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To the universe, thank you for the constant reminder that there is always hope in everything. i L'EIT est un domaine de recherche en plein essor, qui suscite une attention croissante au sein de la communauté scientifique, de par ses nombreuses et variées applications possibles (en particulier géophysiques, médicales et industrielles). Elle donne lieu à des recherches pluridisciplinaires. La première application de l'EIT date du début du XXème siècle en géophysique [START_REF] Reynolds | An introduction to applied and environmental geophysics[END_REF][START_REF] Yang | Electrical impedance tomography: algorithms and applications[END_REF]. Dans ce domaine, elle est plus connue sous le nom de Tomographie de Résistivité Electrique. L'EIT est appliquée dans l'exploration pétrolière, minière (avec la détection de gisements minéraux et de fuites dans les réservoirs de stockage souterrains [Par84; RD96]), et également pour des problématiques environnementales. L'EIT est surtout une technologie d'imagerie médicale émergente. La plupart des modalités, telles que le CT-scan (Computarized Tomography) ou l'imagerie par résonance magnétique (IRM), utilisent des rayonnements ionisants qui exposent les patients à des risques [START_REF] Doll | Effects of small doses of ionising radiation[END_REF]. Ceci justifie la recherche de domaines d'application dans lesquels l'EIT va contribuer à améliorer le soin et le suivi des patients. Les premiers travaux datent des années 80. Barber et Brown ont développé le premier système d'EIT médicale commercialisé, appelé le Sheffield Mark 1 [START_REF] Barber | Applied potential tomography[END_REF]. Le système pouvait obtenir dix images par seconde, était portable et relativement peu coûteux par comparaison aux scanners et IRM [START_REF] Yang | Electrical impedance tomography: algorithms and applications[END_REF]. Depuis, l'EIT a démontré ses capacités à produire des images exploitables et utiles au diagnostic. De plus, l'EIT peut être appliquée au chevet du patient comme technique de surveillance continue. La surveillance régionale de la fonction pulmonaire est l'une des applications les plus importantes de l'EIT [Hol93; NIM02; TIL15]. L'EIT permet une surveillance respiratoire et cardiovasculaire avancée. La détection de caillots sanguins dans les poumons est présentée dans [START_REF] Holder | Clinical and physiological applications of electrical impedance tomography[END_REF][START_REF] Harris | Applications of applied potential tomography (APT) in respiratory medicine[END_REF]. De plus, les propriétés diélectriques des tissus biologiques sont un bon indicateur de leurs conditions fonctionnelles et pathologiques. La première image de tissu humain par EIT est obtenue dans [START_REF] Henderson | An impedance camera for spatially specific measurements of the thorax[END_REF]. Les tumeurs se caractérisent par des propriétés diélectriques ayant un fort contraste par rapport à celles des tissus sains environnants. La détection de tumeurs du sein [CKKKMMM01; HHP08] et cérébrales [Hol92; BLBTGTSD+03] est de ce fait possible en EIT, et en particulier par l'EIT multifréquence (MF-EIT). Cependant, la résolution spatiale de l'EIT n'est pas encore comparable à celle obtenue par le scanner ou l'IRM. C'est un point à améliorer. Enfin, pour les applications industrielles, l'EIT a été largement utilisée pour la surveillance de processus chimiques. On peut citer également le domaine du contrôle non destructif. Par exemple, la corrosion [LYMJH18; KSV96] et les fissures dans les métaux [START_REF] Santosa | A computational algorithm to determine cracks from electrostatic boundary measurements[END_REF] peuvent être détectées grâce à l'EIT.

Dans les systèmes d'EIT, les électrodes qui sont attachées à la surface, sont des métaux conducteurs. La qualité et la précision des mesures dépendent de nombreux facteurs tels que la taille, la géométrie et l'emplacement des électrodes, ainsi que le choix du courant injecté. Les configurations des électrodes peuvent notamment affecter les données. Les électrodes ont leur propre comportement électrique. La distribution de potentiel et de courant sur la surface de l'électrode joue un rôle important. Les impédances de contact des électrodes peuvent introduire un biais en raison des chutes de potentiel entre leurs bornes. Ces effets de "shunt" peuvent être réduits par la géométrie des électrodes ou par leur séparation. Plus la surface de contact est grande, plus l'impédance de contact diminue. Dans le domaine médical, l'application d'un gel pour électrodes à la surface de la peau permet d'abaisser et de stabiliser l'impédance de contact entre la peau et l'électrode. Il est nécessaire de bien nettoyer la peau afin de réduire sa couche superficielle qui est mauvaise conductrice. Il est essentiel de tenir compte de tous ces facteurs et phénomènes du contact électrode-peau afin de produire des données plus précises pour l'imagerie.

Mathématiquement, l'EIT est séparée en deux problèmes: le problème direct et le problème inverse. Le problème direct consiste à calculer la distribution du potentiel électrique dans le domaine inspecté et la tension électrique aux électrodes sur sa frontière connaissant la conductivité électrique du milieu et le courant injecté aux électrodes. Ce problème modélise l'acquisition des données en EIT. Il est alors important d'intégrer dans le modèle à la fois la géométrie les électrodes, leur position et leur comportement électrique, ainsi que les courants injectés. Différents modèles existent [START_REF] Borcea | Electrical Impedance Tomography[END_REF]. Le modèle le plus simple pour l'EIT est le "continuum model" mais il ne prend pas en compte les électrodes. Le "shunt model" représente les électrodes par des points. La densité de courant est supposée constante à la surface de chaque électrode et nulle entre les électrodes. Le problème inverse de l'EIT consiste à retrouver la distribution de conductivité électrique dans le domaine à partir de la mesure des tensions de surface et de la densité de courant injectée. Nous renvoyons le lecteur à l'article [START_REF] Borcea | Electrical Impedance Tomography[END_REF] pour un résumé des résultats les plus significatifs d'existence, d'unicité et de stabilité. Le problème inverse de l'EIT est également connu sous le nom de problème de Calderón [START_REF] Calderón | On an inverse boundary value problem[END_REF] qui est sévèrement mal posé [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. Le premier résultat d'existence et l'unicité est obtenu par Kohn et Vogelius [START_REF] Kohn | Determining conductivity by boundary measurements[END_REF]. La conductivité est déterminée façon unique (identifiabilité) par la connaissance de l'opérateur Dirichlet-to-Neumann (DtN) sur toute la surface de l'objet; ce qui est en général hors d'atteinte dans les applications. L'identifiabilité de la conductivité (régularité L ∞ ) en 2D est démontrée dans [START_REF] Astala | Calderón's inverse conductivity problem in the plane[END_REF]. En pratique, seules des informations partielles sur l'opérateur DtN sont disponibles. L'identifiabilité avec des mesures partielles est obtenue par exemple dans [KSU07; IUY10; HPS12].

Proposer des méthodes numériques permettant de reconstruire la conductivité à l'intérieur du domaine à partir des mesures de tension électrique aux électrodes est un réel enjeu. La méthode historique de reconstruction, proposée par Barber and Brown [START_REF] Barber | Applied potential tomography[END_REF], exploitait un algorithme de type rétroprojection qui était inspiré de la transformée de Radon utilisée en rayon X. Quelques méthodes directes existent (par exemple [START_REF] Mueller | A direct reconstruction algorithm for electrical impedance tomography[END_REF]). Ce sont les méthodes de reconstruction itératives qui font l'objet des travaux les plus nombreux. En effet, l'approche la plus classique est de formuler le problème inverse comme celui de la minimisation d'une fonctionnelle d'écart aux données, et d'appliquer un algorithme numérique de minimisation. On fait appel en particulier aux méthodes de type Newton avec des techniques de régularisation (par exemple [MY85; CING89; RPP10; ATT19]). La méthode de Newton-Raphson modifiée (mNR) a montré son efficacité [START_REF] Yorkey | Comparing Reconstruction Algorithms for Electrical Impedance Tomography[END_REF]. Différents auteurs ont développé et implémenté des méthodes de régularisation appliquées à l'algorithme mNR [YWT87; DS94; BLM02; HWWT91; LR06; RPP10].

Des études récentes ont proposé l'utilisation d'approches métaheuristiques pour résoudre le problème inverse. Les algorithmes métaheuristiques sont capables de converger vers le minimum global pour un choix approprié de paramètres. Ces méthodes sont en partie stochastiques et s'appliquent à toutes sortes de problèmes discrets. La plupart d'entre elles s'inspirent d'analogies avec la physique, la biologie ou encore l'éthologie. Ces méthodes ont l'avantage ni de dépendre de l'initialisation ni de nécessiter le calcul du gradient de la fonctionnelle de coût. Elles présentent aussi des inconvénients dont le réglage de paramètres et le temps de calcul souvent élevé. Dans cette thèse, nous proposons l'application de plusieurs algorithmes métaheuristiques. Les méthodes d'optimisation heuristiques les plus populaires telles que les algorithmes génétiques (Genetic Algorithms ou GA) [FRBSS14b; ML12; BRSRFFSS17; OBP00; RFSD14], l'évolution différentielle [RKKLKK10; LRHXWGY03; BRS-FSRPF+18], l'optimisation de l'essaim de particules [START_REF] Feitosa | Reconstruction of electrical impedance tomography images using chaotic ring-topology particle swarm optimization and non-blind search[END_REF] et le recuit simulé [TMT12; MCLAT12] ont été utilisés pour résoudre le problème de reconstruction d'image en EIT. D'autres travaux ont proposé l'application d'approches en deux étapes où la méthode mNR est couplée avec un algorithme génétique [KBK06; KMKKL02] ou avec l'algorithme du recuit simulé [START_REF] Kim | Image Reconstruction Using Simulated Annealing Algorithm in EIT[END_REF].

Cette thèse est une contribution à la résolution numérique du problème direct et du problème inverse en EIT. Après avoir dressé un état de l'art et le contexte de ces travaux, nous résumons à présent le contenu du manuscrit et les résultats obtenus.

Le premier chapitre introduit le principe de l'EIT et ses diverses applications, notamment médicales auxquelles nous portons un intérêt particulier. Nous précisons également des notations et hypothèses qui seront utilisées tout au long du document. Nous expliquons comment l'équation elliptique, qui modélise l'EIT, découle de l'approximation quasi-statique des équations de Maxwell. Nous terminons le chapitre par une présentation détaillée des différents modèles qui décrivent le problème direct de l'EIT: "continuum model", "gap model", "shunt model" et "Complete Electrode Model". Nous donnons les avantages du modèle d'électrodes complet (CEM) qui est le plus précis et réaliste de l'EIT puisqu'il prend en compte les électrodes, leur localisation, leur géométrie, et les effets du contact électrode-peau. Il sera le modèle de référence dans tout le document.

Dans le deuxième chapitre, nous explicitons les formulations variationnelles associées au "continuum model" et au CEM. Pour chaque modèle, nous énonçons un résultat d'existence et d'unicité de la solution et en rappelons la démonstration. Puis, nous expliquons la discrétisation du CEM par la méthode des éléments finis. Une validation numérique de la méthode avec une solution analytique dans le cas du disque unité de conductivité homogène est proposée. Enfin, des simulations numériques 2D sont présentées pour différentes configurations (disque de conductivité homogène, disque de conductivité constante par morceaux pour modéliser la coupe d'un modèle de tête, CT scan d'un thorax). Nous étudions notamment l'effet de perturbations dans la conductivité à la fois sur la distribution du potentiel électrique à l'intérieur du domaine et sur les valeurs de la tension électrique aux électrodes (c'est-à-dire sur les mesures EIT). Ces observations indiquent que les mesures contiennent des informations pertinentes sur les perturbations de la conductivité. Ces conclusions ont motivé l'analyse de sensibilité du chapitre suivant.

Le chapitre 3 est dédié à une analyse de sensibilité du CEM par rapport à une faible variation de la conductivité ou de l'impédance de contact des électrodes. Mathématiquement, la sensibilité est décrite par la dérivée directionnelle au sens de Gâteaux du potentiel électrique. Une preuve de la différentiabilité du potentiel électrique par rapport à la conductivité puis à l'impédance de contact des électrodes est donnée, et les dérivées respectives sont explicitées. C'est un nouveau résultat. A la fin du chapitre, nous présentons des simulations numériques 2D et 3D. Cette étude permet de confirmer et de compléter les liens intéressants entre perturbations, défauts du contact électrode-peau et les mesures EIT observés dans le chapitre précédent. Ils mettent en évidence par exemple que les mesures de surface sont très sensibles à de faibles variations de la conductivité de l'os dans le cas du modèle de tête, et que les impacts de défauts d'électrodes ou du contact électrode-peau sur les mesures sont localisés. Ces résultats font l'objet d'un article en préparation: M. Darbas, J. Heleine, R. . Une présentation détaillée de chaque méthode et son pseudo-code est donnée. Des simulations numériques pour différentes configurations 2D permettent de comparer l'efficacité de ces algorithmes. Les algorithmes les plus récents (LSHADE-SPACMA, LSHADE-cnEpSin, et EBOwithCMAR) offrent les meilleurs résultats en terme de précision, de reproductibilité et de répétabilité. Dans le cas d'une géométrie connue (thorax), ils permettent de retrouver avec une excellente précision (erreur < 2%) les valeurs de la conductivité des poumons et du coeur. Lorsque la géométrie des inclusions et la conductivité sont inconnues, les résultats sont bons mais encore perfectibles, notamment sur la reconstruction de la conductivité. Plusieurs pistes de recherche sont envisageables (régularisation de la fonctionnelle, optimisation du choix des différents paramètres, . . .). Ces simulations numériques sont nouvelles pour le problème inverse de l'EIT et concluantes. Ces travaux seront publiés en octobre 2020: A. C. Velasco, M. Darbas, R. Mendoza, M. Bacon, and J. C. de Leon, "Comparative Study of Heuristic Algorithms for Electrical Impedance Tomography", Philippine Journal of Science 149.3-a (Obtober 2020 Issue).

Dans le chapitre 5, nous étudions le CEM pour modéliser le problème direct en électroencéphalographie (EEG). Les modèles actuels de l'EEG ne prennent pas en compte les électrodes. Le CEM est en cela une piste prometteuse. Une difficulté propre à l'EEG provient du terme source (de l'équation de la conductivité) qui est une somme de gradients de masses de Dirac. L'approche de soustraction est alors utilisée pour traiter la singularité du terme source. Un résultat d'existence et d'unicité est démontré. C'est un résultat nouveau en EEG. L'objectif est de poursuivre ce travail et de comparer numériquement le modèle proposé avec le modèle usuel qui ne tient pas compte des électrodes et de leurs effets.

General introduction

Electrical properties such as the electrical conductivity and permittivity determine the behaviour of materials under the influence of external electric fields. Electrical Impedance Tomography (EIT) is a non invasive, radiation-free imaging technique which reconstructs the conductivity distribution of an observation region. In practice, currents of prescribed magnitudes (typically in a frequency range from several hundred Hz to several MHz) are injected at electrodes on the boundary of this region. The current passes through the object and the voltages needed for maintaining the currents are recorded. These measurements are the data which are needed and inverted to estimate the conductivity inside the object. This technology has the advantages of portability, low cost and high-time resolution.

With these advantages, EIT is a thriving area of research due to the variety of possible applications (e.g. geophysical, medical, and industrial). The first application of EIT can be traced back to one hundred years ago in geophysics [START_REF] Yang | Electrical impedance tomography: algorithms and applications[END_REF]. EIT can be used in fault examination [START_REF] Zhu | The Application of Electrical Resistivity Tomography to Detecting a Buried Fault: A Case Study[END_REF], sensing of mineral deposits and leaks in underground storage tanks [Par84; RD96], and the monitoring of flows of injected fluids into the earth [START_REF] Ramirez | Monitoring an Underground Steam Injection Process Using Electrical Resistance Tomography[END_REF]. EIT is mostly an emerging medical imaging technology. Most modalities, such as Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI) scan, make use of ionizing radiation which can present risks to patients [START_REF] Doll | Effects of small doses of ionising radiation[END_REF]. This concern led to efforts to develop radiation-free tomographic procedures. The first attempt in EIT began by extending X-ray computed tomography and was found defective due to its assumption that the electric currents flow in straight lines [START_REF] Bates | A limitation on systems for imaging electrical conductivity distributions[END_REF][START_REF] Yang | Electrical impedance tomography: algorithms and applications[END_REF]. Barber and Brown developed the first commercially available prototype for EIT called the Sheffield Mark 1 system [START_REF] Barber | Applied potential tomography[END_REF]. The system could obtain ten images per second and was portable and relatively inexpensive compared to CT and MRI scanners [START_REF] Yang | Electrical impedance tomography: algorithms and applications[END_REF]. Since the dielectric properties of biological tissues are a good indicator of their functional and pathological conditions, the number of applications of EIT for medical imaging are numerous. The first image of human tissue by EIT is obtained in [START_REF] Henderson | An impedance camera for spatially specific measurements of the thorax[END_REF]. The continuous observation of pulmonary functions is one of the most important application of EIT [NIM02; TIL15; Hol93]. EIT may allow advanced respiratory and cardiovascular monitoring. Detecting of blood clots in the lungs is presented in [START_REF] Holder | Clinical and physiological applications of electrical impedance tomography[END_REF][START_REF] Harris | Applications of applied potential tomography (APT) in respiratory medicine[END_REF]. Moreover, an increased conductivity may be used to identify the presence of tumors, and especially, the detection of breast [CKKKMMM01; HHP08] and brain tumors [START_REF] Bagshaw | Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method[END_REF][START_REF] Holder | Electrical impedance tomography (EIT) of brain function[END_REF]. Lastly, for industrial applications, EIT has been widely used for monitoring chemical processes. We can also cite non-destructive testing. For instance, air bubbles inside an object [START_REF] Wang | Detecting non-uniform foam density using electrical resistance tomography[END_REF], corrosion [LYMJH18; KSV96], and cracks in metals [START_REF] Santosa | A computational algorithm to determine cracks from electrostatic boundary measurements[END_REF] can be detected using EIT.

General introduction

In EIT systems, electrodes are conducting metals that are attached to the boundary on which the electric current is applied and the resulting boundary potentials are recorded. The quality and the precision of the measurements depend on many factors such as the size, the geometry, and the location of the electrodes, and the injected current distribution. The configuration of the electrodes can affect the data. The voltage loss due to the effective contact impedance, which is the thin resistive layer between the electrode and object, should also be taken into account to accurately measure the boundary voltages. In medical applications, the skin surface is prepared using a liquid, to lower and stabilized the contact impedance between the skin and the electrode. Current shunting effect through the pickup electrodes is a well-known problem in EIT systems. Shunting effects can be efficiently reduced by the geometry of the electrodes, or by their separation. Also, boundary current distribution or current patterns affect the data since they are linearly related given a fixed conductivity distribution [START_REF] Chen | Reconstruction algorithms for electrical impedance tomography[END_REF]. It is important to account all these parameters in order to produce more accurate data for the imaging.

Mathematically, EIT is divided into two parts: the forward problem and the inverse problem. The forward problem consists of finding the potential distribution on the domain under examination and on its boundary from the knowledge of the electrical conductivity distribution in the domain and the injected surface current pattern. It corresponds to the data acquisition. Thus, it is important to correctly model both the electrodes on the boundary, their effects, and also the injected currents. For instance, we refer to the review article [START_REF] Borcea | Electrical Impedance Tomography[END_REF] and the references therein. The simplest forward model for EIT is the continuum model but it does not take into account the electrodes. The gap model accounts the correct configuration of the electrodes and approximates the current density by a nonzero constant at the surface of each electrode and zero in the gaps between the electrodes. The shunt model adapts the electrode configuration in the gap model and added their shunting effects. However, it did not take into account the effective contact impedance of the electrodes. The Complete Electrode Model (CEM) successfully considers the geometry, the location of electrodes mentioned earlier, their shunting effects, and the effective contact impedance [CING89; SCI92; PLW16; Hyv04]. Consequently, CEM is the most accurate and commonly used model for EIT [SCI92; Hyv04; VVSK99]. Many theoretical and numerical works have been devoted to the study of the CEM for EIT (see e.g [Ags15; BKIN07; DS16; Hyv04; HM17; VVSK99]).

The EIT inverse problem consists of retrieving the electrical conductivity distribution from the surface voltages and current density [START_REF] Borcea | Electrical Impedance Tomography[END_REF]. The EIT inverse problem is also known as Calderòn's problem [START_REF] Calderón | On an inverse boundary value problem[END_REF] which is a very ill-posed problem [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. The first result regarding existence and uniqueness of the solution is obtained by Kohn and Vogelius in [START_REF] Kohn | Determining conductivity by boundary measurements[END_REF]. The conductivity is identifiable if the solution of the EIT inverse problem can be uniquely determined using the entire corresponding voltage-to-current, namely the Dirichletto-Neumann (DtN) map. The identifiability for L ∞ conductivity in 2D from the complete information of the DtN map is proven in [START_REF] Astala | Calderón's inverse conductivity problem in the plane[END_REF]. But in practical applications, only partial information of the DtN map is available. Thus, in [KSU07; IUY10; HPS12], the identifiability is proven if only partial information of the DtN map is available. However, it is more practical in real-life applications to get information of the current-to-voltage or Neumann-to-Dirichlet map. Furthermore, for CEM boundary measurements, we define a linear relation between the injected currents and the voltages on the electrodes, i.e. the data is given by a finite-dimensional linear electrode current-to-electrode voltage operator.

Reconstruction algorithms are currently used in EIT to solve the inverse problem. The data, which are computed by solving the forward problem, are used. Due to instability of the inverse problem, different regularization techniques have been developed over the past years to weaken its ill-posedness, resulting in more accurate and stable reconstructions. The reconstruction algorithms used in EIT can be divided into two categories: linear reconstruction algorithms and iterative reconstruction algorithms. Reconstruction algorithms widely used are the backprojection, and the Newton-Raphson methods [BB84; RPP10; YWT87]. Linear reconstruction algorithms use the linearized Poisson's equation with respect to the conductivity. Barber and Brown [START_REF] Barber | Applied potential tomography[END_REF] modified the Radon's backprojection theory and applied it to EIT. For instance, a onestep iteration of Newton-Raphson iterative reconstruction algorithm is used in the experiments in [START_REF] Cheng | Electrode Models for Electric Current Computed Tomography[END_REF]. In [START_REF] Murai | Electrical impedance computed tomography based on a finite element model[END_REF], an iterative algorithm that uses the finite element method (FEM) to solve the Poisson's equation and the conductivity changes in all the elements is presented in [START_REF] Yorkey | Comparing Reconstruction Algorithms for Electrical Impedance Tomography[END_REF]. Yorkey et al. also compared several deterministic algorithms in solving the inverse EIT problem [START_REF] Yorkey | Comparing Reconstruction Algorithms for Electrical Impedance Tomography[END_REF]. They have shown that the modified Newton-Raphson (mNR) method can be an effective reconstruction algorithm. The modified Newton-Raphson method follows basically the classical non linear least square approach applied to the minimization of an error function. Many authors have developed and implemented different regularization methods applied to the mNR algorithm [YWT87; RPP10; HWWT91; BLM02; DS94].

Recent studies have proposed the use of heuristic approaches to solve the inverse problem. Heuristic algorithms are capable of converging towards the global minimum, given sufficient computation time and an appropriate choice of parameters. They are also very flexible and therefore, are less restricted to certain forms of constraints [START_REF] Maringer | Portfolio management with heuristic optimization[END_REF]. Furthermore, these methods are not dependent on the initial guess and the gradient of the cost functional. In this thesis, we propose the use of several metaheuristic algorithms for the reconstruction of the conductivity distribution. Popular heuristic optimization methods like genetic algorithm (GA) [FRBSS14b; ML12; BRSRFFSS17; OBP00; RFSD14], differential evolution [RKKLKK10; LRHXWGY03; BRSFSRPF+18], particle swarm optimization [START_REF] Feitosa | Reconstruction of electrical impedance tomography images using chaotic ring-topology particle swarm optimization and non-blind search[END_REF], and simulated annealing (SA) [START_REF] Tavares | Electrical Impedance Tomography Reconstruction Through Simulated Annealing using a New Outside-in Heuristic and GPU Parallelization[END_REF][START_REF] Martins | Image Reconstruction Using Interval Simulated Annealing in Electrical Impedance Tomography[END_REF] were used to solve the image reconstruction problem in EIT. Other works have proposed the application of two-step approaches where mNR is hybridized with GA [KBK06; KMKKL02] and SA algorithm [START_REF] Kim | Image Reconstruction Using Simulated Annealing Algorithm in EIT[END_REF], both of which have succeeded in recovering the conductivity distribution in a body. In these works, a few mNR iterations were done initially without any mesh grouping and with homogeneous initial conductivity. Reconstructions produced by mNR were then significantly improved by SA and GA.

General introduction

The manuscript is organized as follows. The first chapter introduces the principle of EIT and its applications. We present also some of the notations and assumptions that will be used all throughout the document. The elliptic equation modeling EIT is derived using quasistatic Maxwell's equations. We end the chapter by thoroughly discussing the different models which describes the EIT forward problem. In particular, we emphasize the advantages of the Complete Electrode Model (CEM) as an accurate and realistic forward model for EIT.

In the second chapter, the existence and uniqueness results for the forward continuum and complete electrode models for EIT are given. We express their corresponding variational formulations. The discretization is performed by means of the Finite Element Method. A numerical validation in comparison with an analytic solution in the homogeneous unit disk for the CEM forward problem is addressed. Lastly, numerical simulations in 2D are presented and the effect of perturbations in conductivity on the values of both the interior potential and the boundary voltages (i.e. EIT measurements) is discussed.

In Chapter 3, an analysis tool is introduced to investigate the sensitivity of the potential solution of the CEM problem with respect to small variations in the conductivity and in the contact impedance of the electrodes. Mathematically, the sensitivity of the electric potential is described by its Gâteaux differentiability. We prove that the solution to the CEM forward problem is Gâteaux differentiable with respect to the conductivity and to the contact impedance and the respective derivatives are explicitly defined. The chapter ends with 2D and 3D numerical illustrations and some concluding remarks.

Chapter 4 deals with the formulation of the inverse conductivity problem of EIT as a minimization problem. Several metaheuristic algorithms are proposed and discussed in detail. We present a comparative analysis of six heuristic algorithms -Firefly Algorithm (FA), Novel Bat Algorithm (NBA), Genetic Algorithm with New Multi-Parent Crossover (GA-MPC), Success History-based Adaptive Differential Evolution with Linear Population Size Reduction with Semi-Parameter Adaptation Hybrid with Covariance Matrix Adaptation Evolutionary Strategy (LSHADE-SPACMA), Ensemble Sinusoidal Differential Covariance Matrix Adaptation (LSHADE-cnEpSin), and Effective Butterfly Optimizer with Covariance Matrix Adapted Retreat Phase (EBOwithCMAR) -for the EIT image reconstruction problem. Series of numerical tests in 2D were carried out to compare the performance of the selected algorithms.

In Chapter 5, we study the CEM to model the forward problem for Electroencephalography (EEG). The subtraction approach is used to deal with the singularity in the source term, and we have proved an existence and uniqueness result for the continuous problem. This PhD thesis has been supported by the CHED-PhilFrance scholarship program.

Chapter 1

Electrical Impedance Tomography: principles and modeling

In this chapter, the Electrical Impedance Tomography (EIT) and some of its applications are introduced. Using the quasi-static approximation of Maxwell's equations, the partial differential equation describing the electromagnetic waves inside the object of observation is derived. Lastly, different electrode models on the boundary of the body are presented.

Principles of EIT and applications

The behavior of materials under the influence of external electric fields is usually determined by their electrical properties, such as the electrical conductivity σ and the electrical permittivity ǫ. Conductivity measures the ease of a material in conducting electricity, while permittivity quantifies the willingness of the charges to separate under an imposed electric field within a material. In particular, muscle and blood will conduct the applied currents better than fat, bone, or lung tissue because free ion content determines tissue and fluid conductivity [START_REF] Brown | Electrical impedance tomography (EIT): A review[END_REF]. In medical applications, knowing the said electrical properties are useful because tissues have different conductivities and permittivities. For example, the lung tissue conductivity is approximately five-fold lower as compared to the conductivity of other soft tissues in a human thorax. Electrical properties also differ between normal and malignant breast tissues [START_REF] Jossinet | The impedivity of freshly excised human breast tissue[END_REF] and animal models of experimental stroke or seizure showed an increase of impedance of up to 100% and 10% [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. Electrical Impedance Tomography or EIT is an imaging technique that reconstructs the conductivity distribution in the interior of an object using electric currents. The term electrical impedance is the ratio of the voltage across the body of observation to the current through the body. Mathematically, EIT is an inverse problem that determines the conductivity inside the object of observation given simultaneous measurements of electric currents and voltages on the boundary of the object [START_REF] Borcea | Electrical Impedance Tomography[END_REF][START_REF] Newell | Electrical Impedance Tomography[END_REF].

In an EIT experiment, a set of electric currents is applied to a finite number of electrodes attached on the surface of the object under test and the resulting voltage signals are measured. First, a finite number of surface electrodes are attached around the body through adhesive electrodes, an electrode belt, or a conductive electrode vest around the body. Then across two or more electrodes, a small value of mA of alternating currents at a frequency of 10-100 Chapter 1. Electrical Impedance Tomography: principles and modeling kHz is applied while the resulting voltage is measured on the remaining electrodes. Now due to safety regulations, the sum of the currents is restricted. But the process of injection of the current density patterns can be controlled. The usual current density pattern is when the current is injected into two adjacent electrodes. Another one is when the current is injected into two diametrically opposite electrodes. Lastly and by far, the «best» current pattern is the cosine/sine pattern [START_REF] Newell | Electrical Impedance Tomography[END_REF]. The procedure is then repeated for a finite number and linearly independent current patterns to generate a set of data for the conductivity image reconstruction [Bro03; Hol00; NIM02]. Figure 1.1 shows the experimental set-up of EIT. EIT is known to be non-invasive, low cost, and portable imaging modality and thus, it has gained massive attention and interest for research. Applications of EIT are usually in the field of medicine, geophysics, and nondestructive testing. Due to intense fluctuations of lung conductivity during a breathe cycle, one of the major area in medical EIT is lung imaging or the monitoring of lung function [START_REF] Holder | Clinical and physiological applications of electrical impedance tomography[END_REF][START_REF] Newell | Electrical Impedance Tomography[END_REF]. In [START_REF] Teschner | Electrical Impedance Tomography: The realisation of regional ventilation monitoring[END_REF], EIT, as a radiation-free imaging modality, is used to monitor regional lung function continuously which allows an instant assessment of the effects of therapeutic actions on regional ventilation distribution. Figure 1.2 shows the application of EIT in clinical setting of monitoring lung function. The detection of pulmonary emboli or blood clots in the lungs is studied in [START_REF] Holder | Clinical and physiological applications of electrical impedance tomography[END_REF][START_REF] Harris | Applications of applied potential tomography (APT) in respiratory medicine[END_REF]. Furthermore, monitoring of lung maturity of neonates is done in [FHHWHDQH02; TWFRA19], and pulmonary edema, a condition caused by excessive fluids in the lungs, is visualized in [START_REF] Adler | Imaging of pulmonary edema with electrical impedance tomography[END_REF]. On the other hand, the conductivity of tumour tissues differ greatly as that of the normal tissues which makes EIT a good choice in monitoring common condition for breast cancer. Breast tumour imaging is considered in [CKKKMMM01; HHP08]. Also, brain imaging and brain function monitoring for epileptic activity and stroke is investigated in [START_REF] Bagshaw | Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method[END_REF][START_REF] Holder | Electrical impedance tomography (EIT) of brain function[END_REF].

In some fields, the mathematical model for EIT is called electrical resistivity tomography (ERT) but they both deal with the same mathematical problem. In nondestructive testing, EIT can be used to detect corrosion [LYMJH18; KSV96], air bubbles inside an object [START_REF] Wang | Detecting non-uniform foam density using electrical resistance tomography[END_REF], and cracks or voids in metals [START_REF] Santosa | A computational algorithm to determine cracks from electrostatic boundary measurements[END_REF][START_REF] Borcea | Electrical Impedance Tomography[END_REF]. Lastly in geophysics, fault investigation [START_REF] Zhu | The Application of Electrical Resistivity Tomography to Detecting a Buried Fault: A Case Study[END_REF], the detection of underground mineral deposits [START_REF] Parker | The inverse problem of resistivity sounding[END_REF] and leaks in underground storage tanks [START_REF] Ramirez | Detection of leaks in underground storage tanks using electrical resistance methods: 1996 results[END_REF],

1.2. Some notations and assumptions and the observation of flows of injected fluids into the earth [START_REF] Ramirez | Monitoring an Underground Steam Injection Process Using Electrical Resistance Tomography[END_REF], are some examples of EIT applications [START_REF] Borcea | Electrical Impedance Tomography[END_REF].

The main problem in EIT is the reconstruction of the conductivity distribution, which is an inverse problem. However, solving the EIT problem is usually divided into two parts: the forward problem and the inverse problem. The forward problem is a well-posed problem in which the conductivity distribution is known and the electric potential of the body upon injecting a current density pattern is unknown. Concerning the inverse problem, the voltage on the boundary to maintain the injected current is the data that we need for the reconstruction. If all possible boundary measurements are done, the conductivity in the interior can be uniquely determined. However, we can apply only a finite number of electric signals on the boundary and so the discreteness of the electrodes and their corresponding conductivities must be taken into account. This results to different electrode models for EIT. Also, a finite number of current patterns implies that the corresponding forward problem is solved multiple times using different configurations of the current pattern to generate a good set of data for EIT.

The reconstruction problem is the inverse part of EIT and it has been mathematically formulated by Alberto Calderón [START_REF] Calderón | On an inverse boundary value problem[END_REF]. It is an ill-posed and nonlinear problem. The ill-posedness of the problem came from the measurement process which causes some information to be lost [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. The inverse problem consists of finding an approximation of the conductivity distribution given partial and noisy current-to-voltage data.

To further explain the nature of this imaging technique, some notations and assumptions are defined, and the derivation of the forward problem of EIT is given in the next sections.

Some notations and assumptions

In this section, notations, definitions, and assumptions made for the variables and parameters of the problem are stated. All throughout the document, we assume the following.
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Let Ω ⊂ R d , for d = 2, 3, a bounded, simply connected set with smooth boundary ∂Ω. We denote x to be an arbitrary point in Ω. The following defines the set of admissible values for the conductivity σ. Definition 1.2.1. [KKSV00] Let P adm be the set of admissible values of conductivity σ. A conductivity distribution σ : Ω → R + is in P adm if it satisfies the following conditions: i. For some N ≥ 1, there exist open disjoint sets Ω j ⊂ Ω, j = 1, . . . , N , having piecewise smooth boundaries and

Ω = N j=1 Ω j .
ii. The restriction of σ to each subsets Ω j allows a continuous extension up to the boundary of the subset, i.e.,

σ|

Ω j ∈ C(Ω j ), 1 ≤ j ≤ N.
iii. For some constants σ min and σ max ,

0 < σ min ≤ σ(x) ≤ σ max < +∞, x ∈ Ω.

The Quasi-Static Maxwell's Equations

Maxwell's equations are the fundamental laws of any electromagnetic phenomenon. Given a linear, isotropic, nondispersive body, the electric displacement D and magnetic induction B follows

D = ǫE, (1.1) 
B = µH, (1.2)
where ǫ is the electric permittivity, µ the magnetic permeability, and E and H are the electric and magnetic fields, respectively. Moreover, we can assume the value of magnetic permeability in the free space, that is, µ = µ 0 . Then Maxwell's equations read as follows:

∇ • (ǫE) = ρ, (1.3) ∇ • B = 0, (1.4) ∇ × E = -∂ t (B), (1.5) ∇ × B = J + µ 0 ∂ t (ǫE), (1.6)
where ρ is the charge density and the current density J relates with E and conductivity distribution σ by Ohm's Law J = σE.

(1.7)

1.4. Different models for the EIT forward problem 15 Since EIT systems operates at low frequencies applied to objects of small length, the time derivatives in (1.5) and (1.6) can be neglected [START_REF] Borcea | Electrical Impedance Tomography[END_REF][START_REF] Newell | Electrical Impedance Tomography[END_REF]. With this, the electric field is now curl-free and derives from a scalar electric potential u E = -∇u.

(1.8)

Getting the divergence of (1.6) and substituting equations (1.7) and (1.8), we get respectively

∇ • (∇ × B) = ∇ • J = 0 and ∇ • (σE) = 0 (1.9)
Therefore, we have the following elliptic equation for the electric potential u in Ω ∇ • (σ∇u) = 0.

(1.10)

The question is now which boundary conditions are needed to be applied on the boundary of the body Ω for modeling EIT.

Different models for the EIT forward problem

The information needed for the EIT inverse problem heavily depends on the accurate computation of the measurements done on the boundary. Thus, electrode models on the boundary that are commonly used in the literature play an important role on the accuracy of the results of EIT. In this section, the different electrode models are introduced and derived. Together with the governing equation derived earlier, boundary conditions are imposed that result to different models for EIT.

Continuum or no-gap model

As said in the previous section, EIT is governed by the elliptic equation (1.10) in the domain Ω. Let n be the unit normal vector on ∂Ω oriented towards the exterior of Ω. The normal derivative ∂ n is defined as the directional derivative in the direction of the unit normal vector. Considering now the current applied to the body which is formulated as the term σ∂ n u [NIM02], a Neumann condition is imposed on the boundary. Take the applied current density on the boundary to be a continuous function f that satisfies the conservation of charge, that is,

σ∂ n u| ∂Ω = f such that ∂Ω f ds = 0.
The resulting model is referred as continuum model for EIT and is given by

   ∇ • (σ∇u) = 0 in Ω σ∂ n u = f on ∂Ω. (1.11)
This model is the simplest and easiest to deal with mathematically.
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We know that the voltage pattern and the current pattern is linearly related by the resistance matrix, i.e., V = RI. In particular, if a complete set of current patterns and their corresponding characteristic resistances are known, then the prediction of the voltages that result from applying any current pattern is possible [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF]. Moreover, in [SCI92; CING89], an EIT system is set-up in such a way that the prediction of the outcome of every applied current pattern is reduced to the characteristic resistances. Thus in order to measure accuracy of different EIT models, a comparison is made from the computed resistances in the different EIT models and that of the experimental data. Experiments show that the continuum model overestimates the resistivity in the body by 25% [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF]. Note that resistivity is defined as the reciprocal of conductivity.

This leads us to question on how to choose the current density in such a way that a good approximation for the resistivity of the body is obtained. The different models for EIT are determined by assuming different functions for the applied current density.

Gap model

The gap model considers putting electrodes on the boundary where electric current is inserted and the resulting potential is measured. Define a set of patches e ℓ ⊂ ∂Ω, ℓ = 1, . . . , L as the mathematical model of the contact electrodes. These electrodes are assumed to be strictly disjoint with each other, that is,

ēℓ ∩ ēk = ∅ for ℓ = k.
(1.12)

Let Γ e ⊂ ∂Ω be defined as

Γ e = L l=1 e ℓ , (1.13) 
where e ℓ is the ℓth electrode on the boundary and L ∈ N is the total number of electrodes on the boundary. Denote by I ℓ ∈ R the current injected on the ℓth electrode. Thus, the applied current density is defined as a piecewise constant function given by   

I ℓ |e ℓ | on e ℓ , ℓ = 1, 2, . . . , L, 0 on ∂Ω \ Γ e , (1.14) 
where |e ℓ | is the length or area of the electrode. Hence, the gap model is described by the following boundary value problem

         ∇ • (σ∇u) = 0 in Ω, σ∂ n u = I ℓ |e ℓ | on e ℓ , ℓ = 1, 2, . . . , L, σ∂ n u = 0 on ∂Ω \ Γ e .
(1.15)

Gap model is still easy to work with mathematically but only gives slight improvement in the approximation of the voltage. It still overestimates the resistivity in the body because both the continuum model and the gap model ignore 1.4. Different models for the EIT forward problem the shorting or shunting effect of the electrodes [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF].

Shunt model

The "Shunt" model takes into account that the metal electrodes provide lowresistance path for the current. This effect is called the shorting or shunting effect of the electrodes. To address the said effect, the model assumes that the metal electrodes are perfect conductors. This results to the potential on each electrode being a constant value. However, if this condition is incorporated to the continuum model in Section 1.4.1, an over determined problem is obtained. Thus the Neumann boundary condition from the continuum model is replaced by weaker conditions.

In particular, the current density on an electrode is equal to the inserted current and there is no current on the part of boundary where there is no electrode. Mathematically, we have the Shunt model as the equation (1.10) with the following boundary conditions:

                 ∇ • (σ∇u) = 0, in Ω, u = U ℓ , on e ℓ , ℓ = 1, 2, . . . , L, σ ∂u ∂ n = 0, on ∂Ω \ Γ e , e ℓ σ ∂u ∂ n ds = I ℓ , ℓ = 1, 2, . . . , L, (1.16) (1.17) (1.18) (1.19)
where I ℓ ∈ R is the current injected on the ℓth electrode and U ℓ ∈ R is the voltage on the ℓth electrode, ℓ = 1, . . . , L.

Experiments show that this model underestimates the resistivity and gives worse results when the spatial frequency becomes higher. Higher spatial frequencies supposedly contain proportionately more information near and around the boundary which leads to some hypothesis that there may be an extra, unaccounted-for resistance between the electrode and the boundary [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF]. The said resistance is defined and accounted in the next section which results to the most accurate model for EIT.

Complete Electrode Model

We have introduced three electrode models for EIT so far: the continuum model which is the most convenient in theoretical and numerical considerations but does not typically model practical measurement setups that employ a finite number of electrodes, the gap model correctly models the geometry of the electrodes but is mainly useful when the electrodes are very small, and the shunt model that accounts the shunting effect of the electrodes but neglects to consider the effective contact impedance between the electrodes and the object [START_REF] Hyvönen | Smoothened Complete Electrode Model[END_REF].

The Complete Electrode Model (CEM) of EIT incorporates the electrode's size, shape, shunting effect, and effective contact impedance into the forward problem [CING89; SCI92]. In CEM, the voltage experienced by an electrode is modeled more realistically as the integral average of the potential distribution Chapter 1. Electrical Impedance Tomography: principles and modeling over its contact surface. It also accounts, for more accurate modeling of electrode shunting, the additional effect of the contact impedance [START_REF] Pursiainen | Forward and Inverse Effects of the Complete Electrode Model in Neonatal EEG[END_REF][START_REF] Hyvönen | Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions[END_REF].

Effective contact impedance or surface impedance on the electrodes, denoted by Z ∈ R L , where Z = (z 1 , . . . , z L ) T characterizes the thin, highly resistive layer on the electrodes' interface due to an electrochemical effect. The contact impedance on each electrode z ℓ , ℓ = 1, . . . , L is assumed to satisfy

z ℓ > z min , (1.20)
where z min is a positive constant. Accounting the contact impedance with the applied current, this results to a voltage drop on the electrodes modeled by the term z ℓ σ∂ n u. Hence, the Dirichlet boundary condition (1.17) is replaced by an impedance boundary condition

u + z ℓ σ∂ n u = U ℓ on e ℓ , ℓ = 1, 2, . . . , L.
Also, we assume the properties of the electrodes (1.12), (1.13), and (1.14) defined in Section 1.4.2, and in Section 1.4.3, the current density flow on the boundary defined by conditions (1.18) and (1.19). Therefore, the resulting model is called the complete electrode model and is given by

                 ∇ • (σ∇u) = 0, in Ω, u + z ℓ σ∂ n u = U ℓ , on e ℓ , ℓ = 1, 2, . . . , L, σ ∂u ∂ n = 0, on ∂Ω \ Γ e , e ℓ σ ∂u ∂ n ds = I ℓ , ℓ = 1, 2, . . . , L. (1.21) (1.22) (1.23) (1.24)
It was shown in [START_REF] Hyvönen | Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions[END_REF] that CEM can be viewed as a real-world finite element approximation of the continuum model. The CEM is said to give the most accurate approximation to the resistivity according to experiments and was shown to model real-world electrode measurements reasonably well [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF]. It also gives good numerical reconstructions for both experimental and simulated data [Hyv04; VVSK99]. Moreover, an image reconstruction algorithm in 3D with CEM for EIT was described in [START_REF] Vauhkonen | Three-dimensional electrical impedance tomography based on the complete electrode model[END_REF]. In this thesis, we focus on the CEM for the forward simulations [Ags15; Hyv04; VVSK99; BKIN07; HM17; DS16].

In the next chapter, we give the existence and uniqueness results for the continuum and CEM forward problems. We also treat their numerical approximation using finite element methods.

Chapter 2

Study of two forward problems for EIT: the continuum model and the CEM

In the process of reconstructing the conductivity distribution, the EIT system usually consists of two parts: a forward and an inverse problem. Given the conductivity distribution of the body, a solution of the forward problem in EIT is the voltage needed to maintain the current injected around the boundary. The pair of current-voltage measurements from the forward problem gives the data for the reconstruction problem. The forward problem is then solved multiple times using different configurations of current patterns in order to generate a set of data.

In this chapter, we study in detail the existence and uniqueness results for the forward continuum and CEM. Numerical treatment and convergence result are addressed. A numerical validation using an analytic solution in the homogeneous unit disk for the CEM forward problem is performed. Lastly, numerical examples that we will be using all throughout the thesis are presented.

Existence and uniqueness results for forward problems

The existence and uniqueness of a solution of the continuum (2.3), and complete electrode models (1.21)-(1.24) are proven in this section [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF][START_REF] Borcea | Electrical Impedance Tomography[END_REF]. First, we recall the Lax-Milgram lemma [START_REF] Pietro | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF].

Lemma 2.1.1 (Lax-Milgram). Let X be a Hilbert space with associated norm • X , and let a : X × X → R be a bilinear form that satisfies

|a(u, w)| ≤ α 0 u X w X , ∀u, w ∈ X (continuity) a(u, u) ≥ β 0 u 2 X , ∀u ∈ X (coercivity).
with constants α 0 , β 0 > 0. Then for any continuous linear form on X, b : X → R, the variational formulation

a(u, w) = b(w), w ∈ X,
Chapter 2. Study of forward problems for EIT: continuum and CEM has a unique solution u ∈ X. Moreover, the solution u satisfies

u X ≤ 1 β 0 b X ′ ,
where X ′ is the topological dual of X, i.e., the space of continuous linear forms on X.

The continuum model

Let Ω ⊂ R d , d = 2, 3, be a bounded domain with a smooth boundary ∂Ω. We define the space for the current density on the boundary L(∂Ω) by

L(∂Ω) := f ∈ L 2 (∂Ω) ∂Ω f ds = 0 . (2.1)
This choice ensures the conservation of charge and by consequence, the existence of a solution. Now accounting the choice of ground potentials, the solution space is defined as

H := u ∈ H 1 (Ω) such that ∂Ω u ds = 0 . (2.2) Suppose f ∈ L(∂Ω) and σ ∈ L ∞ (Ω) which satisfies Definition 1.2.1. Then the continuum forward problem reads as follows: find u ∈ H, solution to    ∇ • (σ∇u) = 0, in Ω, σ∂ n u = f, on ∂Ω. (2.3)
Let w ∈ H be an arbitrary test function. Multiplying the first equation of (2.3) by w and integrating over Ω, we have

Ω ∇ • (σ∇u)w dx = 0.
Applying integration by parts and using Green's formula, we get

0 = Ω ∇ • (σ∇u)w dx = Ω σ∇u • ∇w dx - ∂Ω σ(∇u • n)w ds.

Using the Neumann boundary condition, we obtain the following variational formulation

Ω σ∇u • ∇w dx = ∂Ω f w ds, ∀w ∈ H. (2.4) We define a : H × H -→ R (u, w) -→ Ω σ∇u • ∇w dx b : H -→ R w -→ ∂Ω f w ds,
which are a bilinear and linear forms, respectively. It is easy to prove that a is continuous and coercive, and b is continuous. Hence, by the Lax-Milgram lemma, the variational fomulation (2.4) has a unique solution u ∈ H.

The Complete Electrode Model

In the CEM forward problem of EIT, the resulting voltage measurements when currents are inserted on each electrode are discrete and are given by the voltage vector U ∈ R L . The set of solutions is defined and denoted by

H = H 1 (Ω) ⊕ R L .
The Lax-Milgram lemma is used to prove the existence and uniqueness of solution of the CEM forward problem.

Let the contact electrodes e ℓ , ℓ = 1, 2, . . . L, be open, connected subsets of ∂Ω satisfying the properties (1.12), (1.13), and (1.14). Suppose that the conductivity function σ ∈ L ∞ (Ω) satisfies Definition 1.2.1, and the contact impedance Z = (z ℓ ) L ℓ=1 ∈ R L satisfies the relation (1.20). We call I = (I 1 , . . . , I L ) T ∈ R L a current pattern if it satisfies the conservation of charge, i.e., L ℓ=1 I ℓ = 0.

(2.5)

This ensures the existence of a solution. Meanwhile, the uniqueness of the solution is proved by imposing a choice of ground voltages. Let U = (U 1 , . . . , U L ) T ∈ R L be the voltage vector where the ground voltages satisfy

L ℓ=1 U ℓ = 0. (2.6)
The condition (2.6) plays an important role. The following proposition gives the variational formulation in H associated with the CEM forward problem (see [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] for the detailed proof).

Proposition 2.1.2. We say that (u, U ) ∈ H is a weak solution to (1.21) subject to boundary conditions (1.22) -(1.24) if and only if for any (w,

W ) ∈ H, B((u, U ), (w, W )) = L ℓ=1 I ℓ W ℓ , (2.7)
where the bilinear form B :

H × H -→ R is defined as B((u, U ), (w, W )) := Ω σ∇u • ∇w dx + L ℓ=1 e ℓ 1 z ℓ (u -U ℓ )(w -W ℓ ) ds.
In order to use Lax-Milgram lemma, we need to prove the coercivity of the corresponding bilinear form. However, in the solution space H, (u, U ) is not necessarily zero if |B((u, U ), (u, U ))| = 0. Instead, we have

u = constant = U 1 = . . . = U ℓ . This implies that u H > 0 since (U ℓ ) L ℓ=1 is not the null vector. Coercivity does not hold because |B((u, U ), (u, U ))| u H .
To address this issue, we introduce the quotient space defined in [SCI92]

Ḣ := H/R
as the new space of solutions for the CEM forward problem and it is equipped with norm

(u, U ) Ḣ = inf( u -c 2 H 1 (Ω) + U -C 2 R L ) 1/2 , (2.8) 
where c ∈ R and C = (c) L ℓ=1 ∈ R L . We also note that

U -C R L = L ℓ=1 |U ℓ -c| 2 1/2 and that (u, U ) is equal to (v, V ) in Ḣ if u -v = constant = U 1 -V 1 = • • • = U L -V L .
In spite of this, the hypotheses of the Lax-Milgram lemma are much easier to prove using a different norm in Ḣ. Hence, we consider

(u, U ) * = ∇u 2 L 2 (Ω) + L ℓ=1 e ℓ |u -U ℓ | 2 ds 1/2 .
(2.9)

The equivalence between the two norms, • Ḣ and • * , was shown in Lemma 3.2 of [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF].

Lemma 2.1.3. The norms, • Ḣ (2.8) and • * (2.9), are equivalent, i.e., for some constants

0 < λ 1 ≤ λ 2 < ∞, λ 1 (u, U ) * ≤ (u, U ) Ḣ ≤ λ 2 (u, U ) * , for all (u, U ) ∈ Ḣ.
We can conclude the existence and uniqueness of a weak solution for the CEM forward problem by the following theorem.

Theorem 2.1.4. Suppose the conductivity σ ∈ L ∞ (Ω) satisfy Definition 1.2.1. Let the contact impedance Z ∈ R L fulfill the condition (1.20). Then for a given current pattern I = (I ℓ ) L ℓ=1 ∈ R L satisfying the conservation of charge (2.5), there is a unique (u, U ) in Ḣ satisfying

B((u, U ), (w, W )) = L ℓ=1 I ℓ W ℓ ,
(2.10) for all (w, W ) ∈ Ḣ.

Proof. Suppose the hypotheses of the theorem hold. Note that in Proposition 2.1.2, B is defined as a bilinear form. We first need to prove that B is continuous on Ḣ. We have

|B((u, U ), (w, W ))| 2 = Ω σ∇u • ∇w dx + L ℓ=1 e ℓ 1 z ℓ (u -U ℓ )(w -W ℓ ) ds 2 .
By the assumption on the conductivity, and applying the Cauchy-Schwarz inequality for L 2 (Ω), we get

|B((u, U ), (w, W ))| 2 ≤ σ 2 max ∇u 2 L 2 (Ω) ∇w 2 L 2 (Ω) + L ℓ=1 e ℓ 1 z ℓ (u -U ℓ )(w -W ℓ ) ds 2 + 2σ max ∇u L 2 (Ω) ∇w L 2 (Ω) L ℓ=1 e ℓ 1 z ℓ (u -U ℓ )(w -W ℓ ) ds .
We express the integrals on the electrodes as an integral on the boundary by using the characteristic function χ ℓ on the ℓth electrode and we write

|B((u, U ), (w, W ))| 2 ≤ σ 2 max ∇u 2 L 2 (Ω) ∇w 2 L 2 (Ω) + ∂Ω L ℓ=1 1 z ℓ (u -U ℓ )(w -W ℓ ) χ ℓ ds 2 + 2σ max ∇u L 2 (Ω) ∇w L 2 (Ω) ∂Ω L ℓ=1 1 z ℓ (u -U ℓ )(w -W ℓ ) χ ℓ ds .
The assumption on the contact impedance Z implies that

1 |z ℓ | < 1 Z min , ∀ℓ = 1, 2, . . . , L.
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We can simplify the variational formulation

|B((u, U ), (w, W ))| 2 ≤ σ 2 max ∇u 2 L 2 (Ω) ∇w 2 L 2 (Ω) + 1 Z 2 min ∂Ω L ℓ=1 (u -U ℓ )(w -W ℓ )χ ℓ ds 2 + 2σ max Z min ∇u L 2 (Ω) ∇w L 2 (Ω) ∂Ω L ℓ=1 (u -U ℓ )(w -W ℓ )χ ℓ ds . ≤ max σ 2 max , σ max Z min , 1 Z 2 min ∇u 2 L 2 (Ω) + L ℓ=1 e ℓ |u -U ℓ | 2 ds × ∇w 2 L 2 (Ω) + L ℓ=1 e ℓ |w -W ℓ | 2 ds ≤ K (u, U ) 2 * (w, W ) 2 * ,
where K is a positive constant. Using the norm equivalence given in Lemma 2.1.3, B is continuous on Ḣ. Next, the coercivity of B on Ḣ also follows because we have for all (u, U ),

|B((u, U ), (u, U ))| = Ω σ|∇u| 2 dx + L ℓ=1 e ℓ 1 z ℓ |u -U ℓ | 2 ds ≥ min σ min , min ℓ=1,...,L 1 |z ℓ | ∇u 2 L 2 (Ω) + L ℓ=1 e ℓ |u -U ℓ | 2 ds ≥ K (u, U ) 2 * ,
with a positive constant K. Finally, we define a linear map

g : Ḣ -→ R (w, W ) -→ L ℓ=1 I ℓ W ℓ . Note that g is well-defined since if (w, W ) = ( w, W ), then w -w = constant = W 1 -W 1 = • • • = W L -W L .
Thus, by the conservation of charge (2.5)

g(w, W ) = L ℓ=1 I ℓ W ℓ = L ℓ=1 I ℓ (W ℓ -constant) = L ℓ=1 I ℓ W ℓ = g( w, W ).
Furthermore, we choose a constant c ∈ R such that

( w -c 2 H 1 (Ω) + W -C 2 R L ) 1/2 ≤ (w, W ) Ḣ + ǫ,
where ǫ > 0. Thus, by the conservation of charge, we have

∀(w, W ) ∈ Ḣ |g(w, W )| = L ℓ=1 I ℓ W ℓ = L ℓ=1 I ℓ (W ℓ -c) ≤ I R L W -C R L ≤ I R L ( (w, W ) Ḣ + ǫ).
Since I ∈ R L and ǫ is arbitrary, we obtain

|g(w, W )| ≤ K (w, W ) Ḣ , K > 0.
This implies that g is also continuous. By the Lax-Milgram lemma, there exists a unique solution (u, U ) ∈ Ḣ for (2.10).

The theorem above ensures the uniqueness in Ḣ up to a constant. The choice of ground potential (2.6) is imposed in order to obtain the uniqueness in H. Assume that there are two solutions (u, U ) and (ũ, Ũ ) of the CEM forward problem satisfying (1.21) -(1.24). Let (w, W ) = (u, U ) -(ũ, Ũ ). Hence we have (w, W ) satisfying the following boundary-value problem

               ∇ • (σ∇w) = 0 in Ω, w + z ℓ σ∂ n w = W ℓ on e ℓ , ℓ = 1, 2, . . . , L, σ∂ n w = 0 on ∂Ω \ Γ e , e ℓ
σ∂ n w ds = 0 ℓ = 1, 2, . . . , L.

(2.11) (2.12) (2.13)

(2.14)

Multiplying the same test function w to (2.11), integrating by parts, and applying the Green's Theorem, we have

Ω σ|∇w| 2 dx = ∂Ω wσ∂ n w ds = - L ℓ=1 z ℓ e ℓ
|σ∂ n w| 2 ds.

Since z ℓ ≥ 0, ∀ ℓ = 1, . . . , L, both sides of the equation above are forced to be equal to zero. This implies that w is constant. Moreover, by (2.12), we have

w = constant = W ℓ , ℓ = 1, . . . , L.
The choice of ground potential (2.6) leads to

L ℓ=1 U ℓ = 0 = L ℓ=1
Ũℓ .

Thus, we get,

L ℓ=1 W ℓ = 0.
Since all the voltages on the electrodes are equal to the same constant, the sum above forces the constant to be zero.

W ℓ = 0 = w, ℓ = 1, . . . , L.
This proves the uniqueness of the solution in H of the CEM forward problem. Lastly, for convenience, we introduce the spaces

R L ⋄ := U = (U ℓ ) L ℓ=1 ∈ R L L ℓ=1 U ℓ = 0 and H ⋄ := H 1 (Ω) ⊕ R L ⋄ .
The existence and uniqueness results given above and in Theorem 2.1.4 extend to H ⋄ .

Remark 1. The uniqueness result above is supported by the equivalence of the norms of the quotient space H ⋄ /R and H ⋄ . The norm equivalence is from the continuous and bijective embedding

H ⋄ ֒→ H ⋄ /R due to (u, U ) 2 H⋄/R = ∇u 2 L 2 (Ω) + inf c∈R { u + c L 2 (Ω) + |U + c| 2 2 } ≤ ∇u 2 L 2 (Ω) + u L 2 (Ω) + |U | 2 2 ≤ (u, U ) H⋄ .

Discretization using Finite Element Method

In solving PDEs numerically, there are usually two main approaches: the Finite Difference Method and the Finite Element Method (FEM). The latter approach is usually employed when dealing with complex geometries. We consider it for the discretization of the different variational problems of this thesis. In particular, consider the continuous variational problem on a Hilbert space X:

find u ∈ X such that a(u, w) = b(w), ∀w ∈ X.
The basic principle of the finite element method consists of replacing the Hilbert space X of the continuous weak formulation with a finite-dimensional subspace

X h of X [Bra02; DE12; Cia78]. The corresponding discrete weak formulation reads: find u h ∈ X h such that a(u h , w h ) = b(w h ), ∀w h ∈ X h .
In this section, we apply the Lagrange Finite-Element Method for the discretization of the variational formulations obtained in the previous section. We then proceed to the numerical treatment of the continuum and CEM forward problems using FEM.

Lagrange Finite-Element Method

Consider a triangulation T h of the domain Ω satisfying the properties stated in [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. In particular, the mesh T h is a collection of geometrically simple elements K, called finite elements, with the parameter h equal to

h = max K∈T h diam(K).
Furthermore, for any h, we denote by Ω h = K∈T h K the discrete domain and by N the set of nodes of T h . On T h , we introduce the standard vector space of Lagrange finite element of type P1

X h = {v h ∈ C 0 (Ω h ) | v h|K ∈ P 1 (K) ∀K ∈ T h }, (2.15)
where dim X h = N , and P 1 (K) denotes the space of polynomials of degree less than or equal to 1 on K. We also define the discretization space V h = X h ∩ L 2 (Ω h ) of P1 finite elements with zero mean value on Ω h . Lastly, a basis of X h is typically composed of functions whose support is restricted on one or few elements of T h and the polynomials are usually of low degree. Let the kth basis function at the ith node be defined by

ϕ k (x i ) = δ ki , x i ∈ N , 1 ≤ i, k ≤ N (2.16) for i = 1, . . . , N , where ϕ k ∈ X h . Denote B h := {ϕ k , k = 1, 2, .
. . , N } as the set of basis functions. We can now express the elements of X h as a linear combination of these basis functions and we can define the corresponding discrete forms of both the continuum and CEM variational problems. These are discussed in detail in the succeeding sections.

To summarize, in using FEM to solve the forward problem, we first determine the variational formulation of the problem. The discretized variational formulation can be expressed as a system of linear equations, i.e., Au h = B. The unknown u h is the vector of values of the potential function at each node and the linear system is usually solved by a direct sparse solver.

Discretization of the continuum forward problem

Consider the continuum forward model given by (2.3) with the following variational problem: find u ∈ H such that for any w ∈ H,

a(u, w) := Ω σ∇u • ∇w dx = ∂Ω f w ds =: b(w).
To impose the conservation of charge in the space of L(∂Ω), a penalty method is used. In particular, a Lagrange multiplier λ ∈ R is introduced to the variational formulation as a penalty and thus, we have the following resulting variational Chapter 2. Study of forward problems for EIT: continuum and CEM

problem: find u ∈ H such that ∀ w ∈ H,      Ω σ∇u • ∇w dx + Ω λw dx = ∂Ω f w ds Ω u dx = 0.
(2.17)

We consider a triangular mesh T h for 2D geometries Ω and on T h , we introduce X h , the standard vector space of Lagrange finite elements of type P1 and B h , the set of basis functions in X h . The approximation u h ∈ X h of the electric potential u is of the form

u h (x) = N j=1 v j ϕ j (x), x ∈ Ω h , (2.18)
where v j is an approximation of the value of the potential u at x j ∈ Ω h , and ϕ j 's are linear basis functions defined by (2.16). We set w(x) = ϕ i (x), for i = 1, 2, . . . , N . Upon substituting (2.18) to (2.17), for each i = 1, . . . , N ,

         N j=1 v j Ω σ∇ϕ i • ∇ϕ j dx + λ Ω ϕ i dx = N j=1 f j ∂Ω ϕ i ϕ j ds v j Ω ϕ j dx = 0.
We obtain a linear system of order N + 1 which can be written in the following matrix form:

  A b b T 0     v λ   =   g 0   , (2.19) where v = (v j ) N j=1 , A = (A ij ) ∈ R N ×N of coefficients A ij = Ω σ∇ϕ j •∇ϕ i dx, b = (b i ) ∈ R N with b i = Ω ϕ i dx, g = (g i ) ∈ R N of elements g i = N j=1 f j ∂Ω ϕ i ϕ j ds,
and λ ∈ R. Remark 2. The matrix A is symmetric and semi-positive definite by the properties of the bilinear form a and the conductivity distribution σ [Dia17; Cra17]. Furthermore, by implementing the choice of ground potential, the linear system (2.19) admits a unique solution [START_REF] Crabb | Convergence study of 2D forward problem of electrical impedance tomography with high order finite elements[END_REF].

Discretization of the CEM forward problem

Consider the problem described by the equations (1.21)-(1.24). Note that we use the variational formulation defined by (2.10): find

(u, U ) ∈ H ⋄ such that ∀(w, W ) ∈ H ⋄ Ω σ∇u • ∇w dx + L ℓ=1 1 z ℓ e ℓ (u -U ℓ )(w -W ℓ ) ds = L ℓ=1 I ℓ W ℓ .

Discretization using Finite Element Method

29

We consider a triangular mesh T h of the domain and the corresponding standard vector space X h (2.15) of Lagrange finite elements of type P1 as in the previous section. Recall that X h defines a finite-dimensional subspace of H 1 (Ω). The approximation u h ∈ X h of the electric potential u is expressed as

u h (x) = N j=1 v j ϕ j (x), x ∈ Ω h .
(2.20)

We focus on the numerical implementation proposed in [START_REF] Kaipio | Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography[END_REF] and we explain here the main lines of the approach.

To impose the uniqueness condition (2.6), a different representation of the voltage U is used. Define a set of vectors φ ℓ ∈ R L , ℓ = 1, . . . , L -1, by φ 1 = (1, -1, 0, . . . , 0) T , φ 2 = (1, 0, -1, . . . , 0) T , . . . , φ L-1 = (1, 0, . . . , -1) T . Thus, the approximation U h of the vector U is given by

U h = L-1 k=1 β k φ k ∈ R L ⋄ , (2.21) 
where

β k ∈ R, k = 1, . . . , L -1. Let β = (β k ) T ∈ R L-1 and define the matrix P = (φ 1 | . . . |φ L-1 ) ∈ R L×L-1
. Thus, the voltages U h are determined by

U h = P β. (2.22)
Consider the test functions (w, W ) = (ϕ i , 0). Substituting (2.20) -(2.21) to (2.10), we get for each i = 1, . . . , N

N j=1 v j Ω σ∇ϕ j • ∇ϕ i dx + L ℓ=1 1 z ℓ e ℓ N j=1 v j ϕ j - L-1 k=1 β k φ k ϕ i ds = 0.
This yields the following linear system

S + M C   v β   = 0 R N , (2.23) where v = (v j ) N j=1 , S = (S ij ) ∈ R N ×N of coefficients S ij = Ω σ∇ϕ i • ∇ϕ j dx, (2.24) M = (M ij ) ∈ R N ×N with M ij = L ℓ=1 1 z ℓ e ℓ ϕ i ϕ j ds, (2.25)
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and C = (C iℓ ) ∈ R N ×(L-1) with C iℓ = - 1 z 1 e 1 ϕ i ds - 1 z ℓ+1 e ℓ+1 ϕ i ds .
(2.26)

Moreover, the conditions (1.22) and (1.23) give

1 z ℓ e ℓ (U ℓ -u) ds = I ℓ , ℓ = 1, 2, . . . , L.
(2.27)

Then, the approximations (2.20) and (2.21) are used in (2.27). In order to obtain a symmetric system of equations at the end, the number of equations above should be reduced to L -1 which is done by subtracting from I 1 all the remaining current values I ℓ , ℓ = 2, 3, . . . , L.

I 1 -I 2 = N j=1 - 1 z 1 e 1 ϕ j ds + 1 z 2 e 2 ϕ j ds u h j + 1 z 1 e 1 ds + 1 z 2 e 2 ds β 1 + L-1 ℓ=1,ℓ =1 1 z 1 e 1 ds β ℓ I 1 -I 3 = N j=1 - 1 z 1 e 1 ϕ j ds + 1 z 3 e 3 ϕ j ds u h j + 1 z 1 e 1 ds + 1 z 3 e 3 ds β 2 + L-1 ℓ=1,ℓ =2 1 z 1 e 1 ds β ℓ . . . I 1 -I L = N j=1 - 1 z 1 e 1 ϕ j ds + 1 z L e L ϕ j ds u h j + 1 z 1 e 1 ds + 1 z L e L ds β L-1 + L-1 ℓ=1,ℓ =L-1 1 z 1 e 1 ds β ℓ .
Note that where G ∈ R (L-1)×(L-1) is given by

G ik =      |e 1 | z 1 , i = k |e 1 | z 1 + |e k+1 | z k+1 , i = k.
(2.29)

Finally, an approximate solution of the CEM is obtained by solving the following linear system of size

N + L -1   S + M C C T G   := K   v β   =   0 R N P T I   , (2.30) 
where the matrix K ∈ R (N +L-1)×(N +L-1) is sparse, symmetric and positivedefinite [Cra17; KKSV00; LR06]. The vector v = (v j ) j ∈ R N gives the approximation u h of the potential u, and β leads to the calculation of the voltages U h at electrodes via (2.22).

Numerical validation of the CEM in the homogeneous unit disk case

Analytical solutions for the CEM forward problem are available for some particular domains. Semi-analytic solutions for homogeneous conductivities on the unit disk was discussed in [START_REF] Demidenko | An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances[END_REF] and on a 2D square domain in [START_REF] Crabb | Convergence study of 2D forward problem of electrical impedance tomography with high order finite elements[END_REF]. Moreover, in [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF], the analytical solution of the CEM on a body with Nrings and constant real-valued conductivity was derived. In this section, we implement our code with FreeFem++ [SCI92] and the numerical validation is performed for the unit disk with homogeneous conductivity.

Set-up and analytical solution

In a circular body Ω with radius r n = 1 in two dimensions, attach L = 16 identical, equally-spaced electrodes, on its boundary. Let the midpoints of the electrodes e ℓ , ℓ = 1, 2, . . . , L, be given by θ ℓ = 2πℓ/L, ℓ = 1, 2, . . . , L, and the current injected on each electrode be I ℓ . The angular width of an electrode is assumed to be constant for all electrodes. The current pattern I = (I ℓ ) L ℓ=1 follows the symmetry of the cosine function, that is, I ℓ = I -ℓ = I L-ℓ , ℓ = 0, 1, . . . , L -1. Note that there is a shift in the indexes of the electrodes where e 0 corresponds to e L .

Assume that the contact impedance values are equal on each electrode, i.e., z ℓ = z, where z is a positive constant. Moreover, the body Ω is the unit disk with constant real conductivity distribution,

σ = σ(r) = 1 for 0 < r < 1.
Chapter 2. Study of forward problems for EIT: continuum and CEM

We have the following form of analytical solution for CEM

u(r, θ) = ∞ m=1 1 √ m a (n) m r n r m + b (n) m r r n m cos(mθ), (2.31)
where r 1 := 0 < r < 1 := r n and θ ∈ [0, 2π]. In order to define u at the origin, i.e., r = 0, we assume that a

(1) m = 0. To form the above equation, we need to compute the Fourier coefficients a m . We refer the reader to [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] for the detail on how to get the said coefficients.

Numerical validation

The analytical solution (2.31) is expressed as an infinite series. We thus take a truncated series of the exact solution which can be easily computed. Let us denote by M the truncation number. Furthermore, since (2.31) is undefined when r = 1, the analytical solution is restricted to r ≤ 0.8. We consider three triangular meshes with decreasing mesh size h (Table 2 The discretization of CEM is realized as explained in Section 2.2.3. All simulations are executed with the software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. The linear system (2.30) is solved with a direct sparse solver. The analytical solution is calculated with Matlab. We compare three values of contact impedance: z = 0.001, z = 0.01, and z = 0.1. We first cite the work of Dardé and Staboulis [START_REF] Dardé | Electrode modelling: The effect of contact impedance[END_REF] which have studied the effect of contact impedance in the regularity and convergence of the finite-element method for CEM by comparing it to that of the shunt model. In particular, FEM gives more accurate approximation for CEM when z ≫ 0. We also note the result of Crabb [START_REF] Crabb | Convergence study of 2D forward problem of electrical impedance tomography with high order finite elements[END_REF] that demonstrates how the solution becomes unbounded as the contact impedance decreases. Moreover, convergence rates that are smaller than O(h 1-ǫ ) and O(h 2-ǫ ) as h → 0 in the H 1 and L 2 norms, respectively, are likely to be obtained.

Case when z = 0.001

The truncation number is M = 1020. 

Error u -u h L 2 u -u h H 1 U -U h 2
Numerical convergence order -2.025 -0.963 -1.894 Case when z = 0.01

We fix M = 680. Tables 2.4, 2.5, and Figure 2.2 summarize the convergence results of the solver. 

Mesh u -u h L 2 u -u h H 1 U -U h 2 M 1 1.5E-
u -u h L 2 u -u h H 1 U -U h 2
Numerical convergence order -1.969 -0.942 -1.912 Let M = 360 be the optimal truncation number. Results are presented in Tables 2.6, 2.7, and Figure 2.3. 

Mesh u -u h L 2 u -u h H 1 U -U h 2 M 1 1.5E-
Error u -u h L 2 u -u h H 1 U -U h 2
Numerical convergence order -2.119 -1.055 -2.105 We observe that the approximation errors of u h and U h decreases when the value of the contact impedance increases. This is in accordance with the conclusion in [START_REF] Dardé | Electrode modelling: The effect of contact impedance[END_REF], that is, FEM gives more accurate approximation for the CEM when z ≫ 0. It also affirms the unboundedness of the solution as the

L 2 -error H 1 -error Figure 2.3: Unit disk. Case when z = 0.1. σ = 1. Errors u -u h in L 2 norm (left)
and H 1 norm with respect to the mesh size h in logarithm scale contact impedance decreases [START_REF] Crabb | Convergence study of 2D forward problem of electrical impedance tomography with high order finite elements[END_REF]. The H 1 and L 2 errors for u h , and the error of U h using Euclidean norm corroborate the classical predicted theoretical convergence estimates. This validates our code.

Numerical simulations

All throughout the document, the following domain cases and conductivity distributions are considered for the numerical examples or in some cases, there might be changes in some parameters which will be mentioned. The conductivity distribution for each configuration is shown in Figure 2.4. We plotted the conductivity distribution in a very fine mesh.

Case 1a. Unit disk. The conductivity distribution is homogeneous with value equal to σ 0 = 0.33 S • m -1 .

Case 1b. Unit disk with one elliptical inclusion. We take the unit disk, and the general equation of the elliptical inclusion is represented by the following equation.

a[(x -h) cos θ + (y -k) sin θ] 2 + b[(x -h) sin θ -(y -k) cos θ] 2 = r 2 .
The center of the ellipse is (h, k) = (-0.4, 0.5), the lengths are (a, b) = (0.4, 0.7), the rotation angle is θ = 3π/8, and r = 0.1. The conductivity inside the elliptical perturbation is σ e = 1.0 S • m -1 and the background conductivity is σ 0 = 0.33 S • m -1 .

Case 2a. Head model. A classical head model is commonly used in the literature. This model is built of three concentric circles/spheres representing brain, skull, and scalp. Here, we consider the two-dimensional model (see Figure 2.4). This three-layer head model represents the brain Ω 1 , the skull Ω 2 , and the scalp Ω 3 with respective radii 1, 0.9, and 0.87. The adopted Chapter 2. Study of forward problems for EIT: continuum and CEM conductivities are 0.33 S•m -1 for the brain and the scalp, and 0.004 S•m -1 for the skull.

Case 2b. Head model with one circular inclusion. We consider the head model in Case 2a but we add a disk inclusion with general equation,

(x -h) 2 + (y -k) 2 = r 2 ,
inside the brain region. We fix the center (h, k) = (0.4, 0), and the radius r = 0.1 with conductivity 1.0 S • m -1 .

Case 3a. Thorax. The CT scan of a thorax domain is obtained from [START_REF] Venkatratnam | Spatial resolution in electrical impedance tomography: A topical review[END_REF]. Solving the forward problem using the finite element method requires the parametrization of the boundaries of the lungs, the heart, and the whole body. These parametric curves are approximated using Fourier series. The coefficients of the Fourier series are estimated by finding the parametric curve that fits the data points on the boundary curve. With this, any practical domain or object may be studied for real-life applications of EIT. The background conductivity modeling the blood is set to 0.67 S • m -1 . The conductivities of the lungs and the heart are respectively fixed to 0.09 S • m -1 and 0.4

S • m -1 [MPH06].
Case 3b. Thorax with one circular inclusion. A disk inclusion with center (h, k) = (2.62, 2.25), and r = 0.1 is incorporated in the thorax domain. The said inclusion could model a breast tumor and its conductivity is equal to 0.2 S • m -1 .

The continuum forward problem

As mentioned, the forward problem gives the synthetic data needed for the reconstruction of the conductivity in the inverse part of EIT. We solve the forward problem numerically for each domain case by solving the system of equations (2.19). All simulations are executed with the software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. The description of the FEM mesh structure used for each case is presented in This can be attributed to the effect of the skull with a very low conductivity value. The adult skull is extremely resistive compared to the other tissues and acts as an electrical shield between the scalp and the brain. Notice that the values of the potential are very high in the skull and scalp regions. 

The CEM forward problem

We solve the forward problem numerically for each domain case by solving the system of equations (2.30). The number of electrodes attached around the boundary of the studied domain Ω is set to L = 32 (see Figure 2.7). We note that for the disk domain, the midpoint of the first electrode is located on the positive side of the x-axis and the next ones will follow in a counter-clockwise direction. Meanwhile for the thorax domain, the first electrode's midpoint is defined on the negative side of the x-axis and the next electrodes will also follow the counter-clockwise direction.

The contact impedance Z = (z ℓ ) ℓ is constant across all electrodes and it is equal to z = 0.1. The current pattern I = (I ℓ ) ℓ is defined by

I ℓ = sin 2πℓ L , ℓ = 0, 1, 2, . . . , L -1. (2.32)
In order to impose the conservation of charge in real-life systems, when a current is injected through one electrode, its corresponding negative measure is injected through the opposite electrode. The sine function satisfies this requirement in 2D set-up and [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] discussed in detail this choice of current pattern. All simulations are executed with the software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. The same FEM mesh structures as described in Table 2.8 are used. Figure 2.8 shows the interior potentials for each given conductivity distribution described in Figure 2.4. We again observe the difference between the values of the potential for Cases 1a and 1b, and for Cases 2a and 2b. For all the cases, the potential in the domain follows the form of the injected current, sine function, which explains why we have two poles: a positive one and a negative one. Note again that for the disk domain, the first 16 electrodes, which have midpoints in the interval [0, π], are located in the upper semi-circle which explains the positive potentials in that area and negative ones in the lower semi-circle. On the other hand, for the thorax domain, the first 16 electrodes are located in

Case 1a

Case 1b

Case 2a Case 2b

Case 3a Case 3b 

σ = n i=0 σ i χ i ,
where χ i is the characteristic function of a fixed geometry Ω i , with known conductivity, in the domain Ω. Suppose also (u p , U p ) is the solution of the perturbed CEM forward problem, that is, the conductivity distribution is given by

σ p = n i=0 σ i χ i + σ e χ e ,
where σ e is the value of the conductivity inside the inclusion Ω e with characteristic function χ e . We then compute the difference of the two solutions (Cases 1a and 1b, Cases 2a and 2b, and Cases 3a and 3b). We also obtain the difference between the interior potential values of a homogeneous disk (Case 1a) and disk with 2 elliptical inclusions (Case 4). The numerical approximations of the interior potential u pu are displayed in Figures 2.9 and 2.12.

For each case, the impact of the inclusion is visible. This means that the interior potential u p -u contains information on the perturbations. This property may be useful for the numerical resolution of the associated inverse problem. Recall that the data of the EIT inverse problem are the values of the voltage U at the electrodes. Thus, it seems interesting to identify them at the different electrodes, particularly those close to the inclusion and those far from it.

We reported in Tables 2.9, 2.10, 2.11, and 2.12 the boundary voltages on some electrodes for Cases 1, 2, 3, and 4, respectively. The more significant changes of voltage values are recorded at the electrodes which are near the inclusion. Only some electrodes measure the effect of the inclusion. This is more marked for Cases 1, 3, and 4 than for Case 2. Here again, the skull with a very small conductivity plays a role and retains information which is available for EIT inversion. We observe that adding more perturbation (Case 4 -two ellipses), we retrieve highest values of the voltages at the electrodes near to each inhomogeneity. 

Conclusion

In this chapter, we have presented existence and uniqueness results for both the continuum model and the complete electrode model. We then applied the FEM to the corresponding variational problems. Numerical validation has been carried out in the case of an homogeneous conductivity distribution. The error has been computed in the L 2 norm and the H 1 norm in the interior computational domain for different meshes, and in the Euclidean norm for the voltages on the boundary. The numerical convergence rates coincide with the theoretical results. We have provided several numerical simulations for different configurations that we will consider in the succeeding chapters. Lastly, we have numerically observed the impact of an inclusion in a background medium on the values of the electric potential in the domain under inspection and at the surface electrodes (which are the data of the EIT inverse problem). This provides an insight about the surface electrodes on which the electrical potential is affected by variations in the conductivity of the medium. It would seem that the perturbed potential contains information on the characteristics of the inclusion. We investigate more of this property in the next chapter and we also propose a rigorous sensitivity analysis of the potential with respect to small variations of the conductivity or of the contact impedance of the electrodes.

Chapter 3

Sensitivity analysis of the electric potential in Complete Electrode Model

In this chapter, we introduce an analysis tool to investigate the sensitivity of the electric potential with respect to the variations in the conductivity and in the contact impedance of electrodes. From a mathematical point of view, sensitivity is the directional derivative of the solution with respect to conductivity and to contact impedance. We prove that the electrical potential, solution to the CEM forward problem, is Gâteaux differentiable at σ and at Z and we express its respective derivative. Numerical results illustrate this concept.

Introduction and notations

The EIT forward problem gives the potential distribution in Ω which are the data of the inverse conductivity problem. With this, knowing the effect of some parameters such as the conductivity distribution and the electrode contact impedance on the forward solution might provide us an information needed for the reconstruction problem. The study of how the input perturbations of a mathematical model influence the variability of its output is called sensitivity analysis. Sensitivity indicates the behavior of the potential when there is a slight variation of physical parameters. There are two approaches: global and local sensitivity analysis. The global sensitivity analysis focuses on how the input parameters, as a whole, influence the variance output, and it usually uses statistical tools and methods such as Sobol indices and Monte Carlo estimation [START_REF] Morio | Global and local sensitivity analysis methods for a physical system[END_REF]. Meanwhile, local sensitivity analyses how a small perturbation near an input space value influences the output, and it is usually derivative-based [START_REF] Morio | Global and local sensitivity analysis methods for a physical system[END_REF][START_REF] Diallo | Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né[END_REF].

In this chapter, we focus on the local sensitivity analysis of the electric potential in the CEM forward problem. In particular, we are interested in the sensitivity with respect to the conductivity and with respect to the contact impedance of electrodes. This allows to measure the effect of uncertainty in both conductivity and contact impedance values on the CEM forward model. This also permits to understand the impact of possible perturbations of the conductivity (e.g. tumors or strokes in medical applications) or small electrode Chapter 3. Sensitivity analysis of the electric potential in CEM defects on the potential measurements. Mathematically, a rigorous way to describe sensitivity is given by Gâteaux differentiability which expresses a weak concept of derivative. 

Sensitivity analysis of the electric potential with respect to the conductivity

Let I = (I 1 , . . . , L) T ∈ R L be a fixed current pattern and Z = (z 1 , . . . , z L ) L ∈ R L be fixed positive contact impedance values. Let the set of admissible conductivities P adm be defined as in Definition 1.2.1, that is,

P adm = {σ such that σ|Ω j ∈ C(Ω j ), 1 ≤ j ≤ N and σ min ≤ σ(x) ≤ σ max , x ∈ Ω}.
Denote B σ to be the map from the conductivity σ to the bilinear operator B in (2.10), that is, σ → B(•, •). We set (u, U ) := (u(•, σ), U (σ)) as the solution of the variational formulation

B σ ((u, U ), (w, W )) = L ℓ=1 I ℓ W ℓ , (3.1) 
where

B σ ((u, U ), (w, W )) = Ω σ∇u•∇w dx+ L ℓ=1 1 z ℓ e ℓ (u-U ℓ )(w -W ℓ ) ds.
We have proven in Section 2.1.2 that the variational problem (3.1) with conductivity σ ∈ P adm admits a unique solution (u, U ) ∈ H ⋄ . The aim is to prove differentiability of (u, U ) with respect to σ and to identify its derivative in a given direction µ. We consider a direction µ

∈ L ∞ (Ω) with µ ∞ = 1 such that σ + hµ ∈ P adm for any h ∈ [-h 0 , h 0 ], h 0 > 0. We set (u h , U h ) := (u(•, σ + hµ), U (σ + hµ)) ∈ H ⋄
the solution of the perturbed CEM forward problem with conductivity σ + hµ.

The associated variational formulation reads: find

(u h , U h ) ∈ H ⋄ such that B σ+hµ ((u h , U h ), (w, W )) = L ℓ=1 I ℓ W ℓ , (3.2) 
3.2. Sensitivity analysis of the electric potential with respect to the conductivity 47 for all (w, W ) ∈ H ⋄ , where the bilinear form is defined by

B σ+hµ ((u h , U h ), (w, W )) := Ω (σ+hµ)∇u h •∇w dx+ L ℓ=1 1 z ℓ e ℓ (u h -U h ℓ )(w-W ℓ )ds.
(3.3) In the sequel, we write a b if there is a constant C > 0 independent from the quantities a and b such that a ≤ Cb. We have the following preliminary lemma for the sensitivity with respect to σ. Lemma 3.2.1. Let σ ∈ P adm and h 0 > 0 such that σ + hµ ∈ P adm for any h ∈ [-h 0 , h 0 ] and any µ ∈ L ∞ (Ω) with µ L ∞ (Ω) = 1. Let (u, U ) and (u h , U h ) as the respective solutions in H ⋄ of the variational problems (3.1) and (3.2) for all (w, W ) ∈ H ⋄ . Then, we have the following estimate

∇(u h -u) L 2 (Ω) h µ L ∞ (Ω) .
Proof. Subtracting (3.1) from (3.2) leads to

B σ ((u h -u, U h -U ), (w, W )) = -h Ω µ∇u h • ∇w dx, ∀(w, W ) ∈ H ⋄ . (3.4) Taking (w, W ) = (u h -u, U h -U )
, and using Cauchy-Schwarz inequality, we get

|B σ ((u h -u, U h -U ), (u h -u, U h -U ))| ≤ h µ L ∞ (Ω) ∇u h L 2 (Ω) ∇(u h -u) L 2 (Ω) .
Furthermore, the coercivity of B σ on H ⋄ and (3.4) gives

(u h -u, U h -U ) 2 * |B σ ((u h -u, U h -U ), (u h -u, U h -U ))|.
By the equivalence of the norms • H⋄ and • * given in Lemma 2.1.3 and Remark 1 (see pp. 14 and 17), we obtain

(u h -u, U h -U ) 2 * h µ L ∞ (Ω) ∇u h L 2 (Ω) ∇(u h -u) L 2 (Ω) h µ L ∞ (Ω) ∇u h L 2 (Ω) (u h -u, U h -U ) * .
Hence, we get

(u h -u, U h -U ) * h µ L ∞ (Ω) ∇u h L 2 (Ω) . (3.5)
By studying in the same way the variational problem (3.2), we prove that

∇u h L 2 (Ω) ≤ C(σ min ),
with C(σ min ) a positive constant independent from h. Hence, (3.5) reads

(u h -u, U h -U ) * h µ L ∞ (Ω)
and finally, from the definition of (2.9)

∇(u h -u) L 2 (Ω) h µ L ∞ (Ω) .
Now we proceed to the Gâteaux differentiability of the potential given in the following proposition. Its derivative is also expressed in this proposition.

Proposition 3.2.2. Let I be a fixed current pattern and σ a known conductivity distribution satisfying (2.5). Let σ ∈ P adm and h 0 > 0 such that σ + hµ ∈ P adm for any h ∈ [-h 0 , h 0 ] and µ ∈ L ∞ (Ω) with µ L ∞ (Ω) = 1. Then the solution (u(•, σ), U (σ)) of (3.1) is Gâteaux differentiable with respect to σ. Moreover, the Gâteaux derivative of (u, U ) in the direction µ ∈ L ∞ (Ω) is the unique solution of the following variational problem: find

(u 1 , U 1 ) ∈ H ⋄ such that B σ ((u 1 , U 1 ), (w, W )) = - Ω µ∇u • ∇w dx (3.6) for all (w, W ) ∈ H ⋄ .
Proof. Let (u, U ) be the solution to the CEM forward problem (1.21)-(1.24) that satisfies the variational formulation (3.1). Also, let (u h , U h ) be the solution of the variational formulation (3.2) to the perturbed CEM forward problem. Let us introduce the differential quotients

u h,1 := u h -u h and U h,1 := U h -U h .
Subtracting (3.1) from (3.2), we have

∀ (w, W ) ∈ H ⋄ Ω σ∇(u h -u) • ∇w dx + L ℓ=1 1 z ℓ e ℓ ((u h -u) -(U h ℓ -U ℓ )(w -W ℓ )) ds + Ω µh∇u h • ∇w dx = 0 B σ ((u h -u, U h -U ), (w, W )) = - Ω µh∇u h • ∇w dx.
Dividing by h leads to

B σ ((u h,1 , U h,1 ), (w, W )) ≡ - Ω µ∇u h • ∇w dx, ∀(w, W ) ∈ H ⋄ . (3.7)
We compare the previous formulation (3.7) with the variational formulation (3.6):

B σ ((u h,1 -u 1 , U h,1 -U 1 ), (w, W )) = - Ω µ∇(u h -u) • ∇w dx.
We take (w, W ) = (u 1,hu 1 , U 

(u 1,h -u 1 , U 1,h -U 1 ) 2 * |B σ ((u 1,h -u 1 , U 1,h -U 1 ), (u 1,h -u 1 , U 1,h -U 1 ))| µ L ∞ (Ω) ∇(u h -u) L 2 (Ω) ∇(u 1,h -u h ) L 2 (Ω) .
The definition of the norm • * leads to

(u 1,h -u 1 , U 1,h -U 1 ) 2 * µ L ∞ (Ω) ∇(u h -u) L 2 (Ω) (u 1,h -u 1 ) H 1 (Ω) µ L ∞ (Ω) ∇(u h -u) L 2 (Ω) (u 1,h -u 1 , U 1,h -U 1 ) H⋄ .
Hence, we obtain

(u 1,h -u 1 , U 1,h -U 1 ) * µ L ∞ (Ω) ∇(u h -u) L 2 (Ω) . (3.8)
Finally, by Lemma 3.2.1, (3.8) reads

(u 1,h -u 1 , U 1,h -U 1 ) * h µ 2 L ∞ (Ω) .
This proves the strong convergence of the sequence (u 1,h , U 1,h ) h to (u 1 , U 1 ) in H ⋄ . Now it remains to show that the map µ → (u 1 , U 1 ) is linear continuous from L ∞ (Ω) to H ⋄ . For fixed µ, the derivative is defined by the solution of (3.6) and the right-hand side of (3.6) is linear in µ. The continuity of the linear application µ → (u 1 , U 1 ) follows from the following estimate: taking (w, W ) = (u 1 , U 1 ) in (3.6), we get

(u 1 , U 1 ) 2 * |B σ ((u 1 , U 1 ), (u 1 , U 1 ))| µ L ∞ (Ω) ∇u L 2 (Ω) ∇u 1 L 2 (Ω) µ L ∞ (Ω) ∇u L 2 (Ω) (u 1 , U 1 ) * .
Since u ∈ H 1 (Ω), we have

(u 1 , U 1 ) * µ L ∞ (Ω) .
This yields the continuity of the directional derivative with respect to µ and proves that (u(•, σ), U (σ)) is Gâteaux differentiable with respect to the conductivity σ.

Discretization of the sensitivity equation with respect to the conductivity

The derivative (u 1 , U 1 ) of the potential (u, U ) with respect to the conductivity σ in the direction µ is the solution of the following boundary value problem

-∇ • (σ∇u 1 ) = ∇ • (µ∇u) in Ω, u 1 + z ℓ σ∂ n u 1 = -z ℓ µ∂ n u + U 1 ℓ on e ℓ , ℓ = 1, . . . , L, e ℓ σ∂ n u 1 ds = - e ℓ µ∂ n u ds ℓ = 1, . . . , L, σ∂ n u 1 = -µ∂ n u on ∂Ω \ Γ e , (3.9) 
where u is the solution of the unperturbed problem, i.e. satisfies ∇ • (σ∇u) = 0. Formally, consider a perturbation of σ of the form σ + µh for fixed µ.

The potential u h is solution of the perturbed equation ∇ • ((σ + µh)∇u) = 0. Subtracting the above equations and dividing by h yields

-∇ • σ∇ u h -u h = ∇ • (µ∇u).
At the limit h → 0, we get that the sensitivity u 1 satisfies the first equation of (3.9). The different boundary equations can be obtained in a similar way. The variational formulation of the problem (3.9) is given by (3.6).

We consider a triangular mesh T h for 2D geometries Ω and on T h , we introduce X h the standard vector space of Lagrange finite elements of type P1 and B h the set of basis functions in X h . The approximation u h ∈ X h of the electric potential u, solution to the CEM forward problem, is given by (2.20). The approximation u 1 h of the sensitivity u 1 is defined by

u 1 h (x) = N j=1 v 1 j ϕ j (x) (3.10)
where v 1 j is the approximated value of u 1 at the jth node. Here again, to ensure that the potential U 1 satisfy the condition (2.6), we search the approximation U 1 h of U 1 under the form

U 1 h = L-1 k=1 β 1 k φ k , (3.11) with U 1 h = P β 1 and β 1 = (β 1 k ) T ∈ R L-1 (see (2.22)).
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We set the test functions (w, W ) = (ϕ i , 0). We substitute (2.20) and (3.10) to (3.6), and we get for i = 1, . . . , N

N j=1 v 1 j Ω σ∇ϕ j • ∇ϕ i dx + L ℓ=1 1 z ℓ e ℓ N j=1 v 1 j ϕ j - L-1 k=1 β 1 k φ k ϕ i ds = - N j=1 v j Ω µ∇ϕ j • ∇ϕ i dx, (3.12) 
where v = (v j ) N j=1 represent the degrees of freedom of the solution u of the unperturbed CEM (1.21)-(1.22)-(1.23)-(1.24). Furthermore, from the boundary conditions in (3.9), we deduce

1 z ℓ e ℓ (U 1 ℓ -u 1 ) ds = 0, ℓ = 1, 2, . . . , L. (3.13)
We use the same method which is presented previously in Section 2.2.3 to treat (2.27). Finally, we obtain the following linear system of size

N + L -1   S + M C C T G     v 1 β 1   =   F v 0 R L-1   , (3.14) 
where matrices S, M , C, and G are defined by (2.24), (2.25), (2.26), and (2.29), respectively,

v 1 = (v 1 j ) N j=1 , F = (F ij ) ∈ R N ×N with coefficients F ij = - Ω µ∇ϕ j • ∇ϕ i dx.
The vector v is computed using the resolution of the linear system (2.30).

Sensitivity analysis of CEM with respect to the contact impedance

Let the set of admissible values of the contact impedance vector be

Z adm := {Z ∈ R L |z min < z ℓ < z max }, with 0 < z min ≤ z max < +∞. Let I = (I 1 , . . . , L) T ∈ R L
⋄ be a fixed current pattern and σ be a fixed conductivity distribution in Ω. Denote B Z to be the map from the contact impedance vector Z to the bilinear operator B in (2.10), i.e., Z → B(•, •). We set (u, U ) := (u(•, Z), U (Z)) as the solution of the variational formulation

B Z ((u, U ), (w, W )) = L ℓ=1 I ℓ W ℓ , (3.15)
where the bilinear operator is defined as

B Z ((u, U ), (w, W )) := Ω σ∇u • ∇w dx + L ℓ=1 1 z ℓ e ℓ (u -U ℓ )(w -W ℓ ) ds. (3.16)
Note that the bilinear forms B σ and B Z coincide and that problem (3.15) with contact impedance Z ∈ Z adm admits a unique solution (u, U ) ∈ H ⋄ . We want to prove the differentiability of (u, U ) with respect to Z and to identify its derivative in a given direction η. We consider a direction η ∈ R L such that

Z := Z + ηh ∈ Z adm for any h ∈ [-h 0 , h 0 ], h 0 > 0. We set (ũ h , Ũ h ) := (u(•, Z), U ( Z)
) ∈ H ⋄ as the solution of the perturbed CEM forward problem with contact impedance Z. The associated variational formulation reads: find

(ũ h , Ũ h ) ∈ H ⋄ such that B Z ((ũ h , Ũ h ), (w, W )) = L ℓ=1 I ℓ W ℓ (3.17)
for all (w, W ) ∈ H ⋄ , where the bilinear form is defined by

B Z ((ũ h , Ũ h ), (w, W )) := Ω σ∇ũ h •∇wdx+ L ℓ=1 1 z ℓ + η ℓ h e ℓ (ũ h -Ũ h ℓ )(w -W ℓ )ds.
(3.18) Proposition 3.3.1. Let I be a fixed current pattern and σ a known conductivity distribution satisfying (2.5). Let Z ∈ Z adm such that Z + ηh ∈ Z adm for any h ∈ [-h 0 , h 0 ] and η ∈ R L . Then the solution (u, U ) of (3.15) is Gâteaux differentiable with respect to Z. Furthermore, its Gâteaux derivative in the direction η is the unique solution of the following variational problem: find

(u 2 , U 2 ) ∈ H ⋄ such that B Z ((u 2 , U 2 ), (w, W )) = L ℓ=1 η ℓ z 2 ℓ e ℓ (u -U ℓ )(w -W ℓ ) ds (3.19) for all (w, W ) ∈ H ⋄ .
Proof. Let (u, U ) be the solution in H ⋄ of the variational problem (3.15). Assume that (ũ h , Ũ h ) is the solution in H ⋄ of the perturbed CEM forward problem with contact impedance Z. Subtracting (3.15) from (3.17) and dividing by h, we have

Ω σ∇ ũh -u h • ∇w dx + L ℓ=1 e ℓ 1 h ũh z ℓ + hη ℓ - u z ℓ - 1 h Ũ h ℓ z ℓ + hη ℓ - U ℓ z ℓ (w -W ℓ )ds = 0.
(3.20)
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A Taylor expansion yields

1 z ℓ + hη ℓ = 1 z ℓ -h η ℓ z 2 ℓ + O(h 2 ),
from which we deduce

1 h ũh z ℓ + hη ℓ - u z ℓ = 1 z ℓ ũh -u h - η ℓ z 2 ℓ ũh + O(h).
Thus, the differential quotients defined by 

u h,2 := ũh -u h and U h,2 := Ũ h -U h satisfy the variational formulation B Z ((u h,2 , U h,2 ), (w, W )) = L ℓ=1 η ℓ z 2 ℓ e ℓ (ũ h -Ũ h ℓ )(w -W ℓ )ds + O(h) (3.21) for all (w, W ) ∈ H ⋄ . Furthermore, suppose (u 2 , U 2 ) ∈ H ⋄ is
B Z ((u h,2 -u 2 , U h,2 -U 2 ), (w, W )) = L ℓ=1 η ℓ z 2 ℓ e ℓ [(ũ h -u)-( Ũ h ℓ -U ℓ )](w-W ℓ )ds+O(h).
(3.22) Now we show that u 2,h strongly converges to u 2 as h → 0. Take (w, W ) = (u h,2 -u 2 , U h,2 -U 2 ). From the continuity and coercivity of the bilinear operator B Z , and using the equivalence of norms, we get

(u 2,h -u 2 , U 2,h -U 2 ) 2 * B Z ((u 2,h -u 2 , U 2,h -U 2 ), (u 2,h -u 2 , U 2,h -U 2 )) L ℓ=1 η ℓ z 2 ℓ e ℓ [(ũ h -u) -( Ũ h ℓ -U ℓ )] . . . [(u 2,h -u 2 ) -(U 2,h ℓ -U 2 ℓ )] ds + O(h) η L ∞ (Ω) (ũ h -u, Ũ h -U ) * (u 2,h -u 2 , U 2,h -U 2 ) * + O(h),
where η ∞ := max 1≤ℓ≤L |η ℓ |. Thus, we have

(u h,2 -u 2 , U h,2 -U 2 ) * η ∞ (ũ h -u, Ũ h -U ) * + O(h). (3.23)
Using the same arguments as previously and taking (w,

W ) = (ũ h -u, Ũ h - U ) in (3.20), we get (ũ h -u, Ũ h -U ) 2 * B Z ((ũ h -u, Ũ h -U ), (ũ h -u, Ũ h -U ) h L ℓ=1 η ℓ z 2 ℓ e ℓ (ũ h -Ũ h ℓ )[(ũ h -u) -( Ũ h ℓ -U ℓ )] ds + O(h 2 ) h η L ∞ (Ω) (ũ h , Ũ h ) * (ũ h -u, Ũ h -U ) * + O(h 2 ).
Hence, we obtain

(ũ h -u, Ũ h -U ) * h η L ∞ (Ω) (ũ h , Ũ h ) * + O(h 2 ).
Since (ũ h , Ũ h ) ∈ H ⋄ satisfies (3.17), and (ũ h , Ũ h ) * is bounded independently from h, we deduce

(ũ h -u, Ũ h -U ) * h η L ∞ (Ω) + O(h 2 ).
Finally, (3.23) leads to

(ũ h,2 -u 2 , Ũ h,2 -U 2 ) * h η 2 ∞ + O(h 2 ).
This proves the strong convergence of (ũ h,2 , Ũ h,2 ) h to (u 2 , U 2 ).

Lastly we prove that the map η → (u 2 , U 2 ) is linear continuous from R L to H ⋄ . Since (u 2 , U 2 ) is defined by (3.19) and the right-hand side of (3.19) is linear in η, the map is linear in η too. Taking (w, W ) = (u 2 , U 2 ) in (3.19), the continuity of the bilinear form gives us

(u 2 , U 2 ) 2 * B Z ((u 2 , U 2 ), (u 2 , U 2 )) η L ∞ (Ω) (u, U ) * (u 2 , U 2 ) * .
Hence, we obtain the following estimate

(u 2 , U 2 ) * η ∞ .
This ends the proof of the Gâteaux differentiability of the CEM forward solution with respect to the contact impedance.

Discretization of the sensitivity equation with respect to the contact impedance

The derivative (u 2 , U 2 ) of the potential (u, U ) with respect to the contact impedance Z in the direction η is solution of the following boundary value 3.3. Sensitivity analysis of CEM with respect to the contact impedance

55 problem ∇ • (σ∇u 2 ) = 0 in Ω u 2 + z ℓ σ∂ n u 2 = -η ℓ σ∂ n u + U 2 ℓ on e ℓ , ℓ = 1, . . . , L, e ℓ σ∂ n u 2 ds = 0 ℓ = 1, . . . , L, σ∂ n u 2 = 0 on ∂Ω \ Γ e , (3.24) 
where u is the solution of the unperturbed problem and satisfies ∇ • (σ∇u) = 0. Meanwhile, the solution ũh of the perturbed problem with contact impedance Z also satisfies ∇ • (σ∇u) = 0. Hence, the sensitivity u 2 accordingly satisfies ∇•(σ∇u 2 ) = 0, which is the first equation of (3.24). Similarly, solutions ũh and u satisfy the boundary conditions ũh +(z ℓ +η ℓ h)σ∂ n ũh = Ũ h ℓ and u+z ℓ σ∂ n u = U ℓ , respectively, at each electrode. Subtracting the said boundary conditions and dividing by h leads to

ũh -u h + z ℓ σ∂ n ũh -u h + hη ℓ σ∂ n ũh = Ũ h ℓ -U ℓ .
At the limit h → 0, we get that the sensitivity u 2 satisfies the second equation of (3.24). The remaining boundary conditions are determined by the same method. Thus, the variational formulation of the problem (3.24) is given by (3.19) subject to the above boundary conditions. We consider a mesh T h and the finite-dimensional space X h . Thus, we have the approximation u h of u be defined by (2.20). Furthermore, we denote the approximation of the sensitivity (u 2 , U 2 ) by

u 2 h (x) = N j=1 v 2 j ϕ j (x) (3.25)
with v 2 j as the approximation of the value of u 2 at the jth node, and

U 2 h = L-1 k=1 β 2 k φ k , (3.26) with U 2 h = P β 2 and β 2 = (β 2 k ) T ∈ R L-1 .
The approximation (3.25), and the choice of test-functions (w, ) and U h = (U ℓ h ) ∈ R L is obtained from (2.30). The boundary conditions in (3.24) lead to the following relation

W ) = (ϕ i , 0) in (3.19) give for i = 1, . . . , N N j=1 v 2 j Ω σ∇ϕ j • ∇ϕ i dx + L ℓ=1 1 z ℓ e ℓ N j=1 v 2 j ϕ j - L-1 k=1 β 2 k φ k ϕ i ds = N j=1 v j L ℓ=1 η ℓ z 2 ℓ e ℓ ϕ i ϕ j ds - L ℓ=1 U ℓ h e ℓ
1 z ℓ e ℓ (U 2 ℓ -u 2 ) ds = η ℓ I ℓ z ℓ ℓ = 1, 2, . . . , L.
(3.28)

We get the corresponding linear system of size

N + L -1   S + M C C T G     v 2 β 2   =   Qv + DU h P T I   , (3.29) 
where the matrices S, M , C, and G are defined by (2.24), (2.25), (2.26), and (2.29), respectively. Moreover, we have

v 2 = (v 2 j ) N j=1 , Q = (Q ij ) ∈ R N ×N with Q ij = L ℓ=1 η ℓ z 2 ℓ e ℓ ϕ i ϕ j ds, D = (D iℓ ) ∈ R N ×L with D ij = - η ℓ z 2
ℓ e ℓ ϕ i ds, and

I = η ℓ I ℓ z ℓ k ∈ R L ⋄ .

Numerical sensitivity analysis

We study numerically how a slight variation of the conductivity or of the contact impedance of electrodes affect EIT measurements for different two-and threedimensional configurations. The 3D numerical results have been obtained by Jérémy Heleine, and are part of a paper in preparation [DHMV].

Set-up

Two-dimensional set-up First, we consider three two-dimensional configurations which are the Cases 1a, 2a, and 3a described in Section 2.4 (see Figure 3.1). The number of electrodes attached around the boundary of the studied domain Ω is L = 32 (see Figure 2.7). The current pattern I = (I ℓ ) ℓ is defined by (as in Section 2.4.2)

I ℓ = sin 2πℓ L , ℓ = 0, 1, 2, . . . , L -1.
All simulations are executed with the software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. The different linear systems are solved with the default direct sparse solver in FreeFem++.

Three-dimensional set-up

We consider two geometries: the unit ball and a spherical head model. In the unit ball, the background conductivity is fixed to 0.33 S • m -1 . The mesh size used for the unit ball is h = 0.074, for a total of 501 044 tetrahedrons and 87 817 nodes. The spherical head model consists in three concentric balls B 1 , B 2 and B 3 , of respective radii r 1 = 0.87, r 2 = 0.9 and r 3 = 1 (see Figure 3.2). The regions Ω 1 = B 1 , Ω 2 = B 2 \ Ω 1 and Ω 3 = B 3 \ Ω 2 represent the brain, the skull, and the scalp, respectively. The values chosen for the conductivity in these tissues are the same as the 2D ones: 0.33 S • m -1 for the brain and the scalp layers, and 0.004 S • m -1 for the bone layer. The mesh uses 572 497 tetrahedrons and 99 546 nodes, ending up with a mesh size of h = 0.074. We consider standard positioning for the electrodes and use the 10-10 system (see Figure 3.2) [START_REF] Fernández-Corazza | Estimation of electrical conductivity of a layered spherical head model using electrical impedance tomography[END_REF]. This system gives us the spherical coordinates of the centers of L = 71 electrodes which are represented by small patches: the intersection of ∂Ω with a ball of radius 0.1. The contact impedance is the same on all electrodes and fixed to 0.1. For ℓ = 0, 1, . . . , L -1, the electrode e ℓ is defined by the longitude θ ℓ ∈ [0, 2π[ and latitude ϕ ℓ ∈ [-π/2, π/2] of its center. The current pattern I ℓ on this electrode is set to

I ℓ = sin θ ℓ cos ϕ ℓ .

Numerical sensitivity analysis with respect to the conductivity

The sensitivity (u 1 , U 1 ) of the potential in the given direction µ is computed as the solution of the linear system (3.14). The contact impedance is set to be constant across all electrodes on the boundary, that is, z ℓ = 0.1, ∀ℓ = 0, . . . , L -1. 

Numerical results in 2D

We study three domain cases of Section 2.4: Case 1a, 2a, and 3a. The same FEM mesh structure presented in Table 2.8 are used for the simulations.

Unit disk. We set the background conductivity equal to 0.33 S • m -1 . We consider a perturbation in the conductivity. This perturbation is modeled by a disk D = D r (x 0 ) of radius r centred at x 0 . The direction is µ = 1 D . At the top of Figure 3.3, the perturbation of radius r = 0.1 is placed at two different positions, namely x 0 = (0.4, 0) (I) and x 0 = (0.7, 0) (II). In the bottom left of Figure 3.3, we report the absolute value of the sensitivity corresponding to the circular inhomogeneity centered at x 0 = (0.4, 0) for a bigger radius r = 0.3 (III).

The simulations indicate how the position of the inhomogeneity affects sensitivity. In particular, it shows that the largest values of the sensitivity are observed around the inhomogeneity. The sensitivity decreases away from the defect. The sensitivity on the boundary is localized in the side of the perturbation. Moreover, increasing the inhomogeneity's size increases the amplitude of the sensitivity significantly. Finally, in the bottom right of Figure 3.3, we present the sensitivity corresponding to two circular perturbations: one centred at x 0 = (0.4, 0) of radius r = 0.1 and the other centred at x 0 = (-0.4, -0.5) of radius r = 0.2 (IV). The sensitivity on the boundary reaches maximum values at the electrodes close to the bigger inhomogeneity.

Table 3.1 reports the sensitivity values at some chosen electrodes and we can observe that it supports the conclusions given above. The sensitivity of the voltages at the electrodes near the inclusion which are e 4 and e 30 for Simulations I and II has bigger values than the ones far from it. Furthermore, we confirm that those electrodes record bigger values of the sensitivity when the inclusion is very near the boundary (Simulations II and IV) and when the inclusion is larger in size (Simulations III and IV). Chapter 3. Sensitivity analysis of the electric potential in CEM Head model. We consider the same conductivity distribution as in Case 2a in 2.4, that is, the adopted conductivity values are σ 1 = σ 3 = 0.33 S • m -1 for the brain and scalp, respectively, and σ 2 = 0.004 S • m -1 for the skull. We then examine the effect of a small perturbation in the conductivity of the region Ω 1 modeling the brain. Figure 3.3 compares the sensitivity of the potential with respect to a perturbation of different locations and areas. We perform the same test-cases as for the unit disk (see Figure 3.4 and Table 3.2). We observe the same behaviour of the sensitivity, with respect to the location, size, and number of perturbations. However, notice that the sensitivity values in this case are significantly smaller than that of the unit disk. This is in accordance with the behaviour of the perturbed potential for Case 2 shown in Figure 2.9 and Table 2.10 when compared with the homogeneous unit disk. Furthermore, we again note that there is a significant decrease in the sensitivity value for all the test-cases. The sensitivity values around the boundary are close to zero. This might be due to high resistivity of the skull. The bottom left image in Figure 3.4 shows the sensitivity of the potential when the conductivity of the skull is perturbed and there is no perturbation in the brain. The sensitivity values of the voltages at some electrodes for this simulation appear in Table 3 

Thorax.

We consider Case 3a of Section 2.4 with the blood's conductivity equal to 0.67 S • m -1 and the conductivities of the lungs and the heart are, respectively, fixed to 0.09 S • m -1 and 0.4 S • m -1 [MPH06]. Figure 3.5 shows the sensitivity of the potential with respect to a small perturbation in the blood conductivity. We compare different locations and areas for the perturbation. We again observe that perturbations near the boundary achieve relatively larger amplitudes of the sensitivity. Also, increasing the inhomogeneity's size increases the sensitivity values greatly. Table 3.3 details the sensitivity values at some chosen electrodes and we deduce the same conclusions given above. The sensitivity values are not significantly large but we can easily see the electrodes which are more sensitive to a small change in the blood conductivity. 

Numerical results in 3D

Unit ball. We first consider a spherical perturbation of center (0.45, 0, 0.45) and of radius 0.2. We show on the top image of Figure 3.6 the sensitivity u 1 with respect to the conductivity in the direction corresponding to the indicator function of this ball. Middle and bottom images of Figure 3.6 report the sensitivity in the direction of a perturbation centered at (0, 0.3, 0.35) with radius 0.2 and 0.35, respectively. As in 2D, we observe the largest values of the sensitivity around the support of the perturbation. Increasing the volume of the inhomogeneity increases the amplitude of the sensitivity of the interior potential and of the surface voltages. Spherical head model. We consider the same test cases as for the unit ball. These three perturbations are all contained in the brain layer. The corresponding sensitivities are shown in Figure 3.7. We observe the same behavior as with the unit ball if we look at the location of the biggest sensitivity values. However, the amplitude of these values is lower here than in the unit ball because of the presence of the skull. In Figure 3.8, we show on the left the values of the sensitivity on the boundary of the domain. On the right, we can observe the resulting values on the electrodes. Top of the figure is the case of a spherical perturbation centered at (0, 0.3, 0.35) with radius 0.2. On the bottom, the perturbation is of same radius and centered at (0, -0.3, 0.35). It appears that the highest absolute values of the surface measurements are located on the electrodes that are the nearest from the perturbation. The sign of these values seems to be governed by the sign of the injected current, which is the same as the sign of the y-coordinate. In fact, we observe that the positive part of the sensitivity is oriented to the part of the boundary where a negative current is injected. This behavior matches the one which can be observed on 2D simulations. The inverse problem we are interested in, consists of the reconstruction of the conductivity inside the domain from the knowledge of the electrical potential values at the electrodes, which represent the EIT measurements. Assuming that the conductivity in healthy domains is known, this problem is equivalent to looking for inhomogeneities in this background parameter. Then, a similar argument to the one involved in [START_REF] Darbas | Sensitivity analysis for 3D Maxwell's equations and its use in the resolution of an inverse medium problem at fixed frequency[END_REF] for Maxwell's equations can be invoked: the Gâteaux derivative can be used to better understand the difference between the measurements on healthy and perturbed domains and to propose an inversion algorithm for reconstructing the characteristics of dielectrical inclusions. In [KHM06; ARE19], the authors studied the sensitivity distribution of an impedance measurement which describes the change in measured impedance caused by a given conductivity distribution. Kauppinen et. al [START_REF] Kauppinen | Sensitivity distribution visualizations of impedance tomography measurement strategies[END_REF] concluded in their paper that sensitivity are found low in deeper regions of the medium, while in [START_REF] Andiani | Sensitivity analysis of thorax imaging using two-dimensional Electrical Impedance Tomography (EIT)[END_REF], they summarized the effect of different conductivity of the tissue layers to the performance of the EIT system, that is, a high sensitivity distribution is determined in the muscle layer with high electrical conductivity. Moreover, inhomogeneous medium yield a non-uniformly and high sensitivity distribution pattern as compare to that of the homogeneous medium.

Numerical sensitivity analysis with respect to the contact impedance

We compute the sensitivity (u 2 , U 2 ), solution of the linear system (3.19) with direction η ∈ {0, 1} L : for 1 ≤ ℓ ≤ L, η ℓ is set to 1 if we consider a perturbation of the contact impedance of the ℓ-th electrode, and to 0 otherwise.

Numerical results in 2D

Unit disk. We study a perturbation of the contact impedance at the 7th electrode, i.e. η ℓ = 0 for all 1 ≤ ℓ ≤ L except for η 7 = 1. Figure 3.9 shows the values of the sensitivity inside the domain u 2 in the case of a perturbation on the 7th (I), 19th (II) and on both electrodes (III), while Table 3.4 reports the corresponding sensitivity values U 2 of the perturbed electrodes. We first notice that the values of U 2 show a peak: the highest amplitude can be observed at the perturbed electrode. This behavior has been observed in all cases where a single electrode is perturbed. Moreover, the case of two perturbed electrodes shows two peaks, each located at a perturbed electrode. It is in fact an illustration of the linearity of the sensitivity equation (3.19) with respect to the direction of derivation: the vector η in the case of two perturbed electrodes is the sum of the two vectors corresponding to each electrode perturbed independently. Then, the sensitivities can also be summed to obtain the sensitivity corresponding to a perturbation of both electrodes. Head model. We study the same perturbations as in the unit disk. Figure 3.10 and Table 3.5 present the sensitivity inside the domain and on the perturbed electrodes, respectively. We also deduce the same conclusions as in the case of the unit disk. Chapter 3. Sensitivity analysis of the electric potential in CEM Thorax. We consider the same perturbations as in the unit disk. Figure 3.11 displays the values of u 2 , while Table 3.6 details the numerical sensitivity values on the perturbed electrodes. Similar observations are gathered in this case.

Thorax -I Thorax -II

Thorax -III Electrodes 

Numerical results in 3D

Unit ball. We first consider a perturbation on the 6th electrode, i.e. η ℓ = 0 for all 1 ≤ ℓ ≤ L except for η 6 = 1. We show on the top left of Figure 3.12 the values of the sensitivity on the electrodes, i.e. the values of the vector U 2 . On the top right, we report the values of this same vector in the case of a perturbation on the 31st electrode. The bottom of this figure presents the values of the vector U 2 in the case of both the 6th and the 31st electrodes are perturbed. The conclusions are confirmed. The impact of a defective electrode of the EIT measurements is localized. 

Conclusion and perspectives

We introduced the Gâteaux derivative as a tool for the sensitivity analysis of the electric potential in the CEM forward problem and showed that it is Gâteaux differentiable with respect to the conductivity and to the contact impedance of the electrodes. We have also expressed its derivative as a solution to a variational problem and applied the FEM for the discretization. We have presented several numerical simulations for different 2D and 3D configurations. The electric potential and the surface voltages are more sensitive to inhomogeneities in the conductivity that are located near the boundary and to those that are larger in size. Furthermore, the potential's sensitivity with respect to contact impedance is localized on the perturbed electrode and when an additional electrode is perturbed, the total sensitivity is the sum of the corresponding sensitivities.

This study gives insights on the sensitivity of the EIT measurements with respect to a small perturbation (or uncertainty) in the conductivity, and with respect to a small defect in some electrodes. In both cases, the impact is localized. We have observed that, in the head model, an uncertainty of a tissue conductivity value could have a great impact on the measurements, and hence on the reconstruction. It would be interesting to explicit relations between the sensitivity values and the characteristics of the perturbations as in [START_REF] Darbas | Sensitivity analysis for 3D Maxwell's equations and its use in the resolution of an inverse medium problem at fixed frequency[END_REF]. Another perspective could be not to study the effect separately but to perturb both the conductivity and the contact impedance. For instance, it seems that an inhomogeneity in the conductivity which is localized near a defective electrode could be problematic for the EIT inverse problem. Other properties of the electrodes can be taken into account: position, size, shape [START_REF] Jehl | Correcting electrode modelling errors in EIT on realistic 3D head models[END_REF]. This chapter offers many further theoretical and numerical questions.

Chapter 4

Metaheuristics algorithms for solving the 2D EIT inverse problem

This chapter focuses on the numerical resolution of the inverse conductivity problem for EIT using metaheuristic algorithms. To this end, the inverse problem is formulated as a minimization problem. Several metaheuristic algorithms are introduced and presented in detail. Two-dimensional numerical simulations are performed to compare their accuracy and efficiency. This chapter is the development of an article, titled "Comparative Study of Heuristic Algorithms for Electrical Impedance Tomography", accepted for publication in Philippine Journal of Science [START_REF] Velasco | Comparative Study of Heuristic Algorithms for Electrical Impedance Tomography[END_REF].

Formulation of the inverse problem

As an inverse conductivity problem, EIT aims to find the unknown conductivity distribution σ in the body Ω given the simultaneous measurements of voltages U and current patterns I on the boundary ∂Ω. Whereas the forward problem is well-posed, the inverse problem of EIT is nonlinear and highly ill-posed which makes EIT still an active area of research nowadays. In the mathematical literature the inverse problem of EIT is also known as Calderòn's problem [START_REF] Calderón | On an inverse boundary value problem[END_REF]. Earlier results on EIT inverse problem is focused on the identifiability question that the conductivity distribution in the domain can be uniquely determined, given the boundary measurements. In particular, can a strictly positive conductivity in the elliptic equation (1.21) be uniquely determined in a bounded domain by the entire corresponding voltage-to-current or Dirichlet-to-Neumann (DtN) map on the boundary of the domain. In its original paper [START_REF] Calderón | On an inverse boundary value problem[END_REF], Calderón gave an approximation formula to a conductivity that is close to a constant conductivity, assuming the full knowledge on all possible boundary data pairs. However, the first idenitifiability result for the continuum model was given by Kohn and Vogelius in [START_REF] Kohn | Determining conductivity by boundary measurements[END_REF]. They proved the unique identifiability of σ and its normal derivative on the boundary using a full knowledge of the DtN map and under the assumptions that the domain is bounded, C ∞ domain, and σ ∈ L ∞ ( Ω) is a strictly positive function, which is C ∞ in a neighborhood of ∂Ω. Astala and Päivärinta later extended the identifiability from the DtN results for L ∞ conductivity in two dimensions [START_REF] Astala | Calderón's inverse conductivity problem in the plane[END_REF]. Results have also been obtained on the problem of whether one can determine the conductivity in the interior from only partial information on the DtN map (e.g. [KSU07; IUY10; HPS12]). For more detail we refer to the review papers [START_REF] Uhlmann | Electrical impedance tomography and Calderón's problem[END_REF][START_REF] Borcea | Electrical Impedance Tomography[END_REF]. Furthermore, EIT in practice injects a current pattern on the boundary and then records the resulting boundary voltage measurements. With this set-up, we define instead the current-to-voltage relation known as the Neumann-to-Dirichlet (NtD) map for the continuum model. Moreover, since voltage measurements are known to be noisy in nature, the solution can be dominated by noise unless additional conditions are imposed. As such, EIT is a particularly difficult example of attempting to recover a signal from noise [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. In line with this, one of the advantages of using NtD map is that it is smoothing and so, it is better behaved for noisy measurements. Recall from Section 2.1.1 the space (2.1)

L(∂Ω) = f ∈ L 2 (∂Ω) ∂Ω f dx = 0 . (4.1)
We define the map Λ σ : L(∂Ω) → L(∂Ω) given by

Λ σ (f ) = u| ∂Ω , (4.2) where u ∈ H = u ∈ H 1 (Ω) such that ∂Ω u ds = 0 (2.2).
The operator Λ σ is called the NtD map and depends nonlinearly on σ. The NtD map is also selfadjoint and positive-definite [START_REF] Borcea | Electrical Impedance Tomography[END_REF]. The EIT inverse problem is finding σ given the NtD map Λ σ . However, in several applications in EIT, a full knowledge of the NtD map is impossible to obtain since one can only measure currents and voltages on part of the boundary. Hence, we find the conductivity σ given a partial, noisy knowledge of Λ σ for the EIT reconstruction problem. Results on determining the conductivity in the interior from only partial information on the NtD map are discussed in [KSU07; IUY10; HPS12; Hyv04]. On the other hand, for real-life measurements using CEM, a linear relation between the applied average currents I ℓ and the electrode voltages U ℓ , 1 ≤ ℓ < L, is the only obtained information [START_REF] Hyvönen | Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions[END_REF]. The data consist, essentially, of a finite-dimensional linear electrode current-to-electrode voltage operator R σ given by

R σ I = U, (4.3) where R σ : R L → R L [Hyv04]
. The EIT inverse problem for CEM is the recovery of σ given the linear map R σ . We can say that R σ is the discrete counterpart of the continuous map Λ σ and R σ has also the some characteristics of Λ σ such as being self-adjoint and positive [START_REF] Hyvönen | Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions[END_REF]. Lastly, the resemblance between the two operators gets better when the area covered by the electrodes gets larger and the electrodes get smaller. The challenging issues for EIT are to provide numerical methods for reconstructing the conductivity of a medium from a finite number of boundary measurements. There are two primary types of algorithms in EIT: static imaging [YWT87; VN17] and difference imaging [BB84; VN17]. Static imaging attempts to recover the absolute conductivity distribution of a body, whereas difference imaging aims to recover an image of the change in conductivity distribution between the acquisition times of two data. We focus on static imaging, which is suitable for the case when the electrical properties of the body under study do not vary significantly during the time necessary for data collection [START_REF] Herrera | Electrical Impedance Tomography Algorithm Using Simulated Annealing as a Search Method[END_REF].

In this chapter, we assume that σ is piecewise constant, that is,

σ(x) = n i=0 σ i χ i (x), x ∈ Ω,
where σ 0 is the background conductivity, χ 0 (x) is the characteristic function of the background domain

Ω 0 = Ω \ n i=1 Ω i , n corresponds to the number of (possible) inclusions Ω i (i = 1, . . . , n) in Ω, χ i (x) = 1, x ∈ Ω i , 0, x ∈ Ω i ,
and σ i is the conductivity of the i th inclusion Ω i with σ min ≤ σ i ≤ σ max , ∀ i = 1, . . . , n for some constants 0 < σ min , σ max < +∞ (Definition 1.2.1). We aim to retrieve the n inclusions of different conductivities in Ω. More precisely, the goal is to estimate iteratively a vector P ∈ R m of unknown parameters and the vector S := (σ i ) n i=1 of conductivities, for which the error between the measured voltages and that predicted by the CEM forward problem is minimized. The vector P contains geometric attributes (e.g., center, radius, side length) of the inclusions Ω i , i = 1, . . . , n (of respective conductivities σ i ). The • 2 is the Euclidean norm. In the next section, we discuss the metaheuristic algorithms we use to minimize the cost function C(P, S) in (4.4).

Presentation of the metaheuristic algorithms

Introduction

Metaheuristics is from the family of approximate optimization methods that follow a high-level problem-independent algorithmic framework. Indeed, the prefix "meta" is used to indicate that these algorithms are "higher level" heuristics, in contrast with problem-specific heuristics [START_REF] Boussaïd | A survey on optimization metaheuristics[END_REF][START_REF] Wang | Heuristic Optimization[END_REF]. Metaheuristics can be defined as a guiding strategy in the search process of optimal solution by iteratively trying to improve a candidate solution with regard to a given measure of quality [START_REF] Wang | Heuristic Optimization[END_REF]. However, unlike exact optimization there is no guarantee that optimal solutions can be reached. Moreover, the proximity of the obtained solution from the optimal is not defined [Sia16; BLS13; Luk13; HMCS19].

Chapter 4. Metaheuristics algorithms for solving the 2D EIT... Algorithms that are designed to solve a wide range of optimization problems without adapting heavily to each problem are called metaheuristic algorithms. Some advantages of metaheuristic algorithms are:

1. They are suitable for global optimization.

2. They allow restrictions to the solution space and introduction of prior information without using the classical regularization techniques.

3. No evaluation of objective function derivatives is needed.

4.

No assumption on function continuity needs to be made.

However, heuristic algorithms are relatively expensive in terms of computing time and this limits their applicability to the field of difference imaging at present. Nevertheless, the continuous and rapid advancement of computing technology makes the development of real-time dynamic imaging applications based on metaheuristic methods conceivable in the near future. Almost all metaheuristic algorithms are nature-inspired, that is, these algorithms are based on some principles from physics, biology, or ethology. They also often make use of stochastic components like random variables and they have several parameters that need to be fitted to the problem at hand. There are two contradicting criteria that must be considered in the design of metaheuristic algorithms: exploration of the search space and exploitation of best solutions found. A good balance between the exploration and the exploitation is the essence of the success of metaheuristic algorithms in optimization. Exploration allows an expanded search in a widespread domain. Exploitation limits parts of the search space to estimate the solution with higher precision. Metaheuristic algorithms can also be classified into population-based search or single-solution-based search. In single-solution based algorithms, an optimal solution is obtained by tweaking one solution during the search. These kinds of algorithms are exploitation oriented. Meanwhile, population-based search transforms the whole population of solutions and it is exploration oriented. It is also the most commonly used between the two [START_REF] Luke | Essentials of Metaheuristics. Second[END_REF][START_REF] Siarry | Metaheuristics[END_REF].

The development of heuristic algorithms has experienced significant growth over the past two decades [START_REF] Hussain | Metaheuristic research: a comprehensive survey[END_REF]. New algorithms, including improved variants of known methods, are continuously being proposed and applied to various real world problems. This is in part due to efforts directed at encouraging the creation of more advanced methods, including those of the IEEE Congress on Evolutionary Computation, and Black-Box Optimization Competition [START_REF] Molina | An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions[END_REF]. Inspirations behind the methods are wide-ranging -from evolution, the behavior of animals, to physical processes. As such, the selection process of algorithms included in this study is an attempt to balance the diverse inspirations involved in developing the methods and the recency of such methods.

As pointed out, estimation of the conductivity distribution based on boundary voltages and electric currents is an ill-conditioned inverse problem. Minimizing the voltage error may then produce unsatisfactory results. Hence, reconstruction requires some methods of improving the conditioning so that the wild variations causing the instability are ruled out. The most common method is regularization, which involves applying further assumptions and constraints based on a priori information. Typically, this means that the inverse problem is augmented with a side constraint such as the minimum length solution, the minimum error with respect to a priori solution, or the smoothness of the solution [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. The said assumptions and regularization techniques are not used in this thesis to show one of the advantages of metaheuristic algorithms over iterative methods.

In the following sections we present a comparative analysis of six heuristic algorithms -Firefly Algorithm (FA), Novel Bat Algorithm (NBA), Genetic Algorithm with New Multi-Parent Crossover (GA-MPC), Success History-based Adaptive Differential Evolution with Linear Population Size Reduction with Semi-Parameter Adaptation Hybrid with Covariance Matrix Adaptation Evolutionary Strategy (LSHADE-SPACMA), Ensemble Sinusoidal Differential Covariance Matrix Adaptation (LSHADE-cnEpSin), and Effective Butterfly Optimizer with Covariance Matrix Adapted Retreat Phase (EBOwithCMAR) -for the EIT image reconstruction problem. The next few sections discuss the said algorithms which are all variants of nature-inspired algorithms and population based.

FA

Firefly Algorithm (FA) belongs to the family of bio-inspired optimization techniques [START_REF] Yang | Nature-Inspired Metaheuristic Algorithms[END_REF]. It is a metaheuristic algorithm designed by Xin-She Yang in 2007 [START_REF] Yang | Nature-Inspired Metaheuristic Algorithms[END_REF]. FA is designed based from the behavior of fireflies in relation to their production of short and rhythmic flashes. The flashing light is produced by a process of bioluminescence and the pattern of flashes are often unique for a particular species of firefly. There are two fundamental functions of such signaling systems that are known: to attract mating partners (communication), and to attract potential prey. The rate of flashing and its duration form a part of the signal system that brings both sexes together. In the same species, the female fireflies respond to a male's unique pattern of flashing and this can be formulated as an objective function to an optimization problem. The fireflies will then search the solution space by moving to the position of their adjacent firefly that has better cost function value.

For the formulation of the algorithm, there are the three (idealized) assumptions:

1. All fireflies are unisex, that is, one firefly will be attracted to other fireflies regardless of their sex.

2. Attractiveness is proportional to their brightness.

3. The brightness of a firefly is determined by the landscape of the objective function.

It is also known that light intensity I at a particular distance r from the light source obeys the inverse square law and that air absorbs light which makes the light intensity weaker as the distance increases. With the addition of a fixed Chapter 4. Metaheuristics algorithms for solving the 2D EIT... light absorption coefficient γ, the light intensity can be approximated according to the inverse square law with the following Gaussian form

I(r) = I 0 e -γr 2 .
From the assumption that firefly's attractiveness is proportional to the light intensity seen by adjacent fireflies, we have the attractiveness β be given by

β = β 0 e -γr 2 .
Moreover, the distance between two fireflies i and j at positions x i and x j , respectively, is determined by the Cartesian distance. A firefly i will naturally move (is attracted) to the position of a more attractive (brighter) firefly j and the movement is described by

x i = x i + β 0 e -γr 2 (x j -x i ) + αǫ i ,
where the second term is due to the attraction and the third term is a randomization with parameter α and ǫ i is a a vector of random numbers generated from a uniform distribution. Note that the parameter γ is the variation of the attractiveness and is crucial to the speed of convergence of FA. In practice, the value of γ varies from 0.1 to 10. The value of α may also be adapted to improve the search/exploitation capability of the algorithm. The algorithm starts with an initial population of virtual fireflies that is randomly generated. In each time step, the light intensity of each firefly is compared pairwisely. In the standard FA, light intensity is determined by the objective function. If a firefly j has a greater light intensity than firefly i, the latter will fly towards the former. While the light intensity is referred to as an absolute measure of emitted light by the firefly, the attractiveness is a relative measure of the light that should be seen in the eyes of the beholders and judged by other fireflies [START_REF] Fister | A comprehensive review of firefly algorithms[END_REF]. The light intensities of the fireflies are then updated given the new positions. The fireflies' positions (solutions) are ranked and the current best solution is updated. A pseudo-code of FA is given in Appendix A. Some applications of FA in the literature can be found in [YH13b; FFYB13; CLPM20]. Extensive simulations shown in [START_REF] Fister | A comprehensive review of firefly algorithms[END_REF] were carried out to compare the performance of FA with Particle Swarm Optimization and GA. Results showed that FA finds the global minima more efficiently and with higher success rate.

NBA

Bat Algorithm (BA), developed by Xin-She Yang in 2010 [START_REF] Yang | A New Metaheuristic Bat-Inspired Algorithm[END_REF], was inspired by the echolocation behavior of bats. One of the bat species, known as microbats, are famous for using echolocation extensively. Microbats use echolocation which is a type of sonar to detect prey, avoid obstacles, and locate their roosting crevices in the dark. They emit a very loud sound pulse and listen for the echo that bounces back from the surrounding objects. Moreover, microbats can detect the distance and orientation of the target, the type of prey, and even the moving speed of the prey such as small insects. Studies also show that these bats are able to discriminate targets by the variations of the Doppler effect induced by the wing-flutter rates of the target insects. The echolocation behavior of microbats can be formulated in such a way that it can be associated with an objective function of an optimization problem. The current best solution is taken to be the prey/food and then the microbats will try to get closer to it [START_REF] Yang | A New Metaheuristic Bat-Inspired Algorithm[END_REF].

Just like in FA, the following are the approximate or idealized rules used for the design of BA: [START_REF] Yang | A New Metaheuristic Bat-Inspired Algorithm[END_REF] 1. All bats use echolocation to sense distance and also 'know' the difference between food/prey and background barriers in some way.

2. Bats fly randomly with velocity v i at position x i with a fixed frequency f min , varying wavelength γ, and loudness A 0 to search for prey. They can automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission r ∈ [0, 1], depending on the proximity of their target.

3. Although the loudness can vary in many ways, we assume that the loudness varies from a large (positive) A 0 to a minimum constant value A min .

BA starts with an initialization of N virtual bats represented by their positions x i and velocities v i in a D-dimensional search space. A current global best solution is then determined and a set of new solutions are generated using the minimum and maximum frequency. Meanwhile, a local search, where a new solution is generated around the current best, is invoked if a random number is bigger enough than the rate of pulse emission r. Lastly, the objective function values are ranked and solutions, loudness, and pulse emission rate are updated. The current global best solution is updated and the algorithm will continue until the stopping criterion is reached.

Novel bat algorithm (NBA) is a metaheuristic method proposed by Xian-Bing Meng et al. [START_REF] Meng | A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization[END_REF]. NBA is one of the variants of the basic bat algorithm (BA). Now, the change in frequency of a (sound) wave when an observer moves relative to its source is called the Doppler Effect. Compared to the sound frequency itself, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession. In the original BA, the microbats' self-adaptive compensation for Doppler Effect in echoes is not accounted. Accounting Doppler Effect makes the modeling of the microbats' echolocation ability more accurate. Moreover, the original BA did not consider the fact that bats hunt in a wide range of habitats. For these reasons, we employed NBA instead of the basic BA. NBA adds two more idealized rules:

Chapter 4. Metaheuristics algorithms for solving the 2D EIT... Similarly in BA, NBA starts with a randomly generated population of bats, each bat is subjected to a selection of habitat/s where it will forage. This habitat selection is a stochastic decision such that, if a uniform random number in [0, 1] is smaller than the selection threshold, bat i will forage in a wide range of habitats; otherwise, it would hunt in limited habitats. If a randomly generated number is bigger than bat i's pulse emission rate, a local search is performed by making the bat fly randomly around a certain neighborhood of the current best position (solution). If bat i's new position is closer to the food than the current best, the rate of its pulse emissions is increased while the loudness is decreased. Finally, after looping through all the bats, the bats are ranked according to their proximity to the food, which is represented by their objective function values. If the best solution does not improve after a certain time steps, the loudness and pulse emission rates of the bats are re-initialized. The pseudo-code is given in Appendix A.

In [START_REF] Meng | A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization[END_REF], the performance of NBA was tested under twenty optimization problems and four real-world engineering designs. Simulations showed that NBA is effective, efficient, stable, and superior over some well-known algorithms such as the original BA, Particle Swarm Optimization, Flower Pollination Algorithm, and even DE. A wide range of applications of this algorithm are briefly summarized in [START_REF] Yang | Bat algorithm: literature review and applications[END_REF].

GA-MPC

Genetic Algorithm or GA belongs to a set of algorithms called Evolutionary Algorithms (EA). EAs are population methods in which a sample of candidate solutions are considered instead of a single candidate solution. Note that we call a candidate solution,an individual and a set of candidate solutions, a population. In EA, each of the individuals affect how other candidates will improve in the quality function, that is, rejecting poor solutions and creating new ones by adjusting the good solutions to the direction of better ones. EAs are divided into two kinds: generation-based algorithms which update the entire sample once per iterations and steady-state algorithms which update the sample a few candidates at a time. GA is among the latter kind.

GA was first proposed by John Holland in 1975 [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF] and it is originally based on the Darwinian principle of evolution. GA as a population method iterates through fitness assessment, selection and breeding, and population reassembly. A cycle of the said steps is called a generation. Fitness assessment is the computation of quality function value of an individual. Selection is the process of picking candidate solutions based on their fitness while breeding is the production of one or more children from a population through an iterated process of selection and tweaking. The plain tweaking of an individual (asexual breeding) is called mutation and recombination or crossover is a special tweaking (sexual breeding) involving two candidate solutions (parents) to produce two children.

The first step in GA or in any EAs is the population initialization. Here, some n individuals are created at random in which we ensure that every individual is unique. If likely initial "good" regions of the space are known, then we can tend to generate individuals in those regions. Next is the breeding in which we begin with an empty population of children. In the fitness-based selection, the more fit members, called parents, of the population are selected. The selected members are then recombined to form members of the successor population. Recombination has two components: crossover operator and mutation operator. Crossover is the mixing and the matching of parts of two parents to form children. Its development was based on the premise that highly-fit individuals share certain traits in common and that there is some degree of linkage between genes (particular slot/element in vector). Mutation in GA is usually done using the Gaussian convolution. In this process, a random noise under a Gaussian distribution, with a mean µ = 0 and variance σ 2 , is added to each number in the vector. The variance is chosen according to the degree of emphasizing small numbers over large ones. The noise should be small to finesse local peaks and large enough to escape local optimal. Furthermore, Tournament Selection is the primary selection technique used in GA. It picks the fittest individual of some t (most popular setting is 2) individuals picked at random, with replacement, from the population. GA is one of the most popular heuristic algorithms and has been applied to different problems in science and engineering. For the discussion of some of the applications of GA, we refer the readers to [START_REF] Mccall | Genetic algorithms for modelling and optimisation[END_REF][START_REF] Mutingi | Grouping Genetic Algorithms: Advances and Applications[END_REF]. A typical design for a classical GA would be as follows:

1. population initialization with size P , 2. fitness assessment and choosing the best solution, 3. for P/2 times apply a tournament selection to select two parents and produce two children using linear recombination, and mutate the resulting children, 4. the new population to be considered is the pool of children, 5. repeat steps until the best solution is the ideal solution or the maximum number of iterations has been reached.

The above description is the general form of GA. One variation of GA involves directly injecting into the next population the fittest individual(s) from the previous population. This version of GA is called elitism and the chosen individuals are called elites. With elitism, the solution quality obtained by the algorithm will not decrease from one generation to the next. In this study, GA-MPC, a variant of GA that proposes a new crossover method, and randomized operation in lieu of mutation, is considered [START_REF] Elsayed | GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems[END_REF]. Unlike GA's original formulation, GA-MPC creates an archive pool where the best m individuals are stored, and a selection pool with size tc, chosen randomly, for successful individuals from the tournament selection. Individuals in the selection pool are used for performing multi-parent crossover.

Multi-parent crossover (MPC) uses three parents, randomly selected in the selection pool but should be unique, to produce three children: two are designed for exploitation, the other for exploration. The selected parents are then ranked based on their fitness (best -x 1 , x 2 , x 3worst). A random number β from Chapter 4. Metaheuristics algorithms for solving the 2D EIT... Gaussian distribution with mean value µ and variance σ 2 is generated next. The children produced in MPC has the following form:

o 1 = x 1 + β(x 2 -x 3 ) (exploitation) o 2 = x 2 + β(x 3 -x 1 ) (exploration) o 3 = x 3 + β(x 1 -x 2 ) (exploitation) 
GA-MPC also proposed a randomized vector to diversify (mutate) the generated offsprings and escape any local minimum. An ith element of the offspring vector is replaced, with probability p, by the ith element of an individual selected at random from the pool of m best solutions. Individuals in the archive pool are then merged with all of the offsprings, where the worst indviduals are removed from the population. The surviving population are then carried over to the next generation. The pseudo-code is given in Appendix A.

In [START_REF] Elsayed | GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems[END_REF], GA-MPC was tested using the real-world numerical optimization problems of the IEEE CEC 2011 Real-World Numerical Optimization Special Session [START_REF] Das | Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF], and ranked first among fourteen participating algorithms [START_REF] Molina | An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions[END_REF].

EBOwithCMAR

Butterfly Optimizer (BO) is inspired from the mate-locating behavior of male butterflies [START_REF] Kumar | Butterfly optimizer[END_REF]. BO optimizes a problem by using two main mate-locating behaviors, perching and patrolling, to update the position of male butterflies (trial vectors). A perching male sits on a location and persistently contemplates the nearby objects, but a patrolling male doesn't sit on any location and explores its mate by flying in different location. Hence, the method performs a search space exploration by the patrolling behavior of the male butterflies and search space exploitation by the perching behavior. On the other hand, butterflies have compound eyes that are able to see all around the space and they use this vision in mate-locating. Also, since reflective capability of male's and female's wings are different from each other, they can easily identify each other. Moreover, wings of both butterfly are capable of generating ultra-violet rays and the attractiveness of these rays are dependent on the location of the butterflies. Hence, the attractiveness can be related to an objective function.

BO starts with two randomly generated populations, the population of male butterflies and the auxiliary butterflies. After initialization, male butterflies start searching for female butterfly for mating by perching. Auxiliary butterflies are not adult male butterflies and so, they do not seek for female butterflies. They will be used for the perching of the main (male) butterflies. If after perching the position of the main butterfly is not updated, it will switch to patrolling where it will move in memorized direction. These processes are repeated until convergence is achieved, that is, the male butterfly found its mate.

Effective Butterfly Optimizer (EBO) is a variant of BO where a crossover operator is added in the perching and patrolling processes to further diversify the population [START_REF] Kumar | Butterfly optimizer[END_REF]. EBO also starts with two sub-populations; main and auxiliary butterflies. Next is a new set of vectors (mutated vectors) is generated from the main population and then, a binomial crossover is done between the mutated vectors and the main population to obtain a set of trial vectors. During perching, the mutated vectors is generated using crisscross modification, and toward-best modification is used for patrolling. Lastly, objective function values of the original main population is compared to their corresponding trial vectors, and the better one is taken as a member of new main population. The other vector is selected for the secondary population.

In Covariance Matrix Adapted Retreat (CMAR), new solutions are sampled in search space using the given random distribution represented by its corresponding mean and covariance matrix [START_REF] Hansen | The CMA evolution strategy: a comparing review[END_REF][START_REF] Kumar | Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase[END_REF]. The fitness values of these new solutions are then compared and based on these values, a subset of individuals from the sampled space are selected. A new mean and covariance matrix for the random distribution will be calculated from this subset. Now, EBOwithCMAR is a hybrid algorithm that combines the characters of global optimizer and a local optimizer [START_REF] Kumar | Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase[END_REF]. It starts with a randomly generated population that is divided into three sub-populations, where the first and second populations are used for EBO, and the last one is for CMAR. Two probabilities are defined to decide which specific algorithm is to be applied at a particular iteration. In this algorithm, a fixed number of iterations called cycles are defined. At the start of a cycle until to its half, both the probabilities are equal to 1 and so, both EBO and CMAR are running in parallel. After the half of a cycle, new values of the probabilities are obtained and the update is based on the superiority of the solution determined by EBO and CMAR and the diversity of their corresponding (main) populations. Once the cycle is over, a data sharing system is implemented where the worse solution(s) in the population of the inferior algorithm is replaced by best solution(s) of the better algorithm. If EBO is the better algorithm, the population dedicated to CMAR is replaced by a random element from the main population of EBO. On the other hand, if CMAR is the better algorithm, the worst individual in the main population of EBO is replaced by the best individual from the population dedicated to CMAR. Furthermore, the Sequential Quadratic Programming (SQP) is implemented when 75% of the optimization process is done. This is to improve the exploitation potential of EBOwithCMAR. The proposed algorithm is further improved by modifying EBO using the Success History Based Adaptation to adapt the parameters for the crossover, and a linear reduction for the sizes of the two sub-populations [START_REF] Tanabe | Improving the search performance of SHADE using linear population size reduction[END_REF]. Finally, the algorithm will continue until the stopping criterion is reached. The pseudo-code is given in Appendix A.

In [START_REF] Kumar | Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase[END_REF], EBOwithCMAR was evaluated using the set of problems presented in IEEE CEC 2017 Real-Parameter Special Session bound constrained case [START_REF] Awad | Problem definitions and evaluation criteria for the CEC[END_REF], where it ranked first out of the twelve participating algorithms [START_REF] Molina | An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions[END_REF].

Differential Evolution variants

Differential Evolution or DE is a variation of evolutionary computation designed to deal with multi-dimensional real-valued spaces. There are two modifications that are introduced in DE, the first one is that the children produced in the breeding stage must compete directly against their immediate parents for the inclusion in the population. Second is that DE is designed to be an adaptive mutation algorithm, that is, the size of mutates is based on the current variance in the population. This means that if the population is spread out, mutates make big changes and small changes if the population is condensed. DE's evolutionary processes are similar to other evolutionary algorithms; mutations, crossover, and selection operators are done at each generation to reach the global optimum. The population space is a set of individuals generated uniformly within the range of the decision variables. Using mutation and crossover operators, trial vectors are generated and compared to target vectors and the best individuals are selected for the next generation. These steps are repeated until the stopping criterion is reached.

Some advantages of DE are its ease of implementation, reliability, speed, and robustness. However, even if DE has a good global exploration ability, it is slow at exploitation of the solution. DE's performance also deteriorates as the dimensionality of the problem increases and when the problem has premature convergence or stagnation occurs. Moreover, it is widely known that the performance of DE is highly dependent on the choice of parameter settings for its control parameters. There are three control parameters that play a vital role in balancing the diversity of the population and convergence speed of DE: the scaling factor (F ), the crossover rate (Cr), and the population size P S. The parameter F controls the evolving rate of the population which is closely related to the speed of convergence. In particular, a small value of F improves the exploitation tendency of the algorithm while a large value enhances its exploration capability. For the constant crossover Cr, it is the probability with which the genes of the actual individuals is inherited by the trial individual, that is, the number of components and which components are mutated for each individual in the current population. It practically controls the diversity of the population and is more sensitive to the nature of the problem.

Currently, there is a huge progress in the study of improvements of DE and its diverse applications [START_REF] Das | Recent advances in differential evolution -An updated survey[END_REF]. There are a lot of variants of DE that focuses on the adaptation of these parameters. These variations are divided into two main groups: One group focuses on the random selection of parameter values from random distributions such as normal, uniform, and Cauchy distributions or changing with the progress of generations using increasing/decreasing linear or nonlinear deterministic functions. The other group focuses on adaptive or selfadaptive adjustments of control parameters. A particular variant of DE where it uses a new mutation strategy "current/to/pbest" with an optional external archive and updates the control parameters in adaptive manner using Cauchy and normal distributions, is initially proposed in JADE [START_REF] Zhang | JADE: Adaptive Differential Evolution With Optional External Archive[END_REF].

Meanwhile, Success History-based DE (SHADE) algorithm is an improved variant of the JADE algorithm [START_REF] Zhang | JADE: Adaptive Differential Evolution With Optional External Archive[END_REF][START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF]. SHADE uses historical memory archives M Cr and M F , both of size H and in which a set of Cr and F values that have performed well in the past generations are stored. New Cr and F values are generated by selecting a random index from the memory archives to choose the mean values µ Cr and µ F for their respective random distributions. Lastly, the LSHADE algorithm is an extension of the SHADE algorithm [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF][START_REF] Tanabe | Improving the search performance of SHADE using linear population size reduction[END_REF]. LSHADE adds the linear reduction of the population size, from the maximum population size P S max to the minimum P S min , at each generation [START_REF] Tanabe | Improving the search performance of SHADE using linear population size reduction[END_REF]. LSHADE employs the "current/to/pbest" mutation strategy, where one of the top p best individuals is used to guide the evolutionary search, to produce mutant vectors. The resulting mutant vector is then mixed with the target vector (parent) to produce a trial vector (child). In DE, a greedy selection technique is implemented where the trial vector is compared to the target vector and the better vector survives for the next generation. Both Success History-based Adaptive Differential Evolution with Linear Population Size Reduction with Semi-Parameter Adaptation Hybrid with Covariance Matrix Adaptation Evolutionary Strategy (LSHADE-SPACMA) and Ensemble Sinusoidal Differential Covariance Matrix Adaptation (LSHADE-cnEpSin) are based on the LSHADE algorithm and in which they add additional approaches to enhance LSHADE.

LSHADE-SPACMA

LSHADE-SPACMA proposes a new semi-parameter adaptation approach which consists of two different settings for two control parameters Cr and F [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF]. The first setting is implemented for the fist half of fitness evaluations and it is done by using LSHADE adaptation for Cr only while F is randomly generated from uniform distribution. While the second setting is for the second half of fitness evaluations and the LSHADE adaptation is used for both Cr and F . The semi-adaptation approach is proposed because semi-adaptive algorithm performed relatively better than pure random algorithm or fully-adaptive algorithm [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF]. Since pure random algorithms cannot solve efficiently the problem within limited number of function evaluations while fully-adaptive algorithm provides no guarantee of escaping local solutions or avoid stagnation [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF].

Covariance Matrix Adaptation -Evolutionary Strategy (CMA-ES) is another algorithm that adapts the multi-variate normal distribution [START_REF] Hansen | The CMA evolution strategy: a comparing review[END_REF]. It generates new individuals using Gaussian distribution considering the path the population takes over generations. As an evolution-inspired algorithm, CMA-ES steps are very similar to that of DE [START_REF] Price | Differential Evolution: A Practical Approach to Global Optimization[END_REF] and GA [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF]. It starts with an initial "population" of search points sampled from the initial multivariate normal distribution; followed by selection and recombination to update the mean; step size control to update the evolution path; and covariance matrix adaptation [START_REF] Hansen | The CMA evolution strategy: a comparing review[END_REF].

Finally, LSHADE-SPACMA implements a hybridization framework between LSHADE and a modified version of CMA-ES. Each individual in the population will generate an offspring using either LSHADE or CMA-ES algorithm. The method is chosen according to class probability variable (F CP ), which are randomly selected from memory slots M F CP . The memory is updated according to the performance of each algorithm at the end of each generation which will lead to more populations being assigned to the better performance algorithm. However, to maintain both algorithms, F CP values are kept in range between 0.2 and 0.8. The pseudo-code is given in Appendix A.

In [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF], LSHADE-SPACMA was evaluated using the set of problems presented in IEEE CEC 2017 Real-Parameter Special Session bound constrained

Presentation of the test configurations

We consider three different cases (see Table 4.1). We consider Case 1 in this chapter to be the same domain in Case 3a in Chapter 2 (p. 29) which is a CT scan of a thorax domain, but with known background conductivity σ 0 = 6.7 mS • cm -1 . For the numerical simulations of this case, the geometry is fixed, and only the conductivity values inside the inclusions, σ l and σ h , are unknown. Indeed, the CT results already give the location and the geometry of the organs. We are only interested in determining the conductivity values of the inclusions (i.e. lungs and heart). This method is particularly applicable for lung or heart function monitoring to check if there is a deviation of the estimated conductivity values from the normal values.

Case

Unknown Variables For Case 2 in this chapter, we study the same geometry as in Case 1b in Chapter 2 (p. 28). In this case, six parameters are unknown, that is, σ e is the conductivity of the inclusion, (h, k) is the center of the ellipse, a and b are the lengths of the major and minor axes, respectively, and θ is the angle of rotation. In Case 3, we aim in reconstructing two disjoint elliptical inclusions and the respective conductivities inside, i.e., 12 unknown parameters;

1 σ l , σ h (geometry is fixed) 2 σ e , h, k, a, b, θ 3 σ 1 , σ 2 , h 1 , k 1 , h 2 , k 2 , a 1 , b 1 , a 2 , b 2 , θ 1 , θ 2
σ 1 , σ 2 , h 1 , h 2 , k 1 , k 2 , a 1 , a 2 , b 1 , b 2 , θ 1 , θ 2 .
The conductivity σ 0 of the background medium for both the second and third case is 1.0 mS • cm -1 . All cases may represent the domains used in the application of EIT for brain or breast tumour detection.

We work with synthetic data. In Case 1, the data is generated with conductivity of the lungs and the heart equal to 1.0 mS•cm -1 and 6.3 mS•cm -1 , respectively. The conductivity of the elliptical inclusion is taken to be 6.7 mS • cm -1 for the inversion data for Case 2. The generated data for Case 1 is from the case where we take the conductivity of the smaller ellipse to be 6.7 mS • cm -1 and the bigger one to be 6.1 mS • cm -1 . We take L = 32 electrodes. The contact impedance is constant across the L electrodes and it is equal to 0.03 ohm • cm 2 . Sixteen current patterns are applied on the electrodes and the first current has the form

I 1 = {I 1 ℓ } L-1 ℓ=0 , with I ℓ = sin 2πℓ L . (4.5)
The remaining fifteen current patterns are obtained by 'rotating' the values of the first current pattern, that is, to get the second current pattern I 2 , we have I 2 (0) = I 1 (L -1), I 2 (1 : L/2) = I 1 (0 : L/2 -1), and I 2 (L/2 + 1 : L -1) = I 1 (L/2 : L -2). This is repeated until we obtain the fifteen additional current patterns. To model possible experimental errors, a 1% random (additive) noise is added to the voltage data as U data = (1 + 0.01 * rand(L))U , where rand(L) gives a vector of length L where each element is a uniformly distributed random number in the interval [-1,1] (see [START_REF] Hintermüller | Electrical impedance tomography: from topology to shape[END_REF]). In our simulations, one noise seed is composed of sixteen different noise vectors added to the corresponding sixteen current-voltage measurements.

Parameter setting for the heuristic methods

The study is based on 20 independent runs of each proposed algorithm, with the same noise seed for all the runs, and a stopping criterion based on a predefined number of function evaluations. The only stopping criterion used for all the heuristic methods is when the maximum number of function evaluations is reached. In particular for Case 1, we set the maximum number of function evaluations to 1000 and in Cases 2 and 3, we have 1000 * D function evaluations with D as the number of unknown parameters.

The search space was restricted differently for each case. In Case 1, the bounds are given by x min = [0, 0] and x max = [10, 10]. Case 2 has bounds x min = [5, -1, -1, 0, 0, 0] and x max = [9, 1, 1, 2, 2, π]. For Case 3, we fix x min = [5, -1, -1, 0, 0, 0, 5, -1, -1, 0, 0, 0] and x max = [9, 1, 1, 4, 4, π, 9, 1, 1, 4, 4, π]. We implemented the numerical solver for the forward problem with FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF] with mesh information given in Section 2.4.2. The numerical optimization algorithms were implemented in Matlab R2018a.

The different parameters used in all the algorithms are set to values in their original formulation. In particular, the default values in the main papers cited in Section 4.2 for each algorithm are chosen, unless certain configurations need to be made to address issues, such as algorithmic complexity. The lack of parameter tuning to fit the EIT problem in conducting the numerical simulations is intended to ensure that the study does not favor any algorithm, which allows for a thorough comparison of the original methods.

Parameters for FA were set as follows: α 0 = 0.2, γ = 1, and β = 0.2, where α 0 is the initial randomization parameter, γ is the light absorption coefficient, and β is the base attraction coefficient. The population size in each generation for FA varies for each case, Case 1 has 20 fireflies, Case 2 has 30, and Case 3 has 60. Each firefly would require the computation of the cost functional (4.4), which is expensive and accounts for the major running time of the algorithm.

In Table 4.2, the parameter settings for NBA are enumerated: r, f , and A denote the rate, frequency, and loudness of sound pulses emitted by bats, r min 0 α 0.9 r max 1 P min 0.6 f min 0 P max 0.9

f max 1.5 C min 0.1 A min 1 C max 0.9
A max 2 G 10 γ 0.9 respectively. P denotes the probability of habitat selection, while C denotes the compensation rate for Doppler effect in echoes. The constants γ and α are used to update r and A. The parameters r and A are re-initialized if the best solution does not change after G time steps. Meanwhile, the contractionexpansion coefficient θ and the inertia weight w are adjusted according to the parameter control method described in [START_REF] Tian | Contraction-Expansion Coefficient Learning in Quantum-Behaved Particle Swarm Optimization[END_REF], i.e., using a • cos πt 2 M + a, where t is the current time step, and a = 0.5 for θ while a = 0.4 for w. While M is defined to be the maximum number of time steps in [START_REF] Tian | Contraction-Expansion Coefficient Learning in Quantum-Behaved Particle Swarm Optimization[END_REF], in this work, we set its value to be positive infinity.

Parameters for GA-MPC were set as follows: population size P S = 90, "crossover factor" β ∼ N (0.5, 0.3), crossover rate cr = 1, tournament selection size generated randomly between 2 and 3, and archive pool size |A| = 45 (half of the population size) [START_REF] Elsayed | GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems[END_REF].

LSHADE-SPACMA and LSHADE-cnEpSin share several parameter values: initial population size P S max = 18 * D and minimum population size P S min = 4 as both algorithms implement a linear population size reduction, initial values for M Cr , M F at 0.5, factor that controls the greediness of the mutation strategy p best = 0.11, archive rate Arc rate = 1.4, and memory size H = 5 used in storing adapted parameters [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF][START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF]. Parameter settings specific to LSHADE-SPACMA are as follows: initial value for M F CP = 0.5 used in the hybridization framework, and learning rate c = 0.8 used in updating the probability for hybridization [START_REF] Mohamed | LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[END_REF]; while the parameter specific to LSHADE-cnEpSin used for the non-adaptive sinusoidal decreasing adjustment f req is set to 0.5 [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF].

EBOwithCMAR uses the following parameter values: for EBO, it uses the same initial population size P S 1,max = 18 * D, minimum population size P S 1,min = 4 for P S 1 with LSHADE-SPACMA and LSHADE-cnEpSin [MHFJ17; AAS17], P S 2,max = 46.8 * D, P S 2,min = 10, and memory size H = 6; while for CMAR, P S 3 = 4 + 3 log(D), σ = 0.03, number of evaluations constituting a cycle CS = 50, and local search update probability prob ls = 0.1 [START_REF] Kumar | Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase[END_REF].

Numerical comparison and discussions

The comparative analysis of the heuristic methods is done by measuring the accuracy and precision of the solutions generated, together with their respective Chapter 4. Metaheuristics algorithms for solving the 2D EIT... average costs. This is because the inverse EIT problem is ill-conditioned, which means that solutions tend to be extremely sensitive to perturbations, potentially making them inaccurate or unstable. To quantitatively analyze the accuracy of recovered images, the average of the reconstruction errors for 20 runs of each algorithm was calculated and will be referred to as the "mean error", for simplicity. For the i th run, the relative reconstruction error is given by:

RE = ŷi -y true 2 y true 2 , (4.6)
where • 2 is the Euclidean norm, ŷi is a vector containing the values estimated by the algorithm at the i th run, whereas y true contains the true values. Based from Table 4.1, ŷi and y true are vectors in R 2 for Case 1, in R 6 for Case 2, and in R 12 for Case 3.

In order to measure the repeatability (reconstruction accuracy) of each algorithm, that is, the degree to which the algorithm produced the similar results for 20 runs, the standard deviation (St. Dev.) of the reconstruction errors was also determined. Table 4.4 compares the accuracy, repeatability, and average costs of each algorithm's reconstructions for Cases 1, 2, and 3, respectively. The mean and standard deviation of the reconstruction errors of the generated solutions in the 20 independent runs is computed using the mean and std functions in Matlab.

Algorithm

Case In all the cases, the final solution or final reconstructed parameter values considered for each algorithm is the average solution of the 20 runs. Figures 4.1, 4.2, and 4.3 show the final solution of each algorithm for Cases 1, 2, and 3, respectively. Note that we fixed the range of the conductivities in the plots and so the difference in color of the solutions from the original image signifies how far is the approximate solution from the true solution. Table 4.3 shows the relative reconstruction error in % of the final solution of each algorithm for the three cases, while Tables 4.5, 4.7, and 4.9 display the reconstruction error in % of each unknown parameter for Case 1, 2, and 3, respectively. The results shown in black bold characters indicate the best values.

For Case 1, all the heuristic algorithms studied were very successful in the recovery of the conductivity values of the inclusions in Ω. this method is the best in terms of consistency and accuracy of the approximate solution for each run. Almost all the algorithms obtained the same average cost which implies that all methods converge to the true solution. Lastly, GAMPC is the most accurate and the three most recent algorithms, LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR got around the same relative errors for the final solution.

Case For Case 2, all the heuristic algorithms studied well retrieved the center of the ellipse (see Tables 4.7, 4.6). The difference of performance between them lies in the estimation of both the conductivity and the geometric parameters. EBOwithCMAR performed the best while getting the least mean error and relatively small average cost. LSHADE-SPACMA got the smallest standard deviation and average cost. As expected, because of the low resolution property of EIT, the estimate for the conductivity value inside the inclusion is not as accurate as the approximation of the geometry. Nevertheless, NBA provided an excellent approximation of the conductivity (error 1.94%) while FA, LSHADE-SPACMA, and EBOwithCMAR were still able to obtain good conductivity value estimates (see Table 4.7). GA-MPC yielded the least accurate conductivity estimate which justifies the relative error given in Table 4.3. This means that GA-MPC finds it hard to balance its exploration and exploitation when approximating both the geometry of the inclusion and the conductivity inside it. NBA and the three most recent algorithms (namely LSHADE-SPACMA, EBOwithCMAR and LSHADE-cnEpSin) presented impressive reconstructions (see Figure 4.2). FA is the less efficient. Lastly, NBA offered the best relative error of the final solution. Tables 4.8 and 4.9 give the final values and the reconstruction error in % of each unknown parameter for Case 3. For Case 3, LSHADE-SPACMA showed the best performance with the least mean error and average cost while GA-MPC is the most consistent among the algorithm because it obtained the least standard deviation of the reconstruction error. The recovered images of LSHADE-SPACMA and LSHADE-cnEpSin are the closest ones to the original image. GA-MPC and EBOwithCMAR were also able to reconstruct the two inclusions. NBA only obtained a not too bad location of the bigger inclusion but failed to reconstruct the smaller ellipse. FA gave a poor reconstruction of both inclusions. For the estimation of conductivity values inside the inclusions, LSHADE-SPACMA achieved a good balance in the estimation of the conductivities, EBOwithCMAR yielded the most accurate estimate for the conductivity in the smaller inclusion, and LSHADE-SPACMA got the best conductivity estimate for the bigger inclusion. NBA is the least accurate in the estimation of the conductivity inside the bigger inclusion, while GA-MPC has the least accurate conductivity value estimate for the smaller ellipse. Moreover, GA-MPC gave more accurate approximations for both the geometry of the inclusion and its conductivity than the standard GA used in [KBK06; KMKKL02 Improvements of DE, namely LSHADE-SPACMA and LSHADE-cnEpSin, also performed better than the DE used in [START_REF] Rashid | A Differential Evolution Based Approach to Estimate the Shape and Size of Complex Shaped Anomalies Using EIT Measurements[END_REF]. Metaheuristic algorithms can be computationally costly since they require many cost function evaluations. Because we made the stopping criterion based on the maximum number of function evaluations alone, the run time of all the algorithms are approximately equal. For this reason, we only provide the time for each domain case. For Case 1, it takes approximately 3 seconds for one function evaluation to be done and the number of function evaluations is set to 1000. Meanwhile for Case 2, we have 3.7 seconds for one function evaluation and the number of function evaluations is 6000. Lastly for Case 3, we get 4.3 seconds for one function evaluation with 12000 total number of function evaluations. To expect driving 3D computational simulations is challenging. Metaheuristic algorithms are time consuming and improvements are needed to get 3D results. We also note that to consider higher levels of noise, the use of regularization methods or more assumptions are needed in the formulation of the inverse problem, especially for Cases 2 and 3.

Lastly, to compare our results to that of deterministic method, we applied a quasi-Newton iterative method (BFGS) to Cases 1 and 2 with a random initial 

Conclusion and perspectives

We have presented a conclusive study of the applicability of several heuristic approaches for EIT image reconstruction. Up to our knowledge, this is the first time that such a comparative study (between FA, NBA, GA-MPC, LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR) is addressed for EIT. Numerical simulations, given a fixed number of cost function evaluations and default heuristic algorithm parameters, showed that the more recent algorithms, namely LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR, obtained the best results in terms of accuracy, repeatability, and average cost. This indicates the continuous improvement in metaheuristic techniques, reinforcing their potential to solve other similar problems. FA did not fare as well as the other algorithms, especially in retrieving two disjoint inclusions (Case 3), because the maximum number of evaluations and the population size for each iteration might not be enough to have a balance between exploitation and exploration. This might be also the case for NBA and GA-MPC. Although NBA was successful in the image reconstruction of one defect (Cases 1 and 2), it failed in the configuration with two defects. Modifications and improvement in these three algorithms can be further studied to obtain more competitive results. Since FA, NBA, and GA-MPC populations for each iteration is fixed, we can recommend adjusting the population size so that there will be a balance between exploitation and exploration. Also, the maximum number of evaluations can be increased. Because of their population size linear reduction and self-adapting parameters system, the most recent algorithms LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR are more consistent and accurate. The different numerical results attest their efficiency. In the thorax domain, where only the conductivities of the inclusions are unknown, the six heuristic algorithms provided excellent results. In the other cases, the recovery of conductivity needs more improvement. The application of the heuristic algorithms in 2D EIT inverse problem is tested in this chapter and was proven to be effective in the reconstruction, especially in the case where the only unknowns are the conductivity values of the inclusions. The said case can be seen in real-life applications, in organ functions imaging. However, due to their expensive computational time, the application of heuristic algorithms in 3D EIT inverse problem is a very challenging issue and might be complicated. Furthermore, there is still a lack of mathematical analysis behind these algorithms. The convergence and efficiency analysis of the majority of these heuristic algorithms are still unsolved and quite hard to prove.

Finally, possible future works include using a regularization term in the cost functional to deal with the ill-posedness of the problem. Fine tuning of the parameters of the algorithms to better fit the heuristic algorithms to the EIT inverse problem define also an interesting perspective. Moreover, notice that our code requires only the parameterization of the inspected domain, and we proved that it can deal with realistic geometries, as the thorax. This is promising for other applications.

Chapter 5

Study of the Complete Electrode Model for Electroencephalography

Electroencephalography or EEG is a non-invasive imaging technique for brain function monitoring. EEG signals are represented by the voltage potential fluctuations recorded at the electrodes on the scalp. EEG aims to localize cerebral sources generating the measured EEG signals, and hence, it is an inverse source problem whereas EIT is an inverse conductivity problem. In this chapter, we study the Complete Electrode Model for EEG. An existence and uniqueness result of this model is proved. Conclusions and perspectives are addressed.

Neurological basics

The human brain is a highly complex structure. It is responsible for the control of basic bodily functions and management of almost all information gathered in the body. The brain is mainly composed of tissues that are characterized by a complex network of neurons. Neurons are cells that specialize in information processing in the body. They gather information through their dendritic branches arising from their body cell and communicate that information with each other through the axon which is a unique extension of the cell body that is linked to the dendrite of another neuron cell (see Figure 5.1). The information will either inhibit or excite short electric waves in the target neuron [START_REF] Agsten | Comparing the complete and the point electrode model for combining tCS and EEG[END_REF]. The electrical activity from a single neuron is too small to be measured in practice. However, if a large number (billions) of neighboring well-oriented neurons in the cerebral cortex beneath the skull are simultaneously active in a small region, then their electrical activity is measurable and yields an EEG signal. Thus, EEG measures non-invasively the electrical activity of the functioning brain at the surface of the scalp. In particular, the voltage potential fluctuations between different cortical regions are the measurements in EEG [ADDEL18; DL18].

In using EEG as a functional brain imaging, the important goal is to localize cerebral sources generating measured EEG signals. These sources are assumed to be the origin of physiological and pathological activities of the brain. EEG is one of the main diagnostic tests in presurgical evaluation for refractory epilepsy [START_REF] Darbas | Review on Mathematical Modelling of Electroencephalography (EEG)[END_REF]. Figure 5.2 shows how EEG is applied in practice and how does an EEG signal look like in an epileptic episode. Moreover, EEG measures the electrical activity of the brain as EIT, but the main difference is that no currents are 

The mathematical modeling of EEG

In this section, we discuss the mathematical modeling of EEG. Different choices have to be done: the head model, the conductivity distribution of the head 5.2. The mathematical modeling of EEG 101 tissues, and the characteristics of the neural sources in the brain. The governing equation describing EEG is derived.

Head models

The human head, and the different tissues within it, is the computational region of interest in the modeling of EEG. There are two types of head models that are commonly used in the literature: the classical spherical model and the realistic head model. The most straightforward spherical model is composed of three concentric spheres representing brain, skull, and scalp. Neuronal tissue is divided into two parts: the tissue that is rich in axons which is called the white matter, and the tissue that is rich in cell bodies also known as the grey matter. Other neuronal tissue in the brain that is scattered in the ventricle system have spaces that are filled with the so-called cerebrospinalfluid (CSF). CSF serves as a barrier between the brain and the skull. Multilayer spherical models distinguish between white and grey matter and take into account CSF as well as skull and scalp. As for other models, they are obtained from coregistered Magnetic Resonance Imaging (MRI) and CT-scans. The most important and difficult task is the extraction of the skull geometry, and to determine a clear separation of the boundaries of the skull and CSF [ADDEL18; DL18]. Figure 5.3 shows the head models discussed above. We describe mathematically the different head models as follows. Let Ω ∈ R 3 be a bounded, simply connected domain with regular boundary Γ K . Suppose Ω is partitioned into K open, disjoint, and nested sub-domains (Ω i ) i=1,...,K , that is,

Ω = K i=1 Ω i ,
where Ω i ∩ Ω j = ∅ ∀i = j, and Ω i ∩ Ω j = ∅ ∀j = i -1, i, i + 1. We denote by Γ i , i = 1, . . . , K -1, the interface between Ω i and Ω i+1 and we assume that (Γ i ) i are closed regular surfaces. In the three-layer spherical model shown in Figure 5.3, Ω 1 is the representation of the brain, Ω 2 of the skull, and Ω 3 of the scalp. Lastly, we let n i be the unit normal vector on Γ i oriented towards the exterior of Ω i .
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Conductivities of head tissues

The behavior of free charges is described by the conductivity of a material. Conductivity represents the magnitude of the effect of the strength of the electrical field to the current density, that is, higher conductivity means stronger current. Meanwhile, the dielectric constant or permittivity describes the polarities occurring in a tissue, if charges are bounded in one place. With this, a precise knowledge of the electrical conductivity is an important factor in EEG modeling. But as seen in EIT, obtaining the conductivity through direct measurements is a difficult task. Also, uncertainties about the effective values of the dielectric properties of the tissues, especially in the skull, have to be taken into account [START_REF] Darbas | Review on Mathematical Modelling of Electroencephalography (EEG)[END_REF]. In this chapter, we assume that the conductivity in each tissue to be homogeneous and isotropic, that is, to model the conductivity as a piecewise constant function

σ |Ω i = σ i > 0, ∀i = 1, . . . , K.

Source models

As mentioned earlier, a large number of neurons must be simultaneously active in a small region inside the brain so that an electrical activity is measurable and yields an EEG signal. Define J p as the current density of the impressed neural (or primary) current supported within the brain Ω 1 where the neural activity is localized. In EEG modeling literature, the current sources are usually treated in the form of dipoles which are easy to construct and deal with mathematically [START_REF] Agsten | Comparing the complete and the point electrode model for combining tCS and EEG[END_REF]. The localized primary current is modeled by pointwise current dipole defined as

J p (x) = qδ S (x), x ∈ Ω 1
where S is the position of the source, q ∈ R 3 its moment, and δ S is the Dirac delta distribution at S. More generally, we consider M electric dipoles as sources of the neural activity in the brain and with each dipole being characterized by its position S m ∈ Ω 1 and its moment q m ∈ R 3 . Dipoles are mutually distinct, i.e., S m = S p ∀m = p, and their corresponding moments are nonzero. The current density J p is the sum of M pointwise current dipoles, that is,

J p = M m=1 q m δ Sm , x ∈ Ω 1 .
(5.1)

The Quasi-Static Maxwell's equation

As in EIT, the main equation describing the electromagnetic field in EEG measurements is derived from the quasi-static Maxwell equations for a linear, isotropic, nondispersive body. The low frequency range in both EEG and EIT measurements enables to neglect the time derivatives in the equations. The main difference is that, in EEG, there is no injected current and that the current density J splits into two terms:

J = σ∇u + J p , (5.2) 
where σ∇u comes from Ohm's Law and J p is the primary current density (5.1), we have

∇ • J p = M m=1
q m • ∇δ Sm .

(5.3)

Recall that the divergence of J is zero and so, we get the following elliptic equation for EEG

-∇ • (σ∇u) = M m=1 q m • ∇δ Sm , in Ω.
(5.4)

The Complete Electrode Model for EEG forward problem

The CEM for EEG forward problem is thoroughly studied in this section. The existence and uniqueness of the solution is proven using the subtraction method to deal with the singularity of the source term in (5.4).

Modeling the electrodes

In practice, voltage measurements on the boundary are recorded using a finite number of electrodes of finite length. Hence, modeling the said electrodes that are attached on the scalp is important. The standard electrode model for EEG is the point electrode model (PEM) where the electrodes are identified with a point on the scalp. The potential is calculated at these points. In PEM, it is also assumed that the current density is constant and that currents are not allowed to freely flow out of and into the head. Meanwhile in CEM, the geometry (form and size) of the electrodes is taken into account. We recall a set of patches e ℓ ⊂ ∂Ω, ℓ = 1, . . . , L as the mathematical model of the contact electrodes that satisfy (1.12) ēℓ ∩ ēk = ∅ for ℓ = k. Furthermore, even though net currents flowing through the electrodes are zero in EEG, subelectrode surface currents exist due to potential variation. These shunting effects, if not accounted, can lead to lower voltage amplitudes [START_REF] Pursiainen | Forward and Inverse Effects of the Complete Electrode Model in Neonatal EEG[END_REF][START_REF] Duffy | Clinical electroencephalography and topographic brain mapping: Technology and practice[END_REF]. The CEM accounts the effective contact impedance and thus, CEM models more accurately the electrode shunting effects. In particular, the voltage at the electrode is taken to be the integral average of the interior potential and a voltage drop due to contact impedance is added. Since PEM does not account the effective contact impedance, PEM can be seen as a limit case of the CEM with the effective contact impedance raised to infinity. This is because when the contact impedance increases, the shunting effect decreases [START_REF] Agsten | Comparing the complete and the point electrode model for combining tCS and EEG[END_REF]. The CEM accounts for more accurate modeling of electrode shunting and thereby, in principle, extends the interval of applicable impedances beyond solvable if the primary current density J p is assumed to be sufficiently smooth with a square integrable divergence. In this chapter, we overcome the singularity of the problem by applying an approach called the subtraction method (see [START_REF] Azizollahi | EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity[END_REF][START_REF] Darbas | Review on Mathematical Modelling of Electroencephalography (EEG)[END_REF] and their references within). The existence and uniqueness of the solution of CEM for EEG is thoroughly discussed in this section.

Subtraction method

To deal with the singularity in the source term, the subtraction method uses the fundamental solution of the Laplacian to explicitly determine the singular behavior of u near the source points S m . Consequently, the remaining part of solution u is regular and a variational formulation in standard space can be written. This method has been firstly introduced for a single source model and piecewise constant conductivity, but the extension to isotropic inhomogeneous conductivities is studied in [START_REF] Azizollahi | EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity[END_REF][START_REF] Darbas | Review on Mathematical Modelling of Electroencephalography (EEG)[END_REF].

It is assumed that the conductivity in a neighborhood of each source is constant. In particular, a family of non-intersecting open balls (V m ) m=1,...,M is fixed where V m ⊂⊂ Ω 1 , V m ∩ V p = ∅ if m = p, and S m ∈ V m and σ 1|Vm ≡ c m ∈ R, for any m ∈ {1, . . . , M }.

(5.10)

The subtraction method consists of splitting the potential solution u into a singular potential ũ and regular part w, that is, u = ũ + w, where ũ = M m=1 ũm .

(5.11)

The singular potential ũm is the solution of the Poisson's equation with a single dipolar source term at S m in an infinite medium with conductivity c m = σ 1 (S m ), i.e.

c m ∆ũ m = q m • ∇δ Sm in R 3 .

(5.12)

It is determined by the convolution of the fundamental solution of the Laplace equation with the right-hand side 1 c m q m • ∇δ Sm and is given by

ũm (x) = 1 4πc m q m • (x -S m ) |x -S m | 3 , ∀x ∈ R 3 \ {S m }.
(5.13)

It can be seen that ũ is smooth everywhere except at each source point S m . Similarly, denoting Ũℓ = ũ| e ℓ and W ℓ = w| e ℓ , the potential U ℓ at the electrodes is expressed by U ℓ = Ũℓ + W ℓ , ℓ = 1, 2, . . . , L.

(5.14)

We have to identify the problem satisfied by (w, W ). We note that ∇ • (σ∇ũ m ) is well-defined and given by ∇ • (σ∇ũ m ) = ∇ • ((σc m )∇ũ m ) + c m ∆ũ m .

(5.15)

Variational formulation

The following proposition gives a variational formulation of problem (5.20) for the auxiliary potential (w, W ). (5.26) Furthermore, the boundary conditions (5.18) and (5.17 (5.27) Let V = (V ℓ ) L ℓ=1 be an arbitrary vector in R L . Then from (5.27), we get (5.29) (⇐) Suppose for all (v, V ) ∈ H, (w, W ) ∈ H satisfies (5.21). To prove that (w, W ) satisfies (5.20), we consider particular values for v and V .

Let This proves the boundary conditions (5.19) and (5.17). Lastly, substituting (5.30) and (5.31) to (5.21), we have This condition follows from the lemma below which is proven in [START_REF] Diallo | Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né[END_REF].

Lemma 5.3.2. Let ũ be the solution of (5.12) given by (5.13). Then Proof. To prove the existence and uniqueness of solution in the quotient space Ḣ, the Lax-Milgram lemma 2.1.1 is used. The coercivity on Ḣ and continuity on Ḣ of the bilinear form is proven in [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] and detailed in Section 2.1.2. We again note that the same bilinear form in the variational formulation in Proposition 5.3.1 is obtained for CEM of EIT in Proposition 2.1.2. Meanwhile, the continuity of the linear form is shown in [START_REF] Azizollahi | EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity[END_REF]. Then the Lax-Milgram lemma yields the existence and uniqueness of the solution in Ḣ.

Furthermore, for the uniqueness of solution (w, W ) in H we have the following corollary. The condition stated in the corollary (5.34) is from the ground potential condition (5.9) imposed on (u, U ). Since z ℓ ≥ 0, ∀ ℓ = 1, . . . , L, both sides of the equation above are zero. This implies that v is constant. Moreover, by (5.36), we have v = constant = V ℓ , ℓ = 1, . . . , L.

Lastly, if we let constant K 1 = -

L ℓ=1

Ũℓ we have

L ℓ=1 W ℓ = K 1 = L ℓ=1
Wℓ .

So we get,

L ℓ=1 V ℓ = 0.
Since all the voltages on the electrodes are equal to the same constant, the sum above forces the constant to be zero. Thus,

V ℓ = 0 = v, ℓ = 1, . . . , L.
This proves the uniqueness of solution in H of (5.20).
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Finally, the existence and uniqueness of the potentials (u, U ) for the CEM forward problem of EEG (5.5) -(5.8) also follows.

Remark 3. Let say a few words about the numerical resolution of the EEG CEM (5.5)-(5.6)-(5.7)-(5.8). The discretization could be done by means of P1 finite elements. The first step will be to compute an approximation (w h , W h ) of the potential (w, W ). To this end, an approach similar to the one proposed in Chapter 2 Subsection 2.2.3 can be applied. It would be interesting to get error estimates as for the discretization of the standard model for EEG [START_REF] Azizollahi | EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity[END_REF]. The approximation (u h , U h ) of the electric potential (u, U ), solution to the EEG CEM (5.5)-(5.6)-(5.7)-(5.8), is deduced from the discrete solution (w h , W h ) and decompositions (5.11) and (5.14).

Conclusion and perspectives

In this chapter, we have presented the application of the Complete Electrode Model for modeling EEG. The subtraction approach is used to deal with the singularity in the source term, and we have proved existence and uniqueness results for the continuous problem. A first perspective is to validate numerically this approach in order to compare the standard model (Point Electrode Model) and the CEM, particularly with experimental data. The aim is to study the effect of taking into account the electrodes on the accuracy of the EEG measurement simulations, and also on the numerical reconstruction of neural sources from data recorded at the electrodes. First numerical results in neonatal EEG have been provided by Pursiainen et al. [PLW16;[START_REF] Pursiainen | Complete electrode model in EEG: relationship and differences to the point electrode model [published correction appears[END_REF] which conclude that the CEM can improve EEG forward simulation accuracy and can be considered as an integral part of the head model. Another important question is linked to the dependence of the source reconstruction on the uncertainty of tissue conductivities, and of skull particularly. A possible solution would consist in developing methods that reconstruct simultaneously sources and skull conductivity [START_REF] Papageorgakis | Modèles de conductivité patient-spécifiques: caractérisation de l'os du crâne[END_REF]. The use of the CEM in these methods could be an interesting perspective.

General conclusion

In this thesis, we worked on the study of the Complete Electrode Model (CEM) for Electrical Impedance Tomography (EIT). We have addressed both theoretical and numerical aspects of the CEM forward problem. A good understanding of the forward model is an essential preliminary step to the resolution of the corresponding EIT inverse problem. We analysed the effect of a change in conductivity on the electric potential in the domain under inspection and on the EIT measurements. Numerical results showed that the impact of imperfections in the conductivity distribution is non negligible on the values of the surface voltages, which are the data for the inverse problem. We then introduced the Gâteaux derivative as a mathematical tool for the sensitivity analysis of the electric potential with respect to a small variation in the conductivity or in the contact impedance of the electrodes. Numerical simulations in both 2D and 3D are presented and discussed. Particularly, a CT scan of a thorax and the spherical three-layer head model are considered. This study provided useful information on regions and electrodes where the electrical potential is the most sensitive to a variation of conductivity or of the contact impedance. The support of the sensitivity function depends on the characteristics (position, size, number) of the conductivity variations and is localized to an area (and thus at the electrodes) around the imperfections. Furthermore, we deduced that when the contact impedance on one electrode is perturbed, significant values of the sensitivity is found at this electrode. If the contact impedance of more electrodes are perturbed, then the total sensitivity value of one electrode is the sum of its sensitivity values when only one electrode is perturbed. For medical applications, this study confirmed that uncertain conductivity values impact the EIT forward solution.

Next, we proceeded to the inverse problem of EIT by formulating it as a minimization of a cost functional defined by the difference between the measured and the predicted boundary voltages. We applied six metaheuristic algorithms for the optimization. Two-dimensional numerical comparisons are done, with promising results especially in the thorax case where the geometries are fixed. We observed that the more recent algorithms performed better in the reconstruction, particularly in the domain where there are two unknown inclusions.

Lastly, we studied the CEM for electroencephalography (EEG). The subtraction method is used to deal with the singularity in the source term and the existence and uniqueness of the solution of the CEM forward problem is proven.

The following perspectives for future works are recommended:

• Study the behavior of the electric potential when both the conductivity inside the domain and the contact impedance at the electrodes are perturbed.

• Consider fine tuning of the parameters for the metaheuristic algorithms to accommodate the structure of the EIT inverse problem.

• Regularization of the cost functional to treat the instability of the reconstruction problem.

• Since the metaheuristic algorithms performed best when the geometries are fixed, we recommend to study a reconstruction algorithm combining metaheuristic and deterministic algorithms.

• Propose and validate a numerical approach for the CEM forward problem of EEG. Numerical methods for the resolution of the forward and the inverse problems for Electrical Impedance Tomography

Abstract. In this thesis, we study from a theoretical and a numerical point of view the Electrical Impedance Tomography (EIT). Mathematically, it consists of solving two problems: a forward one and an inverse one. The forward problem gives the boundary voltages at the electrodes which are the data needed for the inverse problem -the reconstruction of the conductivity distribution in the domain. The Complete Electrode Model (CEM) accurately models the electrodes and their shunting effects in real-life applications. We focus our research on the CEM forward model for EIT and we study its analytical and numerical solution for different configurations. Furthermore, in order to understand the influence of both the conductivity and the contact impedance of the electrodes on the electric potential, we propose a rigorous sensitivity analysis of the CEM forward problem. Next, the inverse problem is formulated as the minimization of a cost function representing the difference between the measured and predicted voltages. The applicability of metaheuristic algorithms as optimization strategies for the reconstruction problem is addressed. Numerical simulations are done to compare their efficiency. Finally, we are interested in modeling the electrodes for Electroencephalography (EEG) using CEM. In order to deal with the singularity in the source term, the subtraction approach is applied. The existence and uniqueness of the solution for the CEM forward problem of EEG is proven.
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 12 Figure 1.2: Application of EIT in monitoring lung function [TIL15]

  e ℓ ds = |e ℓ |, where |e ℓ | is the length (respectively the area) of the electrode in the two-dimensional case (respectively in the three-dimensional case) and that P T I = (I 1 -I 2 , I 1 -I 3 , . . . , I 1 -I L ) T . Therefore, we have the following matrix form of the L -1 equations equivalent to (2.27) Numerical validation of the CEM in the homogeneous unit disk case 31
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 21 Figure 2.1: Unit disk. Case when z = 0.001. σ = 1. Errors uu h in L 2 norm (left) and H 1 norm with respect to the mesh size h in logarithm scale.
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 22 Figure 2.2: Unit disk. Case when z = 0.01. σ = 1. Errors uu h in L 2 norm (left) and H 1 norm with respect to the mesh size h in logarithm scale
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 2 Figure2.5 exhibits the injected current on the boundary. Numerical computations are done for each domain case described in the previous section and the potential solutions are reported in Figure2.6. The potential in the domain follows the form of the current injected given in Figure2.5 except in Case 2.
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 24 Figure 2.4: Conductivity distribution for the different configurations studied in this thesis.
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 2 Figure 2.5: Continuum model. Left: Injected current density f for Cases 1a, 1b, 2a, and 2b. Right: Injected current density f for Cases 3a and 3b.
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 26 Figure 2.6: Potential solutions u h of the continuum forward model for each considered domain.
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 27 Figure 2.7: Location of the electrodes
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 28 Figure 2.8: Approximated interior potentials u h of the complete electrode forward model for each considered domain.
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 2 Figure 2.11: CEM Case 2: Location of electrodes

  Definition 3.1.1 (Gâteaux derivative). Let w : X → Y be an application between two Banach spaces X and Y . Let O ⊂ X be an open set. The directional derivative D µ w(p) of w at p ∈ O in the direction µ ∈ X is defined by D µ w(p) = lim h→0 w(p + µh)w(p) h if the limit exists. If D µ w(p) exists for any direction µ ∈ X and if the map µ → D µ w(p) is linear continuous from X to Y , w is called Gâteaux differentiable at p.

  27) with v = (v j ) N j=1 as the approximated nodal values of u of the unperturbed Chapter 3. Sensitivity analysis of the electric potential in CEM CEM (1.21) -(1.22) -(1.23) -(1.24
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 31 Figure 3.1: Illustration of the geometries considered: a unit disk, a head model and a thorax.
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 32 Figure 3.2: Left: layers of the spherical head model. Middle: front view of the 10-10 system for the electrodes positioning.Right: back view of the 10-10 system.
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 33 Figure 3.3: Unit disk. Sensitivity of the electric potential with respect to the conductivity (top left (I): x 0 =(0.4,0), r = 0.1, top right (II): x 0 =(0.7,0), r = 0.1, bottom left (III): x 0 =(0.4,0), r = 0.3, bottom right (IV): two disjoint perturbations, one is centered at x 0 =(0.4,0) with radius r = 0.1 and the other is centered at x 0 =(-0.4,-0.5) with radius r = 0.2).
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 3435 Figure 3.4: Head model. Sensitivity of the electric potential with respect to the conductivity (top left (I): x 0 = (0.4, 0), r = 0.1, top right (II): x 0 = (0.7, 0), r = 0.1, bottom left (III): x 0 = (0.4, 0), r = 0.3, bottom right (IV): two disjoint perturbations, one is centered at x 0 = (0.4, 0) with radius r = 0.1 and the other is centered at x 0 = (-0.4, -0.5) with radius r = 0.2), skull: small perturbation in the skull conductivity
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 36 Figure 3.6: Unit ball. Sensitivity of the electric potential with respect to the conductivity in the direction of the indicator function of the support of an inhomogeneity. Top left: centered at (0.45, 0, 0.45) with radius 0.2. Top right: centered at (0, 0.3, 0.35) with radius 0.2. Bottom: centered at (0, 0.3, 0.35) with radius 0.35.
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 37 Figure 3.7: Spherical head model. Sensitivity of the electric potential with respect to the conductivity in the direction of the indicator function of the support of an inhomogeneity in the brain. Top left: centered at (0.45, 0, 0.45) with radius 0.2. Top right: centered at (0, 0.3, 0.35) with radius 0.2. Bottom: centered at (0, 0.3, 0.35) with radius 0.35.
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 38 Figure 3.8: Spherical head model. Boundary values of the sensitivity of the electric potential with respect to the conductivity in the direction of the indicator function of the support of a spherical inhomogeneity.
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 39 Figure 3.9: Unit disk. Sensitivity of the electric potential with respect to the contact impedance in the direction of a perturbation on the 7th electrode (leftmost), 19th electrode (middle) and on both electrodes (rightmost)

  Figure 3.10: Head model. Sensitivity of the electric potential with respect to the contact impedance in the direction of a perturbation on the 7th electrode (leftmost), 19th electrode (middle) and on both electrodes (rightmost)
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 3 Figure 3.11: Thorax. Sensitivity of the electric potential with respect to the contact impedance in the direction of a perturbation on the 7th electrode (leftmost), 19th electrode (middle) and on both electrodes (rightmost)
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 312 Figure 3.12: Unit ball. Values of the sensitivity of the electric potential with respect to the contact impedance in the direction of a perturbation on the 6th electrode (top left), on the 31st (top right) and on both electrodes (bottom).

  objective function reads C(P, S) = U (P, S) -U obs 2 2 , (4.4) where the voltages U (P, S) ∈ R L are computed by solving the forward problem (1.21) -(1.22) -(1.23) -(1.24) at a fixed conductivity σ (described by the vectors P and S) and U obs ∈ R L is the measured voltage at the electrodes, and
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 42 Figure 4.2: Image reconstructions for Case 2. The background conductivity is σ 0 = 1.0 mS • cm -1 . The conductivity inside the ellipse of the original image is σ e = 6.7 mS • cm -1 .
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 43 Figure 4.3: Image reconstructions for Case 3. The background conductivity is σ 0 = 1.0 mS • cm -1 . The conductivities are σ 1 = 6.1 mS • cm -1 (big ellipse) and σ 2 = 6.7 mS • cm -1 (small ellipse) in the original image.
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 5 Figure 5.1: A neuron cell (left) and the human brain (right) (source:wikimedia)
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 52 Figure 5.2: EEG in practice (left, source:wikimedia) and EEG epilepsy diagnosis (right, source:mayoclinic.org)
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 53 Figure 5.3: Three-layer spherical model and CT scan of head.[DL18]

Proposition 5.3. 1 .

 1 The potential (w, W ) ∈ H := H 1 (Ω) ⊕ R L is a weak solution to (5.20) if and only if for any(v, V ) ∈ H, B((w, W ), (v, V )) = f (v),(5.21)where the bilinear form B :H × H -→ R is defined by B((w, W ), (v, V )) := Ω σ∇w • ∇v dx + L ℓ=1 1 z ℓ e ℓ (w -W ℓ )(v -V ℓ ) ds, (5.22)and the linear form f : H -→ R is given byf (v) := M m=1 Ω (c mσ)∇ũ m • ∇v dx -∂Ω c m (∂ n ũm )v ds .(5.23)Proof. (⇒) Suppose (w, W ) is a weak solution to (5.20). Let (v, V ) ∈ H be test functions. Multiplying v to (5.16) and using Green's formula, we have-Ω ∇ • (σ∇w)v dx = M m=1 Ω ∇ • ((σc m )∇ũ m )vds ⇔ Ω σ∇w • ∇v dxc m )∇ũ m • ∇v dx + ∂Ω (σc m )∂ n ũm v ds .(5.24) We have ∂Ω σ∂ n wv ds = L ℓ=1 e ℓ σ∂ n wv ds + ∂Ω\Γe σ∂ n wv ds. From (5.18) and (5.19), we deduce ∂Ω σ∂ n wv ds = ℓ (W ℓw)v ds -∂Ω σ∂ n ũv ds. (5.25) Chapter 5. Study of the Complete Electrode Model for Electroencephalography Now, substituting (5.25) in (5.24), we obtain Ω σ∇w • ∇v dx + σ)∇ũ m • ∇v dx -∂Ω c m ∂ n ũm v ds .

  z ℓ (σ∂ n w + σ∂ n ũ))ds = e ℓ W ℓ ds.

  W ℓ )V ℓ ds = 0, ℓ = 1, 2, . . . , L.(5.28) Finally combining (5.28) and (5.26), we obtain the variational formulation (5.21)Ω σ∇w • ∇v dx + L ℓ=1 1 z ℓ e ℓ (w -W ℓ )(v -V ℓ ) ds = M m=1 Ω (c mσ)∇ũ m • ∇v dx -∂Ω c m ∂ n ũm v ds .

  v ∈ C ∞ (Ω) with supp v ⊂ Ω and V = 0. Then, the variational formulation (5.29) isΩ σ∇w • ∇v dx = M m=1 Ω (c mσ)∇ũ m • ∇v dx, which implies that w satisfies -∇ • (σ∇w) = M m=1 ∇ • (σc m )∇ũ m in a weak sense. By Green's formula, for arbitrary v ∈ H 1 (Ω), c m )∇ũ m • ∇v dx + ∂Ω (σc m )∂ n ũm v ds .(5.30) 5.3. The Complete Electrode Model for EEG forward problem 109 Putting together the above equation and (5.21) where V = 0, we obtain ∂Ω σ∂ n wv + L ℓ=1 1 z ℓ e ℓ (w -W ℓ )v ds = -M m=1 ∂Ω σ∂ n ũm v ds.Note that the second term of the equation above can be expressed asL ℓ=1 1 z ℓ e ℓ (w -W ℓ )v ds = W ℓ )χ ℓ v ds,where χ ℓ is the characteristic function of the ℓth electrode. Thus, we get∂Ω σ∂ n w + L ℓ=1 1 z ℓ (w -W ℓ )χ ℓ + σ∂ n ũ v ds = 0.(5.31)Since v is chosen arbitrarily, the auxiliary potential w satisfy σ∂ n w + 1 z ℓ (w -W ℓ ) + σ∂ n ũ = 0, on e ℓ , ℓ = 1, . . . , L, and σ∂ n w = -σ∂ n ũ, on ∂Ω \ Γ e .

∂Ω σ∂ n wv ds + L ℓ=1 1

 ℓ=1 z ℓ e ℓ (w -W ℓ )(v -V ℓ ) ds = -∂Ω σ∂ n ũv ds. ℓ (w -W ℓ )χ ℓ + σ∂ n ũ v ds = L ℓ=1 1 z ℓ e ℓ (w -W ℓ )V ℓ ds. ℓ (w -W ℓ )V ℓ ds = 0.Again, since V is chosen arbitrarily we conclude for ℓ = 1, 2, . . . , Le ℓ 1 z ℓ (w -W ℓ ) ds = 0 ⇔ e ℓ(σ∂ n w + σ∂ n ũ) ds = 0, and (5.18) holds. Now, we study the existence and uniqueness of a weak solution for the problem (5.20). First, we observe that the bilinear form B that was obtained in the variational formulation in Proposition 5.3.1 is the same as the bilinear form in CEM for EIT in Proposition 2.1.2. The main difference comes from the linear formf (v) = M m=1 Ω (c mσ)∇ũ m • ∇v dx -∂Ω c m ∂ n ũm v ds .110 Chapter 5. Study of the Complete Electrode Model for Electroencephalography The bilinear form B(•, •) and the linear form f (•) are well defined on H 1 (Ω) if the conductivity σ belongs to L ∞ (Ω) and satisfies the assumption (5.10). We have a Neumann boundary condition. If we set the test function v = V ℓ , then f (V ℓ ) = -∂Ω c m ∂ n ũm V ℓ ds = 0. Thus, the variational formulation (5.21) admits a solution only under the compatibility condition M m=1 ∂Ω c m ∂ n ũm ds = 0.

∂Ω c m

 m ∂ n ũm ds = 0, ∀m = 1, . . . , M.(5.32)To obtain the uniqueness, we consider the quotient space Ḣ = H/R equipped with the norm defined in Lemma 2.1.3 (p.14)[START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF].Theorem 5.3.3. Let the conductivity σ ∈ L ∞ (Ω) be such that 0 < σ min ≤ σ(x) < σ max for almost any x ∈ Ω, where σ min and σ max are two given positive constants. Assume further that σ |Vm is constant for any m = 1, . . . , M and denote by c m the conductivity value of σ on V ⊂ Ω 1 . Let the contact impedance Z ∈ R L fulfill the condition (1.20). Let the bilinear form B(•, •) and the linear form f (•) be given by (5.22) and (5.23), respectively. Then the variational problem: find (w, W ) ∈ Ḣ such that B((w, W ), (v, V )) = f (v), ∀(v, V ) ∈ Ḣ(5.33) has exactly one solution (w, W ) ∈ Ḣ.

Corollary 1 .

 1 Suppose that the hypotheses of Theorem 5.3.3 are satisfied. If the following relation holds L ℓ=1 W ℓ = -L ℓ=1 Ũℓ , (5.34) then the variational problem (5.21) has a unique solution in H.Proof. Existence of solution in H is assured by the norm equivalence shown in Remark 1. For the uniqueness, assume that there are two solutions (w, W ) and ( w, W ) satisfying (5.16) -(5.18). Let (v, V ) = (w, W ) -( w, W ). Therefore, we have (v, V ) satisfying the following boundary value problem               ∇ • (σ∇v) = 0, in Ω, v + z ℓ σ∂ n v = V ℓ , on e ℓ , ℓ = 1, 2, . . . , L, σ∂ n v = 0, on ∂Ω \ Γ e e ℓσ∂ n v ds = 0, ℓ = 1, 2, . . . , L. test function v to (5.35), integrating by parts, and applying the Green's Theorem, we have Ω σ|∇v| 2 dx = ∂Ω (σ∂ n v)v ds = L ℓ=1 e ℓ (V ℓz ℓ σ∂ n v)σ∂ n v ds = n v| 2 ds.
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	Résumé de la thèse

(typiquement dans une gamme de fréquences comprises entre quelques Hz et quelques MHz) est ensuite injecté aux électrodes. Ceci génère une distribution de potentiel dans le milieu qui est fonction de la conductivité. On mesure les tensions électriques de surface aux électrodes qui n'ont pas été utilisées pour appliquer le courant. Puis on répète le processus avec une autre paire d'électrodes (adjacentes) pour appliquer le courant. Les mesures sont enfin inversées par un algorithme de reconstruction d'images. Les avantages de l'EIT sont son faible coût, son caractère non ionisant, sa simplicité d'utilisation avec un système de mesures portable et sa haute résolution temporelle (jusqu'à 50 images par seconde).

  VVSK99]. De nombreux travaux théoriques et numériques ont été consacrés à l'étude mathématique de ce modèle (par exemple [VVSK99; Hyv04; BKIN07; Ags15; DS16; HM17]).

Le modèle d'électrode complet (CEM) considère la géométrie, l'emplacement des électrodes et les effets du contact électrode-peau [CING89; SCI92; PLW16; Hyv04]. C'est le modèle mathématique le plus précis, le plus proche des expérimentations et le plus utilisé aujourd'hui [SCI92; Hyv04;

  Mendoza, and A. C. Velasco, "Sensitivity analysis of the Complete Electrode Model for electrical impedance tomography". Le chapitre 4 propose d'appliquer plusieurs algorithmes métaheuristiques pour la résolution numérique du problème inverse en EIT. Nous adoptons la démarche plus classique de la minimisation d'une fonctionnelle de type moindres carrés. Nous choisissons les algorithmes suivants: Firefly Algorithm (FA), Novel Bat Algorithm (NBA), Genetic Algorithm with New Multi-Parent Crossover (GA-MPC), Success History-based Adaptive Differential Evolution with Linear Population Size Reduction with Semi-Parameter Adaptation Hybrid avec Covariance Matrix Adaptation Evolutionary Strategy (LSHADE-SPACMA), Ensemble Sinusoidal Differential Covariance Matrix Adaptation (LSHADE-cnEp-Sin), et Effective Butterfly Optimizer avec Covariance Matrix Adapted Retreat Phase (EBOwithCMAR

  .1).

	Mesh Nodes Triangle Elements h min h max
	M 1	2 896	1 513	0.035 0.079
	M 2	14 374	7 332	0.015 0.037
	M 3	120 426	60 630	0.005 0.017

Table 2.1: Mesh description of a disk

  Table 2.2 displays the L 2 and H 1 errors of the potential u and the Euclidean error of the boundary voltage U . Meanwhile, Table 2.3 gives the numerical estimation of the convergence order for u and U , and Figure 2.1 displays the plot for the H 1 and L 2 errors of u h . 2.3. Numerical validation of the CEM in the homogeneous unit disk case 33

	Mesh	u -u h L 2	u -u h H 1	U -U h 2
	M 1	7.4E-02	2.5E-00	4.8E-01
	M 2	1.9E-02	1.3E-00	1.4E-01
	M 3	3.3E-03	5.7E-01	2.8E-02

Table 2.2: Case when z = 0.001: errors on potential u and U

Table 2 .

 2 

3: Case when z = 0.001: numerical validation of the FEM solver convergence

L 2 -error H 1 -error

Table 2 .

 2 

5: Case when z = 0.01: numerical validation of the FEM solver convergence

L 2 -error H 1 -error

Table 2

 2 

	.7: Case when z = 0.1: numerical validation of the
	FEM solver convergence

Table 2

 2 

	.8.		
	Nodes Triangle Elements h min h max
	Cases 1a-1b 8 992	17 662	0.013 0.038
	Cases 2a-2b 8 989	17 676	0.013 0.038
	Cases 3a-3b 9 386	18 450	0.008 0.043
	Table 2.8: FEM mesh structure

Table 2 .
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	Electrode 4	U 3.9555	U p 3.9541 -0.0014 U p -U
	13	2.2224	2.2224	0.0000
	17 30	0.6954 -4.1582 -4.1570 0.0012 0.6953 -0.0000

9: CEM Case 1: Values of the voltages at selected electrodes Figure 2.10: CEM Case 1: Location of electrodes Case 2 -Head model

Table 2.10: CEM Case 2: Values of the voltages at selected electrodes

Table 2 .

 2 

	Electrode 5 10 21 30	U 3.9818 4.1257 -3.4233 -3.3972 0.0261 U p U p -U 3.9481 -0.0337 4.0687 -0.0571 -2.6716 -2.6660 0.0056
	Table 2.12: CEM Case 4:	Figure 2.14: CEM
	Values of the voltages at se-	Case 4: Location of
		lected electrodes	electrodes

11: CEM Case 3: Values of the voltages at selected electrodes Figure 2.13: CEM Case 3: Location of electrodes Case 4 -Disk with two ellipses

Table 3

 3 

.1: Unit disk. Numerical sensitivity of the voltages with respect to conductivity at selected electrodes.

  .2. They are significantly larger than the ones obtain from Simulations I-IV. It confirms that EIT measurements are extremely sensitive to uncertainties in the skull conductivity.

			Head model		
	Electrode	I	II	III	IV	skull
	4	-0.0040 -0.0063 -0.0368 -0.0102 -45.80
	13	0.0001	0.0002	0.0010	0.0025	0.6728
	17	-0.0001 7.7E-05 -0.0012 -0.0139 -14.24
	30	0.0034	0.0062	0.0314	0.0011	26.24

Table 3.2: Head model. Numerical sensitivity of the voltages with respect to conductivity at selected electrodes.

Table 3

 3 

.3: Thorax. Numerical sensitivity of the voltages with respect to conductivity at selected electrodes.

Table 3

 3 

	.6: Case 3: Numerical sensitivity of the voltages with
	respect to contact impedance at selected electrodes.

Table 4 .

 4 1: Different cases studied for the numerical tests

  The synthetic voltage data (u, U ) are obtained by solving the forward CEM problem (1.21) -(1.22) -(1.23) -(1.24) with the exact conductivity Chapter 4. Metaheuristics algorithms for solving the 2D EIT...distribution (2.30).A FEM mesh structure with 30 240 triangular elements, 15 409 nodes, and a mesh size h = 0.014 was used for the resolution of the forward problem in Case 1, and with 25 858 triangular elements, 13 122 nodes, and h = 0.03 for both Cases 2 and 3. In order to avoid an inverse crime (in the sense of[START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF][START_REF] Wirgin | The inverse Crime[END_REF]), the inverse computations are done on a mesh with 17 240 triangular elements, 8 845 nodes, and h = 0.019 for Case 1, and on a mesh with 17 882 triangular elements, 9 102 nodes, and h = 0.037 mesh size for Cases 2 and 3, which are different from the meshes used to solve the forward problems.

Table 4 .

 4 2: Selected values for NBA parameters

  Table 4.3: Reconstruction errors in % of the final solution generated by the proposed heuristic algorithms for all cases.

		1 Case 2 Case 3
	FA	5.28	6.82	16.56
	NBA	0.152	2.28	21.91
	GA-MPC	0.054 15.11	13.07
	LSHADE-SPACMA 0.060	5.84	7.90
	LSHADE-cnEpSin	0.061	9.63	14.95
	EBOwithCMAR	0.058	6.43	12.00

Table 4

 4 final values and the reconstruction error in % of each unknown parameter for Case 1. Except for FA, the rest of the algorithms lead to a reconstruction error around 0.1%. The conductivity of the heart is better retrieved than the lungs for the more recent heuristic algorithms, while for FA and NBA, the lungs' conductivity is approximated more accurately. LSHADE-SPACMA got the least mean and standard deviation of reconstruction error which means that Chapter 4. Metaheuristics algorithms for solving the 2D EIT... Table 4.5: Final solutions and reconstruction errors in % of each parameters in the final solution generated by the proposed heuristic algorithms for Case 1.

	.5 displays

the

  ; RFSD14]. Chapter 4. Metaheuristics algorithms for solving the 2D EIT...

		Case 3 -Two elliptical inclusions		
	Algorithm	σ 1	h 1	k 1	a 1	b 1	θ 1
	True solution FA NBA GA-MPC LSHADE-SPACMA 6.8679 -0.2041 0.2985 0.3160 0.7423 1.1810 6.1 0.3 0.3 0.7 3π/8 -0.2 6.9516 -0.1863 0.3907 0.6940 0.9641 1.1961 7.6084 -0.1875 0.3585 0.3865 1.5049 1.2479 7.2698 -0.2044 0.3041 0.3410 0.7933 1.1834 LSHADE-cnEpSin 7.5342 -0.2012 0.2977 0.3278 0.7572 1.1813 EBOwithCMAR 7.2067 -0.2149 0.3130 0.3317 0.8161 1.1737
	Algorithm	σ 2	h 2	k 2	a 2	b 2	θ 2
	True solution FA NBA GA-MPC LSHADE-SPACMA 6.5312 0.4526 -0.5435 2.7570 2.0587 1.9484 6.7 0.45 2.7 2.1 5π/8 -0.55 7.0271 -0.0174 -0.0840 0.9879 0.8254 2.1393 6.9453 0.0846 -0.0628 1.9633 1.1535 2.0135 7.2293 0.4384 -0.5249 2.9269 2.1106 1.9645 LSHADE-cnEpSin 6.3098 0.4575 -0.5476 2.7362 2.1318 1.8048 EBOwithCMAR 6.7852 0.3934 -0.4856 2.4609 1.7542 1.8492

Table 4 .

 4 

8: Final solutions generated by the proposed heuristic algorithms for Case 3. (Note that 3π/8 ≈ 1.18 and 5π/8 ≈ 1.96.)

  and no regularization term added to the cost function. We use the Matlab built-in command function fminunc to implement the quasi-Newton iterative algorithm. In Case 1, the reconstruction error is 6.17E-04, standard deviation is 2.21E-04 and the average cost function is 1.4E-03. This is almost the same results that we got from the six heuristic algorithms. Considering that there is no regularization term added to the cost function, BFGS performed really well in Case 1. However for Case 2, BFGS yielded a mean error of 151.6, standard deviation 361.8, and average cost function 5.97 which are huge values comparing to the results of the six heuristic algorithms. In this case when both the geometry and conductivity value are unknowns, the metaheuristic algorithms had a clear advantage over BFGS.

	Case 3 -Two elliptical inclusions		
	Algorithm	σ 1	h 1	k 1	a 1	b 1	θ 1
	FA	13.96 6.85 30.23 37.73 131.33 56.49
	NBA	24.73 6.25 19.51 28.82 114.9 5.93
	GA-MPC	19.18 2.18 1.37 13.65 13.32 0.45
	LSHADE-SPACMA 12.59 2.05 0.49 5.32 6.05 0.25
	LSHADE-cnEpSin 23.51 0.62 0.76 9.28	8.18	0.27
	EBOwithCMAR	18.14 7.45 4.32 10.57 16.59 0.37 Original Image
	Algorithm	σ 2	h 2	k 2	a 2	b 2	θ 2
	FA	4.88 103.87 84.73 52.96 69.43 8.95
	NBA	3.66 81.20 88.59 27.28 45.07 2.54
	GA-MPC	7.90	2.59	4.56 8.40 0.51 0.05
	LSHADE-SPACMA 2.52 0.57	1.19 2.11 1.96 0.77
	LSHADE-cnEpSin 5.82 FA	1.66	0.44 1.34 1.52 8.08 NBA
	EBOwithCMAR	1.27 12.57 11.70 8.86 16.47 5.82
	Table 4.9: Reconstruction errors in % of each parameters in
	the final solution generated by the proposed heuristic algorithms
			for Case 3.				
	GA-MPC			LSHADE-SPACMA	
	LSHADE-cnEpSin			EBOwithCMAR	

guess

  Méthodes numériques pour la résolution des problèmes direct et inverse en tomographie par impédance électriqueRésumé. Dans cette thèse, nous étudions la tomographie par impédance électrique (EIT) du point de vue théorique et numérique. Mathématiquement, cela consiste à résoudre un problème direct et un problème inverse. Le problème direct permet de calculer les valeurs du potentiel électrique aux electrodes. Ces valeurs représent les données pour le problème inverse : la reconstruction de la distribution de conductivité dans le domaine. Le modèle d'électrode complet (CEM) modélise avec précision les phénomènes d'interface électrode/tissu. Nous étudions en détail ce modèle et sa résolution numérique par élements finis. De plus, afin de comprendre l'influence de la conductivité et de l'impédance de contact des electodes sur le potentiel électrique, nous menons une analyse de sensibilité rigoureuse du problème direct. Le problème inverse est, quant à lui, formulé comme un problème de minimisation d'une fonctionelle-coût représentant la difference entre les tensions mesurées et prédites aux électrodes. L'applicabilité de differents algorithmes métaheuristiques en tant que stratégie d'optimisation pour le problème de reconstruction est proposée. Des simulations numériques sont effectuées pour comparer leur efficacité. Enfin, nous nous intéressons à la modélisation des électrodes pour l'électroencéphalographie (EEG). Pour traiter la singularité du terme source, l'approche de soustraction est proposée. Nous démontrons un résultat d'existence et d'unicité.Mots-clés : tomographie par impédance électrique, modèle d'électrode complète, problème inverse, algorithmes heuristiques, analyse de sensibilité, électroencéphalographie

All bats can forage in different habitats, depending on a stochastic selection.

2. All bats can compensate for Doppler effect in echoes. They can adaptivelyadjust the compensation rate according to the proximity of the targets.
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LSHADE-cnEpSin

LSHADE-cnEpSin also follow the DE-based algorithm, LSHADE, but with an additional method for adapting the parameters of DE. The additional parameter adaptation method is an ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood. The sinusoidal adjustment adapts the scaling factor F while the other method is for the crossover rate Cr [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF]. LSHADE-cnEpSin employs an ensemble of two sinusoidal waves to adapt the scaling factor F based on successful performance of previous generations. The two configurations are the non-adaptive sinusoidal decreasing adjustment and the adaptive sinusoidal increasing adjustment [START_REF] Awad | An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems[END_REF][START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF]. For the first half of generations, a mixture of the two sinusoidal configurations based on performance adaptation is used. During the said period, a learning period LP is introduced where the probabilities of choosing sinusoidal configurations are both equal to 0.5 and are chosen randomly [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF]. After that, the probabilities are updated at each subsequent generation according to the respective performance of the sinusoidal configurations. Now for the second half of generations, the usual formulation of SHADE [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF] in adapting the scaling factor F , using Cauchy distributions, is used [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF].

LSHADE-cnEpSin, although shares the same adaptation process for the crossover rate Cr with LSHADE [START_REF] Tanabe | Improving the search performance of SHADE using linear population size reduction[END_REF], adds another crossover operator using covariance matrix learning with Euclidean neighborhood with a probability pc [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF]. In this step, the best individual in the population is determined and the Euclidean distance between the best individual and every other individual in the population is computed. The individuals are then sorted based on their Euclidean distance and a number of individuals are chosen to form a neighborhood around the best individual. The covariance matrix is computed from this neighborhood region and after that, the target and mutant vectors are updated with respect to the Eigen coordinate system. The trial vector is created using the binomial crossover and is then transformed back to the original coordinate system. The pseudo-code is given in Appendix A.

In [START_REF] Awad | Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[END_REF], LSHADE-cnEpSin was evaluated using the set of problems presented in IEEE CEC 2017 Real-Parameter Special Session bound constrained case [START_REF] Awad | Problem definitions and evaluation criteria for the CEC[END_REF], where it ranked third out of the twelve participating algorithms [START_REF] Molina | An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions[END_REF].

Numerical simulations

Series of numerical tests were carried out to investigate and compare the performance of the proposed algorithms in solving the inverse EIT problem. Three different cases of inclusions were considered as shown in Table 4.1 and mentioned in Section 2.4. Chapter 5. Study of the Complete Electrode Model for Electroencephalography that of the classical PEM. We focus on the study of CEM for the EEG forward problem in this chapter.

The main difference between the EEG and EIT is the absence of injected currents at the electrodes. In particular, we get for each electrode e ℓ , e ℓ σ∂ n u ds = 0, and for the part of the boundary where there are no electrodes

Moreover, the voltage drop due to contact impedance is given by

Let the sum of M electric dipoles be the source model of the neural activity in the brain. The characterization of each dipole is by its position S m ∈ Ω 1 and its moment q m ∈ R 3 . The points (S m ) m are assumed to be mutually distinct, i.e., S m = S p ∀m = p, and their corresponding moments are nonvanishing. Recall that the elliptic equation for EEG (5.4).

Hence, we get the following boundary value problem for EEG: find

σ∂ n u ds = 0, ℓ = 1, 2, . . . , L.

(5.5)

(5.6) (5.7)

(5.8)

The ground potential condition

is also assumed in the CEM for EEG to assure the uniqueness of the solution.

The writing of the variational formulation of the above boundary value problem in H ⋄ is not possible because of the lack of regularity of the source term. We propose to apply the subtraction method in order to deal with the singularity in the source term of the problem.

Existence and uniqueness result

The source term in (5.5) presents a strong singularity at the source points S m . In particular, it belongs to H s (R 3 ) ∀s < -5/2 and due to this lack of regularity, a direct variational formulation in H ⋄ is impossible. In [PLW16; PLW12], the weak form in [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] of the boundary value problem of the CEM is uniquely Chapter 5. Study of the Complete Electrode Model for Electroencephalography

Obtaining the equations that describes w, we get from (5.5) and using (5.12),

Thus, we get

(5.16) Furthermore, the boundary conditions are also defined accordingly. From (5.7), we get σ∂ n w = -σ∂ n ũ, on ∂Ω \ Γ e .

(5.17)

Next by using (5.8), we obtain (5.18) Lastly, equation (5.6) gives for ℓ = 1, . . . , L

and thus

Finally, the boundary value problem for the regular part (w, W ) is: find (5.20)

From the decomposition, the existence and uniqueness of the potential (u, U ) depends on the existence and uniqueness of (w, W ).

Appendix A

Metaheuristic algorithms pseudo-codes

A.1 Firefly Algorithm pseudo-code.

Input: Objective function f (x), x = (x 1 , . . . , x D ) for D dimensions, number of fireflies N , MaxGen, α, γ, β, light intensity I i is determined by f (x i ) Output: cost function f (x * ) at optimal x * 1: Generate initial population of fireflies x i , i = 1, 2, . . . , N .

2: Initial evaluation of all N fireflies. 3: while F uncEvals < M axEval do 4:

Increment k.

5:

for i = 1 to N do 6:

for j = 1 to N do 7:

if I i < I j then 8:

Move firefly i towards j with x i = x i + βe -γ ij (x jx i ) + αǫ i , where r ij is the Cartesian distance between two fireflies x i and x j and ǫ i is a vector of random numbers.

9:

end if 10:

Evaluate new solutions and update light intensity.

11:

end for 12:

end for 13:

Reduce α.

14:

Rank the fireflies and find the current global best solution. 15: end while A.2 Novel Bat Algorithm pseudo-code.

Input: Objective function f (x), x = (x 1 , . . . , x D ) for D dimensions, number of bats N , maximum number of iterations M , α, γ, G, w, θ, C min , C max , P min , P max , A min , A max , r min , r max , f min , f max Output: cost function f (x * ) at optimal x * 1: Generate initial population of bats x k ij and velocities v k ij , i = 1, 2, . . . , N , j = 1, 2, . . . , D. 2: Initial evaluation of all N bats. 3: Rank the bats with g k j as the best global position and its velocity is v k gj . 4: while F uncEvals < M axEval do Appendix A. Metaheuristic algorithms pseudo-codes 5:

if rand(0, 1) < P , where P ∈ [P min , P max ] then 6:

Generate new solutions with

Generate new solutions with

where w ∈ [0, 1] is a uniform random vector, ǫ is the smallest constant in the computer, C ∈ [C min , C max ], and c = 340m/s is the speed in the air.

9:

end if 10:

if rand(0, 1) > r i then 11:

Generate a local solution around the selected best solution using

where σ 2 = |A k i -A k mean | + ǫ, and rand n(0, σ 2 ) is a Gaussian distribution with mean 0 and standard deviation σ 2 , and A k mean is the average loudness of all bats at time step t. Note that ǫ is used to ensure that σ 2 > 0.

12: end if

13:

Evaluate new solutions.

14:

Update solutions, the loudness, and pulse emission rate using

15:

Rank the solutions and find the current best g k .

16:

if g k does not improve in G time step then 17:

Re-initialize the loudness A i and set temporary pulse rates r i which is a uniform number between [0.85,0.9].

18:

end if

19:

Increment k. 20: end while A.3. GA-MPC pseudo-code.
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A.3 GA-MPC pseudo-code.

Input: Objective function f (x), x = (x 1 , x 2 , . . . , x D ) for D dimensions, P S,

x min , x max , β, cr, m Output: cost function f (x * ) at the optimal x * 1: Generate initial random population of size P S with

where u is a random vector with values in [0,1]. 2: while F uncEvals < M axEval do

3:

Rank all the individuals in the population by their cost function value and choose the best m individuals to form the archive pool Ã.

4:

Apply a tournament selection with size T C and fill the selection pool.

5:

Generate a random number ū in [0, 1].

6:

for each three consecutive individuals in the selection pool do 7:

if one of the selected individual is the same to another then 8:

Replace one by a randomly-selected individual in the selection pool. 9:

12:

Calculate β = N (μ, σ).

13:

Generate three offspring from the three parents with if there is a duplicate individual then

23:

Replace the duplicate with

where ū ∈ [0, 1].

24:

end if 25: end while A.4 Simplified LSHADE-SPACMA pseudo-code.

Input: Objective function f (x), x = (x 1 , . . . , x D ) for D dimensions, memories M Cr , M F , and M F CP , Arc rate , p best , c, H, P S min , P S max Output: cost function f (x * ) at optimal x * 1: Generate initial random population with size P S max .

2: Set values of memories M Cr , M F , and M F CP to 0.5. 3: Initialize CMA parameters. 4: while F uncEvals < M axEval do 5:

Semi-parameter adaptation (SPA) for scaling factor F and crossover rate Cr. During the first part of SPA, the adaptation is concentrated on Cr and for the second part the focus of the adaptation is on F .

6:

Split the population into two.

7:

Generate donor vectors using LSHADE or modified CMA-ES.

8:

Concatenate resulting vectors from LSHADE and modified CMA-ES.

9:

Generate trial vectors and mutate with p best .

10:

Evaluate fitness of trial vectors.

11:

Implement selection strategy.

12:

Update population allocated to LSHADE and CMA-ES according to the relative performance of the two methods.

13:

Store successful parameters to memory of size H.

14:

Update archive with rate Arc rate .

15:

Update memory memory M F during the first part of SPA and M F CP with c during the second part. Update also M Cr .

16:

Implement linear population size reduction with min pop size P S min .

17:

Sort individuals and retain them based on the new population size.

18:

Update CMA-ES parameters. if number of generation is < G max /2 then 7:

Implement sinusoidal configuration to adapt F using f req. Adapt Cr using normal distribution.

12:

for i = 1 to population size do 13:

Generate mutant vectors with p best .

A.6. Simplified EBOwithCMAR pseudo-code. Apply covariance matrix learning or binomial crossover to generate trial vectors.

15:

Store successful F and Cr. 3: Randomly assign members of the main population to three subpopulations X 1 , and X 2 for EBO, and X 3 for CMAR. The max and min population size for X 1 are P S 1,max and P S 1,min , respectively, P S 2,max and P S 2,min for X 2 , and P S 3 is the pop size for X 3 . 4: while F uncEvals < M axEval do 5:

if number of cycle is == CS/2 then 6:

Update prob 1 and prob 2 . if number of cycle is == CS then 9:

Implement data sharing.

10:

Update parameters for EBO using H and CMAR with σ.

11:

Reset prob 1 , prob 2 and number of cycles. if rand(0, 1) < prob 1 then 14:

Apply EBO.

15:

Implement linear population size reduction and reallocate subpopulations. if rand(0, 1) < prob 2 then 18:

Apply CMAR. if rand(0, 1) < prob ls and F uncEvals ≥ 0.75 * M axEval then 21:

Apply SEQ.

22:

if best solution is improved then Set prob ls to 0.1.

24:

Update X 1 and X 2 . Sort individuals and update allocations between subpopulations. 30: end while