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Résumé Substantiel

Cette thèse s'inscrit dans le vaste champ multidisciplinaire de recherche réunissant la science de couches minces, l'analyse mathématique et le calcul scientifique des équations aux dérivées partielles non linéaires.

L'objectif est de développer des méthodes mathématiques et numériques nouvelles qui permettent d'apporter des explications et de comprendre la dynamique des nanostructures et leur autoorganisation sur des surfaces de films minces. La morphologie d'une surface correspond à des réarrangements qui abaissent l'énergie totale du système, mais augmentent l'énergie de déformation élastique. Pour relaxer l'énergie correspondante, le film a la possibilité de modifier la forme de sa surface libre, de façon à se placer dans une configuration d'énergie plus favorable.

Ces phénomènes de déformation sont observés dans la vie de tous les jours à toutes les échelles, allant de la déformation à micro-échelle (rides sur la peau humaine) à la déformation à macro-échelle (formations de crêtes de montagne). Ils ont été et restent un défi pour différentes disciplines. En effet, la nature est très élégante. Ses formes sont à la fois fonctionnelles et esthétiques. En regardant profondément dans la nature, de nombreuses théories ont été apportées à l'architecture et au design. L'une des formes naturelles les plus fascinantes est la forme caténaire ou chaînette. La caténaire est la courbe obtenue lorsqu'une chaîne de densité uniforme est suspendue entre deux points. Cette forme se produit naturellement dans un oeuf ou les fils suspendus d'une toile d'araignée. En effet, l'architecte finno-américain Eero Saarinen a adopté cette forme dans l'emblématique Gateway Arch de Saint-Louis en 1963, représentée sur la Figure 2 . Un autre architecte qui a étudié et incorporé la forme caténaire dans son travail est le célèbre architecte catalan Antoni Gaudi. Son bâtiment Casa Mila à Barcelone, Espagne (voir Figure 3) était le modèle répétitif de la caténaire inversée.

En fait, le problème de la chaînette et de l'arc est l'un des problèmes les plus anciens qui a été résolu en utilisant le calcul des variations. La question était de trouver la forme exacte d'une chaînette suspendue ou un cordon flexible. Galileo (1602) a été le premier à poser le problème. Ne pas avoir les bons outils mathématiques (calcul de variation), Galilée a répondu à tort que la courbe résultante était une parabole. Pour les arcs, c'est Robert Hooke (1675) qui fait le lien entre la forme idéale d'un arc et celle d'une chaîne suspendue. La géométrie d'un arc est considérée comme un miroir de celle d'une chaîne suspendue. C'est probablement l'une des (les plus anciennes) raisons pour lesquelles les termes utilisés pour décrire le populaire St. Louis Gateway Arch sont souvent une caténaire ou une parabole.

A l'échelle nanométrique, différentes morphologies ou déformations, y compris chaînette et arc, sont obtenues et/ou observées dans des surfaces élastiques minces. Ce problème, qui a une longue histoire, est un sujet classique de la mécanique des milieux continus. La question a été étudiée sous différents points de vue et différents types de déformations ou d'instabilités de surface et une possible transition continue / discontinue entre elles ont été prédites (conditions critiques). La plupart des déformations (délamination-flambage, plissement, fissuration ou fracture, ...) sont considérées comme des minimiseurs (locaux) d'une énergie élastique appropriée. Cependant, en raison de la complexité des équations (équations aux dérivées partielles du quatrième ordre, couche mince, conditions aux frontières libres, ...) qui décrivent les morphologies de surface, des preuves rigoureuses sont dans la plupart des cas difficiles à réaliser, et comme des solutions explicites sont difficiles à obtenir sauf dans certains cas, les traitements numériques sont souvent inévitables.

On sait depuis longtemps que l'instabilité d'une couche mince élastique peut se manifester par la formation des arêtes étroites. En particulier, les lois d'échelle pour un les arêtes ont d'abord été dérivées par Written et Li [START_REF] Witten | Asymptotic shape of a fullerene ball[END_REF]. Les auteurs ont prédit qu'une arête de longueur χ dans une feuille d'épaisseur h a une largeur w ∼ h 1/3 chi 2/3 . Dans [START_REF] Lobkovsky | Boundary layer analysis of the ridge singularity in a thin plate[END_REF], Lobkovsky a confirmé ce résultat dans le cadre des équations de Von Karman pour une couche mince utilisant à la fois des simulations numériques et une analyse asymptotique.

En effet, en physique, la forme caténaire apparaît naturellement dans un matériau appelé graphène. De plus, au-delà des processus de déformation, les caractéristiques géométriques du froissement et du délaminage peuvent être utilisées pour étudier l'adhésion des couches de graphène [START_REF] Koenig | Ultrastrong adhesion of graphene membranes[END_REF], ou autres propriétés mécaniques des couches minces [START_REF] Stafford | A buckling-based metrology for measuring the elastic moduli of polymeric thin films[END_REF]. Par conséquent, il est important de savoir si la couche de graphène adhère ou pas d'une manière conforme au substrat, et de construire un modèle théorique pour prédire comment une couche de graphène suspendue se déforme en réponse à l'interaction entre les forces d'étirement et de flexion.

Il y a près de 70 ans, ce cristal a été manipulé par Wallace pour mieux comprendre les propriétés électroniques et chimiques des empilements de couches de graphène faiblement couplées par les forces de Van der Waals, appelées graphite. En effet, lorsqu'un crayon est pressé contre un morceau de papier, des couches de graphène sont en fait produites, et quelque part entre ces couches, il pourrait y avoir des couches de graphène individuelles. Cependant, malgré la production présumée de graphène à chaque utilisation d'un crayon sur une feuille de papier, il n'a été extrait que 440 ans après son invention, par les deux scientifiques de l'Université de Manchester: Andrei Geim et Kosty Novoselov, qui ont obtenu un prix Nobel pour cette découverte en 2010. La méthode utilisée consistait à coller et à décoller à plusieurs reprises le scotch d'une couche de graphite. Cela a fait une énorme révolution dans la physique bidimensionnelle car personne ne s'attendait à ce que le graphène existe réellement à l'état libre.

Le carbone est un matériau indispensable à la vie et à la base de toute chimie organique. Par conséquent, comme tous les systèmes à base de carbone, le graphène a montré une utilité considérable dans les études fondamentales, les applications industrielles et électroniques, allant de la nanoélectronique à la biologie, grâce à ses propriétés électroniques, mécaniques et chimiques notables, [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF]. De plus, le graphène a ouvert de nouvelles possibilités pour le stockage de plus d'ions lithium, ce qui conduit à l'augmentation de la capacité de la batterie [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF].

Il est indéniable que les membranes minces réagissent fortement aux forces extérieures et aux contraintes géométriques complexes. Le graphène étant parmi les membranes les plus minces et les plus rigides, et en raison de sa rigidité en flexion extrêmement faible, il a souvent tendance à se froisser [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF].

En fait, le dépôt chimique en phase vapeur (CVD) est un moyen de faire croître des couches continues de graphène de grande taille. Mais pour pouvoir manipuler le graphène issu de CVD, il doit être transféré sur d'autres substrats, principalement un substrat de silicium. Lors de ce transfert, de nombreuses rides peuvent être induites en raison de la dilatation thermique différente des substrats en plus du processus de transfert lui-même et des interactions de type Van der Waals créées entre le graphène et son substrat sous-jacent. D'une part, comme ces ondulations formées sont principalement liées à des fluctuations thermiques, elles sont appelées «rides intrinsèques». D'autre part, la structure bidimensionnelle du graphène est également affectée par d'autres facteurs qui ne sont pas encore totalement compris, mais qui sont généralement considérés comme le résultat de contraintes de compression ou de forces d'étirement et de flexion. Les rides résultantes dans ce cas sont appelées "rides extrinsèques". Nous renvoyons le lecteur à [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] pour une étude physique détaillée.

En particulier, la formation de plis dans le graphène a été très étudiée par les physiciens au cours des dernières années, car elle modifie la structure bidimensionnelle de la planéité totale à la formation des rides, ce qui peut avoir un effet remarquable sur les propriétés physiques du graphène, comme le support mobilité, conductivité thermique, transmittance optique et mouillabilité [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]. Cette déformation affecte également les propriétés électroniques du graphène, cela peut être facilement remarqué lorsqu'une couche de graphène est pliée à une certaine courbure, la partie localement courbée est semi-conductrice tandis que le graphène plat est hautement conducteur [211].

Puisque la morphologie du graphène influence fortement ses caractéristiques physiques, la formation de plis aléatoires conduit à des propriétés imprévisibles du graphène [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]. Ce changement aléatoire doit être évité dans les nanoélectroniques dans lesquels un contrôle précis est essentiel. Pour cela, des modèles théoriques doivent être construits afin de prédire la réponse du graphène à différents types de déformations, principalement les forces d'étirement et de flexion.

En 2012, Yamamoto et al. ( [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]) ont fourni un rapport sur les observations expérimentales de la formation de rides dans une couche de graphène supportée sur un substrat de silicium (Si0 2 ) avec des perturbations topographiques placées aléatoirement produites par les nanoparticules de Si0 2 avec une densité de dispersion ρ np , [START_REF] Yamamoto | Two-dimensional crystals on substrates: Morphology and chemical reactivity[END_REF]. Cette étude a montré que ρ np a un effet direct sur le froissement du graphène. Plus précisément, dans un premier temps (à ρ np = 11µm -2 ), le graphène adhère de manière conforme au substrat ( [START_REF] Khalfi | Period steady-state identification for a nonlinear front evolution equation using genetic algorithms[END_REF], [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] et [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF] ) et au fur et à mesure que la densité des nanoparticule augmente (à ρ np = 22µm -2 ), les rides reliant les nanoparticules prolifèrent, et enfin un réseau de rides s'étend sur l'ensemble de l'échantillon.

Ces observations indiquent qu'il existe une distance critique χ c entre deux nanoparticules, au-delà de laquelle on perd le profil chaînette de la ride et une délamination totale se produit.

La détermination de χ c a été l'objectif principal de nombreux travaux à commencer par Lobkovsky et al. dans [START_REF] Lobkovsky | Scaling properties of stretching ridges in a crumpled elastic sheet[END_REF] qui ont fourni un modèle élastique continu vu ci-dessous sur Figure 1 Cette incapacité à atteindre la valeur observée lors des expérimentations est la principale motivation des travaux réalisés dans cette thèse.

La thèse est divisée en deux parties. Le but de la première partie est de: a) développer une méthode numérique originale pour optimiser l'énergie associée au modèle ce qui nous a permis de déterminer la distance critique entre les deux nanoparticules du silicium ayant la même taille en dessous de la quelle la ride est conservée, b) développer un autre modèle mathématique du graphène entre deux nanoparticules ayant différentes tailles cette fois-ci, une analyse analytique a été menée d'une manière rigoureuse pour déterminer là aussi la distance critique mais le résultat obtenu est loin des résultats expérimentaux. La deuxième partie porte sur l'étude de deux EDP génériques. Ces équations sont utilisées pour analyser les instabilités qui sont à l'origine des ondulations des marches. Pour la première équation, on a obtenu une classification complète de solutions via une analyse de solutions stationnaires. La deuxième partie du chapitre est dévouée à l'étude du comportement asymptotique de la période des solutions. 

Les grandes lignes de la thèse

Plus en détail, cette thèse est structurée comme suit:

Chapitre 1: Algorithme GWO amélioré pour la détermination de la longueur critique des rides du graphène.

Dans ce chapitre, un effort est fait pour fournir un algorithme numérique qui détermine la longueur critique χ c des rides en dessous de laquelle le froissement est induit dans une couche de graphène déposée sur un substrat de silicium décoré de nanoparticules de silicium de même taille, (c'est-à-dire pour une taille de nanoparticule donnée la membrane de graphène se déforme si la distance entre deux nanoparticules n'est pas supérieure à χ c ). En effet, comme mentionné précédemment, la longueur maximale d'une ride sera déterminée sous la contrainte

ζ (0) = d, où ζ est le minimum de la fonctionnelle énergétique suivante              J (ζ ) = ε 1 (θ ) |x|< χ 2 ζ (ζ x ) 4 + ε 2 (θ ) |x|< χ 2 ζ -1 + 2Γχd tan θ 2 subject to ζ (± χ 2 ) = 0.
dans laquelle ε 1 , ε 2 , θ et Γ sont des paramètres physiques qui seront détaillés dans le chapitre correspondant.

Cette fonctionnelle peut être réécrite en utilisant le changement de variable v = ζ 5 4 ; comme suit;

             J (v) = 4 5 4 ε 1 (θ ) |x|< χ 2 (v x ) 4 + ε 2 (θ ) |x|< χ 2 v -4 5 + 2Γχd tan θ 2 subject to v(± χ 2 ) = 0. (0.1)
L'algorithme numérique est utilisé pour minimiser la fonction coût suivante F , et le problème d'optimisation est alors exprimé comme suit:

     Minimiser F (χ, θ ) =| v(0) -d 5/4 | 2 ,
où v est le minimum de (0.1).

L'algorithme que nous utiliserons est le Grey Wolf Optimizer (GWO) qui est une méta-heuristique basée sur le comportement de chasse des loups gris dans la nature (Canis-Lupus), modélisée mathématiquement par Mirjalili et al. dans [START_REF] Mirjalili | Grey wolf optimizer[END_REF]. Les résultats obtenus montrent que l'approche proposée donne de bons résultats en comparaison avec les résultats de la littérature. Cependant, la longueur maximale des rides observée est encore sous-estimée.

Ce travail est publié dans Annals of the University of Craiova, Mathematics and Computer Science

Series [START_REF] Taourirte | Improved GWO algorithm for the determination of the critical wrinkle length of graphene[END_REF].

A ce stade, une question se pose: quelles peuvent être les causes de cet écart entre la théorie et les expériences? En fait, Yamamoto a mentionné dans son article [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] que les deux nanoparticules de silicium n'ont pas nécessairement le même diamètre, ce qui signifie que la ride ne s'affaissera pas nécessairement au milieu. Nous avons suivi cette voie, et étudié le cas où les deux nanoparticules ont des tailles différentes dans le chapitre suivant.

Chapitre 2: Analytical results for the wrinkling of graphene on nanoparticles with different diam-eters.

Suite aux points mentionnés ci-dessus, le but de ce chapitre est de présenter une étude mathématique du froissement du graphène entre deux nanoparticules de hauteurs différentes d et dδ , pour δ > 0 et δ d << 1, séparés par une distance χ δ , en examinant l'énergie élastique associée qui est différente de l'énergie (0.5) puisque la différence de taille δ doit être prise en compte.

Dans ce cas, le problème est de minimiser l'énergie J définie par: phénoménologique suivante [START_REF] Rost | Unstable epitaxy on vicinal surfaces[END_REF],

                 J (ζ ) = ε 1 χ δ + 2 χ δ - 2 ζ (ζ x ) 4 + ε 2 χ δ + 2 χ δ - 2 ζ -1 + 2Γχ δ d - δ 2 tan θ 2 subject to ζ χ δ - 2 = 0 and ζ χ δ + 2 = δ , telle que ε 1 , ε 2 , Γ et θ sont
Soient p > 1 et 1 < γ < 2p-1 p-1 ,            Minimize J (v) = 1 p 1 -1 | v x | p + 1 γ -1 1 -1 v 1-γ , subject to v(±1) = 0 and v(0) = d > 0. ( 0 
∂ t h = -a∂ x   ∂ x h 1 + |∂ x h| 2 n   -b∂ 4 x h, (0.3) 
où a et b sont des constantes physiques positives et n 1. La fonction lisse inconnue h mesure l'épaisseur du film au-dessus d'un point du substrat x et au temps t. Le but de cette section est de rapporter une justification analytique des solutions au modèle, qui prédisent le processus de grossissement. En fait, nous nous intéressons principalement aux solutions stationnaires, qui sont utilisées avec succès pour décrire les principales caractéristiques du processus de grossissement dans une large classe de phénomènes de croissance de surface.

La deuxième section de ce chapitre est consacrée à l'étude de la similitude solutions du modèle phénoménologique généralisé

∂ t h = -∂ x a (∂ x h) 1-2ν + b∂ xxx h , (0.4) 
qui est proposé pour ν ≥ 1, pour discuter le mûrissement des interfaces croissantes. On montre que les solutions de similarité résultantes ont un régime périodique pour tout ν > 1 2 . Notre contribution fournit une justification mathématique rigoureuse de l'existence de solutions de similitude périodique spatiale à l'équation interfaciale singulière et présente les propriétés géométriques des fonctions d'échelle. Le présent travail fournit un support pour des solutions avec des

∂ xx h divergents aux points où ∂ x h = 0 pour ν ≥ 1.
La première section de ce chapitre est publiée dans le journal Physica Scripta [START_REF] Bognár | Instabilities in certain one-dimensional singular interfacial equation[END_REF] et la seconde section est en préparation pour être soumise.

Chapitre 5: On singular quasilinear elliptic equations with data measures.

Dans ce chapitre, nous restreignons notre attention à l'étude d'une classe d'un problème elliptique quasilinéaire avec une non-linéarité singulière et une mesure de données à savoir 

(P λ )                -∆u = a(x) u γ + b(x)|∇u| p + λ f dans Ω, u > 0 dans Ω, u = 0 sur ∂ Ω.
W 1,q 0 (Ω) pour tout 1 ≤ q < N N -1 . Sinon, si γ > 1 et b ∈ L N+η (Ω), le problème (P λ ) admet une solution u dans W 1,q loc (Ω) pour tout 1 ≤ q < N N -1 et T k (u) γ+1 2 ∈ H 1 0 (Ω), où T k (u) représente la troncature de u.
Ce travail est accepté dans le journal Advances in Nonlinear Analysis.

Chapitre 6: Mathematical Analysis of a quasilinear elliptic equation with singular non-linearity.

Dans ce chapitre, on se concentre sur l'étude mathématique de l'équation suivante:

(Q)      -∆u + |∇u| 2 = u -γ dans Ω, u = 0 sur ∂ Ω.
en utilisant une approximation de Yosida et quelques techniques très intéressantes, on montre l'existence

d'une solution u ∈ W 2,p loc (Ω), pour tout p ∈ [1, +∞[.
En outre, on prouve que u γ+1 ∈ W 1,q 0 (Ω), pour tout 1 ≤ q ≤ N N-1 et e -γ+1 2 u ∈ H 1 0 (Ω). 

u t -.( u + χu v) = f (u) , x ∈ Ω,t > 0, -∆v + v = u γ , x ∈ Ω,t > 0,
avec condition initiale non négative pour u et sans conditions au bord du flux dans un domaine borné

Ω ⊂ R n (n 2), où χ > 0, 0 < γ < 1 et f ∈ C 1 (R) tels que , f (0) = 0 et f (s) 0, s 0.
Il est démontré dans ces conditions que le problème admet des solutions faibles dans L 2 (Ω). Afin de développer l'analyse mathématique de notre modèle, nous définissons un schéma approximatif avec des conditions initiales plus régulières, puis nous faisons quelques estimations qui nous permettront de prouver que la solution du système approché converge vers la solution de notre problème.

Ce travail est publié dans Annals of the University of Craiova, Mathematics and Computer Science

Series [START_REF] Lefraich | On the existence of global weak solutions to a generalized Keller Segel model with arbitrary growth and nonlinear signal production[END_REF].

Chapitre 8: Conclusion and Perspectives. Dans ce chapitre, nous présentons une conclusion de la thèse, discutons des contributions de nos travaux et esquissons les travaux futurs liés à cette recherche.

Introduction and Thesis Overview

Statement of the problem

The main objective of the present thesis is to focus on few aspects of the surface instabilities. These phenomena are observed in everyday life across a wide range of length scales, ranging from micro-scale deformation (wrinkles on human skin) to macro-scale deformation (mountain ridge formations). They have been and remain a challenge for different disciplines.

Nature is very elegant. Its forms are both functional and aesthetic. Looking deep into nature, many theories were brought in architecture and design. One of the most fascinating natural forms is the catenary-form. Catenary is the curve obtained when a chain of uniform density is hung from two points. This form occurs naturally in an egg or the hanging threads of a spider's web. Indeed, the finnishamerican architect, Eero Saarinen adopted this form into the iconic Gateway Arch in St. Louis in 1963, depicted in Figure 2. Another architect who studied and incorporated the catenary form in his work is the famous catalan architect Antoni Gaudi. His Casa Mila building in Barcelona, Spain (see Figure 3) was the repetitive pattern of the inverted Catenary.

In fact, the problem of catenary and arch is one of the oldest problems that have been solved by using the calculus of variations. The question was to find the exact shape formed by a hanging chain, or flexible cord. Galileo (1602) was the first to pose the problem. Not having calculus (at that time), Galileo answered incorrectly that the resulting curve was a parabola. For arches, it was Robert Hooke (1675) who made a connection between the ideal shape of an arch and that of a hanging chain. The geometry of an arch is seen as a mirror of that of a hanging chain. Probably, this is one of the (oldest) reasons that the terms used in describing the popular St. Louis Gateway Arch is often a catenary or a parabola. have been predicted (critical conditions). Most deformations (buckle-delamination, wrinkling, cracking or fracture,...) are viewed as (local) minimizers of a suitable elastic energy. However, due to the complexity of the equations (fourth-order partial differential equations, boundary layer, free boundary conditions, ...) that describe surface morphologies, rigorous proofs are in most cases difficult to achieve and since explicit solutions exist only in a few cases, numerical treatments are inevitable.

It has long been known that a thin elastic plate can be mediated by the formation of narrow ridges.

More importantly, scaling laws for a ridge were first derived by Written and Li [START_REF] Witten | Asymptotic shape of a fullerene ball[END_REF]. The authors predicted that a ridge of length χ in a sheet of thickness h has a width w ∼ h 1/3 χ 2/3 . In [START_REF] Lobkovsky | Boundary layer analysis of the ridge singularity in a thin plate[END_REF], Lobkovsky confirmed this result in the framework of the von Karman equations for a thin plate using both numerical simulations and an asymptotic analysis.

For wrinkling graphene (see details below), the elastic analytical approach of Yamamoto et al. supposes that the ridge running along the wrinkle between two nanoparticles with diameters d separated by χ, follows a catenary-like profile (see Figure 5), with a deflection ζ (from the original ridge line) and a maximum deflection ζ 0 = ζ (0) that looks similar to a crumpled piece of paper, or to a hanging chain à la Robert Hooke, with uniform density or to an inverted arch.

The catenary-like profile was used by Lobkosvky el al. [START_REF] Lobkovsky | Scaling properties of stretching ridges in a crumpled elastic sheet[END_REF] to find the scaling energy properties of a crumpled elastic sheet. This approach allowed an analytical treatment of the wrinkling graphene. In particular, an equilibrium equation has been derived (see below) and an exact expression of the deflection ζ has been proposed to describe characteristic features of wrinkling graphene.

In addition, beyond deformation processes, geometrical characteristics of the wrinkling and delamination can be used to probe the adhesion energy of graphene sheets [START_REF] Koenig | Ultrastrong adhesion of graphene membranes[END_REF], or other mechanical properties of thin sheets [START_REF] Stafford | A buckling-based metrology for measuring the elastic moduli of polymeric thin films[END_REF]. Therefore, it is important to know whether or not the graphene sheet can conform to the subtrate, and to build a theoretical model to predict how a suspended graphene sheet deforms in response to the interplay between stretching and bending forces. As a matter of fact, in physics, the catenary form appears naturally in a material called graphene. Graphene is a one-atom-thick sheet composed of carbon-atoms arranged in honeycomb structure made out of hexagons, and can be thought as benzene rings stripped out from their hydrogen atoms as seen in Figure 4.

Almost 70 years ago, this crystal was manipulated by Wallace to get a better understanding of the electronic and chemical properties of stacks of graphene layers weakly coupled by Van der Waals forces, known as Graphite. Indeed, when a pencil is pressed against a piece of paper, graphene stacks are ac- tually being produced, and somewhere between these stacks, there could be individual graphene layers.

However, despite the presumed production of graphene at every use of a pencil on a sheet of paper, it was only extracted 440 years after its invention, by the two scientists of Manchester University: Andrei Geim and Kosty Novoselov, who got a Nobel prize for it in 2010. The method they used was to repeatedly stick and peel back the scotch tape off of a graphite layer. This made a huge revolution in two-dimensional physics as no one expected graphene to actually exist in the free state.

Carbon is an indispensable material for life and the basis of the background of all organic chemistry.

Consequently, like all carbon-based systems, graphene has shown tremendous utility in fundamental studies, industrial and electronic applications, ranging from nanoelectronics to biology, thanks to its notable electronic, mechanical and chemical properties, [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF]. Furthermore, graphene has opened new possibilities for the storage of more lithium ions which leads to the increase of the battery's capacity [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF].

It is undeniable that thin membranes strongly react to external forces and complex geometrical constraints. As graphene is among the thinnest and most rigid known membranes, and because of its extremely low bending rigidity, it often tends to wrinkle [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]. In fact, one way to grow continuous largesize layers of graphene is the chemical vapor deposition (CVD). But in order to be able to manipulate the CVD-grown graphene, it has to be transferred to other substrates, mainly a silicium substrate. During this transfer, many wrinkles can be induced because of the different thermal expansion of the substrates besides the transfer process itself and the Van der Waals type interactions created between graphene and its underlying substrate. On one hand, since these formed ripples are mainly related to thermal fluctuations, they are referred to as "intrinsic wrinkles". On the other hand, the two dimensional structure of graphene is also affected by other factors which are not yet fully understood, but usually considered to be a result of compressive stresses or stretching and bending forces. The resulted wrinkles in this case are referred to as "extrinsic wrinkles". We refer the reader to [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] for detailed physical study .

In particular, the wrinkling formation in graphene has been highly studied by physicists in the last decade, as it modifies the two-dimensional structure from total planarity to wavy sheet, which can have a remarkable effect on the physical properties of graphene, such as carrier mobility, thermal conductivity, optical transmittance and wettability [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]. This deformation also affects the electronic properties of graphene, this can easily be noticed when it is bent to a certain curvature, a band gap is generated and that locally curved portion is semiconducting while the flat graphene is highly conductive [211].

Since the morphology of graphene strongly influences its physical characteristics, random wrinkling formation leads to unpredictable graphene properties [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]. This random change must be avoided in nanoelectronic devices in which precise control is key. For this purpose, theoretical models need to be built in order to predict graphene's response to different kinds of deformations mainly stretching and bending forces.

In 2012, Yamamoto et al.( [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]) provided a report on experimental observations of the formation of wrinkles in a graphene layer supported on Si0 2 substrates with randomly placed topographic perturbations produced by Si0 2 nanoparticles with a dispersion density ρ np , [START_REF] Yamamoto | Two-dimensional crystals on substrates: Morphology and chemical reactivity[END_REF]. This study showed that ρ np has a direct effect on the wrinkling of graphene. More precisely, at first (at ρ np = 11µm -2 ), graphene adheres conformally to the substrate ( [START_REF] Khalfi | Period steady-state identification for a nonlinear front evolution equation using genetic algorithms[END_REF], [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] and [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF]) and as the nanoparticle's density increases (at

ρ np = 22µm -2
), the wrinkles connecting the protrusions proliferate, and finally a network of wrinkles extends over the entire sample.

These observations indicate that there exists a critical distance χ c between two nano-particles, beyond which we lose the caternary-like profile of the wrinkle and a total delamination occurs.

The determination of χ c was the main aim of many works starting with Lobkovsky et al. in [START_REF] Lobkovsky | Scaling properties of stretching ridges in a crumpled elastic sheet[END_REF] in which the authors provided a continuum elastic model seen below in Figure 5 for a graphene mono-layer deposited on a silica substrate decorated with silica nano-particles. They presumed that each formed wrinkle between two nano-particles with diameter d separated by a distance χ, follows a Caternarylike profile. The wrinkle profile is then parametrised by a deflection ζ (x) and a maximum deflection This thesis is divided into three parts. The first part is devoted to the investigation of the reasons behind the discrepancy between the experimental and theoretical results. The second part of the thesis is composed of one rich chapter in which two partial differential equations are studied. These equations are used to analyze the instabilities which deal with the steps in the surfaces. We note that the presence of the stairs in a surface will have the same effect as the presence of a difference in the size of silica nanoparticles.

ζ 0 = ζ (0), 0 < ζ 0 ≤ d.
The third part presents the mathematical study and numerical simulations of quasilinear equations with singular non-linearities and data measure.

Outlines of the thesis

More in details, this thesis is structured as follows:

Chapter 1: Improved GWO algorithm for the determination of the critical wrinkle length of Graphene.

In this chapter, an effort is made to provide a numerical algorithm that determines the critical ridge length χ c below which wrinkling is induced in a graphene layer put on a silica substrate decorated with silica nanoparticles that have the same size, (i.e. for a given nanoparticle size the graphene membrane wrinkles if the distance between two nanoparticles is not larger than χ c ) . Indeed, as mentioned before, the maximum length of a wrinkle will be determined under the constraint ζ (0) = d, where ζ is the minimum of the following energy functional

             J (ζ ) = ε 1 (θ ) |x|< χ 2 ζ (ζ x ) 4 + ε 2 (θ ) |x|< χ 2 ζ -1 + 2Γχd tan θ 2 subject to ζ (± χ 2 ) = 0. (0.5)
in which ε 1 , ε 2 , θ and Γ are physical parameters to be detailed in the chapter.

The functional defined above can be rewritten using a change of variable v = ζ 

             J (v) = 4 5 4 ε 1 (θ ) |x|< χ 2 (v x ) 4 + ε 2 (θ ) |x|< χ 2 v -4 5 + 2Γχd tan θ 2 subject to v(± χ 2 ) = 0. (0.6) 
The numerical algorithm is used to minimize the following cost function F , and the optimization problem is then expressed as follows:

     Minimize F (χ, θ ) =| v(0) -d 5/4 | 2 ,
where v is the minimum of (0.6).

(0.7)

The algorithm we will use is the Grey Wolf Optimizer (GWO) which is a swarm-based-meta-heuristic based on the social leadership and hunting behavior of grey wolves in nature (Canis-Lupus), mathematically modeled by Mirjalili et al. in [START_REF] Mirjalili | Grey wolf optimizer[END_REF]. The obtained results show that the proposed approach provides good results in comparison with the results in the literature. However, the observed maximum wrinkle length is still underestimated.

This work is published in Annals of the University of Craiova, Mathematics and Computer Science Series [START_REF] Taourirte | Improved GWO algorithm for the determination of the critical wrinkle length of graphene[END_REF].

At this stage, a question arises: What may be the causes behind this discrepancy between the theory and the experiments? In fact, Yamamoto mentioned in his paper [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] that the two silica nano-particles don't necessarily have the same diameter which means that the wrinkle won't necessarily sag in the middle. We followed this path, and studied the case where the two nanoparticles have different sizes in the following chapter.

Chapter 2: Analytical results for the wrinkling of graphene on nanoparticles with different diameters.

Regarding the aforementioned points, the purpose of this chapter is to present a mathematical study of the wrinkling of graphene between two nanoparticles with different heights d and dδ , for δ > 0 and δ d << 1, separated by a distance χ δ , by examining the associated elastic energy which is different from the energy (0.5) since the size's difference δ has to be taken into account.

In this case, the problem is to minimize the energy J defined by :

                 J (ζ ) = ε 1 χ δ + 2 χ δ - 2 ζ (ζ x ) 4 + ε 2 χ δ + 2 χ δ - 2 ζ -1 + 2Γχ δ d - δ 2 tan θ 2 subject to ζ χ δ - 2 = 0 and ζ χ δ + 2 = δ , (0.8) 
in which ε 1 , ε 2 , Γ and θ are physical parameters that are detailed in the chapter, and χ δ -, χ δ + are to be determined later on, where χ δ -< 0 and χ δ + > 0. We confirm that the wrinkle sags asymmetrically toward the nanoparticle of smaller height. However, the maximum wrinkle length in this case is lower than the maximum wrinkle length obtained when the two nanoparticles have the same size. We may then conclude that we can't expect to theoretically attain the observed maximum length of 200 nm, since this difference may be simply due to the fact that physically, the substrate is almost never flat because of the impurities at its surface, or because it might be a vicinal surface composed of a succession of terraces separated by steps. Because of these steps, even if the nanoparticles have the same size, the height of the step will be the difference between the nanoparticles. This leads us to the next chapter in which we re-examine generalized singular equations to discuss the coarsening of growing interfaces.

This work is submitted to the Journal Surface Science.

Chapter 3: An obstacle problem for a graphene wrinkle model-type.

In this chapter we present a modified analytical approach to study a class of equations of the graphene model-type. In particular, we shall be interested in an algorithm for solving this class of problems which can be formulated as an obstacle problem. The present chapter is motivated by the desire to find an approximate numerical solution describing the equilibrium configuration of out of plane deformation of the graphene membrane (under consideration here). As we have seen in Chapter 2, from the mathematical point of view, the energy of the deformed graphene may suffer from the GAP phenomenon. So, an important question is to develop an algorithm to solve the physical problem. The idea is to transform the wrinkling of graphene problem into an obstacle problem which enables to compute the energy and the graphene deflection simultaneously. The optimization problem writes:

Let p > 1 and 1 < γ < 2p-1 p-1 ,            Minimize J (v) = 1 p 1 -1 | v x | p + 1 γ -1 1 -1 v 1-γ , subject to v(±1) = 0 and v(0) = d > 0.
(0.9)

Minimizing this energy leads to a one-dimensional singular problem involving the p-Laplacian or the p-Laplace operator written as ∆ p v := |v x | p-2 v x x , and suffering from a singular non-linearity and a Dirac mass at the origin. We will show that the existence of a minimum for (0.9) in a suitable space K that we will introduce using the sub-solution of the equation and the first eigenfunction of the p-Laplacian, depends on the existence of a value denoted d * beyond which the minimum exists. Finally, numerical investigations are carried out to determine the profile of the minimum.

This work is submitted to Mathematical Modeling and Computing.

Chapter 4: Instabilities and scaling properties in certain one-dimensional singular interfacial equation.

In the first section of this chapter, we re-examine a generalized singular equation to discuss the coarsening of growing interfaces, in the presence of Ehrlich-Schwoebel-Villain barrier that induces a pyramidal or mound-type structure without slope selection. The main goal of this part is the prediction and control of these surfaces. In particular, we will study the one-dimentional dynamics of a MBE growth in which the mounds increase in both height and lateral size. The continuous interfacial height in onedimensional case , is found to obey the following general phenomenological evolution equation [START_REF] Rost | Unstable epitaxy on vicinal surfaces[END_REF],

∂ t h = -a∂ x   ∂ x h 1 + |∂ x h| 2 n   -b∂ 4 x h, (0.10) 
where a and b are physical positive constants and n 1. The unknown smooth function h measures the film thickness above a substrate point x and at time t. The purpose of this section is to report an analytical justification of solutions to the model, which predict the coarsening process. In fact, we are mainly concerned with stationary solutions, which are successfully used to describe the major features of the process of coarsening in a wide class of surface growth phenomena.

The second section of this chapter is devoted to the investigation of the similarity solutions of the generalized phenomenological model

∂ t h = -∂ x a (∂ x h) 1-2ν + b∂ xxx h , (0.11) 
which is proposed for ν ≥ 1, to discuss the coarsening of growing interfaces. The resulting similarity solutions are shown to have a periodic regime for any ν > 1 2 . Our contribution provides a rigorous mathematical justification for the existence of spacial periodic similarity solutions to the singular interfacial equation and exhibits geometrical properties of the scaling functions. The present work provides support for solutions with diverging ∂ xx h at points where ∂ x h = 0 for ν ≥ 1.

The first section of this chapter is published in the journal Physica Scripta [START_REF] Bognár | Instabilities in certain one-dimensional singular interfacial equation[END_REF] and the second section is in preparation to be submitted.

Chapter 5: On singular quasilinear elliptic equations with data measures.

In this chapter, we restrict our attention to the study of a class of a quasilinear elliptic problem with a singular non-linearity and data measure namely

(P λ )                -∆u = a(x) u γ + b(x)|∇u| p + λ f in Ω, u > 0 in Ω, u = 0 on ∂ Ω.
Ω is an open bounded subset of R N for N ≥ 2, with smooth boundary ∂ Ω, f : Ω → [0, +∞[ is a given finite nonnegative Radon measure, γ > 0, λ > 0, and a and b are nonnegative functions in L 1 (Ω). We start by identifying the necessary conditions on the data in order to get existence of weak solutions in (P λ ). Then, using the isoperimetric inequality, we show the existence of solutions for the non-singular sublinear problem and the singular sublinear problem, for every nonnegative Radon measure depending on the value of γ : If 0 < γ ≤ 1 and b ∈ L N+η (Ω), η > 0, then for all finite measure f and λ ∈ R, the problem (P λ ) has a solution u in W 1,q 0 (Ω) for every 1

≤ q < N N -1 . Otherwise, if γ > 1 and b ∈ L N+η (Ω),
the problem (P λ ) has a solution u in W 1,q loc (Ω) for every 1 ≤ q < N N -1 and T k (u)

γ+1 2 ∈ H 1 0 (Ω),
where

T k (u) represents the truncated function of u.
This work is accepted in the journal Advances in Nonlinear Analysis.

Chapter 6: Mathematical Analysis of a quasilinear elliptic equation with singular non-linearity.

In this chapter, we focus on the mathematical study of the following equation:

(Q)      -∆u + |∇u| 2 = u -γ in Ω, u = 0 on ∂ Ω.
Using the Yosida approximation and very interesting techniques, we show the existence of a solution

u ∈ W 2,p loc (Ω), for all p ∈ [1, +∞[.
Furthermore, we prove that u γ+1 ∈ W 1,q 0 (Ω), for all 1 ≤ q ≤ N N-1 and e -γ+1 2 u ∈ H 1 0 (Ω).

Chapter 7: On the Existence of Global Weak Solutions to a Generalized Keller Segel Model with Growth and Nonlinear Signal Production.

In this last chapter, the proposed model is a modification of the classical Keller Segel model and its subsequent developments which, in many cases, have been developed to obtain models that prevent the non-physical blow up of solutions. We are mainly concerned with the global existence in L 2 (Ω) of weak global solutions to a class of parabolic-elliptic chemotaxis systems encompassing the prototype:

u t -.( u + χu v) = f (u) , x ∈ Ω,t > 0, -∆v + v = u γ , x ∈ Ω,t > 0,
with non-negative initial condition for u and no flux boundary conditions in a bounded domain

Ω ⊂ R n (n 2), where χ > 0, 0 < γ < 1 and f ∈ C 1 (R) satisfying, f (0) = 0 and f (s) 0, s 0.
It is shown under those conditions that the problem admits weak solutions in L 2 (Ω). In order to develop the mathematical analysis of our model, we define an approximating scheme with more regular initial conditions, then we make some estimates that will allow us to prove that the solution of the approximated system converge to the solution of our problem.

This work is published in Annals of the University of Craiova, Mathematics and Computer Science

Series [START_REF] Lefraich | On the existence of global weak solutions to a generalized Keller Segel model with arbitrary growth and nonlinear signal production[END_REF]. 

Introduction

The one dimensional energy model derived in [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] states that the actual wrinkle profile is the minimum of an energy obtained by summing both bending and stretching energies, which will be detailed in the next section.

In fact, Yamamoto and co-authors claim that this minimum has an exact expression given by:

ζ (x) = 27ε 2 4ε 1 1 6 χ 2 -|x| 2 3 , (1.1) 
where ε i for i = 1, 2 are physical constants.

From this solution, many characteristics were deduced, such as the critical length χ c of the wrinkle below which wrinkling is induced, and the pseudo-magnetic field created in the middle of the wrinkle which is of order 10 T for χ = 100nm [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]. However the given solution suffers from slope discontinuity at x = 0, as mentioned by Yamamoto et al., which means it may not follow a Catenary-like profile, and the expression of this proposed minimizer could be incorrect and as a matter of a fact leads to imprecise approximations of the desired morphological characteristics of the wrinkling.

Furthermore, it is not verified if this singular solution is the minimizer of the energy, nor that the associated ridge length is the critical distance between the two nanoparticles, knowing that this latter is in rough agreement with the observed maximum wrinkle length of approximately 200nm.

For all these reasons and in order to improve the results, Guedda et al. [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF] presented a mathematical study of the same problem based on the phase-plane analysis, and identified a C 1 -smooth minimizer deflection of the elastic energy, in terms of the inverse of an incomplete normalized beta function which kind of corrects the singularity from which Yamamoto's solution suffers. It is stated that Graphene is deflected in a smooth manner, and the maximum wrinkle length is explicitly given by:

χ c = 2 C d 3 2 β 3 2 , 3 4 , (1.2) 
where C is a physical constant, d is the nanoparticle's size and β is the complete beta function.

This obtained critical wrinkle length using this smooth deflection improved compared to the previous results, however is still underestimated ( [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]).

On the other hand, Zhu and Li [211] presented a systematic molecular dynamics study of the wrinkling of graphene put on a silica substrate, and the critical wrinkle length is determined as a second degree polynomial which depends only on the nanoparticle's size d: Our initial aim in this chapter is not to introduce another physical study of the wrinkling of graphene.

χ c = 2.64d 2 + 0.96d + 9.
Rather, an effort is made to provide a numerical algorithm that determines the critical ridge length below which wrinkling is induced, and which can be used in a more general context. The algorithm we'll be using is the Grey Wolf Optimizer (GWO) which is a swarm-based meta-heuristic based on the social leadership and hunting behavior of grey wolves in nature (Canis Lupus), mathematically modeled by Mirjalili et al. in [START_REF] Mirjalili | Grey wolf optimizer[END_REF]. The obtained results show that the proposed approach provides us with a good wrinkle length in comparison with what's found in previous works.

This chapter is organised as follows: in the next section, we present in details the physical model on which we'll be basing our numerical analysis. The associated Euler-Lagrange equation is presented. The third section is dedicated to the numerical simulation using the classical method that turns out to be very hard to tackle, which will be our motivation behind using the GWO algorithm that will be described in the first subsection of the fourth section and implemented in the second one. Finally, we draw a conclusion from the showcased results.

Formulation of the Physical Problem of the Wrinkled Graphene in

Terms of Optimization

The model on which we will base our numerical analysis on is the one derived by Yamamoto et al., In the deformed region, or the x projection of the wrinkling region (i.e. |x| < χ 2 ), the elastic energy is expressed as a summation of the stretching energy given by:

E s = E 2D 2 |x|< χ 2 ω(x)ε 2 x dx, (1.4) 
and the bending energy given by:

E b = k 2 |x|< χ 2 ω(x)C 2 0 (x)dx, (1.5) 
where E 2D ≈ 2.12 × 10 3 ev/nm 2 is the tensile rigidity

[211], k ≈ 1 ev is the bending rigidity [103], ω
is the width of the deformed region, ε x is the stretching strain which is supposed to be irrelevant in the y-direction, C 0 is the curvature that describes the profile of the ridge along the transverse direction, and θ is the dihedral angle which is assumed to be independant of x as validated in [START_REF] Lobkovsky | Scaling properties of stretching ridges in a crumpled elastic sheet[END_REF].

Now, using the geometrical model given in Figure 1.1, we obtain:

sin θ 2 = C -1 0 (x) ζ (x) +C -1 0 (x) , (1.6) 
which implies that

C 0 = ζ (x) 1 sin( θ 2 ) -1 -1
.

(1.7)

Furthermore, we have

ω(x) = (π -θ )C -1 0 (x), (1.8) 
and

ε x = [1 + (∂ x ζ ) 2 ] 1 2 -1] ≈ (∂ x ζ ) 2 2 . (1.9)
As a consequence, by replacing each term in (1.4) and (1.5) by its corresponding expression, the elastic energy is written as:

E(ζ ) = ε 1 (θ ) |x|< χ 2 ζ (∂ x ζ ) 4 dx + ε 2 (θ ) |x|< χ 2 ζ -1 dx, (1.10) 
where

       ε 1 (θ ) = E 2D 8 (π -θ ) 1 sin( θ 2 ) -1 -1 , ε 2 (θ ) = k 2 (π -θ ) 1 sin( θ 2 ) -1 . (1.11)
On the other hand, the adhesion energy to the substrate is proportional to the area of the substrate uncovered by the membrane: :

E a = Γ |x|< χ 2 W dx, (1.12) 
in which W is the base of the wrinkle profile as depicted in Figure 1.1.

Again, from the geometrical model, we have

tan θ 2 = W 2d (1.13)
hence (1.12) becomes

E a = 2Γχ d tan θ 2 (1.14)
where Γ is the graphene-SiO 2 adhesion energy per area.

Furthermore, we have a bending and adhesion energies at the foot of the wrinkle, i.e. at the point where graphene touches the substrate. They are given by:

E b = χ Γ k 2 1 2 (π -θ ) (1.15)
and

E a = χ (2 Γ χ) 1 2 tan π -θ 4 (1.16)
However, these two energies turn out to be negligible [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF].

Finally, the expression of the total energy is given as the sum of all these energies:

J (ζ ) = E(ζ ) + E a + E a + E b . (1.17)
As mentioned in the introduction, the authors in [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] claim that (1.1) is the exact expression of the minimizer of the total energy (1.17). This latter led to a critical wrinkle length given by:

χ c = d 3 2 64E 2D 27k 1 4 1 sin( θ 2 ) -1 -1 2 (1.18)
However the given solution suffers from slope discontinuity at x = 0, which means it doesn't necessarily follow a Catenary-like profile and then the expression (1.18) may be not correct.

On the other hand, in [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF], Guedda et al. provided an improved estimate of the critical wrinkle length given by:

χ c = d 3 2 3E 2D 4k 1 4 1 sin( θ 2 ) -1 -1 2 χ, (1.19) 
in which χ is the inverse of an incomplete normalized beta function that corrects the singularity from which Yamamoto's solution suffers. Using this minimizer instead of (1.1) led to better results, however still not sufficiently close to the observed length which attains 200 nm.

It is worth mentioning that in the previous works, the dihedral angle θ depicted in Figure 1.1 is usually assumed to vary arbitrarily, which is physically not very accurate since the optimal graphene shape we obtain must have a critical angle that minimizes the total energy (1.17), which becomes J (ζ , θ ). For this aim, Guedda et al. injected the expression of the critical wrinkle length given by (1.19) in the expression of the total energy (1.17). However, the expression of the new total energy made the minimization problem impossible to solve analytically. Therefore, for any analytical progress the critical opened angle which minimizes the new total energy will be evaluated in two opposite regimes depending on whether C eq d >> 1 (the strong adhesion limit) or C eq d << 1 (the weak adhesion limit). For intermediate regimes, the opened angle can only be determined numerically.

In this chapter, we hope to provide a numerical investigation that allows us to identify the critical wrinkle length associated to the critical dihedral angle θ c that minimizes the energy.

First of all, we set a well posed mathematical formulation by adding a set of constraints. The problem is to minimize the energy J defined by :

             J (ζ ) = ε 1 (θ ) |x|< χ 2 ζ (ζ x ) 4 + ε 2 (θ ) |x|< χ 2 ζ -1 + 2Γχd tan θ 2 subject to ζ (± χ 2 ) = 0.
(1.20)

The functional defined above can be rewritten using a change of variable v = ζ 5 4 :

             J (v) = 4 5 4 ε 1 (θ ) |x|< χ 2 (v x ) 4 + ε 2 (θ ) |x|< χ 2 v -4 5 + 2Γχd tan θ 2 subject to v(± χ 2 ) = 0.
(1.21)

One should proceed carefully when tackling this minimization problem since the functional J is a sum of two opposing terms. Finding a minimum translates to finding a balance between the competing integrals.

To illustrate this we consider 4 is almost minimal but the other integral is actually divergent. Now, let χ be fixed.

ζ (x) = (1 -|x|), the integral |x|< χ 2 ζ (ζ x )
We start by insuring the existence of a suitable minimum for (2.22).

Theorem 1

The functional J admits a local minimum v in K that satisfies the associated Euler-lagrange equation:

     -ε 1 (θ )(v 3 x ) x = 5 3 4 4 ε 2 (θ )v -9 5 D (] -χ 2 , χ 2 [) v(± χ 2 ) = 0, (1.22) 
where:

K = v ∈ W 1,4 loc (] - χ 2 , χ 2 
[)/v -4 5 ∈ L 1 (] - χ 2 , χ 2 
[) and v

6 5 ∈ W 1,4 0 (] - χ 2 , χ 2 
[) .

Proof.

Let us consider the functional :

Φ : L 2 (] -χ 2 , χ 2 [) → R v → Φ(v) =      J (v) v ∈ K +∞ if not (1.23)
In order to prove that Φ admits a local minimum in the non-empty subset, we will proceed by the direct method.

First, if we let u th = χ 2 -|x| belongs to K.

Furthermore, the subset V = {Φ(v)/ v ∈ K} is nonempty and bounded from below. Indeed, we have

v < v 0 , where v 0 = max x∈]-χ 2 , χ 2 [ v(x). Hence |x|< χ 2 v -4 5 > χ v 0 -4 5 . (1.24)
Using the Jensen's inequality for the first integral in (2.22), we obtain

1 χ |x|< χ 2 (v x ) 4 dx = 2 χ χ 2 0 (v x ) 4 dx ≥ 2 χ 4 χ 2 0 (v 0x ) dx 4 ≥ 2 4 χ -4 v χ 2 -v 0 4 ≥ 2 4 χ -4 v 0 4 .
which implies

|x|< χ 2 (v x ) 4 ≥ 2 4 χ -3 v 0 4 , ∀χ > 0. (1.25) 
i.e. we have

Φ(v) ≥ 4 5 4 ε 1 (θ )2 4 χ -3 v 0 4 + ε 2 (θ )χ v 0 -4 5 + 2Γχd tan θ 2 .
(1.26)

A simple computing of the minimum of the right term in equation (1.26) leads to

Φ(v) ≥ C χ 1 3 . (1.27)
We can then take a minimizing sequence v n i.e. such that

Φ(v n ) → in f v∈K Φ(v).
Hence, for all ε > 0, there exists η 0 > 0, such that for all η > η 0 :

L 2 ≤ J (v n ) ≤ 3L 2 , L := inf v∈K J (v).
(1.28)

Consequently:

χ 2 -χ 2 | v nx | 4 dx ≤ 4 3L 2 - χ 2 -χ 2 v n -4 5 
.

(1.29)

This means that v n is bounded in W 1,4 0 (] -χ 2 , χ 2 [).
We then pick a subsequence, still denoted v n that converges to v weakly in W 1,4 0 (]

-χ 2 , χ 2 [), strongly in L 4 (] -χ 2 , χ 2 [) and v n (x) -→ v(x) a.e in (] -χ 2 , χ 2 [) up to subsequences.
Since W 1,p 0 is injected in the space of Holder continuous functions C α , it follows that v n converges uniformly to v in K, and we have lim

χ 2 0 | v nx | 4 dx ≥ χ 2 0 | v x | 4 dx.
(1.30)

Furthermore, we have

χ 2 0 | v x | 4 + χ 2 -ε 0 v -4 5 ≤ lim inf n→+∞ χ 2 0 | v nx | 4 +lim χ 2 -ε 0 v n - 4 5 
(1.31)

≤ lim inf n→+∞ χ 2 0 | v nx | 4 +lim χ 2 0 v n - 4 5 
(1.32)

≤ lim inf n→+∞ χ 2 0 | v nx | 4 + lim inf n→+∞ χ 2 0 v n - 4 5 
(1.33)

≤ lim inf n→+∞ J (v n ) := inf v∈K J (v).
(1.34)

Finally: L ≤ J (v) ≤ lim inf n→+∞ J(v n ) ≤ L, i.e J (v) = inf v∈K J (v). Furthermore, Let φ ∈ C ∞ c (]-1, 1[),
and ν > 0 sufficiently small such that:

∀t ∈] -ν, ν[ v + tφ ∈ K.
We have:

∂ ∂t (J (v + tφ )) t=0 = 1 -1 4 5 5 4 ε 1 v 3 x ∂ ∂t (v x + tφ x ) - 4 5 ε 2 v -9 5 ∂ ∂t (v + tφ ) (1.35) = 1 -1 4 5 5 4 ε 1 v 3 x φ x - 1 -1 4 5 ε 2 v -9 5 φ . (1.36)
Since v is a minimum, we obtain that equation (1.22) is satisfied in the sense of distributions.

Classical Optimization Approaches and Algorithms

As mentioned in [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF], a wrinkle is geometrically suppressed if v(0) >= d 5/4 , hence the maximum length of a wrinkle will be determined under the condition v(0

) = d 5/4 . Note that v(0) is in fact v χ,θ (0) 
denoted like that for simplification. We express the optimization problem as follows:

     Minimize F (χ, θ ) =| v(0) -d 5/4 | 2
where v is the unique solution to (1.22).

(1.37)

The Lagrangian is then given by:

L (v, φ , θ , χ) = F (χ, θ ) + ε 1 (θ ) |x|< χ 2 v 3 x φ x dx - 5 3 4 4 ε 2 (θ ) |x|< χ 2 v - 9 
5 φ dx. (1.38)
Using the rapid derivation [START_REF] Céa | Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût[END_REF], we obtain:

(i)--ε 1 (θ )((v x ) 3 ) x = 5 3 4 4 ε 2 (θ ) v - 9 5 . 
(ii)--

4 4 5 3 3ε 1 (θ )(v 2 x φ x ) x + 9 5 ε 2 (θ )v - 14 
5 φ = -2(v(0) -d 5/4 ) δ 0
, where δ 0 is a dirac mass at the origin.

(iii)-F (θ ) = - ∂ ∂ θ ε 1 (θ ) |x|< χ 2 v 3 x φ x + 5 3 4 4 ∂ ∂ θ ε 2 (θ ) |x|< χ 2 v -9 5 φ . (iiii)-F (χ) = -1 2 4 4 5 3 ε 1 (θ )[(v x ( χ 2 )) 3 φ x ( χ 2 ) + (v x ( -χ 2 )) 3 φ x ( -χ 2 )].
The first equation can be solved using the regularized problem as one can see later on, but the second one is very hard to tackle if not impossible due to the degeneracy of its first term, which is our motivation behind using meta-heuristics. The main steps of this classical method using the finite elements are described in Algorithm 1 , where V h is the P 1 finite element space, χ the distance between the two nanoparticles of diameters d, ε the tolerance, α, β and η are the steps of the gradient descent.

Indeed, unlike the classial methods, meta-heuristics have derivation-free mechanisms: the selected solution(s) to start the optimization process with are randomly chosen, which is key in meta-heuristics.

Furthermore, it is not necessary to calculate the derivatives of the search spaces to find the optimum, which makes these methods very suitable for our problem although much slower than the classical methods. Due to the stochastic nature of meta-heuristics, these algorithms are excellent in avoiding local optima compared to classical optimization techniques. This makes them capable of looking for the optimum in the entire search space.

It is worth mentioning that the No Free Lunch (NFL) theorem [START_REF] Wolpert | No free lunch theorems for optimization[END_REF], has logically proved that there is no such thing as a perfect meta-heuristic, which means it might seem that one meta-heuristic is best-suited

Algorithm 1 Steps of the classical method while |v n -v n-1 | ≥ ε do • Solve for w n the equation below ∀ψ ∈ V h |x|< χ 2 w n x ψ x = |x|< χ 2 ε 1 (θ )((v n x ) 3 )ψ x - 5 3 4 4 ε 2 (θ )(v n ) - 9 
5 ψ.

• Update v n ← v n -α w n end while • Solve the equation below ∀h ∈ V h 4 4 5 3 3ε 1 (θ ) |x|< χ 2 ((v n x ) 2 )φ n x h x + 9 5 ε 2 (θ ) |x|< χ 2 (v n ) - 14 
5 φ n h = -2(v n (0) -d 5/4 )h(0).
• Solve the equation below:

Y n = - ∂ ∂ θ ε 1 (θ ) |x|< χ 2 v 3 x φ x + 5 3 4 4 ∂ ∂ θ ε 2 (θ ) |x|< χ 2 v -9 5 φ . • Update θ n ← θ n -ηY n
• Solve the equation below:

Z n = - 1 2 4 4 5 3 ε 1 (θ )[((v n x ) 3 ( χ 2 ))φ n x ( χ 2 ) + ((v n x ) 3 ( -χ 2 
))φ n x ( -χ 2 )]. • Update χ n ← χ n -β Z n
for one problem but may show very poor efficiency on another problem, which makes this field of study highly active, as there are always new proposed algorithms.

Some of the most well-known meta-heuristics, mainly inspired by optimization processes that occur in nature, and which are used in many works where the classical methods of Newton or fixed point type are not efficient as in [START_REF] Khalfi | Period steady-state identification for a nonlinear front evolution equation using genetic algorithms[END_REF], are: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant

Colony Optimization (ACO), Evolution Strategy, Marriage in Honey Bees optimization (MBO), Monkey search, Bee collecting Pollen Algorithm, Bird Mating optimizer, and finally the relatively recent algorithm Grey Wolf Optimizer (GWO) based on the social hierarchy of grey wolves. This latter has shown very high performance compared to the other known meta-heuristics, we refer the reader to ( [START_REF] Mirjalili | Grey wolf optimizer[END_REF], [START_REF] Mirjalili | How effective is the Grey Wolf optimizer in training multi-layer perceptrons[END_REF])

for detailed comparisons. In the next sections, the GWO algorithm is employed to minimize our cost function F , and its effectiveness for our problem is evaluated by comparing the results we obtain with those obtained in literature. The GWO is a swarm-based meta-heuristic based on the social leadership and hunting behavior of grey wolves in nature (Canis Lupus), mathematically modeled by [START_REF] Mirjalili | Grey wolf optimizer[END_REF]. The population of this algorithm is divided into four populations: alpha (α), beta (β ), delta (δ ) and omega (ω) (see Figure 1.2). Alpha is the first category, its members are not chosen by their strength or violence but by their intelligence and decision making capacity. Beta is the second category, they help the alphas make decisions and they take their places in case one of them is absent or sick. The third category is Delta, its members are scouts, sentinels and hunters. Scouts are responsible for warning the pack in case of danger. Sentinels are responsible for the safety of the pack and hunters are the ones who help the alphas and betas during the hunt. The last category of the pack is omega. Omega wolves have to execute all the orders of the dominant wolves. The members of this class are usually the elders and the caretakers.

Alpha, beta and delta are stored as the three best solutions and the other wolves (omega) are forced to update their positions around them as follows:

     - → D =| - → C . -→ X p (t) - - → X (t) | - → X (t + 1) = -→ X p (t) - - → A . - → D (1.39)
Where t indicates the current iteration, Over the course of iterations, the first three fittest solutions we obtain so far are considered as α, β and δ respectively, which guide the optimization processus (the hunting) and are assumed to take the position of the optimum (the prey). The rest of the wolves are considered as ω and are required to encircle α, β and δ in order to find better results at each iteration, by following these three equations which calculate the approximate distance between the current solution and alpha, beta, and delta respectively:

- → A = 2a. - → r 1 -a, - → C = 2. - → r 2 , -→ X p
           - → D α = | -→ C 1 . -→ X α - - → X | - → D β = | -→ C 1 . -→ X β - - → X | - → D δ = | -→ C 1 . -→ X δ - - → X | (1.40) -→ C 1 , -→ C 2 and -→ C 3 are random vectors. -→ X α , -→ X β and
-→ X δ are the positions of alpha, beta and delta respectively and -→ X is the position of the current solution.

After calculating the three distances, the final position of the solution is given by:

- → X (t + 1) = - → X 1 + - → X 2 + - → X 3 3 , (1.41) 
where:

           - → X 1 = -→ X α - -→ A 1 . - → D α - → X 2 = -→ X β - -→ A 2 . - → D β - → X 3 = -→ X δ - -→ A 3 . - → D δ (1.42) -→ A 1 , -→ A 2 and
-→ A 3 are random vectors.

Application and Implementation

Our implementation generates a population of potential solutions (wolves), they take the form of the couple (χ, θ ). The fittest solution is considered as the alpha, and the second and third best solutions are considered as beta and delta respectively. The initial population is created in a random way based on the upper and lower bounds chosen for the variables χ and θ . Then we initialize the position and the score of each search agent, and we return back the search agents that go beyond the lower and upper bounds of the search space. Next, we compute the solution v that corresponds to every wolf in the population, and we deduce the minimizer of the cost function (3.2).

The GWO implemented in the context of this problem follows the guidelines:

• Fitness computation: The objective function is what is called the fitness in the algorithm. It is computed to estimate the quality of the obtained solution. In our case, in order to compute it, for each (χ, θ ), we need the value of v(0), where v is the solution of (1.22). For this purpose, we transform (1.22) into:

     -(| v x | 2 v x ) x = -ρ ε (| v |) D (] -χ 2 , χ 2 [) v(± χ 2 ) = 0, (1.43) 
where :

ρ ε (r) =      -ε -9 5 r + 9 4 ε -4 5 0 ≤ r < ε 5 4 r -4 5 r ≥ ε (1.44)
To determine the solution v, we use the finite elements as in Algorithm 1, and we solve the equation below , for every direction ψ in the P 1 finite elements space:

|x|< χ 2 w n x ψ x = |x|< χ 2 ε 1 (θ )((v n x ) 3 )ψ x - 5 3 4 4 ε 2 (θ )(v n ) -9
5 ψ and then we update the solution at each iteration :

v n+1 ← v n -α w n .
Finally, we determine v(0) and calculate the cost function.

• Selection: We select the first three best wolves to guide the optimization (hunting) and save them as α, β and δ .

• Update: We update the positions of the search agents according to the positions of each category, and the parameters a, A and C. Finally, the algorithm is terminated when the end criterion is satisfied. The final generated result is the position of the alpha which is assumed to be the optimum (χ c , θ c ), and the score of the alpha that is the value of the cost function at this optimum.

An enhanced GWO Search Algorithm and Results

Following the previous explanation of the implementation used in our program, the main steps of the GWO applied to the optimization problem (3.2) are given in Algorithm 2 which we implement for 40 search agents and 80 iterations.

Algorithm 2

The Grey Wolf Optimizer (GWO). 1: Initialize the input parameters for GWO, i.e the number of search agents, the dimension of the problem, maximum number of iterations, lower and upper bounds of the search spaces of the variables χ and θ , and the diameter d of the silica nanoparticle. 2: Initialize Alpha, Beta and Delta Position and Score. 3: Initialize the random positions of search agents. 4: Set iteration counter = 0. 5: While (t < MaxIter) or (stop criterion); 6: Return back the search agents that go beyond the lower and upper bounds of the search space. 7: Calculate the corresponding objective value for each wolf. 8: Select the first three best wolves and save them as α, β and δ . 9: Update the position of the rest of the population (the ω wolves) using (1.40) and (1.42). 10: Update the parameters a, A and C. 11: Go back to step (b) if the end criterion is not satisfied. 12: Return the position of α as the fittest optimum (χ c , θ c ).

We investigate the critical angle θ c in two different search spaces: the first one is the neighboring of 14 o and the second one is the neighboring of 35 o . Finally, for different diameters and each critical angle, we present the maximal wrinkle length χ c obtained by the given expressions ((1.3), (1.18) 

Conclusion

Using the Grey Wolf Optimizer algorithm, we were able to determine the critical length below which wrinkling is induced, i.e if the distance between the two nanoparticles exceeds this critical length, the caternary-like profile of the wrinkle is suppressed. Using this algorithm, we were also able to determine the critical dihedral angle θ c that minimizes our energy for different values of the nanoparticle's diameters. However, the observed maximum wrinkle length is still underestimated. This is actually kind of expected since our study does not include the possibilty of the two nanoparticles that might have different diameters, as mentioned by [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF], and hence the wrinkle won't have to sag in the middle, nor that the random distribution of the nanoparticles might cause that the interaction between ridges could influence the maximum wrinkle length and introduce some complicated boundary conditions, [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]. Last but not least, another possible cause behind the discrepancy between the obtained and the observed results is the other physical mechanisms such as the thermal fluctuations and the impurites that might exist on the substrate surface. This motivates the next chapter in which we treat the case when the nanoparticles have different diameters.

Chapter 2

Analytical results for the wrinkling of graphene on nanoparticles with different diameters.

Introduction

As mentioned before, one possible cause behind the discrepancy between the analytical and the observed results is that the two silica nanoparticles don't necessarily have the same size. Regarding the aforementioned point, our present purpose is to present a mathematical study of the wrinkling of graphene between two nanoparticles with different heights d and dδ , for δ > 0 and δ d 1, separated by a distance χ δ .

In particular, the aim is to determine the dependence of some graphene properties on the quantity δ . For example, the electronic property of the graphene in the middle. In [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF], the authors showed that the pseudomagnetic field has, in the middle of a wrinkle, a broad minimum on the order of 10 T (for χ = 100nm), while in [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] it is concluded that the middle of the wrinkled graphene may have a zero pseudomagnetic field. In fact, since the pseudomagnetic field varies linearly with the strain distribution along a wrinkle described by the deflection profile, the initial motivation of the present work concerns a mathematical analysis to investigate whether or not the first derivative of the profile vanishes at the middle.

The problem is to minimize the energy J defined by :

                 J (ζ ) = ε 1 χ δ + 2 χ δ - 2 ζ (ζ x ) 4 + ε 2 χ δ + 2 χ δ - 2 ζ -1 + 2Γχ δ d - δ 2 tan θ 2 subject to ζ χ δ - 2 = 0 and ζ χ δ + 2 = δ , (2.1) 
in which ε 1 , ε 2 , θ and Γ are the same as in the previous chapter, and χ δ -, χ δ + are to be determined. Note that χ δ -≤ 0 and χ δ + ≥ 0.

To help minimize (2.1), we observe that the boundary conditions do not introduce any change depending on ζ . Therefore, the wrinkling profile has to satisfy the similar equilibrium equation with appropriate boundary conditions:

             3(ζ x ) 4 + 12ζ (ζ x ) 2 ζ xx + λ 2 ζ -2 = 0, subject to ζ χ δ - 2 = 0 and ζ χ δ + 2 = δ , (2.2) 
where λ

= 4k E 2D 1 sin( θ 2 ) -1 .
Clearly, to determine the new critical length χ δ c one needs to be able to calculate the point

x δ := χ δ + 2 . The point χ δ - 2 coincides with χ 2
, which is calculated in [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF], and is given by

χ 2 = d 3 2 3E 2D 4k 1 4 1 sin( θ 2 ) -1 -1 2 β 3 2 , 3 4 , (2.3) 
in which β is the complete beta function.

Spacial localization of the maximal deflection

In this section, we show how to calculate explicitly x δ by providing the technical details of the analysis of the equilibrium equation (2.2) and derive an equation of deflection ζ .

As in [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF], we find that the wrinkling profile can be fully determined by solving the following equation

ζ 2 (ζ x ) 4 -Dζ = λ 2 3 , where D = ζ 0 (ζ x (0)) 4 - λ 2 3 ζ 0 -1 . (2.4)
The above equation is the Beltrami identity (1868 ) or Du Bois-Reymond equation (1879) associated to the energy J .

We will now investigate equation (2.4) for different values of the parameters ζ 0 and ζ x (0). Indeed, our aim is to determine the pairs (ζ 0 , ζ x (0)), 0 < ζ 0 ≤ d, for which the associated solution satisfies the boundary conditions and has the largest distance between nanoparticles. We will then solve the simplified equilibrium equation by using a phase-plane analysis. From (2.4), we have

ζ x ζ 1 4 λ 2 3 ζ -1 + D -1 4 = ±1. (2.5)
But since ζ is a function that strictly decreases on the interval [0, x δ ], we deduce

x 0 ζ 1 4 λ 2 3 ζ -1 + D -1 4 dζ = -x, ∀x ∈ [0, x δ ], (2.6) 
so that

ζ (x) ζ 0 s 1 4 λ 2 3 s -1 + D -1 4 ds = -x, ∀x ∈ [0, x δ ]. (2.7) 
In fact, according to the continuum model, there exists a real number x δ (ζ 0 ) > 0 such that the Beltrami equation (2.4) has a solution ζ ; (see [START_REF] Amann | Ordinary Differential Equations[END_REF]), and x δ is given by

x δ = ζ 0 δ s 1 4 λ 2 3 s -1 + D -1 4 
ds.

(2.8)

To obtain the maximal distance, D has to be D = -λ 2 3 ζ -1 0 , and then by using a change of variable, we have

x δ = ζ 3 2 0 λ 2 3 -1 4 1 ζ (x δ ) ζ 0 √ s (1 -s) 1 4 ds, (2.9) 
or equivalently

x δ = ζ 3 2 0 λ 2 3 -1 4 1 δ ζ 0 √ s (1 -s) 1 4
ds.

(2.10)

Consequently, χ δ (ζ 0 ) has the expression 0 . Hence, since the goal is to make the distance between nanoparticles as large as possible, one deduces that the maximum wrinkle length is given by

χ δ (ζ 0 ) = 2 ζ 3 2 0 λ 2 3 -1 4 1 δ ζ 0 √ s (1 -s)
χ δ c = 2 d 3 2 λ 2 3 -1 4 1 δ d √ s (1 -s) 1 4
ds.

(2.12)

For ease of comparison with the maximum wrinkle length obtained for nanoparticles having the same size, we have

χ δ c = 2 d 3 2 λ 2 3 -1 4 1 0 √ s (1 -s) 1 4 ds -2 d 3 2 λ 2 3 -1 4 δ d 0 √ s (1 -s) 1 4
ds, (2.13) so that

χ δ c = χ c -2 d 3 2 λ 2 3 -1 4 δ d 0 √ s (1 -s) 1 4
ds.

(2.14)

We note here that for δ d 1, χ δ c converges towards χ c as expected.

Next, since the nanoparticles have different heights, the wrinkle sags asymmetrically toward the nanoparticle of smaller height. This was expected by [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF], and we prove it in this section analytically. In fact, the middle part of the wrinkle will be translated toward the protrusion of height d by a distance to be determined shortly.

Indeed, the new center of the wrinkle is given by x 0 = χ δ c -χ c 4 , it then follows that

x 0 = χ c 4 - 1 2 d 3 2 λ 2 3 -1 4 δ d 0 √ s (1 -s) 1 4 ds - χ c 4 (2.15) = - 1 2 d 3 2 λ 2 3 -1 4 δ d 0 √ s (1 -s) 1 4
ds.

(2.16)

Note that x 0 is negative, which means that the wrinkle sags asymmetrically towards the nanoparticle of smaller height as expected.

For δ d sufficiently small, we have

δ d 0 √ s (1 -s) 1 4 ds ≈ √ s ds = 2 3 δ d 3 2
.

(2.17)

Hence

x 0 = - 1 2 d 3 2 λ 2 3 -1 4 2 3 δ d i.e. x 0 = - 1 3 λ 2 3 -1 4 δ 3 2 + o(δ 3 2 ). (2.19)
Finally, the middle part of the wrinkle will be translated towards the protrusion of height d by a distance

ε = 1 3 λ 2 3 -1 4 δ 3 2 + o(δ 3 
2 ).

(2.20)

Remark 2.2.1
The translation ε of the center does not depend on the diameter d but depends only on the difference δ , and scales as δ Finally, the critical length of the wrinkle for this case is given by:

χ δ c = x δ - χ c 2 = χ c 2 -d 3 2 λ 2 3 -1 4 δ d 0 √ s (1 -s) 1 4 ds = χ c - 2 3 
λ 2 3 -1 4 δ 3 2 + o(δ 3 
2 ).

Remark 2.2.2

Here, as in Remark 2.2.1, the difference between χ δ c and χ c scales as δ 3 2 . This confirms the significant effect of the quantity δ on the maximum wrinkle length between the two silica nanoparticles. However, the present result cannot be used alone to explain the discrepancy between the analytical results and the experimental results.

Asymptotic deflection in the limit k → 0

The aim of the present section is to analyse the instability properties that my result from the energy (2.1)

in the case where the bending rigidity is neglected. This question is motivated by the result of Yamamoto et al. [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] and Guedda et al. [START_REF] Guedda | Analytical results for the wrinkling of graphene on nanoparticles[END_REF]on the maximal wrinkle length. The authors showed that the maximal wrinkle length satisfies;

χ c ≈ d E 2D Γ 1 4 , (2.21) 
which is independent of the bending rigidity. In fact, here, we try to determine the effects of the bending rigidity on the maximal wrinkle length and on the regularity property of the deflection ζ . In this section, we will see that the limiting case k → 0 (i.e. when the graphene membrane is very thin), favors the structure with singularity rather than smooth deflection. Neglecting the two energies at equilibrium , and assuming that the elastic energy is dominated by stretching, the total energy to minimize becomes:

                 J (ζ ) = ε 1 χ δ + 2 χ δ - 2 ζ (ζ x ) 4 + 2Γχ δ d - δ 2 tan θ 2 , subject to ζ χ δ - 2 = 0 and ζ χ δ + 2 = δ . (2.22)
The associated equilibrium equation is given by: 

3(ζ x ) 4 + 12ζ (ζ x ) 2 ζ xx = 0. ( 2 
= δ 4 5 d -1 4 γ -1 4 5 , (2.28) 
hence

x δ = 4 5 d |γ c | -1 -δ 5 4 4 5 d -1 4 γ c -1 , (2.29) 
which can be rewritten as follows

x δ = 4 5 d - 1 
4 |γ c | -1 d 5 4 -δ 5 4 , (2.30) 
or

x δ = 4 5 d|γ c | -1 1 - δ d 5 4 
.

(2.31)

Consequently, the critical wrinkle length is given by:

χ δ c = 4 5 |γ c | -1 d 2 - δ d 5 4 
(2.32)

= χ c - 4 5 |γ c | -1 d δ d 5 4 , (2.33) 
and the solution on both sides of the center is given by:

ζ c ± (x) = 5 4 4 5 d 1 5 |γ c | 4 5 χ ± δ c 2 ± x 4 5 
.

(2.34)

Remark 2.3.1 Since χ δ c > 0, then δ d < 2 4 5 , or δ < 2 4 5 d. Remark 2.3.2
We note here that for δ d 1, χ δ c converges to χ c . Furthermore, this solution is singular at the origin, which is expected as the flat graphene bends in preference to stretching. Now, we aim to determine γ c . In other words, we want to find the configuration that is energetically favorable. For this purpose, we rewrite the total energy given by (2.22) as follows:

J (ζ ) = ε 1 x δ x 0 ζ (ζ x ) 4 + 2Γ(x δ -x 0 ) d - δ 2 tan θ 2 (2.35) = ε 1 D (x δ -x 0 ) + 2Γ d - δ 2 tan θ 2 (x δ -x 0 ) (2.36) = ε 1 d (γ) 4 (x δ -x 0 ) + 2Γ d - δ 2 tan θ 2 (x δ -x 0 ) (2.37) = (x δ -x 0 ) ε 1 d (γ) 4 + 2Γ d - δ 2 tan θ 2 (2.38) = ε 1 d (γ) 4 + 2Γ d - δ 2 tan θ 2 4 5 |γ| -1 d 2 - δ d 5 4 
(2.39)

= d 2 8 5 - 4 5 
δ d 5 4 ε 1 d (γ) 3 + 2Γ tan θ 2 |γ| -1 - δ d Γ tan θ 2 |γ| -1 (2.40) = d 2 8 5 - 4 5 
δ d 5 4 ε 1 d (γ) 3 + 2 - δ d Γ tan θ 2 |γ| -1 (2.41) 
Deriving this energy as a function of γ yields:

γ c =   2 -δ d Γ tan θ 2 3ε 1   1 4 
.

(2.42)

Hence, the favorable energy associated to this configuration is given by:

J (γ c ) = 4 3 -3 4 8 -1 4 d 2 8 5 - 4 5 δ d 5 4 (E 2D ) 1 4 (π -θ ) 1 4 1 sin( θ 2 ) -1 -1 4 2 - δ d Γ tan θ 2 3 4 , (2.43) 
and the critical length of the wrinkle of graphene becomes:

χ δ c = 4 5 3 1 4 2 - δ d -1 4 8 - 1 
4 d E 2D Γ 1 4 1 sin( θ 2 ) -1 -1 4 (π -θ ) 1 4 tan θ 2 -1 4 2 - δ d 5 4 
.

(2.44)

2.3.1

The asymptotic behavior of χ c when θ → 0 and θ → π

When the opened angle θ goes to 0, the critical length can be approximated by:

χ δ c = 4 5 3 1 4 2 - δ d -1 4 8 -1 4 π 1 4 d E 2D Γ 1 4 2 - δ d 5 4 
.

(2.45)

When θ goes to π, i.e for Θ = πθ small, we obtain the same expression as above up to a constant:

χ δ c = 1 5 3 1 4 2 - δ d -1 4 8 - 1 
4 d E 2D Γ 1 4 2 - δ d 5 4 
.

(2.46)

This explicitly shows that χ δ c scales as

χ δ c ≈ d E 2D Γ 1 4
,which agrees well with the previous results obtained for k = 0. The quotient E 2D Γ 1 4 can be seen as a reflection of the competition between the adhesion and the wrinkling of graphene on the substrate, i.e if E 2D Γ 1, then we may understand that the graphene layer moves on the substrate without much resistance, in other words, the substrate doesn't resist much to the wrinkling of graphene.

The pseudomagnetic field

In this section, we will use the continuum theory used in the symmetrical case to evaluate the pseudomagnetic field at the center of the wrinkle for the nanoparticles of different diameters.

According to [43] and [START_REF] Amann | Ordinary Differential Equations[END_REF], Yamamoto et al. argued that the pseudomagnetic field can be simply given by:

B e f f ≈ Φ 0 β aW (ζ x ) 2 , (2.47) 
where Φ 0 = 10 -15 W b is the flux quantum, β ≈ 2 the change in the hopping amplitude between the neighboring atomic sites due to the lattice deformation, a (=0.142 nm) the lattice constant, and W the typical wrinkle width.

As we don't have an expression for ζ x at the center of the wrinkle, we seek an approximation near the center, and since this latter x 0 given by (2. [START_REF] Barenblatt | Self-similar intermediate asymptotics for nonlinear degenerate parabolic free-boundary problems that occur in image processing[END_REF]) is in the neighboring of 0, we propose to determine an

approximation of ζ of the form ζ (x) = d(1 -ax α ).
The equilibrium equation (2.2) rewrites for x small,

d 2 (1 -ax α ) 2 .d 4 -αax α-1 4 + 4d 3 (1 -ax α ) 3 .d 2 -αax α-1 2 .d -αa(α -1)x α-2 + λ 2 3 = 0.
(2.48)

Then

d 6 (1 -ax α ) 2 -αax α-1 4 -4d 6 (1 -ax α ) 3 αax α-1 2 .d αa(α -1)x α-2 + λ 2 3 = 0, (2.49) 
hence

x 3α-4 a 3 α 4 ax α (1 -ax α ) 2 -4α -1 (α -1) (1 -ax α ) 3 = - λ 2 3 d -6 , (2.50) 
so that

x 3α-4 a 3 α 4 (1 -ax α ) 2 ax α -4 (α -1) α (1 -ax α ) = - λ 2 3 d -6 .
(2.51)

In the neighbouring of the center, we obtain the following approximation

x 3α-4 a 3 α 4 4(α -1) α ≈ - λ 2 3 d -6 . (2.52) 
Consequently, for α = 4 3 , we have:

a = d -2 λ 2 3 1 3 3 4 4 3
.

(2.53)

Finally ζ ≈ d -d -1 . λ 2 3 1 3 3 4 4 3 x 4 3 . (2.54)
Using the estimate , it follows, at x = x 0

B e f f ∼ 4 -2 3 λ 2 3 1 3 Φ 0 β aW δ d 2 .
(2.55)

Using similar numerical values for Φ 0 , β , a, W and d as above, we deduce for small θ

B e f f ∼ 34.44 ∆ θ ∼ 11 ∆ ∆ θ (2.56)
in which ∆ = δ d and ∆ θ = θ π . In particular, if ∆ = ∆ θ , the pseudomagnetic field is of order 11 T which agrees well with the findings of Yamamoto et al. [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF] for the case of nanoparticles having the same size.

Occurence of the Lavrentiev phenomenon

A brief introduction

Besides the wrinkling graphene, we briefly discuss the LGP phenomenon and Tonelli set. Firstly, we give a brief history of the famous gap phenomenon for one dimensional minimizer of integrals (or energies) having typically the form Lagrangian function L = L (x, u, q) is assumed to satisfy the (standard) Tonelli conditions (1923) (see [START_REF] Tonelli | Fondamenti di Calcolo delle Variazioni, Vols. I and II[END_REF]).

E (ζ ) = b a L (x, ζ , ∂ x ζ )dx, ( 2 
The gap between the set of absolutely continuous trajectories, or what is now known also as the Sobolev space W 1,1 (a, b), and the set of Lipschitzian trajectories is demonstrated in 1926 by Lavrentiev

[100] and it is referred to as the Lavrentiev gap phenomenon (LGP). At that time this gap between the infima was quite surprising since Lipschitz functions are dense in absolutely continuous functions.

In 1923, a general theory of existence and (first) partial regularity was established by Leonida Tonelli 

T = {x : |∂ x ζ | = ∞} , (2.58) 
so that, if the Tonelli set is empty the minimizer ζ is smooth. However, at that time it was not known whether T is empty in general; or even if LGP does not occur. During a lecture in Moscow, Tonelli issued the challenge of finding a counterexample.

In 1934, Mania [START_REF] Manià | Sopra un esempio di Lavrentieff[END_REF] provided a simpler and original example with

L = (x 3 -ζ ) 2 (∂ x ζ ) 6 for the
LGP. Examples where Tonelli set is nonempty were first described by Ball and Mizel in 1985 [START_REF] Ball | VJ Mizel One dimensional minimum problems whose minimizers do not satisfy the Euler Lagrange equation Arch[END_REF]. The authors presented some examples, which are closely related to the older example of Lavrentiev [100] and Mania [START_REF] Manià | Sopra un esempio di Lavrentieff[END_REF], showing that smooth minimizers can exist as well as singular minimizers with or without

LGP (depending on the Lagrangian L ). They construct examples where T consists of an end-point of the interval, and another where T contains an interior point. In particular, Ball and Mizel showed LGP occurs). Therefore any minimizer has infinite derivative on T .

that the Lagrangians L = (x 2 -ζ 3 ) 2 |∂ x ζ | s + ε(∂ x ζ ) 2 (a > 0, s ≥ 
In 1993, Ball and Nadirashvili [START_REF] Ball | Universal singular sets for one-dimensional variational problems[END_REF] showed that the singularities of minimizers can also be studied in Ball and Nadirashvili [START_REF] Ball | Universal singular sets for one-dimensional variational problems[END_REF] proved that the universal singular set is of first category in R 2 for Lagrangians of class C 3 . Later in 1994, Sychev [START_REF] Sychev | Lebesgue measure of the universal singular set for the simplest problems in the calculus of variations[END_REF] lowers the smoothness assumption to Lagrangians of class C 1 , and shows that D L is of zero two-dimensional Lebesgue measure.

Note that for polynomial Lagrangians the singular set is understood rather more precisely. In Ref.

[48], Clarke and Vinter showed that if L = L (x, ζ , q) is such that L qq > 0 (condition required for classical partial regularity statements) and is a polynomial in q of the form

L = N ∑ i=0 p i (x, ζ )q i , (2.59) 
then

D L ⊂ {(x, ζ ) : p N (x, ζ ) = 0} , (2.60) 
implying that if p N is a non-zero polynomial in x, ζ then D L is nowhere dense [START_REF] Ball | Universal singular sets for one-dimensional variational problems[END_REF].

A number of examples for the occurrence/non occurrence of LGP and versions of Tonelli's partial regularity theorem under different assumptions (including higher dimensions and universal singular sets) can be found in the literature. An important remark is that the topological negligibility of the universal singular set does not imply, in general, the occurrence of LGP. Very recently, Gratwick [START_REF] Richard | Singular sets and the Lavrentiev phenomenon[END_REF] has examined the question of the exact relationship between the singular set and the occurrence of LGP. The author demonstrated that given given an arbitrary compact and Lebesgue null set T , there exists a C 3 Lagrangian L = L (x, ζ , q), strictly convex in q and a function ζ absolutely continuous such that ζ is the unique minimizer of E with respect to its own boundary conditions, the singular set of ζ is precisely T , and there exists admissible

C ∞ functions ζ k such that ζ k → ζ uniformly and E (ζ k ) → E (ζ )
. Finally, we point out that Clarke and Vinter [START_REF] Clarke | Regularity of solutions to variational problems with polynomial Lagrangians[END_REF] show, in particular, that the LGP cannot occur (in one-dimensional case)

when the Largangian is independent of x, i. e., L = L (ζ , q).

The possibility that a minimizer might be singular or LGP may constitute an obstacle for the interpretation of minimizers obtained numerically by means of the finite elements method. Ball and Knowles [START_REF] Bluman | ∂t) =[END_REF] have presented numerical technics that are capable of detecting the low-energy singular minimizers. The idea is to decouple the unknown function ζ from its gradient as in control theory.

LGP could be related to a kind of fractures, dislocations, or phase boundaries in nonlinear elasticity theory [START_REF] Ball | VJ Mizel One dimensional minimum problems whose minimizers do not satisfy the Euler Lagrange equation Arch[END_REF], [START_REF] Ball | Foundations of Computational Mathematics[END_REF]. Analogous

LGP can be found in stochastic control and in certain (deterministic) Bolza problems.

In the present work, we shall deal with the autonomous Lagrangian of the type (see below)

L (ζ , q) = ζ q 4 + ζ -1 , (2.61) 
that is derived to describe the wrinkling instability of graphene [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF].

Here, the Lagrangian is somewhat distinctive among the (usual) Lagrangians studied in the cited references in the sense that (2.61) is not regular, i. e. ∂ qq L is not strictly positive for all ζ and q, it is singular at ζ = 0, as in the classical Brachistochrome problem (1696), which involves an improper integral, and the interval [a, b] is not fixed. Therefore, L may provide an example, or counter-example, of Tonelli partial regularity result of a physical situation in which the Lagrangian is singular and/or is not strict convex.

In fact, within the framework of nonlinear elasticity in connection with cavitation [START_REF] Gent | Internal rupture of bonded rubber cylinders in tension[END_REF]1958], [START_REF] Ball | VJ Mizel One dimensional minimum problems whose minimizers do not satisfy the Euler Lagrange equation Arch[END_REF], the present work was initially motivated by an attempt to present in its simplest form a complete mathematical-physical example for which the energy may not attain its minimum within the class of smooth functions or/and has a minimizer having unbounded derivatives at certain points (as in [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]).

As noticed in [START_REF] Ball | Foundations of Computational Mathematics[END_REF], there is an important philosophical consequence of LGP. Since minimizers in different function spaces can be different, it follows that LGP leads to different (physical) predictions, except if the function space is part of the (mathematical physical) model and is introduced in the fundamental level [START_REF] Braides | Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case[END_REF], which is a difficult and complex task [START_REF] Traub | Complexity and information[END_REF].

Tonelli set

As mentioned before, we will identify the Tonelli set associated to

I = inf {E (ζ ), ζ (±χ/2) = 0} , (2.62) 
where

E (ζ ) = +χ/2 -χ/2 (ζ (∂ x ζ ) 4 + 1 ζ )dx, (2.63) 
in which χ is fixed, and ε 1 ≡ ε 2 ≡ 1. As we have seen, any local minimizer satisfies

ζ 2 (∂ x ζ ) 4 + 1 3 ζ ζ (0) = 1 3 , (2.64) 
for all 0 ≤ |x| < χ/2.

On the other hand, we have already noticed that ζ is not of class C 2 at x = 0, and as x tends to ±χ/2, we have

ζ (x) ∼ 2 -2/3 3 1/2 χ 2 -|x| 2/3 . (2.65)
Therefore, the Tonelli set is given by

T = {±χ/2, 0} . (2.66) 
We finally note that ζ ∈ C 2 ([-χ/2, +χ/2] \ T ) ∩W 1,1 0 (-χ/2, +χ/2) for 1 ≤ s < 3. Therefore, minimizers of E in W 1,1 0 and in W 1,s 0 , s ≥ 3 may be different. This constitutes the goal of the next section.

Occurence of the Lavrentiev phenomenon

We show that for all ζ ∈ A(0, χ 2 ), and every ε > 0, there exists ζ ε ∈ W 1,∞ such that ζ ε converges strongly to ζ in W 1,1 (0, 1) and E (ζ ε ) = ∞. Indeed, we introduce the following function:

ζ ε (x) =      ζ 0 ≤ x < x ε ζ (x ε ) χ 2 -x ε χ 2 -x x ε < x ≤ χ 2 (2.67)
On the first hand, we show that ζ ε converges strongly to u in W 1,1 (0, 1). Indeed, we have

χ 2 0 |ζ ε -ζ | = x ε 0 |ζ ε -ζ | dx + χ 2 x ε |ζ ε -ζ | dx (2.68) = χ 2 x ε |ζ ε -ζ | dx (2.69) = χ 2 x ε | ζ (x ε ) χ 2 -x ε χ 2 -x -ζ | -→ ε→0 + 0.
(2.70)

Furthermore, we have

χ 2 0 |ζ ε -ζ | = x ε 0 |ζ ε -ζ | dx + χ 2 x ε |ζ ε -ζ | dx (2.71) = χ 2 x ε |ζ ε -ζ | dx (2.72) ≤ χ 2 x ε |u ε | + |ζ | dx (2.73) ≤ χ 2 x ε | - ζ (x ε ) χ 2 -x ε | + |ζ | dx (2.74) ≤ χ 2 -x ε | - ζ (x ε ) χ 2 -x ε | + |ζ (x ε )|| -→ ε→0 + 0.
(2.75)

On the other hand, due to the symmetry (x → -x) in equation (2.2), we have:

E (ζ ε ) = 2 χ 2 0 ζ ε (ζ ε x ) 4 dx + 2 χ 2 0 ζ ε -1 dx. (2.76)
We will mainly be concerned by the second term of this energy E since the Lavrentiev phenomenon appears in this term. Indeed,

χ 2 0 ζ ε -1 dx = x ε 0 ζ -1 dx + χ 2 x ε ζ -1 dx (2.77) ≥ x ε 0 ζ -1 dx + lim α→ χ 2 α x ε ζ (x ε ) χ 2 -x ε χ 2 -x -1 dx (2.78) ≥ x ε 0 ζ -1 dx + lim α→ χ 2 χ 2 -x ε ζ (x ε ) α x ε χ 2 -x -1 dx (2.79) ≥ x ε 0 ζ -1 dx - χ 2 -x ε ζ (x ε ) lim α→ χ 2 [-ln( χ 2 -x)] α x ε (2.80) = ∞. (2.81)
This concludes the proof of the statement.

Conclusion

This chapter has the main objective to theoretically analyse the model that describes the wrinkling of graphene on a substrate decorated with silica nanoparticles having different heights. We have determined an explicit expression of the maximum wrinkle length below which the wrinkling is induced as a function of the diameter's difference given by δ . We deduced that the wrinkle sags asymmetrically toward the nanoparticle of smaller height. Furthermore, from this elastic energy, we have derived an expression of the pseudomagnetic field and concluded that it is of order 11T which agrees well with the finding of [START_REF] Yamamoto | The princess and the pea" at the nanoscale: wrinkling and delamination of graphene on nanoparticles[END_REF]. Finally, we showed the occurence of the Lavrentiev phenomenon in our energy.

Chapter 3

An obstacle problem for a graphene wrinkle model-type

Introduction

In this chapter we present a modified analytical approach to study a class of equations of the graphene model-type. In particular, we shall be interested in an algorithm for solving this class of problems which can be formulated as an obstacle problem. The present chapter is motivated by the desire to find an approximate numerical solution describing the equilibrium configuration of out of plane deformation of the graphene membrane (under consideration here).

As we have seen in Chapter 2, from the mathematical point of view, the energy of the deformed graphene may suffer from the GAP phenomenon. So, an important question is to develop an algorithm to solve the physical problem. The idea is to transform the wrinkling of graphene problem into an obstacle problem which enables to compute the energy and the graphene deflection simultaneously.

The first (classical) obstacle problem is introduced to describe the equilibrium configuration of an elastic membrane (a thin plate) offering no resistance to bending, but acting only in tension.

For the reader's convenience, we recall briefly the obstacle problem for the elastic membrane (see [START_REF] Rodrigues | Obstacle Problems in Mathematical Physics[END_REF] for a detailed exposition).

We denote by ζ the (vertical) deflection of the membrane occupying a domain Ω ⊂ R 2 , and by f the external forces. We assume that the membrane is constrained to lie above a given obstacle, ψ (unilateral condition)

ζ ≥ ψ. (3.1)
The obstacle function ψ satisfies the condition ψ ∈ H 1 (Ω) and ψ ≤ 0 on ∂ Ω. The obstacle problem for the membrane is to determine the deflection ζ such that

ζ ∈ K : J (ζ ) ≤ J (v), ∀v ∈ K, (3.2) 
where

K = v ∈ H 1 0 (Ω) : v ≥ ψ in Ω (3.3)
and J is the total energy given by

J (v) = 1 2 Ω |∇v| 2 dx - Ω f vdx. (3.4)
For the case f = 0, the problem is called the boundary thin obstacle problem for the Laplacian or the Signorini problem in the case where the unilateral constraint is restricted to the boundary (or part of it) [START_REF] Rodrigues | Obstacle Problems in Mathematical Physics[END_REF]. Assuming that the solution ζ is regular, it is found that ζ satisfies [START_REF] Rodrigues | Obstacle Problems in Mathematical Physics[END_REF], [START_REF] Sokolowski | Shape Sensitivity Analysis of Variational Inequalities[END_REF] ζ ≥ ψ, -∆ζ ≥ 0 and (ζψ)∆ζ = 0 in Ω.

(3.5)

A crucial property of the obstacle problem is that Ω is divided into two regions:

Ω = Ω c ∪ Ω c c , where Ω c
is the so-called coincidence set

Ω c = {x ∈ Ω : ζ (x) = ψ(x)} (3.6)
and Ω c c is the complement of Ω c ;

Ω c c = {x ∈ Ω : ζ (x) > ψ(x)} . (3.7)
The boundary of the coincidence set Ω c is called the free boundary, because Ω c is not known a priori.

In fact, the solution ζ can be regarded as the solution of a Cauchy problem for ∆, with ζ and the boundary ∂ Ω c are unknown;

           ∆ζ = 0 in Ω c c ζ = ψ on ∂ Ω c , -∆ζ ≥ 0 in Ω c . (3.8) 
For f ∈ L 2 (Ω) the analogous to (3.5) and (3.8) are, respectively, (see [START_REF] Sokolowski | Shape Sensitivity Analysis of Variational Inequalities[END_REF], [START_REF] Caffarelli | The obstacle problem revisited[END_REF] and the recent paper [START_REF] Wang | On a quasilinear parabolic-elliptic chemotaxis system with logistic source[END_REF])

ζ ≥ ψ, -∆ζ ≥ f and (ζ -ψ)(∆ζ + f ) = 0 in Ω, (3.9) 
and

           -∆ζ = f in Ω c c ζ = ψ on ∂ Ω c , -∆ζ ≥ f in Ω c . (3.10)
The solution ζ is also characterized by the following variational inequality (of the first kind)

Ω ∇ζ .∇(ϕ -ζ )dx ≥ Ω (ζ -ϕ), ∀ϕ ∈ K. (3.11) 
Regarding the regularity of ζ , it is indicated, for example in [START_REF] Sokolowski | Shape Sensitivity Analysis of Variational Inequalities[END_REF], that ζ ∈ H 2 (Ω) ∩ H 1 0 (Ω) by using [START_REF] Brézis | Sur la régularité de la solution deséquations elliptiques[END_REF].

The above obstacle problems are considered as a typical example of elliptic variational inequalities (of the first kind). Many important problems in physics, engineering and finance are formulated by transforming the problem to an obstacle problem and then to an elliptic variational inequality which has an advantageous for analytical treatment and,especially, for numerical solutions [START_REF] Xue | An algorithm for solving the obstacle problems[END_REF], [START_REF] Wang | On a quasilinear parabolic-elliptic chemotaxis system with logistic source[END_REF], even if the computation of approximate solutions and the approximate contact regions or the coincidence sets (Ω c ) can be a challenge.

As mentioned before, we propose in this chapter to use the obstacle problem strategy to revisite our wrinkling graphene problem. In this chapter, we assume that the distance between two nanoparticles is fixed (χ = 2).

Formulation of the problem

In the preceding chapters, we have studied the wrinkling graphene properties by analyzing the graphene deflection ζ that minimizes the energy given by

J (v) = 1 4 1 -1 |v x | 4 dx + 5 4 1 -1
|v| -4 5 dx.

(3.12)

In this chapter, we present a different way to minimize the above energy. The idea consists in transforming the problem into an obstacle problem. To be more precise, the (initial) mathematical motivation is to extend the obstacle problem in H 1 0 (Ω), Ω ⊂ R N , on the space W 1,p 0 (Ω).

Thus, we investigate a minimizer of the (general) energy (in R)

J (v) = 1 p 1 -1 | v x | p + 1 γ -1 1 -1 v 1-γ , (3.13) 
over the following convex admissible set

K = v ∈ W 1,p 0 (] -1, 1[), v ≥ φ , (3.14) 
where p > 1, 0 < γ -1 < p p-1 and φ ∈ W 1,p 0 (]-1, 1[) to be specified later. Indeed, as we will see in Section , in which φ 1 is the first eigenfunction associated to the p-laplacian given in Definition 3.18, and J (v 1 ) is finite under the condition 0 < γ -1 < p p-1 .

Let us note that there are many articles that investigate obstacle problems (or p-obstacle problems) involving p-Laplacian operator but, to the best of our knowledge there is no publication of p-obstacle problem with nonlinear singular source term.

Recall that the case p = 4 and γ = 9/5 originates from wrinkling graphene problem in which the equilibrium deflection ζ satisfies ζ (0) = d and ζ ≤ d. Accordingly, the convexe set K will be defined by

K = v ∈ W 1,p 0 (] -1, 1[), v ≥ dφ and v(0) = d (3.15)
so that, the problem can be formulated as to find parameter d such that the above (double) obstacle has a solution for a given φ > 0 in ] -1, 1[ that satisfies φ (0) = 1.

A particular form of the problem is to find a (minimizer) function v which solves the following problem

(see below)      -(| v * x | p-2 v * x ) x = v * -γ + Λ * δ 0 D (] -1, 1[), v(±1) = 0 and v(0) = d, (3.16) 
where Λ * is a nonnegative constant and δ 0 is a Dirac mass at the origin.

Definitions and properties

Our aim in this work is to show the existence of a suitable weak solution to (3.16). The first step is to precise in which sense we want to solve our problem.

Definition 1

A weak solution to (3.16) is a function v such that

               v ∈ W 1,p 0 (] -1, 1[) and v(0) = d, v > 0 in ] -1, 1[ and v -γ ∈ L 1 loc (] -1, 1[), 1 -1 | v x | p-2 v x ϕ x = 1 -1 v -γ ϕ + Λ * d, ∀ϕ ∈ C 1 c (] -1, 1[). 
(3.17)

Definition 2

For a < b, let Ω := (a, b). φ 1 ∈ W 1,p 0 (Ω) is the eigenfunction associated to the smallest eigenvalue λ 1 > 0 We also have the following useful lemma [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF]:

such that ||φ 1 || L ∞ = 1 satisfying:            -| φ 1 x | p-2 φ 1 x x = λ 1 | φ 1 | p-2 φ 1 in Ω, φ 1 > 0 in Ω, φ 1 = 0 on ∂ Ω.
Lemma 1 1 -1 φ 1 r dx < ∞ (3.19)
if and only if r > -1.

Existence Result: sufficient condition for existence

In this section, we define (φ = φ

p γ+p-1 1 ) K = v ∈ W 1,p 0 (] -1, 1[) / v ≥ dφ p γ+p-1 1 and v(0) = d . (3.20) Theorem 2 Let 1 < γ < 2p-1 p-1 . There exists d * > 0 such that for all d ≤ d * , inf v∈K J (v) = min v∈K J (v) = J (v * ). (3.21)
Moreover, v * satisfies:

     -(| v * x | p-2 v * x ) x = v * -γ + Λ * δ 0 D (] -1, 1[), v * ∈ K, (3.22) 
where

Λ * = 1 d 1 -1 | v * x | p -v * 1-γ
and δ 0 is a Dirac mass at the origin.

Proof.

Let v 1 = dφ 1 β , where 0 < β < 1 is a constant to be determined.

We have

-| v 1x | p-2 v 1x x = -d p-1 β p-1 | φ 1 x | p-2 φ 1 x φ 1 (p-1)(β -1) x (3.23) = d p-1 β p-1 [-| φ 1 x | p-2 φ 1 x x φ 1 (p-1)(β -1) (3.24) 
+ (p -1)(1 -β )φ 1 (p-1)(β -1)-1 | φ 1 x | p ] (3.25) = d p-1 β p-1 λ 1 φ β (p-1) 1 
+ (p -1)(1 -β )φ 1 (p-1)(β -1)-1 | φ 1 x | p (3.26) = v 1 -γ d γ+p-1 β p-1 λ 1 φ β (γ+p-1) 1 
+ (p -1)(1 -β )φ 1 β (γ+p-1)-p | φ 1 x | p (3.27)
Hence, for β = p γ+p-1 , we get:

-| v 1x | p-2 v 1x x = g(x, d) v 1 -γ , (3.28) in which g(x, d) = d γ+p-1 β p-1 (1 -β )(p -1) | φ 1 x | p +λ 1 β p-1 φ 1 p ) . (3.29)
Note that the strong maximum and boundary point principles from Vasquez [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] guarantee φ 1 > 0 in ] -1, 1[ and | φ 1 x | = 0 on the boundary. Hence

Γ 1 := max β p-1 (1 -β )(p -1) | φ 1 x | p +λ 1 β p-1 φ 1 p ) > 0, (3.30) 
which means that g(x, d) ≤ 1 if and only if d ≤ 1

Γ 1 1 γ+p-1 := d * .
We conclude that for d ≤ d * , the function v 1 satisfies :

     -(| v 1x | p-2 v 1x ) x ≤ v 1 -γ D (] -1, 1[), v 1 ∈ W 1,p 0 (] -1, 1[).
(3.31)

Recalling Λ * > 0 and δ 0 is a nonnegative measure, v 1 clearly verifies

     -(| v 1x | p-2 v 1x ) x ≤ v 1 -γ + Λ * δ 0 D (] -1, 1[), v 1 ∈ W 1,p 0 (] -1, 1[). 
(3.32)

Since v 1 is a sub-solution of (3.16), if we insert it as a test function in the weak formulation of (3.16), we obtain

1 -1 | v 1x | p ≤ 1 -1 v 1 1-γ + Λ * d. (3.33) 
Consequently

J (v 1 ) = 1 p 1 -1 | v 1x | p + 1 γ -1 1 -1 v 1 1-γ (3.34) ≤ 1 p + 1 γ -1 1 -1 v 1 1-γ + Λ * d (3.35) ≤ 1 p + 1 γ -1 1 -1 d 1-γ φ p(1-γ) γ+p-1 1 + Λ * d. (3.36)
By Lemma 1, we conclude that since γ < 2p-1 p-1 , then φ

p(1-γ) γ+p-1 1 ∈ L 1 (] -1, 1[) and J (v 1 ) < ∞.
In addition, for all v ∈ K, J (v) ≥ 0. This implies that the subset K is a non-empty closed convex of L p (] -1, 1[). Therefore one can take a minimizing sequence

(v n ) n in K i.e a sequence such that Φ(v n ) → inf v∈K Φ(v), or J (v n ) → inf v∈K J (v) := L.
This implies that for all ε > 0, there exists η 0 > 0, such that for all η > η 0 , we have:

L 2 ≤ J (v n ) ≤ 3L 2 , (3.37) 
consequently:

1 -1 | v nx | p dx ≤ p 3L 2 - 1 γ -1 1 -1 v 1-γ n dx. (3.38) Again, since 1 < γ < 2p-1 p-1 , then v n 1-γ ≤ d 1-γ n φ 1 p(1-γ) γ+p-1 which is in L 1 (] -1, 1[). This gives the uniform boundedness of v n in W 1,p 0 (] -1, 1[).
We pick a subsequence, still denoted v n that converges to v * weakly in W 1,p 0 (] -1, 1[), strongly in L p (] -

1, 1[) and v n (x) -→ v * (x) a.e in ] -1, 1[. Since W 1,p 0
is injected in the space of Holder continuous functions C α , it follows that v n converges uniformly to v * in K, and v

1-γ n converges to v * 1-γ in L 1 (] -1, 1[). Finally: L ≤ J (v) ≤ lim inf n→+∞ J(v n ) ≤ L, i.e J (v) = inf v∈K J (v).
Furthermore, the Euler-Lagrange equation associated to the minimization problem (3.13) is given by (3.22).

Indeed, let φ ∈ C ∞ c (]-1, 1[).
It can easily be verified that there exists δ > 0 sufficiently small such that

∀t ∈] -δ , δ [ v * + tφ 1 + tφ (0) ∈ K. (3.39)
We have:

∂ ∂t J v * + tφ 1 + tφ (0) t=0 = 1 -1 | v * x | p-2 v * x ∂ ∂t v * x + tφ x v * (0) + tφ (0) -v * -γ ∂ ∂t v * + tφ v * (0) + tφ (0) = 1 -1 | v * x | p-2 v * x φ x - 1 -1 v * -γ φ - 1 d 1 -1 | v * x | p -v * 1-γ φ (0)
Since v * is a minimum, we obtain:

1 -1 | v * x | p-2 v * x φ x -v * -γ φ = 1 d 1 -1 | v * x | p -v * 1-γ < δ 0 , φ >, (3.40) 
which means that equation (3.22) is satisfied in the sense of distributions.

Numerical Algorithm and Results

Determination of the first eigenfunction of the p-Laplacian

In order to numerically determine the first eigenfunction φ 1 that verifies equation (3.18), we introduce the Lagragian:

L (φ , λ ) = 1 p 1 -1 |φ x | p + λ 1 -1 |φ | p -1 , (3.41) 
where λ ∈ R is referred to as the Lagrange multiplier.

According to [START_REF] Zhang | Lagrange programming neural networks[END_REF], the Lagrange multiplier approach is based on solving the system of equations which constitute the necessary conditions of optimality. The first-order necessary condition of optimality can be expressed as a stationary point (φ * , λ * ) of L (φ , λ ), That is a stationary point of the system

       dφ dt (t, x) = - ∂ L ∂ φ (φ , λ ), dλ dt (t) = ∂ L ∂ λ (φ , λ ). (3.42) 
That is

         dφ dt (φ * ,λ * ) = 0, dλ dt (φ * ,λ * ) = 0.
(3.43)

In our case, we have

               ∂ φ ∂t (t, x) = | φ x | p-2 φ x x -λ pφ p-1 , φ (t, -1) = φ (t, 1) = 0, ∂ λ ∂t (t) = 1 1 |φ | p -1.
(3.44) with φ (0, x) = (1x 2 ) and λ (0) = λ 0 .

After the numerical simulation using finite elements method, we obtain 

Determination of the solution v *

In order to numerically determine the solution of equation (3.40), we use the classical fourth-order Runge Kutta method [START_REF] Atkinson | Numerical methods with Fortran 77: A practical introduction[END_REF].

Algorithm 3 Steps of the method

Require: v 0 = dφ 1 β initial guess of the solution and tol = 10 -6 is the tolerance. while ε n =| Λ n+1 -Λ n |< tol do

• Compute the equation below

Λ n = 1 d 1 -1 | v n x | p -(v n ) 1-γ (3.45) • Solve for v n the equation below ∀φ ∈ C ∞ c (]-1, 1[) |x|<1 (| v n+1 x | p-2 v n+1 x ) x φ x = |x|<1 (v n+1 ) 1-γ φ + Λ n φ (0) (3.46) 
• Update

Λ n+1 = 1 d 1 -1 | v n+1 x | p -(v n+1 ) 1-γ . (3.47)
end while

Numerical results

Implementing Algorithm 3, we obtain 

Conclusion

The numerical results coincide with the physical graphene wrinkle profile, as the derivative vanishes at the origin 0 and blows up at the boundaries, which is in good agreement with the physical properties of the profile. These properties appear very naturally when minimizing in the set K, which confirms the validity of the choice of the optimization space.

Chapter 4

Instabilities and scaling properties in certain one-dimensional singular interfacial equation

The first section of this chapter "Instabilities in certain one-dimensional singular interfacial equation" is published by Bognár,G., Guedda,M., Hriczó,K. and Taourirte Laila in Physica Scripta, 95

, 035001. (2020).

Instabilities in certain one-dimensional singular interfacial equation 4.1.1 Introduction

Intense theoretical and experimental interest has been devoted to examine the dynamics of epitaxial growths in the presence of interfacial instabilities. The major challenge still remains the prediction and the control of these surfaces, which could serve as ideal templates for the growth of one-or twodimensional arrays with nanometer scale parameters such as superlattices, quantum wells, quantum wires, and quantum dots. These self-organized surfaces, which are structured laterally, are vital in the hybrid microelectronics, microwave, semiconductor, optical, medical, sensor, and related industries. A promising way is to make use of patterns evolving out of inherent instabilities in growth processes. A theorist's contribution to controlled unstable growth can then lie in understanding its basic mechanisms. One of the simplest methods of a self-assembly process is the growth of a crystalline film from a molecular or atomic beam, referred commonly to as molecular beam epitaxy (MBE). This enables scientists to build nanostructures as pyramidal objects or mounds. The remarkable richness of patterns forming during MBE is determined solely by processes which occur locally at the surface.

Molecular beam epitaxy (MBE), which has many important technological and industrial applications, is often used to grow nanostructure on crystal surfaces. The evolution of the surface morphology during MBE growth results from a competition between the molecular flux and the relaxation of the surface profile through surface diffusion of adatoms. One crucial aspect of the growth process is its possible unstable character, due to deterministic mechanisms, which prevent the growing surface to stay parallel to the substrate [START_REF] Ehrlich | Atomic view of surface self-diffusion: tungsten on tungsten[END_REF]- [START_REF] Pierre-Louis | New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces[END_REF]. In fact, the evolution of surface morphology during MBE growth results from an interplay between deposition of atoms onto the surface and the relaxation of the surface profile through surface diffusion. One of the most influential factors for instabilities in the evolution of the surface morphology of a growing film is the existence of energy barriers near steps. An adsorbed atom (adatom) approaching a step from above or below may have different probabilities. This phenomena was first observed experimentally by Ehrlich and Hudda [START_REF] Ehrlich | Atomic view of surface self-diffusion: tungsten on tungsten[END_REF] and analyzed by Schwoebel and Shipsey [START_REF] Schwoebel | Step motion on crystal surfaces[END_REF].

This phenomenon has turned out to be a source of a wide class of nonlinear dynamics, which varies from spatio-temporal chaos [START_REF] Bena | Nonlinear evolution of a terrace edge during step-flow growth[END_REF] to the formation of stable structures [START_REF] Sato | Step bunching as formation of soliton-like pulses in benney equation[END_REF], from coarsening processes [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF] to diverging amplitude structures [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF]. One of the many challenges involved in applied mathematics and nonequilibrium physics is to predict the behavior of surface evolution, from the knowledge initial arbitrary profile, and the scaling relationships between surface features in various growth regimes.

In this chapter we consider a class of Ehrlich-Schwoebel (ES) barriers that induces pyramidal or mound-type structures on the growing surface ( [START_REF] Villain | Continuum models of crystal growth from atomic beams with and without desorption[END_REF], [START_REF] Krug | Four lectures on the physics of crystal growth[END_REF]). In particular, we will study the one-dimensional dynamics of a MBE growth in which the mounds increase in both height and lateral size. In this context, an analytical approach has been developed by Golubovié [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] in the spirit of the Bales and Zangwill theory [START_REF] Bales | Morphological instability of a terrace edge during step-flow growth[END_REF]. To be more precise, Golubovié studied the dynamics of a MBE growing interfaces in the absence of slope selection mechanism, when the mounds' slope indefinitely increases with time [START_REF] Siegert | Slope selection and coarsening in molecular beam epitaxy[END_REF]. Assuming that the effects of adatom desorption [START_REF] Cross | Pattern formation outside of equilibrium[END_REF] and diffusion anisotropy are neglected [START_REF] Pierre-Louis | New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces[END_REF], the continuous interfacial height in one-dimensional case, is found to obey the following general phenomenological evolution equation (see Rost and Krug [START_REF] Rost | Coarsening of surface structures in unstable epitaxial growth[END_REF])

∂ t h = -a∂ x ∂ x h 1 + |∂ x h| 1+τ -b∂ 4 x h, (4.1) 
while it is standard form is

∂ t h = -a∂ x   ∂ x h 1 + |∂ x h| 2 n   -b∂ 4 x h. (4.2)
In the above equations a and b are physical positive constants and n, τ 1. The unknown smooth function h measures the film thickness above a substrate point x and at time t. The above equations have a conservation form ∂ i h + ∂ x J = 0 where the surface current J for equation (7.10) is given by

J (∂ x h) = a ∂ x h 1 + |∂ x h| 2 n + b∂ 3 x h. (4.3)
The first term of the current J is the destabilizing surface current, the ES effect, which generalized the form discussed by Johnson et al [START_REF] Johnson | Stable and unstable growth in molecular beam epitaxy[END_REF] and Hunt et al [START_REF] Hunt | Instabilities in MBE growth[END_REF] and is characterized by different asymptotic be- [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF], [START_REF] Politi | Coarsening in surface growth models without slope selection[END_REF], [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF]). The destabilizing term, which provides the nonlinear regime, is balanced by the classical stabilizing linear term à la Mullins [START_REF] Mullins | Theory of thermal grooving[END_REF]. Different coarsening process types are exhibited in [START_REF] Politi | Coarsening dynamics at unstable crystal surfaces[END_REF]. The growth laws are investigated with phase diffusion approach that allows to determine the coarsening exponent for 2D growth. In [START_REF] Biagi | Universality classes for unstable crystal growth[END_REF], a classification of important unstable crystal growth dynamics in terms of universality classes are proposed and distinct properties and coarsening exponents are shown. The solutions to (7.10) with n = 1 are investigated both analytically and numerically.

haviors for |∂ x h| → ∞ in ([
Global solutions were constructed to the parabolic evolution equation by Fujimura and Yagi [START_REF] Fujimura | Dynamical system for BCF model describing crystal surface growth[END_REF]. Numerical techniques like finite difference, finite element and kinetic Monte Carlo method were used to provide approximate solutions to the equation describing crystal surface growth ( [208], [START_REF] Bhuiyan | Controlled self-assembly of nanocrystalline arrays studied by 3D kinetic Monte Carlo modeling[END_REF]]. The pyramidal structure characterized by the absence of preferred slope in one-dimension was examined by Guedda and

Trojette [START_REF] Guedda | Coarsening in an interfacial equation without slope selection revisited: Analytical results[END_REF] applying a similarity approach. We note that similarity technique is not applicable to the nonlinear term ∂ x h/ 1 + |∂ x h| 2 in (7.10). It is the purpose of this chapter to study the coarsening process that may result from equation (7.10) with n > 0 n = 1, called here n -model. In particular, an effort is made to report an analytical justification of solutions to n -model, which correspond to, or predict, the coarsening process. For the coarsening results concerning the case n = 1 we refer to the paper by Hunt et al [START_REF] Hunt | Instabilities in MBE growth[END_REF]. In fact, we are mainly concerned with stationary solutions, which are successfully used to describe the major features of the process of coarsening in a wide class of surface growth phenomena ( [142] [141]). 

Stationary solutions

The goal of this section is to analyze the coarsening process by using the criteria of Politi and Misbah ( [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF], [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF]). The authors showed that coarsening occurs if the wavelength is an increasing function of the amplitude or the maximum slope of periodic stationary solution.

Firstly, we note that if we assume h = εe σt+ iq x , where ε is very small, we get σ = σ (q) = aq 2bq 4 .

Therefore, all wavelengths larger than λ 0 = 2π b a are unstable.

Preliminary results

Stationary solution or time-independent solution (h t = 0) to ∂ x J = 0 with (4.3) and a = b = 1 satisfies

h xxx = - h x 1 + |h x | 2 n +C. (4.4)
Due to the symmetry (x → -x) in equation ( 7.10) we take C = 0. Applying substitution h x = m into (4.4), we arrive at

m xx = - m (1 + m 2 ) n . (4.5)
Multiplying (4.5) with m x and taking its integral we get the so called "energy" integral

1 2 (m x ) 2 + 1 2(1 -n) 1 + m 2 1-n = E = const. (4.6) hence m x = ± √ 2 E - 1 2(1 -n) (1 + m 2 ) 1-n (4.7)
On the phase plane we shall examine all possible cases for power n and E. It can be seen from (4.6) that for n < 1, E has to be positive.

Case (i)

If 0 < n < 1 and E > 0, it is deduced from (4.7) that m is periodic (see Figure 4.1) and E is given by

E = 1 2(1 -n) 1 + M 2 1-n , (4.8) 
where we denote the maximum slope of solution h by M, i.e. M = max(m).

Then for 

m x = 0, connection m = ± [2(1 -n)E] 1-1 1-n -1 exists if E 1 2(1 -n) . ( 4 

Case (ii)

If n > 1 and E < 0, then for m x = 0 we must have shows that no periodic solution exists if n > 1 and E > 1 2(1-n) and periodic solution exists if n > 1 and

E ≤ 1 2(1 -n) . ( 4 
E 1 2(1-n) .

Numerical solutions to time-independent equation

We again examine the time-independent equation

h xxxx = -   h x 1 + (h x ) 2 n   x (4.

11)

Solution h = h(x) satisfies the third order nonlinear differential equation

h xxx = - h x 1 + (h x ) 2 n (4.12)
To exhibit the structure of the solutions in case (i), the corresponding initial conditions for E = 2 and n = 1/2 are chosen as

h(0) = 0, h (0) = 0, h (0) = ± √ 2. (4.13)
The numerical solution h(x) to (4.12), (4.13) obtained by MAPLE 2015 can be seen on Figure 4.3 the red curve corresponds to + sign and the blue curve to -sign.

The corresponding initial conditions in case (ii) for E = -1/4 and n = 2 are chosen as follows M n as a function of n.

h(0) = 0, h (0) = 0, h (0) = ± √ 3. (4.14)

Coarsening properties

Before considering more complicated time-dependent problems, it is usual to seek steady state solutions or/and similarity (self-affine) solutions which have relevance for the coarsening process (see below). The model, however, does not allow similarity solutions and so a global description of stationary solutions seems to be necessary. An analytical approach for the coarsening process in one-dimensional surface growth models, has been developed by Politi and Misbah ([142], [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF]). It has been shown that periodic steady-state solutions, h 0 of period λ may play a major role in determining the type of nonlinear dynamics.

For a certain class of nonlinear 1D equations, the authors argued that coarsening is possible if and only if the wavelength λ (A) is an increasing function of the amplitude A of h 0 . The presence of a maximum of λ (A) signals that the coarsening is stopped (interrupted coarsening), while a decreasing λ (A) indicates the absence of the coarsening. More importantly, in the limit of large λ , Misbah and Polity introduced an approach, called the phase diffusion method, for determining the coarsening exponent which characterizes the time dependence of the scale of the pattern. As mentioned in [START_REF] Nicoli | Coarsening dynamics in one dimension: The phase diffusion equation and its numerical implementation[END_REF] the advantage of this method is that the coarsening exponent is determined without solving a timedependent equation. This is very suitable from the numerical point of view, since the phase diffusion method avoids the blow up of the integration scheme at large time steps. Nicoli et al. [START_REF] Nicoli | Coarsening dynamics in one dimension: The phase diffusion equation and its numerical implementation[END_REF] proposed a recipe to implement numerically the determination of the coarsening exponent when coarsening is present by using the existence results.

We study the coarsening properties of the surface by using the method of Misbah and Politi ( [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF], [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF]). We investigate as above the energy equation

E = 1 2 (m x ) 2 + 1 2(1 -n) 1 + m 2 1-n (4.15) = 1 2(1 -n) 1 + M 2 1-n (4.16)
One gets for m x that

m x = ± 1 1 -n (1 + M 2 ) 1-n -(1 + m 2 ) 1-n . (4.17)
We note that if m = 0 and n < 1, then

m x = ± 1 1 -n (1 + M 2 ) 1-n -1 , (4.18) 
which gives the maximum or minimum of m x , respectively.

Moreover, since E = 1/2(1 -n) 1 + M 2 n-1 , then E = 0 if and only if M = ∞ and for large values of M m x = ± 1 1 -n m 1-n 2 . (4.19)
Therefore, from (4.19) we obtain the nonlinear differential equation for m in the form

m x m n-1 2 = ± 1 1 -n . (4.20)
Taking the integral of equation (4.20) for (x 0 , x) we get

2 n + 1 m(x) n+1 2 -m (x 0 ) n+1 2 = ± 1 1 -n (x -x 0 ) . (4.21)
It shows that m is monotone and m ≈ |x|

2 n+1 .
The wavelength.

Our interest is the determination of the wavelength λ and the amplitude A of solution h. The wavelength λ = λ (M) can be calculated depending on M. By using dm/m x = dx we obtain the integral

λ 4 = M 0 dm m x = M 0 dm 1 1-n (1 + M 2 ) 1-n -(1 + m 2 ) 1-n (4.22)
For n > 1 with substitution m = Mv we can write that

λ 4 √ n -1 = 1 0 Mdv (1 + M 2 v 2 ) 1-n -(1 + M 2 ) 1-n (4.23)
Now, λ (M) can be calculated from (4.23) applying the form

F(M) = 1 0 Mdv/ G(M) with G(M) = 1 + M 2 v 2 1-n -1 + M 2 1
-n since we have G -

F (M) = 1 0 G -M 2 G G
M 2 G = 1 + nM 2 v 2 (1 + M 2 v 2 ) n - 1 + nM 2 (1 + M 2 ) n . (4.25)
The right side of (4.25) can be formulated as g(Mv)g(M) using function g

(x) = 1 + nx 2 / 1 + x 2 n , which is monotone decreasing since g (x) = 2n(1 -n)x 3 / 1 + x 2 n+1 < 0 for n > 1 Hence F (M) > 0,
which implies that λ (M) > 0. It shows that in the one-dimensional pattern forming system coarsening occurs. Two particular cases are of physical interest. Namely, M is small or large.

For small values of M, the wavelength λ = λ (n) can be obtained from (4.23) for n > 1 as follows

λ (n) 4 √ n -1 ≈ 1 0 M (1 + (1 -n)M 2 v 2 ) -(1 + (1 -n)M 2 ) dv (4.26) = 1 √ n -1 1 0 dv √ 1 -v 2 (4.27) = 1 √ n -1 π 2 , (4.28) 
and consequently λ ≈ 2π. We note, that for n < 1, similarly λ ≈ 2π.

Remark that for n = 1 the same relation yields [START_REF] Hunt | Instabilities in MBE growth[END_REF].

For large values of M we again examine (4.23) with n > 1 as

λ (n) 4 √ n -1 ≈ 1 0 Mdv (M 2 v 2 ) 1-n -(M 2 ) 1-n = M n 1 0 dv v 2(1-n) -1 = M n Γ(n), (4.29) 
where

Γ(n) = √ πΓ 1 2 + 1 2(n-1) 2(n -1)Γ 1 + 1 2(n-1)
.

(4.30)

For n = 1, we refer to paper [START_REF] Hunt | Instabilities in MBE growth[END_REF] that λ (1) ≈ 2 √ 2πM.

We note that from (4.29), for n = 2, we get Γ(2) = 1 and the wavelength is

λ (2) ≈ 4M 2 . If n = 3 then Γ(3) = 1 4 B 1 2 , 3 4 and λ (3) ≈ √ 3B 1 2 , 3 4 M 3 .
In general, for large values of M we find coarsening such as

λ (n) ≈ 4 √ n -1 Γ(n)M n for n > 1 and n = 1
For n < 1, from equation (4.22), one gets that

λ (n) 4 √ 1 -n ≈ 1 0 Mdv (M 2 v 2 ) 1-n -(M 2 ) 1-n = M n 1 0 dv 1 -v 2(1-n) = M n Ω(n), (4.31) 
where This indicates that coarsening occurs for n > 0 and n = 1.

Ω(n) = √ πΓ 1 2(1-n) 2(1 -n)Γ 1 2 + 1 2(1-n) . (4.32) Note, that for example as n = 1 2 , then Ω 1 2 = 2 and λ 1 2 ≈ 8 √ 2 √ M.

The amplitude

As in the previous part, the aim is to find the amplitude as a function of M :

A =h max -h min =h (x 1 ) -h (x 0 ) = x 1 x 0 h x dx = x 1 x 0 m(x)dx = x 1 x 0 m(x) 1 m x dm = M 0 m 1 1-n (1 + M 2 ) 1-n -(1 + m 2 ) 1-n dm. (4.33)
Applying substitution m = Mv to (4.33), one can get

A = 1 0 M 2 vdv 1 1-n (1 + M 2 ) 1-n -(1 + M 2 v 2 ) 1-n . (4.34) If n > 1 then for the height profile A = A(n) A(n) = √ n -1M 2 1 0 vdv (1 + M 2 v 2 ) 1-n -(1 + M 2 ) 1-n (4.35) If M is small A ≈ M 1 0 vdv √ 1 -v 2 = M (4.36)
Note that for n = 1 the same relation yields [START_REF] Hunt | Instabilities in MBE growth[END_REF]. We remark that for n = 1 we have A(1) ≈ λ (1)/16 √ π [START_REF] Hunt | Instabilities in MBE growth[END_REF] . For n < 1 one gets again that A ≈ M.

For large values of M, we can determine the amplitude for n > 1 as follows

A(n) ≈ √ n -1 M 2 1 0 vdv (M 2 v 2 ) 1-n -(M 2 ) 1-n = √ n -1 M n+1 1 0 v dv v 2(1-n) -1 = M n+1 γ(n), (4.37) 
where

γ(n) = 1 2 π n -1 Γ n+1 2(n-1) Γ 1 2 + n+1 2(n-1)
.

(4.38)

For the special case n = 1, we also refer to [START_REF] Hunt | Instabilities in MBE growth[END_REF], A(1) ≈ √ πM 2 /2.

For n = 2 one gets that γ(2) = π/4 and A(2) ≈ M 3 π/4.

For n = 3 as γ(3) = 1/ √ 2 the amplitude is A(3) ≈ M 4 / √ 2. Generally, A(n) ≈ M n+1 γ(n) for n > 1 (see Figure 4.6).
Thus, the amplitude relations for large M values can be obtained as follows

n = 1, A(1) ≈ [λ (1)] 2 16 √ π , n = 2, A(2) ≈ π 32 [λ (2)] 3 2 , n = 3, A(3) ≈ 1 √ 2 λ (3) √ 3B( 1 2 , 3 4 ) 4 3 
,

n > 1, A(n) ≈ γ(n) λ (n) 4 √ n-1 Γ(n) n+1 n . (4.39)
showing, as it is expected, that coarsening occurs.

If M is small, then A ≈ M and λ (n) ≈ 2π.

If n < 1, then applying similar calculation one gets from (4.33) that

A(n) ≈ √ 1 -n M 2 1 0 v dv (M 2 ) 1-n -(M 2 v 2 ) 1-n (4.40) = √ 1 -n M n+1 1 0 v dv 1 -v 2(1-n) = M n+1 ω(n), (4.41) 
where

ω(n) = √ π 2(1 -n) Γ 1 (1-n) Γ 1 2 + 1 (1-n) . (4.42)
Note, that for n = 1 2 , we have The relation between the wavelength and the amplitude, called the dispersion relation according to [START_REF] Hunt | Instabilities in MBE growth[END_REF], can be given as follows:

A 1 2 ≈ 4 3 √ M 3 and A 1 2 ≈ λ 3 ( 1 2 ) 192 .
A(n) =            σ (n) (4 √ 1-n Ω(n)) n+1 λ (n) n+1 n if 0 < n < 1, 1 16 √ π λ 2 if n = 1, [16] γ(n) (4 √ n-1 Γ(n)) n+1 n λ (n) n+1 n if n > 1. (4.43)
Note, that for n → ∞, one gets A(n) λ (n) n+1 → 1 4 (see Figure 4.7). The relation (4.43) for any n > 0 shows that the amplitude is an increasing function of the wavelength meaning that coarsening occurs. We note that the function A(n)

λ (n) n-1 n
and A(n) M n+1 as a function of n are discontinuous at 1 while λ (n) M n has no singularity at any value of n.

Conclusion

In this chapter, the steady state solutions of the generalized phenomenological equation have been analytically analyzed. It is found that the equation has periodic and not periodic solutions as well. For large slope M of the particular solution we gave the connection between M and the amplitude or the wavelength. It was found that our results fit to the results given for n = 1 in the paper [START_REF] Hunt | Instabilities in MBE growth[END_REF], but we remark that our calculations are not valid for n = 1. For the periodic solutions the dispersion relation have been shown, i.e. that the amplitude varies as λ n+1 n indicating that the model exhibits the coarsening phenomena according to Politi and Misbah. An important task for the future is to investigate the similarity solution of the generalized phenomenological model.

Scaling properties for one-dimensional singular interfacial equation 4.2.1 Introduction

As mentioned in the first section, assuming that the effects of beam fluctuation, adatom desorption and diffusion anisotropy are neglected, the continuous interfacial height is found to obey the following standard phenomenological evolution equation (conservation law), in the Cartesian coordinates (x, y),

∂ t H + ∇J = F, (4.44) 
where F denotes the average deposition flux (or source term) and ∇ the standard differential operator in two space dimensions. The surface current J is written as a sum of two terms

J = al 2 ∇H + b∇(∆H ). (4.45)
Here, a and b are physical positive constants and ∆ is the Laplacian operator. The unknown function H measures the film thickness above a substrate point (x, y) and at time t. The local terrace width is

l = |∇H | -1 .
It is not our purpose here to model the physical problem. Rather, we will explain the singular interfacial equation and focus on its properties. A special effort is made to present an analytical approach, based on the similarity reduction, which leads to a description of the coarsening dynamic.

We refer to the works of [START_REF] Johnson | Stable and unstable growth in molecular beam epitaxy[END_REF], [START_REF] Villain | Physique de la croissance cristalline[END_REF]- [START_REF] Bray | Theory of phase-ordering kinetics[END_REF] and [START_REF] Krug | Four lectures on the physics of crystal growth[END_REF], for an useful physical background. The first term of J is the destabilizing surface current, J dest = a ∇H |∇H | 2 , which has the form suggested by Villain (the nonequilibrium current). The parameter a is the measure of the strength of the Ehrlich-Schwoebel-Villain (ESV) effect. The destabilizing term is balanced by the classical stabilizing linear term à la Mullins [START_REF] Mullins | Theory of thermal grooving[END_REF]; J smooth = b∇(∆H ). This linear term describes relaxation through adatom diffusion driven by the surface free energy. The constant term F can be eliminated by using the comoving frame, i.e., H = Ft + h.

Thereby, the interfacial equation reads

∂ t h = -a∇ ∇h |∇h| 2 -b∆ 2 h. (4.46) 
Generally, the destabilizing surface current takes the form [START_REF] Krug | Four lectures on the physics of crystal growth[END_REF], [START_REF] Politi | Instabilities in crystal growth by atomic or molecular beams[END_REF], [START_REF] Politi | Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model[END_REF] J dest = g(|∇h| 2 )∇h,

where the function g(|∇h| 2 ) depends only on |∇h| 2 . Under a Burton-Cabrera-Frank-type theory it is required that g(r) approaches a constant for r → 0, and it is proportional to r -1 , for r → ∞ (large slope). In [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] Golubović considered firstly the case g(r) = a/(1 + r), discussed, with suitable scaling, by Johnson et al. [START_REF] Johnson | Stable and unstable growth in molecular beam epitaxy[END_REF].

In many cases function g has the following form (ν-model) [START_REF] Rost | Coarsening of surface structures in unstable epitaxial growth[END_REF], [START_REF] Torcini | Coarsening process in one-dimensional surface growth models[END_REF],

g(r) = a (1 + r) ν , ν ≥ 1, (4.47) 
or (µ = 2ν -1)

g(r) = a 1 + r (1+µ)/2 , µ ≥ 1, (4.48) 
characterized by different asymptotic behaviors for r → ∞. Expressions (4.47) and (4.48) are interpolations between two regimes occurred at small slopes and large slopes [START_REF] Johnson | Stable and unstable growth in molecular beam epitaxy[END_REF], [START_REF] Rost | Coarsening of surface structures in unstable epitaxial growth[END_REF], [START_REF] Torcini | Coarsening process in one-dimensional surface growth models[END_REF].

The interfacial equation for the ν-model (4.47) reads, for large slopes [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF],

∂ t h = -a∇ |∇h| -2ν ∇h -b∆ 2 h, (4.49) 
in which, the nonlinear term is the well known p-Laplacian operator, with the exponent p = 2(1ν), which is negative for ν > 1. The one space dimension case of (4.49) reads

∂ t h = -∂ x a∂ x h (∂ x h) 2ν + b∂ xxx h , (4.50) 
which is a natural extension of

∂ t h = -∂ x 1 ∂ x h + ∂ xxx h . (4.51) 
Equation ( 4.50) appears also in the meandering instabilities [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF] and in step bunching instabilities [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF], for appropriate ν. To analyze the effect of step interactions due to elasticity on unstable step meandering during MBE, Paulin et al. [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF] arrived, for large t (or for large slope), at (4.51), where the unknown h is the local displacement of the step with respect to its position. In the context of a classification scheme for step bunching instabilities Pimpinelli et al. [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF] proposed a generic continuum equation of the form (ν = 1-ρ 2 )

∂ t h + ∂ x [K 1 m ρ + K 2 ∂ xx m n ] = 0, (4.52) 
where K 1 , K 2 , ρ and n are constants with K 2 > 0, K 1 ρ > 0 and m = ∂ x h is the local slope.

Equation of type (4.50) has triggered important developments of the theory. A particular proposal has been to study solutions that describe the roughness and the coarsening dynamics. In particular, explicit solutions, which are sought in a similarity form, often capture the essential physical properties and are often used in testing numerical schemes.

The aim of the present work is to reinforce the rule of similarity solutions of equation (4.50), where ν > 1/2. In fact, the goal of the present work is to give a detailed analysis of the coarsening property based on the classical similarity argument. Although, our results concerning the roughness and coarsening exponents bear on many approaches, our aim here is not to introduce another intuitive or speculative physical scenario. Rather, an effort is made to exhibit important qualitative features of the scaling function f (see below). This analysis is the content of Sections 4 and 5. In Section 2 we state the question we consider, while the question, which concerns the nature of the scaling function, is treated in Section 3.

The coarsening exponent or the scaling exponent ?

Physically, a typical configuration of a growing interface is characterized by a growing interface width H(t) (typical mound height) and a growing coarsening length scale λ (t) (typical mound lateral size). At late stages of growth pyramids or mounds, the lateral size is found experimentally to increase according to a power law in time, λ (t) ∼ t α with α = 1/z, where the dynamic exponent z 2.5 -6 depending on the material and possibly deposition condition used [START_REF] Rost | Coarsening of surface structures in unstable epitaxial growth[END_REF]. The interface width evolves as H(t) ∼ t β . A third characteristic is the typical slope, S(t) = max x |∂ x h|, which is observed to either approach a constant or to increase with time as S(t) ∼ t κ . The exponents α and β are called the coarsening exponent and the roughness exponent, respectively, and are connected to exponent κ, via the relation βα = κ. The slope increases without bound with time (without slope selection) if β > α.

Equation (4.49) has been studied by several authors. Since analytical solutions to (4.46) are difficult to extract, Golubović [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] examined the coarsening behavior by using a phase ordering type theory. The idea is to assume that the height function can be written in the form

h(x 0 + x,t), h(x 0 ,t) = H 2 (t)φ x λ (t) , (4.53) 
where φ is some structure characterizing the phase ordering process and the angular brackets represent a spacial average. Generally speaking, expression (4.53) is similar in many respects to the similarity form

h(x,t) = H(t) f (x/λ (t)). (4.54) 
Using equation (4.49) and supposing that (4.53) holds, it is proved that, for a large t,

H(t) ∼ t β , λ (t) ∼ t α ,
where the roughness exponent satisfies [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] 

β =            1+ν 4ν , if 0 < ν < 3 2 , 5 12 , if ν > 3 2 , (4.55) 
A second motivation is that the coarsening exponent and the scaling exponent are, sometimes, ambiguous. In order to clarify our presentation we use the conventional typical lateral size in the sense that the height function is a spatial periodic function with the period λ (t) for any fixed t; h(x + λ (t),t) = h(x,t).

We recall that the surface undergoes a coarsening process if the wavelength of the mound structure λ (t) increases in time. In references [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF], [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF] a criterion for coarsening in the dynamics of one-dimension front is studied. The authors argued that a coarsening process occurs if and only if the period of the steady state solution is an increasing function of its amplitude (or its typical slope). In reference [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF] the authors remarked that the knowledge of the stationary periodic solutions allows to determine the coarsening law λ (t). In simple words, the exponent scaling α in (4.57) is a coarsening exponent if the shape function f is a periodic function. Hence, we may conclude that the coarsening process cannot be predicted by the simplest scaling hypothesis in all situations. However, the scaling exponents α and β can be obtained easily from the scaling transformation (provided that f exists).

In 1997 Kersner and Vicsek [START_REF] Kersner | Travelling waves and dynamic scaling in a singular interface equation: analytic results[END_REF] analyzed the one-dimensional singular equation of Zhang [START_REF] Zhang | Singular dynamic interface equation from complex directed polymers[END_REF] ∂

t h = ∂ xx h + ln |∂ x h|, (4.58) 
which was introduced in a study on complex directed polymers. The authors obtained pseudo-similarity solutions having the form

h(x,t) = (t + t 0 ) f (η) + 1 2 (ln(t + t 0 ) -1)) , η = x √ t + t 0 , t 0 ≥ e. (4.59) 
It is shown that f (η) is monotonic increasing (resp. decreasing) for η > 0 (resp. η < 0). It follows immediately from this that any pseudo-similarity solution to (4.58) cannot admit a lateral periodicity.

Similar conclusion was obtained in [START_REF] Guedda | Self-similar solutions to the generalized deterministic KPZ equation[END_REF], where the authors studied the one-dimensional generalized KPZ equation [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF], [94] 

∂ t h = ∂ xx h + µ|∂ x h| q , (4.60) 
where µ and q are positive numbers. Assuming the scaling hypothesis (4.57) it is found that β = q-2 2(q-1)

and α = 1 2 . Moreover, if β > 0 (q < 1 or q > 2) any shape function f such that f (0) > 0 and f (0) = 0, is monotonic increasing for η > 0.

In the last example we shall consider our interfacial equation. As in [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF] we look for a stationary solution to (4.50) having the form

h(x,t) = h s (x) = Ax τ , (4.61) 
where x > 0. Here it is required that A is a positive constant and ν > 1. Inserting this scaling into equation (4.50) we obtain

A = ν 1 + ν aν 2 b(ν -1) 1 2ν , τ = 1 + ν ν . (4.62) 
Clearly, this stationary equation can be written as

h s (x) = t 1+ν 4ν f s (η), η = xt -1/4 , (4.63) 
where the shape function f s (η) = Aη (1+ν)/ν , which is monotonic increasing for η > 0.

As it is mentioned before, the aim of this work is to re-examine in detail the similarity reduction, for the one-dimensional case, where the exponent ν > 1 2 . Thus the question of existence of the shape function arises, and together the question of whether a solution to the resulting equation has a physical meaning or is not distinguished from one being observed in practice. In the present study, we reinforce the vital role of the scaling function with respect the coarsening process. Roughly speaking we are going to explore the scaling assumption (4.54), in the next sections. We shall see that the shape function f has to satisfy a singular fourth-order ordinary differential equation which is interesting by its challenge for mathematical analytic and numerical methods. Under appropriate initial conditions we shall see that the singular fourth-order ordinary differential equation admits periodic solutions that capture the important features of the roughness and the coarsening dynamics.

Detailed scaling analysis

As it is said in the introduction the purpose of this work is to investigate periodic similarity solutions of the one-dimensional ν-model (4.50);

∂ t h = -∂ x a∂ x h (∂ x h) 2ν + b∂ xxx h , (4.64) 
where a, b and ν are positive constants. In contrast to [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF], here the positivity of the local slope m = ∂ x h for all x is naturally ruled out.

In passing, we note that the local slope satisfies the following nonlinear equation

∂ t m = -∂ xx (am p + b∂ xx m) , p = 1 -2ν. (4.65)
This equation is known, for p > 1, as the limit unstable Cahn-Hilliard equation [START_REF] Evans | Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation[END_REF]. Mathematically, it is a particular case of the following equation

∂ t m = -A∂ x (m q ∂ x m) -B∂ x (m n ∂ xxx m), (4.66) 
which, for appropriate n and q, has been used to model one-dimensional dynamics of a thin film of viscous liquid, in the presence of van der Waals forces [START_REF] Oron | Long-scale evolution of thin liquid films[END_REF], [START_REF] Rosenau | Compactification of patterns by a singular convection or stress[END_REF]. One of the central questions concerning (4.66)

is the finite time rupture, t 0 , of the film i.e., m vanishes somewhere at t 0 .

Recently, Evans et al. [START_REF] Evans | Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation[END_REF] studied the limit unstable d-dimensional Cahn-Hilliard equation

∂ t m = -∆ ∆m + |m| p-1 m , (4.67) 
where p > 1. The authors constructed blow-up and global similarity solutions in different ranges of the parameters p and d. It is shown, in the one dimensional case, that for any p = 3 any L 1similarity profile for m has zero mass and hence changes sign. From this it is not unreasonable to predict that if p < 0 any bounded similarity profile f to (4.64) develops a singularity ( f = 0 or ∂ x h = 0).

Let us return to equation (4.64). Since the physical values of a and b turn out to be unimportant for the coarsening process we may assume that a = b = 1. A priori similarity solutions can be represented in the form

h(x,t) = t 1+ν 4ν f (η), η = xt -1 4 . (4.68) 
We can also, as usual, impose the scaling hypothesis (4.57). This immediately leads to β = 1+ν 4ν and α = 1 4 , and to the following singular ordinary differential equation (SODE) for the shape or the scaling function f

f (iv) + (1 -2ν) f f 2ν - 1 4 η f + 1 + ν 4ν f = 0, (4.69) 
where primes denote differentiation with respect to the similarity variable η = xt -1 4 .

Note that the scaling relation (4.68) and then the similarity equation (4.69) can be extracted from the interfacial equation due to its natural scaling-invariant nature. As in [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF], we use the following scaling

x = µy, t = χτ, h(x,t) = κu(y, τ),
where µ, χ and κ are arbitrary constant parameters.

Since

∂ t h = κ χ ∂ τ u, ∂ x h = κ µ ∂ y u, ∂ 2 x h = κ µ 2 ∂ 2 y u
we get from (4.50)

κ χ ∂ τ u + κ 1-2ν µ 2(1-ν) ∂ y (∂ y u) 1-2ν + κ µ 4 ∂ 4 y u = 0.
To keep the interfacial equation invariant, the following must be fulfilled

κ χ = κ 1-2ν µ 2(1-ν) = κ µ 4 , (4.70) 
so that

χ = µ 4 , κ = µ 1+ν ν , and h(x,t) = µ 1+ν ν u(xµ -1 ,tµ -4 ). Consequently h(x,t) = t 1+ν 4ν u(xt -1/4 , 1),
with t = µ 4 , which leads to (4.68), where f (η) = u(η, 1), whenever u or f exists.

As anticipation, we can investigate directly the SODE. However, for a mathematical consideration, we are looking for a class of solutions having the following (general) pseudosimilarity form

h(x,t) = H(t)F(η, ζ (t)), η = xΛ(t), (4.71) 
where the functions H, Λ(= 1/λ ), ζ and F have to be determined. The variable ζ is referred as the pseudosimilarity variable. We shall be especially concerned with the question of wether or not the general scaling form (4.71) leads to (4.68) and when it does how the shape function f allows to describe periodic solutions.

Substituting (4.71) into (4.64), we obtain for F the equation

∂ ηηηη F + H -2ν Λ -2(1+ν) ∂ η ∂ η F 1-2ν + H H -1 Λ -4 F + Λ Λ -5 η∂ η F + ζ Λ -4 ∂ ζ F = 0. (4.72) 
According to (4.68), we assume that H(0) = 0. Equation (4.72) must be a PDE for F, so that

H -2ν Λ -2(1+ν) , H H -1 Λ -4 , Λ Λ -5 and ζ Λ -4
are constants. In this context equation (4.72) reads

∂ ηηηη F + p∂ η ∂ η F 1-2ν + qF + rη∂ η F + s∂ ζ F = 0, (4.73) 
where

H -2ν Λ -2(1+ν) = p, H H -1 Λ -4 = q, Λ Λ -5 = r, and ζ Λ -4 = s. (4.74) 
It is easily shown that solutions to (4.74) can be expressed as, for some real parameters A, B,C and D,

H(t) = At 1+ν 4ν , Λ(t) = Bt - 1 4 (4.75) 
and

ζ (t) = C lnt + D, (4.76) 
for any ν > 0, provided that F exists. Note that the constants A, B,C and D satisfy

A -2ν B -2(1+ν) = p, 1 + ν 4ν B -4 = q, - 1 4 
B -4 = r, CB -4 = s.

The above argument prompts us to examen a family of coordinates ζ . To this end, we consider a continuous function δ ≡ 0 and look for ζ satisfying

ζ Λ -4 = δ (ζ ). (4.77) 
Together with (4.75) we deduce dζ δ (ζ ) = B 4 dt t , so that the coordinate ζ is given implicitly by

F (ζ ) = B 4 lnt, (4.78) 
where F is a primitive of 1/δ whenever F exists.

With the above in hand, we may carry out a reduction of (4.73) with δ (ζ ) instead of s. This new PDE cannot be solved analytically in the general case. However, special solutions may be mapped out by making use of the separation of variables method which assumes an additive solution of form

F(η, ζ ) = R(η) + G (ζ ).
Substituting of this assumed solution yields

R (iv) + p R 1-2ν + qR + rηR = -qG -δ (ζ ) dG dζ = -Γ, (4.79) 
where Γ is a constant. A solution to the G -equation is expressed, for an undetermined constant σ , as

G (ζ ) = σ e -qF (ζ ) + Γ q ,
or, equivalently,

G = σt -1+ν 4ν + ΓB 4 4ν 1 + ν .
The determination of the function R is postponed for the next section.

The first surprising property is that the quantity H(t)G does not depend on δ . Then, in this event, (4.71) reads

h(x,t) = At 1+ν 4ν R(η) + ΓB 4 4ν 1 + ν + Aσ . (4.80) 
Since the constant Aσ can be eliminated by redefining h = h -Aσ we may assume σ = 0. Note that the shifting function f = R + ΓB 4 4ν 1+ν leads to (4.68), what one would expect, and needs to be a solution to the following singular ordinary differential equation

f (iv) + p(1 -2ν) f ( f ) 2ν + q f + rη f = 0. ( 4.81) 
Without loss of generality we may assume that A = B = 1, which leads to (SODE);

f (iv) + (1 -2ν) f ( f ) 2ν + 1 + ν 4ν f - 1 4 η f = 0.
As a first conclusion, our approach, which has a remarkable degree of simplicity, leads to a wide range of pseudosimilarity variables and the associated pseudosimilarity solutions are in fact similarity solutions which have the same shape. The issue of this scaling argument will be clarified by showing that the scaling function is a periodic function.

Analytical properties of the scaling function

We now wish to consider the implication of the profile f to the coarsening phenomena. We shall present a mathematical analysis that verifies the existence of the profile and exhibit its geometrical properties. We add to SODE a natural assumption that f must be periodic, which will describe, according to (4.68), the coarsening dynamic to (4.50), completing in this way the results of [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF], [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF], [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF] and [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF].

The existence of a periodic solution will be established via a shooting argument. For this purpose we consider the following initial value problem

           f (iv) + (1 -2ν) f ( f ) 2ν -1 4 η f + 1+ν 4ν f = 0, η > 0, f (0) = γ 0 , f (0) = γ, f (0) = τ 0 , f (0) = τ, (4.82) 
where γ 0 > 0, γ > 0, τ 0 < 0 and τ < 0 are real (shooting) parameters. The real parameter γ plays the role the typical slope of the f . Note that since γ and -τ are positive the conditions on γ 0 and τ 0 may be relaxed to γ 0 ≥ 0 and τ 0 ≤ 0. In addition, we may assume that γ 0 = 0 and τ 0 = -1 without any essential physical change. Note that if f is periodic, we may identify exactly the coarsening length scale λ (t) for (4.64); namely

λ (t) = η p t 1/4 ,
where η p , depending on γ, τ and ν, is the period of f .

Most recently, the 1-model has been studied by Guedda and Trojette [START_REF] Guedda | Coarsening in an interfacial equation without slope selection revisited: Analytical results[END_REF]. It is shown that f is periodic and satisfies

f (η) ∼ f (η c ) ± 1 2 (η -η c ) 2 | ln(η -η c ) 2 |,
as η → η c , where η c is an extrema point.

In the present work we shall see that the idea of [START_REF] Guedda | Coarsening in an interfacial equation without slope selection revisited: Analytical results[END_REF] can be extended to any ν > 1 2 . The first property we use is that for any γ = 0 problem (4.82) can be locally transformed to a system of ordinary differential equations which, using the standard theory, admits a unique local solution f . Moreover, this solution satisfies

           f (η) f (η) + 1+ν 4ν f (η) f (η) -1 8 η( f ) 2 (η) = |τ| + η 0 ( f ) 2 + (2ν -1) f 2 f 2ν + 1+2ν 8ν f 2 ds, (4.83) 
and

f (η) + f 1-2ν (η) = τ + γ 1-2ν + 1 4 η f (η) - 1 + 2ν 4ν η 0 f (s)ds, (4.84) 
for all η ∈ (0, η c ), where (0, η c ) is the maximal interval of existence. Note that the real number η c (the existence time) is characterized by ). Hence f is monotonic strictly decreasing on (0, η c ). Next, we shall see that f < 0 and f ≤ 0 on (0, η c ), which constitutes the second property.

lim η↑η c | f (η)| + | f (η)| + | f (η)| + | f (η)| = ∞, (4.85 
To confirm this, we assume, by contradiction, that there exists a real number 0 < η 0 < η c such that f ≤ 0 on (0, η 0 ), f (η 0 ) = 0, f (iv) (η 0 ) ≥ 0, f > 0 on (η 0 , η 0 + ε) and f < 0 on (0, η 0 + ε), for some ε > 0 small enough. From identity (4.83) we find that

1 4 η f - 1 + ν 2ν f < 0 (4.86)
for all η 0 ≤ η < η 0 + ε. From equation in (4.82) we deduce that the above inequality excludes f (iv) (η 0 ) ≥ 0. Therefore f is nonpositive and f is negative on (0, η c ).

The third property that we need is that η c is finite,

f (η c ) = 0 (4.87)
and that f (η) is unbounded as η approaches η c . For the sake of contradiction we assume that f is global, i. e., η c = ∞. Since f is positive and monotonic decreasing f (η) → f ∞ as η approaches infinity, for some 0 ≤ f ∞ < γ. Moreover, since f is monotonic decreasing, we must have f (η) → 0 as η → 0, and then f > 0, which is a contradiction. Therefore, f is not global. Let us now suppose that f (η c ) is positive. We deduce from (4.84) that f and (then) f are bounded on (0, η c ), which violate (4.85).

Finally, a closer inspection of (4.84) reveals that f (η) → -∞ as η → η c .

The last property we employ is that f f 1-2ν and f (iv) tend to -∞ as η → η c and that the behavior of f (η) in a left neighbourhood of η = η c is controlled by the equation

f (iv) + (1 -2ν) f f 2ν-1 = 0, or f + f 1-2ν = 0. (4.88)
For the purpose of investigating the influence of parameters γ and τ, computations were carried out, using ODE45. It emerges that at the blowing-up point (or at the boundary η = η c ) the first derivative of f vanishes, but the second derivative suffers an infinite jump for ν ≥ 1 (see Figure 4.8 for ν = 2). An immediate consequence is that the interfacial equation (4.64) admits solutions h such that ∂ x h(x(t),t) = 0 and |∂ xx h(x(t),t)| = ∞, where x(t) = η c t 1/4 , for ν > 1.

We now summarize the pertinent observations from these analytical and numerical results. For any γ > 0 and any τ < 0, problem (4.82) cannot be solved globally and cannot develop a periodic structure which, at first sight, clashes with that predicted in [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF], [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF] and with that observed by experiments. A natural desire would be to understand how the nonglobal solution behaves for η > η c (complete/incomplete singularity) and how it is intended to capture the coarsening law ? Those questions will be treated in the next section. 

Steady-state solutions and coarsening process

According to the physical results given in [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF], [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] and [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF] the main mathematical deductions of the previous section have to be refined. Also the appearance of singularities in higher derivatives of f deserves attention. In preparation to the discussion of the coarsening properties, we recall that a partial answer to the above questions was given in Section 4, where it is proved that near the singular (or the interface) point the solution f can be regarded as a solution to the following ordinary differential equation

f + f 1-2ν = 0. (4.89) 
Let us note that (4.89) appears when studying stationary solutions to (4.64), which is the key of the coarsening process. To be more precise, it is reported in a large literature (see for example [START_REF] Politi | Instabilities in crystal growth by atomic or molecular beams[END_REF], [START_REF] Politi | Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model[END_REF], [136] and references therein) that the endless coarsening is related to the existence of periodic steady states at all wavelengths (larger than a certain critical wavelength).

Recently, Politi and Misbah [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF], [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF] studied a criterion for coarsening in the dynamics of onedimension front. The authors argued that a coarsening process occurs if and only if the period of the steady state solution is an increasing function of its amplitude or its typical slope.

In the present section we reinforce the role of the periodic steady states to (4.64). Roughly speaking we are going to obtain a family of periodic solutions h S = h S (x) that are parametrized by the typical slope S = max x |∂ x h S (x)|. This allows us to analyze the coarsening process and to investigate whether the profile f admits an extension for η > η c . If such continuation exists, we say that the singularity (or the blow-up) is incomplete.

The steady states solutions to (4.64) satisfy the equation

1 (∂ x h) 2ν-1 + ∂ xxx h = c, (4.90) 
where c is an undetermined constant. Since equation (4.64) is invariant under the symmetry x → -x, we may assume that c = 0. We therefore have to solve It may be noted that equation (4.92) stems also from the ν -model, for appropriate ν (dual index to ν)

h + h 1-2ν = 0, ( 4 
and for the particular case where the relaxation term is neglected in comparison with ∂ x h/(∂ x h) 2ν . More precisely, if we consider the singular equation

∂ t h = -∂ x ∂ x h/(∂ x h) 2ν ,
where ν > 1/2, or the singular equation for the local slope

∂ t m = -∂ 2 x m 1-2ν ,
and look for solutions of the form (variable separations)

m(x,t) = A (t)ζ (x),
one finds that, for some constant σ A (t) = (A 2ν (0) + 2ν σt) 1/2ν , and ζ satisfies

(ζ 1-2ν ) + σ ζ = 0.
This leads, for σ > 0, to equation (4.92) with ν = ν 2ν -1 , which is connected to ν via 1 2ν + 1 2ν = 1. We ought to mention that equation (4.92), which is referred as the singular Emden-Fowler equation, was studied in 1978 by Taliaferro [172]. The author showed that the problem (q = 2ν -1)

m + m -q = 0, 0 < x < 1, (4.94) 
m(0) = m(1) = 0, (4.95) 
where q > 0, has a unique positive solution.

Numerical positive solutions to problem (4.94), (4.95), for q > 1, can be found in the paper by Lima and Oliveira [START_REF] Lima | Numerical solution of a singular boundary value problem for a generalized Emden-Fowler equation[END_REF]. Based on [172], the authors concluded that any local positive solution satisfies m(x) ∼ (1 + q) 2 2(q -1)

1/(1+q)

x 2/(1+q) as x → 0 + . (4.96)

In this section we are interested in the existence of periodic solutions to (4.92), (4.93), where ν > 1/2.

Note that estimate (4.96) breaks down if q = 1 or ν = 1. As mentioned before this critical case is analysed in [START_REF] Guedda | Coarsening in an interfacial equation without slope selection revisited: Analytical results[END_REF]. The authors obtained periodic solutions which behave like m(x) ∼ x √ ln x 2 , as x → 0 + . So, the next result deals with the existence of periodic solutions to (4.92), (4.93), where 1 = ν > 1/2. A global view of the nature of steady state solutions will be obtained via a construction of trajectories in the phase space (m, m ).

Equation (4.92) has the first integral

(m ) 2 + 1 1 -ν m 2(1-ν) = 1 1 -ν S 2(1-ν) , (4.97) 
where ±S is the turning point or the typical slope (i.e. m = 0 when |m| = S = max x |m|). We look for solutions having finite typical slope.

Consider first the case ν > 1. From (4.97) we get

m = ± 1 ν -1 m 2(1-ν) -S 2(1-ν) . (4.98)
Hence, m is given by m(x) = F -1 (±x), where

F (y) = √ ν -1 y 0 dz z 2(1-ν) -S 2(1-ν) . (4.99)
This is an implicit equation for m if S is known. Moreover, a simple analysis of (4.98) reveals that m is periodic with the period,

λ p (S) = S ν λ p (1), (4.100) 
where

λ p (1) = 2 √ π √ ν -1 Γ 1 2 + 1 2(ν-1) Γ 1 + 1 2(ν-1)
.

This proves that a perpetual coarsening takes place. Equation (4.100) also shows that the period of the steady state uniquely determines the typical slope and that a periodic steady state exists for any period λ > 0.

Equation (4.98) or function (4.99) will be also used to exhibit the behavior of m(x) as x approaches 0.

Because

m(x)/S 0 dz z 2(1-ν) -1 = ±S -ν 1 ν -1 x,
it can be verified that

m(x) ∼ ± ν 2 ν -1 1/2ν x 1/ν , (4.102) 
as x → 0 + , and then

h(x) ∼ h(0) ± ν 1 + ν ν 2 ν -1 1/2ν
x (1+ν)/ν , (4.103) as x → 0 + . The above estimates can be deduced from (4.96) by setting q = 2ν -1.

Equation (4.98) can be solved exactly for ν = 2. Using (4.99), we find

m(x) = ± x(2 - x S 2 ), for 0 ≤ x ≤ λ p (S)/2 = 2S 2 .
Observe that the value λ p (S) = 4S 2 can be obtained from Eq. (4.101) by taking ν = 2.

Note also that if we look for solutions with a vertical tangent S = ∞, we obtain m = ± 1 ν-1 |m| 1-ν . From which we may deduce, for x ≥ 0, that

m(x) = ± ν 2 ν -1 1/2ν x 1/ν , (4.104) 
and then, as it is expected (see (4.61) and (4.62)),

h(x) = h(0) ± ν 1 + ν ν 2 ν -1 1/2ν x (1+ν)/ν , (4.105) 
for x ≥ 0.

For the case 1 2 < ν < 1 the same treatment yields to

m(x)/S 0 dz 1 -z 2(1-ν) = ±S -ν 1 1 -ν x,
as soon as |m(x)| ≤ S. From this we may deduce that m is λ p (S)-periodic, where the period is given by

λ p (S) = 2S ν √ π √ 1 -ν Γ 1 2(1-ν) Γ 1 2 + 1 2(1-ν) . (4.106) 
Moreover m and h satisfy, for small x,

m(x) ∼ ±S 1-ν 1 1 -ν x, h(x) ∼ h(0) ± 1 2 S 1-ν 1 1 -ν x 2 . (4.107)
Clearly, the above estimates can be extended to any values 0 < ν < 1. In particular if ν = 1/2 we get the following exact solution

m(x) = ±x √ 2S -x/2 , for 0 ≤ x ≤ √ 2S.
However, the analysis of SODE, where 0 < ν < 1 2 , is more problematic. As a final application, we return to SODE, where 1 = ν > 1 2 . Recall that close to η = η c , this equation behaves like (4.91). Hence, we may deduce that the singularity is incomplete, and that f is a (global) periodic solution, with the period n p = O(n c ). Our findings confirms that the typical mound lateral size, the typical mound height and the typical mound slope grow with time like t 1/4 ,t (1+ν)/4ν and t 1/4ν respec-tively. Moreover, we have the following estimate

f (η) ∼ f (η c ) ± ν 1 + ν ν 2 ν -1 1/2ν |η c -η| (1+ν)/ν , for ν > 1 and f (η) ∼ f (η c ) ± 1 2 S 1-ν 1 1 -ν (η c -η) 2 ,
for 1/2 < ν < 1 near an extrema η c .

Conclusion

We have presented a detailed analysis of similarity solutions to the one-dimensional singular interfacial equation. This equation was used, for large slope, to describe the mound-type structures on the growing surfaces, where the destabilizing current is of the form suggested by Villain. A central result of the similarity assumption is that the singular interfacial equation is reduced to a singular ordinary differential equation satisfied by the shape or the similarity profile f . Although the mathematical and numerical results proved the local existence of the profile which is singular at some point, our first approach cannot be directly used to understand the coarsening phenomenon. An additional analysis, based on periodic steady states, showed that the singularity is incomplete; that is the profile f is extended to a periodic solution which confirms the power law of the typical mound lateral size, the typical mound height and the typical mound slope. Moreover the interfacial equation admits solutions which satisfy ∂ x h = 0 at (η c t 1/4 ,t), for some real number η c > 0, and have the following estimate

h(x,t) ∼ t t 0 (1+ν)/4ν h(x 0 ,t 0 ) ± ν 1 + ν ν 2 ν -1 1/2ν |t 1/4 η c -x| 1+ν ν , (4.108) 
for ν > 1 and for 1/2 < ν < 1,

h(x,t) ∼ t t 0 (1+ν)/4ν h(x 0 ,t 0 ) ± 1 2 t (1-ν)/4ν S 1-ν 1 1 -ν (t 1/4 η c -x) 2 . (4.109)
As a consequence of estimate (4.108) the second derivative of h suffers an infinite jump for ν > 1.

The study of nonlinear elliptic problems with singular nonlinearities is motivated by its various applications in too many fields, for example, in fluid mechanics, newtonian fluids, in flow through porous media, in glaciology [START_REF] Cîrstea | Weak solutions of quasilinear problems with nonlinear boundary condition[END_REF] and boundary layer phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrically conducting materials and some equations that model the electrostatic MEMS devices or Micro-Electro Mechanical systems [START_REF] Ho | Micro-electro-mechanical-systems (MEMS) and fluid flows[END_REF].

In order to trace the objectives of our work, we will start by recalling some previous researches where three types of problems were treated: quasilinear equations with regular data, semilinear problems with singular nonlinearities and coupling of the both problems in the regular case.

_ Case where f is regular:

• Case where b ≡ 0, the problem is simply written in the form

               -∆u = a(x) u γ + λ f (x) in Ω, u > 0 in Ω, u = 0 on ∂ Ω, (5.2) 
for the homogeneous case (i.e. λ = 0), a large literature exists on the subject, we cite in particular the pioneer works of ( [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF], [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] and references therein) in which they show by using the method of sub-and supersolutions, that if a(x) is a bounded smooth function, then (5.2) has a classical solution. The case where a(x) is only a function in L 1 (Ω) was treated in [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF] where he proved some existence and regularity results for problem (5.2) depending on γ: if γ ≤ 1, there exists a solution u ∈ H 1 0 (Ω), otherwise if γ > 1, there exists a solution u ∈ H 1 loc (Ω) and u

γ+1 2 ∈ H 1 0 (Ω).
The nonhomogeneous case (i.e. λ > 0) has also been considered in [START_REF] Giachetti | Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at u= 0 in a domain with many small holes[END_REF] where the authors proved the existence of bounded solutions to (5.2) if a and f are functions that belong to L q (Ω) for q > N 2 .

• Case where a ≡ 0, the problem is formulated in the following form

               -∆u = b(x)|∇u| p + λ f (x) in Ω, u > 0 in Ω, u = 0 on ∂ Ω, (5.3) If 1 < p ≤ 2, b ∈ L ∞ (Ω)
and f is regular enough, then (5.3) has been considered in the literature.

For instance, it is shown in [START_REF] Amann | On some existence theorems for semi-linear elliptic equations[END_REF] that if (5.3) has a subsolution u and a supersolution u in W 2,q (q > N)

with u ≤ u in Ω, then there exists a solution u to (5.3) such that u ≤ u ≤ u.

This problem has also been studied in [START_REF] Lions | Résolution de problemes elliptiques quasilinéaires[END_REF] when f ∈ W 1,∞ (Ω). He showed that if (5.3) has a nonnegative supersolution defined in W 2,q (Ω) for (q > N), then it has a solution no matter the value of p (1 ≤ p < ∞). A key step in this technique relies on the estimate of ∇u in L ∞ (Ω), that's why he used a method originally introduced by Bernstein and later developed in ( [START_REF] Ladyzhenskaya | Gloval estimates of the gradient of solutions of quasilinear elliptic and parabolic equations[END_REF], [START_REF] Ladyzhenskaya | Certain classes of nonuniformly elliptic equations[END_REF]),( [START_REF] Serrin | The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables[END_REF], [START_REF] Serrin | Gradient estimates for solutions of nonlinear elliptic and parabolic equations[END_REF]).

_ Case where f is only integrable or a Radon measure:

• Case where b ≡ 0, has been treated by [START_REF] Lecaros | ESAIM-Control, Optimisation and Calculus of Variations[END_REF], in which the two different cases γ ≤ 1 and γ > 1 have been studied separately: for γ ≤ 1, they obtain the existence of a weak solution u ∈ W 1,q 0 (Ω)

for 1 ≤ q < N N-1 through an approximation argument, and for γ > 1, they prove the existence and uniqueness of the solution only in W 1,q loc (Ω) for every 1 ≤ q < N N-1 , such that T k (u) • Case where a ≡ 0, the situation is quite different if f is a nonnegative integrable function or, more generally a given finite nonnegative measure on Ω. Since f is not regular enough in this case, the usual techniques that lead to the W 1,∞ -solutions can not be exploited. This difficulty was the main motivation behind the work [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF]. They distinguished different cases where they found existence and nonexistence results for different p values in (5.3) using the isoperimetric inequality: if p > 1, the existence of a solution is obtained if λ is sufficiently small and the measure f does not charge the sets of W 1,pcapacity zero 1 p + 1 p = 1 , and if p ≤ 2, assuming the existence of a supersolution w ∈ W 1,2 0 (Ω), there exists a solution for problem (5.3).

For the case when λ ≡ 0, b(x) ≡ I and 1 < p ≤ 2, the model problem is defined in [START_REF] Abdellaoui | Nonlinear singular elliptic problem with gradient term and general datum[END_REF] in the ψ] -1 is continuous.

In the near future the authors will tackle the existence and the uniqueness of solutions for the quasilinear singular parabolic problem with initial data f ∈ M + B (Ω):

                 u t -∆ u = a u γ + b|∇u| p in Ω × (0, T ) u = 0 on ∂ Ω × (0, T ) u(0) = λ f in Ω u > 0 in Ω × (0, T ) (5.8) 
This chapter is organized as follows. We devote the next section to the necessary conditions on the data in order to get existence of weak solutions in (P λ ). The third section deals with the existence of solutions for the non-singular sublinear problem and the singular sublinear problem, for every nonnegative Radon measure depending on the value of γ. The main tool in this section is the isoperimetric inequality.

In the last section, we show that the uniqueness of the solution holds for every 1 ≤ p < N N + 1 and γ > 0.

Definitions and properties

Our aim in this work is to prove the existence of a suitable weak solution to (P λ ). Here, as well as in the proof of other similar results, the first step is to precise in which sense we want to solve our problem. On one hand, a solution to (P λ ) has to be understood in the weak distributional meaning. On the other hand, we have to take into account the singular nonlinearity at zero. For this purpose, we adopt the following definition:

Definition 3 Let u ∈ W 1,1 loc (Ω). We say u ≤ 0 on ∂ Ω if (u -ε) + ∈ W 1,1 0 (Ω) for every ε > 0. Furthermore, u = 0 on ∂ Ω if u is nonnegative in Ω and u ≤ 0 on ∂ Ω.

Definition 4

If γ > 0, then a weak solution to problem (P λ ) is a function

               u ∈ W 1,1 loc (Ω) and u = 0 on ∂ Ω in the sense of Definition 3, ∀ω ⊂⊂ Ω, ∃c ω , u ≥ c ω > 0 in ω, Ω ∇u∇ϕ = Ω a(x) u γ ϕ + Ω b(x)|∇u| p ϕ + λ Ω < f , ϕ >, ∀ϕ ∈ C 1 c (Ω).
(5.9)

Necessary conditions for existence 5.2.1 Size condition Theorem 3

Let p > 1, γ > 0 and λ > 0. We suppose that a ∈ L 1 (Ω) and there exists a ball B 0 in Ω such that b(x) ≥ C 0 > 0 a.e x ∈ B 0 and B 0 f > 0. Then there exists 0 < λ * < ∞ such that (P λ ) does not have any solution for λ > λ * .

Proof.

Assume u is the solution of (P λ ).

We have

-∆u = a(x) u γ + b(x)|∇u| p + λ f in D (B 0 ). (5.10) Since a(x) u γ ≥ 0, then we get -∆u ≥ b(x)|∇u| p + λ f in D (B 0 ). (5.11) 
Let ϕ ∈ C ∞ 0 (B 0 ), ϕ ≥ 0, we multiply (5.11) by ϕ and integrate to obtain

λ B 0 ϕ f ≤ B 0 ∇u∇ϕ - B 0 b(x)|∇u| p ϕ ≤ B 0 ∇u∇ϕ -C 0 B 0 |∇u| p ϕ ≤ B 0 ϕ ∇u ∇ϕ ϕ -C 0 |∇u| p ≤ C p B 0 ϕ| ∇ϕ ϕ | p , in which C p = p -1 p p p-1 C 1 p-1 0 . This implies that ∀ϕ ∈ C ∞ 0 (B 0 ) λ B 0 ϕ f ≤ C p B 0 |∇ϕ| p ϕ p -1 .
(5.12)

Now, let us prove that this implies λ is finite (whence the existence of λ * ). By density, (5.12) remain valid for ϕ ∈ W 1,∞ 0 (B 0 ).

The existence of λ * will be proved if we can construct ϕ such that 

ϕ ∈ W 1,∞ 0 (B 0 ), ϕ > 0 on B 0 , C p B 0 |∇ϕ| p ϕ p -1 < ∞. ( 5 
(r) =        1 C 0 |g(r)| p + M 0 ≤ r ≤ η 0 η < r < ∞ (5.16) Writing ϕ(x) = h(|x|), we check that h (r) = -g (r)C 0 p |g(r)| p-1 (C 0 |g(r)| p + M) 2 = -(C 0 |g(r)| p + M)C 0 p |g(r)| p-1 (C 0 |g(r)| p + M) 2 = -C 0 p |g(r)| p-1 (C 0 |g(r)| p + M) = -h(r) C 0 p |g(r)| p-1 , I = C p B 0 |∇ϕ| p ϕ p -1 = C p ω N η 0 r N-1 h(r) |C 0 p |g(r)| p-1 | p dr ≤ Cp η N-1 η 0 h(r)|g(r)| p dr in which Cp = C p ω N C 0 p.
By using (5.16), we have

I ≤ Cp η N-1 η 0 |g(r)| p C 0 |g(r)| p + M dr ≤ Cp C 0 η N-1 η 0 1 1 + M C 0 ≤ C η N M
this proves (5.13) and theorem 2.1.

In order to prove existence of (P λ ) by approximation, we will need some preliminaries on the approxi-then, we get

1 h [t≤u n ≤t+h] |∇u n | 2 ≤ [t≤u n ≤t+h] a n (u n + ε) γ u n -t h + [u n ≥t+h] a n (u n + ε) γ + [u n ≥t] b|∇u n | + λ || f n || L 1 (Ω) . Since u n -t h ≤ 1 and || f n || L 1 (Ω) ≤ || f || M b (Ω) , we obtain 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ [u n ≥t] a n (u n + ε) γ + ||b|| L N+η (Ω) [u n ≥t] |∇u n | q 1 q + λ || f || M b (Ω) , in which q = (N + η) = N N-1 -ε(η), ε(η) > 0.
Thanks to the nonnegativity of u n , we get the following

1 h [t≤u n ≤t+h] |∇u n | 2 ≤ C 1 ε γ +C q [u n ≥t] |∇u n | q 1 q +C λ , (5.28) 
where

C 1 = ||a|| L 1 (Ω) , C q = ||b|| L N+η (Ω) and C λ = λ || f || M b (Ω) .
Now, we assume that N ≥ 2 so that q < 2 then we use the following two inequalities

1 h [t≤u n ≤t+h] |∇u n | q ≤ 1 h [t≤u n ≤t+h] |∇u n | 2 q 2 µ(t) -µ(t + h) h 2-q 2 , (5.29) and 1 h [t≤u n ≤t+h] |∇u n | ≤ 1 h [t≤u n ≤t+h] |∇u n | q 1 q µ(t) -µ(t + h) h q-1 q
.

(5.30)

Next, we take the q th power of (5.30) and we multiply it by the square of (5.29) to find

1 h [t≤u n ≤t+h] |∇u n | q 1 h [t≤u n ≤t+h] |∇u n | q ≤ 1 h [t≤u n ≤t+h] |∇u n | 2 q µ(t) -µ(t + h) h . (5.31)
Now, we plug the inequality (5.28) into the previous inequality, and we let h tend to zero, to obtain a differential inequality satisfied by σ n (t) = [u n ≥t] |∇u n | q and defined in the following sense

- d dt [u n ≥t] |∇u n | q -σ n (t) ≤ ||a|| L 1 (Ω) ε γ +C q (σ n (t)) 1 q +C λ q .
(5.32)

On the other hand, according to the isoperimetric inequality (5.18), we get

N q ω q N n µ n (t) q(1-1 N ) (-σ n (t)) ≤ ||a|| L 1 (Ω) ε γ +C q (σ n (t)) 1 q +C λ q -µ n (t) , (5.33) 
using Young's inequality on the right hand side term, this also gives

-σ n (t) ≤ N -q ω -q N n D 1 ε γq + D q σ n (t) + D λ µ n (t) q( 1 N -1) (-µ n (t))), (5.34) 
in which

D 1 = ||a|| L 1 (Ω) q , D q = C q q and D λ = C λ q . This implies that -σ n (t) ≤ D1 ε γq + Dq σ n (t) + Dλ µ n (t) q( 1 N -1) (-µ n (t))), (5.35) 
where

D1 = N -q ω -q N n D 1 , Dq = N -q ω -q N n D q and Dλ = N -q ω -q N n D λ .
This can be rewritten as

- d dt e -kµ n (t) α σ n (t) ≤ d dt e -kµ n (t) α 1 Dq D1 ε γq + Dλ , (5.36) 
in which α = 1q N-1 N and kα = Dq .

Then by integrating from t = 0 to t = ||u n || ∞ , and knowing σ n (||u n || ∞ ) = 0 and µ n (||u n || ∞ ) = 0, we get

e -kµ n (0) α σ n (0) ≤ 1 Dq D1 ε γq + Dλ . (5.37) Since µ n (0) ≤ |Ω|, we get Ω |∇u n | q ≤ C, (5.38) 
where C = e k|Ω| α 1 Dq D1

ε γq + Dλ . Since || a n (u n + ε) γ || L 1 (Ω) ≤ ||a|| L 1 (Ω) ε γ , (5.39) 
we deduce from (5.23) and (5.38)

||∆u n || L 1 (Ω) ≤ C and ||u n || W 1,q 0 (Ω) ≤ C.
(5.40)

which implies that 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ [t≤u n ≤t+h] a(x) φ 1 γ (u n -t) h + [u n ≥t+h] a(x) φ 1 γ + [u n ≥t] b(x)|∇u n | + λ || f || M b (Ω) Since 0 ≤ u n -t h ≤ 1 on the set [t ≤ u n ≤ t + h], we obtain 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ Ω a(x) φ 1 γ + [u n ≥t] b(x)|∇u n | + λ || f || M b (Ω) Therefore 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ Ω a(x) φ 1 γ + ||b|| L N+η (Ω) [u n ≥t] |∇u n | q 1 q + λ || f || M b (Ω) in which q = (N + η) = N N-1 -ε(η), ε(η) > 0. Then, we get 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ C 1 Ω 1 φ 1 γ +C q [u n ≥t] |∇u n | q 1 q +C λ , where C 1 = ||a|| L ∞ (Ω) , C q = ||b|| L N+η (Ω) and C λ = λ || f || M b (Ω) .
Analogously to the proof of the previous theorem, we finally get

Ω |∇u n | q ≤ C. (5.45) 
Again as before, we have u n converges to u in W 1,q 0 (Ω) for all 1 ≤ q < N N -1 and a.e. in Ω. Then since b ∈ L N+η (Ω), b|∇u n | converges to b|∇u| in L 1 (Ω). On the other hand, since γ < 1, we have

| a(x) u n γ | ≤ ||a|| L ∞ (Ω) φ 1 γ ∈ L 1 (Ω). (5.46)
Hence, by Lebesgue theorem, we deduce that a u n γ converges to a u γ in L 1 (Ω). Finally, u is a solution to (P λ ), which concludes the proof.

Recalling that

T k (u n ) γ (u n + 1 n ) γ ≤ u γ n (u n + 1 n ) γ ≤ 1, hence γ Ω |∇T k (u n ) γ+1 2 | 2 + β Ω |∇u n | 2 T k (u n ) γ e β u n ≤ e β k ||a|| L 1 + ε Ω |∇u n | 2 T k (u n ) γ e β u n +C(ε, k) Ω b 2 +C k || f || M B . this implies γ Ω |∇T k (u n ) γ+1 2 | 2 + (β -ε) Ω |∇u n | 2 T k (u n ) γ e β u n ≤ e β k ||a|| L 1 + ε Ω |∇u n | 2 T k (u n ) γ e β u n +C(ε, k) Ω b 2 +C k || f || M B .
Choosing

β such that β -ε > 0 leads to γ Ω |∇T k (u n ) γ+1 2 | 2 ≤ e β k ||a|| L 1 +C k || f || M B +C(ε, k) Ω b 2 .
(5.51)

Now we show the boundedness of u n in W 1,q loc (Ω) into two steps.

For fixed k > 0, we will make use of the two truncations functions T k (s) given by (5.20) and G k (s) defined as G k (s) = (|s|k) + sign(s).

Step

1: G 1 (u n ) is bounded in W 1,q 0 (Ω) for all 1 ≤ q < N N -1 .
In other words, we have to prove that

[u n ≥1] |∇u n | q ≤ C(k). ( 5 

.52)

Analogously to the case γ ≤ 1, we take φ = p t,h (u n ) as a test function in (5.47), and we obtain

Ω -∆u n p t,h (u n ) = Ω a n (u n + 1 n ) γ + b n |∇u n | + λ f n p t,h (u n ).
(5.53)

Hence 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ [u n ≥t] a n (u n + 1 n ) γ + [u n ≥t] b|∇u n | + λ || f || M b (Ω) Therefore 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ Ω a n (t + 1 n ) γ + ||b|| L N+η (Ω) [u n ≥t] |∇u n | q 1 q
(5.54)

+ λ || f || M b (Ω) (5.55) in which q = (N + η) = N N-1 -ε(η), ε(η) > 0. Then, we get 1 h [t≤u n ≤t+h] |∇u n | 2 ≤ ||a|| L 1 (Ω) t γ + ||b|| L N+η (Ω) [u n ≥t] |∇u n | q 1 q
(5.56)

+ λ || f || M b (Ω) (5.57) 
therefore we get the following inequality

1 h [t≤u n ≤t+h] |∇u n | 2 ≤ C 1 t γ +C q [u n ≥t] |∇u n | q 1 q +C λ (5.58)
where the constants C

1 = ||a|| L 1 (Ω) , C q = ||b|| L N+η (Ω) and C λ = λ || f || M b (Ω) .
Analogously to the case γ ≤ 1, we plug the inequality (5.58) into the previous inequality (5.31). By tending h to zero, we obtain a differential inequality satisfied by the function σ n which is defined in the following

sense σ n (t) = [u n ≥t] |∇u n | q , (- d dt [u n ≥t] |∇u n |) q (-σ n (t)) ≤ C 1 t γ +C q σ n (t) 1 q +C λ q (-µ n (t)) (5.59)
On the other hand, according to the isoperimetric inequality (5.18), we get

N q ω q N n µ n (t) q(1-1 N ) (-σ n (t)) ≤ C 1 t γ +C q (σ n (t)) 1 q +C λ q -µ n (t) , (5.60) 
using Young's inequality on the right hand side term, this also gives

-σ n (t) ≤ N -q ω -q N n D 1 t γq + D q σ n (t) + D λ µ n (t) q( 1 N -1) (-µ n (t))), (5.61) 
in which D 1 = C 1 q , D q = C q q and D λ = C λ q . This implies that

-σ n (t) ≤ D1 t γq + Dq σ n (t) + Dλ µ n (t) q( 1 N -1) (-µ n (t))), (5.62) 
where

D1 = N -q ω -q N n D 1 , Dq = N -q ω -q N n D q and Dλ = N -q ω -q N n D λ .
This can be rewritten as

- d dt e -kµ n (t) α σ n (t) ≤ d dt e -kµ n (t) α 1 Dq D1 t γq + Dλ , (5.63) 
in which α = 1q N-1 N and kα = Dq .

Again, by integrating between 1 and ||u

n || ∞ . Since σ n (||u n || ∞ ) = 0 and µ n (||u n || ∞ ) = 0, we get [u n ≥1] |∇u n | q ≤ ĈN [e kµ n (1) α -1].
(5.64)

Step 2:

T 1 (u n ) is bounded in H 1 loc (Ω).
We have to investigate the behaviour of (u n ) for the small values (u n ≤ 1). We then need to prove that

∀ω ⊂⊂ Ω, ω |∇T 1 (u n )| 2 ≤ C . (5.65) 
First, we take T γ 1 (u n ) as a test function in (5.47), we get

γ ω |∇T 1 (u n )| 2 T γ-1 1 
(u n ) = Ω a n (u n + 1 n ) γ + b n |∇u n | + λ f n T γ 1 (u n ) ≤ C.
(5.66)

Then according to (5.49), we have u n ≥ c ω on ω. We observe that

γ c ω γ-1 ω |∇T 1 (u n )| 2 ≤ γ Ω |∇T 1 (u n )| 2 T γ-1 1 (u n ) ≤ C. (5.67) Now since u n = T 1 (u n ) + G 1 (u n ), we deduce that u n is bounded in W 1,q loc (Ω) for every 1 ≤ q < N N -1 .
By (5.47), we obtain

||∆u n || L 1 loc (Ω) ≤ C(ω),
which yields to the compactness of (u n ) in W 1,q loc (Ω) for 1 ≤ q < N N -1 , (see Lemma 4 in Appendix).

Let ω ⊂⊂ Ω, ϕ ∈ C ∞ 0 (Ω), and supp ϕ = ω.

Since u n ≥ c ω in ω, then we have

| a n u n + 1 n γ ϕ| ≤ ||a|| L ∞ (Ω) c ω γ |ϕ| ∈ L 1 (Ω). (5.68) 
Hence, by Lebesgue theorem, we deduce that a n

u n + 1 n γ converges to a u γ in L 1 loc (Ω).
Finally, we deduce that u is a solution to (P λ ), which concludes the proof of Theorem 6.

Uniqueness of weak solutions

Theorem 7

Let f ∈ M + B (Ω), a ∈ L 1 (Ω) + , b ∈ L N+η (Ω), 1 ≤ p < N N -1
and γ > 0. Then for all λ > 0 and for all f ∈ M + B (Ω), the solution of (P λ ) is unique if it exists.

The uniqueness result that we obtain is a consequence of the following lemma:

Lemma 3 Let A ∈ L N+η (Ω) N , θ ∈ W 1,q loc (Ω), 1 ≤ q < N N -1
, θ ≥ 0 in Ω and θ = 0 on ∂ Ω in the sense of Definition 3 , and such that -∆θ ≤ A.∇θ in D (Ω).

(5.69)

Then θ = 0 in Ω.

Proof.

We have (θε) + ∈ W 1,q 0 (Ω) for all ε > 0, and by mean of Kato's inequality up to the boundary (see [START_REF] Ponce | Selected problems on elliptic equations involving measures[END_REF]), we obtain

-∆(θ -ε) + ≤ -∆(θ -ε) χ [θ -ε>0] ≤ -∆θ χ [θ -ε>0] ≤ A.∇θ χ [θ -ε>0]
Boccardo and Orsina [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF] dealt with the problem (6.1) where f is a nonnegative integrable function and γ is a positive constant. They established the existence of a weak solution to (6.1) and they discussed the regularity of the obtained solution by using the summability of f and the values of γ.

In our case, the situation is completely different, since the main goal of this work is to analyze the interaction between the gradient term and the singular nonlinearity to obtain existence results. To the best of our knowledge, there are only few partial results in this direction.

In order to detail this discussion, we mention here the work of Porretta [START_REF] Porretta | Existence for elliptic equations in L1 having lower order terms with natural growth[END_REF] in which the author considered the following type of nonlinear elliptic equation

     -∆u + g(x, u, ∇u) = f (x, u) in Ω, u = 0 on ∂ Ω, (6.2) 
where g(x, s, ζ ) is a Carathéodory function, has a quadratic growth with respect to ζ and satisfies a sign condition on s, that is

g(x, s, ζ ) s ≥ 0, (6.3) 
for every s in R.

For f ∈ L 1 (Ω) + H -1 (Ω), the authors proved the existence of a weak solution u of (6.5) which belongs to the Sobolev space W 1,q 0 (Ω) for every q < N N -1

, by adapting a technique that relies on Fatou lemma combined with the sign assumption on g.

If f ∈ L 1 (Ω), Boccardo and Gallouët [START_REF] Boccardo | Strongly nonlinear elliptic equations having natural growth terms and L1 data[END_REF] proved the existence of a solution for (6.4) in W 1,p 0 (Ω).

If f ∈ W -1,p (Ω), the reader is referred to ( [START_REF] Bensoussan | On a non linear partial differential equation having natural growth terms and unbounded solution[END_REF], [START_REF] Boccardo | Existence de solutions non bornées pour certaines équations quasi-linéaires[END_REF], [START_REF] Brézis | Sur la régularité de la solution deséquations elliptiques[END_REF]) and references therein, for existence results.

On the other hand, let us consider the more general problem

           -∆ p u + |∇u| µ = f (x, u) in Ω, u > 0 in Ω, u = 0 on ∂ Ω, (6.4) 
where ∆ p u is the p-Laplacian or the p-Laplace operator written as

∆ p v := |v x | p-2 v x x , p > 1, 0 < µ ≤ p
and f is a nonnegative function.

Miri [116] showed by using the method of sub-and supersolutions, that if f is Hölder continuous and verifies other specific assumptions, then (6.4) has at least one entropy solution u ∈ W 1,p 0 (Ω).

We conclude this section by recalling the work of Blanchard and Poretta [START_REF] Blanchard | Nonlinear parabolic equations with natural growth terms and measure initial data[END_REF] in which they deal with the parabolic version of this problem:

     ∂ u ∂t -∆u + g(u)|∇u| 2 = f in Ω × (0, T ), u = 0 on ∂ Ω × (0, T ), (6.5) 
where f ∈ L 1 (Ω) and g satisfies the sign condition (6.3). In this paper, the authors extend the notion of renormalized solutions for this problem. Under a natural condition on the convergence of the initial data, they prove the compactness of the truncation of solutions in the energy space. Then they show that the integrability of g at infinity is a necessary and sufficient condition for the stability of the problem with respect to general measure data, as well as for the existence of renormalized solutions.

Our focus in this work is to study the existence of a nonnegative weak solution to (Q) with general assumptions. We start by the approximated problem for which we establish the existence of a weak solution. Last but not least, we show some estimates and we finally pass to the limit in the approximated problem.

Preliminary Results and Definitions

For the readers convenience, we start by giving the notions and the main tools used throughout this chapter. We first precise in which sense we understand the solution of problem (Q):

Definition 5

We say that u is a solution of (Q) if:

               u ∈ H 1 loc (Ω) ∩ L ∞ loc (Ω), ∀ω ⊂⊂ Ω, ∃c ω > 0 such that u(x) ≥ c ω > 0, ∀φ ∈ C ∞ c (Ω), Ω ∇u∇φ + |∇u| 2 φ = Ω u -γ φ . (6.6) 
On the other hand, since the main tool used in this study is based on the approximation method, we consider an approximating scheme to approach problem (Q) in two steps.

An equivalent problem

Step 1:

Let: v = 1 -e -u , or equivalently u = -ln(1 -v). Problem (Q) then rewrites (Q )      -∆v + β (v) = 0 in Ω, v = 0 on ∂ Ω, in which β (v) = -(1 -v)[-log(1 -v)] -γ .
The function β :]0, 1] →] -∞, 0] is strictly increasing with β (0 + ) = -∞ and β (1) = 0. We then extend the definition of β by letting β (r) = 0 for all r > 1.

The operator defined this way is maximal monotone in R with D(β ) =]0, +∞[and β is continuous on ]0, +∞[.

Step 2: Let β λ be the Yosida approximation of β defined by

β λ = I -(I + λ β ) -1 /λ . (6.7) 
The problem (Q ) can be approximated by the following problem

(Q λ )      -∆v λ + β λ (v λ ) = 0 in Ω, v λ = 0 on ∂ Ω. Remark 6.2.1
Since β ≤ 0, then β λ ≤ 0. Furthermore, for all r > 1, β λ r = 0, as by the classical inequality, we have

|β λ r| ≤ |β (r)|, ∀r ∈] 0, +∞[, (6.8) 
The starting point is to ensure the existence of a solution v λ for (Q λ ) and extract its properties. To this aim, we have the following Lemma:

Lemma 5 • There exists C 0 = C 0 (Ω), for all λ small, v λ ≥ C 0 φ 1 ( Ω φ 1 (-β λ v λ )) ,
where φ 1 is the first eigenfunction ofwith Dirichlet condition.

• There exists C

1 = C 1 (Ω), for all λ small, Ω φ 1 (-β λ v λ ) ≥ C 1 ,.
Proof.

The existence of a regular solution to (Q λ ) is obtained by applying the classical theory of [START_REF] Brézis | Semi-linear second-order elliptic equations in L1[END_REF] since r → β λ (r) is maximal monotone and D (β λ ) = R.

Furthermore, on the first hand, by Kato's inequality, we have

-∆ (v λ -1) + ≤ sign + (v λ -1) (-∆v λ ) = sign + (v λ -1) [-β λ (v λ )] = 0. (6.9)
Hence, since (v λ -1) + = 0 on ∂ Ω, then v λ ≤ 1 in Ω.

On the other hand, since -∆v λ = -β λ v λ ≥ 0, then v λ > 0. Lemma 1 of [START_REF] Diaz | An elliptic equation with singular nonlinearity[END_REF] ensures that there exists a constant C 0 only depending on Ω such that

v λ ≥ C 0 φ 1 Ω φ 1 (-β λ v λ ) , (6.10) 
where φ 1 denotes the first normalized By Egorov's theorem [START_REF] Egoroff | Sur les suites des fonctions mesurables[END_REF], there exists a measurable subset K of Ω such that its measure µ(K) < ε and v λ converges uniformly to 0.

This implies that there exists η ∈]0, 1[ such that v λ (x) ≤ η, for all x in K for λ sufficiently small. By the monotony of β λ , we have β λ v λ ≤ β λ η sur K, and then we obtain

Ω φ 1 (-β λ v λ ) ≥ (-β λ η) K φ 1 . (6.11) 
But since λ → 0, β λ η converges to β (η) ∈ (-∞, 0).

Finally we have

Ω φ 1 (-β λ v λ ) ≥ C 1 > 0, (6.12) 
where C 1 is independant of λ .

This concludes the proof of the two statements of the lemma.

Main Results

In this section, we present two theorems which sum up the main results of this chapter. We start by the first existence result concerning the approximate problem (Q ).

Theorem 6.3.1

Let p ≥ 1. Problem (Q ) admits a solution v ∈ W 2,p loc (Ω) such that 0 < v ≤ 1. Moreover, v (γ+1)/2 ∈ H 1 0 (Ω).

Proof.

Using Lemma 5, we have v λ ≥ C 0 C 1 φ 1 . (6.13)

On the other hand, from (6.13), we deduce that for all a ∈]0, 1], there exists a constant C a > 0 independent of λ such that Consequently ∆v λ is uniformly bounded on Ω a for all a ∈]0, 1].

Since 0 ≤ v λ ≤ 1, then v λ and ∇v λ converge uniformly on Ω a up to a subsequence. We denote the limit by v ∈ W 1,∞ loc (Ω) ∩W 2,p loc (Ω), ∀p < +∞.

Furthermore, since β λ v λ = β (I + λ β ) -1 v λ , then β λ v λ also converges to β (v) uniformly on Ω a .

At this stage, we need to understand what happens on the boundary of Ω.

To this aim, we introduce the following function j(r) = The function j is a strictly increasing continuous function on [0, 1[. Indeed, we note that in the neighbourhood of r = 0, we have j (r) ∼ r (γ-1)/2 , and in the neighbourhood of r = 1, we have j (r) ∼ [log(1r)] γ/2 /(1r). Now, we multiply (Q λ ) by β (v λ ) -1 , and we obtain Since j(v) ∈ H 1 0 (Ω), then ∆g(v) ∈ L 1 (Ω) and hence ∇g(v) ∈ L p (Ω). This means that g(v) ∈ W 1,p 0 (Ω) for all p ∈ [1, N N-1 [, and g(v) ∈ L q (Ω) for all q ∈ [1, N (N-2) + [ and q = +∞ if N = 1. We then deduce that for N = 1, g(v) ∈ L ∞ (Ω), i.e. u ∈ L ∞ (Ω) and hence v < 1 in Ω.

We then conclude that u has the same regularity as v in Ω, i.e. u ∈ W 2,p loc (Ω) for all p < ∞.

The case when N = 2 is more difficult to tackle.

Let V the compact subset given as the complementary of the subset

[v = 1].
The function u is infinite in [v = 1], hence u -γ tends to 0 in the neighbourhood of

[v = 1].
This implies that there exists η > 0 such that -∆u ≤ η in the neighbourhood of

[v = 1].
We conclude that u is bounded which is absurd and then [v = 1] = / 0.

Again, u has the same regularity as v in Ω, i.e. u ∈ W 2,p loc (Ω), for all p < ∞.

This concludes the proof of the theorem.

spores are created. These ones are then projected away in the hope of a more lenient environment, the cells forming the stem are sacrificing themselves for the survival of the society. To learn more about life social amoeba Dyctyostelium discoideum, we refer the reader to the article [START_REF] Herrero | Models of aggregation in Dictyostelium discoideum: on the track of spiral waves[END_REF].

Keller and Segel [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] derived the first mathematical model describing the aggregation process of amoebae by chemotaxis and nowadays it is called Keller Segel model. Then several modifications of the original model have been done by various authors, with the aim of improving its consistency with the biological reality. The celebrated model has attracted applied mathematicians and has lead to many challenging problems; one can see [START_REF] Tello | A chemotaxis system with logistic source[END_REF][START_REF] Winkler | Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect[END_REF][START_REF] Tao | Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[END_REF][START_REF] Wang | Global regularity versus infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion[END_REF][START_REF] Wang | On a quasilinear parabolic-elliptic chemotaxis system with logistic source[END_REF][START_REF] Zheng | Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source[END_REF][START_REF] Cao | Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source[END_REF]. The Keller Segel model, consists in two parabolic (some times one parabolic and one elliptic) partial differential equations for the cell density and chemo-attractant density.

                 ∂ u ∂t -∆u -χdiv(u∇v) = f (u) in Q T = ]0, T [ × Ω τ ∂ v ∂t -∆v + v = g(u) in Q T ∂ u ∂ υ = ∂ v ∂ υ = 0 in ∑ T = ]0, T [ × ∂ Ω u(0, x) = u 0 (x); v(0, x) = v 0 (x) in Ω (7.1) 
with τε {0, 1} , where Ω ⊂ R n (n ≥ 2) is a bounded domain with smooth boundary ∂ Ω and ∂ ∂ v denote the derivative with respect to the outward normal vector ν of ∂ Ω. u(x,t) denotes the cell density and v(x,t) denotes the concentration of the chemoattractant. χ(> 0) is referred to as the chemotactic sensitivity coefficient measuring the strength of chemotaxis. The kinetic term f describes cell proliferation and death and g(u) accounts for the chemical secretion by cells. A diffusion hypothesis is made for both the cells and the chemical product. The flow of cells due to the chemoattractant is assumed proportional to the gradient of the concentration of chemoattractant. The system presents two time scales, which justify the possibility of taking τ = 0.

As already mentioned the mathematical modelling of cell movement goes back to Patlak (1953), E. Keller and L. Segel (70s). This simplified system was first introduced for the case f(u) = 0 and g(u) = u (minimal model) and thereafter was studied by other authors in various contexts. It has been wellknown that when f (u) = 0 and g(u) = u, the minimal model possesses blow-up solutions in finite/infinite time in two or higher dimensions (see [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF][START_REF] Winkler | Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[END_REF][START_REF] Winkler | Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system[END_REF]). This limits the value of the model to explain the aggregation phenomena observed in experiment. The question for the system (7.1) is whether or not the appearance of growth source f (u) can enforce the boundedness of solutions so that blow-up is inhibited. Toward this end, many efforts have been made first for the linear chemical production and the logistic source: f (u) = ruµu 2 and g(u) = u (7.2)

First, Osaki et al [START_REF] Osaki | Exponential attractor for a chemotaxisgrowth system of equations[END_REF] showed that in the case n=2, the model (7.1) with τ = 1 and (7.2) has a classical uniform in time bounded solution for any r ∈ R, µ > 0. Concerning higher dimensions (n ≥ 3, Winkler [START_REF] Winkler | Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source[END_REF] proved, under the logistic source: The existence of global weak solutions to (7.1) is newly known for µ > 0 in convex domains (see [START_REF] Lankeit | Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source[END_REF]). Some progress for (7.1) (τ = 0) has been made by [START_REF] Tello | A chemotaxis system with logistic source[END_REF] wherein they showed that for f (u) ≤ abu 2 , f (0) ≥ 0, a ≥ 0, b > 0, u ≥ 0 and g(u) = u and b > b 0 = (n -2)χ/n the system admits globally bounded classical solutions.

f (u) = au -bu 2 , f ( 
This paper is devoted to the existence of weak solutions to the following chemotaxis system with nonlinear production of signal and growth source:

                 ∂ u ∂t -∆u -χdiv(u∇v) = f (u) in Q T = ]0, T [ × Ω -∆v + v = g(u) in Q T ∂ u ∂ υ = ∂ v ∂ υ = 0 in ∑ T = ]0, T [ × ∂ Ω u(0, x) = u 0 (x)
in Ω (7.4)

7.2 Mathematical analysis of the problem:

Position problem:

We suggest to consider the chemotaxis-growth model (7.4) with 0 < γ < 1, more general conditions on f (u) and the following less regular nonnegative initial data:

• f : R -→ R, f ∈ C 1 (R) with f (0) = 0 and f (u) 0, for all u 0, (

• u 0 ∈ L 2 (Ω), u 0 ≥ 0 (7.6)

Before stating the main result of this paper, we have to clarify in which sense we want to solve problem (7.4).

Definition 6

(u, v) is a weak solution of (7.4) if and only if

                       u ∈ C([0, T ], L 2 (Ω)) ∩ L 2 (0, T, H 1 (Ω)), v ∈ L ∞ 0, T, H 1 (Ω) , f (u) ∈ L 1 (Q T )
• for every ϕ ∈ C 1 (Q T ) such that ϕ(T, .) = 0

Q T (-u ∂ ϕ ∂t + ∇u∇ϕ + χu∇v∇ϕ) = Ω u 0 (x)ϕ(0, x) + Q T f (u)ϕ • for all ψ ∈ H 1 (Ω) and a.e 0 < t < T Ω ∇v∇ψ + Ω vψ = Ω u γ ψ (7.7)

Main result:

The main result of this paper is the following theorem.

Theorem 8

We suppose that the hypothesis (7.5) and (7.6) are satisfied, then the problem (7.4) admits a weak solution (u, v) satisfying u ≥ 0 and v ≥ 0, in Q T .

Proof of the main result:

In order to develop the mathematical analysis of our model, we define an approximating scheme with a more regular initial condition in C(Ω), then we show the existence solutions for this approached problem. Finally by making some estimates we prove that the solution of the approximated problem converge to the solution of our problem.

Approximating scheme:

We associate to the function f the function f m such that f m (r) = -r 2 m + f (r)

1 + | f (r)| m
Now, let's consider the following approximated system

                 ∂ ∂t u m -∆u m -χdiv(u m ∇v m ) = f m (u m ) in Q T -∆v m + v m = u γ m in Q T ∂ u m ∂ υ = ∂ v m ∂ υ = 0 in ∑ T u m (0, x) = u 0 m (x)
in Ω (7.8)

where u 0 m ∈ C(Ω), furthermore u 0 m → u 0 strongly in L 2 (Ω).

The existence of (u m , v m ) solution to the chemotaxis-growth system (7. As f m (0) = 0, the maximum principle ensure that both u m and v m are nonnegative, as shown in [START_REF] Xiang | Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source[END_REF]. By integrating the equation on u m in (7.8) and using (7.5), we have (ii) Using young inequality yields

Ω |u m v m | ≤ 1 2 Ω u 2 m + 1 2 Ω |∇v m | 2 ≤ C( u 0 L 2 (Ω) , γ, |Ω|)
The following lemma gives estimate on u m f m (u m ) in L 1 (Q T ) . That estimate will be very important to fulfill the proof of the main result.

Lemma 8

There exists a constant C such that: Convergence:

• u m f m (u m ) L 1 (Q T ) ≤ C
The point is to show that (u m , v m ) solution of the problem (7.8) converge to (u, v) solution of (7.4).

Considering the v m -equation, we already know that sup 0≤t≤T Ω u γ m ≤ C (this can be obtained by testing the v m -equation by 1) , then by using the compactness theorem [START_REF] Brézis | Semi-linear second-order elliptic equations in L1[END_REF] we can deduce, up to extracting subsequence if necessary, the following convergences for all t ∈ (0, T )

     v m (t) → v(t)
in L 1 (Ω) and a.e. in Q T .

∇v m (t) → ∇v(t) in L 1 (Ω) and a.e. in Ω.

Furthermore, we have ∆u m ∈ L 1 (0, T, (H 1 (Ω)) ) , ∇(u m ∇v m ) ∈ L 1 (0, T, (H 1 (Ω)) ) and f m (u m ) bounded in L 1 (Q T ), which yields from Aubin-Simon compactness [START_REF] Simon | Compact sets in the spacel p (o, t; b)[END_REF] ∂ t u m is bounded in L 1 (0, T, (H 1 (Ω)) ) +

L 1 (Q T ).
Consequently,up to a subsequence also denoted by u m u m → u in L 2 (Q T ) strongly, and a.e.

Then,

∂ t u m -∆u m → ∂ t u -∆u in D (Q T ).
As ∇v m is bounded in L 2 (Q T ), which is a reflexive space, then (∇v m ) m converges weakly in L 2 (Q T ). then,

∇v m → ∇v weakly in L 2 (Q T )
Consequently,

u m ∇v m → u∇v weakly in L 2 (Q T ) Then ∇(u m ∇v m ) → ∇(u∇v) in D (Q T )
Consequently we have u m -∆u m -∇(u m ∇v m ) → u -∆u -∇(u∇v) in D (Q T )

Thanks to Vitali theorem, to prove that f m (u m ) converge to f (u) in L 1 (Q T ) is equivalent to prove that f m (u m ) is equi-integrable in L 1 (Q T ). We have the following lemma:

Lemma 9 f m (u m ) is equi-integrable in L 1 (Q T ).
Proof.

Let be E a measurable set of Q T . We have consequently, f m (u m ) is equi-integrable in L 1 (Q T ).

Furthermore we have

-∆v m + v m = u γ m → -∆v + v = u γ in D (Q T ).
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  Le graphène est une feuille d'un atome d'épaisseur composée d'atomes de carbone disposés dans une structure en nid d'abeille faite d'hexagones, et peut être considérée comme des cycles benzéniques extraits de leurs atomes d'hydrogène comme le montre Figure 4. Pour les rides d'une couche de graphène, (voir détails ci-dessous), l'approche analytique élastique de Yamamoto et al. suppose que la ride créée entre deux nanoparticules de diamètres d séparés par χ, suit un profil sous forme de chaînette (comme dans Figure 5 où ζ est la déviation et ζ 0 = ζ (0) est la déviation maximale), qui ressemble à un morceau de papier froissé, ou à une chaîne suspendue à la Robert Hooke, avec une densité uniforme ou à un arc inversé.

  pour une monocouche de graphène déposée sur un substrat de silicium décoré de nanoparticules de silicium. Ils ont supposé que chacune des rides formées entre deux nanoparticules de diamètre d séparées par une distance χ, suit un profil de type caternaire. Le profil de ride est alors paramétré par une déviation ζ (x) et une déviation maximale ζ 0 = ζ (0), 0 < ζ 0 ≤ d.

Figure 1 :

 1 Figure 1: Deformation of graphene membrane between two nanoparticles with diameters d.

. 2 )

 2 Minimiser cette énergie conduit à un problème singulier unidimensionnel impliquant le p-laplacien ou l'opérateur p-Laplace écrit comme ∆ p v := |v x | p-2 v x x , et souffrant d'une non-linéarité singulière et d'une masse de Dirac à l'origine. Nous montrerons que l'existence d'un minimum pour (0.2) dans un espace approprié K que nous introduirons en utilisant la sous-solution de l'équation et la première fonction propre du p-Laplacien, dépend de l'existence d'une valeur notée d * au-delà de laquelle le minimum existe. Enfin, des études numériques sont menées pour déterminer le profil du minimum. Ce travail est soumis au journal Mathematical Modeling and Computing. Chapitre 4: Instabilities and scaling properties in certain one-dimensional singular interfacial equation. Dans la première section de ce chapitre, nous réexaminons une équation singulière généralisée pour discuter du mûrissement des interfaces croissantes, en présence de la barrière Ehrlich -Schwoebel -Villain qui induit une structure pyramidale. L'objectif principal de cette partie est la prédiction et le contrôle de ces surfaces. En particulier, nous étudierons la dynamique unidimensionnelle d'une croissance MBE dans laquelle les monticules augmentent à la fois en hauteur et en taille latérale. On constate que la hauteur interfaciale continue dans un cas unidimensionnel obéit à l'équation générale d'évolution

Ω

  est un sous-ensemble ouvert et borné de R N pour N ≥ 2, avec une frontière lisse ∂ Ω, f : Ω → [0, +∞[ est un étant donné une mesure de Radon non négative finie, γ > 0, λ > 0, et a et b sont des fonctions non négatives dans L 1 (Ω). Nous commençons par identifier les conditions nécessaires sur les données afin d'obtenir l'existence de solutions faibles dans (P λ ). Ensuite, en utilisant l'inégalité isopérimétrique, nous montrons l'existence de solutions pour le problème sublinéaire non singulier et le problème sublinéaire singulier, pour toute mesure de Radon non négative dépendant de la valeur de γ: Si 0 < γ ≤ 1 et b ∈ L N+η (Ω), η > 0, alors pour toute mesure finie f et λ ∈ R, le problème (P λ ) a une solution u dans

Chapitre 7 :

 7 On the Existence of Global Weak Solutions to a Generalized Keller Segel Model with Growth and Nonlinear Signal Production.Dans ce dernier chapitre, le modèle proposé est une modification du modèle classique de Keller Segel et de ses développements ultérieurs qui, dans de nombreux cas, ont été développés pour obtenir des modèles qui empêchent le blow up non physique des solutions. Nous nous intéressons principalement à l'existence globale dans L 2 (Ω) de solutions globales faibles à une classe de systèmes de chemotaxis parabolique-elliptique englobant le prototype:

Figure 2 :

 2 Figure 2: The Gateway Arch on the west bank of the Mississippi River in St. Louis, Missouri, U.S.

Figure 3 :

 3 Figure 3: Interior of Casa Mila also known La Pedrera -house designed by Antoni Gaudi in Barcelona, Spain.

Figure 4 :

 4 Figure 4: The ideal crystalline structure of graphene is a hexagonal grid (right) and a Scanning probe microscopy image of graphene (left).

Figure 5 :

 5 Figure 5: Deformation of graphene membrane between two nanoparticles with diameters d.

Chapter 8 : 1 Improved

 81 Conclusion and Perspectives. In this chapter, We present a conclusion of the thesis, discuss the contributions of our work, and outline future work related to this research. Chapter GWO algorithm for the determination of the critical wrinkle length of Graphene This chapter is adapted from "Improved GWO algorithm for the determination of the critical wrinkle length of Graphene" by Taourirte Laila, Alaa Nour Eddine and Khalfi Hamza, published in Annals of the University of Craiova-Mathematics and Computer Science series, Volume 46(1), Pages 27-40, 1223-6934, (2019).
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 213 By taking d = 7.4, the authors obtained a numerical value of χ c similar to the one obtained by Yamamoto et al. . We might deduce that the results obtained by Zhu and Li overestimate the critical distance.

  depicted in Figure1.1.

Figure 1 . 1 :

 11 Figure 1.1: The wrinkle profile along the transverse direction.
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 2 be the theoretical solution given by (1.1), then v th := u

1. 4

 4 An Enhanced GWO Algorithm for The Determination of the Critical Wrinkle Length of Graphene 1.4.1 Review of the GWO Search Algorithm

Figure 1 . 2 :

 12 Figure 1.2: Hierarchy levels of grey wolves.

  Figure (1.3) and -→ r 1 , -→ r 2 are random vectors in [0, 1].

Figure 1 . 3 :

 13 Figure 1.3: Attacking prey (| -→ A |< 1) versus searching for prey(| -→ A |> 1).

Figure 1 . 4 :Figure 1 . 5 :

 1415 Figure 1.4: The 3d plot of the cost function vs χ and θ for d = 4.6 and θ in the neighborhood of 35 o .

Figure 1 . 6 :

 16 Figure 1.6: The 3d plot of the cost function vs χ and θ for d = 7.4 and θ in the neighborhood of 35 o .

  and monotonically increases with ζ 0 as ζ 3 2

. 23 ) 0

 230 Following the same steps we used to obtain (2.4), the associated Beltrami equation in this case reads ζ (ζ x ) 4 = ζ 0 γ 4 , where ζ 0 = ζ (0) and γ = ζ x (0).(2.24)Solving this equation yields us to the exact solution: |γ| -1 ≤ x ≤ x δ .

. 57 )

 57 with the boundary conditions ζ (a) = A, ζ (b) = B, where a, b, A and B are given (finite) constants and the

[ 176 ]

 176 by using the direct method. In particular, he proved that any minimizer ζ of E , in the set of absolutely continuous functions, has a continuous derivative from [a, b] to R ∪ {-∞, ∞} = R (provided one allows values in the extended real line), and there exists a closed set (Tonelli set) T ⊂ [a, b] of measure zero such that ζ ∈ C ∞ ([a, b] \ T ) , T is characterized by

  [START_REF] Ball | A numerical method for detecting singular minimizers[END_REF] satisfy the conditions of the Tonelli existence theorem and exhibit the LGP between W 1,1 and W 1,∞ (the class of Lipschitzian functions) for some ε depending on s. They also showed that an arbitrary closed set of measure zero could occur as a singular set for a problem in which E depends only on ζ and q (the autonomous case). Ball and Mizel also gave another example in which L (ζ n ) → ∞ for any sequence of admissible Lipschitz functions ζ n which converge uniformly to the minimizer (the repulsion property). Clarke and Vinter[START_REF] Clarke | Regularity properties of solutions to the basic problem in the calculus of variations[END_REF] studied minimal smoothness assumptions under which points with bad behavior (or Tonelli set) cannot occur and LGP is then excluded. In 1988, Davie[52] showed that, given an arbitrary closed null set T , there exists a C ∞ Lagrangian L = L (x, ζ , q), supper linear in q and with L qq > 0, such that any minimizer has singular set exactly T . In particular, he constructed an admissible absolutely continuous function v (on (a, b)) and a Lagrangian L such that L (v) < τ, for some positive constant τ, and for any admissible absolutely continuous function ζ such that ∂ x ζ (c) exists and is finite for some c ∈ T the strict inequality L (ζ ) > τ holds (i. e.

  the (x, ζ ) plane. In fact, the authors have investigated the case where the interval (a, b) and the boundary values A and B (A = ζ (a), B = ζ (b)) are varied (under natural hypotheses on Lagrangian L , and proved that there is an universal singular set for Lagrangian L defined as the set D L of all points (x 0 , y 0 ) ∈ R 2 for which there are a ≤ x 0 ≤ b and a minimizer ζ for E on [a, b] such that ζ (x 0 ) = y 0 and |∂ x ζ (x 0 )| = ∞.

3. 4 ,

 4 one of the candidates for the function φ is v 1 = dφ p γ+p-1 1

Figure 3 . 1 :

 31 Figure 3.1: First eigenfunction of the Laplacian (left figure). First eigenfunction of the p-Laplacian for p = 4 (right figure).

Figure 3 . 2 :

 32 Figure 3.2: Numerical solution for v * . Parameters are: p = 2, γ = 2, d * = 1.5 and d = 1.3 (left figure), and p = 4, γ = 9/5, d * = 0.7562 and d = 0.5 (right figure).

Figure 4 . 1 :

 41 Figure 4.1: (Color online) Trajectory curves for n = 1 2 and different values of E for case (i).

. 9 )

 9 If E = 1/2(1n), then m x = 0 implies that m = 0 (see Figure4.2) which exhibits the phase plane n = 1 2 .

Figure 4 . 2 :

 42 Figure 4.2: (Color online) Trajectory curves for n = 2 and different values of E for case (ii).

. 10 )

 10 A simple analysis of equation (4.7) for(4.10) shows that the equation (4.4) has periodic solution. Par-ticularly, if E = 1/[2(1n)], m x = 0 implies that m = 0 (see curves with solid lines on Figure 4.2 which exhibits the case n = 2 ). Case (iii) If n > 1 and E > 0, then m is not periodic as it is shown on Figure 4.2 with dotted curves. In particular, we see that m → ± √ 2Ex as x → ±∞ (horizontal asymptotes). In summary, for n > 0 the n -model has a branch of stationary periodic solutions. In particular, Figure 4.2

Figure 4 . 3 :

 43 Figure 4.3: The curves of h and -h as a function of x if n = 12 , E = 2 for case (i) denoted by solid and dashed lines, respectively.

Figure 4 . 4 :

 44 Figure 4.4: The curves of h and -h as a function of x if n = 2, E = -1 4 for case (ii) denoted by solid and dashed lines, respectively.

Figure 4 . 5 :

 45 Figure 4.5: The figure of λ (n)M n as a function of n.

Figure 4 . 6 :

 46 Figure 4.6: The figure of A(n) M n+1 as a function of n.

Figure 4 .

 4 [START_REF] Alaa | Weak periodic solutions of some quasilinear parabolic equations with data measures[END_REF] shows λ (n)/M n as a function of n.

Figure 4 . 7 :

 47 Figure 4.7: The dispersion relation (4.43).

Figure 4 . 8 :

 48 Figure 4.8: (Color online) Plots of f against similarity variable η, for ν = 2 and for different parameters γ = f (0) (left figures) and τ = f (0) (right figures). Numerical solutions indicate, in particular, that profile f is singular at the critical (finite) point η c , such that f (η c ) = 0.

Figure 4 . 9 :

 49 Figure 4.9: (Color online) Plots of f for different parameter ν, showing that the critical (finite) point η c decreases as ν increases.

  .91) where h = h(x) and prime denotes differentiation with respect to the variable x. In term of the local slope m = h , the above ODE reads m + m 1-2ν = 0. (4.92) With regard to (4.87), equation (4.92) will be solved with the initial condition m(0) = 0. (4.93)

γ+1 2 ∈2 ∈ H 1 0 (

 20 H 1 0 (Ω) for every fixed k > 0, (where T k (u) represents the truncated function of u) as we don't necessarily have u γ+1 Ω) since f and a are not regular enough.

. 13 ) 0 ds C 0 ∞ 0 ds C 0

 130000 Here, we set F(r) = r |s| p + M , where M > 0 is chosen large enough. Since F is continuously increasing, andη = |s| p + M = F(+∞) < ∞,(5.14)we may introduce the following function g(r) = F -1 (r), where g : [0, η) → [0, ∞) (5.15) and h

Ω φ 1 = 1

 11 eigenfunction of -∆ with Dirichlet condition. Now, suppose that Ω v λ converges to 0 as λ goes to 0 up to a subsequence still denoted v λ . Hence v λ converges to 0 a.e. in Ω.

v

  λ ≥ C a on Ω a := {x ∈ Ω; d(x, ∂ Ω > a)} , (6.14)where the constant C a can be taken as C a := C 0 C 1 min {φ 1 (x); x ∈ Ω a }.Hence|β λ v λ | ≤ |β λ C a | ≤ |β (C a )| < +∞. (6.15) 

r 0 βr 0 [

 00 (s) 1/2 -β (s) ds = log(1s)] γ 1s 1 [log(1s)] γ + γ [log(1s)] γ+1 1/2 ∀r ∈ [0, 1],(6.16) 

17 )

 17 But since β λ is the Yosida approximation of β , we have|β λ (r)| ≤ |β (r)|, ∀r ∈ D(β ) =] 0, ∞[. ∆g(v) -|∇ j(v)| 2 + 1 = 0. (6.33) 

0 )

 0 ≥ 0, a ≥ 0, b > 0, u ≥ 0,(7.3) there exists a large positive number b 0 such that if b > b 0 , then the chemotaxis-growth system (7.1) with τ = 1 and g(u) = u has a classical uniform in time bounded solutions.

8 )

 8 is ensured by the work of Wang and Xiang[START_REF] Wang | A class of chemotaxis systems with growth source and nonlinear secretion[END_REF] (one can see Theorem 3.1 which is still valid for the model with -χdiv(u m ∇v m )); because 0 < γ < 1 and the growth function f m is defined such that there are a m 0 and b m > 0 such that f m (r) a mb m r 2 , for all r 0.

Lemma 6 |∇u m | 2 + χ t 0 Ω 0 Ω 0 wem ∆v m we have 0 =0 Ω u 2 m + t 0 Ω 2 m 2 T 0 Ω 2 Ω (u 0 ) 2 ( 2 m

 600000220222 u m ) 0, which yields that the L 1 -norm of u m is uniformly bounded.A priori estimates:Till the end of this paper we design by C every generic and positive constant. This constant can change its value in different situations, can depend on γ, |u 0 | L 2 (Ω) , and |Ω| but remains independent of m. In this part we give estimates concerning u m , v m in appropriate spaces. We start by proving in the following lemma, that sup 0≤t≤T( u m (t) L 2 (Ω) + v m (t) L 2 (Ω) + ∇v m (t) L 2 (Ω) ) is bounded independently of m. There exist a constant C = C( u 0 L 2 (Ω) , γ, |Ω|) such that (i) sup 0≤t≤T u m (t) L 2 (Ω) ≤ Ω (u 0 ) 2 , (ii) T 0 Ω |∇u m | 2 ≤ 1 2 Ω (u 0 ) 2 , (iii) sup 0≤t≤T v m (t) L 2 (Ω) ≤ C, (iv) sup 0≤t≤T ∇v m (t) L 2 (Ω) ≤ C.Proof.(i) and (ii): Multiplying the u m -equation in(7.8) by u m and integrating over Ω by partsu m ∇(u m )∇v m = t f m (u m )u m ≤ ∆v mv m + u |∇u m | 2 ≤ χ( (t) ≤ Ω (u 0 ) |∇u m | 2 ≤ 1 iii) and (iv):Multiplying the v m -equation in(7.8) by v m and integrating over Ω by parts ≤ C( u 0 L 2 (Ω) , γ, |Ω|).

7 ( 0 Ω

 70 t) L 2 (Ω) ≤ C sup 0≤t≤T ∇v m (t) L 2 (Ω) ≤ CConcerning the term f m (u m ), we have the following result.Lemma i) There exist a constant C = C( u 0 L 1 (Ω) ) independent on m, such that f m (u m ) L 1 (Q T ) ≤ C (ii) There exist a constant C = C( u 0 L 2 (Ω) , γ, |Ω|) independent on m, such that sup 0≤t≤T u m (t) v m (t) L 1 (Ω) ≤ C Proof.(i) Let's consider the equation satisfied by u m , we have∂ u m ∂t -∆u mχdiv(u m ∇v m ) = f m (u m ) Then we integrate on Q T T | f m (u m )| = -T, x) ≥ 0 we conclude that f m (u m ) L 1 (Q T ) ≤ C = C( u 0 L 1 (Ω) )

0 Ω 2 t 0 Ω

 020 | f (u m )u m | ≤ 1 (u 0 ) 2

E|

  f m (u m )| ≤ E∩[u m ≤k] | f m (u m )| + 1 k E∩[u m >k] u m | f m (u m )| However E∩[u m ≤k] | f m (u m )| ≤ max 0≤|r|≤k | f (r)| . |E| ... ≤ C (k) |E| according to Lemma 8 1 k E∩[u m >k] u m | f n m (u m )| ≤ C (T ) k by choosing k sufficiently large, we deduce E∩[u m ≤k] | f m (u m )| ≤ ε 2 and 1 k E∩[u m >k] u m | f m (u m )| ≤ ε 2

  Cette partie est principalement consacrée à l'analyse des solutions périodiques autosimilaires. Ensuite, on propose d'approfondir l'analyse théorique et numérique présentées au chapitres précédents. Le but de cette partie est de minimiser une énergie plus générale sous des contraintes sur la taille, et on montre que cette énergie peut être minimisée sous des conditions sur l'exposant critique et on obtient ensuite une caractérisation du diamètre critique de la nanoparticule. On s'est aussi intéressé à l'analyse mathématique d'une équation singulière quasi linéaire elliptique avec donnée mesure de Radon, on obtient l'existence,

la non-existence et l'unicité des solutions faibles. A cet effet, on obtient diverses conditions nécessaires ou suffisantes sur les données du problème. L'ingrédient principal est l'inégalité isopérimétrique. En outre, une partie de cette thèse est consacrée à l'analyse mathématique d'une équation avec non linéarité singulière et un terme gradient non linéaire à droite de l'équation et sans second membre. On montre l'existence et l'unicité d'une solution faible en utilisant un changement de variable adéquat. En dernier lieu, on s'intéresse à l'analyse mathématique d'un système d'équation aux dérivée partielles capable de décrire les phénomènes de chimiotaxique biologique. Le modèle proposé est une modification du modèle classique de Keller Segel et de ses développements ultérieurs, qui, dans de nombreux cas, ont été développés pour obtenir des modèles qui empêchent l'explosion non physique des solutions. On obtient l'existence de solution faible sous une condition d'exposant critique qui apparait dans le modèle.

Table 1 . 1

 11 and (1.[START_REF] Barenblatt | Self-similar intermediate asymptotics for nonlinear degenerate parabolic free-boundary problems that occur in image processing[END_REF])) from the previous works on one hand, and by our algorithm on the other hand, in the tables below. Note that the mean diameter of a silica nanoparticle is 7.4 ± 2.2 nm.The figures (1.4, 1.5, 1.6) are the 3d The critical wrinkle lengths for d = 4.6nm.

			χ c (nm)
	Algorithm	θ c = 15 o θ c = 35.4432 o
	Yamamoto et al. 32.1844	54.9489
	Zhu and Li	69.4784	69.4784
	Guedda et al.	46.2731	79.0028
	GWO	48.8693	83.4092

Table 1 . 2

 12 The critical wrinkle lengths for d = 5.2nm.

			χ c (nm)
	Algorithm	θ c = 12 o θ c = 35.9015 o
	Yamamoto et al. 34.1066	66.6375
	Zhu and Li	85.5776	85.5776
	Guedda et al.	49.0367	95.8080
	GWO	52	101.40

Table 1 .

 1 

		6684	110.4531
	Zhu and Li	160.8704	160.8704
	Guedda et al.	94.4147	158.8039
	GWO	100	168.0948

3 The critical wrinkle lengths for d = 7.4nm. χ c (nm) Algorithm θ c = 15 o θ c = 34.6869 o Yamamoto et al. 65.

  ) if η c is finite. Identity (4.83) is obtained by multiplying the equation in (4.82) by f and integrating over (0, η), η < η c , and identity (4.84) is obtained by a simple integration of the equation in (4.82), over (0, η). Identity (4.84) indicates that f cannot vanish on (0, η c

2
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and the coarsening exponent is found to be α = 1 4 or z = 4, irrespective of the interface dimension. In [START_REF] Rost | Coarsening of surface structures in unstable epitaxial growth[END_REF], Rost and Krug presented an analytical estimates for the scaling exponents α and β . The authors showed that α = 1/4 and β = 1+ν 4ν . Clearly this estimate clashes with (4.55) for ν > 3 2 , which constitutes the first motivation of the present work.

The ν-model (4.50) were also discussed by Politi and Torcini [START_REF] Politi | Coarsening in surface growth models without slope selection[END_REF], [START_REF] Torcini | Coarsening process in one-dimensional surface growth models[END_REF], [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF]. From the numerical results the authors concluded in [START_REF] Politi | Coarsening in surface growth models without slope selection[END_REF], [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF] that the coarsening exponent satisfies

(4.56)

Once again, as it is mentioned in [START_REF] Politi | Coarsening in surface growth models without slope selection[END_REF], the above result contradicts the result obtained by Golubović [START_REF] Golubović | Interfacial coarsening in epitaxial growth models without slope selection[END_REF] if ν > 2. Details and supporting arguments are given in [START_REF] Torcini | Coarsening process in one-dimensional surface growth models[END_REF]. In paper [START_REF] Politi | Asymptotic and effective coarsening exponents in surface growth models[END_REF] the authors reconsidered the same problem using an analytical approach developed by Politi and Misbah [START_REF] Politi | Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law[END_REF], [START_REF] Politi | When does coarsening occur in the dynamics of one-dimensional fronts?[END_REF]. Their theory relies the typical lateral size (or the wavelength of the mound structure) λ (t) to the periodic stationary solutions (see below). The authors showed that the coarsening exponent is equal to 1/4 irrespective of the parameter ν, and concluded that this exponent cannot be reached by direct integration of the growth equation. But, the roughness exponent is not investigated.

Using the scaling hypothesis h(x,t) = t β f (x/t α ) , (4.57)

Paulin et al. [START_REF] Paulin | Unstable step meandering with elastic interactions[END_REF] obtained, for (4.51), that the roughness exponent and coarsening exponent are β = 1/2 and α = 1/4. In 2002 Pimpinelli et al. [START_REF] Pimpinelli | Scaling and universality of self-organized patterns on unstable vicinal surfaces[END_REF] investigated the scaling properties of the surface described by equation (4.52) (or (4.50) with ρ = 1 -2ν), where K 1 ρ > 0. Using the invariance transformation (see below) the authors showed that the exponents β and α introduced in (4.57) have the expressions α = 1/4 and β = 1+ν 4ν for n = 1. But the case ν > 1 2 (and K 1 > 0) is not discussed and will be the subject of the present investigation.

However, a limitation of the these previous studies, from the mathematical view point, is that the question of the existence of the shape function φ or f was ignored. Nonetheless, the shape function is relevant for the existence of the roughness and coarsening exponents, even if the partial differential equation, under consideration, is invariant under the Lie-group or the scaling transformation. Nevertheless, this approach is often a starting point for interesting mathematical problems and for rigorous results.

Chapter 5

On singular quasilinear elliptic equations with data measures This chapter "On singular quasilinear elliptic equations with data measures" by Taourirte Laila, Fatima Aqel and Alaa Nour Eddine, is accepted in the journal Advances in Nonlinear Analysis, (2020).

Introduction

In this work, we restrict our attention to the study of a class of quasilinear elliptic problem with a singular nonlinearity and data measure namely:

Where Ω is an open bounded subset of R N for N ≥ 2, with smooth boundary ∂ Ω, f ∈ M + B (Ω) is a given finite nonnegative Radon measure, γ > 0, λ > 0, and under certain assumptions on the functions a and b.

We stress that the problem is singular as one asks to the solution to be zero on the boundary.

If p = 2, (5.4) admits a distributional solution for all a ∈ L 1 (Ω).

If 1 < p < 2, the treatment of (5.4) is different depending on the function a: if a(x) ∈ L ∞ (Ω), the existence is obtained for every γ > 0, however, for the general case a(x) ∈ L 1 (Ω), there exists a constant γ 0 ≥ 0 such that the solution exists under the condition γ > γ 0 .

We note that in this work, we ask λ and the functions a and b to be not identically zero.

We conclude this section by recalling some recent work on parabolic version of our problem. The first work is that in [START_REF] Boccardo | Parabolic equations with singular and supercritical reaction terms[END_REF] who deal with the problem:

where γ > 0, µ ≥ 0, r > 0 and f ∈ M + B (Ω). They show the existence of a solution for every value of T for suitable small data a and f if r > 1 and for every data if 0 < r < 1. The second is the one studied in [START_REF] Oliva | A nonlinear parabolic problem with singular terms and nonregular data[END_REF]:

The last is that in [START_REF] Andreianov | Well-posedness results for triply nonlinear degenerate parabolic equations[END_REF] who have studied the well-posedness of triply nonlinear degenerate elliptic-parabolichyperbolic problem:

They obtain a general continuous dependence result on data u 0 , f and nonlinearities b, ψ, φ , A. They obtain existence, uniqueness and continuous dependence on data u 0 , f when

mated sequences of solutions u n that we can prove existence for any value of γ. To do that, we define the approximated equation associated to (P λ ).

5.3 Existence of solutions for the non-singular sublinear problem and for every nonnegative Radon measure

Let us consider the following approximated problem

(5.17

where ε is nonnegative.

Theorem 4

Let a ∈ L 1 (Ω) + , b ∈ L N+η (Ω), then for all γ > 0, λ > 0 and for all f ∈ M + B (Ω), the problem (P ε ) has a nonnegative weak solution u in W 1,q 0 (Ω) for 1 ≤ q < N N -1 .

The main tool in the proof of this theorem is the isoperimetric inequality that we will use under the following form [START_REF] Maz'ya | Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces[END_REF].

where ω N is the measure of the unit ball and

We now present the proof of Theorem 4;

Proof.

To approximate our problem (P ε ), we define the truncated function T k given as follows

(5.20)

Now, we truncate the functions a, b and f by considering the three sequences a n , b n and f n which are defined by

and

Let us consider the following approximated problem

(5.23)

We consider the regularized problem (5.23). Then for all ε > 0, there exists u n solution of (5.23).

) is a supersolution of (5.23) and M = 0 is a subsolution. Then by applying the classical theory (see [START_REF] Amann | On some existence theorems for semi-linear elliptic equations[END_REF]), we obtain the existence of u n solution of (5.23).

At this level, we will prove the existence of a constant C independent of n such that

First of all, we introduce the following function

We multiply (5.23) by p t,h (u n ) and then we integrate on Ω to obtain

This yields to the compactness of u n in W 1,q 0 (Ω) for 1 ≤ q < N N -1

. Then by passing to the limit, we conclude the main result.

Existence of solutions for the singular sublinear problem and for every nonnegative

Radon measure

In this section, we consider the problem (P λ ) for p = 1, we have the following result Theorem 5

Then for all λ > 0 and for all f ∈ M + B (Ω), the problem

Proof.

For all n > 0, let ε = 1 n , then from theorem (4), the approximated problem associated to

(5.41)

Since we have

by using the uniform Hopf principle as formulated in [START_REF] Diaz | An elliptic equation with singular nonlinearity[END_REF], there exists a constant C only depending on

where φ 1 denotes the first eigenfunction of -∆ with Dirichlet condition, and G denotes the inverse in L 1 (Ω) of the operator -∆ under homogeneous Dirichlet conditions. Therefore we have

(5.44)

By taking ϕ = p t,h (u n ) as a test function in the weak formulation given above, where p t,h is given by (5.25), and using (5.44) and the fact that u n + 1 n ≥ u n , we obtain

The strongly singular case: γ > 1

In this case, only local estimates on the approximated solution u n can be obtained. Our aim here is mainly to give global estimates on T γ+1 2 k (u) in H 1 0 (Ω) in order to provide at least a weak sense to u on the boundary of Ω.

Theorem 6

Let γ > 1 and b ∈ L N+η (Ω). Then for all finite measure f and λ ∈ R, the problem (P λ ) has a solution u in W 1,q loc (Ω) for every

Proof.

For all n, by theorem (4), the approximated problem associated to (P λ ) admits a solution

(5.47)

First, we remark that

(5.49)

Then for all ω ⊂⊂ Ω, there exists a constant c ω > 0 such that u n (x) ≥ c ω in ω.

(5.50)

We first show that T k (u)

, for this we introduce the test function

Next, we multiply (5.47) by φ and we integrate over Ω to obtain

(5.70)

Now using Lemma 4.6 of [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF], we obtain

and since θ ≥ 0 in Ω, then θ = 0 in Ω.

Proof.

Let u be a supersolution of (P λ ) and û a subsolution, and let w = uû.

We take the difference between the equations associated to u and û respectively, we obtain Then by Kato's inequality, we obtain

which implies that

(5.76)

Therefore, thanks to Lemma 3, we get w = 0, which completes the proof.

Appendix : Compactness in

(5.77)

Then we can extract a subsequence of (u n ) still denoted u n such that

u n → u almost everywhere in Ω.

Proof.

See Lemma A.2 of [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF] for a detailed proof.

Chapter 6

Mathematical Analysis of a quasilinear elliptic equation with singular non-linearity

Introduction

In this chapter, we focus our interest on the existence of a weak solution for a class of quasilinear elliptic problems in the form

where Ω is an open bounded subset of R N for N ≥ 1, with smooth boundary ∂ Ω, and γ > 0.

The problem without gradient term is well known in the literature as "the singular Lane-Emden-Fowler equation". To detail the discussion on this problem, we take for instance the following elliptic problem

Lazer and Mckenna in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] considered the problem (6.1), with f a continuous function and γ > 0. For γ < 3, the authors showed the existence of a solution in H 1 0 (Ω) and they proved that the solution does not belong to C 1 (Ω) if γ > 1.

In [START_REF] Lair | Classical and weak solutions of a singular semilinear elliptic problem[END_REF], Lair and Shaker generalized the result of Lazer and Mckenna [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] to the case where f is a nonnegative function belonging in L 2 (Ω) and γ is a nonnegative constant. In this case, the authors obtained the existence and uniqueness of a weak solution in H 1 0 (Ω) when 0 < γ < 1.

≤ 1, and then

Now integrating (6.17) and knowing β (0 + ) -1 = 0, we have

We then deduce that j (v λ ) is bounded in H 1 0 (Ω) and then relatively compact in L 2 (Ω). So that, since j is continuous, j (v λ ) converges to j(v) up to a subsequence.

By the weak convergence of j (v λ ) , in H 1 0 (Ω), we deduce that j(v) ∈ H 1 0 (Ω). Now since j (r) ∼ r (γ-1)/2 as r → 0, we deduce that

i.e.

which concludes the proof of the theorem.

The second theorem states the existence concerning the singular problem (Q).

Theorem 6.3.2

Let p ≥ 1. The problem (Q) admits a solution u ∈ W 2,p loc (Ω). Moreover, u γ+1 ∈ W 1,q 0 (Ω), for all 1 ≤ q ≤ N N-1 and e -γ+1 2 u ∈ H 1 0 (Ω).

Proof.

The equation (Q ) can be rewritten as follows:

We note that 

Introduction

We talk about chemotaxis phenomenon when the movement of organisms (cells, bacteria) is affected or even directed by the presence of a chemical substance. This movement is characterized by both repulsion and attraction phenomena, and in the latter case, the chemical is called a chemoattractant. For example, cells may be attracted to nutrients or repelled in the presence of a substance which is toxic to them. A more interesting example is that of the amoebae Dyctyostelium discoideum which, in cases of lack of nutrients, start to secrete adenosine monophosphate cyclic (cAMP) that attracts other amoebae. Chemotaxis is revealed to be a powerful means of communication between amoebae that induces a collective movement.

It has been observed aggregation phenomena where amoebae, initially monocellular, ultimately form a society, i.e. a multicellular organism. It can then move to get food or form like a stem at the end of which Chapter 8

Conclusion and Perspectives

Using the Grey Wolf Optimizer algorithm, we were able to obtain good results in comparison with the results found in the literature, which insures the efficiency of the algorithm for our problem. However, the obtained critical wrinkle length is still not satisfying enough, and based on the analytical analysis in the second chapter, we ensure that unlike what the physicians may think, the difference in the nanoparticle's sizes is not the only reason behind the discrepancy between the experimental and theoretical results, and other physical mechanisms such as the thermal fluctuations and the impurites that might exist on the substrate surface, can have an effect on the observed results. We have also presented a detailed analysis of similarity solutions to the one-dimensional singular interfacial equation. This equation was used, for large slope, to describe the mound-type structures on the growing surfaces, where the destabilizing current is of the form suggested by Villain. A central result of the similarity assumption is that the singular interfacial equation is reduced to a singular ordinary differential equation satisfied by the shape or the similarity profile f . Although the mathematical and numerical results proved the local existence of the profile which is singular at some point, our first approach could not be directly used to understand the coarsening phenomenon. An additional analysis, based on periodic steady states, showed that the singularity is incomplete; The steady state solutions of the generalized phenomenological equation have been analytically analyzed. It is found that the equation has periodic and not periodic solutions as well.

Besides all these results, we gathered in this thesis various mathematical techniques that are used for proving the existence and uniqueness of solutions for the proposed various quasilinear elliptic equations with singular nonlinearities. For the perspectives, we are now working on creating a new mathematical model that takes into account the different physical mechanisms that affect the energy, as well as the energies at the point of equilibrium which were neglected as mentioned in the first chapter. Another important task for the future is to study the model in which the graphene layer is put between a group of silica nanoparticles instead of two.

We also started to investigate the energy functional with the exact expression of the stretching strain ε x given by:

instead of its approximation near the center given by ε

Another perspective is the study of the global existence in L 1 (Ω) instead of L 2 (Ω), of weak global solutions to a class of parabolic-elliptic chemotaxis systems.

Furthermore, we aim to study the parabolic equation

Last but not least, we are very concerned with the finite elements approximation and the resolution by penalization-duality, of the nonlinear Dirichlet problem 

Abstract

In this thesis, we analytically and numerically examine a class of partial differential equations that appear in different physical contexts: 1) wrinkling of graphene, 2) coarsening of growing interfaces, and 3) chemotaxis phenomenon.

In part 1), we firstly investigate the critical wrinkle length (or the critical distance between two nanoparticles), and the electronic property of the wrinkling of graphene. We also propose an algorithm for determining the critical length, introduce an obstacle problem, derive an example for the so-called Lavrentiev GAP phenomena, and study some quasilinear problems with gradient and singular terms. In part 2), we analyze two phenomenological equations for the height of the surface above a plane substrate. This study deals with properties of similarity solutions and with the coarsening process by inspecting the behavior of a branch of the steady state periodic solutions.

Finally, in part 3), we investigate the existence result of weak time-global solutions for Keller-Segel type models.

Keywords: wrinkling, graphene, silicium, nanoparticles, critical, obstacle problem, Lavrentiev, quasilinear, singular, similarity, scaling, coarsening, Keller-Segel.

Résumé

Le but de cette thèse est d'examiner analytiquement et numériquement une classe d'équations aux dérivées partielles qui apparaissent dans différents problèmes physiques: 1) froissement du graphène, 2) instabilité ou croissance de surfaces et 3) phénomène de chemotaxis.