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cette tâche comportementale. Ensuite, nous avons également imagé et analysé l'activité de boutons synaptiques de la BLA au sein du MOs au long des semaines de la tâche comportementale, un défi technique (en raison de la taille des boutons et de la faible amplitude des signaux) rarement entrepris jusqu'à présent. Dans l'ensemble, les résultats présentés dans cette thèse fournissent de nouvelles preuves du rôle du MOs dans l'actionsélection et de l'importance des projections de la BLA vers le MOs lors d'apprentissages associatifs.
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Résumé

Tirer les leçons de ses actions : Caractérisation fonctionnelle des projections de l'Amygdale vers les régions corticales motrices lors de l'action-sélection adaptative Les animaux sont confrontés quotidiennement à des situations complexes qui exigent des réponses adaptées pour survivre. Le processus d'évaluation des actions disponibles et de sélection de celle qui semble la plus pertinente est appelé "action-sélection". Il nécessite la construction préalable d'un modèle mental fin qui associe les actions à leurs conséquences, souvent par un processus d'apprentissage par renforcement. Malgré la collecte de données montrant des activités neuronales en corrélation avec le choix dans plusieurs régions du cerveau, le circuit et les mécanismes neuronaux qui sélectionnent les actions restent discutés. Des études récentes mettent en évidence le cortex moteur secondaire (MOs), à l'interface de l'intégration sensorielle et du traitement moteur, comme un candidat crédible pour le calcul de l'action-sélection.

En effet, des états d'activité neuronale prédisant le choix ont été dévoilés dans le MOs des rongeurs et son inactivation a pour effet de biaiser la sélection des actions. Ces études ont presque exclusivement porté sur des animaux experts, ainsi les informations sur la manière dont les actions sont encodées chez les animaux naïfs et pendant l'apprentissage font encore défaut.

Dans une première étude [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF], nous avons souligné que le MOs reçoit des afférences de l'Amygdale Basolatérale (BLA), une structure connue pour son importance dans l'apprentissage associatif. Nous avons montré que les afférences de la BLA au MOs facilitent la discrimination de sons associés à différentes conséquences dans un contexte d'apprentissage associatif de peur. De la même manière, il est facile d'imaginer que la BLA puisse fournir des signaux associatifs au MOs afin d'aider à discriminer les actions ayant des valeurs positives.

Un objectif majeur de cette étude doctorale est la caractérisation du rôle des projections de la BLA vers le MOs pendant l'apprentissage d'actions menant à une récompense. Pour atteindre cet objectif, nous avons d'abord développé un paradigme de sélection d'actions non guidé menant à une récompense pour souris en tête restreinte. Cela nous permet, par microscopie à deux photons, l'acquisition chronique de compartiments neuronaux au cours des différentes étapes de l'apprentissage. A l'aide d'imagerie-calcique somatique et d'optogénétique, nous avons mis en évidence l'implication du MOs dans l'exécution de First of all, I would like to express my gratitude the members of the jury: Dr Ingrid Bureau, Dr Daniela Popa, Dr Arthur Leblois and Dr Mathieu Wolff, who have accepted to take some of their precious time to examine the production of my last 4 years of work.
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serotonin Throughout human history, many disciplines have addressed this question in different ways.
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In philosophy, the questions of determinism (actions resulting from a cause), free will (action independent of any cause) and their cohabitation have always been debated.

For Darwin, the behavior of animals is shaped through evolution and tends to optimize survival and reproduction [START_REF] Darwin | The expression of the emotions in man and animals[END_REF]. In that sense, Lorenz and Tinbergen described innate stereotyped actions from all individuals of the same species and sex that they called 'fixed action pattern', that are almost always evolutionary advantages. For the two renowned ethologists, actions must match several factors to reach this class, one of which is to be triggered by a stimulus [START_REF] Burkhardt | Patterns of Behavior: Konrad Lorenz, Niko Tinbergen, and the Founding of Ethology[END_REF].

Complementary to fixed actions, the faculty of learning and adapting behavior to changes represent a major advantage for survival. Behaviorists like Thorndike described that animals can associate actions to outcomes through experience and that action providing value would be more likely selected. Thus, actions are modified regarding the goal and experience of the subject.

For neurophysiologists, the following question would be more relevant: How does the nervous system determine actions?

To answer this question, neurophysiologists take advantage: of the remarkable dissection of behavior made by behaviorists; of machine learning algorithms from computer science; of genetic, imaging, tracing and electrophysiological techniques to study neural circuits involved in decision-making. Numerous studies from the last 3 decades have pinpointed brain regions and circuits that could be involved in: (1) representation of actions and their associated outcomes, (2) relative value of actions, (3) action-selection and (4) outcomeevaluation processes, which are all crucial for learning and adapting action-selection. With sometimes contradictory evidences, the precise brain loci and the neuronal mechanisms that compute evaluation of alternatives and selection of the best action remain unclear.

However, an intriguing brain region called secondary motor cortex (MOs), shows robust early neural correlates of upcoming actions in rodents [START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF], non-human primates [START_REF] Pesaran | Free choice activates a decision circuit between frontal and parietal cortex[END_REF] and human [START_REF] Fried | Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition[END_REF] undergoing different decision tasks. Its connectivity with sensory, motor, and higher order cortical regions makes the MOs a potential crucial actor of action-selection computation [START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF][START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Siyu | Organization of long-range inputs and outputs of frontal cortex for top-down control[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF].

Furthermore, MOs receives inputs from one subcortical structure known to be involved in value processing and associative-learning: the basolateral amygdala (BLA). Little is known about the neuronal dynamics in the MOs during learning of the best action to select and update of actions value.

One can imagine that the BLA could convey value or associative signals related to feasible actions to the MOs. Following this hypothesis, MOs neuronal population coding for some actions may be potentiated or recruited by BLA-to-MOs projections which in term would contribute to the computation of action-selection. Finally, this hypothetic value or associative signals may be important during learning of actions, providing to the MOs an online readout of changes, guiding action-selection along learning toward the maximum reward.

The present thesis obviously does not aim to answer the question of the very first paragraph, but rather to investigate the following:

What are the neuronal dynamics observable in MOs during learning of actions?

What is the nature of the BLA signals that reach MOs during such learning?

How putative value signals from BLA influence action-selection computation in MOs?

The next parts aim to sum up the global knowledge and framework context in which we investigated these questions.

Learning from actions

Choices are made by comparing alternatives and select the one that maximizes positive outcome. In neuroeconomics, the notion of value refers to subjective and relative attractiveness of a choice [START_REF] Rangel | A framework for studying the neurobiology of value-based decision making[END_REF]). It appears clear that values have first to be assigned to actions and then compared (Valuation) to allow the selection of the best alternative (Action-selection) [START_REF] Kable | The neurobiology of decision: consensus and controversy[END_REF][START_REF] Padoa-Schioppa | Orbitofrontal cortex and the computation of economic value[END_REF][START_REF] Rangel | A framework for studying the neurobiology of value-based decision making[END_REF]. Furthermore, in a changing environment, assigned values may not always reflect properly outcome value (Outcome evaluation). Thus, values must remain flexible and be updated to allow adaptation (Learning) in order to tend to maximize rewards. This framework is more and more adopted by the neuroscience community (Fig1.).

Fig1. Basic computations involved in making a choice

Value-based decision-making can be broken down into five basic processes: first, the construction of a representation of the decision problem, which entails identifying internal and external states as well as potential courses of action; second, the valuation of the different actions under consideration; third, the selection of one of the actions on the basis of their valuations; fourth, after implementing the decision the brain needs to measure the desirability of the outcomes that follow; and finally, the outcome evaluation is used to update the other processes to improve the quality of future decisions. (Figure from [START_REF] Rangel | A framework for studying the neurobiology of value-based decision making[END_REF]))

Associative learning

The ability to predict outcome from interactions with the environment and select the most appropriate action is crucial for saving metabolic costs and for survival. Prediction allows animals to select actions that maximize positive values (food, safety …) and avoid those that provide negative one (threats, efforts …). This feature relies on the ability to associate events (e.g. environmental stimuli, actions, outcomes …) through what is called associative learning. Associative learning has been largely studied and described in the past and comport two distinct forms that both relate to learning to predict and respond to the environment.

One of these associative learning processes is called Pavlovian, referring to Ivan Pavlov famous studies with dogs. [START_REF] Pavlov | Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex[END_REF]. Pavlov first described "hard wired" reflexes in dogs, like salivation in the presence of food. He called the salivation response "unconditioned" because salivation is a natural reflex without necessity of prior learning.

Interestingly, Pavlov noticed that his laboratory dogs salivated by anticipation in presence of the lab assistant usually feeding them. With the aim of reproducing this anticipatory salivation, Pavlov decided to present a bell ring before feeding the dogs. After few pairings of this auditory stimulus with the delivery of the food, the only exposure to the bell ring, a conditioned stimulus, was enough to elicit anticipatory salivation, an unconditioned response. This experiment was the first in scientific literature to describe anticipation through associative learning of a response with an environmental stimulus.

One of the main paradigm used to study associative learning and memory is fear conditioning (Maren, 2001) (Fig2). In classical cued fear conditioning paradigm, animals are first exposed to neutral conditioned stimuli (CS, e.g. auditory tones) which will be either positively (CS+) or negatively (CS-) paired to an aversive unconditioned stimulus (US, e.g. footshock). In another context following the pairing, exposure to CS+ will elicit fear response in case of association between CS+ and US learned. The most common fear response measured in rodents is freezing, defined as a period of total immobility with suppression of all muscle activity but those for breathing. This kind of paradigm has been used for decades to dissect the substrates and mechanisms of memory and learning. The second form of associative learning is called instrumental learning. It has been first

studied by Edward Thorndike that performed experiments with cats in a puzzle box. The box consists in a closed environment with a mechanism in it (lever or button) which, when triggered, allows the cat to escape from the box and receive food outside as reward.

Interestingly, cats were able with practice to gradually learn the required action to reach freedom and reward [START_REF] Thorndike | Animal intelligence: an experimental study of the associative processes in animals[END_REF]. In this experiment, the action of triggering the mechanism is associated with positive outcomes: freedom and food.

Along his investigation, Thorndike proposed the following behavioral principle named 'Law of effect': actions producing satisfaction are more likely to occur again, while actions producing dissatisfaction are less likely to occur. In the 30s, B.F Skinner studied instrumental learning in rats and pigeons with a similar experimental approach that he developed and named 'operant chambers' (aka 'Skinner Box'). Through the development and popularization of operant conditioning studies, it has been proposed to update the Law effect and to change the terms "satisfaction" and "dissatisfaction" by the terms "reinforcement" and "punishment", which better describe the effect of consequences on probabilities of future actions while getting rid of valence references. That way a reinforcer will increase the probability of a certain behavior while a punisher will decrease it. To add a notion of valence, it is common to add the term positive or negative in front. For example a negative reinforcer will motivate a behavior to avoid something negative while a positive will encourage a behavior for getting something positive [START_REF] Skinner | The behavior of organisms: an experimental analysis[END_REF].

From a behavioral perspective, the main difference between Pavlovian and instrumental forms of associative learning is the nature of the emitted response, which is either an innate reflex or a voluntary action, respectively.

Following the learning of a two actions instrumental task, cognitive flexibility can be assessed with a reversal learning essay that consists in reversing the outcomes of acquired action-outcome associations. Pavlovian association can also be reversed to test adaptation. For both cases but with variable delays, animals should be able to update their associations and adapt their behavior (Izquizerdo et al., 2017).

Control of actions: Goal-directed and Habitual systems

In the late 90's, Balleine and Dickinson studied the causal consequence representation of instrumental actions in rodents [START_REF] Balleine | Goal-directed instrumental action: contingency and incentive learning and their cortical substrates[END_REF]. To this end, they developed several experiments with food-deprived rats performing different action (pull a chain or press a lever) to get different associated reward (pellet or starch solution). In this task, the probability of reward delivery after performing action was constant.

In a first experiment, after a training period during which rats associated both actions with their respective rewards, they tested how degradation of action-outcome contingency was affecting the occurrence of actions. To degrade contingency, they delivered one of the two rewards (e.g. pellet) over time independently of performing the associated action (e.g. pull the chain). Thus, doing or not doing this action (e.g. pull the chain) was not affecting reward delivery probability that was constant over time. This contingency degradation had for effect to decrease the occurrence of the previously associated action (e.g. pull the chain),

showing that the action-selection here indeed depended on causal-consequence representation of the task.

In a similar second experiment, again after training period, they tested how devaluation of the outcome could affect action occurrence. They satiated the rats for one reward by giving the food in their home cage (e.g. the pellet delivered by chain pulling during training) and, in the following sessions, they observed a drop in the occurrence of the action associated to the devaluated outcome (e.g. pull the chain associated to pellet delivery). Here the action of the animal was motivated by the current value of outcome, determined by internal state of the animal.

The degradation of contingency and devaluation of outcome highlighted that the observed instrumental actions were controlled by a causal consequence cognitive representation of (1) the action and its consequence (action-outcome association), (2) how valuable is the outcome (outcome valuation). An action controlled by the aforementioned representations is called 'goal-directed'.

Interestingly, in a third experiment, Balleine and Dickinson showed that actions are not always relying on "goal-directed" control. This time, rats were trained three times more than before and faced the same devaluation of the outcome of one action (e.g. pull the chain) as in the previous experiment. Unlike the second experiment, rats continued performing the action regardless of the modification of its outcome value. These actions relied on a stimulus-response association (or context-action association) similar to classical conditioning and were disconnected from the current value of their outcome. Long term practicing and stable action-outcome contingency bring out these more automatic actions called 'habitual' [START_REF] Graybiel | Habits, rituals, and the evaluative brain[END_REF].

Conclusion of this study followed by many others [START_REF] Balleine | Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action[END_REF] tells us that actions have two controllers : (1) a deliberative Goal-directed that consider the causal consequence relationship of the action (action-outcome association) and its outcome value

(2) an automatic Habitual that arise from repeated experienced contiguity of a context and that elicit actions regardless of their consequences (stimulus-response or context-action association) (Fig3.). The increasing number of publication about specific neural substrates supporting goaldirected or habits behaviors has accentuated the trust in a likely dichotomy of action control. Indeed, for example, medial prefrontal cortex (mPFC) (Gremel and Costa, 2013a;[START_REF] Hart | The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions[END_REF][START_REF] Ostlund | Lesions of Medial Prefrontal Cortex Disrupt the Acquisition But Not the Expression of Goal-Directed Learning[END_REF] and dorsal striatum [START_REF] Balleine | The role of the dorsal striatum in reward and decision-making[END_REF][START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF][START_REF] Yin | The role of the dorsomedial striatum in instrumental conditioning[END_REF] both present subdivisions involved in either goal-directed or habits gating. Evidences suggest that the prelimbic cortex (PL) is involved in goal-directed behavior while the infra limbic cortex (IL) in habitual control of actions [START_REF] Balleine | The Meaning of Behavior: Discriminating Reflex and Volition in the Brain[END_REF][START_REF] Dolan | Review Goals and Habits in the Brain[END_REF]. Other studies focusing on dorsomedial (DMS) and dorsolateral striatum (DLS) subdivisions have highlighted similar functional specialization with respective involvement in goal-directed or habitual instrumental behavior.

Even if some regions appear to be involved specifically in goal-directed or habit behavior, clear anatomical separation for these two processes remain discuss. In fact several regions seem to be implicated in both behaviors and the two systems may share process and interact [START_REF] Balleine | The Meaning of Behavior: Discriminating Reflex and Volition in the Brain[END_REF]Gremel and Costa, 2013a).

To synthesize, goal-directed and habits provide two distinct instrumental strategies to reach high level of reward: the first, based on the causal consequence relationship between action and outcome (action-outcome association) is particularly useful to learn the best action or explore other alternative in case of changes. The second is based on repeated exposure to contiguous context and action that has been successful in the past, creating a context-action association that is efficient to exploit known contingencies of a stable environment.

Reinforcement learning: update of value through trial and error

In machine learning, the field of reinforcement learning (RL) aims to develop dynamic computational systems that can learn strategies with optimized output. Similarly to instrumental learning studies, some RL models address optimal choice problems and reward maximization through error-trial and outcome planning [START_REF] Dayan | Reinforcement learning: The Good, The Bad and The Ugly[END_REF][START_REF] Lingawi | The Psychological and Physiological Mechanisms of Habit Formation[END_REF][START_REF] Sutton | Reinforcement learning: An introduction[END_REF].

Standard RL models includes several elements such as actions (denoted a), states (s), for example by using ΔQ and V(s), or using a Reward-Prediction Error (RPE) which consists in the computation of the difference between the expected and obtained rewards.

In the first class of algorithm that I will describe, RPE is computed at each trial in order to evaluate and update the value of the action previously performed for finally influencing the selection of future actions. The only source of learning here is the RPE, which only modifies the value function of the action performed; the other action-values remain unchanged until associated actions are tried. Therefore, learning with this kind of algorithm requires a repeated trial-and-error process to estimate properly the value functions and eventually adopt the optimal-selection policy. This category of algorithm is called 'model-free' in opposition to the second category described below

The second kind of algorithm is more flexible but more complex. In this class of algorithm, a model of the environment is continuously updated regarding any type of information available from experience (not only Reward). Modeling of the environment could be compared to the building of a cognitive map from all kind of environmental information and acquired experience, resulting in a complex causal consequence planning system of future possibilities. This second class of algorithm is called 'model-based' because of their modeled environment as source of learning and planning for optimal action-selection (Fig4.). They differ from the model-free algorithms that are mainly empirical and learn from RPE only. Model-based algorithms are much more flexible than model-free and adapt faster to modification of environment and changes of reward. Nevertheless, the keystone of both kinds of RL algorithms is the computation of values of either the actions from previous trials and/or the planned outcomes of actions [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. Interestingly, these models appear to be well suited to explain goal-directed and habitual behaviors [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Dayan | Reinforcement learning: The Good, The Bad and The Ugly[END_REF][START_REF] Doya | Metalearning and neuromodulation[END_REF][START_REF] Lingawi | The Psychological and Physiological Mechanisms of Habit Formation[END_REF]. In that sense, habitual actions are known to be somewhat disconnected to direct outcome and be relatively inflexible, just like model-free RL algorithms that needs many iterations to adapt. Contrasting with habits, goal-directed behavior is believed to rely on a cognitive causal consequence map allowing flexibility and accurate prediction, just like what a model-based algorithm provides. Assuming the comparisons, the transition observed from goal-directed to habit after a long period of learning and stability of contingency appears logical regarding the computational cost of a model-based system compared to a modelfree. Indeed, as soon as the rule is known and stable, exploitation with fast, cheap and stable computation (like model-free) is more profitable than an expensive, slow and complex operation (like model-based) [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Keramati | Speed/accuracy trade-off between the habitual and the goal-directed processes[END_REF].

Another element strengthening the parallel between RL framework and instrumental learning is that structures believed to be substrate of habit and goal-directed systems, namely prefrontal cortex and striatum, both received dopamine (DA) projections from midbrain nuclei like the ventral tegmental area (VTA) [START_REF] Schultz | The Reward Signal of Midbrain Dopamine Neurons[END_REF]. Midbrain dopaminergic neuronal activity has been the first source of RPE neuronal correlates identified [START_REF] Schultz | Predictive reward signal of dopamine neurons[END_REF][START_REF] Schultz | Dopamine reward prediction error coding[END_REF]Schultz et al., 1997) (Fig5.). For this reason, midbrain dopaminergic neuronal activity and level of dopamine in its targets have been extensively

studied in the context of associative learning. Many studies had reported midbrain neuronal activity [START_REF] Cohen | Neuron-type-specific signals for reward and punishment in the ventral tegmental area[END_REF][START_REF] Roesch | Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards[END_REF][START_REF] Waelti | Dopamine responses comply with basic assumptions of formal learning theory[END_REF] or dopamine transients [START_REF] Day | Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens[END_REF][START_REF] Hart | Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term[END_REF] related to expectation of reward and to its amount. Manipulation of phasic dopamine releases with optogenetic had also highlighted causal link between Dopamine, RPE and learning [START_REF] Saunders | Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties[END_REF][START_REF] Sharpe | Dopamine transients are sufficient and necessary for acquisition of model-based associations[END_REF][START_REF] Steinberg | A causal link between prediction errors, dopamine neurons and learning[END_REF][START_REF] Tsai | Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning[END_REF].

At last, it has been proposed that the PFC acts like a meta-decision maker, arbitrating the use of model-based or model-free instrumental controller regarding the situation [START_REF] Kool | Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems[END_REF][START_REF] Lee | Neural Computations Underlying Arbitration between Model-Based and Model-free Learning[END_REF]. Overlap or cooperation of the two models instead of competition as well as new models have been also theorized in several recent studies,

showing that the field of decision-making modeling is still actively evolving [START_REF] Daw | Are we of two minds?[END_REF][START_REF] Drugowitsch | Computational Precision of Mental Inference as Critical Source of Human Choice Suboptimality[END_REF][START_REF] Gershman | Retrospective revaluation in sequential decision making: a tale of two systems[END_REF][START_REF] Momennejad | The successor representation in human reinforcement learning[END_REF][START_REF] Pezzulo | The mixed instrumental controller: using value of information to combine habitual choice and mental simulation[END_REF]. 

Neural substrates implicated in valuation and action-selection

Numerous brain regions have been described in the literature to be involved or to exhibit neuronal correlates of valuation, stimulus-response and action-outcome associations. This part focuses on few of them that are susceptible, following our hypothesis, to interact with the MOs during action-selection process.

Amygdala

The amygdala is a key structure of valuation, emotion modulation and associative learning.

This structure has been named in 1819 by the anatomist Burdach from the shape of one of its subparts, similar to an almond [START_REF] Davis | The amygdala[END_REF]. It is a structurally and functionally heterogeneous structure located medially within the temporal lobes of the brain. It consists of a cortico-medial region and a basolateral region both composed of several nuclei, each subdivided. Because of the heterogeneity of function within its regions and subdivisions, the nomenclature of the amygdala is still evolving. The basal (B), lateral (LA) and accessory basal nuclei (AB) are forming the basolateral complex. This complex is often called 'basolateral amygdala' (BLA) and will be called that way in the present manuscript. In the same way, the central amygdala (CeA) is often referring to central (Ce)

and medial (M) nuclei. BLA exhibits a structure similar to the cortex, with its connection to the thalamus and cortical region [START_REF] Carlsen | The basolateral amygdaloid complex as a cortical-like structure[END_REF], while CeA shows similarities with the striatum, because of its large population of GABAergic striatal medium spiny-like neurons [START_REF] Mcdonald | Projection neurons of the basolateral amygdala: A correlative Golgi and retrograde tract tracing study[END_REF][START_REF] Swanson | What is the amygdala?[END_REF]. Furthermore, there are genetically distinct population of neurons forming specific BLA-to-CeA pathways that, in a analogous manner to the basal ganglia direct and indirect pathways, promote two opposite behavioral responses (here, aversive and appetitive emotional behaviors) [START_REF] Kim | Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors[END_REF], making the comparison with striatum even more tempting.

The BLA is receiving a large spectrum of sensory inputs from: the thalamus and sensoryrelated cortical areas, as well as more integrated inputs from associative areas [START_REF] Ledoux | The amygdala[END_REF]. It also receives nociceptive information (most likely in an indirect manner) from the periaqueductal gray matter (PAG) [START_REF] Johansen | Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray[END_REF] and contextual information from the hippocampus, the perirhinal and the entorhinal cortex. The output from the BLA targets a wide range of structure such as the CeA, cortical areas (e.g. Orbitofrontal cortex: OFC, Cingulate cortex: Cg, Prelimbic cortex: PL, Infralimbic cortex: IL, MOs, entorhinal cortex, perirhinal cortex …), the striatum (dorsal and ventral parts) and the hippocampus. BLA compiles information about context and sensations over time and, based on contiguous experiences, creates associations which subsequently allow the prediction of events valence (Murray, 2007).

CeA projects to: the locus coeruleus, the VTA, the PAG and the hypothalamus. The BLA, as its main input, gates CeA that in turn generates innate emotional responses and associated autonomic modulations (e.g. heartbeat, temperature, blood pressure, pupil, freezing, pain regulation, arousal, motivation …) [START_REF] Fadok | New perspectives on central amygdala function[END_REF].

One early discovery about amygdala function is its involvement in fear modulation [START_REF] Weiskrantz | Behavioral changes associated with ablation of the amygdaloid complex in monkeys[END_REF] [START_REF] Herry | Encoding of fear learning and memory in distributed neuronal circuits[END_REF][START_REF] Johansen | Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray[END_REF]. It has been recently proposed that the lateral thalamus also modulates the BLA by providing integrated CS-US signals [START_REF] Barsy | Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior[END_REF]. The coincidental activity of these inputs drives plasticity in BLA-to-CeA neurons (more precisely, BA-to-lateral portion of CeA [START_REF] Watabe | Synaptic potentiation in the nociceptive amygdala following fear learning in mice[END_REF] and LA-to-CeA SOM+ inhibitory neurons [START_REF] Li | Experiencedependent modification of a central amygdala fear circuit[END_REF]. The resulting potentiation of neurons is correlated to fear learning and is thought to represent traces of associative memory [START_REF] Bauer | NMDA Receptors and L-Type Voltage-Gated Calcium Channels Contribute to Long-Term Potentiation and Different Components of Fear Memory Formation in the Lateral Amygdala[END_REF][START_REF] Huang | Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala[END_REF][START_REF] Maren | Synaptic mechanisms of associative memory in the amygdala[END_REF].

Fig6. Organization of amygdala connections For a long period, the BLA was only considered as a sort of "signal for danger" generator, which form memory traces from aversive signal contiguous to sensory stimuli and triggering emotional responses through its connection to the CeA when exposed to same stimuli. However, later studies shed light on another prominent role in positive valence coding. Indeed, in a study from the late 90's [START_REF] Schoenbaum | Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning[END_REF], electrophysiological recording of BLA and OFC neurons of rats performing an instrumental conditioning task highlighted that neurons from both regions fired to either rewarding (sucrose water) or aversive (quinine water, that can be seen as less rewarding) outcomes.

Furthermore, the activity of the selective neurons were tightly correlated with the animal learning of the association, later confirmed in studies with monkeys [START_REF] Belova | Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala[END_REF][START_REF] Paton | The primate amygdala represents the positive and negative value of visual stimuli during learning[END_REF]. BLA neuronal response to both appetitive and aversive values appeared to be modulated by the intensity of the corresponding stimuli [START_REF] Winston | Integrated neural representations of odor intensity and affective valence in human amygdala[END_REF]. Just as BLA activity is correlated with emotional response magnitude for fear conditioning [START_REF] Johansen | Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray[END_REF], activity during appetitive conditioning follows the magnitude of emotional response [START_REF] Braesicke | Autonomic arousal in an appetitive context in primates: A behavioural and neural analysis[END_REF]. Thus, the description of the BLA as a region with "general value representation" influencing emotional responses rather than a "threat detector" region triggering fear would be more accurate [START_REF] Morrison | Re-valuing the amygdala[END_REF].

Fig7. Individual BLA neurons can encode positive or negative value (A) Sequence of events during an appetitive/aversive trace conditioning task [START_REF] Paton | The primate amygdala represents the positive and negative value of visual stimuli during learning[END_REF]. In each session, the subject learns to associate three novel, abstract visual stimuli with large reward, small reward, or an aversive air-puff to the face. After the initial reward contingencies are learned, a reversal takes place: the image associated with large reward is now followed by air-puff, and the image associated with air-puff is now followed by large reward Neurons selective for either appetitive or aversive experiences seem lightly distributed in the BLA through distinct gradients along a dorso-ventral axis, with more positive valence neurons in the BA and more aversive neurons in the LA [START_REF] Beyeler | Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala[END_REF].

Nevertheless, valence coding neurons are generally intermingled [START_REF] Beyeler | Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala[END_REF][START_REF] Zhang | Systems/Circuits Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala[END_REF]. In fact, a recent study claims that BLA neurons codes for multiple behavioral parameters with only few of them purely encoding valence and that valence is better decoded at population level [START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF]. This last study is compatible with some BLA neurons reported to respond for both opposite valences or to be only sensitive to the magnitude of stimuli [START_REF] Belova | Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala[END_REF][START_REF] Shabel | Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal[END_REF]. These neurons were originally proposed to code for arousal and emotional process independently of experienced valence. Alternatively, such neurons could instead be part of multiplexed ensembles coding for more than one feature [START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF].

The development of micro-endoscopy had allowed calcium imaging of BLA neuronal population and longitudinal activity recordings. A set of recent studies highlighted the evolution of neuronal ensembles coding for CS or US (aversive or appetitive) along associative learning, with CS neuronal representation converging to the activity state of associated US through learning [START_REF] Grewe | Neural ensemble dynamics underlying a long-term associative memory[END_REF][START_REF] Zhang | Population coding of valence in the basolateral amygdala[END_REF].

Another major factor modulating BLA activity is the expectation of the outcome. Indeed, long term training of fear conditioning decreases BLA signals and freezing response as expectation of US and its magnitude increases [START_REF] Fanselow | Pavlovian conditioning, negative feedback, and blocking: Mechanisms that regulate association formation[END_REF][START_REF] Herry | Encoding of fear learning and memory in distributed neuronal circuits[END_REF][START_REF] Johansen | Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray[END_REF][START_REF] Young | Associative regulation of Pavlovian fear conditioning: Unconditioned stimulus intensity, incentive shifts, and latent inhibition[END_REF]. In the other way, both unexpected valence polarity and unexpected magnitude of stimulus generate modulation of BLA activity, with for the first signals exchange with the Cg [START_REF] Klavir | Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning[END_REF][START_REF] Mchugh | Aversive prediction error signals in the amygdala[END_REF]. Furthermore, the omission of expected US, of positive or negative valence, also triggers the activity of distinct BLA neurons [START_REF] Belova | Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala[END_REF][START_REF] Klavir | Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning[END_REF].

Such kind of signal about a difference between the actual and expected outcome has been previously described as a RPE, which is a key component of RL [START_REF] Sutton | Reinforcement learning: An introduction[END_REF].

It has been proposed that the observed RPE signals in the BLA originate from the PAG (see the proposed circuit shown in Fig8.) or from midbrain dopaminergic inputs to BLA [START_REF] Herry | Encoding of fear learning and memory in distributed neuronal circuits[END_REF][START_REF] Lutas | State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala[END_REF][START_REF] Pezze | Mesolimbic dopaminergic pathways in fear conditioning[END_REF].

RPE signals are relevant signals to update value-representation that is essential to learn and adapt behavior. In agreement, results from studies in monkeys [START_REF] Baxter | Control of response Selection by Reinforcer Value Requires Interaction of Amygdala and Orbital Prefrontal Cortex[END_REF]Izquierdo andMurray, 2007a, 2007b;[START_REF] Machado | Measuring reward assessment in a seminaturalistic context: The effects of selective amygdala, orbital frontal or hippocampal lesions[END_REF]Murray, 2007;[START_REF] Pickens | Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task[END_REF] and rats [START_REF] Johnson | The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects[END_REF][START_REF] Ostlund | Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection[END_REF] have shown that BLA lesions disrupted the update of value representation. Indeed, animals were insensitive to devaluation of contingencies. Pre-lesion learned associations were remaining, suggesting that the storage of associations took place in other brain regions.

Fig8. Hypothetical circuit construction of prediction error coding during fear learning

Prediction error coding in LAn neurons is characterized by a larger US-evoked neural firing rate response to unpredicted shocks compared with shocks that are predicted by the CS. (A) According to the working model presented, unpredicted shock USs strongly activate LAn neurons through a pathway that includes the PAG (red line). This is because the CS (dashed blue line) is either not presents or its inputs to the amygdala are not strong enough to drive a negative feedback pathway (dashed purple line) that could inhibit US processing. (B) However, when the US is predicted by a well-trained CS (filled blue line), whose onset occurs before US onset, it activates this negative feedback pathway from the amygdala (filled purple line) to inhibit US processing at the level of or before the PAG. This results in larger shock responses to unpredicted compared with predicted shocks as seen in peri-event time histograms (PETHs). PETHs represent the Z score-normalized shock-evoked response (y axis) of prediction error coding neurons in the LAn during a 2 s, pulsed eyelid shock US (x axis). The BLA seems necessary for the establishment of overall value, for the acquisition and the update of associations, but not for the retention of the association or expression of the learned response [START_REF] Antoniadis | The Nonhuman Primate Amygdala Is Necessary for the Acquisition but not the Retention of Fear-Potentiated Startle[END_REF][START_REF] Morrison | Re-valuing the amygdala[END_REF]. Altogether, these studies show that the BLA integrates a wide range of contextual information (sensory, context …), processes predicting signals about general value of the situation and distributes integrated signals. Thus the BLA generates appropriate emotional response and instruct other regions to adapt future behavior.

In the context of decision-making, the BLA has been shown to have a central role in emotional bias of risk/benefits choice. In a study from Dolan and colleagues published in Science, the cognitive bias called "framing effect" (a bias in choice in favor of options presented with positive connotation and against those presented in a negative way) has been associated with activity of the BLA of participants [START_REF] De Martino | Frames, biases, and rational decision-making in the human brain[END_REF].

Additionally, lesions or inactivation of BLA in rats were also affecting risk and effort-benefit decisions whit a bias toward options representing less risk and less effort [START_REF] Ghods-Sharifi | Fundamental contribution by the basolateral amygdala to different forms of decision making[END_REF][START_REF] Orsini | Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making[END_REF]. Moreover transient optogenetic inactivation of BLA during the deliberation epoch of a risky choice task also decrease occurrence of risky choices while photo-stimulation during outcome period of the risky choice increases its occurrence [START_REF] Orsini | Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making[END_REF]. All these studies point in role of BLA in biasing decisions.

BLA also exhibits tight relation with the PFC. While its connections to the OFC is crucial for associative learning and outcome expectation [START_REF] Lichtenberg | Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations[END_REF][START_REF] Saddoris | Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex[END_REF], the BLA reciprocal connections with the mPFC appear to be important for the acquisition and retention of learn association in memory [START_REF] Popa | Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep[END_REF]. Indeed, synaptic depression of BLA-to-mPFC pathway is affecting the acquired association that become labile and tends to disappear [START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF].

In instrumental learning, BLA-to-DMS seems also crucial for action-outcome association [START_REF] Corbit | The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions[END_REF]. It has also been shown that the BLA and the ventral striatum (VS) exhibit coupled activity. This coupling has been shown to increase along learning of an appetitive association task during the exposition of the sensory stimulus announcing the reward [START_REF] Popescu | Coherent gamma oscillations couple the amygdala and striatum during learning[END_REF]. Through its connections to mPFC, OFC and DMS that are functionally involved in the process of associative learning and subsequent flexibility, the BLA is a putative major actor of adaptive action-selection.

Striatum

The striatum is subdivided in distinct regions that show differences in connectivity and function. The dorsal region contains the main part of the caudate putamen while the ventral region contains the nucleus accumbens (NAc) and a small portion of caudate putamen medially [START_REF] Cox | Striatal circuits for reward learning and decision-making[END_REF][START_REF] Joel | The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum[END_REF].

Dorsal striatum

The dorsal region is subdivided in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) that are often called respectively associative striatum and sensory-motor striatum because of their cortical inputs: respectively from OFC, Cg [START_REF] Voorn | Putting a spin on the dorsal-ventral divide of the striatum[END_REF] and MOs [START_REF] Berendse | Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat[END_REF][START_REF] Reep | Topographic organization of the striatal and thalamic connections of rat medial agranular cortex[END_REF] for DMS; and from sensory and motor cortices (including MOs) [START_REF] Berendse | Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat[END_REF][START_REF] Joel | The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum[END_REF][START_REF] Mcgeorge | The organization of the projection from the cerebral cortex to the striatum in the rat[END_REF][START_REF] Reep | Topographic organization of the striatal and thalamic connections of rat medial agranular cortex[END_REF] for DLS. Lesions and pharmacological impairment of DMS render rodents insensitive to outcome devaluation and contingency degradation, promoting habits to the detriment of goal-directed control [START_REF] Corbit | The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions[END_REF][START_REF] Yin | The role of the dorsomedial striatum in instrumental conditioning[END_REF]. On the other hand, lesions of DLS appear to promote goal-directed control over habitual one even after long instrumental practicing [START_REF] Balleine | Goal-directed instrumental action: contingency and incentive learning and their cortical substrates[END_REF][START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF][START_REF] Yin | Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning[END_REF]. These studies highlighting a role for DMS and DLS in respectively goal-directed and habitual behavior were supported by recordings of neuronal dynamics related to action-outcome in DMS and stimulus-response in DLS along learning [START_REF] Thorn | Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning[END_REF][START_REF] Yin | Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill[END_REF].

The striatum is heavily innervated by dopaminergic midbrain nuclei that provide RPE signals which causally promote different forms of learning depending on the subdivision targeted [START_REF] Cox | Striatal circuits for reward learning and decision-making[END_REF][START_REF] Saunders | Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties[END_REF][START_REF] Steinberg | A causal link between prediction errors, dopamine neurons and learning[END_REF]. The striatum is part of the basal ganglia system and represents its main source of inputs from cortex and thalamus. The main output of basal ganglia is the internal globus pallidus that convey to the thalamus signals relayed to the same cortical region that originally targeted striatum. Altogether this circuit forms a well documented cortico-basal ganglia-thalamocortical loop where two competing pathways in basal ganglia modulate behavior through the influence of midbrain dopaminergic nuclei and cortex. The direct pathway and the indirect pathway originate from distinct neurons of the dorsal striatum that respectively express D1 or D2 receptors, and are thus heavily modulated by DA. The regulation of these pathways by DA remains a delicate question since new studies highlighted a large spectrum of signaling by DA, beyond only RPE [START_REF] Engelhard | Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons[END_REF][START_REF] Howe | Rapid signalling in distinct dopaminergic axons during locomotion and reward Locomotion related dopamine signalling[END_REF][START_REF] Lee | Reward prediction error does not explain movement selectivity in dms-projecting dopamine neurons[END_REF][START_REF] Parker | Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target[END_REF][START_REF] Da Silva | Dopamine neuron activity before action initiation gates and invigorates future movements[END_REF]. In particular, it has been shown that the activity of neurons expressing D1 or D2 receptors reflects opposite valence of outcome and that their inactivation bias choice in opposite ways [START_REF] Nonomura | Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways[END_REF][START_REF] Puig | Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds[END_REF][START_REF] Tai | Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value[END_REF][START_REF] Wang | Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice[END_REF]. These new discoveries raise exciting questions that will certainly push the scientific community to study the circuit mechanisms and role of the dorsal striatum in executive control for many years to come (for review: [START_REF] Cox | Striatal circuits for reward learning and decision-making[END_REF]).

Ventral Striatum

The ventral striatum (VS) receives inputs from the OFC, the mPFC and the thalamus like the DMS. It also get afferences from the hippocampus and the BLA, hence it is often called limbic striatum [START_REF] Cox | Striatal circuits for reward learning and decision-making[END_REF][START_REF] Joel | The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum[END_REF][START_REF] Mcdonald | Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain[END_REF]. Similarly to the BLA and the OFC, the VS is a structure tightly linked to the processing of value [START_REF] Mannella | The nucleus accumbens as a nexus between values and goals in goal-directed behavior: A review and a new hypothesis[END_REF]. Lesion of VS increases impulsive behaviors, regardless of outcome [START_REF] Cardinal | Impulsive choice induced in rats by lesions of the nucleus accumbens core[END_REF] and impairs learning of optimal choice based on sensory stimuli while learning only based on actions remains intact [START_REF] Rothenhoefe | Effects of ventral striatum lesions on stimulus-based versus actionbased reinforcement learning[END_REF].

Disconnection of its BLA afferences affects the update of outcome as well as perceptual decision-making [START_REF] Shiflett | At the limbic-motor interface: Disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation[END_REF]. Furthermore, the optogenetic actuation of BLA-to-VS neurons mimics effect of a positive reinforcer [START_REF] Namburi | A circuit mechanism for differentiating positive and negative associations[END_REF][START_REF] Stuber | Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking[END_REF]. The VS also receives dopaminergic projection from midbrain nuclei and phasic transients of DA in VS have been reported during reward consumption, reward anticipation [START_REF] Day | Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens[END_REF], during cue associated with the reward [START_REF] Parker | Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target[END_REF] and for motivation [START_REF] Mohebi | Dissociable dopamine dynamics for learning and motivation[END_REF]. Altogether, the convergence of BLA signals related to valence and associative coding [START_REF] Namburi | A circuit mechanism for differentiating positive and negative associations[END_REF] together with reward related DA signals [START_REF] Day | Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens[END_REF] in VS appears to be crucial for the stimulus-response association during appetitive Pavlovian learning [START_REF] Ambroggi | Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons[END_REF][START_REF] Saunders | Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties[END_REF] while action-outcome learning does not require VS [START_REF] Rothenhoefe | Effects of ventral striatum lesions on stimulus-based versus actionbased reinforcement learning[END_REF].

Orbitofrontal cortex

The Orbitofrontal cortex (OFC) is a main actor of the valuation system. The OFC receives a large spectrum of inputs [START_REF] Murphy | Organization of afferents to the orbitofrontal cortex in the rat[END_REF][START_REF] Öngür | The Organization of Networks within the Orbital and Medial Prefrontal Cortex of Rats, Monkeys and Humans[END_REF][START_REF] Padoa-Schioppa | Orbitofrontal Cortex: A Neural Circuit for Economic Decisions[END_REF][START_REF] Wallis | Cross-species studies of orbitofrontal cortex and value-based decisionmaking[END_REF]. Notably, sensory cortices of all modalities, perirhinal cortex, entorhinal cortex, mPFC and MOs send projections to the OFC. It also receives inputs from the VTA [START_REF] Swanson | The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat[END_REF], the amygdala and the dorsal raphe [START_REF] Way | Architectonic distribution of the serotonin transporter within the orbitofrontal cortex of the vervet monkey[END_REF], which are structures implicated in RPE for the two first and in emotion and motivation for the two lasts. OFC is also connected to the NAc, hippocampus, hypothalamus and the medio-dorsal nucleus of the thalamus (MD). Altogether these inputs convey to the OFC a wide range of information about context and internal state. Some of the cited structures are reciprocally connected to the OFC; it is true for the amygdala [START_REF] Carmichael | Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys[END_REF], the VTA [START_REF] Swanson | The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat[END_REF], the MD, the mPFC, the entorhinal cortex, the perirhinal cortices and the MOs.

Finally, efferent projections from the OFC reach motor areas [START_REF] Lu | Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe[END_REF][START_REF] Padoa-Schioppa | Orbitofrontal Cortex: A Neural Circuit for Economic Decisions[END_REF][START_REF] Takada | Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys[END_REF][START_REF] Takahara | Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques -anatomical substrate for conditional visuomotor behavior[END_REF], caudate putamen and locus coeruleus (Aston-Jones and [START_REF] Aston-Jones | An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance[END_REF].

OFC connectivity configuration seems favorable for computation of general state-values.

Indeed, it receives (1) sensory information from cortices and thalamus;

(2) internal state, mood, value and motivation related information from the BLA, the VTA and the dorsal raphe; and (3) sends processed information to (A) the mPFC, motor cortices and the striatum, that are actors of executive control, and to (B) the locus coeruleus actor of arousal through Norepinephrine release.

The presumption about value processing by the OFC from its connectivity is comforted by the results of numerous lesions studies in monkeys and rodents. Just like for BLA lesions experiments, OFC lesions impair behavior adaptation to contingency devaluation [START_REF] Gallagher | Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning[END_REF]Gremel and Costa, 2013a;[START_REF] Izquierdo | Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency[END_REF][START_REF] Pickens | Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task[END_REF]. In fact similar effect, namely choices not following value maximization rule, has been reported in human with damaged OFC [START_REF] Camille | Ventromedial frontal lobe damage disrupts value maximization in humans[END_REF]. Additionally, "softer" methods of investigation, like transient pharmacological silencing, have producd similar results [START_REF] Wellman | Mediated Inhibition of Basolateral Amygdala Blocks Reward Devaluation in Macaques[END_REF][START_REF] West | Transient Inactivation of Orbitofrontal Cortex Blocks Reinforcer Devaluation in Macaques[END_REF].

Early human fMRI studies [START_REF] Doherty | Abstract reward and punishment representations in the human orbitofrontal cortex[END_REF][START_REF] Gottfried | Value in Human Amygdala and Orbitofrontal Cortex[END_REF] and electrophysiological studies in rats and monkeys [START_REF] Padoa-Schioppa | Neurons in the orbitofrontal cortex encode economic value[END_REF][START_REF] Schoenbaum | Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning[END_REF] had highlighted that OFC neurons tracked subjective value during instrumental learning. Some of the last researches attested of a more defined implication in goal-directed behavior and more precisely in action-outcome association [START_REF] Ballesta | Values encoded in orbitofrontal cortex are causally related to economic choices[END_REF][START_REF] Fiuzat | The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques[END_REF]Gremel and Costa, 2013a;[START_REF] Parkes | Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents[END_REF].

It looks like the BLA and the OFC are both important precursors of value estimations and value expectation update [START_REF] Holland | Amygdala-frontal interactions and reward expectancy[END_REF][START_REF] Padoa-Schioppa | Orbitofrontal Cortex: A Neural Circuit for Economic Decisions[END_REF].

Because they are reciprocally connected, many studies wonder about their interactions.

They both show similar neuronal activities in relation with value update, which has been shown to be interdependent. Indeed, OFC lesion affects learning of new outcome expectation as well as BLA neural correlates of it [START_REF] Lucantonio | Neural Estimates of Imagined Outcomes in Basolateral Amygdala Depend on Orbitofrontal Cortex[END_REF]; while BLA lesion affects cue-reward association as well as OFC neural correlates of it (Rudebeck et al., 2017). It has been proposed that the BLA acquires and processes on the fly value expectation associated to predictive cues, whereas OFC would more gather information about internal and external states to generate a general state-value in order to guide action [START_REF] Pickens | Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task[END_REF][START_REF] Schuck | Human Orbitofrontal Cortex Represents a Cognitive Map of State Space[END_REF][START_REF] Wellman | Mediated Inhibition of Basolateral Amygdala Blocks Reward Devaluation in Macaques[END_REF][START_REF] Wilson | Orbitofrontal cortex as a cognitive map of task space[END_REF]. To conclude about OFC functions, it appears clear that the OFC is involved in value-based decision-making but its precise contribution in such a complex cognitive process remain unclear and challenging for the scientific community (for review: [START_REF] Stalnaker | What the orbitofrontal cortex does not do[END_REF]).

Medial prefrontal cortex

The definition of the PFC and its medial part is a thorny topic. The main reasons are the existence of two parallel nomenclatures from Allen Brain and Paxinos and divergence in the cytoarchitecture and connectivity of PFC between rodents and primates (agranular versus granular, different connections …) [START_REF] Carlén | What constitutes the prefrontal cortex?[END_REF][START_REF] Uylings | Do rats have a prefrontal cortex?[END_REF]. The following paragraphs will focus on the general involvement in decision-making of the mPFC, with description of its dorsal part (dmPFC): composed of Cingulate cortex (Cg) and dorsal prelimbic; and its ventral part (vmPFC): composed of ventral prelimbic and infralimbic cortex (IL) [START_REF] Heidbreder | The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics[END_REF].

The mPFC is reciprocally connected to the PAG, the lateral hypothalamus, the VTA, the dorsal raphe, the mediodorsal thalamus, the OFC, the MOs and the BLA. Ventral part of mPFC (vmPFC, IL and ventral PL) receives more limbic inputs (perirhinal, entorhinal, BLA, hippocampus) than the dorsal part (dmPFC, dorsal PL and Cg) which receives sensory inputs from visual cortex while vmPFC doesn't [START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF][START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Siyu | Organization of long-range inputs and outputs of frontal cortex for top-down control[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF].

The dorsoventral parts of the mPFC target distinct sub-regions of the striatum: the VS and DLS for vmPFC, and the DMS for dmPFC [START_REF] Balleine | Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action[END_REF][START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF]. Each subregion of the mPFC (Cg, PL, IL) display bidirectional connections with each other, forming a complex network where cognitive features has been suggested to arise from the dorsal part whereas the ventral part may be more related to emotion and autonomic control [START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF]. From its large spectrum of connection, it looks like mPFC integrate information from global context (emotional state, environmental perception, internal state…) and exerts control on other structures.

Following this, the PL and IL subdivisions of the mPFC have been shown to be involved in goal-directed and habitual control of actions, respectively [START_REF] Balleine | The Meaning of Behavior: Discriminating Reflex and Volition in the Brain[END_REF][START_REF] Dolan | Review Goals and Habits in the Brain[END_REF]. Indeed, lesions of the PL in rodents are affecting the action-outcome association and post training lesions is decreasing the sensitivity to outcome devaluation and contingency degradation [START_REF] Balleine | Goal-directed instrumental action: contingency and incentive learning and their cortical substrates[END_REF][START_REF] Corbit | The role of prelimbic cortex in instrumental conditioning[END_REF][START_REF] Coutureau | Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats[END_REF][START_REF] Ostlund | Lesions of Medial Prefrontal Cortex Disrupt the Acquisition But Not the Expression of Goal-Directed Learning[END_REF]. In an opposite way, lesions or transient inactivation of the IL impedes habit-actions, normally induced by the long period of training [START_REF] Coutureau | Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats[END_REF][START_REF] Smith | A dual operator view of habitual behavior reflecting cortical and striatal dynamics[END_REF]. These results are consistent with the functions of the striatum parts that mPFC connects: PL to DMS, implicated in goal-directed [START_REF] Hart | The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions[END_REF][START_REF] Tran-Tu-Yen | Transient role of the rat prelimbic cortex in goal-directed behaviour[END_REF][START_REF] Yin | The role of the dorsomedial striatum in instrumental conditioning[END_REF] and IL to DLS, implicated in habit behavior [START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF]. It has been thus

proposed that mPFC exerts a top down control on striatum to guide action-selection [START_REF] Balleine | The Meaning of Behavior: Discriminating Reflex and Volition in the Brain[END_REF][START_REF] Bari | Stable Representations of Decision Variables for Flexible Behavior[END_REF][START_REF] Kamigaki | Prefrontal circuit organization for executive control[END_REF][START_REF] Mcdonald | Projection neurons of the basolateral amygdala: A correlative Golgi and retrograde tract tracing study[END_REF][START_REF] Sharpe | An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making[END_REF].

Neural correlates of expectancy of outcome during instrumental [START_REF] Kennerley | Decision making and reward in frontal cortex: complementary evidence from neurophysiological and neuropsychological studies[END_REF], spatial [START_REF] Pratt | Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task[END_REF] or Pavlovian conditioning [START_REF] Baeg | Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat[END_REF][START_REF] Gilmartin | Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning[END_REF] have been reported in dmPFC. During instrumental learning, prediction error activity [START_REF] Hyman | A Novel Neural Prediction Error Found in Anterior Cingulate Cortex Ensembles[END_REF] as well as decision value related activity has been also observed [START_REF] Kennerley | Decision making and reward in frontal cortex: complementary evidence from neurophysiological and neuropsychological studies[END_REF][START_REF] Sul | Distinct Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making[END_REF] with putative contribution of hippocampal inputs [START_REF] Burton | Lesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the rat[END_REF][START_REF] Euston | The Role of Medial Prefrontal Cortex in Memory and Decision Making[END_REF][START_REF] Gruber | More is less: a disinhibited prefrontal cortex impairs cognitive flexibility[END_REF]. In fact, dorsal mPFC signals fluctuates like an online system comparing expected outcome and actual outcome [START_REF] Hyman | A Novel Neural Prediction Error Found in Anterior Cingulate Cortex Ensembles[END_REF][START_REF] Schuck | Medial prefrontal cortex predicts internally driven strategy shifts[END_REF][START_REF] Strait | Reward value comparison via mutual inhibition in ventromedial prefrontal cortex[END_REF][START_REF] Sul | Distinct Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making[END_REF] which determine if a change of strategy is needed when expectation are uncertain [START_REF] Domenech | Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal cortex[END_REF][START_REF] Durstewitz | Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning[END_REF][START_REF] Karlsson | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty[END_REF][START_REF] Schuck | Medial prefrontal cortex predicts internally driven strategy shifts[END_REF]. One study even highlighted a control by locus coeruleus noradrenergic projection on strategy switching computation in mPFC [START_REF] Tervo | Behavioral variability through stochastic choice and its gating by anterior cingulate cortex[END_REF].

Concerning the ventral part of mPFC, it seems that it is crucially involved in the suppression of Pavlovian associations (appetitive or aversive) during extinction [START_REF] Barker | A unifying model of the role of the infralimbic cortex in extinction and habits[END_REF][START_REF] Giustino | The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear[END_REF][START_REF] Marek | Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction[END_REF][START_REF] Villaruel | Optogenetic Activation of the Infralimbic Cortex Suppresses the Return of Appetitive Pavlovian-Conditioned Responding Following Extinction[END_REF]. A recent study described interactions between PL and IL which support the learning of new strategies [START_REF] Mukherjee | Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity[END_REF].

Altogether, the mPFC is described in the literature as a structure where information related to context and short-term history of outcomes converge and are processed to compute expectation and adapt behavior (e.g. suppression of Pavlovian stimulus-response association or promotion of new instrumental strategies). It is easy to imagine that the mPFC, through its control on subregions of the striatum, triggers switching from a habit strategy for exploitation in a stable predictable environment to a goal-directed strategy for exploration of new actions when environment changes.

One major partner of the mPFC is the BLA. These two structures are reciprocally connected. The BLA computes signals of cue-outcome prediction from contextual and emotional inputs which can instruct the mPFC about the magnitude and valence of probable outcome [START_REF] Klavir | Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning[END_REF]. Investigation on BLA-to-mPFC connections have unveiled a dorsoventral gradient of BLA projections from PL to IL with respectively negative to positive valence coding [START_REF] Kim | Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors[END_REF]. BLA axons to the mPFC contact both parvalbumin (PV) and somatostatin (SOM) positive interneurons as well as pyramidal neurons, forming a feedforward inhibitory circuit that can strongly silence the mPFC [START_REF] Gabbott | Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex[END_REF][START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF][START_REF] Mcgarry | Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex[END_REF][START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF]. In parallel, mPFC sends long range projection to interneurons and principal neurons of the BLA [START_REF] Lu | Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells[END_REF][START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF], mirroring the previously described feedforward inhibition circuit. This recurrent network is likely at the origin of observed synchronized oscillations when both BLA and mPFC are recruited during aversive learning [START_REF] Taub | Oscillations Synchronize Amygdalato-Prefrontal Primate Circuits during Aversive Learning[END_REF]. Furthermore, it appears that BLA reciprocal connections with IL and PL are crucial for Pavlovian conditioning and for suppression of stimulus-response association during extinction [START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF][START_REF] Senn | Long-range connectivity defines behavioral specificity of amygdala neurons[END_REF]. A recent review about BLA-mPFC reciprocal circuit suggests that such a recurrent network could also continuously update expected valence and magnitude in the mPFC in order to adapt instrumental behavior [START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF]. This last statement sounds relevant regarding the influence of the mPFC on downstream structures like the striatum.

Secondary motor cortex

This region has taken many names in rodents across the literature: the frontal association cortex (FrA), the frontal orienting field (FOF), the dorsomedial prefrontal cortex (dmPFC, that is sometimes also used for Cg), the medial agranular cortex (AGm), the anterolateral motor area (ALM) and, as we are going to call it, the secondary motor cortex (MOs) (Fig9.A). The delimitation of this region, and probable subregions, are not well defined yet, mainly because of the only subtle cytoarchitectural differences in the rodent PFC and lack of clear homology with primates [START_REF] Barthas | Secondary Motor Cortex: Where "Sensory" Meets "Motor" in the Rodent Frontal Cortex[END_REF][START_REF] Brecht | Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells[END_REF][START_REF] Van De Werd | Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse[END_REF]. Its inclusion as a subpart of the PFC has also been debated [START_REF] Carlén | What constitutes the prefrontal cortex?[END_REF][START_REF] Uylings | Do rats have a prefrontal cortex?[END_REF]. One inclusion criterion from an old definition of PFC is to form reciprocal connections with the MD [START_REF] Rose | The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat[END_REF] thus Cg, PL, IL, OFC together with MOs would form the PFC [START_REF] Kuramoto | Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors[END_REF]. In the present thesis, we will refer to the MOs as it is delineated in Allen brain atlas [START_REF] Wang | The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas[END_REF]) and we will focus on its frontal part (for review: [START_REF] Barthas | Secondary Motor Cortex: Where "Sensory" Meets "Motor" in the Rodent Frontal Cortex[END_REF][START_REF] Kamigaki | Prefrontal circuit organization for executive control[END_REF][START_REF] Svoboda | Neural mechanisms of movement planning: motor cortex and beyond[END_REF]).

The MOs is bidirectionally connected to (1) sensory related areas: sensory cortices of all modalities, thalamic nuclei (2) value related regions: VTA, OFC, BLA and (3) associative regions: retrosplenial cortex, posterior parietal cortex, OFC, BLA, perirhinal and ectorhinal cortices [START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF][START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Lin | Reconstruction of Intratelencephalic Neurons in the Mouse Secondary Motor Cortex Reveals the Diverse Projection Patterns of Single Neurons[END_REF][START_REF] Watabe-Uchida | Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF]) (Fig9.A). Thus, the MOs appears to be well positioned to compute global context representation by integrating (1) environmental, (2) internal and

(3) associative signals from all these regions. It also connected bidirectionally with the primary motor cortex (M1) and unilaterally with: the spinal cord, the superior colliculus, the dorsal striatum and the mPFC [START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF][START_REF] Hintiryan | The mouse cortico-striatal projectome[END_REF][START_REF] Lin | Reconstruction of Intratelencephalic Neurons in the Mouse Secondary Motor Cortex Reveals the Diverse Projection Patterns of Single Neurons[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF]. Therefore, MOs targets effectors of motor control (M1, Spinal cord)

and executive control (Striatum, mPFC) and could thus be implicated in the process of action-selection. To address whether the MOs could be involved in goal-directed and/or habitual behavior, Gremel and Costa performed bilateral MOs lesions in mice that performed an instrumental conditioning task. Remarkably, the resulting behavior was insensitive to outcome devaluation which indicate that goal-directed control was impaired (Gremel and Costa, 2013b). Other investigations with unilateral lesion or inactivation of mice MOs have reported an effect on choice. In one old study, unilateral lesion resulted in biasing choice to ipsilateral side of the lesion [START_REF] Cowey | Contralateral "neglect" after unilateral dorsomedial prefrontal lesions in rats[END_REF] and similar results were obtained when the GABA-A receptor agonist muscimol was infused in the MOs during a cue-guided task [START_REF] Erlich | A Cortical Substrate for Memory-Guided Orienting in the Rat[END_REF]. In fact, the unilateral transient inhibition of the MOs by muscimol had an even more dramatic effect on ipsilateral bias and learning if a delay period of response retention was added in the task. Optogenetic unilateral inactivation of MOs during a cue-guided task with delayed response biased similarly the action when the light was shined just prior to movement (Fig9.C) [START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF]. The silencing promoted the ipsilateral action and decreased the occurrence of contralateral action.

These two studies from Svoboda and colleagues are of particular interest because: (1) they screened optogenetic effect on distinct subparts of the full cortical surface, highlighting a specific effect on choice after photo-stimulation to a region they called ALM, totally overlapping frontal MOs (Fig9.A) [START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF]; (2) they characterized the epoch window of maximal perturbation which is a really short period (0.5 sec) prior to action [START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF]. Interestingly, optogenetic silencing of MOs had not the described biasing effect if there was no imposed delay period between the cue and the response (Kopec et al., 2015). These results suggest that MOs may not be required when sensory cues are present until action. Instead they could be explained by a control from the habit system through stimulus-response associations.

Taken together, these data shed light on a critical role of the MOs during action-selection.

In addition, other optogenetic or lesions studies revealed that the MOs is also involved in the timing of action execution [START_REF] Murakami | Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex[END_REF][START_REF] Smith | Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF].

Furthermore, bilateral lesion of MOs in rats performing a free-choice task diminishes the learning of optimal choice and decreases sensitivity to changes of action-value [START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]. Another example of MOs role in adaptive action-selection is provided by Kwan laboratory [START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF]. In this paper, mice had to repeatedly adapt to switches of rule from a cue-guided to a value-based task and bilateral muscimol infusion in MOs significantly affects adaptation of action-selection.

Evidences from the presented studies argue in favor of a preponderant role of the MOs in motor preparation and adaptive action-selection. From the described literature, the MOs processes information about recent events (e.g. sensory cues, previous trial outcome) to better select which action to generate and when to do it.

Several recent studies with recording of MOs activity during decision-making tasks had unraveled neural correlates of choice predicting the incoming action [START_REF] Chen | A Map of Anticipatory Activity in Mouse Motor Cortex[END_REF][START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF][START_REF] Murakami | Neural antecedents of self-initiated actions in secondary motor cortex[END_REF][START_REF] Murakami | Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]. Activity related to choice has been also observed in other regions, including the mPFC and the basal ganglia [START_REF] Steinmetz | Distributed coding of choice, action and engagement across the mouse brain[END_REF]. However, MOs pyramidal neurons exhibit the earliest choice-related activity across the entire frontal-striatal network that predicts specific action long before the choice has been revealed (Fig10.) [START_REF] Lee | Neural Basis of Reinforcement Learning and Decision Making[END_REF]. This suggests that the MOs could be upstream of the action-selection process, which then implicates other PFC regions, basal ganglia and other regions for execution [START_REF] Steinmetz | Distributed coding of choice, action and engagement across the mouse brain[END_REF]. In case of cue guided tasks with an action retention period, some MOs neurons show sustained activity during the delay period until onset of action (Fig9.B) [START_REF] Chen | A Map of Anticipatory Activity in Mouse Motor Cortex[END_REF][START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Kopec | Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements[END_REF][START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF][START_REF] Murakami | Neural antecedents of self-initiated actions in secondary motor cortex[END_REF]. These neurons show preparatory activity related to either motor planning or working memory signals about cues (maintenance of their representation) to trigger the best action at the right time [START_REF] Svoboda | Neural mechanisms of movement planning: motor cortex and beyond[END_REF].

Persistent activity is believed to emerge from recurrent architecture of networks [START_REF] Curtis | Persistent activity in the prefrontal cortex during working memory[END_REF][START_REF] Major | Persistent neural activity: prevalence and mechanisms[END_REF][START_REF] Wang | Decision Making in Recurrent Neuronal Circuits[END_REF] and to reflect temporal integration of events separated in time [START_REF] Curtis | Beyond working memory: The role of persistent activity in decision making[END_REF]. Reciprocal positive feedbacks create network dynamics susceptible to maintain persistent activity [START_REF] Chaudhuri | Computational principles of memory[END_REF]. This feature can theoretically emerge from local circuits [START_REF] Wang | Decision Making in Recurrent Neuronal Circuits[END_REF] or distributed circuits along several brains regions [START_REF] Guo | Maintenance of persistent activity in a frontal thalamocortical loop[END_REF]. Some cellular mechanisms have been identified and participate in the maintenance of neuronal persistent activity (e.g. specific distribution of calcium channels along the different neuronal compartment [START_REF] Fransén | Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons[END_REF], GABAB and NMDA conductances [START_REF] Sanders | NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability[END_REF], dendritic regenerative activity and back propagating action potentials [START_REF] Larkum | A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex[END_REF]).

Persistent dynamics between action and outcome has also been proposed to be the trace of action-value representation maintained in order to compare the expected and actual outcome. This process would participate in the update of expectations and in turn participate in adaptation of future choice [START_REF] Curtis | Beyond working memory: The role of persistent activity in decision making[END_REF][START_REF] Lim | Active maintenance of eligibility trace in rodent prefrontal cortex[END_REF]. In addition to preparatory signals, MOs neurons also show modulation of activity related to the relative value of choice (ΔQ) during a value-based decision task [START_REF] Bari | Stable Representations of Decision Variables for Flexible Behavior[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]. These signals imply that MOs either receives signals related to the comparison of actions value or computes this comparison. In anyway, the relative value of choice is crucial for the action-selection process and its representation in MOs neuronal activity consolidates the putative involvement of the MOs in this process.

To sum up, recordings of MOs activity during decision-making tasks have provided a first taste about what the MOs is coding for [START_REF] Barthas | Secondary Motor Cortex: Where "Sensory" Meets "Motor" in the Rodent Frontal Cortex[END_REF][START_REF] Kamigaki | Prefrontal circuit organization for executive control[END_REF][START_REF] Svoboda | Neural mechanisms of movement planning: motor cortex and beyond[END_REF]. Together with silencing and lesions data, the MOs emerges as a prominent region for processing adaptive action-selection by using recent antecedents to decide what to do next and when to do it.

Implication of BLA-to-MOs projections during learning

As we have seen in the previous parts, the BLA is a central structure for associative learning. It allows predicting the value of what previously-experienced sensory stimuli may announce. In that sense, it is a core structure for stimulus-response association and has been mainly studied in the context of fear conditioning.

While BLA reciprocal connections to the OFC, the mPFC and the striatum have been studied in various manners, the reciprocal connections of BLA and MOs have almost never been explored (but see [START_REF] Murray | Frontal association cortex is engaged in stimulus integration during associative learning[END_REF]). In contrast with the mPFC, the MOs receives large range of sensory inputs and thus could participate in temporal binding of sensory events to outcome. Actually some studies highlighted a role of the MOs in auditory fear learning [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF][START_REF] Sacchetti | Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning[END_REF][START_REF] Sacchetti | Role of the neocortex in consolidation of fear conditioning memories in rats[END_REF], an associative learning process highly dependent on the BLA.

Regarding instrumental learning, BLA connections to the OFC and to the striatum are crucial for the update of values in order to perform goal-directed behavior [START_REF] Corbit | The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions[END_REF][START_REF] Lichtenberg | Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations[END_REF]. The BLA-to-MOs connection could also be as important by providing to MOs value signals or, as recent studies suggest, more complex signals related to vigor, motivation or switch between active and passive behavior in order to better adapt behavior [START_REF] Gründemann | Amygdala ensembles encode behavioral states[END_REF][START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF].

For both classical and instrumental conditioning, the nature of BLA signals sent to the MOs remains unclear. That is why we questioned the involvement of BLA-to-MOs projections in associative learning and adaptive action-selection.

Role of MOs and BLA-to-MOs in auditory fear learning

In the early 2000's, Sacchetti and colleagues investigated the role of frontal cortices during auditory fear conditioning. In two of their studies, they performed pharmacological inhibition of prefrontal cortices, including the MOs [START_REF] Sacchetti | Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning[END_REF][START_REF] Sacchetti | Role of the neocortex in consolidation of fear conditioning memories in rats[END_REF].

In the first study [START_REF] Sacchetti | Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning[END_REF] pharmacological inhibition of the MOs affected auditory fear learning. In the second study [START_REF] Sacchetti | Role of the neocortex in consolidation of fear conditioning memories in rats[END_REF] inhibition was tested at different period of auditory fear learning, showing a prominent contribution of MOs especially during the acquisition of auditory conditioned fear only. Together, these studies highlighted for the first time a role of the MOs in the formation of fear memory.

Furthermore, a more recent study [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF], certainly motivated by early papers about reciprocal connections between MOs and BLA which they cite [START_REF] Condé | Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents[END_REF][START_REF] Mcdonald | Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: A fluorescence retrograde transport study in the rat[END_REF], also focused on the MOs during fear conditioning. The authors followed dendritic spines turnover of L2/3 MOs neurons in mice with two-photon microscopy during auditory fear conditioning and fear extinction [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF]. They observed a robust correlation between the learning rate and the pruning of spines in response to fear acquisition. However, the formation rate of new spines was not different between conditioned and non conditioned animals. The observed dynamics remain unchanged for more than a week. Remarkably, when extinction was induced by the exposition to CS+ without US, an increase in spine formation was observed and occurred preferentially at the same dendritic location of previously loss spines during learning. Altogether these data suggest that memory traces could be present within MOs pyramidal neurons into discrete synapses coding for specific CS-US associations.

Another recent study reported a decrease of fear learning after blockage of protein synthesis (via Anismocycin infusion) in the MOs during acquisition [START_REF] Murray | Frontal association cortex is engaged in stimulus integration during associative learning[END_REF]. This last study also highlighted that the recruitment of MOs neurons in response to US was depending on the activity of the BLA. This represents the first evidence of a 

MOs dynamics upon reinforcement learning remains unknown

Neurons from higher-order structures such as the mPFC and the MOs respond to different variables of behavior in a context dependent manner. PFC neurons show mixed selectivity to rules as well as sensory and motor features inter alia (Churchland and Shenoy, 2007;[START_REF] Mante | Context-dependent computation by recurrent dynamics in prefrontal cortex[END_REF][START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]. In fact, it has become increasingly clear that neurons in the PFC display high-dimensional activity with mixed selectivity, which has been hypothesized to increase the computational power of neuronal circuits [START_REF] Fusi | Why neurons mix: High dimensionality for higher cognition[END_REF][START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF].

Understanding the behavioral function of this high-dimensional activity requires recording methods and analysis approaches that consider neuronal population as a whole.

Nodaway, multi-electrodes recording and two-photon calcium imaging are essential techniques to monitor activity of large population of neurons. In continuity of these techniques, dimension reduction has emerged as the main strategy to analyze and crack multidimensional ensembles codes [START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF][START_REF] Kobak | Demixed principal component analysis of neural population data[END_REF]. The activities of n neurons (n dimensions) at a time t can be reduced to a single point in a state-space which represent a unique pattern of activity from the analyzed neuronal population.

For each value of the time vector, an activity state can be plotted from which, a trajectory (often called "neural trajectory") can be drawn to represent the evolution of population activity along time. This kind of analysis has highlighted that MOs neuronal population passes through distinct trajectories for each choices of decision-making tasks [START_REF] Durstewitz | Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF]. Interestingly, in case of modification of contingencies, abrupt transitions of activity states can be seen prior to behavioral adaptation [START_REF] Durstewitz | Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF]. However, in these studies animals were highly trained to the different rules, letting MOs representation during adaptation of choice unexplored in naive animals.

While it is clear that choice representations are present in the MOs [START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF][START_REF] Murakami | Neural antecedents of self-initiated actions in secondary motor cortex[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF], little is known about how naive animals build these representations along learning.

To investigate on MOs dynamics during learning of goal-directed behavior, we first developed a learning/reversal learning cue-less decision task for head-restrained mice in order to perform calcium imaging and longitudinally monitor MOs L2/3 neurons activity. In 

Role of BLA-to-MOs upon reinforcement learning remains unknown

The BLA is a key actor of Pavlovian associative learning and is connecting a wide range of structures. Remarkably, it connects the main known structures that exhibit a role in valuation and decision-making, namely the striatum, the OFC, the mPFC and the MOs. It has tight relations with mPFC, and can greatly influence its activity through the formed feedforward inhibition circuit, gating fear learning and extinction [START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF]. One could imagine that the BLA interacts with the MOs in a similar way and could be at the origin of reported MOs spines dynamics observed during fear learning [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF].

As there is proves that the BLA can transmits information about magnitude and valence of expected outcome [START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF], the interaction between the BLA and the MOs could be crucial for outcome evaluation during instrumental learning. In fact, lesions or optogenetic silencing of the BLA promote safe and effort-less decisions against risky and costing actions [START_REF] Ghods-Sharifi | Fundamental contribution by the basolateral amygdala to different forms of decision making[END_REF][START_REF] Orsini | Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making[END_REF], testifying of a bias in economic evaluation. These considerations lead us to try to decipher the nature of BLAto-MOs signals and their influence on goal-directed action learning.

Because BLA neurons show multidimensional coding [START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF] we aimed to record a large population of BLA-to-MOs neurons to be able to perform population analysis and better appreciate transmitted signals. Multi electrode recording is a great proxy for activity monitoring of large population but isn't the most reliable technique when long term chronic recordings have to be achieved. Indeed, it is common to observe drifts of electrodes with time when performing recordings for more than a week, making the longitudinal correspondence of units waveforms extremely challenging (but see [START_REF] Okun | Long term recordings with immobile silicon probes in the mouse cortex[END_REF] showing recent improvements). An alternative could be the use of endoscopes or graded-index (GRIN) lenses to image BLA somas that express a calcium indicator to reveal BLA neuronal population activity [START_REF] Grewe | Neural ensemble dynamics underlying a long-term associative memory[END_REF][START_REF] Gründemann | Amygdala ensembles encode behavioral states[END_REF][START_REF] Zhang | Population coding of valence in the basolateral amygdala[END_REF][START_REF] Zhang | Amygdala Reward Neurons Form and Store Fear Extinction Memory[END_REF]. We decided to undertake another strategy that is avoiding brain damages related to endoscopes implantation and that take advantage of the head-fixed setting of our behavioral task. Our approach is to image with two-photon based microscopy populations of BLA axons expressing a calcium indicator that reach the MOs. We could thus identify over long periods the same axonal boutons and record their fluorescent transients related to learning of our goal-directed task.

The results of these experiments are developed in the chapter 3.BLA-to-MOs implication in learning and adaptation of action-selection of Results part. water restriction. In these lasts, mice were restricted to 1mL of water a day starting 3 weeks after recovery from surgery. Weight was measured every day and additional water was given in case of a weight loss ≥ at 20% relative to the weight at day 0 of restriction.

Materials and Methods

Animals

Manufactured fibers and optrodes

Optical fibers: We manufactured the optical fibers used for optogenetic experiments. In brief, 20 mm long pieces of fibers (ϴ: 200µm, FT200UMT, Thorlabs) were cut, striped (TS12S21, Thorlabs), positioned into ceramic ferrules (LC Ceramic Ferrule OD 1.25mm ID 230µm) then glued using thermal cure epoxy (ECCOBOND F123, Loctite) and cured with a heat gun (HL1620S, Steinel). The connection side of ferrules were then polished sequentially with sand papers of different grain (LF30D to LF1D, Thorlabs) using either an automated (SpecPro, Krelltech) or manual polisher (D50-L, Thorlabs). The polished surface was visually checked using a fiberscope (FS201, Thorlabs) and optical fibers were finally cleaved (S90R Thorlabs) at the desire length.

Custom optrodes: Custom 16 electrodes bundle were prepared and combined to optical fibers. In brief, 16 nickel-chrome wires (Nikrothal 80, Sandvik) were individually wrapped around pins of a 16 channels connector (NPD-18-VV-GS, Omnetics) under binocular. A Silver wire was striped and soldered to the ground pin of the connector. Wrapped nickelchrome wires were then covered with silver paint (RS-186-3593, RS-pro) to increase electrical contact. After validation of current passing through each electrodes, electronic silicone (3140 90ML, Dow corning) or epoxy (DP100, 3M Scotch-Weld) was applied on pins for isolation and protection purposes. The prepared electrode array could be finally gently bended and glued to a manufactured optical fiber (tips of electrodes positioned 250µm apart from fiber tip) resulting in a 16 channels optrode. Electrodes tips were submerged in a solution containing equal parts of gold solution (Gold Non-Cyanide, Sifcoasc) and polyethylene glycol (1mg.mL -1 ). Gold plating was achieved to reduce the impedance of each electrode to 50±10 kΩ using an impedance tester (PX. NanoZ, Campden Instrument).

Surgeries and viruses

Common procedure: Global anesthesia was induced using isoflurane (4% containing ~0.5 l min -1 O2 for ~3 min) and completed with intraperitoneal injection of a mix of medetomidine (Dormitor: 0.27 mg.kg -1 ), midazolam (5mg.kg -1 ) and buprenorphine (Buprecare: 0.05mg.kg -1 ). Analgesia was completed by a subcutaneous extra dose of buprenorphine (Buprecare: 0.05 mg.kg -1 ) and an injection of 100µL of lidocaine (lurocaine 1%) under the scalp. Intramuscular injection in quadriceps of 40µL of dexamethasone (Dexadreson: 0.1 mg.mL -1 ) was administrated to prevent potential brain swelling following craniotomies. Mice were then shaved and positioned into a stereotaxic frame (RWD). A heating-pad was placed beneath the mouse to maintain body temperature to 37°C and ophthalmic gel was frequently apply to prevent dryness along surgery. Occasionally, isoflurane could be used to stabilize anesthesia depth. Local asepsis was reached by successive skin scrubbing with 70% alcohol and betadine. Skin was then incised to allow alignment of bregma and lambda.

Remaining procedures relative to the different experiments present some specificities which are described below. All craniotomies were made with a pneumatic dental drill (AP-S001, BienAir Medical Technologies) and viral injections were done using an oil hydraulic manipulator (MO-10, Narishige) combine to glass pipettes (Wiretrol, Drummond) at a maximum rate of 60nL.min -1 with at least a 10 min long period prior withdrawal. At end of all these protocols, mice were finally woke-up by an intraperitoneal injection of a mixture of atipamezole (Revertor: 2.5 mg.kg -1 ), flumazenil (0.5 mg.kg -1 ) and buprenorphine (Buprecare: 0.02 mg.kg -1 ) and place in a recovery cage positioned above a heating pad for several hours. Two optical fibers were then slowly positioned bilaterally above BLA. Surgical silicone (Kwik-Sil, WPI) was used to seal all craniotomies then glue and dental cement were used to cover the skull and secure the fibers.

(Viral constructs from Penn Vector Core, provided by E Boyden and J Wilson)

Optrode implantation: After scalp incision, the skull of the mouse was scratched using a bended 18-Ga needle and 3 micro screws (M06015, Microfastenings) were implanted into the skull in order to increase surface of binding and stability of the final implant. Two craniotomies were performed above the cerebellum and above M1 (AP: 1.5mm; ML:

1.5mm; from bregma). The ground silver wire was then positioned between the skull and cerebellum through the first craniotomy that was whereafter filled with surgical silicone.

Incision of the dura matter above M1 was then performed to allow the optrode to gently and slowly entering into the brain thanks to a micromanipulator. When electrodes reached the wanted position (dorso-ventral: 0.5mm from brain surface), surgical silicone was applied on the craniotomy and a layer of glue was applied to cover the exposed skull.

Finally, dental cement was added on the still liquid glue to solidify and complete the implant.

Recovery and head stage implantation: Three weeks after surgery, a titanium head plate was attached to the dental cement cap of mice to allow fixation of animals intended to head-restrained experiments. Gaussian noise, WGN). Auditory stimuli consisted in 27 pips of 50ms presented at a frequency of 0.9 Hz for 30s with or without coinciding photo-stimulation pulses.

Patch clamp recordings

Auditory fear conditioning

Mice were handled everyday for a week prior habituation and mice equipped for imaging were also habituated to head fixation. All detailed experimental protocol can be found in [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]. Brief summary can be found below.

Habituation: Mice were exposed during three consecutive days to the different auditory stimuli (80 dB; CS-: WGN; CS+: 8 kHz pure tone) in a squared box with a grid floor (context A). Each auditory stimulus is composed of 27 pips of 50ms presented at a frequency of 0.9 Hz for 30s while inter stimulus interval were variable (10-60s).

Conditioning:

The day following habituation, mice were exposed to the five intermingled auditory stimuli of each kind but this time; a foot-shock (US, 1s, 0.6mA) was coupled to the offset of CS+ in order to promote CS+/US association.

Regarding two-photon imaging experiments, conditioning was done under the microscope with head fixation of mice. Recordings during conditioning consist in 30s of baseline period followed by the period of the five auditory stimuli of each kind. Footshock (US, 1s, 0.6mA)

were delivered at the offset of CS+ through a conducting grid where the mice stand.

Recording parameters and material used were the same as those detailed in the part: 6.Self-initiated and cue-less two-lever pressing task: two-photon calcium imaging)

For optogenetic experiments, mice were conditioned in the same context as habituation and pips of the CS-or CS+ were accompanied by 50ms long delivery of photo-stimulation.

Light was delivered through the implanted optical fibers connected to a yellow laser (10mW at fiber coupler output, SDL-LH-1500, Shanghai Dream Lasers) through a fiber optic coupler (TT200FL1A, Thorlabs) and ceramic mating sleeves (ADAL1, Thorlabs).

Recall: Recall tests were carried out 24, 48 and 72 hours after conditioning by presenting 2 CS+ and 2 CS-in a cylindrical white compartment with home cage litter on the floor (context B).

For each behavioral session, the total time duration (s) of freezing episodes upon CS+ and CS-presentation was quantified automatically using a fire-wire CCD-camera connected to an automated freezing detection software (AnyMaze, Ugo Basile, Italy), and expressed as % of freezing. Learning index was further quantified for each CS by multiplying the % of freezing in each condition by the corresponding index of discrimination by using the following equation:

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥(%) = 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔(%) × 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 + (%) -𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 -(%) 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 + (%) + 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 -(%)

Self-initiated and cue-less two-lever pressing task

Behavioral setup: The self-initiated decision task was performed with an operant two lever apparatus for head-restrained mice (Imetronic). This apparatus is composed of two retractable levers, a lick port and two PADs (Fig17.A); with the lasts allowing contact detection of respectively tong to lickport and paws to PADs. Levers, PADs and lickport were all connected to an acquisition board (Imetronic). A peristaltic pump electronically triggered (Imetronic) was used to deliver reward through the lick port. We used POLY software (Imetronic) to generate automated protocols for presentation, retraction and delivery of reward as well as for collecting pressing, paw detection and lick data. The apparatus was placed in a dark and soundproof box and infrared camera (Imetronic) was used to control animals' behavior when the box was closed. For imaging, mice were positioned on a replica of the described setup under a two-photon microscope.

Habituation: At least 3 weeks after surgery, mice were water restricted to 1mL a day. We performed handling and habituated the mice to the experimental environment by placing them 5 to 10 min on the apparatus once a day for 3 days. Habituation to head restriction was then performed the three following days with delivery of water drops through the lick port (10µL every 20s) for a session of 20 min a day. Animals were released after receiving 60 rewards and the 1mL daily ration was completed later in the home cage.

Training: A first training protocol was used to make the mice explore the levers (Fig17.B).

Levers were presented until a press was detected (a press is validated if ≥100ms), then, levers were immediately retracted and pump was triggered 1.5s following the press to deliver a reward (water drop 10µL). A new presentation was triggered 8.5s after retraction.

A session consisted in 30 min or 100 rewards and one session was done a day. A criterion of performance (100 pressings within less than 30 min during 2 consecutive days) was defined to determine if animals could go to the next step. The criterion was generally reached after 3-4 sessions.

Because mice often present lever preference, we tried to reduce preferences in order to homogenize behavior between individuals. Thus, the second training protocol consisted in confronting them to alternated presentation of one lever at the time randomly selected (Fig17.C). That way, mice had to press both levers alternatively to get rewards, resulting in an equivalent amount of pressing for each levers during a session. Again, same performance criterion (100 pressing within less than 30 min for minimum two days) was used to determine if mice were ready for the task. Mice needed a much more variable number of sessions to reach the criterion (3-7 sessions). -If L1 is pressed and rewarded: 𝑄 𝐿1 (𝑡+𝛿𝑡) = 𝑄 𝐿1 (𝑡) + α 𝑟 (1 -𝑄 𝐿1 (𝑡) )

Task

-If L1 is pressed and not rewarded: 𝑄 𝐿1 (𝑡+𝛿𝑡) = 𝑄 𝐿1 (𝑡) + α 𝑢 (0 -𝑄 𝐿1 (𝑡) )

Update variables for successes and misses (αr and αu) are allowed to differ to model the differential influence on the behavior of reward presence and absence. In case the lever is not used, a forgetting factor δ is applied: 𝑄 𝐿1 (𝑡+𝛿𝑡) = 𝑄 𝐿1 (𝑡) -𝛿𝑄 𝐿1 (𝑡) .

Our model includes two actions (L1, L2) which do not directly compete and can be selected simultaneously. Thus the co-occurrence of the two independent actions leads to L1&L2 events. This architecture was designed to model the fact that mice typically exhibit transient increases of L1&L2 pressings, despite this action never being rewarded. We wrote the probability of pressing L1 alone as a standard soft-max function of the difference of value of L1 and L2, but multiplied with an extra penalty factor modeling the possibility that L2 is simultaneously pressed when its value is high:

𝑝(𝐿1) = 1 1 + (𝑎 2 𝑎 1 ) ⁄ exp (-𝑏(𝑄 𝐿1 -𝑄 𝐿2 )) exp (-𝑎 2 exp (-𝑏𝑄 𝐿2 ))
and

𝑝(𝐿1&𝐿2) = 1 -𝑝(𝐿1) -𝑝(𝐿2)
where a1 and a2 are factors coding the intrinsic animal preference for levers and b the softmax action-selection rule. Fitting the model to the behavior of animals was especially accurate and informative, giving access to dynamic cognitive variables like the subjective values of the different options (QL1, QL2).

Two-photon calcium imaging:

The previously described behavioral apparatus was positioned under a non-descanned two-photon laser scanning microscope (FemtoSmart, Femtonics) equipped with a ×16 objective (0.8 NA, N16XLWD, Nikon) and resonant scanners. A Ti:sapphire laser was used for excitation of fluorescent proteins (Mai Tai DeepSee, Spectra-Physics) with an average excitation power at the focal point lower than 50 mW. The microscope was configured to receive all along recording inputs of behavioral variables (levers presentation, PADs, press, pump, licks) from the electronic interface of our behavioral apparatus. The microscope was controlled by MESc software (Femtonics) and acquisition parameters were set to image at 37fps with a resolution of 512x427 pixels fields-of-view of ~475x~400µm for somatic imaging (pixel size: 0.85 to 1µm) and of 322x270µm for axonal imaging (pixel size: 0.63µm). To excite GCaMP in somas or axons, laser wavelength was set at 910 nm and emitted light was filtered (band-pass 470-550nm, ET510/80M 283263) and collected with a photo multiplier tube (PMT). This setting was enough in axonal imaging experiments to also excite tdTomato in order to filter (band-pass 570-635nm, ET605/70M 348320) and collect emitted fluorescence in a red channel.

We took advantage of mice habituation to head fixation to screen the cranial window and select fields-of-view (FOVs). For MOs somatic imaging, masks of somas were used allow finding same FOVs and follow the exact same population of neurons longitudinally (~300 neurons per FOV). Another strategy was taken for BLA-to-MOs axonal imaging, because of faint and transient appearance of axonal boutons expressing GCaMP; we decided to use tdTomato as structural marker of few local MOs neurons. We used these neurons as spatial references to image the same planes chronically. Correspondence of axonal boutons was assessed post hoc. Special care was taken to reduce possible phototoxic stress of the tissue by restricting imaging duration to only 5 min per FOV every two days.

A 5 min long movie could contain calcium dynamics of up to 20 pressing trials.

Optogenetic: Mice were head-fixed on the behavioral apparatus and ferrules of the implant were connected to a yellow laser (SDL-LH-1500, Shanghai Dream Lasers) through a fiber optic coupler (TT200FL1A, Thorlabs) and ceramic mating sleeves (ADAL1, Thorlabs). Two protocols of illumination were applied to different batches of mice. Protocol

A was set to trigger illumination during "action-selection" period, from presentation of lever until press, while illumination was conducted during "outcome evaluation" period for protocol B, from press to next lever presentation.

For MOs silencing experiments, illumination protocols A and B were tested on different batches of mice and illumination was exclusively applied on the reversal learning phase of the behavioral task. During cycle 2 (reversal learning), in case of animal not reaching expertise within the same number of day needed for cycle 1, illumination was stopped to evaluate if performance could increase.

For BLA-to-MOs silencing experiments, illumination protocol B was tested and applied during the first cycle of learning and the cycle 2 (reversal learning).

Open field and single-units recording

Mice equipped with optrode arrays were anesthetized with isoflurane (4% containing ~0.5 l min -1 O2 for ~3 min) to allow gentle plugging of fiber and optrode connector to respectively a yellow laser (see above for reference) and an amplifier (RHD16ch, Intan) coupled to an acquisition board (OpenEphys, AquiNeuro). The connected mouse was then placed in an open field (AquiNeuro) for isoflurane recovery. After a habituation period of 20min, active mice received illumination pulses (2 pulses spaced by 120s for each conditions tested) of different duration (0.5sec, 1sec, 5sec, 10sec) and power (0.5mW, 1.5mW, 5mW, 10mW, 25mW at fiber coupler output). Spike sorting was performed using Wave_Clus [START_REF] Quiroga | Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering[END_REF] and further analyses were done with custom scripts on Matlab.

Results

Since science is not a one-man business, I would like first to acknowledge the contribution 

BLA-to-MOs implication in auditory fear learning 1.Connectivity essay

We sought to investigate the circuit of the MOs by characterizing its inputs and outputs.

To this end, we first injected a retrograde virus (AAVrg.hSyn.eGFP) in the MOs of mice to express GFP in brain regions that project to the MOs (Fig11.). The histological study of these samples revealed tagging of cortical regions, such as the primary motor cortex (M1), somatosensory cortex (S1) and the agranular insular cortex (Al), with higher labeling in the Finally, the most prominent structure sending axons to the MOs was the BLA (Fig11.C green frame). In comparison to other structures listed above, the BLA was the second structure most tagged after agranular insular cortex (Al, Fig11.D). When the fluorescence was normalized to the surface, the BLA was the structure the most labeled.

In a second batch of mice, we injected an anterograde AAV in MOs to express the fluorescent protein tdTomato in order to identify the regions targeted by the MOs. Imaging of the histological samples demonstrated massive labeling of the MOs and the M1 (Fig12.B). Fibers were distributed in several other cortical regions such as the OFC, the mPFC, the S1, the Al, the perirhinal and ectorhinal cortex. The BLA was again one of the most fluorescent regions (Fig12.C yellow frame). Altogether, it appeared that the MOs mainly projects to the mPFC, to the M1, to the BLA and to itself (Fig2.D).

The results of retrograde (Fig11.) and anterograde tracing from MOs (Fig12.) demonstrated massive reciprocal connections between the MOs, the M1 and the BLA as well as unilateral MOs-to-mPFC projections. The relation between the BLA and the mPFC have been extensively studied in the past in the context of fear conditioning [START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF]. However, it remains unknown whether the population of BLA neurons that projects to the MOs is the same as the one that projects to the mPFC, forming en passant boutons. To address this question, we used a dual viral injection strategy (Fig13.A) to tag the specific BLA-to-MOs neuronal population. We then performed histological study of axons distribution along the prefrontal cortex (Fig13.). By using a plugin from image j to apply a maximum entropy threshold on our images, we could quantify the surface of GFP-expressing axons (Fig13.B). The visualization (Fig13.C) and quantification (Fig13.D) of fluorescent axons showed that the BLA-to-MOs projections barely passed in the mPFC, if at all. These results reveal a specific BLA-to-MOs circuit that is independent from the classical BLA-to-mPFC circuit extensively studied and described. Evoked EPSCs exhibit a small and reliable latency (Fig14.C right, 3.5 ± 0.36 ms, n=9 cells). These results suggested a classical feedforward inhibition circuit organization with monosynaptic connection between the BLA and L2/3 MOs neurons followed by inhibition originating from contact between the same BLA axons and local interneurons (Fig14.D).

Integration of BLA inputs by MOs L2/3 neurons

To further explore MOs integration of BLA inputs, we performed in vivo whole-cell patch clamp recordings of L2/3 MOs neurons in urethane anesthetized mice expressing ChR2-YFP in the BLA. Light was delivered to the BLA through an optical fiber positioned slightly above BLA (Fig14.E). A histological control of viral infection was systematically performed after patch recording (Fig14.F). Subthreshold depolarizations of L2/3 MOs neurons were observable after photo-stimulation of the BLA but only during down states (Fig14.G, H).

The observed effect of spontaneous activity (up and down-states) on signal integration has been already described and discussed in the literature and could explain our results (see [START_REF] Ferezou | How do spontaneous and sensory-evoked activities interact?[END_REF]). 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥(%) = 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔(%) × 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 + (%) -𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 -(%) 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 + (%) + 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐶𝑆 -(%)

The association between the CS+ and the footshock was considered learned if the learning index was ≥20% (Fig15.C grey solid, learning+) and not learned if <20% (Fig15.C grey dashed, learning-).

After the registration of BLA-to-MOs movies, we manually segmented individual boutons and extracted raw fluorescence transients that were normalized to baseline ((ΔF/F0) or (Ft- Afterwards, the next pairings didn't alter the rate of calcium events for learning-mice, while for learning+ both CS-and CS+ periods following the first foot shock exhibited approximately twice more events than during the baseline. These data suggest that the BLA-to-MOs axonal activity is modulated by the association of tones with footshock and not by tones or the footshock alone.

Cumulative axonal activity between CS-and CS+ (Δcumulative: ΔF/F0 CS--ΔF/F0 CS+) was significantly higher for leaning+ mice than learning-(learning+: n=5 mice, 0.1 ± 0.02

Δcumulative; learning-: n=5 mice, 0.01 ± 0.008 Δcumulative; t-test, p=0.013) (Fig15.F).

We also discovered that the Δcumulative was positively correlated to the % of learning (r²=0.89, p<0.001) (Fig15.G). Altogether these data support the idea that the BLA transfers to the MOs information related to the association of auditory stimuli (CS+, CS-) to outcomes (footshock, safety). 

MOs and BLA-to-MOs silencing during CS-affect fear learning

After highlighting the strong correlation between BLA-to-MOs axonal activity and fear learning (Fig15.G), we sought to investigate their causal relationship by taking advantage of optogenetic approaches. We injected in L2/3 MOs of mice different viruses to express either the light-activated proton pump archaerhodopsin (ArchT), or the GFP as control (Fig16.A). We implanted optical fibers in the superficial layer of the MOs (Fig16.A). We prepared another batch of mice that expressed in a Cre-dependent manner either ArchT or GFP specifically in BLA neurons that project to the MOs. Optical fibers were positioned above the BLA to allow local delivery of light (Fig16.B).

All these mice underwent through the same protocol of fear conditioning as previously described, with the exception at the conditioning day, where conditioning was done in the 

MOs implication in learning and adaptation of action-selection

While the MOs is clearly involved in action-selection process [START_REF] Barthas | Secondary Motor Cortex: Where "Sensory" Meets "Motor" in the Rodent Frontal Cortex[END_REF][START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Murakami | Neural antecedents of self-initiated actions in secondary motor cortex[END_REF]Siniscalchi and Kwan), its weight and dynamics during learning of optimal action remain unknown.

To tackle these questions, we first developed a foraging lever task for head-restrained mice that allows us monitoring the modulation of MOs neuronal activity with calcium imaging along learning. We also questioned whether neuronal dynamics were causally linked to the performance of the mice. We explored this last point with optogenetic approaches and deciphered how crucial MOs computation was at different epochs of the decision process.

A reinforcement learning lever task for head-fixed mouse to investigate MOs circuits in learning of optimal action

We developed a multiple choice task for head-fixed mice that provides stability for twophoton calcium imaging of different neuronal compartments such as cell bodies, dendrites and axons. Head-fixed mice were positioned in a behavioral apparatus under a two photon microscope. In stationary position, mice had both forepaws on pads and a lickport was presented at lick range (Fig17.A). To arouse their interest to the paradigm, mice were water restricted to 1mL a day and habituated to receive water drops through the lickport.

Mice presented quickly anticipatory licks prior to water delivery during habituation.

A first set of training trials consisted in the presentation of the two levers simultaneously which, when one pressed, triggered levers retraction and a delivery of reward through the lickport (water drop of 10µL) (Fig17.B). In general, mice could associate lever press to reward within few trials and performed a hundred of trials in less than 30min after few sessions.

A second set of training trials consisted in the alternated presentation of levers which, when pressed, triggered the retraction of the presented lever and a subsequent delivery of reward (Fig17.C). This training was justified by the heterogeneity in mice's preference for one lever or the other. Thus the alternation of levers forces mice to explore and tend them to consider both levers equally in order to reduce preference. All along training and task phases (described below), pads and lickport provided us a read-out of the onset of actions and licks of mice, respectively. Indeed, each contact with pads or the lickport generated a weak current, which allowed us to record when paws were lifted from pads to engage pressing (pads offset = action onset, press detected = action offset, see Fig18.B)

and when animal consumed reward or explored reward availability by licking, respectively.

Fig17. A two-lever apparatus for head-fixed mice allowing in vivo two-photon imaging

(A) Picture of a water-restricted mouse head-fixed under the two-photon microscope in the two-lever apparatus.

Water can be delivered through a lickport that also allowed lick detection. For each paw, a distinct pad was used to detect onset of action (corresponding to removal of paw from pad for lever pressing). ( B After these two trainings phases, mice started the two-lever action-selection task (Fig18.).

The task consisted in a deterministic protocol where both levers were presented until mice take the decision to press one or the two levers. As soon as a press was detected, levers retracted and resulted in two possible outcomes. The pressing of one lever (set to be the less preferred lever during training) triggered reward delivery while the pressing of the other or the two of them did not (Fig18.A).

Thus, mice had to repeat actions and learn by reinforcement in a trial-error manner. After multiple sessions, mice could learn the rules (Fig18.E, F). We then exposed the animal to a reversal learning paradigm where outcomes of levers pressing were inverted to force them to update their action-outcome representations and adapt their choice (Fig18.C.D).

We distinguished three different learning stages based on the performance of the mice.

Mice were considered "naive" before they reached 25% of success and "expert" when ≥ 75% of success on three consecutive sessions. Finally, they were considered as in the "insight" when in between (≥25% ∩ <75% in three consecutive sessions) (Fig18.E).

Expertise of the first rule was reached in around 14 sessions in average (n=16; µ=13.81 ± 1.49) (Fig18.F). We demonstrated that the behavior was goal-directed as action rate was highly decreased after reward devaluation (n=8; µdeprived=0.082Hz ± 0.007; µadlibitum=0.017Hz ± 0.005; SEM, paired t test, p<0.0001) (Fig18.G). Significant differences of delay of pressing were identified between naive and expert mice for both success and 

A reinforcement learning model to explain behavior and provide estimations of actions-value dynamics

Representation of rules and value functions are coded in MOs

Mice equipped with cranial windows and expressing GCaMP in MOs neurons run the task while we imaged MOs somatic calcium transients with two-photon microscopy (Fig20.A).

Nearly 300 neurons were imaged per fields of view (FOVs), during a maximum of 5 min per FOVs a session in order to preserve cortical tissue from phototoxicity (n=10 mice, 2

FOVs per mouse). For the same reason, we avoided imaging at every session and instead collected calcium transients once every two sessions.

To test whether MOs activity could represent rules and actions, we first focused on expert stage trials of learning and reversal phases. Averaged activity during expert trials of sorted neuronal population is shown for these two phases (Fig20.B). Because there is considerable evidences that the brain employs high-dimensional coding in neuronal population (Churchland et al., 2007;[START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF][START_REF] Mante | Context-dependent computation by recurrent dynamics in prefrontal cortex[END_REF][START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF], we performed a principal component (PC) analysis to reduce the dimensionality of the collected data. Here, we used a non-linear reduction technique (Isomap) that preserves pairwise geodesic distances between data points to model complex non-linear manifolds [START_REF] Chaudhuri | The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep[END_REF]. Remarkably, the first PC computed was enough to highlight two distinct population activity states corresponding to the two learned skills (the first PC was scaled for comparison, Fig20. C). We then tested the accuracy of behavior prediction based only on the population activity of expert trials. To this aim, we generated different classifiers obtained by training a support vector machine (SVM) with data from 50% of all expert trials from both learning and reversal phases.

Classifiers were built with data from different epochs of trials as well as with variable number of PCs. The accuracy of prediction from each generated classifier was measured on neuronal activity of the 50 % remaining trials (Fig20.E). This yielded to a high decoding accuracy at almost all epochs of a trial indicating that population activity from any time of our task was strongly related to the behavior rule of learning or reversal phases. Furthermore, few

PCs were enough to decode accurately, especially for action period where only the first PC (PC1) was enough to classify accurately activity of trials to the different choices. We also aimed to understand how the different states, signature of upcoming actions, emerged in naive mice that learned optimal actions. For this, we used the Mahalanobis distance, that measures the distance between one point (origin) and another collection of points (here state-space at each time point of a neural trajectory), to quantify how neuronal representation evolves on a trial-by-trial basis along learning. For this analysis, we defined the centroid of a chosen neural trajectory from a training trial as the "origin" (Fig21.A). The computed distances provided an estimation of how distant in state-space neural trajectories are from the "origin" trajectory. As the huge variability of the Mahalanobis distances suggested in the mouse shown in Fig21., representations appeared to be highly modified upon learning. This is sometimes true within a single imaging session, where abrupt state transition can be seen (Fig21.B, black arrow). Interestingly, activity states were unstable when the wrong action was preferred, with value of choice in total inadequacy with outcome.

Finally, neuronal activity states appeared to be more stable and to converge to specific state-spaces when rules were learned (Fig21.B see periods [153 173] and [434 505]).

Altogether these results demonstrate that MOs activity can be easily decoded with only few PCs which can also accurately predict behavior based on population activity at almost any moment of a trial (with high precision especially with data from action epoch). Along learning, MOs neuronal population explores various states, with sometimes abrupt transitions, before converging into more stable representation that coinciding with stable behavioral output. To get an idea of how the average neuronal activity fluctuates within trials during the different stages of learning and reversal, we analyzed the average Z scores of MOs neurons (corresponding to the number of standard deviation the activity deviates from its mean, 𝑧 = 𝑋-µ 𝜎 with µ as mean and σ as standard deviation) (Fig22.A, B, D, E). This analysis showed that MOs activity was heavily modulated during trials, especially between pressing and post reward period ([0 3] sec) and along inter-trial interval ([3 6] sec). The modulations dynamics observed were really different between errors and success trials for both learning and reversal phases (Fig22.A, B, D, E). Barely no activity modulation was elicited before and during the first second following the action for errors (Fig22. B, E), while large dynamics could be seen during the same period for successes (Fig22 A, D).

Interestingly, gradual increases of the magnitude of modulations could be observed for error trials when comparing trials from naïve to expert (Fig22. B, E).

To assess the relationship between MOs neuronal activity and task variables (such as reward, current choice value, past choice value, and relative choice value), we performed a multiple linear regression analysis by using the following equation (Fig22.C, F):

∆𝐹/𝐹 0 (𝑡) = 𝑎 0 + 𝑎 1 𝑄𝑐(𝑛) + 𝑎 2 𝑄𝑐(𝑛 -1) + 𝑎 3 ∆𝑄(𝑛) + 𝑎 4 𝑅(𝑛) + 𝜀(𝑡)

We implemented the behavioral features unveiled by our RL model in this regression analysis (see equation above, where a0 to a4 correspond to the regression coefficients, Qc correspond to the value of action from either current (n) or past choice (n-1), ΔQ correspond to relative value of action and R correspond to reward). Coefficients for all regressors were estimated simultaneously. Statistical significance of regression coefficients was determined using t-test with p<0.05, and was supported by the chance level of neuronal modulation determined by performing the same regression with shuffled dataset. We followed standard procedures for assessing multicollinearity, and confirmed that variance inflation factors (VIF) were always lower than 2.

Our results show large recruitment of neurons by reward following its delivery moment (Fig22.C, F, purple curves). We can also observe sustained neuronal signals related to relative value of action for both learning and reversal phases (Fig22.C, F, light green curves). Finally, we could notice that variable fractions of neurons were encoding actionvalue or past action-value with major differences between learning and reversal phases. 

Performance in the task is affected by the silencing of MOs neurons

We first executed some cortical electrophysiological recordings to control the effect of light on ArchT expressing neurons. We decided to perform recordings in the primary motor cortex where we expected high frequency of spontaneous activity while mice are exploring [START_REF] Beloozerova | Activity of different classes of neurons of the motor cortex during locomotion[END_REF][START_REF] Shoham | How silent is the brain: is there a "dark matter" problem in neuroscience?[END_REF][START_REF] Zhang | Locomotion-related population cortical Ca2+ transients in freely behaving mice[END_REF].

We thus injected an AAV in L2/3 of M1 of mice to express ArchT in neurons. We then implanted at the same location a custom made 16 channels optrodes (Fig23.A). After a minimum of two weeks of recovery, mice were put in an open field where they could explore their environment while the activity of units was recorded (Fig23.B). Several widths

(1, 3 or 10 sec) and power (1.5, 5 or 10mW) of light pulses were then tested to quantify the silencing effect of light. A total of 11 units from 2 mice were identified after spike sorting (Fig23.C). For each light condition tested, two pulses were emitted and each units firing rate were averaged from the two trials. Spike frequency of each unit before (30s prepulse) during (pulse width), and after (30s postpulse) light stimulation were then compared (Fig23.D, boxplots). The overall population activity normalized to baseline (30s prepulse) allowed us to pinpoint the presence of rebound activity [START_REF] Li | Spatiotemporal constraints on optogenetic inactivation in cortical circuits[END_REF][START_REF] Wiegert | Silencing Neurons: Tools, Applications, and Experimental Constraints[END_REF].

This phenomenon was observed at the offset of illumination for the highest light power, and especially with the largest pulse width (Fig23.D, 10mW condition). The spike frequency of few units did not appear to be affected by illumination (Fig23.C, units 9 & 11).

Nevertheless, these data validated our optogenetic approach, with high efficiency of silencing in motor cortex. These results also prompted us to minimize the light power (below 10mW) to avoid the generation of elevated spike rate above baseline (rebound activity), time-locked on the offset of illumination.

Fig23. Electrophysiological control of optogenetic silencing of cortical neurons expressing ArchT

(A) Technical approach combining a virus injection in M1 to express ArchT and implantation of a custom made optrode composed of a bundle of 16 electrodes attached to an optical fiber. A silver wire was positioned above the cerebellum and used as reference. The optrode, connector and sliver wire were secured with acrylic dental cement (pink). (B) Left, picture of a mouse equipped with the implant. Optical fiber and connector were plugged respectively to a yellow laser and an OpenEphys acquisition board. Right, Mice were released into an open field where we could record spontaneous activity of units and effect of local illumination. (C) Spike raster plot from different units (n=11 units from 2 mice). Orange bar represent a 3 seconds light pulse of 1.5 mW. (D) Several light power (from top to bottom, 1.5mW, 5mW and 10mW) and pulse width (from left to right, 1s, 3s and 10s) were tested. For each conditions, average activity of all units normalized to baseline (30 s prepulse) were assessed as well as modulation of spike frequency for each units (histograms, bar shows the median, before : frequency during 30s prepulse, during: frequency during pulse, after: frequency during 30s postpulse) .

In accordance with this last experiment, we set illumination protocols for optogenetic silencing of MOs during the adaptive action-selection task. Mice expressing ArchT or GFP in MOs were equipped with optical fiber and performed the behavioral task (Fig24.A). We chose to illuminate the MOs only during the reversal phase, after the switch of rewarding lever following the learning phase. This was decided in order to be able to compare the learning and reversal phases within animal and to be able to fit our RL model based on animal performance during the learning phase (Fig24.B). We established two periods of illumination in order to test implication of MOs for action-selection or outcome evaluation.

For the protocol A, the illumination occurred during action-selection epoch of trials, from lever presentation to pressing (Fig24.C). For the protocol B, the illumination occurred during the outcome evaluation epoch of trials, from lever retraction to the next presentation (Fig24.G).

Interestingly, two mice expressing ArchT in MOs pyramidal neurons did not reach expertise during reversal phase under protocol A of illumination (Fig24.D, black dots).

These two mice performed the reversal phase for more than twice the number of session they needed to achieve the learning phase. To compare a possible effect of protocol A on the whole cohort of mice, we considered the last session of reversal as "expertise" session for these two mice. Doing so, no significant effect of protocol A of illumination was observed at the cohort level when comparing number of session until expertise between learning and reversal phase (Fig24.D). However, we noted a significant difference of success rate when comparing the last session of illumination during reversal to the equivalent session from learning phase (nArchT=11; µOFF-ArchT=0.87 ± 0.02 µON-ArchT=0.50 ± 0.14, SEM, multiple paired t test, p<0.05) (Fig24.E). Importantly, optogenetic silencing of the MOs during action-selection (protocol A) did not significantly modified the delay of pressing or duration of actions (Fig24.F). This suggests that motor performance was not altered by MOs silencing during action-selection.

Concerning the protocol B of illumination, a significant increase in the number of session needed to reach expertise during reversal phase can be seen for ArchT expressing mice (nArchT=9; µOFF-ArchT=12.78 ± 2.05; µON-ArchT=22.33 ± 2.64, SEM, multiple paired t test, p<0.05) (Fig24.H). Protocol B also induced an effect on the performance of ArchT mice at the last reversal session with illumination as compared to equivalent session of learning phase (nArchT=9; µOFF-ArchT=0.86 ± 0.03 µON-ArchT=0.29 ± 0.10, SEM, multiple paired t test, p<0.05) (Fig24.I). Because it has been reported that stimulation or silencing of the MOs could generate or suppress licking behavior [START_REF] Komiyama | Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice[END_REF], we decided to analyze the lick rate of mice undergoing the protocol B (light during outcome evaluation).

Doing so, no significant difference of lick rate was observed under MOs optogenetic silencing (Fig24.J). Altogether, these behavioral data under photoinhibition suggest a contribution of MOs in the process of optimal action learning. 

BLA-to-MOs implication in learning and adaptation of actionselection

Following the assessments of MOs activity dynamics and during learning of optimal action, we then investigated the possible contribution of BLA inputs to the MOs in this process.

To this aim, we monitored chronically BLA-to-MOs axonal boutons activity with two-photon calcium imaging during learning of the same two-lever foraging task.

The combination of genetically encoded calcium indicators and two-photon imaging had provided an efficient and elegant way to record activity of large neuronal population in vigil mice. One of the main limitations of this technique is that only superficial regions can be imaged, mainly because of the depth-dependent increase of the scattering and absorption of photons by the tissue. However, axonal calcium imaging can be used to monitor the activity of subcortical to cortical afferences. Thus, this approach provides readout of the activity of subcortical regions without the need of invasive techniques such as the implantation of a GRIN lens or endoscope.

We chose this approach to longitudinally monitor BLA-to-MOs activity along learning of the previously described adaptive action-selection paradigm. Using several viral construct, we expressed GCaMP6f or GCaMP7f in the BLA of mice as well as tdTomato in few pyramidal neurons of the MOs (Fig25.A, Fig26.A). Thus, tdTomato in pyramidal neurons of MOs provided clear spatial references for finding and tracking chronically the FOV containing the same population of BLA boutons. The spatial drifts and the loss of focus inherent to animal's movement, together with low signal to noise ratio, represent crucial issues. In order to limit these issues, we have developed a processing pipeline to correct artifacts of movement and to denoise the collected data. Briefly, we resolved the drifts in X and Y axis by using a registration algorithm (Simon's foundation) on images from the red channel, which contained stable morphological fluorescent signals (tdTomato). We then run a correlation analysis on each image to detect and exclude the frames out of focus (Fig25.B). After the completion of these corrections on the red channel, we applied the same computed shifts and exclusion parameters to the images collected from the green channel. In a second time, we performed a denoising of green channel stacks which consist in: (1) the analysis of pixels' covariance, (2) the grouping of pixels that covariate and (3) the application of a weight to pixel values relative to their covarying partners. We could therefore substantially increase signal to noise ratio of boutons signals (Fig25.C).

The clustering of covarying pixels also provides a segmentation of putative axons without any spatial constraints. This approach was the segmentation strategy used to analyze the data shown in Fig26. and Fig27. while the strategy developed in Fig25.D,E,F was performed for population analysis of same putative axons over days (in progress, discussed in "perspectives" section of the Discussion).

After processing all BLA-to-MOs imaging data acquired along learning of the two-lever task As levers retraction could act as auditory stimuli indicating possible reward delivery, we asked whether the observed modulation could be attributed to the retraction of levers or to the action of pressing. We thus compared the distribution of Z-score in trials with press that triggered a retraction (≥100ms of pressing) but no reward delivery (errors) with the distribution of Z-scores in trials with press that did not triggered retraction (<100ms of pressing) (Fig26.E). Similar modulation was observed for both conditions following pressing or attempt, suggesting that the modulation is likely related to action.

Nevertheless, a significant difference during the [2. We then analyzed the evolution of BLA-to-MOs activity modulation in "naive" (success rate <25%), "insight" (success rate ≥25% ∩ <75%) and "expert" (success rate ≥75%) stages of learning and reversal learning.

While observed modulations were similar during success trials for insight and expert stages of the first learning phase, both exhibited a large difference of modulation when compared to naive ([2. Altogether, these analyses of average modulation of BLA-to-MOs axons indicated heterogeneity of modulation polarity upon trial (Fig26.B, D) that were correlated to pressing (Fig26.E) and outcome (Fig26.F, Fig27.). These modulations were mainly visible during success and during first stage of learning (Fig27.A, B). Intriguingly, different dynamics can be seen between learning and reversal learning phases (Fig27.).

As literature reported multidimensional coding by BLA neurons of various behavioral features [START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF], population analysis of same axons over days of learning should provide extended view on the information coded by BLA-to-MOs axons. To this aim we undertook identity matching of axons over days (Fig25.D, E, F) which is still in progress.

When achieved, the matching of boutons will allow us to better depict population dynamics along learning as well as clarify nature of BLA-to-MOs signals.

Discussion

MOs and BLA-to-MOs activity facilitates CS discrimination and promote associative learning

While the mPFC and the BLA have been described as key structures for fear learning and extinction [START_REF] Karalis | 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior[END_REF][START_REF] Likhtik | Amygdala-prefrontal interactions in (mal)adaptive learning[END_REF][START_REF] Likhtik | Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety[END_REF][START_REF] Senn | Long-range connectivity defines behavioral specificity of amygdala neurons[END_REF][START_REF] Yizhar | Reciprocal amygdala-prefrontal interactions in learning[END_REF], little is known about how the MOs contributes to associative learning. This cortical region is especially intriguing because of its connectivity to the mPFC and to the BLA which may influence these structures during fear learning. Our data provide new insights into the role of the MOs during fear learning. We demonstrate here that MOs L2/3 neurons receive converging signals evoked by auditory stimuli and from the BLA which are non-linearly integrated in an N-methyl-D-aspartate (NMDA) dependent manner. We also provide important correlative and causal evidences of the link between the BLA-to-MOs activity occurring during pairings and fear learning.

Our tracing essays are in agreement with what have been described in the literature [START_REF] Gabbott | Prefrontal Cortex in the Rat : Projections to Subcortical Autonomic[END_REF][START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF]Zingg et al., 2014) (Fig11. and Fig12.).

Indeed, we identified reciprocal connection between the MOs and the BLA as well as unilateral connection from the MOs to the mPFC. Thus, the MOs appears well positioned to provide integrated signals from sensory and affective components to both the BLA and the mPFC, which may contribute to associative learning and fear responses. In accordance, pharmacological silencing of MOs neurons during fear conditioning has been reported to impair fear learning [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF][START_REF] Murray | Frontal association cortex is engaged in stimulus integration during associative learning[END_REF][START_REF] Sacchetti | Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning[END_REF][START_REF] Sacchetti | Role of the neocortex in consolidation of fear conditioning memories in rats[END_REF]. We also provide evidence about the specificity of BLA-to-MOs connection, which is distinct from the extensively studied BLA-to-mPFC pathways (Fig13.). Altogether these connectivity evidences confirm a strategic position of the MOs for the integration of both sensory and affective-related inputs (BLA). This integrated information may then be conveyed to key regulators of fear learning and extinction (e.g. BLA, mPFC).

We then functionally characterized how BLA signals were integrated in L2/3 MOs neurons.

Histological analysis of BLA axons distribution in the MOs had highlighted an higher density of axons in its superficial layer, likely contacting apical dendrites of pyramidal neurons (data not shown, see Fig5 -figure supplement 1 of [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]). We have shown in vitro that the actuation of BLA-to-MOs evoked excitatory currents in L2/3 MOs pyramidal neurons followed by inhibitory currents suggesting a classical feedforward inhibitory network (Fig14.B). The short delay between stimulation and evoked EPSCs is a strong evidence for monosynaptic transmission (Fig14.C). The most plausible configuration is that pyramidal neurons and interneurons of MOs are both directly contacted by BLA axons, similarly to the BLA-to-mPFC circuit described in the literature (McGarry and Carter, 2016) (Fig14.D). However, during in vivo patch clamp recordings under anesthesia, BLA-to-MOs optogenetic activation evoked only weak and unreliable depolarizations that were occluded during up-states (Fig14.G, H). This could be explained by spontaneous circuit dynamics that generate different neuronal gating in vivo [START_REF] Ferezou | How do spontaneous and sensory-evoked activities interact?[END_REF]. We report that the coincidence of stimulation of BLA-to-MOs axons with auditory stimuli promotes non-linear integration (Fig14.J, K). Weak excitatory inputs can gate dendritic integration and increase occurrence of regenerative dendritic events that depend on NMDA receptors (NMDAR) [START_REF] Jarsky | Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons[END_REF][START_REF] Palmer | NMDA spikes enhance action potential generation during sensory input[END_REF]. This phenomenon is likely at the origin of the non-linear dynamics reported in the present manuscript [START_REF] Spruston | Dendritic arithmetic[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Intriguingly, the depolarization evoked by the simultaneous BLA-to-MOs and auditory stimulations are long lasting, even beyond the stimulation period. While the mechanism remains unclear, it could be generated by active dendritic mechanisms also depending on NMDA conductance. In the complete published study [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF], we further investigated the mechanism of the observed supralinearity by applying dAP5 (an NMDAR blocker) topically on MOs surface while performing the same patch clamp experiment with WGN and optogenetical activation of BLA neurons (data not shown, see [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]). The subthreshold depolarization previously observed were abolished by the application of NMDA blocker, indicating that MOs evoked activity by WGN and BLA were, as expected, highly dependent on NMDA conductances.

NMDARs have a pivotal role in cellular computation [START_REF] Augusto | Can NMDA Spikes Dictate Computations of Local Networks and Behavior? Front[END_REF][START_REF] Larkum | A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex[END_REF] as well as in functional [START_REF] Gambino | Sensory-evoked LTP driven by dendritic plateau potentials in vivo[END_REF] and structural plasticity [START_REF] Bosch | Structural plasticity of dendritic spines[END_REF]. Both functional and structural plasticity are tightly linked [START_REF] Kasai | Structural dynamics of dendritic spines in memory and cognition[END_REF][START_REF] Wilbrecht | Structural plasticity underlies experience-dependent functional plasticity of cortical circuits[END_REF] and have crucial implication in memory formation [START_REF] Hayashi-Takagi | Labelling and optical erasure of synaptic memory traces in the motor cortex[END_REF]. Structural plasticity have been reported in the MOs after fear learning [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF] and is highly correlated with learning and extinction, resembling fear memory traces. Interestingly, we revealed (Fig15.E) that BLA-to-MOs axons are more active after the first footshock pairing as compared to the baseline or when sounds presented alone (first CS+ i.e. prior to first footshock , see also [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]) Altogether, these results delineate new contributions of the MOs to auditory fear learning:

(1) MOs neurons are preferentially activated by complex tones; (2) MOs processing is especially important in between conditioning pairings; (3) BLA-to-MOs signals during this period are key for formation of fear memory. This led us to propose that the non-linear integration of WGN is promoted by the activity of BLA-to-MOs activity and facilitates the association of sounds with outcomes, which in turn promotes auditory fear learning.

A challenging two-lever task explained by independent computation of actions and low sensitivity to error

Over the last decade, several remarkable studies have investigated the role of the MOs during decision-making [START_REF] Allen | Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex[END_REF][START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Li | A motor cortex circuit for motor planning and movement[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF][START_REF] Steinmetz | Distributed coding of choice, action and engagement across the mouse brain[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]. While most of these studies focused on expert animals performing Go/No-go tasks or tasks guided by sensory cues with block switches, almost none of them had emphasized 1) learning dynamics from naive animals;

2) learning in the total absence of sensory cues to guide action (but see [START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]).

The current thesis aimed to explore these issues by tracking the activity of MOs neurons and BLA-to-MOs axons during reinforcement learning. To this aim, we developed a cueless lever foraging task for head-restrained mice which allow monitoring of MOs neurons and BLA-to-MOs axons activity by two photon microscopy. First, we characterized the behavior of mice performing the task to better appreciate neurophyisological data. The developed two-lever task is based on deterministic reward delivery after the selection of one of two levers. After error-and-trials, the reward history is the only indication of which option is rewarding, thus learning exclusively relies on action-outcome associations and RPE. Mice could successfully learn which lever delivered reward in a variable amount of session (Fig18.). The heterogeneity and the large average number of sessions needed to reach expertise were at first counterintuitive since deterministic rules reduce uncertainty and the task only comports two alternatives, which should make the rules relatively simple to infer.

Modeling of the behavior provided a comprehensive explanation of the challenge represented by this task. Indeed, after testing several models, we have discovered that independent computation of both actions better fit the pressing dynamics (Fig19.). The model especially explained the rise of double pressing (L1&L2) observed during increase of success rate, although this option was never rewarding. Such trials show that mice may not perceive properly the deterministic rule governing reward delivery. Instead, along successive rewarding single press and unrewarding double press, delivery of reward from the successful lever appears probabilistic and more ambiguous.

Estimations of action-value from our RL model can be used to compute evolution of actionvalue along learning (Fig19.). We can then determine population activity that could be related to these value parameters needed for RL. After fitting data from several mice, parameters of our model revealed that update of actions values is more driven by rewards than errors (data not shown). The slow decay of action-value observed in case of unrewarding action also explained the numerous successive error trials observed at beginning of the task where mice persist to press the unrewarding lever that was preferred during training.

It is also important to consider that in absence of a large degree of freedom during head fixation, lever press could itself provides some positive value similarly to spontaneous wheel running behavior in head-fixed mice (e.g. [START_REF] Malezieux | Theta Oscillations Coincide with Sustained Hyperpolarization in CA3 Pyramidal Cells, Underlying Decreased Firing[END_REF]) which is known to be rewarding on its own [START_REF] Greenwood | Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway[END_REF]. In that sense, we saw that the devaluation of water reward significantly decreases pressing rate of mice without completely abolishing the occurrence of presses (Fig18.G). Thus lever press could in fact represent a reward per se in the context of head fixation.

Altogether, these evidences indicate that this two-lever task can be challenging for mice and requires long practice to reach expertise.

Interestingly, in contrast with the delay of pressing, the duration of actions was not significantly changed between success and error nor during the learning process (Fig18.H, bottom). This result suggests that the motor sequences to press each lever are already acquired at the beginning of the task, likely as a consequence of training (Fig17.C). We can therefore reasonably exclude the effect of confounding motor learning process in parallel of the learning of contingencies. Our behavioral data also show that anticipatory lick-rate was modified during learning (Fig18.I). With expertise of action-outcome causal consequence relationships, mice significantly lick more in anticipation of reward and less after error. Therefore, lick-rate appears to be a good proxy to determine the degree of reward expectation of the animal.

To conclude, we successfully characterized learning dynamics of mice performing our twolever task by applying a RL learning model which gives access to hidden cognitive variables, such as value assigned to each action. These parameters are important to determine whether neuronal activity in MOs could be related to value functions which are essential for RL.

Different MOs neuronal states emerge along learning and encode the task rules

We took advantage of the previously detailed two-lever task to acquire and dissect MOs neuronal activity during the learning and reversal phases on a trial-by-trial basis. The regression analysis of the MOs activity during learning and reversal phases has revealed the coding of current and past choice action-value (Q(n) and Q(n-1)) as well as for relative value of action (ΔQ), before the action was selected and choice beeing revealed (Fig22.C,

F).

These value functions are crucial for comparing actions value and choosing which action maximize reward [START_REF] Lee | Neural Basis of Reinforcement Learning and Decision Making[END_REF]. Our results are in agreement with studies that report such representation in the MOs during different behavioral tasks [START_REF] Bari | Stable Representations of Decision Variables for Flexible Behavior[END_REF][START_REF] Sul | Role of rodent secondary motor cortex in value-based action selection[END_REF]. The involvement of the MOs in reward history computation and processing of value based action-selection is supported by these data.

Because of the accumulation of evidences about high-dimensional coding in frontal cortex neurons [START_REF] Badre | The dimensionality of neural representations for control[END_REF][START_REF] Fusi | Why neurons mix: High dimensionality for higher cognition[END_REF][START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF], we applied a dimensional reduction to our neuronal activity data to better describe the population dynamics related to the two rules (Fig20.). We explored the neuronal population activity in state-space during expert success trials of the two rules. Remarkably, we observed different neuronal states that are explored during learning and reversal expert trials, and might represent signatures of the representation of the two rules (Fig20.C). We then tested different classifiers based on variable epochs of trials and we demonstrate that the activity of MOs was accurately predicting the rule of expert trials (Fig20. E). These results confirm the high dimensional coding of tasks rules by MOs [START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF].

To assess how MOs population activity vary in the state-space along trials of learning and reversal, we calculated the Mahalanobis distance of neural trajectories of each trials from an origin state determined from neuronal activity during training (Fig21.). Interestingly, representations varied stochastically when action-value started to be re-evaluated ([~75 ~90] and [~210 ~300] trials with imaging) (Fig21.B) echoing with some "resets of network" described in the literature during uncertainty [START_REF] Karlsson | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty[END_REF]. We also identified some abrupt transitions of population activity few trials after switch of lever rewarding within single recording session (Fig21.B black arrow). These kind of abrupt transitions which appear after successive errors and precede behavioral changes have been reported in several studies. They have been proposed to stand for: transition of behavioral strategy [START_REF] Durstewitz | Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning[END_REF][START_REF] Siniscalchi | Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior[END_REF], signature of modification of beliefs after an environmental change [START_REF] Karlsson | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty[END_REF] or switching from exploitation to exploration [START_REF] Ebitz | Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex[END_REF].

Eventually, activity states during expert trials of reversal converged and stabilized close to The absence of alteration in the duration of actions and delay of pressing implies that the photoinhibition of the MOs during action-selection did not impaired motor activity (Fig24.F).

Likewise, licking dynamics were not affected by MOs silencing during outcome evaluation epoch (Fig24.J). Altogether, these data demonstrate that MOs silencing during both deliberative and evaluative epochs of trials affects RL process while motor execution remains unchanged. The relatively modest effect of our silencing essay on RL may be imputable to the relatively small region inhibited relative to total MOs surface. Furthermore, MOs activity is especially robust and baseline activity pattern recovers fast from optogenetic perturbation due to the architecture of MOs network that forms redundant interconnected computing modules [START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF].

BLA-to-MOs axons codes for the expectation and may influence excitatory inhibitory balance within MOs circuit

We seek to understand the interactions between the BLA and the MOs during adaptive action-selection. The BLA is a critical actor of Pavlovian learning [START_REF] Maren | Neurobiology of Pavlovian Fear Conditioning[END_REF] which comports many conceptual overlaps with RL [START_REF] Averbeck | Motivational neural circuits underlying reinforcement learning[END_REF][START_REF] Dayan | Reinforcement learning: The Good, The Bad and The Ugly[END_REF]. Indeed, both Pavlovian conditioning and RL require the processing of value, as well as the prediction of outcome in order to generate responses. As the BLA is interconnected with many actors of goal-directed behavior and provide them signals of valence (BLA-to-VS, [START_REF] Namburi | A circuit mechanism for differentiating positive and negative associations[END_REF]), expectation (BLA-to-OFC, [START_REF] Lichtenberg | Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations[END_REF]) and motivation for reward (BLA-to-VS, [START_REF] Ambroggi | Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons[END_REF][START_REF] Shiflett | At the limbic-motor interface: Disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation[END_REF][START_REF] Stuber | Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking[END_REF], it is reasonable to expect that BLA would send relevant RL related signals to the MOs. To decipher the nature of these signals, we imaged chronically BLA-to-MOs axons expressing the genetically encoded calcium indicator GCaMP in mice performing our two-lever task. In vivo imaging of fluorescent transients in axonal boutons is not trivial, especially when it required to be performed chronically for months. We faced several technical issues with this approach that we could successfully solve.

As GCaMP is less diffused in axons than in dendrites and soma, axonal boutons contain fewer copies of GCaMP and exhibit poor signal-to-noise ratio [START_REF] Broussard | In vivo measurement of afferent activity with axon-specific calcium imaging[END_REF]. As Because our behavioral protocol requires months to be completed from surgery, we often faced a decay of GCaMP signal amplitude as mice progressed through the behavioral task due to inevitable decline of window quality over this long period. This second issue was also the easiest to overcome by upgrading the version of GCaMP used from GCaMP6 to GCaMP7 [START_REF] Dana | High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[END_REF] which improved significantly the signal amplitude of BLA axons along longitudinal recording. Additionally, our denoising algorithm also greatly participated in refining signal-to-noise ratio of axonal calcium transients (Fig25.B, C).

The last issue is unfortunately inherent to imaging in behaving animal and concerns motion artifacts in recorded movies. As described in the result section, we could correct the drifts in axes of the focal plane and partially solve out-of-focus frames issue by excluding them (Fig25.B). A few studies performed volumetric multiplane imaging of axons using a piezoelectric z scanner in order to correct motion in the optical axis [START_REF] Jaepel | Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice[END_REF][START_REF] Tanaka | Thalamocortical Axonal Activity in Motor Cortex Exhibits Layer-Specific Dynamics during Motor Learning[END_REF]. Multiplane acquisition with reasonable z step can be used to estimate images between the acquired planes by interpolation. This strategy can be used to reconstruct the missing frames and bypass loss of samples. Our two photon microscope is equipped with a similar piezoelectric system which we already used to acquire volumetric samples in order to develop this motion correction approach for the future.

Because manual segmentation of axonal boutons and matching of their identity over days are still in progress (Fig25.D, E, F), the data shown are analyzed from automated segmentation of putative BLA-to-MOs axons (based on pixels covariance) and regardless of axon identity matching between sessions.

First analysis of BLA axonal signals upon trials revealed bi-directional modulation of BLAto-MOs activity following lever press (Fig26.B, D). Opposite activity modulation of BLA neurons coding for valence of US have been reported during both appetitive and aversive conditioning [START_REF] Belova | Moment-to-Moment Tracking of State Value in the Amygdala[END_REF][START_REF] Zhang | Population coding of valence in the basolateral amygdala[END_REF][START_REF] Zhang | Amygdala Reward Neurons Form and Store Fear Extinction Memory[END_REF]. In that sense, the bidirectional modulation of BLA-to-MOs neurons observed might also be related to such valence processing.

Considering all axons, a general increase of activity was observed after the pressing of lever which remained in case of presses that were too short to trigger retraction of levers (Fig26.E). These results made us exclude the possibility that this modulation originates from the sound of lever retraction that could have act as a CS. Rather, we propose that it is evoked by the action elicited. The later period of modulation ([2.5 3.5] sec) was significantly different for pressing attempts compared to press that triggered retraction (Fig26.E). This difference was also observed when comparing success and error trials (Fig26.F). The magnitude of the late modulation observed could be related to expectation.

This would be in accordance with a remarkable study in monkeys which reported activity in the BLA in responses of reward or punishment with variable magnitude as function of expectation [START_REF] Belova | Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala[END_REF]. To sum up, our results suggest that there are several components of BLA-to-MOs activity modulation, with the earliest possibility related to action and the following related to valence or expectation.

We then segregated trials by degree of expertise and by their outcome. When focusing on learning phase, we could distinguish a large triphasic modulation of BLA-to-MOs activity solely for success trials in naive mice (Fig27.). Dynamics during insight trials must be judge carefully, especially when they are compared to the other degrees of expertise. Indeed, this condition comports a mixture of trials close from naive and expert stages in variable proportion that may mislead conclusions.

The magnitude of the first peak of modulation ([0 1] sec) observed during success trials of naive mice was reduced for trials within insight and expertise (Fig27.A). Because this peak rose at the time of action and decreased at the time of reward, it could actually be related to emotional arousal before potential reward. However, this first neuronal recruitment was not reliably seen in error trials making the nature of this modulation unclear (Fig27.B). BLA projections to mPFC contact both pyramidal neurons and interneurons (PV and SOM)

and form a strong feedforward inhibition circuit [START_REF] Dilgen | Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex[END_REF][START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF][START_REF] Mcgarry | Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex[END_REF] which highly influence mPFC activity and behavior [START_REF] Burgos-Robles | Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment[END_REF][START_REF] Felix-Ortiz | Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex[END_REF][START_REF] Klavir | Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex[END_REF][START_REF] Senn | Long-range connectivity defines behavioral specificity of amygdala neurons[END_REF]. In our in vitro experiment (Fig14.), we have highlighted that BLA axons evoked both EPSCs and IPSCs in MOs neurons, hence demonstrating that BLA axons contact both inhibitory and excitatory MOs neurons. Thus, the interaction of BLA-to-MOs axons within MOs circuit is similar to the one described for mPFC. Such a network configuration may therefore influence This hypothesis underlines even more the necessity to analyze population and subpopulation of BLA-to-MOs axons as well as to identify the different kind of neurons that they contact. We consider that these two pieces of information are crucial for the conclusion of our study.

It is reasonable to think that MOs activity modulation during trials is not solely depending on BLA inputs. Rather, MOs during trials presumably integrate variable inputs that may be non-linearly integrated when coinciding with BLA inputs, similarly to the non-linear integration reported with auditory stimuli coupled to BLA actuation (Fig14.J, K).

To conclude, we provide in the present study the really first functional characterization of BLA-to-MOs pathway during adaptive action-selection. We highlight large modulation of BLA-to-MOs axonal activity during unexpected success of naive mice and different engagement of these axons during learning and reversal phases. Despite the first analysis of BLA-to-MOs dynamics that especially unveil modulation that could be related to action and outcome, the nature of the signals sent and the impact on MOs neuronal circuit have still to be clarified. We plan to better characterize BLA-to-MOs population dynamics by identifying chronically each axons imaged in order to perform reduction dimension analysis of their population activity. While the BLA appears more and more to also code for complex cognitive process like representation of rules [START_REF] Saez | Abstract Context Representations in Primate Amygdala and Prefrontal Cortex[END_REF] or strategy transitions [START_REF] Costa | Subcortical Substrates of Explore-Exploit Decisions in Primates[END_REF], this analysis approach could clarify if the BLA share such integrated signals to the MOs. Eventually, we plan to analyze the causal relationship between BLAto-MOs activity and learning of the two-lever task. We have already collected preliminary data that are further detailed in the next section.

Summary and perspectives

The present thesis aimed to characterize the implication of the MOs and BLA-to-MOs pathway during learning. To do so, we have recorded activity of MOs neurons and BLAto-MOs axons in mice along two learning paradigm: auditory fear conditioning and adaptive action-selection.

With viral tracing, we have first highlighted that a population of BLA neurons contact the superficial layer of the MOs from a distinct pathway than the extensively studied BLA-to-mPFC pathway (see [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]). Based on in vitro patch clamp recordings and optogenetic, we presented evidences that BLA-to-MOs axons form a feedforward inhibition circuit within the MOs (Fig14.A, B, C, D). We also demonstrated in vivo that the integration of BLA-to-MOs inputs only weakly depolarized MOs neurons whereas more complex tones such as WGN or frequency-modulated stimuli evoked robust depolarization (Fig14.J, K).

We then showed that the activation of BLA-to-MOs axons that coincide with the WGN stimuli promotes non-linear integration of WGN by L2/3 MOs neurons in a NMDA dependent manner (see [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]). With two photon calcium imaging, we recorded the activity of BLA-to-MOs axons during auditory fear conditioning and found that recruitment of this pathway correlated with fear learning (Fig15.E, F, G). We then used optogenetic silencing approaches to demonstrate that the activity of MOs and BLA-to-MOs neurons between CS/US pairings facilitate auditory fear learning (Fig16.). Collectively, our results depict a complex interaction between an associative subcortical region, the BLA, and a higher order and integrative cortical region, the MOs, which work together to promote auditory fear learning. Our study demonstrates the existence of a population of BLA neurons that specifically projects to the MOs and transmits signals related to the CS/US association.

The collected evidences has led to a scientific publication that is the first to describe (1) the frequency-dependent integration of tone in the MOs and (2) the facilitation of auditory fear learning by the recruitment of BLA-to-MOs between conditioning trials [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF]. Our results thus confirm the MOs as an important actor of auditory fear associative learning process.

We then took advantage of the experience accumulated in two photon imaging and optogenetics in vivo to dissect the involvement of the MOs and the implication of the same BLA-to-MOs pathway during RL of a foraging task in mice.

First, we developed a deterministic foraging task for head fixed mice. This task consists of (1) a learning phase with the delivery of a reward following the press of only one of two levers and (2) a reversal phase during which the opposite lever triggers the delivery of a reward (Fig18.). We characterized the behavioral dynamics of mice performing the task and estimated cognitive parameters that are related to valuation and action-selection by using a modified RL model (Fig19.).

With two photon calcium imaging of L2/3 MOs neurons, we found that the MOs exhibits different pattern of activity from naive to expert stages of the task (Fig21. and Fig22.A, B, D, E). Our data also showed that MOs population dynamics differ between the learning and the reversal phases (Fig20.B, C and Fig22.). As previously mentioned, these differences could be due to a lateralization of neuronal processing relative to the side of the action computed. To decipher if this hypothesis can be sustained, we plan to segregate and analyze MOs neuronal activity of mice as function of their preferred lever. Indeed, the side of the preferred lever dictated which lever was rewarding during the learning and reversal phases while we only imaged the right hemisphere. In case of evidences of lateralization, we may eventually equip mice with 5 mm windows that would cover both the MOs in order to successively image the two hemispheres and better describe the lateralized dynamics during learning and reversal. Unilateral optogenetic silencing of the MOs can also be eventually performed to link the lateralized activity patterns revealed by imaging with behavioral features.

As it stands, our data unveils MOs population activity that reflects representations of the two learned rules. Indeed, we could accurately predict from which rule an expert trial was, only from the decoding of MOs neuronal activity undergoing before the action (Fig20.D, E). We also show that the MOs computes information related to cognitive parameters of RL such as the relative value of actions (ΔQ) (Fig22.C, F). Finally, we present evidences about different transition dynamics of MOs activity in state space along learning (Fig21.).

In particular, we report strong network perturbations when value of preferred choice started to be reconsidered, with sometimes abrupt transition of population activity pattern from one trial to the next one (Fig21. Black arrow).

Finally, as the silencing of the MOs during reversal resulted in the impairment of mice performance (Fig24.), it would be of special interest to test whether MOs is also required during the learning phase. That is why we consider using optogenetic silencing of the MOs during the learning phase.

The last and main emphasis of this manuscript is on the BLA-to-MOs pathway during the same RL foraging task. We have successfully acquired a large sampling of BLA-to-MOs axonal activity along learning and reversal phases. The first analysis of axonal activity revealed both up and down regulations of BLA-to-MOs activity during trials (Fig26.B, D), with a predominance of activity modulation following action and reward epochs (Fig26.).

We also reported robust recruitment of BLA-to-MOs pathway during successful trials of naive mice (Fig27.A). This suggests that BLA-to-MOs dynamics are most likely linked to arousal by outcome of a novel alternative being tested or to the expectation of reward.

The analyses of BLA-to-MOs activity presented in this thesis were achieved regardless of axons identity. We now aim to analyze the dynamics and selectivity of individually identified axons during RL (Fig25.D, E, F). This will allow us to unveil the possible existence of subpopulations of BLA-to-MOs axons. Because BLA neurons also exhibit multiplexed selectivity [START_REF] Kyriazi | Multi-dimensional Coding by Basolateral Amygdala Neurons[END_REF], we aim to perform population analysis based on dimension we still ignore if the same is true for L5 MOs neurons. In this regard, we plan to implant 32 channels silicon probe in the MOs of mice expressing ChR2 in BLA-to-MOs axons to characterize the integration of optogenetically evoked BLA signals within MOs cortical column. This approach can be used to quantify the evoked spikes in both interneurons and pyramidal neurons and to evaluate the distribution in the different layers of the neurons recruited [START_REF] Barthó | Characterization of neocortical principal cells and interneurons by network interactions and extracellular features[END_REF][START_REF] Fujisawa | Behaviordependent short-term assembly dynamics in the medial prefrontal cortex[END_REF][START_REF] Manita | A Top-Down Cortical Circuit for Accurate Sensory Perception[END_REF]. We consider performing these experiments in Cre driver mice lines that allow genetic targeting of different interneurons subtypes [START_REF] Taniguchi | A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex[END_REF]. This approach would allow the identification of specific interneurons with opto-tagging [START_REF] Roux | In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes[END_REF] and the dissection of interneurons integration of BLA inputs.

Activity correlated to behavior is important to evaluate information coded by a structure but the causality between activity and behavior remains to be tested. We consider approaches to solve this concern. In fact, we have already collected preliminary data of mice performing the two-lever foraging task under optogenetic silencing of the specific BLA-to-MOs pathway all along learning and reversal phases. With illumination during outcomeevaluation epoch, ArchT expressing mice showed a tendency to learn faster the reversal phases in comparison to GFP expressing mice (data not shown). Furthermore, our RL model revealed that the optogenetic silencing of BLA-to-MOs neurons also affect RL parameters related to the update of preferred action-value, which resulted in a lower devaluation of the non rewarding lever during the learning phase. This last result is coherent with part of the literature about facilitation of reversal learning in animals with BLA lesions [START_REF] Izquierdo | Basolateral amygdala lesions facilitate reward choices after negative feedback in rats[END_REF][START_REF] Taswell | Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques[END_REF]. However, many contradictory results have been reported over the years about the implication of BLA in reversal learning (see [START_REF] Izquierdo | The neural basis of reversal learning: An updated perspective[END_REF]). Notably, our optogenetic results are preliminary and are not presented in detail this thesis because of the current small size of the cohort tested and the current lack of histological verification of viral expression and optical fiber position that must be achieved.

Concerning the design of the two-lever foraging task, some improvement may be undertaken to reduce the number of sessions needed for the mice to reach expertise in order to test more efficiently supplementary experimental conditions. The simplest and most relevant modification would be to shift the nycthemeral cycle of mice in order to let mice perform the task during their dark phase. Indeed, all experiments presented in this manuscript were achieved during light phase although it is known that mice are more active during night as nocturnal animals are [START_REF] Peirson | Light and the laboratory mouse[END_REF].

Main neuromodulators, if not all, likely influence RL and decision-making computation [START_REF] Dembrow | Subcircuit-specific neuromodulation in the prefrontal cortex[END_REF][START_REF] Eppinger | Neuromodulation of reward-based learning and decision making in human aging[END_REF][START_REF] Schweighofer | Meta-learning in reinforcement learning[END_REF].

Notably, serotonin (5Ht) norepinephrine (NE) and dopamine (DA) are all released in the MOs [START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Kebschull | High-throughput mapping of single-neuron projections by sequencing of barcoded RNA[END_REF][START_REF] Puig | Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: Involvement of serotonin and GABA[END_REF].

DA is probably the neuromodulator that is the most easily and often linked to the RL framework. DA has been reported to regulate many intracellular mechanisms (e.g. neuronal excitability, vesicular trafficking, Ca2+ influx [START_REF] Tritsch | Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum[END_REF]) and DA release has been widely reported in animals that experience discrepancy between observed and expected reward [START_REF] Chang | Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors[END_REF][START_REF] Schultz | Reward prediction error[END_REF][START_REF] Steinberg | A causal link between prediction errors, dopamine neurons and learning[END_REF].

DA is thus thought to act as an endogenous RPE that shapes neuronal integration.

Additionally to the update of value representations, DA is also proposed to exert strong influence on many other aspects of executive control (e.g. sensory gating, update of representations, motor relay [START_REF] Ott | Dopamine and Cognitive Control in Prefrontal Cortex[END_REF]). Interestingly, the VTA, a major effector of the dopamine signaling system, send afferences to the MOs [START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF]. Involvement of the VTA-to-MOs pathway during the acquisition and update of action-value representation remains ignored. As the MOs emerges as a crucial region for adaptive action-selection, VTA-to-MOs pathway may influence RL dynamics and decision making process. We started to investigate VTA-to-MOs activity by expressing GCaMP in a Cre-dependent manner in mice expressing Cre recombinase under the transcriptional control of the dopamine transporter promoter (DAT-Cre mice). Axonal calcium imaging can be used as a proxy for neuromodulator releases when imaging the projections from neurons of neuromodulatory systems. With this approach, we succeeded in imaging VTA dopaminergic axons within the MOs and we plan to explore correlates of local DA releases during learning of the two-lever task paradigm.

Conclusion

To conclude, we provide in this thesis new insights about the BLA-to-MOs pathway during learning. We have shown that the BLA conveys to the MOs information: (1) related to CS/US association during auditory fear conditioning, (2) related to the expectation of reward during RL of rewarding action. Altogether, our data suggests that the BLA-to-MOs pathway is involved in emotional representation of predicted upcoming event, recruited for

Fig2.

  Fig2. Fear conditioning Auditory fear conditioning is a form of fear conditioning that uses precisely timed tone-footshock pairings during training. After training, exposure to the conditioning context or conditioned stimulus (CS) only presentations induces conditioned fear, which is expressed as freezing. (Figure adapted from (Tovote et al., 2015))

Fig3.

  Fig3. From Goal-directed to Habitual control of actions (A) Behavioral tests used to establish the capacity for goal-directed actions in rodents. Acquisition on two different lever press actions for different outcomes (delivered at a progressively decreasing probability given a response) is followed by an assessment of sensitivity to changes in the action-outcome contingency (contingency degradation) and in outcome value (outcome devaluation). A choice test is then conducted in extinction (without feedback). (B) The progressive changes in goal-directed and habitual control processes over the course of training from the perspective of the dual control theory of instrumental conditioning. (Figure from (Balleine, 2019))

  rewards (r) and value functions. An agent perceives its environment in a certain state and can interact with it with a set of actions. Its actions are defined by a strategy named 'the Policy'. Different rewards (positive or negative) are resulting from the different actions available. The Policy is selecting an action, which results in a Reward and in modification of the state of the environment. The most classical strategy is to use information regarding the result of a performed action to predict the amount of future reward for this action. Values for actions in a certain state are named 'state-action values' and often denoted Q(s,a). They classically encode the expected reward for the actions in a given state. It is possible to compute relative action-values (ΔQ) from the comparison of values assigned to each action. A state value function (often denoted V(s)) refers to the highest of available rewards perceived by the agent in a given state of the environment. Different approaches can be used to update action-values and guide action-selection to maximize future reward,

Fig4.

  Fig4. Model-based and model-free strategies to solve a hypothetical sequential actionselection problem (A) a rat navigates a maze with distinctive goal boxes, each associated with a reward having the value shown. (B) a model-free strategy relies on stored action-values for all the state-action pairs obtained over many learning trials. To make decisions the rat just has to select at each state (S) the action with the largest action-value for that state. (C) In a model-based strategy, the rat learns an environment model, consisting of knowledge of stateaction-next-state transitions and a reward model consisting of knowledge of the reward associated with each distinctive goal box. The rat can decide which way to turn at each state by using the model to simulate sequences of action choices to find a path yielding the highest return. (Figure adapted from (Sutton and Barto, 2018))
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  Fig5. Dopamine neurons report rewards according to an error in reward prediction (A) Drop of liquid occurs although no reward is predicted at this time. Occurrence of reward thus constitutes a positive error in the prediction reward. Dopamine neuron is activated by unpredicted occurrence of the liquid. (B) Conditioned stimulus predicts a reward, and the reward occurs according to the prediction, hence no error in the prediction of reward. Dopamine neuron fails to be activated by the predicted reward. It also shows an activation after the reward-predicting stimulus, which occurs irrespective of an error in the prediction of the later reward. (C) Conditioned stimulus predicts a reward, but the reward fails to occur. Activity of the dopamine neuron is depressed exactly at the time when the reward would have occurred. Note the depression occurring >1 s after the conditioned stimulus without any intervening stimuli, revealing an internal process of reward expectation. (Figure adapted (Schultz, 1998))

  . The reversal allows neural signals related to image value to be disentangled from neural signals related to visual characteristics of the images. (B,C) Examples of amygdala neurons that encode image value during the task shown in A. Plots are peri-stimulus time histograms aligned on the time of image presentation (black dotted line). Blue line, activity during large reward trials. Cyan line, activity during small reward trials. Red line, activity during air-puff trials. (B) A positive value-coding neuron, which fires more strongly on large reward trials than airpuff trials. (C) A negative value-coding neuron, which fires more strongly on air-puff trials than on large-rewardtrials. Note that the activity on small reward trials is intermediate (Belova et al., 2008). Differential activity may occur primarily during image presentation (as in C), the trace interval (as in B), or both. (Figure from (Morrison and Salzman, 2010))

Fig9.

  Fig9. MOs connectivity and experimental evidences about involvement in selection of action (A) Nomenclature about MOs varies in the literature. In our study, we focus on the frontal part of MOs (dark grey), from FOF to FrA. MOs exhibits a large range of reciprocal (red) and non-reciprocal (blue) connections. (B) Top, during a cue-guided go no-go task with a delay before response (either licking right or licking left), (bottom) population of MOs neurons shows robust persistent activity during delay epoch, suggesting motor planning activity. (C) Unilateral optogenetic inactivation of MOs bias action toward the ipsilateral side of silencing (blue: lick right trials; red: lick left trials). Abbreviation: ALM: anterolateral motor area; FrA: frontal association cortex; M2: secondary motor cortex; AGm/AGl: medial/lateral agranular cortex; dmPFC: dorsomedial prefrontal cortex; FOF: frontal orienting field; VTA: ventral tegmental area; BLA: basolateral amygdala; mPFC: medial prefrontal cortex; OFC: orbitofrontal cortex; PPC: posterior parietal cortex; M1: primary motor cortex. (Figure 7.B adapted from (Svoboda and Li, 2018), Figure 7.C adapted from (Guo et al., 2014))

Fig10.

  Fig10. Time course of signals related to rat's choice and outcome in multiple brain areas during a value-based decision task (A) During a dynamic-foraging task in T-maze (B) D. Lee, MW. Jung and colleagues record the neuronal activities of various brain regions (AGm (=MOs): medial agranular cortex; AGl: lateral agranular cortex; DS: dorsal striatum; VS: ventral striatum; ACC (=Cg): anterior cingulated cortex; PLC/ILC: prelimbic/infralimbic cortex; OFC: orbitofrontal cortex). (C) Top, fraction of neurons significantly modulating their activity according to the animal's choice or (bottom) to the outcome of choice during the current (lag=0) and previous trials (lag=1). Note that MOs (here called AGm) is the earliest region to recruit neurons correlated with choice. Large symbols indicate that the proportions are significantly (p<0.05) above the chance level. (Figure from (Lee et al., 2012))

  a second time, we transiently silenced via optogenetic MOs neurons of mice in order to control how our task may depend on the activity of the MOs. The results of these experiments are developed in the chapter 2.MOs implication in learning and adaptation of action-selection of Results part.

  in vitro patch clamp recordings: Mice expressing channelrhodopsin (ChR2) in BLA (AAV9.CamKIIa.hChR2-eYFP, from Penn Vector Core, provided by K Deisseroth) were anesthetized with a mixture of ketamine (100mg.kg-1) and xylazine (10mg.kg-1). Intra cardiac perfusion of cold oxygenated (carbogen: 95% O2; 5% CO2) cutting solution was performed (cutting solution: N-Methyl-D-glucamine: 93mM; HCl: 93nM; KCl: 2.5mM; NaH2PO4: 1.2mM; NaHCO3: 30mM; glucose: 25mM; MgSO4: 10mM; CaCl2: 0.5mM; sodium ascorbate: 5mM; sodium pyruvate: 3mM; thiourea: 2mM; N-Acetyl-L-cysteine: 12mM; pH controlled. Brain was then removed, placed in cold-ice oxygenated cutting solution (same), and cut in coronal slices (300µm thick) with a vibratome (VT1200S, Leica Microsystems). Fresh brain slices were incubated in oxygenated cutting solution at 32°C for 10 min then transferred to oxygenated artificial cerebrospinal fluid at room temperature (NaCl: 92mM; KCl: 2.5mM; NaH2PO4: 1.2mM; NaHCO3: 30mM; HEPES: 20mM; glucose: 25mM; MgSO4: 2mM; CaCl2: 2mM; sodium ascorbate: 5mM; sodium pyruvate: 3mM; thiourea: 2mM; N-Acetyl-L-cysteine: 12mM; pH controlled 7.3-7.4; osmolarity controlled: 300-310mOsm). MOs layer 2/3 pyramidal neurons were then patch in whole-cell configuration at 30-32°C in a superfusing chamber. Patch pipette was filled with a K-gluconate-based intracellular solution (Kgluconate : 140mM; QX314-Cl : 5mM; HEPES : 10mM; phosphocreatine : 10mM; Mg-ATP : 4mM; Na-GTP: 0.3mM; pH controlled 7.25; osmolarity controlled: 295mOsm) and placed on the patch electrode (3-5 MΩ). BLA axons were photo-stimulated with a 488 nm LED (50ms pulses, Prizmatix Ltd) to assess evocation of EPSCs in MOs neurons using a Multiclamp700B system (Molecular Devices).in vivo patch clamp recordings: Anesthesia of mice expressing ChR2 in BLA was induced using isoflurane (4% containing ~0.5 l min -1 O2 for ~3 min) and complete with intraperitoneal injection of urethane-lactate solution (urethane: 1.5 g.kg -1 ; NaCl: 102mM; Na-L-Lactate: 28mM; KCl: 4mM; CaCl2: 1.5mM). Subcutaneous injection of glycopyrrolate (Robinul: 0.01 mg.kg -1 ) and intramuscular injection of dexamethasone (40µL, Dexadreson: 0.1 mg.mL -1 ) were performed to respectively reduce salivary excretions and prevent inflammation. Mouse body temperature was maintained with a heating-pad and ophthalmic gel was regularly applied. Local and global analgesia were reached with injection of lidocaine (100µL, 1%, Lurocaine) under scalp and buprenorphine intraperitonealy (Buprecare: 0.1 mg.kg -1 ). Depth of anesthesia was often evaluated by checking withdrawal reflex after interdigital pinching and extra dose of urethane solution could be injected if needed (0.15 g.kg -1 ). Skin asepsis was then reached by sequential skin rubbing with ethanol 70% and betadine. Skin was then incised, skull exposed and a 3mm plastic chamber was centered on MOs and attached with glue and dental cement. After drilling a 1mm diameter craniotomy above MOs, whole-cell patch clamp of MOs L2/3 pyramidal cells was performed with potassium-based intracellular solution in patch pipette (K-gluconate: 135mM; KCl: 4mM; HEPES: 10mM; phosphocreatine: 10mM; Mg-ATP: 4mM; Na-GTP: 0.3mM; pH controlled 7.25; osmolarity controlled: 285mOsm) and acquisition was done with a Multiclamp 700B Amplifier (Molecular devices) during photo-stimulation (λ: 473nm, SDL-473-050MFL, Shanghai dream laser technology) and/or auditory stimuli (80dB, white

:

  After training, mice could start the adaptive action-selection protocol consisting this time in both levers presented but only one rewarding. The identity of the rewarding lever was set to avoid rewarding the originally preferred lever (Cycle 1: learning) and pressing of the two levers within a 500ms time window was leading to a failure. After several sessions, mice could learn optimal action and reach an expertise criterion (3 consecutive days with an average of 75% of success). We finally forced adaptation of action-selection by switching the rewarding lever (Cycle 2: reversal learning) and repeat a session every day until same expertise criterion was reached.Modeling of behavior: Our behavioral task includes three possible actions: 1) press left lever (L1), 2) press right lever (L2), 3) press both levers (L1&L2). Only trials and errors can provide information to guide actions for maximizing the amount of rewards. The RL framework therefore appears well suited to describe and analyze the learning dynamics of this task. We extended the well-known Q-learning model of RL, where subjective values associated to the feasible actions correspond to their expected outcome rewards. Values are updated as rewards are obtained, or missed, using the standard Rescorla-Wagner equation which makes use of the (scaled) RPE as the update factor:

  of members of the laboratory of Dr Frédéric Gambino. Most of the experiments performed in the first part of results (1. BLA-to-MOs implication in auditory fear learning) were achieved by Dr Mattia Aime and Dr Elisabete Augusto and have been published (Aime*, Augusto*, Kouskoff et al. 2020). I participated in this study by performing BLA-to-MOs axonal imaging during fear conditioning and during exposition to auditory stimuli of variable frequencies (for details about different auditory stimuli, see Fig 4-figure supplement 1 of Aime et al. 2020). Somatic imaging in 2. MOs implication in learning and adaptation of action-selection has been done by Dr Elisabete Augusto. I performed optrode recordings for control of optogenetic inhibition as well as optogenetic experiments to silence MOs during action-selection epoch while Dr Elisabete Augusto did those during outcomeevaluation epoch. I finally collected all the data of the part 3. BLA-to-MOs implication in learning and adaptation of action-selection. Dr Nicolas Chenouard developed the model of the action-selection task and the processing of BLA-to-MOs axons movies. I am extremely grateful to the aforementioned persons and to Dr Frédéric Gambino that has been central in achieving this project. All results presented are important evidences for the discussion of the project.

L2/ 3 (

 3 Fig11.B,C left). Portions of the MOs distant from the injection site were also tagged (Fig11.B). Intense fluorescent fiber tract could be seen in the upper part of the ventral orbitofrontal cortex (VO, Fig11.B left). Few portions of the orbitofrontal cortex were presenting fluorescence (mainly the dorsolateral portion) while the mPFC (Cg, PL, IL) didn't present any fluorescent somas (Fig11.B yellow frame). The perirhinal and the ectorhinal cortex also exhibited sparse labeling (Fig11.C green frame).

Fig11.

  Fig11. MOs inputs (A) Tracing of MOs inputs with retrograde viral injection (B) highlighted agranular insular (AI) and motor cortices (orange frame, M1) as main sources of cortical inputs. Absence of fluorescence in the medial prefrontal cortex can be noticed (yellow frame, Cg: cingulate cortex, PL: prelimbic, IL: infralimbic). (C) Subcortically, basolateral amygdala (green frame, BLA) is massively projecting to the MOs. Cortical regions in relation with hippocampal circuit of memory also send projections to MOs (green frame, Ect: ectorhinal, PRh: perirhinal). (D) Top, Schematic of the main sources of MOs inputs and (bottom) proportion of soma labeled for each regions.

Fig12.

  Fig12. MOs outputs (A) Tracing of MOs outputs with anterograde viral injection (B) highlighted projections targeting primary motor cortex (M1), somatosensory cortex (S1), agranular insular cortex (Al) and medial prefrontal cortex (yellow and green frames, Cg: cingulate, PL: prelimbic, IL: infralimbic). (C) Subcortically, basolateral amygdala (yellow frame, BLA) received massive projection from the MOs. Cortical regions in relation with hippocampal circuit of memory also received projections from MOs (green frame, Ect: ectorhinal, PRh: perirhinal). (D) Top, Schematic of the main targets of MOs and (bottom) quantification of the fluorescence measured for each region.

Fig13.

  Fig13. Distribution of Basolateral amygdala projections to MOs (A) Left, dual viral injection strategy with AAV9.CAG.Flex.eGFP in BLA and CAV2.CMV.CRE in MOs allowed tagging specific population of BLA neurons projecting to MOs. Right, Neurons expressing GFP were found throughout the BLA. (B) Maximum entropy thresholding was used for extraction of axonal surface. (C) Example of expression profile of GFP in the MOs. Note the extremely low amount of GFP-expressing axons in the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex. (D) Distribution of GFP-expressing axons in different frontal structures as a function of the distance from the bregma.

  Fig14.B, the average amplitudes of evoked EPSCs and IPSCs were similar (Fig14.C left).

Fig14.

  Fig14. BLA activation potentiates MOs L2/3 pyramidal neurons and supports nonlinear integration of auditory stimuli (A) Whole-cell patch clamp recording of L2/3 MOs pyramidal neurons in vitro under photo-stimulation of BLA-to-MOs axons expressing ChR2. (B) Excitatory (EPSC) and inhibitory post synaptic currents (IPSC) are evoked by BLA axonal activation with blue light (black trace, EPSC evoked under -70mV voltage clamp; magenta trace, IPSC evoked under 0mV voltage clamp). (C) Left, amplitudes of evoked EPSCs and IPSCs. Right, short onset of evoked EPSCs highlights monosynaptic transduction of evoked EPSC. (D) Schematic of the putative feedforward inhibtion circuit with monosynaptic glutamatergic inputs to pyramidal neurons that received delayed GABAergic inputs triggered by the same projections. (E) Whole-cell patch clamp recording of L2/3 MOs pyramidal neurons in vivo under photo-stimulation of BLA neurons transfected with AAV9.CamKIIa.hChR2-YFP and/or with white Gaussian noise (WGN) auditory stimuli. Light was delivered through an optical fiber positionned above BLA. (F) Left, representative example of the ChR2-YFP expression profile in the mouse BLA. Right, example of ChR2-YFP expressing axons imaged in MOs superficial layer with 2P microscopy. (G) Single-cell example of depolarizations evoked by the photo-stimulation of BLA neurons. Grey lines, single trials; black line, average of 20 trials. (H) Left, peak amplitude and (right) full width at half maximum (fwhm) of evoked PSP in different cells. (I) Single-cell example of depolarizations in MOs by the rhythmic photo-stimulation of BLA neurons with WGN auditory stimuli (for both WGN and photo-stimulation: 27 stimulation pulses, 50 ms, 0.9 Hz for 30 s). (J) Averaged cumulative membrane potential (cVm) change (±sem) evoked by either: WGN stimuli in black, photo-stimulation of BLA neurons in light blue, both simultaneous photo-stimulation and WGN in dark blue. Arrows, analysis time points 1 (end of stimulation) and 2 (30 sec later) shown in (K). *, p<0.05; **, p<0.01; ***, p<0.001; Holm-Sidak multiple comparisons after one-way anova (p<0.001 for time point 1; p=0.002 for time point 2).

F0)

  Fig15.D.

Fig15.

  Fig15. BLA-to-MOs axonal activity along conditioning pairings predicts the level of auditory fear learning (A) Left, GCaMP6f was expressed in BLA of mice equipped with cranial window above MOs. Right, example of BLA-to-MOs axons imaged with a two-photon microscope in the superficial layer of MOs. White frame, magnified example of one axon. (B) Timeline of auditory fear-conditioning behavioral protocol. Habituation to auditory stimuli (white Gaussian noise (WGN) as CS-and 8kHz tones as CS+) was done in one context. Fear conditioning (footshock (US) paired to CS+) was then performed under the microscope while imaging BLA-to-MOs axons. Finally, recall was done in a new context to quantify fear learning. (C) Left, conditioning under the microscope induced robust fear behaviors: in contrast to CS-, CS+ increased freezing responses during recall as compared to habituation (hab.). Grey solid, % of freezing of mice with learning index >20% (learning+, n=5); grey dashed, % of freezing of mice with learning index <20% (learning-, n=5). Right, freezing responses induced by CS+ during recall for learners (learn. +) and non-learners (learn. -) mice. (D) Examples of Ca 2+ transients (ΔF/F0) from individual boutons recorded from one mouse upon two consecutive CS+/US pairings. Red bars, CS-; blue bars, CS-; black bars, footshock (US). (E) Frequency of axonal Ca 2+ transients recorded during successive CS. Black arrow points to the difference between the first CS+ (before the first footshock) and the first CS-(after the first footshock). (F) Difference between CS-and CS+ related axonal activity (Δcumulative: ΔF/F0 CS--ΔF/F0 CS+) in mice that learned (learning+, solid line, n=5) or not (learning-, dashed line, n=5) the association, averaged from all pairings(±sem). (G) Relation between the Δcumulative during conditioning and the % of freezing during recall. Circles, mice. *, p<0.05; ***, p<0.001.

Fig16.

  Fig16. Silencing of MOs or BLA-to-MOs projecting neurons during CS-both affect auditory fear learning (A,B) ArchT or GFP were expressed in (A) MOs L2/3 neurons or (B) BLA-to-MOs projecting neurons using respectively a (A) single or (B) dual viral strategy. Optical fibers were positioned above (A) MOs or (B) BLA to guide light for photo-stimulation. (C) Auditory fear conditioning protocol with illumination undergoing during either the CS+ or the CS-in the conditioning period. (D,E) Effect of light on freezing behaviors during recall as compared to habituation (hab.) in GFP-expressing mice and ArchT-expressing mice in MOs during CS+ (D, GFP: n=8; ArchT: n=8) or CS-(E, GFP: n=12; ArchT: n=13). (F) Same as (E) but for BLA-to-MOs silencing and control (GFP, n=8; ArchT n=7). Turquoise and khaki lines represent individual mice. (G) Freezing responses during recall upon CS+ for all conditions.

  ) Diagram of a trial of the first training for lever pressing. Levers are first presented until a press is detected, which trigger retraction of the levers and delivery of water. (C) Diagram of a trial of the second training for both levers exploration. One lever is randomly presented for each trial (here the left one) until a press on this lever is detected. The press triggers retraction and delivery of water later. Mice could perform hundred trials of training a day.

Fig18.

  Fig18. A learning/reversal learning cue-less and self-initiated action-selection paradigm (A) Diagram of a trial from the adaptive action-selection task. Levers are first presented until a press is detected, which will trigger their retraction instantly and the delivery (success) or not (error) of a water reward (10µL) depending on the lever. (B) Detailed timeline of a trial. No sensory cue is presented to guide the action. (C) Example of a learning curve from one mouse. When animals reach expertise of the learning phase (fraction correct ≥0.75), mice are engaged in a reversal phase where the other lever delivers reward (lever switch). (D) Fraction of different actions along learning. (E) Learning curves of 17 mice aligned to day of expertise of learning phase.Mice were considered naive (<25%), in insight (≥25% ∩ <75%) or expert (≥75%) regarding the success rate of the session (100 trials are performed a session). Dark curve, average curve (F) Distribution of the number of sessions until expert stage is reached for 16 mice. (G) Mice significantly reduce their frequency of pressing after reward devaluation (n=8; µdeprived=0.082 ± 0.007; µad-libitum=0.017 ± 0.005; paired t test, p<0.0001). (H) Top, Delay of pressing is globally reduced between naive and expert mice for both success and error trials (n=16 mice; µnaive-succ=7.5 ± 1.0; µnaive-err=7.6 ± 1.0; µexpert-succ=3.6 ± 0.5; µexpert-err=4.6 ± 0.9; paired t tests, **p<0.01, *p<0.05) while (bottom) the duration of the action remain similar (from paw lift from the pad to press). (I) Top, distribution of number of lick before and after reward as function of learning stage and outcome of action. Bottom, Number of lick per 300ms as function of time from pressing for the same conditions as top (average of 16 mice).

  Fig19. A reinforcement learning model which fit behavioral dynamics and provide hidden cognitive variables (A) Example of a psychometric curve for learning and reversal rules. The model fits accuretly behavior dynamics over trials. (B) The model could also fit the rate of L1&L2 press over trials. (C) Values of each lever can be extracted from the model (QL1, QL2). Even never rewarded, double pressing (L1 & L2) events are frequent (B, purple curve) when both levers have moderate-to-high values.

Fig20.

  Fig20. Population activity during expertise reflects representation of task rules (A) Top, GCaMP6f was expressed in MOs L2/3 neurons of mice equipped with cranial window (middle) in order to image MOs neuronal calcium transients during the two-lever task. Bottom, example of one field of view with several hundred of neurons expressing GCaMP6f. (B) Left, raster plots showing average of normalized calcium

Fig21.

  Fig21. Transition of MOs states along learning and reversal learning of optimal action (A) Neural trajectories from several trials. Trial 145 and Trial 155 are respectivelly failure trial and success trial during expertise. The neuronal trajectories of these trials started at similar space state and then diverge in opposite direction in the neuronal state-space during action selection, highlighting different neuronal representation for each actions. One way of comparing how distant neuronal states are is to compute the distance between the centroid of one "origin" trajectory with other trajectories (Mahalanobis distance). (B) We computed the mahalanobis distance of neuronal representation of each trials from the centroid of the Trial 3 (origin). Decision value represents the difference between value assigned to each actions (|QL1-QL2|). Dotted lines represent delimitation of trials from different sessions (as reminder, population activity was not monitored for all trials).

Fig22.

  Fig22. Modulation of MOs activity along trials of learning and reversal phases (A) Z scores of MO neuronal population activity for success trials during learning phase at different stages of learning (naive: sessions with success rate < 25%; insight: sessions with success rate ≥25% ∩ <75%; expert: sessions with success rate ≥ 75%). (B) Same as (A) but for error trials. (C) Multiple linear regression of population activity was performed to analyze the proportion of neurons modulated specifically by behavioral features along trials of learning phase. Chance level was assessed by performing linear regression on shuffle dataset. (D) (E) (F) Same as (A), (B) and (C) but during reversal learning phase

Fig24.

  Fig24. MOs silencing during reversal learning phase affects mice performance (A) Left, ArchT or GFP was expressed in MOs of mice. Middle, Optical fibers were implanted above MOs to enable the delivery of light to actuate ArchT and silence neurons. Right, mice could then run the behavioral task. (B) Illumination on MOs was triggered during reversal phase for the same amount of session needed to reach expertise in the learning phase. (C) In a first batch of mice (nGFP=10; nArchT=11), we silenced MOs specifically during the "action-selection" epoch of trials (protocol A). (D) The total number of session to reach expertise was not significantly altered by protocol A while (E) the performance of ArchT mice were reduced by light when comparing last session from learning or last session of reversal phase under illumination (µOFF-ArchT=0.87 ± 0.02 µON-ArchT=0.50 ± 0.14, multiple paired t test). (F) Optogenetic silencing of MOs during action-selection did not affect (left) the delay of pressing nor (right) the duration of action. (G) In a second batch of mice (nGFP=7; nArchT=9), we silenced MOs specifically during the "outcome evaluation" epoch of trials (protocol B). (H) (I) same as (D) and (E) but for protocol B. Both session until expertise (µOFF-ArchT=12.78 ± 2.05; µON-ArchT=22.33 ± 2.64, multiple paired t test) and performance (µOFF-ArchT=0.86 ± 0.03 µON-ArchT=0.29 ± 0.10, multiple paired t test) were altered in ArchT mice under illumination. (J) Licking dynamics of ArchT mice were not altered by illumination during outcome evaluation. (*p<0.05). Black dots in (D) (E) and (F) represent two mice that never reached expertise on reversal.

(Fig25.

  Fig25. Processing pipeline of chronic BLA-to-MOs axonal recording (A) Mean projection of a 5 min movie of BLA axons (GCaMP6f) in MOs acquired with a resonant scanning (37Hz) two-photon microscope in vivo (registration and out of focus frames removal before projection for illustration purpose). Sparse labeling of MOs L2/3 pyramidal neurons with tdTomato was achieved to help finding chronically same plan of acquisition. (B) Left, Static fluorescence signal from raw red channel was used to perform registration (algorithm from Simons foundation). Out of focus frames were excluded based on pictures cross correlation scores. Middle, shifts and out of focus exclusion computed from red channel were then applied to the frames of green channel. Right, Green channel frames were then denoised using a custom algorithm that weight each pixel value regarding those that highly covariate. (C) Raw (left) and denoised (right) examples of GcaMP6f traces extracted from ROIs displayed in (B). ROI 6 represents background. (D) Segmentation of boutons was performed manually. (E) Boutons were grouped into clusters based on the correlation of their dynamics. (F) The procedures (D) and (E) were applied for each recordings and matching of bouton clusters over days was performed manually based on visual inspection.

Fig26.

  Fig26. Modulation of BLA-to-MOs activity by actions and outcomes (A) Left, GCaMP6f and tdTomato were expressed in respectively BLA and MOs. Middle, mice then performed the two-lever task while we chronically imaged (right) BLA-to-MOs axons in MOs. (B) Scatter plot of sorted axonal average activity from one session. (C) Plot of axonal population Z scores for all trials with lever press that triggers retraction (curve: mean of trials; grey area: SD of trials). Kolgomorov-Smirnov (KS) test was performed to compare the modulation dynamics of [-2 -1] sec and [0 1] sec time windows. (D) Sum of upregulated (Z>0) or absolute sum of downregulated (Z<0) axonal modulation highlight bidirectional regulation of BLA-to-MOs axons during trials. (E) Same as (C) for trials not triggering retraction and for trials with retraction but no reward (error). KS test was performed to assess statistical difference of curves for the [2.5 3.5] sec time window. (F) Segregation of axonal modulation intervening during success or error (from both learning and reversal learning phases). Statistical differences between success and error evoked modulation was assessed with a KS test for the [2.5 3.5] sec time window. ****, p<0.0001.

  5 3.5] sec, nnaive=8; ninsight=40, KS test, p<0.01; µnaive=0.181 ± 0.118; µinsight=0.0432 ± 0.141 SD) (Fig27.A). Three peaks of modulation can be seen during success trials at naive stage: the first rose just before pressing and was also seen at insight and expert stages, the second was centered on reward delivery period and the last rose after reward (peak at 3s). Only the first modulation remained when we analyzed error trials of naive stage (Fig27.B). Interestingly, different modulations with lower magnitude could be seen when focusing on reversal learning phase (Fig27.C,D). The first component of modulation was higher for naive trials than for the other stages of reversal learning and only during success trials ([0 1] sec, nnaive=53; ninsight=30, KS test, p<0.01; µnaive=0.102 ± 0.107; µinsight=0.019 ± 0.141 SD) (Fig27.C).

Fig27.

  Fig27. Modulation of BLA-to-MOs activity along trials of learning and reversal phases (A) Modulation of BLA-to-MO activity for success trials during learning phase at different stages of learning (naive: sessions with success rate < 25%; insight: sessions with success rate ≥25% ∩ <75%; expert: sessions with success rate ≥ 75%). (B) Same as (A) but for error trials. (C) (D) Same as (A) and (B) but during reversal

Fig 4 -

 4 Fig 4-figure supplement 1 for axonal activity upon variable sounds not paired to US). Our data show that mice that did not learn the prediction of US present less BLA-to-MOs

  photoinhibition of MOs neurons in mice during learning at different epochs of reversal trials.Light illumination during action-selection or outcome evaluation epochs of trials both significantly decreased performance in mice expressing ArchT (Fig24.E, I). These results indicate that MOs processing during both epochs are required for optimal adaptive actionselection. When analyzing the number of session required to reach expertise, only the

  a consequence, boutons containing GCaMP emit faint fluorescence during calcium transients and an absence of fluorescent signal aside calcium influx. For this reason the identification of same population of hundreds of boutons over days by relying only on GCAMP is almost impossible. To overcome this first issue, we decided to sparsely express a red fluorescent marker (tdTomato) in few MOs pyramidal neurons to avail stable signal (Fig25.A). MOs neuronal structures such as somata and dendrites tagged with tdTomato enabled us to easily find the exact same FOVs over days which facilitated considerably the identification of same population of BLA.

  coinciding to an increase of MOs average Z-scores ([1.0 2.5] sec) while the last component coincide with another drop of MOs activity ([2.5 3.5] sec). The alternations of modulation with different polarities in MOs suggest a successive recruitment of MOs inhibitory and excitatory neurons along trials. The coinciding triphasic dynamics of BLA-to-MOs axons likely participate to these modulations.

  photostimulations actuate distinct BLA-to-MOs subpopulations simultaneously which together evoked both of EPSCs and IPSCs recorded in MOs neurons.

  reduction in order to better depict what BLA-to-MOs axons are coding for. Trial-by-trial analysis of BLA-to-MOs axonal population will also likely provide new insights into the involvement of BLA-to-MOs during learning and reversal.MOs activity during learning showed bidirectional modulations synchronized with the recruitment of BLA-to-MOs axons (Fig22.A and Fig27.A), suggesting a complex influence of BLA axons on the inhibitory/excitatory balance of the MOs cortical circuit. Our in vitro recordings of MOs L2/3 neurons highlighted excitatory and inhibitory currents evoked by the photo-stimulation of BLA axons, also suggesting connections between the BLA and pyramidal neurons and interneurons located in the MOs (Fig14.A, B, C). One of our next objectives is to better dissect the relation of BLA-to-MOs connections and influence on MOs local circuit. Although MOs L2/3 pyramidal neurons integrate BLA signals (Fig14.),

  

  

  

  

  

  

  

  

  

. During classical fear conditioning (see Fig2.), BLA integrates

  

	converging signals about CS (from either: auditory, visual, gustatory or somatosensory
	modalities through cortical cascade (McDonald, 2020)) and US (most likely in an indirect
	way from nociceptive structures like the PAG

(Figure from (LeDoux, 2007))

  (A) Inputs and (B) outputs of amygdala circuit. Abbreviations of amygdala areas: B, basal nucleus; Ce, central nucleus; itc, intercalated cells; La, lateral nucleus; M, medial nucleus. Sensory abbreviations: aud, auditory; vis, visual; somato, somatosensory; gust, gustatory (taste). Abbreviations of amygdala areas: B, basal nucleus; Ce, central nucleus; itc, intercalated cells; La, lateral nucleus. Modulatory arousal system abbreviations: NE, norepinephrine; DA, dopamine; ACh, acetylcholine; 5HT, serotonin). Other abbreviations: parasym ns, parasympathetic nervous system; symp ns, sympathetic nervous system.

  All experiments were performed in accordance with the Guide for the Care and Use of

	Laboratory Animals (National Research Council Committee (2011): Guide for the Care and
	Use of Laboratory Animals, 8th ed. Washington, DC: The National Academic Press.) and
	the European Communities Council Directive of September 22th 2010 (2010/63/EU, 74).
	Experimental protocols were approved by the institutional ethical committee guidelines for
	animal research (Comité d'éthique de Bordeaux, N° 50DIR A) and by the French Ministry

of Research (N°18907). We used male C57Bl6/J mice of 6-weeks old from Charles River that were housed with littermates (3-4 mice per cage) in a 12-h light-dark cycle. Cages were enriched and food and water were provided ad libitum expect for experiments with

  of respectively AAV9.CaMKIIa.hChR2(H134R)-mCherry.WPRE.hGH (50nL, Penn Vector Core, provided by K Deisseroth) orAAVrg.hSyn.eGFP (150nL, Penn Vector Core, provided by B Roth). For histological study of BLA-to-MOs projections, craniotomies were performed above MOs and BLA followed by injections of CamKII0.4.eGFP.WPRE.rBG for GFP groups for control.Two optical fibers were then slowly positioned bilaterally above MOs. Surgical silicone (Kwik-Sil, WPI) was used to seal all craniotomies then glue and dental cement were used to cover the skull and secure the fibers.

	Optical fiber implantation: For MOs silencing experiments, bilateral craniotomies above
	MOs were performed with subsequent injections (coordinates previously mentioned) in
	MOs of:
	-AAV9.CAG.ArchT.GFP.WPRE.SV40 for ArchT group of optogenetic silencing of MOs
	CAV2.CMV.Cre (200nL, IGMM BioCampus Montpellier) in MOs (coordinates previously during choice epoch.
	mentioned) and AAV.CAG.Flex.eGFP.WPRE in BLA (50nL at each depth, antero--AAV9.CAMKII.ArchT.GFP.WPRE.SV40 for ArchT group for optogenetic silencing of MOs
	posterior: -1.33mm, medio-lateral: 2.88mm, dorso-ventral: 3 injections at -4.6mm -4.8mm during evaluation epoch.
	and -5.0mm from bregma, from Penn Vector Core, provided by H Zeng). Craniotomies -AAV9.
	were then sealed with surgical silicone (Kwik-Sil, WPI) and skin was stitched before
	injection of the antidote solution to allow waking up and recovery. Three weeks after viral
	injection, mice were sacrificed by lethal injection of pentobarbital-lidocaine solution
	(respectively 300mg.kg -1 and 30mg.kg -1 ) and perfused with 4% paraformaldehyde solution
	to fix tissues.
	the skull, AAV1.Syn.GCaMP6f.WPRE.SV40 was injected in L2/3 of MOs for somatic
	imaging experiments (100nL, coordinates previously mentioned). With regard of BLA
	axonal imaging experiments, diluted AAV.CAG.tdTomato (1:250) and AAV to express
	GCaMP (AAV1.Syn.GCaMP6f.WPRE.SV40 or AAV1.Syn.jGCaMP7f.WPRE) were
	respectively injected in MOs (50nL) and in BLA (50nL at each coordinates of depth
	previously mentioned). After withdraw of injection pipette, a glass window was positioned
	in the craniotomy and maintained with a micromanipulator (M3301R, WPI). The window
	and surrounding bone were finally sealed with glue (Loctite) and skull was covered with
	dental cement (Jet Repair Acrylic, Lang Dental Manufacturing).

Tracers injection for connectivity study: For either anterograde or retrograde MOs connectivity study, a single craniotomy above MOs was performed to avail viral injection (antero-posterior: 2.8mm, medio-lateral: 1.5mm from bregma, dorso-ventral: 0.3mm from brain surface) Mice preparation for patch clamp experiments: A single craniotomy was performed above BLA to allow viral injection of AAV9.CamKIIa.hChR2(H134R).eYFP.WPRW.SV40 at the BLA coordinates previously mentioned (50µL at each depth, Penn Vector Core, provided by K Deisseroth). Craniotomy was then sealed with surgical silicone and skin was stitched before injection of the antidote solution to allow waking up and recovery. Three weeks after viral injection, mice were ready for patch experiments.

Cranial window implantation: After skull's exposure, a ~5 mm plastic chamber was attached, centered on the area of interest. We then used a biopsy puncher (Integra Lifesciences Corp) to label a 3 mm large circle on the skull. This mark helped us in performing a craniotomy with the shape and size of the glass coverslips. After removal of For BLA-to-MOs silencing experiments, bilateral craniotomies above MOs and BLA were performed with subsequent injections (coordinates previously mentioned) in MOs of AAVrg.hSyn.HI.eGFP-Cre.WPRE.SV40 and injections in BLA of:

-AAV9.CBA.Flex.ArchT-GFP.WPRE.SV40 for ArchT group of BLA-to-MOs silencing.

-AAV1.CAG.Flex.eGFP.WPRE.bGH for GFP group for control.

  same context as habituation instead of under the microscope. Light emitted by a 562 nm yellow laser was delivered through optical fibers during either CS-or CS+ that day (Fig16.C) and learning was assessed the next day with recall in a new context.

	MOs silencing during CS+ neither significantly affected auditory fear learning (GFP: n=8
	mice , 75%; ArchT: n=8 mice , 87%, Pearson's 𝜒² test, p=0.522, see (Aime et al., 2020)
	Figure 3-figure supplement 1H) nor the magnitude of freezing during recall (GFP: 51.2 ±
	8%; ArchT: 46.2 ± 8%) (Fig16.D, G). However, when light was delivered during CS-,
	learning (GFP: n=12 mice, 75% , ArchT: n=13 mice, 30%, Pearson's 𝜒² test, p=0.02) and
	freezing during recall of ArchT expressing mice were greatly reduced as compared to GFP
	control mice (GFP: 51 ± 7%; ArchT: 24.5 ± 5%; SEM, t-test, p=0.005) (Fig16.E, G).

Interestingly, silencing of BLA-to-MOs neurons during CS-also significantly decreased fear learning (GFP: n=8 mice, 87.5%; ArchT: n=7 mice, 22%, SEM, p=0.005, Pearson's 𝜒² test) and reduce freezing behavior during recall (GFP: 55.9 ± 8%; ArchT: 34.9 ± 3%; SEM, t-test, p=0.037). These data show that MOs is required for discriminating CSs and their outcomes (shock or safety). The results of BLA-to-MOs silencing experiment also suggest that the signals conveyed by the BLA to the MOs are crucial for appropriate associative learning.

Acknowledgements

Abbreviations

We wondered if the modest subthreshold depolarizations of MOs L2/3 neurons observed after the photo-stimulation of BLA neurons could facilitate the integration of coinciding inputs and thus have a bigger computational impact. Because the MOs receives projections from sensory cortices including the primary auditory cortex [START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF][START_REF] Zingg | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning in mice Authors: Mattia Aime*[END_REF], we recorded membrane potential of MOs neurons while presenting rhythmic white Gaussian noise auditory stimulation (WGN, 0.9 Hz for 30 s, 27 square pulses of 50 ms), rhythmic BLA photo-stimulation only (same frequency and duration) or both WGN stimuli and BLA photo-stimulation simultaneously (Fig14.I, J). The cumulative potential evoked by the WGN was significantly higher than when the BLA photo-stimulated alone (Fig14.J, K). Interestingly, the coincidence of WGN and BLA photo-stimulation was even more depolarizing, even higher than a simple linear sum of the cumulative potentials evoked by the WGN and the BLA photo-stimulation alone (Fig14. J, K). Altogether, these data suggest that BLA-to-MOs axons could support non-linear integration of WGN. Interestingly, the observed potentiation remains for tens of seconds after auditory stimuli or auditory stimuli coupled with BLA photo-stimulation (Fig14. J, K).

BLA-to-MOs activity is correlated to auditory fear learning

The implication of MOs in associative learning as well as the nature and role of the specific BLA-to-MOs signals remain unclear [START_REF] Lai | Opposite effects of fear conditioning and extinction on dendritic spine remodelling[END_REF][START_REF] Murray | Frontal association cortex is engaged in stimulus integration during associative learning[END_REF]. To investigate these questions, we monitored BLA-to-MOs axonal Ca 2+ responses during auditory fear conditioning (Fig15.) and tested whether optogenetic silencing of MOs or BLA-to-MOs could affect auditory fear learning (Fig16., part 1.4 MOs and BLA-to-MOs silencing during CS-affect auditory fear learning).

For BLA-to-MOs axonal imaging, we first expressed the genetically-encoded calcium indicator GCaMP6f in the BLA of mice that we equipped with cranial windows above the MOs (Fig15.A). Three weeks after surgery, mice were habituated to two auditory stimuli (each composed of 27 WGN or 8 kHz pips, 50 ms, 0.9 Hz for 30 sec) repeated five times during three successive days (habituation) (Fig15.B). The next day, mice were head-fixed under a two-photon microscope, allowing BLA-to-MOs axons imaging during the exposure to the two auditory stimuli that were positively (CS+: 8kHz) or negatively (CS-: WGN) paired with an electrical footshock (US; 0.6 mA) to the paws (conditioning) (Fig15.B). We finally quantified freezing duration after exposure to the auditory stimuli in a new context in the following day (recall) (Fig15.B, C left). We calculated a learning index based on total freezing (%) pondered by a discrimination index of CS+ versus CS-(see below).

We also analyzed MOs neuronal activity during expert trials of our task to depict activity representation related to the two rules of learning and reversal phases, respectively.

Average activity of expert trials on learning phase highlights that a large proportion of neurons are recruited prior and after action until reward ([-1.0 2.0] sec) (Fig20.B).

Compared to the learning phase, reversal expert trials recruit fewer neurons along this period but more in the period subsequent to the reward delivery ([2.0 3.5] sec) (Fig20.B).

The recruitment observed at these two periods are in accordance with higher magnitude of Z-score observed during learning and reversal phases in the first ([-1.0 2.0] sec) and second time windows ([2.0 3.5] sec) of trials, respectively (Fig22.A, B, D, E).

The difference of ensembles activity observed between experts trials of learning and reversal phases might come from a different level of rule consolidation. Indeed, the successful lever during reversal is the one preferred and extensively pressed during training. Thus, it sounds credible that the reversal rule could have been already well acquired and practiced during training. Therefore reversal phase might be viewed as the recall of an already known rule rather than a novel rule learning per se. Furthermore, it has been shown that motor cortex is required to learn motor sequences even though it is not required for their execution when they are consolidated [START_REF] Kawai | Motor Cortex Is Required for Learning but Not for Executing a Motor Skill[END_REF]. Similarly, one can imagine that the MOs could be differently engaged relative to the magnitude of confidence and consolidation of an acquired rule.

The possibility that the different neuronal processing observed in the MOs for learning and reversal could also emerge from brain lateralization should not be ignored. The MOs and other higher-order cortical areas (e.g. PPC, mPFC) have been reported to display synchronized bilateral activity during action-selection [START_REF] Makino | Transformation of Cortex-wide Emergent Properties during Motor Learning[END_REF][START_REF] Soma | Distinct laterality in forelimb-movement representations of rat primary and secondary motor cortical neurons with intratelencephalic and pyramidal tract projections[END_REF][START_REF] Soma | Ipsilateral-dominant control of limb movements in rodent posterior parietal cortex[END_REF] with interhemispheric direct interactions [START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF]. Although MOs from both hemispheres are engaged, it has been shown that neurons in one hemisphere preferentially code for contralateral actions [START_REF] Erlich | A Cortical Substrate for Memory-Guided Orienting in the Rat[END_REF][START_REF] Soma | Distinct laterality in forelimb-movement representations of rat primary and secondary motor cortical neurons with intratelencephalic and pyramidal tract projections[END_REF][START_REF] Soma | Ipsilateral-dominant control of limb movements in rodent posterior parietal cortex[END_REF]. Furthermore, unilateral optogenetic inhibition of MOs during decision-making reported a bias of selected action toward the option ipsilateral to inhibition side [START_REF] Erlich | Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat[END_REF][START_REF] Guo | Flow of cortical activity underlying a tactile decision in mice[END_REF][START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF][START_REF] Kopec | Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements[END_REF][START_REF] Li | Robust neuronal dynamics in premotor cortex during motor planning[END_REF]. Altogether, these evidences demonstrate different processing mechanisms in both hemispheres during action-selection. Because we only imaged the right hemisphere during both learning and reversal phases, we may have acquired specific computational processes at each phases that are related to the side of rewarding action. Success trials at insight and expert stages of learning did not evoked late modulation.

However, rewarding trials evoked two late and large components of modulation in naive mice ([1.0 2.5] sec and [2.5 3.5] sec) (Fig27.A). These periods of activity may therefore originate from unexpected reward when naive mice pressed the correct lever. This hypothesis explains why the two modulations disappear at insight and expert level of performance, when mice have more knowledge of action-outcome relationship. This is also supported by studies that reported decrease of BLA neuronal activity with the increase of expectation for appetitive and aversive US [START_REF] Belova | Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala[END_REF][START_REF] Johansen | Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray[END_REF].

Surprisingly, the activity of BLA-to-MOs axons was really different between learning and reversal phases (Fig27.). Indeed, the two last components of modulation were absent for trials of reversal at any stage of expertise ([1.0 2.5] sec and [2.5 3.5] sec) (Fig27.C, D). As the BLA appears over the years to code for expectation and positive-value, the absence of late modulation from reward is unexpected especially for rewarding trials of naive mice (Fig27.C).

This astonishing difference of BLA-to-MOs activity between learning and reversal echoes with those observed in MOs activity (Fig20.B, Fig22.). As previously proposed, these differences may arise from specific lateralized processing within the MOs and the BLA, in relation with the side of action elicited. Our connectivity essay of BLA-to-MOs projection (Fig13.) also provided evidences about an almost exclusive ipsilateral pathway from BLA to MOs (data not shown), a result that is consistent with literature [START_REF] Hoover | Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat[END_REF]) and that supports the previous suggestion.

In a previous part, we have introduced the possibility that the difference of activity between learning and reversal phase could also come from a higher degree of knowledge and consolidation for reversal rule, which is relatively similar to the first training. Additional investigation on the training phase have to be achieved in order to validate or not this last hypothesis which could also explain the difference of BLA-to-MOs activity between learning and reversal.

When comparing activity modulations of MOs neurons (Fig22.) and BLA-to-MOs recruitment (Fig27.), we can see that the BLA triphasic dynamic observed in naive mice during success trials of learning phase temporally coincide with variable modulations observed in MOs. Indeed, a clear down regulation of MOs activity is elicited during the first period ([0 1] sec) while the first component of BLA activity modulation occurs. This synchronization suggests that BLA-to-MOs axons might participate in the recruitment of MOs interneurons at that time. The second component of BLA activity is temporally sounds predicting threat or safety as well as for the expectation of a positive outcome after an action.

While decision-making related activity is widely distributed across brain areas [START_REF] Cisek | Neural mechanisms for interacting with a world full of action choices[END_REF][START_REF] Steinmetz | Distributed coding of choice, action and engagement across the mouse brain[END_REF], the MOs emerges as a pivotal structure for actionselection. The MOs has a strategic position that integrate sensory information about the environment [START_REF] Barthas | Secondary Motor Cortex: Where "Sensory" Meets "Motor" in the Rodent Frontal Cortex[END_REF][START_REF] Manita | A Top-Down Cortical Circuit for Accurate Sensory Perception[END_REF] and, as we demonstrated, internal representation of expected outcomes through its BLA connection. The MOs also exerts top-down control on sensory (S1: [START_REF] Manita | A Top-Down Cortical Circuit for Accurate Sensory Perception[END_REF], V1: [START_REF] Khan | Contextual signals in visual cortex[END_REF][START_REF] Leinweber | A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions[END_REF], A1: [START_REF] Nelson | A Circuit for Motor Cortical Modulation of Auditory Cortical Activity[END_REF][START_REF] Schneider | A synaptic and circuit basis for corollary discharge in the auditory cortex[END_REF]) and motor structures (M1: [START_REF] Veuthey | Single-trial cross-area neural population dynamics during long-term skill learning[END_REF]). Wide field cortical calcium imaging also revealed that MOs may act as a hub for broadcasting behavioral task-related information to other parts of cortex [START_REF] Makino | Transformation of Cortex-wide Emergent Properties during Motor Learning[END_REF][START_REF] Allen | Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex[END_REF], Kondo 2021). Therefore, the MOs may orchestrate cortical networks activity in order to trigger behavior in adequacy with individual internal state and environmental context. As the MOs is also connected to the mPFC and to the OFC that are both key cortical structures extensively described as crucial for flexible behavior and executive control [START_REF] Euston | The Role of Medial Prefrontal Cortex in Memory and Decision Making[END_REF][START_REF] Kamigaki | Prefrontal circuit organization for executive control[END_REF], it is now important to dissect the hierarchical relationships between the MOs and these structures [START_REF] Schreiner | Orbital Frontal Cortex Projections to Secondary Motor Cortex Mediate Exploitation of Learned Rules[END_REF]. The dissection of frontal cortex circuits during RL may allow, one day, neuroscientists to answer the question mentioned in introduction: How does the nervous system determine actions?

Investigating this circuit is mandatory to better understand several neuropsychiatric disorders where decision making is maladaptive such as in addiction, attentiondeficit/hyperactivity disorder, schizophrenia, depression, anxiety and obsessivecompulsive disorder [START_REF] Corbit | Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior[END_REF][START_REF] Kim | Prefrontal Cortex and Impulsive Decision Making[END_REF][START_REF] Lee | Decision making: from neuroscience to psychiatry[END_REF]. 
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Functional characterization of Amygdala projections to motor related cortices during adaptive action-selection

Abstract:

Animals daily face complex situations that require adapted responses for surviving. The process of evaluating the available actions and selecting the one that appears the most relevant is called "action-selection". It requires prior building of a fine mental model that associate actions to their outcomes, often via a process of "reinforcement learning". Despite pieces of evidence about several brain regions with neural activity correlating with choice, the circuit and neuronal mechanisms that select actions remain discussed. Recent studies highlight the secondary motor cortex (MOs), at the interface of sensory integration and motor processing, as a credible candidate for computing action-selection. Indeed, neural activity states predicting choice have been unveiled in the MOs of rodents and its inactivation biases the selection of actions. These studies almost exclusively focused on expert animals but information about how actions are encoded in naive animals and during learning are still lacking.

In a first study [START_REF] Aime | The integration of Gaussian noise by long-range amygdala inputs in frontal circuit promotes fear learning[END_REF], we have highlighted that the MOs receives inputs from the Basolateral Amygdala (BLA), a structure known for its importance in associative learning. We have shown that BLA inputs to the MOs facilitate the discrimination of sounds associated to different outcomes in the context of associative fear learning. In a similar way, one could imagine that the BLA provides associative signals to help MOs discriminate actions with positive values.

A major aim of the present doctoral work is the characterization of the role of these BLAto-MOs projections during the learning of rewarding actions. To address this goal, we first developed a rewarding, self-driven action-selection paradigm for head-restrained mice allowing chronic two-photon microscopy of neuronal compartments through the different steps of learning. Using somatic calcium imaging and optogenetic, we have highlighted the implication of MOs in performing the task. Then, we have imaged and analyzed the activity of specific BLA boutons connecting to MOs over weeks of behavior, a technical challenge (because of the small size of boutons and weak signals) rarely undertaken so far. Altogether, the results presented in this thesis provide both novel evidences for the role of MOs in action-selection and for the importance of BLA to MOs projections for associative learning.