnections. In a second section, we consider the case of bileveloptimization problems, of which the issue of controlling the voltage inpower grids is a typical instance. It consists in choosing the voltagesetpoints of generators while anticipating that this decision has a nontrivial impact over the power flows.
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5.1 Single-level unconstrained optimization

Let us consider the case of single-level unconstrained optimization tar-get problems, through the example of the AC-PF problem. It consists incomputing the voltage magnitudes and phase angles (which can thenbe used to compute power flows), given the power injections and thetransmission lines interconnections. This problem can be schemati-cally represented by Figure 5.1.
power grid instance

solver

voltage magnitudes& phase angles
Figure 5.1: Single level AC-PF problem

In current power grid operations, the solver that solves the AC-PF relies on a Newton-Raphson method. Inspired by the PINN ap-proach to the resolution of partial differential equation [95], we pro-pose an alternative solution to the classical Newton-Raphson solverusing neural networks mapping such as introduced in Chapter 4 tosolve this optimization problem without the need for any existing so-lution of sample instances. Such general approach could be used forany permutation-equivariant optimization problem defined on graphs,including the ones for which there is no existing satisfying solver.Thus, we propose to convert the target optimization problem asa learning problem, which we refer to as a Statistical Solver Problem(SSP). We derive this neural network training procedure from an ele-mentary density estimation principle. We call a deep neural networktrained using this approach a Deep Statistical Solver (DSS).Throughout this section, we will use the AC-PF as running example,so as to make things concrete. The present theoretical section is fur-ther supported by experimental results presented in both Chapters 7and 8.

5.1.1 Target optimization problem
Let X and Y be two sets, and ` : X × Y → R be a cost function. Weassume that for a given x ∈ X , `(x, y) has a unique minimum y∗(x)
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defined by the following target optimization problem:
y∗(x) = arg min

y∈Y
`(x, y) (5.1)

The cost function ` being fixed, we refer to x as an instance of the op-timization problem.In the AC-PF problem, x denotes a H2MG input (see Section 4.1) thatencapsulates the power production and consumption, and transmis-sion lines interconnections (see Figure 4.1 for instance); and y denotesthe voltage magnitudes and phase angles at all buses. The cost func-tion ` is the violation of Kirchhoff’s laws. This target optimization prob-lem is usually solved using the Newton-Raphson method.
5.1.2 Probabilistic relaxation
Traditional optimization does not use any probability distribution onthe instance space. On the contrary, statistical learning tools are de-signed to exploit any such distribution. However, we first need torephrase the optimization problem in probabilistic terms, and then relyon a density estimation approach to give rise to a statistical learningproblem.
Target distribution

In power grid operations, each possible power grid instance x is asso-ciated with a certain probability density p(x). Some instances mightbe more probable than others. In such a case, rare but critical in-stances may be neglected by our training algorithm, which may resultin our model being unreliable in abnormal situations. Still, one couldchoose to distort the real probability density by overweighting criticalinstances of optimization problems, so as to make the model robust torare events. The issue of choosing the appropriate probability distri-bution p in regard with industrial security constraints is not addressedin this document, but should definitely be considered in future work.The conditional probability distribution q(y|x) that connects prob-lem instances x to their solutions is a Dirac measure located at y∗(x):
q(y|x) = δy∗(x)(y) (5.2)

The target distribution is as follows:
• x ∼ p(x): sampling an instance of optimization problem x ;
• y ∼ q(y|x): solving the instance of optimization problem x.
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Writing the optimization problem in probabilistic terms allows usto derive a training loss based on density estimation principles and tolearn probability q, i.e., to learn a mapping between instances of opti-mization problems x and their solutions y∗(x). Indeed, q is not directlyreachable, and we will now derive rigorously such a training loss thatallows us to learn it.
Deriving a learning problem

We consider a set of distributions qθ(y|x) parameterized by θ ∈ Θ. Weneed to find θ∗ such that p(x)qθ∗(y|x) is as close as possible to the un-known true generative process p(x)q(y|x).It is common in the statistical learning literature [107] to minimizethe Kullback-Leibler divergence between p(x)qθ(y|x) and p(x)q(y|x).
DKL(pqθ‖pq) :=

∫
x∈X

∫
y∈Y

p(x)qθ(y|x) log

(
qθ(y|x)

q(y|x)

)
(5.3)

The KL-divergence is not a distance per-se, but is a commonly usedmetrics for the similarity between two probability distributions. Un-fortunately, this quantity is not defined in our case. The support of
p(x)q(y|x) – also denoted by supp(p(x)q(y|x)) := {(x, y) | p(x)q(y|x) >
0} – is limited to a manifold strictly included in the support of
p(x)qθ(y|x). As a consequence we have thatDKL(pqθ‖pq) = +∞, whichcannot be minimized.In the following, we propose to consider a relaxation of the targetdistribution for which the KL-divergence can be written. This relaxationis controlled by a parameterβ ∈ R+\{0}. We first consider the problemof learning intermediate distributions, and we then investigate the limitof such intermediate learning problems when we make the relaxationdisappear.Assuming that for any fixed x, ` has a unique minimum, and thatfor any β we have ∫

y′∈Y e
−β`(x,y′) < +∞, then q can be written as theweak limit of a set of Gibbs measures [144]:

q(y|x) = lim
β→+∞

qβ(y|x) ; qβ(y|x) =
e−β`(x,y)∫

y′∈Y e
−β`(x,y′) (5.4)

We observe that for any β > 0, supp(p(x)qβ(y|x)) = supp(p(x)) × Y .Thus, the KL-divergence between the parameterized generative pro-cess and each intermediate Gibbs distribution is well defined:
DKL(pqθ||pqβ) =− Ex∼p(x) [Hy(qθ(y|x))] + β E x∼p(x)

y∼qθ(y|x)

[`(x, y)] + C(β)

(5.5)
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where Hy(.) is the Shannon entropy of a distribution w.r.t. variable y,and C a function of β independent from θ. For a given β, we considerthe following intermediate statistical learning problem:
Θ∗(β) = arg min

θ∈Θ
DKL(pqθ||pqβ) (5.6)

Theorem 1. Let (βk)k∈N be a positive sequence such that βk −→
k→+∞

+∞.
If qθ is continuous w.r.t. θ, Θ is compact, and θ 7→ E x∼p(x)

y∼qθ(y|x)

[`(x, y)] has a

unique minimizer θ∗, then any sequence θk ∈ Θ∗(βk) converges to θ∗.

Proof. Let us denote by gk the mapping
gk : θ 7→ − 1

βk
Ex∼p(x) [Hy(qθ(y|x))] + E x∼p(x)

y∼qθ(y|x)

[`(x, y)] (5.7)
Its arg min is exactly Θ∗(βk). We observe that it converges uniformly tothe mapping f :

g : θ 7→ −E x∼p(x)
y∼qθ(y|x)

[`(x, y)] (5.8)
θ∗ is the minimizer of g and is assumed to be unique. Consider anyconvergent subsequence of θk ∈ Θ∗(βk), and let us denote θ′ its limit.Then for any θ ∈ Θ we have that gk(θk) ≤ gk(θ). Since gk convergesuniformly towards g and θk converges to θ′, we obtain that

gk(θk)→ g(θ′) gk(θ)→ g(θ) (5.9)
As a result, we have that g(θ′) ≤ g(θ), which holds for any θ. By unicityof θ∗, we have that θ′ = θ∗. Thus any convergent subsequence of θk ∈
Θ∗(βk) converges to θ∗, and hence the whole sequence converges to θ∗as well.

Theorem 1 states that if θ 7→ E x∼p(x)
y∼qθ(y|x)

[`(x, y)] has a unique mini-
mizer θ∗, then the limit of the intermediate statistical learning problems
Θ∗(β) as β tends to infinity amounts to solving the following problem:

θ∗ = arg min
θ∈Θ

E x∼p(x)
y∼qθ(y|x)

[`(x, y)] (5.10)
Even though we were unable to compute the KL-divergence be-tween our target distribution and our parameterized distribution, wemanaged to take an intermediate path to derive a proper learningproblem.
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Statistical Solver Problem The resulting learning problem is re-ferred to as an SSP, and can be summed up as follows: given spaces
X and Y , distribution p defined over X and cost function ` defined on
supp(p)×Y , we wish to find the distribution qθ(y|x) that minimizes thecost function `, when x follows p(x). It is schematically represented byFigure 5.2.

Loss(θ)

x

p(x)

qθ(y|x)

y

`

Figure 5.2: Single level SSP

5.1.3 Training algorithm
The loss function associated with the SSP can be expressed as follows:

Loss(θ) = E x∼p(x)
y∼qθ(y|x)

[`(x, y)] (5.11)
Indeed, we do not have a direct access to the distribution p(x), andhave to rely on a empirical dataset D = {xm}m∈M . The empirical lossover the dataset D is given by:

Loss(θ;D) =
1

|M |
∑
m∈M

Ey∼qθ(y|xm) [`(xm, y)] (5.12)
In the AC-PF problem, the cost function ` is the violation of Kirch-hoff’s laws, which is differentiable with regards to y. Moreover, in theexperiments we choose qθ(y|x) to be a deterministic mapping, instan-tiated as a trainable H2MGNN function fθ(x) such as introduced inChapter 4. The loss shall thus be rephrased as

Loss(θ;D) =
1

|M |
∑
m∈M

`(xm,fθ(xm)) (5.13)
The gradient∇θLoss(θ;D) can be estimated using automatic differenti-ation. The H2MGNN fθ is trained through a standard gradient-descentmethod, as described in Algorithm 4. Indeed, advanced gradient de-scent techniques introduced in Chapter 2 can also be used. This ap-proach is experimentally validated in Chapters 7 and 8.
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Algorithm 4 Training a single-level Statistical Solver
1: procedure Train(D = {xm}m∈M , Nepochs)2: Initialize θ
3: for epoch = 1, . . . , Nepochs do
4: ∇θLoss(θ;D)← 1

|M |
∑

m∈M ∇θ`(xm,fθ(xm))

5: θ ← θ − α∇θLoss(θ;D)

6: return fθ

5.2 Bilevel optimization
Bracken and McGill [145] define bilevel optimization as

“mathematical programs that contain an optimization prob-
lem in the constraints.”

This type of optimization process occurs when two interacting entitiesmake decisions sequentially. The first to make a decision is called the“leader”. The second is called the “follower”, and knows the leader’sdecision. Thus, in order to optimize its objective function, the leaderhas to anticipate the impact of its own decision over the follower’s be-havior.In power grids operation, a typical instance of such a structurearises in the voltage control problem. In order to keep the power gridin security, dispatchers can control voltage setpoints of certain genera-tors. Still, the actual outcome of their actions is not trivial, and is givenby the solution of the AC-PF. In order to optimize their own objectives,dispatchers have to anticipate the impact of their actions over the out-come of another optimization problem. This bilevel optimization prob-lem is schematically represented in Figure 5.3, where the term “con-troller” denotes the dispatcher. We thus wish to train a neural networksuch as introduced in Chapter 4 to control generators voltage setpointsso as to optimize a security-related objective.In line with the previous section, we propose to derive a trainingprocedure from the aforementioned target optimization problem. Itrelies on the training of two distinct neural networks, one playing therole of the controller, and the other playing the role of the solver. Thistraining strategy is in some way similar to the training of the two mod-els that are used in Generative Adversarial Networks (GANs) [24]. Weinstantiate this section on the voltage control problem to keep thingsconcrete, although the approach is as general as possible and could beapplied to a wide variety of domains. Chapter 9 presents preliminaryexperiments on a rather small power grid.
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power grid instance
controller

generators voltagesetpoints
solver

voltage magnitudes& phase angles
Figure 5.3: Bilevel voltage control problem

5.2.1 Target optimization problem
LetX ,Y ,Z be three sets, and `, `′ be two cost functionsX×Y×Z → R.We consider the problem of finding the element of Y that minimizesthe cost function ` for a certain element x ∈ X . Similarly to the pre-vious section, we assume that there are no equality or inequality con-straints other than the nested optimization problem. We assume thatfor any fixed x, y, z, y′ 7→ `(x, y′, z) and z′ 7→ `′(x, y, z′) both have aunique minimum. We consider the following bilevel optimization prob-lem:

y∗(x) = arg min
y∈Y

`(x, y, z) (5.14)
subject to z = z∗(x, y) = arg min

z∈Z
`′(x, y, z) (5.15)

Equation (5.14) defines the “upper level” problem, while equation (5.15)defines the “lower level” problem.In our voltage control example, we denote by x the heterogeneousgraph containing power production and consumption everywhere onthe grid, as well as transmission lines interconnections, by y the volt-age setpoints at some buses controlled by the dispatcher, and by zthe voltage magnitudes and phase angles at each bus. ` computesa security-related objective (for instance minimizing Joule losses whilekeeping voltage magnitudes in an acceptable range), and `′ computesthe AC-PF by minimizing the violation of Kirchhoff’s laws. The prob-lem amounts to maximizing the security of the grid, by anticipating the(non-linear) impact of the dispatcher’s decision over the actual state ofthe system. The dispatcher is the leader, and ”physics” is the follower.
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Target distribution

Similarly to the previous section, we associate a probability distribution
p(x) to the set X . The conditional probability q(y|x) maps instances ofthe upper level optimization problems to their solution, while r(z|x, y)maps instances of the lower level optimization problem to their solu-tions.

q(y|x) = δy∗(x)(y) (5.16)
r(z|x, y) = δz∗(x,y)(z) (5.17)

The target distribution is the following:
• x ∼ p(x): sampling an optimization problem instance x;
• y ∼ q(y|x): solving the upper level optimization problem;
• z ∼ r(z|x, y): solving the lower level optimization problem.
We now proceed as in Section 5.1.

Deriving a learning problem

Our only goal here is to learn an approximation of the distribution
q(y|x), using a parameterized distribution qθ(y|x). Similarly to the pre-vious section, we propose to consider the Kullback-Leibler divergencebetween pqθ and intermediate Gibbs measures pqβ . Assuming that forany fixed x, ` has a unique minimum, and ∀β, ∫

y′∈Y e
−β`(x,y′) < +∞,then q can be written as the weak limit of a set of Gibbs measures:

q(y|x) = lim
β→+∞

qβ(y|x) ; qβ(y|x) =

∫
z∈Z r(z|x, y)e−β`(x,y,z)∫

y′∈Y

∫
z∈Z r(z|x, y′)e−β`(x,y

′,z)

(5.18)
As it appears, the intermediate distribution qβ relies on the lowerlevel distribution r. Following the same reasoning as in the previoussection, and using the fact that r is a Dirac measure (equation 5.17), weobtain the following upper-level Statistical Solver Problem (SSP):

θ∗ = arg min
θ∈Θ

E x∼p(x)
y∼qθ(y|x)
z∼r(z|x,y)

[`(x, y, z)] (5.19)

Estimating θ∗ requires the actual lower level distribution r. Unfortu-nately, it is neither possible to sample from it, nor to estimate it.We propose to learn an approximation of r(z|x, y) using a distri-bution rω(z|x, y) parameterized by ω ∈ Ω. During its training, qθ is very
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likely to sample values that are far from the support of q. Even for those“erroneous” predictions, rω should remain a valid approximation of r.Thus, one should choose a distribution qθ(y|x) that covers qθ. In theexperiments, we define qθ(y|x) by simply adding a Gaussian noise to
qθ(y|x). We consider the following lower-level Statistical Solver Prob-lem:

ω∗ = arg min
ω∈Ω

E x∼p(x)
y∼qθ(y|x)
z∼rω(z|x,y)

[`′(x, y, z)] (5.20)

Equations (5.19) and (5.20) define the bilevel Statistical Solver Prob-lem, and Figure 5.4 illustrate it.

Loss(θ)

x

p(x)

qθ(y|x)

y

`

rω(z|x, y)

z

Loss′(ω)`′

Figure 5.4: Bilevel SSP

5.2.2 Training algorithm
We consider the following loss functions:

Loss(θ) = E x∼p(x)
y∼qθ(y|x)
z∼r(z|x,y)

[`(x, y, z)] (5.21)
Loss′(ω) = E x∼p(x)

y∼qθ(y|x)
z∼rω(z|x,y)

[`′(x, y, z)] (5.22)

Under the assumption that r ≈ rω, we can use the following ap-proximation:
Loss(θ) ≈ E x∼p(x)

y∼qθ(y|x)
z∼rω(z|x,y)

[`(x, y, z)] (5.23)
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Using the same notations as in the previous section, we define thetwo empirical losses over the dataset D = {xm}m∈M as:
Loss(θ;D) =

1

|M |
∑
m∈M

E y∼qθ(y|xm)
z∼rω(z|xm,y)

[`(xm, y, z)] (5.24)
Loss′(ω;D) =

1

|M |
∑
m∈M

E y∼qθ(y|xm)
z∼rω(z|xm,y)

[`′(xm, y, z)] (5.25)
In the voltage control problem, both cost functions `, `′ are differ-entiable. Moreover, we choose to use deterministic mappings for both

qθ and rω using the two H2MGNN mappings fθ and f ′ω, and to define
qθ to be Gaussian noise ε ∼ N (fθ, σI) (where σ is an hyperparameter).Thus, the two losses shall be rephrased as follows:
Loss(θ;D) =

1

|M |
∑
m∈M

`(xm,fθ(x),f ′ω(x,fθ(x))) (5.26)
Loss′(ω;D) =

1

|M |
∑
m∈M

Eε∼N (0,σI) [`′(xm,fθ(xm) + ε,f ′ω(xm,fθ(xm) + ε))]

(5.27)
Gradients∇θLoss(θ;D) and∇ωLoss

′(ω;D) can be estimated by au-tomatic differentiation. The H2MGNN mappings fθ and f ′ω are trainedthrough a standard gradient-descent method, as described in Algo-rithm 5. Indeed, advanced gradient descent techniques introduced inChapter 2 can be also used. Preliminary experiments using this ap-proach are presented in Chapter 9.
5.2.3 Discussion
This section discusses issues regarding the bilevel SSP that justify thechoices made in the proposed algorithm.
Deterministic approach

In early experiments, qθ was chosen to be deterministic and definedby the mapping fθ, just like qθ. We experimentally observed that fθirremediably ended up predicting a constant value, regardless of theinput x1. As a consequence, rω only observed a single value for y duringits training, which lead it to consider that z is not a function of y. Thus,the gradient back-propagation through rω is stopped, which prevents
qθ from learning any further.

1This phenomenon is well known in the GAN literature under the name of “modecollapse” [146].
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Algorithm 5 Training a bilevel Statistical Solver
1: procedure Train(D = {xm}m∈M , Nepochs, α, α

′)
2: Initialize θ and ω
3: for epoch = 1, . . . , Nepochs do
4: . Optimize the controller
5: for m ∈M do
6: ym ← fθ(xm)
7: zm ← f ′ω(xm, ym)

8: ∇θLoss(θ;D)← 1
|M |
∑

m∈M ∇θ`(xm, ym, zm)

9: θ ← θ − α∇θLoss(θ;D)
10: . Optimize the solver
11: for m ∈M do
12: ym ← fθ(xm)
13: εm ∼ N (0, σI)
14: ym ← ym + εm15: zm ← f ′ω(xm, ym)

16: ∇ωLoss
′(ω;D)← 1

|M |
∑

m∈M ∇ω`
′(xm, ym, zm)

17: ω ← ω − α′∇ωLoss
′(ω;D)

18: return fθ

Considering a probabilistic qθ allows to avoid this pitfall by forcing
rω to be accurate for various values of y, thus allowing to properly back-propagate gradient through it to learn qθ.
Training qθ and rω separately

The probability distribution rω only serves as an approximation of rwhen learning qθ. Thus, it seems reasonable to first train rω, and thenuse it to train qθ. However, we experimentally observed that the train-ing distribution qθ tends to exploits weaknesses of rω by prioritizing ar-eas where it is a poor approximation of r. Training both models jointly(alternating iterations on one and the other) prevents this type of be-havior by constantly updating rω so as to always be accurate in areasthat are relevant to qθ.
Learning a joint probability for y and z

A possible avenue for future work could be to consider the Lagrangianrelaxation of the bilevel problem:
(Y × Z)∗(x) = arg min

y∈Y,z∈Z
`(x, y, z) + λ`′(x, y, z) (5.28)
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where λ ∈ R+∗. Although not equivalent to the initial bilevel problem,this single optimization problem could still provide a good approxima-tion of the actual solution if λ is carefully adjusted (or updated duringthe search). We argue that in such a framework, the resulting distri-bution of y may be altered by the lower-level cost function `′, as theoptimal solution is not necessarily the same as in the initial bilevel op-timization problem. Our two-model framework enforces that the dis-tribution of y is not biased in any way by the lower-level problem.

In this chapter, we have detailed how to transform both singlelevel and bilevel optimization problems into Statistical Solver Prob-lems. This allows to train a neural network mapping to minimize a costfunction for a distribution of problem instances. The resulting deepneural network is called a Deep Statistical Solver. In the following,Chapter 6 proves that the H2MGNN introduced in Chapter 4 canapproximate the actual solution of an SSP with arbitrary precision.Then, Chapters 7, 8 and 9 show the application of the DSS approachto several use cases.
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Chapter 6

Proving that global continuous
problems can be solved
through local operations

In the present work, we consider optimization problems defined overgraphs that are invariant by permutation of vertices and by permu-tation of collocated objects of the same class, i.e. for which the costfunction does not depend on any specific ordering. To give a powergrid example, the violation of physical laws should be minimized at ev-ery bus of a power grid, which does not depend on any specific objectordering. Moreover, we propose to approximate the mapping fromproblem instances to their respective solutions by using a GNN archi-tecture that relies on local message passing.The goal of the present chapter is to prove that the H2MGNN archi-tecture is indeed able to approximate with an arbitrary precision theactual target mapping of problem instances to their respective solu-tions1. The main theoretical finding of the present PhD thesis is thatunder certain assumptions, optimization problems over graphs can besolved using a series of local operations. This holds even for problemsthat involve coupling of variables over long range.In Section 6.1, we formalize this finding as Theorem 2, after havingcarefully introduced assumptions about the data distribution and thestructure of the optimization problem. In Section 6.2, we dive into thedetails of the proof.This universal approximation theorem is non-constructive, i.e., itdoes not offer any guarantee of convergence toward an ideal solver.But there hardly exist such convergence guarantees in the field of DL.However, this non-trivial result provides a solid theoretical ground to
1All density results are with regards to the uniform norm ‖.‖∞

95



the proposed approach by proving its consistency.This theoretical contribution is a joint work with Zhengying Liu (Uni-versité Paris-Saclay, INRIA).

6.1 Universal approximation theorem
We first recall some notations about the considered graph data,and introduce some assumptions about their associated probabilitydistributions. Then we further motivate the assumption about thepermutation-invariance of the cost function, and refine our definitionof the Hypothesis space. Finally, the main theoretical contribution ofthis PhD thesis is stated.
6.1.1 Data and distribution
With the notations of Chapter 4, let x ∈ X be a H2MG of size n, anddenote by (n, C, E ,M) its structure. Two vertices are considered to belinked if there exists an hyper-edge of any class that is connected toboth. This allows us to define the notion of geodesic distance betweentwo vertices i and i′ as the shortest number of hops between linkedvertices going from i to i′. The diameter of x is then defined as thelargest geodesical distance between any two of its vertices and is de-noted by diam(x). In the case where x is composed of multiple disjointcomponents, there exist pairs of vertices that cannot be joined by leapsbetween linked vertices, implying that diam(x) = +∞.In the following, we are interested in graphs sampled according toa probability distribution p(x). We introduce the following set of hy-potheses (H), over the graphs in the support of p, supp(p) := {x ∈
X |p(x) > 0}.
(H1) Uniqueness of hyper-edges. For any x ∈ supp(p) of structure

(n, C, E ,M), any class c and hyper-edge e, |Mc
e| = 1;

(H2) Permutation-invariance. For any x ∈ supp(p) of structure
(n, C, E ,M), and σ ∈ Σn, σ ? x ∈ supp(p);

(H3) Compactness. supp(p) is a compact subset of X ;
(H4) Connectivity. For any x ∈ supp(p), x has a single component (i.e.

diam(x) < +∞);
(H5) Separability of input features. There exists δ > 0 such that for any

x ∈ supp(p), any class c ∈ C and any pair of hyper-edges e 6= e′,
‖xce − xce′‖ ≥ δ.

96



The uniqueness of hyper-edges hypothesis (H1) means that supp(p)only contains H2MGs that have no collocated objects of the same class.We believe that this hypothesis could be alleviated, although we leavethis task to future work. For now, we may drop indices m and simplydenote the structure of H2MGs as (n, C, E).The compactness hypothesis (H3) implies in particular that thereis an upper bound nmax over the sizes of the H2MGs in supp(p). Also,these hypotheses imply that there is a finite upper bound (denoted by
D) on the diameters of all graphs in supp(p).The technical hypothesis (H5) is necessary to ensure that localmessage passing operations can distinguish between any two non-isomorphic graphs2, which allows to bypass one major limitation of lo-cal message passing [147, 148]. Moreover, this hypothesis is justified byour real-life power grid application where it is highly unlikely that twoobjects have exactly the same features.
6.1.2 The cost function
The context is that of a single level optimization problem, as defined inSection 5.1. Let Y be a space of H2MGs and let ` be a real-valued costfunction defined for all compatible pairs (x, y) ∈ X × Y (i.e. that sharethe same graph structure, see Section 4.1). Furthermore, we introducethe following set of hypotheses over the cost function:
(H6) For any x ∈ supp(p), there exists a unique minimizer y∗(x) =

arg min
y∈Y

`(x, y), and the mapping x 7→ y∗(x) is continuous (as in
Section 5.1).

(H7) ` is permutation-invariant.
The uniqueness hypothesis (H6) will prove necessary in order toprove the expected theoretical result. However, experiments on theAC-PF (see Section 8.1) for which it does not hold nevertheless provideexcellent results.The permutation-invariance hypothesis (H7) is motivated by the factthat in most power grid related problems, quantities that should beminimized do not rely on any specific vertex or object ordering. Forinstance, the cost function considered in the AC-PF is the sum over allvertices of local power mismatches, which is independent of any spe-cific vertex ordering.An immediate consequence of the hypotheses above is given by:

2Two graphs are isomorphic if they are permuted versions of one another.
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Property 1. Under hypotheses (H1), (H6) and (H7), the mapping x 7→ y∗(x)
is permutation-equivariant.

Proof. Let x ∈ X be a graph of size n, and σ ∈ Σn be a permutation.
`(σ ? x, σ ? y∗(x)) = `(x, y∗(x)) by invariance of `

= min
y∈Y

`(x, y) by definition of y∗(x)

= min
y∈Y

`(σ ? x, σ ? y) by invariance of Y
= min

y∈Y
`(σ ? x, y) by invariance of supp(p)

= `(σ ? x, y∗(σ ? x)) by definition of y∗(x)

Moreover, the assumed uniqueness of the solution ensures that y∗(σ ?
x) = σ ? y∗(x), which concludes the proof.
6.1.3 The Main Theorem
The Statistical Solver Problem we are tackling here is defined by (X , Y ,
p, `), where p is a probability distribution over X , and ` a cost functiondefined on compatible pairs in supp(p)×Y . The goal is to find, for any
x ∈ supp(p) the minimizer y∗(x) = arg min

y∈Y
`(x, y).

Let Ceq.(supp(p),Y) be the set of continuous and permutation-equivariant functions (see Definition 2) from supp(p) to the outputspace Y . We recall from Chapter 4 that the equivariance of a functionimplies that it is only defined on compatible pairs (x, y).LetHD be the set of all H2MGNN architectures defined by Algorithm2 of Section 4.2 with step size 1/∆t ≤ D+1 and latent dimension d ∈ N,and for which the update mappings are MLPs with appropriate inputand output dimensions.The Universal Approximation Theorem is the following:
Theorem 2. Let (X , Y , p, `) be an SSP for which hypotheses (H1 – H7) above
hold. Then HD is dense in Ceq.(supp(p),Y) with regards to the uniform
norm ‖.‖∞.

Equivalently, this theorem states that for any ε > 0, there exists aH2MGNN fθ ∈ HD such that:
∀x ∈ supp(p), ‖fθ(x)− y∗(x)‖ ≤ ε (6.1)

There always exists a H2MGNN as defined in Algorithm 2 that can ap-proximate with an arbitrary precision the actual solution of the opti-mization problem. In other words, even global problems that involve
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long-range coupling of variables can be solved by using enough localoperations.Moreover, the theorem relates the required amount of localmessage-passing operations with the maximum diameterD of H2MGsin supp(p). This can be interpreted as follows. Each hyper-edge is re-quired to guess its own output, by only communicating with hyper-edges that share a vertex with it. Since its own output is very likelyto depend on the input and output of every other hyper-edge (of allclasses) in the graph, it should gather information about every otherobject in the graph in order to make an educated guess. Since it takesat mostD steps to go from any vertex to any other, it makes sense thatwe need a quantity higher than D to gather information about everyother object.
6.1.4 Sketch of the proof
This subsection gives a very brief idea of the proof of Theorem 2. Thefull proof is given in next Section 6.2, but can be skipped by readersmainly interested in the results of the algorithms on practical applica-tions, from toy problems to real-world Power Networks, given in PartIII of this document, Chapters 7 and 8.The basic idea behind the proof is to follow the approach of Keriven& Peyré [149]. However, their approach only considers mappings thatoutput vectors at vertices, while our mappings output vectors at hyper-edges. The transfer from our context into their framework is done inthe following 3 steps:
Step 1 – Lemma 1 All mappings in Ceq.(supp(p),Y) are decomposedin two distinct parts: the first part outputs vectors at vertices, while thesecond part locally converts these vertex quantities into hyper-edgesquantities. The first part falls into the framework of Keriven & Peyré[149], while the second part is made of local continuous operators andcan be treated easily.
Step 2 – Lemma 2 Similarly, we consider the subset of H2MGNNs thatcan be decomposed into a first part that performs multiple messagepassing steps and returns vectors at vertices, and a second part thatmaps this vertex information onto hyper-edges.
Step 3 – Lemma 7, Theorem 3 & Lemma 3 We show that bothparts of the decompositions of the H2MGNNs are respectively densein the corresponding part of the decompositions of Ceq.(supp(p),Y).
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Furthermore, all parts of the decompositions of the H2MGNNs beingLipschitz, we may combine densities and prove that HD is dense in
Ceq.(supp(p),Y).

6.2 Proof of the Universal Approximation
theorem

Hypotheses Let us consider in this section an SSP (X , Y , p, `) thatsatisfies hypotheses (H1 – H7).

Notations The notations are the ones defined in Section 6.1.

Let us first recall that the set of all MLPs is dense in the set of con-tinuous functions [109, 110], meaning that they can approximate withan arbitrary precision any continuous function with proper input andoutput dimensions.

6.2.1 Step 1: Decomposition of equivariant functions

In order to be able to fit into Keriven & Peyré’s framework, we decompose all
mappings in Ceq.(supp(p),Y) in three distinct parts: the first part outputs
vectors at vertices and the second part converts these vertex quantities into
hyper-edges quantities.

Let us first define the functional spaces corresponding to these de-compositions.

Spaces Gd We consider the set of continuous and permutation-equivariant functions that associates H2MGs of size n with a series of
d-dimensional vectors defined at each of the n vertices. Since supp(p)may contain H2MGs of varying sizes, we introduce Vd =

⋃
n∈N(Rd)n,and we denote by Gd := Ceq.(supp(p),Vd) the aforementioned set offunctions.

g : supp(p)→ Vd (6.2)
(xce)(c,e)∈Gx 7→ (g(x)i)i∈[n] (6.3)
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SpacesRd We denote byRd := C(Vd × supp(p),Y) the set of contin-uous functions that can be written as:
r : supp(p)× Vd → Y (6.4)

(xce)(c,e)∈Gx , (β(x)i)i∈[n] 7→ (rc(xce, βe))(c,e)∈Ec (6.5)
where rc are continuous mappings of appropriate dimensions. It com-bines vectors located at hyper-edges and vectors located at vertices tooutput vectors at hyper-edges. The βe on the right hand side corre-spond to the βi of the left-hand side that are neighbors of hyper-edge
e. For a given class c, the mapping rc is applied simultaneously at everyhyper-edge.The composition of such mappings is then defined by:

r ◦ g : supp(p)→ Y (6.6)
(xce)(c,e)∈Gx 7→ (rc(xce, g(x)e))(c,e)∈Gx (6.7)

Such decomposition fulfills the goal of the needed decomposition:to have mappings that first output quantities solely located at vertices,and then locally convert this message and the local input into an actualprediction at a hyper-edge. We can now prove the following Lemma:
Lemma 1. ∃d ∈ N, Ceq.(supp(p),Y) ⊆ Rd ◦ Gd

Proof. Let f ∈ Ceq.(supp(p),Y), x ∈ supp(p) with structure (n, C, E).
Setting the scene Let us consider a class c ∈ C, and a specific port
o ∈ Oc. Let i ∈ [n] be a vertex of x. Let us use the following notation:
Nx(i; o, c) = {e ∈ Ec|eo = i}. We introduce the following multivariatepolynomial:
∀x̃ ∈ Rdc,x ,∀ỹ ∈ Rdc,y , Px,c,o,i(x̃, ỹ) =

∏
e∈Nx(i;o,c)

(‖x̃− xce‖2
2 + ‖ỹ − f(x)ce‖2

2)

(6.8)
The separability hypothesis (H5) implies that:

∀o ∈ Oc, f(x)ce = arg min
ỹ∈Rdc,y

Px,c,o,eo(x
c
e, ỹ) (6.9)

In other words, f(x)ce can be retrieved from the knowledge of the poly-nomial Px,c,o,eo , and of the hyper-edge feature xce. This holds for any
∀o ∈ Oc, which means that the information is equivalently stored in allvertices to which the object is connected.
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We choose to denote β(x)c,o,i the series of coefficients of the abovepolynomial (arbitrarily ordered), and propose the equivalent notations:
Px,c,o,i(x̃, ỹ) := P (x̃, ỹ; β(x)c,o,i) (6.10)

Because supp(p) is compact, we know that there is an upper boundover the amount of coefficients of all polynomials Px,c,o,i. We can storefor a single input x and a vertex index i ∈ [n] all the coefficients ofpolynomials such that:
β(x)i := ((β(x)c,o,i)o∈Oc)c∈C (6.11)

We observe that classes and ports can be arbitrarily ordered, with-out breaking any permutation-equivariance w.r.t. the ordering of thenodes themselves. Thus β(x)i can be represented as a vector in aunique manner. By compacity of supp(p), there exists an upper boundover the dimensions required to represent β(x)i, which we denote by
dβ . For the sake of simplicity, we embed all vectors β(x)i for x ∈ supp(p)in a dβ-dimensional space, padding with zeros when required.
Defining g We introduce g : x 7→ (β(x)i)i∈[n]. It maps input graphsto vectors of coefficient of polynomials at each vertex. It is continuouswith regards to x because each coefficient can be written as a prod-uct of continuous features of x and of f(x), which is assumed to be acontinuous function of x. To prove that it is permutation-equivariant,it is sufficient to prove that for any x ∈ supp(p), any vertex i ∈ [n],any class c ∈ C, any port o ∈ Oc, and any permutation σ ∈ Σn, wehave β(σ ? x)c,o,i = β(x)c,o,σ−1(i). Since two polynomials are equal ifand only if their coefficients are equal, it also amounts to proving that
Pσ?x,c,o,i = Px,c,o,σ−1(i). Let x̃ ∈ Rdc,x and ỹ ∈ Rdc,y ,
P (x̃, ỹ)σ?x,c,a,i =

∏
e∈Nσ?x(i;o,c)

(‖x̃− (σ ? x)ce‖2
2 + ‖ỹ − f(σ ? x)ce‖2

2)

=
∏

e∈Nσ?x(i;o,c)

(‖x̃− (σ ? x)ce‖2
2 + ‖ỹ − (σ ? f(x))ce‖2

2)

=
∏

e∈Nσ?x(i;o,c)

(‖x̃− xcσ−1(e)‖2
2 + ‖ỹ − f(x)cσ−1(e)‖2

2)

=
∏

σ−1(e)∈Nx(σ−1(i);o,c)

(‖x̃− xcσ−1(e)‖2
2 + ‖ỹ − f(x)cσ−1(e)‖2

2)

=
∏

e∈Nx(σ−1(i);o,c)

(‖x̃− xce‖2
2 + ‖ỹ − f(x)ce‖2

2)

= P (x̃, ỹ)x,c,o,σ−1(i)

Thus g ∈ Gdβ .
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Defining r For each c ∈ C, we introduce rc as
∀x̃ ∈ Rdc,x , ∀β ∈ Rd, rc(x̃, β) = arg min

ỹ∈Rdc,y
P (x̃, ỹ; β) (6.12)

We denote by r the mapping that relies on mappings (rc)c∈C as shownin equation (6.5). We observe that mappings rc are not continuous.However, the mapping r◦g is continuous over the compact set supp(p)because of the separability assumption (H5): two terms of the productin equation 6.8 cannot be simultaneously zero. Thus, we may take con-tinuous extensions r′c of rc over X such that ∀x ∈ supp(p), r′ ◦ g(x) =
r ◦ g(x) (Tietze theorem). We have that r′ ∈ Rdβ , and, by construction(Eq. 6.9):

∀x ∈ supp(p), r′ ◦ g(x) = f(x) (6.13)
This reasoning is true for any f ∈ Ceq.(supp(p),Y), and hence
Ceq.(supp(p),Y) ⊆ Rdβ ◦Gdβ , which concludes the proof of Lemma 1.

In the remainder of this proof, we simply denote dβ as d, Vdβ as V ,andRdβ ,Gdβ asR,G.
6.2.2 Step 2: Decomposition of H2MGNNs
Similarly, we consider the subset of H2MGNNs that can be decomposed into
a first part that locates all information at vertices, and a second part that
maps this vertex information only onto hyper-edges.We consider two distinct classes of H2MGNN architectures. Thefirst is detailed in Algorithm 6: we denote by HD

G the set of all suchH2MGNNs that satisfy 1/∆t ≤ D + 1 updates, and that output d-dimensional vectors at vertices. The second class is detailed in Algo-rithm 7, and we denote byHR the set of all such neural networks. Wepropose to combine functions from these two sets similarly to equa-tion (6.7), and denote byHR ◦ HD
G such mappings.The following result is true by construction of HR and HD

G , consid-ering a zero initialization and appropriate neural network blocks:
Lemma 2. HR ◦ HD

G ⊆ HD

6.2.3 Step 3: Composition of densities
We show that the two parts of the decompositions of the H2MGNNs are re-
spectively dense in the two parts of the decompositions of Ceq.(supp(p),Y).

103



Algorithm 6 First part of the decomposition
1: procedure gθ(x)
2: t← 0
3: while t < 1 do
4: for i ∈ [n] do
5: hvi ← hvi +

∑
(c,e,o)∈Nx(i)

φc,oθ (t, hve , h
c
e, x

c
e)

6: for (c, e) ∈ Gx do
7: hce ← hce + φc,hθ (t, hve , h

c
e, x

c
e)

8: t← t+ ∆t

9: return hv = (hvi )i∈[n]

Algorithm 7 Second part of the decomposition
1: procedure rθ(x, hv)
2: for (c, e) ∈ Gx do
3: ŷce ← φc,yθ (hve , x

c
e)

4: return ŷ = (ŷce)(c,e)∈Gx

Moreover, the second parts of the decompositions of the H2MGNNs be-
ing Lipschitz, we may combine densities and prove that HD is dense in
Ceq.(supp(p),Y).With the notations introduced in Step 1 and Step 2 above, thisamounts to prove that HD

G is dense in G (Theorem 3), and to provethatHR is dense inR and contains only Lipschitz functions (Lemma 3).The latter is straightforward:
Lemma 3. HR is dense inR, and contains only Lipschitz mappings.

Proof. This was proven by Cybenko in 1989 [109], and further detailedby Hornik [110].
The last missing piece of the demonstration of the Universal Ap-proximation Theorem is the following:

Theorem 3. HD
G is dense in G

The proof of this theorem closely follows the approach of [149].We first prove a modified version of the Stone-Weierstrass Theorem(Theorem 4), and then verify that all involved spaces indeed satisfy theconditions of this Theorem by proving Lemma 4.
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Notations Let Xeq. ⊆ X be a compact and permutation-invariant setof H2MGs such that there are no collocated objects of the same class(we may thus drop indices m). The compactness implies that there ex-ists n ∈ N, upper bound of the size of all H2MGs in Xeq.. Let Ceq.(Xeq.,V)be the space of continuous and permutation-equivariant functionsfrom Xeq. to V that associate to a H2MG x = (xce)(c,e)∈Gx a vector (βi)i∈[n]at each of its vertices i. (Ceq.(Xeq.,V),+, ·,�) is a unitalR-algebra, where
(+, ·) are the usual addition and multiplication by a scalar, and� is theHadamard product defined by (g� g′)(x)i = g(x)i · g′(x)i. Its unit is theconstant function 1 = (1, . . . , 1).We can now state the following Theorem:
Theorem 4. (Modified Stone-Weierstrass Theorem for equivariant func-
tions.) Let A be a unital subalgebra of Ceq.(Xeq.,V), (i.e. contains the unit
function 1) and assume both following properties hold:

• (Separability) For all x, x′ ∈ Xeq., with number of vertices n and n′

such that x is not isomorphic to x′, and for all i ∈ [n], i′ ∈ [n′], there
exists f ∈ A such that f(x)i 6= f(x′)i′ ;

• (Self-separability) For all n ≤ n, I ⊆ [n], x ∈ Xeq. with n vertices,
such that no isomorphism of x exchanges at least one index between
I and IC , and for all i ∈ I , i′ ∈ IC , there exists f ∈ A such that
f(x)i 6= f(x)i′ .

Then A is dense in Ceq.(Xeq.,V) with respect to the uniform metric.

This proof of Theorem 4 is almost identical to that of Theorem 4 in[149], with the following differences.
1. For the input space, we consider h2mg of the form

([n], (xce)(c,e)∈Gx) where xce ∈ Rdx,c for all c ∈ C and e ∈ Ec,
instead of hyper-graphs defined in Rnb for some b ∈ N. Thecorresponding metrics are different, although the difference isnot critical for the proof;

2. Similarly, we consider as output space (Rd)n instead of Rn;
3. We only assume Xeq. ⊆ X to be compact and permutation-invariant, whereas [149] explicitely builds a space Xeq. := {x ∈

Rnd |n ≤ nmax, ‖x‖ ≤ R} (this makes Theorem 4 above more gen-eral).
Let us now discuss how to overcome these differences in order tomimic the proofs of [149].
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1. The only properties of the input space involved in [149] are thenumber of vertices, action of permutation and the metric (withthe corresponding topology). For the first two points, everythingis still applicable in our setting. For the topology, the differenceis not critical either since we are actually considering the productof several metric spaces defined in [149] and all correspondingproperties follow.
2. The case d = 1 is as in [149], and the general case amounts tostacking the resulting function d times. This works seamlesslywith Hadamard product and all properties related to density.
3. There is actually no dependency on the explicit form of Xeq. or
X in [149] (as for the case in 1). And the proof only relies on theupper bound on the number of vertices. So the generalizationcan be naturally obtained.

The detailed proof of Theorem 4 then follows the exact same pro-cedure as that of Theorem 4 in [149], and we shall omit it here, referringthe reader to [149] for all details.
Applying Theorem 4 Our goal is to prove that Theorem 4 can be ap-plied to HD

G . Because HD
G is not obviously an algebra (see Lemma 9),

let us considerHD,�
G , the algebra generated byHD

G with respect to theHadamard product. More formally:
HD,�
G =

{
S∑
s=1

Us⊙
u=1

csugsu|S ∈ N, Us ∈ N, csu ∈ R, gsu ∈ HD
G

}
. (6.14)

Note that the Hadamard product among gsu’s is well-defined since fora fixed input x, all output values gsu(x) take the same dimension – thesize of x.
(HD,�
G ,+, ·,�) is obviously a unital sub-algebra of (Xeq.,+, ·,�) (the

constant function (1, . . . , 1) trivially belongs toHD,�
G ). In order to apply

Theorem 4 toHD,�
G , one needs to prove that it satisfies both separabil-ity hypotheses.

Proving the separability Let us first notice that the self-separabilityproperty is a straightforward consequence of the hypothesis of sepa-rability of external inputs on supp(p). Hence we only need to prove theseparability property:
Lemma 4. HD,�

G satisfies the separability property of Theorem 4.
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The proof consists of 3 steps.
• (Lemma 5) We prove that for all x, x′ ∈ supp(p) that are not iso-morphic, there exists a vertex i∗ in xwhose hyper-edge neighbor-hood never appears in x′.
• (Lemma 6) We build a continuous function g† on X that returnsan indicator of the presence of this sequence in the input graph.
• (Lemma 8) We prove that there exists a function gθ ∈ HD

G ⊆ H
D,�
Gthat approximates well enough g†.

Lemma 5. Let x and x′ two non isomorphic H2MGs in supp(p), of respec-
tive sizes n and n′. There exists i ∈ [n], such that for any i′ ∈ [n],

{(xce, c, o)|(c, e, o) ∈ Nx(i)} 6= {(x′ce , c, o)|(c, e, o) ∈ Nx′(i′)} (6.15)
Proof. (of Lemma 5) This lemma relies on the separability hypothesis(H5) which states that there exists δ > 0 such that for all x ∈ supp(p)and c ∈ C, for any e 6= e′ ∈ Ec, ‖xce − xce′‖ ≤ δ.We shall use proof by contradiction: assume that for any i ∈ [n],there exists α(i) = i′ ∈ [n′] such that {(xce, c, o)|(c, e, o) ∈ Nx(i)} =
{(x′ce , c, o)|(c, e, o) ∈ Nx′(i′)}. Two cases must be distinguished, depend-ing on whether n < n′ or n = n′.

• If n > n′, then according to the pigeonhole principle, there ex-ist two indices i ∈ [n] and j ∈ [n] that have the same imageby α, i′ ∈ [n′]. Hence, we have {(xce, c, o)|(c, e, o) ∈ Nx(i)} =
{(xce, c, o)|(c, e, o) ∈ Nx(j)}. This means that both vertices i and jare connected to an hyper-edge of the same class c and with thesame feature xce through the same port o. It implies that there aretwo distinct objects of the same class that have the exact samefeature, which contradicts the separability hypothesis.

• If n = n′, according to the separability hypothesis (H5), there can-not exist i 6= j ∈ [n] that are mapped to the same i′ ∈ [n′]. Thus
α actually defines an injective mapping. Because n = n′, thismapping is also surjective and hence bijective, making it a per-mutation. Thus, using the separability hypothesis, for any e ∈ Ec,
α(e) ∈ E ′c and xce = x′cα(e), which means that x and x′ are isomor-phic, contradicting the hypothesis, and thus completing the proofof Lemma 5.
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For convenience, we shall use a continuous kernel function definedby
Kε(x) = max(0, 1− |x|/ε) (6.16)

for ε > 0. Then we have Kε(0) = 1 and Kε(x) = 0 for |x| > ε.

Figure 6.1: Kernel function
All intermediate functions of HD

G , i.e. ((φc,oθ )o∈Oc)c∈C and (φc,hθ )c∈C ,live in function spaces that satisfy the Universal Approximation Prop-erty (UAP). So let us consider a space of continuous functions that sharethe same architecture, but in which all spaces of parameterized neu-ral networks have been replaced by corresponding continuous func-tion space. We denote this space by HD,†
G (by convention, a dagger(†)added to a Neural Network block will refer to the corresponding con-tinuous function space (e.g. φc,o,†θ ). We are now in position to prove thefollowing lemma.

Lemma 6. For any x, x′ ∈ supp(p) that are not isomorphic, there exists
a function g† ∈ HD,†

G such that for any i ∈ [n], i′ ∈ [n′], we have g†(x)i 6=
g†(x′)i′ .

Proof. (of Lemma 6) Without loss of generality, let us suppose n ≥ n′.According to Lemma 5, there exists i∗ ∈ [n] such that for all i′ ∈ [n′],
{(xce, c, o)|(c, e, o) ∈ Nx(i)} 6= {(x′ce , c, o)|(c, e, o) ∈ Nx′(i′)}.For any class c and port o, we denote byX ∗c,o = {xce|eo = i∗}. We canarbitrarily order classes, ports, and elements in X ∗c,o. Each tuple c ∈ C,
o ∈ Oc and x̃ ∈ X ∗c,o is associated with a unique integer l(c, o, x̃) ∈ N.By denoting L =

∑
c∈C
∑

o∈Oc |X ∗c,o|, we can choose integers that donot overlap and lie in {1, . . . , L}.Moreover, let us denote X c := {xce|e ∈ Ec} ∪ {x′ce |e ∈ E ′c}, and
εc = min

x̃ 6=x̃′∈X c
‖x̃− x̃′‖. εc is thus the smallest non-zero distance between

features of class c that appear in x and x′.Besides, the compactness assumption implies that there exists amaximal number of hyper-edges connected to the same vertex. Wedenote by N this upper bound.
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In the following, we construct a continuous function g† : supp(p)→
V that detects the presence of a vertex that has exactly the same neigh-borhood as i∗ in x, and then propagate information to every other ver-tex of the graph. We have g†(x) ≥ (1, . . . , 1) ∈ Rn (inequality is element-wise) and g†(x′) = (0, . . . , 0) ∈ Rn′ (thus proving Lemma 6).Let us choose continuous functions ((φc,o,†θ )o∈Oc)c∈C (see line 5 ofAlgorithm 6) such that for any x′′ ∈ supp(p) with n′′ vertices, and anyvertex i ∈ [n′′], h[x′′]vi (∆t) is defined by:
h[x′′]vi (∆t) =

∑
(c,e,o)∈Nx′′ (i)

(
∑

x̃∈X ∗c,o
Kεc(‖x′′ce − x̃‖)× (N + 1)l(c,o,x̃)

+
∑

x̃∈X c\X ∗c,o
Kεc(‖x′′ce − x̃‖)× (N + 1)L+1)

(6.17)
One can observe that for both x and x′, this quantity lies in N, and is asum of positive terms.The second term of the expression enforces that if there is a singlehyper-edge connected to i that is not in the hyper-edge neighborhoodof i∗ in x, then h[x′′]vi (∆t) ≥ (N + 1)L+1. The first term is basically abijective base-(N + 1) numeration. Thus, in order to obtain exactly thevalue∑l∈[L](N+1)l at vertex i, it is required that values of hyper-edgesthat are connected to i∗ in x are present exactly one time. Therefore atevery vertex i′ of x′, we have h[x′]vi′(∆t) 6=

∑
l∈[L](N + 1)l, and at vertex

i∗ of x, we have h[x]vi∗(∆t) =
∑

l∈[L](N + 1)l.We choose the following hyper-edge update:
h[x′′]ce(∆t) =

∑
o∈Oc

K1(|h[x′′]veo(∆t)−
∑
l∈[L]

(N + 1)l|) (6.18)
which basically returns a quantity larger or equal to 1 at hyper-edges in
x that are connected to i∗, and 0 to all hyper-edges in x′.Then we use the two following series of updates:

h[x′′]vi (t+ ∆t) =
∑

(c,e,o)∈Nx′′ (i)

h[x′′]ce(t) (6.19)
h[x′′]ce(t+ ∆t) =

∑
o∈Oc

h[x′′]veo(t+ ∆t) (6.20)
which additively propagates information to all neighbors.At t = 2∆t, at each vertex i that is a direct neighbor of i∗ we have
h[x]vi (2∆t) ≥ 1. Then, at t = 1 it has propagated to every othervertex, meaning that ∀i ∈ [n], h[x]vi (1) ≥ 1. Meanwhile, we have
∀i′ ∈ [n′], h[x′]vi′(1) = 0, which concludes the proof of Lemma 6
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In order to prove Lemma 8, we will need the following technicallemma:
Lemma 7. Let X , Y , Z be three metric spaces. Let F ⊆ C(X, Y ) and
G ⊆ C(Y, Z) be two sets of continuous functions. And let F ` ⊆ F ,G` ⊆ G
be two subsets of Lipschitz functions that are dense inF and G respectively.
Then G` ◦ F ` := {g ◦ f |g ∈ G`, f ∈ F `} is dense in G ◦ F .

Proof. (of Lemma 7) Let g ◦ f be a continuous function in G ◦ F , ε > 0.Due to the density of G` in G, there exists g` ∈ G` such that
d(g, g`) <

ε

2
. (6.21)

Let Lg` be the Lipschitz constant of g`, the density of F ` in F impliesthat there exists f ` such that
d(f, f `) <

ε

2Lg`
. (6.22)

Then we have
dZ(g ◦ f(x), g` ◦ f `(x)) ≤dZ(g ◦ f(x), g` ◦ f(x))

+ dZ(g` ◦ f(x), g` ◦ f `(x)) (6.23)
<
ε

2
+ Lg`dY (f(x), f `(x)) (6.24)

<
ε

2
+ Lg`

ε

2Lg`
= ε (6.25)

for any x ∈ X . Thus d(g ◦ f, g` ◦ f `) < ε. Hence G` ◦ F ` is dense in
G ◦ F .

We may now proceed with Lemma 8.
Lemma 8. HD

G is dense inHD,†
G .

Proof. As functions inHD
G are composition of Lipschitz functions (neu-ral network with linear transformation and Lipschitz activation as as-sumed), and all intermediate function spaces verify the Universal Ap-proximation Property, we conclude immediately from using the defini-tion ofHD,†

G and applying Lemma 7 consecutively.
We are ready to prove Lemma 4, i.e., that HD,�

G satisfies the sepa-rability hypothesis of Theorem 4.
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Proof. (of Lemma 4) It suffices to show the separability for HD
G since it

is a subset ofHD,�
G .

Let x, x′ ∈ supp(p). According to Lemma 6, there exists g† ∈ HD,†
Gsuch that for any i ∈ [n], i′ ∈ [n′], we have g†(i)i 6= g†(x′)i′ . According toLemma 8, there exists g ∈ HD

G such that
d(g†, g) <

1

3
. (6.26)

Then for any i ∈ [n], i′ ∈ [n′], we have g(x)i >
2
3

and g(x′)i′ <
1
3
. This

proves the separability ofHD
G . By observing thatHD

G ⊆ H
D,�
G , we obtain

thatHD,�
G respects the separability hypothesis of Theorem 4.

Before being able to prove Theorem 2, we need the last followinglemma.
Lemma 9. HD

G = HD,�
G .

Proof. (of Lemma 9) We shall prove this result by explicitly constructingan approximation function inHD
G for a given function inHD,�

G .
Let g� ∈ HD,�

G . By definition ofHD,�
G in eq. (6.14), there exists S ∈ N,

{Us}s∈{1,...,S} ∈ NS , as well as {csu} ∈ R and {gsu} ∈ HD
G for all (s, u) with

s ∈ [S], u ∈ [Us], such that :
g� =

S∑
s=1

Us⊙
u=1

csugsu (6.27)
Thus, for any (s, u), there exists 1/∆tsu ≤ D+ 1, and dsu ∈ N, such that
gsu is composed of functions ((Φc,o,s,u

θ )o∈Oc)c∈C and (Φc,h,s,u
θ )c∈C applied

1/∆tsu times. dsu is the dimension of the latent state of channel gsu.The different channels can have different number of propagationupdates Tsu, but they are all bounded by D + 1. Without loss of gen-erality, we can assume that all 1/∆tsu are equal to D + 1 by padding,when needed, exactly D+ 1− 1/∆tsu null operations before the actualones, scaling the input t appropriately, and scaling the updates by afactor (D + 1)/(∆tsu).Let d =
∑S

s=1

∑Us
u=1 dsu be the cumulated dimensions of the differ-ent channels.For each (s, u), we introduce the matrix Wsu ∈ {0, 1}dsu×d which isdefined by:

[Wsu]ab =

{
1, if∑s

s′=1

∑Us′
u′=1 ds′u′ +

∑u−1
u′=1 dsu′ + a = b

0, otherwise. (6.28)
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Thus Wsu = [0, . . . , 0, Idsu , 0, . . . , 0]. Basically, when given a vector ofdimension d, Wsu will be able to select exactly components that corre-spond to the channel (s, u), and will thus return a vector of dimension
dsu.Let us now define the functions ((Φc,o

θ )o∈Oc)c∈C and (Φc,h
θ )c∈C , suchthat for any class c ∈ C and any port o ∈ Oc we have:

Φc,o
θ (t, hvl , h

c
l , x

c
l ) =

S∑
s=1

Us∑
u=1

W>
su.Φ

c,o,s,u
θ (t,Wsu.h

v
l ,Wsu.h

c
l , x

c
l ) (6.29)

Φc,h
θ (t, hvl , h

c
l , x

c
l ) =

S∑
s=1

Us∑
u=1

W>
su.Φ

c,h,s,u
θ (t,Wsu.h

v
l ,Wsu.h

c
l , x

c
l ) (6.30)

These functions used in Algorithm 6 define a mapping acting on a latentspace of dimension d. Moreover, for any channel (s, u) and any vertex
i ∈ [n], we have Wsu.h

Tmax
i = hTmax,s,ui .We have thus built a function ofHG that exactly replicates the stepsperformed on the different channels. By choosing as a last step func-tion Φc,a

θ (1, . . . ) =
∑S

s=1

∑Us
u=1 csuΦ

c,a,s,u
θ (1, . . . ) we obtain a mapping

g ∈ HD
G that can perfectly imitate g� ∈ HD,�

G . This concludes the proofof Lemma 9.
We can now prove Theorem 3.

Proof. (of Theorem 3) According to the hypotheses of compactness(H3) and permutation-invariance (H2) on supp(p), both conditions ofTheorem 4 are satisfied by supp(p). Consider the subalgebraHD,�
G de-fined by equation (6.14). According to the hypotheses of uniqueness ofhyper-edges (H1), connectivity (H4) separability of input features (H5),and Lemma 4,HD,�

G satisfies the separability and self-separability con-
ditions of Theorem 4. Applying Theorem 4, it comes thatHD,�

G is dense
in G. Then according to Lemma 9,HD

G = HD,�
G . We conclude thatHD

G isdense in G by the transitivity property of density.
End of proof of Theorem 2 We now have all necessary ingredientsto complete the proof of Theorem 2.From Lemma 7, Theorem 3 and Lemma 3, it comes thatHR ◦HD

G isdense inR◦G. But from Lemma 1 we know that Ceq.(supp(p),Y) ⊆ R◦G.ThusHR ◦ HD
G is dense in Ceq.(supp(p),Y)And from Lemma 2 we know that HR ◦ HD

G ⊆ HD. Hence HD isdense in Ceq.(supp(p),Y). �
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Part III

Applications
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Chapter 7

Toy Examples

Before applying the DSS methodology to power grids, we propose toillustrate it on a set of simpler optimization problems. In this chapter,we learn to solve linear systems1 stemming from two distinct domains,namely a system of springs and the discretization of Poisson’s equa-tion. The goals of this chapter are as follows:
• Experimentally demonstrate the viability of our approach on a setof problems for which we have an efficient baseline (LU decom-position [150]);
• Scale up the approach to large graphs (up to 1, 089 nodes);
• Demonstrate the out-of-distribution generalization ability oftrained DSSs to both larger and smaller graphs than those seenduring training;
• Show that trained models generalize poorly to changes of ordersof magnitude of the features;
• Visualize and interpret the behavior of latent variables in trainedmodels.
The first section considers the problem of finding the equilibriumstate of a system of springs, while the second focuses on systemsstemming from the discretization of Poisson’s equation (used in fluiddynamics, electrostatics, Newtonian gravity, etc.). Experiments con-ducted over the Poisson equation dataset are a joint work with Wen-zhuo Liu (IRT SystemX).

1Knowing matrix A and vector b, the problem is to find u such that Au = b. How-ever, u does not vary linearly with A, making the solution mapping (A, b) 7→ u non-linear.
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7.1 System of springs

The first application we propose to explore consists in finding the equi-librium position of a system of springs. Let us consider a series ofnodes laid out as a horizontal regular 2D grid, linked by a series ofsprings with various stiffness parameters. Multiple weights are tied torandomly selected nodes. To counteract the downward forces appliedby weights, several supports located at randomly selected nodes holdtheir node at a constant height.This reasonably simple type of problem is a good test for ourmethod, because the exact solution of the problem can be obtainedthrough a matrix inversion, computed e.g., by the LU decomposition.Moreover, we can easily explore the out-of-distribution generalizationability of the trained models by considering various distributions dis-tributions of systems of springs examples.

7.1.1 Problem & data generation
Let us now introduce the notations and the data generative process.We denote by x a system of springs. For the sake of simplicity, weonly consider regular grids of √n × √n nodes, and physical coef-ficients are modulated by the dimensionless variable τ . Figure 7.1displays the graph structures of samples drawn for 5 different val-ues of √n. We may thus denote by p(x;

√
n, τ) the input data dis-tribution of spring systems x that have √n × √n nodes and a fea-ture coefficient τ . In our problem, there are exactly 4 object classes:

C = {springs, weights, supports, nodes}. As will be detailed there-after, only springs, weights and supports have input features, and onlynodes have output feature. Thus, x = (xsprings, xweights, xsupports) and
y = (ynodes).
Springs In order to also have some diversity in terms of graph struc-ture, we choose to cut open√n− 2 springs2, making sure not to breakthe network into multiple components, as illustrated by Figure 7.2.Springs are defined by their respective stiffness constants k, which fol-low a uniform law U([τ × 1N.m−1, τ × 10N.m−1]) (parameterized by τ ),where N and m are SI base units. Thus, denoting Esprings the set ofsprings, their corresponding input is given by xsprings = (ke)e∈Esprings .They apply symmetric forces to the nodes at their extremities, pro-portional to the stiffness coefficient and the height difference (assum-

2√n is always chosen to be an integer
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3× 3 6× 6 10× 10 18× 18 33× 33

Figure 7.1: Top view of graph structure of input data x sampled using 5distinct values for √n. From left to right, the parameter √n is succes-sively set to 3, 6, 10, 18 and 33. Exactly √n − 2 springs are cut open ineach sample, so as to provide some topological variability.
ing that height displacement are much larger than horizontal displace-ment).
Weights Weights are located on 20% of all n nodes, uniformly sam-pled. They are defined by the constant downward force F that theyapply to their nodes, which is sampled uniformly according to U([τ ×
1N, τ × 10N ]). Thus, denoting Eweights the set of weights, their corre-sponding input is given by xweights = (Fe)e∈Eweights .
Supports Similarly, supports are located at 20% of all n nodes, uni-formly picked such that there is no overlap with weights. They are de-fined by the target height ů that they impose to their nodes. Thesealtitudes are sampled uniformly according to U([−τ × 1m, τ × 1m]).Thus, denoting Esupports the set of supports, their corresponding inputis given by xsupports = (̊ue)e∈Esupports .
Nodes While nodes do not bear any input feature, they do have anoutput û, as we aim at finding for each node the altitude when thewhole system is at the equilibrium. Thus, denoting Enodes the set ofnodes, their corresponding input is given by ynodes = (ûe)e∈Enodes .
Cost function The optimization problem we consider consists infinding the equilibrium height of every node. However, two distinct be-haviors can be observed, depending on whether a node is connectedto a support or not. If there is a support, then the node is exactly at thesame height as the support. We define 1supporte , a binary indicator thatequates to 1 if there is a support at node e, and 0 otherwise. The actual
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Figure 7.2: Instance of a spring system with√n = 3.
height of any node e ∈ Enodes is given by:

ue = 1supporte ůe + (1− 1supporte )ûe (7.1)
It receives forces applied by springs and weights:

∆Fe =
∑

e′∈Esprings
(1e′1=e − 1e′2=e)ke′(ue′1 − ue′2) + Fe (7.2)

The cost function takes into account the force imbalance at nodes thathave no support:
`(x, y) =

∑
e∈Enodes

(1− 1supporte )× |∆Fe|2 (7.3)

7.1.2 Experiments
Now that both the cost function ` and the data distributions p(x;

√
n, τ)are defined, let us detail the experimental setup.

Datasets We have chosen 5 distinct values for √n: [3, 6, 10, 18, 33],and 5 distinct values for τ : [0.1, 0.33, 1, 3.3, 10]. For each of the 25 pairsof values (
√
n, τ), we have generated 100, 000 samples for the train sets,

10, 000 samples for the validation sets and 10, 000 samples for the testsets. We trained models for each of the following pairs: (
√
n = 10, τ =

0.1), (
√
n = 10, τ = 10), (

√
n = 3, τ = 1), (

√
n = 33, τ = 1). In a latersubsection, the ability of trained models to generalize to all 25 datasetswill be explored.

Baseline Since minimizing the imbalance at each node amounts toinverting a linear system given by equations 7.1 and 7.2, we comparethe solution learned with DSS with that obtained with the LU method,by measuring the Pearson correlation (Corr), the normalised mean
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absolute error (nMAE) and the normalised root mean squared error(nRMSE). The normalization is done by dividing the MAE and RMSE bythe difference between the largest and smallest values (dividing by themean for values centered around zeros does not make sense). The
10th, 50th and 90th percentiles of the cost function ` are also displayedfor both the LU and DSS models.
Model hyperparameters We used our own implementation of theH2MGNN architecture using TensorFlow [151] (no GNN framework wereused). Hyperparameters have been tuned by trial and error using asvalidation set the (

√
n = 10, τ = 1) dataset. All four trained modelsthen use the exact same hyperparameters. The step size and latentdimension are set to ∆t = 1/100 and d = 40. All the neural networks

((φc,oθ )o∈Oc ,φ
c,h
θ ,φc,yθ )c∈C that appear in the H2MGNN (Algorithm 2 inSection 4.2) are simple fully connected neural networks with 2 hiddenlayers, 80 neurons per hidden layers, and a hyperbolic tangent (tanh)activation function.

Training All models have been trained using the Adamax [117] opti-mizer with parameters (lr = 3 × 10−3, β1 = 0.999, β2 = 0.9999, ε =
1 × 10−12). Training was performed for 40 hours on a single NVIDIATITAN Xp (163 epochs with batch size 50 for √n = 3; 118 epochs withbatch size 50 for √n = 10; 10 epochs with batch size 2 for √n = 33).Significantly smaller batches were used for the dataset made of 33×33nodes to avoid GPU saturation. However, results show that this has noobvious impact over the training quality.
Results Table 7.1 displays metrics of the quality of predictions ofmodels over test sets stemming from the same distribution p(x;

√
n, τ)as they were trained on. In all four cases, our trained models are ableto achieve an extremely good correlation with the LU method (eventhough the training is fully unsupervised), as evidenced by fact that

1− Corr is systematically below 2e-4.
7.1.3 Out-of-distribution generalization
We now investigate the super-generalization abilities of each of the 4trained models, recalling that they were all trained for a different pair
(
√
n, τ). In Figure 7.3 we display the correlation for each model whenused on each of the 25 test sets, one for each pair (

√
n, τ).For a constant value of τ , we observe that models achieve goodresults when tested on both larger or smaller graphs. It achieves zero-
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(
√
n, τ) (10, 0.1) (10, 10) (3, 1) (33, 1)

Method DSS LU DSS LU DSS LU DSS LU
1-Corr. 8e-6 - 4e-6 - 2e-4 - 3e-6 -nRMSE 2e-4 - 5e-4 - 2e-3 - 2e-4 -nMAE 5e-5 - 3e-4 - 3e-4 - 1e-4 -
` 10th p. 4e-13 5e-30 5e-1 3e-19 6e-9 4e-28 1e-8 2e-25
` 50th p. 9e-13 2e-29 2e0 9e-19 7e-8 2e-26 2e-8 4e-25
` 90th p. 3e-12 1e-28 5e0 3e-18 1e-6 1e-24 3e-8 1e-24

Table 7.1: For each of the 4 considered datasets, the DSS method is ableto perform extremely accurate predictions, highly correlated with theLU method, while having been trained in a completely unsupervisedmanner.
shot learning [152] for problems of different topologies. This aspectof the out-of-distribution generalization is of primary importance, be-cause in our main power grid application the topology tends to varydrastically. Moreover, we observe that a model trained on large graphstransfers better to small graphs than a model trained on small graphstransfers to large ones.For a constant value of √n, we observe that changing the featuredistribution drastically decreases the predictive power of trained mod-els. This is not surprising as it completely changes the orders of magni-tude of the input data, and feeds neural network with values that werenever encountered during training. However, we argue that featuresorders of magnitude in power grids do not vary that much from oneyear to the other, so a model trained on one year should still be validfor the next one.
7.1.4 Visualization of latent variables
The H2MGNN architecture relies on the evolution of a series of latentvariables, either defined at vertices, or at hyper-edges. Figure 7.4 dis-plays the internal evolution of the first component of each variablew.r.t. parameter t ∈ [0, 1]. The non-trivial behavior and asynchronousoscillations that appear for some variables indicate that the model haslearned how to have latent variables interact with each other. Figure7.5 displays a 2D projection of latent variables trajectories by consider-ing the first two dimensions. Similarly, we observe complex trajectoriesthat result from interactions between latent variables.
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Figure 7.3: Correlations of the 4 trained models with LU solutions forthe test sets of all 25 pairs (
√
n, τ). The second column displays 1 −

Corr for more precise estimation of the prediction quality. The testsets stemming from the training distributions are highlighted in red.Trained models tend to generalize quite well to both larger and smallergraph sizes (controlled by √n), but have trouble generalizing to otherorders of magnitude of features (controlled by τ ).
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Figure 7.4: Evolution of latent variables hv, hnodes, hsprings, hsupports,
hweights and intermediate predictions ŷnodes for a single instance of inputgrid x, at inference time. All latent variables are initialized at 0, and thenproceed to evolve with t, by interacting with each other and with theinput data, as described in equations (4.13-4.15) and Algorithm 2. Thenon-trivial behavior and asynchronous oscillations of latent variablesshow that the H2MGNN has learned to have the different variables in-teract with each others.
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Figure 7.5: Trajectories of latent variables according to their first twodimensions for a single instance of input grid x, at inference time. Alllatent variables are initialized at 0, and then proceed to evolve with t,by interacting with each other and with the input data, as describedin equations (4.13-4.15) and Algorithm 2. The non-trivial behavior of la-tent variables show that the H2MGNN has learned to have the differentvariables interact with each others.
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7.2 Discretized Poisson equation

The second toy example considered in this chapter comes from the Fi-nite Element Method applied to solve the 2D Poisson equation, one ofthe simplest and most studied partial differential equation in appliedmathematics, and that appears in fluid dynamics, electrostatics, New-tonian gravity, etc. It is commonly solved by first discretizing the spatialdomain of definition of the equation into an unstructured mesh, andthen converting the differential system into a linear system of equa-tions defined at every node of the mesh. Just like in the previous ex-periment, it results in solving a linear system of equations. The majordistinction lies in the data distribution.
This experiment has been published at NeurIPS 2020 in the paper

Deep Statistical Solvers [3]. In that paper, the data formalism, the modeland the training processes were marginally different from the previousexperiment, as detailed in Section 4.A. Despite these changes, thoseexperiments are still largely relevant in the context of this document.

7.2.1 Problem and Data generation

Let us first introduce Poisson’s equation and the process of solving itby finite element method.

Formulation of the problem The Poisson equation with Dirichletboundary condition is defined over a 2D domain Ω with boundary ∂Ωby:
−∆u = f in Ω (7.4)

u = g in ∂Ω (7.5)

Generating random geometries Random 2D domains Ω are gener-ated from 10 points, randomly sampled in the unit square. A Béziercurve that passes through these points without any loop is created,and is further subsampled to obtain approximately 100 points in theunit square. These points define a polygon, that is used as the bound-ary ∂Ω. See the left part of Figure 7.6 to see four instances of domains
Ω. The random 2D geometries are discretized using Fenics’3 standardmesh generation method, as illustrated by the right part of Figure 7.6.

3https://fenicsproject.org/
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Figure 7.6: Discretization of randomly generated domains

Random functions f and g Functions f and g are chosen to be de-fined by the following equations:
f(υ1, υ2) = r1(υ1 − 1)2 + r2υ

2
2 + r3 (7.6)

g(υ1, υ2) = r4υ
2
1 + r5υ

2
2 + r6υ1υ2 + r7υ1 + r8υ2 + r9 (7.7)

where υ1 and υ2 denote the 2D coordinates, and parameters ri are uni-formly sampled between -10 and 10.

Assembling The assembling step [153] consists in building a linearsystem from the partial differential equation and the discretized do-main. The unknowns are the values of the solution at the nodes of themesh, and the equations are obtained by using the variational formu-lation of the partial differential equation on basis functions with sup-port in the neighbors of each node. This step is also automatically per-formed using the Fenics package. The result of the assembling step isa square matrix A and a vector b, and the approximate solution is thevector u such that Au = b.
Two distinct types of nodes emerge from this process: those whobelong to the boundary ∂Ω are set to a constant value (analogous tosupports from the spring system), while the other nodes are “free” butimpose a constant force (analogous to weights). The matrix A is a stiff-ness matrix and encodes stiffness coefficients that are analogous tosprings. We aim at finding a scalar quantity defined at all nodes, whichis analogous to the height of nodes in Section 7.1. Even the loss functionis the same.
Still, the data formalism in the original paper and implementationonly considered two types of objects: nodes and edges, as detailed inSection 4.A.
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7.2.2 Experiments
Dataset The dataset consists of 96180/32060/32060 train-ing/validation/test examples from the distribution generated fromthe discretization of the Poisson equation. Randomly generated 2Dgeometries and random values for the second-hand function f andboundary condition g are used to compute matrices A and vectors b.Their number of vertices n are around4 500 (max 599).
Baselines Two baseline methods are considered, the direct LU de-composition, that could be considered giving the ”exact” solution forthese sizes of matrices, and the iterative Biconjugate Gradient Stabi-lized methods (BGS), with stopping tolerances of 10−3 . These algo-rithms are run on an Intel Xeon Silver 4108 CPU (1.80GHz) (GPU imple-mentations were not available, they could decrease LU computationalcost by a factor 6 [33]). In addition to the DSS model that learns in anunsupervised fashion, a similar GNN model with the same hyperpa-rameters was trained by imitation of the LU solution, which we referto as a “proxy”. We compare the results of our method with the LUby measuring the Pearson correlation (Corr) and the normalised rootmean squared error (nRMSE). The normalization is done by dividingthe RMSE by the difference between the largest and smallest values(dividing by the mean for values centered around zeros does not makesense). The 10th, 50th and 90th percentiles of the cost function are dis-played.
Model hyperparameters We used our own implementation5 of theGNN architecture using TensorFlow [151] (no GNN framework wereused). The model used is introduced in Section 4.A. In this experiment,there are 30 propagation steps, the hidden dimension is set to 10, eachneural network block has a single hidden layer with 10 neurons and aleaky-ReLU activation, and the factor α was set to 10−3. The completearchitecture has 49, 830 weights.
Training Training is performed using Adam [117] with a learning rateof 10−2 and standard Adam hyperparameters (β1 = 0.9, β2 = 0.999, ε =
10−7), for 280, 000 iterations (48h) with batch size 100. The loss discountfactor γ (see Section 4.A) is set to 0.9. In the following, all experimentswere repeated three times, with the same datasets and different ran-

4Fenics automatic mesh generator does not allow a precise control of n5https://github.com/bdonon/DeepStatisticalSolvers
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Method DSS Proxy LU BGS (tol=1e-3)
Corr. w/ LU > 0.9999 > 0.9999 - -
nRMSE w/ LU 1.6e-3 1.1e-3 - -
` 10th p. 3.9e-4 7.0e-3 4.5e-27 1.3e-3
` 50th p. 1.2e-3 1.6e-2 6.1e-26 1.7e-2
` 90th p. 4.1e-3 4.0e-2 6.3e-25 1.1e-1

Table 7.2: Discretized Poisson equation experiment results – Both theunsupervised DSS and the supervised “proxy” achieve good correlationwith the LU method. However, the DSS has never seen the output ofthe LU during training.
dom seeds. We only report the results of the worst of the three trainedmodels.
Results Table 7.2 displays comparisons between a trained DSS andthe baselines. These results validate the approach, demonstrating thatDSS can learn to solve 500 dimensional problems rather accurately,and in line with the ”exact” solutions as provided by the direct methodLU (99.99% correlation). While both methods achieve similar results,the DSS was trained in a purely unsupervised way.Computational times of the LU and BGS methods were estimatedon an Intel Xeon Silver 4108 CPU (1.80GHz), while the DSS and “proxy”methods were run on a Nvidia GeForce RTX 2080 Ti. Since a major ben-efit of deep learning is that it can perform multiple inferences in parallelon GPUs, we consider the inference time divided by the batch size. Forall methods, we obtain similar computational time of 2ms per instance.Still, comparing computational times of two methods that rely on twodifferent sorts of hardware (cpu vs. gpu) really depends on the actualuse case.Figure 7.7 illustrates, on a hand-made test example (the mesh is onthe upper left corner), how the trained DSS updates its predictions, atinference time, along the 30 updates. The flow of information from theboundary to the center of the geometry is clearly visible.
7.2.3 Out-of-distribution Generalization
Varying graph sizes We now experimentally analyze how well atrained model is able to generalize to a distribution that is differ-ent from the training distribution. The same data generation pro-cess that was used to generate the training dataset is now used withmeshes of very different sizes, everything else being equal. Whereas
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Figure 7.7: Intermediate losses and predictions. Top left: the graphstructure; Top right: the LU solution; Bottom: evolution of the lossalong the 30 updates for a trained DSS, at inference time. The inter-mediate predictions ŷt are displayed for several values of t.
the training distribution only contains graphs of sizes around 500, out-of-distribution test examples have sizes from 100 and 250 (left of Figure7.8) up to 750 and 1000 (right of Figure 7.9). In all cases, the trainedmodel is able to achieve a correlation with the ”true” LU solution ashigh as 99.9%. Interestingly, the trained DSS achieves a higher correla-tion with the LU solutions for graphs with fewer nodes, while the cor-relation of the “proxy” model decreases when n both increases anddecreases. Nevertheless, thanks to the specific structure dictated tothe linear system by the Poisson equation, DSS was able to performzero-shot learning [152] for problems of very different sizes.

Figure 7.8: Varying problem size n: Correlation (DSS, LU)

Varying features distributions We may now observe the effect ofchanging the continuous features distribution. In order to change thefeature distribution, we alter both the stiffness matrixA and the vector
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b, and compute the solution by using the LU method on these altered
A and b. Figure 7.9 displays the results of the DSS model, learned onthe initial dataset, when increasing alteration is added to the test ex-amples, more and more diverging from the distribution of the train-ing set (the graph size remains unchanged). The alteration is appliedby means of a random noise with variance parameterized by τ . Log-normal noise is applied to A (Aijexp(N (0, τ)), and normal noise to b(biN (1, )). Multiple values of noise variance τ were tested, as shownin 7.9. Although DSS results remain highly correlated with the groundtruth for small values of τ , they become totally uncorrelated for largevalues of (correlation close to 0). DSS has learned something specificto the distribution p(x) of linear systems coming from the discretizedPoisson EDP.

Figure 7.9: Changing feature distribution by varying τ : Correlation (DSS,LU)

This chapter shows results obtained using the DSS approach onlinear systems stemming from two distinct domains. While the trainedneural networks do not exploit the linearity of the problem, theymanage to get extremely accurate results as evidenced by the verygood correlation compared to the LU method. Moreover, we provethe viability of the approach for graphs as large as 1, 089 vertices. Wealso explore the capacity of DSSs to generalize to out-of-distributionsamples by distinguishing between the generalization to differentgraph sizes and different feature distributions. We observe thattrained DSSs generalize very well to both larger and smaller graph,underlining a strong robustness with regards to topology changes,which is of primary importance for our power grid problems. More-over, we observe that altering the feature distribution causes thetrained DSSs to drastically decrease in accuracy. One may argue thatit is not surprising and that it is not really an issue for power grid
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related problems, as the physical quantities tend to always lie in thesame distribution (for instance a generator will always produce powerbetween its minimal and maximal possible values).
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Chapter 8

AC Power Flow

The AC Power Flow (AC-PF) problem [106, 103] consists in computingthe steady-state electrical flows in a power grid knowing the amountof power that is being produced and consumed throughout the grid,the way power lines are interconnected, as well as their physical prop-erties. This non-linear problem is at the heart of real-time power sys-tems operation, and is solved daily for a wide variety of power gridinstances using the Newton-Raphson method. As underlined by theGARPUR consortium [12], replacing traditional optimization methodswith fast neural networks could be key in developing a probabilistic re-liability management approach. Prior to our contributions, most inves-tigated neural network architectures did not take into account topologyvariations, and were trained by imitation of the output of the Newton-Raphson.This chapter presents two experiments conducted on this problemusing DSSs. First, Section 8.1 experimentally demonstrates the abilityof our method to learn in an unsupervised manner to solve the AC-PFproblem on two standard benchmarks from the PS literature. Second,Section 8.2 presents ongoing work on scaling up the approach to real-life data from the French power grid. Although the results obtained arenot yet satisfactory, this experiment provides valuable lessons whiletrying to apply the DSS approach to real-life power grids. We thusshare our experience and what we believe are opportunities for im-provement, in the hope that it will benefit the future research.

8.1 Synthetic data experiments
The first experiment focuses on trying to solve the AC-PF problem onsynthetic data. This experiment was published at NeurIPS 2020 in thepaper Deep Statistical Solvers [3]. We refer readers to the Section 4.A
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for more details about the data formalism and neural network archi-tecture used in this experiment.

8.1.1 Problem & Data generation
Experiments are conducted on two standard power grids from the PSliterature, namely the IEEE case14 (n = 14), and the IEEE case118 (n = 118), asdisplayed in Figure 8.1. Power injections (production and consumption)are sampled from the time series developed for the Learning to Run
a Power Network competition [34]. Moreover, in order to increase thediversity in terms of grid topology, for each example there is a 25%chance that a randomly chosen line is disconnected, and 25% chancethat two randomly chosen lines are disconnected.

Figure 8.1: Power grid instances used in the synthetic data experiments
In the following, we briefly summarize the input and out-put features of the considered systems, and refer read-ers to Chapter 1 for additional information. Six distinctclasses of objects compose the considered power grids:

C = {buses, loads, generators, shunts, lines, transformers}. Onlybuses have output features.
Buses Buses lie at the interface between the various dipoles andquadrupoles that generate, transport and consume electrical power.Each bus e ∈ Ebuses bears input features xbusese = [̊ve,1

pv
e ,1

slack
e ] whichdefine its voltage setpoint and if it is a “PV” and/or a “slack” bus. It alsobears an output feature ybusese = [v̂e, ϑ̂e] that define its voltage magni-tude and phase angle.
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Loads They withdraw power from buses. Each load e ∈ E loads bearsinput features xloadse = [p̊e, q̊e] that define their active and reactivepower.
Generators They inject power into buses, although their actual be-havior is far more complex and detailed in Section 1.3. Each generator
e ∈ Egenerators bears input features xgeneratorse = [p̊e, q̊e] that define theiractive and reactive power.
Shunts They have a fixed impedance and are usually used to mod-ulate the reactive power. Each shunt e ∈ Eshunts bears input features
xshuntse = [ge, be] that define their conductance and susceptance.
Lines They transport electrical power through the coupling of elec-trical oscillations of both their ends. Each transmission line e ∈ E linesbears input features xlinese = [re, xe, b

c
e] that define their resistance, re-actance and total line charging susceptance.

Transformers They transport electrical power through the couplingof electrical oscillations of both their ends, and can interconnect differ-ent voltage levels. Each transmission line e ∈ E lines bears input features
xlinese = [re, xe, b

c
e, τe, ϑ

shift
e ] that define their resistance, reactance, totalline charging susceptance, ratio and phase shift.

Cost function All devices inject electrical power into the bus they areconnected to. Their respective behaviors are detailed in Section 1.3. Foreach bus e ∈ Ebuses, the complex power mismatch1 is given by ∆se. Tosatisfy Kirchhoff’s laws, it should be zero at every bus simultaneously.Thus, we use as a cost function the following:
`(x, y) =

∑
e∈Ebuses

|∆se|2 (8.1)

8.1.2 Experiments
Dataset For case14 (resp. case118), the dataset is split into16064/2008/2008 (resp. 18432/2304/2304) samples.

1discarding active power mismatch for the slack bus, and reactive power mis-matches for voltage controlled buses
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Baselines State-of-the-art AC power flow computation rely on theNewton-Raphson method, used as baseline here (using the pan-dapower[154] implementation, on an Intel i5 dual-core (2.3GHz)). Tothe best of our knowledge, no GPU implementation was available, al-though recent work [155, 156] investigates such an avenue. We com-pare the results of our method with the Newton-Raphson by mea-suring the Pearson correlation (Corr) and the normalised root meansquared error (nRMSE). Those metrics are computed by comparing theresults at every vertex (or line) of every sample in the test set. Thenormalization is done by dividing the RMSE by the difference betweenthe largest and smallest values (dividing by the mean for values cen-tered around zeros does not make sense). The 10th, 50th and 90th per-centiles of the cost function are displayed. We also compare the DSSto the “proxy” approach: the architecture is strictly the same, but theloss function used during training is the distance to the “ground truth”(provided by the Newton-Raphson method).
Model hyperparameters We used our own implementation2 of theGNN architecture using TensorFlow [151] (no GNN framework wereused). The model used is detailed in Section 4.A. For the 14 nodes case(resp. 118 nodes), there are 10 (resp. 30) propagation steps, the hid-den dimension is set to 10, each neural network block has a single hid-den layer with 10 neurons and a leaky-ReLU activation, and the factor
α is set to 10−3. The complete architecture has 17, 220 (resp. 51, 660)weights.
Training Training is performed using Adam [117] with a learning rateof 10−2 and standard hyperparameters, for 883, 000 (resp. 253, 000) it-erations (48h) with batch size 1, 000 (resp. 500), on an Nvidia GeForceRTX 2080 Ti. The discount factor γ is set to 0.9.
Results In both cases, correlations between power flows output bythe trained DSSs and the Newton-Raphson method are above 99.99%(both active pij and reactive qij). The same can be said for the “proxy”models. However, one can observe a less satisfactory correlation interms of vi and ϑi for the DSSs while the proxies maintain a correlationhigher than 99.99%. This can be explained by the fact that the DSSs min-imizes power mismatches while the proxies minimize the distance tothe Newton-Raphson output in terms of vi and ϑi. However, this doesnot impact the quality of the power flow prediction. Our DSS model is

2https://github.com/bdonon/DeepStatisticalSolvers
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Dataset IEEE 14 nodes IEEE 118 nodesMethod DSS Proxy NR DSS Proxy NR
Corr.w/ NR

vi .9993 > .9999 - .9979 > .9999 -
ϑi .9986 > .9999 - .8131 > .9999 -
pij > .9999 > .9999 - > .9999 > .9999 -
qij > .9999 > .9999 - > .9999 > .9999 -

nRMSEw/ NR
vi 2.0e-3 4.9e-4 - 1.4e-3 1.2e-3 -
ϑi 7.1e-3 1.7e-3 - 5.7e-2 4.5e-3 -
pij 6.2e-4 2.6e-4 - 1.0e-3 3.9e-4 -
qij 4.2e-4 2.0e-4 - 1.1e-4 1.7e-4 -

Loss 10th p. 4.2e-6 2.3e-5 1e-12 1.3e-6 6.2e-6 3e-14
Loss 50th p. 1.0e-5 4.0e-5 2e-12 1.7e-6 8.3e-6 4e-14
Loss 90th p. 4.4e-5 1.2e-4 3e-12 2.5e-6 1.3e-5 6e-14

Table 8.1: Our trained DSS models are highly correlated with theNewton-Raphson solutions.
able to learn accurate predictions of vi and ϑi, without having observedthe output of the Newton-Raphson during training. As a result, our ap-proach is a completely independent optimization method that does notrely on the imitation of potentially expensive optimization techniques.Computational time of the Newton-Raphson method was esti-mated on an Intel i5 dual-core (2.3GHz), while the DSS and “proxy”methods were run on a Nvidia GeForce RTX 2080 Ti. As evoked in Sec-tion 7.2, deep neural networks can perform multiple inferences in par-allel on GPUs, so we consider the inference time divided by the batchsize (the batch size being chosen to be as large as possible, while notsaturating the GPU). For the 14 nodes (resp. 118 nodes) dataset, we ob-tain 10−2ms (resp. 2 × 10−1ms) per instance for the DSS and “proxy”method, and 20ms (resp. 20ms) for the Newton-Raphson, which pro-vides a speed-up of 3 (resp. 2) orders of magnitude. However, we ob-ject that comparing computational times of two methods that rely ontwo different sorts of hardware (cpu vs. gpu) really depends on theuse case. Nevertheless, these results highlight the fact that our neu-ral network based method is competitive in regard to computationaltimes.
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8.2 Real data experiments
After having experimentally validated the approach over relativelysmall artificial networks, this work has been focusing on applying theDSS approach to real-life data from the French power grid owned andoperated by RTE. This has highlighted several difficulties, that will bedetailed hereafter. After having detailed the major obstacles to thescaling up of the approach, we provide and interpret preliminary re-sults, which should be refined in future work (see Section 9.4). Due totime constraints, this is still an ongoing work, and the objective of thissection is to report the current state of progress.
8.2.1 Major difficulties
First of all, let us dwelve into the aspects that were the most detrimen-tal to this line of work.
Interfacing Real data from the French power grid include muchmore information than included in the “simplistic” model introduced inChapter 1. Building features that compose the input data x requires tosearch through multiple data frames and to combine several of them,simply to compute the actual value of some coefficients. Features arenot easily accessible and require an in-depth knowledge of power gridsin general, of the specific French power grid, and of the format usedto store power grid snapshots in particular. Nevertheless, the recentopen-source suite of tools pypowsybl3 developed by RTE results in amuch easier and faster interfacing with real-life data, although somefeatures are still missing.
Hidden modelling Computational methods that use real-life datasometimes resort to heuristics that are not well documented. For in-stance, some feature values may be considered as abnormal by thealgorithm, and are replaced by a default value. In other words, the ac-tual cost function ` used by traditional methods is somewhat alteredby these heuristics. These hidden computations should thus also beincluded in the training phase, so as to allow for a fair comparison be-tween methods.For all the above reasons it is clear that if one aims at working onreal-world data, a series of tests and data cleaning processes should beimplemented. Systematic data assessment should check data validity

3https://github.com/powsybl/pypowsybl
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and realism. The DSS method is sensitive to errors on either the inputdata x or the cost function `. It is essential that data samples are inadequacy with the model underlying x, y and `.
Ill-conditioned cost function Beyond numerical issues caused bythe interfacing with real-life data, the optimization problem is intrin-sically complex. The gradient used to train the parameters θ of ourmodel may be decomposed into two terms:

∇θ`(x, fθ(x)) = ∇θfθ(x).∇y`(x, fθ(x)) (8.2)
where∇y`(x, fθ(x)) denotes the gradient of `with regards to its secondargument, and estimated at (x, fθ(x)). The first term expresses thesensitivity of the model’s output with regards to its parameters θ, andthe second expresses the sensitivity of the cost function `with regardsto its second argument. However, it is possible that the the problem isill-conditionned: gradient ∇y`(x, fθ(x)) provides a poor estimation ofthe best direction to follow to decrease `.

• In a well-conditioned problem, the first order gradient
∇y`(x, fθ(x)) estimated at any location of the space Y pointsapproximately in the direction of the actual solution. Thus, back-propagating this first order derivative into the model fθ shouldquickly have the model converge towards a decent mapping.

• In an ill-conditioned problem, the optimization landscape isskewed, and the first order gradient∇y`(x, fθ(x)) is very likely topoint far from the right direction.
Unfortunately, ill-conditioned cost functions arise when consideringreal-life data: some transmission lines can be as long as several kilome-ters, while others are as short as a few meters. This creates extremelyloose couplings between some variables, and extremely stiff couplingsbetween others. As a consequence, the first order derivative of thecost function is very likely to give erroneous information regarding theactual direction of the solution.Still, a possible solution to address this issue could be some pre-conditionning, so as to provide a better estimation of the best directionto follow. For instance, in the case where `(x, y) is a quadratic functionof y, correcting the gradient with the inverse Hessian matrix (Hij(`) =
∂2`

∂yi∂yj
) provides the exact direction of the actual solution in the space

Y . Instead of using the simple first order gradient of equation (8.2), onecould instead use the following corrected gradient:
∇θfθ(x).H(`)−1.∇y`(x, fθ(x)) (8.3)
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This requires to invert the potentially large matrix H(`) during train-ing, which can be computationally expensive. Still, one may argue thatthis computational burden is still limited to the training phase, andhas no impact whatsoever on the inference speed of a trained model.Pre-conditionning the back-propagation algorithm is yet to be experi-mented with.
Message passing bottleneck At some point, it has been thoughtthat the poor results obtained on real data could be caused by thefact that propagating information using only local message passing wasnot suitable for large graphs (the French grid is made of approximately
6, 000 buses, and has a diameter around 80). However, the followingtwo observations seem to indicate that local message passing is notincompatible with an application to power grids that have large diam-eters:

• Learning on real data is as difficult on small portions extractedfrom the French grid as it is on the full system (which supportsthe hypothesis of the ill-conditioning of the cost function ` forreal-life instances). For instance, the exact same issues appear ifwe only take into account the 400kV part of the network in theLyon region (approx 50 buses).
• Experiments shown in Section 7 provide good results on largegraphs (up to 1, 089 nodes).

8.2.2 Early experiments
Despite the various setbacks encountered trying to have the approachwork on real-life data, the present subsection details and interpretspreliminary results. Although there are currently no results for the ac-tual unsupervised DSS approach (i.e. learning by minimizing the vio-lation of Kirchhoff’s law), we obtained decent performance by traininga model in a supervised way (i.e. by imitation of the Newton-Raphsonmethod). While previous experiments on the IEEE 14 nodes and 118nodes included both an unsupervised H2MGNN approach and a super-vised “proxy”, we only managed to obtain relevant results for the su-pervised H2MGNN “proxy” model on real-life data. Experiments usingthe unsupervised DSS approach on real data failed up to now probablybecause of the ill-conditioning issue previously described. This “proxy”uses the latest version of the model, as described in Algorithm 2 in Sec-tion 4.2.
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Dataset The training set consists of 2, 500 snapshots of the Frenchpower grid randomly picked from the year 2018, while the test set con-sists of 2, 500 snapshots from 2019. For now, only the extra high voltagenetwork of the Lyon region (approx. 200 buses) is considered.
Metrics We compare a H2MGNN “proxy” (trained by imitation of theNewton-Raphson method) with the Newton-Raphson. We computethe Pearson correlation (Corr), the normalised MAE (nMAE) and RMSE(nRMSE) (normalized by dividing by the difference between max andmin values), and estimate the 10th, 50th and 90th percentiles of the costfunction `.
Hyperparameters They have not been subject to a thorough hyper-parameter tuning, as this is still an open line of research. Currently, weuse a time step ∆t = 1/50, a latent dimension d = 40, and each fullyconnected neural network block has two hidden layers, with 80 hiddenneurons each, and a hyperbolic tangent (tanh) activation function.
Training We used our own implementation of the H2MGNN archi-tecture using TensorFlow [151] (no GNN framework were used). Train-ing is done for 10, 000 epochs with batch size 100, and lasted 27h onan NVIDIA TITAN Xp. The ADAMAX optimizer [117] with parameters
(lr = 10−1, β1 = 0.99, β2 = 0.9999) is used.
Results As shown in Table 8.2, we managed to obtain quite decentresults on the test set: a 92% correlation with NR method in terms of
vi, and a 96% correlation in terms of ϑi. Both the normalized RMSE andnormalized MAE compared to the NR solution are around 2 × 10−2,which is a decent score. Still, predictions provided by the H2MGNNmodel are far from being satisfying in regard to the industrial stakes.The two 2D histograms at the top of Figure 8.2 show that while predic-tions are mostly accurate (colors are in log scale), there is a non negli-gible amount of highly erroneous predictions.All metrics for the active (pij) and reactive (qij) power flows are con-sistently not acceptable. The two 2d histograms at the bottom of Figure8.2 allow for a more precise interpretation of those metrics. Predictionsare made in terms of vi and ϑi, and then power flows through transmis-sion lines and transformers are computed using physical equations.While most lines have somewhat decent predictions, there is a largeportion of lines that have erroneous predictions.After investigation, it appears that lines that have a smaller reac-tance also have more erroneous predictions in terms of pij and qij .
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Method Proxy NR
Corr. w/ NR vi 0.92 -

ϑi 0.96 -
pij 0.44 -
qij 0.11 -

nRMSE w/ NR vi 2.8e-2 -
ϑi 1.9e-2 -
pij 1.7e-1 -
qij 2.7e-1 -

nMAE w/ NR vi 1.5e-2 -
ϑi 1.3e-2 -
pij 3.8e-2 -
qij 7.4e-2 -

` 10th percentile 34 1.2e-7
` 50th percentile 62 2.0e-7
` 90th percentile 124 1.5e-5

Table 8.2: Metrics of H2MGNN “proxy” predictions on real-life data.
Since both active and reactive flows are somewhat proportional to theinverse of the reactance, errors in terms of vi and ϑi are amplified attransmission lines that have a low reactance. Since the reactance oftransmission lines in real data can vary up to almost three orders ofmagnitude, we observe at the same time quite decent predictions onsome lines, and extremely bad predictions on others.Moreover, the vertical lines that appear at the bottom left of Figure8.2 are caused by extremely small lines that are connected to singleloads whose consumptions appear to be almost constant throughoutthe year.

This chapter considers the application of the DSS approach tothe AC-PF problem. Excellent results are obtained on artificial data,even though the neural network has been trained in a completely un-supervised manner. However, experiments conducted on the real-lifedata underlined several major difficulties, which will be addressed infuture work.
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Figure 8.2: 2D histograms comparing H2MGNN “proxy” predictions toNewton-Raphson solutions. Bin colors are in log-scale. While predic-tions for vi andϑi are somewhat decent, both active and reactive powerflows have poor predictions. Bins are squares of respective dimensions
5× 10−3 rad for the voltage phase angles, 5× 10−4 p.u. for the voltagemagnitudes, 2× 10−1 p.u. for the active power flows and 5× 10−2 p.u.for the reactive power flows.
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Part IV

Conclusion & Future Research
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Chapter 9

Discussion and future work

Power grids cannot be reduced to the sole resolution of the AC-PF. Inorder to keep the system in security, dispatchers continuously make amultitude of decisions that involve various physical quantities, multipletime scales and numerous sources of uncertainty. Thus, the DSS ap-proach should be able to address multiple classes of decision-makingproblems, and to consider the actual real-life power grid in its full com-plexity.This chapter is an attempt at exploring the various ways the DSSapproach should be extended. In Section 9.1, we present preliminaryresults on the unsupervised learning of a DSS aimed at controlling volt-age, relying on the bilevel approach introduced in Section 5.2. In Sec-tions 9.2 and 9.3, we address the issues of incorporating time and un-certainties in power grid management, and propose a way to seam-lessly include both aspects in the DSS approach. In Section 9.4, wesuccinctly explore major axes for future improvements. Finally, in Sec-tion 9.5, we outline what could be an artificial assistant to dispatchersbased on a DSS.

9.1 Voltage control
RTE has been facing an increase in the frequency of high voltage viola-tions for the past decade, which may damage infrastructures. Severalchanges in the French power system contribute to an overall rise of thevoltage magnitude across the grid:

• The development of diffuse renewable energies, which reducethe load as seen from the transmission network, thus reducingpower flows across transmission lines, and therefore decreasingreactive losses in the lines,
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• The burial of overhead lines, as the cables that replace them havea higher capacitive behavior,
• The replacement of domestic devices by new ones whose reactiveenergy consumption is different than in the past.
Managing these problems implies spending a significant amountof time in studies for the operators, time that they do not necessarilyhave. To date, there is no satisfactory decision support tool to tacklethis problem of voltage management.Thankfully, the bilevel DSS introduced in Section 5.2 could allow usto train a GNN to map power grid instances to generator voltage set-points, so as to control (in open-loop) the voltage. As described in Fig-ure 9.1, this method relies on the joint learning of two neural networks,one playing the role of a dispatcher (controllerθ) and the other playingthe role of a physics simulator (solverω). In order to be consistent withthe formalism introduced in Section 5.2, we denote by x the power gridinstances, by y the voltage setpoints and by z the voltage magnitudesand phase angles. The controller parameterized by θ ∈ Θ takes x as in-put and outputs y, and the solver parameterized by ω ∈ Ω takes a pair

(x, y) as input and outputs z. Both neural networks are trained jointly(by alternating between a solver and a controller update), as describedin Algorithm 5.

power grid instance (x)
controllerθ

voltage setpoints (y)
solverω

voltage magnitudes& phase angles (z)

Loss(θ)

Loss′(ω)

dataset

Kirchhoff violation

Joule + voltage limit

Figure 9.1: Voltage setpoint control. Two neural networks, namelycontrollerθ and solverω, are trained jointly.
This work has been carried out in collaboration with GuillaumeHoury and Maxime Sanchez during their respective internships at RTE
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R&D. In the following, we present preliminary results which should befurther refined in future work.
9.1.1 Problem & data generation
Experiments are conducted on the IEEE case14 (n = 14) power grid, asshown on the left part of Figure 8.1. Injections are sampled from thetime series generated for the Learning to Run a Power Network compe-
tition [157]. For each sample, there is a 25% probability that one ran-domly chosen power line is disconnected, and a 25% probability thattwo distinct randomly chosen power lines are disconnected.Input and output features are detailed thereafter, and addi-tional information about power grid modelling is available in Chap-ter 1. Power grids are composed of six classes of objects: C =
{buses, loads, generators, shunts, lines, transformers}. While most in-put features are exactly the same as in Section 8.1, the main differencelies in buses. Only buses have a controller output y = (ybuses) and asolver output z = (zbuses).
Buses Each bus e ∈ Ebuses bears an input feature xbusese =
[ve, ve,1

pv
e ,1

slack
e ] that define its maximal and minimal voltage magni-tudes and if it is a “PV” or a “slack” bus. In this experiment, the accept-able range of voltage magnitudes is [0.95p.u., 1.05p.u.]. However, wechoose to train the model using a smaller range as a security. For allbuses, we thus consider v = 0.96p.u. and v = 1.04p.u.. The controlleroutput ybusese = [̊ve] defines the voltage setpoints that shoud be usedif the bus is “PV”. The solver output zbusese = [v̂e, ϑ̂e] defines the voltagemagnitude and phase angle for each bus of the grid. Depending onwhether a bus is “PV” or not, its voltage magnitude is set to v̊e (con-tained in y) or to v̂e (contained in z).

Controller cost function The dispatcher aims at keeping the powergrid in security. Regarding voltage control, its main requirement is tohave the voltage magnitude of each bus e ∈ Ebuses be in the acceptablerange [ve, ve], which is quantified by ∆ve in equation 1.16. Moreover,we consider as a secondary objective the minimization of the electricallosses caused by Joule’s effect, which is defined at every line and everytransformer by pJoule in equations (1.23) and (1.27). Thus, the controllercost function ` is defined by:
`(x, y, z) = µ×

∑
e∈Ebuses

|∆ve|+
∑

e∈Elines∪Etransformers
pJoulee (9.1)
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The factor µ > 0 is tuned so that the priority is given to ensuring thatthe voltage is in the acceptable range. It is set to 104 in this experiment.
Solver cost function All devices inject power in their respectivesbuses, as detailed in Section 1.3. The active power mismatch of bus
e ∈ Ebuses is given by ∆se. To respect Kirchhoff’s laws, all bus mis-matches should be zero simultaneously. The solver cost function `′ isthus:

`′(x, y, z) =
∑

e∈Ebuses
|∆se|2 (9.2)

9.1.2 Experiments
Dataset The training set is made of 10, 000 samples and the test setof 300 samples.
Baselines Our main focus is to learn a controller, while the trainingof a solver is only a means to that end. Thus, we only consider thequality of the controller part, which we assess by replacing the neu-ral network solver that was used for training with an actual Newton-Raphson solver. We compare the obtained results with that of a par-ticle swarm [158] algorithm: a black box optimization method that re-lies on a stochastic exploration of the set of voltage setpoints. Futurework will include a comparison with a more rigorous (and slower) opti-mization method. Still, this allows us to have a fast and quite efficientbaseline.
Model hyperparameters Both the controller and the solver use themodel detailed in Section 4.A, with the same hyperparameters. Thereare 10 propagation steps, the hidden dimension is set to 20 and eachneural network block has 4 hidden layers with 20 hidden neurons and ahyperbolic tangent (tanh) activation function. The update scaling factor
α is set to 10−3.
Training Training is performed using Adam [117] with a learning rateof 10−5 for the controller and 10−4 for the solver. Other parameters ofAdam are standard (β1 = 0.9, β2 = 0.999, ε = 10−7). Gradient clipping isused (over the norm) with a threshold of 102. Moreover, as explainedin Section 5.2, when performing a step to learn the controller, we add aGaussian noise with 0 mean and a variance of 2× 10−2 over the outputof the controller. This allows the solver to explore more different val-ues for y, and have a better understanding of the actual dependency
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DSS BaselineCumulated Joule losses (MW) 215.7 215.4High voltage violations 0 0Low voltage violations 1 1

Table 9.1: Cumulated performances of the bilevel DSS controller andthe particle swarm baseline. Both obtain similar results.
of z with regards to y. The training is performed for 5, 245 epochs ona NVIDIA TITAN Xp, using minibatches of 100 samples. The discountfactor γ is set to 0.9. .
Results The voltage setpoints output by the trained controller pro-vide similar results as the patricle swarm baseline in terms of cumu-lated Joule losses over the whole test set. A single low voltage eventoccurs for both the baseline and the DSS, which seems to indicate thatthere is a single snapshot for which there is no solution. As highlightedby Figure 9.2, the results are similar for both methods in terms of Joulelosses, regardless of whether lines have been disconnected or not. Still,the DSS method is a fast GNN-based heuristics trained in an unsuper-vised manner, while the particle swarm method is a black-box opti-mization method that requires to explore the space of possible voltagesetpoints using numerous calls to the Newton-Raphson method.

Figure 9.2: Correlation plots of the Joule losses caused by the outputof the DSS vs. caused by the output of the particle swarm. Althoughsome power grid instance depart from the diagonal, the two methodsprovide quite similar results.
Figure 9.3 shows the evolution of the cost function ` in the neighbor-hood of the output of the trained controller, by changing one voltage
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setpoint at a time. For a single power grid instance x and for all 5 volt-age setpoints, we observe that the prediction of our trained controlleris very close to the minimum of the function, while always respectingthe voltage limits.
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Figure 9.3: Evolution of Joule losses and voltage magnitudes in theneighborhood of the output of a trained bilevel DSS, for a single powergrid instance. The output of the DSS is in red. For each of the four gen-erators, the voltage setpoint is either close to the minimizer of Joule’seffect, or to the maximum value (set to 1.04).
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9.2 Incorporating time
Time plays a key role in most problems related to power grid operation.Production and consumption evolve constantly and one-time eventssuch as line disconnections or incidents may alter the grid topology atany moment. Decisions must be taken in accordance with the tempo-ral variations and constraints of the considered system. As a conse-quence, it is of the utmost importance to be able to consider time se-ries as inputs and/or as outputs. In the present section, we first discussthe case of graph time series where the topology (i.e. graph structure)is constant through time, and explain how such a case seamlessly fitsinto our formalism. We then underline challenges caused by variationsof topology, and propose a possible solution.In the following, t ∈ [T ] refers to time steps of a time series andshould not be mistaken for the t used in Architecture 2.
9.2.1 Factorizing through time
Graph time series can easily fit into the DSS formalism as long as allsnapshots share the same graph structure (n, C, E ,M). We refer tosuch graph time series as factorizable. In this case, snapshots canbe written as follows: x = (xce,m)(c,e,m)∈Gx where xce,m = (xce,m(t =
1), . . . , xce,m(t = T )), which gives rise to features in T × dc,x dimensions.Figure 9.4 shows the distinction between factorizable and non factor-izable graph time series.Depending on the problem at hand, we may want to output eithera single graph y, or another graph time series. Either way, y shouldrespect the graph structure of the input. Moreover, cost functions neednot be decomposable with regards to time, and in the general case thecost function still writes as `(x, y). Basically our framework remainsunchanged, at the exception of what is modelled by the pair (x, y) andwhat is hidden in the cost function `.Unfortunately, power grid time series are known to have a chang-ing topology, making them non-factorizable. As a consequence, theydo not directly fit into the DSS formalism. A possible work-around isto change the data representation so as to give rise to a factorizablerepresentation.
9.2.2 Factorizable representations
In the general case, there exists no intrinsic way of representing a graphtime series in a factorizable way. However, depending on the problem
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Figure 9.4: Non-factorizable graph time series (above) vs. Factorizablegraph time series (below) – Having a constant graph structure over timeallows to write the time series in a factorized form. This gives rise to asingle graph that is compatible with our framework.
at hand, it may be possible to change the data representation so thattopology remains constant through time. One should thus seek a datarepresentation where only hyper-edge features vary with time.In the case of power grids, we consider real-life infrastructures thatdo not change drastically over time. Interconnection patterns changeon a daily basis but the space of possible topologies is quite restrained:transmission lines are heavy infrastructure that do not physically move,and only a limited set of topological actions are available to the dis-patchers:

• Disconnect or reconnect transmission lines;
• Re-organize interconnection patterns at substations.

The first type can easily be modelled by a binary variable located ateach power line, while the second requires more care.Substation are places where objects such as transmission lines,transformers, generators, etc. can be connected to each other throughbuses. Each substation is made of two buses1, and incoming objectscan either be connected to the first or the second through a series ofswitches.The left part of Figure 9.5 shows a small instance of power grid.There are two substations, each having two distinct buses. Switcheslocated at buses can connect objects to each other.
1Actual substations can have more than two buses.
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The right part of Figure 9.5 shows how such a system can be rep-resented in a factorizable way. Dipoles are modelled as hyper-edgesof order 2: they are linked to two distinct buses, while their actualelectrical connection is encoded into a boolean variable. Similarly,quadrupoles are modelled as hyper-edges of order 4: both ends ofquadrupoles can be connected to two distinct buses, and the choicebetween them is encoded into a boolean variable (one per end). Thus,actions over the grid topology only affect features, while the graphstructure remains constant through time.
Gen
Load
Bus
Line

Gen
Load
Bus
LineSwitch

Figure 9.5: Factorizable representation of a power grid. Lines are mod-elled as hyper-edges of order 4. However, their actual electrical con-nectivity is encoded into their features. Thus topological modificationsonly affect binary variables located at features, and the graph structureremains constant through time.

9.3 Incorporating uncertainties
In addition to the time component, power grid operation should be ro-bust to various forms of uncertainties. Unplanned incidents may dis-connect transmission lines, production and consumption projectionsare not perfectly trustworthy, and sensors may perform erroneousmeasurements. Currently, the impact of certain classes of uncertaintyis systematically estimated, while other types are neglected since theyare too unlikely or too numerous. There are basically two distinct ques-tions that one may want to address:

• How robust is a power grid situation in regard to a distribution ofpossible events?
• What is the best action in regard to a distribution of possibleevents?
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The former consists in making sure that a security criterion is satisfied,while the latter consists in choosing a set of optimal actions. For thesake of simplicity, let us focus on the optimal action case.
Let us denote by x ∼ p(x) the initial situation, which may be a snap-shot at t − 1, a noisy prediction, or even a representation of the un-certainty (uncertainty bounds, gaussian parameters, quantiles, etc.).

y ∼ qθ(y|x) is the action taken by our trainable model, based on theknowledge accessible from x. Then z ∼ r(z|x, y) is the actual occur-rence of a random event. It depends on both x and y: the outcome ofan event can be impacted by the action taken.
Depending on whether we want qθ(y|x) to minimize an average ora maximal cost, the involved methodologies can be quite different. Inpower grid operation, there is currently no consensus, and both angleshave their pros and cons.

9.3.1 Average cost

In the case where we are interested in average costs, we have to con-sider the actual distribution of random event r(z|x, y), and optimize θby considering the following SSP:

Θ∗ = arg min
θ∈Θ

E x∼p(x)
y∼qθ(y|x)
z∼r(z|x,y)

[`(x, y, z)] (9.3)

This approach can be computationally heavy because it relies on aMonte-Carlo simulation to estimate the average cost.

9.3.2 Maximal cost

Another approach consists in minimizing the maximal possible cost forevents z ∈ supp(r). In the case where the set supp(r) is countable andquite small, it may be possible to scan the full domain to find the max-imal cost. However, an exhaustive search is not possible in the case ofa continuous and/or large support.
A possible solution lies in the worst case approach, which consistsin searching for the worst possible random event. Let r∗(z|x, y) be thedistribution that maps initial situations x and actions y to the worstpossible random event. We try to imitate this distribution using a pa-
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rameterized distribution rω(z|x, y). The related SSP is thus as follows:
Θ∗ = arg min

θ∈Θ
E x∼p(x)

y∼qθ(y|x)
z∼r∗(z|x,y)

[`(x, y, z)] (9.4)
Ω∗ = arg min

θ∈Θ
E x∼p(x)

y∼q(y|x)
z∼rω(z|x,y)

[−`(x, y, z)] (9.5)

It is a typical instance of a bilevel optimization as introduced in Section5.2, where `′ = −`. Computations are much more focused as it is notrequired to explore the full support of distribution r.

9.4 Future research
Currently, several aspects of the applications of the DSS approach havenot been addressed.
Choice of input data distribution The choice of the probability dis-tribution of input data p(x) is key. Unfortunately, properly definingsuch a distribution is in itself an extremely complex task. Moreover, as-sociating events with probabilities and minimizing an expectation im-plies that rare events shall be disregarded by the learned model. In thecase of critical industrial systems, we are more interested in rare butdangerous events than in common and harmless ones. Some work isrequired to choose a proper distribution for p(x), and for assessing thevalidity of trained models over a series of critical test cases. However,one may object that estimating cost functions provides a surrogate ofthe reliability of the model.
Advanced power grid modelling Another limit of the current im-plementation concerns the modelling of some objects that appear inpower grids. For instance, generators display a quite complex be-havior. The active regulation (i.e. making sure that active productionequates to active consumption plus Joule’s effect) is not taken care bya single “slack” bus, but is rather a distributed mechanism. Genera-tors contribute more or less depending on their respective capacitiesto provide additional active power. Likewise, generators that take partin the voltage control mechanism are bounded by their respective max-imum and minimum reactive power. Other objects such as High Volt-age Direct Current (HVDC) lines have simply been disregarded. Finally,the aforementioned voltage control problem has been drastically sim-plified compared to the actual issue, as dispatchers control voltage set-points only at a predefined series of buses.
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Topology control A major part of the work of dispatchers is to pre-vent transmission lines from overflowing. If the electrical currentthrough a line is too high, the conductive material expands, whichcause the line to get closer to the ground, thus endangering passers-by, housings, trees etc. Fortunately, automatic mechanisms are ableto disconnect transmission lines that are overflowing. However, thepower flow that was previously transported by the now disconnectedline is pushed to neighboring lines, which may cause new overflows.This cascading failure phenomenon may end up in a complete black-out of the system. To avoid this, dispatchers can change interconnec-tion patterns at substations by turning on or off switches (see Figure9.5). The combinatorial aspect of this decision-making problem pre-vents the use of traditional optimization techniques. Employing a DSSto the problem of topology control could thus be a promising applica-tion domain.
Power grids as cyber-physical systems Real-life power grids tendto become cyber-physical systems: there is a growing number of au-tomata on the French power grid that are able to make decisions ontheir own. In order to properly model the impact of their behavior overthe system, it is required to simulate the whole dynamics of the electri-cal system. A traditional stationary simulator will not be able to prop-erly model the dynamics involved in the automaton’s decision makingprocess. With a well designed cost function, a DSS should be able toinclude in its model the dynamics of automata.
Non differentiable cost functions The case where cost functionsare not differentiable was completely disregarded in this work. In sucha case, one could rely on gradient-free approaches typically used inReinforcement Learning [159].
Initializing classical optimization methods A major drawback ofDL-based methods is the lack of guarantee of convergence to the ac-tual solution, and the lack of upper bound for the error. However, thesolution provided by the DSS could be used as a starting point to aclassical optimization method, similarly to [98].
Lagragian relaxation of the bilevel problem Regarding the bilevelSSP of Section 5.2, it would be interesting to try to simply consider La-grangian relaxation of the bilevel optimization problem. Thus, a singleneural network mapping would try to solve both the upper and thelower level problems.
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Extension of the universal approximation theorem 2 The theo-rem presented and proved in the present document states that underhypotheses (H1-H7), there always exists a H2MGNN capable of approx-imating the solution of an SSP with an arbitrary precision (see Section6.1). Still, we believe that hypothesis (H1) (no collocated objects of thesame class) could be alleviated. However, this line of work is left tofuture research.

9.5 Long term vision
The long term objective is to develop an artificial intelligence algorithmto monitor and control real-life power grids. This goal remains distant,and one should be careful when applying DL to critical infrastructures.This PhD thesis is an attempt at properly laying the ground for a fullyintegrated approach in which everything would be phrased in termsof probabilities, cost functions and expectations. DL would not be sim-ply limited to accelerating several computational bricks lost in betweenoptimization algorithms and “for” loops.The paradigm developed and defended in this document is to con-sider a series of probabilistic mappings instantiated as H2MGNNs.They would be trained using various cost functions. Among the pos-sible tasks, we could envision the following: resolving physical equa-tions, modelling production and consumption patterns, predicting pos-sible trajectories for the next 24 hours, deciding which infrastructuresshould be put out of service for maintenance, controlling voltage set-points, managing grid topology, etc. Those modules would involve var-ious time scales and physical quantities. Their training would be per-formed in a continuous and joint manner. We would thus have a fullyintegrated artificial intelligence algorithm that learns on its own, andwith as many abilities as it has modules.
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Chapter 10

Conclusion

The Power Systems community is increasingly looking towards the useof fast and expressive deep neural networks, be it to accelerate po-tentially heavy computations, or to address decision making problemsfor which there are currently no viable methods. Prior to this PhDthesis, almost all applications of deep neural networks assumed thatthe graph structure of power grids was constant over time. However,transmission lines are frequently cut open for maintenance purposes,and dispatchers rearrange interconnection patterns multiple timesper day, and at various locations of the grid.
Thus, our primary focus was to be able to process grids of vari-able topology by elaborating a suitable neural network architecture.By framing power grids as graphs, we were the first to implement aGraph Neural Network architecture applied to Power Systems [1]. Thistype of neural network is especially designed to handle graph data.Moreover, our recent work on real data from the French power gridhas uncovered that power grids cannot be properly modelled throughstandard graphs, and are better described by an extension thereof,that we called Hyper Heterogeneous Multi Graphs (H2MGs). We thenproposed a full-fledged optimization method, which we refer to asDeep Statistical Solvers (DSSs). As a result, the unsupervised learningof a DSS is yet another global optimization approach, an alternative toNewton-Raphson.We experimentally validated the DSS approach and demonstratedits ability to learn on large networks (up to 1,089 vertices). Moreover,we explored its ability to transfer its knowledge to out-of-distributionsamples: it generalized very well to graphs that are both larger andsmaller than the graphs it was trained on, as long as the importantphysical quantities remained in the same range as during training.Recent experiments focused on applying this framework to actual
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data from the French power grid: we obtained honorable resultsusing the supervised ”proxy” learning approach on real data, but theunsupervised learning DSS approach did not yet provide satisfactoryresults. Applying the Deep Statistical Solver approach to real datafrom the French power grid is still an ongoing line of work.
As a second application, we addressed the problem of control-ling voltage setpoints, a topic that has gained popularity over the pastfew years due to increasingly frequent high-voltage violation issues.In order to make a good decision, dispatchers have to rely on theirexpertise to elaborate a tentative decision, whose expected outcomethey simulate thanks to their operating tools (in particular their powerflow computation software). Thus dispatchers want to optimize asecurity objective, while anticipating the outcome of their decisionsover the system, which shall be computed by a potentially complexsimulator. Drawing inspiration from Generative Adversarial Networks,we proposed to jointly train two distinct Hyper Heterogeneous MultiGraph Neural Networks, one playing the role of the dispatcher (con-troller), and the other playing the role of the simulator (solver). Earlyexperiments on a small 14 buses power grid showed promising results.
Further work include scaling up the full unsupervised Deep Sta-tistical Solver approach to real data, improving the choice of powergrid distributions used during training and including time and uncer-tainties in the framework.

160



Bibliography

[1] Balthazar Donon, Benjamin Donnot, Isabelle Guyon, and An-toine Marot. “Graph Neural Solver for Power Systems”. In: IJCNN
2019 - International Joint Conference on Neural Networks. Bu-dapest, Hungary, July 2019. url: https : / / hal . archives -

ouvertes.fr/hal-02175989.
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