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Résumé: Confrontés a l'intégration croissante
d'énergies renouvelables intermittentes et a de
nouveaux mécanismes de marché, les réseaux
électriques sont dans une phase de mutation
profonde. Ainsi, face a une complexité crois-
sante, RTE, le gestionnaire du réseau de trans-
port d'électricité francais, étudie les opportunités
offertes par les méthodes issues du Deep Learn-
ing. Les changements de topologie (fagon dont les
lignes sont interconnectées) étant quotidiens, il est
essentiel de permettre aux réseaux de neurones de
prendre en compte la structure des données, ce qui
est rendu possible par I'utilisation de Graph Neu-

ral Networks (GNNs). Aprés avoir démontré la ca-
pacité des GNNs a imiter un simulateur physique
du réseau électrique, cette thése développe une
approche qui vise a “apprendre a optimiser” de
facon non-supervisée. Un GNN est ainsi appris
par minimisation directe des lois physiques, plut6t
que par imitation. L’approche est par la suite
étayée d'une analyse théorique, puis étendue a
un probleme d’optimisation a deux niveaux qui
repose sur I'emploi de deux GNNs distincts, I'un
d’entre eux jouant le r6le d’un opérateur, et I'autre
émulant les lois physiques.

Title: Deep Statistical Solvers & Power Systems Applications
Keywords: Power systems, deep learning, graph neural networks

Abstract: Facing with the growing integration
of intermittent renewable energies and disruptive
market mechanisms, power systems are experi-
encing profound changes. To overcome this in-
creasing complexity, RTE, the French Transmis-
sion System Operator, is investigating the use of
methods arising from the Deep Learning literature.
Topological changes (which affect the way power
lines are interconnected) occur multiple times a
day, and should thus be taken into account by the
considered neural network architecture, which is
made possible by Graph Neural Networks (GNNs).

After having proven the ability of GNNs to imitate
a power grid simulator, this PhD thesis develops
an approach that aims at “learning to optimize” in
an unsupervised fashion. A GNN is thus trained
by direct minimization of physical laws, and not
by imitation. This work is further elaborated by
a theoretical analysis, and then extended to a bi-
level optimization problem which requires the use
of two distinct GNN models, one of them playing
the role of an operator, while the other emulates
physics.




Synthese

Les réseaux de transport d'électricité sont confrontés a de multiples
mutations, parmi lesquelles on peut citer linsertion grandissante
d'énergies renouvelables intermittentes et difficiles a prévaoir, les nou-
velles utilisations de I'énergie électrique (véhicules électriques), ou
encore la libéralisation du marché de I'énergie qui tend a autoriser
les centrales électriques a changer leur plan de production a des
échéances tres proches du temps réel. Ces changements rendent les
flux électriques de plus en plus volatiles et difficiles a anticiper, avec
pour conséquence de rendre lI'exploitation des réseaux électriques
plus complexe. Cette complexité grandissante pouvant a terme de-
venir trop importante pour les capacités cognitives humaines, il est
nécessaire de développer de nouvelles méthodes pour alléger la
charge de travail des opérateurs du réseau. Dans cette optique, Réseau
de Transport de I'Electricité (RTE), le gestionnaire de réseau de trans-
port francgais, étudie la possibilité d'employer diverses techniques is-
sues du Deep Learning (DL).

Des travaux antérieurs au début de cette thése ont été entre-
pris dans cette direction. Cependant, dans les approches précédentes,
chaque modele appris était propre a une instance de réseau. De tels
modeles présentent comme limite de mal se généraliser lorsque la to-
pologie du réseau électrique étudié est différente de celle qui a été
considérée lors de I'entrainement. Or, des travaux de maintenance sur
les ouvrages du réseau ainsi que des actions de la part des dispatchers
pour aiguiller differemment les flux électriques se produisent quoti-
diennement sur le réseau électrique. Il existe donc un besoin de faire
évoluer les méthodes de Machine Learning (ML) employées jusqu’alors
de sorte a ce qu’elles soient capables de mieux appréhender une to-
pologie changeante.

Dans ce but, cette these explore l'utilisation des Graph Neural Net-
works (GNNs) appliqués au réseau électrique. Les GNNs sont des
réseaux de neurones dont l'architecture est particulierement bien
adaptée aux problemes dont les entrées s'expriment sous forme
de graphes. L'ensemble des travaux de cette these concernent le



probléme d'apprendre a optimiser, cC'est a dire créer des réseaux de neu-
rones (des GNNs) qui résolvent des problémes d'optimisation.

Une premiére contribution de cette these concerne I'utilisation de
GNNs pour limitation d'un simulateur physique utilisé par RTE [1].
Les résultats démontrent la capacité des GNNs a apprendre sur des
graphes qui ont des géométries différentes. Ces modeéles ne sont
pas seulement capables de généraliser a des réseaux dont la topo-
logie differe légerement de celles vues lors de l'entrainement; des
expériences démontrent par exemple la capacité a apprendre sur des
graphes de 9 noeuds et a généraliser a des graphes de 1089 noeuds.
Par ailleurs, des travaux menés en utilisant des données issues du
réseau francais réel ont mis en évidence le besoin d'utiliser une des-
cription du réseau électrique au moyen de structures de graphs plus
complexes appelées Hyper Heterogeneous Multi Graphs (H2MGs). Ceci
permet de ne pas altérer la structure du réseau électrique par une
étape de pre-processing qui aggregerait ensemble plusieurs objets,
comme cela était fait jusqu’alors.

Une deuxieme contribution de cette these [2] développe une ap-
proche basée sur les GNNs pour apprendre a optimiser de facon non
supervisée. Elle consiste en I'apprentissage d'un modéle GNN par mi-
nimisation directe de la violation des lois physiques, au lieu d'ap-
prendre de maniére supervisée a partir des résultats d'un autre sol-
veur. Cette méthode - que nous appelons Deep Statistical Solver
(DSS) - est étayée, dans une troisieme contribution [3], d'une analyse
théorique fournissant une relation entre I'expressivité d'un modéle, le
nombre d'étapes de propagation de messages, et le diamétre maximal
des graphes présents dans les données. Les résultats expérimentaux
montrent que l'approche non-supervisée est viable pour la résolution
de systemes linéaires issus de la discrétisation de I'équation de Pois-
son, ainsi que pour la simulation non-linéaire de réseaux allant de 14 a
118 noeuds.

Enfin, une quatrieme contribution concerne le probléme de
controle de la tension (en boucle ouverte). Une nouvelle méthode de
résolution est proposée et se base sur l'utilisation de deux modeles
GNN. Un premier modeéle (contréleur) prend en entrée une situation
de réseau et renvoie des consignes de tension des générateurs qui ga-
rantissent la sécurité du systeme. Un second modéle (solveur) prend
en entrée la situation de réseau et la sortie du premier modele, et
résout les équations physiques du systéme. Ainsi la fonction de colt
du contréleur se base sur I'approximation de la physique fournie par
le solveur. Cette approche a double réseau de neurones est d'une cer-
taine facon semblable aux approches adversariales, bien gu'ici les ob-



jectifs des deux modéles ne soient pas nécessairement antagonistes.
Des résultats préliminaires qui n'ont pas encore été publiés indiquent
que l'approche est viable sur des réseaux jouets.

En conclusion, cette thése s'est intéressée au développement
de l'approche DSS qui vise a entrainer des GNNs a résoudre
des problémes d'optimisation variés de facon non supervisée. Le
développement d’heuristiques basées sur des réseaux de neurones
rapides offre la perspective d'accélérer la résolution de certains
probléemes codteux en temps de calculs, voire d'offrir des solutions
a certains probléemes de prise de décision pour lesquels aucune
méthode assez rapide n’existe actuellement.






Abstract

Power transportation networks are facing multiple changes, which in-
clude among others the growing amount of intermittent and hard to
predict renewable energies, new ways of using electricity (electric ve-
hicles), or the energy market liberalization which allows producers to
change their plans on a short notice. Those changes make power flows
increasingly volatile and hard to anticipate, with the result that the op-
eration of power systems becomes even more complex. As this grow-
ing complexity may eventually become overwhelming for human cog-
nitive capacities, it is necessary to develop new methods to lighten
the workload of power grid operators. With this in mind, Réseau de
Transport de I'Electricité (RTE), the French transmission system oper-
ator, is investigating the use of diverse methods stemming from the
Deep Learning (DL) literature.

Prior to this work, artificial neural networks had already been used
to perform various tasks on power grids. However, in previous ap-
proaches, each trained model was specific to a power grid instance.
Therefore, such models suffer from the limitation that they do not gen-
eralize well when the topology of the studied electrical network differs
from the one that has been considered during the training phase. Yet,
maintenance work on the network structures as well as actions from
the dispatchers to redirect the electrical flows are common events that
may occur multiple times a day in the actual system. Thus, there is a
need to improve the Machine-Learning methods used until now so that
they are able to better handle systems with changing topology.

To this end, this thesis explores the use of Graph Neural Networks
(GNNs) applied to power grids. GNNs are neural networks whose ar-
chitecture is particularly well suited to problems whose inputs can be
expressed as graphs. All the works of this thesis concern the prob-
lem of Learning to Optimize, which amounts to training neural networks
(GNNs) that solve optimization problems.

A first contribution of this thesis concerns the use of GNNs to im-
itate the physical simulator used by RTE [1]. The results demonstrate
the ability of GNNs to learn on graphs that have different geometries.
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These models are not only able to generalise to networks whose topol-
ogy differs slightly from those seen during training; experiments have
shown for example the ability to learn on graphs of 9 nodes and to
generalise to graphs of 1089 nodes. Furthermore, work carried out
using data from the real French network has highlighted the need to
use a description of the electrical network by means of more complex
graph structures called Hyper Heterogeneous Multi Graphs (H2MGs).
This makes it possible to avoid altering the structure of the electrical
network by a pre-processing step that would aggregate several objects
together, as was done until now.

A second contribution of this thesis [2] is to develop an approach
based on GNNs to learn to optimise in an unsupervised fashion. It con-
sists in training a GNNs model by direct minimisation of the violation of
physical laws, instead of building a surrogate model of another solver.
This method - which we call Deep Statistical Solver (DSS) - is supported,
in a third contribution [3], by a theoretical analysis providing a rela-
tionship between the expressivity of a model, the amount of message-
passing operations performed by the GNN, and the maximum diame-
ter of the graphs in the considered dataset. Experimental results show
that the unsupervised approach is viable for the resolution of linear
systems stemming from the discretization of Poisson’s equation, and
for the non-linear simulation of power grid that are composed of 14
and 118 buses.

Finally, a fourth contribution concerns the voltage control problem
(in open loop). A novel resolution method based upon the use of two
GNN models is proposed. The first model (controller) takes as input a
power grid snapshot, and outputs voltage setpoints for generators that
guarantee that the whole system is in security. A second model (solver)
takes the snapshot and the output of the controller as input, and solves
the physical equations that govern the system. Thus, the cost function
of the controller depends on the approximation of physics provided
by the solver. This dual neural network approach is somewhat similar
to adversarial approaches, although in our case the goals of the two
models are not necessarily antagonistic. Preliminary results not yet
published indicate that the approach is viable on toy networks.

As a conclusion, this PhD thesis is devoted to developing an ap-
proach, called Deep Statistical Solver, which amounts to training Graph
Neural Networks to solve various optimization problems in an unsu-
pervised fashion. The development of heuristics based on fast neural
networks paves the way for accelerating some heavy computations,
and providing more tractable solutions to highly complex control prob-
lems.
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Introduction

Power Systems (PS) are a key component of modern societies. They en-
able energy transportation from places where it is produced (nuclear
or fossile power plants, hydro-electric generators, wind turbines, solar
panels, etc.) to places of consumption (houses, factories, public light-
ing, etc.). Their use is vital to the well being of a country, its citizens
and its economy. It relies on thousands of kilometers of transmission
lines, and on the ongoing work of thousands of people. Power Sys-
tems have been running for more than a century, and have enabled
the development of countless improvements in our daily lives. Relying
on electricity has become so common that one may take it for granted.
Nonetheless, this domain is currently facing systemic changes which
are driving the Power Systems community to take interest in innova-
tions brought by the blooming field of Deep Learning.

In order to provide some context to this work, the present in-
troductory chapter explains the main causes of the abovementioned
changes, and their impact over power production and consumption
patterns. It then details how power grid operation adapts to such sys-
temic changes, and how the recent emergence of Deep Learning and
Graph Neural Networks could contribute to reducing emerging secu-
rity issues.

Energy shift

In this section, we provide an overview of the reasons for the current
global warming and then detail how policies aimed at mitigating it in-
crease the uncertainty of power injection (i.e. power production and
consumption patterns).

Global warming

Our daily lives are filled with a wide range of devices that perform
meaningful tasks while requiring very little effort from their users.



Those machines are able to convert energy from a primary form into
a useful form. For instance, cars transform chemical energy stored in
fuel into kinetic energy, i.e. into a movement. Energy is available at
the Earth's surface in various forms: nuclear (uranium), gravitational
(water in mountains), kinetic (wind), etc. Centuries of technological de-
velopments have enabled the conversion of energy from one form to
the other. Electric power serves as an intermediary form of energy that
can easily be transported across large distances through transmission
lines. Figure 1 shows how the global production of energy has evolved
over the past two centuries.

175000 1w Other renewables

Biofuels
s Solar
Wind
mm Hydropower
B Nuclear
mm Gas
= Oil
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150000 -

125000 A
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(source ourworldindata.org - last accessed July 2021)

Figure 1. Global energy consumed per year, by type of energy

In the late 2010s, around 85% of the energy produced came from
the combustion of fossil fuels that emit greenhouse gas such as (but
not limited to) CO,. Those emissions have been consistently growing
since the start of the industrial era, as illustrated by Figure 2.

Itis nowadays commonly admitted that the negative impact of mod-
ern societies on the environment has become non-negligible since the
1950s [4]. The current era is thus referred to as the anthropocene.
Our understanding of the relationship between temperatures and our
greenhouse gas emissions can be traced back to the XIX!" century: in
1896, Svante Arrhenius predicted that changes in the concentration of
CO, in the atmosphere would significantly impact the surface temper-
ature [5]. Empirical evidence of such an anthropogenic global warming
have been gathered by Guy Callendar in 1938 [6], and Gilbert Plass for-
mulated the Carbon Dioxide Theory of Climate Change [7]in 1956. Figure
3 presents the evolution of the temperature anomaly on Earth com-
pared to the average of the period 1961-1990, thus sketching a worrying
trajectory for the upcoming decades.

The brutal change of climate that we will most likely go through

2
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Figure 2: Global CO, emissions per year
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Figure 3: Temperature anomaly compared to the average of the 1961-
1990 period

should cause the 6! mass extinction in the History of Life on Earth. In
order to prevent the irreversible destruction of an ecosystem which we
need for our own survival, it has become urgent to drastically reduce,
inter alia, the emission of greenhouse gas.

Moving to a new energy mix

Policy makers have been pushing towards the development of alterna-
tive energy conversion devices that exploit renewable and low-carbon
forms of energy. A source of energy is said to be renewable if exploit-
ing it does not prevent future generations of doing so. Direct radiation
of the Sun - which should persist for the next 5 x 10° years - can be ex-
ploited using thermal or photovoltaic devices. The wind, which is also
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indirectly caused by the Sun'’s radiation, is another source of energy
that can be harnessed by wind turbines. Devices that harness those
sources of energy have drastically improved over the past two decades,
which has enabled their large scale deployment, as illustrated in Figure
4. A growing amount of research is dedicated to investigating the fea-
sibility of a 100% renewable energy system in the medium term [&, 9],
and advocate for a massive use of the latter two technologies.
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(source ourworldindata.org - last accessed July 2021)

Figure 4: Renewable energy generation per year, by type

Increasingly uncertain power injection patterns

Unfortunately, solar and wind power come with some drawbacks with
regards to their integration in power grids:

* Their production is highly dependent on the weather, which is no-
toriously known to be hard to predict accurately. This increases
the uncertainty of actual production patterns, and may cause an
unexpected saturation of some areas of the Power Grid.

* Our energy storage capacity being quite low, the production
should always equate to the consumption. As solar and wind
power are intrinsically intermittent, it is mandatory to have con-
trollable generation in reserve, so as to compensate for fast vari-
ations of renewable generation. For instance, massive invest-
ments toward solar energy in California has caused the appari-
tion of the so-called duck curve. Since solar panels generation
peaks around noon, the need for other sources of energy is also
reduced, as illustrated in Figure 5. This causes steep ramps of
apparent demand in the morning and in the evening.
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+ Power generation is predominantly ensured by large rotating ma-
chines. The inertia of their rotation provides a fast and accurate
way of ensuring the stability of the whole system. Devices such as
solar panels do not involve the rotation of any of their parts and
cannot take part in this critical stability mechanism. Thus, such
devices actually erode the security of the whole system’.
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Figure 5. Schematic representation of the Californian duck curve, on
typical days of 2015 and 2021.

In addition to challenges posed by renewable energy integration
into the grid, two other phenomena cause additional uncertainties,
namely the rise of the electric vehicle, and novel European regulations:

+ While electric vehicles are still a marginal phenomenon in 2021,
RTE projects that there should be around 12,000, 000 electric cars
on the French roads by 2035 [11]. Car batteries could be used as
an additional flexibility for the Power Grid, but their charging may
also create new and unexpected electric consumption patterns.

* Recent European regulations enforce a strict separation of the
different parts of the power grid, so as to give rise to the inter-
nal energy market. The energy market pushes suppliers to buy
electricity at the lowest economic price, regardless of the physi-
cal reality of the power grid. Thus, energy can be produced very
far from the place of consumption which can cause important
power flows across the whole European grid, which can result in
congestion issues. In addition, new regulations allow energy pro-
ducers to change their plans on a very short notice, which causes
an additional source of uncertainty for power grid operation.

"The grid forming domain [10] aims at improving the stability of systems that have
a large proportion of renewables.



Changes in power grid operation

The growing uncertainty over power injection patterns is endangering
power grids, which pushes their operators to investigate possible solu-
tions. In this section, we first succinctly introduce power grids and how
they are operated. Then, we detail some of the currently investigated
solutions to improve the system’s security with respect to projected
trends.

Transmission systems in a nutshell

The electric power grid can be broken down into three main functions,
as illustrated in Figure 6: production (power generation, in red), trans-
port (power lines, in blue and orange), and consumption (end users,
in green). The transport part is usually split into the “transmission
system” (long distances, in blue) and the “distribution system” (local
scale, in orange). This PhD thesis is funded by Réseau de Transport
de I'Electricité (RTE), the French Transmission System Operator (TSO),
which operates the largest European transmission grid (106, 000 km of
high voltage and extra high voltage transmission lines). The present
document solely considers the French transmission network, although
most of the developed ideas and concepts can be easily transposed to
other networks and even to other domains.
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Figure 6: Overall organization of power grids. Power transportation is
split into the transmission system (Extra High Voltage and High Volt-
age), and the distribution system (Medium Voltage and Low Voltage).



RTE is in charge of managing the French transmission system in real
time, and ensures that the production equates to the consumption. It
anticipates impacts of potential outages, whether these are planned or
accidental, and takes appropriate actions. Highly trained engineers -
called dispatchers - ensure the system’s security by monitoring power
flows through transmission lines and voltage magnitudes everywhere
across the grid.

+ A power overflow through a transmission line can cause it to
stretch and endanger nearby trees, roads, infrastructures or
passers-by. Automatic and decentralized mechanisms can cut
open overflowing lines, which can push the overflow to other
lines. These newly overflown lines are subsequently discon-
nected, which then leads other transmission lines to meet the
same fate. This type of cascading failure can then quickly lead to a
blackout of the whole system if no action is taken. To counter this,
dispatchers can change the interconnection patterns of transmis-
sion lines, so as to redirect power flows.

+ Voltage magnitude should remain in an acceptable range at all
times and everywhere. Electric devices are designed to work with
a certain voltage amplitude, and can withstand reasonable vari-
ations around this value. Thus, straying too far from this nomi-
nal value can cause damage to devices, and Transmission System
Operators. The main levers of action in this regard include the
control of voltage set points of some generators and the activa-
tion of shunts.

Those two tasks are actually entangled, but presenting them as being
distinct is a good first-order approximation. In both cases, dispatchers
have to rely on their thorough understanding of the system. Current
optimization-based methods are struggling with the complexity of both
problems, and some satisfying heuristics exist or are in the process of
being experimented.

Investigated solutions and current limitations

RTE and the Power Systems community as a whole anticipate that the
systemic changes evoked in the previous section will bring additional
challenges to real-time power systems operation, and investigate vari-
ous avenues to improve the system’s stability and safety.

Several projects aim at expanding the capacity of integration of re-
newable energies into the actual power grid without building new ex-
pensive transmission lines. For instance, the NAZA project (Nouveaux
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Automates de Zone Adaptatifs, which can be translated as New Zonal
Adaptive Automata) prevents the system from saturating in the case
of renewable generation peaks by clipping power generation®. A com-
panion project named Ringo aims at employing controllable batteries
located in three locations far from each other so as to create virtual
power lines: energy is withdrawn by batteries in places where conges-
tion might occur, while an equivalent amount of energy is injected in
a safer location3. These automata make power grids cyber-physical
systems where the sole knowledge of physical equations is no longer
enough to accurately model reality. Thus, RTE is also pushing in the
direction of improving its simulation tools to better take into account
the fact that numerous automata take instantaneous decisions on the
grid4.

Another line of work aims at better incorporating uncertainties in
power grid operation. The GARPUR consortium [12], in which RTE took
part, advocates for a novel reliability management approach that takes
into account - among others - uncertainties over production and gen-
eration, socioeconomic costs of power supply interruptions and de-
mand side flexibilities. To that end, a probabilistic approach to relia-
bility management has been developed. However, such approaches
need to perform numerous expensive simulations, making the whole
approach intractable. As a consequence, they advocate for the use of
fast proxies based on Machine Learning to quickly estimate the state
of power grids, which would allow expensive Monte Carlo simulations.

Current computational methods are unable to advise dispatchersin
controlling voltages and power flows, even though this task is projected
to become largely more complex in the upcoming decades due to in-
creasingly uncertain injection patterns. Moreover, some methodolo-
gies considered to improve power grid security with respect to renew-
ables integration and increasing uncertainties are currently intractable
because of the slowness of current methods. Thus, the Power Systems
community is investigating methods stemming from other domains, in
the hope to find tools that would better suit its current needs.

The Deep Learning opportunity

Resounding successes achieved by the Deep Learning (DL) domain
have drawn the attention of the Power Systems community for two

2https://www.rte-france.com/actualites/naza-rte-developpe-nouvelle-solution-

numerique-pour-renforcer-la-flexibilite-du-reseau
3https://www.rte-france.com/projets/stockage-electricite-ringo
4https://dynawo.github.io/



main reasons:

* DL methods can deal with extremely complex tasks that require
a very high level of abstraction;

* they are fast and parallelizable, because all the computational
burden is deferred to a training phase.

In this section we first introduce the domains in which DL is included.
Secondly, we review some of its early applications to Power Systems.
We then introduce the blooming domain of Graph Neural Networks
(GNNs), a subdomain of DL that considers graph data, which will prove
to be key in applying DL to Power Systems. Finally, we give some ex-
amples of how DL can be enhanced by physical knowledge.

From Artificial Intelligence to Deep Learning

As shown in Figure 7, DLis included in a hierarchy of scientific domains,
which can be defined as follows:

+ Artificial Intelligence: It can be described as “any system that per-
ceivesits environment and takes actions that maximize its chance
of achieving its goals” [13]. It was founded as an academic dis-
cipline in the 1950s and includes a wide variety of approaches:
imitating brain cells, problem solving, formal logic, knowledge
databases, etc.

* Machine Learning (ML) / Statistical Learning: Among all the ap-
proaches investigated by researchers, Machine Learning [14] has
become prominent since the beginning of the XXI*! century. It is
aimed at developing algorithms that improve by learning from
data. It includes a wide variety of algorithms: decision trees [15],
k-nearest neighbors [16], linear regression [17], naive bayes [1&],
support vector machines [19], etc. Some of them have in common
that they are trained on a dataset, in the hope to achieve good
performance on another dataset stemming from the same distri-
bution. Other approaches that are not discussed in the present
document include for instance Reinforcement Learning, which
aims at learning by interaction with an environment.

* Representation Learning: This subset of Machine Learning meth-
ods is concerned with automatically discovering a data represen-
tation that is relevant for the problem at hand. The underlying
motivation is that in many real-life problems, data can be very
hard to process. For instance in image classification, being able
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to classify whether there is a cat or not in an image cannot be
performed by a simple linear regression over pixel values. It is
mandatory to build a certain level of abstraction and move be-
yond the raw data. Methods include neural networks, principal
component analysis, restricted Boltzmann machines, etc.

* Deep Learning: This part of Representation Learning considers
the use of artifical neural networks. Itis described by Goodfellow,
Bengio & Courville in their Deep Learning book [20] as

“.. to allow computers to learn from experience and un-
derstand the world in terms of a hierarchy of concepts,
with each concept defined through its relation to simpler
concepts.”

Depending on the problem at hand, this hierarchy of represen-
tations can involve many different abstraction levels, thus mak-
ing the process of solving it deep. This domain dates back to the
1940s, and has known three waves of innovation so far [20]. The
current wave started around 2006, and has been enabled by the
massive processing power of modern computers, the availability
of extremely large datasets, and also by a proactive and creative
community of researchers.

Graph
Neural
Networks

Deep
Learning

Representation
Learning

Machine Learning

Artificial Intelligence

Figure 7: Venn diagram showing the hierarchy of scientific fields in
which Deep Learning and Graph Neural Networks fall [20].
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Deep Learning has achieved multiple major breakthroughs in a
wide variety of domains. In computer vision, it has surpassed human
performances in image recognition [21, 22, 23], is able to generate new
realistic images [24] and can identify objects in a scene [25]. In natu-
ral language processing, it has become the state-of-the-art technique
in sentiment analysis [26], information retrieval [27], spoken language
understanding [28], machine translation [29], writing style recognition
[30], and others. Most commercial voice recognition systems [31] are
based on DL. In all of these applications, DL showed its ability to tackle
complex problems that require a very high level of abstraction. We re-
fer readers to Chapter 2 for a succinct introduction to DL techniques.

Applications of Deep Learning to Power Systems

As early as in the gos, seminal work [32] started applying ideas from
ML and DL to issues related to Power Systems operation. A review
paper by Duchesne et al. [33] provides a thorough overview of various
applications of ML, and in particular of DL methods to power grid static
reliability management. In what follows, we review several applications
of DL to the AC Power Flow (AC-PF) and AC Optimal Power Flow (AC-
OPF) problems. Other possible applications are being investigated by
RTE, such as the use of Reinforcement Learning [34], although this falls
out of the scope of this PhD thesis.

The AC Power Flow (AC-PF) problem can be framed as follows:
knowing power production and consumption, and the way power lines
areinterconnected to each other, the goal is to compute the power flow
through lines. In [35], Schaefer et al. investigate the use of various ML
methods to solve the AC-PF, and show that deep neural networks bring
the best performances, a line of work that has been consistently grow-
ing over the past few years [36, 37, 38, 39]. Neural networks can also be
used to warm start a traditional optimization method [40], or to detect
if a grid is in security or not [41, 42].

On the other hand, the AC Optimal Power Flow (AC-OPF) problem
is @ non-linear and non-convex optimization problem in which a cost
function should be minimized while respecting physical and opera-
tional constraints. Deep Learning has already been extensively applied
to this issue so as to directly predict optimal control variables [43, 44,

]. Neural networks have been successfully used to warm start tradi-
tional optimization techniques [46, 47, 48], perform fast screenings of
situations [49, 50, 51, 52], and reduce the computational burden of the
AC-OPF by predicting the set of active constraints [53, 54, 55, 56]

Most methods surveyed above assume a fixed topology of the grid,
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i.e. the graph structure does not change. However, the actual grid
topology of power grids changes several times per day under the ac-
tion of dispatchers. This raises the following questions:

How can we learn from data that have a changing underlying
structure?

During his PhD thesis, Benjamin Donnot began investigating such
a critical issue by developing the Latent Encoding of Atypical Perturba-
tions (LEAP) network [57], also referred to as guided-dropout. This DL
architecture is able to conditionally activate or deactivate sets of neu-
rons depending on the situation. He experimentally showed that this
architecture had good generalization properties, even to grid topolo-
gies that were never encountered during training. However, this ap-
proach only allows a limited amount of perturbations to be considered,
and does not completely take into account the fundamental invariant
of graph data: permutations. Asimple node reordering of the input data
shatters the predictive power of the trained neural network. However,
a class of neural networks called Graph Neural Networks (GNNs) allow
to make a conceptual and experimental leap towards addressing such
issues, as introduced thereafter and further detailed in Chapter 3.

Graph Neural Networks

Power grids have a graph structure which cannot be processed prop-
erly by traditional neural networks. Thankfully, the blooming domain
of GNNs provides us with a class of neural network architectures that
are purposefully designed to handle graphs. They can intrinsically with-
stand any node reordering of their input graph, by directly encoding
the input graph structure into the neural network architecture. As ex-
plained by Battaglia et al. [58], they use traditional neural networks as
elementary trainable blocks entangled in a much larger architecture
that inherently respects the graph structure of its input.

Although this domain has only recently started to become a major
area of research (2017-2018), early work by Sperdutti et al. [59] on apply-
ing neural networks to acyclic graphs can be traced back to 1997. Then
in 2005, Gori et al. [60] first introduced the notion of GNN, although it
does not quite resemble the approach that currently bears this name.
This line of research was then continued in the late 2000s by Scarselli
et al. [61] and Gallichio et al. [62]. Motivated by the accomplishments
of Convolutional Neural Networks (CNNs) on images, research focused
on trying to extend the notion of convolution to graphs, which lead to
the emergence of two distinct approaches.
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The first one is called Spectral GNN [63] and relies on spectral graph
theory. It decomposes input graphs according to a spectral basis which
is then fed to a neural network architecture. While this approach has
been applied with success on various problems [64, 65, 66, 67], it suf-
fers from a poor generalization capability: as soon as the graph struc-
ture is slightly altered, the spectral decomposition can change drasti-
cally and the trained neural network model stops being relevant.

The second one is called Spatial GNN [68] and relies on local mes-
sage passing operations. No spectral decomposition is required, and a
trained neural network easily generalizes to various graph structures.
Although the approach fell into oblivion for almost a decade, it has re-
cently emerged again [69, 70, 71] and has then become the prominent
approach in many domains.

GNNs have been applied to various non-Euclidean data. In com-
puter vision, they are used to generate semantic graphs that explain

relations between objects in a scene [72, 73, 74], or to generate a re-
alistic scene knowing a semantic graph [75]. They are also applied to
human joint detection [76, 771, human-object classification [78, 79] and

visual reasoning [80]. In chemistry, the 3D structure of a molecule be-
ing a graph, GNNs can predict their fingerprints [81, 82] and properties
[71], proteins interfaces [83] and be used to synthesize organic com-
pounds [84, 85, 86].

Ideas and methods involved in GNNs are introduced and succinctly
explained in Chapter 3. However, since this work solely focuses on Spa-
tial GNNs, we refer interested readers to the review paper written by
Wu et al. [87] and to the book Graph Representation Learning by William
L. Hamilton [88] for a more exhaustive presentation of the domain.

Introducing GNNSs as a tool to accelerate power grid related compu-
tations is one first contribution of this thesis. Another one is described
in the next section, and relates to the methodology employed to train
such GNNs.

Merging Deep Learning and physics

In the past few years, the amount of publications dedicated to the ap-
plication of DL to physics-oriented problems has consistently grown.
In most cases, the goal is to accelerate potentially expensive simula-
tions using fast neural networks. Two main approaches can be distin-
guished: The supervised “proxy” approach, which consists in imitating
the output of a classical physical simulator, and the semi-supervised
or unsupervised approach, which aims at incorporating physical laws
directly into the neural network architecture or into the training loss.
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The “proxy” approach The former approach, which we refer to as
the “proxy” approach consists in imitating potentially expensive physics
simulators, generally with the aim to find a more suitable balance
between computational speed and accuracy. For instance, Eulerian
fluid simulations were successfully accelerated by replacing a compu-
tational block by a neural network approximation [89]. Other appli-
cations include the acceleration of various scientific computations us-
ing convolutional neural networks [90, 91], and the modelling of high-
energy particle physics [92]. As evoked above, early applications of DL
to Power Systems [38, 32] also fall into this line of work.

The “proxy” approach can be enhanced by Graph Neural Networks:
some physics problems are defined on well-structured systems which
are explicitly modelled as graphs. Including the structure directly into
the neural network architecture can improve both the performances
and generalization capabilities of trained models [93, 94].

Incorporating Physical Knowledge Unlike many applications en-
countered in Machine Learning, problems stemming from physics are
usually well described by a series of equations. Physics-Informed Neu-
ral Networks (PINNs), introduced by Raissi et al. in 2019 [95] propose to
train a model using a combination of classical data and of the knowl-
edge of physical equations. Such an approach provides a semi super-
vised setting and allows for the resolution of both direct and inverse
problems. Applications include for instance fluid mechanics [96]. In
the present PhD thesis, we propose to go even further by consider-
ing a fully unsupervised approach where only the violation of physical
equations is penalized during training.

Main contributions

Applying methods from the DL literature to Power Systems presents
major challenges to inspire confidence to the Power Systems commu-
nity and meet necessary criteria of testability and reliability, particu-
larly because the theory underlying DL methods is still in its infancy.
This thesis proposes new problem formulations and DL solutions, as a
step towards the adoption of DL methods in this application context.
This thesis includes the following main technical contributions:

+ We provided the first application of GNNs to power grids [1], ex-

perimentally proving the ability of such neural network architec-
tures to withstand variations in the amount of nodes, lines, and
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interconnection patterns, and experimentally proving the viabil-
ity of the approach.

+ We were the first to train GNNs to solve instances of an optimiza-
tion problem by direct minimization of physical laws, instead of
relying on the imitation of classical optimization methods [2].

* We introduced a Universal Approximation Theorem which states
that GNNs architectures are suitable to solve optimization prob-
lems [3].

+ We developed a Hyper Heterogeneous Multi Graph (H2MG) for-
malism that models power grids more naturally, and a matching
Hyper Heterogeneous Multi Graph Neural Network (H2MGNN)
architecture to process such data structures.

We call our approach the Deep Statistical Solver (DSS). It consists
in training permutation-equivariant GNNs to solve instances of opti-
mization problems in an unsupervised fashion, i.e. without imitating
the output of a traditional optimization method. As a consequence,
our methodology is an optimization technique on its own. Ongoing
work include the development of a bilevel H-MGNN approach to solve
bilevel optimization problems.

Concurrent work

Since the beginning of this work, several papers have been published
that exploit similar ideas to the ones presented in this document. After
our paper Graph neural solver for power systems [1], the use of GNNs to
power grids has quickly become commonplace [97, 55, 98, 99], and the
idea to use of GNNs to perform scientific computation has been suc-
cessfully applied to fluid dynamics simulations [100]. After our paper
Neural networks for power flow: Graph neural solver [2], GNNs and phys-
ical knowledge were similarly combined on power grid problems [107,

1.

PhD thesis outline

This document aims at being self-contained and providing the right
level of details to enable any interested reader with a basic background
in mathematics and physics to grasp the main ideas. This contribution
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being a bridge between two scientific communities, each domain is in-
troduced, and references to the relevant literature is provided. Read-
ers from the Power Systems domain are encouraged to skip Chapter
1, while readers familiar with the Deep Learning literature should skip
Chapter 2.

Part | - Background & motivations The first partintroduces the do-
mains within which this work falls.

e Chapter 1- Power Systems: introduces power systems, starting from
basic physical phenomenon, sweeping through the electrotechnical
modelling of the main components of power grids, and further detail-
ing some key aspects of how they are operated.

e Chapter 2 - Deep Learning: introduces key statistical learning con-
cepts, deep learning basics, and some major ideas at the core of the
success of CNNs.

e Chapter 3 - Graph Neural Networks: introduces graph data, and how
GNNs manage to accurately process them.

Part Il - Deep Statistical Solvers This second part details the core
contribution of the present PhD thesis, which includes both a class of
problems and a proposed resolution method.

e Chapter 4 - Deep Statistical Solver Architecture: discusses some key
features of real world data, and proposes a suitable H2MGNN architec-
ture.

e Chapter 5 - Statistical Solver Problems: discusses the conversion
of optimization problems into statistical learning problems, and how
training can be performed without imitating the output of a traditional
optimization method.

e Chapter 6 - Universal Approximation Theorem: discusses some key
properties of the proposed architecture in terms of expressivity, and
introduces our extension of the Universal Approximation Theorem to
the considered class of GNN architectures.

Part Il - Applications This third part is devoted to the application of
our proposed Deep Statistical Solver approach to a series of optimiza-
tion problems.

e Chapter 7 - Toy Examples: applies our proposed Deep Statistical
Solver approach to a series of toy problems.

e Chapter 8 - AC Power Flow: applies our method to the non-linear
problem of estimating the flows across a power grid knowing power
injections and the actual power grid topology.
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Part IV - Conclusion & Future Work This final part concludes and
explores some questions that were opened by this work

e Chapter 9 - Discussion & Future Work: discusses ongoing work on
voltage control, and potential extensions of the DSS to problem that
include time and uncertainty.

e Chapter 10 - Conclusion: summarizes main contributions and obser-
vations of this PhD thesis.
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Chapter 1

Power Systems

This PhD thesis aims at developing DL techniques to solve optimization
problems defined over power grids. In order to understand the basic
principles of the latter, and how their components behave and interact,
this chapter introduces Power Systems (PS) fundamentals. Firstly, it de-
fines power grids as a network of interacting dipoles and quadrupoles.
Then it details how Alternating Current (AC) systems rely on oscillations
of electrons to transport electrical power across large distances. Fi-
nally, it dives into the physical modelling of the main devices that are
considered in this PhD thesis.

We refer interested readers to the book Power System Stability and
Control by P. Kundur [103] for more details about power grids.

1.1 Transporting power using electricity

Modern power grids are predominantly in Alternating Current: elec-
trical power is transported by oscillations of electrons. These oscilla-
tions are driven by generators, and slowed down by consumers. In
this section, we give some insights about the fundamental mechanisms
at work in power systems. After having introduced basic principles of
electricity, we explain the behavior of dipoles and quadrupoles, and
how they can be interconnected into a network called a power grid.

1.1.1 Electricity

The term electricity denotes the phenomenon induced by the motion
of electrons in a conductive material. In such materials (mostly met-
als), charged particles - called electrons - are loosely attached to atoms
and are free to move. Those electrons can be set in motion by de-
vices that exploit various forms of energy (chemical, thermal, nuclear,
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kinetic, etc.). Conversely, other devices can convert the motion of elec-
trons into another form of energy (lighting, heating, etc.). The motion
of electrons is not useful by itself, and only serves as an intermediary.
Electrical power can be transported through conductive cables, which
allows to generate energy far from where it is consumed.

1.1.2 Dipoles

Adipoleis a electric device that has one port, which is made of two ter-
minals: + and —. Electrons can either enter the dipole through the +
terminal and get out through the — terminal, or the opposite. As shown
in the left part of Figure 1.1, we denote by « in Volt (V) the voltage drop
- which measures the work applied by the dipole over an elementary
charged particle - between the + and — terminals, and by < in Ampere
(A)the current of electrons flowing into the + terminal (which necessar-
ily equates to the current flowing from the — terminal). In AC systems,
electrons oscillate around a fixed position, thus they alternately enter
and exit the dipole through each port. The instantaneous power p in
Watt (W) injected by the dipole through its port is given by:

p=ui (1.1)

Generators are dipoles that inject power into the system (p > 0) and
loads (consumers) are dipoles that withdraw power (p < 0).
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Figure 1.1: Schematic representation of a dipole (left) and of a
quadrupole (right).

1.1.3 Quadrupoles

In power grids, electric power is transported across long distances us-
ing cables of conductive materials known as power lines. In order to
allow electrons to flow in a closed circuit, transmission lines are made
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of two cables, each allowing electrons to flow in opposite directions.
This pair of cables belongs to the category of quadrupoles, which are
electric devices that have two ports. As shown in the right part of Fig-
ure 1.1, we index by f quantities defined at the “from” port, and by ¢
quantities defined at the “to” port. Power is injected into one port and
retrieved from the other. However, friction between the flow of elec-
trons and atoms of the transmission line cause some power to be lost
due to Joule's effect:

pr+pi+ple =0 (1.2)

The actual equation for Joule's effect in AC power grids is deferred
to the last section in equation (1.23). However, it can be approximated
by p’°ue ~ ri? where r is the resistance of the cable in Ohm (Q), and i ~
iy ~ 4. Joule’s effect can be seen as a mandatory tax for the transport
of energy. The resistance of a line being proportional to its length, the
more production and consumption are spread apart, the more power
will be lost.

1.1.4 Power grids

Dipoles and quadrupoles can be interconnected together into a net-
work called a power grid. The purpose of this power grid is to trans-
port electrical power from dipoles that produce it to dipoles that con-
sume it. Ports of multiple devices can be connected together to form
a “bus”: their respective + and — terminals are connected together, as
illustrated in Figure 1.2. Kirchhoff's laws govern the behavior of inter-
connected devices:

* Kirchhoff's current law: the algebraic sum of currents flowing into
collocated ports is zero. In Figure 1.2 we obtain i, + ¢y = 0 and
i+ 1+ =0.

+ Kirchhoff's voltage law: all ports connected to the same bus share
the same voltage. In Figure 1.2 we obtain u; = uy = uy and uy, =
Uy = U = Uy

Power grids can be represented in two distinct ways. The “electric di-
agram” displays the detailed electric circuit, showing both terminals +
and —. It also clarifies the fact that electrons flow in a closed loop of
conductive material. On the other hand, the “single-line” diagram pro-
poses a simplified visualization where both terminals are merged. It
allows for a clearer representation of power flows.
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Figure 1.2: Two representations of the same power grid. It is made of
one generator (indexed by g), two loads (I and '), and one transmis-
sion line (whose ends are indexed by f and t). Devices are connected
together via buses. The single-line diagram does not represent the +
and — nodes of each bus, and represents buses as perpendicular lines.

Power grids are networks of interconnected dipoles and
quadrupoles that allow electrons to flow in a closed loop of con-
ductive material. However, electrons do not continuously flow around
those loops: they actually oscillate around a fixed position. Electrical
power is thus transported by oscillations of those electrons, just like
sound is transported by oscillations of air particles.

1.2 AC Power Systems

As stated before, modern power systems rely on the use of Alternat-
ing Current (AC) which allows to transport electrical power without too
much loss. This section introduces some basic ideas behind the design
of AC systems, and how they have been critical to the electrification of
societies. Then it provides explanations about the notion of “apparent
power” that arises from the oscillation of both voltages and currents.

1.2.1 Different voltage levels

Joule's effect can be mitigated by increasing the voltage (and subse-
quently decreasing the current). However, in the beginning of com-
mercial power grids (1870s-1880s), there was no technological means
to change the voltage level. A significant part of the energy produced
was lost due to Joule's effect, which prevented electricity from being
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transported too far from generation [104, 105]. Power Systems were
very decentralized, with many small generation facilities located near
places of consumption. In addition, not all electric devices required the
same voltage orders of magnitude: there were several power grids in
parallel, each having their own voltage level. In the late XIX™" century
however, the ability to scale up or down the voltage level was achieved
thanks to the combined use of AC and of passive devices called trans-
formers.

In AC power systems, the force applied by dipoles over electrons is
constantly oscillating. All electrons oscillate around a fixed position and
transmit their motion by pushing and pulling their neighbors. Trans-
mission lines act as an oscillation coupling mechanism that transports
energy through oscillations.

Voltage and current oscillations of two disconnected AC circuits can
be coupled using transformers, as illustrated in Figure 1.3. Such de-
vices consist in two windings wrapped around a high magnetic perme-
ability material: oscillations in one winding create an electromagnetic
flux through the core which then causes oscillations in the other wind-
ing. While electrical power injected into an end is mostly retrieved at
the other end, the ratio of voltage magnitudes depends on the ratio of
turns in both winding, as shown in Figure 1.3.

7 \
o —i ———
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e
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Figure 1.3: Schematic representation of a transformer. The ratio be-
tween voltage u and voltage v’ is imposed by the ratio of turns between
both winding.

Power grids are thus made of a series of disconnected circuits
whose oscillations are coupled by transformers. Transformers can
scale up voltage amplitudes near places of generation, and scale them
down near places of consumption, so as to reduce Joule's effect in be-
tween'. Moreover, devices that require different voltage levels can now

'See Figure 1.2, power injected by the generator is p, = ifu;, and the power losses
due to Joule’s effect is p/oue ~ m‘fc if the transmission line is approximated as a

resistance r; by combining both equations we obtain that p/°u¢ ~ rpg/u%. Thus,
increasing the voltage u; can decrease power losses.
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be connected to the same grid. Overall, AC power allows for a drastic
simplification of Power grids for both consumers and producers, and
quickly became the predominant model for electric power transport.

However, high voltage levels cause strong electric fields that may
trigger electric arcs and fires. They require larger and more expen-
sive infrastructures to spread power lines apart, and to lift them high
enough. Modern power systems are thus designed as a trade-off be-
tween Joule’s effect losses and higher costs of high voltage infrastruc-
tures. In France, they are composed of the following voltage levels,
which can be split into two distinct categories (recall Figure 6):

* The transmission system made of High Voltage (63kV and 90kV)
and Extra High Voltage (225kV and 400kV’) power lines, and op-
erated by a Transmission System Operator (TSO);

* The distribution system, made of Medium Voltage (20kV) and
Low Voltage (230V and 400V'), and operated by a Distribution Sys-
tem Operator (DSO).

In this PhD thesis, we only consider the transmission system.

1.2.2 Oscillations and apparent power

The present PhD thesis is notably interested in using DL techniques
to find equilibrium states of power grids, which are dictated by Kirch-
hoff's laws. However, their formulation in AC s different from what has
been previously introduced, and is central to experiments conducted
in Chapter 8. In order for readers not familiar with the PS literature to
understand Kirchhoff's laws AC formulation, the main underlying con-
cepts and intermediate steps are detailed in the following.

In AC power grids, voltages and currents oscillate everywhere at the
same frequency w/27 (in Hz). Every bus has its own phase ¢J: some
may be delayed while others may be ahead of phase. The instanta-
neous voltage of a bus is written as:

where j = v/—1, and R(z) denotes the real part of complex number z.
The current flowing from a bus into a port is delayed by a phase shift
¢ compared to the voltage. Thus, the instantaneous current intensity
flowing into a port is written as:
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The instantaneous power injected from bus into a device can be written
as:

pinst(t) = uinst(t) X Z'mst<t) (15)
= W cos (¢)(1 — cos (2wt + 219))
+ % sin (¢) sin (20t + 20) (1.6)

It is constantly oscillating at a frequency of /7 and with a phase angle
29, as illustrated in Figure 1.4. It can be decomposed into the two terms
of equation (1.6).

* The first term has constant sign (that depends on cos(¢)). Its
mean value p = Uyazimaz cos (¢)/2 is called active power. This
is the useful part of the power, i.e. the part that is actually trans-
mitted to the device.

* The second term has a zero mean. Its amplitude ¢ :=
Umazlmaz i (¢) /2 is called the reactive power. 1t bounces on the
dipole and is not injected or withdrawn by it. Although it is com-
mon to envision this as the useless part of the power, it is never-
theless an unavoidable part of the coupling of oscillating systems.

Uinst (f) pin,st(t)
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Figure 1.4: Instantaneous power of a device in an AC system. As the
voltage and current intensity are slightly delayed (by a phase shift ¢),
their product is not necessarily centered around zero.

To represent both active and reactive parts of the power at the
same time, it is common to introduce the notion of apparent power
s € C[103]:

s:=p+7Jq (1.7)
= ut* (1.8)
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where i* is the complex conjugate of i. The apparent power does not
depend on the bus phase angle ¥. To emphasize the distinction be-
tween s, p and ¢, the PS community measures the apparent power s
in Volt-Ampere (V' A), the active power p in Watt (W), and the reactive
power g in Volt-Ampere reactive (V Ar).

Introducing the notion of apparent power s allows to represent in
a single variable both components of the oscillating power. Moreover,
Kirchhoff's laws in AC systems can be rephrased in terms of the sum of
apparent powers injected each bus, as follows:

Z Sk =0 (1.9)
2

where [ denotes a bus, and the sum is over all devices k that are con-
nected to bus |.

1.2.3 Three-phase power grids

So far we have only considered single-phase power grids. Actually, real-
life power grids are three-phase systems: power is transported by 3
distinct cables, each bearing current and voltage oscillating at the same
frequency, and delayed of one third of a cycle between each other. This
technology is more economical than single-phase systems that are pre-
sented in this document, and allows to transport the same amount of
power using a smaller amounts of conductive material. However, it is
common to convert the actual three-phase system into a single-phase
equivalent system, and use exclusively the latter. As a consequence,
all physical models considered in this document make no mention of
three-phase systems, and consider the equivalent single-phase sys-
tem.

1.3 Power grid modelling

Power grids are networks of interacting dipoles and quadrupoles, de-
signed to transport electrical power from producers to consumers. A
typicalinstance of such a grid is displayed in Figure 1.5: the “IEEE case14”
power grid, which is an approximation of the American electric power
system as of February 1962. It is made of 14 buses, 5 generators, 11
loads, 17 transmission lines, and 3 transformers.

Objects that compose power grids can be split into several cate-
gories, each having a distinct behavior in terms of injected apparent
power. In this section, we propose to review all classes of objects by de-
tailing their respective set of features, as well as physical and decisional
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Figure 1.5: IEEE case14 - Instance of a 14 buses power grid.

modelling. We consider both active and reactive parts of steady-state
power grids. Finally, we summarize all relevant quantities in Table 1.1,
and explain how some of them are linked through optimization prob-
lems. This last point is at the heart of the present PhD thesis.

1.3.1 Buses

Buses lie at the interface between interconnected devices.
They are wusually modelled by the following set of features
(U, v, 0,177, 1slack ¢ ), All variables are successively introduced
and put in context in the following.

The actual complex voltage of a bus is written as:

u = vel? (1.10)

Relationships between v and ¥ and the above features are detailed be-
low and depend on the role of the bus in the grid.

As mentioned in equation (1.9), Kirchhoff's laws state that the alge-
braic sum of apparent powers flowing into a bus should sum to zero.
One may estimate the discrepancy with regards to physical laws by
computing the squared norm of the apparent power mismatch at each
bus. The discrepancy can be decomposed into an active and a reactive
term:

|As|® = |Ap|® + |Ag|? (1.11)

Equations for Ap and Aq depend on both the bus and the devices that
are connected to it, as detailed in the following.

Both the complex voltage and apparent power mismatches actually
depend on mechanisms that ensure the security and stability of the
system: frequency and voltage regulation. We propose to succinctly
introduce the purpose and means of both processes, and then explain
how they are modelled.
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Frequency regulation

This process aims at ensuring the stability of the oscillation frequency
in the whole system. By injecting power into the grid, generators tend
to accelerate the oscillation of electrons. Meanwhile, consumers tend
to slow these oscillations by withdrawing power. Thus, if production is
not equal to consumption plus losses, the frequency may vary. In such
a case, dispatchers may resort to disconnecting devices from the grid
or even to load shedding (i.e. disconnecting consumers).

Thus, frequency regulation aims at keeping oscillations close to a
fixed frequency (50Hz in Europe), by modulating the amount of ac-
tive power injected by generators. This process is decentralized and
involves multiple sub-mechanisms which operate at different time
scales. Many models exist, but all are an over-simplification of the ac-
tual process.

We propose to choose the simplest model available. It defers to a
single bus - the “slack” bus, identified by the boolean feature 15/ -
the task of providing enough power to ensure a global equilibrium of
the system. Numerically, it is equivalent to alleviating the active power
mismatch objective on this bus. For all buses, the active mismatch is
given by:

Ap = (1—1"%) Y " pryy (1.12)

k

In addition, it is common in the PS literature to set this bus to have
a zero phase angle (all phase angles are defined up to translation). For
all buses, the phase angle is given by:

0 = (1 —1°19%) x 4 (1.13)

Thus, ¥ takes the value of the feature 4 only if the bus is not slack, and
zero otherwise.

Voltage regulation

The second mechanism involved aims at ensuring that the voltage
magnitude at all buses remains within an acceptable range of values:
[v,7]. High voltage magnitudes may endanger devices connected to
it, and low voltage magnitudes can affect the quality of electricity pro-
vided to consumers, or even lead to a blackout caused by a voltage
collapse.

Generators located at so-called “PV” buses - identified by the
boolean feature 17V - can modulate their reactive production so as to
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ensure that the local voltage magnitude is exactly at a certain set point
v. As a consequence, the reactive mismatch at PV buses is necessarily
zero, while the voltage magnitude is forced to be at v. For all buses,
the reactive mismatch and voltage magnitude is given by the following
equations:

Ag=(1-1")) gy (114)
k
v=T1"x0+(1-1%) x 0 (1.15)

We use different variables for v and v to reflect the fact that the former
is controlled by the dispatcher, while the second is a consequence of
physical equations.

Dispatchers thus monitor voltage amplitude at all buses, even those
which are not PV, and ensure that all magnitudes are within acceptable
values, which is quantified by:

Av = max(0, |u| — ) + max(0,v — |u|) (1.16)

1.3.2 Loads

Loads (or consumers) are devices that withdraw power from the grid.
They are defined by their active power p, and reactive power ¢. It is
assumed that they cannot be managed in any way, and withdraw the
following apparent power:

s =p+jq (1.17)

1.3.3 Generators

As previously mentioned, generators contribute to both the frequency
and voltage regulation mechanisms. They are defined by their active
power p, and reactive power ¢. Furthermore, generators may take part
in frequency and/or voltage regulations, which modifies respectively
their active and reactive productions compared to the target values.
Still, the potential additional apparent power at PV and slack buses has
already been modelled by equations (1.12) and (1.14), and we assume
that they have no active and reactive limits. Thus, they withdraw the
following constant apparent power:

s =p+ jq (1.18)
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1.3.4 Shunts

A shunt is a device that has a fixed impedance, such as a capacitor or
an inductor. It is used as a mean to control the voltage magnitude:
dispatchers can disconnect or reconnect shunts so as to modulate the
reactive power, which indirectly impacts voltage. It is defined by their
conductance g and susceptance b. The apparent power injected by the
shunt is given by:

Sshunt — (g o jb)‘u|2 (1‘19)

1.3.5 Transmission lines

Transmission lines are in charge of transporting electric power over
long distances. They act as a coupling mechanism between oscillations
of their “from” and “to” ends (respectively indexed by f and t). They are
modelled by the electric diagram of Figure 1.6 and are defined by their
resistance r, their reactance z and their total line charging susceptance
be.

if r x i

Ibcz bCQI
T "7

Figure 1.6: Electric diagram of a transmission line.

One may define the admittance matrix of a transmission line as:

y— |%tr3 Vs with y, — —— (1.20)
—Ys  YstTI% r+jx

Transmission lines impose the following relationship between the
complex voltages and currents of their ends:

F.f } =Y {uf ] (1.21)
(% Ut
Recalling the definition of apparent power of equation (1.8), we obtain

the flow s; injected into the bus “from” and the flow s, injected into the
“to" bus.

Sf = usi; St = uyly (1.22)

Both apparent powers depend on complex voltages of both buses,
thus inducing a coupling between buses.
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Losses caused by Joule's effect is the amount of active power that
is injected on one side but not retrieved on the other:

pJoule — |3%(Sf + St)l (1.23)

1.3.6 Transformers

From an electrical point of view, transformers are akin to transmis-
sion lines: they are a coupling mechanism between oscillations of two
buses. The main distinction is that they can scale up or down the volt-
age magnitude between their “from” and “to” ends. In addition, some
transformers may induce an additional phase shift between both ends
(phase shifting transformers). They are modelled by the electrical dia-
gram shown in Figure 1.7, and are defined by their resistance r, their
reactance z, their total line charging susceptance b°, their ratio T and
their phase-shift angle 95"/,

iy

/2 b2

T T

T, ,lgshift
Figure 1.7: Electric diagram of a transformer

The admittance matrix of a transformer is defined as:
(Ys +jbﬁc)%2 _ysm

_yw ys“‘j%

s
Tel

1

Y = ] with y, = (1.24)

r+Jx

Transformers impose the following relationship between the com-
plex voltages and currents of their ends:

il _ Uy
-]
We obtain the flow s; injected into the bus “from” and the flow s, in-
jected into the “to” bus.
Sp = usiy St = Uyly (1.26)

Once again, the injected powers depend on the complex voltage of
both ends, which induces a coupling between buses.
Transformers are also prone to Joule’s effect:

ploule — |R(sy + s1)] (1.27)
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1.3.7 Summary of features and metrics

So far we have assumed no relationship between features. Actually,
they are not independent: they are linked together through optimiza-
tion problems, which involve the minimization of some metrics.

» For instance, buses features ¥ and ¢ depend on all other fea-
tures through the minimization of the violation of Kirchhoff's laws
|As|? across all buses. Power flows through transmission lines
and transformers that appear in this metrics induce a coupling
between buses. Finding actually realistic values for ¥ and v re-
quires to solve a nonlinear optimization program, which is usually
achieved via a Newton-Raphson method [106].

* Meanwhile, bus voltage set points v are controlled by dispatch-
ers. Ideally, they aim at minimizing the sum of electrical losses
p’oue over all lines and transformers, while ensuring that all volt-
ages are within acceptable values (i.e. minimize Av). The dis-
patcher’s decision thus has an impact over the actual state of the
system.

Table 1.1 summarizes the features and metrics defined over power
grids. Experiments on the AC Power Flow (AC-PF) problem evoked
above are conducted in Chapter 8, and preliminary experiments on
the voltage control problem are detailed in Chapter 9.

Object class Features Metrics
Bus v,v, ]lpv,llslack’i}’@,ﬁ |A8‘27AU
Load B, 3
Generator P, g )
Shunt g,b i
Transmission line r, b Joule
Transformer r,x, be, T, 9shift ploule

Table 1.1: Summary of features and metrics defined at each class of
objects in power grids
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Chapter 2

Deep Learning

This chapter briefly introduces foundations of Deep Learning (DL) to
readers who are not familiar with it. Firstly, we explain how the broader
domain of Machine Learning (ML) aims at exploiting data to learn to
perform potentially complex tasks. Secondly, we define the Multi-Layer
Perceptron (MLP) - which is the building block of Deep Learning (DL) -
as a succession of layers of artificial neurons. We then detail how one
may train deep neural networks in practice. Finally we focus on a spe-
cific class of neural networks aimed at processing images, and explain
how their structure actually respects some of the data invariants. This
will prove to be importantin the next chapter which applies DL to graph
data.

This chapter contains all relevant concepts to understand the re-
mainder of the document. Still, it was not written as an exhaustive
overview of DL, and we refer interested readers to the book Deep Learn-
ing by lan Goodfellow and Yoshua Bengio and Aaron Courville [20].

2.1 Machine Learning

Machine Learning (ML) is a domain that aims at designing models that
learn from data to perform certain tasks. In this section we introduce
the concept of empirical risk minimization, explain how ML differs from
pure optimization, and underline the importance of expressivity of a
model.
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2.1.1 Empirical risk minimization

Let us consider two metric spaces & and ). We associate a joint prob-
ability distribution to the product set X x ):

(z,y) ~ p(z,y) (2.1)

Moreover, we assume that when = and y are sampled from p(z,y),
there exists a functional dependency between them, written as:

y = f*(z;€) (2.2)

where € is a random variable independent from z that models a noise
that may come from measurements, hidden variables or any other nui-
sance factor. In this chapter we only consider regression problems,
meaning that ) is a continuous space.

We aim at modelling this functional dependency in order to be able
to predict the value of y from the sole knowledge of z. Since it is strictly
impossible to search in the set of all functions, it is common in ML to
search among a set of functions fy : X — ) parameterized by 6 €
©'. We refer to this set of function as the hypothesis space. |deally, we
would like to find the best function in the hypothesis space, i.e. the
function that minimizes the so-called risk:

Bz y~p(a,y) [L(0; 2, )] (2.3)

where L(0;z,y) is a loss function that estimates the quality of the
model fy with regards to the sample (z,y). For instance, it is common
to take L(0;z,y) = || fo(z) — y||3. The optimal function may heavily de-
pend on the choice of L, although we do not consider this issue in the
present work.

If we had access to the actual distribution p(z, y), then minimizing
the risk would be a “simple” optimization problem. ML differs from
pure optimization in the fact that we only have access to a train set
Dirain = {(Tm, Ym) tmen,, .., Sampled from p(z,y). As a consequence,
we can only estimate the empirical risk over this dataset, which is de-
fined as:

1

] > LT ym) (2.4)

meEMtrain

ML thus amounts to minimizing the empirical risk, in the hope that
the actual risk will also decrease significantly. The Statistical Learning

"Many non parametric methods exist, but they fall out of the scope of the present
document.
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Theory domain provides tools to understand under which assumptions
empirical risk minimization actually guarantees a low risk. We refer
interested readers to the book Statistical Learning Theory by Vladimir
Vapnik [107].

2.1.2 Generalization

The ability of a model fj to perform well on data sampled from p(z, y)
that do not appear in D,,.;, is called generalization. In order to quantify
the generalization capacity of a model, we can estimate its risk over the
so-called test set Diest = {(%m, Ym) tmem.., also sampled from p(z,y).
The risk over the test set is referred to as generalization error.

Some models are too “simple” compared to the function f* they
aim at imitating. For instance, quadratic functions are poorly approx-
imated by linear mappings: even the best linear regression will have
a high empirical risk. This phenomenon is called underfitting and is il-
lustrated by the left part of Figure 2.1. It appears when the hypothesis
space is not expressive enough and that patterns displayed by f* can-
not be imitated by any function from the hypothesis space.

In some other cases, the hypothesis space may contain functions
that are too complex compared to f*. For instance, if we aim at imi-
tating a quadratic function with the set of all polynomials based on a
very small train set, then there is an infinite number of functions that
achieve a zero empirical risk. However, most of those models will gen-
eralize poorly: although they achieve a minimal empirical risk by re-
turning exactly the right value of y for any x that is in the train set, their
intrinsic complexity prevents them from generalizing to new data. This
phenomenon is called overfitting and is illustrated by the right part of
Figure 2.1. It occurs when models “learn by heart” the train set, but are
unable to generalize.

Overfitting is a major issue in ML and can be mitigated by various
techniques [108]. Nevertheless, the remainder of the chapter will focus
on devising a class of models that are expressive enough to imitate any
continuous pattern so as to avoid underfitting.

2.2 Artificial Neural Networks

The problem of minimizing the empirical risk requires to first define
an hypothesis space. While the domain of ML encompasses various
methods such as decision trees [15], k-nearest neighbors [16], linear
regression [17], naive bayes [18] or support vector machines [19], the
present work only considers the case of neural networks. This Section
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underfitting appropriate overfitting

ground truth mapping
+ +
Y + sample

* / best approximator in the hypothesis space

Figure 2.1: lllustration of the problems of underfitting and overfitting.
They occur when an hypothesis space contains only functions that are
too simple or only functions that are too complex with regards to the
function to be modelled f*. Train set is represented by the black dots,
in red is shown the best function of three distinct hypothesis spaces:
linear function (left), quadratic functions (middle) and all polynomials

(right).

first introduces the concept of artificial neuron as a simple model of bi-
ological neurons. It then explains how multiple artificial neurons can
be combined to form Single-Layer Perceptrons (SLPs) and then Multi-
Layer Perceptrons (MLPs), which are a class of highly expressive func-
tions.

2.2.1 Artificial Neurons

Artificial neurons have initially been designed as a simplistic model of
biological neurons. Neurons - or nerve cells - are the main compo-
nents of nervous tissues, and have the ability to communicate with
each others through the transmission of electrical excitations, as illus-
trated in Figure 2.2. Actual neurons receive multiple excitations com-
ing from multiple other neurons through their dendrites. Messages
are summed in the cell body (soma), so as to obtain a single excita-
tory message. Finally, they transmit the resulting excitation to other
neurons through the axons and terminal buttons.

Artificial neurons process information in a similar fashion®. Multi-
ple scalar inputs z1, x5, ... are received, weighted and then summed.
A scalar quantity called bias is then added. Finally, the result goes
through a non-linear mapping called activation function, and is sent to
other neurons or as an output. Artificial neuron output a scalar quan-

20ther models such as “spiking neurons” mimic more realistically actual neurons.
The artificial neurons considered here are only a very rough approximation.
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dendrites terminal buttons

Figure 2.2: Schematic representation of a biological neuron.

tity in 1D, defined by the following equation:
g=oc(w'z +b) (2.5)

where z € R* is the vector of all input scalars, w € R% is a vector of
weights, b € R is the scalar bias, and ¢ : R — R is an activation func-
tion. Activation functions are usually continuous, monotonous and dif-
ferentiable. Some mappings such as the Rectified Linear Unit (ReLU)
illustrated in Figure 2.4 are not differentiable, but one can still define a
subderivative3. Figure 2.3 shows the structure of a single neuron.

input

Figure 2.3: Schematic representation of an artificial neuron. Vector
data x = (x1, 29, x3) is fed to the neuron. Each input is multiplied by
a weight, and then summed. A non-linear activation function is then
applied. A neuron can only return a scalar quantity § € R.

2.2.2 Single-Layer Perceptrons (SLP)

In order to output vectors in multiple dimensions, one can stack mul-
tiple neurons to form a Single-Layer Perceptron (SLP). All neurons re-
ceive the same input, but process it differently, as they all have differ-
ent weights and biases. Itis common to consider that all neurons share
the same activation function, although one may choose not to. There

3a generalization of the gradient for convex functions which are not differentiable.
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Figure 2.4: Commonly used activation functions. From left to right : hy-
perbolic tangent (tanh), sigmoid, Rectified Linear Unit (ReLU) and leaky
RelLU.

v
v

is one neuron for each of the @V dimensions of the output space. The
action of an SLP over an input x is written as follows:

j=o(Wa+b) (2.6)

where W € R¥*" (resp. b € R%) is the concatenation of weights
(resp. biases) of all neurons, and ¢ activation function. The action of o
is element-wise.

The main issue with SLPs is that they are not very expressive: they
can only model functions that are almost linear. However, data en-
countered in real life are usually non-linear, and require much more
expressive models.

2.2.3 Multi-Layer Perceptrons (MLP)

In order to improve the expressivity of neural networks, it is possible to
stack multiple layers of SLPs, each layer receiving as input the output
of the previous layer. Resulting models are called Multi-Layer Percep-
trons (MLPs). An MLP with T layers is defined by the following equa-
tions:

h(0) =z (2.7)
Vie{0,..., T —1},  h(t+1) = o (Wi.h(t) + b) (2.8)
g=nT) (2.9)

where (Wy)i=o.. 71, (bt)i=0...7—1 and (o¢)i—o,.. 7—1 are respectively the
weight matrices, bias vectors and activation functions of each layer.
Variables (h(t)):=1. . r-1 are often referred to as hidden layers, hidden
variables, or latent variables. We denote by (d");—, i their respective
dimensions, and use the conventions d° = d* and d* = d. Figure 2.5
compares an MLP to an SLP and an artificial neuron, and shows that
hidden layers need not be of the same sizes.
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In the case of a sigmoid activation, Cybenko proved in 1989 that a
2-layers perceptron is a Universal Approximator [109]. This property
states that the class of all 2-layers perceptrons is dense in the space
of continuous functions. In other words, any continuous function can
be approximated with an arbitrarily low error by a 2-layers percep-
tron. Hornik then bounded the approximation error as a function of
the amount of neurons in the hidden layer [110]. MLPs are thus very
expressive mappings. By stacking multiple layers of neurons, they can
build gradually more abstract latent representations of the input data,
and thus be used for problems that require a high level of abstraction.
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Figure 2.5: Schematic representations of an artificial neuron (left), a
Single-Layer Perceptron (middle), and a Multi-Layer Perceptron (right).
One can notice that not all hidden variables in an MLP need to be of
the same size.

2.3 Training Neural Networks

MLPs are a class of highly expressive mappings whose parameters usu-
ally fall in one of these two categories:

+ Parameters with regards to which the model can be derived:
weights (W;)i—o.. -1 and biases (b;)i—o,..17-1-.

+ Parameters for which no gradient can be computed: amount of
layers T', hidden dimensions (d;):—1,.. r—1 and activation functions

(Ut)tzo,...,TA-

This first category is called trainable parameters, and the second hyper-
parameters. Additional parameters that define the training process of
trainable parameters also fall into the category of hyperparameters.
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They will be defined below. Although both types of parameters are in-
cluded in 6, itis common to denote only the trainable parameters by 0,
and consider hyperparameters as implicit.

This section is devoted to explaining how one may search through
the sets of trainable parameters, and how hyperparameters are tuned.

2.3.1 Learning trainable parameters

For now, let us consider that hyperparameters are fixed. It is common
in the DL literature to rely on first-order gradient descent in the space
of trainable parameters, so as to minimize the empirical risk. This op-
timization process is also referred to as “learning”. We review some of
the techniques involved in the learning of parameters.

We recall that the empirical risk over a single datapoint (z,,, y.) is
given by L(6; x,,, y ). The gradient of the loss with regards to trainable
parameters is simply written as Vo L(0; x, y).

In the following, we detail methods to explore the space of train-
able parameters using Stochastic Gradient Descent. We also detail the
idea behind the back-propagation algorithm [111] which allows for an
efficient computation of gradients.

Gradient descent

The simplest way to perform a gradient descent consists in computing
the exact gradient of the empirical risk, and update weights iteratively
until a good empirical risk is achieved:

1
0« 0—nx M Z VoL (0; Ty, Yrm) (2.10)
meM

where n > 0 is an hyperparameter called the learning rate, which con-
trols the size of steps taken in the set ©.

Minibatch gradient descent Computing the gradient over the
whole dataset can be computationally exhausting, and one may ac-
celerate it by estimating the gradient over minibatches My, € M
sampled from the train set [112]:

1
‘ Mbatch ’

§<6—nx Z VoL(0; Ty, Yim) (2.11)

meEMpatch

This provides an unbiased estimate of the gradient and can drastically
reduce the computational time. At each update, a different minibatch
Myaien is sampled from M.
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Momentum The minibatch approach may also be quite slow in the
case of small or noisy gradients. It can thus be accelerated by incorpo-
rating some momentum into the exploration of © [113]. This method
introduces an additional variable v which plays the role of a velocity
that accumulates an exponentially moving average of previous gradi-
ents.

1

‘ Mbatch ’

V<4 av—n X Z VoL(0; Ty, Ym) (2.12)

meEMpatch

0«60+ (2.13)

where o € [0, 1] is the exponential decay rate of the velocity. Mo-
mentum can also be improved using Nesterov's accelerated gradient
method [114], which consists in computing the gradient at #+«awv instead
of estimating it at 6.

Adaptative learning rates All the above methods are highly depen-
dent on the choice of the learning rate. Research over the past decade
has been focused on trying to dynamically adapt the gradient for each
coordinate of 6, which gave rise to multiple optimization methods:
AdaGrad [115], RMSProp [116], Adam [117], AdaMax and NAdam [118].
Among all the existing methods, Adam is probably the most widely
used. It relies on estimating both the first order and second order mo-
ments of the gradients using an exponential averages controlled by
parameters (5, and (,.

1

— VoL(Ym, T, (2.14)
g |Mwﬁmg%m9 (Y Fo(zm))
s<ps+ (1 —p1)g r<par+(1—plg@®yg (2.15)

s captures an estimation of the gradient, while r captures its norm ac-
cording to all dimensions of 6. At the beginning of the training process,
those estimators have a high bias. This is corrected by considering the
following unbiased estimators:

S Ao T
7

1 —pi 1—p}

where t represents here the time step of the learning process (and

should not be confused with the latent layer index commonly used in

the present document). The trainable parameter ¢ is then updated as

follows:

§ <+ (2.16)

~

Vi+6 (217)

0<+0—n
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where § is usually set to a very small value. Default values of the
present method are n = 0.001, 3; = 0.9, B, = 0.999 and § = 1078,

Computing the gradient using back-propagation

All the above optimizers rely on the ability to compute the derivative of
models with regards to their trainable parameters. Closed-form equa-
tions of these gradients can be tedious to obtain. Thankfully, even very
deep neural networks are nothing but a combination of small and sim-
ple differentiable operations, as shown in equations (2.7) to (2.9). The
chain rule formula relates the derivative of a composition of functions
with the derivatives of the said functions, allowing to write gradient es-
timation as a combination of easily computable terms. For instance,
consider the two hidden layers neural network defined by

h(1) = oo(Wor)  h(2) = n(Wih(1))  § = oa(Wah(2))  (2.18)

Biases are disregarded to simplify notations. Gradients of the output
with regard to the model parameters are given by the following equa-
tions:

Vi,loss = Vi, §.Vloss (2.19)
Vi loss = Vi, h(2).Vi2)9.Vyloss (2.20)
Vi,loss = Vi, h(1). Vir)h(2). Vi) 9. Vyloss (2.21)

Computing gradients amounts to multiplying terms that are easy to
compute, as illustrated in Figure 2.6. Moreover, one can observe that
equations (2.20) and (2.21) share a common term. It appears that esti-
mating the gradient of the output with regards to each of the trainable
parameters can be done in a computationally efficient manner: the
back-propagation algorithm [111] reverses the computational structure
of the neural network to have gradient flow from the output to the
weights of the model, as illustrated by the red arrows in Figure 2.6.

Weight initialization

Another key aspect of the training process concerns weights initializa-
tion. A poor initialization will very likely have the optimizer get stuck
in a bad local optimum. Currently, there is no theoretically grounded
rule that prescribes weight initialization, but in the case of sigmoid or
hyperbolic tangent activation functions, it is common to use the Nor-
malized Xavier [119] heuristic, which is defined by :

) (2.22)

6 6
wy~ U || = dt+ a1\ gt &+ get
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Figure 2.6: Back-propagation of the gradient - During a forward pass
(blue arrows), operations go from the input and weights to the output.
During the back-propagation (red arrows), gradient flows from the out-
put to the trainable weights.

where U/ is the uniform distribution, and d*, d'™! are dimensions of the
previous and current hidden layers. In the case of ReLU activation func-
tions, itis recommended to use another heuristic called He initialization
[120]. An overview of weight initialization techniques is provided in [121].

2.3.2 Hyperparameter tuning

Hyperparameters are the subset of parameters for which no gradient
can be computed. They include both parameters that define the neu-
ral network architecture and parameters that define the learning pro-
cess of trainable parameters (optimizer, learning rate, minibatch size,
weight initialization strategy, etc.).

Validation set

Just like we cannot use the test set to learn trainable parameters of
the neural network, we cannot use it to select the best set of hyperpa-
rameters. Hyperparameters have to be selected against a third dataset
called called validation set D, = {(%m, Ym) }menm,,,- FOr each set of hy-
perparameters we want to evaluate, we fully train a model using the
train set, then compute its error over the validation set. We then se-
lect the best set of hyperparameters with regards to their respective
performance over the validation set. Only now can we estimate the
generalization error of the resulting model over the test set. The test
set can only be used to estimate the quality of a fully defined model.
Other methods such as cross validation exist, but are not reviewed in
the present document.
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Hyperparameter optimization

There exists multiple techniques to explore the set of possible hyper-
parameters, which we propose to succinctly review.

Grid search This widely used method consists in selecting a few pos-
sible values for each hyperparameter, and to successively try all pos-
sible combinations. It explores the space of hyperparameters through
a regular grid, which may be computationally exhausting if too many
dimensions of the hyperparameter space are investigated.

Random search This method randomly selects sets of hyperparam-
eters [122]. It typically outperforms grid search in the case where only
a few hyperparameters affect the actual performance of the model.

Bayesian optimization It outperforms both grid and random
searches by making educated guesses about which regions of the
hyperparameter space to investigate [123]. It balances exploration
(choosing configurations that are far from previous experiments) and
exploitation (choosing configurations close to the best past experi-
ments) to explore the set of hyperparameters in a thoughtful manner.

Other techniques such as early stopping [124] or evolutionary meth-
ods also provide additional tools to choose the best set of hyperparam-
eters.

2.4 Convolutional Neural Networks

Previous sections have introduced basic MLPs, and how to train them.
However, most recent successes of neural networks come from the
fact that it is possible to design complex architectures that intrinsically
encode some invariants or assumptions about the process to be mod-
elled. The adequacy between the data structure and the neural net-
work architecture is one main reason for most recent achievements
of the DL domain. This principle being at the heart of the reflection
underlying this thesis, we propose to illustrate it in its most renown
application, namely Convolutional Neural Networks (CNNs).

CNNs [125] are a type of neural network architecture that special-
izes in processing data structures that are laid out as a regular grid
[126]. They are commonly applied to time series (1 temporal dimen-
sion), pictures (2 spatial dimensions) and even videos (2 spatial and 1
temporal dimensions), and have achieved various successes in image
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recognition [22, 127], video analysis [128, 129], natural language process-
ing [130, 131], anomaly detection [132], drug discovery [133], Go game
[134] and time series forecasting [135, ].

2.4.1 Learning convolutions

CNNSs rely on the use of convolution layers, which scan the input data
and locally apply trainable filters to detect local patterns, and pooling
layers, which compute local statistics over the data so as to reduce its
size. Both types of layers are critical to the aforementioned successes,
but we will solely discuss principles of the convolution layer, as some
of the underlying ideas will prove essential in the next chapter.

Let us consider the case of 2d images. Each sample is denoted by
z € R4 where d" is the height and d“ is the width of the image.
Each pixelis denoted by z; wherei € {1,...,d"} x{1,...,d"} is a multi-
index. Coordinates of the pixel in the 2d discrete space are given by
i = (i1,19). It is common to consider images as the discretization of a
multivariate function f, in which case we have x; = f(i), as shown in
Figure 2.7.

iz

o\

il i

B

Figure 2.7: Discretization of a multivariate function to create a 2d image
- The function f is sampled at evenly spread points.

Natural images are known to be equivariant per translation: one
can translate a picture without altering its meaning. Thus, there has to
be a way to represent pictures such that this representation will not be
altered by translations. The mathematical operation called convolution
provides such a tool, and will have us make a short detour to the Signal
Processing domain.

Let f and g be two integrable functions. One can define the convo-
lution of f and g as:

(f*g)(t) = / " fr)glt — 7y (2.23)
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The resulting function measures, for each value of shift ¢, how similar f
and g actually are. If f is the signal of interest, and g is a small elemen-
tary pattern (with a comparatively small support), then f x g will tell if
this elementary pattern appears in f and where.

The above formula can be applied to discrete images as follows:

hi = Zf(j) x g(i — ) (2.24)

where j is also a multi-index. Using the change of variable & = i —
J, introducing wy, := g¢(k), and recalling that f(j) = z; leads to the
following equation:

h; = Z Tig X Wy (2.25)
%

This equation describes the convolution operation used in CNNs :
a small filter w = (wy) is swept across the input picture. It is multi-
plied element-wise with each small portion of the input picture, thus
generating another picture4.

An example of convolution for a simple 6 x 6 picture and a 3 x 3
filter is shown in Figure 2.8. The more similar the considered portion
of the picture is to the filter, the higher the value of the resulting pixel.
The blue part (top left) of the input data x is perfectly identical to the
filter w, so the generated pixel has a large value. The orange portion
(middle) of the picture is however very different from the filter, so the
resulting pixel will have a low value. The generated filtered data £ (left
part of the figure) is a representation of where the elementary pattern
encoded in the filter actually appears in the input data.

This convolution operation is done simultaneously with multiple fil-
ters. Some filters can be sensitive to horizontal lines, some to diago-
nals, etc. By stacking multiple layers of convolutions, the neural net-
work is able to first detect elementary patterns, then detect patterns
of elementary patterns, and then patterns of patterns of patterns, and
so on. The neural network successively increases its abstraction level
by building representations on top of each others.

Those filters are key to detect elementary features that appear in
the previous layer. Although these filters may be manually designed,
it is possible to train them as regular weights of a neural network. By
doing so, the CNN can learn filters that are adapted to the problem at
hand.

4the resulting picture is smaller, because of edge effect, but methods such as zero
padding exist to account for that.
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Figure 2.8: Convolution operation - The filter w is swept across the in-
put data z, to generate a filtered picture h, which quantifies areas of
the input that are the most similar to the filter.

2.4.2 Encoding invariants

A part of the success of CNNs can be attributed to their ability to encode
data invariants directly into their architecture. As highlighted by Good-
fellow, Bengio and Courville in their book Deep Learning [20], convolu-
tion layers exploit three important ideas : sparse interactions, parame-
ter sharing and equivariant representations. These ideas allow to both
increase the model efficiency, and decrease the amount of weights of
the architecture.

First, the convolution operation is intrinsically local, contrarily to
fully connected neural networks shown in Figures 2.5, where each neu-
ron of a given layer is connected to each neuron of the next layer. It
allows the neural network to focus on detecting local fundamental pat-
terns. Thisis achieved by considering only reasonably small filters w (or
equivalently by keeping the support of g small enough).

Second, weights are shared across the image. Filters are applied
identically everywhere, regardless of the spatial coordinates. Thus the
trained filters have to be relevant for the whole grid. They are trained
simultaneously on every part of the input grid.

Finally, convolutions create translation-equivariant representations.
If one were to translate the input data, the resulting filtered data would
also be translated. Instead of working in the raw set of all possible pic-
tures, it is as if the dataset was reduced to a set of equivalent classes.
This can be seen as a way to fold the definition domain X along sym-
metry axes, bringing together dissimilar datapoints whose equivalent
classes are actually very close.

Properly encoding invariants will prove crucial in the next chapter,
which is devoted to another type of data: graphs.
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Chapter 3

Graph Neural Networks

Power grids such as introduced in Chapter 1 have a quite atypical struc-
ture. They are made of the interconnection of a series of objects of var-
ious classes, thus forming a network. Modelling these complex struc-
tures without altering them is a difficult task, and constitutes a contri-
bution of this PhD thesis deferred to Chapter 4. For now, we may as a
first approximation frame power grids as graphs composed of vertices
on the one hand (aggregating buses, loads, generators and shunts to-
gether), and edges on the other hand (aggregating transmission lines
and transformers together), as illustrated in Figure 3.2.

In this chapter, we describe graphs, detail some of their proper-
ties, and explore how the recent domain of GNNs can handle such data
structures. This work solely focuses on a specific type of GNNs, and we
refer interested readers to the review paper written by Wu et al. [87]
and to the book Graph Representation Learning by William L. Hamilton
[88] for a more exhaustive presentation of the domain.

3.1 Graph data

In the previous chapter, we defined regression problems as trying to
find a mapping fo that best approximates a target mapping f* : X —
Y, when z follows the distribution p(z). In the present chapter, we in-
stantiate both input and output spaces X and ) as sets of graphs, and
state the hypothesis that the target mapping f* preserves the graph
structure of its input.

3.1.1 Notations

We consider graphs that are made of two parts: a discrete network
structure, and a set of continuous features. A typical instance of such
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a graph is shown in Figure 3.1, and the conversion of a power grid into
an homogeneous graph is displayed in Figure 3.2.

Structure The structure of a graph [137] is denoted by (V, &), where
Visasetofn € Nvertices, and £ is a set of directed edges. We consider
the case where vertices are ordered, and use the simplifying notation
[n] :={1,...,n}. As a consequence, we have that V = [n] and £ C [n]%.
We usually denote vertices by their index i € [n], and edges by their
multi-index (4, j) € [n]>.

Features In addition to the discrete structure, continuous features
are associated to each graph. Features are located at vertices or edges.
Some can be considered as input features (i.e. directly observable) and
encapsulated in z, while others are referred to as output features (i.e.
that should be predicted) and encapsulated in y.

We denote by ¥ = (z7});c[ input features located at vertices, and
z¢ = (77;)@4)ee iInput features located at edges, such that z = (2%, 2°).
Similar notations are used for output features y = (y", y¢). The dimen-
sion of input (resp. output) features at vertices is denoted by d"* (resp.
d"¥), while the dimension of input (resp. output) features at edges is
denoted by d** (resp. d*Y).

We denote by X, ¢ and ), ¢ the set of input and output features that
are defined over the graph structure ([n],£). Moreover, we denote by
X and )Y the sets of all input and output features defined over any
graph structure.

(z,y) x = (", z°) y=")

Figure 3.1: Example of a graph (z,y), with V' = {1,2,3} and £ =
{(1,3),(2,3)}. Input (resp. output) features are in d"* = 2 (resp.
d"¥ = 1) dimensions at vertices and in d** = 1 (resp. d“¥ = 2) di-
mensions at edges. We use the convention that output features are
represented above the graph, while output features are displayed be-
low it.
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Figure 3.2: Power grid instance and its conversion into an homoge-
neous graph. Input features are in the following dimensions: d"* =
3,d*" = 5. Generators and loads are aggregated together on the one
hand, and lines and transformers on the other hand. For the sake of
readability, only input features are considered.

Dense and sparse representations Edge features can be numer-
ically represented in two distinct ways: dense or sparse. Figure 3.3
presents the two approaches

In the dense representation, all possible edges in [n)? are repre-
sented. Thus, edge features are concatenated in an x n x d“” tensor,
and it is required to associate a default feature for edges that are not
in &€ (usually 0). Moreover, it makes it impossible to consider parallel
edges that share the same vertex connections, but not necessarily the
same features. Nevertheless, we use this representation in some fig-
ures of the present document (see Figure 3.1), because it makes the
impact of vertex ordering clearer.

The sparse representation on the other hand consists in treating
edge features as a list of tuples (4, j, zf;) 4. jce. Thus, edge features z°
are represented as a m x (2 + d“*) matrix. When considering graphs
that have relatively few edges (i.e. m < n?), the sparse representation
provides a consequent gain in terms of memory. Moreover, it allows
to consider parallel edges that are connected to the same vertices.
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Figure 3.3: Dense and sparse representations of a graph. The dense
representation associates a default value to edges that are not in &,
while the sparse representation only considers existing edges. Sparse
representation can also directly handle parallel edges, while the dense
representation has to convert them into single edges, which requires a
deep understanding of the problem at hand. Edges directions are not
displayed for the sake of readability.

3.1.2 Invariance & equivariance under permutations

The above definition of graphs relies on the ordering of vertices [n].
However, inthe general case, there is no unique or natural way to order
vertices: Why should the vertex corresponding to Brussels be ranked
above the vertex corresponding to Paris (or the other way around)?
Still, the numerical representation of graph data heavily depends on
the choice of vertex ordering, while the underlying structure remains
unaltered.

Permutations (bijective mappings from [n] to [n]) allow to switch
from one vertex ordering to another, consequently changing the nu-
merical representation. When applied to a graph input z, a permuta-
tion o € ¥, changes the vertex ordering, while preserving the features:

o x 2" = (Ty-1(;))ien] (3.1)

oxxf = ($§_1(i)0—1(j)>(i7j)eg (3.2)

Permutations over outputs y are analogous. Figure 3.4 presents the
impact of a permutation over a small graph, and over its numerical
representation.

While the numerical representation of (z,y) is inevitably altered by
permutations, there exist functions that are able to withstand such per-
turbations.

Definition 1. Letd € Nand f : X — R% f is said to be invariant per
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Figure 3.4: Permutation of a graph (z,y). The vertex ordering is al-
tered, thus modifying the numerical representation of the data. How-
ever, the underlying graph (structure and attached features) remains
untouched, as highlighted by the left part of the figure.

permutation if
Vn € N,VE C [n]*,Vx € X, ¢,Vo € X, f(o *x2) = f() (3-3)

A typical instance of such a mapping would be a function that out-
puts some global statistics about the graph structure (amount of ver-
tices, amount of edges, diameter, etc.): regardless of the vertex or-
dering, the output is strictly identical. The dimension of the output
space is not critical. See Figure 3.5 for a graphical representation of
permutation-invariance.

Definition 2. Let f : X — ). f is said to be equivariant per permutation

if

f(ilf) S yn,g

Vo € ¥, floxx)=0* f(x) 34

Vn € N,VE C [n]?, Vo € X, ¢, {
The condition f(x) € Y, ¢ enforces that the function f preserves
the graph structure of its input. A typical instance of such a mapping
would be a function that outputs for each vertex its amount of neigh-
bors. See Figure 3.6 for a graphical representation of permutation-
equivariance.
The notions of invariance and equivariance will prove to be central
in the remainder of this document.
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Figure 3.5: Permutation-invariant mapping. Regardless of the vertex
ordering, the mapping f produces the exact same output. The dimen-
sion of the output of f is not critical.
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Figure 3.6: Permutation-equivariant mapping. The ordering of the out-
put f(z) reflects the ordering of the input x. While the output of f is
different when applied to « and ¢ x x, the underlying graph is strictly
identical, and the same permutation ¢ allows to switch from one out-
put to the other.

3.1.3 Distributions & Hypotheses

In the case of power grid applications, graphs are sampled according to
a distribution that makes the discrete structure (|n], £) and the continu-
ous features vary altogether. We denote by p(z, y) the joint probability
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associated with the graph instance (z,y) € X x Y. Indeed, the sup-
port of this probability distribution is strictly restricted to pairs x and y
that have the same graph structure. Additionally, all input and output
features at vertices and edges should share the same dimensions. A
typical distribution of graph data is illustrated in Figure 3.7.

e N\
3
-2 A"
1 2 ‘ I
N ’ CY Y,
N
—
/)
p(z,y)
N\ /
J

Figure 3.7: Representation of a graph probability distribution p(z, y).
Both the graph discrete structure and the continuous features vary.

Similarly to the hypothesis stated in equation (2.2), we assume that
there is a functional relationship between inputs and outputs:

y = f"(v) (3.5)

Moreover, we assume that the problems we are interested in are not
bound to any vertex ordering, i.e. that f* is permutation-equivariant.
Our goal is to approximate this relationship using a function f,. The
permutation equivariance property is extremely important: we do not
want the quality of our prediction to be altered by a simple change of
vertex ordering.

A possible approach could be to train a fully-connected neural net-
work fp to be permutation-equivariant. This would require to perform
some data-augmentation by considering all permuted versions of sam-
ples (z,y) ~ p(x,y). While this strategy is not necessarily a bad op-
tion on small graphs, it becomes intractable for large ones (there are
n! permutations for graphs with n vertices). Moreover, regular neural
networks are bound to the size of their input: it would be impossible
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to use a trained model on a graph that is of different dimensions than
the ones it was trained on.

A more viable solution lies in the growing field of Graph Neural Net-
works (GNNSs), a class of neural networks that are built to process graph
data: they are inherently permutation-equivariant, and output graphs
that have the same structure as their input.

3.2 Graph Neural Networks

To sum things up, we are interested in imitating a mapping fo : X — ),
that maps input graphs to output graphs, while preserving the struc-
ture in a permutation-equivariant way. Thankfully, the domain of GNNs
defines a class of parameterized permutation-equivariant mappings,
which thus provide good candidates for the imitation of fs. In this sec-
tion we introduce the elementary operations upon which GNNs are
built and provide an instance of such a neural network architecture.

3.2.1 Ofimages and graphs

Before diving into the proper definition of the GNN architecture, let us
compare images and general graphs in the context of DL.

The convolution operation has proven to be extremely efficient for
processing image data (or any data laid out as a regular grid). It relies
on the fact that each pixel can naturally be associated with Euclidean
coordinates in a low dimensional space. In such a case relative posi-
tions between pixels can be defined, as shown in equation (2.25). More-
over, pixels coordinates lie on a regular grid, thus enforcing that rela-
tive positions take a finite amount of values: instead of learning the
convolution function over a continuous set, one only has to learn its
values on a regular grid.

Working with general graphs is very different. First of all, there are
no Euclidean coordinates associated with each vertex: there are no rel-
ative positions between vertices. Secondly, the only kind of distance we
can work with stems from the notion of neighborhood. As explained in
the previous section, there is no intrinsic way of ordering neighbors of a
vertex. Moreover, vertices do not necessarily have the same amount of
neighbors, as shown in Figure 3.8. In order to compute local statistics
about the neighborhood of a vertex, one has to aggregate information
using operations such as the sum, mean, max, etc.

As to the down-sampling operation commonly used in computer
vision, it usually relies on the idea that one can aggregate local groups
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of pixels together, so as to reduce the complexity of the data. Those
groups are easy to select because of the regular structure of the input.

For general graphs, there is no intrinsic way of clustering vertices so
as to create smaller and simpler graphs. Thus, all latent representation
used by a neural network should stick to the graph structure of the
input.

Figure 3.8: Structure of an image (left) vs. Structure of a graph (right).
While both can be considered as graphs, the structure of images is a
regular grid that can naturally be embedded in a low dimensional Eu-
clidean space.

3.2.2 Graph Neural Network architecture

As mentionned in the Introduction, there exist multiple ways of imple-
menting GNNs. Some rely on a fixed-point method, some on a spectral
decomposition of the input graph, and others rely on a series of lo-
cal operations. In this document, we only describe the latter method,
which is called Spatial Graph Neural Network (GNN). For the sake of
readability, we simply refer to it as Graph Neural Network (GNN).

This type of neural network architecture relies on an iterative pro-
cess where vertices and edges of the input graph exchange messages
between direct neighbors. It can be decomposed into three main steps:

* Encoding: each vertex and edge embeds its own input into a la-
tent space.

* Message Passing: vertices and edges iteratively exchange infor-
mation between direct neighbors.

+ Decoding: each vertex and edge converts the result of the mes-
sage passing into actual output values.

All those steps involve the use of multiple trainable neural networks,
which are trained jointly.
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In order to properly explain the main ideas to readers that are not
familiar with this approach, we propose to explain it from multiple per-
spectives. First, we show the whole neural network architecture in the
form of Algorithm 1. Then, each step is further detailed by both an
explanatory paragraph and a figure. Finally, Figure 3.12 shows how in-
formation flows from the input x to the prediction y through the neural
network architecture. Moreover, the latter figure outlines the way neu-
ral network blocks are laid out and shared across the architecture.

Algorithm 1 GNN forward pass

1 procedure fo(r = ((27)icin), (xfj)(i,j)eg))
5
3 > Encoding
4 fori c [n] do
5 h;} — d)z,encoder ($f)
6 for (i,j) € £do
7 b e g ()
8
9 > Message passing
10: fort=0,..., 7T —1do
1 fori c [n] do
12: hy = &g (0 {h}agyees 1hi}Gaee)
13: for (i,5) € £ do
14 hi; < " (hg;, bt 15)
15:
16: > Decoding
17 fori € [n|do
18: ?)ZU i d)z,decoder(th)
19: for (i,5) € £do
20: gy < g LT ()

21
222 return g = (5 )iepn), (955) .g)ee)

Encoding (See Algorithm 1, lines 3 to 7) The first part of the GNN ar-
chitecture consists in embedding features of the input graph into a la-
tent space of dimension d - which is an hyperparameter of the GNN
architecture. Each vertex i € [n] applies the exact same neural net-
work ¢y °™°°%" to its input z¥, thus creating a latent variable h? € R
Similarly, each edge (i,j) € £ applies the exact same neural network
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cencoder 1o its input x¢;, thus creating a latent variable 2¢; € R Itis
important to notice that those operations are performed in parallel:
* there is no exchange of information between vertices and / or

edges;

* the vertex encoder ¢¥:¢™°?e" is shared across vertices, and the
edge encoder ¢p*eneeder js shared across edges.

It is possible to choose different dimensions for vertex and edge la-
tent spaces. However, we choose to use d for both so as to alleviate
notations. This hyperparameter should be sufficiently large to allow
vertices and edges to store and exchange enough information.

encoding

x = (2", 1° RO = (1" heY)

Figure 3.9: Encoding step: a vertex encoder is applied to all vertices in
parallel, while an edge encoder is applied to all edges in parallel. The
graph structure is indeed preserved.

Message Passing (See Algorithm 1, lines 9 to 14) The second part of
the GNN architecture consists in iteratively exchanging information be-
tween vertices and edges'. Edges receive information from the vertices
they are connected to, while vertices receive information from edges
that are connected to them. As it appears, there is an asymmetry be-
tween edges and vertices: edges are connected to exactly two vertices,
while vertices can be connected to a varying amount of edges. Vertices
and edges are alternatively updated 7' times - where T' is an hyperpa-
rameter of the GNN architecture. Vertices and edges are updated as
follows :

* Each vertex i € [n] is updated using the trainable neural network
o*, which takes as input ¢ and latent variables of edges that
are connected to it. Since some edges are connected to i through
their firstindex, and others through their second index, we make

'In this implementation, we only consider interactions between edges and ver-
tices, so as to alleviate notations. It is however very common in the GNN literature to
also have vertices that are connected through an edge to directly interact.
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a distinction between both cases. Thus the latent state is updated
according to {A{;} . jjce ON one side and {hS; }iece ON the other
side. Those being unordered sets, they should be embedded into
vectors, using basic operations such as the sum, mean, product,
etc.

+ Eachedge (i, j) € £ isupdated using the trainable neural network
;’t, which takes as input Af; and the updated states of the two
vertices to which it is connected: h} and hj.

In the GNN literature, 95", ¢35’ can be different at each t, or exactly the
same (creating a recurrent archltecture

A VNN AVl

Figure 3.10: Message passing: first, vertices are updated depending on
the latent variable of the edges to which they are connected (left), and
then edges are updated depending on the latent variables of the ver-
tices to which they are connected (right).

Decoding (See Algorithm 1, lines 16 to 20) The last past of the neural
network architecture is akin to the first part. Trainable neural networks

videcoder and peecde” are applied in parallel to the latest latent vari-
able of all vertices and all edges. These mapping output vectors of di-
mension d"¥ at vertices, and d“¥ at edges. Moreover, since all previous
operations also preserve the input graph structure, the final output is
indeed in the right space: y € V, ¢.

Training The 2+ 27 + 2 (2 + 2 + 2 in the recurrent case) neural net-
works are commonly instantiated as standard MLPs, and are trained
jointly. Each of these neural networks have their own hyperparame-
ters: depth, width and activation function. In this regard, GNNs are not
different to other deep learning architectures and do not require any
specific algorithm with regards to training.

In this chapter, we have introduced a data formalism that can
represent power grids. The relationship between the considered
inputs and outputs is permutation-equivariant, which is a major issue
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decoding B

W= (0 ) §=0"1)

Figure 3.11: Decoding step: edge and vertex decoders are applied in
parallel to all edges and vertices, so as to produce an actual prediction
defined in Y, ¢.

for directly using regular neural networks. Then we have detailed a
type of GNN architecture that is intrinsically permutation-equivariant,
and that adapts the structure of its output to its input. Shortcomings
of both the data formalism and the corresponding GNN architecture
will be investigated in Chapter 4. This class of function is a natural
candidate for modelling the functional relation between inputs and
outputs of graph data. This intuition will be further entailed by our
theoretical contribution in Chapter 6.
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Figure 3.12: Example of a GNN applied to the graph shown in Figure 3.1.
Information flows from the top (input) to the bottom (output).
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Chapter 4

Deep Statistical Solver
Architecture

Traditional graphs introduced in Chapter 3 do not allow for a seamless
representation of power grids. The former are exclusively composed
of vertices and edges, while the latter are made of a series of objects
of various classes. Even worse, it is impossible to consider multiple
objects located at the same vertex in parallel. Unfortunately, it is ex-
tremely common in power grids to have multiple objects of the same
class (generators, loads or shunts) connected to the exact same bus. In
order tofit the traditional graph formalism, these can be aggregated to-
gether, which most likely implies some information loss. For instance,
it is not equivalent to control two collocated shunts or a single shunt
that is twice as large. This conceptual deadlock uncovers the limits of
modelling power grids with traditional graphs, and pushes in favor of
the definition of a graph formalism that is able to handle power grids
as is.

In this chapter, we detail the notion of Hyper Heterogeneous Multi
Graph (H2MG), a type of graph structure that represents power grids
more easily. In addition, we propose a GNN architecture called the
Hyper Heterogeneous Multi Graph Neural Network (H2MGNN), that
draws inspiration from dynamical systems and the Neural Ordinary
Differential Equation (NODE) literature. It is natively compatible with
H2MGs. We also detail key ideas that help improve the stability and
performance of the model.

4.1 Hyper Heterogeneous Multi Graphs

Power grids are made of a series of objects that can be organized into
the following classes: buses, generators, loads, shunts, transmission
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lines and transformers. Depending on its class, an object is defined by
a varying amount of parameters of various units, and is located at one
or two vertices (Section 9.2 investigates the case of objects located at
four vertices).

In this section, we propose a data formalism called Hyper Hetero-
geneous Multi Graph (H2MG), which allows for a simpler integration
with power grid data compared to traditional graphs, and that does
not cause any loss of information.

Objects and vertices We consider a structure composed of objects
on the one hand, and vertices on the other hand. Objects are con-
nected to vertices, and therefore connected to each others via vertices:
In such networks, vertices play the role of interfaces between objects.
Moreover, objects that belong to the same class share some character-
istics: They are connected to the exact same amount of vertices, and
bear feature vectors of the same sizes. Meanwhile, vertices do not bear
any feature vector, and only play the role of addresses (or interfaces).

The proposed formalism lies at the interface of the following kinds
of graphs:

* Hyper-graphs: Graphs that have hyper-edges, which can be con-
nected to any number of vertices [138].

* Heterogeneous graphs: Graphs that are made of multiple classes
of objects [139].

* Multi-Graphs: Graphs that allow multiple objects to have the
same addresses [137].

Hyper-edges and classes Letn € N, and C be the set of considered
classes. We denote by £°¢ the set of hyper-edges of class c¢. All such
hyper-edges are connected to the same amount of vertices through
their ordered ports O0¢. Thus, £ C [n]|9°l. Classes such that |O°| = 1
represent objects that are located at exactly one vertex (such as gen-
erators or loads in power grids). Classes such that |O¢| = 2 represent
objects that are located at exactly two vertices (such as transmission
lines or transformers in power grids).

Multi objects Letc € C and e € £° We denote by M¢ the set of
objects of class ¢ that lie on hyper-edge e. Those objects may bear dif-
ferent feature vectors, and cannot be simply aggregated into an equiv-
alent object.
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Structure A H2MG is composed of a structure that defines the inter-
connection patterns of objects, and some features that are attached
to each object. We denote the structure of a H2MG x as (n,C,&E, M),
where €& = (£9)cec and M = ((MS)ceee)cec. Moreover, we use the fol-
lowing simplifying notation:

g$ - {(C7e7m)|c € C, ec gcam € Mz} (4.1)

Let i € [n]. We call hyper-edge neighborhood of a vertex the set of
hyper-edges that are connected to it.

N, (i) = {(¢c,e,m,0)|(c,e,m) € G,,0 € O% e, =i} (4.2)

One may observe that this set returns the class, the hyper-edge, the
multi-object id and the port through which each object is connected to
i

Features Contrarily to standard graphs, H2MGs exclusively bear fea-
tures at hyper-edges: vertices only play the role of addresses to which
hyper-edges can be connected. In that sense, vertices should be seen
as an interface between hyper-edges. The corresponding graph data
can still be written as (z, y) where x is the input and y the output. Figure
4.1 shows how a power grid can seamlessly be framed as a H2MG.

T = (T ,,) (c.eim)ea (4.3)
Y = (Ye.m) (c.eom)eG, (4.4)

All input and output features of hyper-edges of a given class ¢ € C
are in d>* and in d“¥ dimensions. We denote by &}, ¢ s v and YV, c.e.m
the set of input and output graphs defined over the graph structure
(n,C,E, M). We denote by X and ) the sets of all possible input and
output graphs defined over all possible structures.

We define a pair of H2MG (z, y) to be compatible, if they share the
same graph structure (n,C, &, M).

Permutations Theimpactof permutations over H2MGs is analogous
to that on standard graphs:

Cc

O*X = (xo'—l(e),m)(C,e,m)Egz (45)
o * y = (yg—l(e),m)(c,e,m)egz (4'6)

with o71(e) = (671(e,))oco:. Definitions of permutation-invariant and
permutation-equivariant mappings are also analogous to Definitions 1
and 2 introduced in Chapter 3.
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Power grid
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+ bus Y, I

line
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Standard graph
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1 2 4
H2MG

m— generator
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*— bus

1 2 4
—&— line
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Figure 4.1: Power grid instance and its conversions into a H2MG,
and into a H2MG. Standard graphs require to aggregate together
vertex-like objects on the one hand and edge-like objects on the
other hand. Meanwhile, H2MG allow to seamlessly represent
power grids, without any information loss. In this example C =
{generator, load, line, transformer}. Input features are in the follow-
ing dimensions: d8"* = 1, d°3%® = 2 gliner — 9 gransfo.r — 3 |ines and
transformers are of order 2, while generators and loads are of order 1.
For the sake of readability, only input features are considered.

In addition to permutations that affect vertices, one may also con-
sider permutations over classes C, over ports O° and over collocated
objects of the same class M¢. Those permutations are all commuta-
tive as they all affect orthogonal aspects of the data representation.
However, these are not critical aspects of the problem. In the follow-
ing, for the sake of simplicity, we shall only consider permutations over
vertices.
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Connections with standard graphs H2MGs allow for a more natural
modelling of power grids and explicit the fact that they are composed
of multiple classes of objects. The process of converting an hetero-
geneous graph into an homogeneous one constitutes a surjective but
not injective mapping: aggregating multiple objects of the same class
together causes information loss.

4.2 H2MGNN Architecture

In this section, we introduce the Hyper Heterogeneous Multi Graph
Neural Network (H2MGNN) architecture to handle Hyper Heteroge-
neous Multi Graphs, and detail the main differences with the standard
GNN introduced in Chapter 3. First, we provide a short introduction to
the key ideas behind the Neural Ordinary Differential Equation (NODE)
literature [140], that was inspirational for the H2MGNN architecture.
We then define the H2MGNN architecture as a system of interacting
entities. And finally, we detail the actual implementation of the pro-
posed model.

4.2.1 Neural Ordinary Differential Equations

Before diving into the H2MGNN architecture, let us introduce some im-
portant concepts from the recent domain of NODE [140]. Consider a
fully-connected neural network with 7" hidden layers, such that each
hidden layer h(t) is defined by the following recurrence equation:

h(t +1) = p(h(t)) (4.7)

.....

sents the iteration step, and shall also abusively be referred to as time.
If T"is too large, the architecture is prone to vanishing gradient issues,
and a possible solution is to use “skip connections” (ResNet) [23], that
transform the previous equation into:

h(t +1) = h(t) + dg(h(t)) (4.8)

This closely resembles a Euler scheme [141] used to solve the following
differential equation over the interval [0, T'):

dh

b do(t, h(t)) (4.9)

The key idea of NODEs is thus to rephrase deep neural networks as dy-
namical systems of latent variables. Inference amounts to solving the
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differential equation (4.9) for the interval [0,7]. For the sake of sim-
plicity, we shall equivalently consider the resolution of this differential
equation for the interval [0, 1], using a step size At = 1/T. In the NODE
literature, the neural network mapping ¢y is trained using an adjoint
sensitivity method [142], which falls off the scope of the present work.

While our approach cannot be considered as part of the NODE lit-
erature, it still inherits its formulation and underlying ideas from this
domain, as shown below.

4.2.2 Dynamical system

Inspired by the NODE literature, we propose to describe the H2MGNN
architecture as a dynamical system of interacting entities. This con-
tinuous time dynamical system will then be discretized (see following
subsection) so as to form the actual H2MGNN architecture.

We consider the following time-dependent variables:

* Vertex latent variables (hf)icps
* Hyper-edge latent variables (h¢ ) c.e.m)eg.;

* Hyper-edge outputs (¢ ,,,) c.e.m)eg.

Latent variables are in d dimensions - which is a hyperparameter of
the architecture - while predictions are already in the required output
dimensions.

Since latent variables have no intrinsic meaning, they are initialized
with zero values. In contrast, predictions have a meaning with regards
to the problem at hand, so it makes sense to initialize them at a train-
able and class-dependent value (9§)cec-

Vi € [n], hY(0) = [0,...,0] € R? (4.10)
Y(c,e,m) € G, he o (0) =10, ..., 0] € R¢ (4.11)
Uem(0) = 75 e R (4.12)

Latent variables interact according to the following differential sys-
tem, involving trainable mappings ¢:

: dh;} c,0 [N ~C c
vz € [n]7 dt = Z d)e’ (t7 he? h‘e,m? ye,m7 weym) (4'13)
(c,e,m,0)ENL (1)
dhg m c,h v 1.C ~C c
V(c, €, m) < g337 dlg = ¢9’ <t7 he? he,m7 Yem> xe,m) (414)
dggm C v c ~C c
dt7 = ¢0,y(t7 he? h’e,m? ye,m? me,rn) (4'15)

where hY = (h{ ),co- and should not be confused with A .
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Vertices latent variables - equation (4.13) Vertices being con-
nected at a varying amount of hyper-edges, their latent variables de-
pend on a varying amount of unordered variables. We choose to ag-
gregate their respective impacts by summing them. The action of each
hyper-edge over its vertices depends on local information: its latent
variable ¢, its prediction ¢, its input z¢ ,, and the latent variables
ofits vertices hy = (h ).co-. Additionally, it isimportant to use a differ-
ent trainable mapping depending on the hyper-edge class ¢ € C and on
the port o € O° through which itis connected to the considered vertex.

Thus, a set of trainable mappings ((¢g°)oco<)ccc is used in this step.

Hyper-edges latent variables - equation (4.14) The latent variable
at hyper-edge (c,e,m) depends on itself A¢ , on its local input z¢
on its local prediction g¢ ., and on latent variables of its vertices hy =
(h? )ocoe. Thus, for a given class, all hyper-edges depend on the same
amount of variables, which allows us to use a single trainable neural

network ¢5".

Hyper-edges predictions - equation (4.15) Predictions are com-
pletely analogous to latent variables. The only difference is that their
size is set by the problem at hand. Still, the formulation is analogous
to equation (4.14), using this time the trainable neural network ¢g¥

4.2.3 Architecture

The H2MGNN architecture amounts to integrating the dynamical sys-
tem of equations (4.10 - 4.15) over the interval [0, 1]. The final output
serves as a prediction. Contrarily to NODE models, it relies on a simple
Euler scheme by using a fixed time step size At, which implicitely define
the amount of steps (given by 1/At). Thus, our method is a recurrent
and residual GNN architecture, which shall be trained using standard
back-propagation methods. Implementing an actual NODE should be
investigated in future work.

Algorithm 2 details the pseudo-code of the H2MGNN architecture.
Trainable neural network blocks ((¢5%)ecoc, 95", $5¥)ccc can be im-
plemented as simple fully-connected neural networks. Contrarily to
the architecture presented in Algorithm 1, the trainable mappings take
the continuous time variable ¢ as input. Hyperparameters of the archi-
tecture include the latent dimension d, the time step size At, and all
the hyperparameters of each trainable neural network block. Unless
explicitly stated otherwise, this architecture is used by default in the
experiments.
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Algorithm 2 Proposed Heterogeneous Graph Neural Network

1. procedure fo(r = (¢ ,,)(ceim)ed.)

2.

3 > Initialization

4. foricn|do

5: hY « 07

6:  for(c,e,m) € G, do

7: hg’m «— 0

8: Yem < Yo

9.

10: > Latent interaction

M t< 0

12: whilet < 1do

13: fori € [n| do

14 hY < hY + At X > o (t, hY, G s Uems TE )

(c,e,m,0)ENZ(3)

15: for (c,e,m) € G, do

16: he <= hE . + At X @Gt hE RS 1, GE s TE )
17: Uem < Uom + At X g™ (8, 1), BE 1y TSy TE )
18: t+t+ At

19:
200 return § = (9 .,)(c.em)eg.

In order to make things clearer, we propose to illustrate the algo-
rithm on a simple case. Consider the input graph displayed in Figure
4.2. It has 2 vertices, and one instance of each of the following classes:
C ={a, B,7}. We observe that the class /3 is of order 2, while others are
of order 1. Moreover, there are no collocated hyper-edges of the same
class, we may thus drop the index m to simplify notations. An iteration
of the algorithm is made of the three following steps:

* Figure 4.3 displays what happens when the latent variables of ver-
tices is updated (line 14 of Algorithm 2). Each vertex is updated
according to the information contained in the hyper-edges con-
nected to it.

* Figure 4.4 displays the process of updating latent variables at
hyper-edges. They are updated according to the information
contained in the hyper-edge, and to the |O¢| ordered vertices to
which the hyper-edge is connected.

* Figure 4.5 displays the process of updating output at hyper-
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edges. This step is akin to the previous one, but uses a different
trainable mapping.

These figures underline the asymmetry between vertices and hyper-
edges. Vertices can be seen as interfaces through which hyper-edges
can interact, thus propagating their respective influence to the whole

graph.

4.2.4 Inference complexity

Assuming that each neural network block has a single hidden layer with
dimension d, that d is much larger than input and output feature di-
mensions and denoting by u the average neighborhood size, one in-
ference has computational complexity of order O(und?/At), scaling
linearly with n. Furthermore, many problems involve very local inter-
actions, resulting in small u. However, one should keep in mind that
hyperparameters 1/At and d should be chosen according to the chara-
teristics of distribution p(x), as detailed in Chapter 6. For instance, the
step size At should be appropriate with regards to the diameters of
considered graphs, so as to allow information to propagate enough
times.

4.3 Implementation considerations

The H2MGNN architecture requires additional attention in order to ac-
tually work seamlessly. Because both inputs and outputs of the neural
networks actually have a physical meaning, and can thus have atypi-
cal distributions, it is important to add some pre and post processing.
Moreover, if no precautions are taken, the architecture is prone to nu-
merical instability, which we address by using normalization layers.

4.3.1 Input pre-processing

Neural networks are known to be especially sensitive to input data dis-
tribution. It is thus generally recommended to pre-process the data so
that the values are approximately contained in the range [—1,1]. We
thus propose to use a pre-processing function ¢ : X — X.

Input of this pre-processing mapping are physically meaningful
quantities. Thus, normalizing them distorts the input space and shat-
ters their physical meaning. Figure 4.6 details how the pre-processing
function ¢ is included in the whole process.
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Figure 4.2: Instance of an input heterogeneous graph z.
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Figure 4.3: Updating vertex latent variables.
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Figure 4.4: Updating hyper-edge latent variables.
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Figure 4.5: Updating hyper-edge outputs.
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Since this mapping serves as a pre-processing step to a
permutation-equivariant structure, it is preferable to have ¢ also
be permutation-equivariant, so as not to break the input graph struc-
ture. We propose to decompose it as ¢ = (¢).cc, such that each class
has its own pre-processing function. Such class-specific functions are
then applied identically to each instance of each class. We denote by z
the pre-processed version of the input data x, which is then fed to the
neural network.

T = (Cc<x2,m))(0,e,m)€gz (416)

This function is built before the start of the training process and so
that distributions of all input features of all classes are well-distributed
in the training set.

Physically
meaningful
quantities

Abstract and
well-distributed
values

'
Q) — D,
S

- Jo

Figure 4.6: Data pre-processing ¢ and post-processing n allows to con-
vert physically meaningful and poorly-distributed data, to abstract and
better-distributed (see text) quantities. ¢ and n being permutation-
equivariant, we have that n o fy o ¢ is also permutation-equivariant.

4.3.2 Output post-processing

Neural networks also have difficulties predicting quantities that have
either too large or too small orders of magnitudes. Thus, manually
scaling the output of the neural network f, can greatly facilitate the
learning process. We propose to apply another functionn : Y — Y to
convert the abstract output of neural networks into physically mean-
ingful quantities. Figure 4.6 shows of the post-processing function n
fits into the whole framework.

Similarly to the pre-processing mapping, it is important to have a
permutation-invariant function. We decompose the post-processing
as 1 = (n°).cc, such that each class has its own post-processing func-
tion. Such mappings are applied identically to each instance of each
class. We denote by § = fo(Z) the raw output of the neural network,
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and by y the actual post-processed output data, which is defined by:

9= (n°(¥:.n) (c.eom) 6. (4.17)

The post-processing function can also be used to initialize the out-
put of the neural network at the beginning of the training, or even to
manually force predictions to remain within an acceptable range of val-
ues.

This function is built before the start of the training process, and
requires some knowledge about the problem at hand.

4.3.3 Numerical stability

Regardless of pre and post-processing considerations, the proposed
architecture is prone to exploding or vanishing gradient issues. The re-
current formulation tends to create numerical instabilities. We normal-
ize all abstract latent variables before feeding them to neural network
using the following mapping’:

u

U —
Jull +1

(4.18)

This allows neural networks inputs to remain in a reasonable range.
Contrarily to other approaches such as batch-normalization [143], this
mapping is local and does not require to compute statistics over the
whole batch of data. It preserves the permutation-equivariant prop-
erty of the GNN architecture.

This simple trick, combined with suitable pre and post processing
functions significantly improve the stability and efficiency of the train-
ing process.

Throughout this chapter, we have introduced a formalism that can
model power grids without any information loss, and then detailed a
neural network architecture called H2MGNN that is able to seamlessly
process such structures. In the next chapter, we develop a methodol-
ogy to train such neural network mappings to solve optimization prob-
lems.

'as suggested by our colleague Dr. Victor Berger
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4.A Historical DSS architecture

The data formalism and neural network architecture introduced in the
present chapter result from a process of iterative refinements, . While
experiments from Sections 7.1 and 8.2 rely on the latest version of the
approach, Sections 7.2, 8.1 and 9.1 detail experiments conducted us-
ing an earlier version of both the data formalism and neural network
architecture, which we detail in the present appendix section.

Graph data Previous versions used to consider traditional homoge-
neous graphs as input and output. Moreover, only vertex features
were considered as output. Using similar notations as Chapter 3, the
data was denoted by x = (2", z°), and the output by y = (y"). The
notion of neighborhood was quite straightforward and denoted by
N.(i) == {j € [n]|(i,j) € Eor(j,i) € E}. Moreover, we used the
following convention: NV (i) = N (i; x)\i.

Architecture Previously used GNN architectures were not recurrent:
they iteratively updated latent variables using each time a different set
of trainable neural network mappings (¢%, 5, @%_ 4, % g, %6, £p)i=1..

as detailed in Algorithm 3. Instead of producmg a single output S|m|—
larly to the current version, it used to output 7" different outputs, which
are then all used during training, as illustrated in Figure 4.7. The coef-

T

T
h° =5 Pht%hf“—% G
""""" S
function
. f// 'I)T

T : 1
€z Input : Yy

’[} Ionutteglrﬂediateé ¢ ¢ ¢ ¢

g! Final 2(z, ") £(z, 9" £ (z, 9" 14 (1 QT)

output

Figure 4.7: Previously used neural network architecture. The opera-
tor M} encompasses all the message passing operations performed in
lines (10-13) of Algorithm 3. All intermediate predictions appear in the
loss of equation 4.19, while the current H2MGNN only penalizes the fi-
nal prediction.
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Algorithm 3 Previously used Graph Neural Network architecture

1. procedure fo(z = (2, z))

.

3 > Initialization

4. foricn|do

5: hY « ¢

6

7 > Message passing

8 fort=1,...,T do

o: fori c [n| do
10: t—m — Ejej\/;(i) d)t—he(hﬁ_la xfjv hz'_l)
1 f_,i — Zjej\/;(i) d’f—,e(hﬁ_la T, hz'_l)
12 i’m — ¢8,0(h§_17 )
13: hf — hE_I +aX ¢z<h§_l7xi’ t—>,i’ f—,iv 6,1)
14 J;  &5(h)
15:

16: return (9');—1_.r

ficient « in line 13 of Algorithm 3 is a scaling factor that improved the
numerical stability.

Training The training loss consists in a discounted sum over the T’
different costs of intermediate predictions?, using a discount factor v €
[0,1]:

T
> (g (4.19)
t=1

This loss, combined with the use of gradient clipping and a reason-
ably small «, allowed to mitigate a recurring problem of gradient ex-
plosion. Since the latest H2MGNN version does not suffer from such
issues thanks to the tricks introduced in Section 4.3, there is little ben-
efit in using a discounted sum.

2¢ is the cost function that is to be minimized by the neural network mapping, as
will be further detailed and justified in Chapter 5
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Chapter s

Statistical Solver Problems

Power grid operation involves various forms of optimization processes:
power flows are estimated by solving equations derived from Kirch-
hoff's laws, generators voltage setpoints and interconnection pat-
terns are controlled by dispatchers to optimize a security objective,
power generation dispatch is dictated by a market equilibrium, etc.
Whether these quantities are obtained through a well-posed optimiza-
tion program, or left to human decisions, there is always some form
of optimization, which creates a coupling between various quantities
throughout the grid.

In this chapter, we propose a method to train neural networks such
as introduced in Chapter 4 to solve instances of an optimization prob-
lem - referred to as the “target” problem - through the definition of a
Statistical Solver Problem (SSP). Instead of learning to imitate another
resolution method, the proposed methodology amounts to training a
neural network in an unsupervised fashion, by directly minimizing the
cost function of the target problem. In that sense, the proposed ap-
proach, which we call Deep Statistical Solver (DSS), is a full-fledged op-
timization process. It relies on similar ideas as those underlying the
Physics-Informed Neural Network (PINN) literature.

In a first section, we consider the case of single-level unconstrained
optimization problems. For instance, it includes the case of the AC
Power Flow (AC-PF) problem, which consists in computing power flows
throughout the grid, given power injections and transmission lines in-
terconnections. In a second section, we consider the case of bilevel
optimization problems, of which the issue of controlling the voltage in
power grids is a typical instance. It consists in choosing the voltage
setpoints of generators while anticipating that this decision has a non
trivial impact over the power flows.
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5.1 Single-level unconstrained optimization

Let us consider the case of single-level unconstrained optimization tar-
get problems, through the example of the AC-PF problem. It consists in
computing the voltage magnitudes and phase angles (which can then
be used to compute power flows), given the power injections and the
transmission lines interconnections. This problem can be schemati-
cally represented by Figure 5.1.

power grid instance

solver

voltage magnitudes
& phase angles

Figure 5.1: Single level AC-PF problem

In current power grid operations, the solver that solves the AC-
PF relies on a Newton-Raphson method. Inspired by the PINN ap-
proach to the resolution of partial differential equation [95], we pro-
pose an alternative solution to the classical Newton-Raphson solver
using neural networks mapping such as introduced in Chapter 4 to
solve this optimization problem without the need for any existing so-
lution of sample instances. Such general approach could be used for
any permutation-equivariant optimization problem defined on graphs,
including the ones for which there is no existing satisfying solver.

Thus, we propose to convert the target optimization problem as
a learning problem, which we refer to as a Statistical Solver Problem
(SSP). We derive this neural network training procedure from an ele-
mentary density estimation principle. We call a deep neural network
trained using this approach a Deep Statistical Solver (DSS).

Throughout this section, we will use the AC-PF as running example,
so as to make things concrete. The present theoretical section is fur-
ther supported by experimental results presented in both Chapters 7
and 8.

5.1.1 Target optimization problem

Let X and Y be two sets, and £ : X x YV — R be a cost function. We
assume that for a given = € X, £(z,y) has a unique minimum y*(z)
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defined by the following target optimization problem:

y*(x) = arg min £(z, y) (5.1)
yeY
The cost function £ being fixed, we refer to = as an instance of the op-
timization problem.

In the AC-PF problem, x denotes a H2MG input (see Section 4.1) that
encapsulates the power production and consumption, and transmis-
sion lines interconnections (see Figure 4.1 for instance); and y denotes
the voltage magnitudes and phase angles at all buses. The cost func-
tion Z is the violation of Kirchhoff's laws. This target optimization prob-
lem is usually solved using the Newton-Raphson method.

5.1.2 Probabilistic relaxation

Traditional optimization does not use any probability distribution on
the instance space. On the contrary, statistical learning tools are de-
signed to exploit any such distribution. However, we first need to
rephrase the optimization problem in probabilistic terms, and then rely
on a density estimation approach to give rise to a statistical learning
problem.

Target distribution

In power grid operations, each possible power grid instance z is asso-
ciated with a certain probability density p(z). Some instances might
be more probable than others. In such a case, rare but critical in-
stances may be neglected by our training algorithm, which may result
in our model being unreliable in abnormal situations. Still, one could
choose to distort the real probability density by overweighting critical
instances of optimization problems, so as to make the model robust to
rare events. The issue of choosing the appropriate probability distri-
bution p in regard with industrial security constraints is not addressed
in this document, but should definitely be considered in future work.
The conditional probability distribution ¢(y|z) that connects prob-
lem instances z to their solutions is a Dirac measure located at y*(z):

q(ylr) = by @) (y) (5.2)
The target distribution is as follows:
« = ~ p(x): sampling an instance of optimization problem z ;

* y ~ q(y|x): solving the instance of optimization problem z.
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Writing the optimization problem in probabilistic terms allows us
to derive a training loss based on density estimation principles and to
learn probability ¢, i.e., to learn a mapping between instances of opti-
mization problems x and their solutions y*(z). Indeed, ¢ is not directly
reachable, and we will now derive rigorously such a training loss that
allows us to learn it.

Deriving a learning problem

We consider a set of distributions ¢y(y|x) parameterized by § € ©. We
need to find 6* such that p(x)gy(y|x) is as close as possible to the un-
known true generative process p(z)q(y|z).

It is common in the statistical learning literature [107] to minimize
the Kullback-Leibler divergence between p(x)gy(y|x) and p(z)q(y|x).

Drrtpanlipn) = [ [ powmtuloon (25) 63
zeX Jyey q(y|z)

The KL-divergence is not a distance per-se, but is a commonly used
metrics for the similarity between two probability distributions. Un-
fortunately, this quantity is not defined in our case. The support of
p(z)q(ylz) - also denoted by supp(p(x)q(ylr)) == {(z,y) | p(z)alylz) >
0} - is limited to a manifold strictly included in the support of
p(z)qe(y|z). As a consequence we have that Dy (pgy||pg) = 400, which
cannot be minimized.

In the following, we propose to consider a relaxation of the target
distribution for which the KL-divergence can be written. This relaxation
is controlled by a parameter g € R™\{0}. We first consider the problem
of learning intermediate distributions, and we then investigate the limit
of such intermediate learning problems when we make the relaxation
disappear.

Assuming that for any fixed z, £ has a unique minimum, and that
for any 5 we have [, e *v) < 400, then ¢ can be written as the
weak limit of a set o#Gibbs measures [144]:

_ e~ PE(zy)
qylr) = lim gsyle) 5 gplyle) = Toy e P (5.4)
We observe that for any § > 0, supp(p(x)qs(y|z)) = supp(p(x)) x V.
Thus, the KL-divergence between the parameterized generative pro-
cess and each intermediate Gibbs distribution is well defined:

Drr(paollpas) = — Eop) [Hy(qo(y]2))] + BE wop) [€(x,y)] + C(B)

y~qp(y|x)

(5.5)
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where H,(.) is the Shannon entropy of a distribution w.r.t. variable y,
and C a function of g independent from 6. For a given (5, we consider
the following intermediate statistical learning problem:

0*(B) = arg rgin D1 (pgollpgs) (5.6)
S

Theorem 1. Let (Bx)ren be a positive sequence such that [y, T +00.
—+00

If qo is continuous w.r.t. 6, © is compact, and 0 — E ) [£(z,y)] has a
y~aqp (ylz)
unique minimizer 0*, then any sequence 6, € ©*(;) converges to 0*.

Proof. Let us denote by g, the mapping

1

y~qo (ylz)

Its arg min is exactly ©*(3). We observe that it converges uniformly to
the mapping f:

g: 0= —E @) [E(z,y) (5.8)

y~qp (y|z)

0* is the minimizer of g and is assumed to be unique. Consider any
convergent subsequence of 6, € ©*(f;), and let us denote ¢’ its limit.
Then for any 6 € © we have that gx(0;) < gi(f). Since gx converges
uniformly towards g and 6, converges to ', we obtain that

gr(0r) — g(0) gr(0) — g(0) (5.9)

As a result, we have that g(#') < g(#), which holds for any 6. By unicity
of 6%, we have that & = *. Thus any convergent subsequence of % ¢
©* (k) converges to 6%, and hence the whole sequence converges to 0*
as well. O

Theorem 1 states that if  — E ., [€(x,y)] has a unique mini-

y~qo (y|z)
mizer 6%, then the limit of the intermediate statistical learning problems

©*(p) as  tends to infinity amounts to solving the following problem:

0" =argmin E ) [€(,y)] (5.10)
0O y~aqo (ylz)

Even though we were unable to compute the KL-divergence be-
tween our target distribution and our parameterized distribution, we
managed to take an intermediate path to derive a proper learning
problem.
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Statistical Solver Problem The resulting learning problem is re-
ferred to as an SSP, and can be summed up as follows: given spaces
X and ), distribution p defined over X’ and cost function ¢ defined on
supp(p) x Y, we wish to find the distribution gy (y|z) that minimizes the
cost function £, when z follows p(x). It is schematically represented by
Figure 5.2.

q(y|z) Loss(0)

Figure 5.2: Single level SSP

5.1.3 Training algorithm
The loss function associated with the SSP can be expressed as follows:
Loss(0) =E ,p@) [£(z,y)] (5.11)

y~qo (y|z)
Indeed, we do not have a direct access to the distribution p(x), and
have to rely on a empirical dataset D = {z,,}men. The empirical loss
over the dataset D is given by:

1
Loss(#; D) = mom > Eygotulen) [€(@m, )] (5.12)

meM
In the AC-PF problem, the cost function ¢ is the violation of Kirch-
hoff's laws, which is differentiable with regards to y. Moreover, in the
experiments we choose ¢y(y|z) to be a deterministic mapping, instan-
tiated as a trainable H2MGNN function fy(x) such as introduced in
Chapter 4. The loss shall thus be rephrased as

1 | > L, folwm)) (5.13)

Loss(0; D) = ]
meM

The gradient VyLoss(¢; D) can be estimated using automatic differenti-
ation. The H2MGNN f5 is trained through a standard gradient-descent
method, as described in Algorithm 4. Indeed, advanced gradient de-
scent techniques introduced in Chapter 2 can also be used. This ap-
proach is experimentally validated in Chapters 7 and 8.
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Algorithm 4 Training a single-level Statistical Solver

. procedure Train(D = {x., }menr, Nepochs)

Initialize 0

for epoch =1,..., Nepocns dO
VyLoss(0; D) <+ Wll Y omenm Vol(Tm, fo(xm))
0 < 0 —aVyLoss(0; D)

return fy

QU AW N =

5.2 Bilevel optimization

Bracken and McGill [145] define bilevel optimization as

“mathematical programs that contain an optimization prob-
lem in the constraints.”

This type of optimization process occurs when two interacting entities
make decisions sequentially. The first to make a decision is called the
“leader”. The second is called the “follower”, and knows the leader’s
decision. Thus, in order to optimize its objective function, the leader
has to anticipate the impact of its own decision over the follower’s be-
havior.

In power grids operation, a typical instance of such a structure
arises in the voltage control problem. In order to keep the power grid
in security, dispatchers can control voltage setpoints of certain genera-
tors. Still, the actual outcome of their actions is not trivial, and is given
by the solution of the AC-PF. In order to optimize their own objectives,
dispatchers have to anticipate the impact of their actions over the out-
come of another optimization problem. This bilevel optimization prob-
lem is schematically represented in Figure 5.3, where the term “con-
troller” denotes the dispatcher. We thus wish to train a neural network
such as introduced in Chapter 4 to control generators voltage setpoints
SO as to optimize a security-related objective.

In line with the previous section, we propose to derive a training
procedure from the aforementioned target optimization problem. It
relies on the training of two distinct neural networks, one playing the
role of the controller, and the other playing the role of the solver. This
training strategy is in some way similar to the training of the two mod-
els that are used in Generative Adversarial Networks (GANS) [24]. We
instantiate this section on the voltage control problem to keep things
concrete, although the approach is as general as possible and could be
applied to a wide variety of domains. Chapter g presents preliminary
experiments on a rather small power grid.

87



power grid instance

controller

generators voltage
setpoints

solver

voltage magnitudes
& phase angles

Figure 5.3: Bilevel voltage control problem

5.2.1 Target optimization problem

Let X', ), Z bethree sets, and £, £’ be two cost functions X x Y x Z — R.
We consider the problem of finding the element of ) that minimizes
the cost function £ for a certain element x € X. Similarly to the pre-
vious section, we assume that there are no equality or inequality con-
straints other than the nested optimization problem. We assume that
for any fixed z,y,z, v — £(x,y,z) and 2/ — £'(x,y,2") both have a
unique minimum. We consider the following bilevel optimization prob-
lem:

y*(xz) = argmin £(x,y, 2) (5.14)
yey
subject to z = z*(x,y) = argmin £'(z, y, 2) (5.15)
z2€Z

Equation (5.14) defines the “upper level” problem, while equation (5.15)
defines the “lower level” problem.

In our voltage control example, we denote by x the heterogeneous
graph containing power production and consumption everywhere on
the grid, as well as transmission lines interconnections, by y the volt-
age setpoints at some buses controlled by the dispatcher, and by =
the voltage magnitudes and phase angles at each bus. £ computes
a security-related objective (for instance minimizing Joule losses while
keeping voltage magnitudes in an acceptable range), and £’ computes
the AC-PF by minimizing the violation of Kirchhoff's laws. The prob-
lem amounts to maximizing the security of the grid, by anticipating the
(non-linear) impact of the dispatcher’s decision over the actual state of
the system. The dispatcher is the leader, and "physics” is the follower.
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Target distribution

Similarly to the previous section, we associate a probability distribution
p(z) to the set X'. The conditional probability ¢(y|z) maps instances of
the upper level optimization problems to their solution, while r(z|z, y)
maps instances of the lower level optimization problem to their solu-
tions.

q(ylz) = dy+@) (y) (5.16)
T<Z|[E, y) - 6z*(z,y)(2) (517)

The target distribution is the following:
« x ~ p(z): sampling an optimization problem instance x;
« y ~ q(y|x): solving the upper level optimization problem;
* z ~r(z|z,y): solving the lower level optimization problem.

We now proceed as in Section 5.1.

Deriving a learning problem

Our only goal here is to learn an approximation of the distribution
q(y|z), using a parameterized distribution gy(y|z). Similarly to the pre-
vious section, we propose to consider the Kullback-Leibler divergence
between pgy and intermediate Gibbs measures pgz. Assuming that for
any fixed z, £ has a unique minimum, and V3, [, e PHEY) < 4o,
then ¢ can be written as the weak limit of a set of Gibbs measures:

[z (2|2, y)e PEEw-2)
(e, y e P
(5.18)

As it appears, the intermediate distribution gz relies on the lower
level distribution r. Following the same reasoning as in the previous
section, and using the fact that r is a Dirac measure (equation 5.17), we
obtain the following upper-level Statistical Solver Problem (SSP):

qylr) = lim qa(ylr) ; qs(yle) =
Aroo fy’ey z2EZ

0" =argmin E , ) [£(x,y,2)] (5.19)
USE y~qo(ylz)
zeor(z],y)
Estimating 6* requires the actual lower level distribution r. Unfortu-
nately, it is neither possible to sample from it, nor to estimate it.
We propose to learn an approximation of r(z|x,y) using a distri-
bution r,(z|z,y) parameterized by w € 2. During its training, gy is very
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likely to sample values that are far from the support of ¢q. Even for those
“erroneous” predictions, r,, should remain a valid approximation of r.
Thus, one should choose a distribution g,(y|x) that covers gy. In the
experiments, we define g,(y|x) by simply adding a Gaussian noise to
qs(y|x). We consider the following lower-level Statistical Solver Prob-
lem:

w'=argminE , 0 [€(z,y,2)] (5.20)

W€ y~go (ylz)
zrory (2]2,y)

Equations (5.19) and (5.20) define the bilevel Statistical Solver Prob-
lem, and Figure 5.4 illustrate it.

Figure 5.4: Bilevel SSP

5.2.2 Training algorithm

We consider the following loss functions:

Loss(0) =E ,p@) [€(x,y,2)] (5.21)
y~qo(ylz)
zror(zla,y)

Loss'(w) =E ,opw [€(z,y,2)] (5.22)
y~go (ylz)

arvro(zlay)

Under the assumption that » ~ r,, we can use the following ap-
proximation:

Loss(0) ~ E ,op@) [£(2,y,2)] (5.23)
y~qe((z‘/|x))
zrre (z]T,y
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Using the same notations as in the previous section, we define the
two empirical losses over the dataset D = {x,, }men as:

LOSS 0 D M Z E ywqg(y|a:m) (xma Y, Z)] (524)
’ |m€M Z’\"f'w ‘xmy
Loss'(w; D) ]M| Z E yN% Wlzm) € (Tm, Yy, 2)] (5.25)

meM 20 (2|Tm ,y)

In the voltage control problem, both cost functions £, £’ are differ-
entiable. Moreover, we choose to use deterministic mappings for both
gp and r,, using the two H2MGNN mappings fe and f/, and to define
G, to be Gaussian noise € ~ N(fg,0l) (Where ¢ is an hyperparameter).
Thus, the two losses shall be rephrased as follows:

Loss(0; D) |M‘ N b, fol). £L(x, folx))) (5.26)
meM
Loss'(w; D) |M\ Z Ecn001) (€' (Zms foltm) + € FL(m, fo(zm) + €))]
meM
(5.27)

Gradients VyLoss(0; D) and V,Loss'(w; D) can be estimated by au-
tomatic differentiation. The H2MGNN mappings fs and f/ are trained
through a standard gradient-descent method, as described in Algo-
rithm 5. Indeed, advanced gradient descent techniques introduced in
Chapter 2 can be also used. Preliminary experiments using this ap-
proach are presented in Chapter 9.

5.2.3 Discussion

This section discusses issues regarding the bilevel SSP that justify the
choices made in the proposed algorithm.

Deterministic approach

In early experiments, g, was chosen to be deterministic and defined
by the mapping fo, just like go. We experimentally observed that fy
irremediably ended up predicting a constant value, regardless of the
input z'. As a consequence, r,, only observed a single value for y during
its training, which lead it to consider that z is not a function of y. Thus,
the gradient back-propagation through r, is stopped, which prevents
qo from learning any further.

"This phenomenon is well known in the GAN literature under the name of “mode
collapse” [146].
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Algorithm 5 Training a bilevel Statistical Solver

1. procedure Train(D = {z,, }menrs Nepochs, @, &)

2: Initialize § and w

3 for epoch =1,..., Nepocns dO

4 > Optimize the controller

5: for m € M do

6 Ym < fe(xm)

7 Zm «— f(:,(xmaym)

8 VQLOSS(Q; D) — Wl| ZmEM Vef(ﬁm, Yms Zm)
o: 0 < 0 —aVyLoss(0; D)
10: > Optimize the solver

1: for m € M do

12: Ym < fo(Tm)
13: em ~ N(0,01)
14: Ym < Ym + €m
15: Zm — FL (T, Ym)
16: VLoss' (w; D) « ﬁ Y oment Vol (T Yy Zm)
17: w4 w— o'V, Loss' (w; D)

18: return f,

Considering a probabilistic g, allows to avoid this pitfall by forcing
r,, to be accurate for various values of y, thus allowing to properly back-
propagate gradient through it to learn gy.

Training ¢y and r,, separately

The probability distribution r, only serves as an approximation of r
when learning ¢s. Thus, it seems reasonable to first train r,, and then
use it to train ¢y. However, we experimentally observed that the train-
ing distribution g, tends to exploits weaknesses of r,, by prioritizing ar-
eas where it is a poor approximation of r. Training both models jointly
(alternating iterations on one and the other) prevents this type of be-
havior by constantly updating r,, so as to always be accurate in areas
that are relevant to ¢y.

Learning a joint probability for y and =

A possible avenue for future work could be to consider the Lagrangian
relaxation of the bilevel problem:

(Y x Z)*(x) = argmin £(z,y, 2) + M'(z,y, 2) (5.28)

yeY,zeZ
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where A € R™*. Although not equivalent to the initial bilevel problem,
this single optimization problem could still provide a good approxima-
tion of the actual solution if A is carefully adjusted (or updated during
the search). We argue that in such a framework, the resulting distri-
bution of y may be altered by the lower-level cost function £, as the
optimal solution is not necessarily the same as in the initial bilevel op-
timization problem. Our two-model framework enforces that the dis-
tribution of y is not biased in any way by the lower-level problem.

In this chapter, we have detailed how to transform both single
level and bilevel optimization problems into Statistical Solver Prob-
lems. This allows to train a neural network mapping to minimize a cost
function for a distribution of problem instances. The resulting deep
neural network is called a Deep Statistical Solver. In the following,
Chapter 6 proves that the H2MGNN introduced in Chapter 4 can
approximate the actual solution of an SSP with arbitrary precision.
Then, Chapters 7, 8 and 9 show the application of the DSS approach
to several use cases.
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Chapter 6

Proving that global continuous
problems can be solved
through local operations

In the present work, we consider optimization problems defined over
graphs that are invariant by permutation of vertices and by permu-
tation of collocated objects of the same class, i.e. for which the cost
function does not depend on any specific ordering. To give a power
grid example, the violation of physical laws should be minimized at ev-
ery bus of a power grid, which does not depend on any specific object
ordering. Moreover, we propose to approximate the mapping from
problem instances to their respective solutions by using a GNN archi-
tecture that relies on local message passing.

The goal of the present chapter is to prove that the H2MGNN archi-
tecture is indeed able to approximate with an arbitrary precision the
actual target mapping of problem instances to their respective solu-
tions’. The main theoretical finding of the present PhD thesis is that
under certain assumptions, optimization problems over graphs can be
solved using a series of local operations. This holds even for problems
that involve coupling of variables over long range.

In Section 6.1, we formalize this finding as Theorem 2, after having
carefully introduced assumptions about the data distribution and the
structure of the optimization problem. In Section 6.2, we dive into the
details of the proof.

This universal approximation theorem is non-constructive, i.e., it
does not offer any guarantee of convergence toward an ideal solver.
But there hardly exist such convergence guarantees in the field of DL.
However, this non-trivial result provides a solid theoretical ground to

'All density results are with regards to the uniform norm ||.||
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the proposed approach by proving its consistency.
This theoretical contribution is a joint work with Zhengying Liu (Uni-
versité Paris-Saclay, INRIA).

6.1 Universal approximation theorem

We first recall some notations about the considered graph data,
and introduce some assumptions about their associated probability
distributions. Then we further motivate the assumption about the
permutation-invariance of the cost function, and refine our definition
of the Hypothesis space. Finally, the main theoretical contribution of
this PhD thesis is stated.

6.1.1 Data and distribution

With the notations of Chapter 4, let x € X be a H2MG of size n, and
denote by (n,C, &, M) its structure. Two vertices are considered to be
linked if there exists an hyper-edge of any class that is connected to
both. This allows us to define the notion of geodesic distance between
two vertices ¢ and i’ as the shortest number of hops between linked
vertices going from i to 7. The diameter of x is then defined as the
largest geodesical distance between any two of its vertices and is de-
noted by diam(z). In the case where x is composed of multiple disjoint
components, there exist pairs of vertices that cannot be joined by leaps
between linked vertices, implying that diam(x) = +oc.

In the following, we are interested in graphs sampled according to
a probability distribution p(z). We introduce the following set of hy-
potheses (H), over the graphs in the support of p, supp(p) = {z €
X|p(xz) > 0}.

(H1) Uniqueness of hyper-edges. For any x € supp(p) of structure
(n,C,E, M), any class c and hyper-edge e, | M¢| = 1;

(H2) Permutation-invariance. For any = € supp(p) of structure
(n,C,E,M),and o € %, 0 * = € supp(p);

(H3) Compactness. supp(p) is a compact subset of X’;

(H4) Connectivity. For any = € supp(p), « has a single component (i.e.
diam(z) < +0o0);

(Hs) Separability of input features. There exists § > 0 such that for any
x € supp(p), any class ¢ € C and any pair of hyper-edges e # ¢/,
[ = x&]] = 6.
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The uniqueness of hyper-edges hypothesis (H1) means that supp(p)
only contains H2MGs that have no collocated objects of the same class.
We believe that this hypothesis could be alleviated, although we leave
this task to future work. For now, we may drop indices m and simply
denote the structure of H2MGs as (n,C, £).

The compactness hypothesis (H3) implies in particular that there
is an upper bound n,,,, over the sizes of the H2MGs in supp(p). Also,
these hypotheses imply that there is a finite upper bound (denoted by
D) on the diameters of all graphs in supp(p).

The technical hypothesis (H5) is necessary to ensure that local
message passing operations can distinguish between any two non-
isomorphic graphs?, which allows to bypass one major limitation of lo-
cal message passing [147, 148]. Moreover, this hypothesis is justified by
our real-life power grid application where it is highly unlikely that two
objects have exactly the same features.

6.1.2 The cost function

The context is that of a single level optimization problem, as defined in
Section 5.1. Let ) be a space of H2MGs and let ¢ be a real-valued cost
function defined for all compatible pairs (z,y) € X x Y (i.e. that share
the same graph structure, see Section 4.1). Furthermore, we introduce
the following set of hypotheses over the cost function:

(H6) For any = € supp(p), there exists a unique minimizer y*(z) =

arg min ¢(z,y), and the mapping = — y*(z) is continuous (as in
yey
Section 5.1).

(H7) ¢ is permutation-invariant.

The uniqueness hypothesis (H6) will prove necessary in order to
prove the expected theoretical result. However, experiments on the
AC-PF (see Section 8.1) for which it does not hold nevertheless provide
excellent results.

The permutation-invariance hypothesis (H7) is motivated by the fact
that in most power grid related problems, quantities that should be
minimized do not rely on any specific vertex or object ordering. For
instance, the cost function considered in the AC-PF is the sum over all
vertices of local power mismatches, which is independent of any spe-
cific vertex ordering.

An immediate consequence of the hypotheses above is given by:

2Two graphs are isomorphic if they are permuted versions of one another.
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Property 1. Under hypotheses (H1), (H6) and (H7), the mapping x — y*(x)
is permutation-equivariant.

Proof. Let x € X be a graph of sizen, and ¢ € ¥, be a permutation.

loxx,0xy"(x)) =Lz, y"(x)) by invariance of ¢
= min {(z,y) by definition of y*(x)
yey
=min{(ocxz,0*y) byinvariance of )
yey
= mGIJI? lo*xx,y) by invariance of supp(p)
Y

={l(oxx,y"(ocxx)) by definition of y*(z)

Moreover, the assumed uniqueness of the solution ensures that y* (o *
x) = o * y*(x), which concludes the proof. O

6.1.3 The Main Theorem

The Statistical Solver Problem we are tackling here is defined by (X, ),
p, £), where p is a probability distribution over X, and ¢ a cost function
defined on compatible pairs in supp(p) x V. The goal is to find, for any

x € supp(p) the minimizer y*(z) = arg min ¢(z, y).
yey
Let C.,. (supp(p),)) be the set of continuous and permutation-

equivariant functions (see Definition 2) from supp(p) to the output
space ). We recall from Chapter 4 that the equivariance of a function
implies that it is only defined on compatible pairs (z, y).

Let HP be the set of all H2MGNN architectures defined by Algorithm
2 of Section 4.2 with step size 1 /At < D+1 and latent dimension d € N,
and for which the update mappings are MLPs with appropriate input
and output dimensions.

The Universal Approximation Theorem is the following:

Theorem 2. Let (X, Y, p, () be an SSP for which hypotheses (H1- H7) above
hold. Then HP is dense in C., (supp(p),Y) with regards to the uniform
norm ||.||se-

Equivalently, this theorem states that for any € > 0, there exists a
H2MGNN f, € HP such that:

Vo € supp(p), || fo(x) — y*(x)]| <€ (6.1)

There always exists a H2MGNN as defined in Algorithm 2 that can ap-
proximate with an arbitrary precision the actual solution of the opti-
mization problem. In other words, even global problems that involve
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long-range coupling of variables can be solved by using enough local
operations.

Moreover, the theorem relates the required amount of local
message-passing operations with the maximum diameter D of H2MGs
in supp(p). This can be interpreted as follows. Each hyper-edge is re-
quired to guess its own output, by only communicating with hyper-
edges that share a vertex with it. Since its own output is very likely
to depend on the input and output of every other hyper-edge (of all
classes) in the graph, it should gather information about every other
object in the graph in order to make an educated guess. Since it takes
at most D steps to go from any vertex to any other, it makes sense that
we need a quantity higher than D to gather information about every
other object.

6.1.4 Sketch of the proof

This subsection gives a very brief idea of the proof of Theorem 2. The
full proof is given in next Section 6.2, but can be skipped by readers
mainly interested in the results of the algorithms on practical applica-
tions, from toy problems to real-world Power Networks, given in Part
[l of this document, Chapters 7 and 8.

The basic idea behind the proofis to follow the approach of Keriven
& Peyré [149]. However, their approach only considers mappings that
output vectors at vertices, while our mappings output vectors at hyper-
edges. The transfer from our context into their framework is done in
the following 3 steps:

Step 1 - Lemma 1 All mappings in C., (supp(p),)) are decomposed
in two distinct parts: the first part outputs vectors at vertices, while the
second part locally converts these vertex quantities into hyper-edges
quantities. The first part falls into the framework of Keriven & Peyré
[149], while the second part is made of local continuous operators and
can be treated easily.

Step2-Lemmaz2 Similarly, we consider the subset of H2MGNNSs that
can be decomposed into a first part that performs multiple message
passing steps and returns vectors at vertices, and a second part that
maps this vertex information onto hyper-edges.

Step 3 - Lemma 7, Theorem 3 & Lemma 3 We show that both
parts of the decompositions of the H2MGNNSs are respectively dense
in the corresponding part of the decompositions of C., (supp(p), ).
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Furthermore, all parts of the decompositions of the H2MGNNSs being
Lipschitz, we may combine densities and prove that H#” is dense in

Ceq.(supp(p), V).

6.2 Proof of the Universal Approximation
theorem

Hypotheses Let us consider in this section an SSP (X, Y, p, ¢) that
satisfies hypotheses (H1 - H7).

Notations The notations are the ones defined in Section 6.1.

Let us first recall that the set of all MLPs is dense in the set of con-
tinuous functions [109, 110], meaning that they can approximate with
an arbitrary precision any continuous function with proper input and
output dimensions.

6.2.1 Step 1: Decomposition of equivariant functions

In order to be able to fit into Keriven & Peyré’s framework, we decompose all
mappings in C., (supp(p),Y) in three distinct parts: the first part outputs
vectors at vertices and the second part converts these vertex quantities into
hyper-edges quantities.

Let us first define the functional spaces corresponding to these de-
compositions.

Spaces G¢ We consider the set of continuous and permutation-
equivariant functions that associates H2MGs of size n with a series of
d-dimensional vectors defined at each of the n vertices. Since supp(p)
may contain H2MGs of varying sizes, we introduce V* = |J, .y(R%)",
and we denote by G¢ := C,, (supp(p), V%) the aforementioned set of
functions.

g: supp(p) — V* (6.2)
(xg)(c,E)EQw = (g(x)i>i6[n] (6.3)
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Spaces R? We denote by R? := C(V¢ x supp(p), V) the set of contin-
uous functions that can be written as:

r: supp(p) x V¢ — Y (6.4)
($§)(c,e)egz, (ﬁ(x)z)ze[n} = (Tc(xga ﬁe))(c,e)egc (65)

where r¢ are continuous mappings of appropriate dimensions. It com-
bines vectors located at hyper-edges and vectors located at vertices to
output vectors at hyper-edges. The . on the right hand side corre-
spond to the f; of the left-hand side that are neighbors of hyper-edge
e. For a given class ¢, the mapping r¢ is applied simultaneously at every
hyper-edge.

The composition of such mappings is then defined by:

rog: supp(p) = Y (6.6)

(xg)(t:,e)egz = (Tc(x;g(x)e))(qe)egz (6.7)

Such decomposition fulfills the goal of the needed decomposition:

to have mappings that first output quantities solely located at vertices,

and then locally convert this message and the local input into an actual
prediction at a hyper-edge. We can now prove the following Lemma:

Lemma 1. 3d € N, C,, (supp(p),Y) € R4 o G4

Proof. Let f € C.q (supp(p),Y), x € supp(p) with structure (n,C, ).

Setting the scene Let us consider a class ¢ € C, and a specific port
o € O°. Leti € [n] be a vertex of z. Let us use the following notation:
N, (i;0,¢) = {e € Ee, = i}. We introduce the following multivariate
polynomial:

Vi € R* V) €R™ Poeoi(@,9) = [ (IE =223+ 115 — f(@)3)

e€ENZ (1;0,c)
(6.8)
The separability hypothesis (Hs) implies that:
Vo € OF f(x)¢ = argmin Py . e, (25, 7) (6.9)

JERIVY

In other words, f(z)¢ can be retrieved from the knowledge of the poly-
nomial P, .,.,, and of the hyper-edge feature z¢. This holds for any
Vo € O¢, which means that the information is equivalently stored in all
vertices to which the object is connected.
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We choose to denote 5(z).,.; the series of coefficients of the above
polynomial (arbitrarily ordered), and propose the equivalent notations:

PﬂC,C,O,i (*%7 g) = P(j:v g; B(x)c,o,i) (6.10)

Because supp(p) is compact, we know that there is an upper bound
over the amount of coefficients of all polynomials P, ., ;. We can store
for a single input « and a vertex index i € [n] all the coefficients of
polynomials such that:

B(x)i == ((B(2)ey0,i)oc0e)cec (6.11)

We observe that classes and ports can be arbitrarily ordered, with-
out breaking any permutation-equivariance w.r.t. the ordering of the
nodes themselves. Thus f(x); can be represented as a vector in a
unique manner. By compacity of supp(p), there exists an upper bound
over the dimensions required to represent 5(z);, which we denote by
dP. For the sake of simplicity, we embed all vectors §(z); for z € supp(p)
in a d°-dimensional space, padding with zeros when required.

Defining g We introduce g : z — (8(x);)icpn. It maps input graphs
to vectors of coefficient of polynomials at each vertex. It is continuous
with regards to x because each coefficient can be written as a prod-
uct of continuous features of x and of f(x), which is assumed to be a
continuous function of z. To prove that it is permutation-equivariant,
it is sufficient to prove that for any x € supp(p), any vertex i € [n],
any class ¢ € C, any port o € O¢ and any permutation ¢ € X, we
have 3(0 * )coi = B(%)c00-13:). Since two polynomials are equal if
and only if their coefficients are equal, it also amounts to proving that
Pz coi = Pocoo—1()- Let T € R*" and y € R*”,

P(Z, Doxvcai = || (17— (@xa)ls + 117 = flox)l3)
eGNg*z(i;O»C)
= (17 = (o x2)Cll3 + 17 = (o % f(2))l3)

eENG 1z (i50,C

)
= I UF=a@l3+ 15— F@)sa0l3)
)

eENs sz (150,¢

= H (||55—$§—1(e)||§+ H?j—f(x)g—l(e)H%)

o~ (e)ENZ (o1 (4);0,0)

= [T =<5+ 17— F)l)

e (e~ (i)i0.0)
= P(ii', Zj)m,c,o,o_l(i)
Thus g € G%°.
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Definingr For each ¢ € C, we introduce ¢ as

vz € R V3 € RY, r%(%, ) = argmin P(%, ; 3) (6.12)

FERIDY

We denote by r the mapping that relies on mappings (r¢).cc as shown
in equation (6.5). We observe that mappings r¢ are not continuous.
However, the mapping r o g is continuous over the compact set supp(p)
because of the separability assumption (Hs): two terms of the product
in equation 6.8 cannot be simultaneously zero. Thus, we may take con-
tinuous extensions r’¢ of r¢ over X such that Vx € supp(p),r’' o g(z) =
r o g(x) (Tietze theorem). We have that 7’ € Rdﬁ, and, by construction

(Eg. 6.9):
Va € supp(p),r’' o g(x) = f(z) (6.13)

This reasoning is true for any f € C.(supp(p),Y) and hence
Ceq.(supp(p),Y) € RY oG, which concludes the proof of Lemma1. [

In the remainder of this proof, we simply denote d® as d, V¥’ as V),
and RY, 6% as R, G.

6.2.2 Step 2: Decomposition of H2MGNNs

Similarly, we consider the subset of H2MGNNSs that can be decomposed into
a first part that locates all information at vertices, and a second part that
maps this vertex information only onto hyper-edges.

We consider two distinct classes of H2MGNN architectures. The
first is detailed in Algorithm 6: we denote by %/ the set of all such
H2MGNNSs that satisfy 1/At < D + 1 updates, and that output d-
dimensional vectors at vertices. The second class is detailed in Algo-
rithm 7, and we denote by Hx the set of all such neural networks. We
propose to combine functions from these two sets similarly to equa-
tion (6.7), and denote by Hx o HE such mappings.

The following result is true by construction of Hz and %5, consid-
ering a zero initialization and appropriate neural network blocks:

Lemma 2. Hg o HY C HP

6.2.3 Step 3: Composition of densities

We show that the two parts of the decompositions of the H2MGNNSs are re-
spectively dense in the two parts of the decompositions of C., (supp(p), V).
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Algorithm 6 First part of the decomposition
: procedure gy(z)
t<0
while ¢ < 1 do
for i c [n] do
Wy ht+ S @Ot hy, he,xf)
(c,e,0)EN(7)
6 for (c,e) € G, do
7 he < hg + &g™ (8, Y, e, )
8: t+t+ At
9 return 1V = (h})icp]

R wWN

Algorithm 7 Second part of the decomposition
1. procedure rg(x, h")
22 for(c,e) € G, do
3: Je < g (he, x7)
4 returnj = (J5)(e)cq,

Moreover, the second parts of the decompositions of the H2MGNNs be-
ing Lipschitz, we may combine densities and prove that HP is dense in
Ceq. (supp(p), V).

With the notations introduced in Step 1 and Step 2 above, this
amounts to prove that 7—[5 is dense in G (Theorem 3), and to prove
that H% is dense in R and contains only Lipschitz functions (Lemma 3).
The latter is straightforward:

Lemma 3. Hy is dense in R, and contains only Lipschitz mappings.

Proof. This was proven by Cybenko in 1989 [109], and further detailed
by Hornik [110]. O

The last missing piece of the demonstration of the Universal Ap-
proximation Theorem is the following:

Theorem 3. #( is dense in G
The proof of this theorem closely follows the approach of [149].
We first prove a modified version of the Stone-Weierstrass Theorem

(Theorem 4), and then verify that all involved spaces indeed satisfy the
conditions of this Theorem by proving Lemma 4.
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Notations Let ., C X be a compact and permutation-invariant set
of H2MGs such that there are no collocated objects of the same class
(we may thus drop indices m). The compactness implies that there ex-
istsm € N, upper bound of the size of all H2MGs in &, . Let C., (X, V)
be the space of continuous and permutation-equivariant functions
from X, to V that associate to a H2MG = = (%) (¢,)cg, @ Vector (5;)ici
ateach of its vertices i. (Cey. (Xeq., V), +, -, @) is a unital R-algebra, where
(+, -) are the usual addition and multiplication by a scalar, and ® is the
Hadamard product defined by (¢ ® ¢')(x); = g(x); - ¢'(x);. Its unitis the
constant function1 = (1,...,1).
We can now state the following Theorem:

Theorem 4. (Modified Stone-Weierstrass Theorem for equivariant func-
tions.) Let A be a unital subalgebra of C., (X.,,V), (i.e. contains the unit
function 1) and assume both following properties hold:

* (Separability) For all z,z' € X,,, with number of vertices n and n'
such that x is not isomorphic to x/, and for all i € [n], i' € [n'], there
exists f € Asuchthat f(x); # f(2')y,

* (Self-separability) For all n < m,I C [n|,xz € X, with n vertices,
such that no isomorphism of = exchanges at least one index between
I and I€, and for all i € I, i' € IC, there exists f € A such that

f(@)i # f(x)
Then A is dense in C., (X, , V) with respect to the uniform metric.

This proof of Theorem 4 is almost identical to that of Theorem 4 in
[149], with the following differences.

1. For the input space, we consider hamg of the form
([n], (28)(c.e)eg,) Where z¢ € R forall ¢ € C and e € &,
instead of hyper-graphs defined in R™ for some b € N. The
corresponding metrics are different, although the difference is
not critical for the proof;

2. Similarly, we consider as output space (R?)" instead of R";

3. We only assume &,, C & to be compact and permutation-

invariant, whereas [149] explicitely builds a space X,, = {z €
R”d|n < Nmax, || ]| < R} (this makes Theorem 4 above more gen-
eral).

Let us now discuss how to overcome these differences in order to
mimic the proofs of [149].
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1. The only properties of the input space involved in [149] are the
number of vertices, action of permutation and the metric (with
the corresponding topology). For the first two points, everything
is still applicable in our setting. For the topology, the difference
is not critical either since we are actually considering the product
of several metric spaces defined in [149] and all corresponding
properties follow.

2. The case d = 1 is as in [149], and the general case amounts to
stacking the resulting function d times. This works seamlessly
with Hadamard product and all properties related to density.

3. There is actually no dependency on the explicit form of &., or
X in [149] (as for the case in 1). And the proof only relies on the
upper bound on the number of vertices. So the generalization
can be naturally obtained.

The detailed proof of Theorem 4 then follows the exact same pro-
cedure as that of Theorem 4 in [149], and we shall omit it here, referring
the reader to [149] for all details.

Applying Theorem 4 Our goal is to prove that Theorem 4 can be ap-
plied to H[. Because H[ is not obviously an algebra (see Lemma 9),
let us consider Hg@, the algebra generated by HZ with respect to the
Hadamard product. More formally:

S Us
Hgﬁ) = {Z@cSugsu’S € Na Us € N7 Csy € R7gsu € Hg} . (614)

s=1 u=1

Note that the Hadamard product among g..,'s is well-defined since for
a fixed input z, all output values g,,(z) take the same dimension - the
size of x.

(7—[5’6, +,-,®) is obviously a unital sub-algebra of (X.,,+,-,®) (the
constant function (1, ..., 1) trivially belongs to ’Hé”@). In order to apply
Theorem 4 to Hg@, one needs to prove that it satisfies both separabil-
ity hypotheses.

Proving the separability Let us first notice that the self-separability
property is a straightforward consequence of the hypothesis of sepa-
rability of external inputs on supp(p). Hence we only need to prove the
separability property:

Lemma 4. ’Hg “ satisfies the separability property of Theorem 4.
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The proof consists of 3 steps.

* (Lemma 5) We prove that for all z, 2" € supp(p) that are not iso-
morphic, there exists a vertexi* in x whose hyper-edge neighbor-
hood never appears in z’.

+ (Lemma 6) We build a continuous function g on X that returns
an indicator of the presence of this sequence in the input graph.

* (Lemma 8) We prove that there exists a function gy € HgD - ’Hg’@
that approximates well enough ¢'.

Lemma 5. Let x and =’ two non isomorphic H2MGs in supp(p), of respec-
tive sizes n.and n'. There exists i € [n|, such that for any i’ € [n],

{(x5,¢,0)|(c,e,0) € No(i)} # {(2,¢,0)|(c,e,0) € N (')} (6.15)

Proof. (of Lemma 5) This lemma relies on the separability hypothesis
(H5) which states that there exists 6 > 0 such that for all z € supp(p)
andceC, foranye # ¢ € &, ||x¢ — 25 <.

We shall use proof by contradiction: assume that for any i € [n],
there exists a(i) = ¢ € [n] such that {(z¢,¢,0)|(c,e,0) € Ny(i)} =
{(2¢,¢,0)|(c,e,0) € Np(i')}. Two cases must be distinguished, depend-
ing on whether n < n’ orn =n'.

* If n > n/, then according to the pigeonhole principle, there ex-
ist two indices ¢ € [n] and j € [n] that have the same image
by o, i/ € [n]. Hence, we have {(z¢,c,0)|(c,e,0) € N,(1)} =
{(z¢,¢,0)|(c,e,0) € Ni(7)}. This means that both vertices i and j
are connected to an hyper-edge of the same class ¢ and with the
same feature z¢ through the same port o. It implies that there are
two distinct objects of the same class that have the exact same
feature, which contradicts the separability hypothesis.

* If n = n/, according to the separability hypothesis (H5), there can-
not exist i # j € [n] that are mapped to the same i’ € [n/]. Thus
a actually defines an injective mapping. Because n = n/, this
mapping is also surjective and hence bijective, making it a per-
mutation. Thus, using the separability hypothesis, for any e € £¢,
ale) € B and g = x5\, which means that = and 2’ are isomor-
phic, contradicting the hypothesis, and thus completing the proof
of Lemma 5.
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For convenience, we shall use a continuous kernel function defined
by
K (z) = max(0,1 — |z|/€) (6.16)

for e > 0. Then we have K.(0) =1 and K (z) = 0 for |z| > e.

Ke(x)

v

=

—€ +€

Figure 6.1: Kernel function

All intermediate functions of HZ, i.e. ((#5°)ocoe)ccc and ($5™)cce,
live in function spaces that satisfy the Universal Approximation Prop-
erty (UAP). So let us consider a space of continuous functions that share
the same architecture, but in which all spaces of parameterized neu-
ral networks have been replaced by corresponding continuous func-
tion space. We denote this space by 7-1,5’T (by convention, a dagger(t)
added to a Neural Network block will refer to the corresponding con-
tinuous function space (e.g. ¢§’°’T). We are now in position to prove the
following lemma.

Lemma 6. For any x,x' € supp(p) that are not isomorphic, there exists

a function g' € H_g T such that for any i € [n], i’ € [n'], we have ¢'(z); #
(2.

g'(@).

Proof. (of Lemma 6) Without loss of generality, let us suppose n > n'.
According to Lemma 5, there exists i* € [n] such that for all i/ € [n/],
{(l’g, G, O)l(C, = 0) < Nz(l)} # {(x,ecv G, 0)‘(07 ¢, O) < Nz'(z/)}

For any class ¢ and port o, we denote by X**° = {z¢|e, = i*}. We can
arbitrarily order classes, ports, and elements in X*“°. Each tuple c € C,
o € O°and & € X*° is associated with a unique integer i(c,0,%) € N.
By denoting L = > o> ,coc |X*°], we can choose integers that do
not overlap and liein {1,...,L}.

Moreover, let us denote X := {z¢le € &} U {zle € £}, and
€= min ||Z—a'|. € is thus the smallest non-zero distance between

T#x'eXe
features of class c that appear in x and «'.

Besides, the compactness assumption implies that there exists a

maximal number of hyper-edges connected to the same vertex. We

denote by N this upper bound.
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In the following, we construct a continuous function g : supp(p) —
)V that detects the presence of a vertex that has exactly the same neigh-
borhood as i* in x, and then propagate information to every other ver-
tex of the graph. We have g'(z) > (1,...,1) € R"(inequality is element-
wise) and ¢f(2') = (0,...,0) € R (thus proving Lemma 6).

Let us choose continuous functions (((;bg’o’T)OE@C)CGC (see line 5§ of
Algorithm 6) such that for any z” € supp(p) with n” vertices, and any
vertex i € [n], h[z"]Y(At) is defined by:

W'l = Y () Kl

(c,e,0)EN 1 (i) TEX*S0

+ > Kl

i‘eXc\X*c,o

:E”C o ‘%H) % (N + 1)1(0,0,5:)

e

:(,’”C . j“) % (N—i— 1)L+1)

e

(6.17)

One can observe that for both = and #/, this quantity lies in N, and is a
sum of positive terms.

The second term of the expression enforces that if there is a single
hyper-edge connected to ¢ that is not in the hyper-edge neighborhood
of i* in z, then hlz"]Y(At) > (N + 1)1, The first term is basically a
bijective base-(N + 1) numeration. Thus, in order to obtain exactly the
value 3¢y (N + 1)! atvertex i, it is required that values of hyper-edges
that are connected to i* in x are present exactly one time. Therefore at
every vertex i’ of 2/, we have Az}, (At) # 3, (V + 1)!, and at vertex
i* of x, we have h[z]i. (At) = 37, (N + 1)

We choose the following hyper-edge update:

At) = 2@: K1 (|h[2"]Y (At) — Z{:}(N +1)Y) (6.18)
oe° le[L

which basically returns a quantity larger or equal to 1 at hyper-edges in
x that are connected to i*, and 0 to all hyper-edges in 2.
Then we use the two following series of updates:

M+ A = > k") (6.19)
(c,e,0)EN 1 (%)

hla"|o(t+ At) = ) hla"]! (t+ At) (6.20)
ocQ¢°

which additively propagates information to all neighbors.

At t = 2At, at each vertex ¢ that is a direct neighbor of :* we have
hlz]?(2At) > 1. Then, att = 1 it has propagated to every other
vertex, meaning that Vi € [n], h[z]{(1) > 1. Meanwhile, we have

(2

Vi’ € [n'], h[2']% (1) = 0, which concludes the proof of Lemma 6 O

)
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In order to prove Lemma 8, we will need the following technical
lemma:

Lemma 7. Let X, Y, Z be three metric spaces. Let F C C(X,Y) and
G C C(Y, Z) be two sets of continuous functions. And let F* C F,G* C G
be two subsets of Lipschitz functions that are dense in F and G respectively.
Then G* o F*:={go flg € G' f € F'} isdensein G o F.

Proof. (of Lemma 7) Let g o f be a continuous functionin G o F, € > 0.
Due to the density of G’ in G, there exists g* € G* such that

d(g,9") < =. (6.21)

N

Let L, be the Lipschitz constant of ¢‘, the density of F* in F implies
that there exists f* such that

€

3 4
d(f, f) < o, (6.22)
Then we have
dz(go f(x),g" o f(x)) <dz(go f(z),9" o f(x))
+dz(g° o f(z), " o f(x)) (6.23)
<§ + Lyedy (f(z), f'(z)) (6.24)
<§ + Lgeﬁ iy (6.25)

forany 2 € X. Thus d(go f,g° o f*) < e. Hence G* o F'is dense in
GolF. O

We may now proceed with Lemma 8.
Lemma 8. H2 is dense in 1.

Proof. As functions in %5 are composition of Lipschitz functions (neu-
ral network with linear transformation and Lipschitz activation as as-
sumed), and all intermediate function spaces verify the Universal Ap-
proximation Property, we conclude immediately from using the defini-
tion of H?’T and applying Lemma 7 consecutively. O

We are ready to prove Lemma 4, i.e., that 7—[5@ satisfies the sepa-
rability hypothesis of Theorem 4.
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Proof. (of Lemma 4) It suffices to show the separability for 7—[5 since it
is a subset of 75,

Let z,2" € supp(p). According to Lemma 6, there exists g € Hg’T
such that for any i € [n],i’ € [n/], we have g¢'(4); # g'(2')s. According to
Lemma 8, there exists g € HZ such that

d(g',g) < <. (6.26)

Wl =

Then for any i € [n],i’ € [n], we have g(z); > 2 and g(z'); < 3. This
proves the separability of HZ. By observing that #5 C H*®, we obtain
that ’H,g’@ respects the separability hypothesis of Theorem 4. O

Before being able to prove Theorem 2, we need the last following
lemma.

Lemmaog. HY = H)©.

Proof. (of Lemma 9) We shall prove this result by explicitly constructing
an approximation function in %5 for a given function in 7—[5@.

Let g® € 1. By definition of HS® in eq. (6.14), there exists S € N,

.....

9°=>_ () aulsu (6.27)

Thus, for any (s, u), there exists 1/At,, < D+ 1,and dg, € N, such that
gsu IS composed of functions ((25”*")oeoc ) cec and (Qg’h’s’“)cec applied
1/At, times. dg, is the dimension of the latent state of channel gs,.

The different channels can have different number of propagation
updates T, but they are all bounded by D + 1. Without loss of gen-
erality, we can assume that all 1/At,, are equal to D + 1 by padding,
when needed, exactly D + 1 — 1/At,, null operations before the actual
ones, scaling the input ¢ appropriately, and scaling the updates by a
factor (D + 1)/(Ats,).

Letd = 27 3% d,, be the cumulated dimensions of the differ-
ent channels.

For each (s,u), we introduce the matrix W, € {0, 1}%«*¢ which is
defined by:

1 if 7% U,S, gty u,il Ay =b
[Wsu] b = { ’ I Zs =1 Zu =1 + Zu =1 ta (628)

0, otherwise.
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Thus W, = [0,...,0,14,,0,...,0]. Basically, when given a vector of
dimension d, Wy, will be able to select exactly components that corre-
spond to the channel (s, «), and will thus return a vector of dimension
dgy.

Let us now define the functions ((®5°)ecor)ecc and (®5™) ¢, such
that for any class ¢ € C and any port o € O° we have:

S Us

GOt hy hf,af) =Y Y W, BeTU(t, Wby, W b, xf)  (6.29)
s=1 u=1
S Us

@gah(t, h})’hlc’ lc ZZWT q)chsu t W hv W hc c) (630)

s=1 u=1

These functions used in Algorithm 6 define a mapping acting on a latent
space of dimension d. Moreover, for any channel (s, u) and any vertex
i € [n], we have W, .hImer = plmesst,

We have thus built a function of H that exactly replicates the steps
performed on the different channels. By choosing as a last step func-
tion ®5%(1,...) = 0 3% su@c‘”“( ...) we obtain a mapping
g € H that can perfectly imitate ¢© € 7—[g @. This concludes the proof
of Lemma 9. O

We can now prove Theorem 3.

Proof. (of Theorem 3) According to the hypotheses of compactness
(H3) and permutation-invariance (H2) on supp(p), both conditions of
Theorem 4 are satisfied by supp(p). Consider the subalgebra 7—[5’6 de-
fined by equation (6.14). According to the hypotheses of uniqueness of
hyper-edges (H1), connectivity (H4) separability of input features (Hs),
and Lemma 4, H?’Q satisfies the separability and self-separability con-
ditions of Theorem 4. Applying Theorem 4, it comes that Hg@ is dense
in G. Then according to Lemma 9, HZ = H;"®. We conclude that #Z is
dense in G by the transitivity property of density. O

End of proof of Theorem 2 We now have all necessary ingredients
to complete the proof of Theorem 2.

From Lemma 7, Theorem 3 and Lemma 3, it comes that Hx o”HgD is
dense in RoG. But from Lemma 1we know that C., (supp(p), ) C Rog.
Thus Hr o HE is dense in Ceq. (supp(p), V)

And from Lemma 2 we know that Hg o HEY C HP. Hence H” is
dense in C., (supp(p), V). |
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Chapter 7

Toy Examples

Before applying the DSS methodology to power grids, we propose to
illustrate it on a set of simpler optimization problems. In this chapter,
we learn to solve linear systems’ stemming from two distinct domains,
namely a system of springs and the discretization of Poisson’s equa-
tion. The goals of this chapter are as follows:

Experimentally demonstrate the viability of our approach on a set
of problems for which we have an efficient baseline (LU decom-
position [150]);

Scale up the approach to large graphs (up to 1,089 nodes);

Demonstrate the out-of-distribution generalization ability of
trained DSSs to both larger and smaller graphs than those seen
during training;

Show that trained models generalize poorly to changes of orders
of magnitude of the features;

Visualize and interpret the behavior of latent variables in trained
models.

The first section considers the problem of finding the equilibrium
state of a system of springs, while the second focuses on systems
stemming from the discretization of Poisson’s equation (used in fluid
dynamics, electrostatics, Newtonian gravity, etc.). Experiments con-
ducted over the Poisson equation dataset are a joint work with Wen-
zhuo Liu (IRT SystemX).

'Knowing matrix A and vector b, the problem is to find « such that Au = b. How-
ever, u does not vary linearly with A, making the solution mapping (4,b) — u non-

linear.
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7.1 System of springs

The first application we propose to explore consists in finding the equi-
librium position of a system of springs. Let us consider a series of
nodes laid out as a horizontal regular 2D grid, linked by a series of
springs with various stiffness parameters. Multiple weights are tied to
randomly selected nodes. To counteract the downward forces applied
by weights, several supports located at randomly selected nodes hold
their node at a constant height.

This reasonably simple type of problem is a good test for our
method, because the exact solution of the problem can be obtained
through a matrix inversion, computed e.g., by the LU decomposition.
Moreover, we can easily explore the out-of-distribution generalization
ability of the trained models by considering various distributions dis-
tributions of systems of springs examples.

7.1.1 Problem & data generation

Let us now introduce the notations and the data generative process.
We denote by x a system of springs. For the sake of simplicity, we
only consider regular grids of /n x /n nodes, and physical coef-
ficients are modulated by the dimensionless variable 7. Figure 7.1
displays the graph structures of samples drawn for 5 different val-
ues of y/n. We may thus denote by p(x;+/n,7) the input data dis-
tribution of spring systems z that have \/n x y/n nodes and a fea-
ture coefficient 7. In our problem, there are exactly 4 object classes:
C = {springs,weights, supports,nodes}. As will be detailed there-
after, only springs, weights and supports have input features, and only
nodes have output feature. Thus, z = (x®Prings guweights gsupporis) gnd

y = (ynodes) .

Springs In order to also have some diversity in terms of graph struc-
ture, we choose to cut open y/n — 2 springs?, making sure not to break
the network into multiple components, as illustrated by Figure 7.2.
Springs are defined by their respective stiffness constants &, which fol-
low a uniform law U([7 x IN.m™!, 7 x 10N.m~']) (parameterized by 7),
where N and m are Sl base units. Thus, denoting £579¢ the set of
springs, their corresponding input is given by z7""9% = (k,).cgsprings.
They apply symmetric forces to the nodes at their extremities, pro-
portional to the stiffness coefficient and the height difference (assum-

2y/n is always chosen to be an integer
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Figure 7.1: Top view of graph structure of input data x sampled using 5
distinct values for \/n. From left to right, the parameter /n is succes-
sively set to 3, 6, 10, 18 and 33. Exactly \/n — 2 springs are cut open in
each sample, so as to provide some topological variability.

ing that height displacement are much larger than horizontal displace-
ment).

Weights Weights are located on 20% of all n nodes, uniformly sam-
pled. They are defined by the constant downward force F' that they
apply to their nodes, which is sampled uniformly according to U([r x
LN, 7 x 10N]). Thus, denoting £v<i9"s the set of weights, their corre-
sponding input is given by x%¢9hts = (F.,), ccuweights.

Supports Similarly, supports are located at 20% of all n nodes, uni-
formly picked such that there is no overlap with weights. They are de-
fined by the target height u that they impose to their nodes. These
altitudes are sampled uniformly according to U([—7 x 1m,7 x 1m]).
Thus, denoting £5“PPorts the set of supports, their corresponding input
is given by x5"PPS = (4, ) cegsupports.

Nodes While nodes do not bear any input feature, they do have an
output u, as we aim at finding for each node the altitude when the
whole system is at the equilibrium. Thus, denoting £7°%* the set of
nodes, their corresponding input is given by 4% = (i) cgnodes.

Cost function The optimization problem we consider consists in
finding the equilibrium height of every node. However, two distinct be-
haviors can be observed, depending on whether a node is connected
to a support or not. If there is a support, then the node is exactly at the
same height as the support. We define 15“7P°"*, 3 binary indicator that
equates to 1 if thereis a support at node ¢, and 0 otherwise. The actual
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Figure 7.2: Instance of a spring system with /n = 3.

height of any node e € £m°% is given by:
U = 15PP g, + (1 — 154PPo g, (7.1)
It receives forces applied by springs and weights:

AR = Y (lgoe— Ly kolug —ug) +F. (7.2)

elegsprings

The cost function takes into account the force imbalance at nodes that
have no support:

Uzy)= Y (1=127") x |AF| (7.3)

eegnodes

7.1.2 Experiments

Now that both the cost function ¢ and the data distributions p(z; /n, 7)
are defined, let us detail the experimental setup.

Datasets We have chosen 5 distinct values for y/n: [3,6,10,18,33],
and 5 distinct values for 7: [0.1,0.33, 1, 3.3, 10]. For each of the 25 pairs
of values (y/n, 7), we have generated 100, 000 samples for the train sets,
10,000 samples for the validation sets and 10, 000 samples for the test
sets. We trained models for each of the following pairs: (y/n = 10,7 =
0.1), (y/n = 10,7 = 10), (\/n = 3,7 = 1), (/n = 33,7 = 1). In a later
subsection, the ability of trained models to generalize to all 25 datasets
will be explored.

Baseline Since minimizing the imbalance at each node amounts to
inverting a linear system given by equations 7.1 and 7.2, we compare
the solution learned with DSS with that obtained with the LU method,
by measuring the Pearson correlation (Corr), the normalised mean
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absolute error (hnMAE) and the normalised root mean squared error
(NRMSE). The normalization is done by dividing the MAE and RMSE by
the difference between the largest and smallest values (dividing by the
mean for values centered around zeros does not make sense). The
10", 50" and 90" percentiles of the cost function ¢ are also displayed
for both the LU and DSS models.

Model hyperparameters We used our own implementation of the
H2MGNN architecture using TensorFlow [151] (no GNN framework were
used). Hyperparameters have been tuned by trial and error using as
validation set the (y/n = 10,7 = 1) dataset. All four trained models
then use the exact same hyperparameters. The step size and latent
dimension are set to At = 1/100 and d = 40. All the neural networks
(DG°)ocoe, D™, d5Y) cc that appear in the H2ZMGNN (Algorithm 2 in
Section 4.2) are simple fully connected neural networks with 2 hidden
layers, 80 neurons per hidden layers, and a hyperbolic tangent (tanh)
activation function.

Training All models have been trained using the Adamax [117] opti-
mizer with parameters (Ir = 3 x 1073, 8, = 0.999, 5, = 0.9999,¢ =
1 x 107'2). Training was performed for 40 hours on a single NVIDIA
TITAN Xp (163 epochs with batch size 50 for \/n = 3; 118 epochs with
batch size 50 for \/n = 10; 10 epochs with batch size 2 for /n = 33).
Significantly smaller batches were used for the dataset made of 33 x 33
nodes to avoid GPU saturation. However, results show that this has no
obvious impact over the training quality.

Results Table 7.1 displays metrics of the quality of predictions of
models over test sets stemming from the same distribution p(z; /n, 7)
as they were trained on. In all four cases, our trained models are able
to achieve an extremely good correlation with the LU method (even
though the training is fully unsupervised), as evidenced by fact that
1 — Corr is systematically below 2e-4.

7.1.3 Out-of-distribution generalization

We now investigate the super-generalization abilities of each of the 4
trained models, recalling that they were all trained for a different pair
(v/n, 7). In Figure 7.3 we display the correlation for each model when
used on each of the 25 test sets, one for each pair (1/n, 7).

For a constant value of 7, we observe that models achieve good
results when tested on both larger or smaller graphs. It achieves zero-
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| (yn,7) [ (0,01) [ (10,100 [ &1 [ (331 |
[ Method [ DSS | LU [[DSS| LU [[DSS| LU [[DSS| LU |

1-Corr. 8e-6 - 4e-6 - 2e-4 - 3e-6 -
NRMSE 2e-4 - He-4 - 2e-3 - 2e-4 -
NMAE He-H - 3e-4 - 3e-4 - le-4 -

010" p. || 4e-13 | 5e-30 || 5e-1 | 3e-19 || 6e-9 | 4e-28 || 1e-8 | 2e-25
£50™ p. || 9e-13 | 2e-29 || 2e0 | 9e-19 || 7e-8 | 2e-26 || 2e-8 | 4e-25
90" p. || 3e-12 | 1e-28 || 5e0 | 3e-18 || 1e-6 | 1e-24 || 3e-8 | 1le-24

Table 7.1: For each of the 4 considered datasets, the DSS method is able
to perform extremely accurate predictions, highly correlated with the
LU method, while having been trained in a completely unsupervised
manner.

shot learning [152] for problems of different topologies. This aspect
of the out-of-distribution generalization is of primary importance, be-
cause in our main power grid application the topology tends to vary
drastically. Moreover, we observe that a model trained on large graphs
transfers better to small graphs than a model trained on small graphs
transfers to large ones.

For a constant value of \/n, we observe that changing the feature
distribution drastically decreases the predictive power of trained mod-
els. This is not surprising as it completely changes the orders of magni-
tude of the input data, and feeds neural network with values that were
never encountered during training. However, we argue that features
orders of magnitude in power grids do not vary that much from one
year to the other, so a model trained on one year should still be valid
for the next one.

7.1.4 Visualization of latent variables

The H2MGNN architecture relies on the evolution of a series of latent
variables, either defined at vertices, or at hyper-edges. Figure 7.4 dis-
plays the internal evolution of the first component of each variable
w.r.t. parameter ¢t € [0, 1]. The non-trivial behavior and asynchronous
oscillations that appear for some variables indicate that the model has
learned how to have latent variables interact with each other. Figure
7.5 displays a 2D projection of latent variables trajectories by consider-
ing the first two dimensions. Similarly, we observe complex trajectories
that result from interactions between latent variables.
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0.33 0.33
Model trained on —_— —_—
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Figure 7.3: Correlations of the 4 trained models with LU solutions for
the test sets of all 25 pairs (y/n, 7). The second column displays 1 —
Corr for more precise estimation of the prediction quality. The test
sets stemming from the training distributions are highlighted in red.
Trained models tend to generalize quite well to both larger and smaller
graph sizes (controlled by /n), but have trouble generalizing to other
orders of magnitude of features (controlled by 7).
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Figure 7.4: Evolution of latent variables hv, hnedes, psprings = psupports
hweights and intermediate predictions 3"°% for a single instance of input
grid z, atinference time. All latent variables are initialized at 0, and then
proceed to evolve with ¢, by interacting with each other and with the
input data, as described in equations (4.13-4.15) and Algorithm 2. The
non-trivial behavior and asynchronous oscillations of latent variables
show that the H2MGNN has learned to have the different variables in-
teract with each others.

122



h nodes

W

hsprings h supports

Figure 7.5: Trajectories of latent variables according to their first two
dimensions for a single instance of input grid z, at inference time. All
latent variables are initialized at 0, and then proceed to evolve with ¢,
by interacting with each other and with the input data, as described
in equations (4.13-4.15) and Algorithm 2. The non-trivial behavior of la-
tent variables show that the H2MGNN has learned to have the different
variables interact with each others.
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7.2 Discretized Poisson equation

The second toy example considered in this chapter comes from the Fi-
nite Element Method applied to solve the 2D Poisson equation, one of
the simplest and most studied partial differential equation in applied
mathematics, and that appears in fluid dynamics, electrostatics, New-
tonian gravity, etc. Itis commonly solved by first discretizing the spatial
domain of definition of the equation into an unstructured mesh, and
then converting the differential system into a linear system of equa-
tions defined at every node of the mesh. Just like in the previous ex-
periment, it results in solving a linear system of equations. The major
distinction lies in the data distribution.

This experiment has been published at NeurIPS 2020 in the paper
Deep Statistical Solvers [3]. In that paper, the data formalism, the model
and the training processes were marginally different from the previous
experiment, as detailed in Section 4.A. Despite these changes, those
experiments are still largely relevant in the context of this document.

7-2.1 Problem and Data generation

Let us first introduce Poisson’s equation and the process of solving it
by finite element method.

Formulation of the problem The Poisson equation with Dirichlet
boundary condition is defined over a 2D domain 2 with boundary 02
by:

—Au = finQ (7.4)
u = gin oS} (7.5)

Generating random geometries Random 2D domains €2 are gener-
ated from 10 points, randomly sampled in the unit square. A Bézier
curve that passes through these points without any loop is created,
and is further subsampled to obtain approximately 100 points in the
unit square. These points define a polygon, that is used as the bound-
ary 0f). See the left part of Figure 7.6 to see four instances of domains
2. The random 2D geometries are discretized using Fenics3 standard
mesh generation method, as illustrated by the right part of Figure 7.6.

3https://fenicsproject.org/
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Discretization

Figure 7.6: Discretization of randomly generated domains

Random functions f and ¢ Functions f and g are chosen to be de-
fined by the following equations:

flug,v9) =1 (v — 1)2 + rgvg + 73 (7.6)

g(v1,09) = mv% + 7“51)% + rgU1 Uy + T7U1 + TyUg + T (7.7)

where v, and v, denote the 2D coordinates, and parameters r; are uni-
formly sampled between -10 and 10.

Assembling The assembling step [153] consists in building a linear
system from the partial differential equation and the discretized do-
main. The unknowns are the values of the solution at the nodes of the
mesh, and the equations are obtained by using the variational formu-
lation of the partial differential equation on basis functions with sup-
port in the neighbors of each node. This step is also automatically per-
formed using the Fenics package. The result of the assembling step is
a square matrix A and a vector b, and the approximate solution is the
vector u such that Au = b.

Two distinct types of nodes emerge from this process: those who
belong to the boundary 02 are set to a constant value (analogous to
supports from the spring system), while the other nodes are “free” but
impose a constant force (analogous to weights). The matrix A is a stiff-
ness matrix and encodes stiffness coefficients that are analogous to
springs. We aim at finding a scalar quantity defined at all nodes, which
is analogous to the height of nodes in Section 7.1. Even the loss function
is the same.

Still, the data formalism in the original paper and implementation
only considered two types of objects: nodes and edges, as detailed in
Section 4.A.
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7.2.2 Experiments

Dataset The dataset consists of 96180/32060/32060 train-
ing/validation/test examples from the distribution generated from
the discretization of the Poisson equation. Randomly generated 2D
geometries and random values for the second-hand function f and
boundary condition g are used to compute matrices A and vectors b.
Their number of vertices n are around# 500 (max 599).

Baselines Two baseline methods are considered, the direct LU de-
composition, that could be considered giving the "exact” solution for
these sizes of matrices, and the iterative Biconjugate Gradient Stabi-
lized methods (BGS), with stopping tolerances of 1072 . These algo-
rithms are run on an Intel Xeon Silver 4108 CPU (1.80GHz) (GPU imple-
mentations were not available, they could decrease LU computational
cost by a factor 6 [33]). In addition to the DSS model that learns in an
unsupervised fashion, a similar GNN model with the same hyperpa-
rameters was trained by imitation of the LU solution, which we refer
to as a “proxy”. We compare the results of our method with the LU
by measuring the Pearson correlation (Corr) and the normalised root
mean squared error (hnRMSE). The normalization is done by dividing
the RMSE by the difference between the largest and smallest values
(dividing by the mean for values centered around zeros does not make
sense). The 10*, 50" and 90" percentiles of the cost function are dis-
played.

Model hyperparameters We used our own implementation> of the
GNN architecture using TensorFlow [151] (no GNN framework were
used). The model used is introduced in Section 4.A. In this experiment,
there are 30 propagation steps, the hidden dimension is set to 10, each
neural network block has a single hidden layer with 10 neurons and a
leaky-ReLU activation, and the factor o was set to 1073, The complete
architecture has 49, 830 weights.

Training Training is performed using Adam [117] with a learning rate
of 1072 and standard Adam hyperparameters (5; = 0.9, 3, = 0.999, ¢ =
10~7), for 280, 000 iterations (48h) with batch size 100. The loss discount
factor v (see Section 4.A) is set to 0.9. In the following, all experiments
were repeated three times, with the same datasets and different ran-

4Fenics automatic mesh generator does not allow a precise control of n
Shttps://github.com/bdonon/DeepStatisticalSolvers
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Method | Dss Proxy LU | BGS (tol=1e-3) |

Corr. w/ LU > 0.9999 | > 0.9999 - -
NRMSE w/ LU 1.6e-3 1.1e-3 - -

£ 10 p. 3.9e-4 7.0e-3 | 4.5e-27 1.3e-3
£ 50" p. 1.2e-3 1.6e-2 | 6.1e-26 1.7e-2
290" p. 4.1e-3 4.0e-2 | 6.3e-25 1.1e-1

Table 7.2: Discretized Poisson equation experiment results - Both the
unsupervised DSS and the supervised “proxy” achieve good correlation
with the LU method. However, the DSS has never seen the output of
the LU during training.

dom seeds. We only report the results of the worst of the three trained
models.

Results Table 7.2 displays comparisons between a trained DSS and
the baselines. These results validate the approach, demonstrating that
DSS can learn to solve 500 dimensional problems rather accurately,
and in line with the "exact” solutions as provided by the direct method
LU (99.99% correlation). While both methods achieve similar results,
the DSS was trained in a purely unsupervised way.

Computational times of the LU and BGS methods were estimated
on an Intel Xeon Silver 4108 CPU (1.80GHz), while the DSS and “proxy”
methods were run on a Nvidia GeForce RTX 2080 Ti. Since a major ben-
efit of deep learningis thatit can perform multiple inferences in parallel
on GPUs, we consider the inference time divided by the batch size. For
all methods, we obtain similar computational time of 2ms per instance.
Still, comparing computational times of two methods that rely on two
different sorts of hardware (cpu vs. gpu) really depends on the actual
use case.

Figure 7.7 illustrates, on a hand-made test example (the mesh is on
the upper left corner), how the trained DSS updates its predictions, at
inference time, along the 30 updates. The flow of information from the
boundary to the center of the geometry is clearly visible.

7.2.3 Out-of-distribution Generalization

Varying graph sizes We now experimentally analyze how well a
trained model is able to generalize to a distribution that is differ-
ent from the training distribution. The same data generation pro-
cess that was used to generate the training dataset is now used with
meshes of very different sizes, everything else being equal. Whereas
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Figure 7.7: Intermediate losses and predictions. Top left: the graph
structure; Top right: the LU solution; Bottom: evolution of the loss
along the 30 updates for a trained DSS, at inference time. The inter-
mediate predictions ' are displayed for several values of ¢.

the training distribution only contains graphs of sizes around 500, out-
of-distribution test examples have sizes from 100 and 250 (left of Figure
7.8) up to 750 and 1000 (right of Figure 7.9). In all cases, the trained
model is able to achieve a correlation with the "true” LU solution as
high as 99.9%. Interestingly, the trained DSS achieves a higher correla-
tion with the LU solutions for graphs with fewer nodes, while the cor-
relation of the “proxy” model decreases when n both increases and
decreases. Nevertheless, thanks to the specific structure dictated to
the linear system by the Poisson equation, DSS was able to perform
zero-shot learning [152] for problems of very different sizes.

+ DSS
10—2 4
e Proxy +
=
(o]
© +
| 10-4 e °
°
— 4 t
10-° T T
502 1000

Figure 7.8: Varying problem size n: Correlation (DSS, LU)

Varying features distributions We may now observe the effect of
changing the continuous features distribution. In order to change the
feature distribution, we alter both the stiffness matrix A and the vector
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b, and compute the solution by using the LU method on these altered
A and b. Figure 7.9 displays the results of the DSS model, learned on
the initial dataset, when increasing alteration is added to the test ex-
amples, more and more diverging from the distribution of the train-
ing set (the graph size remains unchanged). The alteration is applied
by means of a random noise with variance parameterized by 7. Log-
normal noise is applied to A (A;;exp(N(0,7)), and normal noise to b
(b:N(1,)). Multiple values of noise variance T were tested, as shown
in 7.9. Although DSS results remain highly correlated with the ground
truth for small values of 7, they become totally uncorrelated for large
values of (correlation close to 0). DSS has learned something specific
to the distribution p(x) of linear systems coming from the discretized
Poisson EDP.

10!
of *+ DSS ®
. 10-1- ® Proxy
S ?
O
|
— 1073+
+
+
o ¢ °
107 T

1072 100 T

Figure 7.9: Changing feature distribution by varying 7: Correlation (DSS,
LU)

This chapter shows results obtained using the DSS approach on
linear systems stemming from two distinct domains. While the trained
neural networks do not exploit the linearity of the problem, they
manage to get extremely accurate results as evidenced by the very
good correlation compared to the LU method. Moreover, we prove
the viability of the approach for graphs as large as 1, 089 vertices. We
also explore the capacity of DSSs to generalize to out-of-distribution
samples by distinguishing between the generalization to different
graph sizes and different feature distributions. We observe that
trained DSSs generalize very well to both larger and smaller graph,
underlining a strong robustness with regards to topology changes,
which is of primary importance for our power grid problems. More-
over, we observe that altering the feature distribution causes the
trained DSSs to drastically decrease in accuracy. One may argue that
it is not surprising and that it is not really an issue for power grid
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related problems, as the physical quantities tend to always lie in the
same distribution (for instance a generator will always produce power
between its minimal and maximal possible values).
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Chapter 8

AC Power Flow

The AC Power Flow (AC-PF) problem [106, ] consists in computing
the steady-state electrical flows in a power grid knowing the amount
of power that is being produced and consumed throughout the grid,
the way power lines are interconnected, as well as their physical prop-
erties. This non-linear problem is at the heart of real-time power sys-
tems operation, and is solved daily for a wide variety of power grid
instances using the Newton-Raphson method. As underlined by the
GARPUR consortium [12], replacing traditional optimization methods
with fast neural networks could be key in developing a probabilistic re-
liability management approach. Prior to our contributions, most inves-
tigated neural network architectures did not take into account topology
variations, and were trained by imitation of the output of the Newton-
Raphson.

This chapter presents two experiments conducted on this problem
using DSSs. First, Section 8.1 experimentally demonstrates the ability
of our method to learn in an unsupervised manner to solve the AC-PF
problem on two standard benchmarks from the PS literature. Second,
Section 8.2 presents ongoing work on scaling up the approach to real-
life data from the French power grid. Although the results obtained are
not yet satisfactory, this experiment provides valuable lessons while
trying to apply the DSS approach to real-life power grids. We thus
share our experience and what we believe are opportunities for im-
provement, in the hope that it will benefit the future research.

8.1 Synthetic data experiments
The first experiment focuses on trying to solve the AC-PF problem on

synthetic data. This experiment was published at NeurIPS 2020 in the
paper Deep Statistical Solvers [3]. We refer readers to the Section 4.A
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for more details about the data formalism and neural network archi-
tecture used in this experiment.

8.1.1 Problem & Data generation

Experiments are conducted on two standard power grids from the PS
literature, namely the IEEE case14 (n =14), and the IEEE case118 (n = 118), as
displayed in Figure 8.1. Power injections (production and consumption)
are sampled from the time series developed for the Learning to Run
a Power Network competition [34]. Moreover, in order to increase the
diversity in terms of grid topology, for each example there is a 25%
chance that a randomly chosen line is disconnected, and 25% chance
that two randomly chosen lines are disconnected.

|[EEE case 14 |IEEE case 118

Figure 8.1: Power grid instances used in the synthetic data experiments

In the following, we briefly summarize the input and out-
put features of the considered systems, and refer read-

ers to Chapter 1 for additional information. Six distinct
classes of objects compose the considered power grids:
C = {buses,loads, generators, shunts, lines, transformers}.  Only

buses have output features.

Buses Buses lie at the interface between the various dipoles and
quadrupoles that generate, transport and consume electrical power.
Each bus e € £ bears input features z%** = [¢,, 12%, 15'**] which
define its voltage setpoint and if it is a “PV” and/or a “slack” bus. It also
bears an output feature y2“s¢s = [¢,,J,] that define its voltage magni-
tude and phase angle.
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Loads They withdraw power from buses. Each load e € £ bears
input features z°e?s = [p,, ¢.] that define their active and reactive
power.

Generators They inject power into buses, although their actual be-
havior is far more complex and detailed in Section 1.3. Each generator
e € yenerators hears input features z9enerators = [p,. ¢.] that define their
active and reactive power.

Shunts They have a fixed impedance and are usually used to mod-
ulate the reactive power. Each shunt e € £5"“"s bears input features
zshunts — (g, b.] that define their conductance and susceptance.

e

Lines They transport electrical power through the coupling of elec-
trical oscillations of both their ends. Each transmission line e € £!nes
bears input features z'"¢* = [r,, z., b¢] that define their resistance, re-
actance and total line charging susceptance.

Transformers They transport electrical power through the coupling
of electrical oscillations of both their ends, and can interconnect differ-
entvoltage levels. Each transmission line e € £ bears input features
glines = [, @, bS, T, V3" that define their resistance, reactance, total
line charging susceptance, ratio and phase shift.

Cost function All devices inject electrical power into the bus they are
connected to. Their respective behaviors are detailed in Section 1.3. For
each bus e € £%¢, the complex power mismatch’ is given by As,. To
satisfy Kirchhoff's laws, it should be zero at every bus simultaneously.
Thus, we use as a cost function the following:

Uzy) = > |As] (8.1)
ecEbuses
8.1.2 Experiments

Dataset For case14 (resp. casen8), the dataset is split into
16064/2008/2008 (resp. 18432/2304/2304) samples.

'discarding active power mismatch for the slack bus, and reactive power mis-
matches for voltage controlled buses
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Baselines State-of-the-art AC power flow computation rely on the
Newton-Raphson method, used as baseline here (using the pan-
dapower[154] implementation, on an Intel i5 dual-core (2.3GHz)). To
the best of our knowledge, no GPU implementation was available, al-
though recent work [155, ] investigates such an avenue. We com-
pare the results of our method with the Newton-Raphson by mea-
suring the Pearson correlation (Corr) and the normalised root mean
squared error (NnRMSE). Those metrics are computed by comparing the
results at every vertex (or line) of every sample in the test set. The
normalization is done by dividing the RMSE by the difference between
the largest and smallest values (dividing by the mean for values cen-
tered around zeros does not make sense). The 10, 50" and 90" per-
centiles of the cost function are displayed. We also compare the DSS
to the “proxy” approach: the architecture is strictly the same, but the
loss function used during training is the distance to the “ground truth”
(provided by the Newton-Raphson method).

Model hyperparameters We used our own implementation? of the
GNN architecture using TensorFlow [151] (no GNN framework were
used). The model used is detailed in Section 4.A. For the 14 nodes case
(resp. 118 nodes), there are 10 (resp. 30) propagation steps, the hid-
den dimension is set to 10, each neural network block has a single hid-
den layer with 10 neurons and a leaky-ReLU activation, and the factor
o is set to 1073, The complete architecture has 17,220 (resp. 51, 660)
weights.

Training Training is performed using Adam [117] with a learning rate
of 1072 and standard hyperparameters, for 883,000 (resp. 253, 000) it-
erations (48h) with batch size 1,000 (resp. 500), on an Nvidia GeForce
RTX 2080 Ti. The discount factor ~ is set to 0.9.

Results In both cases, correlations between power flows output by
the trained DSSs and the Newton-Raphson method are above 99.99%
(both active p;; and reactive ¢;;). The same can be said for the “proxy”
models. However, one can observe a less satisfactory correlation in
terms of v; and ¥; for the DSSs while the proxies maintain a correlation
higher than 99.99%. This can be explained by the fact that the DSSs min-
imizes power mismatches while the proxies minimize the distance to
the Newton-Raphson output in terms of v; and ¥;. However, this does
not impact the quality of the power flow prediction. Our DSS model is

https://github.com/bdonon/DeepStatisticalSolvers
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Dataset IEEE 14 nodes IEEE 118 nodes
Method DSS | Proxy || NR DSS | Proxy || NR
v; 9993 | > .9999 - 9979 | > .9999 -
Corr. | ¥; 9986 | > .9999 - 8131 | > .9999 -
w/ NR | p;; || >.9999 | > .9999 - >.9999 | > .9999 -
¢j || > 9999 | > .9999 - >.9999 | > .9999 -
V; 2.0e-3 4.9e-4 - 1.4e-3 1.2e-3 -
NRMSE | 9; 7.1e-3 1.7e-3 - 5.7e-2 4.5e-3 -
W/ NR | p;; 6.2e-4 2.6e-4 - 1.0e-3 3.9e-4 -
qj || 4.2e-4 | 2.0e-4 - l.le-4 | 1.7e-4 -
Loss 10" p. 4.2e-6 2.3e-5 le-12 1.3e-6 6.2e-6 3e-14
Loss 50" p. 1.0e-5 | 4.0e-5 || 2e-12 || 1.7e-6 | 8.3e-6 || 4e-14
Loss 90" p. 4.4e-5 1.2e-4 || 3e-12 || 2.5e-6 1.3e-5 || 6e-14

Table 8.1: Our trained DSS models are highly correlated with the
Newton-Raphson solutions.

able to learn accurate predictions of v; and ¢;, without having observed
the output of the Newton-Raphson during training. As a result, our ap-
proachis a completely independent optimization method that does not
rely on the imitation of potentially expensive optimization techniques.

Computational time of the Newton-Raphson method was esti-
mated on an Intel i5 dual-core (2.3GHz), while the DSS and “proxy”
methods were run on a Nvidia GeForce RTX 2080 Ti. As evoked in Sec-
tion 7.2, deep neural networks can perform multiple inferences in par-
allel on GPUs, so we consider the inference time divided by the batch
size (the batch size being chosen to be as large as possible, while not
saturating the GPU). For the 14 nodes (resp. 118 nodes) dataset, we ob-
tain 10~2ms (resp. 2 x 10~'ms) per instance for the DSS and “proxy”
method, and 20ms (resp. 20ms) for the Newton-Raphson, which pro-
vides a speed-up of 3 (resp. 2) orders of magnitude. However, we ob-
ject that comparing computational times of two methods that rely on
two different sorts of hardware (cpu vs. gpu) really depends on the
use case. Nevertheless, these results highlight the fact that our neu-
ral network based method is competitive in regard to computational
times.
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8.2 Real data experiments

After having experimentally validated the approach over relatively
small artificial networks, this work has been focusing on applying the
DSS approach to real-life data from the French power grid owned and
operated by RTE. This has highlighted several difficulties, that will be
detailed hereafter. After having detailed the major obstacles to the
scaling up of the approach, we provide and interpret preliminary re-
sults, which should be refined in future work (see Section 9.4). Due to
time constraints, this is still an ongoing work, and the objective of this
section is to report the current state of progress.

8.2.1 Major difficulties

First of all, let us dwelve into the aspects that were the most detrimen-
tal to this line of work.

Interfacing Real data from the French power grid include much
more information than included in the “simplistic” model introduced in
Chapter 1. Building features that compose the input data = requires to
search through multiple data frames and to combine several of them,
simply to compute the actual value of some coefficients. Features are
not easily accessible and require an in-depth knowledge of power grids
in general, of the specific French power grid, and of the format used
to store power grid snapshots in particular. Nevertheless, the recent
open-source suite of tools pypowsybl3 developed by RTE results in a
much easier and faster interfacing with real-life data, although some
features are still missing.

Hidden modelling Computational methods that use real-life data
sometimes resort to heuristics that are not well documented. For in-
stance, some feature values may be considered as abnormal by the
algorithm, and are replaced by a default value. In other words, the ac-
tual cost function ¢ used by traditional methods is somewhat altered
by these heuristics. These hidden computations should thus also be
included in the training phase, so as to allow for a fair comparison be-
tween methods.

For all the above reasons it is clear that if one aims at working on
real-world data, a series of tests and data cleaning processes should be
implemented. Systematic data assessment should check data validity

3https://github.com/powsybl/pypowsybl
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and realism. The DSS method is sensitive to errors on either the input
data z or the cost function /. It is essential that data samples are in
adequacy with the model underlying x, y and .

lll-conditioned cost function Beyond numerical issues caused by
the interfacing with real-life data, the optimization problem is intrin-
sically complex. The gradient used to train the parameters 6 of our
model may be decomposed into two terms:

Vol(z, fo(x)) = Vo fo(x).Vyl(z, fo(z)) (8.2)

where V,((z, fy(x)) denotes the gradient of £ with regards to its second
argument, and estimated at (z, fy(z)). The first term expresses the
sensitivity of the model’s output with regards to its parameters 6, and
the second expresses the sensitivity of the cost function ¢ with regards
to its second argument. However, it is possible that the the problem is
ill-conditionned: gradient V,/(x, fs(x)) provides a poor estimation of
the best direction to follow to decrease /.

* In a well-conditioned problem, the first order gradient
V,l(x, fo(x)) estimated at any location of the space ) points
approximately in the direction of the actual solution. Thus, back-
propagating this first order derivative into the model f, should
quickly have the model converge towards a decent mapping.

* In an ill-conditioned problem, the optimization landscape is
skewed, and the first order gradient V,((x, fyo(z)) is very likely to
point far from the right direction.

Unfortunately, ill-conditioned cost functions arise when considering
real-life data: some transmission lines can be as long as several kilome-
ters, while others are as short as a few meters. This creates extremely
loose couplings between some variables, and extremely stiff couplings
between others. As a consequence, the first order derivative of the
cost function is very likely to give erroneous information regarding the
actual direction of the solution.

Still, a possible solution to address this issue could be some pre-
conditionning, so as to provide a better estimation of the best direction
to follow. For instance, in the case where /(x, y) is a quadratic function
of y, correcting the gradient with the inverse Hessian matrix (H,;(¢) =
a;gyj) provides the exact direction of the actual solution in the space
V. Instead of using the simple first order gradient of equation (8.2), one
could instead use the following corrected gradient:

Vofo(z).H(0)"' .V, (z, fo(x)) (8.3)
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This requires to invert the potentially large matrix H(¢) during train-
ing, which can be computationally expensive. Still, one may argue that
this computational burden is still limited to the training phase, and
has no impact whatsoever on the inference speed of a trained model.
Pre-conditionning the back-propagation algorithm is yet to be experi-
mented with.

Message passing bottleneck At some point, it has been thought
that the poor results obtained on real data could be caused by the
factthat propagating information using only local message passing was
not suitable for large graphs (the French grid is made of approximately
6,000 buses, and has a diameter around 80). However, the following
two observations seem to indicate that local message passing is not
incompatible with an application to power grids that have large diam-
eters:

* Learning on real data is as difficult on small portions extracted
from the French grid as it is on the full system (which supports
the hypothesis of the ill-conditioning of the cost function ¢ for
real-life instances). For instance, the exact same issues appear if
we only take into account the 400kV part of the network in the
Lyon region (approx 50 buses).

+ Experiments shown in Section 7 provide good results on large
graphs (up to 1,089 nodes).

8.2.2 Early experiments

Despite the various setbacks encountered trying to have the approach
work on real-life data, the present subsection details and interprets
preliminary results. Although there are currently no results for the ac-
tual unsupervised DSS approach (i.e. learning by minimizing the vio-
lation of Kirchhoff's law), we obtained decent performance by training
a model in a supervised way (i.e. by imitation of the Newton-Raphson
method). While previous experiments on the IEEE 14 nodes and 118
nodes included both an unsupervised H2MGNN approach and a super-
vised “proxy”, we only managed to obtain relevant results for the su-
pervised H2MGNN “proxy” model on real-life data. Experiments using
the unsupervised DSS approach on real data failed up to now probably
because of the ill-conditioning issue previously described. This “proxy”
uses the latest version of the model, as described in Algorithm 2 in Sec-
tion 4.2.
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Dataset The training set consists of 2,500 snapshots of the French
power grid randomly picked from the year 2018, while the test set con-
sists of 2, 500 snapshots from 2019. For now, only the extra high voltage
network of the Lyon region (approx. 200 buses) is considered.

Metrics We compare a H2MGNN “proxy” (trained by imitation of the
Newton-Raphson method) with the Newton-Raphson. We compute
the Pearson correlation (Corr), the normalised MAE (nMAE) and RMSE
(nRMSE) (normalized by dividing by the difference between max and
min values), and estimate the 10, 50" and 90" percentiles of the cost
function /.

Hyperparameters They have not been subject to a thorough hyper-
parameter tuning, as this is still an open line of research. Currently, we
use a time step At = 1/50, a latent dimension d = 40, and each fully
connected neural network block has two hidden layers, with 80 hidden
neurons each, and a hyperbolic tangent (tanh) activation function.

Training We used our own implementation of the H2MGNN archi-
tecture using TensorFlow [151] (no GNN framework were used). Train-
ing is done for 10,000 epochs with batch size 100, and lasted 27h on
an NVIDIA TITAN Xp. The ADAMAX optimizer [117] with parameters
(Ir =1071, 3, = 0.99, 8, = 0.9999) is used.

Results As shown in Table 8.2, we managed to obtain quite decent
results on the test set: a 92% correlation with NR method in terms of
v;, and a 96% correlation in terms of ¥;. Both the normalized RMSE and
normalized MAE compared to the NR solution are around 2 x 1072,
which is a decent score. Still, predictions provided by the H2MGNN
model are far from being satisfying in regard to the industrial stakes.
The two 2D histograms at the top of Figure 8.2 show that while predic-
tions are mostly accurate (colors are in log scale), there is a non negli-
gible amount of highly erroneous predictions.

All metrics for the active (p;;) and reactive (¢;;) power flows are con-
sistently not acceptable. The two 2d histograms at the bottom of Figure
8.2 allow for a more precise interpretation of those metrics. Predictions
are made in terms of v; and ¥;, and then power flows through transmis-
sion lines and transformers are computed using physical equations.
While most lines have somewhat decent predictions, there is a large
portion of lines that have erroneous predictions.

After investigation, it appears that lines that have a smaller reac-
tance also have more erroneous predictions in terms of p;; and g;;.

139



| Method | Proxy [ NR_|

Corr. w/ NR V; 0.92 -
¥, 0.96 -
Dij 0.44 -
qij 0.11 -

NRMSE w/ NR | v; 2.8e-2 -
¥ || 1.9e-2 -
pij || 1.7e-1 -
qij || 2.7e-1 -

NMAE w/ NR | v; 1.5e-2 -
¥ || 1.3e-2 -
Dij 3.8e-2 -
qij || 7.4€-2 -

¢ 10*" percentile 34 | 1.2e-7

¢ 50" percentile 62 | 2.0e-7

290" percentile 124 | 1.5e-5

Table 8.2: Metrics of H2MGNN “proxy” predictions on real-life data.

Since both active and reactive flows are somewhat proportional to the
inverse of the reactance, errors in terms of v; and ¥; are amplified at
transmission lines that have a low reactance. Since the reactance of
transmission lines in real data can vary up to almost three orders of
magnitude, we observe at the same time quite decent predictions on
some lines, and extremely bad predictions on others.

Moreover, the vertical lines that appear at the bottom left of Figure
8.2 are caused by extremely small lines that are connected to single
loads whose consumptions appear to be almost constant throughout
the year.

This chapter considers the application of the DSS approach to
the AC-PF problem. Excellent results are obtained on artificial data,
even though the neural network has been trained in a completely un-
supervised manner. However, experiments conducted on the real-life
data underlined several major difficulties, which will be addressed in
future work.
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Figure 8.2: 2D histograms comparing H2MGNN “proxy” predictions to
Newton-Raphson solutions. Bin colors are in log-scale. While predic-
tions for v; and ¥; are somewhat decent, both active and reactive power
flows have poor predictions. Bins are squares of respective dimensions
5 x 1073 rad for the voltage phase angles, 5 x 10~ p.u. for the voltage
magnitudes, 2 x 107! p.u. for the active power flows and 5 x 1072 p.u.
for the reactive power flows.
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Part IV

Conclusion & Future Research
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Chapter o

Discussion and future work

Power grids cannot be reduced to the sole resolution of the AC-PF. In
order to keep the system in security, dispatchers continuously make a
multitude of decisions that involve various physical quantities, multiple
time scales and numerous sources of uncertainty. Thus, the DSS ap-
proach should be able to address multiple classes of decision-making
problems, and to consider the actual real-life power grid in its full com-
plexity.

This chapter is an attempt at exploring the various ways the DSS
approach should be extended. In Section 9.1, we present preliminary
results on the unsupervised learning of a DSS aimed at controlling volt-
age, relying on the bilevel approach introduced in Section 5.2. In Sec-
tions 9.2 and 9.3, we address the issues of incorporating time and un-
certainties in power grid management, and propose a way to seam-
lessly include both aspects in the DSS approach. In Section 9.4, we
succinctly explore major axes for future improvements. Finally, in Sec-
tion 9.5, we outline what could be an artificial assistant to dispatchers
based on a DSS.

9.1 Voltage control

RTE has been facing an increase in the frequency of high voltage viola-
tions for the past decade, which may damage infrastructures. Several
changes in the French power system contribute to an overall rise of the
voltage magnitude across the grid:

* The development of diffuse renewable energies, which reduce
the load as seen from the transmission network, thus reducing
power flows across transmission lines, and therefore decreasing
reactive losses in the lines,
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+ The burial of overhead lines, as the cables that replace them have
a higher capacitive behavior,

+ Thereplacement of domestic devices by new ones whose reactive
energy consumption is different than in the past.

Managing these problems implies spending a significant amount
of time in studies for the operators, time that they do not necessarily
have. To date, there is no satisfactory decision support tool to tackle
this problem of voltage management.

Thankfully, the bilevel DSS introduced in Section 5.2 could allow us
to train a GNN to map power grid instances to generator voltage set-
points, so as to control (in open-loop) the voltage. As described in Fig-
ure 9.1, this method relies on the joint learning of two neural networks,
one playing the role of a dispatcher (controllery) and the other playing
the role of a physics simulator (solver,). In order to be consistent with
the formalism introduced in Section 5.2, we denote by « the power grid
instances, by y the voltage setpoints and by = the voltage magnitudes
and phase angles. The controller parameterized by 6 € © takes x as in-
put and outputs y, and the solver parameterized by w € 2 takes a pair
(z,y) as input and outputs z. Both neural networks are trained jointly
(by alternating between a solver and a controller update), as described
in Algorithm 5.

dataset

i

power grid instance (z)

Joule + voltage Iimit]—> Loss(0)

voltage setpoints (y)

)

solver,, Kirchhoff violation ]—)Loss'(w)

i

voltage magnitudes
& phase angles ()

Figure 9.1: Voltage setpoint control. Two neural networks, namely
controller, and solver,, are trained jointly.

This work has been carried out in collaboration with Guillaume
Houry and Maxime Sanchez during their respective internships at RTE
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R&D. In the following, we present preliminary results which should be
further refined in future work.

9.1.1 Problem & data generation

Experiments are conducted on the IEEE case14 (n = 14) power grid, as
shown on the left part of Figure 8.1. Injections are sampled from the
time series generated for the Learning to Run a Power Network compe-
tition [157]. For each sample, there is a 25% probability that one ran-
domly chosen power line is disconnected, and a 25% probability that
two distinct randomly chosen power lines are disconnected.

Input and output features are detailed thereafter, and addi-
tional information about power grid modelling is available in Chap-
ter 1. Power grids are composed of six classes of objects: C =
{buses, loads, generators, shunts, lines, trans formers}. While most in-
put features are exactly the same as in Section 8.1, the main difference
lies in buses. Only buses have a controller output y = (y*****) and a
solver output z = (z0uses),

Buses Each bus e € &b bears an input feature zbwes =
[, v,, 17, 15lak] that define its maximal and minimal voltage magni-
tudes and if it is a “PV” or a “slack” bus. In this experiment, the accept-
able range of voltage magnitudes is [0.95p.u., 1.05p.u.]. However, we
choose to train the model using a smaller range as a security. For all
buses, we thus consider v = 0.96p.u. and v = 1.04p.u.. The controller
output ybuses = [4,] defines the voltage setpoints that shoud be used
if the bus is “PV”. The solver output z2“s¢s = [¢,, J,] defines the voltage
magnitude and phase angle for each bus of the grid. Depending on
whether a bus is “PV” or not, its voltage magnitude is set to v, (con-
tained in y) or to v, (contained in z).

Controller cost function The dispatcher aims at keeping the power
grid in security. Regarding voltage control, its main requirement is to
have the voltage magnitude of each bus e € £%“*** be in the acceptable
range [v,,7.], which is quantified by Av, in equation 1.16. Moreover,
we consider as a secondary objective the minimization of the electrical
losses caused by Joule’s effect, which is defined at every line and every
transformer by p’°%¢ in equations (1.23) and (1.27). Thus, the controller
cost function ¢ is defined by:

Uy, 2) =px Y |Av|+ > ploe (94

eegbuses eeglinesugtv‘ansformev‘s
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The factor x4 > 0 is tuned so that the priority is given to ensuring that
the voltage is in the acceptable range. Itis set to 10 in this experiment.

Solver cost function All devices inject power in their respectives
buses, as detailed in Section 1.3. The active power mismatch of bus
e € &% s given by As.. To respect Kirchhoff's laws, all bus mis-
matches should be zero simultaneously. The solver cost function ¢ is
thus:

Cleyz)= ) |As] (9.2)

ec&buses

9.1.2 Experiments

Dataset The training set is made of 10,000 samples and the test set
of 300 samples.

Baselines Our main focus is to learn a controller, while the training
of a solver is only a means to that end. Thus, we only consider the
quality of the controller part, which we assess by replacing the neu-
ral network solver that was used for training with an actual Newton-
Raphson solver. We compare the obtained results with that of a par-
ticle swarm [158] algorithm: a black box optimization method that re-
lies on a stochastic exploration of the set of voltage setpoints. Future
work will include a comparison with a more rigorous (and slower) opti-
mization method. Still, this allows us to have a fast and quite efficient
baseline.

Model hyperparameters Both the controller and the solver use the
model detailed in Section 4.A, with the same hyperparameters. There
are 10 propagation steps, the hidden dimension is set to 20 and each
neural network block has 4 hidden layers with 20 hidden neurons and a
hyperbolic tangent (tanh) activation function. The update scaling factor
ais setto 1073,

Training Training is performed using Adam [117] with a learning rate
of 1075 for the controller and 10~ for the solver. Other parameters of
Adam are standard (8, = 0.9, 3, = 0.999, ¢ = 10~7). Gradient clipping is
used (over the norm) with a threshold of 102. Moreover, as explained
in Section 5.2, when performing a step to learn the controller, we add a
Gaussian noise with 0 mean and a variance of 2 x 1072 over the output
of the controller. This allows the solver to explore more different val-
ues for y, and have a better understanding of the actual dependency
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DSS | Baseline
Cumulated Joule losses (MW) | 215.7 215.4
High voltage violations 0 0
Low voltage violations 1 1

Table 9.1: Cumulated performances of the bilevel DSS controller and
the particle swarm baseline. Both obtain similar results.

of z with regards to y. The training is performed for 5,245 epochs on
a NVIDIA TITAN Xp, using minibatches of 100 samples. The discount
factor v is setto 0.9. .

Results The voltage setpoints output by the trained controller pro-
vide similar results as the patricle swarm baseline in terms of cumu-
lated Joule losses over the whole test set. A single low voltage event
occurs for both the baseline and the DSS, which seems to indicate that
there is a single snapshot for which there is no solution. As highlighted
by Figure 9.2, the results are similar for both methods in terms of Joule
losses, regardless of whether lines have been disconnected or not. Still,
the DSS method is a fast GNN-based heuristics trained in an unsuper-
vised manner, while the particle swarm method is a black-box opti-
mization method that requires to explore the space of possible voltage
setpoints using numerous calls to the Newton-Raphson method.

Sample without disconnected lines Sample with 1 disconnected lines Sample with 2 disconnected lines
0
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DSS - Joule losses DSS - Joule losses DSS - Joule losses

Figure 9.2: Correlation plots of the Joule losses caused by the output
of the DSS vs. caused by the output of the particle swarm. Although
some power grid instance depart from the diagonal, the two methods
provide quite similar results.

Figure 9.3 shows the evolution of the cost function ¢ in the neighbor-
hood of the output of the trained controller, by changing one voltage
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setpoint at a time. For a single power grid instance x and for all 5 volt-
age setpoints, we observe that the prediction of our trained controller

is very close to the minimum of the function, while always respecting
the voltage limits.

150



Varying voltage setpoint
of Generator 0

Varying voltage setpoint
of Generator 1

Varying voltage setpoint
of Generator 2

Varying voltage setpoint
of Generator 3

Varying voltage setpoint
of Generator 4

225/,

1.50

0.75-

3.0¢

2.0¢

1.0

16

1.2

0.8

14

11

0.8

0.95

0.85

0.75

Joule losses

Voltage magnitudes

1.04

0.96

1.04

096

1.04

096

1.04

0.96

0.96 1. 1.04

Voltage setpoint

1.04

096

0.96 1. 1.64
Voltage setpoint

Figure 9.3: Evolution of Joule losses and voltage magnitudes in the
neighborhood of the output of a trained bilevel DSS, for a single power
grid instance. The output of the DSS is in red. For each of the four gen-
erators, the voltage setpoint is either close to the minimizer of Joule’s

effect, or to the maximum value (set to 1.04).
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9.2 Incorporating time

Time plays a key role in most problems related to power grid operation.
Production and consumption evolve constantly and one-time events
such as line disconnections or incidents may alter the grid topology at
any moment. Decisions must be taken in accordance with the tempo-
ral variations and constraints of the considered system. As a conse-
qguence, it is of the utmost importance to be able to consider time se-
ries as inputs and/or as outputs. In the present section, we first discuss
the case of graph time series where the topology (i.e. graph structure)
is constant through time, and explain how such a case seamlessly fits
into our formalism. We then underline challenges caused by variations
of topology, and propose a possible solution.

In the following, ¢t € [T refers to time steps of a time series and
should not be mistaken for the t used in Architecture 2.

9.2.1 Factorizing through time

Graph time series can easily fit into the DSS formalism as long as all
snapshots share the same graph structure (n,C,&, M). We refer to
such graph time series as factorizable. In this case, snapshots can
be written as follows: = = (2¢,,)(cemes, Where x¢, = (2¢,,(t =
1),...,¢,,(t =T)), which gives rise to features in T' x d** dimensions.
Figure 9.4 shows the distinction between factorizable and non factor-
izable graph time series.

Depending on the problem at hand, we may want to output either
a single graph y, or another graph time series. Either way, y should
respect the graph structure of the input. Moreover, cost functions need
not be decomposable with regards to time, and in the general case the
cost function still writes as ¢(z,y). Basically our framework remains
unchanged, at the exception of what is modelled by the pair (z,y) and
what is hidden in the cost function .

Unfortunately, power grid time series are known to have a chang-
ing topology, making them non-factorizable. As a consequence, they
do not directly fit into the DSS formalism. A possible work-around is
to change the data representation so as to give rise to a factorizable
representation.

9.2.2 Factorizable representations

Inthe general case, there exists no intrinsic way of representing a graph
time series in a factorizable way. However, depending on the problem
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T (t = 1) xT (t = 2) T factorized

Figure 9.4: Non-factorizable graph time series (above) vs. Factorizable
graph time series (below) - Having a constant graph structure over time
allows to write the time series in a factorized form. This gives rise to a
single graph that is compatible with our framework.

at hand, it may be possible to change the data representation so that
topology remains constant through time. One should thus seek a data
representation where only hyper-edge features vary with time.

In the case of power grids, we consider real-life infrastructures that
do not change drastically over time. Interconnection patterns change
on a daily basis but the space of possible topologies is quite restrained:
transmission lines are heavy infrastructure that do not physically move,
and only a limited set of topological actions are available to the dis-
patchers:

« Disconnect or reconnect transmission lines;
* Re-organize interconnection patterns at substations.

The first type can easily be modelled by a binary variable located at
each power line, while the second requires more care.

Substation are places where objects such as transmission lines,
transformers, generators, etc. can be connected to each other through
buses. Each substation is made of two buses’, and incoming objects
can either be connected to the first or the second through a series of
switches.

The left part of Figure 9.5 shows a small instance of power grid.
There are two substations, each having two distinct buses. Switches
located at buses can connect objects to each other.

TActual substations can have more than two buses.
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The right part of Figure 9.5 shows how such a system can be rep-
resented in a factorizable way. Dipoles are modelled as hyper-edges
of order 2: they are linked to two distinct buses, while their actual
electrical connection is encoded into a boolean variable. Similarly,
quadrupoles are modelled as hyper-edges of order 4: both ends of
quadrupoles can be connected to two distinct buses, and the choice
between them is encoded into a boolean variable (one per end). Thus,
actions over the grid topology only affect features, while the graph
structure remains constant through time.

® Gen
Gen
x Load
* Load
== Bus
Bus
| Line
m Line
O Switch @

Figure 9.5: Factorizable representation of a power grid. Lines are mod-
elled as hyper-edges of order 4. However, their actual electrical con-
nectivity is encoded into their features. Thus topological modifications
only affect binary variables located at features, and the graph structure
remains constant through time.

9.3 Incorporating uncertainties

In addition to the time component, power grid operation should be ro-
bust to various forms of uncertainties. Unplanned incidents may dis-
connect transmission lines, production and consumption projections
are not perfectly trustworthy, and sensors may perform erroneous
measurements. Currently, the impact of certain classes of uncertainty
is systematically estimated, while other types are neglected since they
are too unlikely or too numerous. There are basically two distinct ques-
tions that one may want to address:

* How robust is a power grid situation in regard to a distribution of
possible events?

* What is the best action in regard to a distribution of possible
events?
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The former consists in making sure that a security criterion is satisfied,
while the latter consists in choosing a set of optimal actions. For the
sake of simplicity, let us focus on the optimal action case.

Let us denote by = ~ p(x) the initial situation, which may be a snap-
shot at ¢ — 1, a noisy prediction, or even a representation of the un-
certainty (uncertainty bounds, gaussian parameters, quantiles, etc.).
y ~ qo(y|z) is the action taken by our trainable model, based on the
knowledge accessible from z. Then z ~ r(z|z,y) is the actual occur-
rence of a random event. It depends on both x and y: the outcome of
an event can be impacted by the action taken.

Depending on whether we want ¢y(y|z) to minimize an average or
a maximal cost, the involved methodologies can be quite different. In
power grid operation, there is currently no consensus, and both angles
have their pros and cons.

9.3.1 Average cost

In the case where we are interested in average costs, we have to con-
sider the actual distribution of random event r(z|x, y), and optimize ¢
by considering the following SSP:

O =argminE , ) [((z,y,2)] (9.3)
0€0 qu(a(‘wa))
z~r(zlz,y

This approach can be computationally heavy because it relies on a
Monte-Carlo simulation to estimate the average cost.

9.3.2 Maximal cost

Another approach consists in minimizing the maximal possible cost for
events z € supp(r). In the case where the set supp(r) is countable and
quite small, it may be possible to scan the full domain to find the max-
imal cost. However, an exhaustive search is not possible in the case of
a continuous and/or large support.

A possible solution lies in the worst case approach, which consists
in searching for the worst possible random event. Let r*(z|x, y) be the
distribution that maps initial situations = and actions y to the worst
possible random event. We try to imitate this distribution using a pa-
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rameterized distribution r,(z|z,y). The related SSP is thus as follows:

O =argminE . pu) [((z,vy,2)] (9.4)
0€0 y~qo (y|z)
zror* (z|z,y)
Q' =argminE , ) [—lz,y,2)] (9.5)
00 y~q(y|z)

zeory (2|2,y)

It is a typical instance of a bilevel optimization as introduced in Section
5.2, where ¢/ = —(. Computations are much more focused as it is not
required to explore the full support of distribution r.

9.4 Future research

Currently, several aspects of the applications of the DSS approach have
not been addressed.

Choice of input data distribution The choice of the probability dis-
tribution of input data p(x) is key. Unfortunately, properly defining
such a distribution is in itself an extremely complex task. Moreover, as-
sociating events with probabilities and minimizing an expectation im-
plies that rare events shall be disregarded by the learned model. In the
case of critical industrial systems, we are more interested in rare but
dangerous events than in common and harmless ones. Some work is
required to choose a proper distribution for p(x), and for assessing the
validity of trained models over a series of critical test cases. However,
one may object that estimating cost functions provides a surrogate of
the reliability of the model.

Advanced power grid modelling Another limit of the current im-
plementation concerns the modelling of some objects that appear in
power grids. For instance, generators display a quite complex be-
havior. The active regulation (i.e. making sure that active production
equates to active consumption plus Joule's effect) is not taken care by
a single “slack” bus, but is rather a distributed mechanism. Genera-
tors contribute more or less depending on their respective capacities
to provide additional active power. Likewise, generators that take part
in the voltage control mechanism are bounded by their respective max-
imum and minimum reactive power. Other objects such as High Volt-
age Direct Current (HVDC) lines have simply been disregarded. Finally,
the aforementioned voltage control problem has been drastically sim-
plified compared to the actual issue, as dispatchers control voltage set-
points only at a predefined series of buses.
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Topology control A major part of the work of dispatchers is to pre-
vent transmission lines from overflowing. If the electrical current
through a line is too high, the conductive material expands, which
cause the line to get closer to the ground, thus endangering passers-
by, housings, trees etc. Fortunately, automatic mechanisms are able
to disconnect transmission lines that are overflowing. However, the
power flow that was previously transported by the now disconnected
line is pushed to neighboring lines, which may cause new overflows.
This cascading failure phenomenon may end up in a complete black-
out of the system. To avoid this, dispatchers can change interconnec-
tion patterns at substations by turning on or off switches (see Figure
9.5). The combinatorial aspect of this decision-making problem pre-
vents the use of traditional optimization techniques. Employing a DSS
to the problem of topology control could thus be a promising applica-
tion domain.

Power grids as cyber-physical systems Real-life power grids tend
to become cyber-physical systems: there is a growing number of au-
tomata on the French power grid that are able to make decisions on
their own. In order to properly model the impact of their behavior over
the system, it is required to simulate the whole dynamics of the electri-
cal system. A traditional stationary simulator will not be able to prop-
erly model the dynamics involved in the automaton’s decision making
process. With a well designed cost function, a DSS should be able to
include in its model the dynamics of automata.

Non differentiable cost functions The case where cost functions
are not differentiable was completely disregarded in this work. In such
a case, one could rely on gradient-free approaches typically used in
Reinforcement Learning [159].

Initializing classical optimization methods A major drawback of
DL-based methods is the lack of guarantee of convergence to the ac-
tual solution, and the lack of upper bound for the error. However, the
solution provided by the DSS could be used as a starting point to a
classical optimization method, similarly to [98].

Lagragian relaxation of the bilevel problem Regarding the bilevel
SSP of Section 5.2, it would be interesting to try to simply consider La-
grangian relaxation of the bilevel optimization problem. Thus, a single
neural network mapping would try to solve both the upper and the
lower level problems.
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Extension of the universal approximation theorem 2 The theo-
rem presented and proved in the present document states that under
hypotheses (H1-H7), there always exists a H2MGNN capable of approx-
imating the solution of an SSP with an arbitrary precision (see Section
6.1). Still, we believe that hypothesis (H1) (no collocated objects of the
same class) could be alleviated. However, this line of work is left to
future research.

9.5 Long term vision

The long term objective is to develop an artificial intelligence algorithm
to monitor and control real-life power grids. This goal remains distant,
and one should be careful when applying DL to critical infrastructures.
This PhD thesis is an attempt at properly laying the ground for a fully
integrated approach in which everything would be phrased in terms
of probabilities, cost functions and expectations. DL would not be sim-
ply limited to accelerating several computational bricks lost in between
optimization algorithms and “for” loops.

The paradigm developed and defended in this document is to con-
sider a series of probabilistic mappings instantiated as H2MGNNs.
They would be trained using various cost functions. Among the pos-
sible tasks, we could envision the following: resolving physical equa-
tions, modelling production and consumption patterns, predicting pos-
sible trajectories for the next 24 hours, deciding which infrastructures
should be put out of service for maintenance, controlling voltage set-
points, managing grid topology, etc. Those modules would involve var-
ious time scales and physical quantities. Their training would be per-
formed in a continuous and joint manner. We would thus have a fully
integrated artificial intelligence algorithm that learns on its own, and
with as many abilities as it has modules.
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Chapter 10

Conclusion

The Power Systems community is increasingly looking towards the use
of fast and expressive deep neural networks, be it to accelerate po-
tentially heavy computations, or to address decision making problems
for which there are currently no viable methods. Prior to this PhD
thesis, almost all applications of deep neural networks assumed that
the graph structure of power grids was constant over time. However,
transmission lines are frequently cut open for maintenance purposes,
and dispatchers rearrange interconnection patterns multiple times
per day, and at various locations of the grid.

Thus, our primary focus was to be able to process grids of vari-
able topology by elaborating a suitable neural network architecture.
By framing power grids as graphs, we were the first to implement a
Graph Neural Network architecture applied to Power Systems [1]. This
type of neural network is especially designed to handle graph data.
Moreover, our recent work on real data from the French power grid
has uncovered that power grids cannot be properly modelled through
standard graphs, and are better described by an extension thereof,
that we called Hyper Heterogeneous Multi Graphs (H2MGs). We then
proposed a full-fledged optimization method, which we refer to as
Deep Statistical Solvers (DSSs). As a result, the unsupervised learning
of a DSS is yet another global optimization approach, an alternative to
Newton-Raphson.

We experimentally validated the DSS approach and demonstrated
its ability to learn on large networks (up to 1,089 vertices). Moreover,
we explored its ability to transfer its knowledge to out-of-distribution
samples: it generalized very well to graphs that are both larger and
smaller than the graphs it was trained on, as long as the important
physical quantities remained in the same range as during training.
Recent experiments focused on applying this framework to actual
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data from the French power grid: we obtained honorable results
using the supervised "proxy” learning approach on real data, but the
unsupervised learning DSS approach did not yet provide satisfactory
results. Applying the Deep Statistical Solver approach to real data
from the French power grid is still an ongoing line of work.

As a second application, we addressed the problem of control-
ling voltage setpoints, a topic that has gained popularity over the past
few years due to increasingly frequent high-voltage violation issues.
In order to make a good decision, dispatchers have to rely on their
expertise to elaborate a tentative decision, whose expected outcome
they simulate thanks to their operating tools (in particular their power
flow computation software). Thus dispatchers want to optimize a
security objective, while anticipating the outcome of their decisions
over the system, which shall be computed by a potentially complex
simulator. Drawing inspiration from Generative Adversarial Networks,
we proposed to jointly train two distinct Hyper Heterogeneous Multi
Graph Neural Networks, one playing the role of the dispatcher (con-
troller), and the other playing the role of the simulator (solver). Early
experiments on a small 14 buses power grid showed promising results.

Further work include scaling up the full unsupervised Deep Sta-
tistical Solver approach to real data, improving the choice of power
grid distributions used during training and including time and uncer-
tainties in the framework.
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