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Résumé en français

Bien que les logiciels continuent de se complexifier et que la cyber-sécurité
soit en train de devenir un enjeu majeur d’une société où l’automatisation
est maintenant la norme, la spécification et la vérification d’exigences de
haut niveau (comme des propriétés de sécurité, telles que l’intégrité des
données ou la confidentialité) sur des logiciels de taille importante reste
un défi pour l’industrie.

Cependant, de telles exigences de haut niveau représentent la majeure
partie des cahiers des charges écrits et compris par les ingénieurs, et il est
nécessaire de faciliter l’utilisation des méthodes formelles par ces derniers
sur ces exigences. Cette thèse présente un cadre formel pour les exigences
de haut niveau appelé les meta-propriétés, décrites pour un langage de
programmation abstrait, et centrées sur les propriétés liées aux manipula-
tions de la mémoire et les invariants globaux. Une première partie de la
thèse décrit ce formalisme et la sémantique des méta-propriétés.

Ce cadre formel est dans un second temps appliqué au langage C avec
HILARE, une extension d’ACSL (un langage de spécification formel pour
les programmes C), qui permet la spécification d’exigences haut niveau
sur des programmes C de grande taille avec facilité. La lien est fait avec les
méta-propriétés en exposant une syntaxe concrète pour leur spécification,
en plus d’un grand nombre d’extensions pratiques. Des techniques de
vérification pour HILARE, basées sur la génération d’assertions locales et
la réutilisation des analyseurs de Frama-C existants (Wp, EVA, E-ACSL),
sont présentées et implantées dans le greffon MetAcsl pour Frama-C.
Le lien direct avec la sémantique des propriétés fait que ces approches
sont correctes par constructions. Le processus est appuyé par de nom-
breux exemples sur un petit cas d’étude faisant intervenir des notions de
confidentialité.
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Une fois les techniques de base présentées, une méthodologie com-
plète pour l’évaluation des propriétés de grands programmes est détaillée,
articulant les méta-propriétés, les HILARES, les techniques de vérification
et les particularités du C. Y sont exposés les procédures optimales pour
utiliser les moyens présentés et les pièges à éviter. La méthodologie est
illustrée par un large ensemble d’exemples et de propriétés de sécurité, et
est en particulier appliquée à un cas d’étude imaginaire impliquant des
propriétés complexes d’un micronoyau.

Par la suite, nous explorons une autre manière de vérifier qu’une ex-
igence de haut niveau est vérifiée par un programme en la déduisant à
partir d’autres exigences déjà prouvées. Un cadre pour la déduction des
méta-propriétés est construit en identifiant un certain nombre de situ-
ations où une déduction est désirable, en mécanisant une partie de la
formalisation des méta-propriétés via Why3/Coq et en prouvant que de
telles déductions sont correctes au sein de ce système. Les déductions
sont ensuite traduites sous forme de règles Prolog qui sont intégrées à
MetAcsl et utilisées pour déduire automatiquement un sous-ensemble de
méta-propriétés, sans avoir recours à des assertions locales.

Enfin, nous présentons une application de toutes les techniques présen-
tées (HILAREs, vérification locale, vérification alternative) articulées
selon la méthodologie exposée, à un cas d’étude industriel et réaliste:
le chargeur d’amorçage de WooKey, un périphérique de stockage USB
sécurisé développé par l’ANSSI.
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Chapter 1
Introduction

In the last decades, computer systems have become deeply entrenched
in our society. The recent years have seen a dramatic increase of not only
user-facing systems (in particular through smartphones and personal
computers) but also industrial systems. The latter exist at different scales:
from large – operation of large structures such as trains and power plants
– to small – embedded devices that are pervasive in our everyday life:
household appliances, medical equipment, etc. Furthermore, more and
more of these systems are now connected to the Internet, and their be-
haviour is becoming deeply intertwined with the good operation of the
global network.

Naturally, humans designing and programming these systems are
bound to make mistakes: users are accustomed to software bugs and
the Internet has an abundance of people reporting bugs and offering
solutions for circumventing them. While for most bugs the worst result
is mild annoyance and perhaps an awful Friday evening, some of them
can be truly catastrophic. Indeed, a safety bug in an industrial system
can very well result in physical [Gen92], environmental [SJ97] or material
harm [Lio96]. Similarly, today flaws in even apparently simple user-facing
systems can have dire consequences in terms of privacy and security in
general, as the increasing stream of large-scale hacks tends to indicate.
This raises the need for efficient and accessible methodologies to detect
flaws in computer programs, small and large.

A common but somehow limited strategy is testing: trying to run
a program multiple times on different inputs that are representative of
its normal usage (such as user actions), and checking that the result-
ing behaviour is as expected (either by comparing the behaviour with a
pre-defined one or by ensuring it is compliant with some requirements).
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However, in most cases, the input space cannot be exhaustively explored,
which means that testing cannot ensure the absence of bugs in a program.
This can be alleviated by checking for a set of test coverage criteria: metrics
of a test suite determining for example how much of the whole code base
is actually executed during the test suite. While this technique can be used
to consider a wide variety of situations in the tests, it is usually very hard
to achieve complete coverage on complex programs. Partial coverage is
certainly better than nothing and may be largely sufficient for non-critical
systems, where failure does not entail significant damages of any kind.
However, there are other programs where the consequences of bugs are
signifiant enough to justify the need for stronger guarantees.

1.1 Formal Methods
Formal methods, and more precisely formal specification and verification,
are a set of techniquesmeant to assess the quality of programs and increase
our trust towards them, by leveraging theoretical principles.

The goal of these techniques is to specify a desired property about
programs (or models of programs) and deliver a judgement: does a partic-
ular program respect that property? This is made possible by describing
the precise semantics of each syntactic element of a programming lan-
guage and their composition, allowing to reason about a whole program
as a mathematical object, about which various logical properties can be
expressed.

Automation, soundness, completeness. To remain accessible by the in-
dustry, these techniques must be as automated as possible, to both avoid
human error in the verification process itself and keep the costs at a man-
ageable level. This goal is severely hindered by Rice’s theorem [Ric53]
which states that non-trivial properties of a program are undecidable
(a generalization of Turing’s famous halting problem), and more gener-
ally by the negative answer given to Hilbert’s Entscheidungsproblem by
Church [Chu36] and Turing [Tur37]. This means that a formal method
approach cannot be at once sound, complete and automated: it cannot always
deliver a correct judgement on every kind of program without the need for
human intervention. To circumvent this impossibility, all techniques must
make a compromise by giving up at least one of these three properties.

Note that soundness and completeness are defined with respect to a
goal. For example, as a bug-detecting technique, testing is sound (a de-
tected bug really is a bug) but incomplete. Throughout this thesis, the goal
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will be to verify that a program respects a property without any doubt, in
all of its possible executions. Any mention of soundness or completeness will
be relative to this goal. In that respect, testing is complete (it confirms all
properties respected by the program) but unsound (it does not eliminate
the possibility of a bug in general).

Some general techniques for formal verification include:

• Deductive verification [Hoa69] expresses the correctness as a set of
mathematical statements (called verification conditions), the truth
of which imply the conformance of the program to its specification.
The verification conditions are handled by automatic or interactive
theorem provers. It is sound and complete, but needs human inter-
vention for writing suitable proof-guiding annotations for the proof
of some verification conditions.

• Abstract interpretation [CC77] maps memory locations to a more ab-
stract domain that over-approximates the values they can take during
the union of all possible executions. It is sound and automated but
not complete, since it generates false alarms (cases where a problem
is detected in a correct program) on some programs.

• Model checking [CES86] verifies a program (or an abstract model of
it) by completely exploring the set of all possible states. It is not
complete, since exploring all possible states is generally impossible.
On the other hand, bounded model checking chooses to explore only
a finite subset of these states (states reachable after a fixed number
of steps), gaining completeness at the price of soundness.

• Symbolic execution [Kin76] executes a program but with variables
mapped to symbols that represent arbitrary input, discovering the
constraints that relate the variables. It is generally automated, giving
up soundness and/or completeness depending on how the con-
straints are managed.

Remark 1 (Soundness and completeness). When a technique gives
up soundness or completeness, in some cases it can be reduced to a
sound and complete technique (hence not automated) by introducing
appropriate abstractions, constraints, kinds of properties, etc.
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Verification, static and dynamic. The above techniques are mostly static
(analysing the program without concretely executing it). There are also
dynamic techniques that alleviate the undecidability problem by giving up
guaranteed termination (and are not complete for detecting correct prop-
erties in general, as they are more oriented towards bug detection). For
example, Runtime Assertion Checking [CR06] transforms specification into
executable checks that allow detecting flaws at runtime. Some other tech-
niques, like Concolic Testing [SMA05], combine both static and dynamic
verification.

While the contributions of this thesis are not particular to any of these
techniques, we will mostly focus on deductive verification and runtime
assertion checking when discussing verification.

Specification of properties. The mentioned techniques are meant to
assess that a program is valid with respect to a property, but this does
not say anything about how such a property should be specified. In this
thesis, we will focus our specification efforts on two major specification
mechanisms:

• ad-hoc assertions inserted directly within a program, expressed using
a logical language that embeds semantic elements of the program-
ming language. They allow reasoning about the current state of the
program at the point where they are inserted;

• function contracts, introduced notably by the Eiffel programming
language and its ”design by contract“ paradigm [Mey92]. Each
function of the program can be annotated with a contract, stating
preconditions, postconditions and possibly other properties of the
function, using the same formalism as assertions.

Function contracts. Let us see an example of function contract. Algo-
rithm 1 below is a function computing the greatest common divisor (GCD)
of two integers, annotated with a contract: a precondition, stating that the
two parameters must not be zero; and a postcondition, ensuring that the
result of the function is indeed a common divisor. Notice that this contract
is partial since it does not ensure that the result is the greatest common
divisor: a function always returning 1 is compliant with the postcondition
bit is not a proper GCD function.
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Algorithm 1 A GCD function annotated with a contract
Requires: 0 ≠ 0 and 1 ≠ 0 ⊲ Precondition
Ensures: 0 mod result = 0 and 1 mod result = 0 ⊲ Postcondition

function GCD(0, 1)
A ← 0 mod 1

while A ≠ 0 do
0 ← 1

1 ← A

A ← 0 mod 1

end while
return 1

end function

Modular verification. Function contracts are a popular and efficient way
of specifying large programs. Indeed, they enable an important factor of
efficiency in formal verification: modular verification.

In that setting, if we want to prove the contract of a function 5 calling
another function 6, we can just read the contract of 6 and assume its
postcondition is correct after the call. There is no need to inspect the body
of 6, provided we prove that the preconditions of 6 hold at the call site.

Assuming every function is annotated with a contract and individually
proved similarly, we can prove that the whole program is correct in a
modular manner.

However, while function contracts are very relevant for specifying
properties that are local to a function, it is inherently hard to specify global
requirements with this tool.

1.2 Motivation
In the natural language specification of a system, one will often find high-
level requirements: requirements that are not specific to small code units
(which are abstracted away) but rather pertain to large components of
the system or the system itself. The goal of this thesis is to offer a way
to specify such high-level properties of programs, and develop means
to assess programs with respect to these properties. We focus on the
following points:

High-level requirements for security. While there are many safety re-
quirements that are high-level, this is especially apparent with security
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requirements, where large sets of functions in the software are required to
uphold constraints. For example, we might want to isolate components of
a software from one another by forbidding a component to read or write
the resources owned by another, in order to reduce the attack surface.
Or we might want to ensure that a software is compliant with stringent
confidentiality and privacy requirements, such as the ones mandated by
the General Data Protection Regulation (GDPR) [GDPR16]: for example
ensuring that user data is only used by components of a software which
have a purpose matching the consent given by the user. Hence in this
thesis we will want to ensure that a rich variety of high-level security
requirements can be expressed. In particular, we will focus on expressing
access control and information flow requirements.

Accessibility and automation. As discussed previously, automation and
ease of use are important stakes since they greatly influence the option
of a technique by industrial users, which is an overall goal of this work.
Hence, we will want our means of specification to be completely auto-
mated: in particular, the size of the code base under analysis should not
change the amount of effort needed to specify high-level requirements.
Similarly, we will want the verification of requirements to be as automated
as possible, considering the limitations described in the previous Section.
Laslty, we would like our techniques to be applicable to programs written
in a mainstream programming language: the C programming language.

Scalability. Expressing high-level requirement at scale with contracts
has several problems, which our contributions will try to address:

Expressiveness. Some simple global requirements can be expressed
as a single contract, distributed over the set of relevant functions.
In the general case, however, this is hard or even impossible. Even
when possible, it is necessary to find a complex encoding of the
requirement fitting the contract paradigm. This makes the specifica-
tion much harder to read and the subsequent proof effort difficult
and mostly manual.

Maintenance. If the global requirement can be expressed as a con-
tract, it can then be attached to every function of the relevant com-
ponent. While this is possible, this is a tedious and error-prone
manual effort, especially on large code bases. Furthermore, if the
requirement happens to change, every subsequent contract must be
changed.
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Traceability. If two or more global requirements pertain to over-
lapping components of a program, then the contracts from both of
these requirements are mixed in the overlapping functions. Without
a way to explicitly link the requirements to the low-level contract
clauses, it is hard to determine what requirements a single function
is subject to, to check that no function has been missed or to track
what global requirements are proved or not at a given time. In other
words, contracts do not allow to take a step back from low-level
details.

Previous works have addressed the need for a way to specify and ver-
ify specific kinds of requirements. Most notably, the work of Pavlova et
al. [Pav+04] proposes a method for specifying high-level security policies
on Java programs running on smart cards, and verifying them by auto-
matically generating low-level annotation that are woven into the source
code and then verified using an external tool. However, while the security
policies they consider are indeed high-level in the sense that they have im-
pact on the whole application, the properties that the authors consider are
firmly linked with the Java Card architecture: applet life cycle, atomicity
of transactions, exceptions, etc. As the authors note, ”there exists many
relevant security properties such as specifying memory management, in-
formation flow and management of sensitive data. Identifying all relevant
security properties and expressing them formally is an important ongoing
research issue“. In that sense, their approach has not the general purpose
that we are looking for. And other previous approaches, while efficient
for their purpose, present the same problem (see Chapter 8 at the end of
the thesis for a review of such works and our position compared to them).

A secure vault. We will now introduce a small use case that will serve as
an illustrative example to present the concepts introduced throughout this
thesis. Let us consider an applicationmanaging a physical vault, illustrated
in Algorithm 2, with components managing the locking and unlocking of
the vault, handling user interaction, authentication, communication with
other systems and alarms, etc. Let us now suppose that to interface with
the physical system moving the locks, the application must simply write a
boolean into a global variable whose address is mapped to that system. A
very simple high-level security requirement that we would like to express,
is that only the component responsible for locking and unlocking should ever
write to that variable.
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Algorithm 2 The vault manager, a large multi-component application
vaultOpen ← false ⊲ Global variable controlling the vault

component Lock management ⊲ Functions interacting with the vault
function Lock
function Unlock
…

component Cryptography ⊲ Other unrelated components
function GCD
function Authenticate
…

component Keypad
component Network
…

1.3 Contributions and Document Structure
To address these issues, we outline a general-purpose framework for work-
ing with high-level requirements that can be applied to any programming
language. We instantiate this formal framework to the C programming
language, a language created in the early 1970s which remains nowadays
among the most widely used programming languages in the world, espe-
cially for embedded, safety- and security-critical programs. We explore a
wide variety of high-level safety and security requirements over several
use cases, and discuss different means of verifying them on C programs.

Within this framework, the vault requirement described above will
simply be expressed by the following statement, and easily provable on
large code bases:

meta \prop,
\name(vault_security),
\targets(\diff(\ALL, LOCK_COMPONENT)),
\context(\writing),

\separated(&vaultOpen, \written);

This statement, that will be called a HILARE later in this thesis, is
meant to be inserted at the end of a C program. It uses a special syntax
for describing our requirement: a simple name, a set of functions where it
should apply (here, all functions except the ones in the locking compo-
nent), and a description of the requirement: ”when these functions write
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to memory, the written variable should not overlap with the vault state
variable“.

While this statement is seemingly simple, making precise sense of it
and its underlying specification and verification methodology is the whole
purpose of this thesis.

Contributions. The main contributions of this thesis are:

• the description of a new class of high-level properties to express
global requirements over large programs. In this document, we
define a simple imperative abstract language, upon which we for-
malize the notion of meta-properties. We show that this formalism is
useful to express concrete requirements that were hard to specify
with previous approaches;

• a concrete syntax for expressing meta-properties on programs writ-
ten in the C programming language. The formalism is trans-
posed from the abstract language to C, yielding an extension of
the ANSI/ISO C Specification Language called the HILARE lan-
guage. Meta-properties are adapted to fit quirks of the language,
and several useful extensions of the basic concept of meta-properties
are presented;

• a verification strategy leveraging the existing Frama-C environment
for assessing HILARE properties on C programs. This approach is
based on a translation from the HILARE language to sets of local
assertions, which can then be handled by existing verification tools.
It handles simple meta-properties as well as their extensions. The
HILARE syntax as well as its verification strategy is implemented
within a Frama-C plugin called MetAcsl. This plugin has been used
to validate the design of meta-properties on various examples;

• a detailed methodology for tackling specification and verification
tasks on large programs involving high-level requirements. This
methodology highlights a set of specification patterns that can be
used as building blocks for designing complex properties with the
HILARE language. It is illustrated as applied to a set of complex
requirements in an artificial micro-kernel;

• a study of the application of our methodology to WooKey, a real
large-scale codebase. Several security requirements of the bootloader
of WooKey, a secure USB key prototype developed from the ground
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up by the French National Agency for the Security of Information
Systems (ANSSI), are specified and verified on a program spanning
hundreds of functions;

• an extensible framework for reasoning about meta-properties. We
establish foundations for a sound system that allows deducing meta-
properties from others at the global level, without having to resort
to local assertions. This framework is based on a soundness proof in
Why3 and an efficient solver in Prolog, which is seamlessly integrated
in the MetAcsl plugin.

Structure of the document. This thesis is structured as follows:

• Chapter 2 formalizes the notion of meta-property from the ground
up on a simplified language and illustrates it on several examples,
highlighting its usefulness in the context of our illustrative example;

• Chapter 3 takes that formalization and transposes it to the C pro-
gramming language and the Frama-C platform, which is briefly
presented along with its specification language ACSL. The resulting
specification language is called HILARE. Several extensions to the
formalization are presented, and a small confidentiality-oriented
case study is used to illustrate its usage on concrete programs;

• Chapter 4 describes a verification strategy for HILARE specification,
based on translation into local annotations. The case study from
Chapter 3 is continued and used to illustrate the soundness of the
approach. The MetAcsl plugin for Frama-C is described in this
chapter;

• Chapter 5 crystallizes the elements of the previous chapters into a
detailed methodology for tackling complex specification and ver-
ification tasks on C programs. It discusses common pitfalls, and
describes the entire process from approach to complete verification,
illustrated by requirements on a micro-kernel;

• Chapter 6 discusses an alternative verification strategy for HILARE
properties avoiding local reasoning: deduction of high-level require-
ments from others. It describes foundations for a complete and
extensible framework for reasoning about HILARE automatically,
and its seamless integration within MetAcsl;
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• Chapter 7 presents a real, large-scale case study of the application
of our methodology to the specification and verification of secu-
rity requirements to the bootloader of WooKey, a secure USB key
prototype developed by the ANSSI;

• Chapter 8 presents previous efforts related to our work, and how
this thesis is positioned compared to them;

• Chapter 9 concludes this thesis, summarizing the results achieved
in the thesis, their limitations and ideas of future works.

Remark 2 (Environments and text emphasis). Throughout the the-
sis, coloured environment such as this one are used to delimit elements
such as remarks, definitions or examples.

In definitions, italic is used to signal the new terms introduced by
the definition. In the rest of the document, italic is meant to draw the
attention of the reader to a particular word, signalling its significance
to properly understand a concept. To avoid ambiguity, bold is used
to signal such words in definitions.

Publication of the results. Some contributions of this thesis are already
published:

• [Rob+19a] introduces the concept of meta-property (Chapter 2)
through its application within the Frama-C framework. It describes
en early version of the HILARE language and MetAcsl (Chapters 3
and 4).

The key contributions of this paper are summarized in French
in [Rob+19b];

• [Rob+19c] lays out a partial formalization for meta-properties, upon
which the formalization of Chapter 2 is built. It also presents some
extensions of the HILARE language mentioned in Section 3.3 as well
as the complete benchmark reproduced in Section 4.5;

• [Rob+21a] presents a complete methodology for specification and
verification with HILAREs, supported by an artificial case study on
micro-kernels as well as the WooKey case study. Most of this work
is reproduced in Chapter 5, with the WooKey part developed in its
own chapter (Chapter 7).
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The key contributions of this paper are summarized in French
in [Rob+21b].

Furthermore, the work presented in this thesis has been used by Thales
in a large-scale industrial verification project [DHK21], detailed in Sec-
tion 8.3.



Chapter 2
A Formalization of High-Level

Requirements

As the goal of this thesis is to offer a way to specify high-level properties
of programs, formally defining the class of these properties is a useful
first step. Having a formal, abstract frame for these properties allows us
to sketch an approach of high-level specification and verification on real C
programs in later chapters.

As a working example during this chapter, we use the simple abstract
program (mentioned in Chapter 1) managing an imaginary vault, with
some defined functions e.g. for locking or unlocking the vault, as well
as a set of other unspecified functions. A basic requirement on such a
system is: ”the vault can only be locked or unlocked by the appropriate
locking/unlocking functions”. In particular, if these functions perform
some kind of authentication, we do notwant another function to spuriously
bypass this and unlock the vault anyway. This example also serves as a
minimal goal of what should be expressible.

At the end of the chapter, we will have a formal framework for ex-
pressing at least such a requirement with precise semantics, and more
generally memory-related high-level properties. After the presentation of
a set of notations used throughout this chapter in Section 2.1, Section 2.2
formalizes an abstract programming language. Section 2.3 builds upon
that, describing a notion of context to select points and local information
in such programs. A few of these contexts that will be useful throughout
the thesis are listed in Section 2.4. Section 2.5 then gives several examples
of concrete high-level properties we want to be able to express. Finally, Sec-
tions 2.6 and 2.7 describe the appropriate formal framework for achieving
the desired specification goal.
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2.1 Notation
Throughout this chapter, we will use the following notations as a support
for our formal framework.

2.1.1 Sets
We use the common symbols∅, ∪, ∩, \ to designate respectively the empty
set, set union, intersection and difference. Furthermore, we use the symbol
] to denote disjoint set union, that is union of sets which must be disjoint.

For any set (, we denote by P(() the power set of ( i.e. the set of all
subsets of ( (including ∅).

We denote by N the set of natural integers with zero, N+ the same set
without zero, and Z the set of all integers:

N = {0, 1, 2, . . .};
N+ = N \ 0;

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

2.1.2 Functions
We denote by

5 : �→ �

a total function 5 associating to every element of � an element of �.
For a function 5 : � → � where � = {6 | 6 : � → �} (that is, for a

function that returns functions), we also write

5 : �→ (�→ �)

2.1.3 Mappings
We denote by

5 : � ⇀ �

a partial function or mapping 5 , associating to some elements of � an
element of �.

We denote by dom( 5 ) the domain of 5 i.e. the set on which 5 is actually
defined.

When the domain set � is empty, there is only one such mapping
(having no bindings), that we will denote ∅.

Let 5 , 6 : � ⇀ � be partial mappings.
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Furthermore, we denote by 5 [G ↦→ H] the new mapping defined as 5

plus a new association (or binding) from G ∈ � to H ∈ �. If a mapping for
G existed in 5 , then it is shadowed:

∀E ∈ dom( 5 ) ∪ {G}, 5 [G ↦→ H](E) =
{

H if E = G;
5 (E) otherwise.

Additionally, we introduce the notation [G1 ↦→ H1, . . . , G= ↦→ H=] to
denote the definition of a mapping in extenso:

[G1 ↦→ H1, . . . , G= ↦→ H=] := ∅[G1 ↦→ H1][...][G= ↦→ H=]

Given two functions 5 and 6 with disjoint domains, we will use the
notation 5 ] 6 to designate a newmapping combining the bindings of both
5 and 6 such that dom( 5 ] 6) = dom( 5 ) ] dom(6) and ∀G ∈ dom( 5 ), ( 5 ]
6)(G) = 5 (G) (and symmetrically for 6).

Lastly, we denote by 5 |( the new mapping defined as 5 whose domain
has been restricted to (:

dom( 5 |() = dom( 5 ) ∩ (;
∀G ∈ dom( 5 |(), 5 |((G) = 5 (G).

2.1.4 Inference Rules
We use derivation rules to describe what can be deduced in a formal system,
typeset as follows:

Name
Premise1 Premise2 . . .

Conclusion
(external conditions)

whereName is the name of the rule, Premise1,2,... and Conclusion are formu-
las of the formal system and the optional external conditions are logical
conditions on Premise1,2,... expressed outside of the system, within the
classical logic used throughout this thesis.

Such a rule expresses that the conclusion can be derived from the
premises given that the external conditions hold. A rule can have no
premises, in which case the conclusion can be derived immediately.

2.1.5 Graphs
A directed graph is a pair (+ ,�) where + is a finite set and � ⊆ + ×+ . + is
called the set of vertices (or nodes) of the graph, and � its set of edges. We
say that there is an edge from E1 to E2 if (E1, E2) ∈ �.
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2.2 An Abstract Language
In this chapter, we are working in the context of an abstract language,
which we call A-Lang. Very few hypotheses are initially made on that
language: it must have a notion of (i) functions (separation of code units),
(ii) global locations, (iii) local variables and (iv) instructions (either a local
location declaration, a function call or an abstract operation). Note that in
this chapter we will use the words location and variable interchangeably.

This language serves as a support for the definition of an interesting
class of properties which we will call meta-properties. Keeping an abstract
support language allows us to later refine it to a real programming lan-
guage such as C in the rest of this work, while demonstrating the generality
of our approach. We define A-Lang from the bottom up, going from iden-
tifiers and instructions to whole programs.

Definition 1 (Identifiers). We define the following, mutually dis-
joint, finite sets of possible identifiers:

• ℐ�: for function names;

• ℐ" : for meta-variable names;

• ℐ�: for global location names;

• ℐ!: for local location names;

• ℐ+ : for logic variables.

We also define the following sets respectively called the location
identifier set and the extended location identifier set:

ℒ := ℐ! ] ℐ�;
ℒ� := ℒ ] ℐ�.

The sets being disjoint means that an identifier cannot be used for more
than one kind of objects.

We now define a set of A-Lang instruction kinds. As the language
itself, these instruction kinds are abstract and do not define a concrete
program by themselves, just families of similar instructions. They allow
sorting concrete instructions (as we will see in Remark 3) into different
categories.
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Definition 2 (A-Lang: Instructions). An instruction of the A-Lang
language is one of the following kinds:

• Begin;

• End;

• Branch;

• Var ; where ; ∈ ℐ!;

• Compute;

• Call 5 where 5 ∈ ℐ�.

The set of all instructions is denoted by I.

Before talking about execution semantics of these instruction kinds and
concrete instructions (which will be defined in Definition 7 for details),
we can already give an intuition about their meaning:

• Begin and End are dummy instructions that just delimit a function:
its entry and exit points. There is one of each in a given function.
We will call every other instruction meaningful.

• Branch is a conditional jump to another instruction. The condition
is left abstract.

• Var ; is a local variable declaration. From this point, the variable ; is
declared until the end of the function, with a default value. If the
variable was already declared, it remains declared but is reset to the
default value (which will be described in Definition 5).

• Compute is an abstract, deterministic computation. Unlike the previ-
ous instruction kinds, it can have side effects on the existing global
state.

• Call 5 is a function call to 5 . Arguments are assumed to be conveyed
through global variables rather than explicitly.

Rather than working directly on A-Lang functions by mean of a gram-
mar, it will be convenient for this work to refer directly to their control-flow
graphs [All70] (CFG), which describe the structure of the control-flow of
a function.
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Definition 3 (A-Lang: Function, Control-flow graph). An A-Lang
function 5 is defined by its control-flow graph (+5 ,� 5 ), that is, a directed
graph with the following properties:

• Each vertex is equipped with two labels accessed through la-
belling functions id and instr

id : +5 → N
instr : +5 → I

where for any vertex E ∈ +5 , id(E) is an integer identifier and
instr(E) is an A-Lang instruction kind (see Definition 2).

• There is exactly one vertex of the Begin instruction kind, and
one of End:

∃!E1 ∈ +5 , instr(E1) = Begin;
∃!E2 ∈ +5 , instr(E2) = End.

Since these two vertices are unique within a function, we name
them begin(+5 ) and end(+5 ).

• begin(+5 ) has no predecessor, while every other node has at least
one predecessor.

• end(+5 ) has no successor, while every other node has at least
one successor.

• Conditional jumps have two successors in the graph while other
nodes have at most one.

• Every node is structurally reachable from begin(+5 ).

The set of all correct control-flow graphs is denoted by ℱ .

The structural properties of the CFG imply the following facts for a
given function:

• There is a single edge from begin(+5 ) to the first meaningful instruc-
tion of the function.

• There is no structurally unreachable code.
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Intuitively, an edge (E1, E2) ∈ � 5 exists if and only if the control flow
can structurally go from E1 to E2 during the execution of the function
(Definition 8 will give more details on execution). In that case, we say that
E1 and E2 are successive.

Remark 3 (From instructions to concrete execution). Instructions
as defined in Definition 2 are simply kinds. Two nodes in a control-
flow graph can have the same instruction kind. However, this does
not mean that the concrete execution of these nodes has to be the
same.

As we will see in Definition 7, the execution behaviour of a node
is determined not only by its instruction kind but also by its unique
(see Definition 4) identifier.

Also notice that edges are only defined within the function: function
calls are not represented by edges.

begin(+main) instr(begin(+main)) = Begin
id(begin(+main)) = 0

E1instr(E1) = Compute
id(E1) = 1

E2 instr(E2) = Call checkStatus
id(E2) = 2

E3instr(E3) = Branch
id(E3) = 3

E4instr(E4) = Call unlock
id(E4) = 4 E5 instr(E5) = Call lock

id(E5) = 5

end(+main)
instr(end(+main)) = End
id(end(+main)) = 6

Figure 2.1: The control-flow graph of a main function
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Example 1. An example of a function defined by its control-flow
graph is illustrated in Figure 2.1. Each node is labelled with its unique
identifier id and its instruction instr. It represents a simple program
performing a computation, calling another function checkStatus and
then branching to one of two other calls. Again, notice that this pro-
gram is left very abstract: nothing is said about the performed com-
putations – only the kinds of instructions and the control flow are
represented.

In further CFG representations (e.g. Figure 2.2), we will simplify
the graphs by omitting the identifiers, the node names, and putting
directly the instruction kind inside the node. While the pruned infor-
mation is still stored in the graph, it will not be useful to represent
it.

We can now define an A-Lang program: a set of functions and a set
of predefined global variables (which is by Definition 1 distinct from
variables that may be declared locally).

Definition 4 (A-Lang: Program). An A-Lang program is a triple(
�,�, (+5 ,� 5 ) 5 ∈�

)
where:

• � ⊆ ℐ� is a set of A-Lang function names;

• � ⊆ ℐ� is a set of global location identifiers;

• (+5 ,� 5 ) 5 ∈� is an �-indexed family of functions (i.e. a set of CFGs,
according to Definition 3).

A program
(
�,�, (+5 ,� 5 ) 5 ∈�

)
is said to be well-formed if:

• all called functions are defined:

∀ 5 ∈ �, E ∈ +5 , 52 ∈ ℐ�, instr(E) = Call 52 =⇒ 52 ∈ �;

• functions do not share nodes:

∀ 51, 52 ∈ �, 51 ≠ 52 =⇒ +51 ∩+52 = ∅;
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• vertex identifiers are unique across all functions of the program:

∀ 51, 52 ∈ �, E1 ∈ +51 , E2 ∈ +52 , E1 ≠ E2 =⇒ id(E1) ≠ id(E2).

It is always assumed that programs are well-formed. The set of all
well-formed programs is denoted by O.

Begin

Compute

Call checkStatus

Branch

Call unlock Call lock

End

main

Begin

Var auth

Compute

Branch

Compute

End

unlock

Begin

Compute

End

lock

Begin

Var tmp

Compute

End

checkStatus

Figure 2.2: A few A-Lang functions

Remark 4 (Notation). To keep the notation light, from now on, we
will refer to a fixedwell-formed program$ =

(
�,�, (+5 ,� 5 ) 5 ∈�

)
. Any

reference to �, �, +5 or � 5 will implicitly refer to the corresponding
component of $ unless otherwise stated.

To make things more concrete, let us now introduce a small example
of an A-Lang program.
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Example 2 (A Secure Vault). We can define an A-Lang program(
{main, lock, unlock, checkStatus}, {vaultOpen, init},ℰ

)
where ℰ is the family of graphs represented in Figure 2.2 (with a
simplified representation, see Example 1).

This program contains four functions as well as two global loca-
tions vaultOpen and init (which we will assume to contain integer
values in the next examples). This program is a well-formed A-Lang
program.

Having defined the structure that an A-Lang program must have, we
now attach semantics to such a program. In particular, we start with a
definition of state for storing values of declared variables.

A-Lang programs can declare both global (via the � set) and local
locations (via the Var instruction). Once declared, each of these locations
has a value that can change over time.

Definition 5 (A-Lang: Values, State). Wedenote byV the set of val-
ues that can be stored into locations. Furthermore, we denote by
E0 ∈ V the default value. We assume no particular property of E0.

A state is a partial function

ℒ ⇀V

that assigns values to location identifiers (either local or global). States
will be denoted by �, �1, �2, . . . and the set of all states is denoted by
Σ.

A program state always assigns a value to global locations:

∀� ∈ Σ,� ⊆ dom(�).

Notice that for the sake of clarity, all variables have the same type in
this formalization. However, it could handle multiple types by adding a
parameter to the state function or by having separate stores for each type
of location.

Example 3 (Integer locations). In all examples of this section, we
always assume that we are working with integer locations, with 0
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being the default value. Hence, we use the set of values:

V := Z;
E0 := 0.

A set of operators for these values will be defined in Example 12
(page 42).

We now define a semantics to describe what happens to the state upon
execution: the concrete execution is entirely characterized by any relation
between configurations observing a set of properties, as described below.

Definition 6 (A-Lang: Configuration). Let 5 ∈ � be a function, E ∈
+5 one of its instructions and � ∈ Σ a state of the program.

We call the pair 〈E, �〉 a configuration of 5 .

Intuitively speaking, a configuration 〈E, �〉 represents a snapshot of
execution in which � represents the current values of locations and E

represents the next instruction to be executed (i.e. � is the state preceding
the execution of E).

Note that the following definitions for instruction and function exe-
cutions (Definitions 7 and 8) are mutually recursive: the execution of a
single instruction (⇓) and of a whole function (w�$) are intertwined in the
case of function calls.

Definition 7 (A-Lang: Instruction execution). Let 5 ∈ � be a func-
tion, E, E′ ∈ � 5 be two successive instructions of 5 and �, �′ ∈ Σ two
program states.

We define an execution relation as any relation ⇓ between two con-
figurations of a function such that

〈E, �〉 ⇓ 〈E′, �′〉

respects the following constraints:

• Begin and Branch do not modify the state. a If instr(E) = Begin
or instr(E) = Branch, we have:

�′ = �;
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• Var ; defines a binding from ; to the default value E0 ∈ V in the
state. If instr(E) = Var ; for some location ;, we have:

�′ = �[; ↦→ E0];

• Call 6 executes function 6, correctly managing the interaction
between the state of the caller and the callee (see Definition 8
below). If instr(E) = Call 6 for some function 6 and if 6 termi-
nates when executed on �, then we have:

∃�6 ∈ Σ, (6, � |�)w�$
�6 ∧ �′ = (�6 |� ] � |ℐ!);

• Compute arbitrarily modifies the state without adding or remov-
ing bindings. If instr(E) = Compute, we have:

dom(�) = dom(�′).

Furthermore, for every instruction except Call and End, the rela-
tion must guarantee the existence and the unicity of a next configura-
tion from a given one:

∀E ∈ +5 , � ∈ Σ,
instr(E) ≠ Call =⇒ ∃!(E′, �′) ∈ (+5 × Σ), 〈E, �〉 ⇓ 〈E′, �′〉.

For Call, there is at most one next configuration b from a given
one.

aEnd is not allowed to modify state either, since there is no execution step from
it because it does not have a successor. Recall that a return from a function call is
not modeled by an edge but is part of the execution of the call.

bBecause a function may not terminate, as we will see in Remark 5.

Each instruction kind is given a semantics that matches the natural
intuition associated to its name. In particular, the Call 6 instruction calls
6 on the current state of the caller (that is, restricted to global variables),
then removes the callee’s local variables from the resulting state after the
call, and finally adds back the local variables of the caller.

We can then define the execution of a whole function: simply a chain
of executions from a starting state to a potential final state (the function
may not terminate).
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Definition 8 (Chain of executions, Function execution). For any
execution relation ⇓ and two arbitrary configurations 〈E, �〉 and
〈E′, �′〉, we say there is a chain of executions from configuration 〈E, �〉
to configuration 〈E′, �′〉 and note

〈E, �〉 ⇓+ 〈E′, �′〉

if either:

• 〈E, �〉 ⇓ 〈E′, �′〉;

• or there is a finite number = ∈ N of intermediate configurations
〈E1, �1〉, . . . , 〈E=, �=〉 such that(
〈E, �〉 ⇓ 〈E1, �1〉

)
∧

(
〈E1, �1〉 ⇓ 〈E2, �2〉

)
∧ . . .

. . . ∧
(
〈E=, �=〉 ⇓ 〈E′, �′〉

)
.

In other words, we denote by ⇓+ the transitive closure of ⇓.
Let 5 ∈ � be a function and �1, �2 ∈ Σ a pair of program states.
We say that 5 yields �2 when executed on �1, and write

( 5 , �1)w�$
�2

if there is a chain of instruction executions from its beginning vertex
begin(+5 ) to its end vertex end(+5 ) that yields �2 when executed on
�1:

〈begin(+5 ), �1〉 ⇓+ 〈end(+5 ), �2〉.

Remark 5 (Non-termination of a function). In the event a function
does not terminate on a given state (if for example there is an infinite
loop), then the (partial) execution relation does not have an image
for that state since in Definition 8 a chain of executions must be finite.

This means that while non-terminating programs are valid in A-
Lang, they cannot be executed.

With that, we have completely defined our support language A-Lang.
It stays abstract to simplify the following definitions, but the bridge from
abstraction to execution is represented by the execution relation, which
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can be used to map an abstract A-Lang CFG to a concrete language and
program.

2.3 The Concept of Context
Now that the base language is defined, we begin formalizing what a
high-level requirement of that program is. To that end, we develop the
concept of context. This will serve to describe what kind of requirement
we are dealing with by characterizing the situations in functions in which
it applies.

First, we will need a notation to refer to the set of local variables that
have been declared in all paths leading to a given program point so that
they can be used at that point.

Definition 9 (Local variables). Let 5 ∈ � be a function, 4 ∈ � 5 one
of its edges and E ∈ +5 one of its nodes.

We denote by loc 5 (4) (resp. loc 5 (E)) the set of local variables such
that a node declaring them exists in every path leading to 4 (resp. E)
in the control-flow graph of 5 .

In the extended semantics of A-Lang given in Section 2.4, the CFG
node will only be able to use a variable if it was previously declared in all
paths leading to that node.

Next, we define the notion of a selector family: a family of selected sets
of function edges in the control-flow graph.

Definition 10 (Selector family). A selector family (or selector for
short) is a family of sets (( 5 ) 5 ∈� such that

∀ 5 ∈ �, ( 5 ⊆ � 5 .

A selector selects a set of edges from the functions of the program. As
an example, we can take a function of the program previously illustrated
in Example 2 and select a subset of its edges.

Example 4. The following family is a selector that selects edges lead-
ing to instructions that call other functions:
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(calling :=
(
(
calling
5

)
5 ∈�

where (
calling
5

=

{(
E1, E2

)
∈ � 5 | ∃6 ∈ ℐ�, instr(E2) = Call 6

}
.

For the program presented in Example 2, (calling
main is shown in Fig-

ure 2.3 where all selected edges are dashed red (the annotations on
the edges can be ignored for now): only edges leading to Call nodes
are selected.

Begin

Compute

Call checkStatus

Branch

Call unlock Call lock

End

[called ↦→ {checkStatus}]

[called ↦→ {unlock}] [called ↦→ {lock}]

Figure 2.3: Illustration of the calling context on function main from Fig-
ure 2.1

With selector families being a mean to select edges (i.e. “program
points”), we will next define a way to collect local information at this edge:
contextualization functions.

Intuitively, given a set ofmeta-variables (which are arbitrary identifiers,
see Definition 1), a contextualization function takes a program function,
an edge of that function selected by a selector and aggregates some local
information about this edge via a mapping from the meta-variables to that
information.

This will be useful for gathering information about operations we are
concerned about: if a requirement is about instructions that call functions,
what are the called functions? If it is about instructions modifying vari-
ables, what are the modified variables? This way, we will be able to write a
requirement that says ”instructions modifying variable G only do it under
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certain conditions“ and give it precise semantics with respect to the CFG
of a program.

Definition 11 (Contextualization function, Context). Let (( 5 ) 5 ∈�
be a selector andℳ ⊆ ℐ" a set of meta-variables (see Definition 1).

A contextualization function for (( 5 ) andℳ is a total function �
with the following signature:

� :
⋃
5 ∈�

( 5 →
(
ℳ → P(ℒ�)

)
with the constraint that the function returns an environment mapping
elements ofℳ to sets of identifiers of global variables, functions and
declared local variables:

∀ 5 ∈ �, 4 ∈ ( 5 , " ∈ ℳ, �(4)(") ⊆ ℐ� ∪ ℐ� ∪ loc 5 (4) .

Finally, we call context any triple
(
(( 5 ) 5 ∈�,ℳ,�

)
such that:

• (( 5 ) 5 ∈� is a selector (Definition 10);

• ℳ ⊆ ℐ" is a set of meta-variables;

• � is a contextualization function for (( 5 ) 5 ∈� andℳ.

A contextualization function parameterized by (( 5 ) andℳ associates
to each edge of 5 selected by (( 5 ) an environment (that is, another map-
ping) that associates sets of identifiers to meta-variables.

These identifiers may be function names (i.e. belonging to ℐ�), global
(belonging to ℐ�) or local (belonging to ℐ!) variables. If local, they must
have been declared before the edge in question.

Informally, a context is a criterion for selecting a set of program points
(edges) and gathers specific information at each of these points, associating
it to a set of meta-variables. It is basically a combination of a selector, a set
of meta-variables and a contextualization function parameterized by the
first two elements.

Let us immediately see an example of context and its application.
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Example 5. Let us define a meta-variable with the name called. Recall
that in Example 4, we defined a selector family (calling that selects
every edge in a control-flow graph leading to a calling instruction.

Letℳcalling be the { called } set where called is simply an identifier.
Let us now define the following contextualization function for

(calling andℳcalling:

�calling :
(
E1, E2

)
↦→ [called ↦→ {6}]

where instr(E2) = Call 6.

In other words, this contextualization function maps any edge
leading to a function call, to an environment associating the called
identifier to (the global location of) the called function.

It is illustrated in Figure 2.3, where each selected edge 4 is deco-
rated with the environment returned by �(4). For example, the edge
leading to Call lock is decorated with a mapping associating called
to the lock singleton.

This contextualization function can easily be extended to a full
context. We can define the calling context as the triple

�calling :=
(
(calling, {called},�calling

)
.

Concretely, the�calling context selects all edges in a function leading
to a function call and at each of these edges, binds the called identifier
to the called function. Figure 2.3 illustrates this context as a whole.

The concepts defined in this section can be explained intuitively via a
functional programming analogy. Essentially, a selector is a filter function
on the edges of a function, while a contextualization function is a map
function that maps edges to some local information about them. Overall
a context is simply a filter_map function combining the two previous
elements: it yields new data for some edges (an environment where meta-
variables are bound).

As will be described in more details in Section 8.1.2, another way of
understanding the notion of a context is through the Aspect Oriented Pro-
gramming (AOP) paradigm [Kic+97]: contexts are pointcuts (a criterion
identifying a set of control-flow points) at the specification level. Contrary
to actual pointcuts in AOP however, contexts are entirely static: they do
not depend on runtime parameters and must be statically determined.



30 CHAPTER 2. FORMALIZING HIGH-LEVEL REQUIREMENTS

2.4 A Few Useful Contexts
As mentioned in Section 2.3, a context can essentially be seen as a criterion
for selecting edges in a function that may gather additional information
(meta-variables) to be later used by the meta-predicate of a meta-property.

With the basic A-Lang, we have already defined one useful context:
�calling in Example 5, which designates every edge leading to a function
call (and records the name of the called function).

We can come up with two other very simple contexts which do not use
meta-variables but are still useful: strong invariant and weak invariant.

Example 6 (Strong invariant). We first define a selector family (all

that selects every edge in a function, then a contextualization function
�NOP that always returns an empty mapping.

(all := (� 5 ) 5 ∈�;
�NOP : 4 ↦→ ∅.

We can then define a context that gathers no meta-variables from the
edges and just selects all of them:

�strong invariant :=
(
(all,∅,�NOP

)
.

This context will be used to stipulate that a predicate must hold at
every step of a function: a strong invariant.

We can also define a notion of weak invariant based on the same princi-
ple, but selecting fewer edges.

Example 7 (Weak invariant). Instead of (all, we define a selector
family (frontiers that only selects edges at the entry and the exit of
a function (see Definition 3 for begin and end):

(frontiers :=
({
(E1, E2) ∈ � 5 | E1 = begin(+5 ) ∨ E2 = end(+5 )

})
5 ∈�

.

Then we can define a new context by simply replacing the selector
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family:
�weak invariant :=

(
(frontiers,∅,�NOP

)
.

It will be used to specify that a predicate must hold in every pos-
sible initial state of a function as well as when it returns. However,
the property can be broken locally. This is the definition of a weak
invariant.

Both �weak invariant and �strong invariant are illustrated in Figure 2.4, as
applied on function checkStatus of Figure 2.2. The selected edges are
dashed and red (and each time, an empty environment is associated to
them).

Begin

Var tmp

Compute

End

∅

∅

∅

�strong invariant

Begin

Var tmp

Compute

End

∅

∅

�weak invariant

Figure 2.4: Illustration of invariant contexts on function checkStatus from
Figure 2.2

Let us now refine A-Lang a bit to define what thememory footprint of an
instruction is, for a given execution relation. It will allow us to characterize
which variables an A-Lang instruction reads and writes, according to the
execution relation. More specifically, the smallest set of locations such that
any location outside of it is guaranteed to be left untouched, no matter the
initial state.

The variables of the footprintmust have been defined at the correspond-
ing program point: they will belong either to global location identifiers �
or to the set of previously defined local identifiers loc 5 (E) of the current
node E.



32 CHAPTER 2. FORMALIZING HIGH-LEVEL REQUIREMENTS

Definition 12 (Writing memory footprint). Let 5 ∈ � be a function,
E ∈ +5 one of its nodes, and ⇓ an execution relation.

We define its writing footprint

,(E) ⊆
(
� ∪ loc 5 (E)

)
⊆ ℒ.

It is defined by the following rules, depending on the kind of
instr(E):

• all instructions apart from Compute have an empty writing foot-
print (including Call):

∀E ∈ +5 , instr(E) ≠ Compute =⇒ ,(E) = ∅;

• if instr(E) = Compute,,(E) is defined as the following set:⋃
�∈Σ

,�(E)

where,�(E) = {; ∈ dom(�) |
�(;) ≠ �′(;), 〈E, �〉 ⇓ 〈E′, �′〉, E′ ∈ +5 , �′ ∈ Σ}

Similarly, we define the reading memory footprin of an instruction
over the state.

Definition 13 (Reading memory footprint). Let 5 ∈ � be a function,
E ∈ +5 one of its nodes, and ⇓ an execution relation.

We define its reading footprint

'(E) ⊆
(
� ∪ loc 5 (E)

)
⊆ ℒ.

It is defined by the following rules, depending on instr(E):

• If instr(E) is one of Begin, End, Var or Call:

'(E) = ∅;

• If instr(E) = Branch, then '(E) is defined as the smallest set of
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locations such that:

∀E4 , E′4 ∈ +5 , �, �′, �4 , �′4 ∈ Σ,
� |'(E) = �′|'(E) ∧ 〈E, �〉 ⇓ 〈E4 , �4〉 ∧ 〈E, �′〉 ⇓ 〈E′4 , �′4〉

=⇒ E4 = E′4 .

• If instr(E) = Compute, then '(E) is defined as the smallest set of
locations such that:

∀E4 , E′4 ∈ +5 , �, �′, �4 , �′4 ∈ Σ,
� |'(E) = �′|'(E) ∧ 〈E, �〉 ⇓ 〈E4 , �4〉 ∧ 〈E, �′〉 ⇓ 〈E′4 , �′4〉

=⇒ E4 = E′4 ∧ �4 |,(E) = �′4 |,(E).

Intuitively, ,(E) is the set of locations (global or local) that may be
modified locally by E, and '(E) is the set of locations on which E relies for
its operation (hence, the accessed locations). While this definition is retro-
fitted on top of the previous formalization, in a concrete programming
language, the notions of reading andwriting would be naturally expressed
in terms of the read and written variables inside the instructions.

Remark 6 (Locality). Note that since in our definition the Call in-
structions have an empty footprint, a location is part of a writing or
reading footprint only if it is locally modified or accessed. This means
that if an instruction E of 5 calls another function 6 and an instruction
of 6 modifies the global location ;, then ; is not part of,(E).

With this additional knowledge about our instructions, we can now de-
fine new useful contexts. First, a context concerned with write operations.

Example 8 (Writing context). We first define a family that selects all
edges leading to an instruction that maymodify one or more locations.

(writing :=
(
{(E1, E2) ∈ � 5 | ,(E2) ≠ ∅}

)
5 ∈�

We then define a contextualization function mapping such edges to
an environment that associates to the written meta-variable the set of
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modified locations:

�writing : (E1, E2) ↦→ [written ↦→,(E2)].

Finally, the writing context can be defined:

�writing :=
(
(writing, {written},�writing

)
.

Effectively, this context selects all edges in a function leading to
an instruction that may write to a location and at each of these edges,
binds the written identifier to the modified location.

Later, this will allow a high-level requirement to reason about the
memory modifications of the program. As such, it is one of the most
useful contexts, as we will see in the following section and chapters. Next,
we define a similar context for read operations on memory.

Example 9 (Reading context). Symmetrically, we can define the read-
ing context by substituting, by ' and written by read in all the above
definitions:

(reading :=
(
{(E1, E2) ∈ � 5 | '(E2) ≠ ∅}

)
5 ∈�

;

�reading : (E1, E2) ↦→ [read ↦→ '(E2)];

�reading :=
(
(reading, {read},�reading

)
.

This context selects all edges leading to a memory access and provides
the accessed location as the read meta-variable. Together with �writing,
it allows us to reason about all memory operations in ameta-predicate.

While the contexts defined thus far were given as examples, they are
actually sufficient to express a vast class of memory-oriented program
properties which we can use to specify interesting and realistic require-
ments. Hence, it is important to remember these contexts, which we call
the base contexts.

Definition 14 (Base contexts). We name five important base contexts:

• the strong invariant �strong invariant (Example 6);



2.5. EXPRESSING ACTUAL REQUIREMENTS 35

• the weak invariant �weak invariant (Example 7);

• the calling context �calling with its called meta-variable (Exam-
ple 5);

• the writing context �writing with its written meta-variable (Ex-
ample 8);

• the reading context �reading with its read meta-variable (Exam-
ple 9).

2.5 Expressing Actual Requirements
We now pause the formalization effort to go back to the initial motivat-
ing use case we introduced in the beginning of this thesis. This section,
intended as a breather, explores how we could specify the desired require-
ments with the tools formalized thus far and what is missing. The next
two sections will properly formalize the missing parts.

Let us take the secure vault program defined in Example 2 and suppose
that wewant the security requirement that vaultOpen can only bemodified
in the lock and unlock functions.

Intuitively, this requirement is related to the writing context (Defini-
tion 14), which selects program edges where memory is modified and lists
themodified locations at these points. Essentially, wewould like to express
that in all functions (except lock and unlock), the modified locations at
these program edges cannot be vaultOpen (that is, vaultOpen ∉ written).

We gather these facts into a concept called meta-property, which will be
formalized in Section 2.7:

"̂security :=


� \
{
lock, unlock

}
�writing
¬(vaultOpen ∈ written)

The first element is the target set, the set of functions in which we want
to forbid modification. The second is the context: which edges we are
concerned with in these functions. Lastly, we state a predicate which
should be true at each of these program edges.

We state that in every function except lock and unlock, the location
vaultOpen is not in the written set of any edge. Since we use the writ-
ing context, in which written refers to the set of modified locations, the
meta-property can overall only hold if vaultOpen is never modified in the
program, except in lock/unlock.
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This meta-property is illustrated in Figure 2.5 where the two target
functions are represented. Each node is now annotated with its writing
memory footprint, (Definition 12). The writing footprint is assumed to
be computedwith respect to an execution relation derived fromaparticular
implementation. The selected edges are dashed and red, and correspond
as expected to edges leading to an instruction modifying memory. Notice
that a call to a function does not count, even if the callee modifies memory.
Lastly, each selected edge is decorated with the meta-predicate where the
meta-variable written has been substituted by its local value.

Overall, we see that if we can verify the predicates next to the two
dashed and red edges in Figure 2.5 for all possible executions, then we
can verify the meta-property itself. And indeed it is easy to see how
a violation of the meta-property (for example if checkStatus modifies
vaultOpen instead of tmp) will result in a violation of one of the predicates.

Sections 2.6 and 2.7 properly define the underlying framework of high-
level predicates and give semantics to meta-properties that map to the
intuition we give in this section.

Begin, = ∅

Compute, = {init}

Call checkStatus, = ∅

Branch, = ∅

Call unlock
, = ∅

Call lock
, = ∅

End
, = ∅

¬(vaultOpen ∈ {init})

main

Begin , = ∅

Var tmp , = ∅

Compute , = {tmp}

End , = ∅

checkStatus

¬(vaultOpen ∈ {tmp})

Figure 2.5: Semantics of the requirement on the vault example

We can also build more refined requirements. For example, suppose
that our vault can be locked and unlocked in a dozen of different variations
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of lock and unlock functions (and call this set of functions �′ ⊆ �). Fur-
thermore, a common condition for locking or unlocking the vault should
be that a ”key” is inserted.

Supposing location keyInserted is nonzero when this security feature
is validated, this can be easily expressed as a variation of the above meta-
property.

"̂′security :=


�′

�writing
vaultOpen ∈ written⇒ nonzero keyInserted

The meta-predicate states that if vaultOpen is in written (which means
that vaultOpen can be modified), then the value of keyInserted must not
be zero (and we assume that it means the key is indeed inserted). It is
complementary to the previous meta-property, which should now hold
on � \ �′.

In general, we will see that meta-properties are a good fit for various
security properties such as access control and information-flow control.

2.6 A Logical Framework
While contexts serve to specify precise program edges and gather infor-
mation about them, we need a logic framework to express high-level
properties as presented in the previous section. All further predicates
in this chapter are expressed in a simple first-order logic that is partly
left abstract, similarly to A-Lang. This logic is based on the standard
propositional calculus [Men09], augmented with first-order quantifiers
on locations and a membership operation for sets of locations.

Definition 15 (Predicate syntax, Expressions). Let ! ⊆ ℒ� be a fi-
nite set of memory locations. A predicate % over ! is a formula of
the language whose grammar is presented in Figure 2.6. It defines a
variant of first-order logic relating sets and values. The set of such
predicates is denoted byD(!).

We call an expression a formula constructed with the 〈expr〉 rule of
the grammar.

In the grammar of Figure 2.6, 〈constant〉 are constant values of typeV,
〈log-unop〉 and 〈log-binop〉 are unary and binary logical operators (taking
values and yielding predicates), and 〈unop〉 and 〈binop〉 are unary and
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〈expr〉 ::= 〈loc〉
| 〈constant〉
| 〈unop〉 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉

〈pred〉 ::= 〈log-unop〉 〈expr〉
| 〈expr〉 〈log-binop〉 〈expr〉
| ¬ 〈pred〉
| 〈pred〉 ∨ 〈pred〉
| 〈pred〉 ∧ 〈pred〉
| 〈pred〉 ⇒ 〈pred〉
| ∀ 〈log-var〉, 〈pred〉
| ∃ 〈log-var〉, 〈pred〉
| 〈loc〉 ∈ 〈loc-set〉

〈loc〉 ::= l | 〈log-var〉

〈loc-set〉 ::= S

〈log-var〉 ::= v
where l, S and v are quantified, respectively over locations (!), location

sets (P(!)) and logic variable identifiers (ℐ+).

Figure 2.6: The grammar of expressions and predicates

binary expression operators (taking values and yielding values). All of
these operators are left abstract, since they depend on the actual set of
valuesV used.

Example 10. Let 0, 1 ∈ � be two global locations of a program which
have an integer value (V := Z). We can define logical and arithmetic
operators for these values:
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〈constant〉 ::= [‘0’ − ‘9’]+

〈log-unop〉 ::= nonzero

〈log-binop〉 ::= ‘=’ | ‘<’

〈unop〉 ::= ‘-’

〈binop〉 ::= ‘+’ | ‘-’

In this setting, the following formula is a predicate ofD({0, 1}):

% := ∀8, 8 ∈ {0, 1} ∧ 8 ≤ 0 ⇒ (8 = 1) ∨ 8 > 1 + 30.

In the next examples, we will describe the semantics of this predi-
cate. For the sake of clarity, we will denote by %′ the sub-predicate of
% under quantification i.e.

% := ∀8,%′

We will now define semantic rules for predicates constructed with this
grammar. Since predicates are an extension of propositional calculus, let
us first define its semantics.

Definition 16 (Propositional calculus). Let = ∈ N be an integer, ! ⊆
ℒ� a set of locations and %,%1, . . . ,%= ∈ D(!) a set of predicates.

%1, . . . ,%= ` % denotes that % can be deduced from %1, . . . ,%= by
the rules of propositional calculus [Men09].

This definition encompasses all deductions that can be made with
propositional calculus i.e. the semantics of operators ¬, ∧, ∨ and ⇒.
Predicates constructed with other operators are considered as atoms for
the propositional calculus (they are not interpreted).

Example 11. Let %′′ be the following predicate ofD({0, 1}), which is
%′ from Example 10 where 8 has been substituted with 1:

%′′ := 1 ∈ {0, 1} ∧ 1 ≤ 0 ⇒ (1 = 1) ∨ 1 > 1 + 30.

This predicate can be rewritten as � ∧ �⇒ � ∨ � where �, �,� and
� are predicates that would be considered atoms in propositional
calculus.
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In propositional calculus, the truth of this formula can be deduced
from the truth of �, � and �, by the semantics of implication, conjunc-
tion and disjunction:

�, �,� ` � ∧ �⇒ � ∨ �

Hence we can write that %′′ can be deduced from these three predi-
cates:

1 ∈ {0, 1}, 1 ≤ 0, 1 = 1 ` %′′

Let us now build on these semantics to give a meaning to expressions
and predicates.

Definition 17 (Expression and predicate semantics). Let 4 be an ex-
pression (see Figure 2.6), E ∈ V a value and � ∈ Σ a state. We say
that 4 evaluates to E in � and note

�(4) = E

if this formula can be derived using the following semantic rule along
with the abstract operators’ semantics.

Value
�(;) = E

(; ∈ ! ∧ �(;) = E)
.

Let � ∈ Σ be a state and % ∈ D(!) a predicate. We say that % holds
in � and note

� � %

if this formula can be derived using the semantic rules illustrated in
Figure 2.7 (see Section 2.1 for notation details) along with the abstract
operators’ semantics (see Example 12 for an example of such rules).

In Figure 2.7, � quantifies over states (Σ), %,%′,%1,2,... over predicates,
E over logic variables (ℐ+), ; over locations (ℒ), ( over sets of extended
locations (P(ℒ�)). Furthermore, for a predicate %, %[v := ;] denotes the
substitution of every free instance of v by ; in %. That means that if %
contains a quantifier on the same logic variable, the substitution stops. In
other words, logic variables are bound to the nearest quantifier.

The Prop rule lifts the propositional calculus deduction of Definition 16
to allowdeducing that a predicate holds on a state if it can be deduced from
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Prop
� � %1 � � %2 . . . � � %= %1, . . . ,%= ` %

� � %
(= ∈ N+)

Mem
� � ; ∈ (

(; ∈ ()

Forall
� � %[E := ;1] . . . � � %[E := ;=]

� � ∀E,%
({;1, . . . , ;=} = dom(�))

Exists
� � %[E := ;]
� � ∃E,%

(; ∈ dom(�))

Figure 2.7: The semantics of predicates

other predicates with propositional calculus, and if these other predicates
hold on the same state.

Furthermore, we introduce quantifiers over locations (and not values)
with logic variables that are then substituted with every possible location
of the state during evaluation.

To sum up, this logic introduces a notion of expression and operators
to convert expressions into predicates (see next example for an example of
actual evaluation rules on integers) as well as concrete propositional logic
operators to compose predicates. Additionally, the logic introduces sets
of locations (but not set composition operations) and a set membership
operator.

Remark 7 (Set membership). Notice that the Mem rule in Figure 2.7
does not evaluate the terms ; and ( in ; ∈ ( to infer that � � ; ∈ (,
meaning that this checks that the location itself is part of the set, not its
value. In other words, sets are sets of identifiers, hence set membership
checks their syntactical equality rather than value equality.

This means that the following predicate does not hold on the given
state

[0 ↦→ 42, 1 ↦→ 42] 2 0 ∈ {1}
even though 0 and 1 have the same value.
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Expression operations are left completely abstract since they depend
on the language. However, we can instantiate them in an example: simple
arithmetic over integer values.

Example 12. In Example 10, we syntactically defined new logical and
arithmetic operators for integer values. We can now attach inference
rules to the logical operators and evaluation rules to the arithmetic
ones:

Zero
�(4) = E

� � nonzero 4
(E ≠ 0)

Equal
�(41) = E1 �(42) = E2

� � 41 = 42
(E1 = E2)

Comp
�(41) = E1 �(42) = E2

� � 41 < 42
(E1 < E2)

Minus
�(4) = E′

�(−4) = E
(E = −E′)

Add
�(41) = E1 �(42) = E2

�(41 + 42) = E
(E = E1 + E2)

Sub
�(41) = E1 �(42) = E2

�(41 − 42) = E
(E = E1 − E2)

where 4, 41, 42 quantify over expressions and E, E1, E2 over values.
Now consider again the predicate presented in Example 10:

% := ∀8, 8 ∈ {0, 1} ∧ 8 ≤ 0 ⇒ (8 = 1) ∨ 8 > 1 + 30.

If we consider the program state � := [0 ↦→ 100, 1 ↦→ −200], then
� � %. A derivation tree to obtain this result is laid out in Figure 2.8.
The top tree is a subtree of the bottom one, separated to fit in the page.
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The first rule used is Forall for universal quantification on a pred-
icate: for every location ; in dom(�), the predicate where the logic
variable has been substituted by ; is a premise. Here, we separate
into three cases: for ; = 1, ; = 0 or every other case. The first case is
represented in a separate derivation tree for the sake of legibility. The
second case is omitted, since it is very similar to the first.

In all cases, the next inference rule used is Prop, which has a
set of premises which can be used to deduce the rule only using
propositional calculus. The first case (in the top tree) is the deduction
that is described in Example 11 where we use propositional calculus
to derive %′[8 := 1] (which is %′′) from three sub-predicates. In this
derivation tree, we must also prove that these three predicates hold
on the state.

In the last case (on the right of the bottom tree) it is enough to
prove that ; ∉ {0, 1} in order to prove the whole implication. As
mentioned in Remark 7, notice that we do not check the values of 0, ;
and 1 in the state.

Prop

Mem

� � 1 ∈ {0, 1}
Comp

Value

�(1) = −200

Value

�(0) = 100
� � 1 ≤ 0

Equal

Value

�(1) = −200
� � 1 = 1 . . . ` %′[8 := 1]

� � %′[8 := 1] (which is 1 ∈ {0, 1} ∧ 1 ≤ 0 ⇒ (1 = 1) ∨ 1 > 1 + 30)
(1)

Forall

(1)
� � %′[8 := 1]

...
� � %′[8 := 0]

Mem

� � ¬; ∈ {0, 1} ¬; ∈ {0, 1} ` %′[8 := ;]
� � %′[8 := ;] (for ; ≠ 0, 1)

Prop

� � ∀8,%′

Figure 2.8: Derivation tree for Example 12. Redundant derivations are
omitted.

While we have a definition and semantics for a predicate holding true
in a given state, we can also define what it means for a predicate to hold
true at a given program point: if in every possible execution path to that
point, the predicate holds.
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Definition 18 (Predicate at program point). Let 5 ∈ � be a function,
4 = (E1, E2) ∈ � 5 one of its edges, and% ∈ D(�∪�∪loc 5 (4)) a predicate
over the global variables of the program, the function names and the
local variables in scope at 4.

Given the starting vertex begin(+5 ) of 5 , we say that 4 satisfies % in
the context of 5 and note

4 � 5 %

if ∀�, �′, �′′ ∈ Σ,
〈begin(+5 ), �〉 ⇓+ 〈E1, �′〉 ∧ 〈E1, �′〉 ⇓ 〈E2, �′′〉 =⇒ �′′ � 5 %

i.e. if in every possible execution of 5 until 4, % is satisfied by the state
after the execution of 4.

Given this basic definition of a predicate which can be evaluated on a
state, we can define so-calledmeta-predicates, which are simply predicates
where free variables can either be locations from a given set or identifiers
from a meta-variable set (see previous section).

Definition 19 (Meta-predicate). Let ℳ ⊆ ℐ" be a set of meta-
variables and ! ⊆ ℒ a set of locations. We define the set of all meta-
predicates D̂(ℳ, !) similarly to D(!), except that the free identifiers
can also be part of the meta-variable setℳ, in which case they are
sets of locations:

〈pred〉 ::= 〈log-unop〉 〈expr〉
| 〈expr〉 〈log-binop〉 〈expr〉
| …
| 〈loc〉 ∈ 〈loc-set〉

〈loc〉 ::= l | 〈log-var〉

〈loc-set〉 ::= S | M

〈log-var〉 ::= v

where S is (again) quantified over location sets (P(!)) and M over
ℳ.
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A meta-predicate %̂ ∈ D̂(ℳ, !) can be transformed back to a nor-
mal predicate given an environment < :ℳ → P(!+) (as returned by
a contextualization function, see Definition 11) by substituting every
instance of a meta-variable with the set of locations it is associated
with in <. This substitution is denoted by %̂(<):

%̂(<) ∈ D(ℒ+).

It is called the instantiation of a meta-predicate on environment <.

These predicates will allow us to specify properties about high-level
concepts such as ”all modified locations“ or ”all called functions“ of a
program. Let us see a simple example of a dummy meta-predicate and its
instantiation.

Example 13. The meta-predicate

%̂ := ∀8, 8 ∈ metav ∧ 8 < 0 ⇒ nonzero 1

is a valid element of D̂({metav}, {0, 1, 2}), assuming 0, 1 and 2 are
variable identifiers (and not function names).

Given the environment < = [metav ↦→ {1, 2}], we have

%̂(<) = ∀8, 8 ∈ {1, 2} ∧ 8 < 0 ⇒ nonzero 1.

Hence, with the program state � = [0 ↦→ 3, 1 ↦→ 2, 2 ↦→ 42], we have
that

� � %̂(<).

These meta-predicates, along with the notion of context (Section 2.3),
are the two essential bricks of our formalization of high-level requirements:
meta-properties.

Remark 8 (Locations and extended locations). At the beginning of
this chapter (Definition 1), we have defined location identifiers ℒ and
extended location identifiers ℒ�, the difference between the two being
that ℒ� includes function identifiers ℐ�.

A state, as defined in Definition 5, associates values to location
identifiers, not extended ones. This means that only local and global
locations may have an associated value while function names do not.
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A contextualization function (see Definition 11) returns an en-
vironment mapping meta-variables to extended location identifiers,
hence a meta-variable can be mapped to a function name.

A predicate (see Definition 15) can contain function names. How-
ever, the semantics does not define their evaluation: such names can
only be meaningfully used through the set membership operator.

2.7 Definition of Meta-Properties
We are now ready to define the class of high-level properties on A-Lang
programs, which we called meta-properties in Section 2.5. These properties,
with the help of a context and ameta-predicate, define in a single statement
a potentially complex property that must hold true in a wide set of edges
precisely defined for a given program.

Definition 20 (Meta-property). Let
(
�,�, (+5 ,� 5 ) 5 ∈�

)
∈ O be a

well-formed program.
A meta-property of that program is a triple (�̂,�, %̂)where:

• �̂ ⊆ � is a subset of program functions called the target set;

• � :=
(
(( 5 ),ℳ,�

)
is a context (see Definition 11);

• %̂ ∈ D̂
(
ℳ,� ∪ �

)
is a meta-predicate (see Definition 19) over

the program’s global variables, function names and the meta-
variablesℳ.

A meta-property "̂ :=
(
�̂, ((( 5 ),ℳ,�), %̂

)
is said to hold true on a

program if
∀ 5 ∈ �̂, ∀4 ∈ ( 5 , 4 � 5 %̂

(
�(4)

)
.

In other words, a meta-property holds true if for all functions of �̂
and for all edges characterized by the selector (( 5 ), the meta-predicate
%̂ instantiated at each of those points with the environment returned by
� holds true when evaluated with every possible execution state at the
program point.

This definition and the concept of meta-property is the core of this
work, since when instantiated with interesting contexts and languages
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more refined than A-Lang, it allows us to define a very wide range of
high-level requirements on a program.

To continue the Aspect Oriented Programming [Kic+97] metaphor
from the previous section: while contexts can be compared to specification-
level pointcuts, a meta-predicate can be seen as an advice, that is a piece
of specification (instead of code, for AOP) meant to be inserted at vari-
ous points (join points) quantified by the pointcut. As a whole, a meta-
property can then be seen as an aspect, defining a cross-cutting concern: a
specification that cuts across multiple abstractions (functions, modules,
loops, ...) in a program.

Let us see a full example of a simple meta-property.

Example 14. Recall the strong invariant context �strong invariant from
Example 6, which selects every edge in a function and gathers no
particular information.

For any meta-predicate %̂ ∈ D̂(∅,�) = D(�) (i.e. a simple pred-
icate without meta-variables) and target set �̂ ⊆ �, we can define a
meta-property

"̂strong invariant :=
(
�̂,�strong invariant, %̂

)
.

Since the context simply selects every edge, "̂strong invariant holds true
if and only if

∀ 5 ∈ �̂,∀4 ∈ � 5 , 4 � 5 %̂

i.e. if %̂ holds for every state at every point. Hence, this meta-property
really states that %̂ is a global strong invariant.

Let us now apply this concept to a security property previously men-
tioned in Section 2.5.

Example 15. Recall the "̂security meta-property stated in the begin-
ning of Section 2.5, meant to express the requirement that vaultOpen
can only be modified in the lock and unlock functions:

"̂security :=


� \
{
lock, unlock

}
�writing
¬(vaultOpen ∈ written)
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Now that we have a clear semantics for each element of this prop-
erty, we know that it holds if and only if

∀ 5 ∈ � \ {lock, unlock}, ∀4 ∈ (writing
5

,

4 � 5 (¬(vaultOpen ∈ �writing(4)(written))).

That is, if for every function except lock and unlock, at every edge
preceding a memory modification, vaultOpen ∉ written holds when
written has been replaced by the set of locations modified after the
edge.

In other words, outside the authorized functions, vaultOpen is
never part of the writing footprint of instructions, which is what we
wanted.

Through this chapter, we have defined a formal framework for high-
level properties called meta-properties, defined on an abstract language
A-Lang. A meta-property is essentially a predicate that is dispatched
across the code of target functions according to a criterion called context.
Furthermore, some contexts define meta-variables, which aggregate local
information where the predicate is dispatched and can be used by it.

There are a few useful base contexts which will serve as a basis for the
expression of real, complex requirements in all the following chapters.
These contexts allow us to easily express memory-related requirements in
particular.

While this framework allows us to specify high-level requirements, it
also paves the way for techniques enabling their verification. Intuitively,
the previous semantics states that a meta-property holds true if its predi-
cate holds at each program point characterized by its context, after sub-
stitution of meta-variables. It is easy to imagine how in real code these
substituted predicates could simply be assertions inserted at the same
code point.

In order to refine this formal framework into a concrete solution to
express and validate high-level requirements on a real programming lan-
guage, the next chapter will review the features and specification language
of the Frama-C platform, and apply the formalization of this chapter to
obtain actionable meta-properties on C programs.



Chapter 3
High-Level Properties in C:

HILARE
Adopt HILARE today, and laugh your bugs away!

While Chapter 2 provided a formal framework of our approach to
describe high-level requirements, this chapter presents a concrete instanti-
ation of this approach. The objective is to specify high-level requirements
over C programs, through the introduction of a C-specific syntax for meta-
properties called the HILARE (High-Level ACSL Requirement) language.

We do not start from scratch: our approach is based on Frama-C and
its specification language ACSL, presented in Section 3.1. Section 3.2
then transposes all the concepts linked to meta-properties presented in
Chapter 2 into the realm of C and ACSL, exposing the concrete syntax for
C-specific meta-properties and their semantics with respect to the original
meta-properties.

Section 3.3 describes extensions that venture outside this formalization
(and were not formalized in the last chapter to keep it simple) but that we
deemed useful to have in order to specify concrete requirements over C
programs. Section 3.4 briefly mentions how these concepts are integrated
within Frama-C (more on this in Chapter 4). Finally, Section 3.5 presents
a longer, realistic example of HILARE specification on a system with
confidentiality requirements.

From now on we will assume that the reader has a basic knowledge of
the concepts of the C programming language [IsoC], and will recall some
important concepts as we go along.
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3.1 The Frama-C Framework
This section presents the Frama-C [Kir+15][Bau+21] platform, which
provides an analysis framework for programswritten in the C language. In
particular, it allows users to semi-automatically machine-check formalized
properties of programs.

3.1.1 C Program Analysis Framework
The C programming language is still widely used in the industry due to its
extreme availability and low abstraction level, which make it particularly
suitable as a system programming language. However, it is notoriously
easy to write faulty C programs due to an absence of memory safeguards
and an abundance of unsafe constructs. Hence, there are a variety of tools
dedicated to the analysis of critical C code to alleviate the risk of serious
bugs. One of them is Frama-C.

The Frama-C framework is an open-source analysis platform for
industrial-scale C programs. Its architecture allows it to provide a wide
range of analysis techniques through a variety of plugins (as we will see
in Section 3.1.3). In particular, Frama-C can perform deductive verifica-
tion of program properties via the Wp plugin (Section 3.1.3) and runtime
assertion checking via E-ACSL (Section 3.1.3).

Frama-C consists of a kernel which is able to parse the C code and
to store it in an internal representation. This representation can then be
inspected and manipulated by plugins for program analysis and verifica-
tion purposes. Frama-C also provides a graphical user interface for easier
interaction.

The Frama-C kernel as well as its plugins are programmed in
OCaml [Cuo+09]. The platform and the main plugins distributed with it
are open-source (under the LGPL 2.1 licence).

3.1.2 ANSI/ISO C Specification Language (ACSL)
The ANSI/ISO C Specification Language (ACSL) [Bau+20a] is a formal
behavioural specification language for the C programming language. It
allows the specification of behavioural properties of a program within its
source code.

It builds on the design-by-contract approach of the Eiffel programming
language [Mey97] and its syntax is inspired from the Java Modeling Lan-
guage (JML) [LBR99], which is a similar behavioural language for Java
programs.
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The rest of this section presents all the concepts of ACSL needed in the
thesis. For an exhaustive presentation of ACSL, the reader can refer to its
specification document [Bau+20a]. We will use the C function illustrated
in Figure 3.1 as a working example.

int mem(int* T, unsigned size, int x) {
int res = 0;
for(unsigned i = 0 ; i < size ; ++i)

if(T[i] == x)
res = 1;

return res;
}

Figure 3.1: The running example, a function mem testing the presence of a
value in an array

This mem function takes an array T of integers along with its size, and
an integer value x. It iterates over the array until it finds an element equal
to x, in which case it sets a local variable res to 1 (which can be interpreted
as the boolean true in C). It then returns this variable. We will want to
specify that this function only returns 1 when the array contains x, and 0
otherwise.

Logic expressions. ACSL is based on a core of logic expressions, that
closely map to C expressions (albeit they must remain pure), with addi-
tional constructs that allow the expression of useful logic concepts about
C expressions and values.

Syntax Semantics
&& || ==> ! Logical operators

\forall type var; P Universal quantification
\exists type var; P Existential quantification

\union(S1,S2) Set union
\at(expr,lab) \old(loc) Value of location at label

\valid(p) \valid_read(p) Pointer validity
\separated(loc1, loc2) Memory separation
\overlaps(loc1, loc2) Memory overlapping

Figure 3.2: Important ACSL terms and predicates

Figure 3.2 describes most common operators that will be useful during
this thesis. Similarly to the predicate language of the previous chapter,
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ACSL is based on classical first-order logic: there is a distinction between
predicates (which evaluate to true or false) and terms (which evaluate to
values). Furthermore, while in the last chapter A-Lang and the predicate
language had only one type (the typeV of values), here we deal with all
the existing C types.

While the first few operators should be self-descriptive, the last three
lines contain constructs that are specific to C and worthy of attention:

• The \at(expression, label) construct allows one to state a property
about the value of an expression at a specific point of the program
identified by a label. The default label for any expression is Here,
meaning that the annotation states a property about the value of
some expression at the point where the property is defined (see
next paragraph). There exist several automatically defined labels
depending on the placement of the annotation, such as Pre and
Post which refer to the state before and after the current function.
Furthermore, any previously defined C label can be used as a label
in \at. The \at operator can be used as an atom of a larger formula.
Lastly, the construct \old(e) is a shortcut for \at(e, Pre).

• \valid(p) where p is a pointer (or set of pointers) specifies that p
points to a safely allocated memory location, i.e. dereferencing p
is guaranteed to produce a definite value according to the C stan-
dard [IsoC], and writing to the pointed memory block is safe as well.
Note that the type of p is taken into account since it changes the size
of the pointed region: \valid((int*)p) and \valid((char*)p) 1

are in general not equivalent.

The \valid_read(p) variant is similar but only specifies that the
pointer is safe for dereferencing, without any warranty about writing
to the pointed memory region.

• \separated(loc1, loc2) (where loc1 and loc2 are pointers2) holds
if the blocks pointed by loc1 and loc2 do not overlap in memory i.e.
if they are disjoint. \overlaps is simply the negation of \separated,
introduced to make specification more legible3.

1In C, (t*)e is a cast forcing expression e to be interpreted as a pointer on values of
type t.

2Or sets of pointers, in which case this is checked for each pair.
3\overlaps is introduced for the needs of the thesis and does not exist in pure

ACSL. However, it does exist in the context of HILARE (see next section) and the associ-
ated Frama-C plugin.
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ACSL annotations. The C source code can be annotated with ACSL speci-
fication. This specification is written inside comments beginning with the
special symbol @, either in the global scope or within functions.

Figures 3.3 and 3.4 illustrate the complete specification of the mem func-
tion presented in Figure 3.1. We will first explain the concepts of the first
figure, which illustrates the contract of the function.

1 /*@
2 requires \valid(T + (0 .. (size - 1)));
3 ensures \result == 0 <==> \forall unsigned j;
4 0 <= j < size ==> T[j] != x;
5 assigns \result \from *(T + (0 .. size - 1)), size, x;
6 */
7 int mem(int* T, unsigned size, int x);

Figure 3.3: A contract for mem

Function contract. A function contract is an ACSL specification that
immediately precedes the definition or declaration of a function in the
source code (lines 1-6 in Figure 3.3). It generally contains three parts:

• a list of preconditions: properties that must hold in the state of the
program whenever that function is called. Each precondition is
specified using the requires keyword.
Here on line 2 we assert that the size first cells of the array T must
be valid memory addresses (if size is 0 then there is no constraint,
which reflects that no cell is visited).

• a list of postconditions: properties that must hold in the state of the
programwhen that function returns. Each postcondition is specified
using the ensures keyword.
Here, on lines 3-4, we have a postcondition stating the correctness of
the function: the result is equal to zero if and only if no cell of the
array contains the value x.

• a frame clause: an exhaustive list of non-local memory locations
that can be modified by that function. It is specified by the assigns
keyword.
The assigns statement on line 5 indicates that each assignment
inside mem may only affect its local variables or the value it returns



54 CHAPTER 3. HIGH-LEVEL PROPERTIES IN C: HILARE

(via the return statement), symbolized by the term \result. As
is the case here, the frame clause is optionally followed by a \from
clause, which is described below.

Memory footprint. The frame clause can contain an optional description
of the data-flow of the function with the \from keyword. It specifies the
provenance of data for each modification of the state. Here, on line 5, we
state that the function may only access x, size or the size first addresses
of T to compute the result.

1 int mem(int* T, unsigned size, int x) {
2 int res = 0;
3 /*@ ghost unsigned cells_left = size; */
4 /*@
5 loop invariant 0 <= i <= size;
6 loop invariant res == 0 <==> (\forall unsigned j;
7 0 <= j < i ==> T[j] != x);
8 loop invariant cell_left == size - i;
9 */

10 L: for(unsigned i = 0 ; i < size ; ++i) {
11 /*@ ghost --cells_left; */
12 /*@ assert rte: mem_access: \valid_read(T + i); */
13 if(T[i] == x)
14 res = 1;
15 }
16 /*@ assert cells_left = 0; */
17 /*@ assert \at(size, Pre) == \at(size, L); */
18 return res;
19 }

Figure 3.4: Inline annotations for mem

Let us now describe the various concepts illustrated in the inline anno-
tations of Figure 3.4.

Assertions. Statement annotations allow writing annotations directly
above a statement. The assert P clause is a statement annotation that
ensures that a predicate P holds at a given program point. Hence, this
statement may be used as a hypothesis for subsequent proofs in the code
that follows it.



3.1. THE FRAMA-C FRAMEWORK 55

There is a variant using the check P clause which behaves similarly,
except the assertion cannot be used as a hypothesis for further proofs (it
must only check that the predicate holds at the given program point).

Loop invariant. The loop invariant that goes from lines 5 to 7 states that
the loop counter i stays in the range [0, B8I4] and that at each iteration, we
can assert that if res is still null then xwas not found in the i first cells of the
array. Loop invariants must hold at the beginning of each iteration (and
after the last one, at the moment the loop condition is evaluated). Notice
that when i takes its last value size, this is equivalent to the postcondition
on line 3.

Ghost code. Although it does not serve any purpose in this example,
the specification also contains ghost code. Ghost variables are variables
declared for specification purposes only and cannot be used by the orig-
inal code, and ghost instructions are statements that may only modify
ghost variables (but can read the content of ghost as well as non-ghost
variables). Furthermore, ghost code cannot modify the control flow of the
original program. Thus, ghost code altogether cannot modify the original
semantics of the code.

In our example, we declare the ghost variable cells_left on line 3
which corresponds to the number of cells left to explore in the array. This
property is verified by the corresponding loop invariant on line 8 and
ensured by the ghost instruction on line 11. Finally, we use the assert
construct on line 16 to check that after the loop, there are no cells left to
explore.

Automation. This annotated code can be fed to Frama-C with for ex-
ample the Runtime Errors (RTE) plugin enabled. RTE emits annotations
ensuring the absence of runtime errors, such as divisions by zero, invalid
memory accesses or signed 4 overflows. In our case, RTE adds the asser-
tion at line 12 of Figure 3.3. This checks that the program can always safely
read T[i].

3.1.3 The Plugin Ecosystem
The Frama-C kernel provides a framework for parsing C programs anno-
tated with ACSL, and does not perform any analysis. Instead, it is easily

4Unsigned overflows have well-defined semantics in C (wrapping around). However,
checking for their absence can also be enabled in RTE.
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extensible through plugins, which can be combined to perform a wide
variety of analyses and transformations. Figure 3.5 presents most of the
existing plugins of the Frama-C ecosystem. They are grouped in several
categories:

• understanding: plugins allowing a human to inspect a program and
understand its structure and meaning. For example, Callgraph
builds a call graph of the program (as can be expected).

• support: plugins that help automate the specification and verification
of a program. For example, Pilat [OBP16] automatically generates
polynomial numerical invariants over the loops of the program.

• simplification: plugins that transform the program to simplify it. For
example, Constfold replaces constant expressions by their values in
the code.

• expressiveness: plugins that extend ACSL to allow the specification of
more properties. For example, Aoraï [SG11] allows the specification
of temporal properties. This chapter introduces such a plugin to
specify meta-properties: MetAcsl.

• verification: plugins allowing to validate specification, either statically
or dynamically. Wp [Bau+20b] and E-ACSL [SKV17] are described
in the following paragraphs.

ACSL is a specification language common to all plugins and can thus
be used as a communication means between them.5

Each ACSL annotation represents a property, to which a validity status
is associated (typically Unknown6 before analyses are performed). Any
plugin can decide to emit a validity status for an annotation at its own
discretion.

In addition, a plugin can advise that a validity status depends on some
hypotheses (other annotations or specific plugin parameters), possibly
emitted by the plugin itself. Indeed, a plugin can choose to emit new
annotations, in hope that another plugin (or a human) will be able to
prove or use them. The Frama-C kernel maintains a global consolidated
validity status for each annotation, taking into account the validity of its
dependencies and ensuring the absence of dependency cycles.

We now briefly present two plugins that will be used in this thesis: Wp
and E-ACSL.

5Plugins can also communicate via their respective API when available.
6Technically Never tried, or Considered valid for axioms.
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Figure 3.5: The Frama-C plugins, categorized

The Wp plugin. Deductive verification allows one to formally prove that
the implementation of a function is correct with respect to its specification
(see Chapter 1). The Weakest Precondition plugin (Wp) [Bau+20b] gener-
ates logical formulas encoding the semantics of ACSL annotations, known
as proof obligations or verification conditions. It feeds them to the verification
platform Why3 [FP13], which dispatches them to automated theorem
provers such as Alt-Ergo [AltErgo] or Z3 [DB08] or to proof assistants
such as Coq [Coq21], where the user helps unroll the proof.

If all proof obligations are validated, then the body of the function
fulfils its specification.

As is always the case with deductive verification, it is sometimes nec-
essary to add auxiliary annotations to help the tool complete the proof.
Refer to Chapter 5 near the end of this thesis for more details about the
methodology of verification in the context of high-level requirements.
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The E-ACSL plugin. The E-ACSL [SKV17] plugin allows one to verify
requirements at runtime without additional annotations by performing
runtime assertion checking. Given a program annotated with ACSL, it
transforms it into another program that can be compiled and fails at run-
time if an annotation is violated.

3.2 HILARE Syntax and First Examples
To specify meta-properties (introduced in Chapter 2) in Frama-C, we
propose an extension of ACSL syntax. It is meant to explicitly encode each
element of the triple (�̂,�, %̂) 7that constitutes a meta-property: a target set,
a context and a meta-predicate. The HILARE language is the name of that
ACSL syntax extension. We will refer to the C-specific meta-properties
written with that syntax as HILARE properties or just HILAREs.

This chapter is essentially a transposition of the concepts presented in
Chapter 2 into concrete syntactic and semantic elements for C and ACSL.

Definition 21 (HILARE structure). A HILARE is an ACSL annota-
tion in the global scope with the following structure (white space
does not matter):

/*@ meta \prop,
\name(...),
\targets(...),
\context(...),

P;
*/

where:

• \name contains an alphanumeric identifier;

• \targets contains an ACSL expression defining a set of function
names;

• \context contains one of { \strong_invariant,
\weak_invariant, \writing, \reading, \calling,
\precond, \postcond };

7See Definition 20 in Chapter 2.
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• P is an ACSL predicate over global variables of the program and
meta-variables of the context.

An alternate form allows additional configuration flags (described in
the next chapter):

/*@ meta \prop, \name(...),
\targets(...), \context(...), \flags(...), P; */

Similarly to the predicates in A-Lang, we talk about the instantiation
of a HILARE to designate the substitution of meta-variables with actual
values within the predicate of that HILARE.

Remark 9 (Locations and addresses). In the previous chapter, meta-
variables such as written were associated to A-Lang locations. Loca-
tions themselves were simply identifiers used as keys in a state �.

In C, locations are allocated memory blocks, containing a value of
a given type (unlike A-Lang where all locations had the same type,
as we will see in Section 3.3.2). A location does not always have an
identifier in C (i.e. a variable), instead it can universally be referred
to using its address. In other words, in C, addresses play the role of
locations.

Hence, in a HILARE, meta-variables are associated to sets of ad-
dresses by contexts. These addresses can refer to memory blocks of
different types.

3.2.1 Target Set Specification
The target set is provided using the usual set syntax of ACSL. It can be
explicit ({f1, . . . , fn}), or use set operators such as \union or \inter. We
also added the \diff operator for set difference, which does not exist in
ACSL.

Since the goal for meta-properties is to be able to easily specify proper-
ties on large code bases, giving the explicit set of targets is rarely a practical
solution. Instead, we provide a special variable \ALL which refers to the
set of all functions in the program and is very convenient, along with the
\diff operation, to specify target sets of the form “all functions except...”.

As an additional way to ease the delimitation of the targets, we provide
two constructs \callees and \callers. \callees(f) is the set contain-
ing f and all functions (transitively) called by f. \callers(f) is the dual
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set containing f and all functions that (transitively) call f. It is especially
useful when dealing with programs with clearly defined entry points.8

Since the C programming language lacks a module or name space sys-
tem, it is common to simply group related functions in files. Consequently,
it might be useful to refer to the group of functions defined in a file. This
is the purpose of the construct \in_file(filename).

The combination of these simple constructs allows for a convenient
way to specify the scope of a meta-property without having to rewrite the
target set when new functions are added to the implementation.

Example 16 (A complex target set). The following set can be used
as a target in a HILARE to describe “every function of the program
except foo, bar or any function defined in main.c”

\diff(\ALL,
\union({foo, bar},

\in_file("main.c")))

3.2.2 Available Contexts
As can be seen in the definition, one cannot use an arbitrary context as

described in the previous chapter, but can choose within the base contexts
previously defined (plus \precond and \postcond, as defined below). It
turns out that these few simple contexts, combinedwith the expressiveness
of ACSL itself, are enough to write quite interesting properties.

Recalling their definition from Chapter 2 (Section 2.4), we refine their
semantics in the context of the C programming language instead of A-
Lang. In particular, notions of locations, identifiers, etc. are mapped to
concepts specific to C.

Weak Invariant, Pre/Postcondition. The \precond context returns
only the starting edge of a function’s CFG with no meta-variable, while
\postcond does the same with the ending edges, and \weak_invariant
combines both. Hence, it allows the specification of a predicate which
must hold at the beginning of functions, at their end, or both.

Strong Invariant. The \strong_invariant context simply provides a
contextualization mapping returning every edge of the CFG of a given

8This feature relies on the Frama-C plugin Callgraph, which makes gross but sound
over-approximations of these sets in the presence of indirect calls (i.e. function pointers).
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1 int A, B, C;
2 // level is the current confidentiality level
3 unsigned level, secret_size;
4 int* secret; // a secret array with secret_size elements
5
6 void main(); // main entry point
7 void def_level(int val); // set confidentiality level
8 void backdoor_root(); // backdoor that can always access secret
9 // return secret only if level is sufficient

10 int read_secret(unsigned n);
11 /*@
12 //A always remains equal to B in function main
13 meta \prop, \name(AB_same),
14 \targets({main}), \context(\strong_invariant),
15 A == B;
16 //The level can only be modified in def_level or backdoor_root
17 meta \prop, \name(modif_level),
18 \targets(\diff(\ALL, {def_level, backdoor_root})),
19 \context(\writing), \separated(\written, &level);
20 //The secret can only be read if level is at least ROOT_LEVEL
21 meta \prop, \name(can_read_secret),
22 \targets(\ALL), \context(\reading),
23 \separated(\read, &secret[0 .. secret_size - 1])
24 || level >= ROOT_LEVEL;
25 //Function backdoor_root is never called
26 meta \prop, \name(no_backdoor),
27 \targets(\ALL), \context(\calling),
28 \tguard(\called != backdoor_door);
29 */

Figure 3.6: Examples of HILARE properties and contexts
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function without defining any meta-variables. It allows to specify a predi-
cate thatmust hold at every point of functions. It is illustrated in the AB_same
property in Figure 3.6.

Upon Writing. As in the previous chapter, the \writing context selects
program points preceding instructions modifying the state and maps the
\written meta-variable to the set of modified locations in the state i.e. to a
set of C addresses.

In the context of C, this means that we can specify that a predicate
must hold before every local modification of the state (e.g. through the
assignment of a variable), and use the modified locations in the predicate.
As before, local modifications do not include state changes made by other
called functions (except in some circumstances, see next section).

The action of this context and the mapping to \written is illustrated in
Figure 3.7.

Since \written is a meta-variable of this context, it can then be used by
a predicate to form a useful HILARE. A simple example would be to forbid
any local modification of some global variable, as shown by meta-property
modif_level on Line 14 of Figure 3.6. It states that for any function that
is not def_level or backdoor_root, whenever some memory location is
modified locally, it must be unrelated to the global variable level.

Sincewe consider only localmodifications, a call to def_level inside an-
other function not allowed to modify level does not violate modif_level,
even if def_level itself modifies level. Thus, modif_level can be seen as
enforcing the proper encapsulation of level.

Upon Reading. The \reading context is identical to the \writing con-
text except that it selects all edges leading to an instruction that reads from
the memory and associates a meta-variable \read with the addresses being
read by the instruction. It is illustrated by property can_read_secret in
Figure 3.6.

Remark 10 (Behaviour on undefined functions). Both the
\writing and \reading contexts consider only local modifica-
tions: reads and writes within callees are ignored. This mirrors
the behaviour of the memory footprints of A-Lang in the previous
chapter.

However, we make an exception for functions that are declared but
not defined within the program. In C, this is mostly the case for functions
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char* G;

/*@ assigns
T[0 .. 40];

*/
void bar(int* T);
//bar is declared
//but not defined

void foo(int* p) {
int i = *p;
while(--i) {

*p = i;
bar(G);

}
}

Begin

int i = *p;

i = i - 1;

i != 0 ?

*p = i;

bar(G);

End

{\written ↦→ &i}

{\written ↦→ p}

{\written ↦→ G+(0 .. 40)}

Figure 3.7: Illustration of the writing context on a small C program

that are part of an external library (e.g. the libc).
Section 3.1.2 introduces ACSL function contracts and their frame

clause, which specifies which global locations a function may modify,
and the memory footprint which specifies which locations are read
throughout the function. These two elements are optional in a con-
tract.

For functions that are declared but undefined, we look at their
contract and use it to infer writing and reading memory footprints.
We then consider these potential reads and writes as actual, local
actions (i.e. within the scope of the caller function).

This is why in Figure 3.7, a call to the bar function is considered
as a writing operation to the location range described in its assigns
clause.

Upon Calling. Similarly, the \calling context selects all edges preced-
ing a function call and maps a meta-variable \called with the function (or
function pointer) that is being called.

Since the type signature of the function pointer mapped to \called is
unknown at specification time, this meta-variable should be handled with
care (as we will see in Typing Troubles in Section 3.3.2).
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Example 17 (Back to the vault). Recall the meta-property stated in
Chapter 2 to ensure that the variable vaultOpen, controlling a vault,
is only modified within two functions lock and unlock.

"̂security :=


� \
{
lock, unlock

}
�writing
¬(vaultOpen ∈ written)

This is how we would write it in the HILARE language:

meta \prop,
\name(vault_security),
\targets(\diff(\ALL, {lock, unlock})),
\context(\writing),

\separated(&vaultOpen, \written);

Here we can easily see the parallel between the abstract and con-
crete properties.

3.3 Extensions of Meta-Properties in HILARE
The basic definition of the HILARE language presented in the previous
section mirrors that of meta-properties in the previous chapter and en-
ables the specification of many useful properties, as seen in the examples.
However, the case studies (which will be described in Section 3.5) showed
that it had several limitations, in both expressiveness and adaptability
to the structure of programs. To address these limitations, we introduce
some extensions to meta-properties.

3.3.1 Strong Invariant Relaxing

It is sometimes necessary even for a strong invariant to be temporarily
broken. Equality between two variables (e.g. AB_same in Figure 3.6) is an
example of that, as there is no way to change the value of the two variables
in a single instruction. To overcome this issue, we add a lenient modifier
that can be applied on a block of code to exclude the edges inside it from
the scope of strong invariants.
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Example 18. Say we have a function assigning a new, identical value
to global variables A and B. In the absence of an atomic operation
performing the two assignments, it has to do two successive assign-
ments, therefore temporarily violating the AB_same invariant specified
in Figure 3.6.

We can locally relax that invariant in the bloc surrounding the two
instructions with the lenient modifier, preceded by the imeta clausea.

void setAB(int v) {
//@ imeta lenient;
{

A = v;
B = v;

}
}

Here, strong invariants will not be checked inside the annotated
block (but will be immediately after).

aAnd not meta, since here the annotation is inline, as opposed to annotations
in the global scope.

3.3.2 Typing Troubles
In Chapter 2, A-Lang locations all had the same type (they all yielded
a value of the set V). Hence, it was the same for meta-variables: they
mapped to sets of locations of the same type.

However, in C, this is obviously not the case. For example, in Figure 3.7,
the \writtenmeta-variable of the \writing context is successivelymapped
to pointers of type int* and char*. Since this context accounts for all
types of modifications, it could be mapped to types that are mutually
incompatible: \written cannot be typed within the meta-predicate of a
HILARE. Or rather, its type is the union of types of the mapped terms.
Yet, this set of types is not known in advance when writing a HILARE.

Thus, nothing can be assumed for example about the type of \written
when specifying aHILARE in the \writing context, except that it is always
a pointer type (since it refers to the set of addresses that are modified).

Any other assumption would create a risk of typing error. For example,
assuming there exists a C structure struct S with an x field, the presence
of \written->x in ameta-predicatewouldmake any instance of theHILARE
related to an assignment to a location of another type ill-defined (see the
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code below).

struct S { int x; };

/*@ meta \prop, \name(unsafe),
\targets(main), \context(\writing),

// \written is intended to be a struct S
\written->x == 0;

*/

int main(...) {
struct S u, v;
v.x = 0;
u = v; // Safe
...
int i;
i = 4; // Unsafe, i does not have an "x" field!

}

To deal with such vaguely typed meta-variables, the only usable ACSL
operator is \separated(l1, l2), described earlier, since its only require-
ment is that its parameters are pointers.

While this suffices to express interesting properties such as separa-
tion (see Figure 3.6), it does not allow reasoning about the value of the
meta-variable. To address this issue, we introduce a construct to make
assumptions about the type of a meta-variable while having a safeguard
in case these assumptions were wrong.

More precisely, we add two predicates \tguard and \fguard that
take an unsafe predicate (where a typing error might happen), behave
as the identity if there is no error, and return respectively \true and
\false otherwise. This allows the user to specify the previous example as
\tguard(\written->x == 0). If a particular instance of \written is of the
expected type struct S (or any other structure with a field x) then its field
is checked, else the property defaults to \true (i.e. we are only interested
in modifications on locations of that type). Had \fguard been chosen
instead of \tguard, any instantiation of that HILARE on a type that is not
struct S would have defaulted to \false, effectively forbidding write
operations to those types.

Intuitively, these functions should be used to guard any predicate that
may be invalid for some instantiation of the HILARE. The default value to
choose should reflect if these failures are expected in some cases or not: in
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our example, \tguard allowed and ignored failures while \fguard did
not.

Remark 11 (Handling unsafe function pointers). As mentioned in
Section 3.2.2, the \called meta-variable of the \calling context is
mapped to the addresses of callees in target functions. These ad-
dresses are function pointers with unknown signatures.

Although \separated is useful to distinguish two addresses, this
construct does not handle function pointers: it’s not possible to use
\separated(\called, my_func) in a HILARE. The only way to iden-
tify which function is \called is to use an equality operator ==, or a
difference operator !=.

However, the equality operators require both operands to have
compatible types: while it will behave as expected for different func-
tions with similar signatures, it will not type correctly with two func-
tions of incompatible signatures.

Hence, the common way to use the equality operator is wrapped
inside a guard, as illustrated in property no_backdoor of Figure 3.6.

3.3.3 Labels in Meta-Properties
While the HILARE language allows specifying a property when some
event defined by the context happens (e.g. a memory operation) and
the safeguarding constructs enable that property to talk about the values
of the meta-variables, sometimes we need to talk about the effect of the
memory operation on these values.

For example, one may want to globally guarantee that some initially
null global variable G is initialized only once to a strictly positive value.
However, it is not possible to specify this without a means to refer to G
before and after each modification, which would be needed to characterize
our notion of initialization.

As mentioned in Section 3.1.2, one can use the \at(expression, label)
construct to refer to the value of an expression at a specific point of the pro-
gram identified by a label. An expression used without \at refers to its
value at the point where it appears (which can be used explicitly with
the Here label). There also exists two built-in labels Pre and Post referring
respectively to the state before and after the current function. Furthermore,
any previously defined C label can be used as a label in \at. The \at con-
struct can naturally be used in the predicate % of an HILARE, with labels
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Pre, Post and Here keeping their meanings. But these pre-defined labels
do not allow us to link the values before and after a specific modification.

To tackle the aforementioned problem, we define two additional labels
that are specific to the HILARE language and its contexts: Before and
After that are used to refer to the states before and after the statements
considered by the context, if any. These special labels may be mapped to
actual ACSL labels by the contextualization function of a context when it
makes sense to do so.

For example, the \precond context does not define them. The
\writing context maps Before to Here (since by definition the edge re-
turned by the context precedes a statement modifying the memory) and
After to a C label inserted after the statement modifying the memory.

Example 19. With these labels, we can nowwrite our previously prob-
lematic initialization meta-property:

meta \prop, \name(G_unique_initialization),
\targets(\ALL), \context(\writing),

\separated(\written, &G)
|| (\at(G, Before) == 0 && \at(G, After) > 0);

whichmeans that each instruction either does notmodify G ormodifies
it such that its value is 0 before the modification and strictly positive
after it.

This extension makes HILARE requirements able to deal with very
simple temporal properties, hence it overlaps with other existing Frama-
C plugins specialized in specifying temporal properties such as Aoraï,
or more generally other approaches similar to our own such as [CP05]
and [TH02]. However, while this extension makes reasoning with local
changes possible, it is definitely not a good tool for defining complex
time-related requirements.

Remark 12 (Labels for function calling). Note that while Exam-
ple 19 presents the usage of these labels within the \writing context,
these can also be used within the \calling context, thus referring to
the state before and after each call.

However, the labels do notmake sensewithin other contexts where
either nothing is modified (\reading) or the context do not corre-
spond to a specific operation but are rather invariants.
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3.3.4 Referring to Non-Global Values
As HILAREs are global properties that are not declared in the scope of
any particular function, they can only refer to global variables and meta-
variables. This is a strong limitation to the kind of properties that can be
written, as some programs have few interesting objects declared in the
global scope and typically pass them as arguments. To tackle this issue,
we came up with two different mechanisms: the \formal construct and
the notion of local binding.

Referring to function parameters Sometimes there is an object present
in every target function of a meta-property as a consistently named func-
tion parameter, instead of a global variable. In these cases, we introduce
the \formal9 keyword to refer to such a parameter in the predicate of a
HILARE.

When \formal(some_param) appears in a HILARE, each instantiation
of the HILARE triggers the check that some_param is indeed a formal of
the current target function. If it is, the \formal call is safely replaced by
some_param. Otherwise, a typing error is triggered at the point where it is
used.

Thus, \formal is best used when combined with the safeguarding
constructs \tguard and \fguard, since it allows the specification engineer
to assume that a formal is consistently defined in every target function and
use it in a property, but to safely default to a conservative property if this
assumption is wrong.

Example 20. This HILARE specifies that if a function in the program
takes a function pointer pre_process as a parameter, then it can only
be called if it is distinct from a do_not_call function. If this parameter
does not exist in a function, then the property defaults to \true since
there is nothing to verify.

meta \prop, \name(pre_process_whitelist),
\targets(\ALL), \context(\calling),
! \fguard(

\called == \formal(pre_process)
&& \formal(pre_process) == do_not_call

);

9A fuction parameter is also called a formal, hence the name.
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Referring to bound names If it is not possible to rely on a consistent
naming of formals across functions, we introduce a notion of binding to
overcome this difficulty with some help from the user.

We introduce two special functions, \bind and \bound. The first one
is to be used outside a HILARE, in the body of a C function, to bind a name
to the value of a C expression at that point. This name is a new global
identifier and must not exist in the source code before.

This name can then be used in a HILARE to formulate an interesting
property about the value it refers to. A name can actually be bound
multiple times to different values at different points of a program, meaning
that the name inside a HILARE refers to the whole set of associated values.

Consequently, the same name can only be bound to values with mutu-
ally compatible types, and referring to that namewith \bound in aHILARE
will yield a value of the inferred type (unlike meta-variables where the
type is not known in advance).

Example 21 (Bindings). The whole process is illustrated in Fig-
ure 3.8, where we use bindings to specify a property about all blocks
allocated on the heaps by a single function.

We have a program with a function create_cell that allocates a
new integer on the heap and returns its address each time it is called.
We also have a global variable lock, that we assume is used in other
parts of the program. We want to verify that all integers allocated by
create_cell can only bemodifiedwhen lock is not zero (which could
be useful, for example in the context of a multithreaded application).

First, we use bindings to assign a new, global name to the set of
all integers allocated with create_cell. Indeed, in the body of that
function, we bind the temporary c variable, which contains a freshly
allocated integer, with a new global name cells.

Then, we use that name in the HILARE at the end of the program,
wrapped in a \bound function, as if it were a single variable. In
this HILARE, \bound(cells) will refer to any variable allocated by
create_cell, hence the HILARE must hold for every possible value.

Notice that the bound values are constant but may be pointers referring
to changing memory. We are then specifying a property across all the
memory states of the different instantiations.



3.3. EXTENSIONS OF META-PROPERTIES IN HILARE 71

int lock; // A global, imaginary lock

//A wrapper around malloc for single integers
//The name 'cell' will refer to every int allocated
//by this function
int* create_cell() {

int* c = (int*) malloc(sizeof(int)); //assumed to succeed
//@ imeta \bind(c, cells);
return c;

}

//Modifies a cell if the lock is available
int safe_modify_cell (int* cell, int val) {

if(!lock) {
//Take the lock
lock = 1;
*cell = val;
//Release the lock
lock = 0;
return 0;

}
else return -1;

}

//Modifies a cell arbitrarily
void unsafe_modify_cell (int* cell, int val) {

*cell = val;
}

/*@ //Pointers returned by create_cell
//can only be modified when the lock is taken
meta \prop, \name(cell_modif_is_critical),

\targets(\ALL), \context(\writing),
\separated(\written, \bound(cells)) || lock;

*/

Figure 3.8: The usage of name binding, illustrated
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3.3.5 Referring to Callee Parameters
When using the \calling context and targeting a specific callee, it is
possible to refer to the value provided for a formal at every call site, using
the \called_arg(parameter_name) term. It throws a type error when the
called function does not have the specified formal, is indirectly called
(through a function pointer) or is a variadic function. Thus, it should be
surrounded by a guard (see Section 3.3.2).

Example 22. For example, the following HILARE states that param-
eter x of the function with signature float sqrt(float x) should
never be provided with a negative value.

meta \prop,
\name(sqrt_pos),
\targets(\ALL),
\context(\calling),

\tguard(\called == sqrt ==> \fguard(\called_arg(x) >= 0.));

In this contrived example, of course, the same goal could also be
achieved by adding a precondition in the contract of sqrt, or even
with the help of the \precond context.

Remark 13 (Fragile specification). For global-level specification to
be feasible, it is necessary to have anchor points in the program that
we can refer to in the specification. It is often global variables names,
function names or in this case even function parameter names.

The more local the name we’re referring to is, the more fragile to
program changes the specification becomes. While MetAcsl is quick
to alert that an assumption about names made in a HILARE is no
longer valid, this can be silenced by guards. Hence, it is important
to be extremely careful when using guards to avoid silent errors,
for example by preferring defaulting to a false predicate rather than
ignoring errors when possible.

3.4 The MetAcsl Plugin for Frama-C
The HILARE syntax and its extensions are not supported natively in ACSL.
Hence, we introduced a new plugin in the Frama-C ecosystem: MetAcsl.
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Any source code containing HILARE annotations (delimited by the
meta or imeta keywords, depending on whether the annotation is global
or inline) can then be correctly parsed by Frama-C, and other plugins can
be invoked on the resulting source code.

This plugin is available to the public under the LGPL licence 10. Its
capabilities are not limited to just parsing HILARE specification: the next
chapter describes in detail how it can be used to actually verify that a
program is compliant with requirements specified through the HILARE
language.

Remark 14 (On nomenclature). Now is a good time to summarize
the different names we’ve introduced and recall the differences be-
tween them:

High-level requirements are properties that wewant a program
to uphold, expressed in natural language.

Meta-properties are a formal class of high-level properties, pre-
sented in Chapter 2. They aim at being a general-purpose frame-
work for expressing high-level requirements.

HILARE is the name given to the extension of ACSL for specify-
ing meta-properties, discussed in the current chapter. A meta-
property specified using this syntax is called a HILARE as well.

MetAcsl is the Frama-C plugin implementing the HILARE
language and its verification strategy. It will be described at
length in Chapter 4.

3.5 Complex High-level Requirements as
HILARE

We present a small-scale case study where the HILARE language is useful
to specify confidentiality and integrity properties such as memory access
control. This earlier case study was imagined to evaluate the relevance of
our approach on actual code and properties.

First, we describe the content of this case study and how useful prop-
erties about it are specified using HILAREs. In the next chapter, we will

10Available on Gitlab at the following location: https://git.frama-c.com/pub/meta.

https://git.frama-c.com/pub/meta
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present different assessment techniques to check the validity of the imple-
mentation with respect to these HILAREs.

See Chapter 5 for a full methodology for reasoning about the require-
ments of a program using the HILARE language and Chapter 7 for a
detailed case study of a real, industrial-scale system.

3.5.1 Presentation of the Case Study
The case study, which was suggested by an industrial partner, deals with
a confidentiality-oriented page management system, described as follows:

Definition 22 (Confidential page manager). The manager is a C sys-
tem library allowing user processes to request the allocation of mem-
ory regions (pages) as well as requesting modifications, access or
de-allocation of these regions.

It has the following basic properties:

1. Each page has a fixed size.

2. There is a maximal number of currently allocated pages. Above
that number, allocation requests are denied.

3. The library does not directly expose pointers to the memory
regions but instead exposes opaque structures.

as well as a number of confidentiality facilities:

4. We assume each user process (or agent) has a confidentiality level
(an integer or any member of an ordered set), registered and
exposed by the operating system.

5. Each allocated page has a confidentiality level as well, equal to
the level of the agent that allocated it.

There are two basic confidentiality guarantees that such a system
should offer: confidentiality of both read and write operations.

Requirement 3.1. An agent can never read from a page with a confi-
dentiality level higher than its own (to preserve the confidentiality of
the data written on the page).
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Requirement 3.2. An agent can neverwrite to a pagewith a level lower
than its own (to prevent the agent’s data from being read by lower
agents in the future).

There are several corollaries needed for requirements 3.1 and 3.2 to be
useful in ensuring confidentiality (see Chapter 5 for a deeper discussion
on how to ensure a set of requirements is robust enough):

Requirement 3.3. The confidentiality level of an allocated page re-
mains constant.

Requirement 3.4. The allocation status of a page can only bemodified
by the allocation and de-allocation functions.

Requirement 3.5. Non allocated pages are neither accessed nor mod-
ified.

Requirement 3.6. Non allocated pages do not retain old data.

We also consider an extension of this system introducing encryption as
a means to decrease the confidentiality level of a page. Two functions to
encrypt and decrypt a page are added to the interface with a key based on
the confidentiality level of the caller, and we weaken requirement 3.3 into:

Requirement 3.3b. The confidentiality level of an allocated page re-
mains constant, except in encryption/decryption functions.

Notice that these properties ensure the confidentiality but not the in-
tegrity of data – that is, the fact that data cannot be corrupted by non-
privileged users – which is not considered here but could be similarly
specified.

Wewrote a simple implementation of this case study, where the system
is modelled by a stateful interface of functions to allocate, free, write
to or read from pages. The confidentiality level of the calling agent is
represented by a global variable, which is assumed to be securely modified
when the context changes. The interface of the library is listed in Figure 3.9,
where the type struct Page is internally defined as:
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enum allocation_status {PAGE_ALLOCATED, PAGE_FREE};
//Struct for page metadata
struct Page {

char* data; //First address of the page
enum allocation_status status; //Allocation status
unsigned confidentiality_level; //Confidentiality of the page
unsigned encrypted_level; //Confidentiality before encryption

};

struct Page;
enum result {PAGE_OK, PAGE_ERROR};

//Current confidentiality level of the agent
extern unsigned user_level;

// Must be called for the initial state to be valid
enum result init();

// Main functions
struct Page* page_alloc();
void page_free(struct Page* p);
enum result page_read(struct Page* from, char* buffer);
enum result page_write(struct Page* to, char* buffer);

// Encryption extension
enum result page_encrypt(struct Page* p);
enum result page_decrypt(struct Page* p);

Figure 3.9: Public programming interface of the page manager

3.5.2 Specification of the Requirements
All of these properties can be expressed using meta-properties, as illus-
trated in Figure 3.10 where requirements 3.1, 3.3b and 3.6 are specified.

Remark 15. The forall_page predicate is a formula-shortening
macro which quantifies over the globally-stored array of pages (both
free and allocated), and page_allocated, page_level, page_data and
clean_page are ACSL functions and predicates abstracting low-level
operations for legibility purposes. Their definition is listed in Ap-
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pendix A.1.

The first HILARE, req_1, makes use of the \reading context and ap-
plies to all functions of the library. It quantifies over all pages, binding
variable p. It then states that if a page is allocated and has a higher confi-
dentiality level than the current process, then the memory of that page
cannot be read by the process (using the \separated predicate and the
\read meta-variable presented in Section 3.2).

Property req_3bis uses a similar pattern with the \writing context
to ensure that the confidentiality level field of a page cannot be written
to while the page is allocated, except in the encryption and decryption
functions (notice the exceptions in the target set made using the \diff
operator).

The last requirement, req_6, states that at all times, free pages should
not retain earlier data (the clean_page predicate checks that all bytes are
null).

Remark 16 (Specification scope). Here, we are specifying the sys-
tem library itself and not the potential user programs calling the
interface. Should the library be verified against this specification, this
should ensure that it cannot be misused to violate the confidentiality
requirements.

The complete implementation and specification of this contrived exam-
ple is available in Appendix A.2 and A.3 or online 11 for easier navigation.
Refer to Chapter 5 for a detailed discussion about the design of a HILARE
specification.

11https://git.frama-c.com/pub/meta/-/tree/master/case_studies/
confidentiality

https://git.frama-c.com/pub/meta/-/tree/master/case_studies/confidentiality
https://git.frama-c.com/pub/meta/-/tree/master/case_studies/confidentiality
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//Never read from a higher confidentiality page
meta \prop, \name(req_1), \targets(\ALL),

\context(\reading),
forall_page(p,

page_allocated(p) && user_level < page_level(p) ==>
\separated(page_data(p), \read)

);
//The confidentiality of an allocated page
//is constant outside of encryption
meta \prop, \name(req_3bis),

\targets(\diff(\ALL, {page_encrypt, page_decrypt})),
\context(\writing),

forall_page(p,
page_allocated(p)

==> \separated(&p->confidentiality_level, \written)
);

//The content of a free page is always null
meta \prop, \name(req_6), \targets(\ALL),

\context(\strong_invariant),
forall_page(p, !page_allocated(p) ==> clean_page(p));

Figure 3.10: Specification of confidentiality requirements with HILARE



Chapter 4
Assessing HILARE by Generating

Code Annotations

While the two previous chapters introduce a specification approach for
high-level requirements on C programs, nothing is said about the actual
verification of such a program with respect to its HILARE specification.

This chapter bridges the gap by presenting a general principle for trans-
forming a HILARE to a set of ACSL code annotations in Section 4.1. The
subsequent sections widen that principle to the extensions to the HILARE
language presented in the previous chapter and discuss performance and
scalability considerations. Finally, the technique is used to enable the verifi-
cation of the confidentiality-oriented case study described in the previous
chapter, via both deductive verification and runtime assertion checking
(see Chapter 1 for a description of these terms).

4.1 General Principle: Instantiation of
Meta-Predicates

As mentioned in Chapter 3, several existing Frama-C plugins provide
useful and efficient analysis of ACSL-annotated C code, such as deductive
verification [Bau+20b] or runtime assertion checking [SKV17].

Following the usual Frama-C approach of tool collaboration, we wish
to take benefit of existing analysers without re-implementing them for
HILARE. To do that, we designed a way to transform HILAREs into plain
ACSL annotations while keeping links between the original HILAREs and
their ACSL translation. Hence, the existing tools can understand and anal-
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yse the translation and their results for the translated ACSL annotations
can then be interpreted in terms of HILARE.

The method is based on the initial definition of the HILARE language
and meta-properties in Chapter 2: a meta-property is a combination of
a target set, a context and a meta-predicate. The semantics given to a
meta-property states that it is valid if and only if the meta-predicate holds
for every path at every edge selected by the context, after meta-variables
have been replaced by their local correspondence. We called this the in-
stantiation of the meta-predicate (Definition 19) and the overall semantics
was illustrated in Figure 2.5 in Section 2.5.

The idea is to generate a set of assertions corresponding to this seman-
tics of a meta-property (hence of a HILARE):

Definition 23 (Equivalent Annotation Generation). For a given C
program and a HILARE with the form

/*@ meta \prop, \name(...),
\targets(S), \context(C), P; */

we use the following algorithm to instantiate the HILARE:
for all function � ∈ ( do

for all program point ? selected by � do
%′← Instantiate(%, ?, �) ⊲ Instantiate meta-variables in %

Assert(%′, ?) ⊲ Add assert P'; at point ?
end for

end for

That is, we create an assertion for each necessary instantiation of the
meta-predicate. We call the generated set of ACSL annotations the instan-
tiation of the HILARE.

Remark 17 (Equivalence). According to the semantics of meta-
properties, the HILARE holds if and only if all of its instantiations
hold.

This needs no proof: it is correct by construction, since the genera-
tion algorithm is a literal mechanization of the semantics.

Remark 18 (Local naming conflicts). In some cases, the meta-
predicate may bind a local logical variable, for example by quantifica-
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tion: \forall int i; .... However, meta-variables present in the
predicate may be replaced with free C variables bearing the same
name, provoking conflicts and soundness problems.

For example, the following predicate

\forall int* i; i != NULL ==> \separated(i, \written)

becomes nonsensical if \written is replaced by a local C variable named
i (and even more so if that variable is not an int*).

To prevent these problems, we perform an 
-conversion step for
every predicate instantiation, if there is a conflict between any bound
logic variable of the predicate and a C variable in scope with the same
name, the bound variable is substituted by an appropriate fresh name.

Since meta-properties have more expressive power than ACSL, it is
often impossible to transform a meta-property into a single ACSL annota-
tion. In some cases, a meta-property is translated into function contract
clauses (e.g. for weak invariants) but in most cases it has to be captured
by assertions inserted directly into the body of a function.

int* G;

/*@ assigns T[0 .. 40]; */
void bar(int* T);

void foo(int* p) {
int i = *p;
while(--i) {

*p = i;
bar(G);

}
}

(a) original program

// \separated shortened to \sep
void foo(int* p) {

int i = *p;
while(1) {

/*@assert \sep(&i, G);*/
i = i - 1;
if(i == 0) break;
/*@assert \sep(p, G);*/
*p = i;
/*@assert
\sep(G+(0..40), G);
*/
bar(G);

}
}

(b) instantiation on function foo

Figure 4.1: Basic generation strategy, illustrated
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Example 23. Let us declare a HILARE, stating that in function foo,
the global variable G should not be modified.

meta \prop, \name(G_is_constant),
\targets({foo}), \context(\writing),
\separated(\written, G);

In Figure 4.1 is a very simple (and useless) program on the left, and
on the right the instantiation of property G_is_constant in function
foo.

First, notice how the function has been syntactically de-sugared
(the conditional loop is now an infinite loop with a conditional break;
the side effect of the condition has its own instruction). This is a pre-
processing performed by Frama-C itself, allowing a clear separation
of program points.

Second, notice that assertions have been inserted before each instruc-
tion modifying the memory: this corresponds to the edges selected by
the \writing context of the HILARE. Notice how the initialization
of a variable is not considered a modification if performed during its
declaration.

Each assertion is the originalmeta-predicate \separated(\written, G)
where the meta-variable \written has been replaced by the actual
address (or set of addresses) modified by the following instruction.

Finally, notice that while the \writing and \reading contexts
normally only select localmemory operations and not those performed
by called functions (as described in Section 3.2.2), here an assertion is
inserted before the call to bar. This is because this function is declared
but not defined, which is an exception described in Remark 10 of
Chapter 3. In this case, the contract of the function is used to over-
approximate the effects on memory, hence the G + (0 .. 40) address
range.

This annotation generation technique is implemented in the MetAcsl
plugin presented in Chapter 3. We will describe the details of the plugin
and its usage in Section 4.4.

Remark 19 (Another way...). Later in the thesis (in Chapter 6), we
will describe another way HILARE requirements can be assessed
without resorting to local assertion generation: by deducing them from
other high-level requirements within a formal deduction system.
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4.2 Automatic Simplification
While the proposed technique is simple, it entails that a predicate is in-
stantiated for each selected edge in each target function. Thus, the number
of instantiations can quickly become high enough (for example when
using the Strong Invariant context) to become a problem for the Frama-C
plugins that are expected to analyse the translated program, resulting in
potentially long analysis times or loss of precision in the results.

However, we have observed that when a meta-property has been in-
stantiated, there are a lot of cases where the resulting assertion is trivial to
prove or disprove. For example if %̂ is \separated(\written, &A), and % is
\separated(&B, &A)where A and B are different variables (thus separated
by definition): this instantiation is trivially valid and its actual insertion
can be skipped.

Thus, MetAcsl performs a simplification phase for assertions where triv-
ially simple patterns such as the one mentioned above (with variations for
potentially nested structures and arrays) are recognized and replaced by
their truth value, which is then propagated through the property. Hence,
the instantiations left in the code are those that could not be simplified,
and for which other plugins should attempt a more thorough verifica-
tion. The quantitative evaluation of this simplification will be discussed
in Section 4.5.

4.3 Transformation of Extensions
Section 3.3 introduced several extensions to the originalHILAREdefinition,
in particular allowing for new means to refer to variables both local and
global in the specification.

While some extensions do not affect the semantics of the HILARE
language, for the others it is necessary to devise a verification mechanism
compatible with the one presented in Section 4.1.

4.3.1 Labels in Meta-Properties
Section 3.3.3 presented the labels Before and After, that can be used with
the ACSL construct \at to allow referring to the value of an expression
respectively before and after the program points selected by the context.

To generate assertions that correctly convey these semantics when
instantiating meta-predicates, we leverage the fact that \at can take nor-
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mal C labels as input and appropriately generate C labels in the code
surrounding the insertion point of a predicate when necessary.

Example 24. Let us consider the same original program from Exam-
ple 23 and the following HILARE:

meta \prop, \name(G_increasing),
\targets(\ALL), \context(\writing),
\separated(\written, G)
|| (\at(*G, Before) <= \at(*G, After))

It states that the memory cell pointed by global variable G can only
be modified if it increases its value.

We generate annotations as follows:

void foo(int* p) {
int i = *p;
while(1) {

_before_1:
i = i - 1;
/*@assert \separated(&i, G) ||

(\at(*G, _before_1) <= \at(*G, Here);
*/
if(i == 0) break;
_before_2:
*p = i;
/*@assert \separated(p, G) ||

(\at(*G, _before_2) <= \at(*G, Here);
*/
_before_3:
bar(p);
/*@assert \separated(G+(0..40), G) ||

(\at(*G, _before_3) <= \at(*G, Here);
*/

}
}

The assertions are inserted after the selected instructions rather
than before, because we cannot refer to C labels that occur after the
assertion. Hence, all values default to After (translated as Here) and
Before is translated as a fresh C label inserted just before the instruc-
tion.
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Remark 20 (Fragility of HILARE using labels). By default, since
contexts select edges preceding interesting events, the value of all ex-
pressions in a meta-predicate is taken before the corresponding events
(memory modifications, calls, etc.).

However, the current implementation of labels means that using
a single After label will implicitly default every unspecified value to
After as well, and Beforemust be used explicitly to restore the previous
semantics.

This is a detail for the \writing context where atmost one location
(or localized set of locations) has different values before and after.
However, the problem is more apparent with \calling, where many
locations may have changed after a function call.

4.3.2 Referring to Bound Names
Section 3.3 also introduced a way to refer to some local variables or heap
blocks using a notion of bindingswith special functions \bind and \bound.
They are used to respectively associate a local value to a global name and
use that name in specification to refer to all values bound to that name.

To actually instantiate a HILARE with bindings, the program must
be further instrumented using ghost code, presented in Section 3.1. As a
reminder, ghost variables are declared for specification purposes only and
cannot be used by the original C code, while ghost statements may only
modify ghost variables. Thus, ghost code altogether cannot modify the
original behaviour of the code but may facilitate verification.

For each bound name, we allocate an associated ghost global array
whose role is to store the set of associated values. Consequently, each
instance of \bind(v, n) is replaced by a ghost instruction adding v to the
array n_set associated to n and every instance of a predicate %(=) involving
a bound name is replaced by a quantified predicate ∀E ∈ n_set,%(E).

This is illustrated in Figure 4.2, which is the translation of Figure 3.8 of
Section 3.3. Notice that the type of the array is inferred from the \bind
calls. As such, it is the responsibility of the user to ensure that every bound
value is of the same type and to use the bound name appropriately (and
MetAcsl will report an error otherwise).

Notice the two new ghost global variables cells_set and cells_set_size
associated to the name cells, and how the initial call to \bind has been
replaced by a call to ghost function add_to_array. This function manages
the two variables, reallocating the cells_set as necessary and adding new
values to it.
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int lock;
//@ ghost int** cells_set = NULL;
//@ ghost size_t cells_set_size = 0;
int* create_cell() {

int* c = (int*) malloc(sizeof(int));
//@ ghost add_to_array(&cells_set, &cells_set_size, c);
return c;

}
int safe_modify_cell(int* cell, int val) {

if(!lock) {
/*@ assert \forall size_t i; i < cells_set_size ==>
\separated(&lock, cells_set[i]) || lock; */
lock = 1;
/*@ assert \forall i; ...

\separated(cell, cells_set[i]) || lock; */
*cell = val;
/*@ assert \forall i; ...

\separated(&lock, cells_set[i]) || lock; */
lock = 0;
return 0;

}
else return -1;

}
void unsafe_modify_cell(int* cl, int val) {

//@ assert \forall i; ... \separated(cl, cells_set[i]) || lock;
*cl = val;

}

Figure 4.2: Translation strategy for bindings on Figure 3.8

Finally, notice how the instantiations of the meta-predicate in
cell_modif_is_critical are automatically wrapped in a quantification
over the array.

Remark 21 (About the verification of bindings). The instantiation
of bindings introduces a lot of new code potentially spanning across
the whole code base. As such, it is potentially very difficult for anal-
ysers to statically determine that a HILARE involving bindings is
correct.

One particular obstacle is that the arrays associated by bound
names are allocated and re-allocated on the heap, something which
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is notably difficult to analyse. To alleviate this problem, the plugin
MetAcsl can be configured to use static arrays with fixed size instead.
This might help the analysis but of course brings soundness issues.

Overall, this feature is more useful when associated with runtime
analysis which actually executes the code (and the ghost code) or
pseudo-execution such as symbolic execution or abstract interpreta-
tion. It allows specifying quickly a global fact about some particular
values and ensure this is not violated during execution.

4.4 Practical Usage
In this section, we will quickly describe how the MetAcsl plugin can be
used in practice to assess the validity of a program (partially) specified
with HILARE. MetAcsl itself is a Frama-C plugin necessary to parse
a source file containing HILARE specification, and able to perform the
translation technique described in the beginning of the chapter.

If the plugin is installed (for example with opam install frama-c-
metacsl, see the installation instructions of the release for more details1)
along with Frama-C, it will by default parse HILARE parts of source files
and remove them, doing nothing.

To enable the translation of these HILAREs, the -meta flag must be
passed to Frama-C, which will create a new project2 containing the same
source file with all necessary code annotations inserted, equivalent to all
specified HILAREs.

This translated program can then be processed by other tools, using the
-then-last flag to chain plugins (see next section for details on analysis).

# Print the translation in output.c
frama-c input.c -meta -then-last -print -ocode output.c
# Try to run deductive verification on the translation
frama-c input.c -meta -then-last -wp

There are several configurations flags that can be passed to MetAcsl to
customize the translation. The full list of options can be displayed using
frama-c -meta-h.

1https://git.frama-c.com/pub/meta
2See Frama-C manual.

https://git.frama-c.com/pub/meta
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4.4.1 Reporting
As described in Section 3.1, in Frama-C each annotation embodies a prop-
erty with a validity status, to which plugins can suggest changes. Hence,
after using a plugin such as Wp, the project will be in a state where each
generated assertion will have its own validity status (hopefully Valid).

The MetAcsl plugin consolidates this by generating a global, abstract
annotation for each HILARE, that embodies its global status. If at some
point the validity status of every annotation tied to a particular HILARE
is Valid, then MetAcsl determines the HILARE is overall valid as well.
This allows users to assess quickly whether a HILARE has been globally
proven.

Conversely, sometimes some local assertions cannot be proven, in
which case the global HILARE is deemed Unknown as well. In this case,
MetAcsl makes it easy to identify which HILARE is potentially violated
at that particular program point by prepending a different name to each
assertion, containing the name of the HILARE it is tied to.

This also allows launching analysis from the command line and being
quickly able to find the location of an offending assertion with just its
unique name by browsing the source code.

4.4.2 Inline Verification Flags
While theMetAcsl flags allow altering the behaviour of the plugin globally,
it is also possible to configure some properties on a HILARE basis, using
the flagged form of HILARE briefly described in Section 3.2.

The \flags directive can be used to modify the behaviour of MetAcsl
on a particular HILARE during translation.

Proof method. The proof flag determines how the HILARE is expected
to be proved. Its default value, local, says that the HILARE should be
considered valid if and only if every instantiated assertion is valid as well,
as described earlier. The flag can also be set to axiom, in which case the
HILARE is considered valid without verification. Lastly, the deduce value
attempts to deduce the property from previous HILARE (the deduction
mechanism will be described in Chapter 6).

Translation method. The translate flag toggles how the HILARE
should be translated. The default is yes, which means “translate, using the
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global parameters”3. One can also set this flag to no to disable the trans-
lation altogether, check to force the instantiation of the meta-predicate to
use the check ACSL construct (see Section 3.1.2) or assert to force the
usage of assert.

Having described the general verification technique for HILARE re-
quirements and their extensions, let us now apply it to the small case study
introduced and specified in the previous chapter, through different exist-
ing Frama-C plugins. This will serve as a practical example of HILARE
verification.

4.5 Assessment of the Page Manager
At the end of the previous chapter, we presented a simple case study
on a system called page manager (Section 3.5), along with a collection of
high-level requirements it must uphold. We then described how to specify
these requirements using HILARE (the full source and specification is in
Appendix A).

We now want to evaluate the ability of Frama-C + MetAcsl to assess
these requirements with the usual Frama-C tools. To that end, we wrote a
correct C implementation of the different system functions. Then, to in-
crease the sample size, we used a Frama-C plugin4 to generatemutations of
this correct implementation, providing a set of modified implementations,
potentially invalid with respect to the requirements.

In this way, we obtain 126 implementation mutants. The mutations
consist in the replacement of binary operators, the negation of conditions
and the modification of numerical values. They simulate frequent pro-
gramming errors in the code.

Remark 22. Some mutants may be logically duplicate: reversing an
equality condition and changing the equality to a difference give the
same results).

The specification for the mutants remains the same as for the initial imple-
mentation.

For each mutant, we manually checked if the introduced mutation
violates one of the requirements of the case study (i.e. if there is a possible

3By default, this means that every predicate is instantiated as an assertion. This is
configurable via the global -meta-asserts and -meta-checks flags.

4See https://github.com/gpetiot/Frama-C-Mutation.

https://github.com/gpetiot/Frama-C-Mutation
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Functions HILARE Assertions After simplification Mutants (invalid/total)
11 11 408 273 42/126

Table 4.1: Statistics about the MetAcsl instrumentation of the page man-
ager

Wp E-ACSL
False Positives 0/42 29/42
False Negatives 0/84 0/84
Interrupted (RTE) N/A 19/126

Table 4.2: Automatic approaches compared to manual verification

input that invalidates a HILARE). If so, the mutant is considered invalid
(this is the ground truth).

The proportion of invalid mutants is reported in Table 4.1 along with
some quantitative information about the system and the instrumentation
of the HILARE by MetAcsl. Here we can observe that the simplification
phase described in Section 4.2 significantly reduces the number of gener-
ated assertions, thus easing the job of the tools that are subsequently run
on the resulting translated programs.5

For each benchmark (initial version or one of the mutants, including
all valid and invalid mutants), we first apply MetAcsl to generate an
annotated C program. We then wish to investigate whether, thanks to the
instrumentation with MetAcsl, different Frama-C tools are able to assess
the validity of the benchmarks with respect to the meta-properties.

We test two existing assessment techniques, namely deductive veri-
fication with the Wp plugin and runtime verification with the E-ACSL
plugin.

For both plugins, Table 4.2 indicates the number of false positives
(caseswhere themutant is invalid, but no violationwas detected) and false
negatives (cases where the mutant is valid, but flagged as violating a meta-
property). The last row indicates that there was a runtime error during
the execution of the mutant (only applicable for the second technique,
since the first is static). We detail both techniques and comment this table
in the rest of the section.

5For example, simplification saves 8 seconds on the deductive verification of the
correct confidentiality implementation (for a total of 24 seconds).
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4.5.1 Deductive Verification
We attempt to run Wp on each benchmark. While a proof success is defini-
tive, a proof failure may have different causes: the property to be proved
may be false, there could be insufficient assumptions available to the prover
or it could simply exceed the capacity of the prover in its allocated time.
Thus, if every proof failure is classified as a judgement of invalidity, false
negatives are to be expected. To mitigate this phenomenon, we first man-
ually annotated the case studies with partial function contracts for the
correct implementations to be successfully proved. See Chapter 5 for a full
discussion about troubleshooting a verification failure.

Every valid mutant was successfully proved as valid, and the proof
failed for each invalidmutant (see Figure 4.2)6, thus confirming the correct-
ness of the transformation. These results demonstrate that the spec-to-spec
translation with MetAcsl creates a convenient, fully automatic toolchain
for deductive verification of global properties in Frama-C. As usual for de-
ductive verification, some additional annotations were necessary to prove
the different functions (40 lines of specification were needed, loops being
the main point of effort) but their number was much smaller than the
number of relevant assertions automatically generated from the HILARE
specification.

4.5.2 Runtime Verification on Test Cases
We now wish to study if it is also possible to verify HILAREs at runtime—
without any additional annotations—thanks to the E-ACSL [SKV17] plu-
gin for runtime assertion checking. It automatically translates an ACSL-
annotated C program into another program that fails at runtime if an
annotation is violated.

Since our case study is a library without any particular point of entry,
we wrote a small test suite of complete programs that can be actually
compiled and executed. They contain simple functional tests and do not
aim at covering every possible usage case. They feature a sequence of 40
calls to the library.

We then applied runtime assertion checking to the execution of every
instrumented benchmark on all tests of the test suite, in order to detect
potential mutation-induced violations of HILAREs at runtime.

The results are laid out in Figure 4.2 and are promising as well. The
additional row refers to cases where the generated binary detected a vio-

6The last row is not relevant for deductive verification, see next subsection.
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lation of a safety property 7, thus stopping the execution and preventing
us to know if a HILARE violation would have been detected or not. In
the future, it would be desirable to filter out safety-violating mutants, and
only keep mutations simply modifying the semantics of the code.

There are no false negatives, confirming that the instrumentation of
both MetAcsl and E-ACSL does not introduce any bug in the specification
nor in the code.

Remark 23 (About false positives). There is a significant number of
false positives (incorrect mutants for which no test failed). There
are several reasons for this. First, our initial test suites are not com-
plete, and some mutants are not killed by these tests. This could be
addressed by using the StaDy [Pet+18] plugin, which combines static
and dynamic verification and allows the automatic generation of test
cases that can exhibit counter-examples for invalid properties.

The second reason is that E-ACSL only supports a subset of ACSL:
some properties involving complex constructions such as the \at
keyword are simply ignored by E-ACSL, thus they cannot possibly be
violated at runtime. This support should be improved in the future.

This section demonstrates that it is easy to check HILAREs at runtime
without extra annotation effort thanks to the combination of MetAcsl
and E-ACSL, as long as the specified properties are supported by the
tools. This is especially useful for properties that are not easily tractable
with deductive verification: for example, a property using bindings (see
Remark 21) might be very difficult to verify using Wp without writing
extensive function contracts, while it can be immediately tested with E-
ACSL.

7E-ACSL add checks to ensure that no runtime error (segmentation faults, over-
flow, …) will occur and stops the program upon violation.



Chapter 5
Proposition of Validation

Methodology with HILARE

The previous chapters introduce the concept of meta-properties for repre-
senting high-level requirements (Chapter 2), its application to the spec-
ification of C programs with the HILARE language (Chapter 3) and an
approach for verifying these programs (Chapter 4). While there was a
small case study based around a confidentiality-oriented page manager,
we’ve yet to discuss a general methodology for tackling complex, realistic
specification problems.

The purpose of this chapter is to present a methodology of specifi-
cation and verification of a wide range of high-level requirements with
HILARE and MetAcsl, and to illustrate it on several examples. The goal is
to provide verification practitioners with detailed methodological guide-
lines for various common patterns of properties in order to facilitate their
specification and verification. The provided patterns can be followed by
less experienced verification engineers to avoid logical errors in the speci-
fication of a HILARE. We also emphasize some good practices showing
how to avoid some frequent pitfalls.

The provided examples are inspired by very frequent kinds of prop-
erties and illustrated on a security-relevant use case: a microkernel of an
operating system (OS), where the description of the system is intentionally
left generic.
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5.1 General Methodology
When confrontedwith a verification problem that seemingly involves large
parts of a code base, usingMetAcsl and its HILARE specification language
might be an efficient and expressive way to encode the desired properties
with reasonable effort. With experience, the specification and verification
process with MetAcsl usually follows a recurring pattern, which might
be useful for new users to know about.

Ensuring the problem is within the scope of HILARE
While it is possible to encode various categories of properties with the
HILARE language, some of them are outside its scope and could be better
addressed by more suitable tools.

Thus, one should check that a desired property:

• does not relate multiple execution traces. Indeed, if the specification
involves the comparison of multiple execution traces, it is a relational
property. MetAcsl is not intended to deal with such properties.1

• is not overly concerned with the order of execution. While the HILARE
language can be used to write simple temporal properties (e.g. re-
lating two consecutive states of the program), complex properties
describing the behaviour of a program over time could be better
treated with other Frama-C plugins.2

• can somehow be reduced to a property on the global state. Since the HI-
LARE language is meant to express high-level requirements, proper-
ties can only be expressed over data that is visible in the global scope.
While there are some facilities to pry into the state of individual
functions when necessary, a property that is overly specific to a local
state might be hard to verify, or even to specify, as a HILARE. In fact,
a plain ACSL annotation would probably be sufficient in this case.

Identifying the working subset of the global state
As mentioned before, the HILARE language can only express properties
over data that are visible at global level. Hence, it is necessary to identify
where to anchor the properties in the global state. There are several such
“anchor points”:

1One could use e.g. the dedicated Rpp plugin for that purpose.
2Such as CaFE or Aoraï.
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Global variables. This is the simplest and most desirable way. Global
variables can just be referred to by name in any HILARE.

Common parameters. Sometimes data are not global but passed around
as a parameter in numerous functions. If the naming of the formal
parameter is consistent across those functions, it can be referred to.
See \formal in Section 3.3.

Heap data. For memory dynamically allocated on the heap, the binding
extension described in Section 3.3 allows tracking arbitrary point-
ers across a program but significantly complicates the subsequent
proofs.

Once the relevant elements of the state of the program have been
identified andmade available, the properties themselves can be formulated
as HILAREs. The set of variables (or more generally, memory locations)
used to specify a property is referred to as its memory footprint.

Formulating the problem as HILARE
One should first identify the target set of the property: what set of func-
tions should uphold the requirement. It is often helpful to define named
function sets using C macros, and to compose them with set operators
(see Section 3.2.1). Remember that by default a HILARE is not transitive:
it does not apply to the callees of a function unless explicitly specified.
Built-in operators can be used to refer to the sets of callees or callers of a
function (or over-approximate them in case the code base contains indirect
calls).

Reasoning with the HILARE languagemeans reasoning with conditions
on some action: ideally, one should try to express the requirement either
as an invariant or as a constraint on:

• memory modifications;

• memory (reading) accesses;

• function calls.

In general, properties are easier to express when formulated as a con-
straint on some code operations that must hold under all or most circum-
stances, except maybe specific ones. This stepwill be detailed in Section 5.3
through a number of common specification patterns.
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Ensuring the Specification is Complete

Once the main desired requirements are expressed, it is important to check
that the specification is complete and overall consistent, lest the ensuing
proof is useless.

Memory footprint closure. One of the main pitfalls of HILARE speci-
fication is forgetting to constrain the modifications of all variables in the
footprint of every HILARE. It is important to ensure that such variables
cannot be maliciously modified during the execution. Hence, for each
location in a HILARE footprint, the practitioner should specify (e.g. as
another HILARE) what parts of the code can modify it and under which
constraints. This will be illustrated in Section 5.4.

Absence of undefined behaviours. Failing to account for potential
undefined behaviours and other runtime errors is another trap to avoid.
Indeed, even carefully written global specification (or any specification)
will be rendered useless by undetected illegal behaviours, because their
absence is one of the main assumptions of the verification tools. For
example, the following assertion will happily be considered valid by Wp
though it might be false (since pointer p to the character A is here used to
write an integer).

char A, B = 1;
int* p = &A; *p = 0; // Undefined behaviour: buffer overflow
//@ assert compiler_dependent: B == 1;

Hence, it is important to ensure that the -wp-rte option is passed to
Frama-C. Thanks to it, Wp will try to prove that every memory access is
valid (and report, as expected, a failure in this example).

Assessing the Properties

As described in Chapter 4, MetAcsl is a plugin that translates each HI-
LARE into annotations in the target functions, that can then be assessed
by existing Frama-C plugins, such as Eva, E-ACSL or Wp. We will focus
here on the usage of Wp, that is, through deductive verification.

When running MetAcsl followed by Wp on a HILARE-specified pro-
gram, most of the verification conditions are usually easily proved valid.
Some guidelines about addressing proof failures are laid out in Section 5.5.
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5.2 Presentation of an Illustrative Use Case
In this section, we present an illustrative use case: an imaginary micro-
kernel of an OS dealing with various tasks. For the sake of clarity and
simplicity, we intentionally give a very generic simplified description of
the system, leaving out the low-level implementation. However, the archi-
tecture of the system mirrors that of real ones, and it realistically describes
microcontroller targets, in which the CPU only uses physical addresses. In
this context, we realistically assume that the numbers of tasks and regions
are determined at compilation and do not change. However, it is not a
hard limitation, and dynamic changes can also be supported.

The system has a number NUM_TASKS of applicative tasks, each one being
identified by a task number taskId > 0 of type uchar (see Figure 5.1).
Variable CurTask contains the number of the currently executed task. When
the (privileged) microkernel services are executed, the variable Context is
set to SYSTEM_CTX, otherwise execution proceeds with ordinary privileges.

The memory is structured in disjoint allocated memory areas that we
call regions. The number of regions is given by NUM_REGIONS. Thesememory
areas are modeled using two arrays, RegionStart and RegionSize indicating
for each region respectively the pointer to the beginning of the region
and its size in bytes. The owner of a region is modeled by the RegionOwner
array. Thus, region j is owned by task RegionOwner[j], starts at address
RegionStart[j] and contains RegionSize[j] bytes. The region is owned
by the microkernel if RegionOwner[j]==SYSTEM_OWNER, and by an applicative
task otherwise. Region j is a code region if RegionKind[j]==CODE_REGION,
and a data region otherwise.

Each task has a priority modeled by TaskPriority and a status modeled
by TaskStatus. A task i is ready to be executed if TaskStatus[i] is equal
to READY_TSK, and is waiting or sleeping otherwise. Task i1 is of a higher
priority than task i2 if TaskPriority[i1] < TaskPriority[i2] (notice that
the highest priority has the smallest value).

Lastly, the activation of a hardware SupervisorModeAccess Prevention
(SMAP) feature is symbolized by a boolean SMAP_enabled variable. When
enabled, the CPU should prevent the microkernel from accessing task
memory at all when in privileged mode.

The next section recalls the HILARE syntax and introduces a bestiary
of common specification patterns. Using that in Section 5.4, wewill specify
some desired properties over that system, such as task memory isolation
(tasks should not read or write regions different from their own), controlled
privileged operations (the aforementioned SMAP feature is enforced), Write
XOR execute (ensure regions are never both writeable and executable at
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typedef unsigned char uchar;
typedef unsigned int uint;
// Number of tasks, defined at compilation
#define NUM_TASKS ...
// Number of regions, defined at compilation
#define NUM_REGIONS ...
#define SYSTEM_CTX 0
#define SYSTEM_OWNER 0
#define READY_TSK 0
#define CODE_REGION 0

char Context; // System (SYSTEM_CTX) or Task context
uchar CurTask; // Current task
uint SMAP_enabled; // 0 disabled, 1 enabled
uchar TaskPriority[NUM_TASKS]; // Priority of task i
uchar TaskStatus [NUM_TASKS]; // Ready or waiting

char* RegionStart[NUM_REGIONS]; // Start of region i
uint RegionSize [NUM_REGIONS]; // Size of region i
uchar RegionOwner[NUM_REGIONS]; // Owner of region i
uchar RegionKind [NUM_REGIONS]; // Code or Data

Figure 5.1: Modeling tasks and memory regions in a microkernel

the same time) and valid task scheduling (ensure the scheduler respects all
constraints of the system).

5.3 Common HILARE Specification Patterns
This section reminds the syntax of HILARE specification along with a set
of commonly used patterns to specify usual integrity and confidentiality
properties. It is intended to serve as a reference during a specification
task and to support Section 5.4 where they are put together to form more
complex properties. The process allowing the verification of HILARE
specification is described in Section 5.5, and is useful to have a good
understanding of the HILARE language.

A HILARE has the form illustrated in Figure 5.2, named base pat-
tern. It specifies that Predicate must be valid in the given Context
for all functions in Targets. Name denotes an user-defined name
for the HILARE. Targets is a set of functions and Context is one
of {\strong_invariant, \weak_invariant, \precond, \postcond,
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meta \prop,
\name(Name),
\targets(Targets),
\context(Context),

Predicate;

Figure 5.2: The HILARE base pattern

\writing, \reading, \calling}. The precise semantics of these com-
ponents are discussed at length in Chapter 3.

Predicate is an ACSL predicate (the reader can refer to the ACSL speci-
fication [Bau+20a] for the grammar) and can be a very general property,
but is usually some form of validity check of different memory operations
(hence manipulating memory locations) or a global invariant.

The following subsections give different possible combinations of
Predicate and Context in the base pattern, illustrating how they can work
together with the target set to specify interesting properties. Wherever it
appears, symbol Location refers to a variable or a range of elements of an
array, represented by their addresses.

Each pattern is a template refining the base pattern but still leaving
some elements abstract. It is presented with an introductory sentence artic-
ulating these elements, followed by the raw syntax and possibly examples
and explanations.

5.3.1 Simple Global Requirements

Pattern 1 (Global weak invariant). Name specifies that predicate
Prop holds at the beginning and the end of each function in the Targets
set.

meta \prop,
\name(Name),
\targets(Targets),
\context(\weak_invariant),

Prop;
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Example 25. For example, the following property states that every
function needs the variable logic_state to be correct (for some unspec-
ified definition of is_correct) in the pre-condition and must ensure
it is still correct in the post-condition. However, the state may be
temporarily incorrect inside the function.

meta \prop,
\name(state_always_valid),
\targets(\ALL),
\context(\weak_invariant),

is_correct(logic_state);

To disallow even brief violations of the invariant, one should use the
\strong_invariant context, which ensures the invariant is valid at each
sequence point of the program, as seen in Pattern 3.

Pattern 2 (Global post-condition). Name specifies that the predicate
Prop holds at the end of each function in the Targets set.

meta \prop,
\name(Name),
\targets(Targets),
\context(\postcond),

Prop;

It is similar to Pattern 1 but omits the pre-condition on all functions.
Both of them are simple ways to automatically add clauses to numerous
function contracts.

Pattern 3 (Global strong invariant). Name specifies that the predi-
cate Prop holds at every step of each function in the Targets set.

meta \prop,
\name(Name),
\targets(Targets),
\context(\strong_invariant),

Prop;
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5.3.2 Memory Modification Requirements

Pattern 4 (No memory modification). Name specifies that no func-
tion in the Targets set directly writesa to Location.

meta \prop,
\name(Name),
\targets(Targets),
\context(\writing),

\separated(\written, Location);
aIndirect writes i.e. instructions hidden behind function calls are not considered.

Example 26. For example, the following HILARE means that the
logic_state global variable can never be written to.

meta \prop,
\name(state_never_changed),
\targets(\ALL),
\context(\writing),

\separated(\written, &logic_state);

As explained in Chapter 4, in practice when MetAcsl processes such
a HILARE for further verification, it iterates through all target functions
and write instructions, and adds an assertion of Predicate where \written
has been replaced by the particular location being written to by the local
instruction. The same process is used for all the following variations of
this pattern.

Note that Location may still be written to by functions that are not in
Targets, but that are called by functions in Targets. To automatically include
these functions, the \callees operator is very useful.

As mentioned above, \diff is also very useful here, to indicate that
only a fixed set (e.g. for initialization) of functions is allowed to write to
some object. For instance, the following HILARE states that private_key
can only be set in enc_init.

meta \prop,
\name(only_init_allowed),
\targets(\diff(\ALL, {enc_init})),
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\context(\writing),

\separated(\written, &private_key);

Pattern 5 (Conditional memory modification). Name restricts the
situations when functions in the Targets set can write to Location.
When Guard holds, the writing operation is allowed only if Constraint
also holds just before the write operation.

meta \prop,
\name(Name),
\targets(Targets),
\context(\writing),

Guard &&
\overlaps(\written, Location)
==> Constraint;

This is one of the most used patterns. Note that Guard can be omitted to
ensure that Constraint holds on all write accesses to Location. Recall (from
Section 3.1.2) that \overlaps is the negation of \separated: it specifies
that two locations overlap in memory.

Example 27. For example, the following HILARE is similar to the
example in Pattern 4 but instead of simply forbidding memory modi-
fication, the HILARE allows it only if has_privilege is true.

meta \prop,
\name(state_change_requires_privilege),
\targets(\ALL),
\context(\writing),

\true && // Can be omitted
\overlaps(\written, &logic_state)
==> has_privilege != 0;

Pattern 6 (Precise conditional memory modification). Name re-
stricts the situations when functions in the Targets set can write to
the global variable Var. When Guard holds, the writing operation is
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allowed only if the relation between its previous and new value is
valid according to the predicate Relation.

meta \prop,
\name(Name),
\targets(Targets),
\context(\writing),

Guard &&
\overlaps(\written, &Var)
==> Relation;

Relation is a particular instance of a constraint, that can refer to the
value of Var before and after the writing operation using respectively
\at(Var, Before) and \at(Var, After).

Example 28. For example, the following HILARE only allows assign-
ing increasing values to the global var.

meta \prop,
\name(increasing_values),
\targets(\ALL),
\context(\writing),

\overlaps(\written, &var)
==> (\at(var, Before) <= \at(var, After));

5.3.3 Memory Access Requirements

Pattern 7 (No memory access). Name specifies that no function in
the Targets set directly reads from Location.

meta \prop,
\name(Name),
\targets(Targets),
\context(\reading),

\separated(\read, Location);

Similarly to memory modification (Pattern 4), target operators can be
very useful to build more complex properties.
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Pattern 8 (Conditional memory access). Name restricts the situa-
tions when functions in the Targets set can directly read from Location.
When Guard holds, the read is allowed only if Constraint also holds at
the time of reading.

meta \prop,
\name(Name),
\targets(Targets),
\context(\reading),

Guard &&
\overlaps(\read, Location)
==> Constraint;

This is the dual of Pattern 5, and is used for similar purposes.

5.3.4 Call Graph Requirements

Pattern 9 (No function call). Name specifies that no function in the
Targets set may directly call Function.

meta \prop,
\name(Name),
\targets(Targets),
\context(\calling),

\tguard(\called != Function);

This pattern contains a necessary guard since \called and Function can
have non-compatible prototypes, making the disequality ill-typed. In that
case, \called is obviously not Function, so a \tguard is appropriate.

Pattern 10 (Conditional calling). Name specifies that functions in
the Targets can call Function. However, when Guard holds, the call
is only allowed if Constraint also holds at the time of calling.

meta \prop,
\name(Name),

\targets(Targets),
\context(\calling),
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Guard &&
\fguard(\called == Function)
==> Constraint;

It is an extension of the previous pattern, similar to how Pattern 4 is
extended by Pattern 5.

This time, we protect the equality with fguard, which evaluates to
\false if \called and Function have incompatible prototypes, so that there
is no need to enforce Constraint on such a call.

5.4 Combining Patterns to Express Complex
Properties

This section demonstrates how the previous patterns can be articulated
into a larger specification methodology on realistic confidentiality or in-
tegrity properties. To that end, we come back to the use case described in
Section 5.2 and detail the specification process of some selected properties.

The simplified microkernel described in Section 5.2 is by nature a
critical component of its host system, and as such should uphold several
confidentiality and integrity properties pertaining to different aspects of
its behaviour.

5.4.1 Task Memory Isolation
One such aspect is the strict compartmentalization of tasks: a task should
only read from and write to the memory regions it owns. Moreover, it
should not access regions containing code in any way. These two require-
ments can be specified with similar HILAREs using Patterns 5 and 8:

meta \prop,
\name(region_integrity_task),
\targets( \diff( \ALL, init ) ),
\context(\writing),

\forall integer i; 0 <= i < NUM_REGIONS
&& Context != SYSTEM_CTX
&& \overlaps(\written,

RegionStart[i] + (0 .. RegionSize[i] - 1))
==> RegionOwner[i] == CurTask && RegionKind[i] != CODE_REGION;
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The above HILARE iterates on all regions and states that if a memory
region is modified (that is, if the location targeted by a writing operation
overlapswith a region)while in user land, then (i) the owner of that region
should be the task itself, and (ii) it should not be a code region. Here, as the
Location in Pattern 5, we use RegionStart[i] + (0 .. RegionSize[i] - 1),
which represents the range of addresses corresponding to region number
i.

The complete specification is presented in Figure 5.3, where the second
property region_integrity_system follows the same principles. Its Guard
captures the modification of regions while in system context (when the
privilegedmicrokernel services are invoked from a task) and the Constraint
forces the owner of the modified regions to be either the original task or
the microkernel. Again, modifications of code regions are forbidden.

These two integrity properties are thenmirrored using Pattern 8 to spec-
ify their confidentiality counterparts, that is restraining memory accesses
instead of modifications. Figure 5.3 shows region_confidentiality_task,
which is region_integrity_task’s confidentiality counterpart.

5.4.2 Controlled Privileged Operations
The SMAP feature mentioned in Section 5.2 should also be enforced: when
enabled, code in privilegedmode should not have any accesswhatsoever to
task regions. Again, this can be specified with instances of Patterns 5 and 8
with a structure similar to the previous properties. Figure 5.4 illustrates
such restriction of memory accesses, both for reading and writing. The
Guard filters accesses in privileged mode to regions not owned by the
microkernel, which can only happen if SMAP is disabled.

Remark 24 (Usage of macros). Using C macros can improve the
readability and portability of specifications by abstracting implemen-
tation details to simple predicates. Figure 5.4 demonstrates this. In
particular, the FORALL_REGIONmacro hides the underlying array, bounds
and indices, which are just noise, requirement-wise.

5.4.3 Write XOR Execute
Our microkernel discriminates memory regions by their kind: either code
or data. While the previous properties ensure that code regions cannot
be modified or accessed, executing instructions contained in data regions
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meta \prop,
\name(region_integrity_task),
\targets( \diff( \ALL, init ) ),
\context(\writing),

\forall integer i; 0 <= i < NUM_REGIONS
&& Context != SYSTEM_CTX
&& \overlaps(\written,

RegionStart[i] + (0 .. RegionSize[i] - 1))
==> RegionOwner[i] == CurTask && RegionKind[i] != CODE_REGION;

meta \prop,
\name(region_integrity_system),
\targets( \diff( \ALL, init ) ),
\context(\writing),

\forall integer i; 0 <= i < NUM_REGIONS
&& Context == SYSTEM_CTX
&& \overlaps(\written,

RegionStart[i] + (0 .. RegionSize[i] - 1))
==>
(RegionOwner[i] == CurTask || RegionOwner[i] == SYSTEM_OWNER)
&& RegionKind[i] != CODE_REGION;

meta \prop,
\name(region_confidentiality_task),
\targets( \diff( \ALL, init ) ),
\context(\reading),

\forall integer i; 0 <= i < NUM_REGIONS
&& Context != SYSTEM_CTX
&& \overlaps(\read,

RegionStart[i] + (0 .. RegionSize[i] - 1))
==> RegionOwner[i] == CurTask && RegionKind[i] != CODE_REGION

Figure 5.3: Region integrity and confidentiality
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#define FORALL_REGION(name, pred) \
(\forall integer name; 0 <= name < NUM_REGIONS ==> pred)

#define CONTEXT_IS_SYSTEM (Context == SYSTEM_CTX)
#define REGION_OWNED_BY_SYSTEM(r) \

(RegionOwner[r] == SYSTEM_OWNER)
#define REGION_RANGE(r) \

(RegionStart[r] + (0 .. RegionSize[r] - 1))
#define SMAP_ENABLED (SMAP_enabled != 0)

/*@
meta \prop,

\name(micro_kernel_confidentiality),
\targets( \diff( \ALL, init ) ),
\context(\reading),

FORALL_REGION(r,
CONTEXT_IS_SYSTEM
&& ! REGION_OWNED_BY_SYSTEM(r)
&& \overlaps(\read, REGION_RANGE(r))
==> ! SMAP_ENABLED

);

meta \prop,
\name(micro_kernel_integrity),
\targets( \diff( \ALL, init ) ),
\context(\writing),

FORALL_REGION( r,
CONTEXT_IS_SYSTEM
&& ! REGION_OWNED_BY_SYSTEM(r)
&& \overlaps(\written, REGION_RANGE(r))
==> ! SMAP_ENABLED

);
*/

Figure 5.4: Supervisor Mode Access Prevention (SMAP)
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must also be prevented. Furthermore, a task should not try to jump to
another task’s code. Finally, when in privileged mode, only microkernel
code should be run. These three requirements can be materialized by the
HILARE depicted in Figure 5.5.

meta \prop,
\name(code_execution),
\targets( \ALL ),
\context(\calling),

\exists integer i; 0 <= i < NUM_REGIONS
&& RegionStart[i] <= (char*)\called

< RegionStart[i] + RegionSize[i]
&& RegionKind[i] == CODE_REGION
&&
((Context != SYSTEM_CTX && RegionOwner[i] == CurTask)
||
(Context == SYSTEM_CTX && RegionOwner[i] == SYSTEM_OWNER)

);

Figure 5.5: Code/data exclusion and isolation

Rather than using a specific pattern, code_execution is a direct instantia-
tion of Section 5.3’s base pattern: it is a general validity check of the function
call operation, where \called is the location of any function that may be
called. It states that for every call during the execution, the call should
land in a region that: (i) is a code region, (ii) is owned by the current task
if executing in user mode, and (iii) is owned by the kernel if we are in
privileged mode.

5.4.4 Valid Task Scheduling
The specification of the scheduling behaviour calls for different specifica-
tion patterns: when switching contexts, the microkernel should not jump
to any task that is ready to run, but to a taskwith the highest priority. Hence,
whenever the current task changes, the first HILARE in Figure 5.6 puts
a constraint on the new task instead of the old one. This is a use-case for
Pattern 6. schedule_priority has no guard (so all modifications of CurTask
are captured), but states that any new value of CurTask must represent a
task that is both ready and of the highest priority (compared to other ready
tasks). Notice the use of \at(CurTask,After) to refer to the new value of
CurTask.
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meta \prop,
\name(schedule_priority),
\targets( \diff( \ALL, init ) ),
\context(\writing),

\overlaps(\written, &CurTask) ==>
TaskStatus[\at(CurTask,After)] == READY_TSK &&
( \forall integer j; 0 <= j < NUM_TASKS &&
TaskStatus[j] == READY_TSK ==>
TaskPriority[j] >= TaskPriority[\at(CurTask,After)] );

meta \prop,
\name(current_always_ready),
\targets( \diff( \ALL, init) ),
\context(\strong_invariant),

TaskStatus[CurTask] == READY_TSK;

Figure 5.6: Requirement of the scheduler

While this captures the requirements related to context switch, there are
others that our system should honour. One of them, current_always_ready
of Figure 5.6, is that while the scheduler can only switch to ready tasks, the
current task shall remain in a ready state for the entirety of its execution.
This is an invariant that should never be broken, hence Pattern 3 is used to
enforce that status.

Tying up loose ends

Although all the previousHILARE taken together form a consistent set that
accurately formalizes some requirements for the microkernel, it is of the ut-
most importance to ensure the absence of loose ends, i.e. to check whether
the memory footprint is properly constrained, as mentioned in Section 5.1.
For example, properties in Figure 5.3 expect the data in RegionOwner to be
correct. However, there is no safeguard preventing malicious code from
spuriously changing region owners.

To resolve this issue, it is necessary to carefully track any variable in
the footprint of every HILARE, and specify when, if ever, it is allowed to
change, with the help of Pattern 4. This is done for some of the variables
in Figure 5.7: for example, context_modification ensures that only a setK
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of functions3 should be able to enable or disable privileged mode, and
region_owners_final states that region owners should never change.

This should be done for all other relevant variables, such as
SMAP_enabled, TaskPriority, RegionKind, etc.

meta \prop,
\name(context_modification),
\targets( \diff( \ALL, K ) ),
\context(\writing),

\separated(\written, &Context);

meta \prop,
\name(task_status_modification),
\targets( \diff( \ALL, {scheduler, init} ) ),
\context(\writing),

\separated(\written, TaskStatus + (0 .. NUM_TASKS - 1));

meta \prop,
\name(region_owners_final),
\targets( \ALL ),
\context(\writing),

\separated(\written,
RegionOwner + (0 .. NUM_REGIONS - 1));

Figure 5.7: Selected footprint modification constraints

5.5 Verification Discussion
As explained in Chapter 4, the usual verification process of HILARE is to
run MetAcsl, which transforms a HILARE into a set of code annotations,
and then run Wp, the deductive verification plugin of Frama-C, which
tries to prove the various annotations generated by MetAcsl.

Several guidelines and pitfalls were already presented in Section 5.1.
We discuss here some additional ones regarding verification.

3WhereK is defined as all kernel entry points such as system calls, exceptions and
interrupts.
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Proof failure analysis. If some annotations are not proved, this can be
due to several reasons:

(i) The program is incorrectwith respect to theHILARE: the code (or the
HILARE) needs to be fixed. Given the name of the failing annotation,
it is easy to trace back to the guilty HILARE.

(ii) There are insufficient pre-conditions on the function: the given con-
text is not sufficient for the property to be valid. One should add
pre-conditions needed for the proof.

(iii) The prover is not powerful enough: one should manually subdivide
the proof into a few intermediate steps by writing annotations that
are easier to prove and can help to deduce the required one.

(iv) Some functions that are called are not specified enough. It is com-
mon that, while a function clearly does not modify the state related
to a property, this is not reflected in its specification and the prover
cannot deduce that, after the call, the memory footprint of the prop-
erty is unchanged. A first step consists thus in manually specifying
the memory footprint of the callees. If this is not sufficient, one
should specify the conditions needed as a conditional invariant on
all potentially called functions using a HILARE.

Avoid overloading the proof context. When dealing with large func-
tions, it may be useful to use the -meta-checks described in the previous
chapter to instantiate a HILARE as a set of checks instead of assertions.
The difference is subtle: a check simply tries to prove a predicate at a
given point, while an assertion additionally adds it to the context for fur-
ther proofs. Hence, at the end of a long function, provers might struggle
with an overloaded proof context containing all previous assertions of the
function.

High-level lemmas. When faced with problem (iii), a classic solution
is to provide lemmas used to cut the goal. While it is possible to write
lemmas in ACSL, this solution may not work for a HILARE as it can rely
on specific local properties in the target functions or on variables non-
available globally (e.g. a function parameter). An efficient solution is to
write a HILARE used as a lemma to prove another HILARE or an ACSL
annotation: it is just as efficient as using a regular lemma in a normal
context. It can be a statement that follows from the hypothesis and directly
implying the goal, or simply an additional hypothesis needed to prove the
goal.
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Example 29. Let us say we want to prove the following HILARE on a
code base with hundreds of functions.

char array[1000];
int index = 0;

/* Hundreds of functions ... */

/*@ meta \prop,
\name(end_of_array_untouched),
\targets(\ALL),
\context(\writing),

\separated(\written, array + (900 .. 999));
*/

In other words, wewant to prove that the last 100 cells of the global
array are never modified. Let us assume that the code base only ever
accesses array by indexing it with the global index. As is, even if index
always stays below 900, the HILARE may not be verified statically.

However, we can translate our assumption into a HILARE as an
invariant to help the proof:

meta \prop,
\name(index_below_900),
\targets(\ALL),
\context(\strong_invariant),

index < 900;

This will be translated by MetAcsl as a set of local asser-
tions that will be useful to prove the assertions generated by
end_of_array_untouched. Note that in this case, our lemma must
not be translated into checks, lest the generated assertions cannot be
used as hypotheses.

The next chapter will discuss other ways to exploit already established
high-level requirements to prove new ones on a code base, without having
to resort to generation of local assertions.





Chapter 6
Towards an Automated

Framework for Deducing of
Meta-Properties

The verification technique for theHILARE language presented inChapter 4
is fundamentally local: it transforms a global requirement into a set of
local properties in the source code. As discussed, this set of properties
is sometimes quite large despite efforts to discard trivially true or false
statements early. While this approach is not always perfect, it cannot be
avoided for proving global requirements about a code base without further
global information: the low-level code must be observed in some way.

However, when some global requirements have already been estab-
lished on a code base (for example by specifying and proving HILARE
statements the usual way), it feels natural to attempt deducing other global
facts without having to resort to local analysis.

This chapter presents a motivation for deducing high-level require-
ments from others through some specific use cases, and describes an
extensible framework for doing so in a provably sound manner. While
the next chapter presents a large case study involving the concrete usage
of this deduction technique, this chapter does not have the ambition to
exhaustively explore the question of deducing meta-properties but rather
establish a limited (but extensible) foundation for doing so.

Section 6.1 motivates the existence of a deduction framework by pre-
senting several situations for whichwewant tomake high-level deductions
but currently cannot, and generalizes these situations to potential deduc-
tion patterns. Section 6.2 then discusses our methodology for designing an
efficient and sound deduction framework able to handle such patterns and
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presents the global architecture of our technical solution, while Sections 6.3
through 6.5 each describe a component of that architecture. Finally, Sec-
tion 6.6 discusses the usability of this framework from the point of view
of a regular user, and its extensibility by a knowledgeable user.

6.1 Motivation
When specifying and verifying properties in MetAcsl, there are some
situations where a property that should be easy to verify given the already
established HILAREs becomes tedious due to the limitations of the way
MetAcsl works, that is by generating low-level annotations.

Wemotivate the development of a deduction frameworkwith three sim-
ple illustrative use cases (inspired from a real system, see Chapter 7) that
ought to be easy to prove and can be articulated into more complex prop-
erties. They are presented in the following Sections 6.1.1, 6.1.2 and 6.1.3
respectively. Each use case presents a concrete situation where we want
to make a high-level deduction (and currently cannot), and generalizes
the situation to a deduction pattern that we would like our deduction
framework to handle.

While these use cases will give us an idea of what we want to be able to
deduce, we also want to put the emphasis on performance. In line with
our objective of easing the usage of formal methods discussed in Chapter 1,
we want a deduction method to be as seamless as possible: at the price
of completeness, we want a fully automated technique. Furthermore, it
should easily scale to very large programs with hundreds of functions. In
Chapter 7, we will evaluate these claims by testing the approach presented
in this chapter on a large code base.

6.1.1 Use Case: Negative Memory Footprint
Consider the following program excerpt, defining two functions f0 and f1
(the body of f1 is not shown):

int A, B;

void f1(); // A function which does not modify A

/* Potentially many other functions not modifying A */

void f0() {
A = 42;
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f1();
//@ assert GOAL: A == 42;

}

There are two global variables A and B. Suppose that we want to prove
the GOAL assertion in f0, stating that after the call to f1, the variable A retains
the same value.

With a HILARE, it is easy to specify that function f1 and its callees do
not write to variable A at all, with the \writing context:

meta \prop,
\name(A_untouched_by_f1),
\targets(\callees(f1)),
\context(\writing),

\separated(\written, &A);

No matter the content of f1 and its callees, it can also be assumed
that the proof of A_untouched_by_f1 is relatively easy given that A is indeed
not modified in any of these functions. In particular, in general it is not
necessary towrite loop invariants to prove such aHILAREwith this simple
pattern (Pattern 4 in Chapter 5).

However, specifying and proving that HILARE does not immediately
help us prove the GOAL assertion in f0. While one can easilymentally deduce
that if a function and all its callees do not modify a memory location then
its value does not change after calling it, the HILARE does not provide
the local information necessary to automatically prove the assertion with
deductive verification.

Remark 25 (Local deduction). In many cases, the specification of a
global HILARE can help prove local assertions. Indeed, with the
method presented in Chapter 4, a HILARE is translated into a set of
inline assertions to be proved by other means.

When using deductive verification (and in particular the Wp plu-
gin of Frama-C), an assertion in the code can be used to prove further
assertions since its statement is stored in the proof context and as-
sumed true. If another subsequent assertion is proved this way, it
will be considered as true, with the explicit hypothesis that the first
assertion is also true.

Hence, a generated assertion of a HILARE can help prove other
local properties, including assertions generated from other HILAREs.
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This means that in some cases, a HILARE can already be entirely
deduced from another if all of their local assertions follow that pattern.

This is not the case here.

In our current setting, we have two approaches for solving this problem,
but they are flawed:

1. Specify the whole memory footprint of f1with the assigns con-
struct. If A is not part of the footprint, then the GOAL assertion will
be successfully proved by tools such as Wp. However, this is a huge
undertaking: not only the whole memory footprint of f1 must be
identified, but also the footprint of all of its callees:

int A, B, C, ...;

/*@ assigns B; */
void f2() { B = 1; }

/*@ assigns C, ...; */
void f3() { C = B; ... }

// Same for all callees of f1

/*@ assigns B, C, ...; */
void f1() { f2(); f3(); ...}

All of these footprints must be manually annotated and may be hard
to prove: all loops need to be annotated, and the proof must care
for all other memory locations of the footprint, whereas we are only
interested in A.

2. Specify that A keeps its value as part of f1’s contract. This can be
done by adding ensures A == \old(A) in the contract. However,
for this statement to be proved, it again needs to be added to the
contract of every callee. While the proof may be lighter than the
previous approach, it is again potentially challenging, requiring loop
annotations. Exotic code such as inline assembly may also be an
important obstacle.

Both of the possible approaches look like important proof undertaking
for what should be immediate to deduce. Hence, the first requirement of
the deduction system is being able to deduce the following HILARE from
the premise A_untouched_by_f1 stated above.
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meta \prop,
\name(A_unchanged_by_f1),
\targets(\callees(f1)),
\context(\postcond),

\at(A, Pre) == \at(A, Post);

The local translation of this HILARE into function contracts, while not
used to prove the HILARE, could then be used as hypotheses to prove the
initial GOAL assertion.

Deduction pattern. If a variable E is not modified by a function 5 nor
any of its callees, then the value of E is the same before and after any call
of 5 .

6.1.2 Use Case: Propagating an Invariant to ”Neutral“
Functions

We now want to extend the above use case from simple variables to whole
predicates. Consider the following program excerpt, containing again two
global variables A and B, and a potentially large number of functions.

int A, B;

void f1() {
if(A != B) { /* Error */ abort(); }
A *= 2;
B *= 2;

}

void f2(); // Function modifying neither A nor B
/* Many functions with the same property ... */
void fN(); // Idem

The f1 function simply multiplies A and B by 2. It is trivially provable
that predicate A == B is a conditional invariant of this function (if A and B
have the same value before f1, it remains true afterwards). This invariant
can be expressed with a HILARE (even though it only has one target
function):

meta \prop,
\name(A_B_same_in_f1),
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\targets( {f1} ),
\context(\postcond),

\at(A, Pre) == \at(B, Pre) ==> \at(A, Post) == \at(B, Post);

Remark 26 (Weak and conditional invariants). Note that the
above property is weaker than what we could specify with the
\weak_invariant context: whereas this context specifies that a
predicate must hold when the function is called (it is a pre-condition),
here we only say that it may hold (and if it does, then it must also hold
afterwards).

We define a new context named \conditional_invariant for that
purpose. With it, the same property can be stated as follows:

meta \prop,
\name(A_B_same_in_f1),
\targets( {f1} ),
\context(\conditional_invariant),

A == B;

Let us assume that the following HILARE is established, meaning that
functions f2 through fN do not (locally) modify variables A and B:

meta \prop,
\name(A_B_untouched),
\targets( \diff(\ALL, {f1}) ),
\context(\writing),

\separated(\written, &A) && \separated(\written, &B);

Since functions f2 through fN do not locally modify the two global vari-
ables, we would like to be able to deduce that A == B is also a conditional
invariant of these functions, i.e. extend A_B_same_in_f1 to all functions.
This deduction is slightly more subtle than the previous one: the set of
target functions must not call functions that may modify the variables.

In general, it is important to be able to deduce that if a predicate over a
part of the state is a precondition of a function and that function does not
modify this part of the state, then the predicate is also a postcondition.
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Deduction pattern. If a function 5 does not modify the variables used
in a predicate % and 5 only calls functions with the same property, then %

is a conditional invariant of 5 .

6.1.3 Use Case: Propagating a Precondition to Callees
While the previous use case is quite simple (similar to the first use case), we
also want to extend this use case to actual weak invariants. In other words,
we want to deduce that a property is a precondition (and a postcondition)
of the functions. Let us extend the previous program with the following
excerpt:

/*@ requires A == B; */
void wrapper() {

f2();
f3();
...
fN();

}

int main() {
A = 1; B = 1;
wrapper();

}

We can easily prove the precondition of the wrapper function since it is
only called by main, which ensures that A == B before the call. This simple
precondition can also be expressed with a HILARE:

meta \prop,
\name(A_equal_B_before_wrapper),
\targets( {wrapper} ),
\context(\precond),

A == B;

Since we know that functions f2 through fN do not modify A and B,
we should be able to deduce that A == B is also a precondition for them
(hence a weak invariant).

Deduction pattern. If a function 5 is only ever called by functions for
which a predicate % is a precondition and that do not modify the variables
used by %, then % is also a precondition of 5 .
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6.2 Methodology and Architecture of the
Deduction Framework

For the three use cases presented in the previous section, it can become
useful to reason at higher level and allow the deduction of a HILARE from
others. We want to construct a framework where the end user can just add
the line \flags(proof:deduce) to a HILARE to try to automatically deduce
it when MetAcsl is launched, rather than translating the HILARE to local
assertions and delegating the task to other tools. To meet that objective
of performance, the methodology we adopt is pragmatic: we want to be
able to deduce simple things automatically and efficiently, while having a
formal guarantee that the deduction is sound. Furthermore, we want to
design the framework so that it is extensible: it should be possible to add
new, potentially more complex deduction patterns later.

Our approach is threefold:

1. establish a mechanized formal model of the HILARE language using
the Why3 [FP13] platform and prove that the deduction patterns
highlighted in the previous section are valid within that model;

2. translate those deduction patterns into an actionable and efficient
Prolog deduction engine that can apply them;

3. extend MetAcsl to automatically translate a HILARE-specified pro-
gram to constraints (also called knowledge base) for the Prolog
engine, which can then assess the validity of some properties using
the previously established deduction patterns.

Figure 6.1: Illustration of the deduction methodology
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This approach is illustrated in Figure 6.1. During the verification of a
program annotated with HILARE where one of them has the deduce flag,
the following happens:

1. both the HILARE to be deduced and the previous other HILAREs
are translated into data that is understood by the external deduction
engine (in Prolog);

2. the Prolog engine attempts to prove the desired HILARE based on
the premise that the previous HILARE are valid, and on a set of high-
level deduction patterns (such as the ones presented previously). It
is guaranteed to terminate but is not complete: it handles only some
specific HILARE structures and deduction patterns;

3. the deduction engine reports its result toMetAcsl, which propagates
the status to the HILARE in Frama-C. If the translation to local
assertions of that HILARE is enabled (with the translation:yes flag),
then all the local assertions are considered valid if the deduction
succeeded.

The Why3 component of the framework has no impact at ”runtime“
(during the proof of concrete programs) but is here to formally ensure
that Step 2 is sound. In that way, each part of the framework can be trusted.
Its weaker link is the interface between the Why3 model and the Prolog
deduction engine, which is done manually: one must ensure that the
deduction patterns encoded in the Prolog engine are exactly the ones
proved within the Why3 model.

A proof of the deduction approach can only be made within a formal
system describing the HILARE language andACSL themselves. While this
can be formalized on paper (as it is done in Chapter 2), it is preferable to be
able tomachine-check the proof if this approach is to be trusted. This could
have been done entirely in ACSL, however the Why3 platform [FP13] and
its WhyML language are particularly appropriate since one can express a
pure formal system and theorems easily, without having to deal with C
specificities. The Coq proof assistant [Coq21] was also a good candidate
but the fact that Why3 can rely on external solvers to (try to) automati-
cally prove theorems was a clear advantage, and we did not need the full
expressiveness of Coq.

For the actual automated solving during the proof, Why3 could also
have been leveraged to try to automatically apply the proved deduction
theorems to facts translated by MetAcsl from HILARE annotations. How-
ever, we found that the performance of this solution did not scale when the
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number of functions increased, hence the need for a dedicated deduction
engine. Prolog was a good candidate to easily prototype an engine that
can exhaustively explore the space of possibilities.

The next sections describe each part of the architecture in detail: a
sketch of the soundness proof, the construction of the actual deduction
engine and its communication with MetAcsl.

6.3 Using Why3 for Modelling Structural
Deduction Patterns

To prove that the deduction patterns highlighted in Section 6.1 are sound
using theWhy3 platform, we first needed to transpose the formalization of
meta-properties presented in Chapter 2 to that platform, before attempting
to prove theorems within that formal system. We briefly describe that
transposition, which follows the same structure as Chapter 2: formaliz-
ing the structure of the abstract programming language, its semantics,
predicates over such programs, and then meta-properties.

type location

type function_name

type instruction =
| Read location
| Write location
| Call function_name

type statement =
| Instr instruction
| Branch (statement, statement)
| Loop statement
| Block block

with block = L.list statement

type func = { def: block }

type program = M.fmap function_name func

Figure 6.2: Structural definition of a program in Why3
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A small excerpt of the model can be seen in Figure 6.2. As expected,
it closely matches the constructs defined in Chapter 2 but gives concrete,
actionable types to each component of themodel: starting from the bottom,
a program is a map between names and functions, and each function is
a block of statements that loosely matches C and ACSL semantics: a
statement is either an instruction (read, write, or call) or a structural
operator (conditional loop, nested block). Notice that it is sufficient for
our purposes to reduce C programs to single reads from (resp. writes to)
locations, as instructions performing multiple memory operations can be
transformed to a set of instructions performing atomic operations.

Remark 27 (Recursivity). Whereas loops are taken in account into
the model, recursion is not allowed and its absence is a hypothesis of
the following proofs. This is made to ease subsequent proofs.

However, this hypothesis is perfectly sensible: should programs
contain recursive calls, they can be transformed – at least in theory
– into their iterative equivalent, for example by explicitly simulating
the program stack [Zei].

Based on this structure, we define basic semantics of the different
language constructs by describing their action over the state of a program:
we define their footprint. Figure 6.3 illustrates the semantics of instructions
(statements are omitted).

In particular, we define an inductive relation

state_instruction(p, i, s1, s2)

defining the constraints between the states preceding (s1) and following
(s2) the execution of an instruction i on a given program p. As expected,
reading does not modify the state (s1 equals s2) but writing does (s1 and
s2 must be equal on every location except the one written to during the
instruction).

On that basis, still following the structure of Chapter 2, we formalize
the concept of program property (assertion) and the concept of meta-
property.

Within that model, we then formulate the three deduction patterns
of Section 6.1 as theorems. The first theorem captures the use case of
Section 6.1.1: negative assigns. It states that if a function and each of its
callees do not modify a location ;, then the value of that location must be
the same before and after the execution of this function.
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type value (* An abstract value type *)
(* The state maps locations to values *)
type state = M.fmap location value

(* Two states have the same value for a location *)
predicate same_state_on_location (s1 s2: state) (l: location) =

forall v: value. M.mapsto l v s1 <-> M.mapsto l v s2

(* Two states have the same value for every location except one *)
predicate state_modification (l: location) (s s': state) =

forall l'. (l <> l') -> same_state_on_location s s' l'

(* Relation between the state before and after an instruction *)
inductive state_instruction program instruction state state =
| State_Read : (* no modification of state *)

forall s l prog.
state_instruction prog (Read l) s s

| State_Write : (* states differ on l *)
forall l s s' prog.
state_modification l s s' ->
state_instruction prog (Write l) s s'

| State_Call : (* execute the function's block *)
forall prog, f: function_name, s s': state, b: block.
valid_program prog ->
function_definition prog f b ->
state_block prog b s s' ->
state_instruction prog (Call f) s s'

Figure 6.3: Semantics of programs in Why3

Before stating the theorem itself, we need to formalize the notion of
callees. We consider here again the A-Lang language introduced in Chap-
ter 2 and a well-formed program in A-Lang (cf. Remark 4).

Definition 24 (Set of callees). Let 5 ∈ � be a function. We define
callees( 5 ), the set of callees of 5 , as the smallest set of functions such
that 5 ∈ callees( 5 ) and

∀6 ∈ callees( 5 ), ℎ ∈ �, E ∈ +6, instr(E) = Call ℎ =⇒ ℎ ∈ callees( 5 )

In other words, callees( 5 ) is the smallest set that contains 5 and any
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function called by its members. With this definition, we can now state our
theorem.

Theorem 1 (Negative assigns). Let 5 ∈ � be a function and ; ∈ ! a
location. We state that if

∀6 ∈ callees( 5 ), ∀E ∈ +6, ; ∉ ,(E),

then for all states �1, �2 ∈ Σ such that 〈 5 , �1〉w�$
�2, we have that

�1(;) = �2(;).

That theorem is formally proved within Why3. Section 6.3.1 below
gives a sketch of proof for this theorem as well as the two following ones.

Remark 28. In Why3, we write the statement of Theorem 1 as:

lemma negative_assigns:
forall prog: program, l: location, f: block, calls: S.fset block,
pre post: state, v: value.
valid_program prog ->
(* 'calls' is the set of f callees *)
callees prog f calls ->
(* f does not modify locally l *)
untouched f l ->
(* same for all callees *)
(forall f'. S.mem f' calls -> untouched f' l) ->
(* the value of l after and before f *)
state_block prog f pre post ->
(* is the same *)
(M.mapsto l v pre <-> M.mapsto l v post)

For a given function 5 and location ;, if it has been proved by a
HILARE that for 5 and all of its callees, there is no local modification
of ;, then it can be deduced that the value associated to ; does not
change before and after a call of 5 .

Let us now formalize the second deduction pattern, which states that
if a function 5 and its callees do not modify the set of variables over which
a predicate % is defined, then that predicate is a conditional invariant of 5 ,
i.e. if % holds in the pre-state of 5 , it must also hold at the post-state.
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Theorem 2 (Conditional invariants of neutral functions). Let ! ⊆
ℒ� be a finite set of memory locations and % ∈ D(!) a predicate over
!. We state that if

∀6 ∈ callees( 5 ), ∀E ∈ +6, ,(E) ∩ ! = ∅

then for all states �1, �2 ∈ Σ such that 〈 5 , �1〉w�$
�2, we have that

�1 � % =⇒ �2 � %

This theorem, which captures the second use case of Section 6.1, is also
proved in Why3 within our metamodel.

Lastly, let us state the third deduction pattern. It states that if a function
5 is only called by functions for which a predicate % is a precondition and
that do not modify the locations over which % is defined, then % must be a
precondition for 5 as well. To state that theorem, it is easier to first define
the notion of precondition.

Definition 25 (Precondition of a function). Let 5 ∈ � be a function,
! a set of locations and % ∈ D(!) a predicate over !. We say that % is
a precondition of 5 and write precond( 5 ,%) if:

∀6 ∈ �, (E1, E2) ∈ �6, instr(E2) = Call 5 =⇒ (E1, E2) �6 %

In other words, % is a precondition of 5 if at every call site of 5 , %
must hold for every possible execution of the caller (see Definition 18 in
Chapter 2).

With this definition, we can now state our final theorem.

Theorem 3 (Propagation of preconditions). Let 5 ∈ � be a function,
! ⊆ ℒ� a finite set of memory locations and % ∈ D(!) a predicate
over !. We state that if

∀6 ∈ �, (∃E ∈ +6, instr(E) = Call 5 ) =⇒
precond(6,%) ∧ (∀ℎ ∈ callees(6),∀E ∈ +ℎ,,(E) ∩ ! = ∅)

then precond( 5 ,%).

In other words, if for every caller 6 of 5 , % is a precondition of 6 and 6

and its callees do not modify the variables over which % is defined, then %
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is a precondition of 5 as well.
It is important to take into account the callees of 6 (that is, including

5 ), because between the beginning of 6 (where % is true) and the call to
5 , there may be calls to other functions for which % is not a postcondition.

With this, we have generalized and formalized every use case from
the first section, which is a contribution in and of itself. The next sub-
section gives an idea of how these three theorems were proved, while
Section 6.4 describes how these deduction theorems are actually applied
in our framework to deduce HILAREs from others.

6.3.1 Details of the Proof Process
First, we have to notice that Theorems 1 through 3 are stated for any
program $. To help us prove these theorems, we would like to exhibit
an induction principle on programs. To that end, we first define the
notion of call graph of a program, which will be conveniently structured
for subsequent proofs.

Definition 26 (Call graph). The call graph of a program is a directed
graph (+ ,�) such that:

• The set of nodes is the set of functions in the program: + = �;

• There is an edge from 5 to 6 if and only if 5 is called by 6:

∀ 5 , 6 ∈ �,∃E ∈ +6, instr(E) = Call 5 ⇔ ( 5 , 6) ∈ �.

The no-recursion assumption discussed in Remark 27 means that the
call graph of any program is a directed acyclic graph, that is, there is no
direct or indirect call from a function to itself.

This implies the existence of a topological ordering [HLC09] ≤) of the
vertices of the call graphs (i.e. the functions of the program). The topo-
logical ordering is a total order that respects the following property: for
all functions 5 , 6 ∈ �, 5 ≤) 6 if 5 is (directly or indirectly) called by 6. In
particular, every (direct or indirect) callee of a function comes before that
function in the order:

∀ 5 ∈ �,∀6 ∈ callees( 5 ), 6 ≤) 5 .

Notice that for two functions 5 and 6, 5 ≤) 6 does not necessarily
mean that the former is a callee or the latter. Indeed the call graph can be
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a forest: there can exist functions 5 , 6 such that neither 5 is a callee of 6
nor 6 is a callee of 5 .

Since ≤) is a well-founded order, we can deduce a Noetherian induction
principle over functions of a call graph, allowing us to easily prove that a
property holds on a whole program.

Theorem 4 (Induction principle on functions of a call graph). Let
P be a property of functions. Assume that for any function 6 ∈ �, we
can deduce P(6) from the following premise

∀ℎ ∈ �, ℎ ≤) 6 =⇒ P(ℎ).

Then P( 5 ) is true for all 5 ∈ �.

This means that we can prove functional properties of our metamodel
by choosing a particular function 6, and proving that the property holds on
6, assuming that the property already holds for every callee ℎ of 6 (which
is a weaker premise than the one stated in the principle). In particular, it
means that the property must be immediately true of a function without
callees.

Given that induction principle, small lemmas about what can be de-
duced within the model are incrementally built from the ground up, natu-
rally leading to the proof of Theorems 1 and 2.

Theorem 1, sketch of proof. We reason by induction over functions of a
call graph. For leaf functions, since we know that none of their instructions
modify the location ;, we can apply the semantics of execution to prove
that the states before and after their execution must agree on the value of
;.

For other functions, we do the same but use the induction hypothesis
whenever a call appears. Indeed, we can deduce that the execution of
callees does not change the value of ; since our no-modification assumption
subsumes the necessary condition to apply the induction hypothesis.

Theorem 2, sketch of proof. We use a similar proof structure, applying
execution semantics on leaf functions to deduce that they must not change
the variables over which our predicate is defined. We then deduce that the
predicate must hold at the end of the function if it was already the case at
the beginning. We do the same for other functions, simply applying the
induction hypothesis for functions calls.
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Theorem 3, sketch of proof. For this theorem, wemust use a symmetrical
variation of the induction principle exhibited in Theorem 4, where the
topological ordering is reversed i.e. 5 ≤)′ 6 if 5 calls 6. Since that order is
still a well-founded order, we can deduce a new induction principle where
we can assume a property is true for every caller of a function to prove it
on that function.

Using that reversed induction principle, we reason using the same
proof structures as for the two previous theorems. For functions without
callers, any predicate is immediately a precondition (according to Defini-
tion 25) and for other functions it is enough to simply apply the induction
hypothesis and the semantics of execution.

Most of the proofs are fully automatic, thanks to the SMT solvers used
by Why3. Out of the 41 proofs, 7 had to be written manually using the
Coq proof assistant. The whole model and the accompanying proof is
available inside the MetAcsl release. 1

6.4 Using Prolog for Applying the Deduction
Patterns

While the Why3 model in the previous section is here to formally prove
that deductions made with the deduction patterns of Section 6.1 are sound,
the Prolog deduction engine is here to actually use these patterns to make
the deductions.

Example 30 (A bit of Prolog). A Prolog program essentially is a list
of facts and rules. The following code contains two facts stating that
predicate likes is always true for the combination of parameters me
and pizza, and that is_junk_food is true for parameter burger.

likes(me, pizza).
is_junk_food(burger).

One can then state rules for deducing new facts from existing ones:

% If FOOD is junk food, then 'me' likes it
likes(me, FOOD) :- is_junk_food(FOOD).

1https://git.frama-c.com/pub/meta

https://git.frama-c.com/pub/meta
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A rule can have multiple conditions, in which case they are separated
by commas.

The engine can then be queried to check if a given fact can
be deduced from the known ones. For example, the query
likes(me, burger) will yield true.

Furthermore, we can pass unbound variables (_) in a query to
check if there exists an instantiation of it for which the fact can be de-
duced. For example, the query likes(me, _) will yield true since the
anonymous variable can be replaced by burger to make the predicate
hold.

The rationale for choosing Prolog to write the deduction engine is
twofold:

• Prolog is a natural choice for the design and the usage of small CLP
(Constraint Logic Programming [JM94]) languages, such as {log}.
Hence, transposing the wording of the Why3 lemma is easy.

• If built correctly, an ad-hoc deduction engine written in Prolog is
highly efficient. An early attempt was to directly use Why3 as a de-
duction engine, but the highly general nature of this platform made
deduction on our large yet simple samples frustratingly inefficient.

The solver is structured into three layers: the ground, intermediate,
and high-level layers.

Ground layer. The deduction engine expects a set of facts about the
program provided by the user: the list of functions, the call graph and a
list of HILAREs that are already proved. The next section describes how
the translation from a C program to Prolog facts for this layer is operated.
It mainly contains facts of the form meta_ground(C, P, S) where C is the
representation of a HILARE context, P its predicate and S its target set. A
fact of this form states that the HILARE with these components is already
established in the program. By nature, these facts are not hard-coded into
the solver but generated at runtime from a concrete C program.

Intermediate layer. Based on these known facts, there is a first layer
in the engine that lay down very basic deduction rules, which we call
the intermediate layer. It can essentially infer that a HILARE is valid if a
stronger form of it is already established, or if it is simply the combination
of multiple identical properties with different target sets.
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% meta_inter(?Context, ?Predicate, ?Set)
% Means that a HILARE with these components
% can be deduced by the intermediate layer

% If HILARE already proved, it is immediately deduced
meta_inter(C, P, S) :- meta_ground(C, P, S).

% Weak invariant implies postcondition
meta_inter("Postcond", P, S) :-

meta_inter("Weak invariant", P, S).

% Weak invariant implies precondition
meta_inter("Precond", P, S) :-

meta_inter("Weak invariant", P, S).

% Strong invariant implies weak invariant
meta_inter("Weak invariant", P, S) :-

meta_inter("Strong invariant", P, S).

% HILARE is valid if the same HILARE
% is valid for a larger set of functions
meta_inter(C, P, S) :- subsumes(C, P, S, _).

% HILARE is valid if its set of targets can be partitioned
% into two sets for which the property is already proved valid
meta_inter(C, P, S) :- merge_props(C, P, S, _, _).

Figure 6.4: The intermediate layer of deduction

This layer is illustrated in Figure 6.4. Each rule encodes a different
trivial deduction pattern, commented in the code. This layermakes use of a
predicate subsumes(+C, +P, +S1, -S2) which checks if the same HILARE
with a larger set (S2) of functions is known to be valid, and a predicate
merge_props(+C, +P, +S, -S1, -S2) which checks if the target set S of a
HILARE can be partitioned into two sets S1 and S2 for which the HILARE
is known to be valid. Their definition is omitted from the listing.

Remark 29 (Set operations in Prolog). When the programs are
large, the target sets have a considerable size: for the solver to remain
efficient and to easily manipulate sets, we use a Prologa extension
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called {log} [Dov+96] which provides easy syntax and efficient
deduction facilities for finite sets.

This slightly changes the usual Prolog syntax. Notably, premises
of rules are separated by ampersands (&) instead of commas.

aMore specifically, SWI-Prolog

High-level layer. On top of this simple layer, the engine defines rules
for making less trivial high-level deductions based on the theorems estab-
lished in the previous section. A small excerpt of this layer is provided in
Figure 6.5. In particular, the first deduction lemma is transposed.

It states that a negative assign of location L for the target set S (that is,
the HILARE stating that the value of L does not change after the execution
of each function in S) is considered valid if it is known (through a previous
HILARE) that these functions do not modify L locally and that S is closed
by call (functions within that set do not call functions outside of it).

% Try to deduce directly with simple rules
meta_valid(C, P, S) :-

meta_inter(C, P, S).

% Try to deduce as a negative_assigns
meta_valid("Postcond", negative_assigns(L), S) :-

% Functions do not modify L
meta_inter("Writing", not_written(L), S) &
% Callees are within S
callees_restrict(S, S).

Figure 6.5: Part of the high-level layer of deduction

The engine can then be queried to efficiently check if a particular HI-
LARE can be deduced based on the known facts of the programs, or even
list all deducible facts.

Remark 30 (Absence of circular dependencies). As described, the
engine is separated in three layers: ground (facts), intermediate (sim-
ple deductions) and high-level (complex deductions).

This is because deduction rules from a given level must only de-
pend on conditions from lower levels or otherwise more restrictive
predicates, to avoid circular dependencies, which would cause the
engine to run indefinitely.
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While this allows for a performant deduction engine, it also means
that it cannot perform a chain of high-level deductions to reach a
goal: the chain must be broken up into separate deductions (and so
separate HILAREs).

6.5 Automatic Deduction of HILARE from
MetAcsl

The next step is to allow requesting the deduction of a HILARE from
within MetAcsl. In the source specification, the verification practitioner
must explicitly mark a property with the flag proof:deduce to disable its
local verification (see Chapter 4) and instead attempt its deduction.

When encountering such a HILARE, there is a fully automatic (but
limited) translation of the program environment into Prolog facts that can
be used by the deduction engine. In particular, the translation exports the
list of functions in the program as a set, the call graph as a list of calls, and
the list of HILAREs appearing before the property under proof.

Remark 31 (Hypotheses). Since all HILAREs preceding the goal in
the source specification are exported as facts, they are considered
valid by the deduction engine and are therefore hypotheses of the goal,
should it be proven valid.

Hence, one should always ensure all HILAREs are valid before
concluding that a deduced HILARE is definitely valid. MetAcsl helps
by automatically declaring used hypotheses as dependencies.

In presence of multiple HILAREs to be deduced, each one is deduced
independently of the others, with multiple exports of the knowledge and
multiple runs of the Prolog engine.

Export of the function set. The MetAcsl plugin lists all the functions
of the C program and exports them as a set in a targets({f, g, h, ...})
fact.

Export of the call graph. The MetAcsl plugin syntactically detects all
functions calls in the C program (function pointers are ignored, a known
limitation). Every edge of the call graph is then exported as a single
calls(f, g) fact.
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Export of HILAREs. When translating HILAREs, each one is exported
into a meta_ground(C, P, S) where C is the name of the context, S is the
target set and P the predicate.

For the predicate, pattern matching is used to syntactically identify
some known forms of the HILARE language that can be further exploited
by the deduction engine. If the pattern is not recognized at all (which
is the case in most properties), the HILARE is exported with an abstract
predicate about which nothing is known.

In particular, the exporter recognizes the \separated(\written, &X)
pattern where X is a variable or the field of a variable (if it’s a structure). In
this case the variable is assigned a unique name and the whole predicate
is exported as the not_written(X) special form.

Export of structures. If a program declares a structure type str with
fields foo and bar, MetAcsl will export this type information to the solver:

field(str, foo).
field(str, bar).

And the Prolog solver knows that if it can establish that no field of a str
variable is modified, then the whole variable can be considered untouched,
and the other way around:

% If a struct is not modified, all of its fields aren't
meta_inter("Writing", not_written(field(V, F)), S) :-

meta_inter("Writing", not_written(V), S).

Example 31. In Figures 6.6 and 6.7, there are respectively a C program
annotated with two HILAREs, and the translation of this program
into Prolog knowledge, given that we want to deduce the second
property (this wish is materialized by the proof:deduce flag). This
illustrates the translation of different C elements into knowledge for
the deduction engine.

In this case, the property can successfully be deduced using the
first proved lemma.

6.6 Usability and Extensibility
How to use. From the point of view of a regular user of MetAcsl and
the HILARE language, the usage of our deduction framework is easy, as
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int A, B;
void f3() {

B = 42;
}
void f2() {

B = 12;
f3();

}
void f1() {

B = 0;
f3();
f2();

}
void f0() {

A = 42;
f1();
//@ assert A == 42;

}
/*@ meta \prop,

\name(untouched),
\targets(\callees(f1)),
\context(\writing),

\separated(\written, &A); */

/*@ meta \prop,
\name(nega_correct),
\targets(\callees(f1)),
\context(\postcond),
\flags(proof:deduce, translate:yes),

A == \old(A); */

Figure 6.6: An example input program and specification
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% Export of the set of functions
targets({f_f3, f_f2, f_f1, f_f0}).

% Export of the call graph
calls(f_f1, f_f3).
calls(f_f2, f_f3).
calls(f_f1, f_f2).
calls(f_f0, f_f1).

% Translation of untouched
meta_ground("Writing", not_written(a_22), {f_f3, f_f2, f_f1}).

% Translation of nega_correct. This is what we want to prove.
go :- meta_valid("Postcond", negative_assigns(a_22),

{f_f3, f_f2, f_f1}).

Figure 6.7: Knowledge base for the Prolog engine (automatically generated
from Figure 6.6)

knowledge about its inner workings is not necessary. It is sufficient to add
the proof:deduce flag to attempt deducing a HILARE from others with
MetAcsl, seamlessly.

It is useful, however, to know about which kinds of deductions can be
made by this solver. Hence, it would be advisable for a regular user to
read Section 6.1 from this chapter, in order to know in which situations it
might be useful to consider deduction as an option.

Furthermore, due to the current limitations of the pattern matcher
described in Section 6.5, knowing about the handled predicate patterns
will help a regular user to write HILAREs that will be understood by the
system.

How to extend. Currently, the deduction framework handles the three
high-level use cases described in Section 6.1, as well as trivial deductions
between similar HILAREs handled by the intermediate layer described in
Section 6.4.

In order to extend the scope of what can be deduced, one must:

1. Identify an example of deduction that should be handled.

2. Generalize that example to a deduction pattern.
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3. Formalize andprove that deduction patternwithin the existingWhy3
model. It might be necessary to extend the existing model itself in
order to reason about some language features.

4. Manually translate the statement of that deduction pattern to the
Prolog solver. Again, it might be necessary to add new constructs to
the solver for the statement to make sense.

5. Ensure that the exporter within MetAcsl can identify the patterns
of HILAREs relevant to the deduction pattern.

This is exactly what was done for the three existing deduction patterns,
and it is not an easy undertaking. However, we believe that the more
patterns are added to the framework, the easier it will be to add new ones
since the Prolog and Why3 models will already be complete enough to
simply focus on the use case.





Chapter 7
The Wookey Case Study

While one of the purposes of the HILARE language (Chapter 3) and its
associated plugin MetAcsl (Chapter 4) is to specify and verify high-level
requirements, another purpose is to ease the specification task over large
code bases. Hence, it was a natural step to tackle a larger, realistic use
case, to both stress-test our approach and demonstrate its merits. Hence,
this chapter presents a real case study on a large low-level code base, and
applies the techniques and methodology described in previous chapters
to specify and verify a set of key security requirements.

WooKey [Ben+19] is an open hardware and software project developed
by the French National Cybersecurity Agency (ANSSI) aiming to build a
customUSB thumb drive from the ground up focusing on security through
built-in user data authentication and strong authentication. An example
of an assembled WooKey device is shown in Figure 7.1.

Figure 7.1: An assembled WooKey device.
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As seen on the figure, WooKey is a small device with a USB port, a
touch screen and a smart card slot (on the photo, a white card is currently
inserted). The device contains physical memory as a normal USB flash
drive would. However, to access the stored data, any user must first insert
her personal smart card then type a PIN code using the touch screen to
unlock the storage. She can then use the device as a normal USB flash
drive, then lock the memory again.

In this chapter, Section 7.1 presents the WooKey project and focuses on
the low-level architecture and security model of the bootloader. Section 7.2
outlines multiple high-level security requirements that we want to verify
on the bootloader. These requirements are refined into concrete HILAREs
in Section 7.3 which describes our specification approach. Finally, Sec-
tion 7.4 discusses how these properties have been formally verified via
deductive verification, and thanks to the deduction frameworkwe describe
in Chapter 6.

7.1 Architecture
WooKey has multiple software components (mostly drivers) to manage
the hardware key, such as SDIO1, USB, cryptography management, etc.
All components rely on the kernel called EwoK which contains them and
enforces various security rules such as strict isolation between tasks and
drivers or least privilege principle. Furthermore, the kernel is implemented
in Ada/SPARK, often used in applied formal method domains such as
avionics or railway systems to build safe software.

However, as every kernel must, the EwoK microkernel relies on the
firmware’s2 bootloader (called the loader from now on), by which it is
initially executed. Indeed, the loader has a critical role in WooKey’s ar-
chitecture: it not only boots to the kernel but also contains a number of
security safeguards.

The WooKey device has a built-in flash memory that contains both
the loader and the firmware. It allows the firmware to be updated by a
mechanism called DFU (Device Firmware Upgrade), which is triggered if
a physical button is pushed during the boot sequence. Due to technical lim-
itations, firmware upload and verification have to be performed in-place,
where it will be executed. This led to the adoption of a flip-flop mechanism

1Secure Digital Input Output, to interact with the mass storage.
2Firmware is the name given to software that drives low-level functions of hardware.
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Loader code
Bank Header I

Firmware I

Padding
Bank Header II

Firmware II

Bank I: FLIP

Bank II: FLOP

Figure 7.2: Flash memory layout with flip-flop redundancy. Memory
addresses increase upwards.

which enforces software redundancy in order to handle different kinds of
file corruption. This mechanism is illustrated in Figure 7.2.

The flash memory is separated into two redundant banks called re-
spectively flip and flop. Each bank contains a (possibly different) copy
of the firmware (the kernel and all its tasks) and the tasks responsible
for firmware upgrade. Furthermore, each bank has a Bank Header section
containing meta-data about the installed firmware in the bank such as
hash sums, signatures and version numbers. There is only one copy of the
loader, which cannot be updated, at the beginning of the memory. The
loader is responsible for verifying each firmware against its meta-data sec-
tion (to detect corruption or malicious modifications) and then choosing
a bank to boot on based on the version numbers.

Overall, it is critical to ensure that the loader is safe and secure, since
it (i) cannot be updated after device assembly, (ii) has every privilege
during its execution, and (iii) can thwart every security measures of the
upper layers.
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7.2 Defining Important Requirements
In collaboration with WooKey’s developers from the ANSSI, we estab-
lished a set of high-level requirements of which the proof would both be
useful to increase trust in the loader and be able to evaluate the relevance
of the HILARE language and MetAcsl over such a large project.

Requirement 7.1 (Persistent bank choice). Once a bank is chosen
as a valid boot target, no further operations are realized on the other
one.

As explained above and pictured in Figure 7.2, after performing various
checks to determine if each bank – flip and flop – is securely bootable, the
loader has to choose a bootable bank to boot on. It is essential that once
the target bank is determined, every subsequent operation is realized on
that bank (in particular, the boot itself!). Violating this requirement could
allow booting to a corrupted firmware, for example via bypassing the
subsequent integrity checks by performing them on a different bank.

Requirement 7.2 (Booting sequence enforcement). Each step of
the boot sequence is executed only once, and in the correct order
described in Figure 7.3.

Error/Breach

CRC check

Select bank

Wait DFU

Initstart Boot

Flash lock

Integrity check

Figure 7.3: Boot sequence automaton

The outline of the whole operation of the loader can be described by a
finite-state automaton, represented in Figure 7.3. Indeed, the functionali-
ties of the loader can be grouped in 7 different steps, from initialization to
the final boot. The semantics and implementation details of the interme-
diate steps do not matter to the requirement, which is that they must be
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executed linearly one after the other, except if an error (safety or security)
occurs, which causes the system to enter a sink failed state.

Violating this requirement could allow completely bypassing the se-
curity checks performed in the intermediate states of the automaton, or
recovering from a security breach by avoiding sink states of the automaton.

Requirement 7.3 (Principle of least memory access). Each step of
the boot sequence only accesses the memory it strictly needs.

Since the loader has every privilege to access the memory, it is impor-
tant to check that it does not abuse these privileges. Hence, it is necessary
to establish the maximal memory footprint each step should have and
ensure that these footprints are not overstepped. These expected footprints
are detailed in Table 7.1, referring to the memory regions of Figure 7.2.
Violating this requirement could allow the loader to spuriously modify
the firmware, potentially corrupting it or adding a malicious payload.

Module Can read Can write Can execute
Init × Protection flags Loader code
Wait DFU × ×
Select bank Bank Header I ∧ II ×
CRC check Bank Header I ∨ II ×
Integrity check Firmware I ∨ II ×
Flash lock × Protection flags Loader code
Boot × × Firmware I ∨ II

Table 7.1: Expected footprints of the different modules on the flash mem-
ory.

Notice how after the bank selection, the modules can read either the
first or the second bank, but not both, echoing Requirement 7.1.

7.3 Specification Approach
This work is based on the first release ofWooKey (a subsequent onewas re-
leased during ourwork, fixing a number of security issues). Some statistics
about WooKey’s loader and its dependencies’ code base are highlighted
in Table 7.2. It has a large size, which we deemed representative enough
to evaluate our approach, despite the highly specialized code it contains.
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Files Functions Lines of code Loops Global variables Assignments
82 581 5250 58 29 1694

Table 7.2: Some statistics about the loader’s code base.

Setting up an environment where Frama-C can parse the whole code
base was relatively pain-free thanks to tools such as Bear [Bear] and doc-
umentation by the Frama-C team [Mar18]. At first, slight modifications
where needed due to unsafe pointer casts in the code. Later, these were
fixed directly by the WooKey team.

File structure. Most of the loader’s logic is defined in a main.c file, while
most of the other files contain helper functions to interface with the hard-
ware and implementations of some common algorithms such as cyclic
redundancy checks.

This main.c file defines a global structure ctx (context) which stores
information gathered during the boot sequence, such as if the button for
DFU was pushed, what bank was selected for boot, the final address to
boot on, etc.

Another noteworthy file is automaton.c, which defines the automaton
of Figure 7.3 and stores the current state of the sequence using a global
variable state (an enumeration).

Remark 32 (Preservation of the original source). A major require-
ment of the specification approach is that it must not modify the origi-
nal source code in any way.

Modifying the structure of the program while preserving the orig-
inal behaviour would certainly ease the specification of some require-
ments. However, the goal of this chapter is to demonstrate that the
HILARE language and MetAcsl are tools that are flexible enough to
adapt to various forms of programs.

Hence, we have only allowed ourselves to annotate the existing
code and possibly add ghost code.

The following Sections 7.3.1 and 7.3.2 respectively describe how Re-
quirements 7.1 and 7.2 were refined into enforceable high-level properties,
using the methodology outlines in Chapter 5. By lack of time, Require-
ment 7.3 was not refined during the thesis.
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7.3.1 Persistent Bank Choice
To refine Requirement 7.1 into high-level code properties, it is necessary
to first refine the meaning of bank being ”chosen” as a valid boot target,
and what an operation on a bank is.

Identifying the relevant variables. Helpfully, the boot se-
quence has a single function where the choice is made, called
loader_exec_req_selectbank (which we will call selectbank from now
on), representing the associated state in Figure 7.3.

Furthermore, the ctx global contains boolean fields boot_flip and
boot_flop. It is intended that after the choice function, one and only one
of these two fields must be set to true, representing the chosen bank. Ad-
ditionally, metadata associated with the chosen bank must be stored into
the fw (firmware) field of the same global.

Hence, a bank can be considered as chosen after the execution of
selectbank without errors, and the choice is embodied by the three afore-
mentioned fields. Lastly, a fourth field next_stage is set at a later stage
with the final boot address, which strictly depends on the earlier choice.

Operations on banks. While the previous paragraphs define what it
means for a bank to be “chosen” as a boot target, Requirement 7.1 also
mentions the notion of “further operations” on a bank. We can conserva-
tively define an operation on a bank (flip or flop) as any access (read or
write) to:

1. its metadata i.e. the members of flip_shared_vars or
flop_shared_vars (both global structures containing information
such as the status and signature of the bank);

2. its data i.e. the whole memory region starting from the base address
FLIP_BASE or FLOP_BASE and of size FLIP_SIZE (which are compile-time
macros).

From requirements to properties. With the clarifications made in the
above paragraphs, we can refine the requirements into the following set
of high- and low-level properties.

Property 1 (Function assumption). The selectbank function is par-
tially correct: it either enters an error state or returns in a state where
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exactly one of boot_flip and boot_flop is true and fw is set accordingly.

Property 2 (Persistent choice). No function other than selectbank
shall modify the above three fields.

Property 3 (Enforced choice). No function shall access or mod-
ify any location between FLIP_BASE and FLIP_BASE + FLIP_SIZE nor
flip_shared_vars when boot_flip is set to false. Symmetrically for
the flop bank.

Lastly, asmentioned previously, the next_stagefield is set at a later stage
(namely in function loader_exec_req_flashlock, or flashlock for short) to
the final boot address, depending on the earlier bank choice and the
potential press of the DFU button. Hence, it is important to check that this
field is correctly set.

Property 4 (Continuation of choice – global). No function other
than flashlock shall modify the next_stage field.

Property 5 (Continuation of choice – local). The flashlock func-
tion is partially correct: it correctly considers the earlier bank choice
and the press of the physical button to decide where to boot.

As every location used in these properties is defined globally, it is easy
to translate each property into its HILARE counterpart, using the writing
and reading contexts.

For example, Property 2 can be specifiedwith themacros andHILAREs
listed in Figure 7.4. Notice how the usage of macros makes the actual speci-
fication muchmore legible, even by people without HILARE andMetAcsl
background. We use a macro UNTOUCHED for encapsulating Pattern 4 from
ourmethodology in Chapter 5 and anothermacro ALL_EXCEPT_SELECTBANK
for specifying the set of targets.

As for Property 1, since it is simply a postcondition on the bank selec-
tion function, we can simply add an ensures clause to its contract or write
a HILARE with the \postcond context, with the following predicate:

ensures \result == LOADER_REQ_ERROR ||
(ctx.boot_flip == sectrue && ctx.fw == &flip_shared_vars.fw) ||
(ctx.boot_flop == sectrue && ctx.fw == &flop_shared_vars.fw);
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#define UNTOUCHED(title, tset, loc) \
meta \prop, \
\name(title), \
\targets(tset), \
\context(\writing), \
\separated(\written, loc);

#define ALL_EXCEPT_SELECTBANK \
(\diff(\ALL, loader_exec_req_selectbank))

/*@ UNTOUCHED(bank_ro_1, ALL_EXCEPT_SELECTBANK, &ctx.fw) */
/*@ UNTOUCHED(bank_ro_2, ALL_EXCEPT_SELECTBANK, &ctx.boot_flip) */
/*@ UNTOUCHED(bank_ro_3, ALL_EXCEPT_SELECTBANK, &ctx.boot_flop) */

Figure 7.4: Specification of Property 2 with HILAREs

Remark 33. In the above predicate, the operator between the two last
statements should be an exclusive disjunction to correctly reflect the
property. However since the ctx.fw field cannot have two different
values, a simple disjunction is enough here.

In Section 7.4, we will discuss how using the deduction framework
presented in Chapter 6 was useful for the verification of this property.

7.3.2 Booting Sequence Enforcement
Refining Requirement 7.2 to code properties is not quite as easy, as it needs
a bit more knowledge of the underlying code.

Identifying the relevant variables. As mentioned in the beginning of
the Section, the main anchor point for identifying the current state of the
sequence is the global state variable from automaton.c. Furthermore, the
automaton of Figure 7.3 is explicitly defined as a structure listing permitted
transitions from one state to another, in a global constant structure called
loader_automaton.

Manipulation of the automaton. The automaton.c file contains a list of
facilities for manipulating the raw variables, such as loader_set_state or
loader_is_valid_transition. These functions are then used in main.c to
manage the control flow.
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mainstart loader_exec_automaton

loader_exec_transition

loader_exec_req_init

loader_exec_req_rdpcheck

loader_exec_req_dfucheck

loader_exec_req_selectbank

loader_exec_req_crcheck

loader_exec_req_integritycheck

loader_exec_req_flashlock

loader_exec_req_error

loader_exec_req_secbreach

loader_exec_req_boot

loader_set_state

loader_is_valid_transition

loader_next_state

calls

Transition functions

Automaton API

Flow dispatcher

Low-level functions
( 600 functions)

Figure 7.5: Outline of the loader’s call graph.

Transition functions. The general outline of the loader’s call graph is
illustrated in Figure 7.5. There are a number of transition functions that
contains the main logic of each step. For example, the previously men-
tioned selectbank contains the code that selects the bank, embodying the
transition from ”Wait DFU” to ”Select bank” in Figure 7.3’s automaton.

These transition (or request) functions must return the expected
next state in the sequence. This return value is carried back to
loader_exec_automaton which calls loader_exec_transition to check that a
transition to the requested next state exists, and then call the appropriate
transition function.

Remark 34 (Automaton hypothesis). One assumption that wemust
make is that the automaton described by the loader_automaton men-
tioned earlier is correct with respect to the intended boot sequence
order of Figure 7.3. This must be carefully verified manually.

Refinement of the requirement. Based on the hypothesis of Remark 34,
it is enough to specify that the loader strictly abides by the automaton to
refine Requirement 7.2. The code can be divided into four main compo-
nents (as seen in Figure 7.5), of which three manage the general operation
of the sequence. This allows to divide the specification itself into three
problems:
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(i) the flow dispatchermust correctly use the automaton API and dispatch
calls to the right transition functions based on the automaton;

(ii) the automaton API must correctly manipulate the raw data structures
(state and loader_automaton). Furthermore, no other function can
manipulate these structures;

(iii) the transition functions must comply with the nextstate parameter
(read on).

While specifying local correction is important, it is also crucial to specify
and verify our assumptions about the control flow of the program: any
unexpected call from one component to another (for example, from the
automaton API to a transition function) could compromise the boot order.

In particular, the bulk of the hundreds of functions used by the loader
is included in the so-called ”Low-level” component, where it is plausible
for a call back to another component to go undetected. This is especially
true since the hundreds of functions are scattered across dozens of files in
a complex file tree. Hence, the last problem:

(iv) there must be no calls between the components other than those
illustrated in Figure 7.5.

The next four small subsections each tackle one of the four presented
specification problems.

The flow dispatcher

While specifying (i) is the cornerstone of the whole specification, this
is relatively straightforward. Function loader_exec_automaton is simply a
while loop repeatedly calling loader_exec_transition with the requested
next state. There is not much to specify:

static void loader_exec_automaton(loader_request_t req) {
while (true) {

req = loader_exec_automaton_transition(req);
}

}

As for themain dispatch function, loader_exec_automaton_transition,
it is essentially a large switchwith safety checks. It is partially listed in
Figure 7.6 (the first comment is part of the original source).

This function takes a request to a next state and calls the automaton
API to check that the transition from the current state to the requested
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static loader_request_t loader_exec_automaton_transition(
const loader_request_t req) {
loader_state_t state = loader_get_state();
if (! loader_is_valid_transition(state, req)) {

loader_set_state(LOADER_ERROR);
goto end_transition;

}
loader_state_t nextstate = loader_next_state(state, req);
/* nextstate must always be valid,
* considering the automaton defined
* in automaton.c */

switch(req) {
case LOADER_REQ_INIT:
return loader_exec_req_init(nextstate);
// One case for each possible state, omitted
// ...

}
}

Figure 7.6: The main dispatch function of WooKey’s bootloader

one is valid. It then calls the appropriate transition function using a large
switch, passing the next state to the transition function.

Notice that this function does not change the state of the automaton. It
is the responsibility of each transition function to set the state according
to the parameter it receives.

The correction of this function is mainly based on the correction of the
automaton API itself (which is called to ensure that the transition is valid).
The only thing about this function that must be verified is that for each
possible request, the right function is called by the switch. This is best
done visually.

The Automaton API

The automaton API and implementation, contained in automaton.c, is
responsible for performing operations on the automaton and ensuring it
remains in a valid state. It contains the four following functions:

// Get the current state
loader_state_t loader_get_state(void);
// Set the current state
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void loader_set_state(const loader_state_t new_state);
// Return the next state given the current one and a transition request
loader_state_t loader_next_state(const loader_state_t current_state,

const loader_request_t request);
// Check that a transition request is valid given the current state
secbool loader_is_valid_transition(const loader_state_t current_state,

const loader_request_t request);

The first two functions manipulate a global variable state, which
contains the current state of the automaton. The two last functions
loader_next_state and loader_is_valid_transition perform lookups
in the global loader_automaton structure, which contains a representation
of all valid transitions.

Remark 35 (Secure booleans). The secbool type is a special type
from WooKey intended to implement booleans that are resistant to
fault injections[Voa97]. It has the following definition:

/* Secure boolean against fault
injections for critical tests */

typedef enum
{secfalse = 0x55aa55aa, sectrue = 0xaa55aa55} secbool;

The values are chosen so that it is hard to transform a true into a
false simply by inverting bits.

This small API and implementation of automaton is not only used
in the bootloader of WooKey but in other components as well. Hence,
verifying the behaviour of each function is important in terms of safety
and security.

Property 6 (Correction of automaton functions). Each function of
the automaton API has the expected behaviour.

Function contracts. To that end, we simply annotate each function with a
classic ACSL contract that reflects its behaviour. We give an example of con-
tract in Figure 7.7, where the behaviour of loader_is_valid_transition
is specified.

In this contract, wemake use of twoACSLpredicates defined elsewhere:
is_cell_accessor_index(i, s) and is_next_state_index(i, s, r).
The first checks that s is an existing state (more precisely, the ith element
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of the state enumeration). The second one checks that r is a valid request
from state state in the automaton (more precisely, it is the ith valid
transition from that state).

The postcondition states that the parameter should be a valid state. We
then have two possible behaviours:

1. If the request is valid for the current state, then the function should
return sectrue (see Remark 35), and the current state shouldn’t
change.

2. Else, the function should return secfalse.

The same kind of contract is laid out for the three other functions.

Remark 36 (Centralization of specification). In order to avoid dis-
persing the different contracts and annotations throughout the dozens
of files, and in an effort to always avoid modifying the original source
(even for annotations), we use the ACSL Importer [Bau] Frama-C
plugin to write all the specification in one place. The plugin then
handles dispatching the different annotations everywhere needed.

Validity of state. Since all functions in the bootloader should only ma-
nipulate the automaton through the dedicated API, and that API ensures

/*@ requires \exists integer i;
is_cell_accessor_index(i, current_state);

behavior found:
assumes \exists integer i;

is_next_state_index(i, current_state, request);
ensures \result == sectrue;
ensures logic_state == \old(logic_state);

behavior not_found:
assumes \forall integer i;

!is_next_state_index(i, current_state, request));
ensures \result == secfalse;

complete behaviors;
disjoint behaviors; */

secbool loader_is_valid_transition(... current_state, ... request);

Figure 7.7: The contract of a function from the automaton API
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the state remains valid at all times, we can specify the following high-level
property.

Property 7 (State remains valid). At every point of every function
of the bootloader, the state global variable (and hence the result of
loader_get_state) should be a valid state (a known member of the
enumeration).

In the next section, we will see how this property can again be deduced
from others.

As stated in (ii), we also want to ensure that all the global structures
are only manipulated through the API. More precisely, the state global
variable can only be modified by its setter.

Property 8 (State encapsulated in setter). The state global variable
is not modified by any function, except loader_set_state.

This property is easily specified with a HILARE in the \writing con-
text.

Transition functions

As described in Section 7.3.2, transition functions receive a parameter
from the main dispatcher. This parameter, called nextstate in all transi-
tion functions, contains the state that the automaton is expected to have
at the end of the transition. The transition function is supposed to call
loader_set_state at some point to enact the transition. We want to verify
that.

Property 9 (Enactment of transition). At the end of every transition
function (except the ones which never return), the current state is
nextstate or an error state.

In order to specify this property with a HILARE, we can leverage the
\formal construct described in 3.3.4 to refer to the nextstate parameter,
common to our targets. The resulting HILARE is listed in Figure 7.8.

We use a macro to define the set of all transition functions (the macro
is not only used here). From this set, we exclude the three non-returning
functions: two sink error states, and the final boot state (which just jumps
to the boot address to launch the kernel).



156 CHAPTER 7. THE WOOKEY CASE STUDY

#define TRANSITION_FUNCTIONS ({ \
loader_exec_req_init, \
[...] \
loader_exec_req_boot \

})

/*@ meta \prop, \name(enactment_of_transition),
\targets(\diff(TRANSITION_FUNCTIONS,

\union(loader_exec_req_boot,
loader_exec_error,
loader_exec_secbreach))),

\context(\postcond),
\fguard(

state == \formal(nextstate) ||
state == LOADER_ERROR

);
*/

Figure 7.8: Specification of the expected state change for transitions

We then state that all of these functions should ensure that after their
execution, the current state is either the nextstate parameter or an error.

Isolation of components

The last specification problem, (iv), is to ensure that the interfaces between
the different components are those illustrated in Figure 7.5: there must be
no spurious calls between unrelated components. We can separate this
requirement into multiple properties.

Property 10 (Flow dispatcher calls everyone else). Functions from
the flow dispatcher component are only called by themselves or main.

Indeed, the role of this component is to orchestrate the others. Any call
back to that component would radically alter the flow of control.

Property 11 (Automaton state modification). The loader_set_state
function is only called by transition functions, except to go to an error
state or in main.
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As seen in the previous component, the state of the automaton is
actually changed in the transition functions (always to the next state of the
transition). It is of the utmost importance that no other function (especially
in the low-level component) changes the state.

Property 12 (Dispatch of transition functions). The transition
functions are only called by the flow dispatcher, namely
loader_exec_transition.

Finally, since the call of transition functions is orchestrated by the flow
dispatcher, no other component should be able to call them.

All isolation properties can simply be stated using Pattern 9 from
Chapter 5 to restrict the callees of some sets of functions.

Property 11 is slightly more complicated, as we must refer to the po-
tential value passed to loader_set_state to allow for errors. It can be
specified with the following HILARE:

meta \prop,
\name(state_wrapper_only_called_in_transitions),
\targets(\diff(\ALL,

\union(TRANSITION_FUNCTIONS,
main))),

\context(\calling),
\tguard(\called == loader_set_state

==> \called_arg(new_state) == LOADER_ERROR );

We state that in all functions except transition functions and main, if
loader_set_state is called then it can only be to set the error state. We
use the called_arg construct presented in Section 3.3.5 to refer to the value
passed to the callee.

7.4 Verification Process
In the previous section, we refined two of the three main requirements pre-
sented in Section 7.2 into a set of properties (1 through 12). As illustrated
for some of these properties, each one correspond to either a HILARE (a
high-level property) or a low-level annotation such as a function contract.

All the HILAREs were centralized into a single specification.h file,
whichwas passed to Frama-C after every other source file. As explained by
Remark 36, the low-level annotations were centralized into a separated file
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handled by the ACSL Importer plugin. The full specification is available
within the release of MetAcsl3.

Deductive verification. We used the Wp plugin in combination with
MetAcsl to attempt proving all the above properties. The total number
of inline assertions generated by MetAcsl is 183, which is relatively small
compared to the size of the code base. This can be explained by the fact that
most of the functions do not manipulate pointers, which allows MetAcsl
to automatically discard most of the assertion candidates as trivially true
or false.

Proving the remaining 183 assertions and the various contracts took a
fair amount of effort. In some cases, it was necessary to manually write
partial contracts and loop invariants. For example, it was necessary to add
loop invariants in all transition functions for Property 9, since it specifies
postconditions for these functions.

In several instances, it was useful to add new HILAREs as high-level
lemmas to specify global properties that help prove the local assertions.
Some of them were able to be immediately deduced from others (see
Section 7.4.1).

Overall, every property has been proved by Wp and its SMT solvers
without having to manually write proofs (using Coq for example), but
instead simply adding specification locally or globally. The final specifica-
tion takes approximately 6 minutes to be fully proved on a single 3 Ghz
CPU core, and fully verify Requirements 7.1 and 7.2 on the bootloader.

7.4.1 Relevance of the Deduction Framework
The proof of several properties was greatly eased by the deduction frame-
work built in Chapter 6. It was particularly useful in functions where we
wanted to establish a postcondition (notably for Properties 1 and 9) but
which called potentially many functions unrelated to that property.

Deducing “negative footprints”. For example, Property 1 is a postcon-
dition on the selectbank function, stating that the global fields related to
the choice of banks end up in a correct state. Between the instructions
which set these fields in a correct way and the end of the function, there are
multiple calls to other functions, mainly for debugging purposes. These

3In folder case_studies/wookey/loader at https://git.frama-c.com/pub/meta.

https://git.frama-c.com/pub/meta
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functions themselves call lower-level functions to interact with the system.
However, none of them modify the variables related to the choice of banks.

Normally we would have been forced to specify and prove that each
of these unrelated functions do not modify the relevant variables, either
by stating that as a postcondition or as part of their frame clause. In both
cases, as discussed in Section 6.1.1, this would have been a tedious work,
especially for the functions involving assembly language.

#define DEDUCED_NEG_ASSIGNS(title, tset, val) \
meta \prop, \
\name(title), \
\targets(tset), \
\context(\postcond), \
\flags(proof:deduce, translate:yes), \
val == \old(val);

#define CALLED_BY_SELECTBANK \
(\diff(\callees(loader_exec_req_selectbank), loader_exec_req_selectbank))

/*@ UNTOUCHED(ctxbflip_not_written_by_utils,
CALLED_BY_SELECTBANK, &ctx.boot_flip) */

/*@ DEDUCED_NEG_ASSIGNS(ctxbflip_not_changed_by_utils,
CALLED_BY_SELECTBANK, ctx.boot_flip) */

/*@ UNTOUCHED(ctxbflop_not_written_by_utils,
CALLED_BY_SELECTBANK, &ctx.boot_flop) */

/*@ DEDUCED_NEG_ASSIGNS(ctxbflop_not_changed_by_utils,
CALLED_BY_SELECTBANK, ctx.boot_flop) */

/*@ UNTOUCHED(ctxfw_not_written_by_utils,
CALLED_BY_SELECTBANK, &ctx.fw) */

/*@ DEDUCED_NEG_ASSIGNS(ctxfw_not_changed_by_utils,
CALLED_BY_SELECTBANK, ctx.fw) */

Figure 7.9: High-level deduction in WooKey

Instead, we were able to specify the HILAREs illustrated in Figure 7.9.
For each of the three global fields ctx.boot_flip, ctx.boot_flop and
ctx.fw, we first specify that no function called by selectbank modify
them. This is easily proved with Wp and MetAcsl, and does not involve
manual annotations.

Then we use the deduction framework to simply deduce that the value
of these three fields must not have changed during the execution of these
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functions. This deduction is made under two seconds in each case. Since
we use the translate:yes flag in the deduced properties, MetAcsl still
generates local assertions for them, but they are immediately considered
correct. Using them, Wp is able to automatically infer that calling low-level
functions in selectbank does not modify the relevant variables, and thus
that our desired postcondition is true. The same deduction pattern is used
for the proof of Property 9.

Deducing a global invariant. In Property 7, we specify that the state of
the automaton must remain valid at all times. This can be deduced from
Property 8 stating that no function other than loader_set_state modifies
the state, and from the fact that we proved this function maintains a valid
state.

Using the deduction patterns illustrated in Sections 6.1.2 and 6.1.3
from Chapter 6, we are able to successively deduce that the valid state is a
conditional invariant of all functions, and then a weak invariant. This helped
prove assertions related to the call of the automaton API, which requires
that the states passed as parameters are valid.

This demonstrates the relevance of the deduction framework for real
applications and its ability to scale on large codebase, where it is most
useful.



Chapter 8
Related Work

This chapter presents other works related to our domain and the stance of
our approach compared to them. Section 8.1 discusses previous efforts to
specify and verify high-level properties while Section 8.2 describes work
on systems similar to our case studies.

8.1 High-Level Specification and Verification
This Section relates to Chapter 2 through 4, presenting the main objective and
solution of the thesis.

Previous works have proposed various approaches to make high-level
requirements amenable to specification and verification.

8.1.1 Extensions of Specification Languages
The new specification language presented in Chapter 3 partially overlaps
with previous extensions of contract-based specification languages such
as JML [LBR99], a behavioural specification language for Java programs.

Indeed, JML has been extended by Cheon and Perumandla [CP05] to
specify protocols (properties pertaining to the order of call sequences),
and by Trentelman and Huisman [TH02] to express temporal properties.
While protocols may be expressible with our work as well as a subset of
temporal properties, it may not be as simple as the syntax provided in
their works, since such properties are not our main focus. On the other
hand, while these works achieve their specific goals efficiently, they cannot
be used to specify arbitrary high-level requirements on programs easily.
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The general idea of defining a high-level concept in the global scope
and then weaving it into the program has been partially explored before:
the work of Pavlova et al. [Pav+04] enables enforcing high-level security
properties by performing a code transformation weaved throughout the
implementation. But as mentioned in the previous chapter, the properties
considered by the authors are very specific to the Java Card programming
language, both in terms of specification (only some pre-defined categories
of properties can be expressed) and verification: the code transformation
is based on the assumption that there are a set of core functions acting as
the main interfaces to the smart card. While their verification mechanism
is quite similar to what we present in Chapter 4, it lacks generality at the
specification level.

Similarly, ACSL [Bau+20a], the specification language we are choosing
to extend in this work, has been extended in different ways in the past. To
cite only a few, Stouls and Groslambert [SG11] introduced Aoraï 1 to allow
the specification and verification of complex temporal properties (very
partially supported by our approach) while Blatter et al. [Bla+18] explored
the specification and verification of relational properties, a different class
of interesting properties, with Rpp 2. Again, these efforts have been very
successful but target different requirements than this work.

8.1.2 Link with Aspect Oriented Programming
At the same time, this concept of cross-cutting global object is analogous
to the Aspect-Oriented Programming (AOP) [Kic+97] paradigm. This
paradigm allows writing code (called concerns) at the global level while
specifying a set of control flow points (called pointcuts) where the code
needed by the concern should be inserted. For example, this may be useful
for easily adding logging to an already existing implementation.

Our approach can be seen as writing cross-cutting concerns at spec-
ification level rather than code level. Indeed, contexts, as introduced in
Chapters 2 and 3, can be related to AOP’s pointcuts: they are a criterion for
specifying a set of control flow points and performing a local specification
action. This comparison is continued within Chapters 2 and 3.

Several other works explore what they identify as Aspect-Oriented Speci-
fication, in different ways than ours: Zhao and Rinard [ZR03] explore how
to specify programswritten in AOPwith a notion of invariant, and propose
a translation of that specification to JML. Bagherzadeh et al. [Bag+11]

1Available at https://frama-c.com/fc-plugins/aorai.html.
2Available at https://frama-c.com/fc-plugins/rpp.html.

https://frama-c.com/fc-plugins/aorai.html
https://frama-c.com/fc-plugins/rpp.html
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propose another way to reason about AOP programs. Compared to our
work, these efforts focus only on reasoning about programs that are al-
ready written in an AOP style, i.e. where some pervasive programming
logic is already centralized at a single point, whereas we want to tackle
arbitrary program and only centralize at the specification level.

Closer to our work, Yamada and Watanabe [YW06] propose another
specification approach that can be translated to JML, allowing the specifi-
cation of generalized weak invariants over arbitrary classes and methods,
by specifying so-called assertion aspects inspired by AOP concepts, which
translate to local annotations. While our work has the same inspiration
(trying to centralize similar assertions spanning many functions), this
approach lack the expressiveness we are aiming for, especially in terms of
memory management.

8.2 Case Studies
This Section relates to the simple case study of Chapters 3 and 4 as well as the
more comprehensive case studies of Chapters 5 and 7.

Verification of kernels and firmwares. Defining and verifying security
properties of OS kernels down to the concrete source code was done in
several projects, including notably [Ric10; Mur+13; CSG16; Dam+13;
Jom+18; Les15], with different strategies. Compared to these projects,
which target microprocessors with MMU-based memory isolation, the
security properties shown in this thesis are just simple examples for the
sake of illustration and better match microcontroller setups, which usually
have no MMU and thus do not implement virtual memory. For instance, a
model of the hardware including theMMU, the processor’s privilege levels
and the program counter is required to show that the MMU configuration
matches the kernel’s internal control structures and that the control flow
only enters the kernel privilege level at the defined entry points for system
calls, exception, and interrupt handling.

Moreover, some projects prove higher-level security policy abstrac-
tions like information flow enforcement [Mur+13; Dam+13; CSG16],
from which confidentiality and integrity properties similar to the ones
introduced in this thesis can be derived, such as memory isolation in
Pip [Jom+18], as defined for a separation kernel [Rus81].

Compared to these projects, the contribution illustrated in this thesis is
the ability to both define andmechanically verify global security properties
directly at the level of the C source code. Indeed, all previous approaches
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first define and prove the security properties on an abstract model of the
OS kernel and the underlying hardware and second show that the concrete,
low-level code executed refines the abstract model and still verifies the
security properties defined on the abstract model. It is argued that for
verification purposes, it is easier to reason on an abstract model than on
low-level concrete source code [Mur+13]. On the other hand, proving
that the source code refines the model can be very difficult if the code has
not been explicitly designed for that purpose: rather than designing and
bending the abstract model to fit on existing code, it is sometimes easier
to directly reason on it.

Similarly, in seL4, an abstract model in Isabelle/HOL and the C source
code are written separately and all mechanized proofs of security proper-
ties rely on a first mechanized proof of correctness that the C source code
refines the abstract model [Mur+13]. This proof of correctness initially
cost 25 person-years [Kle+09] and the team is still working on how to
improve its maintainability [And19].

To make this approach more scalable, in CertiKOS, the OS kernel and
the hardware aremodeled as a set of small stackable layers (also called deep
specifications), whose interfaces and observable behaviours are defined in
Coq [Gu+16]. In each layer, the C or assembly implementation is verified
to be a refinement of the layer’s upper interface (called overlay) assuming
that the layer’s lower interface (called underlay) is correctly implemented
by lower layers. The verification of each layer implementation is done
using Coq tactics [Gu+15]. Global properties can then be proved using
only the Coq model of the layers’ interfaces.

The drawback of such a modularized approach is that it makes it dif-
ficult to obtain an efficient implementation of a microkernel, because in
microkernels targeting performance the implementations of the required
features are entangled. Indeed, by design such software must only imple-
ment the bare minimal features required at the kernel privilege level and
the performance of the microkernel is critical for the performance of the
whole software system.

In PROSPER [Dam+13], refinement steps are bypassed using a HOL4
model of the ARMv7 instruction set architecture [FM10]. The information
flow properties are defined and verified on an abstract model of idealized
ARMv7 machines representing the user-level execution contexts and the
kernel execution context. In the verification process, HOL4 is used to
generate pre- and post-conditions for atomic executions of the kernel at
boot-time and from entry to exit to/from the kernel execution context (that
is, for hypercall, exception and interrupt handling).

The verification of the concrete kernel code thus consists in verifying
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these pre- and post-conditions and is done at the ARMv7 binary code
level using the BAP suite [Bru+11]. Although this approach has not been
tested on a unified full-featured OS microkernel, it is likely to be more
scalable than in seL4 and more performance-compatible than in CertiKOS.
However, it forces to reason on a model of the target machine architecture,
making the source code an implementation detail, while MetAcsl allows
us to reason on the C source code and its adaptations to the target machine
architecture.

In Pip and ProvenCore, the C source code is automatically generated
from an executable specification, in Coq for Pip [Jom+18] and in a pro-
prietary language called Smart for ProvenCore [Les15], on which all
properties and mechanized proofs are written. The extension of the proof
to the C code relies on the code generation process, whose proof of correct-
ness is ongoing for Pip [Jom+18] and is not public for ProvenCore. While
generating C code from an abstract executable specification makes it easier
to prove the actual C code, this adds the open challenge of being able to
generate efficient code and certifying such a generator. Ongoing efforts
study Coq tactics [Pit+20] that implement proven heuristics to generate
efficient code.

A few security properties of WooKey’s bootloader were defined in
[ANS+]. Some of the authors used the Frama-C GUI and the EVA plu-
gin [BBY17] to understand the undocumented code by performing value
analysis via abstract interpretation. With this approach, they infer the
transitions of the automaton from the code and state that since the automa-
ton is simple, it is enough to verify visually that there is no unexpected
sequence of transitions, but suggest the usage of MetAcsl for more com-
plex properties. They also check for runtime errors and dead code with
EVA. Then the authors proceed to use dynamic symbolic execution with
KLEE [Klee] to check a functional property of the bootloader: ensuring
that the dual-bank bootloader cannot boot from previous firmware ver-
sions (the anti-rollback mechanism). Compared to our work in Chapter 7,
the authors of [ANS+] only very lightly apply the approach of global spec-
ification, instead focusing on specific functions and completely automatic
verification rather than deductive verification.

Bootloader verification was attempted for SABLE [Con+18] and a
simplified variant of a RISC-V first-stage bootloader (FSBL) [Str20]. In
both cases, the bootloaders ensure integrity and authenticity of the loaded
software and the platform state, although with different strategies. In
SABLE, the dynamic root of trust measurement facility of Intel and AMD
processors as well as a hardware TPM are used to prevent system image
decryption in case of failure and otherwise allow an external user to do
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remote attestation of the successful boot process. More traditionally and
like inWooKey, the RISC-V FSBL studied in [Str20] is the ROM-located first
piece of software executed at boot and checks the cryptographic signature
of the loaded software.

In both projects the verification follows techniques already used for
microkernels but is reported as partially achieved. SABLE follows the
strategy of seL4 [Kle+09] while the RISC-V FSBL follows the code gen-
eration strategy down to RISC-V binary code using Bedrock2 [EG], an
imperative language and compiler written in Coq, and the riscv-coq im-
plementation of the RISC-V specification in Coq. Interestingly the RISC-V
FSBL verification covers the use of the hardware DMA to load the software
image.

8.3 Industrial Application of HILARE
The HILARE based approach and the MetAcsl tool presented in this
thesis have already been used in a large-scale industrial verification
project [DHK21].

It was performed for a security-critical smart card product in order to
perform its rigorous Common Criteria based certification at level EAL6.
Security of a smart card strongly relies on the requirement that the under-
lying JavaCard virtual machine ensures necessary isolation properties.

In that project, formal verification of a JavaCard Virtual Machine imple-
mentation was performed by Thales using the Frama-C verification tool
set. It strongly relied on the MetAcsl tool. The target security properties
include integrity and confidentiality. The target implementation contains
over 7 000 lines of C code. In particular, based on only 36 HILAREs man-
ually specified by verification engineers, approximately 400 000 lines of
ACSL annotations (leading to over 27 400 proof goals) were automatically
generated by MetAcsl and formally proved by Wp. This industrial ver-
ification project illustrates the potential of industrial applications of the
contributions proposed in this work.



Chapter 9
Conclusion

9.1 Summary
In this thesis, we have provided a solution to the problem of specifying
high-level requirements on large programs, and applied this solution to
the security of a large C program.

The original problem that we are addressing is the lack of specification
formalism for specifying requirements that are not specific to small code
units but rather pertain to large components of the system. This problem
was especially apparent for security requirements such as memory isola-
tion, access control, confidentiality and privacy. There was originally no
means of specifying and verifying these requirements in an expressive,
maintainable and traceable way.

We proposed a new class of properties called meta-properties, for-
malized on a small, abstract programming language: A-Lang. These
language-independent properties are essentially global predicates that
are woven across the source code of large components, according to a
criterion called context. Contexts are rules to automatically select code
points where the predicate should hold and allow predicates to refer to
local information: for example, a predicate can check whether an instruc-
tion is modifying a particular variable or not. Several base contexts are
highlighted for interacting with memory operations and function calls.

In order to make these meta-properties actionable, we refined their
formal framework into a concrete way to express and validate them on a
real programming language, namely C. We designed a concrete syntax,
called the HILARE language, for specifying meta-properties on C pro-
grams. This syntax is an extension of ACSL, a pre-existing contract-based
specification language for C programs. We showed how the formal con-
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texts translate for C and how the quirks of the C language interact with
high-level requirements. In particular, we developed several extensions on
top of the initial formalized features to ease the specification of structured
C programs.

Specification written in ACSL can be assessed with a variety of tools in
the Frama-C framework’s ecosystem. We devised an automatic technique
to translate global HILARE requirements to local ACSL specification. This
allows the existing tools to be reused in order to build a complete tool chain
for HILARE verification. This automatic translation was implemented in
a new Frama-C plugin called MetAcsl.

While the translation from global to local requirements makes verifica-
tion possible, it does not always scale well when the code base is large, es-
pecially when using verification techniques where manual effort is needed.
To alleviate the problem, we designed the foundations for a sound frame-
work which enables deducing global requirements from others, without a
local intermediate step. We provided proofs of the framework’s sound-
ness machine-checked with Why3 and implemented a limited number
of deduction patterns in an efficient Prolog solver, integrated seamlessly
within MetAcsl.

Given all these tools, we devised a general methodology for users want-
ing to tackle the specification and verification of high-level requirements
on real C programs. This methodology articulates the notions of the thesis
into clear steps and patterns that can be reused across different specifica-
tion problems. Numerous examples are given, from the specification of
memory confidentiality to security properties of an artificial micro-kernel.
Lastly, we applied this methodology to a concrete program found in the
wild: the bootloader of the WooKey project. Using the concepts and tools
presented in this thesis, we were able to specify several security require-
ments on the bootloader and verify that the code is valid with respect to
these properties, with little manual effort.

The MetAcsl tool has been successfully applied by Thales in an indus-
trial context for formal verification of security properties of a JavaCard
Virtual Machine [DHK21]. We believe that it has a strong potential for
other industrial applications for verification of security-critical software.

9.2 Future Work
There are several interesting research avenues that build upon the work
presented in this document.
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9.2.1 Extending and Improving the Deduction Framework
The deduction framework presented in Chapter 6 is still experimental and
has several limitations.

Currently, the automatic translation from MetAcsl to Prolog handles
only simple cases. In particular, only non-pointer global variables are
considered by the pattern matcher: arrays and pointers in general are not
handled and nothing can be deduced about HILAREs referencing them.

Furthermore, the pattern-matcher only recognizes simple forms of
properties and do not handle composition well. For example, it will recog-
nize that the predicate

\separated(\written, &A)

is stating that A is not modified, but not that

\separated(\written, &A) && \separated(\written, &B)

is the same for two variables.
This could be improved by either improving the pattern-matcher to

handle logical operators or include a subset of ACSL and its semantic
inside the Prolog engine, and a corresponding proof in the Why3 model.

Furthermore, as discussed in Section 6.6, there are only three simple
deduction patterns currently implemented in the solver and proved in
Why3: there is a lot of room for extending the scope of the deduction.
One obvious extension is the addition of more deduction patterns to cover
more situations where deduction would be desirable.

More generally, the fact that the framework currently only deals with
ad-hoc patterns is a limitation. It would be desirable for the framework
the have a more general purpose. For example, should a sizeable subset of
ACSL be formalized in Why3, the deduction framework could be able to
deduce high-level requirements from others only based on their semantics.
However, it would be a challenge to design such a general approach while
retaining its efficiency on large code bases.

9.2.2 Higher-Level Specification Language
While they enable the specification of high-level requirements, meta-
properties and HILAREs are still quite close to the code: the user must
precisely qualify the set of targets, the kind of operations targeted by the
context and correctly refer to the global state. This allows specifying prop-
erties in the global scope but can sometimes feel verbose, and hard to
proofread for a domain expert with little knowledge of the code base.
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This can be alleviated with macros, as demonstrated in this thesis: C
macros can abstract away lists of targets and HILARE patterns (as seen
for example in Figure 7.4) and even parts of predicates. However, this is a
limited approach as it relies on the C preprocessor, which onlymanipulates
text instead of semantic tokens and is notoriously hard to work with.

A macro system, not documented in this thesis, has been implemented
within MetAcsl to serve as a potential future foundation for a more robust
means to abstract low-level operations in a way that domain experts can
understand. This budding macro system was used extensively in the
specification of the confidentiality use case presented in Chapter 3. The
actual macro definitions are listed in Figure A.1 in the appendix. Currently,
it does not offer more features than the C preprocessor allows.

A good way of improving upon this approach could be to develop
this abstraction system by specializing it: there could be abstract sets of
functions, predicates, HILARE patterns that are statically type-checked
instead of simply replacing text. Using this, a set of useful built-in macros
could be aggregated into a library of macros.

One could then imagine that the specification of an application should
only be written using this higher-level library, only punctually adding new
domain-specific ones, so that the specification remains legible for all. This
could also enable the generation of specification from other sources such
as abstract models from other applications, where the “glue” between the
higher-level specification and the concrete code is materialized by a set of
macros defined afterwards.



Appendix A
Implementation and Specification

of the Page Manager

This appendix contains the complete specification and implementation of
the page manager case study, which serves as an illustration of the useful-
ness of the HILARE language to express concrete high-level requirements
such as confidentiality in Chapter 3.

Listing A.1 lists the macros and logical functions used to express these
requirements in Listing A.3 while Listing A.2 contains the whole C imple-
mentation of this case study. In Chapter 4, we semi-automatically verify
that this implementation is valid with respect to its specification.

meta \macro,
\name(\forall_page),
\arg_nb(2),
\forall int i; 0 <= i < MAX_PAGE_NB ==>

\let \param_1 = pages + i; \param_2;

meta \macro,
\name(page_data),
\arg_nb(1),
\param_1->data + (0 .. PAGE_SIZE - 1);

meta \macro,
\name(\constant),
\arg_nb(1),
\separated(\written, \param_1);

meta \macro,
\name(\hidden),
\arg_nb(1),
\separated(\read, \param_1);
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meta \macro,
\name(not_called),
\arg_nb(1),
!\fguard(\called == \param_1);

predicate valid_page(struct Page* p) =
\valid(p) && \valid(p->data + (0 .. PAGE_SIZE - 1)) &&
0 <= p - pages < MAX_PAGE_NB;

//The given page is filled with zeroes
predicate clean_page(struct Page* p) =

\forall int i; 0 <= i < PAGE_SIZE ==>
p->data[i] == 0;

logic enum allocation_status page_status(struct Page* p) = p->status;
logic unsigned page_level(struct Page* p) = p->confidentiality_level;
predicate page_allocated(struct Page* p) = p->status == PAGE_ALLOCATED;
predicate page_lower(struct Page* p, unsigned user_level) =

user_level > p->confidentiality_level;

ListingA.1: Definition ofmacros in pagemanager specification (Chapter 3)

/**
* Memory initialization. Every page has a NULL address
* and 0 conf level.
* Should be called at the beginning of main (or ideally before).
*/
int init() {

if(1 + 1 == 2) {
pages = (struct Page*) malloc(MAX_PAGE_NB * sizeof(struct Page));

}
if(pages == NULL)
return 0;

/*@
loop invariant 0 <= i <= MAX_PAGE_NB;

loop invariant \forall unsigned j; 0 <= j < i ==>
pages[j].status == PAGE_FREE && pages[j].confidentiality_level == 0;

loop assigns i, *(pages + (0 .. MAX_PAGE_NB - 1));
*/
for(unsigned i = 0 ; i < MAX_PAGE_NB ; ++i) {
char* p = malloc(PAGE_SIZE * sizeof(char));
if(p == NULL)
return 0;

else {
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pages[i].status = PAGE_FREE;
memset(p, 0, PAGE_SIZE * sizeof(char));
pages[i].confidentiality_level = 0;
pages[i].data = p;

}
}
user_level = 0;
return 1;

}

/**
* Returns the first free page it finds or NULL
*/
struct Page* find_free_page() {

/*@
loop invariant 0 <= i <= MAX_PAGE_NB;
loop assigns i;

*/
for(int i = 0 ; i < MAX_PAGE_NB ; ++i)
if(pages[i].status == PAGE_FREE)
return pages + i;

return NULL;
}

/**
* Allocates a new page (if there is memory still available) and returns it
* Its confidentiality level is the current level of the caller.
*/
struct Page* page_alloc() {
struct Page* fp = find_free_page();
/*@
loop invariant 0 <= i <= MAX_PAGE_NB;
loop invariant \forall unsigned j; 0 <= j < i ==>
pages[j].status != PAGE_FREE;

loop assigns i;
*/
for(unsigned i = 0 ; i < MAX_PAGE_NB ; ++i)
if(pages[i].status == PAGE_FREE) {
pages[i].confidentiality_level = user_level;
pages[i].status = PAGE_ALLOCATED;
return pages + i;

}
return NULL;

}

/**
* Free a page and erase its content
* (replacing it by zeroes).
* No effect if the page is already free.
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*/
void page_free(struct Page* p) {
if(p != NULL && p->status == PAGE_ALLOCATED) {
memset(p->data, 0, PAGE_SIZE * sizeof(char));
p->status = PAGE_FREE;

}
}

/**
* Copies PAGE_LENGTH bytes from 'from's data to the buffer
* if the confidentiality conditions are met
*/
int page_read(struct Page* from, char* buffer) {
if(from != NULL && from->status == PAGE_ALLOCATED &&
from->confidentiality_level <= user_level) {
memcpy(buffer, from->data, PAGE_SIZE);
return PAGE_OK;

} else return PAGE_ERROR;
}

/**
* Copies PAGE_LENGTH bytes from the buffer data to 'to's data
* if the confidentiality conditions are met
*/
int page_write(struct Page* to, char* buffer) {
if(to != NULL && to->status == PAGE_ALLOCATED &&
to->confidentiality_level >= user_level) {
memcpy(to->data, buffer, PAGE_SIZE);
return PAGE_OK;

} else return PAGE_ERROR;
}

/**
* Raise the confidentiality level if the correct key is passed
*/
unsigned raise_conf_level() {
return ++user_level;

}

/**
* Lower the confidentiality level
*/
unsigned lower_conf_level() {
if(user_level > 0)
--user_level;

return user_level;
}

/**
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* Encrypt the given page in place (using the encrypt primitive)
* if the confidentiality conditions are met, effectively lowering
* its confidentiality level to 0
*/
int page_encrypt(struct Page* p) {
if(p != NULL && p->confidentiality_level > 0

&& p->confidentiality_level == user_level
&& p->status == PAGE_ALLOCATED) {

encrypt(p->data, user_level, PAGE_SIZE);
p->encrypted_level = user_level;
p->confidentiality_level = 0;
return PAGE_OK;

}
else return PAGE_ERROR;

}

/**
* Decrypt the given page in place (using the decrypt primitive)
* if the confidentiality conditions are met, effectively restoring
* its previous confidentiality level
*/
int page_decrypt(struct Page* p) {
if(p != NULL && p->confidentiality_level == 0

&& p->encrypted_level == user_level
&& p->status == PAGE_ALLOCATED) {

p->confidentiality_level = user_level;
decrypt(p->data, user_level, PAGE_SIZE);
return PAGE_OK;

}
else return PAGE_ERROR;

}

Listing A.2: Full implementation of the manager, with inline annotations

/*@
ensures \result ==> \forall int i; 0 <= i < MAX_PAGE_NB ==>

\valid(pages + i) &&
pages[i].status == PAGE_FREE && pages[i].confidentiality_level == 0;

ensures \result ==> user_level == 0;
*/
int init();

struct Page* page_alloc();

/*@
behavior valid:



176 APPENDIX A. IMPLEM. AND SPEC. OF THE PAGE MANAGER

assumes p != \null;
requires valid_page(p);

*/
void page_free(struct Page* p);

/*@
behavior valid:
assumes from != \null;
requires valid_page(from);
requires \valid(buffer + (0 .. PAGE_SIZE - 1));
//Buffer unrelated to page fields (status_constant)
requires \forall int i; 0 <= i < MAX_PAGE_NB ==>
\separated(pages + i, buffer + (0 .. PAGE_SIZE - 1));

//Buffer unrelated to pages data (memcpy)
requires \forall int i; 0 <= i < MAX_PAGE_NB ==>
\separated(pages[i].data + (0 .. PAGE_SIZE - 1),

buffer + (0 .. PAGE_SIZE - 1));
*/
int page_read(struct Page* from, char* buffer);

/*@
behavior valid:
assumes to != \null;
requires valid_page(to);
requires \valid(buffer + (0 .. PAGE_SIZE - 1));
//'to' data unrelated to page fields (status_constant)
requires \forall int i; 0 <= i < MAX_PAGE_NB ==>
\separated(pages + i, to->data + (0 .. PAGE_SIZE - 1));

//Buffer unrelated to page data (memcpy)
requires \forall int i; 0 <= i < MAX_PAGE_NB ==>
\separated(pages[i].data + (0 .. PAGE_SIZE - 1),

buffer + (0 .. PAGE_SIZE - 1));
*/
int page_write(struct Page* to, char* buffer);

/*@
assigns *(data + (0 .. size - 1)) \from *(data + (0 .. size - 1));

*/
void encrypt(char* data, unsigned key, unsigned size);

/*@
assigns *(data + (0 .. size - 1)) \from *(data + (0 .. size - 1));

*/
void decrypt(char* data, unsigned key, unsigned size);

/*@
behavior valid:
assumes p != \null;
requires valid_page(p);
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*/
int page_encrypt(struct Page* p);
/*@
behavior valid:
assumes p != \null;
requires valid_page(p);

*/
int page_decrypt(struct Page* p);

/*@ // Reasonable memory hypotheses as axioms
axiomatic memory_separation {
axiom all_sep: \forall struct Page* p; valid_page(p) ==>
\forall int i; 0 <= i < MAX_PAGE_NB && pages + i != p ==>
\separated(p->data + (0 .. PAGE_SIZE - 1),

pages[i].data + (0 .. PAGE_SIZE - 1));

axiom local_sep: \forall int i,j;
0 <= i < MAX_PAGE_NB ==>
0 <= j < MAX_PAGE_NB ==> \let p = pages + j;
\separated(&pages[i].confidentiality_level,

p->data + (0 .. PAGE_SIZE - 1)) &&
\separated(&pages[i].status,

p->data + (0 .. PAGE_SIZE - 1)) &&
\separated(&(pages[i]).data,

p->data + (0 .. PAGE_SIZE - 1));

axiom local_sep2: \forall int i, j;
0 <= i < MAX_PAGE_NB ==>
0 <= j < MAX_PAGE_NB ==> \let p = pages + j;
\separated(&pages[i].encrypted_level,

p->data + (0 .. PAGE_SIZE - 1));
}

//========================== METAPROPERTIES ====================

//Page status is only modified in page_alloc/init/free
meta \prop,
\name(status_constant),
\targets(\diff(\ALL, {init, page_alloc, page_free})),
\context(\writing), \forall_page(p, \constant(&p->status));

//Never write to a lower confidentiality page outside of free
meta \prop,
\name(confidential_write),
\targets(\diff(\ALL, {page_free, init})),
\context(\writing),
\forall_page(p,

page_allocated(p) && user_level > page_level(p) ==>
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\constant(page_data(p))
);

//Never read from a higher confidentiality page
meta \prop,
\name(confidential_read),
\targets(\diff(\ALL, init)),
\context(\reading),
\forall_page(p,
page_allocated(p) && user_level < page_level(p) ==>
\hidden(page_data(p))

);

//Free pages are not written upon
meta \prop,
\name(constant_free_pages),
\targets(\diff(\ALL, init)),
\context(\writing),
\forall_page(p,
!page_allocated(p) ==> \constant(page_data(p))

);

//Free pages are not read from
meta \prop,
\name(hidden_free_page),
\targets(\diff(\ALL, init)),
\context(\reading),
\forall_page(p,
!page_allocated(p) ==> \hidden(page_data(p))

);

//Current confidentiality is only modified
//through raise/lower_conf_level

meta \prop,
\name(curconf_wrapped),
\targets(\diff(\ALL, {raise_conf_level, lower_conf_level, init})),
\context(\writing), \constant(&user_level);

//Confidentiality modifiers are not called within the library
meta \prop,
\name(curconf_wrapped_2),
\targets(\ALL),
\context(\calling),
not_called(raise_conf_level) &&
not_called(lower_conf_level);

//The content of a free page is always null
meta \prop,
\name(free_page_null),
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\targets(\diff(\ALL, init)),
\context(\strong_invariant),
\forall_page(p, !page_allocated(p) ==> clean_page(p));

//The confidentiality of an allocated page
//is constant outside of encrypt/decrypt
meta \prop,
\name(constant_conf_level),
\targets(\diff(\ALL, {init, page_encrypt, page_decrypt})),
\context(\writing),
\forall_page(p,

page_allocated(p) ==> \constant(&p->confidentiality_level)
);

//The encryption level is constant outside of encrypt/decrypt
meta \prop,
\name(constant_enc_level),
\targets(\diff(\ALL, {init, page_encrypt, page_decrypt})),
\context(\writing),
\forall_page(p, \constant(&p->encrypted_level));

//The encryption/decryption primitives are
//only called within page_encrypt and page_decrypt

meta \prop,
\name(encdec_uncalled),
\targets(\diff(\ALL, {page_encrypt, page_decrypt})),
\context(\calling),
not_called(encrypt) && not_called(decrypt);

meta \prop,
\name(pages_array_allocated),
\targets(\diff(\ALL, init)),
\context(\strong_invariant),
\forall integer i; 0 <= i < MAX_PAGE_NB ==> \valid(pages + i);

*/

Listing A.3: Full specification of the manager: contracts and HILAREs
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Titre : Spécifier et vérifier des exigences de haut niveau sur des programmes importants : application
à la sécurité des programmes C
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Résumé : La spécification et la vérification d’exi-
gences haut niveau (comme des propriétés de sécu-
rité, telles que l’intégrité des données ou la confi-
dentialité) reste un défi pour l’industrie, alors que
les cahiers des charges en sont remplis. Cette thèse
présente un cadre formel pour les exprimer appelé
les meta-propriétés, décrites pour un langage de
programmation abstrait, et centrées sur les pro-
priétés liées aux manipulations de la mémoire et
les invariants globaux. Ce cadre formel est appliqué
au langage C avec HILARE, une extension d’ACSL,
qui permet la spécification d’exigences haut niveau
sur des programmes C de grande taille avec facilité.

Des techniques de vérification pour HILARE,

basées sur la génération d’assertions locales et la
réutilisation des analyseurs de Frama-C existants,
sont présentées et implantées dans le greffon Me-
tAcsl pour Frama-C. Une méthodologie pour l’éva-
luation des propriétés de grands programmes est
détaillée, articulant les méta-propriétés, les tech-
niques de vérification et les particularités du C.
Cette méthodologie est illustrée par un cas d’étude
complexe : le bootloader de Wookey, un périphé-
rique de stockage chiffré. Enfin, nous explorons une
autre manière de vérifier une exigence de haut ni-
veau en la déduisant à partir d’autres, via un sys-
tème formel prouvé en Why3 et intégré dans Me-
tAcsl.

Title : Specifying and Verifying High-Level Requirements on Large Programs : Application to Security
of C Programs
Keywords : Formal methods, Deductive verification, Frama-C, Specification language

Abstract : Specification and verification of high-
level requirements (such as security properties like
data integrity or confidentiality) remains an im-
portant challenge for the industrial practice, des-
pite being a major part of functional specifications.
This thesis presents a formal framework for their
expression called meta-properties, supported by a
description on an abstract programming language,
focusing on properties related to memory and glo-
bal invariants. This framework is then applied to
the C programming language, introducing the HI-
LARE extension to ACSL, to allow easy specifica-
tion of these requirements on large C programs.

Verification techniques for HILARE, based on
local assertion generation and reuse of the existing
Frama-C analyzers, are presented and implemen-
ted into the MetAcsl plugin for Frama-C. A com-
plete methodology for assessing large programs is
laid out, articulating meta-properties, verification
techniques and quirks specific to the C program-
ming language. This methodology is illustrated to
a complex case study involving the bootloader of
WooKey, a secure USB storage device. Finally, we
explore another way to verify a high-level requi-
rement deducing it from others, through a formal
system proven in Why3 and integrated in MetAcsl.
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