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Résumé en français

Bien que les logiciels continuent de se complexifier et que la cyber-sécurité soit en train de devenir un enjeu majeur d'une société où l'automatisation est maintenant la norme, la spécification et la vérification d'exigences de haut niveau (comme des propriétés de sécurité, telles que l'intégrité des données ou la confidentialité) sur des logiciels de taille importante reste un défi pour l'industrie.

Cependant, de telles exigences de haut niveau représentent la majeure partie des cahiers des charges écrits et compris par les ingénieurs, et il est nécessaire de faciliter l'utilisation des méthodes formelles par ces derniers sur ces exigences. Cette thèse présente un cadre formel pour les exigences de haut niveau appelé les meta-propriétés, décrites pour un langage de programmation abstrait, et centrées sur les propriétés liées aux manipulations de la mémoire et les invariants globaux. Une première partie de la thèse décrit ce formalisme et la sémantique des méta-propriétés.

Ce cadre formel est dans un second temps appliqué au langage C avec HILARE, une extension d'ACSL (un langage de spécification formel pour les programmes C), qui permet la spécification d'exigences haut niveau sur des programmes C de grande taille avec facilité. La lien est fait avec les méta-propriétés en exposant une syntaxe concrète pour leur spécification, en plus d'un grand nombre d'extensions pratiques. Des techniques de vérification pour HILARE, basées sur la génération d'assertions locales et la réutilisation des analyseurs de Frama-C existants (Wp, EVA, E-ACSL), sont présentées et implantées dans le greffon MetAcsl pour Frama-C. Le lien direct avec la sémantique des propriétés fait que ces approches sont correctes par constructions. Le processus est appuyé par de nombreux exemples sur un petit cas d'étude faisant intervenir des notions de confidentialité.

Une fois les techniques de base présentées, une méthodologie complète pour l'évaluation des propriétés de grands programmes est détaillée, articulant les méta-propriétés, les HILARES, les techniques de vérification et les particularités du C. Y sont exposés les procédures optimales pour utiliser les moyens présentés et les pièges à éviter. La méthodologie est illustrée par un large ensemble d'exemples et de propriétés de sécurité, et est en particulier appliquée à un cas d'étude imaginaire impliquant des propriétés complexes d'un micronoyau.

Par la suite, nous explorons une autre manière de vérifier qu'une exigence de haut niveau est vérifiée par un programme en la déduisant à partir d'autres exigences déjà prouvées. Un cadre pour la déduction des méta-propriétés est construit en identifiant un certain nombre de situations où une déduction est désirable, en mécanisant une partie de la formalisation des méta-propriétés via Why3/Coq et en prouvant que de telles déductions sont correctes au sein de ce système. Les déductions sont ensuite traduites sous forme de règles Prolog qui sont intégrées à MetAcsl et utilisées pour déduire automatiquement un sous-ensemble de méta-propriétés, sans avoir recours à des assertions locales.

Enfin, nous présentons une application de toutes les techniques présentées (HILAREs, vérification locale, vérification alternative) articulées selon la méthodologie exposée, à un cas d'étude industriel et réaliste: le chargeur d'amorçage de WooKey, un périphérique de stockage USB sécurisé développé par l'ANSSI.

Introduction

In the last decades, computer systems have become deeply entrenched in our society. The recent years have seen a dramatic increase of not only user-facing systems (in particular through smartphones and personal computers) but also industrial systems. The latter exist at different scales: from large -operation of large structures such as trains and power plants -to small -embedded devices that are pervasive in our everyday life: household appliances, medical equipment, etc. Furthermore, more and more of these systems are now connected to the Internet, and their behaviour is becoming deeply intertwined with the good operation of the global network.

Naturally, humans designing and programming these systems are bound to make mistakes: users are accustomed to software bugs and the Internet has an abundance of people reporting bugs and offering solutions for circumventing them. While for most bugs the worst result is mild annoyance and perhaps an awful Friday evening, some of them can be truly catastrophic. Indeed, a safety bug in an industrial system can very well result in physical [START_REF]PATRIOT MISSILE DE-FENSE: Software Problem Led to System Failure at Dhahran, Saudi Arabia[END_REF], environmental [START_REF] Soereide | Sleipner A GBS Loss[END_REF] or material harm [START_REF] Lions | ARIANE 5 Flight 501 Failure: Report by the Enquiry Board[END_REF]. Similarly, today flaws in even apparently simple user-facing systems can have dire consequences in terms of privacy and security in general, as the increasing stream of large-scale hacks tends to indicate. This raises the need for efficient and accessible methodologies to detect flaws in computer programs, small and large.

A common but somehow limited strategy is testing: trying to run a program multiple times on different inputs that are representative of its normal usage (such as user actions), and checking that the resulting behaviour is as expected (either by comparing the behaviour with a pre-defined one or by ensuring it is compliant with some requirements).

However, in most cases, the input space cannot be exhaustively explored, which means that testing cannot ensure the absence of bugs in a program. This can be alleviated by checking for a set of test coverage criteria: metrics of a test suite determining for example how much of the whole code base is actually executed during the test suite. While this technique can be used to consider a wide variety of situations in the tests, it is usually very hard to achieve complete coverage on complex programs. Partial coverage is certainly better than nothing and may be largely sufficient for non-critical systems, where failure does not entail significant damages of any kind. However, there are other programs where the consequences of bugs are signifiant enough to justify the need for stronger guarantees.

Formal Methods

Formal methods, and more precisely formal specification and verification, are a set of techniques meant to assess the quality of programs and increase our trust towards them, by leveraging theoretical principles.

The goal of these techniques is to specify a desired property about programs (or models of programs) and deliver a judgement: does a particular program respect that property? This is made possible by describing the precise semantics of each syntactic element of a programming language and their composition, allowing to reason about a whole program as a mathematical object, about which various logical properties can be expressed.

Automation, soundness, completeness. To remain accessible by the industry, these techniques must be as automated as possible, to both avoid human error in the verification process itself and keep the costs at a manageable level. This goal is severely hindered by Rice's theorem [START_REF] Rice | Classes of Recursively Enumerable Sets and Their Decision Problems[END_REF] which states that non-trivial properties of a program are undecidable (a generalization of Turing's famous halting problem), and more generally by the negative answer given to Hilbert's Entscheidungsproblem by Church [START_REF] Church | A note on the Entscheidungsproblem[END_REF] and Turing [Tur37]. This means that a formal method approach cannot be at once sound, complete and automated: it cannot always deliver a correct judgement on every kind of program without the need for human intervention. To circumvent this impossibility, all techniques must make a compromise by giving up at least one of these three properties.

Note that soundness and completeness are defined with respect to a goal. For example, as a bug-detecting technique, testing is sound (a detected bug really is a bug) but incomplete. Throughout this thesis, the goal will be to verify that a program respects a property without any doubt, in all of its possible executions. Any mention of soundness or completeness will be relative to this goal. In that respect, testing is complete (it confirms all properties respected by the program) but unsound (it does not eliminate the possibility of a bug in general). Some general techniques for formal verification include:

• Deductive verification [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] expresses the correctness as a set of mathematical statements (called verification conditions), the truth of which imply the conformance of the program to its specification. The verification conditions are handled by automatic or interactive theorem provers. It is sound and complete, but needs human intervention for writing suitable proof-guiding annotations for the proof of some verification conditions.

• Abstract interpretation [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF] maps memory locations to a more abstract domain that over-approximates the values they can take during the union of all possible executions. It is sound and automated but not complete, since it generates false alarms (cases where a problem is detected in a correct program) on some programs.

• Model checking [START_REF] Clarke | Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications[END_REF] verifies a program (or an abstract model of it) by completely exploring the set of all possible states. It is not complete, since exploring all possible states is generally impossible. On the other hand, bounded model checking chooses to explore only a finite subset of these states (states reachable after a fixed number of steps), gaining completeness at the price of soundness.

• Symbolic execution [START_REF] King | Symbolic Execution and Program Testing[END_REF] executes a program but with variables mapped to symbols that represent arbitrary input, discovering the constraints that relate the variables. It is generally automated, giving up soundness and/or completeness depending on how the constraints are managed.

Remark 1 (Soundness and completeness). When a technique gives up soundness or completeness, in some cases it can be reduced to a sound and complete technique (hence not automated) by introducing appropriate abstractions, constraints, kinds of properties, etc.

Verification, static and dynamic. The above techniques are mostly static (analysing the program without concretely executing it). There are also dynamic techniques that alleviate the undecidability problem by giving up guaranteed termination (and are not complete for detecting correct properties in general, as they are more oriented towards bug detection). For example, Runtime Assertion Checking [START_REF] Clarke | A Historical Perspective on Runtime Assertion Checking in Software Development[END_REF] transforms specification into executable checks that allow detecting flaws at runtime. Some other techniques, like Concolic Testing [START_REF] Sen | CUTE: A Concolic Unit Testing Engine for C[END_REF], combine both static and dynamic verification.

While the contributions of this thesis are not particular to any of these techniques, we will mostly focus on deductive verification and runtime assertion checking when discussing verification.

Specification of properties.

The mentioned techniques are meant to assess that a program is valid with respect to a property, but this does not say anything about how such a property should be specified. In this thesis, we will focus our specification efforts on two major specification mechanisms:

• ad-hoc assertions inserted directly within a program, expressed using a logical language that embeds semantic elements of the programming language. They allow reasoning about the current state of the program at the point where they are inserted;

• function contracts, introduced notably by the Eiffel programming language and its "design by contract" paradigm [START_REF] Meyer | Applying 'design by contract[END_REF]. Each function of the program can be annotated with a contract, stating preconditions, postconditions and possibly other properties of the function, using the same formalism as assertions.

Function contracts. Let us see an example of function contract. Algorithm 1 below is a function computing the greatest common divisor (GCD) of two integers, annotated with a contract: a precondition, stating that the two parameters must not be zero; and a postcondition, ensuring that the result of the function is indeed a common divisor. Notice that this contract is partial since it does not ensure that the result is the greatest common divisor: a function always returning 1 is compliant with the postcondition bit is not a proper GCD function.

Algorithm 1 A GCD function annotated with a contract

Requires: ≠ 0 and ≠ 0 ⊲ Precondition Ensures: mod result = 0 and mod result = 0 ⊲ Postcondition function GCD( , )

← mod while ≠ 0 do ← ← ← mod end while return end function Modular verification. Function contracts are a popular and efficient way of specifying large programs. Indeed, they enable an important factor of efficiency in formal verification: modular verification.

In that setting, if we want to prove the contract of a function calling another function , we can just read the contract of and assume its postcondition is correct after the call. There is no need to inspect the body of , provided we prove that the preconditions of hold at the call site.

Assuming every function is annotated with a contract and individually proved similarly, we can prove that the whole program is correct in a modular manner. However, while function contracts are very relevant for specifying properties that are local to a function, it is inherently hard to specify global requirements with this tool.

Motivation

In the natural language specification of a system, one will often find highlevel requirements: requirements that are not specific to small code units (which are abstracted away) but rather pertain to large components of the system or the system itself. The goal of this thesis is to offer a way to specify such high-level properties of programs, and develop means to assess programs with respect to these properties. We focus on the following points:

High-level requirements for security. While there are many safety requirements that are high-level, this is especially apparent with security requirements, where large sets of functions in the software are required to uphold constraints. For example, we might want to isolate components of a software from one another by forbidding a component to read or write the resources owned by another, in order to reduce the attack surface. Or we might want to ensure that a software is compliant with stringent confidentiality and privacy requirements, such as the ones mandated by the General Data Protection Regulation (GDPR) [GDPR16]: for example ensuring that user data is only used by components of a software which have a purpose matching the consent given by the user. Hence in this thesis we will want to ensure that a rich variety of high-level security requirements can be expressed. In particular, we will focus on expressing access control and information flow requirements.

Accessibility and automation.

As discussed previously, automation and ease of use are important stakes since they greatly influence the option of a technique by industrial users, which is an overall goal of this work. Hence, we will want our means of specification to be completely automated: in particular, the size of the code base under analysis should not change the amount of effort needed to specify high-level requirements. Similarly, we will want the verification of requirements to be as automated as possible, considering the limitations described in the previous Section. Laslty, we would like our techniques to be applicable to programs written in a mainstream programming language: the C programming language.

Scalability. Expressing high-level requirement at scale with contracts has several problems, which our contributions will try to address: Expressiveness. Some simple global requirements can be expressed as a single contract, distributed over the set of relevant functions. In the general case, however, this is hard or even impossible. Even when possible, it is necessary to find a complex encoding of the requirement fitting the contract paradigm. This makes the specification much harder to read and the subsequent proof effort difficult and mostly manual.

Maintenance. If the global requirement can be expressed as a contract, it can then be attached to every function of the relevant component. While this is possible, this is a tedious and error-prone manual effort, especially on large code bases. Furthermore, if the requirement happens to change, every subsequent contract must be changed.

Traceability. If two or more global requirements pertain to overlapping components of a program, then the contracts from both of these requirements are mixed in the overlapping functions. Without a way to explicitly link the requirements to the low-level contract clauses, it is hard to determine what requirements a single function is subject to, to check that no function has been missed or to track what global requirements are proved or not at a given time. In other words, contracts do not allow to take a step back from low-level details.

Previous works have addressed the need for a way to specify and verify specific kinds of requirements. Most notably, the work of Pavlova et al. [START_REF] Pavlova | Enforcing High-Level Security Properties for Applets[END_REF] proposes a method for specifying high-level security policies on Java programs running on smart cards, and verifying them by automatically generating low-level annotation that are woven into the source code and then verified using an external tool. However, while the security policies they consider are indeed high-level in the sense that they have impact on the whole application, the properties that the authors consider are firmly linked with the Java Card architecture: applet life cycle, atomicity of transactions, exceptions, etc. As the authors note, "there exists many relevant security properties such as specifying memory management, information flow and management of sensitive data. Identifying all relevant security properties and expressing them formally is an important ongoing research issue". In that sense, their approach has not the general purpose that we are looking for. And other previous approaches, while efficient for their purpose, present the same problem (see Chapter 8 at the end of the thesis for a review of such works and our position compared to them).

A secure vault. We will now introduce a small use case that will serve as an illustrative example to present the concepts introduced throughout this thesis. Let us consider an application managing a physical vault, illustrated in Algorithm 2, with components managing the locking and unlocking of the vault, handling user interaction, authentication, communication with other systems and alarms, etc. Let us now suppose that to interface with the physical system moving the locks, the application must simply write a boolean into a global variable whose address is mapped to that system. A very simple high-level security requirement that we would like to express, is that only the component responsible for locking and unlocking should ever write to that variable. 

Contributions and Document Structure

To address these issues, we outline a general-purpose framework for working with high-level requirements that can be applied to any programming language. We instantiate this formal framework to the C programming language, a language created in the early 1970s which remains nowadays among the most widely used programming languages in the world, especially for embedded, safety-and security-critical programs. We explore a wide variety of high-level safety and security requirements over several use cases, and discuss different means of verifying them on C programs.

Within this framework, the vault requirement described above will simply be expressed by the following statement, and easily provable on large code bases: meta \prop, \name(vault_security), \targets(\diff(\ALL, LOCK_COMPONENT)), \context(\writing), \separated(&vaultOpen, \written); This statement, that will be called a HILARE later in this thesis, is meant to be inserted at the end of a C program. It uses a special syntax for describing our requirement: a simple name, a set of functions where it should apply (here, all functions except the ones in the locking component), and a description of the requirement: "when these functions write to memory, the written variable should not overlap with the vault state variable".

While this statement is seemingly simple, making precise sense of it and its underlying specification and verification methodology is the whole purpose of this thesis.

Contributions.

The main contributions of this thesis are:

• the description of a new class of high-level properties to express global requirements over large programs. In this document, we define a simple imperative abstract language, upon which we formalize the notion of meta-properties. We show that this formalism is useful to express concrete requirements that were hard to specify with previous approaches;

• a concrete syntax for expressing meta-properties on programs written in the C programming language. The formalism is transposed from the abstract language to C, yielding an extension of the ANSI/ISO C Specification Language called the HILARE language. Meta-properties are adapted to fit quirks of the language, and several useful extensions of the basic concept of meta-properties are presented;

• a verification strategy leveraging the existing Frama-C environment for assessing HILARE properties on C programs. This approach is based on a translation from the HILARE language to sets of local assertions, which can then be handled by existing verification tools. It handles simple meta-properties as well as their extensions. The HILARE syntax as well as its verification strategy is implemented within a Frama-C plugin called MetAcsl. This plugin has been used to validate the design of meta-properties on various examples;

• a detailed methodology for tackling specification and verification tasks on large programs involving high-level requirements. This methodology highlights a set of specification patterns that can be used as building blocks for designing complex properties with the HILARE language. It is illustrated as applied to a set of complex requirements in an artificial micro-kernel;

• a study of the application of our methodology to WooKey, a real large-scale codebase. Several security requirements of the bootloader of WooKey, a secure USB key prototype developed from the ground up by the French National Agency for the Security of Information Systems (ANSSI), are specified and verified on a program spanning hundreds of functions;

• an extensible framework for reasoning about meta-properties. We establish foundations for a sound system that allows deducing metaproperties from others at the global level, without having to resort to local assertions. This framework is based on a soundness proof in Why3 and an efficient solver in Prolog, which is seamlessly integrated in the MetAcsl plugin.

Structure of the document. This thesis is structured as follows:

• Chapter 2 formalizes the notion of meta-property from the ground up on a simplified language and illustrates it on several examples, highlighting its usefulness in the context of our illustrative example;

• Chapter 3 takes that formalization and transposes it to the C programming language and the Frama-C platform, which is briefly presented along with its specification language ACSL. The resulting specification language is called HILARE. Several extensions to the formalization are presented, and a small confidentiality-oriented case study is used to illustrate its usage on concrete programs;

• Chapter 4 describes a verification strategy for HILARE specification, based on translation into local annotations. The case study from Chapter 3 is continued and used to illustrate the soundness of the approach. The MetAcsl plugin for Frama-C is described in this chapter;

• Chapter 5 crystallizes the elements of the previous chapters into a detailed methodology for tackling complex specification and verification tasks on C programs. It discusses common pitfalls, and describes the entire process from approach to complete verification, illustrated by requirements on a micro-kernel;

• Chapter 6 discusses an alternative verification strategy for HILARE properties avoiding local reasoning: deduction of high-level requirements from others. It describes foundations for a complete and extensible framework for reasoning about HILARE automatically, and its seamless integration within MetAcsl;

• Chapter 7 presents a real, large-scale case study of the application of our methodology to the specification and verification of security requirements to the bootloader of WooKey, a secure USB key prototype developed by the ANSSI;

• Chapter 8 presents previous efforts related to our work, and how this thesis is positioned compared to them;

• Chapter 9 concludes this thesis, summarizing the results achieved in the thesis, their limitations and ideas of future works.

Remark 2 (Environments and text emphasis).

Throughout the thesis, coloured environment such as this one are used to delimit elements such as remarks, definitions or examples.

In definitions, italic is used to signal the new terms introduced by the definition. In the rest of the document, italic is meant to draw the attention of the reader to a particular word, signalling its significance to properly understand a concept. To avoid ambiguity, bold is used to signal such words in definitions.

Publication of the results. Some contributions of this thesis are already published:

• [START_REF] Robles | MetAcsl: Specification and Verification of High-Level Properties[END_REF] introduces the concept of meta-property (Chapter 2) through its application within the Frama-C framework. It describes en early version of the HILARE language and MetAcsl (Chapters 3 and 4).

The key contributions of this paper are summarized in French in [START_REF] Robles | MetAcsl : spécification et vérification de propriétés de haut niveau[END_REF];

• [START_REF] Robles | Tame Your Annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties[END_REF] lays out a partial formalization for meta-properties, upon which the formalization of Chapter 2 is built. It also presents some extensions of the HILARE language mentioned in Section 3.3 as well as the complete benchmark reproduced in Section 4.5;

• [START_REF] Robles | Methodology for Specification and Verification of High-Level Requirements with MetAcsl[END_REF] presents a complete methodology for specification and verification with HILAREs, supported by an artificial case study on micro-kernels as well as the WooKey case study. Most of this work is reproduced in Chapter 5, with the WooKey part developed in its own chapter (Chapter 7).

The key contributions of this paper are summarized in French in [START_REF] Robles | Méthodologie pour la validation d'exigences globales appliquée à la sécurité[END_REF].

Furthermore, the work presented in this thesis has been used by Thales in a large-scale industrial verification project [START_REF] Djoudi | Formal verification of a JavaCard virtual machine with Frama-C[END_REF], detailed in Section 8.3.

Chapter 2

A Formalization of High-Level Requirements

As the goal of this thesis is to offer a way to specify high-level properties of programs, formally defining the class of these properties is a useful first step. Having a formal, abstract frame for these properties allows us to sketch an approach of high-level specification and verification on real C programs in later chapters. As a working example during this chapter, we use the simple abstract program (mentioned in Chapter 1) managing an imaginary vault, with some defined functions e.g. for locking or unlocking the vault, as well as a set of other unspecified functions. A basic requirement on such a system is: "the vault can only be locked or unlocked by the appropriate locking/unlocking functions". In particular, if these functions perform some kind of authentication, we do not want another function to spuriously bypass this and unlock the vault anyway. This example also serves as a minimal goal of what should be expressible.

At the end of the chapter, we will have a formal framework for expressing at least such a requirement with precise semantics, and more generally memory-related high-level properties. After the presentation of a set of notations used throughout this chapter in Section 2.1, Section 2.2 formalizes an abstract programming language. Section 2.3 builds upon that, describing a notion of context to select points and local information in such programs. A few of these contexts that will be useful throughout the thesis are listed in Section 2.4. Section 2.5 then gives several examples of concrete high-level properties we want to be able to express. Finally, Sections 2.6 and 2.7 describe the appropriate formal framework for achieving the desired specification goal.

Notation

Throughout this chapter, we will use the following notations as a support for our formal framework.

Sets

We use the common symbols , ∪, ∩, \ to designate respectively the empty set, set union, intersection and difference. Furthermore, we use the symbol to denote disjoint set union, that is union of sets which must be disjoint.

For any set , we denote by ( ) the power set of i.e. the set of all subsets of (including ).

We denote by N the set of natural integers with zero, N + the same set without zero, and Z the set of all integers:

N = {0, 1, 2, . . .}; N + = N \ 0; Z = {. . . , -2, -1, 0, 1, 2, . . .}.

Functions

We denote by : → a total function associating to every element of an element of . For a function : → where = { | : → } (that is, for a function that returns functions), we also write

: → ( → )

Mappings

We denote by : ⇀ a partial function or mapping , associating to some elements of an element of . We denote by dom( ) the domain of i.e. the set on which is actually defined.

When the domain set is empty, there is only one such mapping (having no bindings), that we will denote .

Let , : ⇀ be partial mappings.

Furthermore, we denote by [ ↦ → ] the new mapping defined as plus a new association (or binding) from ∈ to ∈ . If a mapping for existed in , then it is shadowed:

∀ ∈ dom( ) ∪ { }, [ ↦ → ]( ) = if = ; ( ) otherwise.
Additionally, we introduce the notation [ 1 ↦ → 1 , . . . , ↦ → ] to denote the definition of a mapping in extenso:

[ 1 ↦ → 1 , . . . , ↦ → ] := [ 1 ↦ → 1 ][...][ ↦ → ]
Given two functions and with disjoint domains, we will use the notation to designate a new mapping combining the bindings of both and such that dom( ) = dom( ) dom( ) and ∀ ∈ dom( ), ( )( ) = ( ) (and symmetrically for ).

Lastly, we denote by | the new mapping defined as whose domain has been restricted to :

dom( | ) = dom( ) ∩ ; ∀ ∈ dom( | ), | ( ) = ( ).

Inference Rules

We use derivation rules to describe what can be deduced in a formal system, typeset as follows:

Name Premise 1 Premise 2 . . . Conclusion (external conditions)
where Name is the name of the rule, Premise 1,2,... and Conclusion are formulas of the formal system and the optional external conditions are logical conditions on Premise 1,2,... expressed outside of the system, within the classical logic used throughout this thesis.

Such a rule expresses that the conclusion can be derived from the premises given that the external conditions hold. A rule can have no premises, in which case the conclusion can be derived immediately.

Graphs

A directed graph is a pair ( , ) where is a finite set and ⊆ × . is called the set of vertices (or nodes) of the graph, and its set of edges. We say that there is an edge from 1 to 2 if ( 1 , 2 ) ∈ .

An Abstract Language

In this chapter, we are working in the context of an abstract language, which we call A-Lang. Very few hypotheses are initially made on that language: it must have a notion of (i) functions (separation of code units), (ii) global locations, (iii) local variables and (iv) instructions (either a local location declaration, a function call or an abstract operation). Note that in this chapter we will use the words location and variable interchangeably.

This language serves as a support for the definition of an interesting class of properties which we will call meta-properties. Keeping an abstract support language allows us to later refine it to a real programming language such as C in the rest of this work, while demonstrating the generality of our approach. We define A-Lang from the bottom up, going from identifiers and instructions to whole programs.

Definition 1 (Identifiers). We define the following, mutually disjoint, finite sets of possible identifiers:

• ℐ : for function names;

• ℐ : for meta-variable names;

• ℐ : for global location names;

• ℐ : for local location names;

• ℐ : for logic variables.

We also define the following sets respectively called the location identifier set and the extended location identifier set:

ℒ := ℐ ℐ ; ℒ := ℒ ℐ .
The sets being disjoint means that an identifier cannot be used for more than one kind of objects.

We now define a set of A-Lang instruction kinds. As the language itself, these instruction kinds are abstract and do not define a concrete program by themselves, just families of similar instructions. They allow sorting concrete instructions (as we will see in Remark 3) into different categories.

Definition 2 (A-Lang: Instructions

). An instruction of the A-Lang language is one of the following kinds:

• Begin;

• End;

• Branch;

• Var where ∈ ℐ ;

• Compute;

• Call where ∈ ℐ .

The set of all instructions is denoted by I.

Before talking about execution semantics of these instruction kinds and concrete instructions (which will be defined in Definition 7 for details), we can already give an intuition about their meaning:

• Begin and End are dummy instructions that just delimit a function: its entry and exit points. There is one of each in a given function. We will call every other instruction meaningful.

• Branch is a conditional jump to another instruction. The condition is left abstract.

• Var is a local variable declaration. From this point, the variable is declared until the end of the function, with a default value. If the variable was already declared, it remains declared but is reset to the default value (which will be described in Definition 5).

• Compute is an abstract, deterministic computation. Unlike the previous instruction kinds, it can have side effects on the existing global state.

• Call is a function call to . Arguments are assumed to be conveyed through global variables rather than explicitly.

Rather than working directly on A-Lang functions by mean of a grammar, it will be convenient for this work to refer directly to their control-flow graphs [START_REF] Allen | Control Flow Analysis[END_REF] (CFG), which describe the structure of the control-flow of a function.

Definition 3 (A-Lang: Function, Control-flow graph).

An A-Lang function is defined by its control-flow graph ( , ), that is, a directed graph with the following properties:

• Each vertex is equipped with two labels accessed through labelling functions id and instr id :

→ N instr : → I
where for any vertex ∈ , id( ) is an integer identifier and instr( ) is an A-Lang instruction kind (see Definition 2).

• There is exactly one vertex of the Begin instruction kind, and one of End:

∃! 1 ∈ , instr( 1 ) = Begin; ∃! 2 ∈ , instr( 2 ) = End.
Since these two vertices are unique within a function, we name them begin( ) and end( ).

• begin( ) has no predecessor, while every other node has at least one predecessor.

• end( ) has no successor, while every other node has at least one successor.

• Conditional jumps have two successors in the graph while other nodes have at most one.

• Every node is structurally reachable from begin( ).

The set of all correct control-flow graphs is denoted by ℱ .

The structural properties of the CFG imply the following facts for a given function:

• There is a single edge from begin( ) to the first meaningful instruction of the function.

• There is no structurally unreachable code.

Intuitively, an edge ( 1 , 2 ) ∈ exists if and only if the control flow can structurally go from 1 to 2 during the execution of the function (Definition 8 will give more details on execution). In that case, we say that 1 and 2 are successive.

Remark 3 (From instructions to concrete execution). Instructions as defined in Definition 2 are simply kinds. Two nodes in a controlflow graph can have the same instruction kind. However, this does not mean that the concrete execution of these nodes has to be the same.

As we will see in Definition 7, the execution behaviour of a node is determined not only by its instruction kind but also by its unique (see Definition 4) identifier.

Also notice that edges are only defined within the function: function calls are not represented by edges. begin( main ) In further CFG representations (e.g. Figure 2.2), we will simplify the graphs by omitting the identifiers, the node names, and putting directly the instruction kind inside the node. While the pruned information is still stored in the graph, it will not be useful to represent it.

instr(begin( main )) = Begin id(begin( main )) = 0 1 instr( 1 ) = Compute id( 1 ) = 1 2 instr( 2 ) = Call checkStatus id( 2 ) = 2 3 instr( 3 ) = Branch id( 3 ) = 3 4 instr( 4 ) = Call unlock id( 4 ) = 4 5 instr( 5 ) = Call lock id( 5 ) = 5 end( main ) instr(end( main )) = End id(end( main )) = 6
We can now define an A-Lang program: a set of functions and a set of predefined global variables (which is by Definition 1 distinct from variables that may be declared locally).

Definition 4 (A-Lang: Program

). An A-Lang program is a triple , , ( , ) ∈ where:

• ⊆ ℐ is a set of A-Lang function names;

• ⊆ ℐ is a set of global location identifiers;

• ( , ) ∈ is an -indexed family of functions (i.e. a set of CFGs, according to Definition 3).

A program , , ( , ) ∈ is said to be well-formed if:

• all called functions are defined:

∀ ∈ , ∈ , ∈ ℐ , instr( ) = Call =⇒ ∈ ;
• functions do not share nodes:

∀ 1 , 2 ∈ , 1 ≠ 2 =⇒ 1 ∩ 2 = ;
• vertex identifiers are unique across all functions of the program:

∀ 1 , 2 ∈ , 1 ∈ 1 , 2 ∈ 2 , 1 ≠ 2 =⇒ id( 1 ) ≠ id( 2 ).
It is always assumed that programs are well-formed. The set of all well-formed programs is denoted by . To make things more concrete, let us now introduce a small example of an A-Lang program.

Begin

Compute

Call checkStatus

Branch

Example 2 (A Secure Vault). We can define an A-Lang program {main, lock, unlock, checkStatus}, {vaultOpen, init}, ℰ where ℰ is the family of graphs represented in Figure 2.2 (with a simplified representation, see Example 1).

This program contains four functions as well as two global locations vaultOpen and init (which we will assume to contain integer values in the next examples). This program is a well-formed A-Lang program.

Having defined the structure that an A-Lang program must have, we now attach semantics to such a program. In particular, we start with a definition of state for storing values of declared variables.

A-Lang programs can declare both global (via the set) and local locations (via the Var instruction). Once declared, each of these locations has a value that can change over time.

Definition 5 (A-Lang: Values, State). We denote by the set of values that can be stored into locations. Furthermore, we denote by 0 ∈ the default value. We assume no particular property of 0 . A state is a partial function ℒ ⇀ that assigns values to location identifiers (either local or global). States will be denoted by , 1 , 2 , . . . and the set of all states is denoted by Σ.

A program state always assigns a value to global locations:

∀ ∈ Σ, ⊆ dom( ).
Notice that for the sake of clarity, all variables have the same type in this formalization. However, it could handle multiple types by adding a parameter to the state function or by having separate stores for each type of location.

Example 3 (Integer locations).

In all examples of this section, we always assume that we are working with integer locations, with 0 being the default value. Hence, we use the set of values:

:= Z; 0 := 0.
A set of operators for these values will be defined in Example 12 (page 42).

We now define a semantics to describe what happens to the state upon execution: the concrete execution is entirely characterized by any relation between configurations observing a set of properties, as described below.

Definition 6 (A-Lang: Configuration). Let ∈ be a function, ∈ one of its instructions and ∈ Σ a state of the program. We call the pair , a configuration of .

Intuitively speaking, a configuration , represents a snapshot of execution in which represents the current values of locations and represents the next instruction to be executed (i.e. is the state preceding the execution of ).

Note that the following definitions for instruction and function executions (Definitions 7 and 8) are mutually recursive: the execution of a single instruction (⇓) and of a whole function ( ) are intertwined in the case of function calls.

Definition 7 (A-Lang: Instruction execution). Let ∈ be a function, , ∈ be two successive instructions of and , ∈ Σ two program states.

We define an execution relation as any relation ⇓ between two configurations of a function such that , ⇓ , respects the following constraints:

• Begin and Branch do not modify the state. a If instr( ) = Begin or instr( ) = Branch, we have:

= ;

• Var defines a binding from to the default value 0 ∈ in the state. If instr( ) = Var for some location , we have:

= [ ↦ → 0 ];
• Call executes function , correctly managing the interaction between the state of the caller and the callee (see Definition 8 below). If instr( ) = Call for some function and if terminates when executed on , then we have:

∃ ∈ Σ, ( , | ) ∧ = ( | | ℐ );
• Compute arbitrarily modifies the state without adding or removing bindings. If instr( ) = Compute, we have:

dom( ) = dom( ).
Furthermore, for every instruction except Call and End, the relation must guarantee the existence and the unicity of a next configuration from a given one:

∀ ∈ , ∈ Σ, instr( ) ≠ Call =⇒ ∃!( , ) ∈ ( × Σ), , ⇓ , .
For Call, there is at most one next configuration b from a given one.

a End is not allowed to modify state either, since there is no execution step from it because it does not have a successor. Recall that a return from a function call is not modeled by an edge but is part of the execution of the call.

b Because a function may not terminate, as we will see in Remark 5.

Each instruction kind is given a semantics that matches the natural intuition associated to its name. In particular, the Call instruction calls on the current state of the caller (that is, restricted to global variables), then removes the callee's local variables from the resulting state after the call, and finally adds back the local variables of the caller.

We can then define the execution of a whole function: simply a chain of executions from a starting state to a potential final state (the function may not terminate).

Definition 8 (Chain of executions, Function execution).

For any execution relation ⇓ and two arbitrary configurations , and , , we say there is a chain of executions from configuration , to configuration , and note

, ⇓ + , if either: • , ⇓ , ;
• or there is a finite number ∈ N of intermediate configurations

1 , 1 , . . . , , such that , ⇓ 1 , 1 ∧ 1 , 1 ⇓ 2 , 2 ∧ . . . . . . ∧ , ⇓ , .
In other words, we denote by ⇓ + the transitive closure of ⇓.

Let ∈ be a function and 1 , 2 ∈ Σ a pair of program states. We say that yields 2 when executed on 1 , and write

( , 1 )
2 if there is a chain of instruction executions from its beginning vertex begin( ) to its end vertex end( ) that yields 2 when executed on

1 : begin( ), 1 ⇓ + end( ), 2 .
Remark 5 (Non-termination of a function). In the event a function does not terminate on a given state (if for example there is an infinite loop), then the (partial) execution relation does not have an image for that state since in Definition 8 a chain of executions must be finite. This means that while non-terminating programs are valid in A-Lang, they cannot be executed.

With that, we have completely defined our support language A-Lang. It stays abstract to simplify the following definitions, but the bridge from abstraction to execution is represented by the execution relation, which can be used to map an abstract A-Lang CFG to a concrete language and program.

The Concept of Context

Now that the base language is defined, we begin formalizing what a high-level requirement of that program is. To that end, we develop the concept of context. This will serve to describe what kind of requirement we are dealing with by characterizing the situations in functions in which it applies.

First, we will need a notation to refer to the set of local variables that have been declared in all paths leading to a given program point so that they can be used at that point.

Definition 9 (Local variables).

Let ∈ be a function, ∈ one of its edges and ∈ one of its nodes. We denote by loc ( ) (resp. loc ( )) the set of local variables such that a node declaring them exists in every path leading to (resp. ) in the control-flow graph of .

In the extended semantics of A-Lang given in Section 2.4, the CFG node will only be able to use a variable if it was previously declared in all paths leading to that node.

Next, we define the notion of a selector family: a family of selected sets of function edges in the control-flow graph.

Definition 10 (Selector family).

A selector family (or selector for short) is a family of sets ( ) ∈ such that ∀ ∈ , ⊆ .

A selector selects a set of edges from the functions of the program. As an example, we can take a function of the program previously illustrated in Example 2 and select a subset of its edges. With selector families being a mean to select edges (i.e. "program points"), we will next define a way to collect local information at this edge: contextualization functions.

Intuitively, given a set of meta-variables (which are arbitrary identifiers, see Definition 1), a contextualization function takes a program function, an edge of that function selected by a selector and aggregates some local information about this edge via a mapping from the meta-variables to that information.

This will be useful for gathering information about operations we are concerned about: if a requirement is about instructions that call functions, what are the called functions? If it is about instructions modifying variables, what are the modified variables? This way, we will be able to write a requirement that says "instructions modifying variable only do it under certain conditions" and give it precise semantics with respect to the CFG of a program.

Definition 11 (Contextualization function, Context). Let ( ) ∈ be a selector and ℳ ⊆ ℐ a set of meta-variables (see Definition 1).

A contextualization function for ( ) and ℳ is a total function with the following signature:

: ∈ → ℳ → (ℒ )
with the constraint that the function returns an environment mapping elements of ℳ to sets of identifiers of global variables, functions and declared local variables:

∀ ∈ , ∈ , ∈ ℳ, ( )( ) ⊆ ℐ ∪ ℐ ∪ loc ( ) .
Finally, we call context any triple ( ) ∈ , ℳ, such that:

• ( ) ∈ is a selector (Definition 10);

• ℳ ⊆ ℐ is a set of meta-variables;

• is a contextualization function for ( ) ∈ and ℳ.

A contextualization function parameterized by ( ) and ℳ associates to each edge of selected by ( ) an environment (that is, another mapping) that associates sets of identifiers to meta-variables.

These identifiers may be function names (i.e. belonging to ℐ ), global (belonging to ℐ ) or local (belonging to ℐ ) variables. If local, they must have been declared before the edge in question.

Informally, a context is a criterion for selecting a set of program points (edges) and gathers specific information at each of these points, associating it to a set of meta-variables. It is basically a combination of a selector, a set of meta-variables and a contextualization function parameterized by the first two elements.

Let us immediately see an example of context and its application.

Example 5. Let us define a meta-variable with the name called. Recall that in Example 4, we defined a selector family calling that selects every edge in a control-flow graph leading to a calling instruction. Let ℳ calling be the { called } set where called is simply an identifier.

Let us now define the following contextualization function for calling and ℳ calling :

calling : 1 , 2 ↦ → [called ↦ → { }]
where instr( 2 ) = Call .

In other words, this contextualization function maps any edge leading to a function call, to an environment associating the called identifier to (the global location of) the called function.

It is illustrated in Figure 2.3, where each selected edge is decorated with the environment returned by ( ). For example, the edge leading to Call lock is decorated with a mapping associating called to the lock singleton.

This contextualization function can easily be extended to a full context. We can define the calling context as the triple calling := calling , {called}, calling .

Concretely, the calling context selects all edges in a function leading to a function call and at each of these edges, binds the called identifier to the called function. Figure 2.3 illustrates this context as a whole.

The concepts defined in this section can be explained intuitively via a functional programming analogy. Essentially, a selector is a filter function on the edges of a function, while a contextualization function is a map function that maps edges to some local information about them. Overall a context is simply a filter_map function combining the two previous elements: it yields new data for some edges (an environment where metavariables are bound).

As will be described in more details in Section 8.1.2, another way of understanding the notion of a context is through the Aspect Oriented Programming (AOP) paradigm [START_REF] Kiczales | Aspect-Oriented Programming[END_REF]: contexts are pointcuts (a criterion identifying a set of control-flow points) at the specification level. Contrary to actual pointcuts in AOP however, contexts are entirely static: they do not depend on runtime parameters and must be statically determined.

A Few Useful Contexts

As mentioned in Section 2.3, a context can essentially be seen as a criterion for selecting edges in a function that may gather additional information (meta-variables) to be later used by the meta-predicate of a meta-property.

With the basic A-Lang, we have already defined one useful context: calling in Example 5, which designates every edge leading to a function call (and records the name of the called function).

We can come up with two other very simple contexts which do not use meta-variables but are still useful: strong invariant and weak invariant.

Example 6 (Strong invariant). We first define a selector family all that selects every edge in a function, then a contextualization function NOP that always returns an empty mapping.

all := ( ) ∈ ; NOP : ↦ → .

We can then define a context that gathers no meta-variables from the edges and just selects all of them: strong invariant := all , , NOP . This context will be used to stipulate that a predicate must hold at every step of a function: a strong invariant.

We can also define a notion of weak invariant based on the same principle, but selecting fewer edges.

Example 7 (Weak invariant).

Instead of all , we define a selector family frontiers that only selects edges at the entry and the exit of a function (see Definition 3 for begin and end):

frontiers := ( 1 , 2 ) ∈ | 1 = begin( ) ∨ 2 = end( ) ∈ .
Then we can define a new context by simply replacing the selector family:

weak invariant := frontiers , , NOP .

It will be used to specify that a predicate must hold in every possible initial state of a function as well as when it returns. However, the property can be broken locally. This is the definition of a weak invariant.

Both weak invariant and strong invariant are illustrated in Figure 2.4, as applied on function checkStatus of Figure 2.2. The selected edges are dashed and red (and each time, an empty environment is associated to them). Let us now refine A-Lang a bit to define what the memory footprint of an instruction is, for a given execution relation. It will allow us to characterize which variables an A-Lang instruction reads and writes, according to the execution relation. More specifically, the smallest set of locations such that any location outside of it is guaranteed to be left untouched, no matter the initial state.

Begin Var tmp

Compute

The variables of the footprint must have been defined at the corresponding program point: they will belong either to global location identifiers or to the set of previously defined local identifiers loc ( ) of the current node .

Definition 12 (Writing memory footprint). Let ∈ be a function, ∈ one of its nodes, and ⇓ an execution relation. We define its writing footprint

( ) ⊆ ∪ loc ( ) ⊆ ℒ.
It is defined by the following rules, depending on the kind of instr( ):

• all instructions apart from Compute have an empty writing footprint (including Call):

∀ ∈ , instr( ) ≠ Compute =⇒ ( ) = ;
• if instr( ) = Compute, ( ) is defined as the following set:

∈Σ ( ) where 
( ) = { ∈ dom( ) | ( ) ≠ ( ), , ⇓ , , ∈ , ∈ Σ}
Similarly, we define the reading memory footprin of an instruction over the state.

Definition 13 (Reading memory footprint). Let ∈ be a function, ∈ one of its nodes, and ⇓ an execution relation. We define its reading footprint

( ) ⊆ ∪ loc ( ) ⊆ ℒ.
It is defined by the following rules, depending on instr( ):

• If instr( ) is one of Begin, End, Var or Call:

( ) = ;
• If instr( ) = Branch, then ( ) is defined as the smallest set of locations such that:

∀ , ∈ , , , , ∈ Σ, | ( ) = | ( ) ∧ , ⇓ , ∧ , ⇓ , =⇒ = .
• If instr( ) = Compute, then ( ) is defined as the smallest set of locations such that:

∀ , ∈ , , , , ∈ Σ, | ( ) = | ( ) ∧ , ⇓ , ∧ , ⇓ , =⇒ = ∧ | ( ) = | ( ) .
Intuitively, ( ) is the set of locations (global or local) that may be modified locally by , and ( ) is the set of locations on which relies for its operation (hence, the accessed locations). While this definition is retrofitted on top of the previous formalization, in a concrete programming language, the notions of reading and writing would be naturally expressed in terms of the read and written variables inside the instructions.

Remark 6 (Locality). Note that since in our definition the Call instructions have an empty footprint, a location is part of a writing or reading footprint only if it is locally modified or accessed. This means that if an instruction of calls another function and an instruction of modifies the global location , then is not part of ( ).

With this additional knowledge about our instructions, we can now define new useful contexts. First, a context concerned with write operations.

Example 8 (Writing context). We first define a family that selects all edges leading to an instruction that may modify one or more locations.

writing := {( 1 , 2 ) ∈ | ( 2 ) ≠ } ∈
We then define a contextualization function mapping such edges to an environment that associates to the written meta-variable the set of modified locations:

writing : ( 1 , 2 ) ↦ → [written ↦ → ( 2 )].
Finally, the writing context can be defined:

writing := writing , {written}, writing .

Effectively, this context selects all edges in a function leading to an instruction that may write to a location and at each of these edges, binds the written identifier to the modified location.

Later, this will allow a high-level requirement to reason about the memory modifications of the program. As such, it is one of the most useful contexts, as we will see in the following section and chapters. Next, we define a similar context for read operations on memory.

Example 9 (Reading context). Symmetrically, we can define the reading context by substituting by and written by read in all the above definitions:

reading := {( 1 , 2 ) ∈ | ( 2 ) ≠ } ∈ ; reading : ( 1 , 2 ) ↦ → [read ↦ → ( 2 )];
reading := reading , {read}, reading .

This context selects all edges leading to a memory access and provides the accessed location as the read meta-variable. Together with writing , it allows us to reason about all memory operations in a meta-predicate.

While the contexts defined thus far were given as examples, they are actually sufficient to express a vast class of memory-oriented program properties which we can use to specify interesting and realistic requirements. Hence, it is important to remember these contexts, which we call the base contexts. Definition 14 (Base contexts). We name five important base contexts:

• the strong invariant strong invariant (Example 6);

• the weak invariant weak invariant (Example 7);

• the calling context calling with its called meta-variable (Example 5);

• the writing context writing with its written meta-variable (Example 8);

• the reading context reading with its read meta-variable (Example 9).

Expressing Actual Requirements

We now pause the formalization effort to go back to the initial motivating use case we introduced in the beginning of this thesis. This section, intended as a breather, explores how we could specify the desired requirements with the tools formalized thus far and what is missing. The next two sections will properly formalize the missing parts.

Let us take the secure vault program defined in Example 2 and suppose that we want the security requirement that vaultOpen can only be modified in the lock and unlock functions.

Intuitively, this requirement is related to the writing context (Definition 14), which selects program edges where memory is modified and lists the modified locations at these points. Essentially, we would like to express that in all functions (except lock and unlock), the modified locations at these program edges cannot be vaultOpen (that is, vaultOpen ∉ written).

We gather these facts into a concept called meta-property, which will be formalized in Section 2.7:

ˆ security :=        \ lock, unlock writing ¬(vaultOpen ∈ written)
The first element is the target set, the set of functions in which we want to forbid modification. The second is the context: which edges we are concerned with in these functions. Lastly, we state a predicate which should be true at each of these program edges.

We state that in every function except lock and unlock, the location vaultOpen is not in the written set of any edge. Since we use the writing context, in which written refers to the set of modified locations, the meta-property can overall only hold if vaultOpen is never modified in the program, except in lock/unlock. This meta-property is illustrated in Figure 2.5 where the two target functions are represented. Each node is now annotated with its writing memory footprint (Definition 12). The writing footprint is assumed to be computed with respect to an execution relation derived from a particular implementation. The selected edges are dashed and red, and correspond as expected to edges leading to an instruction modifying memory. Notice that a call to a function does not count, even if the callee modifies memory. Lastly, each selected edge is decorated with the meta-predicate where the meta-variable written has been substituted by its local value.

Overall, we see that if we can verify the predicates next to the two dashed and red edges in Figure 2.5 for all possible executions, then we can verify the meta-property itself. And indeed it is easy to see how a violation of the meta-property (for example if checkStatus modifies vaultOpen instead of tmp) will result in a violation of one of the predicates.

Sections 2.6 and 2.7 properly define the underlying framework of highlevel predicates and give semantics to meta-properties that map to the intuition we give in this section. We can also build more refined requirements. For example, suppose that our vault can be locked and unlocked in a dozen of different variations of lock and unlock functions (and call this set of functions ⊆ ). Furthermore, a common condition for locking or unlocking the vault should be that a "key" is inserted.

Supposing location keyInserted is nonzero when this security feature is validated, this can be easily expressed as a variation of the above metaproperty.

ˆ security :=        writing vaultOpen ∈ written ⇒ nonzero keyInserted
The meta-predicate states that if vaultOpen is in written (which means that vaultOpen can be modified), then the value of keyInserted must not be zero (and we assume that it means the key is indeed inserted). It is complementary to the previous meta-property, which should now hold on \ .

In general, we will see that meta-properties are a good fit for various security properties such as access control and information-flow control.

A Logical Framework

While contexts serve to specify precise program edges and gather information about them, we need a logic framework to express high-level properties as presented in the previous section. All further predicates in this chapter are expressed in a simple first-order logic that is partly left abstract, similarly to A-Lang. This logic is based on the standard propositional calculus [START_REF] Mendelson | Introduction to Mathematical Logic[END_REF], augmented with first-order quantifiers on locations and a membership operation for sets of locations.

Definition 15 (Predicate syntax, Expressions). Let ⊆ ℒ be a finite set of memory locations. A predicate over is a formula of the language whose grammar is presented in Figure 2.6. It defines a variant of first-order logic relating sets and values. The set of such predicates is denoted by ( ).

We call an expression a formula constructed with the expr rule of the grammar.

In the grammar of In this setting, the following formula is a predicate of ({ , }):

:= ∀ , ∈ { , } ∧ ≤ ⇒ ( = ) ∨ > + 30.
In the next examples, we will describe the semantics of this predicate. For the sake of clarity, we will denote by the sub-predicate of under quantification i.e.

:= ∀ ,

We will now define semantic rules for predicates constructed with this grammar. Since predicates are an extension of propositional calculus, let us first define its semantics.

Definition 16 (Propositional calculus). Let ∈ N be an integer, ⊆ ℒ a set of locations and , 1 , . . . , ∈ ( ) a set of predicates.

1 , . . . , denotes that can be deduced from 1 , . . . , by the rules of propositional calculus [START_REF] Mendelson | Introduction to Mathematical Logic[END_REF].

This definition encompasses all deductions that can be made with propositional calculus i.e. the semantics of operators ¬, ∧, ∨ and ⇒. Predicates constructed with other operators are considered as atoms for the propositional calculus (they are not interpreted).

Example 11. Let be the following predicate of ({ , }), which is from Example 10 where has been substituted with :

:= ∈ { , } ∧ ≤ ⇒ ( = ) ∨ > + 30.
This predicate can be rewritten as ∧ ⇒ ∨ where , , and are predicates that would be considered atoms in propositional calculus.

In propositional calculus, the truth of this formula can be deduced from the truth of , and , by the semantics of implication, conjunction and disjunction:

, , ∧ ⇒ ∨
Hence we can write that can be deduced from these three predicates:

∈ { , }, ≤ , =

Let us now build on these semantics to give a meaning to expressions and predicates.

Definition 17 (Expression and predicate semantics).

Let be an expression (see Figure 2.6), ∈ a value and ∈ Σ a state. We say that evaluates to in and note ( ) = if this formula can be derived using the following semantic rule along with the abstract operators' semantics. .

Let ∈ Σ be a state and ∈ ( ) a predicate. We say that holds in and note if this formula can be derived using the semantic rules illustrated in Figure 2.7 (see Section 2.1 for notation details) along with the abstract operators' semantics (see Example 12 for an example of such rules).

In Figure 2.7, quantifies over states (Σ), , , 1,2,... over predicates, over logic variables (ℐ ), over locations (ℒ), over sets of extended locations ( (ℒ )). Furthermore, for a predicate , [v := ] denotes the substitution of every free instance of v by in . That means that if contains a quantifier on the same logic variable, the substitution stops. In other words, logic variables are bound to the nearest quantifier.

The Prop rule lifts the propositional calculus deduction of Definition 16 to allow deducing that a predicate holds on a state if it can be deduced from Forall

[ := 1 ] . . . [ := ] ∀ , ({ 1 , . . . , } = dom( ))
Exists

[ := ] ∃ , ( ∈ dom( ))
Figure 2.7: The semantics of predicates other predicates with propositional calculus, and if these other predicates hold on the same state. Furthermore, we introduce quantifiers over locations (and not values) with logic variables that are then substituted with every possible location of the state during evaluation.

To sum up, this logic introduces a notion of expression and operators to convert expressions into predicates (see next example for an example of actual evaluation rules on integers) as well as concrete propositional logic operators to compose predicates. Additionally, the logic introduces sets of locations (but not set composition operations) and a set membership operator.

Remark 7 (Set membership). Notice that the Mem rule in Figure 2.7 does not evaluate the terms and in ∈ to infer that ∈ , meaning that this checks that the location itself is part of the set, not its value. In other words, sets are sets of identifiers, hence set membership checks their syntactical equality rather than value equality.

This means that the following predicate does not hold on the given state

[ ↦ → 42, ↦ → 42] ∈ { }
even though and have the same value.

Expression operations are left completely abstract since they depend on the language. However, we can instantiate them in an example: simple arithmetic over integer values.

Example 12. In Example 10, we syntactically defined new logical and arithmetic operators for integer values. We can now attach inference rules to the logical operators and evaluation rules to the arithmetic ones:

Zero ( ) = nonzero ( ≠ 0) Equal ( 1 ) = 1 ( 2 ) = 2 1 = 2 ( 1 = 2 ) Comp ( 1 ) = 1 ( 2 ) = 2 1 < 2 ( 1 < 2 ) Minus ( ) = (-) = ( = -) Add ( 1 ) = 1 ( 2 ) = 2 ( 1 + 2 ) = ( = 1 + 2 ) Sub ( 1 ) = 1 ( 2 ) = 2 ( 1 -2 ) = ( = 1 -2 )
where , 1 , 2 quantify over expressions and , 1 , 2 over values. Now consider again the predicate presented in Example 10:

:= ∀ , ∈ { , } ∧ ≤ ⇒ ( = ) ∨ > + 30.
If we consider the program state := [ ↦ → 100, ↦ → -200], then . A derivation tree to obtain this result is laid out in Figure 2.8. The top tree is a subtree of the bottom one, separated to fit in the page.

The first rule used is Forall for universal quantification on a predicate: for every location in dom( ), the predicate where the logic variable has been substituted by is a premise. Here, we separate into three cases: for = , = or every other case. The first case is represented in a separate derivation tree for the sake of legibility. The second case is omitted, since it is very similar to the first.

In all cases, the next inference rule used is Prop, which has a set of premises which can be used to deduce the rule only using propositional calculus. The first case (in the top tree) is the deduction that is described in Example 11 where we use propositional calculus to derive [ := ] (which is ) from three sub-predicates. In this derivation tree, we must also prove that these three predicates hold on the state.

In the last case (on the right of the bottom tree) it is enough to prove that ∉ { , } in order to prove the whole implication. As mentioned in Remark 7, notice that we do not check the values of , and in the state. . . . While we have a definition and semantics for a predicate holding true in a given state, we can also define what it means for a predicate to hold true at a given program point: if in every possible execution path to that point, the predicate holds.

[ := ] Mem ¬ ∈ { , } ¬ ∈ { , } [ := ] [ := ] (for ≠ , ) Prop ∀ ,

Definition 18 (Predicate at program point).

Let ∈ be a function, = ( 1 , 2 ) ∈ one of its edges, and ∈ ( ∪ ∪loc ( )) a predicate over the global variables of the program, the function names and the local variables in scope at .

Given the starting vertex begin( ) of , we say that satisfies in the context of and note

if ∀ , , ∈ Σ, begin( ), ⇓ + 1 , ∧ 1 , ⇓ 2 , =⇒
i.e. if in every possible execution of until , is satisfied by the state after the execution of .

Given this basic definition of a predicate which can be evaluated on a state, we can define so-called meta-predicates, which are simply predicates where free variables can either be locations from a given set or identifiers from a meta-variable set (see previous section).

Definition 19 (Meta-predicate).

Let ℳ ⊆ ℐ be a set of metavariables and ⊆ ℒ a set of locations. We define the set of all metapredicates ˆ (ℳ, ) similarly to ( ), except that the free identifiers can also be part of the meta-variable set ℳ, in which case they are sets of locations:

pred ::= log-unop expr | expr log-binop expr | … | loc ∈ loc-set loc ::= l | log-var loc-set ::= S | M log-var ::= v
where S is (again) quantified over location sets ( ( )) and M over ℳ.

A meta-predicate ˆ ∈ ˆ (ℳ, ) can be transformed back to a normal predicate given an environment : ℳ → ( + ) (as returned by a contextualization function, see Definition 11) by substituting every instance of a meta-variable with the set of locations it is associated with in . This substitution is denoted by ˆ ( ):

ˆ ( ) ∈ (ℒ + ).
It is called the instantiation of a meta-predicate on environment . These predicates will allow us to specify properties about high-level concepts such as "all modified locations" or "all called functions" of a program. Let us see a simple example of a dummy meta-predicate and its instantiation.

Example 13. The meta-predicate

ˆ := ∀ , ∈ metav ∧ < ⇒ nonzero
is a valid element of ˆ ({metav}, { , , }), assuming , and are variable identifiers (and not function names).

Given the environment = [metav ↦ → { , }], we have

ˆ ( ) = ∀ , ∈ { , } ∧ < ⇒ nonzero .
Hence, with the program state = [ ↦ → 3, ↦ → 2, ↦ → 42], we have that ˆ ( ).

These meta-predicates, along with the notion of context (Section 2.3), are the two essential bricks of our formalization of high-level requirements: meta-properties.

Remark 8 (Locations and extended locations).

At the beginning of this chapter (Definition 1), we have defined location identifiers ℒ and extended location identifiers ℒ , the difference between the two being that ℒ includes function identifiers ℐ .

A state, as defined in Definition 5, associates values to location identifiers, not extended ones. This means that only local and global locations may have an associated value while function names do not.

A contextualization function (see Definition 11) returns an environment mapping meta-variables to extended location identifiers, hence a meta-variable can be mapped to a function name.

A predicate (see Definition 15) can contain function names. However, the semantics does not define their evaluation: such names can only be meaningfully used through the set membership operator.

Definition of Meta-Properties

We are now ready to define the class of high-level properties on A-Lang programs, which we called meta-properties in Section 2.5. These properties, with the help of a context and a meta-predicate, define in a single statement a potentially complex property that must hold true in a wide set of edges precisely defined for a given program.

Definition 20 (Meta-property). Let

, , ( , ) ∈ ∈ be a well-formed program.

A meta-property of that program is a triple ( ˆ , , ˆ ) where:

• ˆ ⊆ is a subset of program functions called the target set; 

• := ( ),

A meta-property

ˆ := ˆ , (( ), ℳ, ), ˆ is said to hold true on a program if ∀ ∈ ˆ , ∀ ∈ , ˆ ( ) .
In other words, a meta-property holds true if for all functions of ˆ and for all edges characterized by the selector ( ), the meta-predicate ˆ instantiated at each of those points with the environment returned by holds true when evaluated with every possible execution state at the program point.

This definition and the concept of meta-property is the core of this work, since when instantiated with interesting contexts and languages more refined than A-Lang, it allows us to define a very wide range of high-level requirements on a program.

To continue the Aspect Oriented Programming [START_REF] Kiczales | Aspect-Oriented Programming[END_REF] metaphor from the previous section: while contexts can be compared to specificationlevel pointcuts, a meta-predicate can be seen as an advice, that is a piece of specification (instead of code, for AOP) meant to be inserted at various points (join points) quantified by the pointcut. As a whole, a metaproperty can then be seen as an aspect, defining a cross-cutting concern: a specification that cuts across multiple abstractions (functions, modules, loops, ...) in a program.

Let us see a full example of a simple meta-property.

Example 14. Recall the strong invariant context strong invariant from Example 6, which selects every edge in a function and gathers no particular information.

For any meta-predicate ˆ ∈ ˆ ( , ) = ( ) (i.e. a simple predicate without meta-variables) and target set ˆ ⊆ , we can define a meta-property

ˆ strong invariant := ˆ , strong invariant , ˆ .
Since the context simply selects every edge, ˆ strong invariant holds true if and only if ∀ ∈ ˆ , ∀ ∈ , ˆ

i.e. if ˆ holds for every state at every point. Hence, this meta-property really states that ˆ is a global strong invariant.

Let us now apply this concept to a security property previously mentioned in Section 2.5.

Example 15. Recall the ˆ security meta-property stated in the beginning of Section 2.5, meant to express the requirement that vaultOpen can only be modified in the lock and unlock functions:

ˆ security :=        \ lock, unlock writing ¬(vaultOpen ∈ written)
Now that we have a clear semantics for each element of this property, we know that it holds if and only if

∀ ∈ \ {lock, unlock}, ∀ ∈ writing , (¬(vaultOpen ∈ writing ( )(written))).
That is, if for every function except lock and unlock, at every edge preceding a memory modification, vaultOpen ∉ written holds when written has been replaced by the set of locations modified after the edge.

In other words, outside the authorized functions, vaultOpen is never part of the writing footprint of instructions, which is what we wanted.

Through this chapter, we have defined a formal framework for highlevel properties called meta-properties, defined on an abstract language A-Lang. A meta-property is essentially a predicate that is dispatched across the code of target functions according to a criterion called context. Furthermore, some contexts define meta-variables, which aggregate local information where the predicate is dispatched and can be used by it.

There are a few useful base contexts which will serve as a basis for the expression of real, complex requirements in all the following chapters. These contexts allow us to easily express memory-related requirements in particular.

While this framework allows us to specify high-level requirements, it also paves the way for techniques enabling their verification. Intuitively, the previous semantics states that a meta-property holds true if its predicate holds at each program point characterized by its context, after substitution of meta-variables. It is easy to imagine how in real code these substituted predicates could simply be assertions inserted at the same code point.

In order to refine this formal framework into a concrete solution to express and validate high-level requirements on a real programming language, the next chapter will review the features and specification language of the Frama-C platform, and apply the formalization of this chapter to obtain actionable meta-properties on C programs.

Chapter 3

High-Level Properties in C: HILARE

Adopt HILARE today, and laugh your bugs away!

While Chapter 2 provided a formal framework of our approach to describe high-level requirements, this chapter presents a concrete instantiation of this approach. The objective is to specify high-level requirements over C programs, through the introduction of a C-specific syntax for metaproperties called the HILARE (High-Level ACSL Requirement) language.

We do not start from scratch: our approach is based on Frama-C and its specification language ACSL, presented in Section 3.1. Section 3.2 then transposes all the concepts linked to meta-properties presented in Chapter 2 into the realm of C and ACSL, exposing the concrete syntax for C-specific meta-properties and their semantics with respect to the original meta-properties. Section 3.3 describes extensions that venture outside this formalization (and were not formalized in the last chapter to keep it simple) but that we deemed useful to have in order to specify concrete requirements over C programs. Section 3.4 briefly mentions how these concepts are integrated within Frama-C (more on this in Chapter 4). Finally, Section 3.5 presents a longer, realistic example of HILARE specification on a system with confidentiality requirements.

From now on we will assume that the reader has a basic knowledge of the concepts of the C programming language [IsoC], and will recall some important concepts as we go along.

The Frama-C Framework

This section presents the Frama-C [Kir+15] [START_REF] Baudin | The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform[END_REF] platform, which provides an analysis framework for programs written in the C language. In particular, it allows users to semi-automatically machine-check formalized properties of programs.

C Program Analysis Framework

The C programming language is still widely used in the industry due to its extreme availability and low abstraction level, which make it particularly suitable as a system programming language. However, it is notoriously easy to write faulty C programs due to an absence of memory safeguards and an abundance of unsafe constructs. Hence, there are a variety of tools dedicated to the analysis of critical C code to alleviate the risk of serious bugs. One of them is Frama-C.

The Frama-C framework is an open-source analysis platform for industrial-scale C programs. Its architecture allows it to provide a wide range of analysis techniques through a variety of plugins (as we will see in Section 3.1.3). In particular, Frama-C can perform deductive verification of program properties via the Wp plugin (Section 3.1.3) and runtime assertion checking via E-ACSL (Section 3.1.3).

Frama-C consists of a kernel which is able to parse the C code and to store it in an internal representation. This representation can then be inspected and manipulated by plugins for program analysis and verification purposes. Frama-C also provides a graphical user interface for easier interaction.

The Frama-C kernel as well as its plugins are programmed in OCaml [START_REF] Cuoq | Experience Report: OCaml for an Industrial-strength Static Analysis Framework[END_REF]. The platform and the main plugins distributed with it are open-source (under the LGPL 2.1 licence).

ANSI/ISO C Specification Language (ACSL)

The ANSI/ISO C Specification Language (ACSL) [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF] is a formal behavioural specification language for the C programming language. It allows the specification of behavioural properties of a program within its source code.

It builds on the design-by-contract approach of the Eiffel programming language [Mey97] and its syntax is inspired from the Java Modeling Language (JML) [START_REF] Gary | JML: A Notation for Detailed Design[END_REF], which is a similar behavioural language for Java programs.

The rest of this section presents all the concepts of ACSL needed in the thesis. For an exhaustive presentation of ACSL, the reader can refer to its specification document [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF]. We will use the C function illustrated in Figure 3.1 as a working example. This mem function takes an array T of integers along with its size, and an integer value x. It iterates over the array until it finds an element equal to x, in which case it sets a local variable res to 1 (which can be interpreted as the boolean true in C). It then returns this variable. We will want to specify that this function only returns 1 when the array contains x, and 0 otherwise.

Logic expressions.

ACSL is based on a core of logic expressions, that closely map to C expressions (albeit they must remain pure), with additional constructs that allow the expression of useful logic concepts about C expressions and values. .2 describes most common operators that will be useful during this thesis. Similarly to the predicate language of the previous chapter, ACSL is based on classical first-order logic: there is a distinction between predicates (which evaluate to true or false) and terms (which evaluate to values). Furthermore, while in the last chapter A-Lang and the predicate language had only one type (the type of values), here we deal with all the existing C types.

Syntax Semantics

While the first few operators should be self-descriptive, the last three lines contain constructs that are specific to C and worthy of attention:

• The \at(expression, label) construct allows one to state a property about the value of an expression at a specific point of the program identified by a label. The default label for any expression is Here, meaning that the annotation states a property about the value of some expression at the point where the property is defined (see next paragraph). There exist several automatically defined labels depending on the placement of the annotation, such as Pre and Post which refer to the state before and after the current function. Furthermore, any previously defined C label can be used as a label in \at. The \at operator can be used as an atom of a larger formula. Lastly, the construct \old(e) is a shortcut for \at(e, Pre).

• \valid(p) where p is a pointer (or set of pointers) specifies that p points to a safely allocated memory location, i.e. dereferencing p is guaranteed to produce a definite value according to the C standard [IsoC], and writing to the pointed memory block is safe as well.

Note that the type of p is taken into account since it changes the size of the pointed region: \valid((int*)p) and \valid((char*)p)1 are in general not equivalent.

The \valid_read(p) variant is similar but only specifies that the pointer is safe for dereferencing, without any warranty about writing to the pointed memory region.

• \separated(loc1, loc2) (where loc1 and loc2 are pointers2 ) holds if the blocks pointed by loc1 and loc2 do not overlap in memory i.e. if they are disjoint. \overlaps is simply the negation of \separated, introduced to make specification more legible3 .

ACSL annotations. The C source code can be annotated with ACSL specification. This specification is written inside comments beginning with the special symbol @, either in the global scope or within functions. • a list of preconditions: properties that must hold in the state of the program whenever that function is called. Each precondition is specified using the requires keyword.

Here on line 2 we assert that the size first cells of the array T must be valid memory addresses (if size is 0 then there is no constraint, which reflects that no cell is visited).

• a list of postconditions: properties that must hold in the state of the program when that function returns. Each postcondition is specified using the ensures keyword.

Here, on lines 3-4, we have a postcondition stating the correctness of the function: the result is equal to zero if and only if no cell of the array contains the value x.

• a frame clause: an exhaustive list of non-local memory locations that can be modified by that function. It is specified by the assigns keyword.

The assigns statement on line 5 indicates that each assignment inside mem may only affect its local variables or the value it returns (via the return statement), symbolized by the term \result. As is the case here, the frame clause is optionally followed by a \from clause, which is described below. Assertions. Statement annotations allow writing annotations directly above a statement. The assert P clause is a statement annotation that ensures that a predicate P holds at a given program point. Hence, this statement may be used as a hypothesis for subsequent proofs in the code that follows it.

Memory

There is a variant using the check P clause which behaves similarly, except the assertion cannot be used as a hypothesis for further proofs (it must only check that the predicate holds at the given program point).

Loop invariant. The loop invariant that goes from lines 5 to 7 states that the loop counter i stays in the range [0,

] and that at each iteration, we can assert that if res is still null then x was not found in the i first cells of the array. Loop invariants must hold at the beginning of each iteration (and after the last one, at the moment the loop condition is evaluated). Notice that when i takes its last value size, this is equivalent to the postcondition on line 3.

Ghost code. Although it does not serve any purpose in this example, the specification also contains ghost code. Ghost variables are variables declared for specification purposes only and cannot be used by the original code, and ghost instructions are statements that may only modify ghost variables (but can read the content of ghost as well as non-ghost variables). Furthermore, ghost code cannot modify the control flow of the original program. Thus, ghost code altogether cannot modify the original semantics of the code.

In our example, we declare the ghost variable cells_left on line 3 which corresponds to the number of cells left to explore in the array. This property is verified by the corresponding loop invariant on line 8 and ensured by the ghost instruction on line 11. Finally, we use the assert construct on line 16 to check that after the loop, there are no cells left to explore.

Automation. This annotated code can be fed to Frama-C with for example the Runtime Errors (RTE) plugin enabled. RTE emits annotations ensuring the absence of runtime errors, such as divisions by zero, invalid memory accesses or signed4 overflows. In our case, RTE adds the assertion at line 12 of Figure 3.3. This checks that the program can always safely read T[i].

The Plugin Ecosystem

The Frama-C kernel provides a framework for parsing C programs annotated with ACSL, and does not perform any analysis. Instead, it is easily extensible through plugins, which can be combined to perform a wide variety of analyses and transformations. Figure 3.5 presents most of the existing plugins of the Frama-C ecosystem. They are grouped in several categories:

• understanding: plugins allowing a human to inspect a program and understand its structure and meaning. For example, Callgraph builds a call graph of the program (as can be expected).

• support: plugins that help automate the specification and verification of a program. For example, Pilat [START_REF] Steven De Oliveira | Polynomial Invariants by Linear Algebra[END_REF] automatically generates polynomial numerical invariants over the loops of the program.

• simplification: plugins that transform the program to simplify it. For example, Constfold replaces constant expressions by their values in the code.

• expressiveness: plugins that extend ACSL to allow the specification of more properties. For example, Aoraï [START_REF] Stouls | Vérification de propriétés LTL sur des programmes C par génération d'annotations[END_REF] allows the specification of temporal properties. This chapter introduces such a plugin to specify meta-properties: MetAcsl.

• verification: plugins allowing to validate specification, either statically or dynamically. Wp [START_REF] Baudin | WP plugin manual[END_REF] and E-ACSL [START_REF] Signoles | E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs (tool paper)[END_REF] are described in the following paragraphs.

ACSL is a specification language common to all plugins and can thus be used as a communication means between them. 5Each ACSL annotation represents a property, to which a validity status is associated (typically Unknown6 before analyses are performed). Any plugin can decide to emit a validity status for an annotation at its own discretion.

In addition, a plugin can advise that a validity status depends on some hypotheses (other annotations or specific plugin parameters), possibly emitted by the plugin itself. Indeed, a plugin can choose to emit new annotations, in hope that another plugin (or a human) will be able to prove or use them. The Frama-C kernel maintains a global consolidated validity status for each annotation, taking into account the validity of its dependencies and ensuring the absence of dependency cycles.

We now briefly present two plugins that will be used in this thesis: Wp and E-ACSL. The Wp plugin. Deductive verification allows one to formally prove that the implementation of a function is correct with respect to its specification (see Chapter 1). The Weakest Precondition plugin (Wp) [START_REF] Baudin | WP plugin manual[END_REF] generates logical formulas encoding the semantics of ACSL annotations, known as proof obligations or verification conditions. It feeds them to the verification platform Why3 [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF], which dispatches them to automated theorem provers such as Alt-Ergo [AltErgo] or Z3 [START_REF] De | Z3: An Efficient SMT Solver[END_REF] or to proof assistants such as Coq [START_REF]The Coq Proof Assistant[END_REF], where the user helps unroll the proof.

If all proof obligations are validated, then the body of the function fulfils its specification.

As is always the case with deductive verification, it is sometimes necessary to add auxiliary annotations to help the tool complete the proof. Refer to Chapter 5 near the end of this thesis for more details about the methodology of verification in the context of high-level requirements.

The E-ACSL plugin. The E-ACSL [START_REF] Signoles | E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs (tool paper)[END_REF] plugin allows one to verify requirements at runtime without additional annotations by performing runtime assertion checking. Given a program annotated with ACSL, it transforms it into another program that can be compiled and fails at runtime if an annotation is violated.

HILARE Syntax and First Examples

To specify meta-properties (introduced in Chapter 2) in Frama-C, we propose an extension of ACSL syntax. It is meant to explicitly encode each element of the triple ( ˆ , , ˆ ) 7 that constitutes a meta-property: a target set, a context and a meta-predicate. The HILARE language is the name of that ACSL syntax extension. We will refer to the C-specific meta-properties written with that syntax as HILARE properties or just HILAREs.

This chapter is essentially a transposition of the concepts presented in Chapter 2 into concrete syntactic and semantic elements for C and ACSL.

Definition 21 (HILARE structure).

A HILARE is an ACSL annotation in the global scope with the following structure (white space does not matter): • P is an ACSL predicate over global variables of the program and meta-variables of the context.

An alternate form allows additional configuration flags (described in the next chapter):

/*@ meta \prop, \name(...), \targets(...), \context(...), \flags(...), P; */

Similarly to the predicates in A-Lang, we talk about the instantiation of a HILARE to designate the substitution of meta-variables with actual values within the predicate of that HILARE.

Remark 9 (Locations and addresses).

In the previous chapter, metavariables such as written were associated to A-Lang locations. Locations themselves were simply identifiers used as keys in a state .

In C, locations are allocated memory blocks, containing a value of a given type (unlike A-Lang where all locations had the same type, as we will see in Section 3.3.2). A location does not always have an identifier in C (i.e. a variable), instead it can universally be referred to using its address. In other words, in C, addresses play the role of locations.

Hence, in a HILARE, meta-variables are associated to sets of addresses by contexts. These addresses can refer to memory blocks of different types.

Target Set Specification

The target set is provided using the usual set syntax of ACSL. It can be explicit ({f1, . . . , fn}), or use set operators such as \union or \inter. We also added the \diff operator for set difference, which does not exist in ACSL.

Since the goal for meta-properties is to be able to easily specify properties on large code bases, giving the explicit set of targets is rarely a practical solution. Instead, we provide a special variable \ALL which refers to the set of all functions in the program and is very convenient, along with the \diff operation, to specify target sets of the form "all functions except...".

As an additional way to ease the delimitation of the targets, we provide two constructs \callees and \callers. \callees(f) is the set containing f and all functions (transitively) called by f. \callers(f) is the dual set containing f and all functions that (transitively) call f. It is especially useful when dealing with programs with clearly defined entry points. 8Since the C programming language lacks a module or name space system, it is common to simply group related functions in files. Consequently, it might be useful to refer to the group of functions defined in a file. This is the purpose of the construct \in_file(filename).

The combination of these simple constructs allows for a convenient way to specify the scope of a meta-property without having to rewrite the target set when new functions are added to the implementation.

Example 16 (A complex target set).

The following set can be used as a target in a HILARE to describe "every function of the program except foo, bar or any function defined in main.c" \diff(\ALL, \union({foo, bar}, \in_file("main.c")))

Available Contexts

As can be seen in the definition, one cannot use an arbitrary context as described in the previous chapter, but can choose within the base contexts previously defined (plus \precond and \postcond, as defined below). It turns out that these few simple contexts, combined with the expressiveness of ACSL itself, are enough to write quite interesting properties.

Recalling their definition from Chapter 2 (Section 2.4), we refine their semantics in the context of the C programming language instead of A-Lang. In particular, notions of locations, identifiers, etc. are mapped to concepts specific to C.

Weak Invariant, Pre/Postcondition. The \precond context returns only the starting edge of a function's CFG with no meta-variable, while \postcond does the same with the ending edges, and \weak_invariant combines both. Hence, it allows the specification of a predicate which must hold at the beginning of functions, at their end, or both. Upon Writing. As in the previous chapter, the \writing context selects program points preceding instructions modifying the state and maps the \written meta-variable to the set of modified locations in the state i.e. to a set of C addresses.

Strong

In the context of C, this means that we can specify that a predicate must hold before every local modification of the state (e.g. through the assignment of a variable), and use the modified locations in the predicate. As before, local modifications do not include state changes made by other called functions (except in some circumstances, see next section).

The action of this context and the mapping to \written is illustrated in Figure 3.7.

Since \written is a meta-variable of this context, it can then be used by a predicate to form a useful HILARE. A simple example would be to forbid any local modification of some global variable, as shown by meta-property modif_level on Line 14 of Figure 3.6. It states that for any function that is not def_level or backdoor_root, whenever some memory location is modified locally, it must be unrelated to the global variable level.

Since we consider only local modifications, a call to def_level inside another function not allowed to modify level does not violate modif_level, even if def_level itself modifies level. Thus, modif_level can be seen as enforcing the proper encapsulation of level.

Upon Reading. The \reading context is identical to the \writing context except that it selects all edges leading to an instruction that reads from the memory and associates a meta-variable \read with the addresses being read by the instruction. It is illustrated by property can_read_secret in Figure 3.6.

Remark 10 (Behaviour on undefined functions).

Both the \writing and \reading contexts consider only local modifications: reads and writes within callees are ignored. This mirrors the behaviour of the memory footprints of A-Lang in the previous chapter.

However, we make an exception for functions that are declared but not defined within the program. In C, this is mostly the case for functions Section 3.1.2 introduces ACSL function contracts and their frame clause, which specifies which global locations a function may modify, and the memory footprint which specifies which locations are read throughout the function. These two elements are optional in a contract.

For functions that are declared but undefined, we look at their contract and use it to infer writing and reading memory footprints. We then consider these potential reads and writes as actual, local actions (i.e. within the scope of the caller function). This is why in Figure 3.7, a call to the bar function is considered as a writing operation to the location range described in its assigns clause.

Upon Calling. Similarly, the \calling context selects all edges preceding a function call and maps a meta-variable \called with the function (or function pointer) that is being called.

Since the type signature of the function pointer mapped to \called is unknown at specification time, this meta-variable should be handled with care (as we will see in Typing Troubles in Section 3.3.2).

Example 17 (Back to the vault).

Recall the meta-property stated in Chapter 2 to ensure that the variable vaultOpen, controlling a vault, is only modified within two functions lock and unlock.

ˆ security :=        \ lock, unlock writing ¬(vaultOpen ∈ written)
This is how we would write it in the HILARE language: meta \prop, \name(vault_security), \targets(\diff(\ALL, {lock, unlock})), \context(\writing), \separated(&vaultOpen, \written);

Here we can easily see the parallel between the abstract and concrete properties.

Extensions of Meta-Properties in HILARE

The basic definition of the HILARE language presented in the previous section mirrors that of meta-properties in the previous chapter and enables the specification of many useful properties, as seen in the examples. However, the case studies (which will be described in Section 3.5) showed that it had several limitations, in both expressiveness and adaptability to the structure of programs. To address these limitations, we introduce some extensions to meta-properties.

Strong Invariant Relaxing

It is sometimes necessary even for a strong invariant to be temporarily broken. Equality between two variables (e.g. AB_same in Figure 3.6) is an example of that, as there is no way to change the value of the two variables in a single instruction. To overcome this issue, we add a lenient modifier that can be applied on a block of code to exclude the edges inside it from the scope of strong invariants.

Example 18. Say we have a function assigning a new, identical value to global variables A and B. In the absence of an atomic operation performing the two assignments, it has to do two successive assignments, therefore temporarily violating the AB_same invariant specified in Figure 3.6.

We can locally relax that invariant in the bloc surrounding the two instructions with the lenient modifier, preceded by the imeta clause a .

void setAB(int v) { //@ imeta lenient; { A = v; B = v; } }
Here, strong invariants will not be checked inside the annotated block (but will be immediately after).

a And not meta, since here the annotation is inline, as opposed to annotations in the global scope.

Typing Troubles

In Chapter 2, A-Lang locations all had the same type (they all yielded a value of the set ). Hence, it was the same for meta-variables: they mapped to sets of locations of the same type.

However, in C, this is obviously not the case. For example, in Figure 3.7, the \written meta-variable of the \writing context is successively mapped to pointers of type int* and char*. Since this context accounts for all types of modifications, it could be mapped to types that are mutually incompatible: \written cannot be typed within the meta-predicate of a HILARE. Or rather, its type is the union of types of the mapped terms. Yet, this set of types is not known in advance when writing a HILARE.

Thus, nothing can be assumed for example about the type of \written when specifying a HILARE in the \writing context, except that it is always a pointer type (since it refers to the set of addresses that are modified).

Any other assumption would create a risk of typing error. For example, assuming there exists a C structure struct S with an x field, the presence of \written->x in a meta-predicate would make any instance of the HILARE related to an assignment to a location of another type ill-defined (see the code below). To deal with such vaguely typed meta-variables, the only usable ACSL operator is \separated(l1, l2), described earlier, since its only requirement is that its parameters are pointers.

While this suffices to express interesting properties such as separation (see Figure 3.6), it does not allow reasoning about the value of the meta-variable. To address this issue, we introduce a construct to make assumptions about the type of a meta-variable while having a safeguard in case these assumptions were wrong.

More precisely, we add two predicates \tguard and \fguard that take an unsafe predicate (where a typing error might happen), behave as the identity if there is no error, and return respectively \true and \false otherwise. This allows the user to specify the previous example as \tguard(\written->x == 0). If a particular instance of \written is of the expected type struct S (or any other structure with a field x) then its field is checked, else the property defaults to \true (i.e. we are only interested in modifications on locations of that type). Had \fguard been chosen instead of \tguard, any instantiation of that HILARE on a type that is not struct S would have defaulted to \false, effectively forbidding write operations to those types.

Intuitively, these functions should be used to guard any predicate that may be invalid for some instantiation of the HILARE. The default value to choose should reflect if these failures are expected in some cases or not: in our example, \tguard allowed and ignored failures while \fguard did not.

Remark 11 (Handling unsafe function pointers). As mentioned in Section 3.2.2, the \called meta-variable of the \calling context is mapped to the addresses of callees in target functions. These addresses are function pointers with unknown signatures.

Although \separated is useful to distinguish two addresses, this construct does not handle function pointers: it's not possible to use \separated(\called, my_func) in a HILARE. The only way to identify which function is \called is to use an equality operator ==, or a difference operator !=.

However, the equality operators require both operands to have compatible types: while it will behave as expected for different functions with similar signatures, it will not type correctly with two functions of incompatible signatures.

Hence, the common way to use the equality operator is wrapped inside a guard, as illustrated in property no_backdoor of Figure 3.6.

Labels in Meta-Properties

While the HILARE language allows specifying a property when some event defined by the context happens (e.g. a memory operation) and the safeguarding constructs enable that property to talk about the values of the meta-variables, sometimes we need to talk about the effect of the memory operation on these values.

For example, one may want to globally guarantee that some initially null global variable G is initialized only once to a strictly positive value. However, it is not possible to specify this without a means to refer to G before and after each modification, which would be needed to characterize our notion of initialization.

As mentioned in Section 3.1.2, one can use the \at(expression, label) construct to refer to the value of an expression at a specific point of the program identified by a label. An expression used without \at refers to its value at the point where it appears (which can be used explicitly with the Here label). There also exists two built-in labels Pre and Post referring respectively to the state before and after the current function. Furthermore, any previously defined C label can be used as a label in \at. The \at construct can naturally be used in the predicate of an HILARE, with labels Pre, Post and Here keeping their meanings. But these pre-defined labels do not allow us to link the values before and after a specific modification.

To tackle the aforementioned problem, we define two additional labels that are specific to the HILARE language and its contexts: Before and After that are used to refer to the states before and after the statements considered by the context, if any. These special labels may be mapped to actual ACSL labels by the contextualization function of a context when it makes sense to do so.

For example, the \precond context does not define them. The \writing context maps Before to Here (since by definition the edge returned by the context precedes a statement modifying the memory) and After to a C label inserted after the statement modifying the memory.

Example 19. With these labels, we can now write our previously problematic initialization meta-property: meta \prop, \name(G_unique_initialization), \targets(\ALL), \context(\writing), \separated(\written, &G) || (\at(G, Before) == 0 && \at(G, After) > 0); which means that each instruction either does not modify G or modifies it such that its value is 0 before the modification and strictly positive after it. This extension makes HILARE requirements able to deal with very simple temporal properties, hence it overlaps with other existing Frama-C plugins specialized in specifying temporal properties such as Aoraï, or more generally other approaches similar to our own such as [START_REF] Cheon | Specifying and Checking Method Call Sequences in JML[END_REF] and [START_REF] Trentelman | Extending JML Specifications with Temporal Logic[END_REF]. However, while this extension makes reasoning with local changes possible, it is definitely not a good tool for defining complex time-related requirements.

Remark 12 (Labels for function calling). Note that while Example 19 presents the usage of these labels within the \writing context, these can also be used within the \calling context, thus referring to the state before and after each call.

However, the labels do not make sense within other contexts where either nothing is modified (\reading) or the context do not correspond to a specific operation but are rather invariants.

Referring to Non-Global Values

As HILAREs are global properties that are not declared in the scope of any particular function, they can only refer to global variables and metavariables. This is a strong limitation to the kind of properties that can be written, as some programs have few interesting objects declared in the global scope and typically pass them as arguments. To tackle this issue, we came up with two different mechanisms: the \formal construct and the notion of local binding.

Referring to function parameters Sometimes there is an object present in every target function of a meta-property as a consistently named function parameter, instead of a global variable. In these cases, we introduce the \formal9 keyword to refer to such a parameter in the predicate of a HILARE.

When \formal(some_param) appears in a HILARE, each instantiation of the HILARE triggers the check that some_param is indeed a formal of the current target function. If it is, the \formal call is safely replaced by some_param. Otherwise, a typing error is triggered at the point where it is used.

Thus, \formal is best used when combined with the safeguarding constructs \tguard and \fguard, since it allows the specification engineer to assume that a formal is consistently defined in every target function and use it in a property, but to safely default to a conservative property if this assumption is wrong.

Example 20. This HILARE specifies that if a function in the program takes a function pointer pre_process as a parameter, then it can only be called if it is distinct from a do_not_call function. If this parameter does not exist in a function, then the property defaults to \true since there is nothing to verify. Referring to bound names If it is not possible to rely on a consistent naming of formals across functions, we introduce a notion of binding to overcome this difficulty with some help from the user.

We introduce two special functions, \bind and \bound. The first one is to be used outside a HILARE, in the body of a C function, to bind a name to the value of a C expression at that point. This name is a new global identifier and must not exist in the source code before.

This name can then be used in a HILARE to formulate an interesting property about the value it refers to. A name can actually be bound multiple times to different values at different points of a program, meaning that the name inside a HILARE refers to the whole set of associated values.

Consequently, the same name can only be bound to values with mutually compatible types, and referring to that name with \bound in a HILARE will yield a value of the inferred type (unlike meta-variables where the type is not known in advance).

Example 21 (Bindings). The whole process is illustrated in Figure 3.8, where we use bindings to specify a property about all blocks allocated on the heaps by a single function.

We have a program with a function create_cell that allocates a new integer on the heap and returns its address each time it is called. We also have a global variable lock, that we assume is used in other parts of the program. We want to verify that all integers allocated by create_cell can only be modified when lock is not zero (which could be useful, for example in the context of a multithreaded application).

First, we use bindings to assign a new, global name to the set of all integers allocated with create_cell. Indeed, in the body of that function, we bind the temporary c variable, which contains a freshly allocated integer, with a new global name cells.

Then, we use that name in the HILARE at the end of the program, wrapped in a \bound function, as if it were a single variable. In this HILARE, \bound(cells) will refer to any variable allocated by create_cell, hence the HILARE must hold for every possible value.

Notice that the bound values are constant but may be pointers referring to changing memory. We are then specifying a property across all the memory states of the different instantiations. 

Referring to Callee Parameters

When using the \calling context and targeting a specific callee, it is possible to refer to the value provided for a formal at every call site, using the \called_arg(parameter_name) term. It throws a type error when the called function does not have the specified formal, is indirectly called (through a function pointer) or is a variadic function. Thus, it should be surrounded by a guard (see Section 3.3.2). Example 22. For example, the following HILARE states that parameter x of the function with signature float sqrt(float x) should never be provided with a negative value. In this contrived example, of course, the same goal could also be achieved by adding a precondition in the contract of sqrt, or even with the help of the \precond context.

Remark 13 (Fragile specification).

For global-level specification to be feasible, it is necessary to have anchor points in the program that we can refer to in the specification. It is often global variables names, function names or in this case even function parameter names.

The more local the name we're referring to is, the more fragile to program changes the specification becomes. While MetAcsl is quick to alert that an assumption about names made in a HILARE is no longer valid, this can be silenced by guards. Hence, it is important to be extremely careful when using guards to avoid silent errors, for example by preferring defaulting to a false predicate rather than ignoring errors when possible.

The MetAcsl Plugin for Frama-C

The HILARE syntax and its extensions are not supported natively in ACSL. Hence, we introduced a new plugin in the Frama-C ecosystem: MetAcsl.

Any source code containing HILARE annotations (delimited by the meta or imeta keywords, depending on whether the annotation is global or inline) can then be correctly parsed by Frama-C, and other plugins can be invoked on the resulting source code.

This plugin is available to the public under the LGPL licence10 . Its capabilities are not limited to just parsing HILARE specification: the next chapter describes in detail how it can be used to actually verify that a program is compliant with requirements specified through the HILARE language.

Remark 14 (On nomenclature). Now is a good time to summarize the different names we've introduced and recall the differences between them:

High-level requirements are properties that we want a program to uphold, expressed in natural language.

Meta-properties are a formal class of high-level properties, presented in Chapter 2. They aim at being a general-purpose framework for expressing high-level requirements.

HILARE is the name given to the extension of ACSL for specifying meta-properties, discussed in the current chapter. A metaproperty specified using this syntax is called a HILARE as well.

MetAcsl is the Frama-C plugin implementing the HILARE language and its verification strategy. It will be described at length in Chapter 4.

Complex High-level Requirements as HILARE

We present a small-scale case study where the HILARE language is useful to specify confidentiality and integrity properties such as memory access control. This earlier case study was imagined to evaluate the relevance of our approach on actual code and properties. First, we describe the content of this case study and how useful properties about it are specified using HILAREs. In the next chapter, we will present different assessment techniques to check the validity of the implementation with respect to these HILAREs.

See Chapter 5 for a full methodology for reasoning about the requirements of a program using the HILARE language and Chapter 7 for a detailed case study of a real, industrial-scale system.

Presentation of the Case Study

The case study, which was suggested by an industrial partner, deals with a confidentiality-oriented page management system, described as follows:

Definition 22 (Confidential page manager). The manager is a C system library allowing user processes to request the allocation of memory regions (pages) as well as requesting modifications, access or de-allocation of these regions.

It has the following basic properties:

1. Each page has a fixed size.

2. There is a maximal number of currently allocated pages. Above that number, allocation requests are denied.

3. The library does not directly expose pointers to the memory regions but instead exposes opaque structures.

as well as a number of confidentiality facilities:

4. We assume each user process (or agent) has a confidentiality level (an integer or any member of an ordered set), registered and exposed by the operating system.

5. Each allocated page has a confidentiality level as well, equal to the level of the agent that allocated it.

There are two basic confidentiality guarantees that such a system should offer: confidentiality of both read and write operations.

Requirement 3.1. An agent can never read from a page with a confidentiality level higher than its own (to preserve the confidentiality of the data written on the page).

Requirement 3.2. An agent can never write to a page with a level lower than its own (to prevent the agent's data from being read by lower agents in the future).

There are several corollaries needed for requirements 3.1 and 3.2 to be useful in ensuring confidentiality (see Chapter 5 for a deeper discussion on how to ensure a set of requirements is robust enough):

Requirement 3.3. The confidentiality level of an allocated page remains constant.

Requirement 3.4. The allocation status of a page can only be modified by the allocation and de-allocation functions.

Requirement 3.5. Non allocated pages are neither accessed nor modified.

Requirement 3.6. Non allocated pages do not retain old data.

We also consider an extension of this system introducing encryption as a means to decrease the confidentiality level of a page. Two functions to encrypt and decrypt a page are added to the interface with a key based on the confidentiality level of the caller, and we weaken requirement 3.3 into:

Requirement 3.3b. The confidentiality level of an allocated page remains constant, except in encryption/decryption functions.

Notice that these properties ensure the confidentiality but not the integrity of data -that is, the fact that data cannot be corrupted by nonprivileged users -which is not considered here but could be similarly specified.

We wrote a simple implementation of this case study, where the system is modelled by a stateful interface of functions to allocate, free, write to or read from pages. The confidentiality level of the calling agent is represented by a global variable, which is assumed to be securely modified when the context changes. The interface of the library is listed in Figure 3.9, where the type struct Page is internally defined as: 

Specification of the Requirements

All of these properties can be expressed using meta-properties, as illustrated in Figure 3.10 where requirements 3.1, 3.3b and 3.6 are specified.

Remark 15. The forall_page predicate is a formula-shortening macro which quantifies over the globally-stored array of pages (both free and allocated), and page_allocated, page_level, page_data and clean_page are ACSL functions and predicates abstracting low-level operations for legibility purposes. Their definition is listed in Ap-pendix A.1.

The first HILARE, req_1, makes use of the \reading context and applies to all functions of the library. It quantifies over all pages, binding variable p. It then states that if a page is allocated and has a higher confidentiality level than the current process, then the memory of that page cannot be read by the process (using the \separated predicate and the \read meta-variable presented in Section 3.2).

Property req_3bis uses a similar pattern with the \writing context to ensure that the confidentiality level field of a page cannot be written to while the page is allocated, except in the encryption and decryption functions (notice the exceptions in the target set made using the \diff operator).

The last requirement, req_6, states that at all times, free pages should not retain earlier data (the clean_page predicate checks that all bytes are null).

Remark 16 (Specification scope). Here, we are specifying the system library itself and not the potential user programs calling the interface. Should the library be verified against this specification, this should ensure that it cannot be misused to violate the confidentiality requirements.

The complete implementation and specification of this contrived example is available in Appendix A.2 and A.3 or online11 for easier navigation. Refer to Chapter 5 for a detailed discussion about the design of a HILARE specification. 

Assessing HILARE by Generating Code Annotations

While the two previous chapters introduce a specification approach for high-level requirements on C programs, nothing is said about the actual verification of such a program with respect to its HILARE specification. This chapter bridges the gap by presenting a general principle for transforming a HILARE to a set of ACSL code annotations in Section 4.1. The subsequent sections widen that principle to the extensions to the HILARE language presented in the previous chapter and discuss performance and scalability considerations. Finally, the technique is used to enable the verification of the confidentiality-oriented case study described in the previous chapter, via both deductive verification and runtime assertion checking (see Chapter 1 for a description of these terms).

General Principle: Instantiation of Meta-Predicates

As mentioned in Chapter 3, several existing Frama-C plugins provide useful and efficient analysis of ACSL-annotated C code, such as deductive verification [START_REF] Baudin | WP plugin manual[END_REF] or runtime assertion checking [START_REF] Signoles | E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs (tool paper)[END_REF].

Following the usual Frama-C approach of tool collaboration, we wish to take benefit of existing analysers without re-implementing them for HILARE. To do that, we designed a way to transform HILAREs into plain ACSL annotations while keeping links between the original HILAREs and their ACSL translation. Hence, the existing tools can understand and anal-yse the translation and their results for the translated ACSL annotations can then be interpreted in terms of HILARE.

The method is based on the initial definition of the HILARE language and meta-properties in Chapter 2: a meta-property is a combination of a target set, a context and a meta-predicate. The semantics given to a meta-property states that it is valid if and only if the meta-predicate holds for every path at every edge selected by the context, after meta-variables have been replaced by their local correspondence. We called this the instantiation of the meta-predicate (Definition 19) and the overall semantics was illustrated in Figure 2.5 in Section 2.5.

The idea is to generate a set of assertions corresponding to this semantics of a meta-property (hence of a HILARE): That is, we create an assertion for each necessary instantiation of the meta-predicate. We call the generated set of ACSL annotations the instantiation of the HILARE.

Remark 17 (Equivalence).

According to the semantics of metaproperties, the HILARE holds if and only if all of its instantiations hold.

This needs no proof: it is correct by construction, since the generation algorithm is a literal mechanization of the semantics.

Remark 18 (Local naming conflicts).

In some cases, the metapredicate may bind a local logical variable, for example by quantifica-tion: \forall int i; .... However, meta-variables present in the predicate may be replaced with free C variables bearing the same name, provoking conflicts and soundness problems.

For example, the following predicate

\forall int* i; i != NULL ==> \separated(i, \written)
becomes nonsensical if \written is replaced by a local C variable named i (and even more so if that variable is not an int*).

To prevent these problems, we perform an -conversion step for every predicate instantiation, if there is a conflict between any bound logic variable of the predicate and a C variable in scope with the same name, the bound variable is substituted by an appropriate fresh name.

Since meta-properties have more expressive power than ACSL, it is often impossible to transform a meta-property into a single ACSL annotation. In some cases, a meta-property is translated into function contract clauses (e.g. for weak invariants) but in most cases it has to be captured by assertions inserted directly into the body of a function. First, notice how the function has been syntactically de-sugared (the conditional loop is now an infinite loop with a conditional break; the side effect of the condition has its own instruction). This is a preprocessing performed by Frama-C itself, allowing a clear separation of program points.

Second, notice that assertions have been inserted before each instruction modifying the memory: this corresponds to the edges selected by the \writing context of the HILARE. Notice how the initialization of a variable is not considered a modification if performed during its declaration.

Each assertion is the original meta-predicate \separated(\written, G) where the meta-variable \written has been replaced by the actual address (or set of addresses) modified by the following instruction.

Finally, notice that while the \writing and \reading contexts normally only select local memory operations and not those performed by called functions (as described in Section 3.2.2), here an assertion is inserted before the call to bar. This is because this function is declared but not defined, which is an exception described in Remark 10 of Chapter 3. In this case, the contract of the function is used to overapproximate the effects on memory, hence the G + (0 .. 40) address range.

This annotation generation technique is implemented in the MetAcsl plugin presented in Chapter 3. We will describe the details of the plugin and its usage in Section 4.4.

Remark 19 (Another way...). Later in the thesis (in Chapter 6), we will describe another way HILARE requirements can be assessed without resorting to local assertion generation: by deducing them from other high-level requirements within a formal deduction system.

Automatic Simplification

While the proposed technique is simple, it entails that a predicate is instantiated for each selected edge in each target function. Thus, the number of instantiations can quickly become high enough (for example when using the Strong Invariant context) to become a problem for the Frama-C plugins that are expected to analyse the translated program, resulting in potentially long analysis times or loss of precision in the results.

However, we have observed that when a meta-property has been instantiated, there are a lot of cases where the resulting assertion is trivial to prove or disprove. For example if ˆ is \separated(\written, &A), and is \separated(&B, &A) where A and B are different variables (thus separated by definition): this instantiation is trivially valid and its actual insertion can be skipped.

Thus, MetAcsl performs a simplification phase for assertions where trivially simple patterns such as the one mentioned above (with variations for potentially nested structures and arrays) are recognized and replaced by their truth value, which is then propagated through the property. Hence, the instantiations left in the code are those that could not be simplified, and for which other plugins should attempt a more thorough verification. The quantitative evaluation of this simplification will be discussed in Section 4.5.

Transformation of Extensions

Section 3.3 introduced several extensions to the original HILARE definition, in particular allowing for new means to refer to variables both local and global in the specification.

While some extensions do not affect the semantics of the HILARE language, for the others it is necessary to devise a verification mechanism compatible with the one presented in Section 4.1.

Labels in Meta-Properties

Section 3.3.3 presented the labels Before and After, that can be used with the ACSL construct \at to allow referring to the value of an expression respectively before and after the program points selected by the context.

To generate assertions that correctly convey these semantics when instantiating meta-predicates, we leverage the fact that \at can take nor-mal C labels as input and appropriately generate C labels in the code surrounding the insertion point of a predicate when necessary. It states that the memory cell pointed by global variable G can only be modified if it increases its value.

We generate annotations as follows: The assertions are inserted after the selected instructions rather than before, because we cannot refer to C labels that occur after the assertion. Hence, all values default to After (translated as Here) and Before is translated as a fresh C label inserted just before the instruction.

void foo(int* p) { int i = *p; while ( 
Remark 20 (Fragility of HILARE using labels). By default, since contexts select edges preceding interesting events, the value of all expressions in a meta-predicate is taken before the corresponding events (memory modifications, calls, etc.).

However, the current implementation of labels means that using a single After label will implicitly default every unspecified value to After as well, and Before must be used explicitly to restore the previous semantics.

This is a detail for the \writing context where at most one location (or localized set of locations) has different values before and after. However, the problem is more apparent with \calling, where many locations may have changed after a function call.

Referring to Bound Names

Section 3.3 also introduced a way to refer to some local variables or heap blocks using a notion of bindings with special functions \bind and \bound. They are used to respectively associate a local value to a global name and use that name in specification to refer to all values bound to that name.

To actually instantiate a HILARE with bindings, the program must be further instrumented using ghost code, presented in Section 3.1. As a reminder, ghost variables are declared for specification purposes only and cannot be used by the original C code, while ghost statements may only modify ghost variables. Thus, ghost code altogether cannot modify the original behaviour of the code but may facilitate verification.

For each bound name, we allocate an associated ghost global array whose role is to store the set of associated values. Consequently, each instance of \bind(v, n) is replaced by a ghost instruction adding v to the array n_set associated to n and every instance of a predicate ( ) involving a bound name is replaced by a quantified predicate ∀ ∈ n_set, ( ). This is illustrated in Figure 4.2, which is the translation of Figure 3.8 of Section 3.3. Notice that the type of the array is inferred from the \bind calls. As such, it is the responsibility of the user to ensure that every bound value is of the same type and to use the bound name appropriately (and MetAcsl will report an error otherwise).

Notice the two new ghost global variables cells_set and cells_set_size associated to the name cells, and how the initial call to \bind has been replaced by a call to ghost function add_to_array. This function manages the two variables, reallocating the cells_set as necessary and adding new values to it. Remark 21 (About the verification of bindings). The instantiation of bindings introduces a lot of new code potentially spanning across the whole code base. As such, it is potentially very difficult for analysers to statically determine that a HILARE involving bindings is correct.

One particular obstacle is that the arrays associated by bound names are allocated and re-allocated on the heap, something which is notably difficult to analyse. To alleviate this problem, the plugin MetAcsl can be configured to use static arrays with fixed size instead. This might help the analysis but of course brings soundness issues.

Overall, this feature is more useful when associated with runtime analysis which actually executes the code (and the ghost code) or pseudo-execution such as symbolic execution or abstract interpretation. It allows specifying quickly a global fact about some particular values and ensure this is not violated during execution.

Practical Usage

In this section, we will quickly describe how the MetAcsl plugin can be used in practice to assess the validity of a program (partially) specified with HILARE. MetAcsl itself is a Frama-C plugin necessary to parse a source file containing HILARE specification, and able to perform the translation technique described in the beginning of the chapter.

If the plugin is installed (for example with opam install frama-cmetacsl, see the installation instructions of the release for more details1 ) along with Frama-C, it will by default parse HILARE parts of source files and remove them, doing nothing.

To enable the translation of these HILAREs, the -meta flag must be passed to Frama-C, which will create a new project2 containing the same source file with all necessary code annotations inserted, equivalent to all specified HILAREs. This translated program can then be processed by other tools, using the -then-last flag to chain plugins (see next section for details on analysis).

# Print the translation in output.c frama-c input.c -meta -then-last -print -ocode output.c # Try to run deductive verification on the translation frama-c input.c -meta -then-last -wp

There are several configurations flags that can be passed to MetAcsl to customize the translation. The full list of options can be displayed using frama-c -meta-h.

Reporting

As described in Section 3.1, in Frama-C each annotation embodies a property with a validity status, to which plugins can suggest changes. Hence, after using a plugin such as Wp, the project will be in a state where each generated assertion will have its own validity status (hopefully Valid).

The MetAcsl plugin consolidates this by generating a global, abstract annotation for each HILARE, that embodies its global status. If at some point the validity status of every annotation tied to a particular HILARE is Valid, then MetAcsl determines the HILARE is overall valid as well. This allows users to assess quickly whether a HILARE has been globally proven.

Conversely, sometimes some local assertions cannot be proven, in which case the global HILARE is deemed Unknown as well. In this case, MetAcsl makes it easy to identify which HILARE is potentially violated at that particular program point by prepending a different name to each assertion, containing the name of the HILARE it is tied to.

This also allows launching analysis from the command line and being quickly able to find the location of an offending assertion with just its unique name by browsing the source code.

Inline Verification Flags

While the MetAcsl flags allow altering the behaviour of the plugin globally, it is also possible to configure some properties on a HILARE basis, using the flagged form of HILARE briefly described in Section 3.2.

The \flags directive can be used to modify the behaviour of MetAcsl on a particular HILARE during translation.

Proof method. The proof flag determines how the HILARE is expected to be proved. Its default value, local, says that the HILARE should be considered valid if and only if every instantiated assertion is valid as well, as described earlier. The flag can also be set to axiom, in which case the HILARE is considered valid without verification. Lastly, the deduce value attempts to deduce the property from previous HILARE (the deduction mechanism will be described in Chapter 6).

Translation method. The translate flag toggles how the HILARE should be translated. The default is yes, which means "translate, using the global parameters"3 . One can also set this flag to no to disable the translation altogether, check to force the instantiation of the meta-predicate to use the check ACSL construct (see Section 3.1.2) or assert to force the usage of assert.

Having described the general verification technique for HILARE requirements and their extensions, let us now apply it to the small case study introduced and specified in the previous chapter, through different existing Frama-C plugins. This will serve as a practical example of HILARE verification.

Assessment of the Page Manager

At the end of the previous chapter, we presented a simple case study on a system called page manager (Section 3.5), along with a collection of high-level requirements it must uphold. We then described how to specify these requirements using HILARE (the full source and specification is in Appendix A).

We now want to evaluate the ability of Frama-C + MetAcsl to assess these requirements with the usual Frama-C tools. To that end, we wrote a correct C implementation of the different system functions. Then, to increase the sample size, we used a Frama-C plugin4 to generate mutations of this correct implementation, providing a set of modified implementations, potentially invalid with respect to the requirements.

In this way, we obtain 126 implementation mutants. The mutations consist in the replacement of binary operators, the negation of conditions and the modification of numerical values. They simulate frequent programming errors in the code.

Remark 22. Some mutants may be logically duplicate: reversing an equality condition and changing the equality to a difference give the same results).

The specification for the mutants remains the same as for the initial implementation.

For each mutant, we manually checked if the introduced mutation violates one of the requirements of the case study (i.e. if there is a possible The proportion of invalid mutants is reported in Table 4.1 along with some quantitative information about the system and the instrumentation of the HILARE by MetAcsl. Here we can observe that the simplification phase described in Section 4.2 significantly reduces the number of generated assertions, thus easing the job of the tools that are subsequently run on the resulting translated programs. 5For each benchmark (initial version or one of the mutants, including all valid and invalid mutants), we first apply MetAcsl to generate an annotated C program. We then wish to investigate whether, thanks to the instrumentation with MetAcsl, different Frama-C tools are able to assess the validity of the benchmarks with respect to the meta-properties.

We test two existing assessment techniques, namely deductive verification with the Wp plugin and runtime verification with the E-ACSL plugin.

For both plugins, Table 4.2 indicates the number of false positives (cases where the mutant is invalid, but no violation was detected) and false negatives (cases where the mutant is valid, but flagged as violating a metaproperty). The last row indicates that there was a runtime error during the execution of the mutant (only applicable for the second technique, since the first is static). We detail both techniques and comment this table in the rest of the section.

Deductive Verification

We attempt to run Wp on each benchmark. While a proof success is definitive, a proof failure may have different causes: the property to be proved may be false, there could be insufficient assumptions available to the prover or it could simply exceed the capacity of the prover in its allocated time. Thus, if every proof failure is classified as a judgement of invalidity, false negatives are to be expected. To mitigate this phenomenon, we first manually annotated the case studies with partial function contracts for the correct implementations to be successfully proved. See Chapter 5 for a full discussion about troubleshooting a verification failure.

Every valid mutant was successfully proved as valid, and the proof failed for each invalid mutant (see Figure 4.2)6 , thus confirming the correctness of the transformation. These results demonstrate that the spec-to-spec translation with MetAcsl creates a convenient, fully automatic toolchain for deductive verification of global properties in Frama-C. As usual for deductive verification, some additional annotations were necessary to prove the different functions (40 lines of specification were needed, loops being the main point of effort) but their number was much smaller than the number of relevant assertions automatically generated from the HILARE specification.

Runtime Verification on Test Cases

We now wish to study if it is also possible to verify HILAREs at runtimewithout any additional annotations-thanks to the E-ACSL [SKV17] plugin for runtime assertion checking. It automatically translates an ACSLannotated C program into another program that fails at runtime if an annotation is violated.

Since our case study is a library without any particular point of entry, we wrote a small test suite of complete programs that can be actually compiled and executed. They contain simple functional tests and do not aim at covering every possible usage case. They feature a sequence of 40 calls to the library.

We then applied runtime assertion checking to the execution of every instrumented benchmark on all tests of the test suite, in order to detect potential mutation-induced violations of HILAREs at runtime.

The results are laid out in Figure 4.2 and are promising as well. The additional row refers to cases where the generated binary detected a vio-lation of a safety property7 , thus stopping the execution and preventing us to know if a HILARE violation would have been detected or not. In the future, it would be desirable to filter out safety-violating mutants, and only keep mutations simply modifying the semantics of the code.

There are no false negatives, confirming that the instrumentation of both MetAcsl and E-ACSL does not introduce any bug in the specification nor in the code.

Remark 23 (About false positives).

There is a significant number of false positives (incorrect mutants for which no test failed). There are several reasons for this. First, our initial test suites are not complete, and some mutants are not killed by these tests. This could be addressed by using the StaDy [START_REF] Petiot | How testing helps to diagnose proof failures[END_REF] plugin, which combines static and dynamic verification and allows the automatic generation of test cases that can exhibit counter-examples for invalid properties.

The second reason is that E-ACSL only supports a subset of ACSL: some properties involving complex constructions such as the \at keyword are simply ignored by E-ACSL, thus they cannot possibly be violated at runtime. This support should be improved in the future.

This section demonstrates that it is easy to check HILAREs at runtime without extra annotation effort thanks to the combination of MetAcsl and E-ACSL, as long as the specified properties are supported by the tools. This is especially useful for properties that are not easily tractable with deductive verification: for example, a property using bindings (see Remark 21) might be very difficult to verify using Wp without writing extensive function contracts, while it can be immediately tested with E-ACSL.

Chapter 5

Proposition of Validation Methodology with HILARE

The previous chapters introduce the concept of meta-properties for representing high-level requirements (Chapter 2), its application to the specification of C programs with the HILARE language (Chapter 3) and an approach for verifying these programs (Chapter 4). While there was a small case study based around a confidentiality-oriented page manager, we've yet to discuss a general methodology for tackling complex, realistic specification problems.

The purpose of this chapter is to present a methodology of specification and verification of a wide range of high-level requirements with HILARE and MetAcsl, and to illustrate it on several examples. The goal is to provide verification practitioners with detailed methodological guidelines for various common patterns of properties in order to facilitate their specification and verification. The provided patterns can be followed by less experienced verification engineers to avoid logical errors in the specification of a HILARE. We also emphasize some good practices showing how to avoid some frequent pitfalls.

The provided examples are inspired by very frequent kinds of properties and illustrated on a security-relevant use case: a microkernel of an operating system (OS), where the description of the system is intentionally left generic.

General Methodology

When confronted with a verification problem that seemingly involves large parts of a code base, using MetAcsl and its HILARE specification language might be an efficient and expressive way to encode the desired properties with reasonable effort. With experience, the specification and verification process with MetAcsl usually follows a recurring pattern, which might be useful for new users to know about.

Ensuring the problem is within the scope of HILARE

While it is possible to encode various categories of properties with the HILARE language, some of them are outside its scope and could be better addressed by more suitable tools.

Thus, one should check that a desired property:

• does not relate multiple execution traces. Indeed, if the specification involves the comparison of multiple execution traces, it is a relational property. MetAcsl is not intended to deal with such properties.1 

• is not overly concerned with the order of execution. While the HILARE language can be used to write simple temporal properties (e.g. relating two consecutive states of the program), complex properties describing the behaviour of a program over time could be better treated with other Frama-C plugins.2 

• can somehow be reduced to a property on the global state. Since the HI-LARE language is meant to express high-level requirements, properties can only be expressed over data that is visible in the global scope. While there are some facilities to pry into the state of individual functions when necessary, a property that is overly specific to a local state might be hard to verify, or even to specify, as a HILARE. In fact, a plain ACSL annotation would probably be sufficient in this case.

Identifying the working subset of the global state

As mentioned before, the HILARE language can only express properties over data that are visible at global level. Hence, it is necessary to identify where to anchor the properties in the global state. There are several such "anchor points":

Global variables. This is the simplest and most desirable way. Global variables can just be referred to by name in any HILARE.

Common parameters. Sometimes data are not global but passed around as a parameter in numerous functions. If the naming of the formal parameter is consistent across those functions, it can be referred to. See \formal in Section 3.3.

Heap data.

For memory dynamically allocated on the heap, the binding extension described in Section 3.3 allows tracking arbitrary pointers across a program but significantly complicates the subsequent proofs.

Once the relevant elements of the state of the program have been identified and made available, the properties themselves can be formulated as HILAREs. The set of variables (or more generally, memory locations) used to specify a property is referred to as its memory footprint.

Formulating the problem as HILARE

One should first identify the target set of the property: what set of functions should uphold the requirement. It is often helpful to define named function sets using C macros, and to compose them with set operators (see Section 3.2.1). Remember that by default a HILARE is not transitive: it does not apply to the callees of a function unless explicitly specified. Built-in operators can be used to refer to the sets of callees or callers of a function (or over-approximate them in case the code base contains indirect calls).

Reasoning with the HILARE language means reasoning with conditions on some action: ideally, one should try to express the requirement either as an invariant or as a constraint on:

• memory modifications;

• memory (reading) accesses;

• function calls.

In general, properties are easier to express when formulated as a constraint on some code operations that must hold under all or most circumstances, except maybe specific ones. This step will be detailed in Section 5.3 through a number of common specification patterns.

Ensuring the Specification is Complete

Once the main desired requirements are expressed, it is important to check that the specification is complete and overall consistent, lest the ensuing proof is useless.

Memory footprint closure. One of the main pitfalls of HILARE specification is forgetting to constrain the modifications of all variables in the footprint of every HILARE. It is important to ensure that such variables cannot be maliciously modified during the execution. Hence, for each location in a HILARE footprint, the practitioner should specify (e.g. as another HILARE) what parts of the code can modify it and under which constraints. This will be illustrated in Section 5.4.

Absence of undefined behaviours. Failing to account for potential undefined behaviours and other runtime errors is another trap to avoid. Indeed, even carefully written global specification (or any specification) will be rendered useless by undetected illegal behaviours, because their absence is one of the main assumptions of the verification tools. For example, the following assertion will happily be considered valid by Wp though it might be false (since pointer p to the character A is here used to write an integer). Hence, it is important to ensure that the -wp-rte option is passed to Frama-C. Thanks to it, Wp will try to prove that every memory access is valid (and report, as expected, a failure in this example).

Assessing the Properties

As described in Chapter 4, MetAcsl is a plugin that translates each HI-LARE into annotations in the target functions, that can then be assessed by existing Frama-C plugins, such as Eva, E-ACSL or Wp. We will focus here on the usage of Wp, that is, through deductive verification.

When running MetAcsl followed by Wp on a HILARE-specified program, most of the verification conditions are usually easily proved valid. Some guidelines about addressing proof failures are laid out in Section 5.5.

Presentation of an Illustrative Use Case

In this section, we present an illustrative use case: an imaginary microkernel of an OS dealing with various tasks. For the sake of clarity and simplicity, we intentionally give a very generic simplified description of the system, leaving out the low-level implementation. However, the architecture of the system mirrors that of real ones, and it realistically describes microcontroller targets, in which the CPU only uses physical addresses. In this context, we realistically assume that the numbers of tasks and regions are determined at compilation and do not change. However, it is not a hard limitation, and dynamic changes can also be supported.

The system has a number NUM_TASKS of applicative tasks, each one being identified by a task number taskId > 0 of type uchar (see Figure 5.1). Variable CurTask contains the number of the currently executed task. When the (privileged) microkernel services are executed, the variable Context is set to SYSTEM_CTX, otherwise execution proceeds with ordinary privileges.

The memory is structured in disjoint allocated memory areas that we call regions. The number of regions is given by NUM_REGIONS. These memory areas are modeled using two arrays, RegionStart and RegionSize indicating for each region respectively the pointer to the beginning of the region and its size in bytes. The owner of a region is modeled by the RegionOwner array. Thus, region j is owned by task RegionOwner[j], starts at address RegionStart[j] and contains RegionSize[j] bytes. The region is owned by the microkernel if RegionOwner[j]==SYSTEM_OWNER, and by an applicative task otherwise. Region j is a code region if RegionKind[j]==CODE_REGION, and a data region otherwise.

Each task has a priority modeled by TaskPriority and a status modeled by TaskStatus. A task i is ready to be executed if TaskStatus[i] is equal to READY_TSK, and is waiting or sleeping otherwise. Task i1 is of a higher priority than task i2 if TaskPriority[i1] < TaskPriority[i2] (notice that the highest priority has the smallest value).

Lastly, the activation of a hardware Supervisor Mode Access Prevention (SMAP) feature is symbolized by a boolean SMAP_enabled variable. When enabled, the CPU should prevent the microkernel from accessing task memory at all when in privileged mode.

The next section recalls the HILARE syntax and introduces a bestiary of common specification patterns. Using that in Section 5.4, we will specify some desired properties over that system, such as task memory isolation (tasks should not read or write regions different from their own), controlled privileged operations (the aforementioned SMAP feature is enforced), Write XOR execute (ensure regions are never both writeable and executable at 

Common HILARE Specification Patterns

This section reminds the syntax of HILARE specification along with a set of commonly used patterns to specify usual integrity and confidentiality properties. It is intended to serve as a reference during a specification task and to support Section 5.4 where they are put together to form more complex properties. The process allowing the verification of HILARE specification is described in Section 5.5, and is useful to have a good understanding of the HILARE language.

A HILARE has the form illustrated in Predicate is an ACSL predicate (the reader can refer to the ACSL specification [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF] for the grammar) and can be a very general property, but is usually some form of validity check of different memory operations (hence manipulating memory locations) or a global invariant.

The following subsections give different possible combinations of Predicate and Context in the base pattern, illustrating how they can work together with the target set to specify interesting properties. Wherever it appears, symbol Location refers to a variable or a range of elements of an array, represented by their addresses.

Each pattern is a template refining the base pattern but still leaving some elements abstract. It is presented with an introductory sentence articulating these elements, followed by the raw syntax and possibly examples and explanations.

Simple Global Requirements

Pattern 1 (Global weak invariant). Name specifies that predicate Prop holds at the beginning and the end of each function in the Targets set. Example 25. For example, the following property states that every function needs the variable logic_state to be correct (for some unspecified definition of is_correct) in the pre-condition and must ensure it is still correct in the post-condition. However, the state may be temporarily incorrect inside the function. It is similar to Pattern 1 but omits the pre-condition on all functions. Both of them are simple ways to automatically add clauses to numerous function contracts.

Pattern 3 (Global strong invariant).

Name specifies that the predicate Prop holds at every step of each function in the Targets set. 

Memory Modification Requirements

Pattern 4 (No memory modification). Name specifies that no function in the Targets set directly writes a to Location. As explained in Chapter 4, in practice when MetAcsl processes such a HILARE for further verification, it iterates through all target functions and write instructions, and adds an assertion of Predicate where \written has been replaced by the particular location being written to by the local instruction. The same process is used for all the following variations of this pattern.

Note that Location may still be written to by functions that are not in Targets, but that are called by functions in Targets. To automatically include these functions, the \callees operator is very useful.

As mentioned above, \diff is also very useful here, to indicate that only a fixed set (e.g. for initialization) of functions is allowed to write to some object. For instance, the following HILARE states that private_key can only be set in enc_init. This is one of the most used patterns. Note that Guard can be omitted to ensure that Constraint holds on all write accesses to Location. Recall (from Section 3.1.2) that \overlaps is the negation of \separated: it specifies that two locations overlap in memory. Example 27. For example, the following HILARE is similar to the example in Pattern 4 but instead of simply forbidding memory modification, the HILARE allows it only if has_privilege is true. Relation is a particular instance of a constraint, that can refer to the value of Var before and after the writing operation using respectively \at(Var, Before) and \at(Var, After). Example 28. For example, the following HILARE only allows assigning increasing values to the global var. 

Memory Access Requirements

Pattern 7 (No memory access). Name specifies that no function in the Targets set directly reads from Location. Similarly to memory modification (Pattern 4), target operators can be very useful to build more complex properties.

Pattern 8 (Conditional memory access).

Name restricts the situations when functions in the Targets set can directly read from Location. When Guard holds, the read is allowed only if Constraint also holds at the time of reading. This is the dual of Pattern 5, and is used for similar purposes.

Call Graph Requirements

Pattern 9 (No function call). Name specifies that no function in the Targets set may directly call Function. This pattern contains a necessary guard since \called and Function can have non-compatible prototypes, making the disequality ill-typed. In that case, \called is obviously not Function, so a \tguard is appropriate.

Pattern 10 (Conditional calling). Name specifies that functions in the Targets can call Function. However, when Guard holds, the call is only allowed if Constraint also holds at the time of calling. It is an extension of the previous pattern, similar to how Pattern 4 is extended by Pattern 5.

This time, we protect the equality with fguard, which evaluates to \false if \called and Function have incompatible prototypes, so that there is no need to enforce Constraint on such a call.

Combining Patterns to Express Complex Properties

This section demonstrates how the previous patterns can be articulated into a larger specification methodology on realistic confidentiality or integrity properties. To that end, we come back to the use case described in Section 5.2 and detail the specification process of some selected properties.

The simplified microkernel described in Section 5.2 is by nature a critical component of its host system, and as such should uphold several confidentiality and integrity properties pertaining to different aspects of its behaviour.

Task Memory Isolation

One such aspect is the strict compartmentalization of tasks: a task should only read from and write to the memory regions it owns. Moreover, it should not access regions containing code in any way. These two requirements can be specified with similar HILAREs using Patterns 5 and 8: meta \prop, \name(region_integrity_task), \targets( \diff( \ALL, init ) ), \context(\writing),

\forall integer i; 0 <= i < NUM_REGIONS && Context != SYSTEM_CTX && \overlaps(\written, RegionStart[i] + (0 .. RegionSize[i] -1)) ==> RegionOwner[i] == CurTask && RegionKind[i] != CODE_REGION;
The above HILARE iterates on all regions and states that if a memory region is modified (that is, if the location targeted by a writing operation overlaps with a region) while in user land, then (i) the owner of that region should be the task itself, and (ii) it should not be a code region. Here, as the Location in Pattern 5, we use RegionStart[i] + (0 .. RegionSize[i] -1), which represents the range of addresses corresponding to region number i.

The complete specification is presented in Figure 5.3, where the second property region_integrity_system follows the same principles. Its Guard captures the modification of regions while in system context (when the privileged microkernel services are invoked from a task) and the Constraint forces the owner of the modified regions to be either the original task or the microkernel. Again, modifications of code regions are forbidden.

These two integrity properties are then mirrored using Pattern 8 to specify their confidentiality counterparts, that is restraining memory accesses instead of modifications. Figure 5.3 shows region_confidentiality_task, which is region_integrity_task's confidentiality counterpart.

Controlled Privileged Operations

The SMAP feature mentioned in Section 5.2 should also be enforced: when enabled, code in privileged mode should not have any access whatsoever to task regions. Again, this can be specified with instances of Patterns 5 and 8 with a structure similar to the previous properties. Figure 5.4 illustrates such restriction of memory accesses, both for reading and writing. The Guard filters accesses in privileged mode to regions not owned by the microkernel, which can only happen if SMAP is disabled.

Remark 24 (Usage of macros). Using C macros can improve the readability and portability of specifications by abstracting implementation details to simple predicates. Figure 5.4 demonstrates this. In particular, the FORALL_REGION macro hides the underlying array, bounds and indices, which are just noise, requirement-wise.

Write XOR Execute

Our microkernel discriminates memory regions by their kind: either code or data. While the previous properties ensure that code regions cannot be modified or accessed, executing instructions contained in data regions must also be prevented. Furthermore, a task should not try to jump to another task's code. Finally, when in privileged mode, only microkernel code should be run. These three requirements can be materialized by the HILARE depicted in Figure 5.5. meta \prop, \name(code_execution), \targets( \ALL ), \context(\calling),

\forall integer i; 0 <= i < NUM_REGIONS && Context != SYSTEM_CTX && \overlaps(\read, RegionStart[i] + (0 .. RegionSize[i] -1)) ==> RegionOwner[i] == CurTask && RegionKind[i] != CODE_REGION
\exists integer i; 0 <= i < NUM_REGIONS && RegionStart[i] <= (char*)\called < RegionStart[i] + RegionSize[i] && RegionKind[i] == CODE_REGION && ((Context != SYSTEM_CTX && RegionOwner[i] == CurTask) || (Context == SYSTEM_CTX && RegionOwner[i] == SYSTEM_OWNER) );
Figure 5.5: Code/data exclusion and isolation Rather than using a specific pattern, code_execution is a direct instantiation of Section 5.3's base pattern: it is a general validity check of the function call operation, where \called is the location of any function that may be called. It states that for every call during the execution, the call should land in a region that: (i) is a code region, (ii) is owned by the current task if executing in user mode, and (iii) is owned by the kernel if we are in privileged mode.

Valid Task Scheduling

The specification of the scheduling behaviour calls for different specification patterns: when switching contexts, the microkernel should not jump to any task that is ready to run, but to a task with the highest priority. Hence, whenever the current task changes, the first HILARE in Figure 5.6 puts a constraint on the new task instead of the old one. This is a use-case for Pattern 6. schedule_priority has no guard (so all modifications of CurTask are captured), but states that any new value of CurTask must represent a task that is both ready and of the highest priority (compared to other ready tasks). Notice the use of \at(CurTask,After) to refer to the new value of While this captures the requirements related to context switch, there are others that our system should honour. One of them, current_always_ready of Figure 5.6, is that while the scheduler can only switch to ready tasks, the current task shall remain in a ready state for the entirety of its execution. This is an invariant that should never be broken, hence Pattern 3 is used to enforce that status.

Tying up loose ends

Although all the previous HILARE taken together form a consistent set that accurately formalizes some requirements for the microkernel, it is of the utmost importance to ensure the absence of loose ends, i.e. to check whether the memory footprint is properly constrained, as mentioned in Section 5.1. For example, properties in Figure 5.3 expect the data in RegionOwner to be correct. However, there is no safeguard preventing malicious code from spuriously changing region owners.

To resolve this issue, it is necessary to carefully track any variable in the footprint of every HILARE, and specify when, if ever, it is allowed to change, with the help of Pattern 4. This is done for some of the variables in Figure 5.7: for example, context_modification ensures that only a set of functions3 should be able to enable or disable privileged mode, and region_owners_final states that region owners should never change.

This should be done for all other relevant variables, such as SMAP_enabled, TaskPriority, RegionKind, etc. 

Verification Discussion

As explained in Chapter 4, the usual verification process of HILARE is to run MetAcsl, which transforms a HILARE into a set of code annotations, and then run Wp, the deductive verification plugin of Frama-C, which tries to prove the various annotations generated by MetAcsl. Several guidelines and pitfalls were already presented in Section 5.1. We discuss here some additional ones regarding verification.

Proof failure analysis. If some annotations are not proved, this can be due to several reasons: (i) The program is incorrect with respect to the HILARE: the code (or the HILARE) needs to be fixed. Given the name of the failing annotation, it is easy to trace back to the guilty HILARE.

(ii) There are insufficient pre-conditions on the function: the given context is not sufficient for the property to be valid. One should add pre-conditions needed for the proof.

(iii) The prover is not powerful enough: one should manually subdivide the proof into a few intermediate steps by writing annotations that are easier to prove and can help to deduce the required one.

(iv) Some functions that are called are not specified enough. It is common that, while a function clearly does not modify the state related to a property, this is not reflected in its specification and the prover cannot deduce that, after the call, the memory footprint of the property is unchanged. A first step consists thus in manually specifying the memory footprint of the callees. If this is not sufficient, one should specify the conditions needed as a conditional invariant on all potentially called functions using a HILARE.

Avoid overloading the proof context. When dealing with large functions, it may be useful to use the -meta-checks described in the previous chapter to instantiate a HILARE as a set of checks instead of assertions. The difference is subtle: a check simply tries to prove a predicate at a given point, while an assertion additionally adds it to the context for further proofs. Hence, at the end of a long function, provers might struggle with an overloaded proof context containing all previous assertions of the function.

High-level lemmas. When faced with problem (iii), a classic solution is to provide lemmas used to cut the goal. While it is possible to write lemmas in ACSL, this solution may not work for a HILARE as it can rely on specific local properties in the target functions or on variables nonavailable globally (e.g. a function parameter). An efficient solution is to write a HILARE used as a lemma to prove another HILARE or an ACSL annotation: it is just as efficient as using a regular lemma in a normal context. It can be a statement that follows from the hypothesis and directly implying the goal, or simply an additional hypothesis needed to prove the goal.

Example 29. Let us say we want to prove the following HILARE on a code base with hundreds of functions. In other words, we want to prove that the last 100 cells of the global array are never modified. Let us assume that the code base only ever accesses array by indexing it with the global index. As is, even if index always stays below 900, the HILARE may not be verified statically.

However, we can translate our assumption into a HILARE as an invariant to help the proof: meta \prop, \name(index_below_900), \targets(\ALL), \context(\strong_invariant), index < 900;

This will be translated by MetAcsl as a set of local assertions that will be useful to prove the assertions generated by end_of_array_untouched. Note that in this case, our lemma must not be translated into checks, lest the generated assertions cannot be used as hypotheses.

The next chapter will discuss other ways to exploit already established high-level requirements to prove new ones on a code base, without having to resort to generation of local assertions.

Chapter 6

Towards an Automated Framework for Deducing of Meta-Properties

The verification technique for the HILARE language presented in Chapter 4 is fundamentally local: it transforms a global requirement into a set of local properties in the source code. As discussed, this set of properties is sometimes quite large despite efforts to discard trivially true or false statements early. While this approach is not always perfect, it cannot be avoided for proving global requirements about a code base without further global information: the low-level code must be observed in some way. However, when some global requirements have already been established on a code base (for example by specifying and proving HILARE statements the usual way), it feels natural to attempt deducing other global facts without having to resort to local analysis.

This chapter presents a motivation for deducing high-level requirements from others through some specific use cases, and describes an extensible framework for doing so in a provably sound manner. While the next chapter presents a large case study involving the concrete usage of this deduction technique, this chapter does not have the ambition to exhaustively explore the question of deducing meta-properties but rather establish a limited (but extensible) foundation for doing so. Section 6.1 motivates the existence of a deduction framework by presenting several situations for which we want to make high-level deductions but currently cannot, and generalizes these situations to potential deduction patterns. Section 6.2 then discusses our methodology for designing an efficient and sound deduction framework able to handle such patterns and presents the global architecture of our technical solution, while Sections 6.3 through 6.5 each describe a component of that architecture. Finally, Section 6.6 discusses the usability of this framework from the point of view of a regular user, and its extensibility by a knowledgeable user.

Motivation

When specifying and verifying properties in MetAcsl, there are some situations where a property that should be easy to verify given the already established HILAREs becomes tedious due to the limitations of the way MetAcsl works, that is by generating low-level annotations.

We motivate the development of a deduction framework with three simple illustrative use cases (inspired from a real system, see Chapter 7) that ought to be easy to prove and can be articulated into more complex properties. They are presented in the following Sections 6.1.1, 6.1.2 and 6.1.3 respectively. Each use case presents a concrete situation where we want to make a high-level deduction (and currently cannot), and generalizes the situation to a deduction pattern that we would like our deduction framework to handle.

While these use cases will give us an idea of what we want to be able to deduce, we also want to put the emphasis on performance. In line with our objective of easing the usage of formal methods discussed in Chapter 1, we want a deduction method to be as seamless as possible: at the price of completeness, we want a fully automated technique. Furthermore, it should easily scale to very large programs with hundreds of functions. In Chapter 7, we will evaluate these claims by testing the approach presented in this chapter on a large code base.

Use Case: Negative Memory Footprint

Consider the following program excerpt, defining two functions f0 and f1 (the body of f1 is not shown): There are two global variables A and B. Suppose that we want to prove the GOAL assertion in f0, stating that after the call to f1, the variable A retains the same value.

With a HILARE, it is easy to specify that function f1 and its callees do not write to variable A at all, with the \writing context: No matter the content of f1 and its callees, it can also be assumed that the proof of A_untouched_by_f1 is relatively easy given that A is indeed not modified in any of these functions. In particular, in general it is not necessary to write loop invariants to prove such a HILARE with this simple pattern (Pattern 4 in Chapter 5).

However, specifying and proving that HILARE does not immediately help us prove the GOAL assertion in f0. While one can easily mentally deduce that if a function and all its callees do not modify a memory location then its value does not change after calling it, the HILARE does not provide the local information necessary to automatically prove the assertion with deductive verification.

Remark 25 (Local deduction).

In many cases, the specification of a global HILARE can help prove local assertions. Indeed, with the method presented in Chapter 4, a HILARE is translated into a set of inline assertions to be proved by other means.

When using deductive verification (and in particular the Wp plugin of Frama-C), an assertion in the code can be used to prove further assertions since its statement is stored in the proof context and assumed true. If another subsequent assertion is proved this way, it will be considered as true, with the explicit hypothesis that the first assertion is also true.

Hence, a generated assertion of a HILARE can help prove other local properties, including assertions generated from other HILAREs. This means that in some cases, a HILARE can already be entirely deduced from another if all of their local assertions follow that pattern. This is not the case here.

In our current setting, we have two approaches for solving this problem, but they are flawed:

1. Specify the whole memory footprint of f1 with the assigns construct. If A is not part of the footprint, then the GOAL assertion will be successfully proved by tools such as Wp. However, this is a huge undertaking: not only the whole memory footprint of f1 must be identified, but also the footprint of all of its callees: All of these footprints must be manually annotated and may be hard to prove: all loops need to be annotated, and the proof must care for all other memory locations of the footprint, whereas we are only interested in A.

2. Specify that A keeps its value as part of f1's contract. This can be done by adding ensures A == \old(A) in the contract. However, for this statement to be proved, it again needs to be added to the contract of every callee. While the proof may be lighter than the previous approach, it is again potentially challenging, requiring loop annotations. Exotic code such as inline assembly may also be an important obstacle.

Both of the possible approaches look like important proof undertaking for what should be immediate to deduce. Hence, the first requirement of the deduction system is being able to deduce the following HILARE from the premise A_untouched_by_f1 stated above. The local translation of this HILARE into function contracts, while not used to prove the HILARE, could then be used as hypotheses to prove the initial GOAL assertion.

Deduction pattern. If a variable is not modified by a function nor any of its callees, then the value of is the same before and after any call of .

Use Case: Propagating an Invariant to "Neutral" Functions

We now want to extend the above use case from simple variables to whole predicates. Consider the following program excerpt, containing again two global variables A and B, and a potentially large number of functions. The f1 function simply multiplies A and B by 2. It is trivially provable that predicate A == B is a conditional invariant of this function (if A and B have the same value before f1, it remains true afterwards). This invariant can be expressed with a HILARE (even though it only has one target function): Remark 26 (Weak and conditional invariants). Note that the above property is weaker than what we could specify with the \weak_invariant context: whereas this context specifies that a predicate must hold when the function is called (it is a pre-condition), here we only say that it may hold (and if it does, then it must also hold afterwards). We define a new context named \conditional_invariant for that purpose. With it, the same property can be stated as follows:

meta \prop, \name (A_B_same_in_f1), \targets( {f1} ), \context(\postcond) 
meta \prop, \name (A_B_same_in_f1), \targets( {f1} ), \context(\conditional_invariant), A == B; 
Let us assume that the following HILARE is established, meaning that functions f2 through fN do not (locally) modify variables A and B: meta \prop, \name(A_B_untouched), \targets( \diff(\ALL, {f1}) ), \context(\writing), \separated(\written, &A) && \separated(\written, &B);

Since functions f2 through fN do not locally modify the two global variables, we would like to be able to deduce that A == B is also a conditional invariant of these functions, i.e. extend A_B_same_in_f1 to all functions. This deduction is slightly more subtle than the previous one: the set of target functions must not call functions that may modify the variables.

In general, it is important to be able to deduce that if a predicate over a part of the state is a precondition of a function and that function does not modify this part of the state, then the predicate is also a postcondition.

Deduction pattern. If a function does not modify the variables used in a predicate and only calls functions with the same property, then is a conditional invariant of .

Use Case: Propagating a Precondition to Callees

While the previous use case is quite simple (similar to the first use case), we also want to extend this use case to actual weak invariants. In other words, we want to deduce that a property is a precondition (and a postcondition) of the functions. Let us extend the previous program with the following excerpt: We can easily prove the precondition of the wrapper function since it is only called by main, which ensures that A == B before the call. This simple precondition can also be expressed with a HILARE:

/*@ requires A == B; */ void wrapper() { f2(); f3 
meta \prop, \name (A_equal_B_before_wrapper), \targets( {wrapper} ), \context(\precond), 
A == B;

Since we know that functions f2 through fN do not modify A and B, we should be able to deduce that A == B is also a precondition for them (hence a weak invariant).

Deduction pattern. If a function is only ever called by functions for which a predicate is a precondition and that do not modify the variables used by , then is also a precondition of .

Methodology and Architecture of the Deduction Framework

For the three use cases presented in the previous section, it can become useful to reason at higher level and allow the deduction of a HILARE from others. We want to construct a framework where the end user can just add the line \flags(proof:deduce) to a HILARE to try to automatically deduce it when MetAcsl is launched, rather than translating the HILARE to local assertions and delegating the task to other tools. To meet that objective of performance, the methodology we adopt is pragmatic: we want to be able to deduce simple things automatically and efficiently, while having a formal guarantee that the deduction is sound. Furthermore, we want to design the framework so that it is extensible: it should be possible to add new, potentially more complex deduction patterns later. Our approach is threefold:

1. establish a mechanized formal model of the HILARE language using the Why3 [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF] platform and prove that the deduction patterns highlighted in the previous section are valid within that model;

translate those deduction patterns into an actionable and efficient

Prolog deduction engine that can apply them;

3. extend MetAcsl to automatically translate a HILARE-specified program to constraints (also called knowledge base) for the Prolog engine, which can then assess the validity of some properties using the previously established deduction patterns.

Figure 6.1: Illustration of the deduction methodology

This approach is illustrated in Figure 6.1. During the verification of a program annotated with HILARE where one of them has the deduce flag, the following happens:

1. both the HILARE to be deduced and the previous other HILAREs are translated into data that is understood by the external deduction engine (in Prolog);

2. the Prolog engine attempts to prove the desired HILARE based on the premise that the previous HILARE are valid, and on a set of highlevel deduction patterns (such as the ones presented previously). It is guaranteed to terminate but is not complete: it handles only some specific HILARE structures and deduction patterns;

3. the deduction engine reports its result to MetAcsl, which propagates the status to the HILARE in Frama-C. If the translation to local assertions of that HILARE is enabled (with the translation:yes flag), then all the local assertions are considered valid if the deduction succeeded.

The Why3 component of the framework has no impact at "runtime" (during the proof of concrete programs) but is here to formally ensure that Step 2 is sound. In that way, each part of the framework can be trusted. Its weaker link is the interface between the Why3 model and the Prolog deduction engine, which is done manually: one must ensure that the deduction patterns encoded in the Prolog engine are exactly the ones proved within the Why3 model.

A proof of the deduction approach can only be made within a formal system describing the HILARE language and ACSL themselves. While this can be formalized on paper (as it is done in Chapter 2), it is preferable to be able to machine-check the proof if this approach is to be trusted. This could have been done entirely in ACSL, however the Why3 platform [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF] and its WhyML language are particularly appropriate since one can express a pure formal system and theorems easily, without having to deal with C specificities. The Coq proof assistant [START_REF]The Coq Proof Assistant[END_REF] was also a good candidate but the fact that Why3 can rely on external solvers to (try to) automatically prove theorems was a clear advantage, and we did not need the full expressiveness of Coq.

For the actual automated solving during the proof, Why3 could also have been leveraged to try to automatically apply the proved deduction theorems to facts translated by MetAcsl from HILARE annotations. However, we found that the performance of this solution did not scale when the number of functions increased, hence the need for a dedicated deduction engine. Prolog was a good candidate to easily prototype an engine that can exhaustively explore the space of possibilities.

The next sections describe each part of the architecture in detail: a sketch of the soundness proof, the construction of the actual deduction engine and its communication with MetAcsl.

Using Why3 for Modelling Structural Deduction Patterns

To prove that the deduction patterns highlighted in Section 6.1 are sound using the Why3 platform, we first needed to transpose the formalization of meta-properties presented in Chapter 2 to that platform, before attempting to prove theorems within that formal system. We briefly describe that transposition, which follows the same structure as Chapter 2: formalizing the structure of the abstract programming language, its semantics, predicates over such programs, and then meta-properties. A small excerpt of the model can be seen in Figure 6.2. As expected, it closely matches the constructs defined in Chapter 2 but gives concrete, actionable types to each component of the model: starting from the bottom, a program is a map between names and functions, and each function is a block of statements that loosely matches C and ACSL semantics: a statement is either an instruction (read, write, or call) or a structural operator (conditional loop, nested block). Notice that it is sufficient for our purposes to reduce C programs to single reads from (resp. writes to) locations, as instructions performing multiple memory operations can be transformed to a set of instructions performing atomic operations.

Remark 27 (Recursivity). Whereas loops are taken in account into the model, recursion is not allowed and its absence is a hypothesis of the following proofs. This is made to ease subsequent proofs.

However, this hypothesis is perfectly sensible: should programs contain recursive calls, they can be transformed -at least in theory -into their iterative equivalent, for example by explicitly simulating the program stack [Zei].

Based on this structure, we define basic semantics of the different language constructs by describing their action over the state of a program: we define their footprint. Figure 6.3 illustrates the semantics of instructions (statements are omitted).

In particular, we define an inductive relation state_instruction(p, i, s1, s2)

defining the constraints between the states preceding (s1) and following (s2) the execution of an instruction i on a given program p. As expected, reading does not modify the state (s1 equals s2) but writing does (s1 and s2 must be equal on every location except the one written to during the instruction).

On that basis, still following the structure of Chapter 2, we formalize the concept of program property (assertion) and the concept of metaproperty.

Within that model, we then formulate the three deduction patterns of Section 6.1 as theorems. The first theorem captures the use case of Section 6.1.1: negative assigns. It states that if a function and each of its callees do not modify a location , then the value of that location must be the same before and after the execution of this function. Before stating the theorem itself, we need to formalize the notion of callees. We consider here again the A-Lang language introduced in Chapter 2 and a well-formed program in A-Lang (cf. Remark 4).

Definition 24 (Set of callees). Let ∈ be a function. We define callees( ), the set of callees of , as the smallest set of functions such that ∈ callees( ) and

∀ ∈ callees( ), ℎ ∈ , ∈ , instr( ) = Call ℎ =⇒ ℎ ∈ callees( )
In other words, callees( ) is the smallest set that contains and any function called by its members. With this definition, we can now state our theorem.

Theorem 1 (Negative assigns). Let ∈ be a function and ∈ a location. We state that if

∀ ∈ callees( ), ∀ ∈ , ∉ ( ),
then for all states 1 , 2 ∈ Σ such that , 1 2 , we have that

1 ( ) = 2 ( ).
That theorem is formally proved within Why3. Section 6.3.1 below gives a sketch of proof for this theorem as well as the two following ones.

Remark 28. In Why3, we write the statement of Theorem 1 as: For a given function and location , if it has been proved by a HILARE that for and all of its callees, there is no local modification of , then it can be deduced that the value associated to does not change before and after a call of .

Let us now formalize the second deduction pattern, which states that if a function and its callees do not modify the set of variables over which a predicate is defined, then that predicate is a conditional invariant of , i.e. if holds in the pre-state of , it must also hold at the post-state.

Theorem 2 (Conditional invariants of neutral functions). Let ⊆ ℒ be a finite set of memory locations and ∈ ( ) a predicate over . We state that if

∀ ∈ callees( ), ∀ ∈ , ( ) ∩ = ∅
then for all states 1 , 2 ∈ Σ such that , 1 2 , we have that

1 =⇒ 2
This theorem, which captures the second use case of Section 6.1, is also proved in Why3 within our metamodel.

Lastly, let us state the third deduction pattern. It states that if a function is only called by functions for which a predicate is a precondition and that do not modify the locations over which is defined, then must be a precondition for as well. To state that theorem, it is easier to first define the notion of precondition.

Definition 25 (Precondition of a function).

Let ∈ be a function, a set of locations and ∈ ( ) a predicate over . We say that is a precondition of and write precond( , ) if:

∀ ∈ , ( 1 , 2 ) ∈ , instr( 2 ) = Call =⇒ ( 1 , 2 )
In other words, is a precondition of if at every call site of , must hold for every possible execution of the caller (see Definition 18 in Chapter 2).

With this definition, we can now state our final theorem.

Theorem 3 (Propagation of preconditions). Let ∈ be a function, ⊆ ℒ a finite set of memory locations and ∈ ( ) a predicate over . We state that if

∀ ∈ , (∃ ∈ , instr( ) = Call ) =⇒ precond( , ) ∧ (∀ℎ ∈ callees( ), ∀ ∈ ℎ , ( ) ∩ = ∅) then precond( , ).
In other words, if for every caller of , is a precondition of and and its callees do not modify the variables over which is defined, then is a precondition of as well.

It is important to take into account the callees of (that is, including ), because between the beginning of (where is true) and the call to , there may be calls to other functions for which is not a postcondition.

With this, we have generalized and formalized every use case from the first section, which is a contribution in and of itself. The next subsection gives an idea of how these three theorems were proved, while Section 6.4 describes how these deduction theorems are actually applied in our framework to deduce HILAREs from others.

Details of the Proof Process

First, we have to notice that Theorems 1 through 3 are stated for any program . To help us prove these theorems, we would like to exhibit an induction principle on programs. To that end, we first define the notion of call graph of a program, which will be conveniently structured for subsequent proofs.

Definition 26 (Call graph).

The call graph of a program is a directed graph ( , ) such that:

• The set of nodes is the set of functions in the program: = ;

• There is an edge from to if and only if is called by :

∀ , ∈ , ∃ ∈ , instr( ) = Call ⇔ ( , ) ∈ .
The no-recursion assumption discussed in Remark 27 means that the call graph of any program is a directed acyclic graph, that is, there is no direct or indirect call from a function to itself.

This implies the existence of a topological ordering [HLC09] ≤ of the vertices of the call graphs (i.e. the functions of the program). The topological ordering is a total order that respects the following property: for all functions , ∈ , ≤ if is (directly or indirectly) called by . In particular, every (direct or indirect) callee of a function comes before that function in the order:

∀ ∈ , ∀ ∈ callees( ), ≤ .
Notice that for two functions and , ≤ does not necessarily mean that the former is a callee or the latter. Indeed the call graph can be a forest: there can exist functions , such that neither is a callee of nor is a callee of .

Since ≤ is a well-founded order, we can deduce a Noetherian induction principle over functions of a call graph, allowing us to easily prove that a property holds on a whole program.

Theorem 4 (Induction principle on functions of a call graph). Let be a property of functions. Assume that for any function ∈ , we can deduce ( ) from the following premise

∀ℎ ∈ , ℎ ≤ =⇒ (ℎ).
Then ( ) is true for all ∈ .

This means that we can prove functional properties of our metamodel by choosing a particular function , and proving that the property holds on , assuming that the property already holds for every callee ℎ of (which is a weaker premise than the one stated in the principle). In particular, it means that the property must be immediately true of a function without callees.

Given that induction principle, small lemmas about what can be deduced within the model are incrementally built from the ground up, naturally leading to the proof of Theorems 1 and 2.

Theorem 1, sketch of proof. We reason by induction over functions of a call graph. For leaf functions, since we know that none of their instructions modify the location , we can apply the semantics of execution to prove that the states before and after their execution must agree on the value of .

For other functions, we do the same but use the induction hypothesis whenever a call appears. Indeed, we can deduce that the execution of callees does not change the value of since our no-modification assumption subsumes the necessary condition to apply the induction hypothesis.

Theorem 2, sketch of proof. We use a similar proof structure, applying execution semantics on leaf functions to deduce that they must not change the variables over which our predicate is defined. We then deduce that the predicate must hold at the end of the function if it was already the case at the beginning. We do the same for other functions, simply applying the induction hypothesis for functions calls.

Theorem 3, sketch of proof. For this theorem, we must use a symmetrical variation of the induction principle exhibited in Theorem 4, where the topological ordering is reversed i.e. ≤ if calls . Since that order is still a well-founded order, we can deduce a new induction principle where we can assume a property is true for every caller of a function to prove it on that function.

Using that reversed induction principle, we reason using the same proof structures as for the two previous theorems. For functions without callers, any predicate is immediately a precondition (according to Definition 25) and for other functions it is enough to simply apply the induction hypothesis and the semantics of execution.

Most of the proofs are fully automatic, thanks to the SMT solvers used by Why3. Out of the 41 proofs, 7 had to be written manually using the Coq proof assistant. The whole model and the accompanying proof is available inside the MetAcsl release.1 

Using Prolog for Applying the Deduction Patterns

While the Why3 model in the previous section is here to formally prove that deductions made with the deduction patterns of Section 6.1 are sound, the Prolog deduction engine is here to actually use these patterns to make the deductions.

Example 30 (A bit of Prolog).

A Prolog program essentially is a list of facts and rules. The following code contains two facts stating that predicate likes is always true for the combination of parameters me and pizza, and that is_junk_food is true for parameter burger.

likes(me, pizza). is_junk_food(burger).

One can then state rules for deducing new facts from existing ones: A rule can have multiple conditions, in which case they are separated by commas.

% If FOOD
The engine can then be queried to check if a given fact can be deduced from the known ones. For example, the query likes(me, burger) will yield true.

Furthermore, we can pass unbound variables (_) in a query to check if there exists an instantiation of it for which the fact can be deduced. For example, the query likes(me, _) will yield true since the anonymous variable can be replaced by burger to make the predicate hold.

The rationale for choosing Prolog to write the deduction engine is twofold:

• Prolog is a natural choice for the design and the usage of small CLP (Constraint Logic Programming [START_REF] Jaffar | Constraint logic programming: a survey[END_REF]) languages, such as {log}. Hence, transposing the wording of the Why3 lemma is easy.

• If built correctly, an ad-hoc deduction engine written in Prolog is highly efficient. An early attempt was to directly use Why3 as a deduction engine, but the highly general nature of this platform made deduction on our large yet simple samples frustratingly inefficient.

The solver is structured into three layers: the ground, intermediate, and high-level layers.

Ground layer. The deduction engine expects a set of facts about the program provided by the user: the list of functions, the call graph and a list of HILAREs that are already proved. The next section describes how the translation from a C program to Prolog facts for this layer is operated. It mainly contains facts of the form meta_ground(C, P, S) where C is the representation of a HILARE context, P its predicate and S its target set. A fact of this form states that the HILARE with these components is already established in the program. By nature, these facts are not hard-coded into the solver but generated at runtime from a concrete C program.

Intermediate layer.

Based on these known facts, there is a first layer in the engine that lay down very basic deduction rules, which we call the intermediate layer. This layer is illustrated in Figure 6.4. Each rule encodes a different trivial deduction pattern, commented in the code. This layer makes use of a predicate subsumes(+C, +P, +S1, -S2) which checks if the same HILARE with a larger set (S2) of functions is known to be valid, and a predicate merge_props(+C, +P, +S, -S1, -S2) which checks if the target set S of a HILARE can be partitioned into two sets S1 and S2 for which the HILARE is known to be valid. Their definition is omitted from the listing.

Remark 29 (Set operations in Prolog). When the programs are large, the target sets have a considerable size: for the solver to remain efficient and to easily manipulate sets, we use a Prolog a extension called {log} [START_REF] Dovier | {log}: A language for programming in logic with finite sets[END_REF] which provides easy syntax and efficient deduction facilities for finite sets.

This slightly changes the usual Prolog syntax. Notably, premises of rules are separated by ampersands (&) instead of commas.

a More specifically, SWI-Prolog High-level layer. On top of this simple layer, the engine defines rules for making less trivial high-level deductions based on the theorems established in the previous section. A small excerpt of this layer is provided in Figure 6.5. In particular, the first deduction lemma is transposed.

It states that a negative assign of location L for the target set S (that is, the HILARE stating that the value of L does not change after the execution of each function in S) is considered valid if it is known (through a previous HILARE) that these functions do not modify L locally and that S is closed by call (functions within that set do not call functions outside of it). The engine can then be queried to efficiently check if a particular HI-LARE can be deduced based on the known facts of the programs, or even list all deducible facts.

Remark 30 (Absence of circular dependencies). As described, the engine is separated in three layers: ground (facts), intermediate (simple deductions) and high-level (complex deductions). This is because deduction rules from a given level must only depend on conditions from lower levels or otherwise more restrictive predicates, to avoid circular dependencies, which would cause the engine to run indefinitely.

While this allows for a performant deduction engine, it also means that it cannot perform a chain of high-level deductions to reach a goal: the chain must be broken up into separate deductions (and so separate HILAREs).

Automatic Deduction of HILARE from MetAcsl

The next step is to allow requesting the deduction of a HILARE from within MetAcsl. In the source specification, the verification practitioner must explicitly mark a property with the flag proof:deduce to disable its local verification (see Chapter 4) and instead attempt its deduction.

When encountering such a HILARE, there is a fully automatic (but limited) translation of the program environment into Prolog facts that can be used by the deduction engine. In particular, the translation exports the list of functions in the program as a set, the call graph as a list of calls, and the list of HILAREs appearing before the property under proof.

Remark 31 (Hypotheses). Since all HILAREs preceding the goal in the source specification are exported as facts, they are considered valid by the deduction engine and are therefore hypotheses of the goal, should it be proven valid.

Hence, one should always ensure all HILAREs are valid before concluding that a deduced HILARE is definitely valid. MetAcsl helps by automatically declaring used hypotheses as dependencies.

In presence of multiple HILAREs to be deduced, each one is deduced independently of the others, with multiple exports of the knowledge and multiple runs of the Prolog engine.

Export of the function set.

The MetAcsl plugin lists all the functions of the C program and exports them as a set in a targets({f, g, h, ...}) fact.

Export of the call graph. The MetAcsl plugin syntactically detects all functions calls in the C program (function pointers are ignored, a known limitation). Every edge of the call graph is then exported as a single calls(f, g) fact.

Export of HILAREs. When translating HILAREs, each one is exported into a meta_ground(C, P, S) where C is the name of the context, S is the target set and P the predicate.

For the predicate, pattern matching is used to syntactically identify some known forms of the HILARE language that can be further exploited by the deduction engine. If the pattern is not recognized at all (which is the case in most properties), the HILARE is exported with an abstract predicate about which nothing is known.

In particular, the exporter recognizes the \separated(\written, &X) pattern where X is a variable or the field of a variable (if it's a structure). In this case the variable is assigned a unique name and the whole predicate is exported as the not_written(X) special form.

Export of structures.

If a program declares a structure type str with fields foo and bar, MetAcsl will export this type information to the solver: field(str, foo). field(str, bar).

And the Prolog solver knows that if it can establish that no field of a str variable is modified, then the whole variable can be considered untouched, and the other way around:

% If a struct is not modified, all of its fields aren't meta_inter("Writing", not_written(field(V, F)), S) :-meta_inter("Writing", not_written(V), S).

Example 31. In Figures 6.6 and 6.7, there are respectively a C program annotated with two HILAREs, and the translation of this program into Prolog knowledge, given that we want to deduce the second property (this wish is materialized by the proof:deduce flag). This illustrates the translation of different C elements into knowledge for the deduction engine. In this case, the property can successfully be deduced using the first proved lemma.

Usability and Extensibility

How to use. From the point of view of a regular user of MetAcsl and the HILARE language, the usage of our deduction framework is easy, as knowledge about its inner workings is not necessary. It is sufficient to add the proof:deduce flag to attempt deducing a HILARE from others with MetAcsl, seamlessly. It is useful, however, to know about which kinds of deductions can be made by this solver. Hence, it would be advisable for a regular user to read Section 6.1 from this chapter, in order to know in which situations it might be useful to consider deduction as an option.

Furthermore, due to the current limitations of the pattern matcher described in Section 6.5, knowing about the handled predicate patterns will help a regular user to write HILAREs that will be understood by the system.

How to extend. Currently, the deduction framework handles the three high-level use cases described in Section 6.1, as well as trivial deductions between similar HILAREs handled by the intermediate layer described in Section 6.4.

In order to extend the scope of what can be deduced, one must: 1. Identify an example of deduction that should be handled.

2.

Generalize that example to a deduction pattern.

3. Formalize and prove that deduction pattern within the existing Why3 model. It might be necessary to extend the existing model itself in order to reason about some language features. 4. Manually translate the statement of that deduction pattern to the Prolog solver. Again, it might be necessary to add new constructs to the solver for the statement to make sense.

5. Ensure that the exporter within MetAcsl can identify the patterns of HILAREs relevant to the deduction pattern.

This is exactly what was done for the three existing deduction patterns, and it is not an easy undertaking. However, we believe that the more patterns are added to the framework, the easier it will be to add new ones since the Prolog and Why3 models will already be complete enough to simply focus on the use case.

Chapter 7

The Wookey Case Study While one of the purposes of the HILARE language (Chapter 3) and its associated plugin MetAcsl (Chapter 4) is to specify and verify high-level requirements, another purpose is to ease the specification task over large code bases. Hence, it was a natural step to tackle a larger, realistic use case, to both stress-test our approach and demonstrate its merits. Hence, this chapter presents a real case study on a large low-level code base, and applies the techniques and methodology described in previous chapters to specify and verify a set of key security requirements.

WooKey [START_REF] Benadjila | WooKey: Designing a Trusted and Efficient USB Device[END_REF] is an open hardware and software project developed by the French National Cybersecurity Agency (ANSSI) aiming to build a custom USB thumb drive from the ground up focusing on security through built-in user data authentication and strong authentication. An example of an assembled WooKey device is shown in Figure 7.1. As seen on the figure, WooKey is a small device with a USB port, a touch screen and a smart card slot (on the photo, a white card is currently inserted). The device contains physical memory as a normal USB flash drive would. However, to access the stored data, any user must first insert her personal smart card then type a PIN code using the touch screen to unlock the storage. She can then use the device as a normal USB flash drive, then lock the memory again.

In this chapter, Section 7.1 presents the WooKey project and focuses on the low-level architecture and security model of the bootloader. Section 7.2 outlines multiple high-level security requirements that we want to verify on the bootloader. These requirements are refined into concrete HILAREs in Section 7.3 which describes our specification approach. Finally, Section 7.4 discusses how these properties have been formally verified via deductive verification, and thanks to the deduction framework we describe in Chapter 6.

Architecture

WooKey has multiple software components (mostly drivers) to manage the hardware key, such as SDIO1 , USB, cryptography management, etc. All components rely on the kernel called EwoK which contains them and enforces various security rules such as strict isolation between tasks and drivers or least privilege principle. Furthermore, the kernel is implemented in Ada/SPARK, often used in applied formal method domains such as avionics or railway systems to build safe software.

However, as every kernel must, the EwoK microkernel relies on the firmware's2 bootloader (called the loader from now on), by which it is initially executed. Indeed, the loader has a critical role in WooKey's architecture: it not only boots to the kernel but also contains a number of security safeguards.

The WooKey device has a built-in flash memory that contains both the loader and the firmware. It allows the firmware to be updated by a mechanism called DFU (Device Firmware Upgrade), which is triggered if a physical button is pushed during the boot sequence. Due to technical limitations, firmware upload and verification have to be performed in-place, where it will be executed. This led to the adoption of a flip-flop mechanism The flash memory is separated into two redundant banks called respectively flip and flop. Each bank contains a (possibly different) copy of the firmware (the kernel and all its tasks) and the tasks responsible for firmware upgrade. Furthermore, each bank has a Bank Header section containing meta-data about the installed firmware in the bank such as hash sums, signatures and version numbers. There is only one copy of the loader, which cannot be updated, at the beginning of the memory. The loader is responsible for verifying each firmware against its meta-data section (to detect corruption or malicious modifications) and then choosing a bank to boot on based on the version numbers.

Overall, it is critical to ensure that the loader is safe and secure, since it (i) cannot be updated after device assembly, (ii) has every privilege during its execution, and (iii) can thwart every security measures of the upper layers.

Defining Important Requirements

In collaboration with WooKey's developers from the ANSSI, we established a set of high-level requirements of which the proof would both be useful to increase trust in the loader and be able to evaluate the relevance of the HILARE language and MetAcsl over such a large project.

Requirement 7.1 (Persistent bank choice). Once a bank is chosen as a valid boot target, no further operations are realized on the other one.

As explained above and pictured in Figure 7.2, after performing various checks to determine if each bank -flip and flop -is securely bootable, the loader has to choose a bootable bank to boot on. It is essential that once the target bank is determined, every subsequent operation is realized on that bank (in particular, the boot itself!). Violating this requirement could allow booting to a corrupted firmware, for example via bypassing the subsequent integrity checks by performing them on a different bank. The outline of the whole operation of the loader can be described by a finite-state automaton, represented in Figure 7.3. Indeed, the functionalities of the loader can be grouped in 7 different steps, from initialization to the final boot. The semantics and implementation details of the intermediate steps do not matter to the requirement, which is that they must be executed linearly one after the other, except if an error (safety or security) occurs, which causes the system to enter a sink failed state.

Violating this requirement could allow completely bypassing the security checks performed in the intermediate states of the automaton, or recovering from a security breach by avoiding sink states of the automaton.

Requirement 7.3 (Principle of least memory access). Each step of the boot sequence only accesses the memory it strictly needs.

Since the loader has every privilege to access the memory, it is important to check that it does not abuse these privileges. Hence, it is necessary to establish the maximal memory footprint each step should have and ensure that these footprints are not overstepped. These expected footprints are detailed in Table 7.1, referring to the memory regions of Figure 7.2. Violating this requirement could allow the loader to spuriously modify the firmware, potentially corrupting it or adding a malicious payload.

Module

Can Notice how after the bank selection, the modules can read either the first or the second bank, but not both, echoing Requirement 7.1.

Specification Approach

This work is based on the first release of WooKey (a subsequent one was released during our work, fixing a number of security issues). Some statistics about WooKey's loader and its dependencies' code base are highlighted in Table 7.2. It has a large size, which we deemed representative enough to evaluate our approach, despite the highly specialized code it contains. Table 7.2: Some statistics about the loader's code base.

Setting up an environment where Frama-C can parse the whole code base was relatively pain-free thanks to tools such as Bear [Bear] and documentation by the Frama-C team [START_REF] Maroneze | Analysis scripts: helping automate case studies[END_REF]. At first, slight modifications where needed due to unsafe pointer casts in the code. Later, these were fixed directly by the WooKey team.

File structure. Most of the loader's logic is defined in a main.c file, while most of the other files contain helper functions to interface with the hardware and implementations of some common algorithms such as cyclic redundancy checks.

This main.c file defines a global structure ctx (context) which stores information gathered during the boot sequence, such as if the button for DFU was pushed, what bank was selected for boot, the final address to boot on, etc.

Another noteworthy file is automaton.c, which defines the automaton of Figure 7.3 and stores the current state of the sequence using a global variable state (an enumeration).

Remark 32 (Preservation of the original source). A major requirement of the specification approach is that it must not modify the original source code in any way.

Modifying the structure of the program while preserving the original behaviour would certainly ease the specification of some requirements. However, the goal of this chapter is to demonstrate that the HILARE language and MetAcsl are tools that are flexible enough to adapt to various forms of programs.

Hence, we have only allowed ourselves to annotate the existing code and possibly add ghost code.

The following Sections 7.3.1 and 7.3.2 respectively describe how Requirements 7.1 and 7.2 were refined into enforceable high-level properties, using the methodology outlines in Chapter 5. By lack of time, Requirement 7.3 was not refined during the thesis.

Persistent Bank Choice

To refine Requirement 7.1 into high-level code properties, it is necessary to first refine the meaning of bank being "chosen" as a valid boot target, and what an operation on a bank is.

Identifying the relevant variables. Helpfully, the boot sequence has a single function where the choice is made, called loader_exec_req_selectbank (which we will call selectbank from now on), representing the associated state in Figure 7.3.

Furthermore, the ctx global contains boolean fields boot_flip and boot_flop. It is intended that after the choice function, one and only one of these two fields must be set to true, representing the chosen bank. Additionally, metadata associated with the chosen bank must be stored into the fw (firmware) field of the same global.

Hence, a bank can be considered as chosen after the execution of selectbank without errors, and the choice is embodied by the three aforementioned fields. Lastly, a fourth field next_stage is set at a later stage with the final boot address, which strictly depends on the earlier choice.

Operations on banks. While the previous paragraphs define what it means for a bank to be "chosen" as a boot target, Requirement 7.1 also mentions the notion of "further operations" on a bank. We can conservatively define an operation on a bank (flip or flop) as any access (read or write) to:

1. its metadata i.e. the members of flip_shared_vars or flop_shared_vars (both global structures containing information such as the status and signature of the bank); 2. its data i.e. the whole memory region starting from the base address FLIP_BASE or FLOP_BASE and of size FLIP_SIZE (which are compile-time macros).

From requirements to properties. With the clarifications made in the above paragraphs, we can refine the requirements into the following set of high-and low-level properties.

Property 1 (Function assumption). The selectbank function is partially correct: it either enters an error state or returns in a state where exactly one of boot_flip and boot_flop is true and fw is set accordingly.

Property 2 (Persistent choice). No function other than selectbank shall modify the above three fields.

Property 3 (Enforced choice).

No function shall access or modify any location between FLIP_BASE and FLIP_BASE + FLIP_SIZE nor flip_shared_vars when boot_flip is set to false. Symmetrically for the flop bank.

Lastly, as mentioned previously, the next_stage field is set at a later stage (namely in function loader_exec_req_flashlock, or flashlock for short) to the final boot address, depending on the earlier bank choice and the potential press of the DFU button. Hence, it is important to check that this field is correctly set.

Property 4 (Continuation of choice -global).

No function other than flashlock shall modify the next_stage field.

Property 5 (Continuation of choice -local).

The flashlock function is partially correct: it correctly considers the earlier bank choice and the press of the physical button to decide where to boot.

As every location used in these properties is defined globally, it is easy to translate each property into its HILARE counterpart, using the writing and reading contexts.

For example, Property 2 can be specified with the macros and HILAREs listed in Figure 7.4. Notice how the usage of macros makes the actual specification much more legible, even by people without HILARE and MetAcsl background. We use a macro UNTOUCHED for encapsulating Pattern 4 from our methodology in Chapter 5 and another macro ALL_EXCEPT_SELECTBANK for specifying the set of targets.

As for Property 1, since it is simply a postcondition on the bank selection function, we can simply add an ensures clause to its contract or write a HILARE with the \postcond context, with the following predicate: In Section 7.4, we will discuss how using the deduction framework presented in Chapter 6 was useful for the verification of this property.

Booting Sequence Enforcement

Refining Requirement 7.2 to code properties is not quite as easy, as it needs a bit more knowledge of the underlying code.

Identifying the relevant variables. As mentioned in the beginning of the Section, the main anchor point for identifying the current state of the sequence is the global state variable from automaton.c. Furthermore, the automaton of Figure 7.3 is explicitly defined as a structure listing permitted transitions from one state to another, in a global constant structure called loader_automaton.

Manipulation of the automaton. The automaton.c file contains a list of facilities for manipulating the raw variables, such as loader_set_state or loader_is_valid_transition. These functions are then used in main.c to manage the control flow. Transition functions. The general outline of the loader's call graph is illustrated in Figure 7.5. There are a number of transition functions that contains the main logic of each step. For example, the previously mentioned selectbank contains the code that selects the bank, embodying the transition from "Wait DFU" to "Select bank" in Figure 7.3's automaton. These transition (or request) functions must return the expected next state in the sequence. This return value is carried back to loader_exec_automaton which calls loader_exec_transition to check that a transition to the requested next state exists, and then call the appropriate transition function.

Remark 34 (Automaton hypothesis).

One assumption that we must make is that the automaton described by the loader_automaton mentioned earlier is correct with respect to the intended boot sequence order of Figure 7.3. This must be carefully verified manually.

Refinement of the requirement. Based on the hypothesis of Remark 34, it is enough to specify that the loader strictly abides by the automaton to refine Requirement 7.2. The code can be divided into four main components (as seen in Figure 7.5), of which three manage the general operation of the sequence. This allows to divide the specification itself into three problems:

(i) the flow dispatcher must correctly use the automaton API and dispatch calls to the right transition functions based on the automaton;

(ii) the automaton API must correctly manipulate the raw data structures (state and loader_automaton). Furthermore, no other function can manipulate these structures;

(iii) the transition functions must comply with the nextstate parameter (read on).

While specifying local correction is important, it is also crucial to specify and verify our assumptions about the control flow of the program: any unexpected call from one component to another (for example, from the automaton API to a transition function) could compromise the boot order.

In particular, the bulk of the hundreds of functions used by the loader is included in the so-called "Low-level" component, where it is plausible for a call back to another component to go undetected. This is especially true since the hundreds of functions are scattered across dozens of files in a complex file tree. Hence, the last problem:

(iv) there must be no calls between the components other than those illustrated in Figure 7.5.

The next four small subsections each tackle one of the four presented specification problems.

The flow dispatcher

While specifying (i) is the cornerstone of the whole specification, this is relatively straightforward. Function loader_exec_automaton is simply a while loop repeatedly calling loader_exec_transition with the requested next state. There is not much to specify: static void loader_exec_automaton(loader_request_t req) { while (true) { req = loader_exec_automaton_transition(req); } } As for the main dispatch function, loader_exec_automaton_transition, it is essentially a large switch with safety checks. It is partially listed in Figure 7.6 (the first comment is part of the original source).

This function takes a request to a next state and calls the automaton API to check that the transition from the current state to the requested Notice that this function does not change the state of the automaton. It is the responsibility of each transition function to set the state according to the parameter it receives.

The correction of this function is mainly based on the correction of the automaton API itself (which is called to ensure that the transition is valid). The only thing about this function that must be verified is that for each possible request, the right function is called by the switch. This is best done visually.

The Automaton API

The automaton API and implementation, contained in automaton.c, is responsible for performing operations on the automaton and ensuring it remains in a valid state. It contains the four following functions: The values are chosen so that it is hard to transform a true into a false simply by inverting bits.

This small API and implementation of automaton is not only used in the bootloader of WooKey but in other components as well. Hence, verifying the behaviour of each function is important in terms of safety and security.

Property 6 (Correction of automaton functions). Each function of the automaton API has the expected behaviour.

Function contracts. To that end, we simply annotate each function with a classic ACSL contract that reflects its behaviour. We give an example of contract in Figure 7.7, where the behaviour of loader_is_valid_transition is specified.

In this contract, we make use of two ACSL predicates defined elsewhere: is_cell_accessor_index(i, s) and is_next_state_index(i, s, r). The first checks that s is an existing state (more precisely, the i th element of the state enumeration). The second one checks that r is a valid request from state state in the automaton (more precisely, it is the i th valid transition from that state).

The postcondition states that the parameter should be a valid state. We then have two possible behaviours:

1. If the request is valid for the current state, then the function should return sectrue (see Remark 35), and the current state shouldn't change.

2. Else, the function should return secfalse.

The same kind of contract is laid out for the three other functions.

Remark 36 (Centralization of specification). In order to avoid dispersing the different contracts and annotations throughout the dozens of files, and in an effort to always avoid modifying the original source (even for annotations), we use the ACSL Importer [Bau] Frama-C plugin to write all the specification in one place. The plugin then handles dispatching the different annotations everywhere needed. Property 7 (State remains valid). At every point of every function of the bootloader, the state global variable (and hence the result of loader_get_state) should be a valid state (a known member of the enumeration).

In the next section, we will see how this property can again be deduced from others.

As stated in (ii), we also want to ensure that all the global structures are only manipulated through the API. More precisely, the state global variable can only be modified by its setter.

Property 8 (State encapsulated in setter). The state global variable is not modified by any function, except loader_set_state.

This property is easily specified with a HILARE in the \writing context.

Transition functions

As described in Section 7.3.2, transition functions receive a parameter from the main dispatcher. This parameter, called nextstate in all transition functions, contains the state that the automaton is expected to have at the end of the transition. The transition function is supposed to call loader_set_state at some point to enact the transition. We want to verify that.

Property 9 (Enactment of transition). At the end of every transition function (except the ones which never return), the current state is nextstate or an error state.

In order to specify this property with a HILARE, we can leverage the \formal construct described in 3.3.4 to refer to the nextstate parameter, common to our targets. The resulting HILARE is listed in Figure 7.8.

We use a macro to define the set of all transition functions (the macro is not only used here). From this set, we exclude the three non-returning functions: two sink error states, and the final boot state (which just jumps to the boot address to launch the kernel). We then state that all of these functions should ensure that after their execution, the current state is either the nextstate parameter or an error.

Isolation of components

The last specification problem, (iv), is to ensure that the interfaces between the different components are those illustrated in Figure 7.5: there must be no spurious calls between unrelated components. We can separate this requirement into multiple properties.

Property 10 (Flow dispatcher calls everyone else). Functions from the flow dispatcher component are only called by themselves or main.

Indeed, the role of this component is to orchestrate the others. Any call back to that component would radically alter the flow of control.

Property 11 (Automaton state modification). The loader_set_state function is only called by transition functions, except to go to an error state or in main.

As seen in the previous component, the state of the automaton is actually changed in the transition functions (always to the next state of the transition). It is of the utmost importance that no other function (especially in the low-level component) changes the state.

Property 12 (Dispatch of transition functions). The transition functions are only called by the flow dispatcher, namely loader_exec_transition.

Finally, since the call of transition functions is orchestrated by the flow dispatcher, no other component should be able to call them.

All isolation properties can simply be stated using Pattern 9 from Chapter 5 to restrict the callees of some sets of functions.

Property 11 is slightly more complicated, as we must refer to the potential value passed to loader_set_state to allow for errors. It can be specified with the following HILARE: We state that in all functions except transition functions and main, if loader_set_state is called then it can only be to set the error state. We use the called_arg construct presented in Section 3.3.5 to refer to the value passed to the callee.

Verification Process

In the previous section, we refined two of the three main requirements presented in Section 7.2 into a set of properties (1 through 12). As illustrated for some of these properties, each one correspond to either a HILARE (a high-level property) or a low-level annotation such as a function contract.

All the HILAREs were centralized into a single specification.h file, which was passed to Frama-C after every other source file. As explained by Remark 36, the low-level annotations were centralized into a separated file handled by the ACSL Importer plugin. The full specification is available within the release of MetAcsl3 . Deductive verification. We used the Wp plugin in combination with MetAcsl to attempt proving all the above properties. The total number of inline assertions generated by MetAcsl is 183, which is relatively small compared to the size of the code base. This can be explained by the fact that most of the functions do not manipulate pointers, which allows MetAcsl to automatically discard most of the assertion candidates as trivially true or false.

Proving the remaining 183 assertions and the various contracts took a fair amount of effort. In some cases, it was necessary to manually write partial contracts and loop invariants. For example, it was necessary to add loop invariants in all transition functions for Property 9, since it specifies postconditions for these functions.

In several instances, it was useful to add new HILAREs as high-level lemmas to specify global properties that help prove the local assertions. Some of them were able to be immediately deduced from others (see Section 7.4.1).

Overall, every property has been proved by Wp and its SMT solvers without having to manually write proofs (using Coq for example), but instead simply adding specification locally or globally. The final specification takes approximately 6 minutes to be fully proved on a single 3 Ghz CPU core, and fully verify Requirements 7.1 and 7.2 on the bootloader.

Relevance of the Deduction Framework

The proof of several properties was greatly eased by the deduction framework built in Chapter 6. It was particularly useful in functions where we wanted to establish a postcondition (notably for Properties 1 and 9) but which called potentially many functions unrelated to that property.

Deducing "negative footprints". For example, Property 1 is a postcondition on the selectbank function, stating that the global fields related to the choice of banks end up in a correct state. Between the instructions which set these fields in a correct way and the end of the function, there are multiple calls to other functions, mainly for debugging purposes. These functions themselves call lower-level functions to interact with the system. However, none of them modify the variables related to the choice of banks.

Normally we would have been forced to specify and prove that each of these unrelated functions do not modify the relevant variables, either by stating that as a postcondition or as part of their frame clause. In both cases, as discussed in Section 6.1.1, this would have been a tedious work, especially for the functions involving assembly language. Instead, we were able to specify the HILAREs illustrated in Figure 7.9. For each of the three global fields ctx.boot_flip, ctx.boot_flop and ctx.fw, we first specify that no function called by selectbank modify them. This is easily proved with Wp and MetAcsl, and does not involve manual annotations.

Then we use the deduction framework to simply deduce that the value of these three fields must not have changed during the execution of these functions. This deduction is made under two seconds in each case. Since we use the translate:yes flag in the deduced properties, MetAcsl still generates local assertions for them, but they are immediately considered correct. Using them, Wp is able to automatically infer that calling low-level functions in selectbank does not modify the relevant variables, and thus that our desired postcondition is true. The same deduction pattern is used for the proof of Property 9.

Deducing a global invariant. In Property 7, we specify that the state of the automaton must remain valid at all times. This can be deduced from Property 8 stating that no function other than loader_set_state modifies the state, and from the fact that we proved this function maintains a valid state.

Using the deduction patterns illustrated in Sections 6.1.2 and 6.1.3 from Chapter 6, we are able to successively deduce that the valid state is a conditional invariant of all functions, and then a weak invariant. This helped prove assertions related to the call of the automaton API, which requires that the states passed as parameters are valid. This demonstrates the relevance of the deduction framework for real applications and its ability to scale on large codebase, where it is most useful.

Chapter 8

Related Work

This chapter presents other works related to our domain and the stance of our approach compared to them. Section 8.1 discusses previous efforts to specify and verify high-level properties while Section 8.2 describes work on systems similar to our case studies.

High-Level Specification and Verification

This Section relates to Chapter 2 through 4, presenting the main objective and solution of the thesis.

Previous works have proposed various approaches to make high-level requirements amenable to specification and verification.

Extensions of Specification Languages

The new specification language presented in Chapter 3 partially overlaps with previous extensions of contract-based specification languages such as JML [START_REF] Gary | JML: A Notation for Detailed Design[END_REF], a behavioural specification language for Java programs.

Indeed, JML has been extended by Cheon and Perumandla [START_REF] Cheon | Specifying and Checking Method Call Sequences in JML[END_REF] to specify protocols (properties pertaining to the order of call sequences), and by Trentelman and Huisman [START_REF] Trentelman | Extending JML Specifications with Temporal Logic[END_REF] to express temporal properties. While protocols may be expressible with our work as well as a subset of temporal properties, it may not be as simple as the syntax provided in their works, since such properties are not our main focus. On the other hand, while these works achieve their specific goals efficiently, they cannot be used to specify arbitrary high-level requirements on programs easily.

The general idea of defining a high-level concept in the global scope and then weaving it into the program has been partially explored before: the work of Pavlova et al. [START_REF] Pavlova | Enforcing High-Level Security Properties for Applets[END_REF] enables enforcing high-level security properties by performing a code transformation weaved throughout the implementation. But as mentioned in the previous chapter, the properties considered by the authors are very specific to the Java Card programming language, both in terms of specification (only some pre-defined categories of properties can be expressed) and verification: the code transformation is based on the assumption that there are a set of core functions acting as the main interfaces to the smart card. While their verification mechanism is quite similar to what we present in Chapter 4, it lacks generality at the specification level.

Similarly, ACSL [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF], the specification language we are choosing to extend in this work, has been extended in different ways in the past. To cite only a few, Stouls and Groslambert [START_REF] Stouls | Vérification de propriétés LTL sur des programmes C par génération d'annotations[END_REF] introduced Aoraï1 to allow the specification and verification of complex temporal properties (very partially supported by our approach) while Blatter et al. [START_REF] Blatter | Static and Dynamic Verification of Relational Properties on Self-composed C Code[END_REF] explored the specification and verification of relational properties, a different class of interesting properties, with Rpp2 . Again, these efforts have been very successful but target different requirements than this work.

Link with Aspect Oriented Programming

At the same time, this concept of cross-cutting global object is analogous to the Aspect-Oriented Programming (AOP) [START_REF] Kiczales | Aspect-Oriented Programming[END_REF] paradigm. This paradigm allows writing code (called concerns) at the global level while specifying a set of control flow points (called pointcuts) where the code needed by the concern should be inserted. For example, this may be useful for easily adding logging to an already existing implementation.

Our approach can be seen as writing cross-cutting concerns at specification level rather than code level. Indeed, contexts, as introduced in Chapters 2 and 3, can be related to AOP's pointcuts: they are a criterion for specifying a set of control flow points and performing a local specification action. This comparison is continued within Chapters 2 and 3.

Several other works explore what they identify as Aspect-Oriented Specification, in different ways than ours: Zhao and Rinard [START_REF] Zhao | Pipa: A Behavioral Interface Specification Language for Aspect[END_REF] explore how to specify programs written in AOP with a notion of invariant, and propose a translation of that specification to JML. Bagherzadeh et al. [START_REF] Bagherzadeh | Translucid Contracts: Expressive Specification and Modular Verification for Aspect-Oriented Interfaces[END_REF] propose another way to reason about AOP programs. Compared to our work, these efforts focus only on reasoning about programs that are already written in an AOP style, i.e. where some pervasive programming logic is already centralized at a single point, whereas we want to tackle arbitrary program and only centralize at the specification level.

Closer to our work, Yamada and Watanabe [START_REF] Yamada | An Aspect-Oriented Approach to Modular Behavioral Specification[END_REF] propose another specification approach that can be translated to JML, allowing the specification of generalized weak invariants over arbitrary classes and methods, by specifying so-called assertion aspects inspired by AOP concepts, which translate to local annotations. While our work has the same inspiration (trying to centralize similar assertions spanning many functions), this approach lack the expressiveness we are aiming for, especially in terms of memory management.

Case Studies

This Section relates to the simple case study of Chapters 3 and 4 as well as the more comprehensive case studies of Chapters 5 and 7.

Verification of kernels and firmwares. Defining and verifying security properties of OS kernels down to the concrete source code was done in several projects, including notably [Ric10; Mur+13; CSG16; Dam+13; Jom+18; Les15], with different strategies. Compared to these projects, which target microprocessors with MMU-based memory isolation, the security properties shown in this thesis are just simple examples for the sake of illustration and better match microcontroller setups, which usually have no MMU and thus do not implement virtual memory. For instance, a model of the hardware including the MMU, the processor's privilege levels and the program counter is required to show that the MMU configuration matches the kernel's internal control structures and that the control flow only enters the kernel privilege level at the defined entry points for system calls, exception, and interrupt handling. Moreover, some projects prove higher-level security policy abstractions like information flow enforcement [Mur+13; Dam+13; CSG16], from which confidentiality and integrity properties similar to the ones introduced in this thesis can be derived, such as memory isolation in Pip [START_REF] Jomaa | Proof-Oriented Design of a Separation Kernel with Minimal Trusted Computing Base[END_REF], as defined for a separation kernel [START_REF] Rushby | Design and Verification of Secure Systems[END_REF].

Compared to these projects, the contribution illustrated in this thesis is the ability to both define and mechanically verify global security properties directly at the level of the C source code. Indeed, all previous approaches first define and prove the security properties on an abstract model of the OS kernel and the underlying hardware and second show that the concrete, low-level code executed refines the abstract model and still verifies the security properties defined on the abstract model. It is argued that for verification purposes, it is easier to reason on an abstract model than on low-level concrete source code [START_REF] Murray | seL4: from General Purpose to a Proof of Information Flow Enforcement[END_REF]. On the other hand, proving that the source code refines the model can be very difficult if the code has not been explicitly designed for that purpose: rather than designing and bending the abstract model to fit on existing code, it is sometimes easier to directly reason on it.

Similarly, in seL4, an abstract model in Isabelle/HOL and the C source code are written separately and all mechanized proofs of security properties rely on a first mechanized proof of correctness that the C source code refines the abstract model [START_REF] Murray | seL4: from General Purpose to a Proof of Information Flow Enforcement[END_REF]. This proof of correctness initially cost 25 person-years [START_REF] Klein | seL4: Formal Verification of an OS Kernel[END_REF] and the team is still working on how to improve its maintainability [START_REF] Andronick | A Million Lines of Proof About a Moving Target (Invited Talk)[END_REF].

To make this approach more scalable, in CertiKOS, the OS kernel and the hardware are modeled as a set of small stackable layers (also called deep specifications), whose interfaces and observable behaviours are defined in Coq [START_REF] Gu | Cer-tiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels[END_REF]. In each layer, the C or assembly implementation is verified to be a refinement of the layer's upper interface (called overlay) assuming that the layer's lower interface (called underlay) is correctly implemented by lower layers. The verification of each layer implementation is done using Coq tactics [START_REF] Gu | Deep Specifications and Certified Abstraction Layers[END_REF]. Global properties can then be proved using only the Coq model of the layers' interfaces.

The drawback of such a modularized approach is that it makes it difficult to obtain an efficient implementation of a microkernel, because in microkernels targeting performance the implementations of the required features are entangled. Indeed, by design such software must only implement the bare minimal features required at the kernel privilege level and the performance of the microkernel is critical for the performance of the whole software system.

In PROSPER [START_REF] Dam | Formal Verification of Information Flow Security for a Simple Arm-Based Separation Kernel[END_REF], refinement steps are bypassed using a HOL4 model of the ARMv7 instruction set architecture [START_REF] Fox | A Trustworthy Monadic Formalization of the ARMv7 Instruction Set Architecture[END_REF]. The information flow properties are defined and verified on an abstract model of idealized ARMv7 machines representing the user-level execution contexts and the kernel execution context. In the verification process, HOL4 is used to generate pre-and post-conditions for atomic executions of the kernel at boot-time and from entry to exit to/from the kernel execution context (that is, for hypercall, exception and interrupt handling).

The verification of the concrete kernel code thus consists in verifying these pre-and post-conditions and is done at the ARMv7 binary code level using the BAP suite [START_REF] Brumley | BAP: A Binary Analysis Platform[END_REF]. Although this approach has not been tested on a unified full-featured OS microkernel, it is likely to be more scalable than in seL4 and more performance-compatible than in CertiKOS. However, it forces to reason on a model of the target machine architecture, making the source code an implementation detail, while MetAcsl allows us to reason on the C source code and its adaptations to the target machine architecture.

In Pip and ProvenCore, the C source code is automatically generated from an executable specification, in Coq for Pip [START_REF] Jomaa | Proof-Oriented Design of a Separation Kernel with Minimal Trusted Computing Base[END_REF] and in a proprietary language called Smart for ProvenCore [START_REF] Lescuyer | ProvenCore: Towards a Verified Isolation Micro-Kernel[END_REF], on which all properties and mechanized proofs are written. The extension of the proof to the C code relies on the code generation process, whose proof of correctness is ongoing for Pip [START_REF] Jomaa | Proof-Oriented Design of a Separation Kernel with Minimal Trusted Computing Base[END_REF] and is not public for ProvenCore. While generating C code from an abstract executable specification makes it easier to prove the actual C code, this adds the open challenge of being able to generate efficient code and certifying such a generator. Ongoing efforts study Coq tactics [START_REF] Pit-Claudel | Extensible Extraction of Efficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs[END_REF] that implement proven heuristics to generate efficient code.

A few security properties of WooKey's bootloader were defined in [ANS+]. Some of the authors used the Frama-C GUI and the EVA plugin [START_REF] Blazy | Structuring Abstract Interpreters Through State and Value Abstractions[END_REF] to understand the undocumented code by performing value analysis via abstract interpretation. With this approach, they infer the transitions of the automaton from the code and state that since the automaton is simple, it is enough to verify visually that there is no unexpected sequence of transitions, but suggest the usage of MetAcsl for more complex properties. They also check for runtime errors and dead code with EVA. Then the authors proceed to use dynamic symbolic execution with KLEE [Klee] to check a functional property of the bootloader: ensuring that the dual-bank bootloader cannot boot from previous firmware versions (the anti-rollback mechanism). Compared to our work in Chapter 7, the authors of [ANS+] only very lightly apply the approach of global specification, instead focusing on specific functions and completely automatic verification rather than deductive verification.

Bootloader verification was attempted for SABLE [START_REF] Scott | Formal Verification of a Modern Boot Loader[END_REF] and a simplified variant of a RISC-V first-stage bootloader (FSBL) [START_REF] Straznickas | Towards a Verified First-Stage Bootloader in Coq[END_REF]. In both cases, the bootloaders ensure integrity and authenticity of the loaded software and the platform state, although with different strategies. In SABLE, the dynamic root of trust measurement facility of Intel and AMD processors as well as a hardware TPM are used to prevent system image decryption in case of failure and otherwise allow an external user to do remote attestation of the successful boot process. More traditionally and like in WooKey, the RISC-V FSBL studied in [START_REF] Straznickas | Towards a Verified First-Stage Bootloader in Coq[END_REF] is the ROM-located first piece of software executed at boot and checks the cryptographic signature of the loaded software.

In both projects the verification follows techniques already used for microkernels but is reported as partially achieved. SABLE follows the strategy of seL4 [START_REF] Klein | seL4: Formal Verification of an OS Kernel[END_REF] while the RISC-V FSBL follows the code generation strategy down to RISC-V binary code using Bedrock2 [EG], an imperative language and compiler written in Coq, and the riscv-coq implementation of the RISC-V specification in Coq. Interestingly the RISC-V FSBL verification covers the use of the hardware DMA to load the software image.

Industrial Application of HILARE

The HILARE based approach and the MetAcsl tool presented in this thesis have already been used in a large-scale industrial verification project [START_REF] Djoudi | Formal verification of a JavaCard virtual machine with Frama-C[END_REF].

It was performed for a security-critical smart card product in order to perform its rigorous Common Criteria based certification at level EAL6. Security of a smart card strongly relies on the requirement that the underlying JavaCard virtual machine ensures necessary isolation properties.

In that project, formal verification of a JavaCard Virtual Machine implementation was performed by Thales using the Frama-C verification tool set. It strongly relied on the MetAcsl tool. The target security properties include integrity and confidentiality. The target implementation contains over 7 000 lines of C code. In particular, based on only 36 HILAREs manually specified by verification engineers, approximately 400 000 lines of ACSL annotations (leading to over 27 400 proof goals) were automatically generated by MetAcsl and formally proved by Wp. This industrial verification project illustrates the potential of industrial applications of the contributions proposed in this work.

Chapter 9 Conclusion

Summary

In this thesis, we have provided a solution to the problem of specifying high-level requirements on large programs, and applied this solution to the security of a large C program.

The original problem that we are addressing is the lack of specification formalism for specifying requirements that are not specific to small code units but rather pertain to large components of the system. This problem was especially apparent for security requirements such as memory isolation, access control, confidentiality and privacy. There was originally no means of specifying and verifying these requirements in an expressive, maintainable and traceable way.

We proposed a new class of properties called meta-properties, formalized on a small, abstract programming language: A-Lang. These language-independent properties are essentially global predicates that are woven across the source code of large components, according to a criterion called context. Contexts are rules to automatically select code points where the predicate should hold and allow predicates to refer to local information: for example, a predicate can check whether an instruction is modifying a particular variable or not. Several base contexts are highlighted for interacting with memory operations and function calls.

In order to make these meta-properties actionable, we refined their formal framework into a concrete way to express and validate them on a real programming language, namely C. We designed a concrete syntax, called the HILARE language, for specifying meta-properties on C programs. This syntax is an extension of ACSL, a pre-existing contract-based specification language for C programs. We showed how the formal con-texts translate for C and how the quirks of the C language interact with high-level requirements. In particular, we developed several extensions on top of the initial formalized features to ease the specification of structured C programs.

Specification written in ACSL can be assessed with a variety of tools in the Frama-C framework's ecosystem. We devised an automatic technique to translate global HILARE requirements to local ACSL specification. This allows the existing tools to be reused in order to build a complete tool chain for HILARE verification. This automatic translation was implemented in a new Frama-C plugin called MetAcsl.

While the translation from global to local requirements makes verification possible, it does not always scale well when the code base is large, especially when using verification techniques where manual effort is needed. To alleviate the problem, we designed the foundations for a sound framework which enables deducing global requirements from others, without a local intermediate step. We provided proofs of the framework's soundness machine-checked with Why3 and implemented a limited number of deduction patterns in an efficient Prolog solver, integrated seamlessly within MetAcsl.

Given all these tools, we devised a general methodology for users wanting to tackle the specification and verification of high-level requirements on real C programs. This methodology articulates the notions of the thesis into clear steps and patterns that can be reused across different specification problems. Numerous examples are given, from the specification of memory confidentiality to security properties of an artificial micro-kernel. Lastly, we applied this methodology to a concrete program found in the wild: the bootloader of the WooKey project. Using the concepts and tools presented in this thesis, we were able to specify several security requirements on the bootloader and verify that the code is valid with respect to these properties, with little manual effort.

The MetAcsl tool has been successfully applied by Thales in an industrial context for formal verification of security properties of a JavaCard Virtual Machine [START_REF] Djoudi | Formal verification of a JavaCard virtual machine with Frama-C[END_REF]. We believe that it has a strong potential for other industrial applications for verification of security-critical software.

Future Work

There are several interesting research avenues that build upon the work presented in this document.

Extending and Improving the Deduction Framework

The deduction framework presented in Chapter 6 is still experimental and has several limitations.

Currently, the automatic translation from MetAcsl to Prolog handles only simple cases. In particular, only non-pointer global variables are considered by the pattern matcher: arrays and pointers in general are not handled and nothing can be deduced about HILAREs referencing them.

Furthermore, the pattern-matcher only recognizes simple forms of properties and do not handle composition well. For example, it will recognize that the predicate \separated(\written, &A) is stating that A is not modified, but not that \separated(\written, &A) && \separated(\written, &B) is the same for two variables.

This could be improved by either improving the pattern-matcher to handle logical operators or include a subset of ACSL and its semantic inside the Prolog engine, and a corresponding proof in the Why3 model. Furthermore, as discussed in Section 6.6, there are only three simple deduction patterns currently implemented in the solver and proved in Why3: there is a lot of room for extending the scope of the deduction. One obvious extension is the addition of more deduction patterns to cover more situations where deduction would be desirable.

More generally, the fact that the framework currently only deals with ad-hoc patterns is a limitation. It would be desirable for the framework the have a more general purpose. For example, should a sizeable subset of ACSL be formalized in Why3, the deduction framework could be able to deduce high-level requirements from others only based on their semantics. However, it would be a challenge to design such a general approach while retaining its efficiency on large code bases.

Higher-Level Specification Language

While they enable the specification of high-level requirements, metaproperties and HILAREs are still quite close to the code: the user must precisely qualify the set of targets, the kind of operations targeted by the context and correctly refer to the global state. This allows specifying properties in the global scope but can sometimes feel verbose, and hard to proofread for a domain expert with little knowledge of the code base. This can be alleviated with macros, as demonstrated in this thesis: C macros can abstract away lists of targets and HILARE patterns (as seen for example in Figure 7.4) and even parts of predicates. However, this is a limited approach as it relies on the C preprocessor, which only manipulates text instead of semantic tokens and is notoriously hard to work with.

A macro system, not documented in this thesis, has been implemented within MetAcsl to serve as a potential future foundation for a more robust means to abstract low-level operations in a way that domain experts can understand. This budding macro system was used extensively in the specification of the confidentiality use case presented in Chapter 3. The actual macro definitions are listed in Figure A.1 in the appendix. Currently, it does not offer more features than the C preprocessor allows.

A good way of improving upon this approach could be to develop this abstraction system by specializing it: there could be abstract sets of functions, predicates, HILARE patterns that are statically type-checked instead of simply replacing text. Using this, a set of useful built-in macros could be aggregated into a library of macros.

One could then imagine that the specification of an application should only be written using this higher-level library, only punctually adding new domain-specific ones, so that the specification remains legible for all. This could also enable the generation of specification from other sources such as abstract models from other applications, where the "glue" between the higher-level specification and the concrete code is materialized by a set of macros defined afterwards. Abstract : Specification and verification of highlevel requirements (such as security properties like data integrity or confidentiality) remains an important challenge for the industrial practice, despite being a major part of functional specifications. This thesis presents a formal framework for their expression called meta-properties, supported by a description on an abstract programming language, focusing on properties related to memory and global invariants. This framework is then applied to the C programming language, introducing the HI-LARE extension to ACSL, to allow easy specification of these requirements on large C programs.

Verification techniques for HILARE, based on local assertion generation and reuse of the existing Frama-C analyzers, are presented and implemented into the MetAcsl plugin for Frama-C. A complete methodology for assessing large programs is laid out, articulating meta-properties, verification techniques and quirks specific to the C programming language. This methodology is illustrated to a complex case study involving the bootloader of WooKey, a secure USB storage device. Finally, we explore another way to verify a high-level requirement deducing it from others, through a formal system proven in Why3 and integrated in MetAcsl.
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 21 Figure 2.1: The control-flow graph of a main function
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 423 Figure 2.3: Illustration of the calling context on function main from Figure 2.1

  Figure 2.4: Illustration of invariant contexts on function checkStatus from Figure 2.2
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 25 Figure 2.5: Semantics of the requirement on the vault example
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 28 Figure 2.8: Derivation tree for Example 12. Redundant derivations are omitted.

  Figure 3.1: The running example, a function mem testing the presence of a value in an array

  Figure 3.2: Important ACSL terms and predicates

  Figure 3.3: A contract for mem

  Figure 3.4: Inline annotations for mem
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 3 Figure 3.5: The Frama-C plugins, categorized

  Figure 3.6: Examples of HILARE properties and contexts

  Figure 3.7: Illustration of the writing context on a small C program

  meta \prop, \name(pre_process_whitelist), \targets(\ALL), \context(\calling), ! \fguard( \called == \formal(pre_process) && \formal(pre_process) == do_not_call );

Figure 3 . 8 :

 38 Figure 3.8: The usage of name binding, illustrated

  meta \prop, \name(sqrt_pos), \targets(\ALL), \context(\calling), \tguard(\called == sqrt ==> \fguard(\called_arg(x) >= 0.));

  Figure 3.9: Public programming interface of the page manager
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 3 Figure 3.10: Specification of confidentiality requirements with HILARE

  int* G; /*@ assigns T[0 .. 40]; */ void bar(int* T); void foo(int* p) { int i = *p; while(--i) { *p = i; bar(G); } } (a) original program // \separated shortened to \sep void foo(int* p) { int i = *p; while(1) { /*@assert \sep(&i, G);*/ i = i -1; if(i == 0) break; /*@assert \sep(p, G);*/ *p = i; /*@assert \sep(G+(0..40), G); */ bar(G); } } (b) instantiation on function foo
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 41 Figure 4.1: Basic generation strategy, illustrated
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 24 Let us consider the same original program from Example 23 and the following HILARE: meta \prop, \name(G_increasing), \targets(\ALL), \context(\writing), \separated(\written, G) || (\at(*G, Before) <= \at(*G, After))

  assert \separated(&i, G) || (\at(*G, _before_1) <= \at(*G, Here); */ if(i == 0) break; _before_2: *p = i; /*@assert \separated(p, G) || (\at(*G, _before_2) <= \at(*G, Here); */ _before_3: bar(p); /*@assert \separated(G+(0..40), G) || (\at(*G, _before_3) <= \at(*G, Here); */ } }

Figure 4 . 2 :

 42 Figure 4.2: Translation strategy for bindings on Figure 3.8

  char A, B = 1; int* p = &A; *p = 0; // Undefined behaviour: buffer overflow //@ assert compiler_dependent: B == 1;
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 51 Figure 5.1: Modeling tasks and memory regions in a microkernel
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 5 Figure 5.2: The HILARE base pattern

  To disallow even brief violations of the invariant, one should use the \strong_invariant context, which ensures the invariant is valid at each sequence point of the program, as seen in Pattern 3.Pattern 2 (Global post-condition).Name specifies that the predicate Prop holds at the end of each function in the Targets set.

  \targets(\diff(\ALL, {enc_init})), \context(\writing), \separated(\written, &private_key); Pattern 5 (Conditional memory modification). Name restricts the situations when functions in the Targets set can write to Location.When Guard holds, the writing operation is allowed only if Constraint also holds just before the write operation.

  &var) ==> (\at(var, Before) <= \at(var, After));
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 535 Figure 5.3: Region integrity and confidentiality
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 56 Figure 5.6: Requirement of the scheduler
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 57 Figure 5.7: Selected footprint modification constraints

  char array[1000]; int index = 0; /* H undreds of functions ... */ /*@ meta \prop, \name(end_of_array_untouched), \targets(\ALL), \context(\writing), \separated(\written, array + (900 .. 999)); */

  int A, B; void f1(); // A function which does not modify A /* Potentially many other functions not modify ing A */ void f0() { A = 42; f1(); //@ assert GOAL: A == 42; }

  meta \prop, \name(A_untouched_by_f1), \targets(\callees(f1)), \context(\writing), \separated(\written, &A);

  int A, B, C, ...; /*@ assigns B; */ void f2() { B = 1; } /*@ assigns C, ...; */ void f3() { C = B; ... } // Same for all callees of f1 /*@ assigns B, C, ...; */ void f1() { f2(); f3(); ...}

  Pre) == \at(A, Post);

  if(A != B) { /* Error */ abort(); } A *= 2; B *= 2; } void f2(); // Function modifying neither A nor B /* M any functions w ith the same property ... */ void fN(); // Idem

  , \at(A, Pre) == \at(B, Pre) ==> \at(A, Post) == \at(B, Post);

  Figure 6.2: Structural definition of a program in Why3

  Figure 6.3: Semantics of programs in Why3

  lemma negative_assigns: forall prog: program, l: location, f: block, calls: S.fset block, pre post: state, v: value. valid_program prog -> (* 'calls' is the set of f callees *) callees prog f calls -> (* f does not modify locally l *) untouched f l -> (* same for all callees *) (forall f'. S.mem f' calls -> untouched f' l) -> (* the value of l after and before f *) state_block prog f pre post -> (* is the same *) (M.mapsto l v pre <-> M.mapsto l v post)
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 64 Figure 6.4: The intermediate layer of deduction

%

  Try to deduce directly with simple rules meta_valid(C, P, S) :-meta_inter(C, P, S). % Try to deduce as a negative_assigns meta_valid("Postcond", negative_assigns(L), S) :-% Functions do not modify L meta_inter("Writing", not_written(L), S) & % Callees are within S callees_restrict(S, S).
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 65 Figure 6.5: Part of the high-level layer of deduction
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 67 Figure 6.7: Knowledge base for the Prolog engine (automatically generated from Figure 6.6)
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 7 Figure 7.1: An assembled WooKey device.
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 72 Figure 7.2: Flash memory layout with flip-flop redundancy. Memory addresses increase upwards.
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 7 Figure 7.5: Outline of the loader's call graph.
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 7 Figure 7.7: The contract of a function from the automaton API
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 78 Figure 7.8: Specification of the expected state change for transitions
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  Algorithm 2The vault manager, a large multi-component application

	vaultOpen ← false	⊲ Global variable controlling the vault
	component Lock management	⊲ Functions interacting with the vault
	function Lock	
	function Unlock	
	…	
	component Cryptography	⊲ Other unrelated components
	function GCD	
	function Authenticate	
	…	
	component Keypad	
	component Network	
	…	

  Invariant. The \strong_invariant context simply provides a contextualization mapping returning every edge of the CFG of a given

	int A, B, C;
	// level is the current confidentiality level
	unsigned level, secret_size;
	int* secret; // a secret array with secret_size elements
	void main(); // main entry point
	void def_level(int val); // set confidentiality level
	void backdoor_root(); // backdoor that can always access secret
	// return secret only if level is sufficient
	int read_secret(unsigned n);
	/*@
	//A always remains equal to B in function main

Definition 23 (Equivalent Annotation Generation).

  For a given C program and a HILARE with the form

/*@ meta \prop, \name(...), \targets(S), \context(C), P; */ we use the following algorithm to instantiate the HILARE: for all function ∈ do for all program point selected by do ← Instantiate( , , ) ⊲ Instantiate meta-variables in Assert( , ) ⊲ Add assert P'; at point end for end for

Table 4 .

 4 2: Automatic approaches compared to manual verification input that invalidates a HILARE). If so, the mutant is considered invalid (this is the ground truth).

	Functions HILARE Assertions After simplification Mutants (invalid/total)
	11	11	408	273	42/126
	Table 4.1: Statistics about the MetAcsl instrumentation of the page man-
	ager				
				Wp E-ACSL
			False Positives	0/42	29/42
			False Negatives	0/84	0/84
			Interrupted (RTE) N/A 19/126

  Targets set can write to the global variable Var. When Guard holds, the writing operation is allowed only if the relation between its previous and new value is valid according to the predicate Relation.

	meta \prop, \name(state_change_requires_privilege), \targets(\ALL), \context(\writing), \true && // Can be omitted \overlaps(\written, &logic_state) ==> has_privilege != 0; Pattern 6 (Precise conditional memory modification). Name \name(Name), \targets(Targets), \context(\writing), Guard && \overlaps(\written, &Var) stricts the situations when functions in the meta \prop, ==> Relation;	re-

  It can essentially infer that a HILARE is valid if a stronger form of it is already established, or if it is simply the combination of multiple identical properties with different target sets.

	% meta_inter(?Context, ?Predicate, ?Set)
	% Means that a HILARE with these components
	% can be deduced by the intermediate layer
	% If HILARE already proved, it is immediately deduced
	meta_inter(C, P, S) :-meta_ground(C, P, S).
	% Weak invariant implies postcondition
	meta_inter("Postcond", P, S) :-
	meta_inter("Weak invariant", P, S).
	% Weak invariant implies precondition
	meta_inter("Precond", P, S) :-
	meta_inter("Weak invariant", P, S).
	% Strong invariant implies weak invariant
	meta_inter("Weak invariant", P, S) :-
	meta_inter("Strong invariant", P, S).
	% HILARE is valid if the same HILARE
	% is valid for a larger set of functions
	meta_inter(C, P, S) :-subsumes(C, P, S, _).
	% HILARE is valid if its set of targets can be partitioned
	% into two sets for which the property is already proved valid
	meta_inter(C, P, S) :-merge_props(C, P, S, _, _).

  In the above predicate, the operator between the two last statements should be an exclusive disjunction to correctly reflect the property. However since the ctx.fw field cannot have two different values, a simple disjunction is enough here.

	#define UNTOUCHED(title, tset, loc) \
	meta \prop, \
	\name(title), \
	\targets(tset), \
	\context(\writing), \
	\separated(\written, loc);
	#define ALL_EXCEPT_SELECTBANK \
	(\diff(\ALL, loader_exec_req_selectbank))
	/*@ UNTOUCHED(bank_ro_1, ALL_EXCEPT_SELECTBANK, &ctx.fw) */
	/*@ UNTOUCHED(bank_ro_2, ALL_EXCEPT_SELECTBANK, &ctx.boot_flip) */
	/*@ UNTOUCHED(bank_ro_3, ALL_EXCEPT_SELECTBANK, &ctx.boot_flop) */
	Figure 7.4: Specification of Property 2 with HILAREs
	Remark 33.
	ensures \result == LOADER_REQ_ERROR ||
	(ctx.boot_flip == sectrue && ctx.fw == &flip_shared_vars.fw) ||
	(ctx.boot_flop == sectrue && ctx.fw == &flop_shared_vars.fw);

  Figure 7.6: The main dispatch function of WooKey's bootloader one is valid. It then calls the appropriate transition function using a large switch, passing the next state to the transition function.

	static loader_request_t loader_exec_automaton_transition(
	const loader_request_t req) {
	loader_state_t state = loader_get_state();
	if (! loader_is_valid_transition(state, req)) {
	loader_set_state(LOADER_ERROR);
	goto end_transition;
	}
	loader_state_t nextstate = loader_next_state(state, req);
	/* nextstate must alw ay s be valid,
	* considering the automaton defined
	* in automaton.c */
	switch(req) {
	case LOADER_REQ_INIT:
	return loader_exec_req_init(nextstate);
	// One case for each possible state, omitted
	// ...
	}
	}

  The first two functions manipulate a global variable state, which contains the current state of the automaton. The two last functions loader_next_state and loader_is_valid_transition perform lookups in the global loader_automaton structure, which contains a representation of all valid transitions. The secbool type is a special type from WooKey intended to implement booleans that are resistant to fault injections[START_REF] Voas | Fault injection for the masses[END_REF]. It has the following definition:

	void	loader_set_state(const loader_state_t new_state);
	// Return the next state given the current one and a transition request
	loader_state_t loader_next_state(const loader_state_t current_state,
		const loader_request_t request);
	// Check that a transition request is valid given the current state
	secbool loader_is_valid_transition(const loader_state_t current_state,
		const loader_request_t request);
	Remark 35 (Secure booleans). /* Secure boolean against fault
		injections for critical tests */
	typedef enum
	{secfalse = 0x55aa55aa, sectrue = 0xaa55aa55} secbool;
		// Get the current state
		loader_state_t loader_get_state(void);
		// Set the current state

  Listing A.3: Full specification of the manager: contracts and HILAREs

	\constant(page_data(p)) \targets(\diff(\ALL, init)),
	); \context(\strong_invariant),
	\forall_page(p, !page_allocated(p) ==> clean_page(p));
		//Never read from a higher confidentiality page
	meta \prop, //The confidentiality of an allocated page
	\name(confidential_read), //is constant outside of encrypt/decrypt
	\targets(\diff(\ALL, init)), meta \prop,
	\context(\reading), \name(constant_conf_level),
	\forall_page(p, \targets(\diff(\ALL, {init, page_encrypt, page_decrypt})),
	page_allocated(p) && user_level < page_level(p) ==> \context(\writing),
	\hidden(page_data(p)) \forall_page(p,
		); page_allocated(p) ==> \constant(&p->confidentiality_level)
	);	
		//Free pages are not written upon
	meta \prop, //The encryption level is constant outside of encrypt/decrypt
	\name(constant_free_pages), meta \prop,
	\targets(\diff(\ALL, init)), \name(constant_enc_level),
	\context(\writing), \targets(\diff(\ALL, {init, page_encrypt, page_decrypt})),
	\forall_page(p, \context(\writing),
	!page_allocated(p) ==> \constant(page_data(p)) \forall_page(p, \constant(&p->encrypted_level));
		);
	//The encryption/decryption primitives are
	//Free pages are not read from //only called within page_encrypt and page_decrypt
	meta \prop, meta \prop,
	\name(hidden_free_page), \name(encdec_uncalled),
	\targets(\diff(\ALL, init)), \targets(\diff(\ALL, {page_encrypt, page_decrypt})),
	\context(\reading), \context(\calling),
	\forall_page(p, not_called(encrypt) && not_called(decrypt);
		!page_allocated(p) ==> \hidden(page_data(p))
	); meta \prop,
		\name(pages_array_allocated),
		//Current confidentiality is only modified \targets(\diff(\ALL, init)),
		//through raise/lower_conf_level \context(\strong_invariant),
		meta \prop, \forall integer i; 0 <= i < MAX_PAGE_NB ==> \valid(pages + i);
	*/	\name(curconf_wrapped),
		\targets(\diff(\ALL, {raise_conf_level, lower_conf_level, init})),
		\context(\writing), \constant(&user_level);
		//Confidentiality modifiers are not called within the library
		meta \prop,
		\name(curconf_wrapped_2),
		\targets(\ALL),
		\context(\calling),
		not_called(raise_conf_level) &&
		not_called(lower_conf_level);
		//The content of a free page is always null
		meta \prop,
		\name(free_page_null),

In C, (t*)e is a cast forcing expression e to be interpreted as a pointer on values of type t.

Or sets of pointers, in which case this is checked for each pair.

\overlaps is introduced for the needs of the thesis and does not exist in pure ACSL. However, it does exist in the context of HILARE (see next section) and the associated Frama-C plugin.

Unsigned overflows have well-defined semantics in C (wrapping around). However, checking for their absence can also be enabled in RTE.

Plugins can also communicate via their respective API when available.

Technically Never tried, or Considered valid for axioms.

This feature relies on the Frama-C plugin Callgraph, which makes gross but sound over-approximations of these sets in the presence of indirect calls (i.e. function pointers).

A fuction parameter is also called a formal, hence the name.

Available on Gitlab at the following location: https://git.frama-c.com/pub/meta.

https://git.frama-c.com/pub/meta/-/tree/master/case_studies/ confidentiality

https://git.frama-c.com/pub/meta

See Frama-C manual.

By default, this means that every predicate is instantiated as an assertion. This is configurable via the global -meta-asserts and -meta-checks flags.

See https://github.com/gpetiot/Frama-C-Mutation.

For example, simplification saves 8 seconds on the deductive verification of the correct confidentiality implementation (for a total of 24 seconds).

The last row is not relevant for deductive verification, see next subsection.

E-ACSL add checks to ensure that no runtime error (segmentation faults, overflow, …) will occur and stops the program upon violation.

One could use e.g. the dedicated Rpp plugin for that purpose.

Such as CaFE or Aoraï.

Where is defined as all kernel entry points such as system calls, exceptions and interrupts.

https://git.frama-c.com/pub/meta

Secure Digital Input Output, to interact with the mass storage.

Firmware is the name given to software that drives low-level functions of hardware.

In folder case_studies/wookey/loader at https://git.frama-c.com/pub/meta.

Available at https://frama-c.com/fc-plugins/aorai.html.

Available at https://frama-c.com/fc-plugins/rpp.html.

Remerciements

Implementation and Specification of the Page Manager

This appendix contains the complete specification and implementation of the page manager case study, which serves as an illustration of the usefulness of the HILARE language to express concrete high-level requirements such as confidentiality in Chapter 3. Listing A.1 lists the macros and logical functions used to express these requirements in Listing A.3 while Listing A.2 contains the whole C implementation of this case study. In Chapter 4, we semi-automatically verify that this implementation is valid with respect to its specification.