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Abstract: Neurodegenerative diseases are among
the top causes of worldwide mortality. Unfortu-
nately, early diagnosis is challenging as it requires
a frequently too late indication of biomedical exam
and dedicated laboratory equipments. It also often
relies on research-based predictive measures suffer-
ing from selection bias. This thesis investigates a
promising solution to tackle these problems: a ro-
bust method to build predictive biological markers
from M/EEG brain signals, directly usable in the
clinic, and validated against neurocognitive disor-
ders following general anaesthesia.

In a first (theoretical) contribution [Sab+19],
we benchmarked M/EEG regression models that
could learn from between-channels covariance ma-
trices as a compact summary of spatial distribu-
tion of power of high-dimensional brain M/EEG
signal. Mathematical analysis identified different
models supporting perfect prediction under ideal
circumstances when the outcome is either linear or
log-linear in the source power. These models are
based on the mathematically principled approaches
of supervised spatial filtering and projection with
Riemannian geometry, and enjoy optimal predic-
tion guarantees without the need of costly source
localization. Our simulation-based findings were
consistent with the mathematical analysis and sug-
gested that these regression algorithms were robust
across data generating scenarios and model viola-
tions. This study suggested that the Riemannian
methods have the potential to support automated
large-scale analysis of M/EEG data in the absence
of MRI scans, which is one condition to be practi-
cally used in the clinic for biomarker development.

In a second (empirical) contribution [Sab+20],
we validated our predictive modeling frame-
work with several publicly available neuroimaging
datasets and showed it can be used to learn the
surrogate biomarker of brain age from research-
grade M/EEG signals, without source localiza-
tion and with minimal pre-processing. Our re-

sults demonstrate that our Riemannian data-driven
method does not fall far behind the gold-standard
source localization methods with biophysical pri-
ors, that depend on manual data processing, the
costly availability of anatomical MRI images and
specialized knowledge in M/EEG source modeling.
Subsequent large-scale empirical analysis provided
evidence that brain age derived from MEG cap-
tures unique information related to neuronal ac-
tivity that was not explained by anatomical MRI.
They also suggested that, consistent with simula-
tions, Riemannian methods are generally a good
bet across a wide range of settings with consider-
able robustness to different choices of preprocess-
ing including minimalistic preprocessing. The good
performance obtained on MEG was also reached
with research-grade clinical EEG.

In a third (clinical) contribution [Sab+21, in
prep.], we validated the concept of M/EEG-derived
brain age directly in the operating rooms of Lari-
boisière hospital in Paris, from monitoring-grade
clinical EEG during the particular period of general
anaesthesia. We validated our EEG-based brain
age measure against intra-operative complications
and brain health in anaesthesia population with a
potential link to postoperative cognitive dysfunc-
tions, unveiling it as a promising clinical biomarker
of neurocognitive disorders. We also showed that
the drug critically impacts brain age prediction and
demonstrated the robustness applicability of our
approach across different types of drugs.

By combining concepts previously investigated
separately, our contribution demonstrates the
clinical relevance of EEG-brain-age in revealing
pathologies of brain function and obtaining brain
health assessments in situations where MRI scans
cannot be conducted. It also provides early evi-
dence that anaesthesia-based modeling has the po-
tential to help biomarker discovery and eventually
revolutionize preventive medicine.
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Résumé : Les maladies neurodégénératives fi-
gurent parmi les principales causes de mortalité
dans le monde. Malheureusement, leur diagnostic
précoce nécessite un examen médical prescrit sou-
vent trop tardivement et des équipements de la-
boratoire dédiés. Il repose aussi fréquemment sur
des mesures prédictives souffrant d’un biais de sé-
lection. Cette thèse présente une solution promet-
teuse à ces problèmes : une méthode robuste, di-
rectement utilisable en clinique, pour construire
des biomarqueurs prédictifs à partir des signaux
cérébraux M/EEG, validés contre les troubles neu-
rocognitifs apparaissant après une anesthésie gé-
nérale.

Dans une première contribution (théo-
rique) [Sab+19], nous avons évalué des modèles de
régression capables d’apprendre des biomarqueurs
à partir des matrices de covariance de signaux
M/EEG. Notre analyse mathématique a identi-
fié différents modèles garantissant une prédiction
parfaite dans des circonstances idéales, lorsque la
cible est une fonction (log-)linéaire en la puis-
sance des sources cérébrales. Ces modèles, basés
sur les approches mathématiques de filtrage spa-
tial supervisé et de géométrie riemannienne, per-
mettent une prédiction optimale sans nécessiter
une coûteuse localisation des sources. Nos simu-
lations confirment cette analyse mathématique et
suggèrent que ces algorithmes de régression sont
robustes à travers les mécanismes de génération de
données et les violations de modèles. Cette étude
suggère que les méthodes riemanniennes sont des
méthodes de choix pour l’analyse automatisée à
grande échelle des données M/EEG en l’absence
d’IRM, condition importante pour pouvoir déve-
lopper des biomarqueurs cliniques.

Dans une deuxième contribution (empi-
rique) [Sab+20], nous avons validé nos modèles
prédictifs sur plusieurs ensembles de données de
neuro-imagerie et avons montré qu’ils peuvent être
utilisé pour apprendre l’âge du cerveau à partir
de signaux cérébraux M/EEG, sans localisation de
sources, et avec un prétraitement minimal des don-

nées. De plus, la performance de notre méthode
riemannienne est proche de celle des méthodes de
référence nécessitant une localisation de sources et
donc un traitement manuel des données, la dispo-
nibilité d’images IRM anatomiques et une expertise
en modélisation de sources M/EEG. Une analyse
empirique à grande échelle a ensuite permis de dé-
montrer que l’âge du cerveau dérivé de la MEG
capture des informations uniques liées à l’activité
neuronale et non expliquées par l’IRM anatomique.
Conformément aux simulations, ces résultats sug-
gèrent également que l’approche riemannienne est
une méthode pouvant s’appliquer dans un large
éventail de situations, avec une robustesse consi-
dérable aux différents choix de prétraitement, y
compris minimaliste. Les bonnes performances ob-
tenues avec la MEG ont ensuite été répliquées avec
des EEGs de qualité recherche.

Dans une troisième contribution (cli-
nique) [Sab+21, en préparation], nous avons validé
le concept d’âge cérébral directement au bloc opé-
ratoire de l’hôpital Lariboisière à Paris, à partir
d’EEG de qualité clinique recueillis pendant la pé-
riode de l’anesthésie générale. Nous avons évalué
notre mesure de l’âge cérébral comme prédicteur
de complications peropératoires liées aux dysfonc-
tions cognitives post opération, validant ainsi l’âge
du cerveau comme un biomarqueur clinique pro-
metteur des troubles neurocognitifs. Nous avons
également montré que le sédatif utilisé a un impact
important sur la prédiction de l’âge du cerveau et
avons démontré la robustesse de notre approche à
différents types de médicaments.

Combinant des concepts précédemment étu-
diés séparément, notre contribution démontre la
pertinence clinique de la notion d’âge du cerveau
prédit à partir de l’EEG pour révéler les patholo-
gies des fonctions cérébrales dans des situations où
l’IRM ne peut pas être réalisée. Ces résultats four-
nissent également une première preuve que l’anes-
thésie générale est une période propice à la décou-
verte de biomarqueurs cérébraux, avec un impact
potentiel profond sur la médecine préventive.
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What reveals the most about us? Is it the colour of our eyes, our heart beats, our
blood pressure, our clicks on a webpage? Even though all of this reveals some
part of us, there is one single organ that contains all the information about our
thoughts, our feelings, our memory, our actions: this is our brain. The billions of
interconnected cells that compose our brain, firing at hectic pace, are literally our
perception, our thinking, our emotions, our memories and ultimately define who we
are. If our brain activity is expressing cognition then changes to cognition should be
revealed in the brain signals extracted from this activity. These signals are therefore
the source of promising predictive biological markers of our functioning and perhaps
more importantly dysfunctioning.

Brain diseases have a dramatic impact on life, ranging from neurodegenerative
diseases to loss of brain functions. Besides these devastating consequences, they also
are among top causes of death in the European Union. It accounted for 18M deaths
between 2011 and 2017 [Eura] among which 13M due to cerebrovascular and 5M
due to neurodegenerative diseases like Parkinson’s, Alzheimer’s, dementia, stroke,
multiple sclerosis or epilepsy. This is even more acute for patients over the age of
60. For example an American woman aged 65 today has almost 25 % chance of
contracting Alzheimer’s disease during her lifetime [Aa2]. This age group represents
about one quarter of the global population and will continue to grow at a fast pace
in the coming decades [Eurc; Eurb; Vol+20]: we expect twice more 65y+ humans
in 2050 than today globally [Un2]. Pathologies of the brain are therefore one of
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the biggest challenges for medicine today and brain health a top priority in public
health.

We are not equal when facing neurocognitive disorders. But even today it is difficult
to know if a patient will develop a particular brain disease or if his brain will
age normally. As a consequence, these pathologies are too often detected at late
stages, rendering treatment significantly less efficient. For the moment, no biological
marker is able to early identify high-risk patients. Having an early test of cognitive
dysfunction, directly built from brain signals and easily available for millions of
persons, would allow for better detection and treatment of brain diseases. This is
the subject of this thesis.

More precisely this theoretical and experimental work will investigate a general
method to build predictive biomarkers from brain signals, directly usable in the
clinic, with an application to predict neurocognitive disorders. The objective of
this chapter is to provide a general overview of the sequence of challenges standing
in the road to this endeavour. We need to understand:

How the brain operates: even if the precise working of the human brain is still
largely unknown, we first need to have a rough picture of how it is structured and
understand the basis of its activity.
How to extract signals from the brain: we then need to find a way to capture this
activity and extract a measurable signal.
How to predict from brain signal: with brain signal as input data we should seek
the best algorithm to predict from it, simple enough to be usable in the clinical
settings.
What to predict from brain signal: once we have the input data and the algorithm
we should determine the target of prediction, a target that is both easily available
and linked to the clinical outcome of interest. This leads to the concept of brain age
as a promising biomarker of neurocognitive disorders.
How to estimate brain age in the lab: we then need to put this all together and
run experiments to see how to estimate this biomarker in the comfortable conditions
of a research laboratory.
How to translate brain age to the clinic: then we’ll investigate how to translate
the brain age biomarker in the more challenging conditions of the clinic.

Each of these challenges are investigated in further details in subsequent sections.

How the brain operates
The human brain roughly weights as little as 1.5 kg and operates on the same power
than a simple electric bulb (∼20 W, to be compared with the 8000 W consumed by
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IBM Watson that outperformed the best human in Jeopardy in 2011). This sobriety
hides a formidable complexity [Fac06].

With ∼100 billions of excitable nerve cells, the neurons, each connected to 7000 other
neurons on average, the human brain is arguably the most complex organ of the
human body, and the most complex known object in the universe. It consumes one
fifth of the body total energy expenditure, a huge consumption compared to its
relative weight. How it performs a wide range of cognitive functions, from visual
recognition to language understanding, speech, social interaction, and executive
control is, for the most part, still a mystery. Understanding the human brain is
therefore one of the most significant challenges of the 21st century. Fortunately,
some of its inner working is understood today [DA01; Ger+14].

Located under our skull, the brain is composed of two hemispheres [Figure 1 (Left)].
When removing one hemisphere to have a view on the inside [Figure 1 (Right)] we
discover three main components: the hindbrain, the midbrain and the forebrain.
Following the evolution of species, the most ancient structures contained in the
hind and midbrains handle elementary behaviours: the vegetative functions (basic
body functions common to all living entities like heat regulation, sweating, sleeping,
eating, drinking and reproducing) and the affective functions (emotions and feelings),
whereas the most recent parts located in the forebrain manages the higher-level
cognitive functions (perceptions, thinking and action) [NVVH07; HP17].

Fig. 1: The human brain under a lateral view (Left) and sagittal view (Right), which unveils the
three major internal structures (the forebrain, the midbrain and the hindbrain) detailed below.
Source:[NVVH07]

The hindbrain (the brain stem and cerebellum) [Figure 2a] is the most ancient
part of our brain [NVVH07]. It is composed of the medulla oblongata (which controls
involuntary movements like heart rate, breathing, blood pressure), the pons (which
deals with swallowing, bladder control, facial expressions, chewing, saliva, tears,
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and posture) and the cerebellum (which controls the balance and coordination of
our movements).

The midbrain (the limbic system) [Figure 2b] is a primitive survival system,
fulfilling our animal needs and handling our emotions [NVVH07]. It is mainly
composed of the amygdala (which deals with anxiety, sadness, and our responses to
fear), the hippocampus (a scratch board for memory, first targeted by Alzheimer’s
disease), the thalamus (a sensory middleman that receives information from our
sensory organs and sends them to the forebrain for processing) and the hypothalamus
(the heart of vegetative functions).

The forebrain (the cortex) [Figure 2c] is the most recent part in the evolution of
species. It handles our perceptions, our actions and our thinking [NVVH07]. It’s
divided into four lobes [Fac06]. The frontal lobe is mainly in charge of our thinking
(reasoning, planning, decision-making and executive function, in particular in its
front part called the prefrontal cortex), and our body’s movement. The parietal
lobe integrates information from our senses. The temporal lobe is associated with
language, memory and emotions, and houses our auditory cortex. The occipital lobe,
at the back of our head, is where our visual cortex resides and is almost entirely
dedicated to vision.

a b c d

Fig. 2: Inside the three main components of the human brain: the hindbrain (a), the midbrain (b)
and the forebrain (c). The forebrain, also known as the cortex, houses our higher cognitive
abilities and is itself divided into four principal lobes (d): the frontal lobe (blue), the temporal
lobe (green), the parietal lobe (yellow) and the occipital lobe (red). Source:[NVVH07]

The cortex hosts the major part of our neurons [Fac06], and houses most of the
brain abilities and higher-level functions. Some of them are detailed in [Figure 3].
For instance, our body movement is handled by a top strip in the prefrontal cortex
called the primary motor cortex. The strip right next to it in the parietal lobe called
the primary somatosensory cortex houses our sense of touch. Neural activity from
the frontal lobe is recorded during general anaesthesia to monitor the depth of
anaesthesia.
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Fig. 3: Functional areas of the human cortex. Source: dana.org.

When looking at the cortex from the outside we can have the impression of a volume
entirely filled with circonvolutions. This is wrong. If we could take the cortex
off the brain and unfold it, we would end up with a very thin 2 mm-thick sheet
about the size of a 48 cm x 48 cm square. Basically a coin-thick dinner napkin. The
explanation for the many folds and creases of the cortex when in our skull comes
from evolution. Evolution built our brain outwards, adding newer and higher-level
functions on top of pre-existing structures. Constrained by the maximum volume of
our head compatible with a natural childbirth, the thin cortex grew by increasing
its surface area by folding, ultimately creating the highly convoluted form we know
today [NVVH07].

The brain is the organ of thought and mental abilities are localized in specific cortical
areas. We now shift our focus from the where to the how is the brain governing
our body. Let’s zoom in and enter more deeply in the microscopic structure of the
brain. Even though we figured out that the brain was the seat of our intelligence
a long time ago, it wasn’t until pretty recently (late 19th century with Golgi) that
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science understood what the brain was made of: specialized cells called neurons.
Neurons, like other cells, have a cell body (called the soma, where the nucleus is)
but this body is extended by many short branching strands known as dendrites, and
a separate one that is typically longer than the dendrites, known as the axon, with
multiple terminals [Figure 4]. The axon terminals of a neuron connect with dentrites
of other neurons at junctions called synapses [Ger+14]. Scientists realized that the
neuron was the core unit in the vast communication network that makes up the
brains and nervous systems of nearly all animals. But it wasn’t until the 1950s that
scientists worked out how neurons communicate with each other: with electricity.

Fig. 4: Anatomy of a neuron.
Source: image modified from ‘Neurons and
glial cells: Figure 2’ and ‘Synapse’ by Open-
Stax.

The brain works on electricity [HP17]
– all of our thoughts are generated
through a network of neurons, that send
signals to each other with the help of
electrical currents. The more electrical
signals, the more neuronal communica-
tion, which corresponds to more brain
activity. Here’s how it works. At all
times, neurons send messages to other
neurons at their synapses, mostly using
chemical messengers called neurotrans-
mitters. These chemicals, stored in vesi-
cles, are released by the sending neu-
ron’s axon terminal in the narrow synap-
tic cleft - the tiny gap between neurons
- and attach to specific receptors of the
receiving neuron. This message pass
through the neuron soma and, depend-
ing on the chemical, raise or lower its charge a little bit. But if enough chemicals
are released to raise his charge over a certain threshold, then it triggers a pulse of
electricity called an action potential: a brief reversal of the body’s normal charge
from negative to positive and then rapidly back down to his normal negative. An
action potential lasts a few ms and moves at a few meters per second (very slow
compared to the 300 km/s of light) without any variation of amplitude. We infor-
mally say that the neuron is ‘firing’. This potential zips down the axon into the
axon terminals which themselves touch several other neuron’s dentrites at synapses.
When the action potential reaches the axon’s terminal, it causes them to release
chemicals onto the other neuron’s dentrites they’re touching, which may or may
not trigger an action potential in them. This is usually how information moves
through the nervous system: the synapse converts a presynaptic electrical signal (the
action potential) into a chemical signal release in the synaptic cleft, which itself is
eventually transformed into a postsynaptic electrical signal. Sometimes, in situations
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when the body needs to move a signal more quickly, neuron-to-neuron connections
can themselves be electric, passing not through chemical but electrical synapses in
which ions flow directly between cells.

The density of this network in the cortex is almost unthinkable: each 1 mm3 of cortex
gray matter contains 50 000 neurons, each of them giving rise to 6000 synapses so
totaling roughly 300 M synapses [NVVH07]. The thin convoluted cortex, constituting
the bark of the brain, is called the grey matter in contrast with the space underneath,
mostly occupied by wiring, the axons of cortical neurons, sheathed with a fatty white
matter called myelin. We can think of the cortex as a command center that send
many of its orders through the mass of axons making up the white matter beneath it.
Now let’s zoom out again to see the biggest picture.

Fig. 5: Human central and peripheral
nervous systems.
Source: modified from Wikipedia
‘Nervous system diagram’.

The cortical axons of neurons in the brain might
be taking information to either another part
within the cortex, to the lower parts of the brain
(brain stem or limbic system), or through the
spinal cord (a massive bundle of axons com-
posing the nervous system’s superhighway) into
the rest of the body. Indeed, the whole nervous
system is divided into two parts: the central ner-
vous system (the brain and spinal cord) and the
peripheral nervous system (different types of
neurons that radiate outwards from the spinal
cord into the rest of the body). Bundles of ax-
ons of these neurons are wrapped together in a
little cord called a nerve. Sensory nerves bring
signals into the central nervous system, motor
nerves carry signals out of it [Fac06].

Let’s take an example to illustrate how these
parts interact: when a fly touches our skin it

stimulates many sensory nerves The axon terminals of the sensory neurons in
the nerves start firing, send the signal into the spinal cord and up to the brain,
more precisely in this case the somas in the somatosensory cortex. To trigger an
action (chasing away the fly), the somasensory cortex then send action potentials to
particular somas in the motor cortex that connect to the muscles in our arm that start
firing, sending the signals back into the spinal cord and then out to the muscles of
the arm. The axon terminals at the end of those neurons stimulate the arm muscles.

The scientific study of the brain has lead to remarkable advances since the middle
of the twentieth century, both at the macroscopic level [NVVH07] (the major brain
anatomical functions and structures) and at the microscopic level [DA01] (how a
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MRI fMRI MEG EEG

Temporal resolution Low Low High High
Spatial resolution High High Low Low
Measures brain activity? Only structure Indirect Direct Direct
Level of expertise Extensive training Extensive training Extensive training Moderate training
Cost Expensive Expensive Expensive Accessible
Portability Not portable Not portable Not portable Fully portable

Tab. 1: Different non-invasive brain imaging techniques.

neuron fires). With hindsight, effort into localizing brain functions into distinct brain
anatomical regions at a macroscopic level has not been very successful: only the most
basic functions have been localized. So we had to look closer. At a microscopic level,
we now know that our brain is composed of billions of neurons that communicate
with each other mainly via synapses. This communication is based on the exchange
of chemical substances between the neurons at the synapse and has the effect
of producing electrical activity at their membranes. When neurons at a certain
region activate together for some particular reason, their electric activity tend to
synchronize and become measurable at a macroscopic scale. Neuroimaging, which
captures this activity, helped us to shift from a view where every function is localized
somewhere to a view of the brain as a network with patterns of communication
between these regions. However, many questions remain unsolved, In particular we
still have difficulties to grasp the middle level: how the brain builds representations
of the reality and codes its sophisticated computation, like language, memory or
mathematics with patterns of electrical activity. The fundamental question is: how
the conscious subjective experience emerge from a neuronal network activity. How
the cerebral states generate mental states that produce behaviour. We don’t have
the ambition to address those almost philosophical questions but one thing is sure:
understanding the brain constitutes a major scientific challenge of our time. This
challenge mainly relies on advanced techniques used to record the brain activity and
extract a measurable signal, and then on signal processing tools used to interpret
these recordings and hopefully deduce some useful information.

How to extract signals from the brain
To measure the brain activity, different brain imaging techniques are used. They are
mainly characterized by the time scale of the measure (their temporal resolution),
the accuracy of localizing the source of the activity (their spatial resolution) and
their degree of invasiveness.

The main non-invasive measurement modalities are summarized in Table 1 and
developed below:
MRI (Magnetic Resonance Imaging) [Haw+80; McR+17] uses a machine inducing
a strong magnetic field in order to make the protons in the hydrogen atoms of the
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water in our body to point in the same direction. Then it measures the energy
emitted from the relaxation of protons to this aligned state when briefly disrupted
by a radio pulse. This allows the computer to determine what the tissue looked like,
depending on this energy that is released, and show an image of the tissue. MRI
thus excels at isolating anatomical details, revealing the brain’s structure and the
different types of tissue present, like white and grey matter. This is the modality
mostly used in literature to estimate the brain age. Yet, MRI only shows us a static
anatomical image of the brain, not the brain’s actual activity.
fMRI (Functional MRI) [Kwo+92; Log+01] uses the same mechanism than MRI
to also measure the energy emitted from the relaxation of protons but this time
aimed at determining the oxygenated blood flow changes in response to neural
activity. The neuronal activation is therefore indirectly measured via local changes
in the level of blood oxygenation, known as the BOLD (Blood-Oxygenation Level
Dependent) response, with a limited temporal resolution (typically around 1 s) due
to slow changes of the blood flow. Nevertheless fMRI has a better spatial resolution
now below 1 mm, allowing to finely measure activity across different brain regions,
enabling precise functional brain mappings.
EEG (electroencephalography) [Ber29; HP17] uses an array of electrodes on a
cap placed on the scalp on a subject to directly measure the electrical activity of
the brain. To facilitate comparisons between experiments, it is common practice to
put the electrodes on standard positions. See Figure 2.4 for an example. The EEG
amplitude mainly depends on the size of the active area as the voltage under each
electrode is not the result of the electrical activity of a single neuron but instead a
summed potential of populations of thousands of neurons. It also depends on the
distance between the sources in the brain and the electrodes, taking into account
the signal attenuation induced by the scalp. EEG signals typically are 50 to 100 µV in
amplitude, about 1 M times lower than voltages used to power home equipments,
thus need to be amplified. Recordings of sufficient quality can nevertheless be
performed in regular rooms and even in real-life settings using mobile EEG devices,
with controlling head and body movements as they may cause artifacts. Thanks to
its portability, EEG is operated in a wide array of peculiar situations, such as surgery
[Bak+75], flying an aircraft [SS65] or sleeping [AJWW66]. For example EEG is used
to diagnose pathologies for which the cerebral bioelectrical activity is susceptible to
be perturbed, and especially to precise the location of cerebral tumors or different
types of epilepsy and epileptic sources.
MEG (magnetoencephalography) [Häm+93; HP17] uses sensors to measure the
magnetic field produced by the brain. Indeed, any electric current is associated with
magnetic fields as a consequence of Maxwell’s theory. Therefore, the brain generates
tiny magnetic fields outside the head (~100 fT) 10−8 times the strength of the earth’s
steady magnetic field, requiring very sensitive sensors and heavy noise cancellation.
Their extreme sensitivity is challenged by many electromagnetic nuisance sources
(any moving metal objects like cars or elevators) or electrically powered instruments,
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generating magnetic induction that is orders of magnitude stronger than the brain’s.
The measurement itself is therefore done inside a special magnetically shielded room
to dampen external ambient magnetic disturbances. Their influence can be further
reduced by combining magnetometers coils (that directly measure the absolute
magnitude of the magnetic field) with gradiometers coils (that record the gradient
of the magnetic field in certain directions). Those gradiometers, arranged either in a
radial or tangential (planar) way, record the gradient of the magnetic field towards
2 perpendicular directions hence inherently greatly emphasize brain signals with
respect to environmental noise. Unlike EEG, MEG is not portable but captures a more
selective set of brain sources with greater spectral and spatial definition [Ahl+10;
HLR00], as the skull smears electrical but not magnetical signal.

More invasive techniques, using electrodes placed closer to the brain, are required
to obtain both a good temporal and spatial resolution. Such techniques include
ECoG (electrocorticography) [Pal06] which uses electrodes placed on the cortical
surface below the skull and LFP (local field potential) [DCS99] which uses micro-
electrodes directly placed inside the brain to record the electric potential in the
extracellular space of the brain tissue. Small intracerebral electrodes are typically
used to measure these potentials as opposed to large surface electrodes used in EEG,
enabling measurement of more localized populations of neurons. These techniques
provides extremely valuable recordings with excellent resolution and Signal-to-Noise
Ratio (SNR) but are really invasive and offer a limited coverage of the brain.

Each of these neuroimaging modalities measure different aspects of brain function,
hence provide unique windows into the brain, none of them being optimal on their
own. The choice of the technique depends on the research question. As we want
to extract biomarkers directly in the clinic we focus on non-invasive measurement
modalities. If structural and functional details are necessary, then MRI or fMRI
is a good choice if one is able to make the considerable investment required. For
quick, affordable, and accessible insights about brain function, with a tight temporal
resolution, EEG is the method of choice. For instance, a 4-channels EEG device is
used in Lariboisière hospital in Paris to more easily monitor the depth of anaesthesia
within the constraints of operating rooms. Typical signals extracted from these
modalities are pictured in Table 2: MRI produce images, fMRI produce multivariate
time series which are often visualized over an MRI image. EEG and MEG produce
multivariate time series.

In this thesis, we will focus our attention on MEG and EEG modalities, which
we will denote by M/EEG. Both methods rely on electrophysiology, the study of
electrical properties of the biological cells and tissues, as they record the product
of the electrical activity naturally occurring in the brain within the neurons (which
gives rise to the magnetic fields outside the head recorded by MEG, and the electric
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MRI fMRI MEG EEG

Tab. 2: Illustration of different non-invasive measurements of brain activity. For each non-invasive
brain imaging modalities (MRI, fMRI, MEG and EEG): typical devices used to record brain
activity (top row) and corresponding extracted signal (bottom row).
Sources (top row): MRI[image bank 123rf.com], fMRI[image bank 123rf.com], MEG [HP17],
EEG[wikipedia] - Sources (bottom row): MRI[nicepng.com], fMRI [Var+10], MEG[MNE Python],
EEG[Public BCI data Colorado State University]

currents on the scalp recorded by EEG). This activity is so small that only the
synchronous activity of vast assemblies of neurons can be recorded.

Compared to the much younger techniques of MRI and fMRI, MEG and EEG have the
advantage of directly measuring the neuronal activity. Using an array of very sensitive
sensors positioned over the scalp, MEG and EEG deliver insight into the brain
activity with high temporal but limited spatial resolution. Spatially, a fundamental
assumption is that the activity recorded by M/EEG sensors at a given position may
serve as a sign of brain activity at that given location. We can then try to infer
which cognitive task a subject is performing just from the information coming from
the EEG signals. For instance, it is known that when a human closes his eyes, the
EEG signal in the occipital region oscillates at approximately 12 Hz. Unfortunately,
measuring electric activity in a given electrode does not necessarily mean that the
region of the brain just underneath is active. This is because cortical current must
go through several layers of brain tissue with different conductivity before attaining
the scalp. As a consequence, at every spatial scalp position, the recorded activity is
a mixture of all the underlying brain sources. This phenomenon is called volume
conduction [NS05] and is mainly responsible for the poor spatial resolution of these
techniques (around 2 cm). Many works in the literature have investigated ways of
inverting the volume conduction effect and recovering the activity at the brain level
with spatial precision [DPm99]. We will later see in this thesis that this effect can
even be bypassed without the need to invert it. On the other hand, M/EEG has a
tight temporal resolution, allowing the detection of changes in brain activity in the
order of milliseconds, with sampling rates between 250 and 2000 Hz in clinical
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and research settings, making them extremely useful for extracting the temporal
dynamics of brain activity.

To extract biomarkers from such heterogeneous multimodal brain data, the Ma-
chine Learning approach has recently received significant interest in clinical neuro-
science [Woo+17].

How to predict from brain signals
Brain activity, when recorded on P sensors, produce signals that can be mathemat-
ically modelled as a multivariate time-series x(t) ∈ RP , t = 1 . . . T . This signal
contains both spatial information (at a particular time t0, one record P values around
the head, forming a random vector x(t0) ∈ RP ), and temporal information (at each
sensor located on a particular location k on the scalp, one record the variation of the
signal across time, forming the univariate time-series xk(t) ∈ R). Typical number
of time-samples is in the order of T =100 000 corresponding to a few minutes of
signal sampled at 1000 Hz and typical number of sensors ranges from P =10 for
clinical-grade EEG to 300 for research-grade MEG. This signal is therefore very
high-dimensional: we need a few million data points to represent one M/EEG signal.

Once the M/EEG recordings are stored, and before analyzing the data, some signal
preprocessing steps are carried out. A first important step is to filter artefacts, to
avoid making conclusions about the brain activity based on elements that are not
physiologically relevant. Artefacts commonly removed include: the spectral peak at
50 Hz due to the power line frequency, environmental artefacts and physiological
artefacts (cardiac and ocular). A second common processing step is to bandpass filter
the signal to some frequency interval carrying physiological information relevant for
the analysis being done.

Let’s suppose we want to predict a variable of interest y e.g., a biomedical outcome,
related to the brain activity x(t) through an unknown statistical relationship. It
could be the health status (how sick one is), a physiological variable (the age)
or a biomarker for any cognitive process. Due to the high dimensionality of the
M/EEG signal, it is difficult for a human eye to quantify patterns in those brain data,
especially for large quantity of data. One recent solution is to teach a computer
to help automate the prediction, finding the most useful quantitative summaries
in this wealth of data: this is the field of statistical learning, or Machine Learning
(ML) [SSBD14]. ML algorithms when used for such a prediction task are designed to
approximate the general relationship between y and x(t) using a dataset of examples:
a series of recorded brain data xi(t) and its corresponding target variable yi for a lot
of subjects i = 1 . . . N . After incorporating those examples (in the so-called training
phase) the algorithm is able to predict the variable y from the brain data x(t) of
any person (the generalization phase), not just the one it has seen during training.
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When the prediction task aims at predicting a continuous variable (y ∈ R) it is called
a regression task, when it aims at predicting a categorical variable (y ∈ finite set) it
is called a classification task.

To map brain-behaviour the historical approach for clinical work was to use voxel
by voxel classical statistical analysis: this is the realm of hypothesis testing, and
multiple comparisons [Woo+17]. When we want to predict clinical endpoints from
multiple brain signals (regression modeling) this is more efficiently done with a
ML approach, that conveniently combine multiple inputs into a single prediction
[Figure 6].

Fig. 6: Two different approaches to map brain signals to behaviour [Woo+17] (Left) Traditional
brain mapping: Mass-univariate statistics. (Right) Predictive modeling: Combine multiple
inputs into single prediction.

This approach has been successfully used to tackle both types of prediction tasks -
classification [CR95; Nää75; PK95] and regression [Fru+17] - and increasingly easy
to implement today thanks to readily available software packages. One of the most
used packages world-wide is scikit-learn [Ped+11], developed in the Inria team
“Parietal” in which I developed this thesis. It unfortunately comes with multiple
caveats/challenges when used on clinical neuroscience data.

First, ML methods are designed to make good predictions, not to uncover the true
probabilistic relationship between the target variable y and the predictor variables x.
They optimize an algorithm, fitting it to the data to minimize the expected prediction
error on the population, not to uncover the true data generating mechanism. In
other words ML is focussed on prediction, not inference [BI19]. It outputs a pre-
dictive model which can succeed to predict but fail to discover the data generating
mechanism hence cannot be interpreted as a causal model.

Second, mathematical analysis of these algorithms shows that to perform well, i.e., to
generalize successfully from the examples seen in training to the general population,
they need two main ingredients: lots of training examples (lots of data) and a
prior knowledge about the data generating mechanism (some information about
the unknown statistical relationship between x(t) and y, to guide the search of
the predictor). Therefore ML effectiveness in psychiatry and neurology is mainly
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constrained by the lack of large high-quality datasets [Var+17; Woo+17; Eng+18;
Bzd17]. and comparably limited understanding about the data generating mecha-
nisms [JK17]. This, potentially, limits the advantage of complex learning strategies.
In clinical neuroscience, prediction can therefore be pragmatically approached with
low-complexity classical machine learning algorithms [Dad+19] implementing sim-
ple learning strategies, expert-based feature engineering and increasing emphasis
on surrogate tasks, for which dataset of examples are more easily found.

Regarding the features, many studies have shown the importance and predictive
capabilities of the spectral content of M/EEG signal, i.e., how it oscillates. This signal
can indeed be decomposed in multiple simple waves or rhythms, characterized by
their frequencies and amplitude [BD04; BL17].

In numerous experiments, where M/EEG activity of a subject was recorded while
performing different cognitive tasks, it has been observed that the signal oscillate
differently in different parts of the brain. M/EEG have an unparalleled capacity for
capturing these brain rhythms without penetrating the skull [HP17].

Among them we can distinguish five types of rhythms or frequency bands:

▷ delta rhythm (frequency between 1 Hz to 4 Hz; amplitude between 1 µV to
200 µV): present in infants and in the deep state of sleep of adults, but that can
convey serious cerebral suffering when present in the awaken adult [AYH18].

▷ theta rhythm (frequency between 4 Hz to 8 Hz; amplitude between 150 µV
to 200 µV): rhythm of temporal and parietal regions, for example arising in
children and adults in emotional conditions [AG01].

▷ alpha rhythm (frequency between 8 Hz to 12 Hz; amplitude between 50 µV to
100 µV): rhythm of the occipital region recorded on healthy awaken subjects,
usually associated to a relaxed state of mind, e.g., eyes closed in resting
state. This rhythm mostly disappears when the subject opens his eyes or
focus his attention on a mental activity and make way for the faster beta
rhythm [Gol+02].

▷ beta rhythm (frequency between 12 Hz to 30 Hz; amplitude between 10 µV
to 50 µV): rhythm originating in parietal and frontal regions associated to a
normal state of consciousness [Pfu92].

▷ gamma rhythm (frequency between 30 Hz to 120 Hz; amplitude between 2 µV
to 10 µV): associated with large scale brain network activity and cognitive
phenomena such as working memory and attention. Altered gamma activ-
ity has been observed in many cognitive disorders such as Alzheimer’s dis-
ease [VD+08].

Regarding the learning strategy, the gold standard method when predicting from
M/EEG signals is source modeling, whereby a specific algorithm is used to find the
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most probable sources in the brain that account for the recorded signal. This method,
however, requires precise anatomical information provided by MRI scans. In the
clinic, MRI recordings are rarely routinely available to do source reconstruction.
Even when present in the hospital the machine is overloaded by patients that need it
the most (not strictly necessary for knee surgery). An important question then is:
when source localization is not available, and when we have some prior knowledge
about the data generating mechanism, is there an optimal ML regression algorithm
to predict from M/EEG signals, i.e., an algorithm with perfect prediction in the
limiting case of infinite number of samples? This important question is addressed
by our first (methodological) contribution [Sab+19a] and will be investigated in
Chapter 1.

Armed with this theoretically optimal algorithm to predict from our input data (the
M/EEG brain signal), simple enough to be usable in the clinic, we will then focus on
designing our surrogate task, the target of prediction (the y), a target that should be
both easily available and a promising biomarker of neurocognitive disorders.

What to predict from brain signals: the brain age
Now that we have a clearer view on our input data (the M/EEG signal representing
the brain activity) and that we found an optimal algorithm to predict from it, we
focus our attention on the target of prediction.

In medicine, a biomarker is a measurable indicator of some disease state. For ex-
ample, body temperature is a well-known biomarker for fever. Blood pressure is
used to determine the risk of stroke. It is also widely known that cholesterol values
are a biomarker and risk indicator for coronary and vascular disease. It can be
discovered using genomics, proteomics technologies or imaging technologies. Our
goal is to develop a biomarker of neurocognitive disorders through brain electro-
physiology. Biomarkers are useful in a number of ways: they can help in early
diagnosis, measuring the progress of a disease, evaluate most effective therapeutic
regimes, prevent diseases, or identify drug target or drug response. A biomarker of a
particular endpoint can be obtained by training a ML algorithm to accurately predict
the endpoint. This training phase uses a dataset of patients for which we have both
a brain signal and the corresponding endpoint [Par+15].

The gold-standard method to uncover risk factors and biomarkers in particular is
large-scale population studies, generally based on meta-analyses or large biobanks
[Cox+19]. When one can’t afford the effort and the cost associated with them,
we have to resort to experimental studies in clinical subgroups where ML can
help in clinical diagnosis [Gau+19; Eng+18]. These studies that focus on clinical
population are inevitably based on a limited number of patients, leading to small
samples. Besides, as clinical data is rarely made public, meta-analyses are not
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always possible. Those studies can therefore be statistically underpowered, and as a
consequence often show optimistic biases in accuracy [PHV20; Woo+17].

To counter the scarcity of data samples of the precious clinical outcome (e.g., in
our case, cognitive decline), we adopted the alternative approach of designing a
surrogate task: predict an endpoint that’s widely available and then exploit its
correlation with the actual endpoint of interest. As a surrogate variable we focused
on age.

Our chronological age is determined by the number of years since our birth. But
our body, our organs, our brain also have a biological age. Biological age could for
instance be measured by looking at the integrity of the DNA in cells or by measuring
the levels of proteins in the blood. Both chronological or biological ages are simple
indicators of general health. Crucially, people with the same chronological age may
have different biological ages. Individual-specific differences in their organs age
reflect deviations from what is statistically expected and can be used to communicate
risks [Spi16]. For example the bones age allows to identify growth pathologies
between two children of the same age. Similarly, we can hope to be able to read
out the age in the brain and that the age extracted from brain signals, the brain age,
captures individual cerebral fragility.

Fig. 7: How old is this brain? Source: [CR+07].

As a 70y old liver in a 50y person
could provide hint of a chronic over-
consumption of alcohol, an older brain
could point to an undetected patho-
logical brain aging. By definition, an
healthy person should have a biological
brain age similar to his chronological
age. Our optimal ML model, previously
designed, should then be first trained
to accurately predict the chronological
age of an healthy population. It would
approximate age as a function of brain
images. Given a new data point - a brain
image - the function tells the expected
age. This ”prediction“ expresses where
the brain is positioned in the population,
e.g., whether that brain ”looks“ older or younger. The resulting measure brought
by ML gives rise to brain predicted age as the solution to a regression problem
from brain imaging, with more than 10 years of established literature [Dos+10]. It
may seem irrelevant at first to predict the age as endpoint as there are very seldom
situations where age is unknown. But we can hope that this brain predicted age
contain information not present in chronological age. For instance, when computed
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from fMRI data, it could capture volume reduction that comes with normal aging
but could also reveal less volume than expected so captures pathological atrophy.

The simplest way to contrast the brain predicted age and chronological age is
then to define the brain age delta ("BAD") as the arithmetic difference between
predicted/biological age and passport/chronological age [Col+18] [Figure 8 (Upper
left)]. Thus, the higher the BAD the ’older’ the brain: a positive BAD denotes an
’older’ brain, and negative BAD a younger brain. A key insight is that precocious
brain aging (positive BAD, i.e., high prediction error) reflects cognitive impairment,
poor physical health and even risk of mortality [Lie+17] [Figure 8(Upper left and
Lower)].

Fig. 8: Brain age delta as a surrogate biomarker of cognitive disorders. (Upper left) Defining
the Brain-PAD, i.e., the Brain age delta [Col+18] (Upper right) For the same chronological
age, the survival rate is lower for high BAD, i.e., older brain (in blue) compared to low BAD,
i.e., younger brain (in red) [Col+18] (Lower) Brain aging differences between objective
cognitive impairment groups [Lie+17]

Thus, brain age delta does seem to contain information about pathological aging of
the brain, hence can be interpreted as a (surrogate or proxy) biomarker of cognitive
disorders. As counter-intuitive as it may sound we can obtain a measure of abnormal
brain aging by choosing the age of healthy persons as our target of prediction from
brain signals.
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So we know what to predict (the brain age), how to predict (with our optimal ML
model), but from which brain data? The BAD has been historically measured through
MRI. Yet, we saw that other brain imaging modalities provide unique information
about the brain. This raises the question of which brain imaging modality should our
ML model use to compute brain age and which features are most informative about
age. Let’s imagine we are not in the clinic yet but in the comfortable conditions of a
research laboratory where we have them all: MRI, fMRI and MEG.

How to estimate brain age in the lab
Brain biological age is typically estimated with MRI but can M/EEG be useful ? Until
recently, most studies were dedicated to establish that M/EEG and MRI capture some
similar information, for instance Brookes et al. [Bro+11] showed that fMRI resting
state networks can be reconstructed from MEG, and Hipp and Siegel [HS15] that
BOLD and MEG show similar spatial correlations across many frequency bands. We
now have independent evidence that they also do carry independent information:
Kumral et al. [Kum+19] showed that BOLD and EEG signal variability at rest
differently relate to aging, Nentwich et al. [Nen+20] demonstrated that fMRI and
EEG connectivity is different, Gaubert et al. [Gau+19] showed EEG-signatures in
preclinical Alzheimer’s disease.

Distinct features measured by all three techniques – MRI, fMRI and electrophysiology
– have been associated with aging. For example, differences between younger and
older people have been observed in the proportion of grey to white matter (through
MRI), the communication between certain brain regions (through fMRI), and the
intensity of neural activity in alpha band (through M/EEG). Literature on brain
aging has historically focus on MRIs which, with their anatomical details, remain the
go-to for predicting the biological age of the brain. But patterns of neuronal activity
captured by electrophysiology also provide information about how well the brain
is working. However, it remains unclear how electrophysiology could be combined
with other brain imaging methods, like MRI and fMRI. Can data from these three
techniques be combined to better predict brain age? We investigated this question in
an article I co-authored [Eng+20].

We first trained our computer model with a subset of data from the Cam-CAN
database, which holds MRI, fMRI, MEG and neuropsychological data for 650 healthy
people aged between 17 and 90 years old. To handle the different modalities we
used a computer model based on stacking: we first summarize the data in each
modality with linear models (for which sample error grows only linearly with sample
size) and then correct for bias of linear models with a non-linear Random Forest
model [Eng+20].

19



Fig. 9: Combining brain imaging modalities en-
hances brain age prediction. Mean
Absolute Errors differences of models
with different combinations of MRI, FMRI
and MEG modalities compared to MRI
only [Eng+20]

We chose as baseline the model
with standard anatomical MRI scans
and compared different versions of
the model with additional informa-
tion MRI+fMRI+ MEG, MRI+MEG,
MRI+fMRI. The Figure 9 depicts the
mean-absolute-error (MAE) of these
models relative to MRI only model (in
blue, showing a relative difference of
0). We found that adding either MEG or
fMRI to anatomical MRI led to a more
accurate prediction of brain age. When
both were added, the model was en-
hanced even further, with an absolute
MAE of 4.7y. So we demonstrated that
MEG contains unique, non-redundant information on age and cognitive aging vs
fMRI.

If combining multimodal brain data (MRI, fMRI, MEG) markedly improve brain age
prediction performance, acquiring multiple modalities can be difficult in clinical
practice, especially due to missing values. We showed that our tree-based algorithm
would hold up if some data were missing. And we found that combining MEG, fMRI
and MEG, even when some modalities were missing in some cases, was always better
than using single modalities. Our tree-based methods bring flexible missing value
handling.

Fig. 10: Combining modalities improves the characterization of neurocognitive outcomes. Resid-
ual correlation between BAD and 38 neuropsychological assessments [Eng+20]
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This flexible algorithm learnt better model of aging but is it relevant for neuropsy-
chological score? We demonstrated that this combination also lead to enhanced
characterization of neurocognitive phenotypes [Figure 10]: with unique discoveries
or increased effect sizes associating the out-of-sample BAD with neurocognitive out-
comes. The predictions correlated with the cognitive fitness of individuals. People
with older brains tended to complain about the quality of their sleep and scored
worse on memory and speed-thinking tasks. This suggests that BAD can be a good
surrogate biomarker of cognitive aging and contains useful clinical information.
Not only adding MEG boosts performance, but it also improves brain-behaviour
correlation.

Fig. 11: Investigating most influential features
to predict brain age from MEG. MEG
performance is predominantly driven by
source power [Eng+20]

Moreover, when we focussed on mod-
els with only MEG as modality, we
showed that MEG most influential fea-
tures for brain age predicting model-
ing are source powers across frequency
bands: In [Figure 11], light blue is the
model taking all sorts of sensor-space
features and dark blue/red/orange are
models based on source-space features
that were extracted by source localiza-
tion. Linear combinations of source-
power across frequency bands explains
most of the MEG-specific performance.
As stand-alone models, we found that
source-level alpha and beta band power
were most informative. Aligned with numerous findings in literature, we observed
that MEG source power is a potent feature for predictive modeling. In the lit-
erature, MEG classical features comprises sensor alpha power [Eng+18], alpha
peak [Bab+06], 1/f slopes [Voy+15], power topography [Gau+19; Fru+17],
evoked latency [Pri+17], source powers [Sab+19a] and power envelope correla-
tions [Kha+18].

This study gives us hope in our endeavour. It demonstrates that the BAD, used as an
index of cognitive aging, contain useful clinical information and has the potential to
be used as biomarker of neurocognitive disorders. BA is best predicted combining
all modalities but predicting from MEG only leads to an acceptable performance
(when used with source reconstruction). MEG seems to bring unique information
with contribution best explained by cortical source power spectra, a feature that can
also be accurately measured by EEG. This hints that EEG (used by most hospitals
rather than MEG tests) could potentially be substituted for MEG without an impact
on the predictive power of the model.

21



Unfortunately, it also suppose conditions not easily available in clinical practice, and
certainly not compatible with a usage in the operating room. First, it requires to have
MRI data: even the MEG only experiment relied on MEG features that require MRI
acquisitions and tedious data processing to do source reconstruction Second, it uses
research-grade high-fidelity MEG devices. Finally it requires highly-preprocessed
MEG data. We will show in our first contribution in Chapter 1 that our proposed
method can accommodate the absence of MRI data under certain ideal conditions
but does it hold on real M/EEG data when those conditions are challenged? Is
our method performant and robust enough to accommodate low-fidelity and low-
preprocessed EEG measures (clinical-grade EEG vs research-grade MEG)? This will
be investigated in our second (empirical) contribution [Sab+20] and described in
Chapter 2.

We will see that our regression model has indeed the potential to be used in the
clinic: it operates in sensor-space (avoiding costly source localization), it is robust to
environmental and physiological artefacts and it accommodates cheap EEG record-
ings. This optimal, robust and light model is then a good candidate to develop our
BAD biomarker. Now that we have a method to robustly determine brain age in the
lab, the critical question is: does it translate to the clinic, is it really usable in the
operating room?

How to translate brain age to the clinic
In the clinic, virtually all patients undergoing surgery go through a general anesthesia
(GA). This procedure concerns millions of people every year: more than 300 million
worldwide in 2020 [Csj]. If we include rachianesthesia and loco-regional procedures
this number is even far greater. In France, 9.5 M of general anesthesia procedures
have been performed in 2010 (excluding childbirth) with an average yearly increase
rate of 1.89 % between 1991 and 2010 [Dad+15]. Since a precise physiological
monitoring is required during GA, often including brain monitoring, this means that
there exists a population-wide dataset of neural signals, today largely untapped.

Besides, the period of GA is a particularly favorable period to extract signals from
patients with minimal artefact due to muscle-inhibitor drugs, hence a particularly
adapted moment to build biomarkers. Moreover, EEG is already routinely used in
the operating room during general anesthesia to monitor the depth of anesthesia as
recommended by scholar societies of anaesthesiologists. Yet, despite its ubiquity, the
wealth of physiological signals recordings including EEG and potential good signal
quality, GA has never been used to estimate brain age.

22



Fig. 12: Generalization performance of predict-
ing occurrence of CD. Predicting CD from
TCI and AP with 3 models including the
age (AGE), TCI and AP (HELP1), and
three variables altogether (HELP2), com-
pared by their ROC curves and associated
AUC [Tou+20].

Estimating brain measures from EEG
during general anesthesia as a biomarker
of neurocognitive disorders is worth in-
vestigating. The preliminary work I
coauthored [Tou+20] showed a first ev-
idence that EEG-based brain measures
could be developed in the clinic under
GA to reveal cognitive disorders. This
prospective study demonstrated that
EEG response to a GA based on propo-
fol, a widely used drug to induce loss
of consciousness, can reveal preopera-
tive cognitive decline (CD). We collected
EEG and propofol target concentration
infusion (TCI) on 42 patients and used
a preoperative cognitive assessment test
called MoCA to detect CD. We focussed
on two features: the propofol require-
ment to induce unconsciousness (the TCI needed to maintain the patient in a stable
anesthesia state) and the frontal alpha band power during this period (AP). We
assessed CD prediction based on 3 logistic based classification models including
the age (AGE), TCI and AP (HELP1), and the three variables altogether (HELP2)
[Figure 12]. The model HELP, including TCI and AP, better predicted CD than age
and was more parsimonious than HELP2. Hence, TCI and AP contributes additively
to reveal patient with preoperative cognitive decline.

To further investigate the brain age during GA we collaborated with anesthetists
from the Lariboisière hospital in Paris and collected EEG of roughly 345 patients,
together with associated clinical and demographical information. We first observed
clear age-related patterns in the EEG recordings of those patients [Figure 13 (Left)].
Those EEG brain signatures nevertheless seem to be modified by the use of different
maintenance drugs [Figure 13 (Right)]:

there seem to be systematic differences in alpha power under propofol and Sevoflu-
rane drugs, especially in older men.
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Fig. 13: Preliminary data exploration of a cohort of 345 patients from Lariboisière hospital, in
stable GA state. (Left) Power Spectral Density of 345 patients during stable GA averaged
and color-coded by age decade. (Right) Alpha band log-powers of the same patients vs age,
when maintained in the stable anesthesia state using either propofol (purple) or Sevoflurane
(yellow).

This rises the following questions. Can we predict the brain age in the clinic from
EEG during anesthesia, i.e., is the translation of lab-developed brain age valid in GA
settings and does the drug impact brain age prediction under GA? How to perform
EEG-based brain age prediction during anesthesia, taking the drug into account?
Does Brain Age Delta (BAD) have a clinical meaning, i.e., does this biomarker
actually indexes cognitive disorders? These three questions will be investigated in
third (clinical) contribution [Sab+21, in prep.] detailed in Chapter 3.

Thesis outline
Each of my three main contributions is designed to overcome a particular obstacle
standing in the road to translation of brain age biomarker to the clinic:

▷ Absence of MRI / source localization: gold-standard regression models on
brain signals rely on features that require source reconstruction, hence MRI
acquisitions and tedious data processing. Overcoming this challenge and
showing which regression model to use when source localization is not avail-
able constitutes my first (methodological) contribution [Sab+19a] detailed in
Chapter 1

▷ Absence of research-grade brain imaging devices: adapting this model to
real-world clinical M/EEG signals, low-fidelity devices and analyze the pre-
processing impact on performance constitutes my second (empirical) contribu-
tion [Sab+20] in Chapter 2

▷ Specific conditions of GA: building out of this model a clinical biomarker of
neurocognitive disorders usable in the operating room is covered in my third
(clinical) contribution [Sab+21, in prep.] in Chapter 3.
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Proposition

My own mathematical contributions, in the form of propositions, are denoted
in boxes of this kind.

These results were presented at various national and international conferences
(JDSE 2019 for which I received the best paper award, NeurIPS 2019, OHBM 2020)
and have been accepted at two symposiums (VPH 2020, CompAge 2020) and two
summer schools (AI4Health, DS3). I also co-authored three additional publications:
the two papers detailed in this introduction [Tou+20; Eng+20] along with a recent
benchmark paper on brain age [Eng+21] for which I contributed data analysis tools.

All numerical illustrations have been carried out on publicly available datasets:
Cam-CAN [Tay+17], TUH [Har+14] and FieldTrip [Oos+11] with the exception of
the unique GA dataset collected in Lariboisière hospital in Paris, exclusively for this
thesis.

Finally, in order to foster reproducible research, Python and R code for all methods
discussed in this thesis are available online on public repositories:

▷ https://github.com/DavidSabbagh/NeurIPS19_manifold-regression-meeg/
Python code for the NeurIPS 2019 article [Sab+19a]- tools to preprocess raw
MEG data from Cam-CAN dataset, vectorize covariance matrices, launch simu-
lations and real-data analysis.

▷ https://github.com/DavidSabbagh/meeg_power_regression
Python and R code for the NeuroImage 2020 article [Sab+20] - tools to
preprocess raw MEG & EEG data from Cam-CAN, TUH and provided by the
FieldTrip website, to analyze regression performance, inspect model by error-
decomposition and assess pre-processing impact on performance.

▷ https://github.com/DavidSabbagh/larib-EEG
Python and R code for the clinical article [Sab+21, in prep.] - tools to collect
data and metadata from Lariboisière hospital, extract the features, explore the
data, compare and inspect the regression models, perform data and statistical
analysis.

We used the R-programming language and its ecosystem for visualizing the re-
sults [R C19; AUT19; Wic16; CSM17] and run part of the statistical analysis. Data
analysis has been performed with Python 3.7 and only relies on open-source li-
braries: the Scikit-Learn software [Ped+11], the MNE software for processing
M/EEG data [Gra+14], the PyRiemann package [CBA13] for manipulating Rie-
mannian objects, and ‘Coffeine’ (https://github.com/coffeine-labs/coffeine)
whom I developed the core features during my PhD and that provides a high-level
interface to all predictive modeling techniques we present in this thesis.
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Mathematical notations used in the chapter

Z set of integer numbers
x ∈ R Scalar (lower case)
x ∈ RP Vector of size P (bold lower case)

∥x∥2 ℓ2 norm of vector x:
√∑

i x
2
i

M Matrix (bold uppercase)
IN Identity matrix of size N
[·]⊤ Transposition of a vector or a matrix
tr(M) Trace of matrix M

diag(M) Diagonal of matrix M

||M ||F Frobenius norm of matrix M :
√

Tr(MM⊤) =
√∑

|Mij |2

rank(M) Rank of matrix M

Upper(M) upper triangular coefficients of M , with unit weights on the diagonal
and

√
2 weights on the off-diagonal

S cross-spectral density matrix
C spatial covariance matrix
MP Space of P × P square real-valued matrices
SP Subspace of P × P symmetric matrices: {M ∈ MP ,M

⊤ = M}
S++

P Subspace of P × P symmetric positive definite matrices:
{M ∈ SP ,x

⊤Mx > 0,∀x ∈ RP ,x ̸= 0}
M is full rank, invertible (with M−1 ∈ S++

P )
M is diagonalizable with real positive eigenvalues:
M = UΛU⊤ with U orthogonal matrix of eigenvectors (UU⊤ = IP )
and Λ = diag(λ) matrix of positive eigenvalues (λ1 ≥ · · · ≥ λP > 0)

S+
P Subspace of P × P symmetric semi-definite positive (SPD) matrices:

{S ∈ SP ,x
⊤Sx ≥ 0, ∀x ∈ RP }

S+
P,R Subspace of SPD matrices of fixed rank R: {S ∈ S+

P , rank(S) = R}
log(M) Logarithm of matrix M ∈ S++

P : U diag(log(λ1), . . . , log(λn)) U⊤ ∈ SP

exp(M) Exponential of matrix M ∈ SP : U diag(exp(λ1), . . . , exp(λn)) U⊤ ∈ S++
P

N (µ, σ2) Normal (Gaussian) distribution of mean µ and variance σ2

Es[x] Expectation of any random variable x w.r.t. its subscript s when needed
(Z,F , l) task components: set of task objects, set of potential solutions, objective function
S sample (z1, . . . , zn) ∈ Zn

Dn distribution of sample S
H hypothesis class
TM tangent space at point M
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Acronyms used in the chapter

BCI brain-computer interface
DTFT discrete-time Fourier transform
ERM empirical risk minimization
ERP event-related potential
EOG electro-oculogram
ECG electro-cardiogram
fMRI functional magnetic resonance imaging
M/EEG magneto- and electroencephalography
ML machine learning
MAE mean absolute error
MSE mean squared error
MNE mnimium norm estimate
MRI magnetic resonance imaging
PAC probably approximately correct
PSD power spectral density
PCA principal component analysis
SPD symmetric positive definite
SPoC source power comodulation
SSS Signal Space Separation
SSP Signal Space Projection
WSS wide-sense stationary
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In the Introduction, we investigated how the brain is structured, how it operates and
how to capture its activity by extracting a measurable signal x(t). In this chapter, we
now seek a regression algorithm to predict, from this brain signal as input data, any
outcome y physiologically related to neural dynamics. This is a key step to develop
a predictive clinical biomarker. This algorithm should be both performant, hence
adapted to the particular class of signals it works on, and simple enough to be usable
in the clinic, which discard most of the classical algorithms. This chapter presents
such an algorithm as my first contribution [Sab+19a], along with the theoretical
foundations on which it rely.

Section 1.1 summarizes the Machine Learning (ML) theoretical framework to per-
form prediction. We will investigate the different sources of errors of any prediction
algorithm and show that a performing predictive biomarker should be based on a
statistically consistent algorithm. Such algorithm has to be adapted to the probabil-
ity distribution of its input hence require some form of prior knowledge about the
data generating mechanism (No-Free-Lunch theorem). Our data signal is neverthe-
less not well adapted to classical regression algorithms that require low dimensional
inputs (to fight curse of dimensionality) that live in a vector space. Armed with
these theoretical insights, the following sections investigate how to meet these
requirements.

Section 1.2 will allow us to find such a low dimensional compact representation of
the M/EEG signal: its spatial covariance matrix. It introduces statistical tools for the
analysis of multivariate time series and discuss two fundamental assumptions that
are typically done regarding their statistics: wide-sense stationarity and ergodicity.
These assumptions allow to estimate a set of parameters that describe the statistical
behaviour of a real multivariate time series: its mean vector and its cross-spectral
density matrices, a continuous set of positive definite matrices. This set can be further
summarized by using one of such matrices: the band-specific covariance matrix.
One may then approximately compare two time series by comparing the covariance
matrices used to parametrize them. These matrices are most often rank-deficient
due to practical reasons investigated at the end of this section.

Armed with this compact matrix representation, we’ll still need to vectorize it. The
set of covariance matrices, either full rank or not, is known to have a particular
intrinsic geometry - they live on a Riemmanian manifold - and in Section 1.3 we
give an overview of its properties. Understanding the intrinsic geometry of a set
of data points very often lead to more efficient algorithms, e.g., deep learning
methods adapted to data defined in a manifold [Bro+17], or text classification using
Riemannian geometry [Leb05]. This is particularly true in the field of brain-computer
interfaces (BCI) where classification methods have been largely improved using such
geometry-aware algorithms [Lot+18; CBB17; YBL17]. Here, using concepts from
differential geometry, we will present a distance between positive definite matrices
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that is invariant to affine-invariant transformations (e.g. the action of a matrix), a
very useful property when parametrizing multivariate time series. This will lead to
an appropriate vector representation of a covariance matrix.

Section 1.4 introduces a prior knowledge about our task in a form of a generative
model of M/EEG signals and outcome and will detail state-of-the-art approaches
to predict from such M/EEG signals. We will delve into three classical family of
methods, well-suited in certain contexts but that are unsatisfying for the present task.
Biophysical source modeling using anatomically constrained inverse methods needs
anatomical prior knowledge so requires specialized workforce and equipment, which
may reduce wider applicability in clinical practice. Statistical sources modeling
using unsupervised spatial filtering (e.g., ICA) are blind to the prediction target
hence requires additional modeling efforts for subsequent regression tasks. Sensor-
space linear modeling leverages the power of linear models but is not optimal
when predicting from brain rhythms, hence not adapted to our generative models
assumptions. We will show that none of them is suitable to our task, hence the need
for a new algorithm.

Finally, Section 1.5 introduces statistically consistent regression algorithms to predict
from M/EEG signals, adapted to our generative model and usable in the clinic.
We provide mathematical proof of consistency under certain conditions. We also
present simulations to illustrate these mathematical guarantees and investigate the
robustness of our algorithms to model violations. One of these model relies on
concepts from Riemannian geometry and can easily be adapted to handle rank-
deficient covariances.

Simulations in this chapter and real-world experiments in the next two were carried
out using Python libraries including: scikit-learn [Ped+11], MNE-python [Gra+14]
and pyRiemann1. We also ported to Python some part of the Matlab code of Manopt
toolbox [Bou+14] for computations involving Wasserstein distance. The scripts
generating associated figures are available in the GitHub repositories:

▷ https://github.com/DavidSabbagh/NeurIPS19_manifold-regression-meeg/
▷ https://github.com/DavidSabbagh/meeg_power_regression

Every code runs on a standard laptop.

1http://pyriemann.readthedocs.io/
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1.1 Statistical Learning theory
In this section, we will present the mathematical framework of Statistical Learning,
or Machine Learning (ML). For this introduction we adapted concepts and partially
borrowed notations from [SSBD14].

1.1.1 Learning a task
Real-world task. Let’s assume we face with a real-world task we’d like to solve. This
task could be: compute the area of circle of radius r, add two big integer numbers,
decide which animal portrays an image, predict breast cancer from mammography,
predict cognitive function from M/EEG brain activity, or clustering active EEG
electrodes that record task-relevant neurophysiological activity. We will see that
these tasks, very different in nature, can share a common formalism but are tackled
using different approaches. The very first step to solve the task is to model it
mathematically.

Model the task. We represent the task by a triplet:

T = (Z,F , l) , (1.1)

where Z is the set of task’s objects, called the instance set, formally a measurable
space; F is the set of all potential solutions, formally a set of functions; l is the
error made by a solution on an object, called a loss or a cost, formally a function
F × Z 7→ R.

For example prediction is the task of predicting an outcome y from a statistically
related input x ∈ RP . When y is a continuous (resp. discrete) variable, the prediction
task is called regression (resp. classification). Hence, a regression task operates on
pairs of variables (x, y) ∈ (X ,Y) as objects, with x observed and y unobserved, and
looks for the function f : X 7→ Y that best predicts y given x, where ‘best’ may mean
‘with minimal quadratic error’. Therefore, this task can be modeled by the triplet
Z = X × Y a bounded subset of RP × R, F the set of all bounded functions from X
to Y and l(f, (x, y)) = (f(x) − y)2, the squared loss. Many tasks can be formalized
this way. Some examples are detailed in table 1.1:

Task Z F l

Prediction:Regression X × Y bounded subset of RP × R {f : X 7→ Y bounded} l(f, (x, y)) = (f(x) − y)2 squared loss
Prediction:Classification X × {0, 1} {f : X 7→ {0, 1}} l(f, (x, y)) = 1{f(x) ̸=y} 0-1 loss
Large margin classification X × {0, 1} bounded subset of RKHS bounded subset of RKHS max(0, 1 − y < x, h >) hinge loss
K-means clustering RP all subsets of RP of size K l(f, z) = minc∈f ∥c − z∥2 dist.to nearest centroid
Density estimation ⊂ RP {bounded pdf on Z} l(f, z) = − log(f(z)) negative log-likelihood

Tab. 1.1: Example of tasks
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The task we want to solve in this thesis is a particular regression task: predict a
continuous neuro-outcome y ∈ R from a multivariate M/EEG signal x(t) ∈ RP . The
content of this section is nevertheless very general and apply to any kind of task that
can be formalized this way.

Solving the task. The first approach is to try to solve it exactly, i.e., find a solution
that never make any mistake for all objects z ∈ Z. This exact solution can either be
analytical or algorithmic. For example the task of computing the area of a circle of
radius r can be solved exactly analytically using the mathematical tool of integration
and yield f∗(r) = πr2. The task of adding two big integer numbers cannot be
solved analytically but has an algorithmic solution, actually the first algorithm most
kids learn in first grade. Yet, some tasks don’t have any analytic nor algorithmic
solutions. This is generally the case either because they must adapt to fluctuating
environments (changes over time or over users) or because they are too complex to
program, being specific to human capabilities (no good known algorithmic solution)
or beyond human capabilities (analysis of very large and complex dataset). Examples
of such tasks are: deciding which animal portrays an image [LNH09] (multi-class
classification task), predict breast cancer from mammography [Bar+06] (binary
classification task), predict age from M/EEG brain activityi [Sab+20] (regression
task), or clustering active EEG electrodes that record task-relevant neurophysiological
activity [Sab+19b] (clustering task).

When a task cannot be solved exactly, either with an analytic formula or a predefined
algorithm, we have to look for approximate solutions, allowing ourselves to make
errors from time to time while trying to be maximally right on average. In this
approach, we represent the class of objects by a random variable Z ∈ Z following
an unknown probability distribution D that reflect the common properties of those
objects and then look for the solution with smallest error on average:

Z ∈ Z ∼ D (1.2)

f∗ = arg min
f∈F

L(f) with L(f) = EZ≃D[l(f,Z)] (1.3)

For a regression problem, D is the joint probability distribution of z = (x, y) that
describes, in its most general form, how both variables are statistically related. The
distribution D is unique to the particular task we want to solve. For instance the
joint probability distribution of (M/EEG signal, age) is of course very different from
the one describing (mammography, breast cancer indicator).

Even if we know D, finding f∗ in general, for any task T , is NP-hard, hence a hopeless
endeavour. Yet, in this case, certain tasks have an explicit solution. For instance,
the regression task with squared loss l(f, (x, y)) = (f(x) − y)2 has the solution
f∗(x) = E[Y |X = x], the regression tasks with absolute loss l(f, (x, y)) = |f(x) − y|
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is solved by f∗(x) = Median[Y |X = x], the binary classification task with 0-1 loss
l(f, (x, y)) = 1{f(x)̸=y} by f∗(x) = 1P[Y =1|X=x]>1/2. This optimal solution f∗, called
the Bayes solution, achieves the minimal possible error that can be achieved on this
task: for this it needs to access the oracle, i.e., know D, to compute the expectation.
Note that most often L(f∗) ̸= 0 so even this optimal solution makes an error, called
the irreducible error. In the literature, L(f) is called the true risk or the true error or
the generalization error of solution f and is a measure of its performance.

Since D is unknown, we can’t compute L, nor the optimal solution f∗ hence can’t
solve T . Yet, if we have a sample from D, we can still hope to learn it.

(PAC-)Learning a task. If we can perceive the world D through a random and finite
sample

S = (z1, . . . , zn) ∼ Dn , (1.4)

i.e., access a realization of n i.i.d. random variables drawn from D, then we can
hope to benefit from that limited experience of the unknown world D to learn the
task: improve our performance at task T (lower L) with more experience (larger n).
Learning the task (T ,D) therefore amounts to find a function A : S 7→ F , called a
learning rule, that uses the sample S to output an hypothesis hS ∈ F that is, with
high probability, arbitrarily close to the optimal (Bayes) solution f∗ with enough
samples:

hS = A(S) ∈ F s.t. L(hS) ≃ L(f∗) (1.5)

One example of learning rule is the so-called Empirical Risk Minimization (ERM)
that finds the hypothesis that minimizes the (computable) empirical risk: hS =
ERMF (S) = arg minh∈F LS(h) with LS(h) = EZ∼data[l(h,Z)] = 1

n

∑
i l(h, zi).

Other learning rules are widely used: SRM (Structural Risk Minimization) that
specifies weights over subsets of hypotheses of H reflecting preferences over some
subclass of hypotheses, RLM (Regularized Loss Minimization) that jointly minimizes
the empirical risk and a regularization function, MDL (Minimum Description Length)
where hypotheses with shorter descriptions are preferred or SGD (Stochastic Gradient
Descent) that directly minimizes, under certain conditions, the risk function L(h)
and not an intermediate objective function LS(h) without the need to know D.

Since we face a task T , with an unknown distribution D, we would like to learn T
for any distribution D. Is it possible? More precisely, given a task T , can we find a
learning rule A and a sample size n such that for every distribution D, if A receives
n i.i.d. examples from D, it outputs a solution hS that has close-to-minimal error
with high probability. Unfortunately, the No-Free-Lunch theorem states that no such
universal learner exists [SSBD14].

No-Free-Lunch theorem. For every learning rule A there exists a distribution D on
which it fails to learn T (it outputs an hypothesis hS likely to have a large error),

1.1 Statistical Learning theory 33



whereas for the same distribution, there exists another learner that will succeed (it
outputs a hypothesis with close to minimal error). In other words, the theorem states
that no learner can succeed on all learnable tasks (on all distribution D). Every
learner has tasks on which it fails while other learners succeed: the learner has to
be specified to the task at hand. Therefore, when approaching a particular learning
task (T ,D), the learner should have some prior knowledge on the distribution D
in order to succeed. One type of such prior knowledge is that D comes from
some specific parametric family of distributions. This is the realm of Maximum
Likelihood parameter estimation, and is not the approach taken in this thesis. Indeed,
our objective is to make distribution-agnostic predictions, not to uncover the true
data generating mechanism that requires to make an appropriate assumption on a
particular probabilistic model for the data.

Another approach is to adapt the learning rule to the task at hand to avoid the
distributions that will cause us to fail when learning that task. The fundamental
problem of any learning rule presented above is that its search space, the class of all
functions F , is ‘too big’: every possible function is considered a good candidate. This
represents lack of prior knowledge. According to the No-Free-Lunch theorem it will
fail on some learning task. For instance the ERM learning rule can find a function
that has no error on the sample LS(hS) = 0 (because it can output arbitrary complex
functions) but high error on the population L(hS) ≃ 1/2 (high generalization error).
This phenomenon is called overfitting: the learning rule has been misled by the
training data. The idea is then to restrict the search space F of our learner to a
predefined hypothesis class H ⊂ F and introduce the best hypothesis within this
class:

h∗ = arg min
h∈H

L(h) . (1.6)

We say that we learn the hypothesis class H if we find a learning rule that outputs
an hypothesis hS ∈ H that can be, with high probability, arbitrarily close to the best
hypothesis in H, with enough samples, and for any distribution D:

hS = A(S) ∈ H s.t. L(hS) ≃ L(h∗) ∀D (1.7)

In this case, we have learnt the task, i.e., found hS s.t. L(hS) ≃ L(f∗), only if
L(h∗) ≃ L(f∗). In a sense, this approach is another type of prior knowledge: the
belief that one of the members of the hypothesis class H is a low-error model for
our task, i.e., the best hypothesis h∗ in H is close to the best solution f∗ in F , the
optimal Bayes solution.

Note that we can never be sure to exactly find the best solution in H ((L(hS) = L(h∗))
because we only access the world D through a sample S that is 1/ random (so they
will always be a chance that S is not representative of D e.g., if a domain point is
sampled over and over again) and 2/ finite (even if S is representative there may
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always be some details of D it will fail to reflect). We can therefore only hope that
there exists a sample size above which we can find a Probably (with confidence
1− δ) Approximately (up to an error of ϵ) Correct solution hS , a PAC solution, i.e., an
hypothesis that probably approximately has the minimal possible error in H:

∀D ∀ϵ, δ P [|L(hS) − L(h∗)| < ϵ] ≥ 1 − δ (1.8)

with ϵ being the accuracy parameter that determines how far we are from optimum
(we forgive the learner to make small mistakes) and 1 − δ being the confidence
parameter that determines how likely we meet the accuracy requirement. If this
holds, i.e., if we can, with enough samples, come arbitrarily close to the best solution
in H with high probability for any distribution D, we say that the learning rule
A learns H or that H is PAC-learnable with learner A. The amount of samples
necessary to reach a given accuracy and confidence is called the sample complexity of
learning. The No-Free-Lunch theorem precisely states that the class of all functions
F is not PAC-learnable.

Learning algorithm. To successfully learn a task, we need a complete learning
algorithm, composed of: an hypothesis class H on which we restrict the search
space of the learning rule, a learning rule A that uses the sample S to choose a
function in H (often the minimizer of some computable objective function LS), and
an optimization algorithm to actually compute this chosen function.

For example, the linear regression algorithm consists in using the ERM learning rule
over the hypothesis class of linear functions, using no optimization algorithm since
we have an analytic formula for the minimum. The LASSO (resp. Ridge) regression
algorithm consists in using the RLM learning rule with a l1 (resp. l2)-regularization
function to learn linear functions. Support Vector Machine algorithm uses the RLM
scheme to learn linear functions using an iterative optimization algorithm. Decision
Tree algorithms use the MDL learning rule to learn the class of decision trees. Neural
Networks uses the SGD learning rule to learn a class of function defined by multiple
layers of linear functions composed over non-linear activation functions. Note that,
in general, this class of function H can be defined as the composition of functions that
pre-process the data, functions that transform the data and functions that actually
compute the solution. Most of classical regression algorithms operates on objects in
Z = (X ,Y) ⊂ Rn × R, i.e., on Euclidean objects.

We have seen that a learning rule is not enough to learn the task, we must also
restrict its search space to an hypothesis class. But how should we choose a good
hypothesis class? On the one hand, we want to believe that the smallest error
achievable by a hypothesis from this class is close to the smallest error achievable
on the task. On the other hand, we have just seen that we cannot simply choose
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the richest class – the class of all functions over the given domain. This trade-off is
discussed in the following section.

1.1.2 Performance of a learning algorithm
The generalization error of a learning algorithm can be decomposed into three errors
of very different nature:

L(hS) = L(f∗)︸ ︷︷ ︸
bayes error

+ L(h∗) − L(f∗)︸ ︷︷ ︸
approximation error

+L(hS) − L(h∗)︸ ︷︷ ︸
estimation error≥0

(1.9)

Bayes error. This component is the error made by the Bayes optimal solution. For
a prediction task, this error is zero only when y is a deterministic function of x.
For instance, if the binary variable y is a deterministic function of x corrupted with
additive random noise, we can never hope to perfectly separate the two classes so
we’ll always have an error. The Bayes error is the minimal, yet inevitable, error
due to the possible non-determinism of the world in our model. Since it is the best
performance we can hope for (reachable only if we know D), this error is also called
the irreducible error.

Approximation error. This component reflects the quality of our prior knowledge,
measured by the minimal risk achievable by a hypothesis in our hypothesis class,
L(h∗) = minh∈H L(h). It measures how much error we have due to the restriction
to a specific class, i.e., how much inductive bias the algorithm has towards choosing
a hypothesis from H. This error is small only if the best function in H is close to the
best function in F , ideally with the true function linking y and x belonging to H.
We then say that H is adapted to D, or has a small bias. The approximation error
depends on the size, or complexity, of H (it can decrease with ‘larger’ H), on the
distribution D, but does not depend on the learning rule A, nor the sample size n.

Estimation error. This component arises because the learning rule looks for an
hypothesis that is not a minimizer of the (unknown) generalization error L. For
example, the ERM learning rule minimizes the empirical risk that is only an estimate
of the true risk. By the definition of Eq. (1.8), this error can be made arbitrarily
small with enough samples, for any D, if H is learnable by A. The quality of the
estimation, hence this error, depends on the size of H (it decreases with ‘smaller’ H)
and the sample size n (it decreases with larger n).

Statistical Learning theory gives us crisp characterization of hypothesis classes that
are learnable. For example if H has finite VC-dimension 2 then it is learnable, with
the ERM learning rule. If H is a countable union of finite VC-dimensional spaces

2The VC-dimension of a class of functions is a combinatorial property that denotes the maximal
sample size that can be shattered by the class.
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then it is learnable with SRM. If the learning task is convex-smooth or convex-
Lipschitz, then it is learnable with RLM or SGD [SSBD14]. An hypothesis class of
finite dimension is a particular example of a class of finite VC-dimension. For such
H, it can be shown that, with probability 1 − δ,

L(hs) ≤ L(h∗) + 2

√
log (2|H|/δ)

2n . (1.10)

This equation gives us a bound on the estimation error that is in theory never
accessible. A consequence of (1.10) is that the larger the set of hypothesis H, the
looser the upper bound for L(hS), and, therefore, it is harder to know whether it
is close to L(h∗) or not. In other words, when the class of hypothesis is too large
it is harder to control the estimation error of the solution. For infinite dimensional
H (but finite VC-dimension) it is still possible to bound the estimation error in a
similar way to (1.10). More details can be found in [SS+10; SSBD14]. This error
also encompasses an optimization error, representing how far the actual hypothesis
resulting from the optimization algorithm is from the target hypothesis. The runtime
necessary to reach a given precision is called the computational complexity of learning.

So how should we choose a good hypothesis class H? Since our goal is to minimize
the excess error L(hS) − L(f∗), we face a trade-off regarding the last two terms
called the bias-complexity trade-off. On one hand, a very rich class H is more likely
to have a small approximation error (small bias) but on the other hand might have
a large estimation error (a higher risk of overfitting). To learn the task T (find hS

with lowest generalization error i.e., s.t. L(hS) ≃ L(f∗)) we have to choose H that
is small enough to be learnable by A (L(hS) ≃ L(h∗)) and large enough to be well
adapted to D (L(h∗) ≃ L(f∗)). Of course, an ideal choice for H is the class that
contains only one solution: the Bayes optimal solution f∗. Unfortunately it depends
on the underlying distribution D, which we do not know (in fact, learning would
have been unnecessary had we known D). The goal of Statistical Learning theory
is to study how rich we can make H while still being learnable, i.e., maintaining
reasonable estimation error.

In summary, to successfully learn a task (T ,D) we need three resources:

▷ Domain knowledge resources [information on D] to determine an appropri-
ate set of possible solutions, i.e., to choose an hypothesis class H adapted to D.
This allows to have a low approximation error. For example the prior knowl-
edge that the hypothesis class of a convolutional neural network is adapted to
the statistics of natural images.

▷ Statistical resources [learning theory, enough sample size n] to determine
which solution to pick in this set and reach it with a given accuracy and
precision, i.e., to choose a learning rule that learns H with adapted sample
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complexity, This allows to have a low estimation error. For example we’ll
choose the ERM learning rule if H has finite VC dimension and learning theory
gives us the number of samples necessary the reach the best solution in H with
a given accuracy and precision.

▷ Computational resources [powerful computer] to determine precisely how
to pick this solution, i.e., to design an algorithm that implements the learning
rule with reasonable computational complexity. This allows to have a low
optimisation error.

Cross-validation. Once we have designed or chosen a learning algorithm, how can
we compute its true error. A practical way to get an estimate of the generalization
error L(hS) is by evaluating its empirical error on a set of data points that were not
considered during the minimization procedure leading to its estimation. Based on
this idea, one may assess how good the solution proposed by a learning algorithm is
for a certain dataset S using a cross-validation procedure [Bis07]:

▷ Partition S into K subsets containing (approximately) the same number of
elements: S = S1 ∪ · · · ∪ SK .

▷ For k = 1 . . .K, define the train and test folds: Strain
k = S \ Sk and Stest

k =
Sk and compute the empirical error calculated on each test fold, Lk =
LStest

k

(
hStrain

k

)
.

▷ Define the average performance of the learning algorithm on dataset S by
L = 1

K

∑K
k=1 Lk, which is the average empirical error of the solutions proposed

by the learning algorithm on each test fold; the expected value of L is the
generalization error of hS [SSBD14].

Even if this method often works very well in practice, the exact behaviour of cross-
validation is not yet fully understood theoretically [BHT21].

1.1.3 Lessons for regression on M/EEG signals
In many cases, empirical research focuses on designing good hypothesis classes
for a certain domain, i.e., classes for which the approximation error would not be
excessively high, classes adapted to our task at hand. The idea is that although we
can’t access the oracle D and do not know how to construct the optimal classifier
f∗, we still have some prior knowledge on our specific task, which enables us to
design hypothesis classes for which both the approximation error and the estimation
error are not too large. Indeed, our first contribution, derived in this chapter, has
been to design a class H perfectly adapted to M/EEG signals and source-power
outcome, in the sense that it shows no approximation error. Such algorithms are
said to be statistically consistent. When learning from a sufficiently large number
of samples (no estimation error) and without noise in y (no irreducible error), a
regression algorithm with no approximation error will have no generalization error
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(see (1.9)). It has then learnt a function that perfectly approximates the true function
asymptotically. The focus of this theoretical section is therefore to find a statistically
consistent power-regression algorithm on M/EEG signals. The class H we found
(composed by linear functions) is also learnable with the ERM learning rule and
shows no optimization error.

Our prediction problem has a much larger number of features than number of
observations. Indeed, the number of observations (e.g., subjects)N is a few hundreds
in most studies whereas the dimension of the input is a few millions ( 100 000 time
samples corresponding to few minutes of M/EEG signal sampled at 1000 Hz, for
each of the few hundreds electrodes P ). Such problems have become of increasing
importance, especially in genomics, computational biology and neuroscience. In this
setting high variance and overfitting are a major concern [Has+05]. As a result,
simple, highly regularized approaches like the Ridge regression algorithm, using the
SRM learning rule, often become the methods of choice.

To tackle our task of predicting a continuous outcome from M/EEG signals, the learn-
ing theory just described teaches us four important lessons. First, the generalization
bounds (1.10) (together with the curse of dimensionality, see [Has+05]) calls for
low-dimensional inputs, requiring to derive a compact yet complete summary of the
high-dimensional M/EEG signal x(t): this will be investigated in Section 1.2 and
lead to the spatial covariance matrix. Second, most commonly used ML algorithms
operate on Euclidean objects living in a vector space, requiring to vectorize the
above representation: this is the subject of Section 1.3. Third, the No-Free-Lunch
theorem imposes a form of prior knowledge about our task to successfully learn
it: in Section 1.4 we will derive a generative model D of both the M/EEG signal
and the outcome, backed by our understanding of the physiological mechanism
generating brain electrical activity and of the physics of M/EEG acquisition. Finally,
to be performant, our predictive biomarker should be based on a statistically consis-
tent regression algorithm: we presented such an algorithm, derived in Section 1.5,
leveraging our data generative model to design a perfectly adapted function class H.
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1.2 Multivariate time series analysis
Most phenomena are visible to us via signals - measurable temporal variations of
different sources of activity. The scientific study of these phenomena therefore
relies on the analysis of these signals. For example the yearly land-ocean surface
temperatures recorded at different locations on Earth may help to study global
warming, the quarterly earnings per share of biggest companies in a particular
industry may reflect its global financial health, brain electrical activity recorded from
various locations on the scalp via M/EEG could allow testing how different brain
areas are responding to a particular stimulus. To study these phenomena, scientists
need mathematical tools to quantify, understand, model, and predict the time
evolution of such signals. Multivariate time series are the standard mathematical
tool for describing and analysing signals coming from measurements from multiple
sensors during a physical or biological experiments. In this section, we define
multivariate time series and present probabilistic tools to analyze them. We will
discuss some common assumptions regarding their statistics and then define a
compact representation in the form of the covariance matrix. Finally we’ll explain
why these matrices are often rank-deficient in the case of M/EEG signals.

1.2.1 Statistical and temporal moments
When an analog signal (valued at continuous time t ∈ R) is measured by an
electronic device, it is generally sampled with a uniform interval of length Ts, the
sampling period, by recording its values at times {tTs}t∈Z. This gives rise to a
digital signal (valued at discrete-time t ∈ Z). Discrete signal processing has replaced
analog signal processing in most applications with more sophisticated and precise
algorithms. Then, reconstructing the initial continuous-time signal from its samples
is, in some conditions, possible using interpolation algorithms.

Most real-world digital deterministic signals can be modeled by a multivariate
time series. A multivariate time series is a collection of P -dimensional vectors,
indexed by t ∈ Z:

x(t) =


x1(t)

...
xP (t)

 (1.11)

Each dimension xk(t), k = 1 . . . P in x(t) represents a different quantity: it can
describe the time evolution of a certain stock composing a portfolio of P stocks
in Finance [Lut07], the voice recorded at one of the P microphone in an acoustic
experiment [OS94], or the neural activity registered by one electrode placed on a
subject’s scalp [SC07] in a P -channel EEG recording.
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To analyze properties of a class of deterministic signals, such as general resting-state
EEG signals of different subjects, the standard approach is to use a probabilistic
framework and represent this class by a random signal, whose probability distribution
reflects the common properties of those signals. This random signal is modeled by
a stochastic process. In this approach, each time sample x(t) is considered as a
random vector x(t, ω) in RP , generated by some statistical law whose probability
density function is px(t). Each possible realization {x(t, ω0)}t∈Z of this stochastic
process is a multivariate time series called a trajectory. All trajectories correspond
to all signals of the class. This modeling allows to efficiently code signals of a same
class and to separate the signal of interest from a noise whose stochastic features
are different. To enhance readability, please note that we will use the overloaded
notation x(t) to denote both the random vector x(t, ω) and one of its realization
x(t, ω0), where the context will make the definition unambiguous. We focus on
signals taking values in R.

The statistics of the signal x(t) is completely described by its statistical moments,
among which its first order moment, a vector called the statistical mean at each
time t,

µ(t) = E [x(t)] =
∫
RP

y px(t)(y)dy ∈ RP , (1.12)

and its second order moment, a matrix called the statistical autocovariance between
two times t and s,

R(t, s) = E
[(

x(t) − µ(t)
)(

x(s) − µ(s)
)⊤] ∈ RP ×P (1.13)

=
∫
RP ×RP

(
y − µ(t)

)(
z − µ(s)

)⊤
p[x(t),x(s)](y, z)dydz , (1.14)

where p[x(t),x(s)] is the joint probability density function for x(t) and x(s), and x⊤

denotes the transpose of x. Other statistical quantities may also be defined, such as
higher-order moments (kurtosis, skewness, etc.) [NM93] or the entropy of the time
series [BV00], but we will not consider them in this thesis.

Similarly, we can define their temporal counterparts, the temporal moments,
whereby instead of fixing the time t and averaging across all possible realizations
of the random vector, we fix a particular realization and average across all the time
course. The resulting quantities are therefore random objects: the temporal mean,

µ = ⟨x(t)⟩ = lim
T →+∞

1
T

T −1∑
t=0

x(t) , (1.15)

and the temporal autocovariance:

R(τ) =
〈(

x(t+ τ) − µ
)(

x(t) − µ
)⊤〉 (1.16)
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1.2.2 Statistical assumptions
Inferring statistically valid conclusions about populations from samples requires
some background assumptions, statements that one makes to make the building of
theoretical models easier. For instance we can use these assumptions to obtain better
estimators for describing the statistical law of the samples (less bias and smaller
variance), as well as clearer interpretations about the underlying stochastic process
that generated them [Lut07]. However, they must be made carefully, since incorrect
assumptions can yield to highly inaccurate conclusions.

Stationarity. One of the most common assumptions refers to how the statistics of
x(t) evolves in time. Strict-sense stationarity assumes that any joint probability law
is invariant by any temporal shift, which we can roughly think of as “the statistical
moments do not depend on time”. Most of the time in signal processing we observe
only one realization, from which one want to estimate certain parameters of the
underlying stochastic process. The poorness of this numerical information generally
limits the investigation to the study to its mean and autocovariance. Since we only
study the second-order moments of the process, we generally adopt the milder
hypothesis of wide-sense stationarity (WSS), that assumes stationarity up the second
order. This implies that the statistical mean of the multivariate time series do not
depend on time,

µ(t) = µ , (1.17)

and that the autocovariance matrix between two times t and s depends only on their
difference τ = s− t, and not on time t:

R(t, s) = R(t, t+ τ) = R(τ) = E
[
x(t+ τ) − µ)(x(t) − µ)⊤

]
. (1.18)

Under the WSS hypothesis, the cross-power spectral density of a multivariate time
series is defined as the discrete-time Fourier transform (DTFT) of the sequence of
auto-covariance matrices [Pri83; PW93]:

S(f) =
∑
k∈Z

R(k)e−j2πfk . (1.19)

The cross-power spectral density matrices are positive definite matrices whose
diagonal values (also known as the power spectral density or PSD) describe
how the power (or variance) of each time series in x(t) is distributed along the
frequency domain; the out-of-diagonal values portray the statistical correlation
between the time series in each pair of dimensions in the frequency domain. For
example the spectral power of a univariate white noise (a WSS process whose
values at different times are uncorrelated) is constant. These matrices completely
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characterizes the autocovariance of the process which can be retrieved by the inverse
Fourier transform.

Stationarity ensures interesting statistical properties on the time series, but is not
always adequate to assume, in particular when the goal is to identify changes in the
statistics of the samples, such as detecting changes in neural connectivity [Ast+08;
RB15]. But even in this context, it is common to assume that the changes in the
statistics are relatively smooth, so that samples close in time have approximately
the same statistics. In this approach, one can consider that the samples in a small
sliding window can be described by the same mean vector and autocovariance
matrices. Then, the evolution of x(t)’s statistics can be described by how its mean
and auto-covariance matrices evolve from one window to the next. This window
should not be too small (would then yield poor statistical estimators), nor too large
(may blur the dynamics of study).

Ergodicity and parameter estimation. Another common (yet often implicit) as-
sumptions refers to how the time-course of x(t) evolves in statistics. Strict-sense
ergodicity assumes that trajectories of a stochastic process will eventually visit all
parts of its space in a uniform sense, which we can roughly think of as “the temporal
moments do not depend on ω”. Similarly to stationarity, we generally adopt the
milder hypothesis of wide-sense ergodicity, that assumes ergodicity up the second
order.

In this thesis we will only consider wide-sense stationary and ergodic signals taking
real values. A fundamental property of such signals is that their temporal moments
(time averages) and the statistical moments (ensemble or population averages) are
equal, with the very important experimental consequence that only one trajectory
is enough to determine all the statistical moments. Assuming that x(t) is wide-
sense stationary and ergodic over T samples, {x(0), . . . ,x(T − 1)}, we can write the
estimators for (1.12), (1.13) and (1.19) as:

µ̂ = 1
T

T −1∑
t=0

x(t) (1.20)

R̂(τ) = 1
T − |τ |

T −1−|τ |∑
t=0

(
x(t+ |τ |) − µ̂

)(
x(t) − µ̂

)⊤
(1.21)

Ŝ(f) = DTFT(R̂(τ)) (1.22)

The cross-spectral density matrices can also be obtained via spectral estimation
methods such as the periodogram or Welch’s method [PW93].
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Without loss of generality, we will consider that all time series are zero-mean, so that
their parametrization, up to the second order, may be done using their cross-spectral
density matrices only. Furthermore, we will assume that the time series have been
bandpass filtered and so their spectral content is supported on a set of frequencies
denoted by F .

A special note on the Gaussianity assumption. Another usual assumption concerns
the statistics of x(t) and assume that px(t) can be approximated by a multivariate
Gaussian distribution. Under this hypothesis, the second-order moments, the mean
vector and sequence of autocovariance matrices R(τ) (or, equivalently, the cross-
spectral density matrices S(f)) exhaustively describe the full statistical behavior of
x(t) [Pri83]. This hypothesis is appealing in numerous ways e.g., a WSS Gaussian
process has also the much stronger property of being strict-sense stationary. It
can also be used for defining a notion of distance between two time series. Since
the second-order moments encapsulates information about the whole probability
distribution, we can use them to compare two time series, xi(t) and xj(t) by defining
their cross-spectrum distance as

dS

(
xi(t),xj(t)

)2 =
∫

F
d2(Si(f),Sj(f)

)
df , (1.23)

where Si(f) and Sj(f) are the cross-spectral density matrices of xi(t) and xj(t),
respectively, and d is some distance between matrices. The choice of the distance
d will be extensively discussed in Section 1.3. This approach of comparing two
time series based on their cross-spectral densities is more appropriate than directly
comparing their samples on a given realization because it is based on information
defining the whole probability distribution. It also lead to stronger performance on
classification [CRJ19], regression [Sab+19a] and clustering tasks [Cha+13].

The Gaussianity assumption is often justified in the literature by different arguments.
If several independent factors play a role in the generation of the data, one may use
the central limit theorem to argue that the sum of all their contributions yields a
statistical behavior that can be well described by a Gaussian distribution [PP02]. As
a result, Gaussian processes appear in numerous physical phenomena. It also gives a
numerical advantage: parameter estimation under the Gaussian model yields convex
optimization problems that have analytic solutions. Finally, without any knowledge
about the statistics of the data, in particular with no information on the moments
of order strictly higher than two, the Gaussian distribution is the most conservative
assumption: among all probability distributions defined on an infinite domain and
with a given mean and variance, it is the one with maximal differential entropy
i.e., the one that requires the maximum quantity of information to encode it.

However, the Gaussian assumption is very strong and is not always justified. For
instance, the statistics of rare events are better described by Poisson distributions. In
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general, the use of Gaussian distributions to model data is appropriate when one
has no knowledge about the physical phenomena that generates its samples. As we
will develop a generative model of M/EEG signals and related biomedical outcomes,
we will not resort to this strong hypothesis. This will give a wider generality to our
contribution, and will yield a more robust biomarker. Note that we can still consider
that, up to the second order, we have:

dS

(
xi(t),xj(t)

)2 ≃
∫

F
d2(Si(f),Sj(f)

)
df . (1.24)

1.2.3 The covariance matrix
A good estimate of the cross-spectral density matrix requires enough time samples.
If not the case, it is wiser to condense the information contained in the spectrum
into a single parameter. Comparing two time series then amounts to compare their
corresponding parameters. One can do this by noticing that the inverse DTFT applied
to the cross-spectral density matrices of a zero-mean F -bandpass filtered time series
x(t) gives ∫

F
S(f)df = R(0) = E[x(t)x(t)⊤] = C , (1.25)

which is the covariance matrix of x(t) and can be calculated without having to
estimate its spectrum. Denoting the data matrix X ∈ RP ×T with T the number of
time samples, and using (1.21) with τ = 0, the covariance matrix reads:

C ≃ XX⊤

T
∈ RP ×P with X ∈ RP ×T . (1.26)

For the sake of simplicity, we assume that T is the same for each time series, although
it is not required by the following method. The diagonal of this matrix represents the
variance (power) of each sensor, while the off-diagonal terms contain the covariance
between each pair of signals. Negative values in the off-diagonal express negative
correlations.

We may then approximately compare two time series xi(t) and xj(t) using the
distance between their respective covariance matrices Ci and Cj as

dS

(
xi(t),xj(t)

)2 ≃ d2(Ci,Cj) . (1.27)

Under our assumptions, comparing two time series boils down to estimating their
covariance matrices. A common problem arising from covariance estimation in
M/EEG signals is rank-deficiency, mainly occurring for two different reasons. First,
high-dimensional statistics show that one need enough available samples to expect
a good estimate of the covariance matrix that describes the statistics of the data.
This may not be the case for some applications. The covariance C is a P × P matrix
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which is a sum of T rank-one matrices (as per (1.21) with τ = 0). Therefore, there
should be at least P samples available for the estimate Ĉ to have a chance of not
being rank-deficient. In fact, the number of parameters to estimate in a covariance
grows quadratically with dimension so many more samples are required than there
are sensors to accurately estimate such matrices [EG15; Rod+17]. A common
approach for alleviating such problem, called ‘shrinkage’, use a regularization term
that adds a weighted Identity matrix to Ĉ, with the optimal weight being determined
from the data. Many methods have been proposed for determining the weight of
the regularization term [Che+10; EG15]. Second, even in the case where we
have enough available samples to estimate the covariance matrix, the signal pre-
processing used to enhance the SNR of noisy signals lead to inherently rank-deficient
covariance matrices. This is the case of M/EEG signals.

1.2.4 M/EEG preprocessing induces rank-deficiency
Even though the magnetic shielded room and gradiometer coils can help to reduce
the effects of external interferences on MEG signal (as seen in the Introduction chap-
ter), the problem mainly remains and further reduction is needed. Also, additional
artifact signals can be caused by movement of the subject during recording if the
subject has small magnetic particles on his body or head. The Signal Space Separa-
tion (SSS) method can help mitigate those problems [TK05]. Besides, physiological
artifacts (eye blinks and heart beats) can cause prominent artifacts in the recording.
The Signal Space Projections (SSP) method is typically used to reduce them [UI97].
Both of these methods are described below and enable to increase the SNR, at a
price of rendering covariance matrices rank-deficient.

Signal Space Separation (SSS)

The Signal Space Separation (SSS) method [TK05], also called Maxwell Filtering,
is a biophysical spatial filtering method, purely MEG specific, that aim to produce
MEG signals cleaned from external interferences and from movement distortions
and artifacts.

A MEG device records the neuro-magnetic field distribution by sampling the field
simultaneously at P distinct locations around the subject’s head. At each moment
of time, the measurement is a vector x ∈ RP where P is the total number of
recording channels. In theory, any direction of this vector in the signal space
represents a valid measurement of a magnetic field, however the knowledge of the
location of possible sources of magnetic field, the geometry of the sensor array and
electromagnetic theory (Maxwell’s equations and the quasi static approximation)
considerably constrain the relevant signal space and allow us to differentiate between
signal space directions consistent with a brain’s field and those that are not.
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To be more precise, it has been shown that the recorded magnetic field is a gradient
of a harmonic scalar potential. A harmonic potential V (r) is a solution of the
Laplacian differential equation ∇2V = 0, where r is represented by its spherical
coordinates (r, θ, ψ). It is known that a harmonic function in a three-dimensional
space can be represented as a series expansion of spherical harmonic functions
Ylm(θ, ϕ):

V (r) =
∞∑

l=1

l∑
m=−l

αlm
Ylm(θ, ϕ)
rl+1 +

∞∑
l=1

l∑
m=−l

βlmr
lYlm(θ, ϕ) (1.28)

We can separate this expansion into two sets of functions: those proportional to
inverse powers of r and those proportional to powers of r. From a given array of
sensors and a coordinate system with its origin somewhere inside of the helmet, we
can compute the signal vectors corresponding to each of the terms in 1.28.

Following notations of [TK05], let alm be the signal vector corresponding to term
Ylm(θ,ϕ)

rl+1 and blm the signal vector corresponding to rlYlm(θ, ϕ), our measurement is
given by:

x =
∞∑

l=1

l∑
m=−l

αlmalm +
∞∑

l=1

l∑
m=−l

βlmblm (1.29)

A set of P such signal vectors forms a basis in the P dimensional signal space. This
basis is not orthogonal, but still linearly independent so any measured signal vector
has a unique representation in this basis:

x = [Sin Sout]
[

xin

xout

]
, (1.30)

where the sub-bases Sin and Sout contain the basis vectors alm and blm respectively,
and vectors xin and xout contain the corresponding αlm and βlm values.

It can be shown that the basis vectors corresponding to the terms in the second
sum in expansion (1.28) represent the perturbation sources external to the helmet.
We can then separate the components of field arising from sources inside and
outside of the helmet. We can therefore decompose the signal vector x into the
sum of 2 components: ϕin = Sinxin in the brain signal space with basis Sin and
ϕout = Soutxout in the interference space with basis Sout (not necessarily orthogonal
to Sin). By discarding ϕout, we are left with the part of the signal coming from inside
of the helmet only. Hence, ϕin reproduces in all the MEG channels the signals that
would be seen if no interference from sources external to the helmet existed: we
have performed signal space separation. To further reduce the noise, we can discard
the high l,m end of the spectrum: indeed the spherical harmonic functions are
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known to contain increasingly higher spatial frequencies when going to higher index
values (l,m) so that the signals from real magnetic sources are mostly contained in
the low l,m end of the spectrum.

After projection in the lower-dimensional SSS basis we project back the signal in its
original space producing a signal Xclean = SinS⊤

inX ∈ RP ×T (Sin ∈ RP ×R) with
a much better SNR (reduced noise variance) but with a rank R ≤ P . As a result
each reconstructed sensor is then a linear combination of R synthetic source signals,
which modifies the inter-channel correlation structure, rendering the covariance
matrix rank-deficient.

Signal Space Projection (SSP)

If one knows, or can estimate, K linearly independent source patterns a1, . . . ,aK

that span the space S = span(a1, . . . ,aK) ⊂ RP , one can estimate an orthonormal
basis UK ∈ RP ×K of S by taking the first K left singular vectors in the singular
value decomposition (SVD) of the matrix formed by the source patterns in columns.
We can then separate the sensor-space signal x into a signal s∥ produced by those
K sources (belonging to the subspace S) and a signal s⊥ that can’t be produced by
any linear combination of those sources (belonging to the corresponding orthogonal
subspace):

x = x∥ + x⊥ = UKU
⊤
Kx + (I − UKU

⊤
K)x (1.31)

If S is formed from specific artifacts then x⊥ is mostly free of those.

This is the idea behind the Signal Space Projections (SSP) method [UI97]. In
practice SSP is used to reduce physiological artifacts (eye blinks and heart beats)
that cause prominent artifacts in the recording. SSP projections are computed
from time segments contaminated by the artifacts and the first component (per
artifact and sensor type) are projected out. To take a more concrete example, in the
Cam-CAN MEG dataset [Sha+14], eye blinks are monitored by 2 electro-oculogram
(EOG channels), and heart beats by an electro-cardiogram (ECG channel). The
EOG and ECG channels are used to identify the artifact events (after a first band-
pass filter to remove DC offset and an additional [1-10]Hz filter applied only to
EOG channels to remove saccades vs blinks). As an illustration of this process,
in our MEG experiment described in Section 2.1.2, we filtered the raw signal in
[1-35]Hz band and created data segments (called epochs) around those events,
rejecting those whose peak-to-peak amplitude exceeds a certain global threshold.
For each artifact and sensor type these epochs are then averaged and the first
component of maximum variance is extracted via PCA. Signal is then projected in
the orthogonal space, again leading to rank-deficient covariance matrices. This
follows the guidelines of the MNE software [Gra+14]. It is interesting to compare
SSP with SSS geometrically. Like SSP, SSS is a form of projection. Whereas SSP
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empirically determines a noise subspace based on data (empty-room recordings, EOG
or ECG activity, etc.) and projects the measurements onto a subspace orthogonal
to the noise, SSS mathematically constructs the external and internal subspaces
from spherical harmonics and reconstructs the sensor signals using only the internal
subspace (i.e., does an oblique projection).

To summarize this section, we saw that our assumptions of stationarity and ergodicity
allowed to represent a M/EEG time series x(t) by its covariance matrix C in a
certain frequency band, either full rank or rank-deficient. Covariance matrices are
positive matrices, so they have a particular structure. This structure implies that
they don’t live in a flat space (a vector space), they live in a curved space, called a
manifold. Hence, a covariance matrix can’t be readily vectorized. Even though some
algorithms can manipulate covariance matrices directly as input [Bar+12], most
commonly used ML regression algorithms (and also the most performant ones for
M/EEG classification tasks) assume an Euclidean structure of their input requiring
to vectorize the covariance matrix. To do that properly, we must first introduce some
important concepts regarding Riemannian manifold.
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1.3 Riemannian matrix manifolds

1.3.1 Riemannian manifolds

ξ MT

M

M M

M'

LogM

ExpM

Fig. 1.1: Tangent Space, exponential
and logarithm on Riemannian
manifold illustration

In this work, we consider differentiable man-
ifolds M in RP of dimension K. Intuitively
differentiable manifolds are "curved" spaces that
locally at each point resemble a flat vector space
(see [AMS09], chap. 3 and [PFA06]). Examples
of differentiable manifolds in R3 are curves (one-
dimensional manifolds which locally look like
a straight line) and surfaces (two-dimensional
manifolds which locally look like a plane). More
precisely, each point of the manifold M ∈ M is
associated to a vector space called tangent space at M , denoted TM . For any matrix
M ′ ∈ M, as M ′ → M , ξM = M ′ − M ∈ TM . It is the set of derivatives of curves
on the manifold passing through M . The dimension of TM is K, the dimension of
M. The differentiable manifold becomes Riemannian when each tangent space
TM is endowed with a metric, i.e. an inner product ⟨·, ·⟩M : TM × TM → R, that
defines a local Euclidean structure. This metric is supposed smooth across points
on the manifold. An Euclidean space is a particular Riemannian manifold with a
constant metric. We can then define:

A norm on the tangent space TM : ∥ξM ∥2
M = ⟨ξM , ξM ⟩M for ξM ∈ TM .

The length of a path between two points M ,M ′ ∈ M: for a path γ : [0, 1] → M
such that γ(0) = M and γ(1) = M ′, the length of γ is L(γ) =

∫ 1
0 ∥γ̇(t)∥γ(t)dt. This

generalizes the usual notion of path length in Euclidean spaces.

A distance on the manifold M, defined as the minimum length of paths: d(M ,M ′) =
minL(γ) such that γ(0) = M , and γ(1) = M ′. This distance is called the geodesic
distance. If M is an Euclidean space, this distance is simply the usual Euclidean
distance: d(M ,M ′) = ∥M − M ′∥2, achieved when γ is a straight line between M

and M ′.

The Frechet mean M of a set of points Mi ∈ M is defined as

M = Meand(M1, . . . ,MN ) = arg min
M∈M

N∑
i=1

d(M ,Mi)2 . (1.32)

This is a generalization of averaging on manifolds. Indeed, in an Euclidean space, the
average 1

N

∑N
i=1 Mi is the Frechet mean of M1, . . .MN with respect to the Euclidean

distance d(M ,M ′) = ∥M − M ′∥2. Another example in R∗
+, the geometric mean
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between positive numbers a1, . . . , aN > 0, given by a = (a1 × · · · × aN )1/N , is the
Frechet mean of (a1, . . . , aN ) with respect to the distance d(a, a′) = | log( a

a′ )|.

The exponential mapping ExpM : TM → M is the operation that maps the tangent
space, which has a simple Euclidean structure, to the manifold which might have
a much more complicated structure. It satisfies d(ExpM (ξM ),M) = ∥ξM ∥M for
ξM ∈ TM small enough.

The logarithm mapping LogM : M → TM is defined as the reciprocal of the ex-
ponential mapping which hence verifies ∥LogM (M ′)∥M = d(M ,M ′) for M ′ ∈ M
close enough from M . It maps the manifold to the tangent space, while preserving
the local properties of the manifold.

The vectorization operator. The logarithm mapping is of crucial importance in
practical applications, since it allows to manipulate and store vectors (belonging
to the tangent space) instead of points on the manifold. To be more concrete,
since each tangent space is a K-dimensional Euclidean space, there exists a linear
and invertible mapping ϕM : TM → RK such that ∥ξM ∥M = ∥ϕM (ξM )∥2 for all
ξM ∈ TM . Combining ϕM and LogM gives the vectorization operator at ∈ M,
PM = ϕM ◦ LogM which maps M to RK , and verifies:

∥PM (M ′)∥2 = d(M ,M ′) for M ′ ∈ M . (1.33)

This operator explicitly captures the local Euclidean properties of the Riemannian
manifold. Fig. 1.1 illustrates these concepts. Finally, if a set of matrices M1, . . . ,MN

is located in a small portion of the manifold, denoting M = Meand(M1, . . . ,MN ),
it holds:

d(Mi,Mj) ≃ ∥PM (Mi) − PM (Mj)∥2 (1.34)

The vectorization operator is key for machine learning applications: it projects points
in M on RK , and the distance d on M is approximated by the distance ℓ2 on RK .
Therefore, those vectors can be used as input for any standard regression technique,
which often assumes a Euclidean structure of the data.

As a final note, all the notions developed above are based on the metric ⟨·, ·⟩M .
Different metrics lead to different geodesic distances, Frechet means, exponential
and logarithm mapping and vectorization operator. Choosing the right metric for a
particular problem may lead to substantial benefits. For additional details on matrix
manifolds, see [AMS09], chap. 3.

1.3.2 The positive definite manifold S++
P

In this thesis, we are interested in one Riemannian manifold in particular: the mani-
fold of positive definite matrices S++

P [FM03], to which most full rank covariance
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matrices C belong. This is not a vector space, as for example the difference of two
positive definite matrices may not be positive definite. It is a differentiable manifold
of dimension P (P +1)

2 , with fixed tangent spaces TC = S+
P for all C ∈ S++

P .

We endow the manifold with the geometric metric given by: ⟨P ,Q⟩C = Tr(P C−1QC−1).
The associated geometric norm generalizes the Froebenius norm: ∥P ∥I (identity) =
∥P ∥F (Frobenius) for P ∈ TI . This metric has two main advantages. First, it is affine-
invariant as for any invertible matrix W it verifies ⟨W P W ⊤,W QW ⊤⟩W CW ⊤ =
⟨P ,Q⟩C . Second, it leads to closed-form formulas for most Riemannian notions
seen above:

The geometric geodesic distance on the manifold S++
P is:

d2
G(C,C ′) = ∥ log(C−1/2C ′C−1/2)∥2

F =
P∑

k=1
log2(λk) , (1.35)

where λk, k = 1 . . . P are the real eigenvalues of C−1/2C ′C−1/2 , or equivalently of
C−1C ′. Please note that these 2 matrices have the same eigenvalues but not the same
singular values (hence not the same Frobenius norm) since C−1C ′ is not symmetrical.
Compared to the more naive Frobenius distance d2

F (C,C′) = ∥C −C′∥2
F =

∑P
k=1 λ

2
k

where λk are the eigenvalues of C − C′, the geometric distance is a geodesic
distance, which takes into account the intrinsic geometry of the positive definite
manifold [Bha09]. We also see that the singular matrices act as a barrier for this
distance: if C or C ′ is close from being singular, one eigenvalue λk goes either to 0
or +∞, and dG(C,C ′) goes to infinity. Following the corresponding property of the
geometric metric, this distance is affine invariant, i.e.,

For W invertible, dG(W CW ⊤,W C ′W ⊤) = dG(C,C ′) . (1.36)

This is an important property for our purpose: assume that C and C ′ are covariances
of some signals x and x′ ∈ RP , the distance dS (1.24) between x and x′ is also
invariant to linear transforms of the signals W x and W x′: the distance is blind to
global mixing effects. Indeed, when using the geometric distance in (1.24), we have
for any invertible matrix W ∈ RP ×P ,

dS

(
W xi(t),W xj(t)

)2 ≃
∫

F
d2(W Si(f)W ⊤,W Sj(f)W ⊤)df , (1.37)

=
∫

F

d∑
k=1

log2(µk(f))df , (1.38)
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where µk(f) are the eigenvalues of matrix (W Si(f)W ⊤)−1(W Sj(f)W ⊤)
= W −T S−1

i (f)Sj(f)W T which, by similarity, has the same eigenvalues of S−1
i (f)Sj(f).

Therefore,

dS

(
W xi(t),W xj(t)

)2 ≃
∫

F
d2(Si(f),Sj(f)

)
df ≃ dS

(
xi(t),xj(t)

)2
. (1.39)

This shows that distance (1.24) is invariant to affine transformations of time series
themselves, a property that is very useful in practice. Indeed, we often observe
mixing effects when working with time series related to physical phenomena. These
effects can be often be approximated by the action of a linear operator, as we will see
in Section 1.4.2 for M/EEG signals. In such cases, the distance (1.24) is invariant
to these effects. For instance, very conveniently, the geometric distance between
two time series recorded with different measurement scales (e.g., V or µV) is the
same. The effect of slightly moving the positions of electrodes on a subject’s scalp or
the effects caused by the mixture of different sources of activity in a person’s brain
are also examples of such mixing effects approximated by a linear operator, hence
that leave the distance between time series unchanged. This distance has achieved
state-of-art performance in EEG-based Brain-Computer Interfaces (BCI) classification
tasks [Bar+12] using only covariance matrices as features of EEG signals.

The Frechet mean, for P = 1, is the geometric mean between positive scalars. In
higher dimension, no closed-form formula for the Frechet mean has been discovered,
but iterative algorithms to compute it are available [JVV12; CPB16]. The mean
is also affine invariant, in the sense that W C W ⊤ = W CiW ⊤ (applying linear
mixing on the mean of the covariances is the same as computing the mean over all
individually mixed covariances). As a consequence, if the matrices Ci were jointly
diagonalizable, i.e. Ci = AΛiA

⊤ with A invertible and Λi diagonal, we would have

C = A
(∏N

i=1 Λi

)1/N
A⊤. This property is used in the proof of consistency of the

Riemann regression algorithm in Section 1.5.1.

The logarithm mapping at C is given by LogC(C ′) = C1/2 log(C−1/2C ′C−1/2)C1/2 ∈
TC , and the vectorization operator w.r.t. C is

PC(C ′) = Upper(C− 1
2 LogC(C ′)C− 1

2 ) = Upper(log(C−1/2C ′C−1/2)) , (1.40)

where Upper(M) is the vector of size P (P + 1)2 containing the upper triangular
coefficients of M , with unit weights on the diagonal and

√
2 weights on the off-

diagonal. This weighting ensures that the vector and the matrix have same norms
(∥Upper(M)∥2 = ∥M∥F ). Once again, if C and C ′ are covariances of x and x′, it
amounts to whitening x′ with C, and then applying a "spectral" non-linear transform
on the resulting covariance, where the transform only changes the eigenvalues and
not the eigenvectors.
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1.3.3 The fixed rank SDP manifold S+
P,R

When a covariance matrix is -rank-deficient, it does not belong to S++
P but to S+

P,R,
the subspace of SPD matrices of fixed rank R. Unlike S++

P , it is hard to endow
the S+

P,R manifold with a distance that yields tractable or cheap-to-compute loga-
rithms [VAV09]. This manifold is classically viewed as S+

P,R = {YY⊤|Y ∈ RP ×R
∗ },

where RP ×R
∗ is the set P ×R matrices of rank R [Jou+10]. This view allows to write

S+
P,R as a quotient manifold RP ×R

∗ /OR, where OR is the orthogonal group of size R.
This means that each matrix YY⊤ ∈ S+

P,R is identified with the set {YQ|Q ∈ OR}.

It has recently been proposed [MA18] to use the standard Frobenius metric on the
total space RP ×R

∗ . This metric in the total space is equivalent to the Wasserstein
distance [BJL18] on S+

P,R:

dW (S,S′) =
[
Tr(S) + Tr(S′) − 2Tr((S

1
2 S′S

1
2 )

1
2 )
] 1

2 (1.41)

This provides cheap-to-compute logarithm mapping:

LogY Y ⊤(Y ′Y ′⊤) = Y ′Q∗ − Y ∈ RP ×R
∗ , (1.42)

where UΣV ⊤ = Y ⊤Y ′ is a singular value decomposition and Q∗ = V U⊤. The
vectorization operator is then given by PY Y ⊤(Y ′Y ′⊤) = vect(Y ′Q∗ − Y ) ∈ RP R,
where the vect of a matrix is the vector containing all its coefficients.

This framework offers closed-form projections in the tangent space for the Wasser-
stein distance, which can be used to perform regression. Importantly, since S++

P =
S+

P,P , we can also use this distance on the positive definite matrices. This distance
possesses the orthogonal invariance property:

For W orthogonal, dW (W ⊤SW ,W ⊤S′W ) = dW (S,S′) . (1.43)

This property is weaker than the affine invariance of the geometric distance. A
natural question is whether such an affine invariant distance also exists on this
manifold. Unfortunately, it is shown in [BS09] that the answer is negative for R < P .
The proof is sufficiently simple to be derived here.

Theorem. There is no continuous affine invariant distance on S+
P,R if R < P

Proof. We show the result for P = 2 and R = 1; the demonstration can straight-
forwardly be extended to the other cases. The proof, from [BS09], is by con-
tradiction. Assume that d is a continuous invariant distance on S+

2,1. Consider

A =
(

1 0
0 0

)
and B =

(
1 1
1 1

)
, both in S+

2,1. For ε > 0, consider the invert-
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ible matrix Wε =
(

1 0
0 ε

)
. We have: WεAW ⊤

ε = A, and WεBW ⊤
ε =

(
1 ε

ε ε2

)
.

Hence, as ε goes to 0, we have WεBW ⊤
ε → A Using affine invariance, we have:

d(A,B) = d(WεAW ⊤
ε ,WεBW ⊤

ε ) . Letting ε → 0 and using continuity of d yields
d(A,B) = d(A,A) = 0, which is absurd since A ̸= B.

To close this section, we have now compactly represented a M/EEG time series x(t)
by its covariance matrix C in a certain frequency band. This matrix can either be
full rank C ∈ S++

P or most often rank-deficient C ∈ S+
P,R. In any case, the only way

to vectorize a covariance matrix while enjoying the affine invariance property is by
projecting it into a tangent space. Only once a matrix has been vectorized this way,
can we use it as features to a standard regression algorithm. We will now present
our prior knowledge on the M/EEG data generating mechanism and detail classical
approaches to predict from such signals.
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1.4 Generative models of M/EEG signals and
outcome

In this thesis we are interested in predicting a continuous bio-medical neuro-outcome
y ∈ R from brain activity, measured by MEG/EEG and represented by the multivariate
signal x(t) ∈ RP , where P corresponds to the number of sensors. As prior knowledge
about this task we will derive a neurophysiological generative model of brain activity,
and its approximation by a statistical generative model. Note that, in this thesis, we
use the term generative model in the statistical sense of a probabilistic model of the
M/EEG observations and the biomedical outcomes.

1.4.1 Prior knowledge
Physiological generative model. We assume the existence of M ≫ P electrical
physiological sources in the brain that emerge from the synchronous activity of cortical
layer IV pyramidal neurons [Häm+93]. The activity of these neural current genera-
tors form the time series z(t) ∈ RM , where t represents time. These sources can be
thought of as localized current sources, such as a patch of cortex with synchronously
firing neurons, or a large set of patches forming a network. The underlying assump-
tion is that these unobservable physiological sources are at the origin of the M/EEG
signals x(t), and that they are statistically related to y. Often they are even the
actual generators of y, e.g., , the neurons producing the finger movement of a person.
Here, we embrace the statistical machine learning paradigm where one aims to learn
a predictive model from a set of N labeled training samples, (xi(t), yi), i = 1, . . . , N ,
which we see, fundamentally, as a function approximation problem. We will consider
predicted outcomes that do not depend on time. The physics of the problem and
the linearity of the quasi-static approximation of Maxwell’s equations guarantee that
MEG/EEG acquisition is linear too: the signals measured are obtained by linear
combination of the underlying physiological sources. This leads to:

xi(t) = Gi zi(t) , (1.44)

where Gi ∈ RP ×M is the leadfield, also commonly referred to as gain matrix.
Therefore, the observed M/EEG signal xi(t) ∈ RP recorded by the external sensors
contains information on unobserved brain internal sources zi(t) ∈ RM , distorted by
individual brain anatomy represented by Gi. Note that here the j-th column of Gi

is not necessarily constrained to be the forward model of a focal electrical current
dipole in the brain. It can also correspond to large distributed sources. Besides, the
neuro-outcome is also related to the sources through an unknown function:

yi = ϕ(zi(t)) . (1.45)
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This reality is illustrated as the area outside the cloud in Fig. 1.2.
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Fig. 1.2: Generative model for regression with M/EEG. Unobservable neuronal activity z gives rise

to observed M/EEG data X and an observed biomedical outcome y. The M/EEG data X is
obtained by linear mixing of z through the leadfield G. The outcome y is derived from z
through often unknown neural mechanisms. The statistical model (blue cloud) approximates
the neurophysiological data-generating mechanisms with two sub-models, one for the M/EEG
signals X (path 1), one for the biomedical outcome y (path 2). Both models are based on
a vector s of uncorrelated statistical sources that, may refer to localized cortical activity or
synchronous brain networks. The ensuing model generates y from a linear combination of the
statistical sources s. The generative model of X follows the ICA model [HO00] and assumes
linear mixing of the source signals by A, interpreted as a linear combination of the columns
of the leadfield G. The generative model of y assumes a linear model in the parameters β
but allows for non-linear functions in the data, such as the power or the log-power. The
mechanisms governing path 1 implies that the sources s appear geometrically distorted in
X. This makes it impossible for a linear model to accurately capture this distortion if y, in
path 2, is generated by a non-linear function of s. This study focuses on how to mitigate
this distortion without biophysical source modeling when performing regression on M/EEG
source power.

Statistical generative model of the M/EEG signals xi(t). We simplify this phys-
iological model by a statistical model inspired by Independent Component Anal-
ysis [HO00, ICA], a popular approach to model M/EEG signals [Mak+96]. The
M physiological sources are modelled by Q ≤ P statistical sources s(t) ∈ RQ, that
correspond to unknown latent variables. Again, these variables are assumed to
be linearly related to measured signal x(t) (a valid generative model for M/EEG
data called the linear instantaneous mixing model [Häm+93]) and to be statistically
related to the outcome variable y. The area inside the cloud depicted in Fig. 1.2
illustrates the statistical generative models. We consider an extension of noise-free
Blind Source Separation [Bel+97] and assume the measured signal arises from the
activity of Q statistical sources, contaminated by an additive noise:

x(t) =
Q∑

j=1
sj(t)as

j + n(t) . (1.46)

1.4 Generative models of M/EEG signals and outcome 57



The sensor signal x(t) ∈ RP is a linear combination of Q unit vectors in RP called
the source patterns. Each of the Q source pattern as

j is the sensor measure of a unit-
amplitude source and is weighted by the corresponding source amplitude sj(t) ∈ R.
This model is conveniently written in matrix form, for each sample i = 1 . . . N :

xi(t) = As
i si(t) + ni(t) , (1.47)

where si(t) ∈ RQ is the source vector formed by the time series of the Q sources
amplitude of sample i and ni(t) ∈ RP is the contamination due to noise. The
columns of the time-independent mixing matrix As ∈ RP ×Q are the Q linearly
independent source patterns [Hau+14], which correspond to topographies on the
sensor array: As = [as

1, . . . ,a
s
Q] ∈ RP ×Q. Each quantity in the right-hand side

of Eq. (1.47), A, si(t) and ni(t), is unknown and should be inferred from xi(t).
This setting encompasses both event-level regression, where the samples xi(t) are
multiple epochs of signal from a unique subject (i stands for a particular time
window), and subject-level regression where the samples represent the full signal of
multiple subjects (i then stands for a particular subject).

The following proposition shows that, under certain assumptions, our generative
model (1.47) has a full-rank formulation.

Proposition : Full-rank formulation of M/EEG signal generative model

Under the following statistical model assumptions:
▷ The signal x(t) ∈ RP arises from Q < P statistical sources contaminated

by additive noise
▷ The source space is the same for all samples and of dimension Q,
▷ The noise space is the same for all samples,
▷ The source and noise spaces are not mixed (i.e., in direct sum in RP ),

the statistical model (1.47) can be compactly rewritten as :

xi(t) = Aηi(t) , (1.48)

where A ∈ RP ×P is an invertible matrix (which includes source and noise
patterns) and ηi(t) ∈ RP is the concatenation of source and noise signals.
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Proof

We assume that the measured signal arises from the activity of sources, con-
taminated by additive noise: xi(t) = xs

i (t) + xn
i (t) ∈ RP .

Since the sources span a space of dimension Q, shared across all samples,
there exists Q linearly independent vectors of RP forming the columns of a
sample-independent matrix As = [as

1, . . . ,a
s
Q] such that xs

i (t) = Assi(t) with
si(t) ∈ RQ.
We say that two subspaces are in direct sum in RP (or that they are supple-
mentary in RP , or that RP is the co-product of the two subspaces) if any
vector in RP can be uniquely decomposed as a sum of vectors from these
subspaces. This is equivalent to saying that the juxtaposition of their basis
forms as basis of RP , or, as RP has a finite dimension, that the sum of their
dimension is P and their intersection is reduced to the null vector. We then
informally say that the subspaces are not mixed.
Since noise space is in direct sum with the source space in RP , and is shared
across samples, there exists P −Q linearly independent vectors of RP form-
ing the columns of a sample-independent matrix An = [an

1 , . . . ,a
n
P −Q] ∈

RP ×(P −Q) such that xn
i (t) = Anni(t) with ni(t) ∈ RP −Q.

So we have xi(t) = Assi(t) + Anni(t). Denoting A =
[As,An] = [as

1, . . . ,a
s
Q,a

n
1 , . . . ,a

n
P −Q] ∈ RP ×P and ηi(t) =

[si,1(t), . . . si,Q(t), ni,1(t), . . . , ni,P −Q(t)] ∈ RP , the generative model can be
rewritten as:

xi(t) = Aηi(t) ,

The matrix A is invertible since the source and noise subspaces span all RP .

By making additional statistical assumptions, the following proposition shows that
the covariance matrix of the M/EEG signal has a very particular structure:

Proposition : Structure of covariance matrix of M/EEG signal

If we further assume that:
▷ the sources are zero-mean and uncorrelated,
▷ the sources are uncorrelated from the noise,

the covariances are full rank and given by:

Ci = AEiA
⊤ , (1.49)

where Ei is a block diagonal matrix, whose upper Q × Q block is diag(pi)
with pi = E[s2

i (t)] ∈ RQ, the power of the sources of sample i.
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Proof

Recalling from (1.48) that xi(t) = Aηi(t) we have that Ci = E[xi(t)xi(t)⊤ =
AEiA

⊤ where Ei = E[ηi(t)ηi(t)⊤]. If we assume that the components of the
sources of a given sample i are zero-mean and uncorrelated, the covariance
matrix of sources is diagonal: E[si(t)s⊤

i (t)] = diag(pi), where pi,j = E[s2
i,j(t)]

is the power, i.e., the variance over time of the j-source of sample i. If they
are also uncorrelated from the noise, we have E[si(t)ni(t)⊤] = 0. As a result
Ei is a block diagonal matrix, whose upper Q×Q block is the covariance of
sources diag(pi) and the (P −Q) × (P −Q) lower block is the covariance of

the noise. Ei =


. . . 0

(pi,j)j

0
. . .

0

0 M

 In particular, these covariances Ci are

full rank.

Note that this statistical generative model is a simplification of the biophysical
generative mechanism: the number of true sources may exceed the number of
sensors, M ≫ P (whereas we assume Q < P ), the source and noise spaces may
not be the same for all samples, as for instance the gain Gi is sample-dependent in
subject-level regression (whereas A is sample-independent), the real sources zi may
not be uncorrelated [Nol+06].

The assumption that the noise subspace is not mixed with the source subspace is
motivated by the fact that environmental perturbations (by definition independent
from brain activity) generate the strongest noise in M/EEG recordings. On the other
hand, physiological noise, due to cardiac or ocular activity, systematically interacts
with brain signals and is necessarily captured by the statistical sources s. Overall,
these assumptions may not be realistic but are useful for modeling purposes. Model
violations will be addressed in section 1.5.2.

Statistical generative model of the biomedical outcome y. As we know that
powers reveals cognition [Eng+20], the proposed framework models yi as a function
of the sources powers:

yi = β⊤f(pi) , (1.50)

where pi = Et[s2
i (t)] ∈ RQ is the power of sources of sample i, f : R+ → R is a

known increasing function (applied component-wise to a vector) and β ∈ RQ are
regression coefficients.

Linear models in the sources powers (f = identity) or log-powers (f = log) are
commonly used in the neuroscience literature and support numerous statistical
learning models on M/EEG [Bla+08; Däh+14a; GB08]. In particular Buzsáki and
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Mizuseki [BM14] discusses a wide body of evidence arguing in favor of log-linear
relationships between brain dynamics and cognition. Both possibilities for f will be
considered in below sections.

According to (1.50), yi is related to the power of the sources hence to diag(pi).
According to (1.49) the sensor signal xi, through its covariance matrix Ci, also
contain information about powers of the sources pi in Ei but this information is
noisy and distorted through unknown linear field spread A. As our task is to uncover
the relationship between yi and xi, this unknown mixing makes it challenging to
find optimal regression algorithms with no approximation error.

The broadband covariance (computed on the raw signal without temporal filtering)
largely reflects low-frequency power as consequence of the predominant 1/f power
spectrum, hence, is rarely of interest for predicting. In practice, one prefers frequency
specific models, where the previous relationships are obtained after si(t) has been
bandpass filtered in a specific frequency range. In frequency-specific models, the
powers are replaced by band-powers: power of the source in the chosen frequency
band. Note that source power in a given frequency band is simply the variance of
the signal in that frequency band.

1.4.2 The classical approaches to predict from M/EEG
observations

We will now present three family of approaches classically used to predict from
M/EEG observations. We will see that, as each of those methods are well-suited in
certain contexts, they all fall short for our specific task of prediction in a clinical
setting.

Biophysical sources modeling. Since both our input xi(t) and output yi are re-
lated to physiological sources zi(t), the most natural approach is to get back to
our physiological generative model and try to estimate the sources before fitting
a regression model. One important family of approaches for predictive modeling
with M/EEG is therefore relying on explicit biophysical source modeling. It con-
sists in estimating the locations, amplitudes and extents of the sources from the
MEG/EEG data. This estimation is known as the inverse problem [Bai17]. To
solve it, anatomically constrained inverse methods are used to infer the most likely
electromagnetic source configuration given the observations [Häm+93]. Common
techniques rely on fitting electrical-current dipoles [MLL92] or involve penalized
linear inverse models to estimate the current distribution over a pre-specified dipole
grid [HI94; Lin+06; VVB88; HS14]. Anatomical prior knowledge is injected through
the well-defined forward model: Maxwell equations enable computing leadfields
from the geometry and composition of the head, which predict propagation from
a known source to the sensors [Häm+93; MLL99]. Let us denote G ∈ RP ×Q the
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instantaneous mixing matrix that relates the sources in the brain to the MEG/EEG
measurements. Here Q ≥ P corresponds to the number of candidate sources in the
brain. This forward operator matrix is obtained by solving numerically Maxwell’s
equations after specifying a geometrical model of the head, typically obtained using
an anatomical MRI image [HP17]. Using G the Minimum Norm Estimate (MNE)
source imaging technique [HI84] offers a way to solve the inverse problem. MNE
can be seen as standard Tikhonov regularized estimation, also similar to a ridge
regression in statistics, and is therefore linear. Using such problem formulation, the
sources are obtained from the measurements with a linear operator which is given
by:

WMNE = G⊤(GG⊤ + λIP )−1 ∈ RQ×P . (1.51)

From a signal-processing standpoint, when these steps lead to a linear estimation of
the sources, the rows of this linear operator WMNE can be seen also as spatial filters
that are mapped to specific locations in the brain. MNE approach can then be thought
of as biophysical spatial filtering, informed by the individual anatomy of each sub-
ject. From the estimated sources, one can then learn to predict y as the distortions
induced by individual head geometry are mitigated, see for example [Wes+18;
Kie+19; Kha+18]. While approaching the problem from this perspective has impor-
tant benefits, such as the ability to exploit the geometry and the physical properties
of the head tissues of each subject, there are certain drawbacks. First, the inverse
problem is ill-posed and notoriously hard to solve. Second, computing Gi requires
costly T1-weighted MRI acquisitions and time-consuming manual labor by experi-
enced MEG/EEG practitioners [Bai17]: precise measure of the head in the MEG
device coordinate system, anatomical coregistration and tedious data-cleaning to
mitigate electromagnetic artefacts caused by environmental or physiological sources
of non-interest outside of the brain. Using a MRI template, e.g., MNI brain, would
alleviate this issue but amounts to consider a common average brain, ignoring inter-
individuals anatomical variability. Hence, this method is likely to yield suboptimal
performances, as hinted by a recent work [Eng+21] benchmarking different models
for brain age prediction. Besides, it is still costly in terms of computation and rest on
the relevance of the MNI brain model. This gold-standard approach of biophysical
sources modeling is therefore hard to automate and poses challenges to clinical
practice. This justifies the statistical generative model approximation used in this
thesis enabling to learn a regression model without biophysical source modeling.

Statistical sources modeling. A second family is motivated by unsupervised decom-
position techniques such as Independent Component Analysis [HO00; Mak+97],
which yield estimates of maximally independent statistical sources that can be used
for prediction and corresponding spatial filters [SNS14; WM09; SG10]. In gen-
eral, spatial filtering consists in computing linear combinations of the original P
sensors signals to produce so-called ‘spatially filtered’ signals, or ‘source’ signals,
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W ⊤xi. The weights of the combination form a spatial filter. Considering R ≤ P

filters, it corresponds to the columns of the matrix W ∈ RP ×R of rank R which
is common to all samples (e.g., subjects). If R < P , then spatial filtering reduces
the dimension of the data. The covariance matrices of ‘spatially filtered’ signals
W ⊤xi ∈ RR is readily obtained as: Σi = W ⊤CiW ∈ RR×R. With probability one,
rank(Σi) = min(rank(W ), rank(Ci)) = R, hence Σi ∈ S++

R . Since the Ci’s do not
span the same image, applying W destroys some information. Recently, geometry-
aware dimensionality reduction techniques, both supervised and unsupervised, have
been developed on covariance manifolds [HYS16; HSH17]. Many different spatial
filters have been designed to produce virtual signals that help the prediction task.
Such methods model the data as an independent set of statistical sources that are
entangled by a so-called mixing matrix, often interpreted as the leadfields. Here,
the sources are purely statistical objects and no anatomical notion applies directly.
In practice, unsupervised spatial filters are often combined with source modeling
and capture a wide array of situations ranging from single dipole-sources to entire
brain-networks [HIN09; Bro+11; Del+12]. Being unsupervised, hence blind to the
target y, these methods are not optimal for regression. Also, each ICA filters is fitted
independently for each sample (subject) making it difficult to compare the resulting
filters.

Linear models in sensor-space. Finally, a third family directly applies general-
purpose machine learning directly on sensor space signals xi(t) without explicitly
considering the data generating mechanism. Following a common trend in other
areas of neuroimaging research [Dad+19; Sch+19; He+19], linear prediction
methods have turned out extraordinarily well-suited for this task, i.e., , logistic
regression [And+15], linear discriminant analysis [War+16], linear support vec-
tor machines [Kin+13]. The success of linear models deserves separate attention
as these methods enable remarkable predictive performance with simplified fast
computation [Par+05]. While interpretation and incorporation of prior knowledge
remain challenging, significant advances have been made in the past years. This
has led to novel methods for specifying and interpreting linear models [Hau+14;
VS19]. Recent work has even suggested that for the case of learning from evoked re-
sponses, linear methods are compatible with the statistical models implied by source
localization and unsupervised spatial filtering [Kin+18; KD14; SWS15]. Indeed,
if the outcome is linear in the source signal, i.e., , due to the linear superposition
principle, the mixing in the input amounts to a linear transform of the sources that
can therefore be captured by a linear model with sufficient data. Additional source
localization or spatial filtering should therefore be unnecessary in this case.

On the other hand, the situation is more complex when predicting outcomes from
brain rhythms, e.g., , induced responses [TBB99] or spontaneous oscillations. As
brain-rhythms are not strictly time-locked to external events, they cannot be accessed
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by averaging. Instead, they are commonly represented by the signal power in shorter
or longer time windows and often give rise to log-linear models [BM14; RBB15]. A
consequence of such non-linearities is that it cannot be readily captured by a linear
model. Moreover, simple strategies such as log-transforming the power estimates
only address the issue when applied at the source-level: the leadfields have already
spatially smeared the signal presented on the sensors.

Alternative approaches. This leads back to spatial filtering approaches. Beyond
source localization and unsupervised filtering, supervised spatial filtering methods
have recently become more popular beyond the context of BCIs. These methods solve
generalized eigenvalue problems to estimate coordinate systems constructed with
regard to criteria relevant for prediction. For example, spatio-spectral-decomposition
(SSD) is an unsupervised technique that enhances SNR with regard to power
in surrounding frequencies [NNC11]. On the other hand, Common Spatial Pat-
terns [Kol91], Joint Decorrelation [CP14] and Source Power Comodulation (SPoC)
focus on correlation with the outcome [Bla+08; Däh+14a; Däh+13], MultiView
ICA [Ric+20] extends the ICA model to group studies, whereas [Dmo+12] have
proposed variants of Canonical Correlation Analysis (CCA) [Hot92; Däh+14b] with-
out orthogonality constraint to focus on shared directions of variation between
related datasets or by proposing shared envelope correlations as optimization tar-
get [Däh+14b]. This yields a two-step procedure: 1) spatial filters model the
correlation induced by the leadfields and provide unmixed time series 2) some
non-linear transforms such as logarithms are applied to these time series as the
validity of linear equations is now secured.

A more recent single-step approach consists in learning directly from spatially
correlated power-spectra with linear models and Riemannian geometry [Bar+11;
Bar+13; YBL17; RJC19; Fru+17]. This mathematical framework, introduced
in Section 1.3, provides principles to correct for the geometric distortions arising
from linear mixing of non-linear sources. These models are blind to the linear mixing
As and working with the signals x is similar to working directly with the sources s.
Riemannian geometry is a natural setting where such affine invariance properties are
found [FM03]. It allows to represent the covariance matrices used for representing
the M/EEG signal as Euclidean objects for which linear models apply. This approach
has turned out to be promising for enhancing classification of event-level data and
has been the important ingredient of several winning solutions in recent data analysis
competitions, e.g., , the seizure prediction challenge organized by the University
of Melbourne in 2016. Classification based on tangent vectors has also been used
in [Bar+12] for BCI classification. Recently, this approach has been explored for
prediction of subject-level brain volume from clinical EEG in Alzheimer’s disease in
about 100 patients [Fru+17].
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We have presented classical methods for regressing an outcome from M/EEG sig-
nals. Biophysical sources modeling using anatomically constrained inverse methods
corrects for distortions induced by individual head anatomy but is not scalable as
it requires MRI scans and MEG manual expertise: it is therefore not well adapted
to clinical practice. Statistical sources modeling using unsupervised spatial filtering
(e.g., ICA) are blind to the prediction target hence not optimal for regression. Sensor-
space linear modeling leverages the power of linear models but are not optimal
when predicting from brain rhythms, hence not adapted to our generative models
assumptions. We will now present how to mitigate the distortion without biophysical
source modeling when performing regression on M/EEG source power. We will see
that we can indeed overcome volume conduction with an appropriate regression
algorithm, adapted to the generative process.
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1.5 A family of statistically consistent regression
algorithms

To recall our generative model setup: our input is a P -dimensional signal x(t) arising
from Q < P sources and additive noise. Assuming the source and noise spaces are
unmixed, shared across samples and of respective dimension Q and P −Q then we
can write xi(t) = Aηi(t) where A ∈ RP ×P is an invertible matrix (which includes
source and noise patterns) and ηi(t) ∈ RP is the concatenation of source si(t) and
noise signals. If the sources are zero-mean, uncorrelated and uncorrelated from the
noise, then the covariances are full-rank and writes Ci = AEiA

⊤ where Ei is a
block diagonal matrix, whose upper Q×Q block is diag(pi) with pi = E[s2

i (t)] ∈ RQ,
the power of the sources of sample i. Our output is a continuous target yi modelled
as a function of these source powers yi = β⊤f(pi) without additional noise. In this
section, we assume these ideal conditions hold (fixed volume conduction across
samples, full rank signals, no noise in target).

Given this generative model as our prior knowledge, our goal is to find a regression
algorithm to predict the target yi from sensor-space M/EEG signal xi(t), that do
not require to estimate the sources si(t) and that has no approximation error. Our
input signal is assumed to depend linearly on the sources, whereas our target on
the power of sources (i.e., the squared amplitude of the source signal). This non-
linear dependence hints at using non-linear models. Deep learning models have
shown strong performance in learning non-linear functions but require lots of data.
Scarcity of high-dimensional medical data would therefore favor the use of linear
mechanics, applied to non-linear features of the M/EEG signal (Generalized Linear
Model strategy). Its covariance matrix Ci seems a good candidate as it contains
powers & cross-powers of sensors. This representation is the adequate approximation
of the neural signals at the second order and is low-dimensional. These covariances,
computed at the sensor-level, also contain information about the powers of the
sources (∈ Ei) but this information is noisy and distorted through field spread A.
Can we get rid of it?

In this thesis, we introduce four different regression algorithms: Upper, Riemann,
Wasserstein and SPoC. They are all based on a linear model, applied to carefully cho-
sen vectorization vi of the covariance Ci. Showing that these models are statistically
consistent amounts to proving that the real relationship between yi and vi is linear.
In particular, we show that different functions f yield a linear relationship between
the yi’s and the vi’s for different Riemannian metrics, hence show that these four
regression models successfully achieve statistical consistency for different generative
assumptions.
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More specifically, throughout this study, we consider the following regression pipeline.
Given a training set of samples x1(t), . . . ,xN (t) ∈ RP and target continuous variables
y1, . . . , yN ∈ R, we first compute the covariances of each sample C1, . . . ,CN ∈
RP ×P . After computing their vectorization v1, . . . ,vN ∈ RK (cf. below), a linear
regression technique (e.g. ridge regression) with parameters β ∈ RK can be
employed assuming that yi ≃ v⊤

i β.

1.5.1 Four statistically consistent regression algorithms

Proposition : Consistency of Upper regression algorithm

The Upper regression algorithm consists in taking the Euclidean vectoriza-
tion:

vi = Upper(Ci) ∈ R
P (P +1)

2 , (1.52)

where Upper(M) is defined as the vector containing the upper triangu-
lar coefficients of M , with off-diagonal terms weighted by a factor

√
2.

This weighting ensures that the vector and the matrix have same norms
(∥Upper(M)∥2 = ∥M∥F ).
This model is statistically consistent in the particular case where f = identity:
the relationship between yi and Upper(Ci) is linear.

Proof

We assume f(p) = p. Rewriting Eq. (1.49) as Ei = A−1CiA
−⊤, and since the

pi,j are on the diagonal of the upper block of Ei, the relationship between the
pi,j and the coefficients of Ci is also linear. Since the variable of interest yi is
linear in the coefficients of pi, it is also linear in the coefficients of Ci, hence
linear in the coefficients of vi. In other words, yi is a linear combination of the
vectorization of Ci w.r.t. the standard Euclidean distance, hence the ‘upper’
regression algorithm is statistically consistent for f = identity.

Note that this method cannot be generalized to an arbitrary spectral function f

because f(Ci) ̸= A f(Ei) A⊤.
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Proposition : Consistency of Riemann regression algorithm

The Riemann regression algorithm consists in taking the Geometric vector-
ization:

vi = PC(Ci) = Upper
(
log

(
C

−1/2
CiC

−1/2)) ∈ R
P (P +1)

2 , (1.53)

the vectorization of Ci w.r.t. the geometric distance using as reference C =
MeanG(C1, . . . ,CN ) the geometric mean of the dataset.
This model is statistically consistent in the particular case where f = log: the
relationship between yi and PC(Ci) is linear.

Proof

The proof relies crucially on the affine invariance property: using Rie-
mannian embeddings of the Ci’s, is equivalent to working directly with
the Ei’s. First, we note that by invariance, C = MeanG(C1, . . . ,CN ) =
AMeanG(E1, . . . ,EN )A⊤ = AEA⊤, where E has the same block diag-
onal structure as the Ei’s, and Ejj = (

∏N
i=1 pi,j)

1
N for j ≤ Q. Denote

U = C
1
2 A−⊤E

− 1
2 . By simple verification, we obtain U

⊤
U = IP , i.e. U

is orthogonal.
Furthermore, we have:

U
⊤

C
− 1

2 CiC
− 1

2 U = E
− 1

2 EiE
− 1

2 . (1.54)

It follows that for all i,

U
⊤ log(C− 1

2 CiC
− 1

2 )U = log(E− 1
2 EiE

− 1
2 ) (1.55)

Note that log(E− 1
2 EiE

− 1
2 ) shares the same structure as the Ei’s, and that

log(E− 1
2 EiE

− 1
2 )jj = log(pi,j

p̄j
) for j ≤ Q.

Therefore, the relationship between log(C− 1
2 CiC

− 1
2 ) and the log(pi,j)j is

linear.
Finally, since vi = Upper(log(C− 1

2 CiC
− 1

2 )), the relationship between the vi’s
and the log(pi,j)j is linear, and the result holds.
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Proof : Alternative proof

First, we note that by invariance, C = AEA⊤, where E has the same block
diagonal structure as the Ei’s, and Ejj = (

∏N
i=1 pi,j)

1
N ≜ pj for j ≤ Q.

The vectorization is vi = Upper
(
log(C−1/2

CiC
−1/2)

)
. We observe that

C
−1/2

CiC
−1/2 = C

−1/2 (
CiC

−1)
C

1/2 = BEiE
−1

B−1 with B = C
−1/2

A

invertible. Therefore, log(C−1/2
CiC

−1/2) = B log
(
EiE

−1)
B−1, since ma-

trix logarithm is equivariant by similarity. The Q values on the diagonal part
of log(EiE

−1) are the log
(
pi,j/pj

)
. In particular, by denoting b−1

j the j-th
row of B−1 and bj the j-th column of B, we find:

log(pi,j) = (b−1
j )⊤ log(C−1/2

CiC
−1/2)bj + log(pj) . (1.56)

This equation means that log(pi,j) is obtained as a linear combination of the
coefficients in log(C−1/2

CiC
−1/2), i.e. the coefficients of the vectorization

vi. Since yi is itself a linear combination of the log(pi,j), the advertised result
holds.
As a side note, we have that ∥vi∥2 =

∥∥∥log
(
C

−1/2
CiC

−1/2)∥∥∥
F

=∥∥∥log
(
C

−1
Ci

)∥∥∥
F

= d(Ci,C) = d(Ei,E) , by affine-invariance of the geo-
metric distance d(·) (see Appendix 1.3.3): the norm of vi does not depend on
A, but only on the log source powers and noise.

The Riemannian embedding yields a representation of sensor-level power and its
correlation structure relative to a common reference. In the particular case where
f = log, the idea is to normalize each covariance Ci by a common reference C,
the geometric mean of covariances Ci. We normalize using C

−1/2
CiC

−1/2, which
has the advantage over CiC

−1 to be symmetrical while having the same eigen-
values. We showed that a linear model applied to feature vector vi = PC(Ci) =
Upper

(
log

(
C

−1/2
CiC

−1/2)) leads to a consistent regression algorithm. This, es-

sentially, means taking the log of Ci after it has been whitened by C
−1/2, making the

quantity of interest relative to some reference C that hopefully will get rid of mixing
matrix A. In terms of Riemannian geometry this is the projection of covariance matrix
Ci to a common Euclidean space: the tangent space at C. In particular the norm
of vi can be interpreted as the (geometric) distance between Ci and C and does
not depend on A. Essentially, the Riemannian approach projects out fixed linear
spatial mixing through the whitening with the common reference. Finally, even
though the geometric mean is the most natural reference on the positive definite
manifold, consistency of the Riemann regression algorithm still holds when using
the Euclidean mean as the common reference point. Indeed, a recent study on
fMRI-based predictive modeling has reported negligible differences between the two
options [Dad+19, appendix A].
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Proposition : Consistency of Wasserstein regression algorithm

The Wasserstein regression algorithm consists in taking the Wasserstein
vectorization:

vi = PC(Ci) ∈ R
P (P +1)

2 , (1.57)

the vectorization of Ci w.r.t. the Wasserstein distance using as reference
C = MeanW (C1, . . . ,CN ) the Wasserstein mean of the dataset.
This model is statistically consistent in the particular case where f =

√
· and

A orthogonal: the relationship between yi and PC(Ci) is linear.

Proof

First, we note that Ci = AEiA
⊤ ∈ S++

P = S+
P,P so it can be decomposed as

Ci = YiY
⊤

i with Yi = AE
1
2
i .

By orthogonal invariance, C = MeanW (C1, . . . ,CN ) =
AMeanW (E1, . . . ,EN )A⊤ = AEA⊤, where E has the same block di-
agonal structure as the Ei’s, and Ejj = (

∑
i
√
pij)2 for j ≤ Q. C is also

decomposed as C = Y Y
⊤ with Y = AE

1
2 .

Further, Q∗
i = ViU

⊤
i with Ui and Vi coming from the SVD of Y

⊤
Yi = E

1
2 E

1
2
i

which has the same structure as the Ei’s. Therefore Q∗
i has also the same

structure with the identity matrix as its upper block.
Finally we have vi = PC(Ci) = vect(YiQ

∗
i − Y ) so it is linear in

√
(pi,j) for

j ≤ Q.

The restriction to the case where A is orthogonal stems from the orthogonal in-
variance of the Wasserstein distance. In the neuroscience literature square root
rectifications are however not commonly used for M/EEG modeling. Nevertheless, it
is interesting to see that the Wasserstein metric that can naturally cope with rank
reduced data is consistent with this particular generative model.
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Proposition : Consistency of SPoC regression algorithm

The SPoC regression algorithm consists in using all the P SPoC spatial filters:

vi = f
(
diag

(
WSPoC Ci W ⊤

SPoC

))
∈ RP , (1.58)

with WSPoC a matrix W ∈ RP ×P solution of the generalized eigenvalue
problem:

CyW = CW diag(λ1, . . . , λP ) subject to W ⊤CW = IP , (1.59)

with C = 1
N

∑N
i=1 Ci the Euclidean average covariance matrix and Cy =

1
N

∑N
i=1 yiCi the weighted average covariance matrix, and λ1, . . . , λP the

generalized eigenvalues. We assume that the eigenvalues are all distinct, and
therefore without loss of generality λ1 > · · · > λP .
This model is statistically consistent for any function f : the relationship
between yi and vi is linear. It achieves consistency by taking a rather different
approach than previous models: it recovers in WSPoC the inverse of the mixing
matrix A.
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Proof

If the eigenvalues are all distinct, the generalized eigenvalue problem has
a unique solution W . We recall the definition Ei = E[ηi(t)ηi(t)⊤], which is
block-diagonal with the sources powers pi,j as coefficient (j, j) when j ≤ Q.
We have Ci = A Ei A⊤, and therefore C = A E A⊤ and Cy = A Ey A⊤,
with E = 1

N

∑N
i=1 Ei and Ey = 1

N

∑N
i=1 yiEi sharing the same block-diagonal

structure than the Ei. Their lower (P − Q) × (P − Q) diagonal blocks,
respectively Σ and Σy, are symmetric matrices. Further, Σ is definite positive,
as a linear combination with positive coefficients of definite positive matrices.
Hence, Σ and Σy are co-diagonalizable i.e., there exists an invertible matrix Z

such that Σy = ZDyZ⊤ and Σ = ZDZ⊤. By denoting A′ = A×
[

IQ 0
0 Z

]
,

we have that C and Cy are co-diagonalized by A′. Let D the diagonal matrix
such that C = A′DA′⊤. The matrix W = A′−⊤D−1/2 is solution of the
generalized eigenvalue problem. By the unicity assumption, SPoC recovers
W up to a permutation of its columns. The first Q rows of W ⊤ are the first Q
columns of A′−⊤, hence the first Q rows of A−1, up to scale. In particular, the
transform W ⊤xi recovers the Q sources si, so that WSPoC Ci W ⊤

SPoC recovers
the pi. Finally, since yi is linearly related to the components of f(pi) that
themselves are linearly related to the components of vi, it will also be linearly
related to the components of the feature vector vi, hence the consistency of
the SPoC regression algorithm.

As an historical side note, the SPoC algorithm is a supervised spatial filtering al-
gorithm simultaneously discovered by [CP14] and [Däh+14a]. The main idea of
the SPoC algorithm is to use the information contained in the outcome variable
to guide the decomposition, giving priority to source signals whose band power
correlates with y. Note that it was originally developed for event-level regression,
e.g., in BCI, and we adapt it here to a general problem that can also accommo-
date subject-level regression, where one observation corresponds to one subject
instead of one trial. More formally, the filters W are chosen to synthesize sig-
nals whose powers maximally covariates with the outcome y. Which may be a
good idea since we supposed that our target is linearly related to the power of the
sources. Denoting by C = 1

N

∑N
i=1 Ci the Euclidean average covariance matrix and

Cy = 1
N

∑N
i=1 yiCi the weighted average covariance matrix, the first filter wSPoC is

given by: wSPoC = arg maxw
w⊤Cyw

w⊤Cw
. In practice, all the filters in WSPoC are obtained

by solving the generalized eigenvalue decomposition problem [Däh+14a]. The
proof is quite straightforward and given below. Note that here we use all the P
spatial filters (R = P ).
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Proof. We assume that the signal x(t) is band-pass filtered in one frequency band of
interest, so that for each subject the band power of signal is approximated by the
variance over time of the signal. We denote the expectation E and the variance Var
over time t or subject i by a corresponding subscript.

The source extracted by a spatial filter w for subject i is ŝi = w⊤xi(t). Its power
reads: Φw

i = Vart[w⊤xi(t)] = Et[w⊤xi(t)x⊤
i (t)w] = w⊤Ciw and its expectation

across subjects is given by: Ei[Φw
i ] = w⊤Ei[Ci]w = w⊤Cw, where C = 1

N

∑
i Ci

is the average covariance matrix across subjects. Note that here, Ci refers to the
covariance of the xi and not its estimate as in Sec. 1.2.3.

We aim to maximize the covariance between the target y and the power of the sources,
Covi[Φw

i , yi]. This quantity is affected by the scaling of its arguments. To address this,
the target variable y is normalized: Ei[yi] = 0 Vari[yi] = 1 . Following [Däh+14a],
to also scale Φw

i we constrain its expectation to be 1: Ei[Φw
i ] = w⊤Cw = 1 The

quantity one aims to maximize reads:

Covi[Φw
i , yi] = Ei[ (Φw

i − Ei[Φw
i ]) (yi − Ei[yi]) ]

= w⊤Ei[Ciyi]w − w⊤CwEi[yi]

= w⊤Cyw

where Cy = 1
N

∑
i yiCi.

Taking into account the normalization constraint we obtain: ŵ = arg maxw⊤Cw=1 w⊤Cyw.
Note that it can be also written as a generalized Rayleigh quotient:

ŵ = arg max
w

w⊤Cyw

w⊤Cw
.

Its Lagrangian reads F (w, λ) = w⊤Cyw+λ(1−w⊤Cw). Setting its gradient w.r.t. w

to 0 yields a generalized eigenvalue problem: ∇wF (w, λ) = 0 =⇒ Σyw = λΣxw

This equation has a unique closed-form solution called the generalized eigenvectors
of (Cy,C). The second derivative gives:

∇λF (w, λ) = 0 =⇒ λ = w⊤Σyw = Covi[Φw
i , yi] (1.60)

This equation leads to an interpretation of λ as the covariance between Φw and y,
which should be maximal. As a consequence, WSPoC is built from the generalized
eigenvectors of the generalized eigenvalue problem above, sorted by decreasing
eigenvalues.

Link between the regression algorithms It is noteworthy that both SPoC and
Riemann models have in common to whiten the covariances Ci with a common
reference covariance (the Euclidean mean for SPoC and the geometric mean for
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Riemann): Riemann explicitly with C
−1/2

CiC
−1/2, SPoC implicitly by solving gener-

alized eigenvalue problem of (Cy,C), or equivalently of (Ci,C) which is equivalent
to solving the regular eigenvalue problem of Ci after whitening with C ([Fuk90;
NNC11] eq. 13-16). SPoC retrieves the eigenvectors of (Ci,C). Riemann produces
vectors whose size depend on the log eigenvalues of (Ci,C). They both produce
non-linear features that measure powers relative to a common reference.

‘Upper’ and Riemann models both avoid inverting A by being insensitive to it.
More precisely, they consist in building from Ci a P × P symmetric matrix Mi

mathematically congruent to a block-diagonal matrix Di whose Q×Q upper block
is diag(f(pi)) i.e., that writes Mi = B Di B⊤, for some invertible matrix B. Indeed,
if this holds, the coefficients of f(pi) are a linear combination of coefficients of Mi

which implies that the outcome yi is linear in the coefficients of Mi. Therefore a
linear model applied to the features vi = Upper(Mi) is statistically consistent. For
‘Upper’ Mi = Ci and for Riemann Mi = log(C−1/2

CiC
−1/2).

Finally, these two models amounts to estimating Q parameters (the powers of each
sources) from P (P + 1)/2 parameters (the upper part of a symmetric matrix). Again,
it is important to emphasize that we are not aiming for explicitly estimating the
most probable model parameters β̂ but rather a function that has the smallest
approximation error possible, even if over-parametrized. These approaches achieve
consistency without inverting A at a price of over-parametrization: the number of
parameters will always be a lot higher than the number of samples N . Learning
in this under determined high dimensional setting requires regularizing the linear
model to stabilize learning. We will thus use a Ridge regression algorithm with
linear kernel, but in a data-driven fashion with nested generalized cross-validation,
leading to effective degrees of freedom less than numerical rank of the input data.

In this thesis we will compare these four regression algorithms to the inconsistent
diag regression algorithm as baseline. This model is probably the historically most
frequently used model in M/EEG research in countless publications. Here, powers
are considered on the sensor array while the correlation structure is being ignored.
This consists in taking only the diagonal elements of the covariance matrix Ci as
features, i.e., the powers (variances) of sensor-level signals:

vi = f(diag(Ci)) ∈ RP . (1.61)

1.5.2 Model violations
The current theoretical analysis implies that the mixing matrix A must be common
to all subjects and the covariance matrices must be full rank. However, this is rarely
the case in practice. If these conditions are not satisfied, the consistency guarantees
are lost, rendering model performance an empirical question. This will be addressed
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with simulations (Section 1.5.3), in which we know the true brain-behaviour link,
and real-world data analysis (Section 2.1) in which multiple uncertainties arise at
the same time.

Noise in the target variable. Most often the target variable is corrupted by a small
additive random perturbation εi. The noise in the outcome variable depends on
the context: it can represent intrinsic measurement uncertainty of yi, for example
sampling rate and latency jitter in behavioral recordings, inter-rater variability for
a psychometric score, or simply a model mismatch. The true model may not be
linear for example. It can also regroup all the other dependencies we consider
non-discriminative.

Individual mixing matrix. A model where the mixing matrix A is subject-dependent
reads: xi(t) = Aisi(t) + ni(t) . Such situations typically arise when performing
subject-level regression due to individual head geometry, individual head positions in
MEG and individual locations of EEG electrodes. In this setting, we loose consistency
guarantees, but since the Ai cannot be completely different from each other (they all
originate from human brains), we can still hope that our models perform reasonably
well.

Rank-deficient signal. We have seen that M/EEG data is in practice often rank-
reduced for mainly two reasons. First, popular techniques for cleaning the data
amounts to reduce the noise by projecting the data in a subspace, supposed to
predominantly contain the signal. Second, a limited amount of data may lead to
poor estimation of covariance matrices. This leads to rank-deficient covariance
matrices.

Riemann regression algorithms must be adapted since singular matrices are at
infinite distance from any regular matrices. Assuming the rank R < P is the same
across subjects, the corresponding covariance matrices do not belong to the S++

P

manifold anymore but to the S+
P,R manifold of positive semi-definite matrices of fixed

rank R. To handle the rank-deficiency one can then project the covariance matrices
on S++

R , the manifold of full-rank matrices of reduced size R to make them full
rank, and then use the geometric distance. To do so, a common strategy is to project
the data into a subspace (here of size R) that captures most of its variance. This is
achieved by Principal Component Analysis (PCA) applied to the average covariance
matrix across subjects. We denote the filters in this case by WUNSUP = U ∈ RR×P ,
where U contains the eigenvectors corresponding to the top R eigenvalues of the
average covariance matrix C = 1

N

∑N
i=1 Ci. This step is blind to the values of y and

is therefore unsupervised. Note that under the assumption that the time series across
subjects are independent, the average covariance C is the covariance of the data
over the full population. The Riemann regression algorithm is then applied to the
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spatially-filtered covariance matrix WUNSUP Ci W ⊤
UNSUP ∈ RR×R, of rank R hence

belonging to S++
R .

If covariances are rank-deficient, we will use low-rank versions of both SPoC and
Riemann models where only the first components of the spatial filters up to their
rank R are kept. In SPoC, components are ordered by covariance with the outcome
(supervised algorithm). In Riemann, components are ordered by explained variance
in the predictors, not the outcome (unsupervised algorithm). By construction, we
can then expect that SPoC achieves similar best performance than Riemann with
fewer components: the variance related to the outcome can be represented with
fewer dimensions.

Besides helping to cope with rank-reduced data, the effect of spatial filtering can be
difficult to predict: it helps the regression algorithm by reducing the dimensionality
of the problem making it statistically easier, but it can also destroy information if
the individual covariance matrices are not aligned (if they span different spaces).
We expect to observe this trade-off via low-rank optima, with a plateau after the
effective rank R of the data (see Section 2.1.2).

To summarize: we presented four regression algorithms, linear models applied to
four particular vectorization of the covariance matrix Ci: ‘Upper’ takes its upper-
part (powers & cross-powers of sensors), Riemann takes its Riemannian embedding
w.r.t. the geometric distance i.e., its projection in a common tangent space taken
at their geometric mean, Wasserstein takes its Riemannian embedding w.r.t. the
Wasserstein distance, and finally SPoC takes the diagonal of the covariance matrix
of spatially-filtered signals where the filters are generalized eigenvectors of (Ci,C)
with C the mean of the Ci’s. They will be compared to the ‘diag’ baseline model
that takes its log-diagonal (log-powers of sensors).

We demonstrated mathematically that, if we have constant volume conduction across
samples and if the signal is full rank, these regression algorithms are statistically
consistent for some function f defined in our generative model. Each of them
uses a different strategy to bypass the mixing effect of the matrix A and can then
replace the need for source localization. When f = Identity (yi is linear in the
coefficient of source powers pi) Upper achieves consistency by taking the coefficients
of Ci as input vector. When f = Log (yi is log-linear in the coefficient of source
powers pi), Riemann achieves consistency by being simply insensitive to A, blind to
linear projections. Finally, SPoC learns to invert the mixing matrix A by incidentally
recovering a co-block-diagonalization basis of all the Ci’s, hence recovering the
statistical sources: it is therefore consistent for any function f . In those idealized
conditions, we demonstrated that source localization can be replaced with either
spatial filters or with Riemannian embeddings.
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1.5.3 Validation with simulations
We now consider simulations to illustrate these mathematical guarantees and inves-
tigate theoretical performance as model violations are gradually introduced (noise
in target, individual mixing matrices). We focused on the ‘linear-in-powers’ and the
‘log-linear-in-powers’ generative models (Eq. 1.50 with f = identity and f = log)
and compared the performance of the proposed approaches by measuring their score
as the average mean absolute error (MAE) obtained with 10-fold cross-validation.
Independent identically distributed covariance matrices C1, . . . ,CN ∈ S++

P and
variables y1, . . . , yN were generated following each generative model. The mixing
matrix A was defined as exp(µB) with the random matrix B ∈ RP ×P and the scalar
µ ∈ R to control the distance of A from identity (µ = 0 yields A = IP , increased
µ means more mixing). This is not a model violation but a way to validate that
the affine invariance property of the geometric Riemmanian distance indeed make
the Riemann model blind to A. The outcome variable was linked to the source
powers (i.e., the variance): yi =

∑
j αjf(pij) with f(x) = x or log(x). We chose

P = 5, N = 100 and Q = 2. In these idealized conditions (no noise in target, fixed
A and full rank signals), our consistent regression algorithms should show perfect
out-of-sample prediction (no generalization error). Then, to investigate more realis-
tic scenarios, we corrupted the clean ground truth data in two ways. First we add
Gaussian noise in the outcome variable: yi =

∑
j αjf(pij) + εi where εi ∼ N (0, σ2)

is a small additive random perturbation. Second, we consider individual mixing
matrices deviating from a reference: Ai = A + Ei, where entries of Ei sampled
i.i.d. from N (0, σ2). The reference A can then be thought of as representing the
head of a mean-subject. With these more realistic assumptions our mathematical
guarantees break but our simulations will reveal the robustness of our regression
algorithms to model violations.

Fig. 1.3 A displays the results for the linear generative model (f = identity in
Eq. (1.50)). The left panel shows the scores of each method as the parameters µ
controlling the distance from the mixing matrix A to the identity matrix IP increases
(more mixing). We see that the Riemannian method is not affected by µ (orange),
which is consistent with the affine invariance property of the geometric distance. At
the same time, it is not the correct method for this generative model as is revealed by
its considerable prediction error greater than 0.5. Unsurprisingly, the ‘diag’ method
(green) is highly sensitive to changes in A with errors proportional to the mixing
strength. On the contrary, both ‘upper’ (blue) and SPoC (dark orange) methods lead
to perfect out-of-sample prediction (MAE = 0) even as mixing strength increases.
This demonstrates consistency of these methods for the linear generative model.
They both transparently access the statistical sources, either by being blind to the
mixing matrix A (‘upper’) or by explicitly inverting it (SPoC). Hence, they may
enable regression on M/EEG brain signals without source localization. When we
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Fig. 1.3: Simulation-based model comparison across generative models We focused on four
regression algorithms (indicated by color) each of which learnt from the covariance in
distinct ways. The simulations performance across three types of model violations: the
distance µ between the mixing matrix A and the identity matrix IP (left), noise on the
outcome y (middle) and individual noise on A (right). (A) Results for generative model
in which y depends linearly on source variance. All but the Riemannian model achieve
consistent regression when no mixing occurs (left). SPoC remained consistent throughout
the simulated range. The ‘upper’ and SPoC models performed best as noise on the outcome
(center) and noise on A (right) increased. (B) Results for generative model in which y
depends log-linearly on source powers. The SPoC and Riemannian models achieve consistent
regression across all simulated values (left). Likewise, both methods are more robust to
noise on y (center). Finally, the Riemannian model is most resilient to individual noise on
the mixing matrix A (right).

add noise in the outcome variable y (middle), i.e., introduce worse supervision, or
individual noise in the mixing matrix (right), i.e., individual volume conduction, we
have no theoretical guarantee of optimality for those methods. Yet, we see that both
‘upper’ and SPoC are equally sensitive to these model violations. The Riemannian
method seems to be more robust than any other method to individual noise in A, in
the sense that its performance is decaying at a slower rate.

Fig. 1.3 B displays the results for the log-linear generative model (f = log in
Eq. (1.50)). In this case Riemann and SPoC performed best (left), as expected by
consistency of these methods in this generative model. Both were equally sensitive
to noise in outcome variable (middle) but, again, the Riemann method was more
robust than other methods as individual noise on the mixing matrix increased (right).
The simulations show that, under these idealized circumstances, ‘upper’, and SPoC
are equivalent when the outcome y depends linearly on source powers. When y

depends linearly on the log-powers, SPoC and Riemann are equivalent. However,
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when every data point comes with a different mixing matrix, Riemann may be the
best default choice, irrespective of the generative model of y. The Wasserstein
regression algorithm has not been pictured here to avoid overloading but has a
similar behaviour to the ‘Upper’ model with the same MAE profile, yet a marginally
better performance. The same experiment with f(p) = √

p yields comparable results,
yet with Wasserstein distance performing best and achieving perfect out-of-sample
prediction when σ → 0 and A is orthogonal.

To summarize we have proposed four different regression algorithms and showed,
both theoretically and with simulated data, that they can each perfectly approximates
the true function asymptotically hence supports perfect prediction with enough data,
under a particular generative model. For this consistency to hold, we need 2
conditions: A must be fixed across samples and the signal hence the covariance
matrix must be full rank. If they are satisfied, these models, as they stay in sensor-
space, overcome volume conduction problem and avoid the need of costly source
localization. These models can readily accommodate rank-deficient covariance
matrices. Other models are working, for instance [Sch+17] uses deep learning
method that does implicit filtering to handle the fieldspread. Our models have
the advantages to be simple, to work with smaller quantities of data and above
all propose an explicit explanation of why they work by making explicit the data
generative model to which they are adapted. Let’s now apply these regression
algorithms to real-life empirical data: in ideal laboratory conditions first, then in
clinical conditions.
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2Application with laboratory data
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List of acronyms and notations of the chapter

BCI brain-computer interface
BAD Brain Age Delta

Cam-CAN Cambridge Center of Aging
ERM empirical risk minimization
EOG electro-oculogram
ECG electro-cardiogram
EMG eletromyogram

M/EEG magneto- and electroencephalography
ML machine learning

MAE mean absolute error
MNE mnimium norm estimate
MRI magnetic resonance imaging
OAS Oracle Approximation Shrinkage
PCA principal component analysis
SPoC source power comodulation
SSS Signal Space Separation
SSP Signal Space Projection
TUH Temple University Hospital
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In Chapter 1, we detailed our first (theoretical) contribution [Sab+19a]: when
faced with the particular task of predicting, from M/EEG signals, an outcome that
is (log)-linear in sources powers, we have found three learning algorithms with
no approximation error. They are all based on a linear function class, applied to
particular vectorization on the spatial covariance matrix:

H = {X ∈ RP ×T 7→ w⊤v(XX⊤

T
),∀w} , (2.1)

where v has been previously defined as per our Upper, Riemann and SPoC regression
algorithms. We leveraged our domain prior knowledge of M/EEG signals to design
these hypothesis classes and show that they are perfectly adapted to the data-
generating mechanism, depending on how outcome could linearly depends on
source powers: Upper for linear-in-powers outcome, SPoC or Riemann for linear-
in-logpowers outcome. Yet, this guarantee of no approximation error holds only if
two model assumptions are verified: the mixing matrix A is fixed across samples,
and the signal (hence the covariance matrix) is full-rank. Besides, these algorithms
show no optimization error. Indeed, since the hypothesis classes are linear in the
parameter w, they are all learnable with the ERM learning rule and no optimization
algorithm is necessary to implement it since there is an analytic solution to the
optimization problem. Additionally, if the outcome is noiseless (no irreducible error)
and the data sample is infinite (no estimation error), then our algorithms have
perfect generalization error.

In this Chapter 2, presenting our second (experimental) contribution [Sab+20], we
now confront our theoretical results to real-life regression tasks of predicting a con-
tinuous neuro-outcome from real M/EEG data. In real-life experiments, we do not
have access to the actual sources and do not know a priori which generative model,
hence, which regression algorithm performs best. The true outcome-generating
mechanism can be linear in sources powers, log-linear in sources powers or some-
thing completely different. Likewise, even if our algorithms are adapted to the data
distribution, we cannot expect perfect out-of-sample prediction (no generalization
error): the outcome variable may be noisy (leading to irreducible error), data sam-
ples are finite (leading to estimation error) and, most importantly, the two main
modeling assumptions that guarantee consistency may not hold (leading to approx-
imation error). Indeed, the mixing matrix A is not fixed when predicting at the
subject-level as each individual has her own head and brain. Also the M/EEG data is
often rank-reduced in practice, for mainly two reasons. First, popular techniques for
cleaning the data amounts to reduce the noise by projecting the data in a subspace,
supposed to predominantly contain the signal. Second, a limited amount of data
may lead to poor estimation of covariance matrices. However, by performing model
comparisons based on cross-validation errors, we can potentially infer which model
provides the better approximation.
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This chapter is organized as follows. To validate our algorithms on real M/EEG
data, we first benchmarked them against a prediction task from M/EEG band-
limited covariances (i.e., computed separately within different frequency bands)
on three datasets, for which multiple model violations occur at once. Then we
will further inspect our regression models to gain physiological insights. Finally, in
order to further clear the road towards their clinical translation, we will probe their
robustness, both to low-fidelity devices and to signal preprocessing.

Section 2.1 details the motivation, methods and results obtained by our regression
algorithms on three experiments, chosen to cover a wide range of model violations.
In the first experiment, we focussed on predicting muscle contraction of a single
subject from MEG beta activity on the FieldTrip data, for which we can consider the
mixing matrices to be constant across samples. Compared to the ideal conditions
necessary to obtain the mathematical guarantees of consistency, this experiment
nevertheless presents one model violation: rank-deficient covariance matrices due
to limited amount of data. In the other two experiments, we apply our methods to
infer age from brain signals. Age is a dominant driver of cross-person variance in
neuroscience data and a serious confounder [SN18]. As a consequence of the globally
increased average lifespan, ageing has become a central topic in public health that
has stimulated neuropsychiatric research at large scales. The link between age and
brain function is therefore of utmost practical interest in neuroscientific research.
The second experiment consists in predicting the age from MEG on Cam-CAN data,
where we have the two model violations at once: variable mixing matrices and
rank-reduced data, this time due to preprocessing. Finally, the third experiment
also focus on age prediction but using EEG signals from the TUH dataset, where the
covariances are full rank but the mixing matrices are individual.

Section 2.2 will dvelve into model inspection beyond performance. First, some of our
algorithms use spatial filters, hence support inspection of the corresponding spatial
patterns. This will allow to check that the patterns they learnt are physiologically
plausible but more importantly that they are informative on the brain regions
potentially involved in the task. Second, we will perform a sensitivity analysis of the
algorithms to assess the individual relative influence of the data generating factors
of head geometry, uniform global power and topographic information. We will
show that all methods learn from anatomy but the Riemannian embeddings better
capture individual head geometry, suggesting a complementary use of M/EEG to MRI.
One important strength of our algorithms is that they avoid source reconstruction,
facilitating their translation to the clinic.

In Section 2.3 we further investigate the robustness of our algorithms in order to
assess their potential usage in the clinic, where only low-density EEG devices are
really practical and a light preprocessing pipeline is conceivable. We will see that,
again, the Riemannian model is particularly robust to preprocessing options and
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performs well even when no preprocessing is done. This will clear the way to
translating our algorithms to the clinic, which will be the focus of the next chapter.

Statistical modeling. Note that since our problem is high-dimensional (the number
of dimensions will always be much higher than the number of available samples) we
will have to stabilize the ERM learning rule using regularization, hence using a RLM
learning rule (for instance ridge or Lasso). Here, we used ridge regression [HK70]
to predict from the vectorized covariance matrices and tuned its regularization
parameter by generalized cross-validation [GHW79] on a logarithmic grid of 100
values in [10−5, 103] on each training fold of a 10-fold cross-validation loop. For
each model described in previous sections (‘diag’, Upper, SPoC, Riemann), we
standardized the features enforcing zero mean and unit variance. This preprocessing
step is standard for penalized linear models. To compare models against chance,
we estimated the chance-level empirically through a dummy-regressor predicting
the mean outcome of the training data. Uncertainty estimation was obtained from
the cross-validation distribution. Note that formal hypotheses testing for model
comparison was not available for any of the datasets analyzed as this would have
required several datasets, such that each average cross-validation score would
have made one observation. To improve conditioning of the covariance estimates,
across all analyses, additional low-rank shrinkage for spatial filtering with SPoC
and unsupervised spatial filtering with Riemann was fixed at the mean of the value
ranges tested in [Sab+19a] i.e., 0.5 and 10−5, respectively.

Software. All numerical analyses were performed in Python 3.7 using the Scikit-
Learn software [Ped+11], the MNE software for processing M/EEG data [Gra+14],
the PyRiemann package [CBA13] for manipulating Riemannian objects, and the open-
source Python library ‘Coffeine’ (https://github.com/coffeine-labs/coffeine)
that provides a high-level interface to the predictive modeling techniques we de-
velop in this chapter. We used the R-programming language and its ecosystem for
visualizing the results [R C19; AUT19; Wic16; CSM17].
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2.1 Empirical validation with real M/EEG data
In Chapter 1 we have seen that Riemannian approaches has turned out to be promis-
ing for enhancing classification of event-level data [Bar+12] for BCI classification.
Yet, systematic comparisons against additional baselines and competing regression
algorithms on larger datasets and other outcomes are missing. Importantly, the
majority of approaches have focused on event-level prediction problems instead of
subject-level prediction and have never been been systematically compared in terms
of their statistical properties and empirical behavior. Here we will explicitly mainly
focus on subject-level as contrasted to event-level prediction, both, theoretically
and at the level of data analysis. Note that this thesis does not focus on event-level
prediction with generalization across subjects [HP18; Wes+18; OKA14], which is a
distinct and more complex problem inheriting its structure from, both, event-level
and subject-level regression.

2.1.1 Predicting muscle contraction from MEG on FieldTrip
data

In a first step, we considered a problem where the unit of observation was individual
behavior of one single subject with some unknown amount of noise affecting the
measurement of the outcome. The problem is an event-level regression task of
predicting continuous electromyogram (EMG) from brain beta activity captured
concomitantly with MEG. In this scenario, the mixing matrix is fixed to the extent
that the subject avoided head movements, which was enforced by the experimental
design. At the time of the analysis, individual anatomical data was not available,
hence we constrained the analysis to the sensor-space.

Data acquisition. We analyzed one anonymous subject from the data presented
in [Sch+11] and provided by the FieldTrip website to study cortico-muscular co-
herence [Oos+11]. The MEG recording was acquired with 151 axial gradiometers
and the Omega 2000 CTF whole-head system. EMG of forceful contraction of the
wrist muscles (bilateral musculus extensor carpi radialis longus) was concomitantly
recorded with two silver chloride electrodes. MEG and EMG data was acquired at
1200Hz sampling-rate and online-filtered at 300Hz. For additional details please
consider the original study [Sch+11].

Data processing and feature engineering. The analysis closely followed the
continuous outcome decoding example from the MNE-Python website [Gra+14].
We considered 200 seconds of joint MEG-EMG data. First, we filtered the EMG
above 20 Hz using a time-domain firwin filter design, a Hamming window with 0.02
passband ripple, 53 dB stop band attenuation and transition bandwidth of 5 Hz (-
6 dB at 17.5 Hz) with a filter-length of 661 ms. Then we filtered the MEG between 15
and 30 Hz using an identical filter design, however with 3.75 Hz transition bandwidth
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for the high-pass filter (-6 dB at 13.1 Hz) and 7.5 Hz for the low-pass filter (-6 dB at
33.75 Hz). The filter-length was about 880 ms. Note that the transition bandwidth
and filter-length was adaptively chosen by the default procedure implemented in
the filter function of MNE-Python. We did not apply any artifact rejection as the raw
data was of high quality. The analysis then ignored the actual trial structure of the
experiment and instead considered a sliding window-approach with 1.5 s windows
spaced by 250 ms. Allowing for overlap between windows allowed to increase sample
size. We then computed the covariance matrix in each time window and applied
Oracle Approximation Shrinkage (OAS) [Che+10] to improve conditioning of the
covariance estimate. The outcome was defined as the variance of the EMG in each
window.

Model evaluation. For event-level regression with overlapping windows, we applied
10-fold cross-validation without shuffling such that folds correspond to blocks of
neighboring time windows preventing data-leakage between training and testing
splits. The initialization of the random number generator used for cross-validation
was fixed, ensuring identical train-test splits across models. Note that a Monte Carlo
approach with a large number of splits would lead to significant leakage, hence,
optimistic bias [Var+17]. This, unfortunately, limits the resolution of the uncertainty
estimates and precludes formalized inference. As we did not have any a priori
interest in the units of the outcome, we used the R2 metric, a.k.a. coefficient of
determination, for evaluation. Compared to the ideal conditions necessary to obtain
the mathematical guarantees of consistency, this experiment presents one model
violation: rank-deficient covariance matrices (along with noise in outcome).

Results: models performance. The results are depicted in Fig. 2.1. The analysis
revealed that only models including the cross-terms of the covariance predicted
visibly better than chance (Fig. 2.1A). For the methods with projection step (SPoC
and Riemann) we reported the performance using the full 151 components, equal
to the total number of gradiometer channels. Importantly, extensive search for
model order for SPoC and Riemann revealed important low-rank optima (Fig. 2.1B)
with performance around 50% variance explained on unseen data. This is not
surprising when considering the difficulty of accurate covariance estimation from
limited data. Indeed, low-rank projection is one important method in regularized
estimation of covariance [EG15]. Interestingly, SPoC showed stronger performance
with fewer components than Riemann (4 vs 42). This is not surprising: SPoC is a
supervised algorithm, constructed such that its first components concentrate most
of the covariance between their power and the outcome variable. The variance
related to y can hence be represented with fewer dimensions than Riemann that
uses unsupervised spatial filtering. However, it remains equivocal which statistical
model best matches this regression problem. The best performing models all implied
the log-linear model. Yet, compared to the linear-in-power Upper model, the low-
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Fig. 2.1: Predicting continuous muscular activity on single-subject MEG. (A) model comparison
using cross-validation with 10 consecutive groups of approximately overlapping 80 epochs
from one single subject. Models are depicted along the y-axis, expected out-of-sample
performance (R2) on the x-axis. The distribution is summarized by standard boxplots. Split-
wise prediction scores are represented by dots. The model type is indicated by color. SPoC
and Riemann (without subscript) includes spatial filtering with full 151 components, equal to
the total number of gradiometer channels. As covariance estimation is necessarily inaccurate
with the short 1.5 second epochs, models may perform better when fit on a reduced subspace
of the covariance. For these models we reported alternative low-rank models (model order
indicated by subscripts). (B) Exhaustive search for model order in pipelines with projection
step. All values from 1 to the total number of 151 gradiometer channels were considered.
One can spot well defined low-rank regimes in both models. However, SPoC supports a
lower model order than Riemann. Only models explicitly considering the between-sensor
correlation were successful. The best performance was achieved when projecting into a
lower dimensional space with optima for SPoC and Riemann of order 4 and 42, respectively.

rank SPoC and Riemann models also implied massive shrinkage on the covariances,
leaving unclear if the type of model or regularized covariance estimation explains
their superior performance.

2.1.2 Predicting age from MEG on Cam-CAN data
In a second MEG data example, we considered a subject-level regression problem in
which we focused on age prediction from brain signals using the currently largest
publicly available MEG dataset provided by the Cam-CAN (Cambridge Center of
Aging) [Tay+17; Sha+14]. In this problem, each sample consists of resting-state
MEG signals recorded from different persons, hence different brains. On theoretical
grounds, one may therefore expect individual cortical folding, size and proportional
composition of the head and its tissues to induce important distortions to the signal
that may pose severe problems to purely data-driven approaches. Here, each data
point can be said to have its own mixing matrix inducing unique distortions in
each observation. To investigate this point explicitly, we further conducted source
localization to obtain power estimates that corrected for individual head geometry
based on biophysical prior knowledge. On the other hand, 8 minutes of MEG
support accurate covariance estimation, hence, rendering model-order search less
important for shrinkage. Covariance matrices are nevertheless rank-deficient due to
the preprocessing steps, explained below. Thus, this problem imposes two important
model violations of varying source geometry due to individual anatomy and rank-
deficient covariances, while providing a clean outcome - the age - with virtually no

2.1 Empirical validation with real M/EEG data 87



measurement noise. Other sources of noise can nevertheless still be present in the
outcome.

Data acquisition. We considered task-free MEG recordings during which partici-
pants were asked to sit still with eyes closed in the absence of systematic stimulation.
The recording lasted about eight minutes, sampled at 1000 Hz. We then drew
T ≃ 520, 000 time samples from N = 643 subjects, between 18 and 89 years of age.
MEG was acquired using a 306 VectorView system (Elekta Neuromag, Helsinki). This
system is equipped with 102 magnetometers and 204 orthogonal planar gradiome-
ters inside a light magnetically shielded room. During acquisition, an online filter was
applied between around 0.03 Hz and 1000 Hz. To support offline artifact correction,
vertical and horizontal electrooculogram (VEOG, HEOG) as well as electrocardio-
gram (ECG) signal was concomitantly recorded. Four Head-Position Indicator (HPI)
coils were used to track head motion. For subsequent source-localization the head
shape was digitized. For additional details on MEG acquisition, please consider the
reference publications on the Cam-CAN dataset [Tay+17; Sha+14].

Data processing and feature engineering. This large dataset required more
extensive data processing. We composed the preprocessing pipeline following current
good practice recommendations [Gro+13; Jas+18; Per+18]. The full procedure
comprised the following steps: suppression of environmental artifacts, suppression
of physiological artifacts (EOG/ECG) and rejection of remaining contaminated data
segments. Each of them are detailed below. First, to mitigate contamination by high-
amplitude environmental magnetic fields, we applied the signal space separation
method (SSS) [TK05], as detailed in 1.2.4. SSS requires a comprehensive sampling
(more than about 150 channels) and a relatively high calibration accuracy that
is machine/site-specific. For this purpose we used the fine-calibration coefficients
and the cross-talk correction information provided in the Can-CAM repository for
the 306-channels Neuromag system used in this study. We used the temporal
SSS (tSSS) extension [TK05], where both temporal and spatial projection are
applied to the MEG data. For the spatial part, SSS decomposes the MEG signal
into extracranial and intracranial sources and renders the data rank-deficient. We
kept the default settings of eight and three components for harmonic decomposition
of internal and external sources, respectively (l = Lin = 8 for the Sin basis, and up
to l = Lout = 3 for the Sout basis). The origin of internal and external multipolar
moment space was estimated based on the head-digitization hence specified in the
‘head’ coordinate frame and the median head position during 10s sliding windows
is used. Once applied, magnetometers and gradiometers are projected back from
a common lower dimensional SSS subspace, hence become linear combinations
of approximately Ri = 65 common SSS components in our experiments. As a
result, both sensor types contain highly similar information (which also modifies the
inter-channel correlation structure), hence become interchangeable [Gar+17]. For
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name low δ θ α βlow βhigh γlow γmid γhigh

range (Hz) 0.1 − 1.5 1.5 − 4 4 − 8 8 − 15 15 − 26 26 − 35 35 − 50 50 − 74 76 − 120
Tab. 2.1: Definition of frequency bands

simplicity, we therefore conducted all analyses on signals from magnetometer sensors
(P = 102), using a scale factor of 100 to bring the magnetometers to approximately
the same order of magnitude as the gradiometers, as they have different units (T
vs T/m). For the temporal part, we used 10-second sliding windows. To discard
segments in which inner and outer signal components were poorly separated, we
applied a correlation-threshold of 98%, in concert with basis regularization. Since
no continuous head monitoring data were available at the time of our study, we
performed no movement compensation. Second, to mitigate physiological ocular and
cardiac artifacts, we applied the signal space projection method (SSP) [UI97]. This
method learns principal components on data-segments contaminated by artifacts
and then projects the signal into the subspace orthogonal to the artifact. To reliably
estimate the signal space dominated by the cardiac and ocular artifacts, we excluded
data segments dominated by high-amplitude signals using the ‘global’ option from
autoreject [Jas+17]. To preserve the signal as much as possible, we only considered
the first SSP vector based on the first principal component. As a final preprocessing
step, we epoch the resulting data in 30s non overlapping windows and identify bad
data segments (i.e. trials containing transient jumps in isolated channels) that have
a peak-to-peak amplitude exceeding a certain global threshold, learnt automatically
from the data using the autoreject (global) algorithm [Jas+17].

Concerning feature engineering, we considered a wide range of frequencies, as
the most important source of variance is not a priori known for the problem of
age prediction. To capture age-related changes in cortical brain rhythms [BJF10;
Voy+15; Cla+04], we bandpass filtered the data into nine conventional frequency
bands (cf. Tab. 3.2) adapted from the Human-Connectome Project [LP+13], and
computed the band-limited covariance matrices with the OAS estimator [Che+10],
hence focusing on the power spectral topography and between-sensor covariance
as features. We verify that the covariance matrices all lie on a small portion of
the manifold, justifying projection in a common tangent space. Then we ran the
covariance pipelines independently in each frequency band and concatenated the
ensuing features after the vectorization step.

Model evaluation. We used ridge regression and tuned its regularization parameter
by generalized cross-validation [GHW79] on a logarithmic grid of 100 values in
[10−5, 103] on each training fold of a Monte Carlo (shuffle split) cross-validation
loop with 100 splits and 10% testing data. The initialization of the random number
generator used for cross-validation was fixed, ensuring identical train-test splits
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across models. This choice also allowed us to obtain more fine-grained uncertainty
estimates than was possible with the time-series data used for subject-level regression.
As absolute changes of the unit of the outcome is meaningful, we used the mean
absolute error (MAE) as evaluation metric. The proposed method, including all data
preprocessing, applied on the 500GB of raw MEG data from the Cam-CAN dataset,
runs in approximately 12 hours on a regular desktop computer with at least 16GB of
RAM. The preprocessing for the computation of the covariances is embarrassingly
parallel and can therefore be significantly accelerated by using multiple CPUs. The
actual predictive modeling can be performed in less than a minute on standard
laptop.

Results: models performance in sensor space. Fig. 2.2 displays the results for our
different regression models. The analysis revealed that all models performed clearly
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Fig. 2.2: Predicting age from subject-level MEG in sensor space. (A) model comparison using
Monte Carlo cross-validation with 100 splits sampled from 596 subjects. Models are depicted
along the y-axis, expected out-of-sample performance (mean absolute error) on the x-
axis. The distribution is summarized by standard boxplots. Split-wise prediction scores are
depicted by dots. The model type is indicated by color. Here, covariance estimation was based
on 8 minutes of MEG, hence, the impact of shrinkage should be small. For comparison with
the single-subject data (Fig. 2.1), we nevertheless reported the alternative low-rank models
(model order indicated by subscripts, no subscript meaning an order of 65, the minimum
rank of covariances). (B) Exhaustive search for model order in pipelines with projection
step. All values from 1 to the total number of 102 magnetometer channels were considered.
One can see that performance starts to saturate around 40 to 50. No striking advantage of
model-order search was evident compared to deriving the order from prior knowledge on
rank deficiency at a value of about 65. We see no low-rank minima, best performance is
obtained with the full signals. All models performed better than chance, however, models
consistent with log-linear model and using correlation terms performed better. On real data,
when multiple model violations occur, the Riemannian models performed best.

better than chance. The Riemannian model (orange) yielded the best performance
(8y MAE), followed by SPoC (dark orange, 8.8y MAE) (2.2A). The diagonal (green)
and upper-triangle (blue) models performed worse. The chance level was ∼ 16y
MAE. Model-order search did not reveal striking low-rank optima. Models above
rank 40 seem approximately equivalent, especially when considering the estimation
uncertainty of standard deviation above 1 year of MAE. For both SPoC and Riemann,
the best low-rank model was close to the model at the theoretically derived rank
of 65 (due to preprocessing with SSS, see [TK05]). For subsequent analyses, we,
nevertheless, retained the best models.
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One first important observation suggests that the log-linear model is more appro-
priate in this regression problem, as the only model not implying a log transform,
the Upper model, performed clearly worse than any other model. Yet, important
difference in performance remain to be explained among the log-linear models.

This points at the cross-terms of the covariance, which turns out to be an essential
factor for prediction success: The ‘diag’ model ignores the cross-terms and performed
worst among all log-linear models. The SPoC and Riemann models performed
better than ‘diag’ and both analyzed the cross-terms, SPoC implicitly through the
spatial filters. This raises the question why the cross-terms were so important.
One explanation would be that they reveal physiological information regarding the
outcome. Alternatively, the cross-terms may expose the variability due to individual
head geometry. To further investigate this point we conducted the same regression
analysis on source localized M/EEG signals, i.e., after having corrected for distortions
induced by individual head geometry with a biophysical model.

Results: models performance in source space. To compare the data-driven sta-
tistical models against a biophysics-informed method, for this dataset, we included
a regression pipeline based on anatomically constrained minimum norm estimates
(MNE) informed by the individual anatomy. The MNE approach has been detailed
in Section 1.4.2. Following common practice using the MNE software, we used
Q = 8196 candidate dipoles positioned on the cortical surface, and set the regulariza-
tion parameter to 1/9 [Gra+14]. Concretely, we used the MNE inverse operator as
any other spatial filter by multiplying the covariance with it from both sides to obtain
source-space covariance matrices. We then retained the diagonal elements which pro-
vides estimates of the source power. To obtain spatial smoothing and reduce dimen-
sionality, we averaged the MNE solution using a cortical parcellation encompassing
448 regions of interest from [Kha+18]. For preprocessing of structural MRI data we
used the FreeSurfer software ([Fis12], http://surfer.nmr.mgh.harvard.edu/).
Results are depicted in Fig. 2.3.

Now, the optimal number of components for prediction remarkably dropped: 11 for
Riemann and 20 for SPoC in source space, as compared to 53 and 67, respectively,
in sensor space. This may suggest that the inflated number of components in
sensor space is related to extra directions in variance accounting for individual
head geometry. Second, ‘diag’ (green) is now by far the best regression model with
performance at ∼ 7.7y MAE. This model only takes the log powers into account and
discards the cross-terms. This suggests that the outcome does not depend on the
cross-terms or at least that the potential gain of the cross-terms is inaccessible due
to the inflated dimensionality of feature space. The ‘diag’ score is also the highest
among all the models that we considered so far, illustrating that the MNE solution to
the inverse problem provides superior unmixing of brain signals.
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Fig. 2.3: Predicting age from subject-level MEG in source space. (A) model comparison applied to
sources and using Monte Carlo cross-validation with 100 splits sampled from 596 subjects. It
follows the same layout conventions than Fig. 2.2. The sources are estimated by MNE that
exploits biophysical prior knowledge. (B) Exhaustive search for model order in pipelines
with projection step. All values from 1 to the total number of 102 magnetometer channels
were considered. One can see that performance starts to saturate around 40 to 50. But
contrary to sensor space analysis of Fig. 2.2 projection models show clear low-rank minima.
All models performed better than chance, however, the ’diag’ model that only considers
sources’ log-powers clearly outperforms other models.

2.1.3 Predicting age from EEG on TUH data
The results on subject-level regression based on MEG suggest the importance of
model violations due to individual head geometry. Importantly, with traditional
cryogenic MEG, the sensor array is not fixed relative to the head, rendering head-
positioning and head-movements factors contributing to model violations due to
individual signal geometry. How would the present results generalize to clinical EEG
where sensors are fixed relative to the head but, in general, fewer sensors are used?
To investigate this question, we applied our subject-level age regression setting of
Cam-CAN to clinical EEG: We analyzed resting-state EEG (21 sensors) from about
1000 subjects of the Temple University Hospital (TUH) EEG dataset [Har+14], one
of the largest publicly available database of clinical EEG recordings. This ongoing
project currently includes over 30,000 EEGs spanning the years from 2002 to present.
As with previous analysis of the Cam-CAN data, each data point had its own mixing
matrix. As with the Cam-CAN, the EEG recordings from TUH were sufficiently long
to support accurate covariance estimation, hence, rendering model-order search less
important for shrinkage. We did not preprocess the data on purpose to ensure having
full-rank signals. This experiment is therefore appropriate to primarily investigate
the particular model violation of sample-dependent mixing matrices with constrained
degrees of freedom for the sensor-positioning as well as the generalization from
MEG to EEG. Unfortunately the absence of associated MRI data prevented us to
conduct source localization to correct for individual head geometry.

Data acquisition. We used the TUH "Abnormal EEG Corpus", a subset of TUH
EEG Corpus that have been annotated as normal or abnormal by medical experts.
From this dataset we focussed on the 1385 healthy patients, from both training
and evaluation sets, whose EEG has been annotated as normal. Their age ranges
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Fig. 2.4: Position of the 21 EEG electrodes selected for our experiment using TUH EEG Corpus dataset.

between 10 and 95 years (mean 44.3y, std 16.5y, 775 females, 610 males). EEG
was acquired using several generations of Nicolet EEG system (Natus Medical Inc.),
equipped between 24 and 36 channels. All sessions have been recorded with
an average reference electrode configuration, sampled at 250Hz minimum. The
minimal recording length for each session was about 15 minutes. For additional
details on EEG acquisition, please consider the reference publications on the TUH
dataset [Har+14].

Data processing, feature engineering and model evaluation. We applied minimal
preprocessing to the raw EEG data. We first selected the subset of 21 electrodes
common to all subjects (A1, A2, C3, C4, CZ, F3, F4, F7, F8, FP1, FP2, FZ, O1, O2,
P3, P4, PZ, T3, T4, T5, T6), see Figure 2.4. We then discarded the first 60 seconds of
every recording to avoid artifacts occurring during the setup of the experiment. For
each patient we then extracted the first eight minutes of signal from the first session,
to be comparable with Cam-CAN. EEG recordings were downsampled to 250Hz.
Finally, we excluded data segments dominated by high-amplitude signals using the
‘global’ option from autoreject [Jas+17] that computes adaptive rejection thresholds.
Note that the absence of linear projection to preprocess raw data (as SSS or SSP in
Cam-CAN) ensures the data are full rank. While the rank was reduced by one by the
use of a common average reference, as we used a subset of channels common to all
subjects, the data are actually full rank. Otherwise, we followed the same feature
engineering and modeling pipeline used for the Cam-CAN data (See Section 2.1.2).

Results: models performance. Fig. 2.5 displays the results for different regression
models. Model-order search did not reveal any clear low-rank optima. This was
expected considering the absence of preprocessing and accurate covariance estima-
tion. Strikingly, the only model not implementing a log transform, the Upper model,
performed at chance level, clearly worse than any other model. All other models
performed better than chance, with Riemann clearly leading, followed by SPoC and
diag. Those results are consistent with our simulations in Fig. 1.3(B) in which the
only model violation comes from individual mixing matrices. The performance and
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Fig. 2.5: Predicting age from subject-level EEG in sensor space. (A) model comparison applied to
sensors and using Monte Carlo cross-validation with 100 splits sampled from 1000 subjects.
It follows the same layout conventions than Fig. 2.2. Here, covariance are full rank, the
impact of shrinkage should be small. We nevertheless reported the alternative low-rank
models (model order indicated by subscripts). (B) Exhaustive search for model order in
pipelines with projection step. All values from 1 to the total number of 21 electrodes were
considered. Model-order search did not reveal striking low-rank optima. All models except
’upper’ performed better than chance, however, models consistent with log-linear model and
using correlation terms performed better. The Riemannian models performed best.

ordering of the models in the TUH data is also consistent with the results obtained
on the Cam-CAN dataset. This strongly suggests that the log-linear model is more
appropriate in this regression problem. It is noteworthy, that the best performance
based on the Riemannian model was virtually identical to its performance with
MEG on the Cam-CAN data. However, it remains open to which extent the benefit
of constrained signal geometry due to fixed sensor positioning is cancelled out by
reduced spatial sampling with 21 instead of 306 sensors.

As a conclusion, we considered three experiments presenting a variety of comple-
mentary model violations. Across all these experiments, our Riemannian algorithm
is a clear winner, leading the data-driven methods in sensor-space, showing a strong
performance and robustness to model violations.
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2.2 Model inspection
Beyond assessing pure performance, it is important to inspect our regression algo-
rithms to check that they yield physiologically plausible explanations of performance.
We will focus our model inspection analysis on the Cam-CAN dataset, as it allows to
assess every models presented so far including the source-localized MNE regression
model. In our first analysis we will leverage the fact that both the SPoC and MNE
regression models use spatial filters, respectively informed by the outcome or by the
individual anatomy. Hence, they readily support inspection of the corresponding
spatial patterns, which is not the case for the Riemannian model 1. In our second
analysis we will perform a sensitivity analysis of ‘diag’, SPoC and Riemann models
to assess individual relative influence of head geometry, uniform global power and
topographic information in performance.

2.2.1 Spatial patterns
Fig. 2.6 depicts the marginal patterns [Hau+14] from the SPoC supervised filters
and the MNE source-level filters (the rows of the linear operator WMNE derived
in Section 1.4.2), respectively. The sensor-level results suggest predictive dipolar
patterns in the theta to beta range roughly compatible with generators in visual,
auditory and motor cortices. Note that differences in head-position can make the
sources appear deeper than they are (distance between the red positive and the
blue negative poles). Similarly, the MNE-based model suggests localized predictive
differences between frequency bands highlighting auditory, visual and premotor
cortices. While the MNE model supports more exhaustive inspection, the supervised
patterns are still physiologically informative. For example, one can notice that the
pattern is more anterior in the β-band than the α-band, potentially revealing sources
in the motor cortex.

Fig. 2.6: Model inspection. Upper panel: sensor-level patterns from supervised projection. One can
notice dipolar configurations varying across frequencies. Lower panel: standard deviation of
patterns over frequencies from MNE projection highlighting bilateral visual, auditory and
premotor cortices.

1Recent methods [XGWJ20; Kob+21], published after this work, have then been proposed to perform
such introspections for Riemannian models, notably for tangent space linear models
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2.2.2 MEG and EEG as a cheap MRI?
The Cam-CAN study revealed that the performance of Riemann in sensor space
(Figure 2.2) is close to ‘diag’ in source space ( Figure 2.3), suggesting that the cross-
term models, in sensor space, have learnt to some extent what ‘diag’, in source space,
receives explicitly from source localization. Still, the good performance of ‘diag’ in
source space may be due to two independent factors that are not mutually exclusive:
It could be that source localization standardizes head geometry, hence, mitigates
the variability of mixing. On the other hand, if the anatomy itself covaries with the
outcome, which is a safe assumption to make for the case of aging [Lie+17], the
leadfields will also covary with the outcome. Source amplitudes may then change as
a result of dampening-effects (See methods in Khan et al. [Kha+18]).

To disentangle the factors explaining model performance, and understand how
Riemannian model partially handle individual volume conduction, we devised a
novel error-decomposition method derived from the proposed statistical framework
(Fig. 1.2). The link between the data-generating mechanism and the proposed
regression models allows us to derive an informal analysis of variance [Gel+05]
for estimating the importance of the data generating factors such as head geometry,
uniform global power and topographic, i.e., spatial information. Given the known
physics from Eq. (1.44), the data covariance can be written Ci = Gi Cz

i G⊤
i , where

Cz
i is the covariance matrix of the physiological sources in a given frequency band.

The input to the regression model is therefore affected by both the head geometry
expressed in Gi, and the covariance of the sources. Using a simulation-based
approach, we can therefore compute degraded observations, i.e., versions of the full
individual covariance CD

i that were either exclusively influenced by the individual
anatomy in terms of the leadfields, or also by additive uniform power. Subsequent
model comparisons against the full models then allow isolating the relative merit
of each of these specific components. Following common practice, we considered
electrical dipolar sources zi(t) ∈ RM , with M ≈ 8000, and we computed the
leadfield matrix Gi with a boundary element model (BEM) [Gra+14]. We then
defined two alternative models which are only based on the anatomical information
or, additionally, on the global signal power in a given frequency band without
topographic structure. This simulation will therefore allow us to estimate to which
extent the log-linear models have learnt from anatomical information, global signal
power of the MEG and topographic details.

Model using anatomy only. Assuming the physiological sources are Gaussian,
uncorrelated and of unit variance (power) zD

i (t) ∼ N (0, IM ), we can re-synthesize
their covariance matrix from individual leadfields alone without taking into account
the actual covariance structure:

CD
i = GiG

⊤
i . (2.2)
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Model using anatomy and spatially uniform power. Assuming the physiological
sources are Gaussian, uncorrelated and of uniform power zD

i (t) ∼ N (0, σ2
i IM ),

where σi is a scaling factor, we can re-synthesize their covariance matrix from
individual leadfields and subject-specific source power, again, ignoring the actual
covariance structure:

CD
i = σ2

i GiG
⊤
i . (2.3)

Specifically, we chose σ2
i = Tr(Ci)/Tr(GiG

⊤
i ), such that Tr(CD

i ) = Tr(Ci): the sum
of powers of the signals is the same. This corresponds to taking into account the
total power of the sources in a given frequency band and anatomy in the ensuing
regression model. Note that we omitted frequency-specific notation for simplicity.

Results: error decomposition To perform our sensitivity analysis we repeated the
Cam-CAN analysis with spatio-spectral information progressively removed. Fig. 2.7
compares three log-linear models based on the original observations (black) and
the degraded covariances (orange): the ‘diag’ model and the best low-rank models
previously found for SPoC and Riemann methods.
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Fig. 2.7: Simulation-based error decomposition. We performed model comparisons for the ob-
served data (black) and degraded data (orange) for which spatio-spectral information was
progressively removed: ‘leadfield + power’ muted topographic information keeping only
spatially uniform power and information from the individual leadfields (Eq. 2.3), ‘leadfield’
muted all electrophysiological variance (Eq. 2.2). (A) depicts absolute performance, (B),
differences with the full observation, correspondingly, for each model. One can see that all
models learnt to predict age from all three components: anatomical variation across subjects,
electrophysiological signal power and topographic information. However, the relative impor-
tance of each error component was clearly different across models. Riemannian model was
most responsive to the leadfield component (that explains ∼5y of performance) and least
responsive to the uniform power (∼0.5y or performance). A large portion of the prediction
performance (∼2.5y) was also explained by fine-grained spatial patterns.

One can see that all three error components improved overall prediction in similar
ways, each improving performance between 2 and 4 years on average (Fig. 2.7A).
The best performance with the leadfields-only was obtained by the Riemannian
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model scoring an MAE of about 11y on average. Adding spatially uniform power, the
Riemann model kept leading and improved by about 0.5y. Predictions based on the
observed data with full access to the covariance structure improved performance
by up to about 3y, suggesting that age prediction clearly benefits from information
beyond the leadfields.

Generally, the choice of algorithm mattered across all levels of the data generat-
ing scenario with Riemann always leading and the ‘diag’ model always trailing
(Fig. 2.7A). Finally, the results suggest the presence of an interaction effect where
both the leadfields and the uniform power components were not equally important
across models (Fig. 2.7A,B). For the Riemannian model, when only learning from
leadfields, performance got as close as three years to the final performance of the
full model (Fig. 2.7B). The ‘diag’ model, instead, only arrived at 5 years of distance
from the equivalent model with full observations (Fig. 2.7B). On the other hand, the
Riemannian model extracted rather little additional information from the uniform
power and only made its next leap forward when accessing the full non-degraded
covariance structure. Please note that these analyses are based on cross-validation.
The resulting resampling splits do not count as independent samples. This precludes
formal analysis of variance with an ANOVA model.

Overall, error decomposition suggests that all methods learn from anatomy and
that indeed, the leadfield in isolation is predictive of age. Models considering
cross-terms of the covariance were however more sensitive. It turns out that the
leadfield contained some information on aging and that Riemannian embeddings
were most sensitive to this information. Riemannian model was most responsive to
the leadfield component and least responsive to the uniform power. This information
was not explained by head positioning, pointing at differences in brain anatomy.
It’s conceivable that the Riemannian embedding better exposed this anatomical
information, facilitating deconfounding for the ridge model and/or contributing
unique information. The fact that Riemannian embeddings seem to capture in-
dividual head geometry justifies the use of EEG in the clinic beyond availability:
brain age EEG and brain age MRI must be correlated because half the variance in
covariances is anatomically explained. But also the fact that anatomical variations
does not fully explain the performance means that neuronal activity captured by
M/EEG contributes to the prediction: something is unique about M/EEG. This is an
additional hint, beyond our article [Eng+20], and using a different method, that
M/EEG is complementary with MRI.
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2.3 Model robustness
Our first contribution led to the development of a regression model from M/EEG
signals, with mathematical guarantees of optimality under certain conditions, and
most importantly that avoids source reconstruction, facilitating its translation to the
clinic. Yet, two important roadblocks remain before considering a clinical usage of
our algorithms: they seem to require 1) a high-density 306 channels MEG device
to acquire the signals and 2) an heavy preprocessing pipeline to clean the signals
from environmental & physiological artefacts, both conditions inadequate to clinical
practice.

Robustness to low-fidelity EEG. We already investigated the first issue with our
clinical EEG experiment in Section 2.1.3 whereby we applied our Riemannian
model to the analysis of ∼ 1000 low-fidelity 21-channels clinical EEGs from the
Temple University dataset and found remarkably similar performance levels with
306-channel high-density lab MEG, again with the Riemannian embeddings leading
to the best performance. Our regression models seem therefore robust to signal
low-fidelity and a clinical-grade device. The second issue is that our methods seem
to require a heavy preprocessing pipeline: does it work with noisy signals?

Robustness to signal preprocessing. Commonly used preprocessing in M/EEG
analysis is based on the idea to enhance signal-to-noise ratio by removing signals of
non-interest, often using dedicated signal-space decomposition techniques [UI97;
TK05; HKO04]. For instance, in our Can-CAM age regression problem, we used the
preprocessing pipeline detailed in paragraph Data processing and feature engineering
of section Section 2.1.2, consisting in environmental denoising (via signal space
separation SSS), physiological ECG/EOG artifacts removal (via signal space projec-
tion SSP), and rejection of bad segments (via automatic peak-to-peak amplitude
thresholding). However, it is perfectly imaginable that such preprocessing removes
information useful for predicting. At the same time, predictive models may learn the
signal subspace implicitly, which could render preprocessing unnecessary. To investi-
gate this issue in Can-CAM, we sequentially repeated the analysis after activating
the essential preprocessing steps one by one, and compared them to the baseline of
extracting the features from the raw data with no preprocessing at all. This allows
to compare regression models across different combinations of preprocessing steps.
For this purpose, we considered an alternative preprocessing pipeline in which we
kept all steps unchanged but the SSS [TK05] for removal of environmental artifacts.
We used instead a data-driven PCA-based SSP [UI97] computed on empty room
recordings. Results are depicted in Fig. 2.8.

The analysis revealed that the Riemannian model performed reasonably well when
no preprocessing was done at all (Fig. 2.8A), almost as good as the other algorithms
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Fig. 2.8: Impact of preprocessing. Model comparison across cumulative artifact removal steps:
environmental artifacts (env), environmental + occular (eog), environmental + cardiac
(ecg), environmental + occular + cardiac (eo/cg), environmental + occular + cardiac +
bad segments (rej). Results are compared to the baseline of extracting features from raw
data with no preprocessing (depicted by vertical dashed lines). The method for removal of
environmental artifacts is indicated by color, i.e., , blue and red for SSS and SSP respectively.
Note that the endpoint rej is identical to the full preprocessing conducted in previous
analyses. Panels depict performance for the best Riemannian model (A), the best SPoC
model (B), and the ‘diag’ model (C). One can see that the Riemann model, but not the ‘diag’
model, is relatively robust to preprocessing and its details.

with full preprocessing. It also turned out to be relatively robust to particular
preprocessing choices. On the other hand, whether preprocessing was done or not
turned out decisive for the ‘diag’ model and to some extent for the SPoC model
(Fig. 2.8B,C). A few common tendencies became apparent. Across all models, while
improving above baseline, SSP as a first step consistently led to worse performance
than SSS. Second, performance was also slightly degraded by removing ocular
and cardiac artifacts, suggesting that both shared variance with age. Removing
EOG seemed to consistently degrade performance. On the other hand, removing
ECG had virtually no impact for SPoC and the ‘diag’ model. SSP, whether used
for environmental or physiological artefacts, has virtually no impact on Riemann.
This was expected, as SSP involves orthogonal projections and Riemann has a built-
in ability to discard noise orthogonal to signal. Yet, for Riemann, both removing
ECG and EOG after SSS additively deteriorated performance which suggests these
artefacts share variance with the age outcome. Finally bad epochs rejection had a
negligible and inconsistent effect. Overall, the results suggest that the importance of
preprocessing depended on the model, while minimal denoising with SSP or SSS
always helped improve performance. Of note, with minimal preprocessing using SSS,
the Riemannian model performed at least as well as the ‘diag’ model after source
localization (Fig. 2.3), here showing the best performance observed so far around 7y
MAE. This contribution, the analysis of the impact to preprocessing on Can-CAM,
reveals that Riemannian model seem to be a good bet across a wide range of settings
with considerable robustness to extreme noise.
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Finally, to summarize our two contributions so far, we found that when predicting
from M/EEG power spectra is the priority, the capacity of linear models can be
extended optimally by Riemannian embeddings despite model violations. Strikingly,
applied to age prediction, this Riemannian regression algorithm has the potential to
be used in the clinic: it operates in sensor-space (avoiding costly source localization),
it is robust to environmental and physiological artefacts and it accommodates cheap
EEG recordings. This optimal, robust and light model is therefore a good candidate
to develop our clinical Brain Age Delta (BAD) biomarker.
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2.4 Discussion
What distinguishes event-level from subject-level prediction in the light of
model violations?

Unsurprisingly, no model performed perfectly when applied to empirical data for
which the data generating mechanism is by definition unobservable, multiple model
violations may occur and information is only partially available. One important
source of differences in model violation is related to whether outcomes are defined
at the event-level or at the subject-level. When predicting outcomes from ongoing
segments of neural time-series within a subject, covariance estimation becomes
non-trivial as the event-level time windows are too short for accurate estimation.
Even if regularized covariance estimates provide an effective remedy, there is not one
shrinkage recipe that works in every situation [EG15]. In this study, we have relied
on the oracle approximating shrinkage (OAS) [Che+10] as a default method in all
analyses. Yet, we found that additional low-rank shrinkage [EG15; Woo+11; TB99;
RCJ18], as implied by the SPoC method [Däh+14a], or the unsupervised projection
for the Riemannian model [Sab+19a], improved performance considerably for
event-level prediction. A spatial-filter method like SPoC [CP14; Däh+14a] can be
particularly convenient in this context. By design, it concentrates the variance most
important for prediction on a few dimensions, which can be easily searched for,
ascending from the bottom of the rank spectrum. Riemannian methods can also
be operated in low-rank settings [Sab+19a]. However, model-order search may be
more complicated as the best model may be anywhere in the spectrum. This can
lead to increased computation times, which may be prohibitive in realtime settings
such as BCI [Lot+07; Lot+18; Tan+08].

Issues with the numerical rank of the covariance matrix also appear when predicting
at the subject-level. The reason for this is fundamentally different and rather unre-
lated to the quality of covariance estimation. Many modern M/EEG preprocessing
techniques focus on estimating and projecting out the noise-subspace, which leads to
rank-deficient data. In our analysis of the Cam-CAN dataset [Sha+14; Tay+17], we
applied the SSS method [TK05] by default, which is the recommended way when no
strong magnetic shielding is available, as is the case for the Cambridge MEG-system
on which the data was acquired (see also discussion in [Jas+18]). However, SSS
massively reduces the rank down to about 64 out of 306 dimensions, which may
demand special attention when calibrating covariance estimation. Our results sug-
gest that projection can indeed lead to slightly improved average prediction once a
certain rank value is reached. Yet, thoughtful search of optimal model order may
not be worth the effort in practice when a reasonably good guess of model order
can be derived from the understanding of the preprocessing steps applied. Our
findings, moreover, suggest, that a Riemann-based model is, in general, a reasonably
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good starting point, even when no model-order search is applied. What seems to
be a much more important issue in subject-level prediction from M/EEG are the
model violations incurred by individual anatomy. Our mathematical analysis and
simulations demonstrated that not even the Riemannian approach is immune to
those, for MEG and EEG.

What explains the performance in subject-level prediction?

Our results suggested that, for the current regression problems with MEG and EEG,
the log-linear model was more appropriate than the linear-in-powers ones. This
is well in line with practical experience and theoretical results highlighting the
importance of log-normal brain dynamics [BM14]. On the other hand, on the Cam-
CAN data, we observed substantive differences in performance within the log-normal
models highlighting a non-trivial link between the cross-terms of the covariance and
subject-level variation. Indeed, the ‘diag’ model, both in sensor and source space,
ignored the cross-terms of the covariance, yet in source space, it performed about
1.5 years better on average than in sensor space. This is rather unsurprising when
recapitulating the fact that subject-level regression on M/EEG implies individual
anatomy. Indeed, our mathematical analysis and simulations identified this factor
as important model violation. MNE source localization, by design, uses the head
and brain geometry to correct for such violations. On the other hand, if leadfields
are correlated with the outcome, the source localization, which depends on the
leadfields, will be predictive of the outcome too, even if no brain source is actually
relevant to the outcome. This suggests that the cross-term models that were more
successful than the ‘diag’ model may either convey biological information relevant
to predict the outcome, or expose forward information on head geometry to the
regression model, which then improved prediction by de-confounding for head
geometry. Our findings on source localization strongly suggested that correcting for
geometrical misalignment was the driving factor, evidenced by the fact that after
source localization the simple ‘diag’ model performed best. Yet, these findings did
not rule out that leadfields themselves were not predictive of the outcome.

We, therefore, derived a novel error-decomposition technique from the statistical
framework presented in Fig. 1.2 to estimate the sensitivity of our M/EEG regression
models to anatomy, spatially uniform power and topographic details. We applied
this technique on the Cam-CAN dataset to investigate the subject-level prediction
problem. While all models captured anatomical information and the Riemannian
models were the most sensitive to it, anatomical information did not explain the
performance based on the full data. At the same time, this demonstrated that
MEG captures age-related anatomical information from the individual leadfields and
raises the question of which aspects of anatomy were concerned. Neuroscience of
aging has suggested important alterations of the cortical tissues [Lie+17], relevant
for generating M/EEG signals, such as cortical surface area, cortical thickness or
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cortical folding. Yet, more trivially, head size or posture are a common issue in MEG
and could explain the present effect, which would be potentially less fascinating
from a neuroscientific standpoint. We investigated this issue post-hoc by predicting
age from the device-to-head transform describing the position of the head relative
to the helmet and the coregistration transforms from head to MRI. Compared to
the Riemannian model applied to the leadfields-only surrogate data, this resulted
in three years lower performance of around 14 years error, which is close to the
random guessing error and may at best explain the performance of the ‘diag’ model.
Moreover, translating our approach to EEG for which sensor placement relative to
the head is less variable, we did not witness improvements over MEG. On the other
hand, this may be due to the smaller number of sensors available in EEG. Future
work will have to show, how these two factors interact in practice across prediction
problems and EEG-configurations.

Interestingly, also the SPoC model was more sensitive to anatomy than the ‘diag’
model. This suggests that by learning adaptive spatial filters from the data to best
predict age, SPoC may implicitly also tune the model to the anatomical information
conveyed by the leadfields. This seems even more plausible when considering that
from a statistical standpoint, SPoC learns how to invert the mixing matrix A to
get the statistical sources implied by the predictive model. This must necessarily
yield a linear combination of the columns of G. As a consequence, SPoC does not
learn to invert the leadfields G but directly yields an imperfect approximation to G .
Theoretically, unique SPoC solution can be found with arbitrary outcomes as long as
the data is full-rank and the target is noise-free. In practice, this is rarely the case.
Therefore, the SPoC solution empirically depends on the choice of the outcome. This
also motivates the conjecture that differences between SPoC and Riemann should
become smaller when the Gi are not correlated with the outcome (Riemann should
still enjoy an advantage due to increased robustness to model violations) or even
vanish when G is constant and no low-rank issues apply. The latter case is what we
encountered in the event-level analysis where SPoC and Riemann where roughly on
par, suggesting that both handled the distortions induced by G.

Unfortunately, the current analysis did not elucidate the precise mechanism by which
different models learnt from the individual anatomy and why the Riemannian model
was so much more proficient. As a speculation, one can imagine that changes in the
leadfields translate into simple topographic displacements that the ‘diag’ model can
easily capture. This would be in line with the performance of the ‘diag’ model on the
leadfields-only surrogate data, which matched prediction performance based on the
device-to-head transforms or the coregistration matrices previously mentioned. With
cross-terms included in the modeling, SPoC and, in particular, Riemann may better
unravel the directions of variation with regard to the outcome by considering the
entire geometry presented in the leadfields. Instead, for the case of the leadfields-
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only surrogates, SPoC attempts capturing sources which literally do not exist, hence
must yield a degraded view on G.

Overall, our results suggest that Riemannian models may also be the right choice
when the anatomy is correlated with the outcome and the primary goal is prediction.
The enhanced sensitivity of the Riemannian model to source and head geometry may
be precisely what brings them so close to performance based on source localization.
Indeed, the TUH experiment shows that these properties render Riemannian models
particularly helpful in the case of EEG, where the leadfields should be less variable
as the sensor cap is affixed to the head, which strongly limits variation due to head
posture.

How important is preprocessing for subject-level prediction?

It is up to now equivocal how important preprocessing is when performing predictive
modeling at the subject-level. Some evidence suggests that preprocessing may be
negligible when performing event-level decoding of evoked responses as a linear
model may well learn to regress out the noise-subspace [Hau+14]. Our findings
suggest a more complex situation when performing subject-level regression from
M/EEG signal power. Strikingly, performing no preprocessing was clearly reducing
performance, for some models even dramatically, SPoC and in particular ‘diag’.
The Riemann model, on the other hand, was remarkably robust and performed
even reasonably well without preprocessing. Among the preprocessing steps, the
removal of environmental artifacts seemed to be most important and most of the
time led to massive improvements in performance. Removing EOG and ECG artifacts
mostly reduced performance suggesting that age-related information was present
in EOG and ECG. For example, one can easily imagine that older subjects produced
less blinks or showed different eye-movement patterns [Tha+15] and also cardiac
activity may change across the lifespan [Att+19].

Interestingly, our results suggest that the method used for preprocessing was highly
important. In general, performance was clearly enhanced when SSS was used
instead of SSP. Does this mean that SSP is a bad choice for removing environmental
artifacts? Our results have to be interpreted carefully, as the situation is more
complicated when considering how fundamentally different SSP and SSS are in
terms of design. When performing SSS, one actually combines the information of
independent gradiometer and magnetometer sensor arrays into one latent space
of roughly 65 dimensions, less than the dimensionality of both sensor arrays (306
sensors in total). Even when analyzing the magnetometers only after SSS, one
will also access the extra information from the gradiometers [Gar+17]. SSP on
the other hand is less invasive and is applied separately to magnetometers and
gradiometers. It commonly removes only few dimensions from the data, yielding a
subspace greater than 280 in practice. Our results therefore conflate two effects: 1)

2.4 Discussion 105



learning from magnetometers and gradiometers versus learning from magnetometers
only and 2) differences in strength of dimensionality reduction. To disentangle these
factors, careful experimentation with more targeted comparisons is indicated. To
be conclusive, such an effort may necessitate computations at the scale of weeks
and should be investigated in a dedicated study. For what concerns the current
results, the findings simply suggest that SSS is a convenient tool as it allows one to
combine information from magnetometers and gradiometers into a subspace that is
sufficiently compact to enable efficient parameter estimation. It is not clear though,
if careful processing with SSP and learning on both sensors types would not lead to
better results.

Conclusion

Our study has investigated learning continuous outcomes from M/EEG signal power
from the perspective of generative models. Across datasets and electrophysiological
modalities, the log-linear model turned out to be more appropriate. In the light
of common empirical model violations and preprocessing options, models based
on Riemannian geometry stood out in terms of performance and robustness. The
overall performance level is remarkable when considering the simplicity of the model.
Our results demonstrate that a Riemannian model can actually be used to perform
end-to-end learning [Sch+17] involving nothing but signal filtering and covariance
estimation and, importantly, without deep-learning [Roy+19]. When using SSS,
performance improves beyond the current benchmark set by the MNE model but
probably not because of denoising but rather due to the addition of gradiometer in-
formation. Moreover, we observed comparable performance on minimally processed
clinical-EEG with only 21 channels instead of 306 MEG-channels, suggesting that the
current approach may well generalize to certain clinical settings. This has at least
two important practical implications. First, this allows researchers and clinicians
to quickly assess the limits of what they can hope to learn in an economical and
eco-friendly fashion [SGM19]. In this scenario, the Riemannian end-to-end model
rapidly delivers an estimate of the overall performance that could be reached by
extensive and long processing, hence, support practical decision making on whether
a deeper analysis is worth the investment of time and resources. Second, this result
suggests that if prediction is the priority, availability of MRI and precious MEG
expertise for conducting source localization is not any longer the bottleneck. This
could potentially facilitate data collection and shift the strategy towards betting on
the law of large numbers: assembling an MEG dataset in the order of thousands is
easier when collecting MRI is not a prerequisite.

It is worthwhile to consider important limitations of this study. Unfortunately, we
have not had access to more datasets with other interesting continuous outcomes.
In particular the conclusions drawn from the comparison between event-level and
subject-level regression may be expanded in the future when considering larger
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event-level datasets and other outcomes for which the linear-in-powers model may
be more appropriate. Second, one has to critically acknowledge that the performance
benefit for the Riemannian model may be partially explained by increased sensitivity
to anatomical information, which might imply reduced specificity with regard to
neuronal activity. In this context it is noteworthy that recent regression pipelines
based on a variant of SPoC [Däh+14b] made use of additional spatial filtering for
dimensionality reduction, i.e., , SSD [NNC11] to isolate oscillatory components
and discard arrhythmic (1/f) activity. This raises the question if the specificity of
a Riemannian model could be enhanced in a similar way. Ultimately, what model
to prefer, therefore, clearly depends on the strategic goal of the analysis [Bzd+18;
BI19] and cannot be globally decided.

We hope that this study will provide the community with the theoretical framework
and tools needed to deepen the study of regression on neural power spectra and
safely navigate between regression models and geometric distortions governing
M/EEG observations.
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3.1 Intraoperative brain age: from population
modeling to anaesthesia

Neurovascular and neurodegenerative diseases are among the top causes of world-
wide mortality hence a major public health concern [Eura]. Their impact can be
mitigated by early diagnosis using predictive measures of neurodegenerative risk.
Some of these measures assessing individual brain health have been developed in
research laboratory from large population using machine learning, e.g., recently
brain-predicted age to predict brain aging from M/EEG data. Yet, they require
biomedical exams that are indicated only when suffering is present, making the
diagnosis often too late. Moreover, population studies suffer from selection bias since
mostly healthy people participate in lab studies, leading to demographic stratification
of predictive accuracy.

One rarely investigated solution to these problems consists in using monitoring data
from General Anaesthesia (GA). Indeed, contrary to research studies, GA is driven
by medical indication and performed at massive scales. This procedure concerns
people from anywhere in society leading to millions of recordings, including EEG
as monitoring EEG during GA is a general recommendation by learned societies to
monitor depth of anaesthesia. Also, early evidence suggests that EEG during GA
can reveal neurodegenerative risk factors [Fri+20]. By revealing pathologies of
brain function, GA-based modeling could revolutionize preventive medicine if the
monitoring data from millions of annual operations were scientifically actionable.

Brain age (BA) has been shown to be a better indicator of cognitive disorders than
age [Col+19]. Yet, BA, EEG and GA have rarely been investigated together. BA
has been mostly investigated in literature through MRI not EEG [Col+18; Fra+12;
Jón+19; Col+17]. We also know that deriving biomarkers from EEG can be done
optimally under certain conditions [Sab+19a], and has recently been applied to
BA [Sab+20], yet never in a GA context. GA is a pertinent moment to extract
signals from patients with minimal artefacts due to muscle-inhibitor drugs, hence a
particularly adapted moment to build biomarkers from EEG, yet it has never been
used to estimate BA.

Multiple challenges stand in the road to building brain age models from GA data
due to specificities of the anaesthesia period. First, EEG during GA is done for
monitoring purposes, not research. Doctors read out multiple cues in the signal,
e.g., flat EEG periods to detect burst suppression, spectrograms to judge signal
quality by the presence of beta power or BIS/PSI indices to monitor anesthetic
depth [Sch+03]. These quantitative factors are used to make clinical decisions
on individual fragility, and adjust anaesthetic drug accordingly. Hence, data is
not collected in a fully controlled environment with explicit protocol, eventually
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leading to confounding between preoperative health, drug dosage and intraoperative
biosignals. Moreover, the scarcity of research-grade equipment could invalidate
existing research-based approaches. Second, despite muscle-inhibitor drugs, the EEG
signal during anaesthesia can be noisy: certain surgical events can induce artefacts,
transient electrode loss is not uncommon due to high amplitude environmental
artefacts, clipping on subset of electrodes can happen in certain EEG devices, etc.
Third, doctors use different drugs during the GA procedure, that are known to
modify EEG brain spectral signatures [Pur+15b]. Finally, defining with a single
criteria the stable anaesthesia period to optimally extract biomarkers pose difficulties
as young/old, healthy/less healthy people can have very different EEG landmarks,
e.g., alpha peaks, making it likely to throw away useful data or include noise.

Brain age, the age of the brain organ, is an easy notion to grasp for the general
public, and could therefore be an appealing communication tool for discussing
brain health in the clinic [Den+21]. Yet its clinical value should be thoroughly
demonstrated before introducing it as a new biomarker. Also, knowing that BA is
trained by predicting age of healthy patients, the complementarity of BA with age
is a particularly important question to investigate: BA should not be redundant
with age, an already ubiquitous marker of multiple clinical outcomes [Dad+21].
The information extracted from biological sources by the BA should at least be
complementary to age to predict important clinical outcomes like health status or
neurocognitive disorders. One possible way to assess cognitive disorders for instance
is to detect Burst Suppression (BS), an EEG pattern of alternating periods of iso-
electric suppression and high amplitude waves, that has been linked to postoperative
cognitive dysfunctions [Fri+16; Wil+19], a disorder that touches about one third
of anaesthetized 60y+ people. Leveraging the signals collected in the operating
room, brain age could be an important prospective biomarker to predict BS and a
prevention tool candidate of postoperative complications.

Hence the questions we seek to answer: Can we predict the BA in the clinic from
EEG during GA, i.e., is the translation of lab-developed BA valid in GA settings?
Does the BA have a clinical diagnostic value, can it be considered as a biomarker
of neurocognitive disorders? Does the drug impact BA prediction under GA and
how to take it into account? To investigate these questions we collaborated with the
anaesthesia-critical care department of Lariboisière hospital in Paris. With ∼14 000
anaesthesia every year and 14 operating rooms, Lariboisière hospital is one of the
major hospitals in France.

This chapter is organized as follows. Section 3.2 describes the methods used to
investigate our research questions, with a focus on the impediments met to transform
raw clinical data into an actionable dataset. Section 3.3 is devoted to data exploration
in order to gain some intuitions on the relationships between age, brain age, EEG
power, health status and drugs. The next Section 3.4 is devoted to the results of our
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study, answering each of our three scientific questions: Section 3.4.1 the feasibility
of clinical translation of BA to GA-settings, Section 3.4.2 the validation of model
predictions against the occurrence of BS, and Section 3.4.3 the impact of GA drugs
on BA prediction. Section 3.5 proposes a discussion on the results and a perspective
on future work.
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3.2 Methods

3.2.1 General anaesthesia setting
General Anesthesia can be roughly defined as an artificial state of coma, induced
by a specific hypnotic drug for the time of a surgery. In this state, the protective
reflexes are lost: body temperature is not regulated anymore, breathing is not auto-
matic [BLS10]. GA is therefore a technical procedure during which an anesthetist
should stand in to preserve the normal functioning of the organs and keep the patient
in a stable state.

GA is composed of three phases: induction (∼25 min), maintenance (duration of
surgery) and awakening (∼1 h). In the induction phase the patient is administered
numerous anaesthetic drugs as an intravenous continuous flow (not push or bolus)
to reach desired stable anaesthesia state. In the maintenance phase the main
physiological constants of the patient are monitored by the anaesthetist (oxygen
saturation, arterial pressure, heart rate and BS) to make sure the patient stays in a
stable state.

During induction, among the multiple anesthetic agents used during GA, the hypnotic
drug is responsible for inducing sedation and promoting loss of consciousness.
Common hypnotic drugs include propofol, ketamine or halogenated gas (desflurane,
sevoflurane), each of them with their own spectral brain signature [Pur+15b]. At
Lariboisière, patients are usually induced using propofol, and maintained with either
propofol or sevoflurane.

During maintenance, to monitor the depth of anaesthesia, doctors are guided by
EEG-derived commercial indices like the bispectral index BIS or the Patient State
Index PSI. Keeping these indices in the standard range of values is recommended
to maintain the patient in a stable anaesthesia state. The depth of anaesthesia can
also be monitored using the Spectral Edge Frequency index SEF95, defined as the
frequency under which 95% of the cumulative sum of the normalized spectral power
is contained. Hence, the smaller the SEF95, the less conscious the patient and the
deeper the anaesthesia. A stable state of anaesthesia hypnosis is usually defined by a
SEF95 index contained in the [8-13]Hz range [Bru+03].

We focused on general anaesthesia procedures only, discarding local and loco-
regional procedures, all using total intravenous propofol as induction drug and
then either propofol or sevoflurane as maintenance drug (we excluded 15 patients
maintained by desflurane). Only patients undergoing neuroradiology interventions
and orthopedic surgeries were included in this translational study. These two types
of intervention cover patients with varied age and health status: neuroradiology
interventions mostly concern young and healthy populations without neurological
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antecedents, orthopedic surgeries are more often performed on aged patients known
for cognitive disorders.

3.2.2 Data collection
Cerebral activity during GA was monitored using Masimo device with a 4-frontal
electrodes EEG montage (Fp1, Fp2, F7 and F8), sampled at 63 Hz by default. EEG
cap is placed on the patient’s scalp a few minutes before injection of the drugs and
removed at the end of anaesthesia. Peroperative EEG data are then extracted from
the device, anonymized and stored on a file server in EDF format. APHP security
policy enforced a restricted access to this private and secured server, only accessible
from the Lariboisière local network to a small number of individuals. Each EDF file is
completely anonymized and stored under a directory named after the corresponding
operating room. Because of this anonymization procedure we had to match each
patient with its EDF files using only the date/time of surgery and the name of the
operating room, recorded in a separate file.

We also had access to non-EEG information collected during the mandatory anaesthesia-
specific medical consultation, including demographic data (age, gender, weight,
height, BMI), clinical information (type of surgery, type of anaesthesia, type of
drug, ASA score, blood pressure) and medical information (neurological and cardio-
vascular antecedents, neurological and cardiovascular treatments, cardiovascular
risk factors). These binary medical scores were either too scarcely collected or too
unbalanced to be used in our statistical study. By contrast the ASA score ∈ {1, 2, 3},
a standardized score indicating preoperative physical health status (the lower the
healthier), was more systematically collected. We also had access to information
manually recorded by anesthetists during the intervention, among which the quan-
tity and timing of administered drugs, timing of specific events and peroperative
variables. Nevertheless, lack of digitization prevented us from easily using this
information.

To detect iso-electrical suppressions (first part of the BS pattern) from intraoperative
EEG we adapted the method from [Car+19]. For each EEG, a trained clinician
identified intraoperative periods based on the alpha-band. From this intraoperative
EEG signal S(t), we first discarded flat artifacts searching for segments below
0.1 µV amplitude, lasting at least 1 s. Similarly, periods of high amplitude voltage
above 80 µV were also removed. To anticipate possible amplitude drift during the
intervention, we rescaled the signal by first computing a rolling standard deviation
over 30 s-long time windows Sstd(t), then building Ŝ(t) = S(t)

(
1 + 2 ⟨Sstd(t)⟩

Sstd(t)

)
/3 ,

where ⟨·⟩ indicates the temporal mean. A mask was constructed based on regions
where |Ŝ(t)| < 2.5 µV, then we applied in series a 0.2 s erosion, a 1 s dilation and an
0.8 s erosion. This output was used to estimate time and fraction of time spent in iso-
electrical suppression during the entire intraoperative period including the induction
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(the first 25 min) and the maintenance phasess (after 25 min). We focused on the
maintenance period for the better statistical properties of the signal (more samples
due to a longer period, closer to stationarity and less artefacts) and potentially lower
false positive rate (drug-induced BS can arise at induction more often). However, this
lengthy period is also more prone to confounding effects of drugs used to stabilize
the patient’s vital signs. Once detected, these episodes of iso-electrical suppressions
were automatically discarded from the signal via artefact rejection, hence never used
in subsequent steps including feature extraction and modeling.

3.2.3 Data curation
Neuroscience data provided by research consortia are usually cleaned, processed
and curated before made public, which facilitates further analysis. In this study, we
directly worked with raw clinical data, originally collected for monitoring purposes.
High quality monitoring is indeed the priority of anaesthetists to guarantee the
quality of the GA procedure in a highly controlled clinical environment. To reuse
the data for research purposes, an essential part of my thesis work was to develop a
data curation strategy.

First, since the EEG data acquisition process has not been carried out to answer
a dedicated research question, the conditions of data collection were not ideally
controlled, which is common in this situation. Doctors used different strategies to
administer propofol. Manual infusion consists in injecting a single dose of drug
(bolus) and monitoring some physiological constants (heart rate, arterial pressure)
for potential adjustments. Target Controlled Infusion (TCI) leverages modern syringe
drivers that administer the drug continuously and automatically so that the cerebral
concentration saturates at a desired target value, using only age and weight as input.
Stable Anaesthesia requirement let the doctor decide the dosage to meet a certain
criteria like SEF95 index in the [8-13]Hz range or to compensate for perceived
resistance to anaesthesia. Besides intervention in drug administration, we had to
deal with other impediments in the data acquisition process. Some recordings failed
for practical reasons resulting in several small unusable EDF files. Some metadata
was lost as some students, helping with the process, used their own Excel template
for their thesis with different formats, which ended up not being consolidated with
the main metadata file. Finally, the file server storing EEG data was not ideally
organized, with inconsistent directory naming structure, duplicated patients under
different directories, nested patient directories, ghost directories containing patients
operated in an unreported room number, etc. To mitigate this last obstacle, largely
unavoidable, the Lariboisière team developed a script running every day on the file
server and providing an updated view on all EDF files in a searchable database. A
dedicated script has also been developed to match each patient with its EDF files
folder. Finally, we assigned a unique identifier to each patient for each visit at the
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hospital, as it is important to distinguish between two visits of the same patient,
which can then present different characteristics (age, health status, etc.).

Regarding the EEG data quality, we also had to overcome multiple obstacles. Masimo
devices impose a maximum file size to each recorded EDF file, leading to multiple
EDF files per patient. The concatenation of these files was non-trivial because of
two reasons. First, the data collection procedure led to excluding patients associated
with only one EDF file of small size (considered as recording failure) and patients
with multiple files but whose first and second file are incomplete. For the remaining
patients we excluded the first file if it was incomplete and if the second file is
at least 80% of its max size (a symptom that the device has been unplugged for
some reason, generally to facilitate the device transfer between the induction and
operating room). Second, the EEG device used in the operating room has not been
designed for research but for monitoring usage. Hence the raw data it records
strictly follows data visualized on its screen. For instance, if the extreme traces on
the visualisation screen (which corresponded to the two electrodes Fp1 and F8)
were clipped, the recorded raw data were also clipped. The raw data are therefore
modified whenever the device operator changes the visualization settings. Hence, the
calibration factor between two consecutive files could be different due to Masimo’s
operator changing y-scale on the monitor, e.g., to avoid clipping of the extreme raw
EEG traces during recording. For this reason we also excluded files that do not have
the same calibration factor than the first file in order to avoid error at concatenation.
Finally the remaining files were downsampled to a common sampling frequency of
63Hz before concatenation. The downsampling was necessary because sampling
frequency could change between two consecutive files due to Masimo’s operator
changing x-scale on monitor during recording.

Regarding the metadata collection process, these data were recorded by hand by
each medical doctor on a paper sheet, before being further consolidated in an Excel
file. This process inevitably led to missing values: the anesthetists helped us to go
through the archive department of the hospital and look at the paper record of a few
dozens of patients one by one to retrieve their drugs and their ASA score. We also
encountered incorrect values (e.g., due to a change of convention between cohorts in
the encoding of the gender attribute), inconsistent values (e.g., some patients having
two different maintenance drugs, which could go unnoticed when filtering for the
presence of a particular drug), and finally unnormalized values (e.g., the letter O in
place of the number 0). These errors were corrected by hand, which is a common
reality in clinical settings. As a side note of interest, the growing number of research
projects within the anaesthetists team has recently led to the hiring of a dedicated
data manager, leading the data curation effort.

Finally, from the 518 patients with demographic information, 473 underwent general
(and not loco-regional) anaesthesia among which 435 had their maintenance drug
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informed. Among those patients, 348 had a successful EDF-files matching and 345
with successful EDF files concatenation, leading to a dataset of 345 patients with
both a proper concatenated EEG recording (in FIF format) and metadata information.
Finally we converted the resulting EEG dataset into the standard and anonymized
BIDS format [Per+19] with EDF files in Brainvision format using the MNE-BIDS
Python library [App+19]. The statistics of the cohort is summarized in Table 3.1,
along with a stratified view by the grouping variable ASA and drug.

3.2.4 Data processing and feature extraction
The data processing has been carried out using ‘mne-bids-pipeline’ (https://mne.
tools/mne-bids-pipeline/). This tool is not a Python library but a suite of Python
scripts that generate processed data in a FIF format from BIDS files. Processing
instructions are contained in a single configuration file that can be tailored to
particular needs. For our study, we minimally used it to generate epochs: for every
patient, the signal is epoched into 60 s sliding windows shifted by 10 s.

Intermediate power representations of the signal were computed using the open-
source Python library ‘Coffeine’ (https://github.com/coffeine-labs/coffeine).
In each window, the power spectral density, the covariance matrices and the cross-
frequency covariance matrix are averaged across internal Hamming windows of
8 s shifted by 4 s. The power spectral density was estimated in 244 frequency bins
between 0 and 32 Hz and its averaging has been further robustified by trimming
distribution from both tails at 25 % cutoff. The covariance matrices of the four
EEG channels are estimated using the ‘OAS’ shrinkage method[Che+10] in each
of five frequency bands as described in Table 3.2 leading to five 4 × 4 matrices.
The cross-frequency covariance matrix is the covariance matrix of the 20 ‘virtual’
channels constructed from each four real channels filtered in each five frequency
bands, leading to a single 20 × 20 matrix. This matrix allows to investigate coupling
between frequency bands, while still enjoying the same mathematical guarantees
obtained in Chapter 1 as it is a covariance matrix. Besides these covariance features,
EEG-characteristics commonly used to judge the signal quality during monitoring
are also computed: the SEF95 index and the maximum peak-to-peak amplitude, as
they are used to perform epochs-selection.

Epochs with peak-to-peak amplitude lower than 0.1 µV on any one electrode were
discarded on all electrodes, avoiding learning from BS periods or clipped segments.
Epochs are then selected within the stable anaesthesia period, defined by the SEF95
index belonging to the [8-13]Hz range. We focused on the longest period of consec-
utive epochs of stable anaesthesia using the average SEF95 across the 4 channels,
which gave better results than concatenating all epochs satisfying the SEF95 con-
straint. The PSD, the covariance matrices and the cross-frequency covariance matrix

3.2 Methods 117

https://mne.tools/mne-bids-pipeline/
https://mne.tools/mne-bids-pipeline/
https://github.com/coffeine-labs/coffeine


Overall (N=330)
Age

Mean (SD) 54.41 (19.43)
Median (Q1, Q3) 56.00 (37.25, 69.00)
Min - Max 16.00 - 99.00
Missing 0

Gender
female 213 (64.5%)
male 117 (35.5%)
Missing 0

Height
Mean (SD) 167.58 (9.74)
Median (Q1, Q3) 168.00 (160.00, 174.00)
Min - Max 123.00 - 195.00
Missing 4

Weight
Mean (SD) 74.39 (17.27)
Median (Q1, Q3) 73.00 (60.00, 85.00)
Min - Max 37.00 - 145.00
Missing 6

BMI
Mean (SD) 26.35 (6.52)
Median (Q1, Q3) 25.39 (22.32, 29.54)
Min - Max 0.00 - 54.20
Missing 8

ASA
ASA1 69 (21.3%)
ASA2 185 (57.1%)
ASA3 70 (21.6%)
Missing 6

Neurological Antecedents
No 162 (68.4%)
Yes 75 (31.6%)
Missing 93

Cardiovascular Antecedents
No 194 (87.4%)
Yes 28 (12.6%)
Missing 108

Cardiovascular Risk Factor
No 109 (42.1%)
Yes 150 (57.9%)
Missing 71

Cardiovascular Treatment
No 151 (64.3%)
Yes 84 (35.7%)
Missing 95

Neurological Treatment
No 175 (80.6%)
Yes 42 (19.4%)
Missing 113

Drug
propofol 220 (66.7%)
sevoflurane 110 (33.3%)
Missing 0

Prop. time spent in BS during induction
Mean (SD) 4.74 (9.55)
Median (Q1, Q3) 0.96 (0.08, 4.14)
Min - Max 0.00 - 72.09
Missing 20

Prop. time spent in BS during maintenance
Mean (SD) 3.65 (7.85)
Median (Q1, Q3) 0.62 (0.05, 3.33)
Min - Max 0.00 - 77.17
Missing 20

Tab. 3.1: Descriptive summary statistics table of Lariboisière data.
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name low δ θ α β

range (Hz) 0.1 − 1.5 1.5 − 4 4 − 8 8 − 15 15 − 30

Tab. 3.2: Definition of frequency bands

are then averaged across the selected epochs. The epochs-selection mechanism is
illustrated on Fig. 3.1.

.

Fig. 3.1: Illustration of the epochs selection mechanism. Power spectral density of a subject over
the entire time of his surgery (spectrogram). The subject is maintained in GA under propofol.
The SEF95 index is drawn in white. The epochs with peak-to-peak amplitude lower than
0.1 µV on any one electrode are identified by an orange mark at the top of the spectrogram.
They correspond to burst suppression episodes and are discarded from subsequent analysis.
The stable anaesthesia period is defined by the largest consecutive period for which the
SEF95 index is in the [8-13]Hz range. This range is depicted by red dashed lines. The
corresponding epochs are identified by a red mark at the top of the spectrogram. We used
this period to compute the covariance matrices. (Left) A young subject in good pre-operative
health (aged 28 with an ASA1 score) shows no episode of burst suppression, a long period
of stable anaesthesia and a strong increase in alpha power during sedation. (Right) An
old subject with pathologies (aged 74 with an ASA3 score) entered a long episode of burst
suppression before a rather short period of stable anaesthesia. Their alpha power was weak
during the whole surgery.

As features, we used the previous EEG signatures of brain aging developed in
Chapter 1: the upper part, the log-diagonal or the Riemannian embedding of the
covariance matrices. In this chapter we also introduce the Riemannian embedding
of the cross-frequency covariance matrix as an interesting and statistically tractable
option due to the fewer number of channels available in the clinic. For this 4-
channels EEG experiment, it leads to a vector of size 210, still statistically acceptable
compared to our sample size. For a 21-channels EEG TUH experiment its size would
have been 5050.
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As a side note of interest, feature extraction was performed using the open-source
Python library ‘Coffeine’ (https://github.com/coffeine-labs/coffeine) we de-
veloped in the team as a result of this thesis. I contributed the core features of this
library implementing all the methods developed during my PhD and presented in our
articles [Sab+19a; Sab+20; Eng+20]. In particular, this library provides a high-level
interface to the predictive modeling techniques we developed and presented in 2
using the M/EEG covariance matrix as representation of the signal.

3.2.5 Machine learning and statistical modeling
For the age prediction task of this Lariboisière experiment, we will benchmark the
regression algorithms previously introduced in Chapter 1 i.e., simple regularized
linear regression model (ridge regression) applied to particular vectorizations of
the covariance matrices: its upper part (‘upper’ model), its log-diagonal (‘log-diag’
model), its Riemannian embedding (‘Riemann’ model) and the Riemannian em-
bedding of the cross-frequency covariance matrix, as defined in Section 3.2.4. The
Riemannian model was defined with no projection step since the covariance matrices
are here full rank. Indeed, they are estimated from sufficiently large chunk of signals
and are not rank-reduced by preprocessing steps (see Chapter 1). Classical EEG
average reference, that amounts to projecting the signal into the subspace orthogonal
to the average signal, reduces the rank by one, but is not used in this study. The
regularization parameter of ridge is tuned by generalized cross-validation [GHW79]
on a logarithmic grid of 100 values in [10−5, 103] on each training fold of a 10-fold
cross-validation loop. For each model we standardized the features enforcing zero
mean and unit variance, a standard preprocessing step for penalized linear mod-
els. To compare models against chance, we estimated the chance-level empirically
through the performance of a dummy-regressor predicting the mean outcome of
the training data without trying to find patterns, thus equivalent to random guess.
Uncertainty estimation was obtained from the cross-validation distribution.

Note that formal hypothesis testing for model comparison was not available for any
of the datasets analyzed as this would have required several datasets, such that
each average cross-validation score would have made one observation. For data
exploration and statistical modeling, we used standard classical two-sample statisti-
cal tests: Welch two sample t-test of difference means for continuous/categorical
variables and Pearson’s chi2 of independence for categorical/categorical variables.

To assess the impact of drug on BA estimation we compared the performance of our
brain age model when learning from two different drugs (propofol or sevoflurane).
To investigate their cross-effects, we developed different classes of models. Drug-
specific models learn from patients under one drug and predict on patients under the
same (propo/propo, sevo/sevo). The drug-agnostic model learns and predicts from
all patients without being informed on their drug (all/all). Drug-crossed models
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learn from patients under one drug and predict age of patients under the other
(propo/sevo or sevo/propo). Drug-aware models learn jointly from all patients with
drug-interaction effects and predict on either drug (joint/propo, joint/sevo): they
learn a compromise between a global model that ignores drugs, and a specific model
handling exceptions for the drugs, leveraging what the two drugs have in common.
Drug-specific models and the drug-agnostic model are simple restrictions of our
model to different sub-populations. To compute CV-based uncertainty estimates of
the performance of drug-crossed models, we splitted the training population into 10
folds (with shuffling), trained the model on 9 folds and tested this fitted model on
the all testing population. This allows to probe the variance due to random training
population. To implement the drug-aware model (joint model with interaction effect)
we expanded the original p-feature vector to a new (2p+ 1)-feature vector where
the first p features are the original features, then the drug indicator variable (1 for
propofol, 0 for sevoflurane) then the product between the two, leading to either
a copy of the p features if propofol or a p-vector of zeros if sevoflurane. All these
models have been implemented in the ‘Coffeine’ library.
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3.3 Data exploration
Before diving into predictive modeling we visualized our sample to explore the link
between EEG during stable anaesthesia and age: is the age indeed visible in the
brain? The effect of age on EEG-brain signals could nevertheless be confounded by
external factors.

We identified two major potential confounders: the health status and the mainte-
nance drug. Intuitively, the health status is likely to be associated to both the age and
the EEG power, which has been confirmed by our anaesthetists collaborators and
statistical tests. The maintenance drug has a known effect on EEG power, e.g., propo-
fol induces an anteriorization of the alpha rhythm during loss of consciousness
[Vij+13]. Running basic statistical analysis we also discovered its association with
age: the age distribution under propofol is significantly shifted towards younger
people compared to sevoflurane (t=4.73 p=8.065e-06). After investigation, we
discovered that this link was not causal (the doctors confirmed the choice of main-
tenance drug is not driven by age) but more likely due to random circumstances:
halogenated gas happened not to be available to neuroradiology interventions which
mostly concerns young and healthy subjects. Also, the data partially originates from
a study focused on propofol effect, hence the biggest proportion of this drug in our
sample. In general, the still most commonly used hypnotic drugs are halogenated
gas like sevoflurane for their ease of use, which amounts to opening a valve, and
their lighter monitoring requirement. Yet propofol allows for a quicker and finer
control of the anaesthetic state via TCI with a cleaner and more stable EEG spectral
signature [Pur+15b], hence was most commonly used in our study. We’ll therefore
look at how the EEG-age relationship is shifted by ASA and by drug, and run basic
statistical tests to assess whether these relationships are likely to generalize to the
population.

In Fig. 3.2 we explore how the link between EEG and age is modulated by health
status.
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Fig. 3.2: Exploring how age impacts EEG power, depending on general health conditions. (Left)
EEG power spectra during stable general anaesthesia of all patients in the Lariboisière dataset.
Each line represents the PSD of a patient, color-coded by age (the older the brighter) and
grouped by ASA. (Right) Alpha power during stable general anaesthesia vs age of all patients
in the Lariboisière dataset. Each dot represents the log alpha power of a patient, color-coded
by ASA score.

Left panel shows that ASA seems to strongly modulate the age-EEG link. Older
patients tend to have a higher ASA score, a lower alpha peak and a lower power
across frequencies. It gives us a hint that a brain age estimator that doesn’t take the
health status into account won’t be optimal. Right panel shows, as expected, that
alpha power decreases with age. ASA1 vs ASA3 overlap only on young patients.

In Fig. 3.3 we explore how the link between EEG and age is modulated by the drug
used during the maintenance phase.

Fig. 3.3: Exploring how age impacts EEG power, depending on the drug used to maintain
GA state. (Left) EEG power spectra during stable general anaesthesia of all patients in
Lariboisière dataset. Each line represents the PSD of a patient, color-coded by age (the older
the brighter) and grouped by drug. (Right) Alpha power during stable general anaesthesia
vs age of all patients in Lariboisière dataset. Each dot represents the log alpha power of a
patient, color-coded by drug.

In the left panel we see a clear dependence of the PSD on age: the younger the more
power across all frequency bands and across drugs. Drugs seem to modulate this
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link essentially in alpha band, with an apparent stronger power under sevoflurane.
In the right panel we thus focus on the alpha log power where there seem to be
systematic differences in alpha power under both drugs, confirmed by hypothesis
testing (t=-2.1, p= 0.035). Also, a linear regression analysis of the alpha log
power on age gender and drug for healthy patients suggests that age and drug have
independent (additive) effects in opposite direction but of similar magnitude: age
reduces (and sevoflurane increases) power by 0.5 STD per STD (beta_age=-0.62,
t=-13.8, p<2e-16 | beta_drug=0.44, t=4.7, p=4e-6). We therefore find systematic
differences in EEG between propofol and sevoflurane, when taking age into account.
It confirms that drugs may influence prediction and calls for a thorough drug impact
study, which will be developed in the results Section 3.4.3.
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3.4 Results
3.4.1 Brain age during General Anesthesia
In this section, we aim to answer our first question: can we predict a brain’s
age in the clinic from EEG during anaesthesia? So far, we estimated the brain
age from research-grade MEG or EEG devices with multiple channels and high
time/frequency resolution, under a carefully controlled data collection procedure,
on patients in resting state with no chemical substance known to modify brain
activity (see Chapter 2). The particular setup of anaesthesia described earlier could
challenge brain age estimation. Here we restrict our analysis to healthy patients
(ASA1 or ASA2 score), maintained under propofol, within the stable anaesthesia
period defined as the longest consecutive period for which the SEF95 index is in
[8-13]Hz.
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Fig. 3.4: Brain age during general anaesthesia. (A) Brain age models comparison. Performance
of five different regression models in predicting age of healthy patients during the stable
maintenance period of general anaesthesia under propofol, expressed as Mean Absolute
Error (MAE). Uncertainty estimates are based on a 10 fold cross-validation procedure.
The Riemannian model applied to cross-frequency covariances, that allows to explore the
interaction between multiple frequency bands, shows the best performance with a MAE of
7.9y, compared to the 16y MAE of predicting the population average (dummy model). This
model is used for all subsequent analyses. It demonstrates that brain age during GA can be
estimated in the clinic. (B) Brain age and EEG power spectrum. Coefficients of Age (blue
curve) and cross-validated Brain age (orange curve) in predicting the log EEG power of
healthy patients under propofol for each frequency bin, using univariate (upper figure) or
bivariate (lower figure) linear regression models. Uncertainty estimates of the coefficients
are based on 95% confidence intervals. As expected, average powers decrease with brain age
and age across the frequency spectrum. Brain age is complementary to age for predicting
EEG powers, mostly replacing it in low and alpha ranges, while being redundant in theta
and high beta.

Brain age models comparison We compared the performance of five regression
strategies: ‘upper’, ‘log-diag’, ‘Riemann’ and ‘Riemann on cross-frequency matrix’.
The results are depicted in Fig. 3.4(A). The Riemannian model applied to the
cross-frequency covariance matrix is a clear winner. It is noteworthy that the best
performance based on the Riemannian model and the ordering of the models in
this clinical experiment (4 EEG-channels for 345 subjects) is consistent with the
results obtained on the experimental datasets studied in Chapter 2: Cam-CAN (102
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MEG magnetometers channels for 596 subjects) and for TUH (21 EEG channels
for 1385 subjects). It is an additional and independent hint that the Riemannian
methods are the most efficient and robust models to perform M/EEG regression.
This finding suggests that BA can be estimated during GA from routine monitoring
EEG within the operative theater. All subsequent analyses are conducted using the
best regression model of Riemann on cross-frequency covariance.

Brain age and EEG power spectrum. Does this new measure of brain-predicted age
contain additional information on the EEG power spectrum than age? To investigate
the complementarity of age and brain age we ran a statistical linear regression
analysis of the log EEG power in every frequency bin using the age and the brain
age as predictors. Their coefficients, as a function of frequency, are reported in
Fig. 3.4(B).

Upper figure shows the coefficients of the two univariate linear regression models.
As expected the marginal effect of age/brain age on the log powers (hence the
correlations) are negative: the average brain power decreases with age and brain
age across the frequency spectrum, the older the subject the less powerful his brain
signal. This effect is more pronounced around low and alpha frequencies. Also brain
age alone is at least as correlated to EEG powers than age. Therefore, when looking
at EEG powers, anaesthetists can ‘trust’ this new biomarker as behaving similarly to
the usual marker of age. We should note that since BA itself is built from powers
as features it is not surprising to see this correlation. However, the brain age as
input of this statistical model is cross-validated i.e., corresponds to the age predicted
out-of-sample (see [Eng+20; HT08] for the methodology of using cross-validated
predicted scores for statistical analysis). Also, it is predicted from only five frequency
bands while we here investigate fine-grained frequency patterns in EEG powers to
see at which specific single frequency the model responds best.

These univariate models do not allow to disentangle both factors. The effect of brain
age could be mainly due to the age itself. To regress out the effect of age on brain
age we conducted the corresponding multiple regression analysis. Lower figure
shows the coefficients of the multiple linear regression model using both age and
brain age as predictors. They are again all negative across the frequency spectrum.
Importantly, when brain age is included in the model, there is no unique contribution
of age to the variation of power: brain age captures all the information about brain
powers. This effect holds in the entire frequency spectrum with the exception of
the high beta range. Therefore, brain age mostly replaces age for predicting EEG
powers.
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3.4.2 Clinical impact of GA-based Brain age
In this section, we aim to validate our brain age measure and answer our second
question: does the BA have a clinical diagnostic value of perioperative complications?

Perioperative complications are the third leading cause of mortality in the world [Nep+19],
potentially affecting any person undergoing GA (today one of the most frequent
procedures in medicine, more than 300 million GA worldwide in 2020 [Csj], and 12
million in France). Although anesthesia and surgery are safer than before, it remains
a risky procedure. They occur in about 25% of surgical operations involving general
anesthesia [GBD09; Khu+05] and they have a strong impact on the patients’ health:
9 million per year will die within 30 days of the intervention, 66 additional million
will die 9 years younger on average [Khu+05]. In fact, perioperative complications
have an even greater impact on the survival rate than the preoperative condition
in major surgical operations [Khu+05]. Patients over the age of 60 are more likely
to suffer from complications, the severity of which is in general greater. This age
group represents about one quarter of the global population – but more than 40%
of all anesthetic procedures in France [Dad+15] – and will continue to grow at a
fast pace in the coming decades [Eurc; Eurb; Vol+20]: we expect twice more 65y+
humans in 2050 than today globally [Un2].

Perioperative cognitive disorders don’t have precise definition in the US psychiatry
reference manual DSM-5 classifying mental disorders, yet a possible classification
proposed by US anaesthetists and based on the DSM begins to emerge [ZLJZS+19].
We can distinguish two main families. First, perioperative neurocognitive disor-
ders (PND) are composed of three disorders of increasing duration of postoperative
symptoms: postoperative delirium (POD), delayed neurocognitive recovery (DNCR)
previously called postoperative cognitive dysfunction POCD, and neurocognitive
disorders (NCD) that persist 30days after surgery. Second, cognitive decline (CD) is
a loss of cognitive function (memory, language or thinking) not necessarily linked
to surgery, scored by a psychometric test vs an anterior baseline, e.g., by Montreal
cognitive assessment (MOCA). It has recently been shown that patients experiencing
CD have a higher incidence of PND [Fri+20]. Knowing patients’ cognitive status
would therefore allow the doctors to adapt anesthesia and postoperative care. Un-
fortunately, due to the large proportion of elderly patients going through GA, it is
not practical to perform the neurocognitive evaluations necessary to assess CD on
a large scale in the clinic: in France, approximately one third of 50y+ patients are
scheduled for surgery every year. We propose to take advantage of GA to address
this issue and investigate if our EEG-based BA (that can be estimated in the clinic
during GA as seen in the previous section) can be used to provide an early diagnosis.

Some complications are directly related to surgery but the majority are related to
the anesthesia management. Although ML can help surgeons to better prepare for
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upcoming procedures with access to simulations beforehand and to monitor blood
flow, anatomy, and physiology in real-time in the operating theater, few attempts
have been made to introduce ML in anesthesia procedures. The usual role of the
anesthesia team is 1) to allow surgery to proceed by administering drugs which
have the side effects of deteriorating the entire cardiovascular system and 2) at
the same time maintaining the patient’s cardiovascular, pulmonary, renal and other
status as stable as possible. Aside from the rare intraoperative complications such
as allergy or difficult intubation, brain and cardiovascular complications represent
the main perioperative complications and many recent clinical trials have tested
various ways to reduce them. As certain patients are more likely to experience
complications because of their age, medical history or risk of the surgery, a pre-
anesthesia consultation was established in many countries to reduce risks related
to anesthesia. However, pre-anesthesia consultation is a clinical exam that cannot
properly explore brain function in detail. Pilot studies have shown that the risk of
complications is linked with precise events happening during the operation including
hypotension periods (blood pressure below a threshold of 65 mmHg), insufficient
cerebral perfusion, and burst suppression patterns on the EEG. A few attempts have
been made to prevent hypotensive episodes using a predictive algorithm based solely
on blood pressure waves, but to the best of our knowledge, no device or algorithm
has assessed brain viability and possible detrimental effect of hypotensive episodes
on brain function. In the usual anesthetic management only depth of anesthesia
is considered to prevent arousal states but the brain functional state is often not
monitored in the operating room.

There is growing evidence that occurrence of intraoperative EEG BS patterns is asso-
ciated with poor postoperative cognitive trajectories: it is an independent risk factor
of POD [Fri+16], and can even predict PND in general (with the more permanent
NCD) [Wil+19]. POD itself has been associated with a long term CD [Sac+12;
Ino+16] and with an increased morbidity and healthcare costs [Mar17]. At last,
peroperative BS and then postoperative cognitive dysfunction (POD and DNCR)
appear to be linked to pre-existing CD that could be established before or during
the surgery [Cul+17; Spr+17; BI+16]. Can GA BA be used to evaluate patient
propensity to BS? We have early evidence that we can extract measures from EEG
during GA that capture patient propensity to BS [Car+19] and that can be linked
to preoperative CD as assessed with psychological measures like MOCA [Tou+20;
JCPPV21]. Also, several studies have revealed the association between intraoperative
alpha waves measured during maintenance and pre-existing CD or BS [Sha+20;
Gia+17; Koc+19; Kre17]. Recently, the decrease of power spectral density in the
alpha band (8–13Hz), collected on the frontal EEG under general anesthesia has
been associated not only to chronological age [Pur+15a; Pur+15b] but also to
preoperative CD [Koc+19].
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In this study we will focus on how BA relates to two clinical targets: preoperative
health status and postoperative neurocognitive disorders. Can the Brain age be
considered a biomarker of postoperative neurocognitive disorders? To answer
these questions we conducted a linear regression analysis of the BS rate during
maintenance (denoted as BS) against age, brain age and health status. General
health status was assessed by the clinical measure of ASA score. The physiological
measure of the BS rate during maintenance has been preferred over the total time
spent in burst suppression that depends on the total time of the GA procedure, which
is highly variable between patients and that could have introduced a bias in our
study (the length of surgery may itself be correlated with age for instance).
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Fig. 3.5: Clinical impact of brain age during general anaesthesia. (A) Brain age and burst suppres-
sion. Scatter plot of age and brain age of 345 patients under propofol, color-coded by the
log proportion of time spent in burst suppression during the maintenance phase of stable
anaesthesia, both for healthy (circle) and non-healthy (triangle) patients. The dashed grey
line separates over from under-estimated age. Older patients tend to spend more time in
burst suppression. Model tends to overestimate age on young patients and underestimate
age on old patients, possibly due to the interventional nature of the clinical protocol. (B)
Brain age and age show complementary effects on burst suppression. To formalize observations
of panel C we developed a linear statistical model of the log proportion of time spent in burst
suppression during maintenance using as regressors the brain age, the age, the health status,
and their interaction terms, to account for the observed non-linear trends. The Healthy
binary variable is 1 for ASA1 and ASA2 patients, 0 for ASA3. This interaction model was
selected by a Likelihood Ratio Test from different models as showing the best model fit (see
Tables 3.3 and 3.4 for the full model comparison). We depict the coefficients of all predictors
with their 95% confidence intervals. Brain age is a major factor influencing burst suppression.
First, burst suppression is associated with higher Brain Age across all patients. Additionally
the results suggest the importance of non-linear interaction terms: the interaction between
age and brain age explains additional variance, implying that as age increases, the impact of
brain age further increases non-linearly. Finally, the interplay between brain age and age
depended, in addition, on the health status: it takes an even bigger role for healthy patients.
Other model terms, including the age and health status, have far less consistent effects.

Lariboisière sample exploration. We first explored our sample to gain insights
about BA relationship to these two measures. The results are depicted in Fig. 3.5(A).
As expected, older patients (both chronologically and physiologically) tend to spend
more time in burst suppression, whether healthy (ASA1 or ASA2) and non-healthy
(ASA3). Healthy patients show a large spectrum of BS rates, whereas most unhealthy
patients have a high rate of BS. The dashed gray line delineates subjects with older
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brains (above the line) from subjects with younger brain (under the line). Restricting
our attention to healthy subjects, on which our brain age model has been fitted, we
see that the model tends to overestimate age on young patients and underestimate
on old patients. Even if the mean absolute error of the model is 7.9y, it tends to be
positive for young people and negative for old people. This suggests a non-linearity
that is not captured by the brain age model. We then used this fitted model to
predict the age of unhealthy subjects. Surprisingly, pathologies (ASA3) seem to be
associated with a younger brain. This is most probably due to a confounding effect
of age. A common problem in establishing brain-behavior correlations for brain age
is spurious correlations due to shared age-related variance in the brain age delta and
the score of interest (here the ASA) [Smi+19]. By definition, the brain age delta is
the age residual. A perfect estimator of age should be orthogonal to age. If not the
case, then brain age delta would still depend on age. The relation between brain age
delta and ASA should therefore be interpreted with caution. This calls for a proper
deconfounding analysis. Moreover, besides the confounding effect of age, we have
two main hypotheses on the source of the problem: 1/ Lariboisière ASA1 and ASA2
subjects, on which we fitted our model, should not be considered ‘healthy’ 2/ we
deal with an interventional dataset in which the drug dosage is changed by doctors
depending on age, which bias the observations of the link between age and EEG
with a canceling effect: older subjects have less EEG-power but are administered
less drugs which increases their power. Both hypotheses are discussed in Section 3.5.
But even if we can’t interpret the sign of Brain Age Delta, we can show that it is a
clinically useful complement to age when predicting BS [Dad+21], for which we
now develop a statistical model.

Burst Suppression modeling. To account for the observed nonlinearity while still
enjoying the interpretability of linear models, we developed a linear statistical model
of the log proportion of time spent in burst suppression during maintenance using as
predictors the brain age, the age, and the health status. The Healthy binary variable
is 1 for ASA1 and ASA2 patients (considered healthy), 0 for ASA3 (considered
unhealthy). We compared five different models: the two univariate models using
age and brain age, the two multivariate models (age, brain age) and (age, brain age,
health status) and finally the model taking all the predictors and their interaction
terms. The main statistics of the linear regression analysis for all five models are
summarized in Table 3.3.
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Model 1: scale (BS_main_frac) ~ scale (age)
Model 2: scale (BS_main_frac) ~ scale ( brain _age)
Model 3: scale (BS_main_frac) ~ scale (age) + scale ( brain _age)
Model 4: scale (BS_main_frac) ~ scale (age) + scale ( brain _age) + healthy
Model 5: scale (BS_main_frac) ~ scale (age) * scale ( brain _age) * healthy

Dependent variable:

Burst suppression

(1) (2) (3) (4) (5)

Age 0.371∗∗∗ 0.103 0.064 0.017
(0.065) (0.111) (0.113) (0.121)

Brain Age 0.411∗∗∗ 0.327∗∗∗ 0.332∗∗∗ 0.398∗∗∗

(0.064) (0.111) (0.111) (0.130)
Healthy 0.277 −0.011

(0.175) (0.225)
Age x Brain Age 0.188∗∗

(0.076)
Age x Healthy 0.184

(0.299)
Brain Age x Healthy −0.378

(0.294)
Brain Age x Age x Healthy 0.483∗∗

(0.205)
Constant 0.000 −0.000 0.000 −0.049 −0.204∗∗

(0.065) (0.064) (0.064) (0.071) (0.090)

Observations 207 207 207 207 207
R2 0.137 0.169 0.173 0.183 0.274
Adjusted R2 0.133 0.165 0.165 0.171 0.248

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Tab. 3.3: Results of linear regression analysis. We regressed the fraction of time spent in BS during
maintenance with five different models of growing complexity and summarized the results.

Since the significant coefficients are not the only sign of variable importance we
conducted a model comparison using a log-likelihood statistical test. The interaction
model was selected by a Likelihood Ratio Test from the different models as showing
the best model fit (see Table 3.4 for the full model comparison).

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 205 177.72
2 205 171.15 -0 6.57
3 204 170.44 1 0.71 0.3296
4 203 168.36 1 2.07 0.0967
5 199 149.58 4 18.79 0.0001 ***

Tab. 3.4: Variance analysis: results of the ANOVA model selection procedure. Introducing brain
age instead of age in the univariate regression induces the first big improvement in model
fit. Brain age alone is a better biomarker of BS than age alone. Used in concert with age,
this EEG-based biomarker enriches the information given by age, showing complementary
effect on BS. Brain age explains some variance of BA that is not explained by age. The
model incorporating all predictors and their interaction terms is the statistically most solid
model, providing the best data fit.
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The coefficients of the interaction model are depicted with their 95% confidence
intervals on Fig. 3.5(B). Brain Age is a major factor influencing BS as it is present
on all three significant predictors: Brain Age x Age x Healthy, Brain Age and Brain
Age x Age. First, BS is associated with higher Brain Age across all patients at
fixed age: elevated Brain Age increases fraction of time spent in BS by 0.4 STD
per STD (equivalent to 3.4% additional time spent in BS per 15.8y of brain age).
When taking age into account, brain age is associated with BS in a semantically
correct way. People with older brains tend to spend more time in burst suppression,
possibly uncovering postoperative complications. Additionally the results suggest
the importance of non-linear interaction terms: the interaction between age and
brain age explains additional variance, implying that as age increases, the impact
of brain age further increases non-linearly. Finally, the interplay between brain age
and age depended, in addition, on the health status: it takes an even bigger role for
healthy patients. All the other model terms, including the age and the health status,
are not significant.
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3.4.3 Drug impact on Brain age prediction during GA
Statistical tests run during Data Exploration in section 3.3 hinted that drugs may
be a confounder of the effect of EEG on age, potentially affecting both. Hypnotic
drugs are indeed known to modify brain spectral signatures [Pur+15b] and are
significantly associated with age due a systematic intervention of the anaesthetist
adapting the drug dosage to age. Therefore we have to deal with two distinct
sub-populations: propofol and sevoflurane-maintained patients. Probing the impact
of the anesthetic drug is all the more interesting as it has been under-explored
in literature. To further investigate the effect of drug on brain age prediction we
compared the performance of our Riemannian model when learning from the two
different drugs (propofol and sevoflurane), using the different classes of models
described in Methods section 3.2.5. Results are depicted in Fig. 3.6

4 6 8 10 12 14 16 18 20
Age prediction [MAE]

sevo/propo

dummy all/all

dummy propo/propo

sevo/sevo

propo/sevo

joint/sevo

all/all

joint/propo

propo/propo

M
od

el
s (

tra
in

/te
st

)

Fig. 3.6: Drug impact on brain age. Performance of the Riemannian model applied to cross-frequency
covariances, when learning from two different drugs: propofol or sevoflurane. Separate
models (learning and predicting on patients under the same drug) are depicted in blue, cross
models (learning under one drug and predicting under the other) in green, joint models
(learning an interaction model under any drug and predicting under either propofol or
sevoflurane) in orange, dummy models (that do not learn) in red, with a vertical dotted line
representing dummy model MAE i.e., chance level. The separate models are drug-specific
models and show that propofol allows to better discriminate the age from EEG-powers
compared to sevoflurane. The joint models are drug-agnostic models and show at least as
good performance as drug specific models. The cross models’ poor performances indicate
that sevoflurane must have a very different EEG spectral signature than propofol when
related to age, but can still be used in principle. Therefore, propofol and sevoflurane have to
be considered separately. Our joint model offers a promising framework that can still pool
them, and might be revealed as the model of choice with a larger amount of data.
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Drugs indeed seem to greatly influence age prediction under GA: we can’t interpret
EEG without drug information. The propofol-specific (propofol/propofol) model has
a better performance than the drug-agnostic model (all/all) that is not informed by
the drug. This drug-agnostic model as a single global linear model does not take into
account that the two drugs influence EEG signals based on distinct data generating
mechanisms in the two sub-populations hence does not perform optimally. This
confirms that propofol and sevoflurane have to be considered separately.

The propofol-specific model is also much better than the sevoflurane-specific model
(sevo/sevo), hinting that propofol allows better discriminate of age from EEG-powers
compared to sevoflurane. This difference still holds when learning from a propofol
population resampled to match age distribution and sample size of sevoflurane,
discarding the datashift hypothesis to account for the performance difference. This
result is also consistent with latest research that shows that intraoperative EEG alpha-
band is a better proxy of preoperative cognitive function under propofol compared
to sevoflurane [recently submitted work]. One hypothesis for this difference comes
from the different action mechanism of both drugs: propofol only acts on the GABA
receptors (it is a pure GABA agonist) whereas sevoflurane has several other action
mechanisms (mainly GABA agonist and NMDA antagonist) [Tra+00; CMF03], with
a potentially netting effect, hence a loss of age-variability. Another hypothesis for
this reduced age-variability is that the dosage of sevoflurane is less variable than
propofol across patients since it relies on standard abacus of MAC target values
(minimum alveolar concentration), whereas propofol dosage is determined by a
personalized TCI target value.

Drug-crossed models’ poor performances indicate that sevoflurane must have a
markedly different EEG signature than propofol that somehow hinders age prediction:
generalization across drugs does not work well. The performance of these cross
models could also be driven by age instead of drug, knowing that patients maintained
under sevoflurane are often older than under propofol, yet with a smaller STD.

The drug-aware model (joint/propofol) shows at least as good performance as
propofol-specific model when predicting on propofol subjects. Its observed reduced
variance could show a more refined prediction although we can’t rule out the
statistical effect of a larger training sample size. This joint model therefore offers a
promising framework that can allow pooling of patients, and may reveal itself as the
model of choice when learning from larger amounts of data, leveraging what the
two drugs have in common.
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3.5 Discussion & future work
Our work represents the most extensive validation of a ML approach to estimate BA
during GA. We presented a robust end-to-end biomarker learning strategy for EEG
during anaesthesia. We demonstrated how to achieve state-of-the-art performance
for EEG-based Brain age prediction during anaesthesia. We showed that the drug
critically impacts BA prediction under GA and analyzed its impact through interaction
learning.

We validated a potential EEG-based brain age measure against burst suppression
and ASA clinical score: higher brain age is correlated with more burst suppression,
whereas age has a far less consistent effect. Hence we provided evidence that BA
captures patient propensity to develop BS assuming a stable and adequate GA depth
(SEF95 in the range of 8–13 Hz). We showed that EEG in the OR, today only used
for monitoring depth of anaesthesia (via BIS and PSI indices), could be exploited to
estimate a personalized physiological age of the brain of an anaesthetized subject that
can help detect a propensity to the anomaly of BS, a recognized marker of the risk
of developing cognitive dysfunction within the postoperative period. One possible
hypothesis consists in considering that the peroperative rate of suppression patterns
and the cognitive trajectory of postoperative patients could be epiphenomena of
the same symptom of an elevated brain age (and not chronological age), that can
in principle be estimated before surgery. If this hypothesis is confirmed, this could
guide the therapeutic intervention in the operating room, but also would in principle
allow to develop preventive procedures and help to improve postoperative medical
care e.g., by early referring patient to a neurologist. A few open questions are
nevertheless worth discussing.

One of the limitations of our study is methodological: the observation period of
the features is defined using the SEF95 index, following a definition that is largely
agreed in the literature. But since the SEF95 is itself related to the EEG power
features we could lose some variability that could be useful to predict. One possible
solution would be to learn from the data itself the regions in the data that should be
trusted and considered. Our algorithm could for instance select the best interval of
SEF95 in a nested cross-validation fashion and potentially discover that the [8-13]Hz
interval doctors are using may not be the optimal for building biomarkers. Also, this
study was restricted to one hospital. Results obtained should be replicated using
data coming from other hospitals with different devices and clinical protocols.

Coming back to the unexpected experimental finding of Figure 3.5 where older and
unhealthy patients seem to have a brain looking younger than their chronological
age, we already discussed the potential confounding effect of age (age-related
variance in both the brain age delta and BS). Besides, we have two main hypotheses
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on the source of the problem. The first most obvious hypothesis is that Lariboisière
subjects should not be considered ‘healthy’: this is a suffering population as they
came to the hospital to undergo surgery. To test this hypothesis, one could use
the Riemann regression model trained on TUH healthy patients to predict age
(restricted to four frontal electrodes), and test if indeed older brains are more
frequent in the non-healthy population, in effect sorting the ASA score in Lariboisière
population in a coherent manner. Also the large number of subjects in the TUH
dataset would address the sample bias we could have suffered from learning from
the small sample size of Lariboisière data. The second hypothesis relates to the
causal structure of the data. According to this hypothesis, we don’t observe the
natural relation between resting state EEG and age because there’s an intervention,
in the form of a treatment (the drug dosage) that biases it. Data have indeed
not been collected in a controlled environment: most fragile patients have been
treated, here induced, differently precisely to avoid BS. We have been confirmed
that doctors changed the drug dosage according to their belief of age/health status,
which then controls the EEG: most fragile patients have been administered less
drugs, which increases the relative alpha power hence making them appear younger.
If this is true, our age prediction may not be interpreted as brain age anymore and
the relation to BS is not easily interpretable. Other interventions occurred: some
patients received bolus of ketamine that is known to boost alpha and beta power
for ∼ 20/30min, and some patients maintained with sevoflurane received bolus of
propofol if necessary. Of course more data with the same data generating mechanism
(the doctors) won’t help this causality problem. One possible solution would be
to conduct deconfounding analysis by estimating the intervention effect with the
propofol target dosage (TCI). This way the treatment effect could be compensated
and treatment-independent conclusions reached. Such a study could be feasible
in the near future: Lariboisière hospital is currently testing a commercial solution
for automated collection of hemodynamic and brain signals, synchronized with the
timing and volume of administered drugs. Finally, one alternative to this purely
statistical analysis, yet more demanding, would consist in doing causal inference
from carefully designed probabilistic graphical models.

Regarding the performance of our brain age model, it is noteworthy that we obtained
with 4-channel clinical grade EEGs of 345 subjects the same performance in age
prediction (8y) than with 102-channels research-grade MEGs of 643 subjects (Cam-
CAN) or 21-channels EEGs of 1000 subjects (TUH), for a comparable chance level.
This result could come from several reasons but we can’t rule out a positive impact of
GA. According to this hypothesis, GA would be seen as a physiological stress test and
the hypnotic drug would enhance the brain response, forcing it to ‘speak’. With ∼
10 m GA per year in France, the wealth of EEG recorded during GA has the potential
to allow medical discoveries if taking into account the specificities of GA. In this
thesis we established that Brain age under GA can be a serious candidate to be a
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drug-agnostic biomarker of BS, potentially integrated in a GA monitoring tool in
the future. Further studies could investigate its relation to medium and long-term
outcome of patients, e.g., the development of neurodegenerative disorders.

Finally, having the opportunity to work on a raw clinical dataset was a real chance
to glimpse over the real-world challenges of applying AI to medical data. I learnt
a few lessons along the way among which to discuss with the medical doctors and
look at the data the earlier possible to assess the data collection procedure. The
time needed to clean and preprocess the data should also not be underestimated,
which again is very common in real-world ML projects. Exploiting data in Healthcare
is not an easy journey but can be very rewarding. We finally contributed to build
something unique since there’s no public or even private dataset of EEGs during GA,
and hopefully something useful with potential medical application on health. This
study could trigger a new line of research moving forward, developing clinically-
relevant biomarkers from the GA period, with potential for medical applications as a
diagnostic tool, paving the way for a finer understanding of brain diseases, and a
more targeted approach to medical treatment.
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Conclusion
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Future directions
In this thesis we established that Brain age under GA could be a candidate biomarker
of complications during general anesthesia. Yet, our brain age model would still
benefit from a few technical refinements.

First it would need to be further robustified. To provide a robust end-to-end
biomarker learning strategy for EEG during anaesthesia, we should allow our al-
gorithm to learn from the data itself the regions of the EEG recording that should
be trusted and considered, potentially challenging the mostly acceptable definition
of a SEF95 index in the [8-13]Hz range. To overcome limited spatial resolution
of clinical EEG it would also benefit from capturing temporal information of EEG
and complement EEG with other signals monitored during GA. To demonstrate
its generalization capacity we should also probe it using data coming from other
hospitals with difference devices and clinical protocols.

Then, we should disentangle the causal factors shaping GA observations, e.g., the
effect of drug dosage on the link between health and EEG. One possible solution is
to conduct a deconfounding analysis by estimating the intervention effect with the
Propofol target dosage and then compensate for it. This study will be feasible after
the expected future technical upgrade of Lariboisière’s data collection system, which
would allow the automated and time-synchronized collection of brain signals and
volume of administrated drugs. One more demanding alternative would consist in
doing a proper causal inference from a carefully designed probabilistic graphical
models.

Moving forward, we are convinced that this study could trigger a new line of research,
developing clinically-relevant biomarkers from the GA period, with potential for
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medical applications as a diagnostic tool. Nevertheless, we observe that most
machine learning models trained to make medical decisions that perform at nearly
the same level as human experts are not in clinical use. Indeed collecting data from
one hospital, train and test the model on data from the same hospital, and showing
the algorithms are comparable to human doctors in spotting certain conditions is
enough to publish a research paper. But it often turns out that the same model
used in a different hospital, applied to data collected with a different device, and a
slightly different protocol used by the technician will show a significantly degraded
performance. In contrast, the performance of any human doctor would stay the
same. Indeed, there are challenges in translating a research paper into something
useful in a clinical setting: these models still need a lot of work to reach production.
This proof-of-concept-to-production gap between research and practice is not unique
to medicine but exists throughout the machine learning world. Modeling is just one
step towards production: finding the right data, deploying the model, monitoring it
and showing safety are among other necessary steps.

If a proper randomized clinical study demonstrates that BA under GA is a valid
biomarker for preoperative health it could be integrated into a GA monitoring tool to
guide anesthetists in their perioperative decisions. If further studies show it is related
to medium/long term outcome of patients, e.g., development of neurodegenerative
disorders, BA could even be part of a ‘medical consultation’ under GA: patients would
receive early feedback on brain age and risk of developing neurodegenerative dis-
eases along with advices to improve brain health. These results would pave the way
for a finer understanding of brain diseases, and a more targeted approach to medical
treatment. This could set new standards in biomedical research, releasing GA-based
data from the operating room into neurological and cardiological consulting, in the
long run of potential benefit to millions of patients

From scientific to societal impact
This thesis builds on the unique combination of expertise and associated preliminary
data obtained within the APHP and Inria teams, which have been engaged in a
close collaboration for over five years. Leveraging my 25y+ industry experience, my
post-thesis objective is to transfer these present and future scientific findings into
the socio-economic world by creating a medtech start-up company, which will lead
the transformation of this project results into a product on the market.

More precisely, this startup project would aim to reduce the risk of perioperative
complications due to sub-optimal anesthesia management by providing an optimal
knowledge of patient’s physiological state and by contributing to a more ‘intelligent’
administration of anesthesia drugs (‘the right dose at the right time’). To that
purpose, it will develop a combined alarm & decision support system – or virtual
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assistant – based on a predictive digital twin that integrates all information available
on a patient under anesthesia in a unified form, including the brain. The system
will combine biophysical models and statistical models (our Brain Age) using the
patient’s physiological signals for optimized use of monitoring data. This augmented
cardiovascular and cerebral monitoring will provide a global vision of the patient’s
condition and will help guide physicians’ therapeutic choices by recommending
personalized medical strategies. By doing so, we aim at significantly improve patients
conditions and quality of life after surgery. Additionally the startup will propose
a post-surgery Personalized Anesthesia Report that describes patients’ reaction to
anesthetic and surgical challenges and summarize cardiovascular and cerebral status
(e.g., the Brain Age of the patient). This will help anesthesia management to pass
the door of the operating room and propagate information to the following health
care providers.

This project will benefit to all patients who will get surgery under general anesthe-
sia. The greater benefits will be for patients labelled as high-risk surgical patients
contraindicated for surgery, namely patients older than 65 and/or with altered
cardiovascular function, and/or brain frailty since they are more prone to suffer from
complications. By using our virtual assistant, hospitals may offer novel opportunities
to many patients previously excluded from surgery. Reducing peri-operative compli-
cations immediately translates into reducing hospital length of stay and post-hospital
discharge costs, in addition to improving patient’s quality of care. This approach
goes beyond the state of the art in anesthesia monitoring and opens new fields in
the patient pathway at the hospital.

To finance this entrepreneurial endeavour I participated to the creation of a con-
sortium of academic (Inria), clinical (AP-HP Lariboisière) and industrial (Philips
Healthcare) partners and answered two main Call for Proposals: European EIT
Health 2022 and French RHU 2021 (Recherche Hospitalo Universitaire en santé).
Our proposal and common aspiration is to leverage mathematical and AI new tech-
niques to guide the medical doctors in their daily practice, with the hope to ultimately
give scientific discoveries an additional social and economic impact on the world.

Synthèse en français
Les maladies neurodégénératives figurent parmi les principales causes de mortalité
dans le monde. Malheureusement, leur diagnostic précoce nécessite un examen
médical prescrit souvent trop tardivement et des équipements de laboratoire dédiés.
Il repose aussi fréquemment sur des mesures prédictives souffrant d’un biais de
sélection. Cette thèse présente une solution prometteuse à ces problèmes : une
méthode robuste, directement utilisable en clinique, pour construire des biomar-
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queurs prédictifs à partir des signaux cérébraux M/EEG, validés contre les troubles
neurocognitifs apparaissant après une anesthésie générale.

Dans une première contribution (théorique) [Sab+19], nous avons évalué des
modèles de régression capables d’apprendre des biomarqueurs à partir des matrices
de covariance de signaux M/EEG. Notre analyse mathématique a identifié différents
modèles garantissant une prédiction parfaite dans des circonstances idéales, lorsque
la cible est une fonction (log-)linéaire en la puissance des sources cérébrales. Ces
modèles, basés sur les approches mathématiques de filtrage spatial supervisé et
de géométrie riemannienne, permettent une prédiction optimale sans nécessiter
une coûteuse localisation des sources. Nos simulations confirment cette analyse
mathématique et suggèrent que ces algorithmes de régression sont robustes à travers
les mécanismes de génération de données et les violations de modèles. Cette étude
suggère que les méthodes riemanniennes sont des méthodes de choix pour l’analyse
automatisée à grande échelle des données M/EEG en l’absence d’IRM, condition
importante pour pouvoir développer des biomarqueurs cliniques.

Dans une deuxième contribution (empirique) [Sab+20], nous avons validé nos
modèles prédictifs sur plusieurs ensembles de données de neuro-imagerie et avons
montré qu’ils peuvent être utilisé pour apprendre l’âge du cerveau à partir de signaux
cérébraux M/EEG, sans localisation de sources, et avec un prétraitement minimal
des données. De plus, la performance de notre méthode riemannienne est proche
de celle des méthodes de référence nécessitant une localisation de sources et donc
un traitement manuel des données, la disponibilité d’images IRM anatomiques et
une expertise en modélisation de sources M/EEG. Une analyse empirique à grande
échelle a ensuite permis de démontrer que l’âge du cerveau dérivé de la MEG capture
des informations uniques liées à l’activité neuronale et non expliquées par l’IRM
anatomique. Conformément aux simulations, ces résultats suggèrent également que
l’approche riemannienne est une méthode pouvant s’appliquer dans un large éventail
de situations, avec une robustesse considérable aux différents choix de prétraitement,
y compris minimaliste. Les bonnes performances obtenues avec la MEG ont ensuite
été répliquées avec des EEGs de qualité recherche.

Dans une troisième contribution (clinique) [Sab+21, en préparation], nous avons
validé le concept d’âge cérébral directement au bloc opératoire de l’hôpital Lari-
boisière à Paris, à partir d’EEG de qualité clinique recueillis pendant la période de
l’anesthésie générale. Nous avons évalué notre mesure de l’âge cérébral comme
prédicteur de complications peropératoires liées aux dysfonctions cognitives post
opération, validant ainsi l’âge du cerveau comme un biomarqueur clinique promet-
teur des troubles neurocognitifs. Nous avons également montré que le sédatif utilisé
a un impact important sur la prédiction de l’âge du cerveau et avons démontré la
robustesse de notre approche à différents types de médicaments.
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Combinant des concepts précédemment étudiés séparément, notre contribution
démontre la pertinence clinique de la notion d’âge du cerveau prédit à partir de l’EEG
pour révéler les pathologies des fonctions cérébrales dans des situations où l’IRM
ne peut pas être réalisée. Ces résultats fournissent également une première preuve
que l’anesthésie générale est une période propice à la découverte de biomarqueurs
cérébraux, avec un impact potentiel profond sur la médecine préventive et une
influence sociale et économique durable.
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