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Résumé

Cette étude se focalise sur les systémes énergétiques impliquant des véhicules électriques utilisés
comme moyens de stockage et de restitution d’énergie et sur I’optimisation des flux énergétiques
réversibles entre les véhicules électriques, le réseau et les habitations. Une approche de
modélisation et d’optimisation a été développée pour une gestion optimale des flux entre les VE
et les infrastructures.

Le controle des flux énergétiques du véhicule a été ¢laboré a travers la proposition d’un
algorithme d’optimisation multi-objectifs et multi-critéres dépendant de 1’offre et la demande de
I’€lectricité. L’algorithme génétique est utilis€ pour calculer les solutions optimisées du
probléme d’optimisation relatif a la recharge et la décharge des VE. Les fonctions objectifs sont
ensuite normalisées et la méthode de la somme pondérée est utilisée avec des poids aléatoires
définis selon 1’ordre de priorit¢ du décideur dans différents scénarios afin d’aboutir a une
solution optimisée finale. Les calculs sont vérifiés et I’optimisation validée grace au solveur
gamultiobj du logiciel Matlab.

Afin de controler les flux d’énergie, et visant a atteindre un systéme équilibré, un algorithme
de contrdle et de régulation a été développé. Une amélioration de cet algorithme a été proposée
de sorte que le nombre de véhicules retenus par la recharge ou la décharge soit minimisé, dans
le but d’obtenir un systéme équilibré sans détériorer les batteries des véhicules. Ainsi a été
développée une stratégie de gestion énergétique permettant de controler les flux énergétiques
établissant une loi de commande bidirectionnelle qui serait une solution d’adaptation de 1’offre

a la demande d’électricité.
Mots-clés:

Energies renouvelables, Ve¢éhicules électriques, Recharge/décharge, Régulation,

Optimisation, Flux énergétiques bidirectionnels, Production et Consommation d’électricité.



Abstract

Our research work mostly proposes an energetic strategy based on a multi-objective and
multi-criteria optimization algorithm related to the control of the bidirectional energy flows
X2V/V2X between the electric vehicles and X (where X represents the grid, home or building)
depending on the available supply or demand of electric energy. The study proposes a control
and regulation algorithm aiming to reach a balanced production/consumption system. The
balance is mostly acquired through the bidirectional control of the energy flows related to a
domestic residence (supplied with renewable sources), electric vehicles (adopted as means of
storage and retrieval) and the grid. Then, the defined system’s modeling is formulated and a
multi-objective optimization of electric vehicles’ charging and discharging modes defined by the
regulation algorithm is assessed in order to attain an optimal fulfillment of the system’s energetic
needs. The vehicles’ batteries are adopted as means of energy storage and retrieval depending on
the electricity supply and demand.

The storage and retrieval’s optimization is performed using the genetic algorithm method.
Consecutively, the study’s objective functions are normalized and the weighted sum approach is
implemented with the use of several case studies. And then, the optimized values resulting from
the calculation are computed and verified by simulation using Matlab software. Finally, once the
regulation algorithm has been set, and the corresponding optimizations implemented, the
algorithm’s simulation has been performed. Thus, a convenient control of the reversible energy

flows, as well as the energy production and consumption has been confirmed.

Keywords:

Renewable energy, Electric Vehicles, Charging/discharging, Regulation, Optimization,

Bidirectional Energy flows, Electricity Production and Consumption.
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Résumé Substantiel de la theése en Francais

Pendant que la population mondiale croit continuellement, les besoins énergétiques de
I’homme ne cessent de s’amplifier également, ce qui donne lieu non seulement a 1’épuisement
des réserves disponibles mais aussi a des émissions énormes de gaz a effet de serre dans
I’atmosphére. Par suite, en raison du changement climatique et de la pollution causée par les
émissions de gaz carbonique, la santé publique semble étre menacée et I’espérance de vie
humaine réduite. Par conséquent, vu que le secteur du transport constitue 1’une des industries les
plus grandes et les plus polluantes, I’¢électrification des véhicules semble étre une solution
efficace pour les problémes liés a la pollution, notamment que le nombre de véhicules électriques
adoptés mondialement prouve un intérét vif et croissant pour ce domaine. En fait, avec
I’utilisation de véhicules électriques, les menaces humanitaires destructrices associées a la
pollution de I'air, au changement climatique, a la hausse des prix de I’essence et a la rareté¢ du

pétrole sont minimisées.

Face a I’impossibilité de stockage d’¢électricité en grandes quantités, et en vue d’ajuster en
permanence 1’offre d’¢lectricité a la demande, il faudrait développer des solutions alternatives.
Parmi ces solutions, nous proposons d’adapter les batteries des véhicules électriques (VE) afin de
prendre en charge le stockage et la restitution de I’énergie en plus de leurs fonctions habituelles

comme moyens de propulsion des VEs.

Ce travail de recherche se focalise sur les systémes énergétiques impliquant des véhicules
¢lectriques utilisés comme moyens de stockage et de restitution d’énergie et sur 1’optimisation
des flux énergétiques relatifs a ces systemes. D’abord, 1’étude se concentre sur une revue de
littérature permettant de cerner le sujet et d’étudier les différentes approches développées pour ce
probléme. Le chapitre 1 sera donc consacré a cet état de 1’art. En effet, les véhicules électriques,
ainsi que les systémes énergétiques ont été étudiés sur la base des travaux disponibles dans la
littérature. Les composantes des systemes énergétiques de véhicules électriques ont également
¢été envisagées ; entre autres les différents types de batteries de véhicules, leurs chargeurs et
convertisseurs ainsi que les sources renouvelables de production d’énergie. Aussi ont été
discutées les opérations de recharge et de décharge des véhicules électriques a partir des

technologies V2X/X2V représentant le flux énergétique du véhicule vers le réseau électrique et
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vice versa (V2G/G2V), le flux énergétique du véhicule vers la maison et vice versa (V2H/H2V)
ainsi que le flux énergétique du véhicule vers le batiment et vice versa (V2B/B2V). En outre,
I’optimisation multi-objectifs et ses nombreuses approches ont été discutées. Certaines stratégies
de gestion d’énergie liées aux horaires de recharge et de décharge des véhicules électriques ont

¢galement été abordées.

Aprés avoir pris connaissance des études développées dans la littérature en relation avec le
sujet, une approche de modélisation et d’optimisation a été développée afin d’apporter une
contribution permettant la gestion optimale et efficace des flux énergétiques entre les VE et les

infrastructures.

Pour ce fait, un systéme énergétique incluant une maison, un véhicule électrique et la grille
est bien défini dans le chapitre 2. La maison est alimentée a partir de sources d’énergie
renouvelables et le véhicule sera utilisé comme moyen de stockage ou de restitution d’énergie en
fonction, d’une part, de I’offre et de la demande d’électricité, et d’autre part des besoins en
énergie du VE lui-méme. Eventuellement, I’objectif de cette étude serait de minimiser la
dépendance du réseau ¢€lectrique, et de maintenir un certain équilibre entre I’offre et la demande

d’¢lectricité, et ceci en utilisant les batteries des véhicules électriques entre autres.

Ainsi, la production d'électricité est collectée grace a l'énergie solaire et €olienne résultant
de la saisie des données de la station météorologique. La consommation d'énergie est définie par
les appareils électroménagers fonctionnels dans I’habitat. La recharge et la décharge des
véhicules électriques disponibles seraient donc définies par la marge de différence entre la

production et la consommation d’¢€lectricité et le manque ou I’excés des besoins énergétiques.

Pour ce faire, et suite a 1’établissement d’un cahier de charge relatif au systeme élaboré
dans ce travail de thése, nous avons entamé la modélisation énergétique du systéme, ainsi que le
dimensionnement et la modélisation de ses différentes composantes dont les batteries
embarquées, les batteries stationnaires, les convertisseurs de puissance, 1’éolienne et les
panneaux photovoltaiques a installer au toit de la maison au cas de I’installation V2H/H2V

proposeée.
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En particulier, la modélisation et le dimensionnement du systéme €nergétique mis en relief
dans cette étude et de ses composantes seront détaillés dans le chapitre 2. La modélisation
énergétique globale de ’ensemble du systéme en fonction de la production et la consommation

d’énergie sera également représentée.

Le systeme ¢tudié implique un véhicule €lectrique doté d’une batterie embarquée de type
NiMH d’une capacité¢ de 75 Ah et d’une profondeur de décharge de 80%. L habitat effectue une
consommation journaliere de 31.1 kWh partiellement ou complétement compensée par la
production d’énergie de 33 modules photovoltaiques monocristallins d’une puissance nominale
de 280Wp dans des conditions standard, ainsi que la production d’une éolienne a axe horizontal
d’une puissance de 2.8kW. La consommation journaliére calculée pour I’habitat comprend
I’énergie consommée pour le chauffage et la ventilation, le chauffage de I’eau, 1’éclairage, les
appareils audiovisuels, la cuisine, le lavage, le séchage, le réfrigérateur, ainsi que ’utilisation des

appareils ¢électroniques et la prise électrique du véhicule.

Outre que les véhicules ¢€lectriques ont énormément participé a la réduction de la pollution
dans le monde entier, leurs batteries embarquées peuvent étre utilisées comme moyen de
stockage et de restitution d'énergie ¢€lectrique qui ne semble pas étre facilement stockée en
grandes quantités. En fait, la recharge des véhicules peut étre programmée en fonction de I’offre
et la demande d’¢lectricité et des besoins énergétiques. Ainsi, tant que 1’offre en électricité
dépasse la demande, les batteries de véhicules seraient utilisées comme moyen de stockage afin
de récupérer 1’énergie excédentaire et d’en profiter lorsque la tendance est inversée. Les
véhicules chargeraient alors leurs batteries ou I’énergie serait stockée. Le controle des flux
énergétiques du véhicule a été élaboré a travers la proposition d’un algorithme d’optimisation
multi-objectifs et multi-critéres dépendant de 1’offre et la demande de 1’électricité. Donc, le
stockage d’énergie est proposé dans le chapitre 3 via un algorithme d’optimisation multi-
objectifs des flux d’énergie pénétrant les véhicules ¢lectriques a partir de ressources

renouvelables liées a la maison ou au batiment au cours du processus de recharge.

Ainsi, la modélisation des objectifs qu’il faudra atteindre pour une recharge optimale et les

contraintes qui y sont associées a €té établie.

18



L’objectif de 1’optimisation serait d'acquérir les solutions Pareto-optimales pour le systéme
développé visant a trouver 1'état de charge maximal, 1'énergie de vallée, 'énergie de propulsion et
les pertes minimales pouvant étre atteintes par les véhicules électriques pendant leur phase de
charge. Pour ce faire, le chapitre 3 détaille cette optimisation tout en décrivant d’abord les
fonctions-objectifs liées a I’optimisation de la recharge de véhicules. L’algorithme génétique
multi objectifs a été adopté comme approche d’optimisation pour calculer les solutions

optimisées des fonctions-objectifs.

Par ailleurs, vu que certaines fonctions-objectifs ne semblaient pas atteindre leurs valeurs
optimisées simultanément, leur optimisation imposera l’interférence de la priorisation d’un
objectif par rapport a I’autre ; et afin de combiner les solutions obtenues en une solution
optimisée globale du systéme, les fonction-objectifs ont été normalisées. Une fois le Pareto-front
des fonctions-objectifs défini, la méthode de la somme pondérée a été appliquée via différents
scénarios d’optimisation ou des poids aléatoires sont attribués aux fonctions dépendamment des

objectifs fixés et de I’ordre de préférence du décideur.

Enfin, les valeurs optimisées obtenues ont été vérifiées et validées par simulation a 1’aide
du solveur gamultiobj du logiciel Matlab, prouvant ainsi la pertinence de 1’algorithme proposé.
Le Pareto-front obtenu par simulation vérifie bien le calcul de I’algorithme génétique en

montrant une convergence vers les valeurs de référence et optimums théoriques définis.

A chaque fois qu’un déficit de production survient par rapport a la demande d’électricité, la
décharge des véhicules ¢€lectriques s’effectue, et 1’énergie excédentaire stockée dans les batteries
pourrait étre récupérée, en outre de I'usage personnel du véhicule, pour alimenter le réseau
¢lectrique ou les habitats. La restitution d’énergie prend en compte la quantité d’énergie qui
devrait étre conservée dans la batterie des véhicules pour leurs besoins personnels et les trajets
prévus. Le chapitre 4 détaillera cette restitution d’énergie a travers une optimisation multi-
objectifs des flux d’énergie sortant du véhicule durant sa décharge. Par suite, en suivant la méme
procédure optée dans le chapitre 3, cette optimisation ainsi que les objectifs qui y sont associés
seront modélisés. Ce processus de récupération d’énergie a été réalis€¢ au moyen d’une
optimisation a objectifs multiples visant a minimiser 1’état de charge de la batterie, le temps de

décharge des véhicules et les pertes, et a maximiser la durée de vie de la batterie. Pareillement au
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cas du stockage et de la recharge des véhicules, 1’algorithme génétique est utilisé pour calculer
les solutions optimisées du probléme d’optimisation relatif a la décharge. Les fonctions objectifs
sont ensuite normalisées et la méthode de la somme pondérée est utilisée avec des poids
aléatoires définis selon I’ordre de priorité¢ du décideur dans différents scénarios afin d’aboutir a
une solution optimisée finale. Les calculs sont également vérifiés et 1’optimisation validée par

simulation grace au solveur gamultiobj du logiciel Matlab.

En conséquence, I’optimisation proposée a contribué a la création d’une solution optimisée
efficace pour les quatre fonctions de fitness qui convergerait vers 1’optimum théorique calculé,
tout en tenant compte des besoins énergétiques du véhicule qui devrait étre conservés dans la

batterie pour son usage personnel.

Malgré les différences entre les objectifs définis pour la recharge et ceux pour la décharge,
I’optimisation appliquée a prouvé, par calculs et par simulation, que les solutions optimisées

convergent vers leurs références théoriques.

Cependant, suite a I’application de la méthode des algorithmes génétiques, les fonctions
dépendant des mémes variables pourraient affecter les solutions optimisées les unes des autres.
D’ou la nécessité de créer un compromis et un ordre de priorités des objectifs pour la

combinaison finale des optimums.

La marge de différence entre la production et la consommation d’énergie céde souvent la
place a un énorme gaspillage. En effet, la production excessive d’énergie serait rejetée, tandis
que la production déficiente se traduirait par des compensations couteuses de 1’énergie
consommée; d’ou la nécessité d’une régulation de I’énergie. Afin de contrdler les flux d’énergie
circulant entre une résidence domestique alimentée par des sources d’énergie renouvelable, les
véhicules ¢€lectriques et le réseau, et visant a atteindre un systéme équilibré, un algorithme de
contrdle et de régulation a été développé dans le chapitre 5. Cet algorithme prend en charge les
processus de recharge et de décharge des véhicules en fonction de la production et de la
consommation d’énergie, en d’autres termes de 1’offre et la demande d’¢lectricité. L’ algorithme
a été testé avec un échantillon de 31 jours avec différentes valeurs d’entrées pour la production et
la consommation ainsi que des €tats de charge des flottes automobiles renfermant 3 a 6 véhicules

¢lectriques chacune.
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En outre, comme 1’algorithme permettait d’intégrer un nombre infini de véhicules, une
amélioration a été proposée de sorte que le nombre de véhicules retenus par la recharge ou la
décharge soit minimisé. Ainsi, le transfert d’énergie serait pratique et la consommation de
batteries serait réduite. Subséquemment, dans la version améliorée de 1’algorithme, les véhicules
disponibles subissent une classification selon leur état de charge et la longévité de leur batterie
avant d’injecter ou de récupérer leur énergie, dans le but d’obtenir un systéme équilibré sans
détériorer les batteries des véhicules. Par conséquent, les processus de stockage et de restitution
d’énergie ont ét¢ optimisés grace a la minimisation du nombre de véhicules chargés ou
déchargés. Ainsi a été développée une stratégie de gestion énergétique permettant de controler
les flux énergétiques dans les deux sens V2X et X2V établissant une loi de commande

bidirectionnelle qui serait une solution d’adaptation de I’offre a la demande d’électricité.
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General Introduction

Along with the continuous growth of the world’s population, the energetic needs keep
getting amplified, which leads to the exhaustion of all the available reserves as well as huge
emissions of greenhouse gases. Thus human life expectancy keeps decreasing and public health
seems to be consistently threatened by the climate change and disastrous pollution of toxic
carbon dioxide gases emitted. Hence, noting that the transportation sector consists of one of the
largest and most polluting industries, the vehicles electrification is increasingly adopted as an

efficient solution to the pollution crisis.

As the worldwide storage capacity of electric energy is still limited, the adaptation and
regulation of electricity supply and demand have become crucial. One way to realize this

regulation is through energy storage and retrieval within the electric vehicles’ batteries.

This study seeks the control and regulation of the reversible energy flows between the
electric grid, houses and electric vehicles and their optimization in a way to reach a balanced
system while reducing the difference margin between electricity production and consumption;
thus charging or discharging the electric vehicles according to the available excess or lack of
energy. It focuses on energy systems involving electric vehicles’ charging and discharging as
well as the optimization of energy flows linked to these systems. Thus, the chapter 1 of the study
exhibits the state of the art where the available literature discusses the problem and its different
approaches. Hence, electric vehicles and energy systems are first treated. The components of
electric vehicle energy systems are then considered; among others, the different types of
vehicles’ batteries, their chargers and converters, in addition to renewable energy sources.
Besides, electric vehicles’ charging and discharging operations and the bidirectional energy
flows between the vehicles, the electric grid, the home and the buildings are debated as energy
consumers. Additionally, multi-objective optimization of energy systems and many of its
approaches are exposed. Some energy management strategies and charging/discharging

scheduling are also considered.

Subsequently, an energy system including a residential household, an electric vehicle and
the grid is defined in chapter 2. The house is powered by renewable energy sources and the

vehicle’s batteries are used as means of storage and retrieval of energy. Eventually, the study
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seeks to omit the grid’s supply in a way to maintain the balance between the electricity demand
and supply. The electricity supply is collected through solar and wind energy resulting from
meteorological station data. As for the electricity demand, it is defined by the functional
household appliances. The vehicles’ charging and discharging would then be defined by the
margin of difference between the electricity production and its consumption, and the lack or

excess of the energetic needs.

Consequently, the technical specifications related to the energy system developed in this
research work have been established. Then, the energetic modeling of the system, as well as the
sizing and modeling of all its components, including the vehicle’s on-board batteries, the house’s
stationary batteries, as well as the power converters, wind turbine and photovoltaic panels to be
installed on the roof of the proposed system’s house have been studied. Particularly, the
modeling and sizing of the energy system highlighted in this study is detailed in Chapter 2, and
the global model of the entire system is presented with regards to the energy production and

consumption.

In order to manipulate the circulating reversible flows and manage the vehicles’ charging
and discharging based on the excess or lack of energy, the energy production and consumption
are first assessed and compared. Accordingly, the charging or discharging of vehicles is launched

and either process is optimized to avoid any energy waste.

As electric vehicles’ batteries can be used for energy storage and retrieval, their charging
and discharging can be scheduled according to the supply and demand of electricity. Thus as
long as the electricity supply exceeds its demand, vehicles batteries would be used as means of
storage to recover the excess of energy and benefit from its usage. The vehicles would then

charge their batteries where energy would be stored.

Successively, the control of vehicle energy flows is developed through a multi-objective
optimization algorithm that depends on the electricity supply and demand. The vehicles’
charging and energy storage is proposed in chapter 3, via a multi-objective optimization of the
energy flows penetrating the vehicles from the renewable sources supplying the house or the
building. Hence, the modeling of the objectives to be sought for an optimized charging and its

associated constraints are conferred. The objective aimed by the optimization is to acquire the
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Pareto-optimal solutions for the developed system aiming to find the maximal state of charge,
the valley energy and the propulsive energy along with the minimal losses attained by the
vehicles during their charging process. Thus, chapter 3 describes this optimization in details. The
multi-objective genetic algorithm is adopted as an optimization approach to compute the
optimized solutions of all the defined objective functions. Moreover, as some objective functions
seem to be conflicting, their optimization imposes the prioritization of some objectives with
respect to others. In order to combine the solutions obtained into a global optimized one, the
objectives have been normalized and the weighted sum approach has been applied through
different optimization scenarios where random weights are assigned to the function depending on
the decision maker’s order of preference. The final optimized solutions are validated by
simulation using the gamultiobj solver of Matlab software, proving the relevance of the proposed
algorithm. The resulting Pareto-front verifies the genetic algorithm calculations by showing a

convergence towards the defined reference values and theoretical optima.

However, when there’s a lack of production with regards to the electricity demand, the
vehicles discharge and the excess of energy stored in the batteries would be restituted to feed the
grid or habitats. This energy restitution takes into account the energy that must be kept in the
vehicles’ batteries for their personal needs and planned journeys. Chapter 4 highlights this
energy restitution through a multi-objective optimization of the energy flows leaving the vehicle
during its discharge. Consequently, following the same procedure as in chapter 3, the
optimization aims to minimize the state of charge, the discharging time and the losses and to
maximize the battery life of the vehicles. Likewise, the genetic algorithm is adopted to calculate
the optimized solutions of the discharging optimization problem. The objective functions are
then normalized and the weighted sum approach is used with random weights according to the
decision maker’s priorities, to end up with a global optimized solution. The calculations are also
verified and validated using the gamultiobj solver of Matlab. Despite the differences between the
objectives defined for the charging and discharging phases, the optimizations’ computation
proved that the optimized solutions converge towards their theoretical references. However,
following the application of the method of the genetic algorithm, the functions depending on the
same variables could affect the optimized solutions of each other, hence the need to create a

compromise and prioritization of goals for the final combination of optima.
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In order to avoid energy waste and tighten the difference margin between energy
production and consumption, energy regulation would help control the flows of energy
circulating in the study’s energy system. Therefore, a control and regulation algorithm aiming for
a balanced system has been developed in chapter 5. This algorithm is responsible for the
management of charging and discharging scheduling based on the electricity production and
consumption variations. It is first tested with a sample of 31 days where different input values for
production and consumption and different state of charge values for fleets of 3 to 6 vehicles each
are implemented. Then, the algorithm has been improved through the minimization of the
number of charging and discharging vehicles. In this case, the transfer of energy would be more
practical and the battery lives exhaustion would be reduced. Thus, in the improved version of the
algorithm, the available vehicles are classified according to their state of charge and the
longevity of their battery, in order to obtain a balanced system without damaging the batteries.
Therefore, an energy management strategy has been developed to control the bidirectional
energy flows with respect to the electricity supply and demand, as well as the eventual needs of

the vehicles.
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1.1 Introduction

As the world’s population keeps growing, the human needs in energy keep increasing
beyond the extraction and burning of fossil fuels (coal, gas, oil). In fact, humanity has been
consuming 20 % more energy than the Earth’s production of energy in a given period. Besides
exhausting the available reserves, the energy produced from fossil fuels pours huge quantities of
greenhouse gases GHG in the atmosphere. The CO2 emissions resulting from fuel combustion
have reached approximately 29 billion tons in the year 2009 [1]. Noting that the global demand
for fossil primary energy keeps increasing, the emissions resulting from oil, gas and coal keep
increasing as well. As a result of the climate change and the pollution caused by the emission of
carbon gases, public health seems to be threatened and the human life expectancy reduced.
Noting that, on average, more than 90 % of humans’ time is spent in the building and the vehicle,
the energy consumption keeps increasing since the 80s in the residential-tertiary and the
transportation sectors. With the new generation of combustion engines using direct injection and
electromagnetic valve control, the vehicles currently burn less fuel and throw away less CO2

than thirty years ago [1].

Besides, some of the main problems that have been occupying humanity in the last decades
are those of water and air pollution, the emission of greenhouse gases as well as fossil fuels and
the limited nonrenewable resources. All industries worldwide seek the reduction of pollution and
greenhouse gases emissions. In addition, the internal combustion engines’ (diesel and gasoline)
efficiency, where more than 60 % of the fuel is lost into heat, remains low compared with the
efficiency of electric engines. Hence, the electrification of vehicles recently emerged as a silent
and non-polluting alternative to conventional vehicles; its development and commercialization

recently seem to be expanding [1], [2], [3].

Noting that the transportation sector is responsible for huge greenhouse gases emissions
(approximately 22 % of the total emissions) severely affecting the atmosphere. Consequently,
several studies have shown the interest in reduction of the pollution related to transportation [4].
In addition, as the industry of transportation is one of the biggest and most polluting, the

electrification of vehicles seems to be a significant solution for the problem of pollution to be
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taken into consideration. The number of Electric Vehicles (EV), Battery Electric Vehicles (BEV)
and Plug-in Hybrid Electric Vehicles (PHEV) has gradually increased to reach 5.1 million
vehicles in 2018 as this number keeps increasing considerably showing the increase of

interest in the electric transportation’s technology [1], [2], [3].

However, despite all its advantages, the electric vehicles' biggest problem resides in their
low battery autonomy, limiting the vehicles' scope to a travel distance of a hundred kilometers in
average [1]. Electrified vehicles play a major role in the challenging optimization of the
returns of the transportation energy consumption. Actually, with the use of electric vehicles,
the destructive humanitarian threats associated with air pollution, climate change, rising gas

prices and oil scarcity, are minimized [5].

The increase in the number of electric vehicles requires heavy arrangements of
transmission and electricity distribution systems to transport a larger electricity flow and to set

up sufficient charging sites [1].

In the year 2014, EV constituted around 3 % of the total sale of new vehicles [6]. Yet, they
are expected to reach around 25 % of global sales of cars by the year 2025.
For instance, in France, the introduction of EVs is underway, and many charging stations have
already been implemented in private and open areas. The Committee of the Regional Council of
Ile-de-France has awarded, on the 18" of June 2014, a grant of nearly one million euros for the
installation of 130 new EV charging stations. By 2020, 16000 charging stations will be installed

in this area [7].

According to the International Energy Agency (IEA) and the Electric Power Research
Institute (EPRI) the number of electric vehicles will keep increasing in the future [7]. This
growth seems possible as major automobile companies are investing in electrified vehicles
technology. Moreover, the energy storage demand keeps increasing as well. The energy storage
market in the United States is expected to grow 7 times bigger than the market in 2015 [6].
Consequently, Fig. 1.1 shows the evolution of the global electric car stock between 2013 and

2018 based on the IEA studies.
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Figure 1.1: Evolution of the global electric car stock according to the IEA [8]

1.2  Energy systems and demand side management

In the coming years, it is expected that a strong EV development would highly affect the
electrical network. In fact, it would change its voltage plane and its load profile with an increase
in peak consumptions. It would also contribute to higher losses as well as an injection of
harmonics into the network, and a risk of congestion on the grid. Hence, it would amplify the
voltage imbalance between phases, and create an accelerated aging of the distribution
transformers. Uncontrolled EV charging causes an increase of 50% to the peak consumption in a
residential section where there’s a low EV penetration rate, and 2.4 to 3.3 times for sections
where there is a medium to high EV penetration rate. Particularly, establishing energy
management strategies and adopting a controlled charging of vehicles would avoid a huge
energy waste and significantly reduce the peak consumption. Moreover, a simultaneous charging
of all vehicles, for instance in the evening around 7 p.m., would lead to a consumption peak

which is more likely to disturb the quality of the electric grid service. Therefore, maintaining the
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balance between the demand for electricity and its supply requires a smart management charging

strategy [7].

Implementing demand response where demand directly interacts with the generation supply
in modem power systems contributes to an efficient balance in the demand-supply relationship
[9]. Eventually, it is because of the successful energy management systems that a big
number of electric vehicles can be handled by the distribution networks. In fact, on the
country scale, the electricity demands of the networks might vary based on the large number of

electric vehicles and their needs. [3].

1.3 EV Charging/discharging through V2X/X2V technologies

The process of charging the EV from the grid is called Grid to Vehicle (G2V), while the
discharging process of transmitting electricity from the EV to the grid is called Vehicle to Grid
(V2QG). Similarly, electric vehicles can also discharge the surplus of their batteries' energy back
into residential houses or buildings. These processes are respectively referred to as Vehicle to

Home (V2H) or Vehicle to Building (V2B) [9].

The initial design of electric vehicles aimed the carbon emission reduction and energy
saving, and their distributed storage system potential has been recognized. Eventually, the excess
of energy generated by the renewable energy sources can be stored within the electric vehicle's
battery, and then transmitted either to smart homes (V2H) or buildings (V2B) or back to the
power grid (V2G) [9].

In fact, noting that the power electronics domain keeps getting more and more developed,
electric vehicles do not only help in the pollution reduction and increase the renewable energy
sources dependency, but also assist the power grid in the production of electricity as they
perform as storage elements for the energy sources. Moreover, the bi-directional exchange
created between electric vehicles and the grid would allow the charging of the vehicles’ batteries
as well as the power injection back to the grid. So the power grid gets stabilized in terms of
frequency and voltage regulation and power demands would be fulfilled particularly during peak

hours [2].
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In [1], EV (Electric Vehicles) technology has been investigated through the three
discharging operations: Vehicle to Home V2H, Vehicle to Grid V2G and Vehicle to Building
V2B generally highlighting the possibility of discharging and sending the EV battery's surplus

energy back to residential homes or buildings, or to the power grid.

It is to be mentioned that the power grid transmission V2G is the least efficient mode of all
three modes as it has the largest transmission power losses. EV owners need to be motivated
with rewards to perform in the greatest interests of the global power systems as they schedule the

charging, V2H and V2G according to the market sell-back and real-time prices [9], [10], [11].

The V2G, V2H and V2B concepts might contribute to better efficiency, stability and
reliability with regards to the grid's performance. However, without setting a rational scheduling,

serious problems might occur due to deregulated charging or discharging, especially for a fleet of

electric vehicles [9], [12], [13].

The simulation results for an optimization scheduling of EV with V2G and V2H have
shown that EV functions as V2H (or V2B) at peak real-time price or G2V at valley real-time
price or V2G whenever the sell-back market price is considerably higher than real-time price [9].
Comparing the V2G, V2H and V2B modes, the V2H infrastructure achievement is the less
complicated. V2H and V2B structures are close, yet V2B needs more technology support. In
urban areas, where the infrastructure upgrade would be complicated and expensive, the setup of
V2H or V2B would be easy [9], [14]. As for V2G, it involves expensive installations for long
power lines and aggregators supporting a bi-directional transmission between the vehicles and
the grid [15]. As estimated, 2200 MWh to 4400 MWh power from EV will be basically
consumed in 2020 [16].

The modeling of frequency regulation through a large scaled V2G system has been
investigated in [6]. Based on the experiments and the operation data of electric vehicles' fleet
within a municipality, the operations strategies and the performance of several biddings are
characterized through a simulation model (using Simio Simulation Software) including random
events, fleet and frequency regulation parameters [6], [17]. Fleet vehicle data was collected from

three fleet of EVs that are city-owned, providing the information related to trip scenarios over a
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four months span as well as the battery usage and the trips' length [6]. Referring to the grid
signal, fleet operators have the possibility to make a decision concerning the bid amounts and
whether the available resources can meet the grid demands. It is to be noted that the revenue
increases and the fleet would less probably meet the grid demand with the increase of the bid
amount. Thus the decision maker should weigh the opportunity costs resulting from successful

bids against the failing bids that cannot fulfill the grid requests [6], [18].

In [2], an EV battery's bi-directional charger consisting of an AC/DC VSI (Voltage Source
Inverter) converter and a DC/DC DAB (Dual Active Bridge) converter is designed. It performs
as a shunt active power filter. This charger is controlled within a vehicle's operation whereas the
home is powered by the grid. The energy injection into the power grid with the proper control
can occur as the charger is completely bi-directional [19]. In order to ensure an appropriate
functioning of the bi-directional charger, it would be recommended to exploit a control algorithm
that takes in charge the management of the transition between the different operation modes [2].
The charging and discharging processes of the vehicle's battery are tested with a Matlab-
SimPowerSystems-Simulink simulation. For the G2V operation mode test, the grid current
which appears to be almost sinusoidal seems to be in phase with the grid voltage due to the
AC/DC converter's control of the power factor correction (PFC). In V2G mode, the grid current
and its voltage seem to be in opposite phases, as the grid is assumed to be a load in this case. In
the active filter mode, where there isn't any power flow circulating between the grid and the
battery, the grid voltage and current also seem to be in phase. In fact, the AC/DC converter can
offer the grid a unity power factor, specifically in case there is no need for the battery to inject
some power into the electric grid or when the vehicle's battery is fully charged [2]. The charger's
active filter mode operates for elevated charging power [20]. The bi-directional charger's use
aims to attain the limits that the standards have set in terms of power quality and appropriate
charging and discharging of the vehicle's battery. In fact, all requirements can be satisfied by the
charger through its control, which seems to be a promising background for the future
experimental setups [2]. Briefly, the study described in [2] focuses on the electrical structure and
functioning of bidirectional chargers. It controls the charging and discharging processes based on
the battery’s voltage and current variations. However, as the next chapters will show, our study

allows a regulation of the energy flows based not only on the vehicles’ state-of-charge, but also
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on the electricity demand and supply.

Besides, in order to maximize the revenues of both the PHEV (Plug-in Hybrid electric
vehicles) owners and the DSPs (Distribution Service Providers), and achieve a proper peak load
shifting, the in-home PHEVs charging is investigated in [21]. A PHEV charging model of a
leader-follower game based on the framework of Stackelberg game is presented to identify the

revenue expectations and preference of each of the DSP and the vehicles' owners [21], [22], [23].

According to the pricing schedule that the leader or DSP has already set, the followers
(vehicles' owners) take the decision concerning when to launch their vehicles' charging, and the
DSPs have the possibility to incentivize the owners' charging so they prevent system peak load

[24].

Eventually, once the charging process has started, the PHEV's charging costs remain stable
without getting influenced by the charging price modification. Meanwhile, DSPs are able to
optimize the schedule of pricing depending on the probability of PHEVs arrival and the
residents' base load. A control scheme for PHEV charging based on realistic statistics and the
IEEE 13-bus test feeder is proposed in [25]. All costs related to voltage regulation, power
distribution and line loss are integrated into the model through power flow analysis. Extensive
simulations have been performed in order to prove the effectiveness of the proposed control
scheme [25]. The study has clearly shown that the distribution systems' power quality has
improved considerably as the voltage fluctuations and peak load have been reduced. Particularly,
the total consumption of electricity has declined by 14.9 % after voltage regulation, and the
voltage fluctuations got remitted [21], [26]. The game-theoretic method highlights the affiliation
between the PHEV owners' strategy of charging and the DSP's pricing strategy. Similarly to the
Nash equilibrium game where the players do not have any tendency to modify their strategy of
playing, the DSP would be able to analyze and assess the group performance of all customers.
After applying approximate linear functions via power flow analysis, and validating the
associated optimal algorithm, the distribution system's power quality has significantly improved
with regards to reducing voltage fluctuations and the system's peak load. However, the stochastic

base loads as well as the arbitrary arrival time of vehicles' owners and their random price
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variation's tolerance are more likely to be taken into consideration in future works [21]. While
driving, the specific energy consumption of EVs is lower and the transportation costs as well as
the environmental pollution are reduced [3], [27], [28]. The impacts of the operation of several
EVs on the distribution network have been investigated in [3] and a management algorithm has
been suggested then the EV's impact on the grid gets reduced. In order to minimize the network's
energy losses, and create a balance in the main feeders' electric load, a smart management
approach for the charging process of a limited number of EVs and their impact on the low
voltage network have been discussed in [29]. Therefore, a low voltage network and an IEEE 37-
nodes test network that works at LV levels have been adopted in [3]. In addition, a distributed
generation source (particularly a solar energy source, which is a three-phase generator with a 10
kW total power, assumed to function constantly at nominal power during the simulation) has

been placed on one of the network's nodes in order to reduce energy and power losses.

Using the Digsilent Power Factory application [30], the power and the entire grid's losses
have been further studied. Consequently, the power losses and the energy that is consumed from
the main feeder follow the same pattern. In order to efficiently charge the electric vehicles, the
peak load period is to be avoided and the nighttime period is to be adopted for charging [30].
Moreover, a large number of EVs contributes to the disappearance of the low load period of the
night [3]. Concerning the network's voltage levels, it has been noted that the load profile and
energy losses are at their highest values whenever the voltage levels are at their lowest and vice

versa [3].
It is worth noting that there are four generations of V2G2V (or G2V2G):

The first generation reflects the current state of EVs and their charging stations. In this
case, the EV is only an energy consumer and the communication with users is limited to orders

and charging periods via a human-machine interface.

The second generation is characterized by the need for charging management. The power
flow would still be unidirectional, and the charging management would require an improvement

of the communication from both the network's side and the charging station's side.
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The third generation involves bi-directional power flow chargers of a high rated power,
with a significantly reduced charging time. Yet, the V2G operation is still rudimentary at this

stage.

In the fourth generation, the EV becomes a distributed energy storage node that receives
the network's energy when it is cheaper, or when it comes from renewable sources. In this case

the EV is a consumer and producer of energy [31].

Consequently, the fourth G2V2G generation will be adopted in our study, as it will focus
on the controlled bi-directional energy flows where a specified energy management strategy will
be defined. Mainly, in our study the adopted energy source is renewable from solar panels and
wind turbines. So, the first “G” in G2V2G refers to Home or building, while the second “G”

refers to Grid, Home or Building.

1.4  Energy systems modeling

The modeling of energy systems supplied by renewable sources such as solar panels and
wind turbines has been investigated, based on the available literature. Consequently, the energy
systems' components have been modeled and represented separately. The separate modeling of
each component might contribute to a global model of this study’s energy system. In particular,

the study’s energy system will be modeled and sized in chapter 2.
1.4.1 Electric Vehicles, batteries, battery chargers and converters

Electric vehicles are defined as automobiles powered by electric motors fueled by batteries
or fuel cells. One of the main weaknesses of electric vehicles is their price and technical
performance. In fact, all EVs models are more expensive than their thermal (conventional)
equivalents, due to the high prices of batteries that are mostly rented by automobile
manufacturers. As for the EVs' performance and capabilities, some aspects such as the top speed,
the EVs' autonomy, the volume of their batteries, the aging and batteries' life, as well as the
standard charging duration (ranging between 5 and 8 hours at a single phase 220V power source)

still require some improvement.

The main difference between electric vehicles and the internal combustion engine
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conventional vehicles is that the EVs' power supply is based on in-battery storage of electricity
while in the conventional cars the internal combustion results in a mechanical power supply. The
diesel or gasoline engine and the fuel tank of a conventional car are replaced by a battery pack

and an electric motor which is empowered by a controller [4].

The main differences between gasoline powered vehicles and electric vehicles are stated in

table 1.1:

Table 1.1: Comparison between Gasoline powered vehicles and electric vehicles [4]

GASOLINE POWERED VEHICLES ELECTRIC VEHICLES

Cause of almost half the total | 97 % cleaner, no tailpipe emissions, no
atmospheric  pollution via carbon | leakage of contaminated oil into water
monoxide, nitrogen oxides, and | supplies, and no local pollution.

hydrocarbons.

Engine must be running, even when the | Silent as there isn’t any internal

car is idle. combustion engine.

Higher maintenance costs Lighter car, fewer parts, less maintenance.

The electric motors most used in electric and hybrid vehicles are the series motors,
the motors with separate excitation, and the synchronous motors. Yet, the synchronous
motors are the most used by the vehicles' manufacturers. However, despite all of their
advantages, the electric vehicles' biggest problem resides in their low battery life, limiting

the vehicles' scope to a travel distance of ten to hundred kilometers [1].

EVs are expected to replace the conventional ICE (Internal Combustion Engine) cars as the
EVs purchasing is increasing by 10 % every year and the EV penetration is foreseen to grow at a
faster rate. Therefore, some strategies, such as the grid reinforcement, need to be developed in
order to support the EVs flow of energy into the electric grid. However, the grid reinforcement

strategy requires long durations of upgrading and high investment costs [32].
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AC motor installations tend to be more complex and expensive than DC installations. In a
DC electric vehicle, the controller transports the electric power in a controlled way from the
batteries to the engine. The frequency at which this power is transported is not included in the
human hearing range of frequencies. That explains why the EVs seem to be so silent, and the
implementation of a warning device in order to alert pedestrians of their presence seems to be a
possible future EV requirement. In an AC electric vehicle, three pseudo-sine waves are created

by the controller [4].

The EV storage medium is the battery. The vehicles’ batteries seem to be the most

challenging technology in EVs. There are several types of batteries. Despite their economical
prices, lead acid batteries do not seem to be ideal for electric vehicles because of their huge size
and weight, their limited capacity, their short life and long charging time.
Nickel Metal-Hydride (NiMH) or lithium-Ion batteries are mostly used as electric vehicles’
storage batteries, despite the fact that these types of batteries are very expensive. Particularly, the
Li-Ion battery keeps being the most used for the Plug-in Hybrid Electric Vehicles (PHEV) and
the Battery Electric Vehicles (BEV). The NiMH battery is rather used for the Hybrid Electric
Vehicles (HEV).

Additionally, each electric vehicle has a 12 Volts lead-acid battery which is mainly used to
power the car accessories such as the lights, the radio, the power windows, etc.. Thus, a DC/DC
converter is used to convert the main battery’s voltage back to 12V and to keep the 12V battery
charged. A Battery Management System (BMS) ensures the normal operation of all cells in a
battery pack. To design a BMS system, a detailed model of the battery must be built as detailed
in [4], [7].

Accordingly, the below table 1.2 lists the advantages and disadvantages of the most
available battery technologies in the market. While table 1.3 shows a comparison between the

different types of battery technologies based on their depth of discharge and performance.
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Table 1.2: Comparison between batteries types [33]

Battery Type Advantages Disadvantages

- Low density Wh/kg

L t

Lead oW cos - Sudden death of battery
Ni/Cd Reliability / Cyclability | - Low density Wh/kg

- High cost of basi terial
Ni/MH Good energy density '8 C.OS .0 asic materia’s

- Behavior in low temperature

. Limited

Sodium Chloride Nickel Good energy density witec powet

High auto-discharge

Excellent specific

LiCOOz
energy and power

Expensive

- Good energy

Li-ion performance (Wh/kg),
LiFePO4 security and cyclability Charging at low temperatures
- low cost compared with
LiCoO,

Thin film batteries easy to

Expensive
accommodate

Li-metal Polymer

Table 1.3: Comparison between different battery technologies based on depth of discharge and
performance [34]

Battery type Depth of Discharge Performance

Most economical for huge applications

- i o
Lead-Acid 30 % where weight is not involved.

Low energy density. Adopted in
90 % applications where long life, low costs,
and a high discharge rate are needed.

Nickel-Cadmium
(Ni/Cd)

Nickel Metal Hydride o o Higher energy density but shorter life
(Ni/MH) 80 % to 100 % cycle than Ni/Cd.

Lithium-ion (Li-ion) 75 % - 80 % Light weight and high energy density.
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The above stated comparison, Table 1.3, shows that Lithium-ion batteries, that are
nowadays the most used in electric vehicles technologies, seem to have the best performance.
However, NiMH batteries will be adopted in this study for their storage capability, and this
choice is further detailed in chapter 2.

As given in [7], the EV battery model is presented as follows:

Ey=E~ Ry rmora i' — Rp gog it +AE™P" (1.1)
(E, = Open circuit voltage (V)
E = constant voltage (V)
R, = polarization resistance (Q)
Whereas: - Q = Nominal capacity of the battery (Ah)

it = instant load of the battery (Ah)

i* = low — frequency filtered current

A = voltage factor ; amplitude of the exponential zone (V)

\B = load factor ; load at the end of the exponential zone (Ah™1)

In addition to the batteries and the motors, the following converters and inverters are
essential components of hybrid and electric vehicles:
- DC/DC converter: responsible for the voltage regulation at the terminals of the motor.
- DC/AC inverter: responsible for the torque, speed regulation, the three-phase AC motors
power supply through the battery's energy and power control as of P=C . Q.
DC/DC bidirectional converter: the charging of the 12 V on-board battery through the HV
battery, and partial charging of the HV battery through the 12 V on-board battery.

Battery chargers are specified depending on the type of power supply, whether single-
phase or three-phase, and the power transmission mode. In the case of supply by alternating
current, the charging process involves two conversion steps:

* AC/DC conversion: the transformation of the AC current issued by the distribution
network into a DC current is carried out either by a diode rectifier bridge, or by other
systems such as a Thyristors Bridge or a converter with sinusoidal current absorption.

« DC/DC conversion: the direct current obtained at the end of the first conversion is
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modified to match the battery charging profile.

The AC power drawn from the grid is converted into DC power through a recovery system
and EMC filtering; the electric motor is used as a filter element; the traction converter (inverter)
is used for the monitoring of the battery charging process. The power level provided by the
converter would be a slow charging for single-phase and a fast charging for three-phase power
supply [7], [35].

I. DC/DC converter — boost chopper:

The DC / DC boost chopper with non-reversible current is used to increase the voltage of
the PV panels to reach the voltage of the stationary lead-acid battery [36]. Its wiring diagram is

presented in Figure 1.2.

L

4115 P A

Vo (J_r) Vo Vs =15 % R | Vv

Figure 1.2: DC/DC boost chopper wiring diagram

Based on the wiring diagram of Fig. 1.2, and in order to assess each of the boost chopper’s
electrical components aside, the calculation is divided into two phases where the switch would

be close then open respectively.

It is assumed that the circuit is ideal (no losses in the components, no voltage drop across
the diode ...). In this wiring diagram, we distinguish the two following phases:
Phase 1: 0 <t <aT (with 0 < o = cyclic ratio < 1; T = period): this represents the energy

accumulation phase where the switch is closed (Fig. 1.3).
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Figure 1.3: Phase 1: 0 <t <aT

_ g di
Vo = dt
At the end of the ON state:

aT aT V VoaT
AIL,ON = fo dIL = fo TO dt == %

Phase 2: T <t <T: Switch open (Fig. 1.4):

L

2115 >

Vo Ci) Vo =

Figure 1.4: Phase 2: T <t<T

T (Vo=V) (T Vo-V)(1-)T
AlLorr = faT dl, = OL faT dt = Of

Summing up equations (1.3) and (1.5):

VoaT . (Vo=V)(1—-a)T VoaT+ VoT— VoaT—VT+VaT

T(Vo-V(1-a))

Al oy + Al orr = T . = .

Therefore, for 0<t<T:

diy
dt

L2 =y, —(1-a)V

L

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)



Permanent regime:

Energy stored in the inductance: E = 2L fi
2

The current flowing through the inductor at the beginning and at the end of the switching cycle is

the same:

Al oy + Al opr = 0

VoaT n Vo—V)(1—-a)T
L L

=0

= VeaT + VT — VoaT — VT + VaT =0
> VT-V(A-a)T=0

=S V,T=V(A-a)T

Thus, equation (1.8) proves that the output voltage V, exceeds the input voltage V.

ii. Bidirectional DC/DC converter:

Its wiring diagram is presented as follows [36] (Fig. 1.5):

[« 1 A

K1

Vo
K2

Figure 1.5: DC/DC bidirectional converter wiring diagram

(1.8)

43



Similarly, the calculations are estimated through two phases where the switches alternate

between open and close positions.

Phase 1: 0 <t <aT: Switch K1 OFF, K2 ON (Fig. 1.6):

Figure 1.6: Phase 1: 0 <t <aT
i
Vo=L—* (1.9)
Al = [ dly = [[" 2 dt = 22 (1.10)

Phase 2: oT <t < T: Switch K1 ON, K2 OFF (Fig. 1.7):

A

Figure 1.7: Phase 2: aT <t<T

The switching frequency and average duty cycle related to this application are embodied as
follows:
Switching frequency: f =20 kHz

Average duty cycle: a = 1 — % (1.11)
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diy,

V= "Vo—L—- (1.12)
Ay = [l =YD 7 g = G000 (1.13)
The sum of equations (1.10) and (1.13) would result into:

%L: Via—(1—-a)(Vo=V)=Vo— (1—a)V (1.14)

The energy system adopted in this study highlights the renewable energy sources supply.
And the energy supply by renewable sources involves wind turbines and photovoltaic panels that
would allow inexhaustible energy generation with reduced GHG emissions. Yet, the choice of

the most convenient wind turbine and PV panels for this study is presented in what follows.

1.4.2 Wind turbines

Wind turbines have been annexed to the studied system to ensure enough energy
production to feed the house and fulfill all its needs. In order to choose the right adjunct wind
turbine to our system, the difference between both horizontal axis wind turbine (HAWT) and

vertical axis wind turbine (VAWT) has been investigated.

Eventually, VAWTs could have several advantages over the HAWTs. In fact, VAWTs are
easily controllable and they generate less noise than the HAWTs. Their installation also requires

less space than the HAWTs.

However, it has been proven that HAWTs are widely more beneficial despite their slow
activation and wind adaptation as they have an extensively better aerodynamic efficiency besides

their easy implementation and maintenance [5].

Table 1.4: Comparison between Horizontal Axis and Vertical Axis wind turbines

Horizontal Axis Wind Turbine Vertical Axis Wind Turbine
Better aerodynamic efficiency Easily Controllable

Easy implementation and maintenance Less noisy than HAWT

Slow activation and wind adaptation Installation requires less space
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The advantages and disadvantages of each type of wind turbines have been exposed in the

comparison table 1.4.
Based on this comparison, a Horizontal Axis Wind Turbine is adopted in this study.

1.4.3 PV panels

In order to choose the most adequate type of PV panels to be installed, a comparison
between the different types of modules available in the market has been investigated in [37],
[38]: High-grade Silicon is known as the most frequently used element for solar cells. It is
processed with boron and phosphorous semi-conductors charged positively and negatively.
Whenever the photovoltaic cell is hit by the sun’s light energy, electrons start flowing freely
from negative phosphorus to positive boron. The electric potential produces a current that can be

connected through a metallic grid that covers the external circuit and the cell.

Actually, the types of cells used in PV systems are:
A) silicon based cells (including mono-crystalline (c-Si), polycrystalline (p-Si), ribbon

crystalline silicon (r-Si), amorphous Silicon (a-Si)),

B) non-silicon based (including cadmium telluride (CdTe), copper indium gallium or

diselenide (CIS/CIGS),

C) new concept devices (including concentrated PV (CPV)).

In fact, the crystalline silicon technology, also called first generation solar technology, is
mostly used in grid-connected applications with enough subsidies for its high cost offset, or in
off-grid remote areas. Nevertheless, for this first generation technology, the potential for cost
reduction in the long term is not enough to ensure affordable energy, and the processing is

difficult due to the fragility of the silicon wafers.

Therefore, the second generation technology or thin film technology has appeared in order
to reduce the high costs and simplify the manufacturing. In this technology, a thin-layer of
photo-active material is placed on a flexible substrate using a-Si, CIGS or CdTe semi-conductor.
Yet, even though the manufacturing got simpler, the efficiency of this technology remains

relatively low.
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And, in order to achieve high efficiency and low costs, the third generation technology has
been developed. This last generation includes dye-sensitized titanium PV cells, as well as
materials generating electron-hole pairs. Hence, the photovoltaic modules are classified in the

Fig. 1.8 [37] as follows:

Silicon based modules: Silicon modules are of 3 types: mono-crystalline, polycrystalline and

amorphous silicon.

- Mono-crystalline silicon modules, which generally are of a dark color (gray or black), are
specified with the best efficiency, yet relatively high prices.

- Polycrystalline silicon modules are of a shiny blue color that derives from several small
crystals. These modules are cheaper, yet they have a lower efficiency.

- Amorphous silicon cells (also known as thin-film cells) have a brown or a reddish brown

color, and are constituted from a very thin layer of un-crystallized silicon.

Non-silicon based modules (that are also thin-film cells): CdTe — Cadmium Telluride, CIS
/CIGS — Copper Indium Gallium Selenide, seem to be the best decentralized photovoltaic

electricity production.

Photovoltaic cells production:

Solar cells are looped together in series of many strings of cells. The PV modules’ cells are
compressed between a weatherproof backing and a transparent cover.

The modules are formed by popping the cell material on a substrate of glass, stainless steel or

polyamide, and the cells are interconnected to a module by laser.

Normally, crystalline silicon PV modules, especially mono-crystalline and poly-crystalline
modules, are the most used of all types of modules as they have the highest efficiency, yet their
high efficiency is often accompanied by high costs despite of the several strategies used by many
countries in order to reduce the modules’ costs. As for the other types of PV modules such as the
amorphous silicon, even though they have a relatively low efficiency, they are flexible and have
a noticeable aesthetical usage. Actually, despite of their high efficiency, mono-crystalline PV

panels block the outside view of the buildings because of their opaqueness.
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Figure 1.8: Summary on the different types of PV modules

The below table 1.5 shows the five most available types of PV modules in the market, with
their efficiency [37], [38]:
Table 1.5: PV modules efficiency

PV Module Efficiency (%)
Single Crystalline Silicon m-Si 18.5
Poly-crystalline Silicon p-Si 11.6
Hydrogenated amorphous Silicon a-Si 6.3

Cadmium telluride CdTe 6.9

Copper indium gallium diselenide CIS 8.2

Hence, based on the performed comparison, the mono-crystalline silicon PV modules with

the highest efficiency will be adopted in this study.

Having assessed the energy systems’ models and their components, it would be important

to discuss the optimization of these systems that has become a vital feature for their adoption.



Indeed, choosing the most adequate solution for energy systems problems, especially those

seeking several objectives at a time, is further discussed in section 1.5.
1.5  Multi-Objective Optimization

In order to optimize energy systems involving several objectives simultaneously; many
multi-objective methods can be adopted to acquire the most optimal solution. In fact, many
optimization methods, particularly multi-objective ones have been discussed in details in the

available literature [39], [40].

For instance, the charging process of electric vehicles is highlighted through the application

of the genetic algorithm as a multi-objective optimization method [41].

In [32], an EV charging/discharging strategy is proposed for EVs located in a controlled
environment such as a parking lot taking into consideration their mobility pattern and the market
prices' variations. An efficient EV charging and discharging scheduling is investigated as a
multi-objective optimization problematic with regards to the minimization of charging costs,
maximization of aggregators' profits and maximization of the number of EVs with a target State-
of-Charge (SoC) at the departure. For the EV model, the chosen pattern is that of a leisure
parking lot located in Singapore, taking into consideration the uncertainty in parking durations

[32].

A dynamic heuristic scheduling algorithm aiming to solve the scheduling problem is
proposed [39], [42]. Extensive simulations are realized for 24 hours with intervals of 30 minutes
each, for three aggregators of different sizes thus assessing the proposed technique's robustness

and scalability [32].

Consequently, as compared with other algorithms [43], the proposed algorithm provides
better results providing a trade-off between the different perspectives of EV and aggregator. In
the stress test case study, with the proposed algorithm, 25 % more vehicles could depart with the
target SoC at lower charging costs. In the realistic study, the results of the proposed approach
were similar to the case study where the aggregator is small, and that proves the scalability of
this approach. Furthermore, as the proposed approach provides sub-optimal results at a low

computational time (less than 1 minute) it seems to perfectly fit the real world [32].
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The table 1.6 summarizes the most used multi-objective optimization methods in [40], [41],

[44], [45], [46], [47], [48], [49].

Table 1.6: Multi-Objective optimization methods and procedures

Classification | Idea Advantages Disadvantages
Global Criterion | No Distance to the ideal | - Simplicity - Definition of the desired
Method preference objective vector is - Effectiveness goals
method minimized. - Non dominated solution
only if the goals are
chosen in the feasible
domain (limited
applicability)
Weighted Sum | A priori Optimize a - Positive weights’ | - Can’t find solutions for a
method method weighted sum of the | solution is Pareto- | concave shape of the
objective functions, | optimal Pareto-optimal set.
where the weights - Easy to solve
depend on the (only objective
decision maker’s functions/no
preference. additional
constraints)
Epsilon- A priori Optimize 1 objective | - Easy - Difficulty in the choice of
constraint method function using the implementation upper bounds as they
method others as - All pareto-optimal | might not give feasible
parametric solutions can be solutions
constraints found (even for - The choice of the
non-convex parts) objective to be optimized
Genetic Evolutionary | Out of a number of | - Pareto-optimal - Huge number of
Algorithm Algorithm solutions available, | setcan be iterations
only the more fit accurately - Long timing of
solutions survive, identified. computation

while the less fit
solutions are
discarded.

- Easy manipulation
and adaptability to
different problems.

Particle Swarm
Optimization

Evolutionary
Algorithm

The population uses
information
gathered from each
individual and the
population as a
whole to converge
on the optimum.

- Pareto-optimal
set can be
accurately
identified.

- Difficult constraint
handling

Other evolutionary algorithms: evolutionary programming, genetic programming, differential evolution

simulated annealing, tabu search, ant colony optimization, harmony search, etc.
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Normal A posteriori - Find an equally - Approximation of | - For concave problems,
Boundary method spaced estimation the Pareto front non Pareto-optimal
Intersection of the solution with equally solutions can be found.
spaced solutions.
Simplex Linear Iterative Having adjusted - Difficult computation
method programming | optimization the initial and slack | with thousands of
algorithm variables correctly, | constraints and decision
the objective variables.
function will be - Applicable only for linear
optimized at the constraints
vertices of the - Inaccuracy
feasible region. due to rounding
errors
Lexicographic A priori - Classify the The priorities are Practically, some
ordering method objective functions not fixed, but they | Tolerance is used to get
approach based on their change throughout | optimal values.
importance the search process
Reference point | Interactive -The decision maker | - Multi-criterion - Scalarized problem is not
method method choses a reference decision making differentiable.
point that is - Reliable solutions
referred to in the based on the
scalarization of the decision maker’s
problem. preferences
Satisficing Interactive - Similar to Easy implantation Limitation of available
Trade-off method reference point (decision makers information
method method, based on only need to set
the classification of | the aspiration
objectives (3 categories)
categories)
NIMBUS Interactive - Similar to - Can solve non- - Limited computer
method method reference point convex and non- capacity.

method, based on
the classification of
objectives (5
categories)

differentiable
problems.

- Problematic software
update and delivery.

Of all the investigated optimization methods, the evolutionary genetic algorithm stands out

for its accurate identification of the Pareto-optimal solutions. This optimization method has an

easy manipulation and adaptability to difficult problems where lies some ambiguity regarding the

solution search space. In fact, it only allows the fittest solutions to survive and discards the least

fit ones while minimizing the initial population until attaining the Pareto-front. Hence, our study

focuses on the genetic algorithm as the multi-objective optimization approach to be adopted.
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Further details concerning this heuristic method and its application within the context of this

study are provided in chapters 3 and 4.

1.6 Energy management strategies

The EV market is expanding and the number of the owned electric vehicles out of all the
vehicles worldwide keeps getting bigger. Thus, EV batteries have the possibility to be potentially
dispatched so they can be used by conventional organizations on a national level or in local
micro-grids. Particularly, the charging/discharging schedule can be modified: charging would be

enabled at times when pricing is low and discharging would be enabled at the high price period.

Consequently, with smart scheduling for the electric vehicles charging and discharging
processes, the electricity prices fluctuation would be reduced and the demand curve flattened, in
order to reach the battery's full potential aiming to stabilize the power grid. In fact, the decision
regarding when to start charging or discharging the vehicles' battery is made either by utilities
according to the curves of supply and demand, or by the consumers referring to the real- time

and the sell-back market prices [9].

The combination of renewable energy production with the demand-side management has
become a crucial trend for the energy storage and production systems where a balanced

electricity demand and supply system is sought [50].

In [51], EVs have been integrated into the distribution grid through an EV infrastructure
that involves multiple EVs operation which lessens the charging down-time. As the AC/DC
buses power exchange was dealt with by a master control, the individual EVs control was
decentralized, and G2V, V2G as well as the simultaneous G2V-V2G modes have been modeled
using the Matlab/Simulink platform. It has been proved that the control of EV battery
discharging (V2G) occurs in constant current strategy and EV battery charging (G2V) follows a
constant voltage control strategy. As for the simultaneous G2V-V2G operation mode a balanced
operation scheme enabling both the G2V and V2G modes at the same time has emerged.
Consequently, the results which aim to a maximization of the AC power injection into the grid
and a reduction in the load unbalance and the low order harmonic factor settle with the IEEE

standards 1459-2010 [51].
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The amount of energy that can be injected to the grid via V2G mechanism is investigated in
[6]. In order to analyze the accurate transportation statistics while achieving the demand profile
of EV and meet the daily driving needs, four kinds of EVs were taken into consideration in the
study, representing large, midsize and small vehicles available in the market: BEV or Battery
Electric Vehicles (the most dominating in the actual market, are comparable with the modern
passenger cars and family cars), City-BEY (which seem to be similar to the civic transport
subcompacts in terms of weight, size and energy consumption), PHEV 30 and 90 (which have an
All Electric Range AER of 30 and 90 km where they have the possibility to be entirely driven in
electrical mode without fuel oil) [5], [52].

The SoC of the battery is assessed for various mileages taking into consideration the energy
consumption depending on the driving speed, period and cycles (whether on highway, road,
urban or in traffic jam). The schedules for EV charging and discharging are identified according
to the parking durations, arrival and travel time for power levels provided by the EPRI (Electric

Power Research Institute) and the SAE (Society of Automotive Engineers) [5], [53], [54].

The results of the study have shown that as the charging power gets lower, the peak G2V
load gets smaller and shifts to later hours at night, offering a tendency to fill the valley night
time. Besides, after getting back from their last trip, the customers with a high left over state of
charge have the possibility to postpone the charging to later hours and/or use a low charging
power approach to avoid charging at peak time [5]. Eventually, the constant time approach
beside the low charging power seems to be a smart strategy for EV charging [5]. Obviously, the
charging peak load overlaps with the vehicles' arrival period and intensifies in the evening to
surpass the conventional peak while the system's hourly demand is reduced in the morning

period due to the V2G mechanism [5], [55].

In [11], the study involves the benefits of integrating EVs into the smart grid as distributed
energy storage serving either as an aggregated generator or a controllable load depending on the

grid's demand through the DSM program (Demand Side Management).

The distributed energy storage of using EVs batteries allows the control flexibility in smart
distribution systems reducing the purchase costs of electricity for the vehicles' owners and

customers [56], [57].
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A smart system including RES (Renewable Energy Sources) in addition to the main
electric grid and using hybrid vehicles PHEV as energy storage has been studied in [58].
Accordingly, the EV owners would be discharging the excessive energy of their vehicles'
batteries in the grid at the hours of peak demand, and charging then within the off-peak hours.
An energy management model has been created using HOMER Legacy software as well as a
Graphical User Interface (GUI) specifying the exact charging and discharging time and the
energy costs via smart metering [58], [59], [60].

In [16], an experimental vehicle to grid (V2G) platform has been developed in order to
study the interactions that occur between the electric grid and the electric vehicle's load. The

results of the experiments have been proved to comply with the national standards.

Moreover, it has been demonstrated that, the current harmonic distortion rate is affected
(inversely proportional) by the charge and discharge power while the voltage harmonic distortion

rate is not [61] .

In [17], a micro-market for selling and purchasing energy has been introduced in the
context of an electric vehicles parking facility in order to assess the minimization of electric
energy costs, and increase the profits of the Parking Facility Operator PFO. In addition, the
operator would introduce the electric vehicles into markets where electric energy is more
expensive allowing them to sell the energy thus making benefits out of the energy transactions

[3], [62].

A controlled G2V charging strategy has been investigated through the business models for
EV integration in Austria and their economic analysis within the year 2020 and beyond. Studies
have shown that the economic potential of the operation is better than that of V2G operation due

to the several control energy calls and the absence of costs related battery degradation [17], [63].

A networking model has been designed for the assessment of the electric vehicles' mobility
in V2G systems. It has been concluded that the demand response can be balanced in mobile
energy networks through the transport of energy operated by the EV fleets achieving a
synchronous stability in the demand level of the diverse network districts [19], [64], [65], [66].
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In [67], the study involves two smart strategies of vehicles' charging through a V2G and
G2V framework in order to integrate EVs into the existing infrastructure of a workplace car
parks with the lowest PAR (Peak-to-Average Ratio) and daily costs possible. It has been shown
that the strategy aiming the minimization of PAR is recommended whenever plug-in electric
vehicles are needed to accommodate with longer delay in the upgrade of distribution
infrastructure. Besides, it has been proven that the slow charging of plug-in electric vehicles is
recommended for optimal economic and technical benefits for both strategies while fast charging

would deteriorate both strategies' performances.

In [68], the EVs' optimal assignment to charging stations (taking into consideration both
assignments under disturbed conditions such as traffic jam and slopes on roads and assignments
under normal conditions) is proven to occur at the highest level of the EV battery's State of
Charge (SoC) whenever it is possible. This decreases the EV's charging time and energy

consumption.

In [69], in order to improve the fuel consumption of hybrid electric vehicles, an Energy
Management System (EMS) has been built and computed using a Sequential Approximate
Optimization (SAO) and a Radial Basis Function network (RBF). It has been shown that this

EMS algorithm allows a significant reduction of fuel consumption.

In [70], the SPSA method (Simultaneous Perturbation Stochastic Approximation) is used
for a model free tuning of hybrid electric vehicle's state of charge. This method is based on the
optimization of a linear equation between the actual speed of the vehicle and a SoC target. The
study has shown an improvement of 28 % in the efficiency of fuel consumption and 100 % in

drivers' satisfaction.

The energy management system of the power unit of a Formula 1 racecar has been
optimized in [71]. Therefore, a nonlinear program has been conceived in order to optimize the
tuning and implementation of a control policy matching the system's limitations with
regards to battery usage and fuel consumption. The resulting controls are tested using a forward
simulator. These controls seem to be compatible with the optimal trajectories thus validating the
proposed supervisory algorithm. PHEVs do benefit from the fuel-switching feature converting

some of the vehicles' energy into electricity thus reducing its fuel consumption. Eventually, they
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have the possibility to operate in charge-depleting mode (CD mode) where the electrical energy
is consumed until a minimum predetermined level of the SoC is reached, and then switch to the

charge-sustaining mode (CS mode) [72].

Several energy management approaches and controlled scheduling strategies have been
proposed in the literature [73], [74], [75], [76], [77] and [78]. It is because of the successful
energy management systems that a big number of electric vehicles can be handled by the
distribution networks. In fact, as a large number of vehicles have the possibility to affect the
electricity demands of the networks on the country scale, the whole sector of electric
transportation might get affected as well [3]. The charging needs of vehicles have been
investigated through the implementation of a predictive model that foresees the time for multiple

requests of charging and the changing rate [79].

The bi-directional exchange created between electric vehicles and the grid would allow the
charging of their batteries as well as the power injection back to the grid. Then, the power grid
gets stabilized in terms of frequency and voltage regulation and power demands would be

fulfilled particularly during peak hours [2].

In order to supervise a household’s energy consumption closely and trigger new energy
saving incentives, the household’s aggregate consumption has been decomposed into the
individual consumption of each home appliance aside through a splitting approach of the

convenient clusters [80], [81].

Moreover, the charging profiles and daily trips scheduling of an electric vehicles
population has been generated using real-time vehicles’ charging data through a stochastic
simulation procedure [82]. Besides, the charging process related to hybrid-electric vehicles based
on electricity supply and demand has also been assessed using imperialist competitive algorithm,
particle swarm optimization and teaching-learning algorithm. The comparison between all three
methodologies showed that training-learning algorithm widely outperforms the other methods in
terms of load peak prevention, yet, the imperialist competitive algorithm could considerably

outshine with regards to performance costs reduction [83], [84].
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The energy flows from/to the electric vehicles might contribute to better efficiency,
stability and reliability with regards to the grid’s performance. Yet, without setting a rational
scheduling, serious problems might occur due to deregulated charging or discharging, especially
for a fleet of electric vehicles. Nevertheless, the power transmission over a long distance and the
market price fluctuation might cause a huge energy waste referred to as battery operation
convergence. Thus, it is recommended to plan a hierarchy between the EV owners and the grid.
It is to be noted that, if all EV owners start using the same real-time price and sell back market
price, the resulting synchronous activity would create new demand peaks and different price
curves. The big number of electric vehicles getting integrated to the market might bring unstable
factors to the grid. Thus, in order to treat the excessive vehicles’ energy properly, the price trend
and future electricity consumption would be predicted by the central grid. The decision
concerning the amount of energy needed and when to charge is then made by the central grid,

and the discharge process would occur only when needed [9].

As electric vehicles can supply energy storage to the power grid, their opportunities for
services related to grid balancing and storage are increasing. This allows EV owners to make
revenues; therefore compensating a part of the electric vehicles high costs that stop some of the

consumers from adopting EV [6].

Three potential energy management strategies are stated and compared as mentioned in

table 1.7:
Table 1.7: Types of Energy Management Strategies

Energy Management | Description

Strategy

All-Electric Range PHEV is purely electric driven.

AER- focused strategy

Engine-dominant Stored electric energy is used to support engine operation

blended strategy and optimize the system efficiency dominated by the
engine.

Electric-dominant A strategy that is similar to the purely electric driven

blended strategy strategy without prioritizing a significant all-electric

driven distance within CD operating mode.
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The above-mentioned strategies could be used separately or mixed depending on the
decision of the controller based on the duty cycle's distance and the aggressiveness context
seeking lower fuel consumption. For instance:

- for a long distance trip, the engine-dominant blended strategy would be recommended.

- for trips where the vehicle would travel a short distance before its next recharging cycle, the
electric-dominant blended strategy would be recommended.

- for trips where the upcoming cycle is predefined, an alternative mix between the engine-

dominant and electric-dominant blended strategies would be recommended.

1.7 Conclusion

Electric vehicles seem to be of a huge interest nowadays for their huge share in the
pollution reduction resulting from the transportation sector. Consequently, in this chapter,
electric vehicles, as well as energy systems and their components have been investigated based
on the available literature. Besides, multi-objective optimization and its numerous approaches
have been discussed. Some of the literature’s energy management strategies related to electric

vehicles’ charging and discharging scheduling have also been reviewed.

The following chapter will then describe a specific energy system conceived in this study
and will present its detailed configuration and modeling as well as the sizing of its components.
The complete study focuses on the electric energy flowing into and out of electric vehicles and

the control and regulation of this energy based on the electricity supply and demand.
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Chapter 2 - Energy System’s modeling and sizing
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2.1 Introduction

The avoidance of greenhouse gases emissions and reduction of pollution related to the
transportation sector involve the adoption of vehicular electrification. This study mostly aims to
control the energy flows between the electric vehicle, the electric grid and homes in a way to
reduce the habitats’ dependency on the electric grid hence to minimize the flows from the grid
into homes, in order to reduce the greenhouse gases emissions. So the house needs would be
directly produced from renewable energy sources (photovoltaic panels and wind turbine), and the
vehicle’s excess of energy would be implemented into the house or the grid when needed,

depending on the supply and demand of electricity.

Particularly, the system’s composition and the sizing of each of its components are further
studied in details in this chapter, as well as the energetic modeling of the whole system with
regards to the production and consumption variations. Mainly, this chapter includes the
definition of the study’s energy system and its global architecture and topology. It also exhibits
the energetic global model of the system, and the mathematical modeling and sizing of the
vehicle’s batteries, the stationary batteries, and power converters. The sizing of renewable
sources is also studied, and the calculations related to the photovoltaic panels and wind turbine

are exposed.

2.2 Energy System’s definition

In order to control the energy flows between electric vehicles, the grid and houses; and to
adapt the vehicles’ charging and discharging features based on the electricity supply and
demand, the energy system investigated in this study is first defined. It includes a domestic
household supplied by renewable energy sources (particularly photovoltaic panels and a wind
turbine), as well as a fleet of electric vehicles used not only for personal travel needs but also for

energy storage and retrieval.
2.2.1 Energy System’s global architecture

The global architecture related to the energy system defined in this study is illustrated in
Fig. 2.1 —a), b) and ¢).
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Figure 2.1: Energy System's global architecture

Home

Based on the energy system’s global model, the electricity production and consumption are

first gathered before being implemented into a control and regulation platform. The electricity

production, represented in section a) of Fig. 2.1, is collected through the solar energy and wind

power resulting from the weather station data input. The energy consumption, represented in Fig.

2.1, section c¢), is defined by the functional household appliances. As illustrated in the Fig 2.1,

section b), the control and regulation platform takes in charge the charging and discharging of

the available electric vehicles according to the margin of difference between the energy produced

or consumed, and the lack or excess of energetic needs.

The aim of the study is to suppress, as much as possible, the grid supply to the houses for

economic and environmental purposes. Thus, the energy flows between the vehicles, houses,

renewable sources and the grid are presented in Fig 2.2.

Renewable

Energy Sources \

Electric
Vehicle

Electric
Grid

Houses |%~~

Figure 2.2: Energy flow block diagram
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2.2.2. Energy System’s topology

The detailed system’s topology is presented in the following Fig 2.3.

Converter

(o)

DC/DC DC/AC
k\ Converter | |Converter DC/DC

. | | |
b IBatlery | IDC Load IIAI: Load I

Figure 2.3: The studied energy system's topology

The system includes two DC/DC converters and a DC/AC inverter in addition to the

electrical equipment and the home appliances and loads.

Electrically speaking, the electric vehicle’s configuration is presented in the following Fig.

24.
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Figure 2.4: Electric vehicle's configuration

2.3 Modeling and sizing of the system’s components

First, in order to investigate a realistic prototype, the study has been made based on a real

existing electric vehicle; the technical specifications of which are listed below:

Vehicle’s specifications:

- Vehicle’s mass = 1468 kg

- Maximum speed = 135 km/h

- Motor type: synchronous wound rotor motor
- Average speed = 50 km/h

- Acceleration = 0 to 100 km/h in 13.5 seconds
- Maximum power = 65 kW

- Maximum torque = 220 N.m

- Front surface = 2.07 m?

- Autonomy = 100 km.

- Coefficient of air penetration: Cx = 0.28

- Density of air: p = 1.225 kg/m3

- Acceleration of gravity: g=9.81 N/ kg
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- Rolling resistance coefficient: C: = 0.01 for an inflation pressure ranging between 1.2

N/cm? and 2.2 N/cm?.

Thus, these technical specifications are adopted in the rest of this study for all the calculations

where electric vehicles technical data are needed.
2.3.1 Energetic model of EV’s propulsion

The calculation of the energy and power required for the vehicle’s propulsion is performed

through the definition of the energetic model of the EV.

Referring to the Newton’s second law of motion, the sum of the forces applied on the EV is

described by the following equation:

YF=mxd=F+ F+ F,+ F (2.1)
rm = mass of the vehicle
d = acceleration of the vehicle
" ﬁp = Propulsive force of the vehicle
with: 9 ef = Friction force of the wheels
ﬁa = Aerodynamic force
LF):g = Force of gravity

Noting that the direction of the friction force of the wheels, the aerodynamic force and the force

of gravity are opposite to that of the propulsive force:

E,=ma+F+ F, + F (2.2)
The friction force of the wheels Fr can be calculated as follows:
Fr= (. XmXg Xcosa (2.3)

C, = coef ficient of rolling resistance
whereas:{ g = gravity acceleration
a = angle of inclination of the vehicle with respect to the horizontal

The rolling resistance coefficient C, is estimated to be 0.01 at an inflation pressure ranging
between 1.2 N/cm? and 2.2 N/cm?

The aerodynamic force F, can be presented by the equation:
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1
Fa=>pSCV? (2.4)

p = Air density = 1.225 Kg/cm3

whereas: S = Frontal section
" | C, = coefficient of air penetration

V = Relative speed of the vehicle

As for the force of gravity F,, it can be estimated as per the equation:
F,=mgsina (2.5)
Therefore, the equation (2.2) of the vehicle’s propulsive force is detailed in the following model:

2> E=ma+ C,XmXg ><cosa+%pSCxV2+mgsina (2.6)
Furthermore, the power required to propel the vehicle (in Watts) is given by the equation:
P, = F, XV (2.7)
The energy required to propel the vehicle (in Wh) is given by:
Ep =5 XP 2.8)

Where A represents the autonomy of the vehicle in km, and P is the total power absorbed by the

vehicle.
However: P = P, + Pyx = Fy XV + Py, (2.9)

whereas P, represents the auxiliary power related to the on-board electric accessories.

Thus, referring to equations (2.8) and (2.9), the energy required to propel the vehicle can be

expressed as follows:

A
E, = 7 X (Fp XV +Pyyy) (2.10)

Besides, the amount of energy that should be put into the vehicle's battery when charging is

expressed by: Ppgirerie (t) = %:) ; where p, represents the efficiency of the chain of electric
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traction of the vehicle’s battery (which depends on the temperature, the state of charge and the

discharge power).

On the other hand, the electrochemical energy that would be contained in the battery during a

trip of duration T seconds: Epgetery = | Prattery (£)dt

The amount of energy supplied to recharge the battery after a trip of duration T seconds is also

E battery

p ; where p. represents the charge efficiency that helps evaluate
[

expressed by: Ecpgrge =

the losses during discharge.

Also, since the amount of energy to be recharged and the charging power are known, the

charging time can be deduced according to the equation: E_, = P., X T¢p

Therefore, referring to the vehicle’s specifications, some numerical examples of energy

calculations are presented as follows:

1. For a = 0 (straight road), a =0, and V = average speed = 50 km/h = 13.8 m/s; and assuming
that P,,,,, = S5kW :

Fr= (- xXmXg Xcosa=0.01 X1468 X9.81 X cos(0° =144 N

1 1
F, = > pSC. V%= > x 1.225 x 2.07 x0.28 x 13.82 =676 N
F,=mgsina = 1468 X 9.81 Xsin(0° =10

D> F=ma+ F+ F+F =0+144+67.6 +0 = 211.6 N
D P=F, XV +Py=2116 x 13.8+5 = 2.92 kW

D> E,= 2 xP =22 x292=584kWh
14 50

2. For a = 30° (inclined road), and V = average speed = 50 km/h = 13.8 m/s:

Fr=C.XxmXg Xcosa=0.01 x1468 X 9.81 X cos30°=124.7 N

1 1
Fo=5pSCV?= 5 x1225 x2.07 x0.28 x 1387 = 67.6 N
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F,=mgsina = 1468 X 9.81 X sin30° = 7200.54 N

D F,=ma+ F+ Fy+F, = 0+ 124.7 + 67.6 + 7200.54 = 7392.84 N
D P = F, XV +Pyy =7392.84 x 13.8+5 = 107 kW

D E, =2 xP=""x107 = 214 kWh
v 50
As noticed in the numerical applications of the energy calculation in examples 1) and 2), the

higher the inclination angle of the road contributes to excessive propulsion of the vehicle.

2.3.2 Sizing of the vehicle’s batteries

As the objective of the study is to be able to use the EV’s battery for the energy storage and
restitution, the choice of the battery technology is directly linked to its capacity of storage. Thus,
the battery with the highest depth of discharge and lowest reachable state of charge should be
adopted.

Based on the comparison between the different battery technologies and their depth of discharge
and performance (table 1.3), the Lithium-ion batteries, that are nowadays the most used in
electric vehicles technologies, beat the other types of batteries in terms of performance. The
Nickel Metal Hydride batteries also seem to have a good performance. Indeed, even though the
Li-ion batteries do have higher energy density and specific energy than the rest of battery types,
the Ni/MH batteries are still adopted by some car manufacturers. For instance, the electric
vehicles Prius Lexus of Toyota, Civic insight of Honda, Altima of Nissan and Escape Fusion
MKZ HEV of Ford all include Ni/MH batteries. And the vehicles Leaf EV of Nissan, Mini E of
BMW, Escape PHEV of Ford and Chrysler 200C EV do include Li-ion batteries. However, even
though the Li-ion batteries seem to have the best performance, the Ni/MH would guarantee the
best use as their depth of discharge surpasses the other types. And noting that, in this study, the
vehicles’ on-board batteries are used for storage, the depth of discharge would be an important
factor for the maximum possible restitution of energy into the electric grid. Therefore, the
Ni/MH technology will be adopted for the vehicles’ on-board batteries of this study. As for the
system’s stationary batteries, the lead-acid technology will be adopted as this type of batteries
remains the most economical, and their weight is not an important factor in this application [85],

[86].
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2.3.2.1 Sizing of the Ni/MH on-board batteries

The capacity of the pack of batteries is defined as per the equation: Capacity (pack) =
P

whereas U, 1s the voltage of the battery pack set to 250 V.
pack

For a = 0 (straight road), a = 0 and V = maximum speed = 135 km/h = 37.5 m/s, and assuming
that P,,,, = 2kW , the equations (2.3) through (2.9) can be interpreted as follows:

Fr=C.XxmXg Xcosa =0.01 Xx1468 X 9.81 X cos0° =144 N

1 1
Fy=5pSC V=5 x1225 X207 x0.28 x 37.5? = 4992 N

F,=mgsina = 1468 X 9.81 Xsin(0° =0
E,=ma+ Fr+ F, +F;,=0+144+499.2+ 0 = 643.2N

P = E, XV + Py = 643.2 X 37.5 + 2000 = 26.1 kW

E, = 4 xP—lOO X 26.1 =193 kWh
PV " 135 o
Consequently, the capacity of the needed pack of batteries would be:
.. P 26100 _
Capacity = Vo~ 250 77 Ah

Having chosen the Ni/MH battery of the Fig 2.5, Panasonic BK1100FHU 1.2 V — 11 Ah of
0.3 kg (the technical specification of which is given in Appendix A.1):
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Figure 2.5: Ni/MH Battery Panasonic BK1100FHU [87]

The pack of batteries would be defined as follows:

0 Number of modules in series: N; = UUp—aCk’ = % = 208.3 —» 209 modules
element .
0 Number of modules in parallel: N, = _Cpack ? =7 - 7 modules
element

The nominal/usable capacity of the on-board battery is assumed to be 75Ah for the rest of the

study.
2.3.2.2 Sizing of the stationary lead-acid batteries

In order to choose the most convenient stationary lead-acid batteries, their capacity is first

specified in the following equation:

Capacity (lead — acid batteries) = ELC:LIIV (2.11)

E. = Daily consumption of energy = 31.1 kWh/day

N = number of days of battery life estimated at 3 days without charging
U = Battery pack voltage

L = maximum discharge of the battery estimated at 65 %

whereas

Concerning the voltage of the battery pack U, the storage voltage recommended by the
suppliers for a rated power of PV exceeding 1600 Wp is 48 V, this value of the voltage is
therefore adopted in this study (Wp is the unit of measure of the peak power).
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It should be mentioned that overcharging or over-discharging of the battery will damage it

and decrease its life.

Consequently, the lead-acid batteries capacity is calculated as per equation (2.11) as

follows:

E. XN 311 x3

L xU ~ 065 xag_ 22204n

Capacity (lead — acid batteries) =

- Adopted Lead-Acid Battery: Motoma power 48 V 3000 Ah (technical specifications is
given in Appendix A.2), and maximum load current = 20% x rated capacity = 3000/5 = 600 A

(Fig. 2.6).
e
Figure 2.6: Lead-acid batteries Motoma MS48V3000 [88]
2.3.3 Sizing of the photovoltaic panels

The next component of the study’s energy system to be sized is the photovoltaic panels.

The size of the most convenient PV panels to adopt is defined based on the following equation:
E.= Ny X P, (2.12)
E. = Daily energy consumption
whereas: { Ny = Number of hours of use per day

P, = Operating power

Daily consumption of energy in the home:

Table 2.1: Daily home appliances energy consumption

| Heating/Ventilation | Air conditioner | 3 hours/day | 3.5 kWh | 4.75 kWh
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Fan

5 hours/day

250W*5 =1.25 Kwh

Water heating 20 minutes/day 1.75 kWh
Lighting 4 Light bulbs 9 hours/day 4*80W*9=2.88 kWh | 2.88 kWh
Audiovisual 200W TV 6 hours/day 1.2 kWh
Appliances

Oven 2 kWh

Microwave 15 minutes/day | 0.36 kWh
Cooking Grill + electric Non-recurrent. Estimated daily 3.5 kWh

kettle + toaster | US€ ©°M 2 daily | average: 1.14

basis. kWh

Dish washer + Non-recurrent

Washing/dryin dryer * use on a dail Estimated daily
gidrying washing . y average: 2 kWh
. basis.
machine
Laptop - Non-recurrent Estimated daily
. vacuum cleaner .
Electronics use + hone | s€ on a daily average: 0.7
P basis. kWh

charger
Refrigerator 180 W 24 hours 4.32 kWh
Electric outlet for the 100km/day 10 KWh/100 km

vehicle

Based on the above listed energy consumption of the household appliances, the daily

consumption of energy in the home would be of approximately 31.1 kWh. It is to be noted that

the energy consumption considered for the electric vehicle’s in-home outlet is a lump sum

corresponding to 100km/day; yet, it does not take into consideration the EV owners’ individual

travel needs.

Thus, the energy production related to the PV panels would be calculated as follows:

Ep= EC Xk

Ep = Energy production

whereas { E; = Daily energy consumption
k = correction coefficient = 1.3

Ep = Ec xk =311 x 1.3 = 40.43 kWh/day

(2.13)

As mentioned in chapter 1 section 1.4.3, the mono-crystalline silicon PV modules with the

highest efficiency are adopted in this study.
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Calculation of the peak power of the PV panels that should be installed:

Noting that the South East orientation is proven to ensure the highest solar radiation [89],
the photovoltaic panels are assumed to be oriented in the South-East direction with an inclination
angle of 30° under standard conditions where solar radiation is estimated at 1000 W/m? with an

ambient temperature of 25°C.

The peak power of the PV modules is calculated as per the equation:

Peak power = %” (2.14)

whereas N represents the number of hours of sun exposure per day, estimated to 4.5 hours/day in
this study, particularly in Quebec, Canada. In fact, the choice of the city was made based on
varied meteorological conditions where the climate is characterized by wide ranges between

maximal and minimal solar and wind data.

In Quebec, the climate can be very sunny and windy at times, and can alternate between either
sunny or windy at others, and this meteorological variety projects diverse maximal and minimal

renewable energy productions.

Therefore: Peak power = B 2943 _gog kW,
N 4.5

Consequently, 33 monocrystalline PV modules with rated power 280Wp, Fig. 2.7, under
standard conditions STC are to be installed; thus the installation of 54.79 m? of DualSun panels
990 mm x1677 mm, thickness = 45 mm. The voltage of the modules at rated power is of 31.95
V; its intensity at rated power is of 8.77 A.
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Figure 2.7: Monocrystalline PV module DualSun 280 Wp [90]

(More details about technical data sheet of PV panels are given in appendix A.3).
2.3.4 Sizing of the wind turbine

As already stated in chapter 1 section 1.4.2., a Horizontal Axis Wind Turbine is adopted in
this study.

As the in-home daily consumption has been estimated to: E; = 31.1 kWh/day, the yearly
consumption would be : Ec = 31.1 X 365 = 11351.5 kWh/yr.

In order to indicate the technical specifications of the wind turbine, the system is assumed

to be located in Quebec, where the average wind speed is of 9.8 miles per hour, thus of 4.38 m/s.

The power output of the wind turbine is provided by the following equation:

P=-xkXpxCyxAxV3 (2.15)

(P = output power (kW)

k = constant to yield power (kW) = 0.000133

p = Air density (Ib/ft?)

whereas: 4 C, = maximum power coef ficient, theoretically estimated as 0.59

2
A = Rotor swept area (ft?) = %,D is expressed in ft

\V = wind velocity (mph)
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The Annual Energy Output AEO (expressed in kWh/year) is provided by the following

equation:
AEO = 0.01328 x D? x V3 (2.16)
hereas: {D = Rotor Diameter (ft)
whereas: V = Annual average wind velocity (mph)
Thus, D = J 450 = J MISLS . — 30.14 ft
0.01328xV 0.01328x9.8

Consequently, the equation (2.15) results in the following calculations:

P = % x 0.000133 X .077 x 0.59 x 713.47 x 9.8% = 2.03 kW (2.17)
k =0.000133
(p = 1.23 Kg/m? at sea level = 0.077 Ib/ft3
with d Cp = 0.59
A= o DO g3 4752

4
V =9.8 mph

Consequently, the horizontal axis wind turbine ETNEO AN3000 (technical specifications
of which are given in appendix A.4) with 2.8 kW of power is adopted in this study (Fig. 2.8).

Figure 2.8: ETNEO AN3000 wind turbine [91]
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2.3.5 Sizing of power converters

Referring to the converters’ modeling operated in chapter 1, their parameters’ identification

is calculated in the following sub-section.
2.35.1 DC/DC converter — boost chopper (wiring diagram presented in Fig. 1.2)

The inductance L and capacitance C of the DC/DC boost chopper are given by:
-
T OfAI

— & Imax
f AV

(2.18)

f = switching frequency
a = average duty cycle
whereas: { Vy = Input voltage
Al = current oscillation in the inductance
AV = Oscillation of the output voltage

In our case, the parameters of equation (2.18) can be estimated as follows:

(Vo =3195V

! I, = 8.77 X 36 = 315.72 A (assuming 36 modules connected in parallel)
V=48V

ll =6004
AV =V -V, =48—-3195=16.05V

> lymax = V2 %X 315.72 = 4465 A
2> Al = 15% X Ijpmay in order to reduce the hysteresis losses

= 0.15 X 446.5 = 67 A.

The duty cycle can be calculated through the equation: L= 1 (2.19)

Vo 1-a

2>a=33%

Numerical application for a switching frequency f= 20 KHz =20000 Hz:
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aly 0.33 x 31.95

~ FAI ~ 20000 x 67

C—alm“"— 0'33x600—617><10—4—617 F
= FAV T 20000 x 16 —onm

L =79 x10°°H = 7.9 uH

A MPPT controller is adopted to achieve the maximum output power of the PV panels.
2.35.2 Bidirectional DC/DC converter (wiring diagram presented in Fig. 1.5)

Similarly, the identification of the bidirectional DC/DC converter’s parameters is

calculated in what follows.

At the converter’s input (inductance side) are installed the lead-acid batteries of a capacity

of 3000Ah with a 48V voltage and a maximal load current of 600A.

At the converter’s output side 209 modules in series and 7 modules in parallel of Ni/MH
batteries of 1.2 V of voltage and 75Ah of capacity. The total voltage of the pack on the output
side would then be: V = 209 x 1.2 = 250.8V

The average duty cycle can be calculated as per equation (2.19) as follows:

a=1-— %:1— %:1—0.19:0.81 > a=81%
a =081
axvy V, = 48V
= e WRerea Y o 50000

Al =0.15 x600=904

Al has been assumed as 15% of the maximal load current taking into consideration the current

oscillation within the inductance in order to reduce the hysteresis losses.

axVy _ 0.81x48

Therefore, L = =
XA~ 20000%x90

=216x 107> H = 21.6 uH

2.35.3 AC/DC inverter

As the energy needs of the house are estimated as: P = 8.7 kW_; an inverter of 9kW power
is adopted in the study, particularly, the SolarEdge inverter SEOKUS 3¢ universal 9kW (for
datasheet we refer to Appendix A.5) (Fig. 2.9).
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Figure 2.9: AC/DC inverter SolarEdge SEIKUS 9kW [92]

2.4 System’s energetic modeling

The establishment of the electric model of each of the system’s components would not lead
to a global model of the system that includes all its components due to the huge diversity of the
components’ different variables. Therefore, the energetic model of the system is embodied based
on the production and consumption of electric energy and the system’s interaction to the
energetic excess or insufficiency; the production and consumption being defined by renewable

energy sources, the vehicle and household appliances.

Thus, three case studies would be investigated:
a- The production of energy would surpass the demand of electricity, and there would be an

excessive amount of energy for the electric vehicles to charge their batteries.

E

pr = E.

Epr = E.+ A

whereas A = the excess of energy that can be partially or completely used by the vehicle for

charging and E,, and E, represent the production and consumption of energy progressively.
Energy produced by renewable sources > Energy consumed by the home and the vehicle

E,r(Renewable sources) > E.(Home) + E.(vehicle)
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E,.(PV) + E, (WT) > E.(Home) + E.(vehicle) (2.20)

where E,,.(PV) and E,,.(WT) are the energy produced by the photovoltaic panels and the wind

turbine progressively.

= The energy produced by photovoltaic panels is embodied as follows:
Epr (PV)wnjaay = Nu; X Pr Xk

Ny, = number of hours of use per day (in hours)

Whereas 4 Pr = Operating power (in watts)
k = correction factor = 1.3

» The energy produced by the wind turbine is also summarized by:

wind turbine annual energy output _ 0.01328 x D* x v*

E,.(WT) = =
pr(WT) number of days/year 365.25
{D = Rotor diameter (ft)
whereas )
v = annual average wind speed (mph)

* The energy consumed by the vehicle: E.(vehicle) = E, Xd = E,

E, = Energy linked to the on — board electric outlet (kWh/km)
whereas { d = travelled distance (km)
E, = propulsive energy of the vehicle

A
E.(vehicle) = E, xd =E, = v (Fp XV + Payy)

A 1
=V[(ma+ C,XmXg Xcosa+ szCxV2+mgsina)V+PauX]

* The energy consumed by the functional household appliances E.(Home):
Ec(Home) = Zhome appliances NHj X Pf = (NHJ- X Pf)heating/ventilation +
(NH]- X Pf)water heating + (NHJ- X Pf)lighting + (NHJ- X Pf)audiovisual appliances +
(NHj X Pf)cooking + (NH]- X Pf)washing/drying + (NHj X Pf)electronics use +

(NH]- X Pf)refrigerator
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Therefore, the equation (2.20) can be represented by:

0.01328 x D? x v3
365.25

NHijka+ NH].fo+EO><d

home appliances

0.01328 xD?xv3

NHijka+ 6525

A
> Zhome appliances NHJ- X Pf + v [(ma + . XmxXxg X

cosa + % pSC,V?+mgsin a) V + Pkl (2.21)

b- The consumption of energy exceeds its production. In this case, the demand of energy
exceeds the electricity supply and the amount of energy available is insufficient. In order to
compensate this insufficiency, it would be recommended to refer to complementary sources
of energy, or to use the available energy stored. Thus, at this stage, the energy stored in the
electric vehicles’ battery could be used; hence the vehicles would be discharging.

E, < E,
Ep,=E. — A

whereas A = the lack of energy that is partially or completely compensated by the storage of the
vehicles’ battery.

The energy produced by renewable sources and the vehicle is less than the energy consumed by
the home:

E,.(Renewable sources) + E,,(vehicle) < E.(Home)
Ep(PV) + E,,(WT) + Ep,(vehicle) < E.(Home)

0.01328 x D2 x V3
365.25

Np; X Pr Xk + + Ep.(vehicle) < z Ny % Py

home appliances

0.01328 xD?xV3

NH]. X Pr X k + 26525

+ Epr(VEhiCle) < (NHJ- X Pf)heating/ventilation +
(NHj X Pf)water heating + (NHJ- X Pf)lighting + (NH]- X Pf)audiovisual appliances +

(NHj X Pf)cooking + (NHj X Pf)washing/drying + (NHj X Pf)electronics use +
(NHJ- X Pf)refrigerator (2-22)
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with E,, (vehicle) = é(Fp XV+Puy) = E, xd

The value of E,,(vehicle) to be discharged from the vehicle can be estimated based on the SoC

available, and the distance that could be travelled using the SoC’s amount of energy. However,

all the energy stored in the battery may not be fully returned to supply the needs of the house.

c- The energy production and consumption are equivalent. In this case, there’s no need to refer
to new sources of energy to compensate the insufficiency, yet, there’s no excessive energy to
be used for extra consumption. Thus, the fleet remains unused, and the vehicles would be
neither charging nor discharging. They would neither be storing nor restituting energy, yet
they would rather be waiting until an imbalance between the demand and supply of electricity

strikes again, which will trigger a new storage or retrieval cycle

Epr = E,
Ey = E. £ A whereas A =0

E,.(Renewable sources) = E.(Home)

Epr(PV) + E,.(WT) = E.(Home)

Ny, X Pr Xk +

0.01328 x D? x V'3
= E Ny, X P
J

365.25

home appliances

0.01328 xD?xV3

NH]. X Pr X k + 26525

= (NHJ- X Pf)heating/ventilation + (NHJ- X
Pf)water heating + (NHj X Pf)lighting + (NH]- X Pf)audiovisual appliances +
(NHj X Pf)cooking + (NHj X Pf)washing/drying + (NHj X Pf)electranics use +

(NHJ- X Pf)refrigerator (2.23)
Accordingly, all the three proposed cases can be summarized by the following equation:

Ep = E.+ A (2.24)

0if E,r = E,
whereas A = { excess of energy if E,. < E
lack of energy if Ep. > E;
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2.5 Conclusion

In this chapter, the main objective of this study of modeling the treated system has been
defined and the considered energy system has been exposed and discussed. More precisely, each
component of the described system has been investigated, and a choice of its type as well as its
detailed sizing has been performed. Custom parameters have been calculated and particular
technical specifications have been assigned to all of the system’s components. Besides, the
global energetic modeling of the system has been embodied through three case studies where the
margin of difference between energy production and consumption varies. Furthermore, a multi-
objective optimization of the vehicles’ charging and discharging is performed in chapters 3 and 4

in order to fulfill the system’s energetic needs.
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Chapter 3 - Energy Storage multi-objective optimization
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3.1 Introduction

As mentioned in chapter 2, the studied system involves an electric vehicles fleet with a
Nickel Metal Hydride (NiMH) on-board battery of a capacity of 75 Ah and an 80 % depth of
discharge, thus a significant storage capacity. The investigated domestic household has an
average daily consumption of 31.1 kWh that is entirely or partially compensated with the energy
production of 33 mono-crystalline photovoltaic modules with a rated power of 280Wp under
standard conditions, as well as the production of a horizontal axis wind turbine with a power of
2.8 kW. The calculated household daily consumption includes the energy consumed for
heating/ventilation, water heating, lighting, audio-visual appliances, cooking, washing/drying,

electronics use, the refrigerator, as well as the vehicle’s electric outlet.

While electric vehicles have been immensely taking part in the worldwide pollution
reduction, their on-board batteries can also be used as means of storage and retrieval of electrical
energy which does not seem to be easily stored in huge quantities. To do so, the charging of
vehicles can be scheduled based on the supply and demand of electricity and their alternative
energy needs. Thus, as long as the electricity supply by the electric grid exceeds its demand, the
vehicles batteries would be used for storage means. Thus, the vehicles would charge their
batteries where energy would be stored. Then, the energy storage is proposed through a multi-
objective optimization of the flow of energy coming into the vehicle during its charging process.
For this end, this chapter first describes the objective functions linked to the vehicles’ charging
optimization. The multi-objective genetic algorithm is adopted as an optimization approach to
calculate the optimized solutions to the fitness functions. Subsequently, in order to combine the
resulting solutions into a final combined optimized solution, each fitness function is normalized
and the weighted sum approach is applied through different optimization scenarios where
random weights are assigned based on the decision maker’s priorities. Finally, the optimized
values resulting from the calculation are computed and verified by simulation using Matlab

software.

The originality of this optimization study appears in the application of the genetic
algorithm method for electric vehicles’ energy storage and retrieval and the validation of

optimized results through Matlab simulations.
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3.2  Multi-Objective Optimization for charging

In order to define the optimized solutions related to several objective functions of the same
system, many optimization approaches can be referred to. An efficient optimization method to
use is the heuristic genetic algorithm approach where the fittest solutions are selected through the
reproduction of offsprings in consecutive generations. Thus, the multi-objective genetic
algorithm optimization method is adopted to find the most optimized solutions of the defined

objective functions [93], [94].

In this study, the optimization model is defined as follows:

{min/ maxF (X) = [ fi, for ) [l

3.1
giX)=0,i=1,2, ..., m G.1)

where F, f, and g; are the global function to optimize, the objective functions and the constraints

of the system respectively.

Whenever the production tops the consumption, the energy storage in the vehicles’
batteries gets launched in order to recover the excess of energy and redirect it towards a
beneficial usage of the unused energy that is wasted vainly. The vehicles’ charging is then
launched with the optimization of the energy flows through several objective functions that
representing the system performances. The corresponding solutions are calculated for an
optimized charging of the vehicles using genetic algorithm method as a multi-objective approach

for optimization.

Further details concerning the charging model are provided in the following sections of this

chapter, and those of the discharging model are provided in chapter 4.
3.2.1 Objectives definition and modeling

The charging optimization is assessed in order to accomplish the most optimized energy
flows control. In order to attain the inquired optimality, the main objectives that the optimization

aims to satisfy are first enumerated:
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i.  Maximization of the longevity of vehicles’ batteries and the optimization of their life
cycles through the maximization of their state-of-charge.

ii.  Control of the vehicles’ charging by switching the charging loads towards off-peak hours
whenever the vehicles are connected to the electric grid, so that the demand curve gets as
flattened as possible.

iii.  Optimization of the vehicles’ needs by controlling their autonomy in numerous trip
circumstances such as the functional on-board accessories and the type of roads.

iv.  Fulfillment of the infrastructural energetic needs.

In order to fulfill the objectives sought, the vehicles’ modeling, as well as that of the
charging process, has been established with the following objectives functions:
1. The vehicles’ state-of-charge SoC during the charging process should be maximized. It is

generally presented by the following equation :
SoC(t) = SoC(t —1) + 1= (3.2)
b

whereas 1., P, and Ej, consecutively represent the vehicles’ charging efficiency, their charging
power, and batteries’ capacity. However, this objective is complemented with a SoC constraint
limit that would not fall short of a minimal value SoC,,;,, or surpass a maximal value SoC,,,,, in

order to avoid any batteries’ damage: S0C,,;,, < S0C < S0Cpqx [95].

ii. In order to avoid the significant energy losses and voltage fluctuations and in some cases
the network infrastructure’s reinforcements, the integration of EVs into the electric grid involves
the need for a management system where the demand curve tends to be flattened. Thus the
charging loads shift to off-peak hours through a coordinated charging strategy with lower
electricity prices and demand load. Whenever the electric vehicles would be grid-connected, the
avoidance of voltage fluctuations and energy losses requires a relatively flat demand curve
achieved through a charging loads’ shift towards off-peak hours.

So, whenever the electric vehicles are grid connected, it happens that, sometimes, they all get
linked to charging stations simultaneously in order to fill their batteries. Hence, a huge electricity
demand occurs during peak hours when the grid supply might become insufficient. On the other
hand, the electricity demand is negligible during valley times where very few vehicles are
charging and the grid energy is not extensively consumed. Generally, it is highly recommended

to establish a balance between peak and valley periods in order to avoid the huge voltage and
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power fluctuations as well as the oscillations of the charging demand profile. This balance, often
acquired through economic incentives encouraging vehicles’ owners to shift their charging
towards the valley times where the electricity demand is lower and with reduced prices. This
demand load shift would balance the grid through flattening the charging curve, hence
maximizing the valley energy until omitting the unwanted fluctuations. Thus, the maximization
of valley energy Evalley would balance the electricity demand and the network avoiding
considerable fluctuations, energy waste and infrastructure reinforcements in case of long
transmission lines insufficiently supplied by the grid. In fact, vehicles would connect for
charging as soon as they are available, and their batteries are not completely full. The demand
profile valley is mostly caused by the huge number of vehicles ready for charging. Yet, through
the maximization of the valley energy, the charging demand curve gets flattened and the
charging processed gets managed.

Consequently, the valley energy Eygjey, depicted by the following equation should be

maximized:

Q x(1-SoC(t))
Evalley = T X I)valley (3-3)

whereas Q, Pg, and Py,e, correspond consecutively stand for the rated batteries’ capacity, the

charging power, and the valley power [96], [97].

iii.  The optimization of the vehicles’ needs involves the modeling of their propulsive energy

E,, represented by the equation:

A
Ep =5 X (B + Paux) (3.4)

whereas A, V, B, and P, respectively denote the vehicles’ autonomy, their relative speed, their
propulsive power and the auxiliary power. These parameters are linked to the functional on-
board electrical accessories such as the headlights, windshield wipers, air conditioning, etc. It is
to be noted that the vehicles’ autonomy widely fluctuates depending on the types of roads they
are travelling (whether in urban or rural areas) and their inclination angle a, as well as the traffic
on roads, the waiting line time and the energy consumption related to the use of on-board
accessories (air conditioning/heating, headlights, radio, wipers...). Therefore, all these factors

need to be taken into consideration within the optimization algorithm’s charging and discharging
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processes so that the vehicle always fulfills its personal trips’ needs [98], [99], [100], [101],
[102].

iv. In some areas where the infrastructure reinforcement would be complicated due to the
huge length of transmission lines, the EVs grid integration would be intricate. Particularly, the
network’s reinforcement would be more complex in urban areas than in rural areas [103], [104],
[105]. As the network’s reinforcement would vary depending on the transmission lines’ length,
and the difficulty of vehicles’ grid integration, the fulfillment of the infrastructural energetic
needs is directly linked to the minimization of energy losses expressed by:

Pch— (Pp+Paux)
Pcn

[ =100 X (3.5)

Whereas the coefficient 100 allows the losses’ embodiment in percentage %.

It is to be mentioned that this minimization concerns the energy losses linked to the power
transmission lines’ length, yet, it does not involve the power lines capacity and their resulting

losses.

Therefore, the multi-objective optimization program is represented by a mathematical
system where all objective functions highlight the mathematical model for each of the study’s
objectives already mentioned that are the state of charge, the charging power, the propulsive
energy of the vehicle and the energy losses. The study is first carried out for the charging phase
[106], [107], [108]. Hence, the charging optimization’s modeling of equation (3.1) is summed up
by the following system highlighting the objectives’ mathematical models:

{min/ max F (X) = [ f1, f2, f3 fa] (3.6
giX)=0,i=1,2,..

 fi(fori=1,2,3,4) are objective functions:

(f, = SoC(t) = SoC(t —1) + ncn%:

}f2 = Evatiey = M X Frattey 3.7)

A
f3 :Ep =7 X(Pp'l'Paux)

Pcp— (Pp+Paux)
Pch

[ fo =1=100 x
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Likewise, the constraints of this optimization would involve the maximal or minimal
boundaries defined by the vehicle’s charge or discharge, as well as the charging power that must
surpass the summed up auxiliary and propulsive powers in order for the vehicle to circulate.

These constraints are expressed in what follows.

gi = Constraint functions:

(g1 = S0Cppin < SoC < SoChay
92 = Pen < Penpgy
{932 Ep  SE,<Ep (3.8)
gas =1 2 lnin

\gs — Pch>Pp+Paux

Whereas P, and [,,;, respectively represent the maximal boundary for the charging power

hmax

and the minimal value of the losses.
3.2.2 Multi-objective optimization — Genetic Algorithm

Once the multi-objective optimization model has been set, the heuristic genetic algorithm
approach has been adopted to assess the optimized values related to each objective function. In
order to unify the parameters and calculations, the mathematical model involves one electric

vehicle instead of a fleet.
3221 Objective 1: Optimization of the State-of-Charge

£(SoC(t — 1), P.) = SoC(t) = SoC(t — 1) + nchPE—CI:‘ (3.9)

Taking into consideration the aim to maximize the battery’s life cycle, its longevity and to
avoid its deterioration and lifetime decrease, its SoC is limited within 10% to 90% range. Thus,
considering the SoC limitation boundaries with an 80% depth of discharge for the vehicle, the
maximum SoC allowed value is set at 90%. This value is adopted as a reference for an ideal
optimization. Therefore, as the study aims to maximize the value of f; = SoC(t), and noting that
the applied multi-objective Genetic Algorithm GA is heuristic providing approximate values that
are the closest possible to the optimal solution, SoC(t) = 90% is adopted as the maximal

reference value that the optimization aims to reach (theoretical value). Therefore, the GA aims
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the get the closest possible value to 90 %. Thus, with reference to predefined vehicles’ technical
specification, Ej, has been fixed at 75 Ah, and 1. at 85%. The decision variables related to this
objective function being SoC(t — 1) and P,, the genetic chromosome has been set as [SoC (t —
1), P.,]. The optimized solution’s calculation have been operated with an initial population of 12
randomly picked chromosomes, reduced into 6 chromosomes via a 50% selection rate of the

most adequate values (table 3.1).

Table 3.1: The optimization’s initial population of 12 chromosomes with their solution and ranking

S:)oC(t -1 |10 20 |30 40 |45 50 60 65 70 75 80 88.57
;f:,) 95 100 | 104 108 | 112 116 | 120 | 123 125 | 126 | 128 | 130
g"?ggt) 11.05 | 21.1 | 31.14 | 41.2 | 46.23 | 51.28 | 61.32 | 66.35 | 71.38 | 76.39 | 81.4 | 90
5?2)1)11( 12 11 10 9 8 7 6 5 4 3 2 1

The survival population after a 50% selection rate involves the fittest 6 chromosomes out
of 12, below listed:

(chr; = [88.57,130]
chr, = [80,128]
chry = [75,126]
chr, = [70,125]
chrs = [65,123]
\chry, = [60,120]

Chromosomes with ranks 1 = 6: <

Rank weighting:

The probability P, for the n place chromosome to be a parent:

Niepe —m+1 6—n+1 7—n
B =—L = =
" y ket ; 1+2+34+4+5+6 21
i=1 *
6
(P(chry) = =
5
P(Chrz) = Z
4
P(Chr3) = Z
Therefore, < 3
P(chry) = -
2
P(chrs) = —
1
\P(chrg) = 1
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Two offsprings would be produced out of each mating. Therefore, in order to produce 6
new offsprings to fill the next generation, 3 pairs of parent chromosomes / 3 matings are needed.
Hence, based on Haupt’s method (Haupt et al., 2004), and assuming that the mutation rate S is of
0.35, the offspring chromosomes are defined as follows, whereas x represents a parent
chromosome [m, d] ’s crossover point:

{Offspring 1= [xnewlry"L] with {xnew1 =1 =Bxm + Bxq
of fspring 2 = [xnewzf Yal Xnew, = (1= B)xqg + Bxp

In order to define the parent chromosomes that would recombine and produce new
offsprings for the succeeding generations, even though picking the chromosomes with the
highest ranks as parents would provide fitter solutions, that must be avoided in order to maintain
a good diversity of the successive populations and prevent a premature convergence where an
extremely fit solution would take over the population [109] [110]. Consequently, 6 chromosome
offsprings are generated through 3 parent matings, and the survival population of 6 has then been

reduced into 4 chromosomes by the elimination of the two lowest ranks.

A- First mating:
If we suppose that chr; = [88.57,130], and chr, = [70,125] are a pair of parent chromosomes:

{offspring 1=1[0.65 x 88.57 + 0.35 x 70,130] = [82,130]
of fspring 2 = [0.65 x 70 + 0.35 x 88.57,125] = [76.5,125]

B- Second mating:

If we suppose that chr, = [80,128], and chrs = [65,123] are a pair of parent chromosomes:

{offspring 1 =1[0.65 x 80 + 0.35 X 65,128] = [74.75,128]
of fspring 2 = [0.65 X 65 + 0.35 x 80,123] = [70.25,123]

C- Third mating:
If we suppose that chr; = [75,126], and chry = [60,120] are a pair of parent chromosomes:

{offspring 1 =1[0.65 x 75+ 0.35 X 60,126] = [69.75,126]
of fspring 2 = [0.65 x 60 + 0.35 x 75,120] = [65.25,120]

The genetic algorithm implies the elimination of the solutions with the lowest ranks in

order for the highest ranks to survive. In this application the survival selection rate is of 2/3",
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Thus, the two lowest ranks being eliminated, the survival population would be (table 3.2):

(chrl = [82,130]

chr, = [76.5,125]

chry = [74.75,128]
[

Chromosomes with ranks 1> 4: i
chr, = [70.25,123]

Table 3.2: Second generation of 6 chromosomes with their solution and ranking

SoC(t—1) |82 76.5 74.75 70.25 69.75 65.25

(%)

P.p 130 125 128 123 126 120

(kW)

SoC(t) 84.43 78.38 76.16 71.6 71.4 66.57

(%)

Rank 1 2 3 4 5 6
Rank weighting:

The probability for the n' place chromosome to be a parent:

Niepe —m+1  4—n+1 5-n

P, =

Zivff”ti S 142+3+4 10

2

(P(chry) = -
3

P(chry) = o

Therefore, < 1

P(chr;) = S
1

(P (chry) = o

A- First mating:
If we suppose that chr; = [82,130], and chr; = [74.75, 128] are a pair of parent chromosomes:

{offspring 1 =1[0.65 x 82+ 0.35 x 74.75,130] = [79.46,130]
of fspring 2 = [0.65 x 74.75 + 0.35 x 82,128] = [77.29, 128]

B- Second mating:

If we suppose that chr, =[76.5,125], and chr, = [70.25,123] are a pair of parent
chromosomes:

{offspring 1=[0.65 X 76.5 + 0.35 x 70.25,125] = [74.3,125]
of fspring 2 = [0.65 x 70.25 + 0.35 X 76.5,123] = [72.4,123]
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The two lowest ranks being eliminated, the survival population would be (table 3.3):
{chr1 = [79.46,130]
chr, = [77.29,128]

Table 3.3: Surviving population of 4 chromosomes

SoC(t—1) | 79.46 77.29 74.3 72.4
(%)

P 130 128 125 123
(kW)

SoC(t) 80.89 78.7 75.7 73.8
(%)

Rank 1 2 3 4

chry = [79.46,130]

The two lowest ranks being eliminated, the survival population would be: {c hr, = [77.29,128]

Rank weighting:

The probability for the n place chromosome to be a parent:

Nyepe —m+1 2-n+1 3-n

P, = = =
" Z’i" zkleptl- 142 3
2
P(chry) = =
Therefore, ?1’
P(Chrz) = g

If we suppose that chr; =[79.46,130], and chr, =[77.29,128] are a pair of parent
chromosomes:

{offspring 1=1[0.65 x 79.46 + 0.35 x 77.29,130] = [78.7,130]
of fspring 2 = [0.65 x 77.29 + 0.35 x 79.46,128] = [78, 128]

Table 3.4: fittest 2 chromosomes of the population

. . Fitness function:
— 0
SoC(t — 1) (in %) P, (in kW) SoC(t) (in %)
1 78.7 130 80.13
2 78 128 79.4

Thus, parent chromosomes are crossed to generate offsprings, and the population of 4 is

decreased again into a population of 2 chromosomes that mate again to end up with a final
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optimized chromosome of a P, of 130 kW and a SoC(t — 1) of 78.7% to end up with an
optimized solution of 80.13% for f; = SoC (t).

So the optimized solution for the first objective function f; = SoC(t) is given by:

P,, = 130kW

SoC(t—1) = 78.7%} — SoC (t) = 80.13 %

3.2.2.2 Objective 2: Optimization of the Valley Energy

0 x(1-s0C (1))

Pen X Pvalley (310)

Pva e
fZ(SOC(t): #) = Evalley =

The same procedure has been adopted in order to maximize the valley energy Epqieys

where the rated battery capacity has been equally assumed at 75 Ah, and the decision variables

valley

. o . P . .
for this objective function are SoC(t) and o The genetic chromosome is set at
ch

[SoC (t),@]. The 12 initial chromosomes have been randomly picked in a way that SoC
ch

ranges between 10% and 90%, and the ratio Pvgﬂ ranges between 0.69 and 1.3. The optimized

ch

solution’s reference value for E,q ., has been set at the maximum reachable value within the

Pvalley

specified ranges for SoC and — particularly at 87.75 kWh. Thus, the GA aims to attain the
ch

closest possible value to 87.75kWh. The constraint to satisfy regarding this objective is:
Pcp, > P, + Payy. Noting that (P, + Pryyx)min = 92 kW.

The survival population after a 50% selection rate (table 3.5):

(chr; = [0.1,1.29]
chr, = [0.16, 1.24]
. ) chrs =10.22,1.18]
Chromosomes with ranks 1 2 6: < chr, = [0.27,1.13]
chrs =[0.32,1.09]
\chry = [0.38,1.03]
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Table 3.5: Initial population of 12 chromosomes

SoC(t) | 10% =0.1 | 0.16 0.22 0.27 0.32 038 | 0.44 0.56 0.68 0.7 1082 |09

Poattey | 120_ 1 59 [ 124 [118 [ 113 [1.09 [1.03 [ 097 [093 [086 [08 [0.75 [0.71

93
Pch
Evalley 87.08 78.12 | 69.03 | 61.87 | 55.59 | 47.9 | 40.74 | 30.69 | 20.64 | 18 10.1 | 5.31
(kwh)
Rank |1 2 3 4 5 6 7 8 9 10 |11 12

Similarly to the calculations carried out for f;, the offsprings generated by chromosomes

matings are presented in the following table 3.6:

Table 3.6: Matings and offsprings generation

First mating Second mating Third mating

chry = [0.1,1.29] & chr, = [0.16,1.24] & | chry = [0.22,1.18] &

chr, = [0.27,1.13] chrs = [0.32,1.09] | chrg = [0.38,1.03]
Offspring 1 [0.16,1.29] [0.22,1.24] [0.28,1.18]
Offspring 2 [0.21,1.13] [0.26,1.09] [0.32,1.03]

Therefore, the fitness function and ranks related to the calculated offsprings are exhibited
in table 3.7:

Table 3.7: Six new generated offsprings as a result of the matings

SoC(t) [ 016 | 021 [022 |026 |028 |032
Poatiey| 129 [ 113 [124 [1.09 |18 | 1.03

Pch

E,,a”ey 81.27 66.95 72.54 | 60.5 63.72 | 52.53
(kwh)

Rank |1 3 2 5 4 6

The two lowest ranks being eliminated, the survival population would be (table 3.8):

(chry =[0.16,1.29]
chr, = [0.22,1.24]
chry = [0.21,1.13]
chr, = [0.28,1.18]

Chromosomes with ranks 1= 4:

97



Table 3.8: the generation of 4 offsprings through the surviving population

First mating Second mating

chr; = [0.16,1.29] & chr, = [0.22,1.24] &

chry = [0.21,1.13] chr, = [0.28,1.18]
Offspring 1 [0.18,1.29] [0.24,1.24]
Offspring 2 [0.19,1.13] [0.26,1.18]

The two lowest ranks being eliminated, the survival population would be (as given in table 3.9):

{chrl = [0.18, 1.29]
chr, = [0.24,1.24]

Table 3.9: New surviving population of 4 chromosomes

SoC(t) [ 018 [0.19 [024 [026
Poatiey| 129 [ 113 [ 124 [ 118

P ch

Evalley 79.3 68.6 70.68 | 65.49
(kwh)

Rank |1 3 2 4

If we suppose that chr; =[0.18,1.29], and chr, = [0.24,1.24] are a pair of parent

of fspring 1 =[0.2,1.29]

chromosomes, the generated offsprings would be (table 3.10): {0 ffspring 2 = [0.22,1.24]

Table 3.10: The fittest two chromosomes of the population

Pyaitey Fitness function:
SoC(t varey )
( ) Pch Evalley (11’1 kWh)
1 0.2 1.29 77.4
2 0.22 1.24 72.54

Consequently, the optimized solution reached for the Ej 4., maximization is assessed at
77.4 kWh, based on a SoC value of 20% and a @ ratio of 1.29.
ch

SoC(t) =20%
The optimized solution for f; = Ejqiey: Prattey _ 129 (™ Evaitey = 774 kWh
Pch .
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3.2.2.3 Obijective 3: Optimization of the Propulsive Energy

As previously mentioned, the vehicle’s propulsive energy to be optimized is expressed in

the following equation:

f3((Pp:Paux):Ep = é X(Pp+Paux) (3.11)

In order to maximize the vehicle’s propulsive energy, its average velocity has been
assumed at 50 km/h, and its autonomy at 100 km. In addition, the decision variables for f; being
B, and P, the genetic chromosome [P,, Py, ] has been adopted through an initial population
of 12 (table 3.11), to define the third objective’s optimized solution. The parameters B, and
Paux vary respectively within the following ranges: 90 kW < B, <110 kW and 2 kW <
Px < 8 kW. A highest reachable value of 236 kWh has been adopted as a reference value for

Ey,’s optimum.

Table 3.11: Initial population of 12 chromosomes

90 92 94 96 98 100 | 102 | 104 | 106 | 108 | 109 | 110

Pue 125 |3 |35 |4 |45 |5 |55 |6 |65 |7 |75 |8

185 | 190 | 195 |200 | 205 |210 |215 |220 |225 |230 |233 | 236

Rank | 12 11 10 9 8 7 6 5 4 3 2 1

Survival population after 50% selection rate:

(chr; = [110, 8]
chr, =[109,7.5]
chry =[108,7]
chr, = [106,6.5]
chrs = [104, 6]
\chrg = [102,5.5]

Chromosomes with ranks 1 = 6: <

The generation of offsprings by mating the surviving chromosomes is detailed in table 3.12.

Table 3.12: Matings and offsprings generation

First mating Second mating Third mating

chr; = [110,8] & chr, = [109,7.5] & | chr; = [108,7] &

chr, = [106, 6.5] chrs = [104, 6] chry = [102,5.5]
Offspring 1 [108.6, 8] [107.25,7.5] [105.9,7]
Offspring 2 [107.4,6.5] [105.75, 6] [104.1,5.5]
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The new calculated offspring and their corresponding propulsion and ranks are presented in table
3.13.

Table 3.13: Six new generated offsprings as a result of the matings

Pp 108.6 107.4 107.25 | 105.75 | 105.9 | 104.1
Poux |8 6.5 7.5 6 7 55
Ep 233.2 227.8 229.5 223.5 225.8 | 219.2
Rank |1 3 2 5 4 6

The two lowest ranks being eliminated, the survival population would be (table 3.14):

(chrl = [108.6, 8]
chr, = [107.25,7.5]
chr; = [107.4,6.5]
chr, = [105.9,7]

Chromosomes with ranks 1> 4: {

Table 3.14: The generation of 4 offsprings through the surviving population

First mating Second mating

chr; =[108.6, 8] & chr, = [107.25,7.5]

chr; = [107.4,6.5] & chr, = [105.9, 7]
Offspring 1 [108.18, 8] [106.78,7.5]
Offspring 2 [107.82,6.5] [106.37,7]

The two lowest ranks being eliminated, the survival population would be (table 3.15):
{chrl = [108.18, 8]
chr, = [107.82,6.5]

Table 3.15: New surviving population of 4 chromosomes

P, 108.18 | 107.82 | 106.78 | 106.37
Poux 8 6.5 7.5 7
E, 232.36 | 228.64 | 228.56 | 226.74
Rank |1 2 3 4

If we suppose that chr; =[108.18,8], and chr, =[107.82,6.5] are a pair of parent
of fspring 1 = [108.054, 8]]

chromosomes, the offsprings would be: {o ffspring 2 = [107.95,6.5]
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Once the genetic algorithm’s calculations have been applied, the optimized solution for E,,
turned out to be of 232.108 kWh for P, and Py, with consecutive values of 108.054 kW and 8
kW (table 3.16).

Table 3.16: The fittest 2 chromosomes of the population

. . Fitness function:
B, (inkW) P (in kW) E, (in kWh)
1 108.054 8 232.108
2 107.95 6.5 228.9
So, the optimized solution for f; = E, is given by:

P, = 108.054 kW

8 EW } ~ E, = 232.108 kWh

3.2.24 Objective 4: Optimization of the losses

The fourth objective deals with the minimization of energy losses. This objective is

expressed by the mathematical equation:

£o(Pe By + Pay) = 1 = 100 X w (3.12)

ch

As for this objective, it involves the minimization of losses. Its decision variables are P,
and P, + Py, and the genetic algorithm approach has been applied with the genetic
chromosome [Py, P, + Py ] and the following variation ranges:

90kW < P, < 110kW
2kW < P, < 8kW

} — 92kW < P, + Py, < 118kW

* 92kW < Py, < 130kW (with P, > P, + Payy so that the vehicle could circulate)

The minimal reference value of 0.1% has been adopted for the optimized solution to converge

towards.

Survival population after a 2/3" selection rate (table 3.17):
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( chry = [92.2,92.1]
chr, = [95.5,95]
chr; =[98,97.5]
chr, = [102,100]
chrs = [104,102.5]
chrg = [106.5,105]
chr, = [109,107.5]
\chry = [112,110]

Chromosomes with ranks 1 = 8: <

Table 3.17: Initial population of 12 chromosomes

P 92.2 | 955 | 98 102 104 106.5 | 109 112 | 116 119 125 130

Pp + Poux 92.1 | 95 97.5 | 100 102.5 | 105 107.5 | 110 | 112.5 | 115 116.5 | 118

l 0.11 | 0.52 | 0.51 | 1.96 | 1.44 14 1.38 1.8 | 3.02 3.36 | 6.8 9.2

Rank 1 2 3 4 5 6 7 8 9 10 11 12
Rank weighting:

The probability for the n™ place chromosome to be a parent:

P_Nkept—n+1_ 8—mn+1 _9-n
n yokert ;  1+24+3+4+5+6+7+8 36
1=
8 2
(P(ChT'l) = §= ;
7
P(chr,) = v
6 1
P(Ch?"g): gz g
5
P(chry) = v
Therefore, < 4 1
P(ChT5)= £= 5
3 1
P(Ch?"6) = g = E
2 1
P(ChT'7) = g = E
1
(P (chrg) = v

In order to produce 8 new offsprings to fill the next generation, 4 pairs of parent chromosomes /

4 matings are needed (tables 3.18 & 3.19).
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Table 3.18: Matings and offsprings generation

First mating Second mating Third mating Fourth mating
chry =[92.2,92.1] & | chr, = [95.5,95] chrsy = [98,97.5] chr, = [102,100] &
chrs = [104,102.5] | & chrg = & chr, = chrg = [112,110]
[106.5,105] [109,107.5]
Offspring 1 [96.33,92.1] [95.5,95] [98,97.5] [105.5,100]
Offspring 2 [99.87,102.5] [106.5,105] [109,107.5] [108.5,110]

Table 3.19: Generated offsprings as a result of the matings

P.p 96.33 | 9987 | 99.35 | 10265 | 101.85 | 10545 | 105.5 | 1085
Py + Payx 92.1 1025 | 95 195 97.5 1075 | 100 Ho
l 4.4 -26 | 4.38 -23 4.3 -002 |52 -4138
3 2 1 4 Rank

The solutions that fail to comply with the P., > P, + P, constraint have been stroke through
in table 3.19.

So, the ranks with Py, < B, + P, being eliminated (as the vehicle wouldn’t be charged
enough to circulate), the survival population would be:

chr; =[101.85,97.5]
chr, =[99.35,95]
chry = [96.33,92.1]
chr, = [105.5,100]

Chromosomes with ranks 1> 4:

New offsprings are generated using the surviving population (table 3.20):

Table 3.20: Generation of four offsprings through the surviving population

First mating Second mating
chr, = [101.85, 97.5] & | chr, = [99.35,95]
chr; = [96.33,92.1] & chry =
[105.5,100]
Offspring 1 [99.9,97.5] [101.7,95]
Offspring 2 [98.26,92.1] [103.8,100]

The two lowest ranks being eliminated, the survival population would be (table 3.21):
{chrl =[99.9,97.5]
chr, = [103.8,100]
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Table 3.21: Surviving population of four chromosomes

P, 99.9 98.26 | 101.7 | 103.8
P,+Pgy, |975 [921 |95 100

l 2.4 6.27 6.6 3.67
Rank 1 3 4 2

If we suppose that chr; =[99.9,97.5], and chr, = [103.8,100] are a pair of parent
of fspring 1 =[101.27,97.5]

chromosomes, the offsprings set would be: {0 ffspring 2 = [102.4,100]

Therefore, the optimized solution calculated for f, is 1 = 2.34% with a P., = 102.4 kW and
B, + Paux = 100 kW (table 3.22).

Table 3.22: The fittest two chromosomes of the population

Fitness function:
P Py + Poux l
2 101.27 97.5 3.7
1 102.4 100 2.34

Finally, the optimized solution for f, = [ is given by:

P,, = 102.4 kW

I = 2.34%
P, + Payy = 100 kW} - 0

33 Optimization Scenarios

Based on the genetic algorithm’s optimization calculations, as some of the objective
functions defined depend on the same parameters, the obtained optimized solutions would fix
conflicting values that would result in one optimized objective’s solution at the expense of
another objective. Indeed, noting that the optimization of our objectives is conflicting, the
optimum of an objective would set a specific value for its variables that would lead to a non-
optimized value of another objective. For example, a 130 kW value for P, would lead to the
optimized SoC, while the same value of P, should be set to 102.4 kW for an optimized value for
the losses. So, the concluded optimized solution of the four objective functions cannot be

reached all at the same time. Therefore, different case studies and preference based optimization
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scenarios have been carried out depending on the decision maker’s priority of some objectives
over the others. This issue is illustrated through various scenarios that we report in what follows.

Scenario 1: In this scenario, the decision maker has no specific preference for any of the
objective functions, so the calculated optimized values are adopted irrespective of the conflicting

parameters. Thus, the optimized solution set would be (see table 3.23):

Table 3.23: Optimized solution for Charging Scenario 1

f1 =S0C(t) f2 = Evaitey f3 =E fa=1

80.13 % 77.4 kWh 232.108 kWh 2.34%

Scenario 2: The preference is set for the objective functions f; and f; of the system. So, the
parameters of the objective functions SoC and E, are set and fixed, even if that affects the

optimized solutions of the rest of the objective functions (table 3.24):

Table 3.24: Optimized solution for Charging Scenario 2

fi =S0C(t) f2 = Evaitey f3 =E fa=1

80.13 % 19.35 kWh 232.108 kWh 10.73 %

Scenario 3: In scenario 3, the decision maker sets a priority for the optimization of the vehicle’s
valley energy and losses over its battery’s state of charge and propulsive energy. Therefore, in
case of a priority for objectives f, = Eyguey and f, = 1 over f; = SoC (t) and f; = E,, the

resulting optimization values for our objective functions would be (table 3.25):

Table 3.25: Optimized solution for Charging Scenario 3

fi =SoC(t) f2 = Evalley f3= Ep fa=1

20 % 77.4 kWh 200 kWh 234 %

Scenario 4: Scenario 4 involves prioritizing the optimization of the vehicle’s valley and
propulsive energies over its battery’s SoC and its losses. Therefore, in case of a priority for

objectives f, = Eyquey and f3 = Ej over f; = SoC (t) and f, = [ (see table 3.26):
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Table 3.26: Optimized solution for Charging Scenario 4

fr = SoC(t)

fo= Evalley

f3:Ep

fa=1

20 %

77.4 kWh

232.108 kWh

233 %

Scenario 5: In this scenario, f; and f, are prioritized over f; and f,. In this case, the prioritized
objectives are conflicting, and their optimized values cannot be obtained at the same time. In

fact, the optimized solution for f; involves the values of 130kW for P, and 78.8% for SoC (t —

valley __

1) while the optimized solution for f,embeds SoC (t) = 20% and PP— = 1.29. Therefore, a
ch

compromise is applied in order to define quasi-optimal solutions that are the closest to the

optimized solutions for both objectives. As the common variable that would affect both

objectives is SoC (t), and consequently SoC (t — 1), P, and @ are fixed at the values that
ch
lead to the optimized SoC (t) and Eyyjjey, respectively 130kW and 1.2, and the genetic algorithm

is re-applied to sort out the Pareto-front.

The optimization would result in the following optimized solutions (see table 3.27):

Table 3.27: Optimized solution for Charging Scenario 5

f1 =S0C(t) f2= Evatey fz= E, fa=1

51.58 % 48.23 kWh 232.108 kWh 10.7 %

Scenario 6: There’s a preference for f5 and f, over f; and f, in scenario 6. Noting that f; and f,
are conflicting, the re-application of the genetic algorithm contributes to the optimized solutions

exposed in table 3.28:

Table 3.28: Optimized solution for Charging Scenario 6

fi =SoC(t) f2 = Evalley f3= Ep fa=1

83.67 % 15.9 kWh 204 kWh 0.4 %

Scenario 7: In the last scenario, a priority for f; and f, over the other objectives is set. These two
prioritized functions are also conflicting, and that contributes into the optimums that follow

(table 3.29):
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Table 3.29: Optimized solution for Charging Scenario 7

fi =SoC(t) f2 = Evaitey f3 =E fa=1

79.96 % 18 kWh 200 kWh 12.56 %

Referring to the above-mentioned scenarios, the obtained optimized solutions clearly
converge towards the calculated theoretical optimums based on the preference set for each one of
the objective functions. Eventually, the above stated scenarios’ tables obviously show that the

optimums related to the preferred functions are the closest to the hypothetical calculations.

Consequently, taking into consideration the scenarios’ priorities previously set, the
optimization results have been combined into a single objective function through the use of

weighted sum approach further explained in the next section.
34 Weighted Sum Approach

The weighted sum approach is a priori approach as the user/decision maker assigns a
chosen weight to each objective function after its normalization in order to convert the multi-
objective problem into a single objective one represented by the following scalar objective

function:

min F(X) = wy X [[ff)Il + wz X IOl + w3 x (I3l + wy X I (3.13)

where the sum of all assigned weights should be equal to 1, Y w; =1, and f{(x) is the

normalization of the objective functions f;(x) as per the equation:

’ fi_fi,min
fi = LiSimin (3.14)

fi,max_ fi,min

with f;, fimin and fima, being respectively the objective functions and their minimal and
maximal values [111], [112], [113]. The weighted sum approach, [114], will be adopted in this
study.

Accordingly, the objective functions’ normalization have led to the following f;’ functions:
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(f1 — SoC (t)fl’ _ f~710 _ SoC-10

90-10 80
fo—5.2 Evalley—52
- E iy = =
<fz valley: f2 82.55 82.55

_ (3.15)
’ —-184 E,—184
fs 2 Epifz = f352 = psz

201  1-0.1
SIiff=2—=—
\fa fa 29.1 29.1

And the functions ||f;'(x)|| referred to in the weighted sum approach application are

expressed as follows:

( ||f1(x)|| = max(f’l(x)) = min(—f’l(x)) = min(—=SoC(t)") = min[-SoC(t —1) — 1 ﬁ]'

ch Eb

J Il = max(s, () = min=1, () = min(~E ) = mim [~ L

, , , (3.16)
17,0l = max(f, (x)) = min(—f,(x)) = min(-E )’ = min[ =% X (P, + Py,)]

]l

L”f;(x)” = min(f;(x)) = min(l)’ = min [100 x %ﬁ:lgm)

where the symbol ||f|| is adopted to represent the optima of the functions.

For coherent calculations, the elements of equation (3.16) are all brought to their maxima

as follows:

”f;(x)” = max(f; (x)) =max[SoC(t — 1) + ncp I;L:]’
) ||f;(X)|| = max(f,(x)) = max M

ch X Pvalley (3 17)

7,00l = max(f5 () =max[ 5 X (B, + Pau)]’

L [If@ ]| = min(f (x)) = max(~1)" = max [100 x (- %ﬁf”fwﬂﬂ,

Consequently, as shown in table 3.30, the weighted sum calculation has been made with

randomly assigned yet preference-based weights for all 7 scenarios implemented in the previous

section.
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Table 3.30: Weighted Sum Approach results for all 7 charging scenarios

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 Scen. 7
wy 0.25 0.3 0.2 0.2 0.3 0.2 03
wy 0.25 0.2 0.3 0.3 03 0.2 0.2
w3 0.25 0.3 0.2 0.3 0.2 0.3 0.2
A 0.25 0.2 03 0.2 0.2 03 03
Max
0.65 0.5 0.94 1.16 0.12 0.33 0.22
F(X)

As a recapitulation of the weighted sum approach calculations, the resulting values for the

objective functions and their weighted sum in each optimization scenario are exposed in table

3.31.

Table 3.31: MOGA/Weighted sum approach calculation results

Scen. 1 | Scen.2 | Scen.3 | Scen.4 | Scen.5 | Scen. 6 | Scen.7 | Reference

Value

fi = SoC (%) 80.13 80.13 20 20 51.58 83.67 79.96 90

fy = Evaey (kWh) | 774 19.35 77.4 77.4 48.23 159 18 87.75

fy = E, (kWh) 232.108 | 232.108 | 200 232.108 | 232.108 | 204 200 236

fo=1(%) 2.34 10.73 2.34 2.33 10.7 0.4 12.56 0.1

Max F(X) 0.65 0.5 0.94 1.16 0.12 0.33 0.22 Average
0.56

In order to define a final value for max F (X) based on the predefined weights already set for

each objective function, the average of all max F; (X) of the discussed case studies is calculated:

i.  Average max F;(X) of the non-conflictual fitness functions:

Non-conflicting fitness functions: [SoC(¢t), E,], [Evauey » U, [Evatieys Ep]

— case studies 1, 2, 3:

avg (max Fj (X)) =

max F; (X) + max F,(X) + maxF5(X) 0.5+ 0.94+ 1.16

3
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- avg (max F; ,.(X)) = 0.87

ii.  Average max F;(X) of the conflictual fitness functions:

Conflicting fitness functions: [SoC(t), Eyquiey ], [Ep , 1], [S0C(2), 1]
— case studies 4,5, 6:
max F,(X) + max F5(X) + maxFs(X)  0.12 +0.33 + 0.22
3 B 3

avg (max F; . (X)) =
- avg (max F; (X)) = 0.22

iii.  Average max F;(X) of all fitness functions combinations:

avg [max F; ,.(X)] + avg [max F; . (X)]
2

Max F(X) = avg (max F; ,.(X), max F; (X)) =

0.87 +0.22

0.55
2

Max F(X) =

35 Computation and Verification

The charging multi-objective optimization has been computed and implemented in

gamultiobj solver of Matlab software (Fig. 3.1).

Problem Setup and Results

Solver: gamultiobj - Multiobjective optimization using Genetic Algorithm o
Problem
Fitness function: @fitnessFunc

Number of variables: 5

Constraints:

Linear inequalities: A: b:

Linear equalities: Aeq: beg:

Bounds: Lower: |[0,90,92,90,2] Upper: [100,120,130,110,8]

Nonlinear constraint function: @constraintFunc
Figure 3.1: gamultiobj solver settings

Starting with an initial population of 12 chromosomes, with a Pareto-front population

fraction of 1, the Pareto-front is computed as follows in table 3.32.
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Table 3.32: Weighted Sum Approach results for all 7 charging scenarios

Index f1=SoC f2=Evalley f3=Ep

1 88.6817
2 74.155
3 90
4 70.1851
5 84.7241
6 88.6848
7 88.7178
8 87.364
9 80.7596
10 90
11 70.1851
12 74.155

87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75

232.269
232.963
219.701
233.025

232.75

231.61
225.602
232.246
232.931
230.519
233.025
232.963

fa=|

0.163273
0.1

0.1

0.1

0.1
0.20609
0.293766
0.147049
0.1
0.348301
0.1

0.1

x1=t

1.948199
12.05094
0.792465
15.19053
4.808887
1.717537

1.47959

2.51556
7.351804
0.987736
15.19053
12.05097

x2=Pval

104.8289
105.3266

95.1589
105.8568
104.9737
104.5598
103.7253
104.7541
105.3266
104.5001
105.8568
105.3266

x3=Pch

116.3246
116.5075
109.8533

116.558
116.3804
116.0444
113.1335
116.2939
116.4753
115.6622

116.558
116.5076

x4=Pp

108.7535

109.055
104.6092
109.0615
108.9671
108.5169
105.8537
108.9089
109.0525
108.1295
109.0615

109.055

In order to generate a unique solution (the fittest), the Pareto-front fraction is set to

with an initial population of 12 chromosomes. The solution with the first Pareto rank is

computed and given in table 3.33:

Table 3.33: Optimized solution with an initial population of 12 chromosomes and a fraction of 1/12

Indexf1=SoC f2=Evalleyf3=Ep  f4=
87.75 186.134

1 90

x1=t

x2=Pval

x3=Pch

x4=Pp

x5=Paux
7.381116
7.426596
5.241439
7.451187
7.408025
7.288336
6.947444
7.213983
7.412821
7.129817
7.451187
7.426665

1/12
then

x5=Paux
0.1 0.963051 94.78714 93.08849 90.39052 2.676681

Noting that some of the fitness functions depend from the same variables, they don’t seem to

reach the reference values all at the same time.

Then the computation has then been expanded to start with an initial population of 50

chromosomes as given in table 3.34.

Table 3.34: Pareto-front computed with an initial population of 50 chromosomes
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Index

OCooONOOTULLDE WN PR

10

f1=SoC f2=Evalleyf3=Ep

88.729
88.705
90
81.952
75.272
88.759
90
79.29
88.664
76.468
81.927
87.439
90
83.274
76.573
90
85.933
87.296
88.694
77.948
73.759
88.694
77.814
90
85.937
81.89
84.579
76.439
80.446
85.974
88.744
88.639
81.827
88.639
88.729
87.326
79.137
84.619
81.914
83.202
77.784
87.306
90
88.646
80.468
83.23
81.895
79.071
88.664
73.859

87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75
87.75

223.82
228.03
216.09
235.87
235.99
218.65
226.81
235.98
235
236
235.99
225.42
235.1
235.99
236
235.74
235.99
235.98
229.39
235.99
236
228.99
236
233.5
235.99
236
235.99
236
236
235.98
221.52
235.91
236
235.91
223.82
235.49
236
235.99
236
236
236
235.98
216.09
235.51
236
235.99
236
236
235.18
236

fa=|

0.20648
0.22907
0.1
0.35745
0.12089
0.16093
0.47117
0.11347
0.30549
1.17138
0.61531
0.22691
2.20872
0.58116
0.40375
2.2809
1.35524
1.10698
0.49878
0.13325
1.18932
0.65475
1.23194
0.73127
1.25599
1.06326
1.32402
1.38481
2.02144
0.36731
0.1
1.74654
1.81964
1.74654
0.20648
0.18268
1.51808
0.58833
0.76881
1.64663
1.47849
0.71588
0.1
1.46269
1.79675
1.23943
1.00174
2.11205
0.23588
0.5783

x1=t

1.12962
1.18833
0.9966
6.06959
11.5802
1.0395
0.98509
8.39057
1.22293
10.9455
6.90673
2.02783
0.5467
5.9589
10.5533
0.7212
3.36446
2.88578
1.74823
9.10691
12.3718
1.03767
9.71884
0.72293
3.25165
6.98633
4.94289
10.4655
7.42232
3.32237
1.04784
1.69522
6.94694
1.69522
1.12962
2.01123
8.81932
4.1991
6.51423
5.63171
9.22591
2.90329
0.9966
1.94438
7.73977
5.86515
6.218
8.56247
1.22684
12.3244

x2=Pval

102.368
101.223
101.186
111.368
111.177
101.675
102.011
111.033
103.921

111.01

110.81
103.526
106.405

111.11

111.01
111.483
110.165
109.344
104.633
111.132
110.989
107.609
111.244
103.921
109.807
111.002
110.456
111.028
110.978
109.651
101.461
110.605
110.955
110.605
102.368
107.083
111.187
110.467
111.076
111.159
111.323
109.644
101.186
110.533
111.158
110.943
111.005
111.033
103.921
111.024

x3=Pch

112.14
114.277
108.119
118.357
118.137
109.502
113.944
118.126
117.862
119.397
118.727
112.965
120.204
118.685
118.477
120.621
119.616
119.312

115.27
118.153
119.419

115.25

119.47
117.612
119.494
119.266

119.58
119.655
120.433
118.424
110.822

120.05
120.185

120.05

112.14
117.961
119.817
118.693
118.912
119.973
119.769
118.841
108.119
119.503
120.157
119.478
119.192
120.544
117.866
118.685

x4=Pp

105.5205
107.5384
102.2288
109.9704
109.9977
103.5046
106.3804
109.9974
109.6314
109.9996
109.9992

106.818
109.6054
109.9985
109.9995
109.8754

109.998
109.9953
108.2524
109.9982
109.9996
108.1493
109.9996
109.1314
109.9972
109.9994
109.9991
109.9997
109.9997
109.9937

104.679
109.9562
109.9996
109.9562
105.5205

109.963
109.9997
109.9992
109.9994
109.9993
109.9997
109.9945
102.2288
109.8433
109.9996
109.9992
109.9993
109.9997
109.6939
109.9996

x5=Paux
6.3884
6.4773
5.8183
7.964
7.9965
5.8214
7.027
7.9945
7.8709
7.9987
7.9974
5.8911
7.9441
7.9973
7.9986
7.9941
7.9974
7.9964
6.4426
7.9977
7.9987
6.3462
7.9987
7.6209
7.9959
7.9987
7.998
7.9987
7.9987
7.995
6.0795
7.9974
7.9987
7.9974
6.3884
7.783
7.9987
7.9955
7.9982
7.9986
7.9987
7.9959
5.8183
7.9117
7.9987
7.9983
7.9986
7.9987
7.8944
7.9986
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It is to be reminded that the constraint Pch > Pp + Paux is crucial for the vehicle to

circulate, and the optimization would not be possible in case the charging power does not exceed

the sum of the propulsive and auxiliary powers. Consequently, the computation through

gamultiobj solver has been programmed in a way to return the imposed value “-1” whenever this

constraint is not applicable.

Therefore, in some cases, depending on the initial population adopted by the solver, the

value f4 =1= -1 is returned whenever Pch < Pp + Paux. The corresponding rows would be then

deleted as the vehicle would not be able to circulate if its propulsive and auxiliary powers

surpass its charging power.

For example, for a random population of 25 combinations of chromosomes resulting in —1 values

for f4 (see table 3.35).

Table 3.35: Pareto-front computed with an initial population of 25 chromosomes

Index f1=SoC f2=Evalley f3=Ep  f4=I x1=t x2=Pval x3=Pch x4=Pp
1 88.676 87.75 233.64 -1 1.33868 97.4429 116.82 108.896
2 90 87.75 227.27 -1 0.97733 96.1756 113.635 106.374
3 88.665 87.75 235.64 0.1 1.73725 98.1467 117.829 109.869
4 88.676 87.75 233.65 -1 1.33087 97.4498 116.827 108.902
5 88.662 87.75 235.98 0.1 1.99347 98.5792 118.052 109.993
6 88.666 87.75 235.46 0.1 1.87348 98.5331 117.738 109.757
7 88.671 87.75 234.52 0.1 1.56012 97.8905 117.263 109.315
8 85.987 87.75 236 0.1 3.00539 98.596 118.039 110
9 88.67 87.75 2347 0.1 1.6989 97.9275 117.36 109.416
10 90 87.75 234.12 0.1 0.974 97.6771 117.061 109.112
11 88.672 87.75 234.34 0.1 1.63243 97.9044 117.199 109.235
12 87.327 87.75 235.9 -1 2.75722 98.3867 117.948 109.981
13 88.676 87.75 233.64 -1 1.33868 97.4429 116.82 108.896
14 88.667 87.75 235.14 0.1 1.84769 98.0235 117.598 109.594
15 88.664 87.75 235.8 0.1 1.8264 98.3273 117.912 109.936
16 88.666 87.75 235.49 0.1 1.76053 98.1648 117.747 109.795
17 85.987 87.75 236 0.1 3.00539 98.596 118.039 110
18 87.324 87.75 236 0.1 2.98539 98.6173 118.04 110
19 88.668 87.75 235 0.1 1.74648 97.9594 117.548 109.534
20 88.673 87.75 234.19 0.1 1.73435 97.923 117.111 109.16
21 88.671 87.75 234.54 0.1 1.65578 97.8932 117.303 109.332
22 90 87.75 227.27 -1 0.97733 96.1756 113.635 106.374
23 87.327 87.75 235.9 -1 2.75722 98.3867 117.948 109.981
24 88.666 87.75 235.33 0.1 1.86738 98.2509 117.728 109.708
25 88.669 87.75 234.88 0.1 1.73982 97.9673 117.45 109.484

x5=Paux

7.92556
7.26165
7.95049
7.92556
7.99864
7.97498
7.94233
7.99991
7.93494
7.94769

7.9368
7.96811
7.92556
7.97443
7.96206
7.95116
7.99991
7.99985
7.96754
7.93579
7.93835
7.26165
7.96811
7.95525
7.95431
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Noting that in this specific example, the ranks 1, 2, 4, 12, 13, 22 and 23 result in a value f4

= —1, the values for these ranks would be deleted, and the remaining ranks would be: 25 — 7 = 18.

Consequently, once the ranks where Pch < P, + Paux are deleted, the resulting Pareto-front

computed by Matlab is exposed in table 3.36:

Table 3.36: Pareto-front with the ranks where Pch<Pp+Paux deleted

Index f1=SoC f2=Evalley f3=Ep f4=I x1=t x2=Pval x3=Pch x4=Pp x5=Paux
1 88.665 87.75 235.64 0.1 1.7373 98.1467 117.829 109.869 7.950489
2 88.662 87.75 235.98 0.1 1.9935 98.5792 118.052 109.993 7.99864
3 88.666 87.75 235.46 0.1 1.8735 98.5331 117.738 109.757 7.974978
4 88.671 87.75 234.52 0.1 1.5601 97.8905 117.263 109.315 7.94233
5 85.987 87.75 236 0.1 3.0054 98.596 118.039 110 7.999912
6 88.67 87.75 2347 0.1 1.6989 97.9275 117.36 109.416 7.934942
7 90 87.75 234.12 0.1 0.974 97.6771 117.061 109.112 7.947691
8 88.672 87.75 234.34 0.1 1.6324 97.9044 117.199 109.235 7.936802
9 88.667 87.75 235.14 0.1 1.8477 98.0235 117.598 109.594 7.974428
10 88.664 87.75 235.8 0.1 1.8264 98.3273 117.912 109.936 7.962059
11 88.666 87.75 235.49 0.1 1.7605 98.1648 117.747 109.795 7.951159
12 85.987 87.75 236 0.1 3.0054 98.596 118.039 110 7.999912
13 87.324 87.75 236 0.1 2.9854 98.6173 118.04 110 7.999846
14 88.668 87.75 235 0.1 1.7465 97.9594 117.548 109.534 7.967542
15 88.673 87.75 234.19 0.1 1.7344 97.923 117.111 109.16 7.935793
16 88.671 87.75 234.54 0.1 1.6558 97.8932 117.303 109.332 7.938351
17 88.666 87.75 235.33 0.1 1.8674 98.2509 117.728 109.708 7.955254
18 88.669 87.75 234.88 0.1 1.7398 97.9673 117.45 109.484 7.954313

After running the MATLAB gamultiobj solver with an initial population of 50
chromosomes, but with a Pareto front population fraction of 1/50, the solution with the first

Pareto rank is computed, and a unique (the fittest) solution would be generated in table 3.37:

Table 3.37: Optimized solution with an initial population of 50 chromosomes and a fraction of 1/50

Index f1=SoC f2=Evalley f3=Ep fa=| x1=t x2=Pval x3=Pch  x4=Pp x5=Paux
1 88.9573333 87.75 184 0.1 1.4416425 90 92 90 2

After running the MATLAB gamultiobj solver with an initial population of 250

combinations of chromosomes, the fittest solution would be (table 3.38).
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Table 3.38: Optimized solution with an initial population of 250 chromosomes and a fraction of 1/250

Index f1=SoC f2=Evalley f3=Ep fa=| x1=t x2=Pval x3=Pch x4=Pp x5=Paux
1 88.6625 87.75 236 0.1 1.96817 103.957 118.01 110 8

It is to be noted that no matter how large the initial population would be, the fittest solution
is very close to the reference values for each of the objective functions, and the more iterations

are performed, the closer solutions to the reference values are reached.

Referring to the simulation results of the studied multi-objective optimization, the
optimized Pareto-front tends to converge towards the defined reference values that are the
maximal values for SoC, E, gy and Ej, and the minimal value for the losses. However, as some
of the objective functions seem to be conflicting and dependent from the same variables, they
might not reach their optimized values at the same time since the optimized common variable for
an objective function might not be the fittest value for another. Noting that the optimization of
our objectives is conflicting, the optimum of an objective would set a specific value for its

parameters that would lead to a non-optimized value of another objective.

3.6 Conclusion

A multi-objective optimization for the energy flows G2V, H2V and B2V between the grid,
home or building and electric vehicles based on the supply and demand of electricity has been
performed. The multi-objective genetic algorithm has been developed in order to acquire the
Pareto-optimal solutions for the developed system aiming to find the maximal state of charge,
valley energy, propulsive energy and minimal losses that could be reached by EVs during their
charging phase. As some of the obtained optimized solutions are conflicting, a compromise is
applied in order to define quasi-optimal solutions that are the closest to the optimal ones. Thus, it
is crucial to define the decision maker’s priority for specific conflicting fitness functions over the

others and this is why it has been referred to the weighted sum approach.

So, once the Pareto-front of the defined fitness functions has been set, the weighted sum
approach has been applied in order to define the optimized solutions based on the decision

maker’s preference as some of the fitness functions seemed to be conflicting.
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The calculated optimized solutions contributed by the application of the multi-objective
genetic approach seem to converge towards the theoretical optimum of each of the defined

fitness functions.

The results have been computed and the simulation of the optimization through the
gamultiobj solver of Matlab showed a convergence towards the defined optimal reference values.
In fact, the bigger the population, the closer the convergence towards the theoretical optimums
would be. Besides, as the battery’s state-of-charge and losses both depend on the same variable,
their optimization imposes the interference of the prioritization of one objective over the other as
they could not reach their optimized values at the same time. Thus, the weighted sum approach
was implemented according to random weights based on the decision maker’s priorities. The
Pareto-front obtained by simulation obviously verifies the genetic algorithm calculation proving

that the obtained solutions are very close to the theoretical values theoretically optimized.
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Chapter 4 - Energy retrieval multi-objective optimization
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4.1 Introduction

As previously stated, the electric vehicles’ batteries can be referred to as means of energy
storage and retrieval. The energy storage and charging process of the vehicles have been
extensively discussed in chapter 3. Actually, the charging and discharging of vehicles can both
be scheduled depending on the electricity demand and supply. Thus, whenever there’s a lack of
supply compared to the electricity demand, the discharging of vehicles would be launched, and
then, the exceeding energy stored in the batteries could be, besides the vehicles’ personal use,
retrieved back to the grid or to supply houses. The restitution generally occurs whenever the
demand exceeds the electricity supply. In this case, the energy retrieval process takes into
account the sufficient amount of energy that would be kept in the battery for the vehicles’
personal needs and planned trips. To do so, the energy retrieval is proposed through a multi-
objective optimization of the flow of energy leaving the vehicles during their discharging

process.

For this end, following the same procedure as the energy storage of chapter 3, this chapter
first defines the restitution’s multi-objective discharging optimization model while expressing
the objective functions and various constraints. Similarly to the charging process, the
optimization approach adopted to calculate the fitness functions’ optimized solutions is the
genetic algorithm. Successively, combining the obtained solutions into a final optimized one
necessitates the normalization of the studied fitness functions, and the adoption of the weighted
sum approach with weights assigned randomly based on the decision maker’s priorities. Lastly,
the optimization is verified and validated through a Matlab simulation using the gamultiobj

solver.

4.2  Multi-Objective Optimization for discharging

At the phase when the energy production falls short of its consumption, the regulation
algorithm takes in charge triggering the retrieval of energy from the vehicles’ batteries in order
to compensate the lack of production, thus discharging the fleets. It would be interesting then to
optimize the energy flows related to this retrieval. Consequently, a multi-objective optimization

is operated in the discharging mode, with a heuristic identification of the optimized solution for
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specific discharging objectives. The optimization model for discharging is defined by equation

3.1).

The optimization is performed using the genetic algorithm approach where each function’s
Pareto-front is indicated. For this energy retrieval process, we follow the same steps as in the
storage process.

4.2.1 Obijectives definition and modeling

In order to optimize the energy retrieval process, several objectives have been defined and

modeled during the vehicle’s discharging stage. The study mainly seeks the following objectives:

1. Minimization of the vehicle’s SoC in order to harness the largest possible amount of the
batteries’ energy, taking into account the amount of energy that should be retained from
restitution for the vehicle’s personal trips and needs. Hence, the vehicle’s state-of-charge must
not decrease beyond the energy needed for the next planned trip of the vehicle. Thus, the
energetic requirements related to the vehicle’s personal trips are defined by the decision maker
and/or the vehicle’s owner during discharging phase. Then, the remaining energy available in the
vehicle’s battery would be discharged and driven back to supply the grid or houses. The
discharging batteries’ SoC is depicted by the following model:

f, = SoC(t) = SoC(t—1) — ndg—z 4.1)

whereas Ej, 14 and P; consecutively represent the batteries” nominal capacity, discharging

efficiency and discharging power [96], [115], [116].

ii. Minimization of the vehicle’s discharging time, so that the available energy gets
restituted as soon as the consumption exceeds the production. To this end, the charging process
would mostly happen during night time. Yet, once the electric demand surpasses the supply, the
vehicle’s owner would benefit the most from the financial incentives set if the discharging

process does not take too long to fulfill the restitution requirements of the grid. The vehicle’s

discharging time t; is modeled as follows:

E
fo=tg= =2

(4.2)

Ig

whereas I is the discharging current of the battery [117].
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iii. Maximization of the battery life of the vehicle and battery cycles’ control.
Actually, the battery life can be expressed using the formula:
fz =L, =n.,XDoD X E, (4.3)
whereas nc and DoD represent the battery’s number of cycles and Depth of Discharge
respectively. It is to be mentioned that the batteries’ lifespan progressively decreases as its
number of cycles increases and would significantly vary based on the temperature and

charging/discharging usage conditions.

Based on the NiMH batteries adopted in this study (defined in chapter 2) and their
technical specifications: n. approximately equals to 2000 cycles under recommended

charge/discharge conditions for NIMH Panasonic BK1100HFU batteries.

As the DoD for NiMH batteries ranges between 80 % and 100 % (table 1.3), and the lower
and upper boundaries for the SoC being set at 10 % and 90 %. The maximal DoD referred to in
this study will be of 80 %.

Therefore, the life of our unused vehicle’s battery would be:

L, = n. x DoD X E,, = 2000 x 0.8 x 75 = 120000 Ah.

Ly = n. X DoD X E,Thus, the battery’s life cycle ends when its nominal capacity
decreases to 80% of its original value. Nevertheless, the owner might not immediately notice this
capacity drop as his vehicle might acquire less than 80 % of the nominal capacity at times.
Consequently, as the nominal capacity decreases, the discharging time td also decreases. Hence,

the vehicle’s battery discharges faster as the number of cycles is closer to the end [118].

However, it is to be mentioned that the discharging time should be minimized at optimized

conditions without affecting the battery’s life cycle or performance.

iv. Minimization of the vehicle’s losses involving the instantaneous power going in to the
vehicle and departing out of it. These losses can be calculated using the formula:

|(Pp+Paux)_ Pdl
Pp+Pauyx

fi =1=100 x (4.4)

121



whereas P, and Paux respectively identify the propulsive power of the vehicle and its auxiliary
power resulting from the usage of on-board auxiliary electric accessories (such as air

conditioning, heating, windshield wipers, radio, headlights, seat heaters, etc.) [105], [103], [104].

Eventually, the losses are embodied by the ratio of the difference between the power
incoming to the vehicle Py+Paux and the power leaving it P4, over the incoming power Pp+Paux.
Yet, as the outgoing power might exceed the incoming depending on the functional accessories,
the speed and the energy available within the vehicle, the losses equation’s numerator has been

set in absolute value so that the value for the losses would be positive anyway [119], [120].

Ultimately, the electric vehicle's efficiency and performance do not get affected by the
different state-of-charge levels, but another perspective of losses reduction to be taken into
consideration during the vehicle’s charging process would be the power converter’s losses that

might significantly decrease the charger’s efficiency [121].

It is to be noted that the calculations related to the vehicle's energy consumption are made,
based on the average values related to the variation of weather conditions, road loads, and

acceleration-deceleration profiles.

Consequently, the optimization system’s model can be summarized as follows:
* fi(fori=1,2,3,4) are objective functions:

(£,(SoC(t —1),P,) = SoC(t) = SoC(t—1) — n, ;—Z

E

folld) = ta= 22

< ‘ (4.5)
f3(ng,DoD) = L, = n. x DoD X E,,

_ _ |(P +Paux)_Pd|
| fa(Py + Pawxs Pa ) = 1 =100 x —”Pp+Paux

The constraint related to the discharging optimization particularly involves the SoC’s lower
limit SoC,,;;, where the SoC should get minimized considering both its own trips’ usage and its

technical specifications boundaries beyond which the battery would get damaged [101].

s i is the constraint function:

{91 = SoC = SoCpin +y (4.6)
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with SoC,,,;,, and y representing the minimal allowable value for SoC that would not deteriorate
the batteries’ specifications, and the amount of energy related to the vehicle’s personal trips

respectively.

4.2.2 Multi-objective optimization — Genetic Algorithm

The energy flows optimization has been performed using the multi-objective genetic
algorithm GA approach in order to define the optimized solution for each of the pre-defined

objectives, therefore ensuring an optimized restitution of energy from the vehicle towards the

houses (or grid) [96].

As explained in chapter 3, the genetic algorithm approach is an evolutionary procedure
based on extracting the fittest and most optimized generation out of a wide population of
chromosomes. Eventually, starting with a randomly selected population of chromosomes, several
successor population generations of child chromosomes are extracted through an iterative
recombination and fitness improvement evolving into an optimized solution [106]. So, this
algorithm has been used in order to find the fittest solution to each one of the instigated objective

functions [120].

Following the same procedure adopted for the charging mode, the optimization of each one
of the predefined objectives has been made using the genetic algorithm approach. It involves the
extraction of the fittest Pareto-front out of a large chromosomes population that gets reduced
iteratively through the recombination of generations and their fitness improvement [96], [106],

[120].
4.2.2.1 Objective 1: Optimization of the state-of-charge

The first objective that should be optimized is the vehicle’s state-of-charge, expressed by

the following equation:

£i(SoC(t —1),P,) = SoC(t) = SoC(t—1) — 1y ’;—Z (4.7)

In order to optimize the first objective related to the vehicle’s SoC (represented in equation
(4.1)) using the genetic algorithm method, the battery capacity Eb has been fixed at 75 Ah based
on the vehicle’s datasheet. Besides, the vehicle’s depth of discharge DoD has also been fixed at
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80 %. The constraint on this objective function would be setting boundaries for the SoC not to
surpass, particularly, a lower limit that would respect the battery’s DoD also keeping a
predefined amount of energy within the vehicle’s battery for the electric vehicle’s personal
needs.

Therefore, the DoD is assumed to be 80 % in this study; hence, SoC would range between 10 %
and 90 %, and SoCmin being set at 10 %. The constraint to respect is given by, for each t > 0:

SoC (t) = SoCpin +y (4.8)

SoC = SoC,yi, + ywhereas y identifies the amount of energy to be kept in the vehicle’s battery
for its personal needs, and SoG;, represents the minimum allowable state-of-charge that could be

reached without affecting the batteries specifications and performance that would lead into its

deterioration.

As the optimization aims to minimize the value of f; = SoC(t), and noting that the applied
multi-objective genetic algorithm GA is heuristic providing approximate values that are the
closest possible to the optimal solution, SoC(t) = 10 % is adopted as the minimal reference
value that the optimization aims to reach. Therefore, the GA aims to get the closest possible

value to 10 %.

The battery’s charging and discharging efficiency for different types of batteries is
specified in the below table 4.1 [122], [123], [124], [125]:

Table 4.1: Batteries' charging and discharging efficiency

Batteries’ efficiency
Li-ion 80 % -90 %
Lead-Acid 50%-92 %
NiMH 66 % -92 %
Ni-Cd 70 % - 90 %

As NiMH batteries’ efficiency is set between 66 % and 92 %, the value adopted in this
study is 85 % for ny4. The ranges for SoC and Pq are assumed as follows 10 % < SoC (t) <
90 % and 0 kW < P; < 130 kWV.
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The decision variables for this objective being SoC(t — 1) and Py, the genetic chromosome
defined for this first optimization has been set at [SoC(t — 1), P4], and the genetic algorithm has

been initialized with a population of 12 chromosomes presented in table 4.2.

Table 4.2: Initial population of 12 chromosomes

SoC(t—1) [ 11.5 | 129 |15 19 24 32 49 64 78 81 87 90
(%)

P, 130 128 123 | 119 110 106 | 94 76 64 37 21 2
(kW)

SoC(t) 10.03 | 11.45 | 13.6 | 17.65 | 22.75 | 30.8 | 47.93 | 63.1 | 77.2 | 80.6 | 86.8 | 89.9
(%)

Rank 1 2 3 4 5 6 7 8 9 10 11 12

The population of 12 is reduced to 6 chromosomes through a selection of the fittest values

at a rate of 50 %. The survival population after a 50 % selection rate involves the chromosomes

(chr; = [11.5,130]
chr, = [12.9,128]
chry = [15,123]
chr, = [19,119]
chrs = [24,110]
\chry = [32,106]

with ranks 1 =2 6: <

As previously proceeded in section 3.2.2, Haupt’s method is referred to, so that the 6

chromosomes are replaced with 6 new offsprings generated by 3 parent matings [126].

So, 6 child chromosomes are generated by the mating of each 2 of the survival population’s
chromosomes based on Haupt’s method [6] where each parent chromosome [m, f] would create

0s; = [(1=M) X X + M X X, V]

0s; = [ (1= M) X xp + M X xpn, 5] (4.9)

2 offsprings os1 and os2 as follows: {

whereas M is the mutation rate assumed as 0.35.

The offsprings generated by chromosomes matings are presented in the table 4.3, and the

fitness function and ranks related to the calculated offsprings are exhibited in table 4.4:

Table 4.3: Matings and offsprings generation

First mating Second mating Third mating

chr, =[11.5,130] & chr, =[12.9,128] & | chr; =[15,123] &

chr, =[19,119] chrs = [24,110] chrg = [32,106]
Offspring 1 [14.3,130] [16.79,128] [20.95,123]
Offspring 2 [16.38,119] [20.12,110] [26.05,106]
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Table 4.4: Six new generated offsprings as a result of chromosomes matings

SoC(t — 1) (%) 14.13 | 16.38 | 16.79 | 20.12 | 20.95 | 26.05
P; (kW) 130 119 128 110 123 106
SoC(t) (%) 12.66 | 15.03 | 15.34 | 18.87 | 19.56 | 24.85
Rank 1 2 3 4 5 6

By omitting the two least fit chromosomes, the population gets then reduced to 4
chromosomes instead of 6. Crossing again the chromosomes into 2 new matings, and omitting

the lowest ranks (table 4.5):

Table 4.5: Generation of 4 offsprings through the surviving population

First mating
chry = [14.3,130] &
chrs = [16.79,128]

Second mating
chr, = [16.38,119] &
chr, = [20.12,110]

Offspring 1

[15.06, 130]

[17.69,119]

Offspring 2

[15.86,128]

[18.81,110]

The two lowest ranks being eliminated, the survival population would be (table 4.6):

{chr1 = [15.06,130]
chr, = [15.86,128]

Table 4.6: New surviving population of 4 chromosomes

SoC(t—1) (%) | 15.06 | 15.86 | 17.69 | 18.81

P, (kW) 130 128 119 110
SoC(t) (%) 13.59 | 144 16.34 | 17.56
Rank 1 2 3 4

If we suppose that chr; = [15.06,130], and chr, = [15.86,128] are a pair of parent
of fspring 1 = [15.47,130]

chromosomes, the generated offsprings would be (table 4.7): {0 ffspring 2 = [15.58,128]

Table 4.7: The fittest two chromosomes of the population

SoC(t—1) P, SoC(t)
1 15.47 130 13.99
2 15.58 128 14.13
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Consequently, the optimized solution reached for the SoC minimization is:

P, =130 kW

SoC(t — 1) = 15.47 %} > SoC (t) =13.99% (4.10)

The optimized value of SoC(t) calculated using the GA approach consists of SOCmin that is the
lower boundary of the state-of-charge. Yet, the optimized value of SoC,,;,being defined, the
constraint function would require summing up the optimized SoC,,;, to the amount of energy y
linked with the vehicle’s planned trips that the owners must define. Hence, y is to be
implemented by the vehicle’s owner/user in order to assess the percentage of SoC to be kept in
the vehicle’s battery during the discharging process. Particularly, the owner defines the distance
(in kilometers) that his vehicle still needs to travel, and y would then be concluded referring to
the vehicle’s autonomy and battery’s depth of discharge. Knowing the distance related to the
vehicle’s personal needs, and assuming that the vehicle’s average velocity would be constant, y
could be calculated. For instance, if a vehicle with 100 km autonomy and a depth of discharge of
80 % needs to travel a round-trip distance of 20 km, the value of y would be 16 % of the
battery’s SoC. A margin of 7 % is added to the optimized value in order to take into
consideration different types of roads (roughness and slopes) and any acceleration or
deceleration in the trip. The optimized solution for fi = SoC(t)f; would then be:

SoCopt(t) +y + 7 = 13.99 + 16 + 7 = 36.99 %.S0Cope() +y+7% =13.99+16+7 =
36.99%

4.2.2.2 Objective 2: Optimization of the discharging time

The second objective to be optimized during the discharging process is the discharging

time, embodied by the following expression:

E
) = ta= 2 (@.11)
In order to minimize the vehicle’s discharging time td represented in equation 4.11, the
same GA procedure has been carried out with Eb fixed at 75 Ah and the GA chromosome
defined as [l4, Eb] (as this objective’s decision variables are Id and Ev) while 0 < I; < 125 A4,

and an initial population of 12 randomly picked chromosomes (table 4.8).
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Table 4.8: Initial population of 12 chromosomes

I; (A) 5 10 16 25 32 44 63 75 100 | 112 | 121 | 125
Ej, (Ah) 75 75 75 75 75 75 75 75 75 75 75 75
ty (hr) 15 7.5 4.69 |3 234 | 1.7 |12 1 0.75 | 0.67 | 0.62 | 0.6
Rank 12 11 10 9 8 7 6 5 4 3 2 1

The 50 % rate surviving population would then be composed of the fittest chromosomes
ranking from 1 till 6:

(chry = [125,75]
chr, = [121,75]
chr; = [112,75]
chr, = [100,75]
chrs = [75,75]
\ chry = [63,75]

Chromosomes with ranks 1 = 6: <

Referring to Haupt’s method previously explained where several offsprings are generated out of

the chromosomes’ matings (table 4.9):

Table 4.9: Matings and offsprings generation

First mating Second mating Third mating

chr, = [125,75] & chr, =[121,75] & | chr; =[112,75] &

chr, =100, 75] chrs = [75,75] chrg = [63,75]
Offspring 1 [116.25,75] [104.9,75] [94.85,75]
Offspring 2 [108.75,75] [91.1,75] [80.15,75]

The two lowest ranks being eliminated, the survival population would be (table 4.10):

(chr1 = [116.25,75]
chr, = [108.75,75]
chry = [104.9,75]
chr, = [91.1,75]

Chromosomes with ranks 1> 4:

Table 4.10: Six new generated offsprings as a result of the matings

I (A) 116.25 | 108.75 | 1049 | 91.1 | 94.85 | 80.15
E, (Ah) 75 75 75 75 75 75

t, (hr) 0.64 0.69 0.71 0.82 | 0.79 0.94
Rank 1 3 2 4 5 6
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The matings created using the surviving population would contribute into four new

offsprings (table 4.11).

Table 4.11: Generation of four offsprings through the surviving population

First mating Second mating

chry, = [116.25,75] & chr, = [108.75,75] &

chry = [104.9,75] chr, = [94.85,75]
Offspring 1 [112.28,75] [103.89,75]
Offspring 2 [108.87,75] [99.7,75]

Table 4.12: New surviving population of 4 chromosomes

I (A) 112.28 | 108.87 | 103.89 | 99.7
E, (Ah) 75 75 75 75
t, (hr) 0.67 0.69 0.72 0.75
Rank 1 2 3 4

The two lowest ranks being eliminated, the survival population would be (table 4.12):

{chrl = [112.28,75]
chr, = [108.87,75]

If we suppose that chr; = [112.28,75], and chr, = [108.87,75] are a pair of parent

of fspring 1 = [111.09,75]

chromosomes, the generated offsprings would be (table 4.13): {0 ffspring 2 = [110.06,75]

Table 4.13: The fittest two chromosomes of the population

Iy E, Fitness function: t; (h)
1 111.09 75 0.675h = 40 min 30 sec
2 110.06 75 0.68h = 40 min 48 sec

The elimination of the two lowest ranks for two consecutive generations would contribute

to the optimized solution for the vehicle’s discharging time f, = t; (for a complete discharge

I; =111.094

0/ -
cycle of 80 %): E, = 75 Ah

} - ty; = 0.675 h = 40 min 30 sec
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4.2.2.3 Objective 3: Optimization of the battery life

The third objective of the study concerns the maximization of the battery life. In order to
do so, the genetic algorithm is executed on the fitness function shown in equation (4.12).

f3(n., DoD) = L, =n,. X DoD X E, (4.12)

The decision variables for f; are nc and DoD and the defined chromosome for the battery

life is [n.,DoD] ranging as per 0 <n, < 2000 and 0% < DoD < 80 %. Noting that the

discharging optimization seeks to maximize the battery life value, and as the adopted GA

approach is heuristic and would provide approximate solutions to the most optimized Ly, the
theoretical maximal value of Ly, is considered as the reference that the optimization aims to
reach:

Lp,ey = (e X DOD X Ep)max = 2000 X 7o x 75 = 120000 Ah.

Similarly to the previous calculations, the GA initial population of 12 chromosomes is

randomly chosen, then reduced to the 6 fittest chromosomes with the best rankings (table 4.14):

Table 4.14: Initial population of 12 chromosomes

n, | 2000 | 1970 | 1940 | 1900 | 1810 | 1730 | 1420 | 1030 | 660 | 350 | 114 | 63

DoD | 80 78 74 70 67 61 53 42 24 12 7 1

L, |[1200 | 1152 | 1076 | 9975 | 9095 | 7914 | 5644 | 3244 | 118 | 315 | 614.

(Ah) 00 45 70 0 2.5 7.5 5 5 80 0 25 47.25
Ran | 1 2 3 4 5 6 7 8 9 10 11 12
k

The 50 % selection rate surviving population would then be (tables 4.15 & 4.16):

(chr; = [2000, 80]
chr, = [1970, 78]
chr; = [1940,74]
chr, =[1900,70]
chrs = [1810,67]
\chrg = [1730, 61]

Chromosomes with ranks 1 = 6: <
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Table 4.15: Matings and offsprings generation

First mating
chr, = [2000,80] &

chr, =[1900, 70]

Second mating
chr, = [1970,78] &
chrs = [1810,67]

Third mating
chry = [1940,74] &
chrg = [1730,61]

Offspring 1

[1965,80]

[1914,78]

[1866.5, 74]

Offspring 2

[1935,70]

[1866,67]

[1803.5,61]

Table 4.16: Six generated offsprings as a result of chromosomes matings

n, 1965 1935 1914 1866 1866.5 1803.5
DoD (%) 80 70 78 67 74 61
Ly (Ah) 117900 | 101587.5 | 111969 | 93766.5 | 103590.75 | 82510

Rank 1 4 2 5 3 6

The two lowest ranks being eliminated, the survival population would be (table 4.17):

(chry = [1965,80]

‘ | chry, =[1914, 78]
Chromosomes with ranks 1> 4: chry = [1866.5,74]
[

chr, = [1935,70]

Table 4.17: Generation of four offsprings through the surviving population

First mating Second mating

&

chry =[1965,80] &
chr; = [1866.5, 74]

chr, =[1914,78]
chr, =[1935,70]

Offspring 1

[1930.35,80]

[1921.35,78

Offspring 2

[1900.975,74]

]
[1927.65, 70]

The two lowest ranks being eliminated, the survival population would be (table 4.18):

{chrl = [1930.35,80]
chr, = [1921.35, 78]

Table 4.18: New surviving population of four chromosomes

n, 1930.35 | 1900.975 | 1921.35 1927.65
DoD (%) 80 74 78 70
L, (Ah) 115821 | 105504 112399 101201.6
Rank 1 2 3 4
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If we suppose that chr; =[1930.35,80], and chr, = [1921.35,78] are a pair of parent
of fspring 1 = [1927.2,80]

chromosomes, the generated chromosomes would be (table 4.19): {0 Ffspring 2 = [1924.5, 78]

Table 4.19: The fittest two chromosomes of the population

ne DoD Fitness function: Ly
1 1927.2 80 115632
2 1924.5 78 112583.25

Hence, the optimized solution for f;(n.,DoD) = L, is

n,=1927.2 cycles} oL, =

"DoD =80 %
115632 Ah

4.2.2.4 Objective 4: Optimization of the losses

The vehicle’s losses are the fourth objective function to be minimized. They are expressed
in the following equation:

|(Pp+Paux)= Pd
Py+Paux

fa(Py + Payx, Pg) = 1 =100 X (4.13)
As for the fourth objective function concerning the vehicle’s losses to be minimized that is

exposed in equation 4.13, the GA method is then applied with chromosomes set at [Pp + Paux, Pd]

(Pp + Paux and P4 being the decision variables) with a random population initially defined with 12

chromosomes (table 4.20). The variables ranges are defined as per the following:

90 kW < P, < 110 kW

< <
S KW < Pauxsskw} — 92kW < Py + Payye < 118 kW and 0 kW < Py < 130 kW.

The calculation of the theoretical minimum for 1 would lead to the value 0.1% that will be

considered as the reference value for the optimization.

Table 4.20: Initial population of 12 chromosomes

Py+ Poyy |92 92.2 | 92.7 | 94 96 98 102 | 107 111 | 113 | 116 | 118

Py 919 [92 [92.8 1933 (954 (988 [10 |50 [107 | 114 [119 | 128
L 0.1 [022[01 [0.74 [0.63 0829 [53 [36 [088[26 |ga7
Rank 1 (3 |1 |5 [4 Je |7 |8 o |10 11 |12
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Survival population after a 50% selection rate (tables 4.21 & 4.22):

(chr; = [92,91.9]
chr, =[92.7,92.8]
' ) chry = [92.2,92]
Chromosomes with ranks 1 = 6: < chr, = [96,95.4]
Chrs = [94,933]
]

\chry, = [98,98.8

Table 4.21: Matings and offsprings generation

First mating
chr, = [92,91.9] &
chr, =[96,95.4]

Second mating
chr, = [92.7,92.8] &
chrs = [94,93.3]

Third mating
chr; =[92.2,92]
chrg = [98,98.8]

&

Offspring 1 [93.4,91.9] [93.16,92.8] [94.23,92]
Offspring 2 [94.6,95.4] [93.55,93.3] [95.97,98.8]
Table 4.22: Six generated offsprings as a result of chromosomes matings
Pp+ Pgyy | 934 94.6 93.16 93.55 94.23 95.97
Py 91.9 95.4 92.8 93.3 92 98.8
l 1.6 0.85 0.39 0.27 2.37 29
Rank 4 3 2 1 5 6

The two lowest ranks being eliminated, the survival population would be (table 4.23):

(chr1 = [93.55, 93.3]
chr, = [93.16,92.8]
chry = [94.6,95.4]
chr, = [93.4,91.9]

Chromosomes with ranks 1= 4:

Table 4.23: Generation of four offsprings through the surviving population

First mating Second mating

chr; =[93.55,93.3] & chr, = [93.16,92.8]

chry; = [94.6,95.4] & chr, = [93.4,91.9]
Offspring 1 [93.92,93.3] [93.24,92.8]
Offspring 2 [94.23,95.4] [93.32,91.9]

The two lowest ranks being eliminated, the survival population would be (table 4.24):
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{chrl = [93.24,92.8]
chr, = [93.92,93.3]

Table 4.24: New surviving population of four chromosomes

P, +Pg, |9392 [0423 [9324 [9332
Py 93.3 95.4 92.8 91.9
l 0.66 1.2 0.47 1.52
Rank 2 3 1 4

If we suppose that chr; = [93.24,92.8], and chr, = [93.92,93.3] are a pair of parent

chromosomes (table 4.25):

{offspring 1 =[93.48,92.8]
of fspring 2 = [93.68,93.3]

Table 4.25: The fittest two chromosomes of the population

P, + Puy P, Flltness function:
93.48 92.8 0.72
93.68 93.3 0.4

The resulting optimized solution after 2 generations where the lowest ranks would be

P, + Py = 93.68 kW

— 0
P, = 93.3kW } - [=04%.

omitted and a mating of the 2 remaining chromosomes:

4.3 Optimization Scenarios

Similarly to the charging optimization’s conflicting optimized solutions, as some
objectives’ models have the same parameters as other objective functions, the optimized
solutions of the objectives cannot all be obtained at one time. Thus, in order to compromise the
objective functions for an optimized solution of all four functions, the decision maker’s
preference has been taken into consideration through prioritizing some objectives over the
others. As the objective functions f; and f, both depend from the same variable P; that has
different values for the optimized solutions of each of these functions, the most optimized

solution would rely on the decision maker’s prioritizing of one specific fitness function.
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Consequently, several scenarios have been studied in order to highlight the optimized solution of
all the objective functions taking into account the decision maker’s priorities. The presented
optimized solution involves the optimized State-of-Charge calculated for an amount of energy
that is equivalent to consecutive round trip distances of 0 and 20 kilometers. It also includes the

optimized values for the discharging time, battery life and losses.

Scenario 1: In this scenario, the optimized solutions are implemented irrespective from any
conflictive parameters, as the decision maker does not have any preferences set for specific

objective functions. The solution set would then be (table 4.26):

Table 4.26: Optimized solution for Discharging Scenario 1

f1 =S80C(t)
y — 0 km y— 20 km 2o ’ b !
0.675h=
13.99 % 36.99 % 115632 Ah 0.4 %
40 min 30 sec

Scenario 2: In this scenario, the decision maker sets a priority for the optimization of the
EV batteries’ state-of-charge over the losses. The optimized solution in this case is as follows

(table 4.27):

Table 4.27: Optimized solution for Discharging Scenario 2

fr = SoC(t)
f=t fi=1 fo=1
y = 0km y— 20 km 2o ’ b !
0.675h=
13.99 % 36.99 % 115632 Ah 11.18 %
40 min 30 sec

Scenario 3: Unlike the previous scenario, in this case, the decision maker prioritizes the

losses over the SoC. Hence, the heuristic solution for the optimization would be (table 4.28):
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Table 4.28: Optimized solution for Discharging Scenario 3

fir = SoC (1)

f=t fi=1 fo=1
y - 0km y— 20 km 2o ’ b !
0.675h=
14.28 % 37.28 % 115632 Ah 0.4 %
40 min 30 sec

Similarly to the storage process, and based on the set preference for specific objectives, the
scenario’s results shown in tables 4.27 and 4.28 allow a closer convergence of the prioritized
objective functions towards the calculated values of their Pareto-front than in the case of table

4.26 where decision maker’s preference is disregarded.
4.4 Weighted Sum Approach

Having applied the genetic algorithm in all three studied scenarios, all fitness functions
have been normalized and the weighted sum approach has been performed through the following

equation according the randomly assigned weights in each optimization scenario:
min F(X) = wy X [[ff)| +wy X [z + wz x [5Gl +wy X I3l (4.14)

Besides, the normalization of the fitness functions would lead to the following equations:

, S0C—10
(f1 = 080
’ tg—0.6
fz =
1 ¢ = _742’4 (4.15)
fs = 120000
’ 1-0.1
Vo = 99.8
! ; ’ ; / . (SoC—10
f"fl | = mln(fl ) = min(SoC(t)") = min (OT)
! ; ’ : ’ ., tg—0.6
“fz” = mln(fz ) = mln(td) = min( "7149.4)

(4.16)

51l = max(f; ) = min(—f; ) = min(—L,)’ = min(——2=)

120000
i ’ : ’ ., 1-01
2|l = min(f, ) = min(l)" = min (m)

where the symbol || f || represents the functions’ optima.
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For coherent calculations, equation (4.16) is brought to the functions’ maxima:

, S0C—10
(A1 = max (= ) = max (—2219)
oo _ ’ _ _td—0.6
/21l = max( f2 ) = max( 749.4)
no— "N — Ly

If31l = max(f; ) = max (120000)

LIl = max(—f;, ) = max (- ==)

(4.17)

Therefore, the weighted sum approach is executed and weights w,, w,, w3, w,, the sum of
which is exactly equal to 1, are randomly assigned based on the decision maker’s preference as

in the studied optimization scenarios 1, 2, 3.

Thus, the weighted sum execution of all three scenarios has led to the following results (table
4.29):

Table 4.29: Optimized Solution - initial population of 12 chromosomes

Scen. 1 Scen. 2 Scen. 3
wq 0.25 0.3 0.2
w, 0.25 0.25 0.25
Ws 0.25 0.25 0.25
w, 0.25 0.2 0.3
Max F(X) 0.15 0.12 0.17

In order to define a final value for max F (X) based on the predefined weights already set
for each objective function, the average of max F;(X) of the discussed case studies is calculated
(table 4.30):

max F; (X) + max F,(X) + max F5(X)

Max F(X) = avg (max F;(X)) = 3 = 0.15

As table 4.30 shows, the weighted sum approach of all three discussed scenarios results in
relatively close values of the calculated single objective function using random weights chosen

based on the previously defined scenarios preference.
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Table 4.30: MOGA/Weighted sum approach calculation results

Scen. 1 | Scen.2 | Scen. 3 Reference
Value
fi= S0C/y=o km 13.99 13.99 14.28 10
(%)
fi= S0C/y=20 km 36.99 36.99 37.28 33
(%)
fo =ty (h) 0.675 0.675 0.675 0"
f3 = Ly (Ah) 115632 115632 | 115632 | 120000
fao=1(%) 0.4 11.18 0.4 0.1
Max F(X) 0.15 0.12 0.17 Average 0.15

4.5 Computation and Verification

In order to verify the calculation results, the fitness functions related to the vehicle’s

discharging and retrieval of energy have been computed through the gamultiobj solver of Matlab

(Fig. 3.1). The simulation of the genetic algorithm has been launched for several initial

populations of different sizes. Particularly, the computation has been run starting with an initial

population of 12 as calculated (table 4.32), and then the same process has been restarted with a

population of 200 chromosomes (table 4.33).

Problem Setup and Results

Solver: igamultiobj - Multiobjective optimization using Genetic Algorithm

Problem

Fitness function: @fitnessFunc_D

Number of variables: |7

Nonlinear constraint function:

Constraints:

Linear inequalities: A

Linear equalities: Aeq:

Bounds: Lower: [0,0,0,0,0, 90,2]

b:

beg:

Upper: |[100,130,125,2000,80,110,8]

Figure 4.1: gamultiobj solver discharging setting
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Using the settings shown in Fig. 4.1, the computation of the system’s Pareto-front has led
to the following optimized solution that is completely compliant to the calculations exhibited in

section 4.2 (table 4.31):

Table 4.31: Multi-objective optimization Pareto-front computation result

Pareto front - function values and decision variables

In... f1 f2 f3 f4 x1 x2 x3 x4 X3 xb x7
1 105 0.6{-120,0... OJ_;__?:Z.DB&HLBBSE 125] 707.35| 30.753| 103.645 ?‘602_‘

The computed optimized solution of table 4.31 is further clarified in table 4.32 where the

signification of every variable and fitness function is exhibited with its exact computed value.

Table 4.32: Optimized Solution - initial population of 12 chromosomes

Optimized Solution
f1 = SoC(t) (%) 10
2 = Evalley (kWh) | 0.600000000001047
f3 = Ep (kWh) -120000
f4=1(%) 0.100000000000000
x1 =t (sec) 72.0824896780670
x2 =Pd (kW) 111.335337884925
x3=1d (A) 124.999999999782
x4 = nc (cycles) 707.350012327776
x5 =DoD (%) 30.7533658615563
x6 = Pp (kW) 103.644711807971
x7 = Paux (kW) 7.60221201125857
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Table 4.33: Optimized Solution - initial population with 200 chromosomes

Optimized Solution
f1 = SoC(t) (%) 10
2 = Evalley (kWh) | 3.50676957642366
3 =Ep (kWh) -120000
f4=1(%) 0.323708305908542
x1 =t (sec) 55.03778358844835¢
x2 =Pd (kW) 103.261495942000
x3=1d (A) 21.3872050516898
x4 = nc (cycles) 873.529873478065
x5 =DoD (%) 54.3758630601104
x6 = Pp (kW) 100.134468559499
x7 = Paux (kW) 3.46237898265463

It is to be notified that the variable xi represents the time t in seconds, which indirectly

defines the fitness function f; = SoC (t).

Besides, the computation of the fitness function L, representing the battery life has been
performed through the function’s opposite —L, as the genetic algorithm approach operates on
the minimization of functions. Thus, as the maximization of L, is aimed, the GA operation

would be executed through the minimization of its opposite. Noting that the maximum of a

function equals the exact opposite of the minimum of its opposite function: max F(x) = min (-

F(x)).

Referring to the obtained Pareto-fronts of both populations, the wider initial population

would generate a closer solution to the theoretical reference values.
4.6 Conclusion

In this chapter, the energy retrieval from electric vehicles in order to supply the grid or
homes whenever the electric demand exceeds the supply has been investigated. This energy

retrieval process has been carried out using a multi-objective optimization algorithm. This aims
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at minimizing the battery’s state of charge, the vehicle’s discharging time and losses, and to
maximize the battery’s lifetime. The optimization has been carried out using the genetic
algorithm approach, and has then been verified with Matlab simulation through the gamultiobj
solver. Consequently, the optimization has contributed into an effective optimized solution for all
four fitness functions that would converge into the calculated theoretical optimum, while taking

into account the vehicle’s needs in energy that should not be retrieved from its battery.

Having followed the same procedure for both the charging and discharging processes,
despite the difference in the objectives of each mode, it has been proven through calculations and
simulation that the obtained optimized solutions converge towards their theoretical reference.
However, as some objectives depend from the same parameters, the intervention of compromises

and priorities has been proven crucial for a final combination of optimums.

The originality of the work done in chapters 3 and 4 lays in the use of GA approach for
vehicles’ charging and discharging optimizations and the validation of its results with a Matlab

simulation.

Moreover, having assessed both the charging and discharging optimizations, it is now
possible to create an energetic strategy linked to the behavior of a fleet of vehicles during their
charging and discharging processes depending on the demand and supply of electricity. To do so,
a control algorithm will be developed in chapter 5 to ensure a balanced regulation of the energy
flow between EVs and infrastructures (homes and grid) according to the electricity supply and

demand.
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Chapter S - Control and regulation of energy flows based on

electricity supply and demand
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5.1 Introduction

The difference margin between energy consumption and production would contribute into
a huge energy waste. Indeed, the excessive production would be discarded at times while the
deficient production results in expensive compensations of the consumption, whence the need for
an energy regulation. In order to control the flows of energy circulating between a renewable
energy supplied domestic residence, electric vehicles and the grid, and aiming to attain a
balanced system, an optimization and regulation algorithm has been developed. Particularly, this
algorithm manipulates the vehicles’ charging and discharging processes depending on the energy
production and consumption, thus the electricity demand and supply. Mostly, as mentioned in
chapter 2 of this study, the considered system consists of a domestic household with an average
consumption of 31.1 kWh daily, which would be either partially or entirely compensated by the
energy produced by a HAWT horizontal axis wind turbine of a 2.8 kW power and 33 mono-
crystalline photovoltaic modules of 280 W) of rated power under standard conditions. Another
component of the studied system would be a fleet of electric vehicles (EV) used not only for its
personal energetic needs, but also as energy storage and retrieval means. Each EV is equipped
with Nickel Metal Hydride on-board batteries (NiMH) of a depth of discharge of 80 % and a 75
Ah capacity, thus a substantial storage capacity. The electric grid also interferes in the system to
fulfil the energetic needs or recover the excess of energy when the rest of the system’s
components are not enough for the balance inquiry between the energy production and

consumption.

5.2 Control and regulation algorithm

The developed heuristic algorithm aims to define whether there is an excess or lack of

energy through weighing and comparing the production and consumption.

Accordingly the algorithm proceeds the launching of the vehicle’s charging or
discharging processes so that the system’s energetic needs are fulfilled and its equilibrium is
reached. Once the system gets balanced, the margin of difference between the electricity
demand and its supply would then be tightened. In order to tighten the margin of difference

between the supply and demand of electricity, the heuristic algorithm for control and
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regulation of the Fig. 5.1 has been defined through comparing the energy production and

consumption. Its organizational chart is presented as follows:

| Data Input |

Energy Storage

= 2 Ny, x Py
hems sppli=nccy
4

+ F(F,, XV+P,_.)

o
E [PV +WT) = E,(H+EV)} | Cl’”ﬂﬂgd
\r R
Ng, % Ppxk Compare
Prod. &
0.01328 = D = ¥* Coma.
365.25

disconmectal
from the

grid/house
!

| System in balance |

E,(PV+WT) = E.(H) |

N, x Prxk
0.01328 x D? x ¥*
365.25
= D NgxP

kbems applisnces

Discharging process
! Energy Retrieval

E,(PV+WT +EV) < E.(H)

e

N, = Pexk
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M
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| | CompareProduction
& Consumption

Figure 5.1: Control and Regulation Algorithm’s Organizational Chart
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For more clarification, the pseudo-code of this regulation algorithm is stated as follows:

global production consumption SoCMax vehicles SoCOnePercent SoCMin y
chargingUnits discharginUnits done

if production == consumption
disp("System in balance®);
done = true;
return
elseif production > consumption
it differenceBetweenSoCMaxAndSoC >= 5*SoCOnePercent
vehicles(x) = vehicles(x) + 5*SoCOnePercent;
production = production - 5*SoCOnePercent;
consumption = consumption + 5*SoCOnePercent;
chargingUnits = chargingUnits + 5*SoCOnePercent;
elseif differenceBetweenSoCMaxAndSoC > 0O
vehicles(X) = vehicles(x) + differenceBetweenSoCMaxAndSoC;
production = production - differenceBetweenSoCMaxAndSoC;
consumption = consumption + differenceBetweenSoCMaxAndSoC;
chargingUnits = chargingUnits + differenceBetweenSoCMaxAndSoC;
else
X =X + 1;
break;
end
disp(“Charging...");
if vehicles(x) == SoCMax
X =X + 1;
break;
end
disp(“Charged fleet - Supply the grid®);
done = true;
return
elseif production < consumption

whille X <= numberOfVehicles
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it differenceBetweenSoCMinAndSoC >= 5*SoCOnePercent
vehicles(x) = vehicles(x);
production = production + 5*SoCOnePercent;
discharginUnits = discharginuUnits + 5*SoCOnePercent;
elseif differenceBetweenSoCMinAndSoC > 0O
vehicles(x) = vehicles(x) - differenceBetweenSoCMinAndSoC;
production = production + differenceBetweenSoCMinAndSoC;

_ discharginUnits = discharginUnits +
differenceBetweenSoCMiInAndSoC;

else
X =X + 1;
break;

end

disp("Discharging...");

if vehicles(x) == SoCMin + vy
X =X + 1;
break;

end

end
disp("Discharged fleet - Retrieve energy from the grid");
return

end

The regulation process operates as follows. As a first step, the algorithm collects the data
input related to the energy production and consumption, as well as the vehicles’ State-of-Charge
SoC and the percentage of energy to be kept in the batteries during discharge for the fleet's
personal needs. Then it operates a comparison between the production and consumption values.
The variable x (x > 0) embodied in the algorithm’s organizational chart represents the vehicles to
be charged and/or discharged, consecutively, one by one. Mostly, the energy production results
from the supply of the installed renewable energy sources, and the consumption is that of the
household appliances, and the vehicles’ personal needs. Generally, this algorithm evolves into 3

cases corresponding to the 3 blocks of the organizational chart (Fig. 5.1):
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521 Energy Storage — Production exceeding consumption

If the production exceeds the consumption, the algorithm launches the vehicles’ charging
process. In this case, as the charging process starts, the excess of energy is stored within the
vehicles’ batteries. Thus, as soon as there’s an excess of production, the charging process of the
electric vehicles intended for energy storage is launched progressively. In this case, the system is

embodied by the following equation:
E,(PV + WT) > E.(H + EV) (5.1)

Whereas E,(PV + WT) characterizes the energy produced by the photovoltaic panels and the

wind turbine, and E.(H + EV) represents the energy consumed by the home and vehicle.

Referring to the global energetic model of the system exposed in chapter 2- section 2.4, the
equation (5.1) can be illustrated as follows:

0.01328 xD?xv3

. X X
Nijpy X Prpv ke + 365.25

A
> Zhome appliances NHj X Pf + ; [FpV + Paux] (5~2)

whereas NH; py and Pgpy represent the daily number of hours of use of the photovoltaic panels,

and their operating power, k is a correction factor (k = 1.3), D is the wind turbine’s rotor

diameter and v is the annual average wind speed. On the other hand, Ny; is the daily number of

hours of use of the functional home appliances, and P is their operating power.
It is to be mentioned that the home appliances refer to any functional household appliances
such as those related to heating, ventilation, cooking, lighting, washing, drying, refrigerator,

audiovisual and electronics.

Once the State-of-Charge SoC of the charging vehicle reaches its allowed maximum
(above which the nominal characteristics of the battery might get deteriorated or damaged and its

life cycle gets shortened), the charging switches to the next vehicle of the fleet.

So, as long as the vehicles are charging, a new production/consumption comparison is
assessed every 5 % SoC increase in order to make a decision concerning whether to proceed in
the vehicles’ charging or to switch to another cycle where the consumption would beat the

production.
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Actually when the charging vehicle needs more than 5% of SoC to reach its maximum
value SoCmax, the state-of-charge increases of 5%, while the production decreases of the amount

of energy equivalent to 5 % of SoC and the consumption increases of the same amount.
The equations of SoC, P and C would be in this case:

SoC =SoC+5%
P =P+ AP —5* Py, (5.3)
C=CH+ AC +5* Cyo,

whereas P, C, AP, AC, P,y and Cjo, respectively represent the energy production and
consumption, their consecutive variations and the amount of energy of the production and

consumption equivalent to 1 % of SoC.

A new comparison between the production and consumption is operated after each 5 %

variation.

Similarly, when the SoCmax exceeds the charging vehicle’s SoC of less than 5 %, the

equations (5.3) would become:

SoC = 50C 44
P=P+AP —Psoe _soc (5.4)
C=C+ ACH+ CSOCmax—SOC

whereas Psoc, . _soc and Csoc, . —soc Tepresent the energy of the production and the

consumption that is equivalent to the percentage of SoC,,,,,, — SoC.

However, once all the fleet’s vehicles are charged, and in case the production still tops the
consumption, the excessive energy would then be injected into the grid for beneficial incentives,

economic regulations and financial purposes.

The charging process would stop anytime the consumption value reaches the production or

tops it to switch to another cycle.
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522 Energy retrieval — Consumption exceeding production

If the energy consumption surpasses its production, the discharging process starts. In fact,
when the supply of photovoltaic panels and the wind turbine are not being able to fulfill all the
household’s needs, the lack of energy would then be covered by the energy already stored within
the fleet’s batteries. Consequently, the discharging of the vehicles specifically intended for
storage and retrieval is launched. The model of the discharging phase would then be presented as
follows:

E,(PV + WT + EV) < E.(H) (5.5)

whereas E,(PV + WT + EV) embodies the energy produced by the photovoltaic panels, the

wind turbine and the electric vehicle; and E.(H) exhibits the energy consumed by the house.

The global energetic model assessment shows that equation (5.5) can be detailed as

follows:

0.01328 xD?xv3

NH].'PV X Prpy Xk + Py

+ EO xd < Zhome appliances NH]- X Pf (5-6)

During this phase, the vehicles would be discharging progressively, one by one, until
reaching their minimal SoC, where a certain amount of energy, represented by the variable vy,

remains in their batteries for their personal planned trips.

Moreover, during discharging process, the algorithm keeps repeating the production and
consumption comparison with intervals of 5 % SoC drop, in order to stop the discharging or

switch again to the first case when needed.

Eventually, when the discharging vehicle’s SoC exceeds the sum of the minimal State-of-
Charge SoCmin and the amount of energy y to be kept for personal trips by more than 5 %, the

algorithm decreases the actual SoC of 5 %.

The production also increases of the equivalent of 5 % in energy while the consumption

value remains the same. The equations of SoC, P and C would be characterized by the following:

SoC = SoC — 5%
P=P+ AP +5%P, (5.7)
C=C+ AC
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Yet, when the discharging vehicle’s SoC exceeds (SoCmin + y) by less than 5 %, equations
(5.7) would become:
SoC = SoCpin +y

P=P+ AP + PSoC—(SOCmin"'y) (5.8)

whereas Pgoc_(socin+y) Tepresents the amount of energy in kWh equivalent to the percentage

value of SoC — (SoCmin +y) %.

Once all the fleet of vehicles is discharged and in case the stored energy would still not be
enough to cover the lack of production, the insufficiency would then be insured by the electric

grid.
523 Equilibrium state of the system

When the production and consumption values are equal, the system would be in a
balance situation, and the algorithm does not take any action until a difference margin between
both values occurs again.

Particularly, once the comparison between the production and consumption values is made,
in case the energy production and consumption are equivalent, the balanced system is attained.
On these terms, the system is in equilibrium and it functions normally without involving any

energy storage or retrieval processes.

So, the energy produced by the photovoltaic panels and wind turbine would be congruent
with the house consumption of appliances and electric vehicle’s needs. The system equilibrium

state is expressed by the following equation:
E,(PV + WT) = E.(H) (5.9

This energetic model would then be depicted as per the following equation:

0.01328 xD?xv3

NHi.PV X Ppy X k + 365.25

= Zhome appliances NH]- X P+ Eg xd (5.10)

whereas E, is the energy linked to the on-board electric outlet, and d is the distance travelled

by the vehicle.
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Thus, generally, the regulation algorithm sets the adequate charging and discharging processes of
the vehicles’ fleet, and is responsible for triggering the convenient energy storage or retrieval

mode.
5.3  Validation and Simulation of the control algorithm

In order to confirm the relevancy of the proposed regulation algorithm, and consequently
to tighten the margin of difference between the energy production and consumption, the

algorithm has been implemented and verified through a simulation over Matlab software.
531 Assigned input data

Average data inputs of production, consumption and fleets” SoC have been set for a sample
period of 31 days.

In order to define precise input values, and referring to the technical specification of the
system’s components, the energy production and consumption have been calculated based on
realistic energy values defined by the photovoltaic panels and wind turbine, and exact household
appliances’ consumption. For instance, the first week (from 1% day to 7 day) has been set to be

very sunny, yet very windy.

Therefore, as the number of sun exposure hours has been set between 9 and 12 hours, and
the annual average wind speed ranging between 38.6 and 49.9 kilometers per hour, the
corresponding production of photovoltaic panels and wind turbine have been summed up to
calculate the energy production during this week. Similarly, having fixed the exact functional
household appliances and the electric vehicle’s consumption each day, the total energy
consumption has been calculated. Successively, the second week (including days 8 through 14),
has been set as very sunny, and hardly windy. As for the third week (days 15 to 21), it is windy
but hardly sunny. The last 10 days (day 22 to 31) were hardly sunny or windy. The fleets’ states-
of-charge were randomly defined with a daily sample set of 3 to 6 vehicles per fleet. So, the
defined data input are summarized in the table 5.1, where SoC, P, and C progressively represent
the fleets’ state-of-charge, the energy production and its consumption. As for AP and AC, they
represent the consecutive daily variations of production and consumption (table 5.1). In this
table, the color codes refer to:

Blue: Production > Consumption (charging process).
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Green: Production < Consumption (discharging process).

Gray: Production = Consumption (equilibrium state).

Table 5.1: Control and Regulation Algorithm's Input Data

Input Data

Day SoC P AP C AC
1 [11 28 46 53] 145.75 0 40.36 0
2 [19 23 27 74 33] 135.48 -10.27 38.7 3.95
3 [26 12 12 14 87] 122.2 -13.28 34.2 -4.5
4 [26 56 42 29] 122.39 0.19 9.8 -24.4
5 [16 26 16] 122.72 0.33 1.9 -7.9
6 [43 39 64] 134.39 11.67 30.51 28.61
7 [26 38 16 29 36 25] 136.69 2.3 40.1 9.59
8 [72 88 35 43 29] 81.64 -55.05 36.8 -3.3
9 [26 71 18 29 32 19] 64.77 -16.87 32.1 -4.7
10 [65 42 22 28 33 20] 61.37 -3.4 26.36 -5.74
11 [39 78 28 54 22] 82.22 20.85 21.9 -4.46
12 [81 23 17 12 69] 71.78 -10.44 5.2 -16.7
13 [17 76 83] 85.03 13.25 3.17 -2.03
14 [70 64 38 29 14] 77.8 -7.23 24.3 21.13
15 [17 32 43 14 82] 8.12 -69.68 18.7 -5.6
16 [73 52 21 38] 24.16 16.04 34.2 15.5
17 [47 32 16 79] 10.6 -13.56 233 -10.9
18 [90 89 29] 15.92 5.32 14.17 -9.13
19 [66 74 58 21] 20.79 4.87 11.5 -2.67
20 [90 63 87 32] 5.78 -15.01 7.3 -4.2
21 [81 19 36 45 66] 14.72 8.94 4.9 -2.4
22 [77 66 86 30] 1.87 -12.85 36.5 31.6
23 [44 35 14 23 68 88] 18.56 16.69 33.27 -3.23
24 [19 32 23 90 89] 4.69 -13.87 27.4 -5.87
25 [29 41 81 61] 11.54 6.85 21.6 -5.8
26 [88 36 61] 15.2 3.66 14 -7.6
27 [76 80 25 42] 21.5 6.3 12.1 -1.9
28 [26 43 90] 8.59 -12.91 8.9 -3.2
29 [90 67 30 25] 5.23 -3.36 5.2 -3.7
30 [65 89 86 78 49] 24.93 19.7 4.8 -0.4
31 [28 60 43] 13.72 -11.21 13.72 8.92

The daily calculation step involves the phase where there would be no significant variation in the
production/consumption difference. Thus, in the defined input data sample, the assumption of
just one variation a day is made as a schematic example to highlight, on a large scale, this
variation and its impact on the production, the consumption and the vehicles’ states-of-charge.

Yet, practically, several variations may occur within each day.
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532 Output and Results

Once the simulation has been performed and the regulation has been applied for the set

input data, the output values of the corresponding production and consumption, as well as the

charged and discharged energy quantities have been assessed as shown in the below table 5.2:

Table 5.2: Control and Regulation Algorithm's Output Data

Output Data
Day P C Charging units | Discharging units

1 103.57 82.54 42.18 0

2 89.89 89.89 45.59 0

3 78.2 78.2 44 0

4 83.06 49.13 39.33 0

5 82.44 42.18 40.28 0

6 110.83 54.07 23.56 0

7 88.39 88.39 48.3 0

8 59.22 59.22 22.42 0

9 48.44 48.44 16.34 0
10 43.87 43.87 17.5 0
11 52.06 52.06 30.16 0
12 38.49 38.49 33.29 0
13 67.17 21.03 17.86 0
14 51.05 51.05 26.75 0
15 18.7 18.7 0 10.58
16 34.2 34.2 0 10.04
17 23.33 23.3 0 12.7
18 15.05 15.05 0.88 0
19 16.15 16.15 4.64 0
20 7.3 7.3 0 1.52
21 9.81 9.81 4.91 0
22 28.47 36.5 0 26.6
23 33.27 33.27 0 14.71
24 27.4 27.4 0 22.71
25 21.6 21.6 0 10.06
26 14.6 14.6 0.6 0
27 16.8 16.8 4.7 0
28 8.9 8.9 0 0.31
29 5.21 5.21 0.01 0
30 14.87 14.87 10.07 0
31 13.72 13.72 0 0
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Furthermore, the plotted curves of the production and consumption inputs and outputs as

well as the vehicles’ SoC are displayed in the following figures and graphs (Fig. 5.2, 5.3).
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Figure 5.2: Input and Output Production and Consumption curves
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Figure 5.3: Input and Output SoC bar graphs
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It is to be mentioned that the colorful bars of Fig. 5.3 vary on each day depending on the
number of vehicles in which consists the fleet intended for charging and/or discharging, which
explains the different bar colors. For instance, as days 1 and 25 consist of fleets of 4 vehicles
represented each by 4 bars three of which having different shades of blue and the fourth being
green. Also, days 10 and 23 consist of fleets of 6 vehicles represented by bars of three shades of

blue, green, orange and yellow.

5.3.3 Discussion

Based on the plotted curves of the input production and consumption compared with the
output curves after regulation (Fig. 5.2), it is clearly shown that the margin between both curves
is tighter, and in some cases, the regulation allows for a balanced system where P is equal to C.
Besides, the state-of-charge of the electric vehicles is affected by the regulation process, and
referring to the excess or lack of energy, the vehicles get charged or discharged. Particularly, in
the regulation example set, the vehicles’ depth of discharge is of 80 %, thus the maximal value
for the batteries’ SoC is of 90 %, and its minimal value is of 10 %. However, taking into
consideration a fixed percentage of 15 % of all the batteries’ SoC to be kept in the vehicles for
their personal needs, the discharging process does not allow a SoC drop beyond 25 %. Thus, as it
is shown on the presented bar graphs of Fig. 5.3, some of the fleets get partially or fully charged,
and the excess of energy would then be used for grid supply if available. And some other fleets

get fully or partially discharged.

Consequently, based on the available input and output values for the production and
consumption of the studied 31 days example set, the regulation’s percentage of equilibrium has
been calculated. Therefore, this percentage has been found to be of 80.26 % for the first week,
consecutively 82.89 % and 91.54 for weeks 2 and 3, and 96.67 % for the last 10 days. Hence,
these calculations have led to a total average equilibrium percentage of 88.43 % for the 31 days

example set.

5.4 Improved regulation through the optimization of number of vehicles

As the study allows an endless number of vehicles to be integrated as a storage system, an

optimization of the number of vehicle to charge/discharge would allow a convenient energy
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transfer and a reduced consumption of batteries. Consequently, it would be interesting to
improve the results obtained in section 5.3 through optimizing the number of vehicles and order
of charging/discharging based on their available SoC as well as their battery lives. This

optimization is further developed in this section.

54.1 Assigned input data

In order to minimize the number of vehicles to be charged or discharged, all vehicles
available for storage or retrieval first need to be classified based on their storage capability and

battery lives.

To this end, we use a combinatorial optimization based problem. More precisely, we apply
the knapsack algorithm, with a set of vehicles each with a SoC and battery life, aiming to
determine the vehicles to include in processes for charging/discharging so that the total SoC is
arranged between both values Min and Max and the battery lives are as large as possible for
charging process, and as less as possible for discharging process. The number of vehicles in a
fleet should not be exceeded. The problem often arises in resource allocation where the decision
makers have to choose from a set of vehicles under a fixed set of constraints. The algorithm is

firstly based on the classification ratio r = SLO—bC where L, represents the vehicles’ battery life and

SoC represents their state-of-charge. For the storage process where the vehicles get charged, the

vehicles are classified based on the decreasing order of the ratio r.

In fact, the charging starts with the vehicle corresponding to the highest value of r. More
specifically this corresponds to vehicles with the highest battery lives and the lowest SoC. Thus,
in other words, before charging, the vehicles are classified in a way to start with highest battery

lives and highest storage capability.

As for the discharging, the classification is based on the increasing order of the vehicles’
ratios r and the restitution starts with the vehicles with the highest SoC and the lowest battery
lives.

Therefore, referring to the same sample data of 31 days, in order to calculate the value of r
related to each fleet of vehicles, battery lives Lj, are calculated as per equation (4.12) of chapter 4

where batteries’ number of cycles is randomly defined as follows (table 5.3):
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Table 5.3: Vehicles' batteries number of cycles and SoC percentage to be kept in the vehicle

Day Cycles Y
1 [1200 1300 1000 1000] [10 12 14 11]
2 [1200 1000 1300 1000 1400] [14 16 9 13 9]
3 [1200 1000 1300 1000 1400] [34771221]
4 [1200 1300 1000 700] [1111 11 11]
5 [1200 1300 1000] [17 11 8]
6 [1200 1300 1000] [22 22 15]
7 [850 1200 1300 900 1000 1450] [10 14 24 17 11 21]
8 [1200 1300 650 930 1125] [1219179 7]
9 [1200 1200 850 1100 1300 1000] [141117 109 11]
10 [1200 1300 1000 1350 1100 550] [1098789]
11 [1200 1300 1000 750 1430] [11 13 11 12 21]
12 [1200 1300 1000 1112 933] [32 12 41]
13 [1200 1300 1000] [S100]
14 [1200 1300 672 1000 832] [14 13 14 12]
15 [1200 457 1300 1000 1123] [159889]
16 [1200 1012 1300 1000] [16 10 16 12]
17 [1200 1300 947 1000] [17 21 17 19]
18 [1200 1300 1000] [14 20 10 |
19 [1200 1300 1000 950] [1913 17 12]
20 [1200 690 1300 1000] [20 62 20 22]
21 [1200 1300 1000 1043 1387] [21918817]
22 [1200 1300 1020 1000] [22 2512 23]
23 [1200 1300 1000 876 1489 1312] [2391820810]
24 [1200 1300 1000 770 1240] [24 312 2 33]
25 [1200 1300 1000 1125] [2513 18 9]
26 [1200 1300 1000] [41010]
27 [1200 1300 783 1000] [26 13 17 10]
28 [1200 1300 1000] [151519]
29 [1200 499 1300 1000] [2923 19 10]
30 [1200 760 1430 1300 1000] [S1510197 ]
31 [1200 1300 1000] [31 31 12]

In addition to the number of cycles chosen for the fleets’ batteries, table 5.3 shows the SoC

percentage y neither to be charged nor discharged, but to be kept in the vehicles’ batteries for

their personal use.
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5.4.2

SoC before and after the classification are listed in the below table 5.4.

Output and Results

Accordingly, the control and regulation algorithm is launched and the output values for

Table 5.4: Input and Output SoC values before and after vehicles' classification

Unclassified Fleet Classified Fleet

Day Input SoC Output SoC Input SoC Output SoC

1 [11 28 46 53] [90 90 90 90] [11 28 46 53] [90 90 90 90]

2 | [19 23 27 74 33] [90 90 90 90 55.9211] [19 27 23 33 74] [90 90 90 71.9211 74]

3 [26 12 12 14 87] [90 90 90 25.5789 87] [12 12 14 26 87] [90 90 89.5789 26 87]

4 | [26 56 42 29] [90 90 90 90] [26 29 42 56] [90 90 90 90]

5 | [16 26 16] [90 90 90] [16 16 26] [90 90 90]

6 | [43 39 64] [90 90 90] [39 43 64] [90 90 90]

7 | [26 38 16 29 36 [90 90 90 90 39.1842 [16 25 26 38 29 [90 90 90 89.1842 29 36]
8 |[[72 88 35 43 29] [90 90 90 86 29] [29 43 35 72 88] [90 90 45 72 88]

9 |26 71 18 29 32 [90 90 20.9737 29 32 19] [19 18 26 32 29 [90 32.9737 26 32 29 71]
10 | [65 42 22 28 33 [90 90 41.1316 28 33 [28 22 33 42 20 [90 52.1316 33 42 20 65]
11 | [39 78 28 54 22] [90 90 90 87.7368 22] [22 28 39 78 54] [90 90 67.7368 78 54]
12 | [81 23 17 12 69] [90 90 90 38.2105 69] [12 17 23 81 69] [90 90 47.2105 81 69]
13 | [17 76 83] [90 90 90] [17 76 83] [90 90 90]

14 | [70 64 38 29 14] [90 90 90 71.7895 14] [14 29 64 38 70] [90 90 67.7895 38 70]
15 | [17 32 43 14 82] [17 19 18 14 64.3158] [82 32 43 17 14] [26.3158 32 43 17 14]
16 | [73 52 21 38] [26 46.1579 21 38] [73 52 38 21] [26 46.1579 38 21]

17 | [47 32 16 79] [27 31 16 33.1579] [79 47 32 16] [29 30.1579 32 16]

18 | [90 89 29] [90 90 32.6053] [29 89 90] [33.6053 89 90]

19 | [66 74 58 21] [90 74.4474 58 21] [21 66 74 58] [45.4474 66 74 58]

20 | [90 63 87 32] [82 63 87 32] [63 90 87 32] [63 82 87 32]

21 | [81 19 36 45 66] [90 35.8421 36 45 66] [19 36 45 66 81] [44.8421 36 45 66 81]
22 | [77 66 86 30] [32 35 22 30] [86 77 66 30] [22 32 35 30]

23 | [44 35 14 23 68 [33 19 14 23 18 [88 68 44 35 23 [20 58.5789 44 35 23 14]
24 | [19 32 23 90 89] [19 13 22 12 67.4737] [90 89 32 23 19] [12 47.4737 32 23 19]
25 | [29 41 81 61] [29 23 46.0526 61] [81 61 41 29] [28.0526 61 41 29]

26 | [88 36 61] [90 37.1579 61] [36 61 88] [39.1579 61 88]

27 | [76 80 25 42] [90 90 25.7368 42] [25 42 80 76] [49.7368 42 80 76]

28 | [26 43 90] [25 42.3684 90] [90 43 26] [88.3684 43 26]

29 | [90 67 30 25] [90 67.0789 30 25] [30 25 90 67] [30.0789 25 90 67]

30 | [65 89 86 78 49] [90 90 90 90 59.9737] [49 65 78 86 89] [90 76.9737 78 86 89]
31 | [28 60 43] [28 60 43] [28 60 43] [28 60 43]
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The number of vehicles that have been charged or discharged before and after classification is

1if the vehicles is charged or discharged

defined as follows: Min Z = ) X; where X; = {0 if not

The calculation of ), X; through the algorithm’s simulation results in the following table 5.5

and Fig.5.4 where the result of minimization of Z after classification is clear:

Table 5.5: Number of vehicles charged/discharged before and after classification

Day Z =Y X; before Z =Y X; after
1 4 4
2 5 4
3 4 3
4 4 4
5 3 3
6 3 3
7 5 4
8 4 3
9 3 2
10 3 2
11 4 3
12 4 3
13 3 3
14 4 3
15 3 1
16 2 2
17 3 2
18 2 1
19 2 1
20 1 1
21 2 1
22 3 3
23 4 2
24 4 2
25 2 1
26 2 1
27 3 1
28 2 1
29 1 1
30 5 2
31 0 0

Total 94 67
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Figure 5.4: Number of vehicles charged/discharged before and after classification

54.3 Discussion

As shown in table 5.5 and Fig. 5.4 where the number of vehicles charged or discharged is
calculated and plotted, after classification, the number of vehicles used for storage and restitution

is clearly less (or equal) than the random charging/discharging without classification.

In order to compare the SoC input and output values in some of the cases where the

vehicles were charged or discharged with or without classification, days 13, 15, 22 and 30 of our
study were further investigated and discussed.
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Figure 5.5: Day 13 - Input & Output SoC - without & with classification

On day 13 (a charging day), illustrated in Fig. 5.5, the input SoC of the fleet of three
vehicles is progressively of 17 %, 76 % and 83 %. As P = 85.03 kWh > C = 3.17 kWh in this

case, the charging process of the vehicles gets launched until fully charging the fleet with a 90 %

SoC for all 3 vehicles. The vehicles classification results in the same order of charging in this

case, and the output after charging would end up with a fully charged fleet as well.

At the end of the process, P = 67.17 kWh would still be higher than C = 21.03 kWh, and

the excess of production can be used to supply the electric grid.
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Figure 5.6: Day 15 - Input & Output SoC - without & with classification
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On day 15, illustrated in Fig. 5.6, P = 8.12 kWh < C = 18.7 kWh; therefore the algorithm
launches the discharging process. The initial input SoCs of the fleet of five vehicles are
respectively of 17 %, 32 %, 43 %, 14 % and 82 %. However, the progressive values of y that
must be kept in the vehicles’ batteries for their personal use are of 15 %, 9 %, 8 %, 8 % and 9 %.
Therefore, the vehicles’ SoCs must not fall short of the progressive values SOCminty for the five
vehicles that are respectively 25 %, 19 %, 18 %, 18 % and 19 %. In this case, as the SoCs of the
1t and 4" vehicle are already below their lower limit SoCminty, the discharging process is
launched for the three remaining vehicles and the output SoC would then be of 17 %, 19 %, 18
%, 14 % and 64.3158 %. The discharging of the 2", 3™ and 5" vehicles allows the balanced
system to be reached wih P = C = 18.7 kWh.

However, in the case when the vehicles are classified at the input based on their cycles/
battery lives and SoCs, the classification allows the discharging process to start with the vehicle
with a SoC of 82 % and the balanced system would then be reached before discharging any other
vehicle and extending their usage thus shortening their battery lives. So, the discharging of the
classified vehicles results in output SoCs of 26.3 %, 32 %, 43 %, 17 %, and 14 %; with the 1%
vehicle being the only one affected by the discharging process.
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Figure 5.7: Day 22 - Input & Output SoC - without & with classification

Similarly, the day 22 involves P = 1.87 kWh < C = 36.5 kWh, hence a launching of the
discharging mode (Fig. 5.7).
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The initial input SoCs of a four vehicles’ fleet are of 77 %, 66 %, 86 % and 30 %, and their
minimum allowable values SoCminty are of 32 %, 35 %, 22 % and 33 %. Once classified, the
input SoCs would be of 86 %, 77 %, 66 % and 30 % respectively. Whether classified or not, the
discharging process operates until the fleet is fully discharged, and as P = 28.47 kWh would still
be lower than C = 36.5 kWh, the lack of production can be compensated from the electric grid

restitution.
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Figure 5.8: Day 30 - Input & Output SoC - without & with classification

On day 30, illustrated in Fig. 5.8, P = 24.93 kWh and C = 4.8 kWh, the charging process
would then be launched. The initial input SoCs of the fleet of vehicles are respectively 65 %, 89
%, 86 %, 78 % and 49 %. All five vehicles are affected by the charging process with 4 fully
charged vehicles out of 5 with respective output SoCs of 90 %, 90 %, 90 %, 90 % and 59.97 %.
The balance of the system is then reached with P = C = 14.87 kWh.

If the classification is made before launching the charging process, the initial input SoCs
would be of 49 %, 65 %, 78 %, 86 % and 89 %. And the same amount of energy used to reach
the balanced system would be injected in this case in only 2 vehicles instead of 5 with final
output SoCs of 90 %, 76.97 %, 78 %, 86 % and 89 %. In this case, the remaining vehicles are not
integrated into the charging process, which preserves (thus extends) their batteries lifetime while

consuming fewer charging and discharging cycles.

As for day 31, at the first comparison operated by the regulation algorithm, as the

production and consumption have equivalent values, the system is already in balance situation
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and the vehicles can neither charge nor discharge their batteries. In this case, the input values of
the fleet’s SoC are the same as their output values. The algorithm takes no action then and waits

until a margin between the production and consumption occurs again.
5.5  Conclusion

In this chapter, a control and regulation algorithm for the energy flowing between a
domestic household, electric vehicles and the grid has been assessed. The regulation is mostly
performed based on the electricity supply and demand, and seeking a balanced
production/consumption system. The regulation algorithm has been simulated through a sample
input set of 31 days with different input values for the production and consumption as well as the
fleet of 3 to 6 electric vehicles. The output results showed a total convergence of 88.43% towards
the equilibrium state. Consequently, the production and consumption regulation proposed seem
to be an extremely effective solution for the energy waste caused by the misuse of the excess and

lack of energy.

However, as the study allows an endless number of vehicles to be integrated as a storage
system, a combinatorial optimization of the number of vehicle to charge/discharge would allow a
convenient energy transfer and a reduced consumption of batteries. This optimization study is
based on knapsack algorithm. Therefore, an improved management solution has been
implemented allowing a classification of the available vehicles before injecting or retrieving their
energy based on their states-of charge and battery life. Therefore, the energy storage and retrieval
processes have been further optimized through the minimization of the number of vehicles that

would be charged or discharged.

As a future work of this part, it would also be intriguing to generate a realistic prototype

that would further verify the theoretical studies and obtained results.
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General Conclusion

Electric vehicles have recently been brought into attention for their major contribution in
the polluting greenhouse gases reduction subsequent from the transportation sector.
Consequently, this research work has shed the light on electric vehicles and energy systems. So
first, the investigations implied a literature review related to the electric vehicles and systems’
components. Then, the multi-objective optimization approach, as well as the energy management
strategies comprising the scheduling of vehicular charging and discharging have been studied
based on the available literature.

To do so, a specific energy system including a domestic household connected to photovoltaic
panels and a wind turbine, a fleet of electric vehicles and the electric grid has been conceived.
The system’s detailed configuration as well as the modeling and sizing of its components have
been described. A main focus of the study implies in the control of energy flows entering and
leaving the fleet of vehicles and their regulation based on the electricity supply and demand.
Moreover, the global energetic model of the system has been depicted through a discussion of
three case studies with different production and consumption difference margin variations.
Furthermore, the vehicular charging and discharging processes have been optimized using the
multi-objective genetic algorithm as an optimization approach. As a result, the Pareto-front of
predefined objective functions is identified culminating in the fulfillment of the system’s
energetic needs. Particularly, the optimization of the charging process thrives towards finding the
maximal state of charge, valley energy, propulsive energy and the minimal losses that the fleet
could attain. As for the discharging process, the acquired optimization embeds the minimization
of the battery’s state of charge, the vehicles’ discharging time and losses, and the maximization
of the battery’s lifetime. In some cases, the conflicting solutions imposed the application of the
weighted sum approach based on the decision maker’s priorities defined through several
scenarios. Consequently, quasi-optimal solutions that are the closest possible to the optimal ones
have been obtained, and the calculated optimized solutions basically converged towards the
theoretical objective functions’ theoretical optima. This convergence obtained by the genetic
algorithm calculations has also been verified by simulation using the gamultiobj solver of Matlab
for both the storage and retrieval optimizations.

Additionally, the fleet’s behavior has been evaluated through an energetic strategy based on the
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electricity production and consumption, thus its demand and supply. So, a control algorithm has
been developed to ensure a balanced regulation of the energy flows between the vehicles and the
infrastructure (home and the grid eventually). The regulation algorithm’s simulation has shown a
significant convergence towards the equilibrium state and a tightened difference margin between
energy production and consumption. Consecutively, an improved management solution has been
proposed through a classification of the available vehicles before the energy injection or retrieval
in order to minimize the number of vehicles that would be charged or discharged. Thus, an
improved version of the regulation algorithm has been projected and the energy storage and

retrieval have been further optimized.

Briefly, in this research work, a control and regulation algorithm for the energy flowing between
a domestic household, electric vehicles and the grid has been assessed. The major findings and

conclusions of this research work are:

- The energy flows regulation is mostly performed based on the electricity supply and
demand, seeking a balanced production/consumption system.

- Once triggered by the regulation algorithm, vehicular charging and discharging
modes are optimized through the multi-objective genetic algorithm.

- The regulation algorithm was simulated through a sample input set of 31 days and the
output results showed a total convergence of 88.43% towards the equilibrium state.

- The number of vehicles to charge/discharge has been optimized allowing a
convenient energy transfer and a reduced consumption of batteries’ cycles and

longevity.

Consequently, the production and consumption regulation proposed by this study and the
assessed optimization of both the vehicular charging and discharging modes seem to be an
extremely effective solution for the energy waste caused by the misuse of the excess and lack of

energy.

For future studies and implications, it would be interesting to expand the energy system to a
larger scale involving the assessment of a whole city with numerous habitats and more
sophisticated renewable sources. It would also be intriguing to generate a realistic prototype that

would exemplify the theoretical studies.
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Moreover, even though it is always recommended to flatten the demand profile and avoid
charging electric vehicles during peak hours (for which the electricity tariffs become more
substantial), an economic study of such a problem remains to be addressed in future research

projects.
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Appendices

Appendix A — Technical Specifications

e A.l. On-board batteries:

Panasonic

BK1100FHU T e

B Dimensions (with tube) W Specifications
Diameter 33.0+0/-1.0 mm
Height 91.0+0/-1.5 mm
03133-0“‘01’ -1.0 Approximate Weight 300g
Nominal Voltage 1.2V
S Discharge*1 |Average*2 11300 mAh
= Capacty |Rated (min.) 11000 mAh
H ﬁ? Approx. Internal Impedance 5 mO
g at 1000Hz at charged state.
: Standard 1100 mA X 16 hrs.
: § 91.0+0f15 Chage |ReR3 5500 mAh X 2.4 hrs.
3 Lo fat 550 mA X 32 hrs.
367 mA X 48 hrs.
o Low rate =
% Charge |Standard i
&5 z Rapid 30 °C to 60 °C
g Discharge -40°C to 85 °C
: = <1 year 20°C to 35 °C
Unit : mm . —
bl i <6 months -20°C to 45 °C
£ 9¢ [<Lmonth -20°C t0 55 °C
< <1 week -20 °C to 65 °C
3attery parformance and cyde life are strongly affected by how they are used, In order *1 After charging 2t 0.1 It for 16 hours, discharging at 0.2 Tt

0 maximize battery safety, plesse consult Panasonic when determining charge/discharge

spacs, warning labal contents and unit dasign, *2 For reference only.

*3 Need specially designed control system, Please contact Panasonic for detaiks.
"The: data in this document are for descriptive purposes only and are not intended to make or imply any guarantee or wamranty.

Nickel Metal Hydride Battery 2016/08

e A.2. Stationary Lead-Acid Batteries:

48V System

HORIZONTAL VERTICAL

Battery Voltage Capacity

Type (V) (AH) LengthxWidthxHeight(mm) LengthxWidthxHeight(mm)

MS48V3000 3000 4816x776x850
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'S 45V Group| | ][]

HORIZONTAL

e A.3. Photovoltaic panels:

GENERAL DATA

Length 1677 mm

Width 980 mm

Frame width 45 mm

Weight empty / filed 28kg/ 33 kg

Frame color / backsheet Black / Black

Murmber of cells per module B0

Cell type Monocrystalline

(dimensions) {158 mm * 156 mm. 6 inches)

Norminal power (Pyp.) 280 Wp

Module efficiency 1I720% : : —

Power tolerance 0/+3 % [ %\w ]

Rated voltage (Vmpr_) 3195V

Rated current (. B7T A

Open circuit voltage (V) ei=k=i=av)

Short circuit current (1,) 930 A

Maximum system voltage 1000V DC R :.
Reverse current load 15 A . N
NOCT 469 °C -
Connectors Genuine MC4

Application class Class A -t

Voltage (pVoc) -0.345 %/°C I — o — =2}

Current (ulsc) 0.047 %/°C &l |

Efficiency loss 0487 %/°C l ! '
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e A.4. Horizontal wind turbine:

Number of blades

Blades material

Generator

Nominal power

Voltage

Wind Class

Swept area

Weight

Cut-in wind speed

Nominal wind speed

Cut-out wind speed

Transmission

Power control

Brake and protection

Controller

Inverter

Noise

Pole type

composite FE 1630PW

3phase PMG

2,8kW

48V / 220V

CLASS 111 IEC 61400-2

3m?

42Kg

2,6m/s

12,5m/s

14,5m/s

Direct Drive

MPPT curve of the generator

Dump-load and short-circuit brake

48V for Lithium battery charge

ABB type efficiency 97%

Max. 50dBa

for flat or inclined roofs
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e A.5.DC/AC inverter:

solar:=h:

Three Phase Inverters for the 208V Grid" for North America

SEIKUY/ SE14.4KUS

—

SE14.4KUS

OUTPUT

[ | seokus | |
| I |

Rated ACPower Output || . ..........|lecc.

. Maximum® (L-N}
AC Output Vortage Minimum-Nominal-
 Maximum® (L-L)

Max, Continuous Output Current per Phase) | -~~~ "~ a8

: GFDI 111reshold
Utllrt\r Monltorlng, Islandmg Protection,
Country Configurable Set Points

AC Output Voltage Minimum-Nominal-

105-120-132.5

183-208-229

2400 e

VAL

Vac

Vac

INPUT

. Maximum DC Power (ModulesTC) | L

ADDITIONAL FEATURES

. Supported Communication Interfaces
. Rapid Shutdown — NEC 2014 and_ 2(]17'r 690 12

RS485 Surge Protection

... Rs48s5, Ethernet, ZigBee (optional)]
nutomatlr_: _Hapld Shutdown | upon AC Grid Dlsmnnecl{‘l
Supplled \mth the |nverter

STANDARD COMPLIANCE

UL1741,

UL1741 SA, UL1699B, CSA C22.2, Canadian AFCI according to

EE A T o e P
FCC partl3 class B

INSTALLATION SPECIFICATIONS

. AC output conduit size fAWG range [ .
.DCinput conduit size / AWG range |

34" minimum [ 12-6 AWG [

.34 minimum /84AWE L
/& minimum / 126 AWG

. Dimensions with Safety Switch (HxWxD) | ...

 Weight

Weight with Safety switeh L

. Cocling

B2 VK- S B
ARTLZ02 b
Fans (user replaceable)

L 303x125x105/775x319x200, T
e fas b
L0628 ] SR

AL -
CNEMASR e,
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