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Résumé en français

Contexte et motivation
Les cachalots (Physeter macrocephalus, Pm) ont le bio-sonar le plus puissant du règne
animal (230 dB re: 1μPa rms). Les clics produits par ce sonar ne sont pas seulement
utilisés pour l’écholocalisation lors des plongées, mais aussi dans les interactions sociales.
Lors de leurs plongées, les cachalots émettent des trains de clics, un peu comme ceux des
chauves-souris, alors que pour la socialisation, ils émettront de petites séries rythmiques
de clics.

Il a été largement admis que le cachalot crée une impulsion initiale à l’avant de sa
tête, dans le ”museau de singe”, qui rebondira alors et en avant dans sa tête, passant à
travers plusieurs sacs d’huile, avant de sortir. Cependant, les détails d’un tel mécanisme
et les paramètres sur lesquels le cachalot peut agir restent inconnus.

L’étude des cachalots est un vaste sujet, qui couvre des champs disciplinaires mul-
tiples et variés, de l’éthologie à la conservation en passant par la bioacoustique. Étant
donné que ce manuscrit ne peut intégrer un sujet aussi vaste, il traitera de quelques
questions liées à un élément central du cachalot, qui est son sonar. Comprendre le mé-
canisme qui régit le sonar de cachalot aidera à étudier ces diverses domaines, car il s’agit
d’un élément clé dans la vie des cachalots.

Les cachalots sont des espèces sauvages qui, contrairement à d’autres espèces qui
vivent également en captivité, ne peuvent pas être équipées d’instruments lourds ou
entraînées pour tester leurs capacités de sonar. Sans possibilité d’expérimentation con-
trôlée sur de vrais cachalots, une option est d’expérimenter sur un cachalot virtuel,
conduisant au premier objectif de cette thèse, la création d’un simulateur biosonar de
cachalot. Cependant, un simulateur à lui seul est inutile, car on ne peut pas savoir à
quel point il est éloigné de la réalité.

Ainsi, le deuxième objectif de cette thèse, traite de la façon d’améliorer les simulations
à l’aide de mesures. Ce deuxième objectif est en outre divisé en deux parties, la méthode
de couplage et l’acquisition desdites mesures.

Le dernier objectif de cette thèse est l’utilisation de l’apprentissage automatique,
pour améliorer la vitesse d’extraction de données utiles à partir d’enregistrements pour
apprendre les fonctionnalités qui caractérisent leurs clics acoustiques.
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Le manuscrit est composé de quatre parties successives. Dans la partie I, après avoir
présenté les bases des techniques de traitement du signal qui seront utilisées tout au long
de notre étude, trois bases de données différentes sont décrites: deux en champ lointain
et une en champ proche, qui ont été acquises et / ou traitées pendant la thèse. Ces
bases de données d’enregistrements de cachalots sont à la base de la deuxième (Machine
Learning) et de la dernière (Coupling) parties.

La partie II concerne l’apprentissage automatique appliqué à la bioacoustique. Il
utilise ces bases de données pour entraîner les réseaux de neurones afin de découvrir ce
qu’est un clic, qui après l’entraînement peut être utilisé pour l’analyse de nouvelles bases
de données.

La troisième partie du manuscrit présente la théorie de la propagation des ondes
et les méthodes numériques afin de créer une simulation de la propagation des ondes à
l’intérieur de la tête du cachalot.

Enfin, la partie IV concerne le couplage, utilisant la théorie des problèmes inverses
pour améliorer les estimations cruciales des paramètres matériels du modèle.

Ces quatre parties répondent aux objectifs de la thèse exprimés précédemment et ont
permis d’obtenir les résultats suivants:

• Modification de l’algorithme BIVIP pour estimer l’IPI.

• Proposition d’un processus de détection de clics.

• Proposition de la méthode d’estimation Geometric SRP TDOA.

• Application de la distribution ellipsoïde TDOA à la fois pour l’estimation de la
forme de l’antenne et le filtrage.

• Développement d’une méthode de synchronisation audio entre un signal compressé
avec perte et un signal dilaté.

• Estimation des trajectoires des cachalots sur une antenne à deux hydrophones.

• Proposition de DBSCAN comme méthode d’estimation des pistes à des fins de
filtrage.

• Estimation des trajectoires de plongée des cachalots.

• Application d’un réseau de segmentation d’images à des vidéos de cachalots.

• Localisation de source 3D et traçage vidéo.

• Création d’une base de données de clics avec classification par individus.

• Création du jeu de données de clic et défi odontocetes, DOCC10.

• Formulation de l’architecture du modèle UpDim.

• Premier modèle de classification biosonar efficace de bout en bout.



4

• Développement d’un auto-encodeur pour débruiter le signal et estimer le TDOA.

• Création d’un modèle 3D d’une géométrie d’organe nasal de cachalot adulte.

• Application d’un simulateur de propagation d’onde FDTD sur le modèle.

• Formulation d’une méthode de couplage mesure-simulation pour la résolution de
problèmes inverses en propagation d’onde.

• Dérivation d’une formulation adjointe complète pour un modèle de propagation
d’onde pleine avec des conditions aux limites absorbantes.

Acoustique de la tête du cachalot
Avant de répondre aux objectifs de la thèse, il faut d’abord avoir connaissance des théories
permettant d’expliquer la formation du clic multi-pulsée du cachalot. La répétition d’une
impulsion dans un clic de cachalot est expliquée par le modèle de la corne courbée, ou le
modèle de la corne courbée avec fuites, qui ajoute le chemin acoustique pour les fausses
impulsions.

Une fois que l’impulsion a été émise dans le museau de singe, l’impulsion se propage
vers l’arrière de la tête à travers le spermaceti. Une partie de l’énergie libérée lors de la
création de l’impulsion fuit directement, qui sera enregistré en premier et est noté P0.
L’impulsion ayant traversé le spermaceti rencontre alors le sac frontal, qui agit comme
un miroir , redirigeant le pouls vers l’avant. À partir de ce point, l’impulsion peut
suivre trois chemins. Une partie de l’énergie s’échappera ainsi à travers l’eau. Une autre
partie passera par le junk pour atteindre l’eau. Le reste de l’énergie retournera vers les
lèvres du singe à travers le spermaceti, qui après avoir rebondi sur le sac d’air distal,
redémarrera le cycle. L’énergie va donc rebondir entre le sac frontal et distal, tandis
qu’une partie de celle-ci partira dans l’eau et dans le junk. Les impulsions quittant la tête
du cachalot à travers le junk, et qui contiennent la plupart de l’énergie et sont nommées
P1, P2, P3, . . .. Les impulsions qui fuient dans l’eau sont appelées demi-impulsions, car
elles ne traversent que la moitié des organes, et sont notées P1/2, P3/2, P5/2, . . .. Elles
sont également nommées fausses impulsions, donc parfois nommées Pf1, Pf2, Pf3, . . ..

L’intervalle entre les impulsions (IPI) est l’intervalle de temps entre la réception de
deux impulsions Pn et Pn+1 et est noté PnPn+1. Puisque ∀n ∈ N∗, Pn+1 parcourt le
même chemin acoustique que Pn plus un aller-retour dans l’organe spermaceti, l’IPI est
constant entre chaque paire d’impulsions (Pn, Pn+1) (voir figure 2.4). La valeur de l’IPI
P0P1 est proche de celle de P1P2. Au lieu d’une différence liée à un aller-retour dans
le spermaceti, P0P1 est dû à un aller dans le spermaceti et à un retour dans le junk,
et à la différence dûe aux zones de sortie de la tête. La comparaison entre la valeur
de P0P1 et celle de P1P2 conduit en pratique à une différence de 10%. Des exemples
d’enregistrements que nous avons faits de clics de cachalots sont illustrés dans les figures
2.5, 2.6 et 2.7. Le clic enregistré à 96 kHz sur la première figure est un exemple d’un
IPI de 4,042 ms (probablement une femelle car il se traduit par une longueur de corps
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comprise entre 9 et 11 mètres) où θ est compris entre −90◦ et 90◦. La différence des
chemins acoustiques peut être vue dans ce clic, car P0P1 n’est que de 3,60 ms. La
deuxième paire de la figure montre un clic enregistré à 600 kHz avec un IPI 3,27 ms.
Ce clic a été enregistré lors de la session d’enregistrement de Maurice 2018 (voir section
6.1). Puisqu’il a été enregistré près du cachalot et que le clic faisait partie d’un coda 2
+ 5, ses impulsions ultérieures peuvent être facilement vues.

Techniques du traitement de signal
Afin d’étudier l’acoustique du cachalot, il faut d’abord enregistrer leurs signaux, puis les
traiter pour au final les analyser. Ici sont ainsi présentées les différentes techniques de
traitement du signal qui seront utilisées avec les bases de donnée présentées par la suite.
Ce processus d’analyse est souvent composé de deux étapes principales: la détection des
clics et la localisation de la source.

Détection de clics
Les signaux d’acoustiques passives proviennent souvent d’enregistrement long terme et
ne contiennent que très peu de signal biologique de l’espèce observée, par rapport à la
quantité des autres signaux. L’expertise humaine étant trop coûteuse par rapport à
la taille des enregistrements, il faut recourir à un détecteur automatique de clics pour
extraire la position de chaque clic de cachalot présent dans le signal. Une méthode
simple et classique pour extraire les clics est d’utiliser le filtre Teager-Kaiser (TK), aussi
appelé Teager-Kaiser Energy Operator. Ce filtre se comporte comme un détecteur de
pics de Dirac. Après avoir utilisé un filtre passe-bande afin de ne garder que la bande
de fréquence contenant l’énergie des clics de cachalot, on applique le filtre TK. Puis
l’on extrait les maximums locaux par fenêtre glissante de 20ms. Avec une estimation
du niveau de bruit on peut estimer un niveau au-dessus duquel tous les maximums
appartiennent à des clics.

Cette méthode de détection n’est pas parfaite car toutes autres sources produisant
des clics (bateaux, électricité, autres espèces, etc.) avec un peu d’énergie dans la même
bande de fréquence seront aussi détectées. Ces faux clics seront filtrés plus tard dans
l’analyse grâce à d’autres informations. Après ce second filtrage, la base de données de
clics obtenue peut servir à entraîner un réseau de neurones servant de meilleur détecteur
de clics.

Estimation des TDOA
Les TDOA ou différences de temps à l’arrivée en français, sont utiles pour estimer la
position de la position d’un cachalot qui a émit le clic. Cela vient du fait que les
hydrophones qui mesurent le signal sont placés à différents endroits dans l’espace. Un
clic arrivera donc à différents moments pour chacun de ces hydrophones.

Une méthode pour estimer les TDOA est d’utiliser la corrélation. La corrélation est le
produit scalaire de deux signaux, pour différents décalages temporels. Si les deux signaux
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sont identiques à l’exception d’un décalage temporel, le maximum de leur corrélation
sera pour le décalage opposé. Cependant, le bruit reçu par chaque hydrophone n’est
pas exactement le même. Par conséquence estimer un TDOA avec une corrélation peut
donner des résultats aléatoires. Afin de lever ce problème, il est possible de combiner
l’estimation de plusieurs TDOA. pour N hydrophones, il y a

(
N

2

)
corrélations et TDOA

différent, mais seulement N −1 TDOA sont indépendants. Il est donc possible d’estimer
simultanément les TDOA en cherchant les N−1 TDOA indépendants qui maximisent les(
N

2

)
corrélations, ou plutôt qui maximisent une valeur représentant cette maximisation.

Soit l’on maximise la somme des valeurs de chaque corrélation, ce qui est fait dans la
méthode SRP, soit l’on maximise le produit des valeurs de chaque corrélation, ce qui
est fait dans la méthode geometric-SRP. L’estimation des TDOA réalisée dans la suite
de cette thèse utilise la seconde méthode. L’avantage de ces méthodes par rapport à
une méthode d’estimation de TDOA qui prendrait en compte la géométrie de l’antenne,
c’est que l’on peut filtrer les clics dont les TDOA ne correspondent pas a la géométrie
de l’antenne.

Estimation de la taille de la géométrie de l’antenne
Même si 4 hydrophones suffisent théoriquement pour récupérer la distance, le calcul
n’est pas robuste et toute petite erreur de mesure peut conduire à de grandes variations
dans l’estimation de la distance. Afin améliorer ce calcul, le TDOA peut être utilisé
pour estimer la géométrie de l’antenne. Pour une antenne à 4 hydrophones, et des clics
provenant d’une source lointaine (au moins 5 fois la taille de l’antenne), les 3 TDOA
indépendants de ces clics seront tous dans une ellipsoïde, dont les paramètres dépendent
des TDOA indépendants choisis et de la position des hydrophones. On peut donc, soit
estimer la taille de l’antenne en inversant les équations donnant les paramètres de l’ellipse
en fonction des positions des hydrophones, soit filtrer les TDOA n’étant pas sur cette
ellipse à l’aide des positions des hydrophones.

BOMBYX
BOMBYX est une bouée installée en mer Méditerranée, près de l’île de Porquerolles
(42◦56 N et 6◦19 E), au sud de Hyères, dans le sud-est de la France, comme le montre
la figure 4.1. Elle est positionnée à 27 mètres de profondeur, et enregistre à 50 kHz avec
deux hydrophones espacés de 1,83 m. Bombyx est orienté vers le sud, ce qui signifie
que l’évolution du TDOA permet de savoir si un groupe de cachalots va d’est en ouest
ou d’ouest en est. Puisque BOMBYX est complètement émergé et à 27 mètres de
profondeur, il réduit le bruit de surface généré et enregistré. La carte son a été fabriquée
par OSEAN et les deux hydrophones sont des Neptune D / 70 - (voir Figure4.4). Le
protocole d’enregistrement a évolué au fil des années (de l’enregistrement entièrement
continu à 5 minutes toutes les 20 minutes, variant entre des encodages en 16 ou 24
bits), avec des sessions d’enregistrement d’une durée d’environ 3 mois. Une équipe de
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plongeurs est alors envoyée pour changer les piles et récupérer le disque dur contenant
les enregistrements. Avec une estimation de 400 cachalots en mer Méditerranée, Bombyx
sert de station de surveillance pour étudier cette espèce menacée. C’est aussi pourquoi
Bombyx est situé dans le sanctuaire Pelagos qui vise à protéger les mammifères marins.

Sphyrna
Contrairement au chapitre précédent qui présentait une antenne fixe bi-hydrophone, avec
une basse fréquence à enregistrer pendant des mois, la base de données qui sera présentée
ici est une antenne mobile à cinq hydrophones.

Nous avons conçu une carte son à taux d’échantillonnage élevé et un algorithme
acoustique passif robuste pour un petit réseau non uniforme de 5 hydrophones montés
directement sous un véhicule de surface autonome (ASV) appelé Sphyrna. Cet ASV a
été construit par Sea Proven en France et est illustré à la figure 5.1. Cette configuration
est compliquée en raison de la petite taille de l’antenne et de l’enregistrement du son
près de la surface, au-dessus de la thermocline. Les enregistrements sont réalisés à 16
bits à 600 kHz avec notre carte son haute résolution disponible JASON (Figure 5.3),
conçue dans notre plateforme scientifique SMIoT. Nous proposons donc une méthode de
filtrage efficace des transitoires et autres bruits générés dans ces conditions extrêmes,
afin de surveiller les cétacés butinant en profondeur comme le cachalot qui passe plus
de 70% de son temps jusqu’à 1 km de profondeur. Dans ce qui suit, nous illustrerons
nos algorithmes pour traiter les impulsions d’écholocalisation de Pm qu’il utilise pour
l’orientation et la localisation des proies. L’analyse de leur mouvement peut également
aider à déduire leur comportement, aidant à la création d’un programme de conser-
vation. Tel qu’il a été expliqué précédemment, le détecteur de clics produit des faux
positifs. Puisque que le Sphyrna possède 5 hydrophones, la position de la source pour
chaque clic a pu être estimée. Les clics peuvent donc être regroupés en pistes de clics,
correspondant à la trajectoire des cachalots. Les faux clics ne correspondant à aucune
trajectoire, seront ainsi filtrés. Ces pistes sont calculées à l’aide de l’algorithme de clus-
tering DBSCAN, sur les TDOA, car l’estimation de distance de la source est imprécise,
créant des trajectoires plus oscillantes. L’algorithme DBSCAN connecte entre eux tous
les points ayant suffisamment de voisins, s’ils sont voisins eux même. Dans notre cas,
le nombre de voisins nécessaires est de 2, car l’on cherche à faire des pistes (les voisins
étant le point suivant et le point précédent dans la piste), et un point est voisin s’il
est suffisamment proche en temps et TDOA. Les paramètres convenables pour filtrer
les faux clics font qu’un seul cachalot aura plusieurs petites pistes, mais cela peut être
résolut en appliquant l’algorithme une deuxième fois, ou en utilisant une autre technique
une fois que les faux clics ont été filtrés.

Base de données de l’île Maurice
Après avoir décrit deux bases de données qui enregistrent les clics de cachalots loin de
la source, nous présentons ici une base de données où les cachalots ont été enregistrés
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à courte distance. Nous proposons également un ensemble de méthodes pour utiliser
TDOA afin de récupérer la position source et l’ajout de traitements vidéo afin d’identifier
la source.

Sous l’autorité de la Marine Megafauna Conservation Organization dirigée par H.Vitry
et, dans le cadre du programme mondial Maubydick, une équipe dirigée par F. Sarano
a mené une étude longitudinale sur le même groupe de 27 cachalots au large de la
côte ouest de l’île Maurice, depuis 2013. L’objectif principal est de comprendre la re-
lation entre les individus au sein du groupe familial et la dynamique de la population
de cachalots mauriciens. La principale originalité est que, depuis 2017, le protocole de
données est renforcé par une collaboration avec H.Glotin par l’utilisation d’une matrice
d’hydrophones à taux d’échantillonnage élevé, Blue JASON, de SMIoT et LIS DYNI,
qui permet d’enregistrer leurs comportements acoustiques le plus intime tout en min-
imisant leur perturbation. Depuis 2017, nous avons pu améliorer l’antenne acoustique
en lui ajoutant chaque année un hydrophone supplémentaire. L’antenne possède aussi
une GoPro. Puisque l’on arrive à localiser la position de la source avec les hydrophones
de l’antenne, on peut positionner la source dans la vidéo fournie par la gopro, et ainsi
identifier l’individu qui a émit ces clics. Ceci permet de créer une base de données de
clics et d’individus, mais aussi d’étudier les comportements résultant après une séquence
de clics.

Réseau de neurones
La surveillance acoustique passive est aujourd’hui une approche courante pour la surveil-
lance de la biodiversité. Son efficacité repose sur un vaste ensemble de données, et donc
une détection automatique fiable des espèces. Cet article traite d’un type particulier
d’émission, les transitoires des odontocètes, qui sont des impulsions à large bande de
courte durée. Nous présenterons une étude de cas, le projet CARI’MAM, et décrirons
comment un ensemble de données de références pourrait être construit pour un tel suivi.
Ensuite, nous proposons une nouvelle approche pour la classification des clics basée sur
un modèle CNN de bout en bout. Le projet CARI’MAM vise à créer un réseau de
gestionnaires d’aires marines protégées répartis dans toute la mer des Caraïbes pour
la conservation des mammifères marins. Afin d’étudier la répartition des mammifères
marins, un système mono-hydrophone devait être déployé ce printemps pendant 40 jours
dans 20 endroits différents, mais le déploiement a été retardé. La quantité de données
collectées sera trop importante pour être analysée manuellement. Pour préparer cette
analyse, nous avons créé un premier jeu de données constitué de clics des différentes
espèces présentes dans les Caraïbes. L’ensemble de données proposé contient 10 des 30
espèces que le projet CARI’MAM vise à étudier. Ce premier corpus nous permettra
de tester les différentes techniques d’analyse semi ou entièrement automatisée ainsi que
de former des modèles préliminaires d’apprentissage profond pour résoudre la tâche de
classification. Cet ensemble de données est également distribué comme référence pour
la classification des clics dans le défi DOCC10 (Dyni Odontocete Click Classification).
Pour créer un ensemble de données suffisamment grand pour former des réseaux de neu-
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rones, nous avons collecté des données à partir de différentes sources: i) le défi DLCDE
2018, créé par HILDEBRAND John , GLOTIN Hervé, ROCH Marie et al., et ii) des
clics de cachalot de l’expédition Sphyrna Odyssey 2018. Ces ensembles existants con-
tiennent de longues séquences audio avec des annotations approximatives des régions
temporelles avec des clics. Notre objectif est de produire un ensemble avec des clics
individuels associés à une espèce particulière. Dans ce travail, nous présentons notre
méthodologie pour extraire les clics et les étiqueter avec l’identité de l’espèce. Nous
présentons également une analyse préliminaire du corpus résultant, une répartition des
données utile pour le benchmarking et un modèle d’apprentissage profond pour classer
les clics servant de point de départ pour comparer les performances des autres réseaux.
Même si notre méthode d’extraction de clics et d’étiquettes peut induire un certain bruit
d’étiquette, il s’agit d’une situation rencontrée dans un scénario réel, augmentant ainsi
la validité écologique du jeu de données. De plus, cela permet d’explorer l’utilisation
de techniques traitant spécifiquement de ces problèmes, comme l’apprentissage négatif.
Nous avons donc décidé d’augmenter le nombre d’échantillons, au prix d’une éventuelle
augmentation des erreurs d’étiquetage.

Autoencoder
Dans le domaine bioacoustique, il existe de nombreux signaux inconnus ou mal connus.
Les approches habituelles basées sur les réseaux de neurones pour les signaux sonores
sont faites pour la parole humaine et utilisent les connaissances sur la façon dont ce
signal est créé, comme les phonèmes existants ou même la structure du langage, pour
améliorer les performances. Certaines recherches ont été effectuées sur les signaux audio
bruts. Les réseaux de neurones sur les formes d’ondes brutes ont également montré qu’ils
permettaient d’obtenir de meilleures capacités de débruitage, en particulier par rapport
à d’autres méthodes qui copient simplement la phase d’origine. Sans cette connaissance
d’un dictionnaire de signaux à classer, on pourrait essayer un apprentissage non su-
pervisé, comme un auto-encodeur. Dans cet article, nous étudions les jeux de données
stéréo de bruits transitoires. Nous montrons qu’en ajoutant une deuxième branche dans
le décodeur, il est possible de réaliser un meilleur démêlage des codages. Cette étude a
été motivée par l’analyse d’un ensemble de données de clics de cachalots non étiquetés.

Méthode numérique
Pour des géométries simples et des matériaux homogènes, des solutions analytiques au
modèle de propagation acoustique peuvent être trouvées, qui donnent un aperçu de ce qui
se passe et des mécanismes impliqués. Cependant, dans la plupart des applications du
monde réel avec des géométries irrégulières et des milieux inhomogènes, aucune solution
analytique ne peut être trouvée. Il faut donc recourir à des méthodes numériques pour
résoudre le modèle. Même si les méthodes numériques ne donnent qu’une approximation
de la solution, elles ont l’avantage de pouvoir s’adapter facilement à tout changement de
paramètre (géométrie, matériaux, etc.). De nombreuses méthodes numériques existent,
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chacune répondant à des besoins différents. On choisira ainsi la méthode appropriée en
fonction des besoins (précision, type de matériel) et des ressources disponibles, telles
que le temps, ou l’utilisation CPU, GPU et mémoire. Trois grands types de méthode
existent : les différences finies, les éléments finis, et les tirs de rayons.

Les différences finies sont un groupe de méthodes qui approximent les dérivées par des
différences de valeur de la fonction. Les différences finies sont moins précises que d’autres
méthodes, mais plus rapides à implémenter. Les éléments finis sont un autre type de
méthodes qui découpe le domaine Ω en élément finis sur lesquels l’on va approximer le
système d’équations différentiel partiel en système d’équations linaires. Ces équations
sont résolues aux nœuds du maillage, et la solution est ensuite extrapolée sur l’ensemble
du domaine. Un dernier type de méthodes est le tir de rayons. Cette technique est
similaire à la lumière que l’on peut modéliser avec des rayons.

Propagation d’ondes dans la tête du cachalot
Parmi les méthodes précédemment décrites, la méthode des différences finies a été choisie
pour construire la simulation pour sa facilité de mise en œuvre, et la rapidité de la
simulation, permettant plus de pas de temps pour une discrétisation spatiale donnée.
Dans ce chapitre 11, cette méthode est utilisée dans le domaine temporel afin de modéliser
la propagation des ondes à l’intérieur de la tête du cachalot.

Depuis les années 90, les scientifiques modélisent la propagation des ondes sonores vo-
calisées dans la tête des mammifères marins. La capacité à modéliser la propagation des
ondes chez les mammifères marins permet une meilleure compréhension de l’interaction
entre tous les organes responsables de la création sonore, ou du moulage de l’onde sonore,
pour obtenir le diagramme de faisceaux très directifs de ces espèces. A notre connais-
sance, ces types de simulations n’ont pas été réalisés sur le biosonar des cachalots, la
plupart de ces simulations sont basées sur des données anatomiques dérivées de tomod-
ensitométrie (CT). Ces informations permettent de construire la géométrie du modèle,
et d’obtenir les paramètres mécaniques de chaque matériau et leur emplacement (jusqu’à
la résolution du scanner). Cependant, la plupart des scans employés ont été effectués
sur des personnes post mortem. Dans [186], les données ont été comparées entre les
spécimens morts et vivants et leurs effets sur les simulations. Les spécimens morts sont
susceptibles d’introduire des artefacts dans le modèle, tels que des vaisseaux sanguins
remplis d’air, mais ne souffriront pas d’erreurs de numérisation dues au mouvement d’un
spécimen vivant. Cependant, ces écarts ne changeront probablement pas les paramètres
mécaniques des différents tissus, et donc l’unité de Hounsfield que le scanner va mesurer,
s’est avérée bien corrélée à la densité et à la vitesse du son.

Problème inverse
Cette dernière partie de la thèse pose les bases théoriques et algorithmiques pour résoudre
les problèmes inverses d’identification des paramètres, qui combinent données de mesure
et modèles de propagation. Comme on l’a vu dans toutes les parties précédentes, on ne
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peut jamais avoir un modèle complètement précis de l’acoustique. Ainsi, l’objectif de
l’approche inverse est d’utiliser les données enregistrées pour emph améliorer les modèles,
puis ces modèles améliorés peuvent être utilisés à leur tour pour mieux analyser, identifier
et prédire les sons eux-mêmes. En particulier, nous pourrions alors étudier les effets des
externalités sur le comportement et la sécurité des cétacés.

Cette partie n’est pas complète, faute de temps, mais fait l’objet d’efforts de recherche
en cours et futurs.

Dans ce chapitre 12 nous présentons les bases théoriques du couplage des mesures avec
les modèles de propagation. L’approche que nous utilisons est basée sur une équation
adjointe et est étroitement liée à l’assimilation des données. S’il y a du bruit dans les
mesures et que nous souhaitons obtenir une caractérisation complète de l’incertitude,
alors une approche bayésienne peut être utilisée. D’autres couplages sont possibles entre
l’apprentissage automatique et les modèles PDE. En particulier, nous pourrions utiliser
le modèle pour générer des réalisations pour l’algorithme ML. Une autre possibilité est
d’insérer les équations différentielles dans le réseau neuronal, formant une méthode dite
”d’équation différentielle neuronale” qui couple les deux. Cela fera l’objet de projets de
recherche à plus long terme.

Faisabilité et implémentation du couplage
Afin de montrer que le couplage est possible, il faut d’abord commencer par faire une
expérience synthétique sur une version simplifiée du modèle du cachalot, avec la suppo-
sition que les mesures sont disponibles dans le domaine de l’eau qui entoure ce modèle
simplifié de la tête du cachalot. Cette supposition est ensuite simplifiée en ne prenant
qu’un nombre limité de points de mesure. Du bruit artificiel est rajouté aux mesures. Les
mesures sont réalisées sur les résultats d’une première simulation avec des paramètres ar-
bitraires qui représentera la vérité. Le couplage est ainsi testé en partant de paramètres
différents des paramètres de la vérité. La façon dont les paramètres initiaux conver-
gent vers les paramètres vérité permet d’évaluer le couplage. Cependant, à causse d’un
manque de temps les résultats de ces expériences ne sont pas rapportés ici.
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Conclusion
Le processus complet d’analyse développée tout au long de ce manuscrit vise à améliorer
nos connaissances sur les mécanismes qui régissent le sonar de cachalot. Avec les
cachalots, les expériences classiques qui sont effectuées sur des chauves-souris ou des
dauphins pour qualifier pleinement leur sonar dans tous les aspects ne peuvent pas être
faites, car les cachalots sont des espèces sauvages et de grande taille. Cela signifie qu’il n’y
a pas de mesures de leur réponse nerveuse, de tests de leur capacité auditive, de mesures
précises de leur modèle de faisceau, ou de toute autre expérience qui oblige l’animal à
porter un gros équipement ou à être entraîné à avoir un comportement spécifique pour
une expérience. D’où la nécessité d’une simulation du sonar de cachalot.

Comme décrit dans le chapitre 1, le besoin a été divisé en trois objectifs:

• La réalisation de la simulation.

• Le couplage de la mesure avec la simulation.

• L’utilisation de l’apprentissage automatique pour classer et améliorer les mesures.

Les résultats de ces objectifs qui ont été explorés par cette thèse seront maintenant
résumés, puis quelques perspectives de recherches prometteuses seront présentées.

Acquisition et traitement des données
Trois bases de données ont été présentées, chacune ayant des caractéristiques spécifiques:

• BOMBYX, une base de données constituée de deux hydrophones, à 50 kHz, lors
de sessions de longue durée, présentée au chapitre 4.

• Sphyrna, une base de données constituée de cinq hydrophones, à 384 kHz, enreg-
istrée sur ASV, présentée au chapitre 5.

• Sarano, une base de données constituée de deux à quatre hydrophones, à 300 kHz,
enregistrée près du cachalot, présentée au chapitre 6.

Ces bases de données ont été analysées en utilisant les techniques de traitement du signal
introduites au chapitre 3, suivant le processus de détection, d’estimation TDOA et de
filtrage.

Détection L’étape de détection qui a été proposée et utilisée pour les trois bases de
données est également constituée d’étapes successives, commençant par un filtre passe-
bande, suivi d’un filtre TK, et se terminant par l’utilisation d’un seuil. Un autre procédé
de détection est également mentionné, utilisant l’architecture de réseau neuronal du
chapitre 7 pour classer dix espèces de mammifères marins en fonction des enregistrements
bruts de leurs clics.
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Estimation des TDOA La méthode SRP géométrique a été présentée pour estimer le
TDOA et a été comparée au SRP standard. Les deux méthodes ont la même complexité
et présentent les mêmes avantages par rapport à une seule paire d’estimations TDOA
de canal, lorsqu’elles sont utilisées sur un système avec la même quantité de bruit et
le même niveau de signal sur tous les canaux. Cependant, ils diffèrent par le fait que
SRP utilise l’addition, tandis que SRP géométrique utilise la multiplication. Si un clic
n’est pas présent sur un canal, SRP produira toujours un bon TDOA pour les autres
canaux, tandis que le SRP géométrique produira un TDOA aléatoire avec une valeur de
corrélation inférieure. Lorsque tous les TDOA sont nécessaires pour estimer la position
de la source, ces deux éléments facilitent le filtrage de ces clics. Puisque BOMBYX ne
possède que deux hydrophones, le SRP géométrique n’a pas été utilisé pour son analyse,
mais il a été utilisé pour les deux autres bases de données.

Filtrage Deux méthodes de post-filtrage ont été présentées. Dans un premier temps,
la méthode de l’ellipse a été utilisée pour récupérer la forme de l’antenne, mais aussi
pour filtrer les clics parasites non générés par les signaux provenant de l’eau, donc avec
TDOA éloigné de l’ellipsoïde. L’autre méthode de filtrage était le clustering DBSCAN
présenté dans la section 5.5.1. Partant de l’idée qu’un point à l’intérieur d’une piste
avec ses deux voisins peut être vu comme un cluster de trois points, la piste étant une
succession de clusters connectés, DBSCAN est la méthode de clustering qui correspond
à cette définition exacte. Avec BOMBYX n’ayant que deux canaux, les clics avec TDOA
aléatoire ont plus de chances d’être considérés comme faisant partie d’un cluster et de
ne pas être filtrés. Cependant, cette méthode était toujours utilisée pour les trois bases
de données car elle donnait de bons résultats même sur BOMBYX.

Machine learning
Dans le chapitre 7, nous introduisons un nouveau défi de détection des clics Odonto-
ceti, nommé DOCC10. Il répond au besoin d’avoir d’une grande base de données de
mammifères marins transitoires dans l’intention d’avoir suffisamment d’exemples pour
entraîner un réseau de neurones, ou une autre méthode d’apprentissage automatique, afin
de pouvoir classer chaque clic en fonction de son espèce. La présentation de DOCC10 a
été introduite avec une autre base de données nommée DOCC7, une version de DOCC10
où trois classes ont été supprimées, car elles croisent d’autres classes, ou sont trop dif-
férentes entre le train et les ensembles de test.

Une architecture de réseaux neuronales a également été proposée parallèlement à la
base de données DOCC10. À ce jour, il a atteint un score de pointe sur DOCC10 lorsque
seul la base de données d’entraînement est utilisée. Ce modèle, qui utilise directement
le signal brut comme entrée, peut également être utilisé comme détecteur.
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Perspectives
Comme expliqué dans le chapitre 13, les implémentations du couplage dans les cas syn-
thétiques et réels sont en cours, et n’ont pas été intégrées à ce manuscrit en raison de
contraintes de temps. L’implémentation dans le cas réel ajustera les paramètres du mod-
èle, améliorant le clic synthétique généré. À ce stade, les mécanismes qui apparaissent
dans le modèle peuvent être étudiés pour émettre des hypothèses sur les mécanismes réels
qui régissent le sonar. Cependant, le modèle pourrait encore être amélioré à ce stade.
En effet, la méthode numérique qui a été choisie a été le FDTD en raison de sa simplicité
et de sa vitesse d’itération, avec pour inconvénient d’avoir une précision moindre. Avec
les paramètres améliorés, le modèle et la méthode de couplage pourraient être mis en
œuvre avec une méthode numérique plus précise, telle que la méthode des éléments finis
spectraux. L’objectif ultime est de combiner cette modélisation de propagation avec les
techniques d’apprentissage automatique utilisées pour l’analyse des signaux. C’est un
travail en cours.

Comme indiqué dans le chapitre 12, l’apprentissage automatique peut également être
utilisé pour estimer les paramètres d’un modèle en utilisant l’observation comme entrée.
Cet usage ainsi que la possibilité d’incorporer les équations différentielles directement
dans le réseau de neurones sont deux aspects clés des réseaux de neurones qui pourraient
aider à résoudre des problèmes inverses, ce qui en fait des axes de recherche à fort
potentiel.

Un autre point d’amélioration est l’utilisation de la théorie des ondes non linéaires.
L’utilisation de la théorie des ondes linéaires est utile comme première approche et
facilite l’interprétation des résultats générés par le modèle. Pourtant, nous sommes bien
conscients que les clics plus forts émis par les cachalots ont une courte distance de choc,
ce qui signifie que les effets non linéaires ne peuvent être négligés, même à l’intérieur de
sa tête.

La base de données créée à la fin du chapitre 6 associait les clics au cachalot qui les
avait émis. Cette base de données a l’avantage d’explorer les fonctionnalités partagées en-
tre les clics d’un même cachalot, qui si elles existent et sont suffisamment discriminatoires
(excluant ainsi l’IPI) conduiraient à un classifieur capable de distinguer les cachalots en
utilisant uniquement l’acoustique. De plus, l’interaction sociale entre plusieurs individus
peut être étudiée, puisque le canal vidéo nous permet de voir le comportement résultant
de divers échanges de coda, tandis que la base de données vidéo nous permet de savoir
quel individu a émis quel coda.

Ces trois perspectives de recherche montrent que la quantité de travail restante n’est
pas faible, mais conduira sûrement à des résultats intéressants.



Notation

ABC Absorbing boundary condition

CFL Courant-Friedrichs-Lewy

CNN Convolutional neural network

DOA Direction of arrival

GCC Generalised cross correlation

ICI Inter click interval

IPI Inter pulse interval

FDM Finite difference method

FDTD Finite difference time domain

FEM Finite element method

FFT Fast Fourier transform

FOV Field of view

MLDB Monkey lips dorsal bursae

PML Perfectly matched layers

RNP Right nasal passage

SNR Signal to noise ratio

SRP Steered response power

TDOA Time difference of arrival

TK filter Teager-Kaiser filter

TLM Tangent linear model

TOA Time of arrival
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Contributions of this Thesis

• Chapter 2

– Modification of the BIVIP algorithm to estimate the IPI.

• Chapter 3:

– Proposal of a click detection pipeline.
– Proposal of the Geometric SRP TDOA estimation method.
– Application of the TDOA ellipsoid distribution for both antenna shape esti-

mation and filtering.
– Development of an audio synchronisation method between a lossy compressed

signal and a dilated signal.

• Chapter 4:

– Estimation of sperm whale trajectories on a two-hydrophone antenna.

• Chapter 5:

– Proposal of DBSCAN as a track estimation method for filtering purposes.
– Estimation of sperm whale diving trajectories.

• Chapter 6:

– Application of an image segmentation network to videos of sperm whales.
– 3D source localisation and video plotting.
– Creation of a click database with classification by individuals.

• Chapter 7:

– Creation of the odontocetes click dataset and challenge, DOCC10.
– Formulation of the UpDim model architecture.
– First End to End efficient biosonar classification model.

• Chapter 8
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– Development of an autoencoder to denoise the signal and estimate the TDOA.

• Chapter 11:

– Creation of a 3D model of an adult sperm whale nose organ geometry.
– Application of a FDTD wave propagation simulator on the model.

• Chapter 13:

– Formulation of a measurement-simulation coupling method for the solution
of inverse problems in wave propagation.

– Derivation of a complete adjoint formulation for a full wave propagation model
with absorbing boundary conditions.
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Chapter 1

Context and Motivation

1.1 Sperm whales and their sonar
Sperm whales (Physeter macrocephalus, Pm) have the most powerful bio-sonar in the
animal kingdom (230 dB re: 1µPa rms, [1]). The clicks produced by this sonar are
not only used for their echolocation during dives, but also in their social interactions.
During dives, sperm whales emit trains of clicks, much like those of bats, whereas for
socialization, they will emit small rhythmic series of clicks. Since [2] first theorized the
way their sonar worked, it has been broadly accepted that Pm creates an initial pulse
at the front of its head, in the ”museau de singe” (aka. monkey lips), which will then
bounce back and forth in its head, passing through multiple oil sacs, before exiting.
However, the details of such a mechanism and which parameters the sperm whale can
act on, remain unknown.

1.2 Human impact
1.2.1 Whaling
While they were already hunted in other parts of the world, American whalers caught
their first sperm whales around the year 1720 [3]. With this event started two large
periods of sperm whale hunting [4, 5, 6]. The first period ended in the 1870’s when the
petrochemical industry started to produce products that could replace the spermaceti
oil, and the second starting in the 1950’s when the other large baleen whale populations
declined. While the in-between hunting period seemed to have helped the sperm whale
population recover, [6] estimated that the population was around 1 110 000 in the pre-
hunting era, 788 000 in 1880, and only 360 000 remaining in 1999. The end of the
hunting did not entirely protect the sperm whale population from human interference,
as progress brought modern threats.
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1.2.2 Sound pollution
With the arrival of motors, marine vessels started to emit noises. With the increase of
ferries, cruise ships, and other goods transportation, the noise level followed. This rise
in noise level has a high impact on marine mammals who then suffer from an increase
of stress [7, 8, 9]. The background noise also affects the range of echolocation for clicks
of the same energy, making it harder to detect preys.

Sound pollution is also produced by seismic surveys, which mostly use air guns which
blast loud, low frequency pulses. Seismic surveys seldom use explosives to create these
kinds of pulses. While the use of air guns does not seem to bother sperm whales at first
[10], sperm whales leave the survey areas, without returning to them even days after
the survey has ended [11]. Note that sound pollution does not necessarily stop after the
initial survey, since the goal of seismic surveys is to find digging sites, whose underwater
mining will generate additional acoustic pollution [12], [13].

1.2.3 Sea pollution
Another common modern threat is that of sea pollution of varying kinds that accumulates
inside sperm whales’ stomachs, such as ingestion of plastics, slowly killing them [14, 15].

1.2.4 Collisions
Anther major threat faced by sperm whales, is collision with ferries [16]. As demon-
strated in [17], sperm whales might not be able to perform escape maneuvers in time,
making this a major threat if not the primary one, as in other cetaceans species [18, 19].

1.3 Importance of passive bioacoustics
Passive bioacoustics records and processes the audio environment, while active bioa-
coustics will emit sounds and record the echoes produced by that sound, in a similar
way as a sonar works, except that the recording antenna can be dissociated from the
source. Control over the source (time of emission, power, signal, ...) increases the
amount of information obtained with active bioacoustics, allowing to gather some key
data (e.g. distance to the target). However active bioacoustics has the disadvantage
of emitting sound. This implies additional sound pollution, potential perturbation of
animal behaviour, higher energy consumption and will overshadow simultaneous animal
emissions, rendering it useless for many studies. It should be noted that amongst passive
bioacoustic methods we find the use of DTAGs, which are small recording device with
suction cups that are placed on the animals, however this technique may potentially also
perturb the animal behaviour.

Underwater visibility is limited to a range of between 20m to 60m, while some species
like sperm whales, can be heard 5 or 10 km away. Such facts make passive bioacoustics
an ideal tool to monitor many marine mammals. In the case of sperm whales, who emit
clicks during both echolocation and social interaction, passive bioacoustics allows us to
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obtain information about their hunting behaviour, record the sequence of clicks they
emit to communicate, and estimate their size.

1.4 The challenge of data analysis
The drawback of passive acoustics is the tremendous amount of data that is generated
by the recordings, with most of it filled with background noise. Thus the data needs to
be curated in order to greatly reduce the effort in further in-depth analysis. This will
both reduce the amount of time of these analyses, and improve the results. Let us take
the recording of a sperm whale clicking every second as an example. These clicks can be
contained within intervals of 20ms, with some background noise included. This means
that only 2% of the signal could be kept for further analysis. While periods when the
sperm whale is close to its prey will see this number increase, or be null during breathing
time without social interaction, the main hypothesis is still that a sperm whale is present,
which is not true most of the time on stationary recording stations.

The typical data analysis tasks done on bioacoutics databases are detection, classi-
fication, localisation, and density estimation, with the latter usually using the previous
analyses.

Between detection, classification, and localisation, the classification tasks can be
considered the hardest. While conventional signal processing techniques exist to handle
these tasks, they are still prone to errors. Thus multiple biologists choose to manually
annotate their databases [20, 21], sometimes even without using a detector to reduce the
amount of preliminary work. In this setting the amount of work requires more than one
expert and takes large amounts of time, of the same order as the time it took to record
the database in the first place.

1.4.1 Deep learning
With the increase of computing power and the appearance of large databases, neural
networks have started since the years 2010 to be applied to many practical cases. They
have the potential to become the state of the art in terms of methods to use in various
hard perceptual tasks. With the previously mentioned classification tasks being the kind
of task where neural networks obtain better results than classical methods, they started
to be applied to bioacoustic signals in [22, 23, 24], with current results proving that
the classification task can be solved with them, potentially removing the need of large
amounts of experts’ hours.

1.5 Simulation
While simulations do not simulate all the existing mechanisms present in reality, they
are still an alternative to real experiments. With simulation, the whole environment
is observable and all the parameters can be modified. The observation is also done
without the use of any measurement devices, removing any artefacts that they could
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introduce. This does come at the cost of not being a perfect copy of reality, which not
only means imperfect results, but also means that unrealistic behaviour can arise from
the simulation. Hence, at the end, the simulation results need to be compared with real
measurements.

In the case of marine mammals, simulations have been used to simulate the propa-
gation of acoustic waves inside the heads of multiple species, such as Ziphius cavirostris,
Delphinus delphis, Tursiops truncatus, kogia breviceps or Lipotes vexillifer. Simulating
these waves in marine mammals allows us to estimate multiple characteristics about
these species, such as their beam patterns or the click shapes after emission.

1.6 Goals and Plan of the Manuscript
The study of sperm whales is a vast subject, that covers multiple and varied disci-
plinary fields, from ethology to conservation, passing through bioacoustics. This is even
wider when the methods need to be adapted to this subject are considered. Since this
manuscript cannot integrate such a vast subject, it will deal with a few issues linked to
a core element of the sperm whale, which is its sonar.

Sperm whales are wild species, which unlike other species that also live in captivity,
cannot be equipped with heavy instrumentation or trained in order to test their sonar
capabilities. Without the possibility of controlled experimentation on real sperm whales,
an option is to experiment on a virtual sperm whale, leading to the first goal of this
thesis, the creation of a sperm whale biosonar simulator. However, a simulator by itself
is useless, since one cannot know how far from reality it is. Hence, the second aim of
this thesis, deals with how to improve the simulations using measurements. This second
goal is further divided into two parts, the coupling method, and the acquisition of said
measurements. The last aim of this thesis is the use of machine learning, to improve the
speed of extracting useful data from recordings to learn features that characterise their
acoustic clicks.

The manuscript is built of four successive Parts. After introducing the basic grounds
of the signal processing techniques that will be used throughout our study, Part I de-
scribes three different databases: two far-field and one near-field, that were acquired
and/or processed during the thesis. These databases of sperm whale recordings are
the foundation of the second (Machine Learning) and last (Coupling) parts. Part II is
about Machine Learning applied to bioacoustics. It uses these databases to train neural
networks to discover what is a click, which after training can be used for the analysis
of new databases. Part III of the manuscript introduces wave propagation theory and
numerical methods in order to create a simulation of wave propagation inside the head
of the sperm whale. Finally, Part IV is about coupling, using inverse problem theory to
improve the crucial estimations of material parameters of the model.

Figure 1.1 shows how the chapters are connected together, not in reading order, but
in a data flow manner, creating two feedback loops. The right loop is the model improve-
ment loop, while the left loop is the data acquisition loop, itself feeding into the first loop.
The data acquisition loop is made of Part I, in which the signal processing techniques



CHAPTER 1. CONTEXT AND MOTIVATION 32

Part I
Signal Processing

3

64 5

7 8
9 10 12

11 13

Part II
Machine
Learning

Part III
Wave

Propagation and
Simulation

Part IV
Coupling of

Simulation and
Measurement

Figure 1.1: Flow of the chapters, with their feedback loops.
The Arabic numbers represent the individual chapters of each Part.

described in Chapter 3 are applied to the three databases, described in Chapters 4, 5,
and 6. The first two databases are similar in the fact that they are both composed of
recordings of sperm whale clicks far from the individual, but still have many differences.
The first database described in Chapter 4 is made using an immersed recorder, with a
low sampling rate, during long recording sessions. The database described in Chapter 5
was recorded by a surface drone, with a high sampling rate and multiple hydrophones,
and with human labelling indicating periods when sperm whales were present. The last
database described in Chapter 6 is different as it is made of hand-held recordings taken
close to the sperm whales. Chapter 6’s database also contained a video channel used to
identify the sperm whales associated with their clicks. The products of the first part are
then used as training data for the neural networks presented in Part II.

In Part II, Chapter 7 is dedicated to a classifier network to classify clicks from multiple
marine mammals. Chapter 8 is dedicated to auto-encoders, used to cluster clicks in order
to learn what kind of information can be extracted from them. The neural network can
then be used to reanalyse the database of Part I and other new databases, which can
then be used as new training data to improve the model performance, thus creating a
feedback loop.

The second loop of the thesis structure starts with Part III. Chapter 9 describes
the linear theory of wave propagation, while Chapter 10 describes and compares the
numerical methods that can be used to solve a system of partial differential equations
along with a description of the geometry. Chapters 9 and 10 lead to a wave propagation
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simulation, used in Chapter 11 to simulate wave propagation inside the head of the
sperm whale. Chapter 11 starts with an in-depth description of the finite difference in
time domain method used for the simulation, followed by the description of the geometry
and mechanical parameters that will be used in the simulation, and ends with the first
results obtained with this model. Particular attention is paid to the absorbing boundary
conditions on the outer boundary of the simulation domain. Part IV then starts with
Chapter 12 which details the base of inverse problem theory. Inverse problem theory is
used to implement the coupling between the simulation and the measurements, tuning
the parameters of the simulation to reduce the discrepancy between simulated clicks and
recorded ones. Chapter 13 introduces a toy task used to demonstrate how this theory
works on a practical example. The simulations of Part III and the coupling of Part IV
thus form the model improvement loop, which, as explained earlier, is itself fueled with
the improved measurement of the data acquisition loop.



Chapter 2

Use of Acoustics by Cetaceans

Unlike terrestrial mammals, which evolve in air, cetaceans move through water which
reduces the usefulness of vision. Indeed, in clean air a human can see up to 250 km
[25] whereas underwater visibility varies from none up to 60m [26]. The latter is also
limited by the lack of light at greater depth, at which some species, such as Physeter
Macrocephalus or Ziphius cavirostris dive [27, 28]. While primates evolved their vision
[29], cetaceans have evolved to exploit sound, which unlike light, propagates much more
efficiently in water [30, 31]. This allows some species to communicate over multiple
kilometers, and others to sense their environment using echolocation, similarly to bats.
While multiple dissimilarities exist in the echolocation of bats and cetaceans, they are
often compared since they share major points in common.

2.1 Hearing in cetaceans
The cetaceans’ middle ear is largely derived from the mammalian middle ear [32]. Yet
it differs mainly in the impedance of the soft body tissue, which is close to that of
water, meaning that the acoustic energy can easily flow between these two media. The
cetaceans’ middle ear is made of massive and dense mineralized ossicles. Their joints
are stiffened by membranous sheets and ligaments. In sperm whales, the tympanic
membrane is replaced by a thin bony tympatic plate. The middle ear epithelium is thick
and highly vascular. The middle ear cavity is filled with air. The eustachian tubes
are large and serve in pressure equilibration. The skull and attached bones also serve
as isolation between the whole hearing complex and the sound production complex. A
model by [33] suggests that the cetaceans’ middle ear amplifies the particle velocity,
unlike the terrestrial mammal middle ear which amplifies the pressure.

2.1.1 Dolphin auditory processing
Unlike sperm whale, dolphins who also live in captivity have been largely studied, in-
cluding their auditory system. One point of interest is to find the dolphin’s capability
to discriminate between two pairs of pulses with different interval. Crossing a thresh-

34
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old that seems to be between 0.2ms and 0.3ms showed multiple effects that indicate
that the integration time of the dolphin is 0.2 − 0.3ms [34, 35, 36], which is an order
of magnitude smaller than that of humans. Integration time can be understood as the
temporal resolution. This value has also been confirmed with the evoked potential (EP)
experiments that have been conducted on dolphins [37]. The EP response is nonlinearly
proportional to the power of the sound [38, 39], which follows the principle of Stevens’s
power law. Using this fact combined with double click and gap detection experiments,
the same authors estimated a temporal transfer function [40, 41, 42]. A temporal trans-
fer function is a function that gives the gain of a system along time. This function has
an initial part of 0.3ms (which is in agreement with the integration time) and a long
tail with a slope of 40 dB per time decade. If we consider that the dolphin can hear
the emission of the signal, then the 40 db slope matches the spreading loss of spherical
propagation of the wave.

The inferior colliculus (IC) has been shown to be one of the main centers in the
auditory sensory system in terrestrial mammals. As expected, an immunocytochemical
study [43] showed that the IC in echolocating mammals is enlarged relative to the whole
brain. The study also showed that the IC in odontoceti cetaceans as well as in insectivo-
rous bats showed a modular arrangement whereas it is homogeneous in non-echolocating
mammals.

2.2 Acoustics for socializing
Sperm whales form a matriarchal society [44]. Made of groups of a dozen sperm whales,
themselves composed of adult female sperm whales and juveniles, each group spreads
over a vast hunting territory [45, 46]. At some point (between 10 and 15 years of age),
male sperm whales leave the group to go hunting alone for the rest of their lives, only
returning for short periods of time to reproduce with another female group that can be
in another ocean [47, 48].

Within a sperm whale group, individuals will socialize using acoustics or tactile
stimuli. They socialise acoustically using coda, creaks and clangs. Codas are sequences
of clicks [49, 50]. They are classified by their rhythm. For example 2+6 design codas
start with 2 clicks, followed by 6 regularly spaced clicks. Figure 2.1 shows an example
of a 2+8 coda. The frequency of each type of coda used is different for each group of
sperm whales, with some types of codas being exclusive to some regions. Some codas
can be quite rare [51], while others such as the 5R are more commonly used [52].

Creaks or buzzes are long series of clicks with a small inter click interval (ICI) (less
than a tenth of a second) with slowly varying ICI and click amplitude. Creaks can last
up to a minute, and may have a few clicks missing. Examples are shown in Figure 2.2.

Clangs are sharp metallic sounds emitted by male sperm whales, with long ICI,
usually from 5 to 10 seconds. Other signals are emitted by sperm whales, but are
seldom used, such as trumpets or meows. An example is shown in Figure 2.3.
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Figure 2.1: Example of a 2+8 coda.
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Figure 2.2: Example of creaks.
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Figure 2.3: Example of a meow.

2.3 Acoustics for sensing
Many cetaceans will use an echolocation sonar to hunt preys or view their environment,
as some species such as sperm whales are nearly blind, with some specimens totally blind
yet still healthy [53]. The principle of echolocation is to send a short pulse. The pulse
will echo from an obstacle such as a wall or a prey, and will be heard by the emitter.
The time between the emission and the hearing will tell the emitter how far the obstacle
is.

Research on echolocation consists of passive acoustic measurements and experimen-
tation requiring training or equipping a specimen with some material. The latter type
of research allows to study a particular point of interest, but requires a captive animal.
Hence it has mostly been done on bats and dolphins.

Even though the sperm whale sonar’s scale and complexity are different when com-
pared with the one of the dolphins, the underlying mechanisms remain the same. In the
same way that a plethora of things separate dolphins and bats (nasal air sacs vs larynx,
water vs air, size, ...) yet their sonar capabilities share similarities, and work done on
these other species that are easier to study can serve as a baseline for the sperm whale
sonar. Even though this baseline may be quite far from reality, it still sheds light on
some of the sperm whale sonar mechanisms.

Bats and dolphins both use echolocation to interact with their environment and to
track their preys. Before starting a comparison between the two, it should be highlighted
that bats have evolved in air, while dolphins live in water, in which sounds travels 5 times
faster than in air, and also travel further away due to the difference in sound attenuation.
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It should also be noted that dolphins have a larger head and emit a narrower beam.
Bats emit 3 types of signals: upward and downward frequency sweeps, and a constant

frequency (CF) one [54]. The CF ones are of length from 1 to 300ms, while the frequency
modulated (FM) ones have lengths from 0.5 to 10ms. FM signals are Doppler tolerant,
whereas CF signals carry Doppler information, which is used by some species of bats,
like the Rhinolophus to measure the relative speed of their preys.

Dolphins emit two types of signals, whistles and short broadband clicks, with a linear
relation between the center frequency and the signal strength [55]. The center frequency
usually goes from 30 to more than 100 kHz for high intensity signals.

Multiple experiments have been conducted to estimate the echolocation capability
of bats and dolphins, and to compare them without forgetting their differences. The
echolocation characteristics are spread among the following tasks: presence of target
with and without external noises, closest object selection, recognition of an object with
depth singularities, vertical angular precision and the detection threshold with multiple
echoes [56].

Presence of target in a noiseless environment This experiment consists of
detecting the presence of a sphere with the distance to the sphere as a parameter. To
put bats and dolphins on the same level, the comparisons between the two have been
done by calculating the energy of the echo, which is simply done by using the usual
energy equation of wave propagation,

EE = S − L+G, (2.1)

where EE is the echo energy at the emitter, S is the source energy, L is the loss and
G is the gain, all of them in dB. Here the loss is composed of the spreading loss which
is 20 log(R2) where log is the logarithm in base 10, and the absorption loss which is
2α(f)R, where α is the absorption coefficient of the medium for a specific frequency f ,
and R is the radius of the sphere. The gain comes from the ratio between the energy of
the emitted wave on the target surface and the energy re-emitted in the echo, which is
in our case 20 log(a2 ) with a the diameter of the target, if it was considered as a perfect
sphere [57]. We obtain the energy expression,

EE = S − 40 log(R)− 2α(f)R+ 20 log(a
2
). (2.2)

Species chosen for this task were E. fucus and P. phocenea [58, 59]. Since the E.
fucus emits a large broadband signal and absorption in the air is stronger for higher
frequencies, it is simpler to replace the source term with a source term that already
takes into account the absorption,

AS = 10 log( 1
ρc

∫ T

0
F−1(F[ps(t)]e

−2η(f)R)2 dt), (2.3)

where F[ps(t)] is the Fourier transform of the instantaneous acoustic pressure ps(t) and
F−1 is the inverse Fourier transform. η(f) is the absorption coefficient of the medium but
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in Neper/m. Then (2.3) is basically the source energy flux density formula where the
acoustic pressure is modified with the absorption inside the frequency domain. Equation
(2.3) substituted in (2.2) gives the following equation for Echo Energy for bats,

EE = AS − 40 log(R) + 20 log(a
2
). (2.4)

The case of P. phocenea is much simpler since they emit narrow-band clicks. The ab-
sorption coefficient α(f) is almost constant on that band, which means the EE can be
calculated by using the absorption coefficient for the center frequency of the clicks.

Results show that the echo energy flux density threshold for a 75% correct answer is
5 dB higher for the E. fucus compared to the P. phocenea. This small gap in sensitivity
might be caused by variation in methodologies, or sources used in calculation, meaning
that the echo detection sensitivity is either identical for the two species, or a notch better
for the dolphin.

Presence of target in a noisy environment The same types of experiments
have been conducted with added background noise. The aim was to evaluate the echo
energy to noise ratio threshold to have a 75% positive answer. For T. trucatus, the
estimated SNR for this task was 7.8 dB [60]. For bats the SNR needed seemed to be
much higher as the first experiments estimated a threshold 36 dB and 50 dB on Eptesicus
serotinus and Pipistrellus pipistrellus respectively [61, 62]. To explain this difference in
performance compared to dolphins, the supposition was made that the speaker used to
play back the echo had too much clutter. This supposition is supported by another
experiment on bats (on E. fuscus) which had very little clutter, and showed a much
lower SNR threshold of only 11.8 dB, which is much closer to the dolphin threshold, and
coherent with the dolphin/bat results in noiseless environments.

Closest object selection The next task is the evaluation of the minimal distance
between two targets that is needed for the animal to know which one is the closest.
Two targets were positioned and the distance between them was progressively reduced.
Results show that bats and dolphins share a 75% correct response threshold when the
targets are separated by 1.5 cm. However, sound travel speed differs in the two media,
therefore the results are to be interpreted in terms of arrival time difference instead of
distance difference. T. trucatus can differentiate two signals delayed from each other by
2µs when the total travel time is 1ms, and need 40µs when the travel time goes up to
9.2ms [63]. On the bats’ side, E. fucus needs 77µs whether the total travel time is 3ms
or 15ms [64], while other bats such as Rhinolophus ferrumequinum also have a precision
which is relative to the travel time [65].

Recognition of an object with depth singularities The aim of this experi-
ment is to determinate how precisely two echoes can be discriminated in regards to time
position of glints in their signal. For bats, these glints where generated with two Plex-
iglas planes with an array of holes [66]. The difference depth of the holes between the
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two planes made the difference of time position between the glints. For dolphins, the
experimentation was conducted with two cylinders which had different wall thicknesses
[67]. The supposition was that the echo is first created with the reflection on the outer
wall of the cylinder and that the second emission came from the reflection on the inner
wall of the cylinder(on the opposite side, meaning that the wave has to travel through
the inner water cylinder).

For both experiments, the results can be expressed as time difference between the
glint or as frequency difference between ripples produced by glint. If the echo is expressed
as the sum of two reflections as follows, e(t) = r(t)+a∗r(t+τ), where a is the attenuation
of the second reflection in regards to the former, and τ is the delay between the two, we
can calculate the Fourier transform of this echo [60] which is

∥F[e(t)]∥1 =
√

1 + a2 + 2a cos(2πfτ)∥S(f)∥1. (2.5)

The delay of the glint will increase the frequency at which the cosine term produces
ripples in the spectrum. Bats and dolphins might take cues of the frequencies delta
between ripples of two objects with distinct hole depth or wall thickness. The final
results showed that dolphins can differentiate glints with a −0.5µs and 0.6µs resolution,
while bats have a threshold of −1.0µs and 1.3µs.

Angular precision The next experiment was to evaluate the angular resolution.
To do so, two arrays of rods where used, with one array having smaller angular spreading
of its rods. Subjects were then trained to locate the array with the smaller angle. The
study concluded that bats have a angular resolution of 3.5◦ vertically [68] and 1.5◦

horizontally [69], while dolphins have a resolution of 0.7◦ vertically and 0.9◦ horizontally
[70]. As mentioned earlier, the better results for the dolphins might come from its
narrower beam.

Detection threshold with multiple echoes The final characterization of the
echolocation was based on the threshold of detection when only one, and then two
echoes where emitted, with the time between two echoes as a parameter. The results
for dolphins and bats show that the integration time for the second echo seems to be at
264µs for dolphins [71] and 2.4ms for bats [72]. The threshold is also 3 dB lower when
the second echo arrives before the integration time limit than when it arrives after.

2.3.1 Application to sperm whales
Equation (2.4) can be applied to sperm whales in order to estimate their detection
range. For an echolocation click with its maximum of energy at a frequency of 12.5 kHz,
a sufficient echo energy can be estimated at 66 dB in order to have a sufficient SNR [73].
At this frequency, for a salinity of 35 ppt, a depth of 1 km and a temperature of 8 ◦C,
the absorption range from 1.028 dB/km to 1.338 dB/km [74, 75, 76]. Note that changing
the parameters used to obtain the absorption coefficient will still provide values close
to 1 dB/km, which will not have much influence on the final result since the absorption
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term is not the predominant term. Finally, for a target size of 1m and a source level
of 180 dB, equation (2.4) predicts a range of 470m. Note that without the absorption
term, the range will be 501m. With the increase of the source level, the range will also
increase, but the hypothesis of linear acoustics would not hold anymore.

2.4 Sound production
Bats adapts their sonar signal to the echoes they receive. CF bats will lower their
emission frequency so that the echo frequency stays constant [77]. Using artificially
frequency shifted echoes, they found that accuracy and consistency vary among species.
As an example, Horseshoe bats will try to keep their echoes at 83.3 kHz by lowering
their emission up to 6 kHz. Bats will also emit shorter signals when they get closer to
their prey, and increase their repetition rate. FM Bats will also show changes in the
bandwidth of their signal [78]. It has been shown that the speed of the frequency sweep
and its maximum frequency increase with the developmental stage of the FM Bats [79,
80, 81]. As bats become adults they will also emit much shorter signals (see [82] as an
example).

2.4.1 Pulse production in Odontoceti
The sonar source location of odontoceti is still a source of debate. Most studies have
been focusing on locating the source, but the assumption of a single source has rarely
been put in question. Knowing the latter might help in solving the former. The location
of the source(s) has been tracked down to be in the nasal apparatus, which differs from
bats and most mammals where the sonar signal originates from the larynx. The most
supported theory is that the source location is in the structural monkey lips dorsal bursae
(MLDB) complex. Note monkey lips are also called phonic lips since they do not look
like monkey lips in smaller odontoceti. However, the MLDB is complex and the role of
each of its components is not well understood. Basically, the primary air space conducts
the air stream which will pass through the MLDB, to go to the inferior vestibule. Sperm
whales show the particularity of having a single MLDB complex, while other odontoceti
have two, one associated with each nasal passage.

Possible pulse production mechanism in Odontoceti Three production mech-
anisms have been proposed for theOdontoceti: friction/stiction, cavitation, and pneumatic-
mechanical. However, the friction/stiction hypothesis has been invalidated by [83].

The cavitation hypothesis was proposed by K.S. Norris during one of his lectures in
1986 at U.C. Santa Cruz. One of the perks of this mechanism is that it is an efficient way
to produced high intensity sound. A way that this mechanism might work is that micro
bubbles are formed near the phonic lips during a low-pressure phase. The bubbles then
collapse (cavitation) to form a powerful pulse. However, this requires that the bubble
formation and collapsing be uniform and synchronized, which might put into question
the possibility of this mechanism being used by odontoceti.
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The last mechanism proposed is a simple pneumatically driven tissue generator [84].
The sound generation tissues are set into vibration and reach a state of self-oscillation.
The sound generation could then be when tissues impact on one another.

Physical and mathematical model of the click production mechanism [85]
The following physical model has been proposed: a rubber tube with a rubber ring on
it. The rubber ring has a smaller diameter than the tube, thus the ring pinches the
tube, preventing air from passing through. Yet, the ring is soft enough that when the
air pressure in the inlet starts increasing, the ring expands and lets the air flow through
the tube. The air flow then reduces the air pressure (Bernoulli’s theorem states that
p+ 1

2ρv
2 is constant, which means that an increase in v means an decrease in p), which

makes the ring close the tube again, which start a new cycle. The parameters that set
up the cycle characteristics are the tube and ring stiffness (one for each) and the static
pressure in the inlet. This setting produces clicks whose amplitudes are linked with the
acceleration of the ring.

The mathematical model does not model the displacement of the ring but the acoustic
pressure caused by it. The ring is assumed to have no weight except a small spherical
part of it. Then the acoustic sound pressure can be found using the the acoustic sound
pressure formula for a spherical acoustic dipole in the frequency domain [86],

p(r, t) = ρω2a3ξ(ω)
(ikr − 1) cos(α) exp−iak expikr−iωt

(2− 2ika− (ka)2)r2
, (2.6)

where a is the diameter of the sphere, ξ(ω) is the displacement for a given frequency, k is
the wave number, r is the distance to the center of the sphere, α is the angle between the
direction of the displacement and the direction where the acoustic pressure is calculated.
When a triangular displacement is input, results are similar to that of the physical model,
the main difference coming from the input signal which is not a perfect triangle in real
life.

2.5 Pulse structure of sperm whale clicks
The repetition of a pulse in a sperm whale click is explained by the bent horn model [1,
2], or the leaky bent horn model which adds the acoustic path for false pulses. [87]

Once the pulse has been emitted in the museau de singe (monkey lips), the pulse will
propagate toward the rear of the head, which is represented by the black path in Figure
2.4. Part of the energy released when creating the pulse leaks directly, represented here
as the orange path, which will be recorded first and is denoted as P0. The pulse that
follows the black path then encounters the frontal sac, which acts as a mirror, redirecting
the pulse towards the front. From this point the pulse can follow three paths. Part of
the energy will thus leak through the water following the red path. Another part will
go through the junk to reach the water, following the magenta path into the cyan path.
The rest of the energy will go back toward the monkey lips following the purple path,
which after bouncing on the distal air sac, will restart the cycle by following the black



CHAPTER 2. USE OF ACOUSTICS BY CETACEANS 43

0 100 200 300 400 500
0

50

100

150

200

θ

Toward thereceiver

Figure 2.4: Pulse path in the head of the sperm whale in the leaky bent horn model.

path once again. The energy will thus bounce back and forth between the frontal and
distal sac, while part of it will leave through the magenta and red paths. The pulses
leaving through the cyan path contain most of the energy and are named P1, P2, P3, . . . .
The pulses that leak trough the red path are called half pulses, as they only go through
half of the organs, and are denoted P1/2, P3/2, P5/2, . . . . They are also named false pulses,
thus sometimes named Pf1, Pf2, Pf3, . . . .

When θ is below 0◦, the false pulses will not be recorded since they leak from the top
of the body. Finally, when θ is above 90◦, all the pulses come directly from the distal
sac/museau de singe region, with successive pulses still spaced by the time to travel
through the black and purple paths. In this configuration, P0 will be the pulse with the
most of the energy.

However other mechanisms must influence the production of clicks, since sperm whale
clicks are different when they echolocate compared to when they socialize [88]. Echoloca-
tion clicks usually have most of their energy around 12.5 kHz with few subsequent pulses
(at most P0, P1 and P2 are above the background noise), while socializing clicks have
most of their energy at 3.13 kHz or 6.25 kHz and display a lot of subsequent pulses.

2.5.1 An acoustic valve within the nose of sperm whales Physeter
macrocephalus

In [89], they theorized a new hypothesis on how sperm whales could control the decay
rate of their clicks, and thus explain the difference between echolocation and socializing
clicks. Sperm whales have their spermaceti organ and junk, which are the main acoustic
parts of their sonar, separated by the right nasal passage (RNP) that can be seen in [90]
CT scan. [89] supposed that sperm whales can collapse their RNP, which when collapsed
allows the sound to go through. When the RNP is not collapsed and filled with air, the
high impedance mismatch between the air and the flesh makes the RNP act as a mirror
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which reflects some of the signal back to the distal sac. With this added reflection, part
of the energy is conserved between the two mirrors, which are the frontal and distal sacs,
and distributed to the subsequent pulses P2, P3, ..., and so on. They supposed that
sperm whales collapse their RNP using their maxillonasolabialis muscle, which would
pressurize the RNP and bend the head a little, which leads to the collapsing of the RNP.

2.5.2 Estimating the length of sperm whales
The inter pulse interval (IPI) is the time interval between the reception of two pulses
Pn and Pn+1 and is noted PnPn+1. Since ∀n ∈ N∗, Pn+1 is the same acoustic path as
Pn plus one round trip in the spermaceti organ, the IPI is constant between each pair
of pulses (Pn, Pn+1). The value of the IPI P0P1 is close to the one of P1P2. Instead of a
difference linked to one round trip in the spermaceti (purple + black path of Figure 2.4),
P0P1 is due to the black and the magenta paths, and the difference between the orange
and cyan paths, which is proportional to the angle θ. The comparison between the value
of P0P1 and that of P1P2 hence comes down to the difference between the purple and
magenta paths, and the difference between the cyan and orange paths, which in practice
leads to a difference of 10%.

Examples of recordings that we have made of sperm whale calls are shown in Figures
2.5, 2.6 and 2.7. The click recorded at 96 kHz in the first figure is an example of an IPI
of 4.042ms (probably a female since it translates to a body length between 9 and 11
meters) where θ is between −90◦ and 90◦. The difference of acoustic paths can be seen in
this click, as P0P1 is only 3.60ms. The second pair of the figure shows a click recorded
at 600 kHz with an IPI 3.27ms. This click was recorded during the 2018 Mauritius
recording session (see Section 6.1). Since it was recorded near the sperm whale and the
click was part of a 2+5 coda, its subsequent pulses can be easily seen.

Since the IPI is related to the length of the spermaceti organ, and its value is stable
[91, 92], it is possible to retrieve this length using the IPI. With the relationship between
the length of the head and the length of the whole body established by [93], a relation
between the length of a sperm whale L and its IPI can be found, assuming that the
spermaceti organ is close in length to the head. Here are five formulas that have been
proposed:

L = 0.76 + 4.64 IPI− 0.259 IPI2, (2.7)

L = 9.75− 0.521 SL+ 0.068 SL2 + 0.057 SL3, (2.8)

L = 4.833 + 1.453 IPI− 0.001 IPI2, (2.9)

L = 17.120− 2.189 IPI+ 0.251 IPI2, (2.10)

L = 5.736 + 1.258 IPI. (2.11)

For all the equations, the IPI needs to be in milliseconds to obtain a length L in meters.
SL, the spermaceti organ length, also needs to be expressed in meters. The first equation
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Figure 2.5: Sperm whale click and its spectrogram
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Figure 2.6: Sperm whale click and its spectrogram.
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Figure 2.7: Zoom on the pulse of Figure 2.6

was established by [94] using all the relationships described above. However, as noted
by [95], this equation has multiple flaws. The main one is that it is based on a speed
of sound given in [2], which was two times faster than the correct speed of sound in
the spermaceti oil. A corrected version of this equation should thus use half the IPI as
an input. The second and third equations were derived by [95], where SL (spermaceti
organ length) itself can be computed from the IPI using SL = (cspermaceti/2)IPI where
the speed of sound in the spermaceti organ is cspermaceti. The equation (2.8) was obtained
by fitting a polynomial to the total body length and the spermaceti length found in
[96], while (2.9) was obtained by directly fitting a polynomial between the IPI and the
total body length of Sri Lanka and Azores whales recorded and whose lengths have been
photographically measured. Similarly the fourth equation was obtained by [97], but this
time done on whales from New Zealand. Finally, the last equation was published in [98],
also using whales from New Zealand.

As seen in Figure 2.8, which combines all the previous equations, the various esti-
mations differ in their predictions. Multiple factors explain this disparity. First, some
studies contain very few individuals; 5, 11 and 12 individuals for formulas (2.8), (2.9)
and (2.10) respectively [98]. Also, most of the polynomial fittings were done on groups
of sperm whales with similar sizes within each study, but different between studies,
meaning that the equations extrapolate the value for the rest of the valid range of IPI.
For example, all individuals but one in (2.9) were smaller than 12m whereas (2.10) only
contains males larger than 12m. Equation (2.11) can be seen as the best model, as it
was made on more individuals, and predicts values close to (2.9) and (2.10) over their
respective fitting intervals.
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Figure 2.8: Comparison of the different total body length estimation equations.

IPI estimation
Multiple techniques exist to automatically estimate the value of the IPI. A first set of
methods use the autocorrelation to perform this estimation. Since a click is made of
a repetition of one pulse, the autocorrelation should show local maxima with a regular
spacing corresponding to the IPI. The autocorrelation can be done directly on the signal,
or on an estimation of the waveform envelope, that can be obtained using the Hilbert
transform for example. The advantages of the waveform is that it will prevent the
confusion between a periodic pattern due to the pulse repetition, and a periodic pattern
due to the pulse itself. The other popular IPI estimation method is based on the cepstrum
introduced in [99]. If a signal contains periodic structure, then its cepstrum will have
a local maximum at its period. All these methods are often improved by averaging the
results over multiple clicks coming from the same sperm whale. These different methods’
performances are compared in [100]. In [101], another method called BIVIP is proposed.
In this method, all possible candidates for P0 and P2 are extracted, and the pair (P0, P2)
that gives similar values of the IPI P0P1 and P1P2 is kept. The joint distribution of these
IPI obtained from these extractions done on multiple clicks is then used to estimate the
IPI. Since the pairs made of the true P0 and P2 should be extracted more often than a
random pulse due to background noise, the joint distribution should have a maximum
at the right IPI. If multiple whales are present, and their IPI’s are spread enough such
that the joint distribution consists of multiple modes, then we propose that each IPI
can be estimated without attributing a click to a sperm whale first. An alternative to
this method is also possible where instead of one pair each candidate is kept. In this
version the histogram of the joint distribution of every possible pair for each click is
weighted regarding how relatively far the two IPI differ from each other. For example,
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Figure 2.9: Joint distribution of IPI
Top left: BIVIP method. Top right: weighted BIVIP. Bottom: 3D weighted BIVIP3.

the following equation can be used for (P0P1, P1P2),

W(P0P1, P1P2) = e

−(P1P2−P0P1)
2

0.02

(
P1P2+P0P1

2

)2

. (2.12)

For (P1P2, P2P3), or (P1P2, P1P3
2 ), a smaller standard deviation should be used, since

the difference in these two IPI’s should only arise from errors in the estimation of the
pulse’s position. When using multiple pairs of IPI, the multiple weight formulas can be
multiplied together. Figure 2.9 shows an example of the last three methods applied on
a 5 minute recording, containing a click with a 7ms IPI.

2.5.3 Sound transmission in the nose of the sperm whale Physeter
macrocephalus. A post mortem study

In 1997, [102] had the rare opportunity to experiment on a freshly dead sperm whale
who stranded at Rømø. They managed to conduct acoustic experiments one hour after
it had last shown signs of life. Usually they only arrived between eight and twenty
two hours after the presumed time of death, which they say is too late to obtain any
result due to excessive rotting. However, with only one hour of delay, the animal was
still well enough conserved to simulate clicks in the way that [2] theorized, in which
the first pulse (P0) is generated, while the others are its multiple reflections produced
by the two mirrors that are the distal and frontal sacs. Since they were in a rush to
get to the dead sperm whale as quickly as possible, they were not able to take good
equipment. They had a sampling rate of 48 kHz with some aliasing, and were only able
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to emit FM downsweep of 25ms from 30 kHz to 10 kHz. This led them to believe that
the experiment was not working, since they were not able to see a signal with multiple
pulses on an oscilloscope (the measured IPI of 7.5ms is a lot shorter than the 25ms
sweep ”pulses”). They however did at least three measurements with multiple takes. For
each of them, they use a hydrophone next to the emitter. The measurements were made
at the distal sac (m1), at the center of the front of the junk (m2), and at the top of the
center of the spermaceti organ (m3). To compute the IPI, they did an autocorrelation on
the waveform and took its envelope using the Hilbert transform, and smoothed it using
a 4 kHz lowpass filter. They did not measure any reflection with m3, but did obtain the
multipulse pattern with m1 and m2. The 7.5ms IPI corresponds to the 15.1m body
length using the [95] algorithm. Their results also showed a broadening of P2, which is
not present in sperm whales recordings, and some other reflections between the usual
pulses.

2.6 Acoustic focusing
In order to detect a target, the echo energy needs to be high enough, above a specific
threshold. As shown in (2.2), the only parameter that can be of influence is the source.
Instead of emitting a click uniformly in every direction, the energy emitted can be
redirected in one direction through acoustic lenses and acoustic mirrors. With the energy
concentrated in a beam, the detection range is increased, but limited to a small solid
angle 8◦ − 10◦ in front of the animal [103], meaning that the animal will need to adopt
a foraging behaviour in order to inspect the whole volume of water. The odontoncetes
evolve to have a sac of oil in their head, called the melon, to do this beamforming. As
an example, a model of this effect can be seen in the Kogia in [104].

Sperm whales were thought not to beamform [105], until it was disproven in [106]
and further analysed in [107] and [108]. Considering the size and the complexity of the
sperm whale sonar, it would have been surprising that its sonar possesses no particular
directionality. In [107], they predicted a directivity index of 26.7 dB for the P1 pulse,
while P0 only seems to have a directivity index of 7.4 dB. This difference of directivity
index shows the importance of the complex acoustic path of the sperm whale’s sonar in
terms of added directivity.

2.7 Conclusion
Unlike other click emitting cetaceans, sperm whales emit multi-pulsed clicks, spaced by
2ms to 10ms depending on their length. This multi-pulsed click is explained by the bent
horn model that models its complex sonar structure. With this sonar they communicate
to form complex societies and they echolocate to find their prey.

The contents of this chapter form the basis for the rest of the thesis, where the
characteristics of the clicks will be used as a basis for the modelling of sound genera-
tion, propagation and reception. The models we will describe next, cover a range of
approaches, from signal processing to machine learning, and finally direct and inverse
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propagation models whose objective is to reproduce these sounds as faithfully as possi-
ble. We hope that this will provide better understanding of sperm whale behaviour and
help in the monitoring and surveillance of endangered populations.



Part I

Signal Processing for Passive
Bioacoustics
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In this part, that consists of four chapters, we study the recorded bioacoustic signals
and develop new methods for analyzing their characteristics. These methods cover both
near- and far field recordings.



Chapter 3

Signal Processing Techniques

As presented in the previous section, acoustics is a vast subject when it comes to sperm
whales. In order to study sperm whale acoustics, their signals need to be recorded,
processed, and analysed. This chapter presents the signal processing techniques that are
used throughout this thesis. The main topics tackled here are the click detection and
the TDOA estimation used for the source localisation, which itself is developed and used
in Section 6.2.

3.1 Click Detection
Bioacoustics signals are often unannotated, or weakly labeled—e.g. a large window of
time where the animal should be present, but might not be heard continuously,—which
renders them not readily usable with a neural network or other data analysis techniques.
These signals usually come from long recording sessions, meaning that an expert labeling
of these data would be extremely costly, both in terms of salary and time. In the case
of sperm whale clicks, one may use a click detector to automatically extract the precise
time positions of each click. As this detector will be the first stage of a data analysis
pipeline, its recall should be high, even though a high recall usually comes with many
false positive detections.

3.1.1 Teager-Kaiser approach
The most used detector in this thesis is based on a Teager-Kaiser filter [109, 110]. When
we are aiming for one particular species, or a number of animals that emit clicks in
the same frequency range, we start by cross-correlating the signal with one period of a
sinusoid which acts as a band-pass filter. The sinusoid frequency should be around the
centroid frequency of the aforementioned clicks. This pre-filter is followed by a TK filter.
The TK filter can be seen as a Dirac detector. For the nth sample xn of a signal, the
TK filter will return the value tkn according to

tkn = x2n − xn+1xn−1. (3.1)

54
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The last step is the extraction of local maxima in windows that are slightly larger
than the size of the studied clicks, and shorter than the minimum ICI. In the case of
sperm whales, this would mean a window of 20ms, twice the maximum possible IPI. All
the maxima, and most importantly their position, that are above a threshold set with
a method that will fit the problem, are retrieved. All the steps of this detector have
complexity in O(n), where n is the number of samples of the signal studied, except for
the first cross-correlation which has a complexity of O(mn) where m is the number of
samples of the sinusoidal wave (usually m is less than 10). These different steps are
shown in Figure 3.1.

3.1.2 Setting the threshold
Before finding the right threshold value, the maxima are converted to dB. Energy distri-
butions are usually log-normally distributed (or normally distributed in dB), yet these
maxima reflect the local energy of the signal. The signal is composed of three types of
maxima. Ones that belong to animal clicks, others where nothing was emitted, belong-
ing to the background noises, and the last ones that belong to neither (e.g. boat noises).
The bottom scatter plot of Figure 3.1 shows an example where the three types of max-
ima can be seen. Here the bottom dense line is made of points belonging to the noise
distribution. The sparse curve is made of sperm whale maxima. The remaining points
that do not belong to any of the two described distributions are the boat noise points.
The aim of the threshold is to filter out any clicks that belong to the noise distribution.
The third type of maxima cannot be simply filtered out with this method, and should
be filtered in another step further down the data analysis pipeline.

Constant threshold
In situations where the noise level is constant, or approximately piece-wise constant, the
threshold value is set as a constant, chosen from empirical results. This prevents any
difficulty that could arise in estimating the background noise during periods of dense
click emission.

Gaussian fitting
We then convert the maxima’s values into dB. The maxima usually form two distribu-
tions: one that emanates from the actual animal clicks and non-animal clicks, and one
that emanates from the maxima that are between clicks, which are maxima created by
white noise. We thus filter out the noise by fitting two Gaussians on the mixed distri-
bution, and only keep values that are above three times the standard deviation [111] of
the Gaussian with the smallest mean, as it should be the Gaussian that describes the
distribution of the noisy maxima. However this technique possesses some flaws. First of
all, the noise level is assumed to be constant during each period where the two Gaussian
distributions are fitted. A sudden change in noise level (e.g. an antenna recording in
air then in water at the start of a dive), will usually lead to fitting the two Gaussians
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Figure 3.1: Example of each step of the Teager-Kaiser approach.
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on these two noise distributions. This will cause part of the second noise distribution
to be above the threshold, flooding the detection with false positives. This issue can
be addressed by shortening the time window used to compute the Gaussian distribu-
tions. However, a too short time window will not incorporate enough points to evaluate
precisely the distributions.

A second issue appears if most of the maxima do not belong to the noisy class. This
may happen when the animal emits clicks with a small ICI. In this case, the clicks will
be the ones that the two Gaussian distributions will fit, thus leading to a majority of
clicks being classified as noise. In order to fix this, one could try to reduce the time
window used for the extraction of the local maxima, so that some noisy maxima could
be found between two clicks. But this time window should not be reduced too much, as
the detector will then be able to detect unwanted maxima, such as other pulses of the
same click.

What is described above, is the approach in which each Gaussian estimation is done
on non-overlapping windows. A more sophisticated method could be to use a rolling
Gaussian estimation.

Rolling median
In the case that noisy maxima are rare, an alternate method can be used. One can
compute a rolling median. In this case, the value obtained from the median should be
close to the mean of the noisy distribution. The threshold is then set to be the rolling
median plus another value. This latter value can be a constant, if the noise distribution
has a constant width. Otherwise, a rolling standard deviation can be computed, if the
density of noisy maxima is large enough so that the standard deviation of the global
distribution (distribution that contains the three classes) is the same as the one of the
noise distribution. However the rolling standard deviation will not be able to cope with
sudden changes in the noise level, whereas a constant value will, which gives in this
particular but not unusual case, an advantage to this method against the Gaussian
estimation.

Rolling median estimation
In the event that a fast threshold needs to be computed, and that the noise level is quite
stable without any sudden jumps, an estimation of the rolling median can be used.

This can be computed by the following code snippet.
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1 float median = 0.0f;
2 float average = 0.0f;
3 // for each sample
4 {
5 average += ( sample - average ) * 0.1f; // rough running average.
6 median += _copysign( average * 0.01, sample - median );
7 }

3.1.3 Deep learning
An alternative to the TK filtered approach that was described above to detect sperm
whale clicks, is to use a neural network. Please refer to Part II for a description of some
of the machine learning approaches used in bioacoustics. As an example of a neural
network detector, the architecture used in Chapter 7 can be applied with two classes
(noises and sperm whale) or one class (sperm whale), and was used to detect the clicks
that are present in the figure of the next chapter.

3.2 TDOA computation
When a sound emanates from a point source, it will propagate through space at the
speed of sound of the medium. The sound will then reach various points in space at
various times, the time of arrival (TOA). A recording station with multiple recording
sensors, hydrophones in the case of underwater acoustics, will thus record the sound delay
differently on each channel. As the TOA depends on the speed of sound and the distance
between the source and the hydrophones, some information about the source position
can be retrieved. However, it is quite unlikely to have the time at which the signal
was emitted in passive acoustics. The time difference of arrival (TDOA), which is just
the difference between two TOAs, can be used instead of the TOA to retrieve the same
kind of information about the source position. Let us note Ti the TOA of hydrophone
Hi, and τij = Ti − Tj the TDOA of hydrophone Hi relative to hydrophone Hj . For
N hydrophones, there are

(
N

2

)
possible pairs of TDOA, but only N − 1 independent

TDOA, limited to a maximum of three if the equations of the antenna shape are taken
into account. If we choose the {τi1}i∈J2,NK to be the independent TDOA, then the other
TDOA could be constructed as follows:

∀(i, j) ∈ J1, NK2, τij = Ti − Tj

= Ti − T1 + T1 − Tj

= τi1 − τj1.

(3.2)

Each independent TDOA can be used to obtain one more information about the
position of the source. With two hydrophones (one TDOA), the azimuth of the source is
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usually computed, with the addition of the elevation with three hydrophones, and finally
the distance with four hydrophones. Any other additional hydrophones will make the
problem over-determined. Even if four hydrophones are theoretically enough to compute
the exact 3D position of the source, the distance of the source is too unreliable with only
four hydrophones.

3.2.1 Cross correlation
A way to compute the TDOA of a stereo signal is to compute the correlation between
the two channels. Since the maximum of an autocorrelation is at 0, the maximum of
correlation between a signal and a lagged version of itself (with or without attenuation
a), will be at the lag. This is because

(s ∗ aτt0s)(t) = a(s ∗ s)(t− t0), (3.3)
where s is the source sound, a is the attenuation, t0 is the lag, τt0 is a translation of
t0, and ∗ is the correlation. This technique works well if there is only one source at a
time, if the source has a sharp autocorrelation around zero and a maximum that can
be discriminated from other extrema, and if the noise is uncorrelated between the two
channels.

A cross correlation can also be computed using the Fourier transform, since the
Fourier transform of a convolution is the multiplication of the Fourier transforms. Let
us call x1 and x2 the signals of our two channels, .∗ the conjugation operator, and F the
Fourier transform. We have

x1 ∗ x2 = F−1 (F(x1 ∗ x2)) = F−1 (F(x1)× F(x2)
∗) . (3.4)

This trick stays valid for discrete signals, as a discrete signal is a continuous signal
convolved with a Dirac comb. FFTs can thus be used to speed up the cross correlation.
In practice, FFT correlation and standard correlation differ, because the TDOA compu-
tation is done on a chunk of the signal. The FFT will act as if the chunk is a period of a
periodic signal, whereas the standard correlation will either pad this chunk with zeros,
or used the needed neighbouring samples.

3.2.2 Generalised cross correlation
The standard cross correlation is however prone to error in low SNR, or reverberated
environments. One way to improve the cross correlation is to use the generalised cross
correlation (GCC). GCC is an ensemble of techniques that add a weight Ψ to equation
(3.4), which becomes

x1 ∗Ψ x2 = F−1 (ΨF(x1)× F(x2)
∗) . (3.5)

This weight Ψ can be seen as a way to filter out any noise, echoes or artefacts that could
deteriorate the cross correlation. The simplest Ψ, apart from the identity for which the
GCC equates to a standard cross correlation, is a bandpass filter. The frequency bands
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which are supposed to contain the signal will have a weight of 1, whereas the others will
have a weight of 0.

GCC weights may be dynamic, meaning that they will adapt to what they estimate
the signal and the noise to be, in order to give more weight to a region with high SNR.
Let us denote the spectrum of a signal in upper case (e.g. the spectrum of x will be X).
The channel signals are still named x, the source is named s, and the noises are named
n.

ROTH and SCOT
The first two filters used to weight frequency bands using an approximation of the SNR
are named ROTH [112] and SCOT [113]. SCOT, or Smoothed Coherence Factor, is
a declination of the ROTH weight which allows the noises to be different for the two
channels.

ΨROTH =
1

∥X1∥2
and ΨSCOT =

1√
∥X1∥2∥X2∥2

. (3.6)

PHAT
The next method is called PHAT [114] and is used with signals recorded in high rever-
beration environments. It normalizes the spectrum in order to use only the phase to
compute the correlation,

ΨPHAT =
1

∥X1X∗
2∥
. (3.7)

However, PHAT does not work well in a low SNR environment.

Eckart
The Eckart filter [114] was made to maximize the deflection criterion, which is defined
by the ratio of the change in mean correlation output due to signal present compared to
the standard deviation of correlation output due to noise alone,

ΨECKART =
∥S∥2

∥N1∥2∥N2∥2
. (3.8)

With the hypothesis of an uncorrelated noise, the following simplification can be made,

x1 = s+ n1,

∥X1∥2 = X1X
∗
1 = ∥S∥2 + ∥N1∥2 + SN∗

1 = ∥S∥2 + ∥N1∥2,
∥X1(ω)X

∗
2 (ω)∥ = ∥S(ω)S∗(ω) expi∗ω∗t0 +N1(ω)S

∗(ω) + S(ω)N∗
2 (ω) +N1(ω)N

∗
2 (ω)∥

= ∥S(ω)∥2,
(3.9)

where ω is the angular frequency. The Eckart filler then becomes

ΨECKART =
∥X1X

∗
2∥

(|X1∥2 − ∥X1X∗
2∥)(|X2∥2 − ∥X1X∗

2∥)
. (3.10)
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Unlike PHAT, the Eckart filter will have a weight of zero if there is no signal. Eckart
also has the advantages of SCOT, such as the preference toward high SNR frequency
bands.

3.2.3 steered response power
The steered response power (SRP) is an ensemble of techniques that find the TDOA by
optimising the power of a beamformer [115, 116, 117, 118], such as the delay and sum
beamformer. This is a simple beamformer that will translate in time each channel, and
then compute the mean of these delayed signals. The mean of uncorrelated signals will
tend to zero by increasing the number of channels, whereas the mean of multiple copies
of the same signal will be this signal, which is what happens when the delay and sum
beamformer uses the TDOA that has delay parameters. For this beamformer, the power
will be

P(x, τ21, τ31, ..., τn1) =
∫ ∞

−∞

(
n∑

i=1

xi(t− τi1)

)2

dt (3.11)

=

∫ ∞

−∞

n∑
i=1

n∑
j=1

xi(t− τi1)xj(t− τj1)dt (3.12)

=

n∑
i=1

n∑
j=1

∫ ∞

−∞
xi(t− τi1)xj(t− τj1)dt (3.13)

=
n∑

i=1

n∑
j=1

(xi ⊛ xj)(τi1 − τj1), (3.14)

where ⊛ denotes cross-correlation.
The power of the beamformer is the sum of the cross correlation of all the possible

pairs of hydrophones, including self pairs containing twice the same hydrophones. Since
(xi ⊛ xi)(τi1 − τj1) = (xi ⊛ xi)(0) is a constant and we have (xi ⊛ xj)(τi1 − τj1) =
(xj ⊛ xi)(τj1 − τi1), the SRP optimization can be reduced to optimizing

SRP(x, τ21, τ31, ..., τn1) =
n∑

i=2

i−1∑
j=1

(xi ⊛ xj)(τi1 − τj1). (3.15)

3.2.4 Geometric SRP
We propose an approach similar to SRP, but in our case, we process multiplications
instead of additions. We thus improve the TDoA computation by combining multiple
cross-channel information. For N channels, the method starts by computing the cross-
correlation cij between all the

(
N

2

)
possible pairs of signals (xi, xj). Then, the method

subtracts the minimum of cij from it. With N channels, there are only N−1 independent
TDOA (for instance {τi1}i∈J2,NK) because of the relation τij = τik + τkj . In our setup
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there are in fact three independent TDOA. If the sound is recorded on all channels
the maximum of each cross-correlation cij is at τij . However, this does not hold if the
recordings are noisy. That is why both methods try to maximize the values of all the
cross correlation regarding a set of independent TDOA {τi1}i∈J2,NK.

In short, our method finds the TDOA by computing

τ21, τ31, ..., τn1 =

arg max
τ̂21,τ̂31,...,τ̂n1

n∏
i=2

i−1∏
j=1

(xi ⊛ xj)(τ̂i1 − τ̂j1)−min (xi ⊛ xj), (3.16)

where ⊛ denotes cross-correlation.

Figure 3.2: Synthetic click used for the SNR - TDoA simulation illustrated in Figure
3.3.

In Figure 3.3 we show the results of both methods to compute τ21 on a synthetic
signal (Figure 3.2) in three or four channels with various SNR dB levels of white noise.
We also compared them to τ21 obtained with the cross-correlation between x1 and x2.
This figure shows the absolute error in bins of 2048 examples for each level of noise.
The TDoA search was done between -128 and +128 samples. The source signal was
synthesized using an adaptation of a dolphin click generation model [119], which is used
here to generate the pulse P1 of the sperm whale click,

U(t) = U0 ReLU
(
aReLU(t/T−m) − at/T

1− am

)
, (3.17)

where ReLU is the Rectified Linear Unit function, m is the number of periods to reach
the maximum of amplitude, a is the reflectance factor, and T is the period of the carrier
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Figure 3.3: TDoA error with 3 channels (top) and TDoA error with 4 channels (bottom)
computed on simulated clicks at various SNR.
The full lines are the mean error, the dashed lines are the median of the error, and the
filled region corresponds to one standard deviation across the mean.

waveform. The dolphin-specific parameters, m = 5 and a = 0.84, have been changed
to m = 1 and a = 0.25 to approximate sperm whale pulses. A carrier frequency of
12.5 kHz was used. The denominator has also been changed from 1 − a to 1 − am in
order to have a maximum magnitude of U0. The equation (3.17) describes the envelope
of one pulse. To better mimic sperm whale clicks [120], two other pulses of relative
amplitudes -0.2 and 0.3 were added with an Inter Pulse Interval (IPI) of 4ms.

3.2.5 Increasing the resolution
The TDOA obtained with the previous methods, whether it was with FFT correlation
or standard cross correlation, will not be more precise than the sampling period. This
is simply due to the TDOA being expressed as the offset in number of samples when
these methods are used on discrete signals. It is however possible to interpolate the
objective function as a function of the independent TDOA. An alternative method is to
use a low pass filter on the TDOA estimation along time can also be done. However
it requires having a way of clustering each click by track, otherwise, this will mix the
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Figure 3.4: Result of interpolating the objective function.

unrelated TDOA of multiple animals together. Another issue with the filtering of the
TDOA compared to the interpolation on the objective function is that it will not recover
subtle movements hidden in a monotone track. An example of interpolating the objective
function is shown in Figure 3.4, where the blue lines are the standard TDOA, meaning
the TDOA limited by the sampling rate, and the orange pluses are the TDOA obtained
by interpolating the objective function. On this figure, whereas the standard TDOA
shows various plateaus, the interpolated TDOA managed to reconstruct a continuous
curve. Since the TDOA of each click are estimated independently, this recovery of the
curve can only be obtained by an estimation of the TDOA, as an erroneous estimation
would produce random noises.

Figures 3.5 and 3.6 are TDOA curves made from 192 000 kHz 4 channel recording
made near the Estagnol beach (east of Hyères). The antenna was placed on the sea floor
at 5m depth. Unlike Figure 3.4, which was done on transients (sperm whale clicks), these
two figures were done on stationary sound signals. Figure 3.5 showcases a passage where
a swimmer swam above the antenna, while holding a small speaker which was emitting
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Figure 3.5: Result of interpolating the objective function for swimmer with speaker
emitting killer whale vocalisations.
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Figure 3.6: Result of interpolating the objective function for a boat signal.
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killer whale vocalisations in order to test the antenna before its future deployment in
Vancouver. Unfortunately the speaker was not loud enough, so the vocalizations blurred
into the background noise during the other tests that were performed further away from
the antenna. Figure 3.6 shows the boat TDOA while it was moving to recover the diver,
and later the antenna. The discontinuity around 278 s was due to a loud click, which
saturated some channels.

3.3 Ellipsoid TDOA Method
Even if 4 hydrophones are theoretically enough to retrieve the distance, the computation
is not robust and any small measurement error can lead to large variations in the distance
estimation. The sound speed and the inter hydrophone distances are crucial parameters
that will influence the distance estimation. Using the ellipsoid TDOA method, the
position of each hydrophone can be retrieved from the ellipsoid distribution generated by
the measurements. This method will not produce a distance between each hydrophone
in terms of length, as it will instead produce the maximum TDOA possible between
each hydrophone. The distance between the hydrophones could then be obtained by
multiplying by the speed of sound. By defining the distance between hydrophones this
way, the estimation of the distance will then depend linearly on the speed of sound,
removing the need for a precise value for the speed of sound.

The ellipsoid TDOA method was first proposed by [121] on a 2D version of the
problem. The 3D approach was later addressed by [122].

3.3.1 An intuition of the underlying mechanism
Before explaining the 3D case, three specific examples of the 2D case can help to un-
derstand why the TDOA form an ellipsoid, which in the 2D case is an ellipse. These
are illustrated in Figure 3.7. Let us name the three hydrophones H0, H1 and H2, and
the TDOA between two hydrophones i and j, τij . Let us suppose that the distance d
between H0 and H1 is the same as the distance between H0 and H2. If H1 is at the same
position as H2, then τ10 is equal to τ20. If H1 is at the opposite of H2 regarding H0,
then τ10 is equal to −τ20. The last simple case is when H1H0 is perpendicular to H2H0.
If a plane wave comes from an angle α regarding −−−→

H0H1 then it will have an angle π
2 −α

regarding −−−→
H0H2, and thus τ10 = d cosα and τ20 = d sinα, creating a circle.

3.3.2 The full 3D case for a four-hydrophone antenna
For this method to work, two hypotheses need to be made. The first one is that the
sound speed needs to be constant in a convex hull around the antenna. This will not be
verified for long recording sessions, where the water temperature or the salinity might
change, hence a change in the speed of sound. The second hypothesis that needs to
be made is the far field hypothesis. As can be seen in Figure 3.8, the TDOA joint
distribution no longer forms an ellipse when the source is getting closer to the antenna.
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Figure 3.7: The three examples of a 2D antenna and their TDOA distribution.

In Figure 3.9, the difference of ellipse distance between the far field ellipse and the near
field ellipse for each angle depending on the position of the source is displayed. Since
the distances are normalised, a smaller antenna of the order of 1m will only have an
error of 0.01 for target at 10m from its center, while a larger antenna of the order of
5m will only achieve the same error for target at 50m. The second hypothesis will thus
be verified for closer targets when using smaller antenna. However, this also means that
the distance of the target will be harder to estimate, since estimating the distance is
equivalent to measuring this error. Finally the TDOA used for this method needs to
be obtained by an algorithm that does not use the antenna shape as a constraint, as it
will provide spurious TDOAs since the antenna shape constraint will force the estimated
TDOA to be found on the ellipse of this given shape.

As before, let us call the four hydrophones H0 to H3, the TDOA between Hi and
Hj , τij , the distance between Hi and Hj , dij , and the angle between −−−→

H0Hi and
−−−→
H0Hj ,

αij . Let the coordinates of hydrophone Hi be (xi, yi, zi) in a base with H0 as its origin,
the Z axis co-linear to −−−→

H0H1, and H2 in the XZ plane, with x2 being positive. Finally
let us have the subscript of the source named s, and express its position in spherical
coordinates (ρ, ϕ, ψ), as shown in Figure 3.10, with a ρ close to infinity. We thus have,

τ10 =
z1
c
cosψ, (3.18)

τ20 =
x2
c

cosϕ sinψ +
z2
c
cosψ, (3.19)

τ30 =
x3
c

cosϕ sinψ +
y3
c

sinϕ sinψ +
z3
c
cosψ. (3.20)

If y3 is negative, we can replace ϕ by −ϕ. Then (3.18) and (3.19) will stay the same
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Figure 3.8: Joint TDOA distribution (τ10, τ32) for the cross antenna (top) and the angle
bracket antenna (bottom) for multiple concentric circles of source emission. The color
represents the radius of these circles. Except for the source, the distance between two
dots is one unit.
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Figure 3.9: Error (log10 of the distance between the near-field generated TDOA pair and
the far-field TDOA ellipse) for the cross antenna, depending on the distance r of the
source and its angle with the closest hydrophone.
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Figure 3.10: Spherical coordinate system.
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while (3.20) becomes

τ30 =
x3
c

cosϕ sinψ − y3
c

sinϕ sinψ +
z3
c
cosψ. (3.21)

Let us assume that the joint distribution of all possible TDOAs from a far field source
forms an ellipsoid, then for any TDOA tuple (τ10, τ20, τ30) we have

(
τ10 τ20 τ30

)
M

τ10τ20
τ30

 = 1, (3.22)

where M is a positive definite matrix. If P is the matrix 1
c

z1 0 0
z2 x2 0
z3 x3 |y3|

 and x is the

vector

 cosψ
cosϕ sinψ
sinϕ sinψ

, then (3.22) can be rewritten as

xTPTMPx = 1, (3.23)

which is true if and only if PTMP is the identity I and P is invertible. P will not be
invertible only in the case where the antenna is a planar antenna. Thus, we have,

PTMP = I (3.24)

M =
(
PPT

)−1
(3.25)

= c2

 z21 z1z2 z1z3
z1z2 x22 + z22 x2x3 + z2z3
z1z3 x2x3 + z2z3 x23 + y23 + z23

−1

(3.26)

= c2

 d210 d10d20 cosα12 d10d30 cosα13

d10d20 cosα12 d220 d20d30 cosα23

d10d30 cosα13 d20d30 cosα23 d230

−1

(3.27)

=
c2

cos2 α12 + cos2 α13 + cos2 α23 − 2 cosα12 cosα13 cosα23 − 1
· (3.28)

− sin2 α23

d210

cosα12−cosα13 cosα23
d10d20

cosα13−cosα12 cosα23
d10d30

cosα12−cosα13 cosα23
d10d20

− sin2 α13

d220

cosα23−cosα12 cosα13
d20d30

cosα13−cosα12 cosα23
d10d30

cosα23−cosα12 cosα13
d20d30

− sin2 α12

d230

 .

M is indeed a symmetric positive definite matrix, and we obtain its inverse with
its Cholesky decomposition, with P having strictly positive diagonal entries in the non
degenerate case.
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With this method, it is thus possible to obtain the shape of the antenna using either
(3.27) or (3.25). Alternatively, if the shape of the antenna is known, and not used in
the TDOA estimation, then it can be used to filtered of TDOA that do not lie on the
ellipsoid distribution.

3.4 Synchronising audio with video signal
In the situation when multiple media coming from various sources have to be combined,
the first step is to synchronise them. For example, in the Sarano protocol of Section
6.1, the audio recorded by the JASON recorder and the video recorded by the mounted
GoPro need to be synchronized in order to plot the click on the video in Section 6.3.
Even when each of the media contain the same type of information (e.g. audio data),
simple methods such as cross correlation might not suffice as some issues might arise.

3.4.1 Synchronising JASON audio with GoPro audio
In the case of the Sarano protocol, Section 6.1, the GoPro was placed inside a case to
allow a better positioning and, longer and deeper dives, which led to a distorted and
directional recording. The GoPro audio signal is degraded due the lossy compression,
which is allowable when dealing with speech or signals meant to be heard by humans,
for which the loss of information is optimized.

Another issue that appeared was time dilation between each signal. Even though
the dilation was only around 1.5%, this means that files perfectly synchronised at their
start will have an offset of 1 second after one minute. One second is long enough to have
a JASON card recorded click synchronized with a GoPro recorded click, when in reality
they correspond to two distinct instances. Thankfully the time dilation can be assumed
constant for the time scale of a file.

With the issue of time dilation, a cross correlation on the whole file cannot be used, as
a single offset time between the two file does not exist. The result of the cross correlation
will be composed of all the segregated maxima belonging to actual matching events, and
other maxima belonging to combinations of events. Using multiple cross correlations,
each only having one small part of the first signal could be a solution. Each cross
correlation will only contain one true maximum, and combination maxima. In theory
the true maximum should be higher than the other maxima. In practice, the two signals
are too different for it to work, especially when the allowed time offset is large (score
of seconds). Since the dilation is assume to be constant within each file, a visualisation
of each local correlation in a spectrogram manner will have each true maxima aligned,
with the line formed having the dilation as its slope, as it can be seen in Figure 3.12.

This figure was made using windows of 4 096 samples at 48 000 kHz. Note that
bicubic interpolation was used when the image was created, which in conjunction with
the absolute value, allows the line to be seen in this plot, since it would be otherwise too
fine for the 192 000 sample width of the local cross correlation. Note that this example
was chosen because the signal made of creaks is dense enough in terms of clicks so that
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Figure 3.11: Time dilation of the JASON card in percent
The blue intervals indicate the presence of an audio file (i.e. the card was on)
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Figure 3.12: Absolute value local cross correlation between the GoPro and JASON
recordings
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the line is present for every time step.
The solution that was adopted here was to find the dilation and the offset at the

same time. However, even with the right dilation factor, using a cross correlation does
not work to find the right offset. Thus we first investigated a method to find the right
offset, without any dilation. The way we found was to cross correlate the log amplitude
spectrogram of each signal. This prevents the large change in energy due to the direc-
tivity, yet maintaining more information than a simple binarization. Computing the
maximum of this cross correlation for various dilation factors will also give a maximum
at the right dilation factor.

Instead of dilating the signal to test various dilation factors, we interpolated directly
the log amplitude spectrogram in order to speed up computation time.

3.5 Conclusion
With the basis of signal processing techniques that was introduced in this chapter, any
database can be processed to be later analysed. A click detector will first detect the
presence of sperm whale clicks, which can then be used to estimate the TDOA, or used
directly in the analysis to extract various features (IPI, spectrum, ...). This chapter
also presented the ellipse method used to either calibrate the distance between the hy-
drophone, or to filter out spurious clicks (see Section 5.5.2). Finally, when a video
channel is present, a synchronisation method was presented to synchronize the video
signal with the audio signal from another device.



Chapter 4

Far Field Recording - BOMBYX

The previous chapter introduced the signal processing techniques. With them, our
databases can be processed and analysed. Such databases are presented in the following
chapter starting with two far field databases, BOMBYX and Sphyrna, followed by a near
field one. These databases each have their specificities, which allow for different pieces
of knowledge to be acquired.

BOMBYX is a sonobuoy installed in the Mediterranean sea [123], near the island
of Porquerolles (42° 56 N and 6°19 E), south of Hyères, in the south-east of France,
as shown in Figure 4.1. It is positioned at 27 meters of depth, and records at 50 kHz
with two hydrophones spaced by 1.83m. BOMBYX is facing south, meaning that the
evolution of the TDOA allows to know if a group of sperm whales goes from east to west
or west to east. Since BOMBYX is fully emerged and at 27 meters of depth, it reduces
the surface noise generated and recorded.

The sound card was made by OSEAN, and the two hydrophones are Neptune D/70–
see Figure 4.4. The recording protocol changed along the years (from fully continuous
recording to 5 minutes every 20 minutes, varying between 16 and 24 bits encodings),
with recording sessions lasting around 3 months. A team of divers is then sent to change
the batteries and collect the hard drive containing the recordings.

With an estimation of 400 sperm whales in the Mediterranean sea [124], BOMBYX
serves as a monitoring station to survey this endangered species. This is also why BOM-
BYX is situated within the Pelagos sanctuary which aims to protect marine mammals.

4.1 Estimation of the sperm whale trajectory
As shown in Section 6.2.1, BOMBYX can only estimate the azimuth of DOA, since it
only has two hydrophones. Unlike the Sarano antenna of Section 6.1 which is a moving
antenna, BOMBYX is a fixed buoy, meaning that other elements could be used to
obtain a better position of the source, such as the surface echoes, or the interaction of
the whole environment, by assuming that the click of an individual stays constant at the
source [125] (which is far from reality in the case of the sperm whales.). However these
techniques are harder to implement since they require a good estimation of the TDOA

74
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Figure 4.1: Map of Hyères where the Bombyx sonobuoy is placed.

Figure 4.2: BOMBYX before mooring
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Figure 4.3: Underwater picture of BOMBYX.

Figure 4.4: Close up view of BOMBYX’s sound card and hydrophones.
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Figure 4.5: Model of a rectilinear moving whale

between the click and its surface echoes, or a sound propagation simulation in the whole
environment. Even if whales were to pass right through BOMBYX, the amount of time
they will be under 20 meters of distance (10 times the size of the antenna – see Figure
3.9) will be negligible compared to the rest of the recording interval, meaning that the
far field hypothesis can thus be assumed to be always true. By assuming that the sperm
whales have a rectilinear uniform motion, more information than just the azimuth can
be obtained as shown in [123] for some some specific angles and relations between speed
and range of the animal, that we extend below for all angles.

Figure 4.5 is a representation of this model where a sperm whale is moving at a
speed of v. In this model, t = 0 is when the sperm whale is closest to the antenna,
with a distance of h. The closest point, the current position of the sperm whale and the
antenna form a right triangle.

In order to compute the TDOA that will be produced at the antenna, the angle α
between the whale and the acoustical axis (bisector of the two sensors) needs to be found.
The tangent of the angle α− θ of the aforementioned triangle defines a relation with α
and the other parameter of this model. Thus by expanding the tangent and regrouping
the terms in tanα, the relation becomes

tan(α− θ) =
vt

h
, (4.1)

tanα− tan θ
1 + tanα tan θ =

vt

h
, (4.2)

tanα =
vt
h + tan θ

1− vt
h tan θ , (4.3)

α = arctan
vt
h + tan θ

1− vt
h tan θ + nπ, (4.4)

where n ∈ Z accounts for the π periodicity of the tangent function to keep the angle α
continuous. Since the discontinuity occurs when 1−vt

h tan θ changes sign, n can be defined
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Figure 4.6: TDOA for a rectilinear moving whale depending on the angle θ

as n =
1−sgn(1− vt

h
tan θ)

2 , where sgn(x) =
{
−1 if x < 0

0 otherwise
. Since τ21 = d21

c sinα, where

d21 is the distance between the hydrophones, c is the speed of sound, and sin(arctan(x)+
nπ) = (−1)n x

1+x2 , the TDOA τ21 can be obtained as

τ21 =
d21
c

vt
h
+tan θ

|1− vt
h

tan θ|√
1 +

( vt
h
+tan θ

1− vt
h

tan θ

)2 (4.5)

=
d21
c

vt
h + tan θ√

1 + tan2 θ + v2t2

h2 + v2t2

h2 tan2 θ
. (4.6)

As a thought experiment, if we assume that an antenna has a 4.9 km detection radius,
then for a whale that will not be closer than 1 km (i.e. h = 1 km), the maximal value
for vt will be 4 km, no matter the value of θ. Figure 4.6 shows the TDOA that will be
obtained in this situation. Whether the click is close to 0◦, 45◦ or 90◦ without fitting of
a curve, a human operator can label the general direction of the sperm whale.

Using the slope at τ21 = 0, one can recover most of the information. First the TDOA
is differentiated with respect to time,

dτ21
dt

=
d21v

ch

(1 + tan2 θ)(1− vt
h tan θ)

((1 + v2t2

h2 )(1 + tan2 θ)) 3
2

. (4.7)
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Figure 4.7: TDOA of boats passing in front of BOMBYX.

Since τ21 = 0 when vt
h + tan θ = 0, the slope at τ21 = 0 can be obtained as

dτ21
dt

=
d21
c

v

h(1 + tan2 θ) . (4.8)

In order to use these results, further hypotheses need to be made to assume the values of
two unknowns. One can assume that the angle θ is always similar, for example in the case
where sperm whales always pass trough the same corridor. Then if the closest distance
is obtained using another means, such as the time of arrival of the surface echoes, one
can obtain the travel speed. Otherwise, one can assume the travel speed to obtain said
distance. Finally if the travel speed is assumed and the sperm whales are assumed to
always pass trough one point (which could be different than the closest point), then the
angle θ can be recovered.

4.2 Application to real data
In reality, only boats will have such an ideal movement. For example, Figure 4.7 and
Figure 4.8 show TDOA curves from a recording session in December 2018. This session
was taken as an illustration since it was the only session with a continuous recording,
whereas other sessions only have a 25% duty cycle (e.g. 5 minutes of recording, followed
by 15 minutes of sleep). As shown in Figure 4.7, their curves are monotone, compared
to the curve of a sperm whale in Figure 4.8, which contains many oscillations.

Not only the sperm whale curve contains oscillations due to the sperm whale going
back and forth in a hunting site, but it also contains a silent interval, where the whale
may be moving and breathing at the surface without emitting any clicks. However,
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Figure 4.8: TDOA of a sperm whale swimming near BOMBYX
. Blue dots: estimated TDOA. Black line: fitting of the uniform rectilinear model.

on average sperm whales move approximately at a constant surface speed, allowing the
fitting of the model. In the example of Figure 4.8, the model returns an angle of 6.07◦,
and a ratio v/h of 2.28h−1. This correspond to a sperm whale going from east to
west following the underwater cliff, as seen in Figure 4.1. While sperm whales have a
cruising speed that vary around 10 km/h, this value cannot be taken as the speed in
order model. This cruising speed suppose that the sperm whale will continuously swim
toward the west. However the click that were measured indicate that the sperm whale
was diving. While the sperm whale will not surface at the same position it started its
dive, meaning that its dives have a mean horizontal speed, the global mean speed must
be slower than 10 km/h. Since the sperm whale is detected during 10 hours, its mean
surface speed can be assumed to be 1 km/h, meaning that the distance h is 2.28 km,
which correspond to the distance between BOMBYX and the bottom of the cliff.

4.3 Conclusion
The first of three databases that was presented in this chapter is the BOMBYX database,
which has the advantage of being a fixed, merged database. Its long term session allows
for various background noise conditions (weather conditions, amount of boat noise, etc.).
This increase in background noise variability allows to test the generalisation of various
techniques, and makes it easier to differentiate clicks from background noise.



Chapter 5

Far Field Recording - Sphyrna

Unlike the previous chapter which presented a fixed bi-hydrophone antenna, with a low
frequency to record during months, the database that will be presented here is a five-
hydrophone mobile antenna.

Passive acoustic monitoring (PAM) provides a viable option to assess the population
status of cetaceans, model their behavior or yet to prevent ship collisions. Existing tech-
niques use different methods to record and localize the echolocation clicks of cetaceans.
Static hydrophone arrays, using underwater buoys, provide stable recordings and ob-
servations of foraging [126, 127, 123] but can only monitor a fixed location, making it
difficult to track animals over longer distances. A bottom-mounted array with small
aperture (2m) and high sampling rate has been deployed for 3D localization of multi-
ple whales [128, 129]. More flexibility can be achieved by mounting hydrophones on a
vessel. In another experiment [130], a wide-aperture towed array of two hydrophones
was used for tracking in 2D dive profiles of sperm whales, taking advantage of surface-
reflected paths, but not allowing 3D localization. In [131], a first attempt of a moving
deep 6-hydrophone array resulted only in range estimation of the cetacean. In [132], we
designed a high sampling rate sound card and robust passive acoustic algorithm for a
small non-uniform array of 5 hydrophones mounted directly under an autonomous sur-
face vehicle (ASV) called Sphyrna. This ASV was built by Sea Proven in France and is
shown in Figure 5.1, and in a demo1.

This setup is challenging due to the small aperture and the recording of sound close
to the surface, above the thermocline. The recordings are made at 16 bits@600 kHz with
our available high-resolution sound card JASON (Figure 5.3), designed in our scientific
platform SMIoT [133]. We propose a method for efficient filtering of the transients and
other noises generated in these extreme conditions, in order to monitor deep foraging
cetaceans like the sperm whale (Physeter macrocephalus, Pm) which spends more than
70% of its time down to 1 km. In the following we will illustrate our algorithms to process
the echolocation pulses of sperm whales that it uses for orientation and prey localization.

A moving near-surface hydrophone array was also used in [134, 135] to track cetaceans
precisely in 3D over time. The analysis of their movement can also then help to deduce

1http://sphyrna-odyssey.com
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Figure 5.1: The ASV Sphyrna, 17m long. It is a proa (South Pacific design), consisting
of two unequal length parallel hulls. It is extremely stable, even at high wind force.

their behaviour, helping in the creation of a conservation program.

5.1 Method
To estimate the 3D localization of the animal, we compute the Time Delay of Arrival
(TDOA) on signal chunks resulting from an automatic sperm whale click detector.
TDOA estimation is cross-correlation based. The clicks are extracted using a simple
spike detector on an enhanced signal (or noise-reduced bandpass-filtered signal).

The cross-correlation based method we apply to compute TDOA also yields values
linked to the energy of the click and its coherence between all pairs of channels (see
Section 3.2.4). However, after this phase, echoes from the surface and from objects in
the water column still exist. Thus, we cluster the clicks by tracks in the time-TDOA
space with the DBSCAN algorithm (Density-Based Spatial Clustering of Applications
with Noise [136]). DBSCAN is a density-based clustering non-parametric algorithm:
given a set of points in some space, it groups points that are closely packed together
(points with many nearby neighbors), marking as outliers points that lie alone in low-
density regions (whose nearest neighbors are too far away). This clustering procedure
contributes to discarding spurious clicks (e.g. false positives from the spike detector) and
groups together tracks of clicks facilitating the analysis of the cetacean behavior. We
finally estimate 3D positions of the whale from the TDOAs using a nonlinear solver. The
tracks are stabilized according to the yaw and roll from the ship’s Motion Processing
Unit (MPU).
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H5

Figure 5.2: Layout of the 4+1 hydrophone array. The inter-hydrophone distances under
the keel are 35, 59, 59, 63, 63, 70 cm. Hydrophone H5 is placed at the stern, 7m away.

5.2 TDOA computation
As shown in Figure 5.4, the process used to estimate the TDOA combines multiple
methods that were described in Section 3. The Teager-Kaiser approach was used to
detect the click, which was then used to estimate the TDOA using the Geometric SRP.
Since it has a high algorithmic complexity, especially in our case with five hydrophones,
one of which being seven meters afar, the TDOA was evaluated in two steps, both
using the Geometric SRP. First, only the four hydrophones of the keel were used to
evaluate the first three independent TDOAs, as if there were only four channels. Then
all channels are considered, but with the previously estimated TDOAs fixed to their
estimated values, leaving only one independent TDOA to evaluate. With this two-step
method, two objective functions are used, thus providing two values linked to the energy
of the click, and to how well the channels are correlated together.
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Figure 5.3: The JASON sound card (from http://smiot.univ-tln.fr), up to 5 x
2MHz sampling rate at 16 bits resolution, placed into the drone (the built in luxmeter
was not used in this work).

5.3 Filtering
5.3.1 Filtering on TDOA
Figure 5.5 shows the four independent TDOAs τ21, τ31, τ41, τ51 during a 3-hour recording
session where the sperm whale we observed did three dives. Horizontal tracks of points
in this figure were caused by artifacts. In order to distill the actual clicks from the
echoes and false positives, we apply DBSCAN clustering on the time-TDOA space and
keep clusters linked to the main track. DBSCAN is a clustering algorithm based on the
number of neighbours within a ball of diameter epsilon, and then linking neighbouring
points that have enough neighbours themselves. This clustering method is thus great for
non convex clusters, such as TDOA tracks. The metric used was the Euclidean distance.
Since the 2018 Sphyrna recording session contains only one sperm whale during three
hours, the DBSCAN parameters were manually optimised such that the remaining clus-
ters could be chosen by hand (see Section 5.5.1 for DBSCAN parameter optimisation).
The optimal value for epsilon is set according to the computed number of clusters in
the epsilon function. We then determined the clusters for five epsilon values that were
in the middle of the plateau depicting the evolution in number of clusters. Finally we
chose the values of epsilon that clustered the track with a minimal number of clusters
(4 main clusters for the three dives and two small clusters at the end of the last track)
eliminating most of the spurious and echo clicks. This gives a better result than filtering
by keeping points that belong to the Gaussian with the highest energy (points that were
in the upper right quadrant of (-29, -22) of Figure 5.6).

The only echoes that we could not eliminate with DBSCAN were the surface echoes
(for example in Figure 5.5, TDOAs between H2 and H1, the yellow points that are above
0.00022 s), since their tracks originate from the same point as the main track, which is

http://smiot.univ-tln.fr
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Figure 5.4: Flowchart of our method.
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Figure 5.5: TDOA during 3h of recording. The yellow points are the points kept after
the DBSCAN clustering.
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Figure 5.6: Scatter plot of the two cross correlation values. Same 3h of recording as in
Figure 5.5.
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Figure 5.7: Cumulative density histogram of the residue of the localization algorithm.

the start of the dive.

5.3.2 Source localization and post filtering
Once the list of clicks has been finalized, we converted their TDOA into Cartesian
coordinates using the keel antenna as base. These are then mapped to GPS positions
using the yaw, roll and pitch obtained from the MPU. Surface echoes are eliminated at
this stage since they lead to positions above the surface. We then remove the remaining
noise with a moving median filter with a window size of 20 seconds, whose results are
shown in Figure 5.10.

We used the solver detailed in ([110]) to compute the 3D coordinates from the
TDOAs. The histograms of the residue of the solutions are given in Figure 5.7, on
the set of points kept using DBSCAN, and those discarded using DBSCAN. They show
that the residues of retained clicks lie in a small range, while the others are more spread
out, from smaller residues (artifacts) to larger residues (non coherent TDOAs). Thus
DBSCAN filters spurious transient detections.

5.4 Tracking results
In this section we compare our results to the 3D track obtained previously without the
proposed filtering [137]. Figure 5.9 shows the improvements: the spurious clicks have
disappeared, so did some of the tracks of echoes.

In order to compare how the added DBSCAN filtering improved the track we ob-
tained, we plotted the density histogram of standard deviation over 40ms windows.
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Figure 5.8: Moving standard deviations in a 40 sec window for the set of points kept by
DBSCAN (blue) versus for points removed by DBSCAN (red).
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Figure 5.9: Raw coordinates of the Sperm Whale during the last two dives, in the keel
antenna reference space. The blue points are from the DBSCAN filtering. The orange
points are from the baseline [137].

Figure 5.10: The computed track after DBSCAN of the three recorded dives, time in
seconds. X is Northing (m), Y Easting (m), Z Depth (m). Z axis is directed downward.
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Figure 5.8 shows that our method allows to remove all the positions with a standard
deviation above 550m, and increases by a factor 4/3 the proportion of positions with a
standard deviation below 100m.

5.5 Sphyrna 2019-2020
The 2019-2020 expedition reused the drone of 2018 with the addition of another drone.
The second drone (Sphyrna 70 or S70) measures 21m and was equipped with a 5 hy-
drophone antenna, disposed in the same shape as the hydrophones of the S55 (the drone
of 2018). As in 2018, the legislation imposed that a manned boat follow the two ASVs.
During the recording session a four hydrophone antenna was also installed at the rear
of the catamaran. On the fifth channel of each card the signal from a filter PPS signal
of a GPS card was added to the signal of the fifth hydrophone. PPS is a signal with
a raising edge repeating exactly each second. The original PPS signal emitted by the
GPS card was a rectangular signal, which we filter using an analogical high pass to only
modify one sample of the original hydrophone signal. The addition of the PPS allows to
synchronise each antenna, and to measure any drift that might appear in the recording
frequency. The 2019-2020 mission started in September 2019 and ended in April 2020,
with most of the recording effort done in January, February, and April. Note that both
drones were not always present due to mechanical issues. The use of three antennas
allows to cover a wider perimeter during the search for sperm whales, but also allows to
combine the position estimation of the various vessel, similarly to [138, 139, 140, 141].

5.5.1 Finding DBSCAN parameters
A DBSCAN clustering can be described by three parameters: the distance metric, the
min sample, and the epsilon. In the DBSCAN algorithm, a point that is distant of less
than epsilon from another is said to be directly reachable from that other point. Points
that have at least min sample points (including itself) that are directly reachable from
them are called core points. All core points that are joined by a chain of core points
that are directly reachable from each other are in the same cluster. Finally, points that
are directly reachable from a core point are added to its cluster. Remaining points are
labelled as noise. When DBSCAN is used to cluster tracks of clicks, min sample should
be set to 3, since as core points, the points of the track should at least directly reach itself,
the previous point and the next point. The two points at the edge will still be added
to the cluster, since they are directly reachable from core points. The distance chosen
should treat the TDOA equally if they have the same order of magnitude. In our case
the distance chosen is a Euclidean norm with an extra parameter to scale the time. This
means that the TDOA difference can be greater if the time difference between two clicks
is short than if it was longer. This goes against the fact that the longer the time passes
between two clicks, the further the sperm whale can move from its previous position, thus
increasing the TDOA difference. However, in our case the maximum TDOA difference
that can be allowed between two points of a track is of the order of the TDOA estimation
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error. Since the tracks of clicks are from whales far away, the epsilon should be chosen
around the square root of the number of TDOA used plus one, if the distance is expressed
in samples. This value can be increase if the TDOA estimation error is large, or if the
TDOA difference is greater than one sample for each TDOA between two clicks. Finally
in order to choose the value of the scaling parameter that will scale the time to be similar
to the click , multiple processes are possible. A first solution is to consider the largest
ICI that will make two clicks part of the same track. This value should be high enough
so that clicks are very seldom not part of a track, but not too high, since it will increase
the number of clustered spurious clicks. Tracks of clicks split into two clusters can be
merged after the filtering of noise. With this method, the scaling parameter value will
be such that the length of this largest considered ICI has the same value as epsilon
after scaling, or slightly smaller if a variation of TDOA value is accepted for this ICI.
Another method is to label multiple (to increase variability) small time frames. The
scaling parameter can then be chosen to be the value that maximizes the number of
clicks in a cluster, while minimizing the number of spurious clicks outside of clusters. A
final method is to plot the evolution of the nearest neighbour distance regarding these
parameters for a large number of clicks. The extreme values of these parameters will
lead to either a time difference that is negligible compared to the TDOA, or the TDOA
that are negligible compared to the time differences. In the first case, most clicks should
find another click with similar TDOA, meaning that most nearest neighbours should be
small. In the second case, the nearest neighbour will be the previous or next detection,
with all the distance growing proportionally to the scaling parameters. The true clicks
have the next/previous point in the the track as a point with similar TDOA which will
be its nearest neighbour for a large enough scaling factor, while the spurious clicks need
to look far in time to find such a point. Thus the spurious click will transit from the first
regime to the next earlier than the true click will. The value of the scaling parameter will
thus be set before the true click distribution starts growing over the epsilon value. The
greater the number of independent TDOAs, the harder it will be for spurious clicks with
”random” TDOA to find another click with similar TDOA close to them in time, making
it easier to differentiate between the two distributions. Note that while these methods
seem to indicate that the two distributions are already filtered at the moment of choosing
the scaling parameter value, the DBSCAN that follows will add the requirement of a
second neighbour fulfilling these conditions, thus increasing the number of points filtered.
Note that this method is close to using the evolution of the ratio of points filtered out
by DBSCAN.

5.5.2 Additional ellipse filtering
As explained in Section 3.3, the tuple of independent TDOAs are distributed on an
ellipsoid. Since the TDOA estimation method used here does not use the shape of the
antenna, it does not force the TDOA to reside on this ellipse. Hence the TDOA for
spurious clicks that are due to other mechanism than the wave propagation in sea water
should not reside on this ellipsoid. Electric spikes, for example, is a kind of spurious click
that will have all of its TDOA close to zero, since it is an artifact that appears on all
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Figure 5.11: Joined TDOA distribution from the 4 hydrophone antenna
The yellow dots are the samples kept after the ellipse filtering. All the axes are in ms.

the channels simultaneously. Another example is clicks due to vibration going through
the antenna body. Even though hydrophones are acoustically isolated from the antenna
body, sound may still reach the hydrophone by passing through the water at the end
of the holding tube. The speed of sound being faster in the antenna body than in the
water, the TDOA generated this way should not reside on the same ellipse distribution.
Thus, TDOAs can be filtered by using their distance to the ellipse, which can be done by
using the ellipsoid matrix to define a norm, (basically the square root of (3.22)). With
this norm, only TDOA on the ellipse will have a norm of 1, allowing to discard any
TDOA whose norm is outside of an interval around 1.

This method can be done before the DBSCAN filtering if the measured inter hy-
drophone distance and speed of sound are available. Otherwise, the DBSCAN filtering
needs to be done first in order to remove enough spurious clicks to allow the fitting of
an ellipsoid, which can be used to remove the remaining clicks. An example can be seen
in Figure 5.11.

Since this four-hydrophone antenna is made of two orthogonal horizontal axes of
1.57m length, H1H2 and H3H4. These two axes are vertically spaced by 0.61m, with
both axes centers being aligned vertically. As explained in Section 3.3.1, when two axes
are orthogonal with an equal distance between hydrophones, the TDOA distribution
will form a circle as in (τ21, τ43). However, since the sperm whales are not only in the
2D plane formed by these two axes, points will also be present inside the circle. Other
tuples, such as (τ21, τ42) demonstrate the case where the two axes are almost collinear,
leading to an ellipse with a small minor axis, and a major axis having a slope close to
the ratio of the distance between the hydrophone pairs considered.
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Even if each ellipse could be entirely filled, which is equivalent to saying that the 3D
ellipsoid possesses points everywhere on its surface, real recordings will never provide
such results. Sperm whales stay underwater which means that a surface antenna should
not have points on half of its ellipsoid, except surface echo points. On a surface antenna,
surface echoes are within the window of analysis of the direct click, which means that
the TDOA estimation can only produce TDOA links to the surface echoes instead of the
actual click if the energy of the echoes is larger than the energy of the direct click. Note
that the surface echo is in opposition of phase compared to the direct click (see Section
10.3.1), meaning that their cross correlation with the direct click will have a negative
sign. During the recording, the drones/boat are drifting on the surface with no direct
control of their orientation. Yet, the orientation will still be quite constant as it will be
imposed by the current and the wind. Thus for a small sperm whale group, the azimuth
of the clicks will be restrained to a small angular interval. When the drones/boat are
moving, we respect a 1 km distance with the sperm whales, which prevents the possibility
of clicks coming from under the antennas. This explains why pairs of horizontal axes
such as (H1H2,H3H4) still have most of their points close to the 2D case.

5.6 Tracking results for January 14th, 2020
Throughout the months of January and February 2020, multiple recordings of sperm
whales were made by the Sphyrna drones. On the 14th of January, near Nice in France,
a group of around 7 sperm whales were present near the drones, and sighted at the
surface. The group stayed close to the drone in the afternoon between 14h and 17h.
Following the pipeline that was described earlier, the clicks where first detected using
the TK filter approach, then their TDOA were estimated, and they where filtered using
DBSCAN filter and the ellipsoid method [142]. Finally, from the TDOA, an estimation
of the position of the source was computed. The tracks of clicks that resulted from this
analysis can be seen in the results in [142] and in the following Figure 5.12.

As in [143], we observe a spatial distribution of the whales, starting at 100m. Figure
5.13 from [142] shows the histogram of the mean of all distances between the tracks for
each time step, while Figure 5.14 shows the histogram of the minimum distances between
the tracks for each time step, showing this 100 meters limit. In our case, the whales are
spread with a usual distance of 500 meters. This corresponds to the predicted range of
470m , obtained in Section 2.3.1 for 180 dB. Since sperm whales vary their sound level,
this range will also vary. However, this could show that the sperm whales might use
each others sonar to increase their individual foraging capability.

5.7 Conclusion
With the Sphyrna dataset, made of 5 channels at 384 kHz, we can extract high definition
clicks. The five channels allowed for more variability within each click (small change in
background noise and different interaction with the surface echoes). The estimation of
tracks helps to remove more spurious clicks, making it a useful large database which can
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Figure 5.12: Tracking results for the 14 of January
Tracks with the same color (e.g. 1 and 9) can be distinguished by the large temporal

gap between them.

Distance between tracks (m)

Figure 5.13: Histogram of the mean of all distances between the tracks for each time
step.
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Distance between tracks (m)

Figure 5.14: Histogram of the minimum distances between the tracks for each time step.

be used in deep learning for detection or classification tasks. The track also helps to
understand the interaction between a sperm whale, the topography and the other sperm
whales present in the area.



Chapter 6

Near Field Recording

After having described two databases that record sperm whale clicks far from the source,
we present here a database where sperm whales were recorded at close range. We also
propose a set of methods to use TDOA in order to recover the source position and the
addition of video treatments in order to identify the source.

Under the authority of the Marine Megafauna Conservation Organisation directed
by H. Vitry and, as part of the global program Maubydick, a team led by F. Sarano
has been conducting a longitudinal study on the same group of 27 sperm whales off
the west coast of the island of Mauritius, since 2013. The main goal is to understand
the relationship between individuals inside the family group and the dynamics of the
Mauritian sperm whale population. The main originality is that, since 2017, the data
protocol is reinforced by a collaboration with H. Glotin by the use of a high sampling
rate hydrophone array, Blue JASON, of SMIoT and LIS DYNI, that can record their
most intimate acoustic behaviour while minimizing their disturbance.

6.1 Material
During the past years, François Sarano (see Figure 6.1) and his team have been periodi-
cally returning to the Mauritius island in order to record local sperm whales. Each year
the recording protocol has been evolving to improve the data collection. Since 2017, on
the initiative of H. Glotin, V. and F. Sarano have been using a GoPro Hero 4 mounted
on a stereophonic acoustic antenna of our design, based on our JASON SMIoT Toulon
ultra high velocity DAQ designed for these extreme recordings. Our protocol has evolved
each year, with the access to additional high quality hydrophones, and the learning from
past mistakes–see Table 6.1.

The hydrophones are from Cetacean Research. The DAQ is the Qualilife sound card
[133]. It is able to record at a sampling rate up to 2MHz at 16 bits per channel, up to 5
channels.

97
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Figure 6.1: François Sarano holding the 2018 antenna (Image: F. Guerin).

6.2 From TDOA to DOA
As explained in Section 3.2, the TDOA can be used to retrieve information about the
signal source position. However some hypotheses need to be considered. First of all
the source is considered to be a point source, meaning that one point in space with no
volume or surface is emitting the signal. Secondly, the speed of sound is considered to
be homogeneous. This means that sound will have a spherical propagation from the
point source, and that rays of sound are straight lines. Since N hyrdophones will only
produce N−1 independent TDOA (see Section 3.2), only N−1 characteristics about the
source position can be recovered. With two hydrophones, an antenna will recover the
azimuth (if the hydrophones are horizontal). With three, it will additionally recover the
elevation, while four hydrophones are needed to obtain the distance. However, even with
four hydrophones, small errors in the value of the speed of sound or the distance between
the hydrophones can be enough to prevent any useful estimation of the distance. Thus,
antennas with more than four hydrophones can be useful to over constrain the problem,
and reduce these errors. For an antenna made of only two or three hydrophones, a third
hypothesis is added. Since the distance cannot be estimated, the source is considered
to be at infinity, meaning that the sound propagation can be seen as a plane wave. If
the homogeneous speed of sound hypothesis is not considered to be true, then another
hypothesis can be made. This hypothesis supposes that the speed of sound is only
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Year Number of hydrophones Model of hydrophone Sampling rate
2017 2 C55, C57 600 kHz
2018 3 C57, C57, C75 600 kHz
2019 4 C57, C75, C57, C75 300 kHz
2020 2*5 ? 300 kHz

Table 6.1: Evolution of measurement capabilities for annual campaigns off the Mauritius
coast.
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Figure 6.2: Spherical propagation of a sperm whale click
.

homogeneous around the antenna.

6.2.1 Two hydrophones
When an antenna is only composed of two hydrophones, the 3D problem can be reduced
to a 2D problem using the axial symmetry of the antenna. As show in Figure 6.2, a sperm
whale emits from a point S and the click will reach the hydrophones after travelling two
paths of different lengths. This difference of ∆r is linked to the TDOA, τ10, since

τ10 =
SH0

c
− SH1

c
=
r +∆r

c
− r

c
=

∆r

c
. (6.1)

From the Law of Cosines, on the triangle SMH1, the length r can be obtained,

r2 = l2 +
d2

4
− ld cosα. (6.2)

Similarly, for the triangle H0MS, the edges are linked by the relation,

(r +∆r)2 = l2 +
d2

4
− ld cos (π − α) = l2 +

d2

4
+ ld cosα. (6.3)
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These two relations can then be combined to remove r,

2r∆r +∆r2 = 4l
d

2
cosα (6.4)

2

√
l2 +

d2

4
− ld cosα∆r +∆r2 = 2ld cosα. (6.5)

Solving this polynomial in ∆r and keeping the non negative term gives

∆r = l

(√
1 +

d2

4l2
+
d

l
cosα−

√
1 +

d2

4l2
− d

l
cosα

)
. (6.6)

The series expansion at d
l = 0 is

∆r = d cosα− d3

l2
cosα sin2 α+ o

(
d4

l3

)
= d cosα

(
1− d2

l2
sin2 α

)
+ o

(
d4

l3

)
. (6.7)

The first order term d cosα is independent of the distance l, hence allowing an estimation
of the angle α without knowledge of the distance. When the source is at infinity (meaning
that l tends to ∞), then only the first order term remains,

∆r = d cosα. (6.8)

In practice, l = 5d is enough to use this approximation. One of the main consequences
of (6.8), is that the antenna will have less precision when the sperm whale is close to the
line (H0H1), meaning that α is either close to 0 or π, which is equivalent to the absolute
value of the TDOA being close to its maximal value. Figure 6.3 shows the TDOA
probability density function when the the angle α is taken from a uniform distribution.
The TDOA here is normalised by the maximum TDOA, d

c .

6.2.2 Three hydrophones
An antenna with three hydrophones will have its sensors defining a plane. To simplify
the equations, let us define a coordinate axis whose origin is at the center of [H0,H1],
its x-axis proportional to −−−→

H0H1, and the y-axis belongs to the plane H0H1H2. In this

coordinate system, the hydrophones H0, H1 and H2 are at

−d0
0
0

,

d00
0

,

d1d2
0


respectively. A click emitted at a point S located at

ρ sinα sinβ
ρ cosβ

ρ cosα sinβ

 will generate the

following TDOA,
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Figure 6.3: TDOA probability density function.

τ10 =
SH0 − SH1

c

=

√
(ρ sinα sinβ + d0)2 + ρ2 cos2 β + ρ2 cos2 α sin2 β

c

−
√

(ρ sinα sinβ − d0)2 + ρ2 cos2 β + ρ2 cos2 α sin2 β
c

, (6.9)

τ20 =
SH0 − SH2

c

=

√
(ρ sinα sinβ + d0)2 + ρ2 cos2 β + ρ2 cos2 α sin2 β

c

−
√
(ρ sinα sinβ − d1)2 + (ρ cosβ − d2)2 + ρ2 cos2 α sin2 β

c
. (6.10)

Similarly to the two-hydrophone problem, one can use the series expansion at d0
ρ = 0 to

obtain

τ10 = 2
d0
c

sinα sinβ +
d30
cρ2

sinα sinβ(sin2 α sin2 β − 1) + o(d
4
0

ρ3
), (6.11)

τ20 =
d0 + d1

c
sinα sinβ +

d2
c

cosβ

− −(d20 − d21) sin2 α sin2 β − d1d2 sinα sin(2β)− d22 cos2(β)− d20 + d21 + d22
cρ

+ o(d
2
0

ρ
).

(6.12)
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Figure 6.4: Blueprint of the 2018 antenna.

Once again, when the distance to the source ρ is large compared to the parameter d0,
only the first order term remains, which is also independent of ρ,

τ10 = 2
d0
c

sinα sinβ, (6.13)

τ20 =
d0 + d1

c
sinα sinβ +

d2
c

cosβ. (6.14)

One may remark that the first terms of (6.13) and (6.14) are similar, and that the
correlation between τ10 and τ20 is proportional to the scalar product < −−−→

H0H1|
−−−→
H0H2 >

(see Section 3.3 for details). Indeed when d1 = −d0,
−−−→
H0H1 and −−−→

H0H2 are orthogonal,
meaning that their scalar product is null. Thus when designing an antenna, one may
want to use this orthogonality, if the only TDOAs used are τ10 and τ20. However, note
that other methods might prefer the hydrophones to form an equilateral triangle, such
that the information is equally spread between τ10, τ20 and τ21.

Finally, to obtain the DOA from the TDOA, (6.13) and (6.14) need to be inverted,
which results in the following relations

I =

√
d20(τ10 − 2τ20)2 − 2d0d1τ10(τ10 − 2τ20)− d21τ

2
10 + 4

d20d
2
2

c2
, (6.15)

α = − arcsin
(
d2τ10
I

)
, (6.16)

β = 2 arctan
(
2d0τ20 − (d1 + d0)τ10 − 2d2d0

c )

I

)
. (6.17)
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6.2.3 Four hydrophones or more

For the problem of n hydrophones (n ≥ 4), let us denote

xiyi
zi

 the cartesian coordinates

of the hydrophone Hi, ti the click’s TOA for the same hydrophone, and let us use the
subscript S for the source. We compute the difference

d20S − d2iS = (x0 − xS)
2 + (y0 − yS)

2 + (z0 − zS)
2 − (xi − xS)

2 − (yi − yS)
2 − (zi − zS)

2

= x20 − x2i + y20 − y2i + z20 − z2i + 2 (xS(x0 − xn) + yS(y0 − yn) + zS(z0 − zn)) .
(6.18)

The left term of this equation can be developed using the TDOA τ0i since

d20S − d2iS = d20S − c2(ti − ts)
2

= d20S − c2(ti − t0 − (ts − t0))
2

= d20S − (d0S + cτ0i)
2

= −2d0Scτ0i − c2τ20i. (6.19)

By grouping the terms that depend on the source position, but not the TDOA, on
the left side, and the others on the right side, the equations for all the hydrophones can
be summarized as the following matrix equation,

x0 − x1 y0 − y1 z0 − z1 −cτ01
x0 − x2 y0 − y2 z0 − z2 −cτ02
x0 − x3 y0 − y3 z0 − z3 −cτ03
... ... ... ...

x0 − xn y0 − yn z0 − zn −cτ0n



xS
yS
zS
d0S



=
1

2


x20 − x21 + y20 − y21 + z20 − z21 − c2τ201
x20 − x22 + y20 − y22 + z20 − z22 − c2τ202
x20 − x23 + y20 − y23 + z20 − z21 − c2τ203

...
x20 − x2n + y20 − y2n + z20 − z2n − c2τ20n

 . (6.20)

If the first hydrophone is placed at the origin, then the equation can be simplified as
x1 y1 z1 cτ01
x2 y2 z2 cτ02
x3 y3 z3 cτ03
... ... ... ...
xn yn zn cτ0n



xS
yS
zS
d0S

 =
1

2


x21 + y21 + z21 + c2τ201
x22 + y22 + z22 + c2τ202
x23 + y23 + z21 + c2τ203

...
x2n + y2n + z2n + c2τ20n

 . (6.21)

This equation is of the form A−→x =
−→
b , which is solved by using a least square regression,

i.e. minimizing ∥A−→x −
−→
b ∥. For four hydrophones, the problem is under-determined
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since the rank of A is at most 3. This can be solved by adding the constraint that
d20S = (x0 − xS)

2 + (y0 − yS)
2 + (z0 − zS)

2.
Alternatively, one can fit the TOA model, which is

ti = tS +

√
(xi − xS)2 + (yi − yS)2 + (zi − zS)2

c
. (6.22)

This is a nonlinear regression problem where (tS , xS , yS , zS) needs to be found to fit the
n data points (ti, xi, yi, zi). Note that in this version of the problem, there is one more
variable tS to find, but there is also one more equation with the hydrophone H0 (using
i = 0 does not give 0 = 0 as for previous methods).

In order to have good starting values, one can estimate the DOA using the three-
hydrophone estimation, and combine it with the mean expected distance at which the
sperm whale is supposed to be. Otherwise the previous least square regression can be
used.

6.3 Plotting clicks on the video
Once the DOAs have been obtained, they can be used in conjunction with the GoPro
video to identify the sperm whale that emitted the click. If the distance has been
estimated, it can be used to obtain the DOA relative to the GoPro, instead of the origin
of the base in which the DOA have been estimated (usually placed onH0). If the distance
was not estimated, then one will have to assume that the distance is large enough, such
that the DOA relative to the GoPro stays the same.

6.3.1 Fisheye effect
The GoPro uses a fisheye lens. It allows to film a higher angle of view, at the cost of
distortion. Straight lines will thus appear curved with a fisheye lens, unlike how they
would have been if a convex lens (regular camera lens) was used. As described in Figure
6.5, a convex lens will focus rays from a faraway object on plane space from the lens of
exactly its focal length f . On this plane, the focus point will be at a distance d from the
optical axis, if the object rays make an angle θ with the optical axis.

Thus d follows the relation
d = f tan(θ). (6.23)

Fisheye lenses do not follow this relation. There are multiple technologies of fisheye.
In the case of the GoPro we used, the relation is

d = f tan
(
θ

2

)
. (6.24)
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6.3.2 DOA to pixel coordinate
Usually the DOA is expressed in a spherical coordinate system, which would use (α, β)
as shown in Figure 6.6. However the fisheye lens relation requires another spherical
coordinate system (θ, δ), since θ is the parameter involved in the fisheye distortion.

By assuming that the point S is on the plane z = f , the vector −→OS equates to

−→
OS =

f tanα
f tanβ

cosα
f

 = f

tanα
tanβ
cosα
1

 . (6.25)

Since the GoPro has limited field of view (FOV), this hypothesis covers all the possible
pairs (α, β), where cosα > 0. Then

cos θ = f

∥
−→
OS∥

=
f

f
√
(tan2 α+ tan2 β

cos2 α + 1
=

cos2 α√
tan2 α cos2 α+ tan2 β + cos2 α

(6.26)

=
cos2 α√

sin2 α+ tan2 β + cos2 α
=

cos2 α√
1 + tan2 β

. (6.27)

Note that this can be easily expanded to other values of α, for example by considering
the plane z = −f , which would give the same equation in the end. We also find,

cos δ = f tanα

f
√

tan2 α+ tan2 β
cos2 α

=
sin(α)√

sin(α)2 + tan(β)2
, (6.28)

sin δ =
f tanβ

cosα

f
√

tan2 α+ tan2 β
cos2 α

=
tan(β)√

sin(α)2 + tan(β)2
. (6.29)

GoPro does not give the value of f, but the the value of the horizontal and vertical
field of view, respectively fovh and fovv. If the width and the height of the output image
pixel are denoted w and h, then

x =
tan( θ2)

tan( fovh4 )

w

2
cos δ + w

2
, (6.30)

y =
tan( θ2)

tan( fovv4 )

h

2
sin δ + h

2
, (6.31)
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which when combined with the previous equation give

θ = arccos
(

cos(α)√
1 + tan(β)2

)
, (6.32)

x =
tan( θ2)

tan( fovh4 )

sin(α)√
sin(α)2 + tan(β)2

w

2
+
w

2
, (6.33)

y =
tan( θ2)

tan( fovv4 )

tan(β)√
sin(α)2 + tan(β)2

h

2
+
h

2
. (6.34)

However (6.33) and (6.34) use the characteristic of the fisheye lens when used in air.
Thus, Snell’s law needs to be used in order to convert the θwater obtained using (6.32)
and the DOA into a θair that can be use in (6.33) and (6.34),

θair = arcsin(1.345 sin(θwater)). (6.35)

Since there are a finite number of pixels, it is better to convert each pixel coordinate
into the corresponding angle. This way, confidence intervals around a DOA will also be
plotted with the fisheye distortion, instead of being a circle with a fixed pixel diameter.
A similar fact can be said regarding the plotting of DOA containing only the azimuth.
In order to obtain the Pixel/angle map, the conversion formula needs to be inverted. We
find,

x′ =
(x− w

2 ) tan(
fovh
4 )

h
2

, (6.36)

y′ =
(y − h

2 ) tan(
fovv
4 )

h
2

, (6.37)

θ = arcsin
(

1

1.345
sin(2 arctan(

√
x′2 + y′2))

)
, (6.38)

δ = arctan2(y′, x′), (6.39)
α = arctan(tan(θ) cos(δ)), (6.40)
β = arctan(tan(θ) sin(δ) cos(α)). (6.41)

Note that minus signs might be needed depending on the orientation of the pixel axes.
Figure 6.7 shows an example of a GoPro picture of a graph paper. The lines of the

paper are distorted, as well as the blackboard border. In Figure 6.8, the pixel coordinates
have been stretched using the previously described equations ((6.36) to (6.41) with the
omission of the indices of water) to obtain their corresponding angle (θ), and then
coverting back to the pixel space using (6.23).

Figure 6.9 shows an example of a frame from a GoPro video of sperm whale where
the DOA of the clicks have been plotted. Each point (DOA of a click) stays for 7 frames
(starting from the frames for which the corresponding click is earmarked) on the video to
make them easier to see. However the antenna does not have the means to measure its
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Figure 6.7: GoPro picture of a graph paper

Figure 6.8: Removal of the fish eye effect in Figure 6.7
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Figure 6.9: Frame from a GoPro video with DOA of click (The red dots)
The black shape inside the white rectangle represent the FOV of the GoPro in the

(α, β) space, both scaled to (−π
2 ,

π
2 ). DOAs of the current frame are also plotted inside

this space.
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rotation in space, which means that every oscillation (which is strong due to waves) will
shift the scene. Seven frames is already long enough for a point to give the impression
that it is located where it should not be, when it was in fact in the right place in the first
frames in which it was displayed. The black shape inside the white rectangle represents
the FOV of the GoPro in the (α, β) space, both scaled to (−π

2 ,
π
2 ). The DOAs of the

current frame are also plotted inside this space. As a sperm whale swims out of the FOV
of the GOPRO, this secondary plot can show to a viewer that the clicks heard are not
plotted on the video since they come from outside of the GoPro FOV.

6.4 Application of Image Segmentation Techniques for
Detecting Individuals

The previous section showed how to find the source position of a click, and with it,
how to use this information along with a video in order to associate a click with an
individual. However labeling each click manually, by looking at the video to know which
sperm shale is behind each dot plotted can be quiet tedious. A less tedious alternative
is to annotate each whale once per video, and let the computer annotate the click. In
order to have the sperm whale label spread across all the frame of the video, one can use
an instance segmentation tool. For a frame it will attribute a color to each sperm whale.
The color consistency between frames can be achieved by comparing the segmentation,
hence attributing each sperm whale a color, thus a label. Even if the color changes in
the video, the amount of annotation work will still be greatly reduced.

Image segmentation of sperm whales is not an easy task. Unlike pictures of dogs
sitting in grass, which have dissimilar colors, pictures of sperm whales extracted from
MP4 video have all their colors contained in a small range, and with and underwater
visibility around 20m and divers trying to stay at a distance from the animals, sperm
whales are often seamlessly blended with the background.

For this task we decided to use DeepLabV3+ [144] which gives state of the art
performance. The other advantage of this choice was this network’s ability to achieve
satisfying results on a small training set of 10 images. Instead of spending time creating
a dataset of thousands of annotated images, a loop can be made where the network is
trained on the small dataset, then the trained network is used to annotate the whole
dataset of unannotated images. Dozens of images with clear failure cases (e.g. whole or
large part of an animal classified as the background, or scuba divers classified as a sperm
whale) are then chosen to be annotated. The network is then retrained on this augmented
dataset. After a few iterations of this process, the whole dataset is used during training,
including the network’s annotated images. Preliminary results are shown in Figure 6.10.

A test set of images from recording sessions made during days that differ from the
days used for training, was also used to monitor the network performance.

The main failure cases seen during this iterative process were due to the presence
of colorful fish/algae. Since the presence of non shade of blue colors was only seen in a
picture taken outside of water, the network reaction was to label a large zone around the
fish as background, even if sperm whales were present behind them. The other failure
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Figure 6.10: Image (left) with its semantic segmentation (middle) and its instance seg-
mentation (right)

.

cases were due to the networking struggling to fully label flukes, with most of the time
flukes being disconnected from the rest of the body.

6.5 Conclusion
With this final out of three databases, closeup recorded clicks are observed. While being
recorded with a high frequency similar to the Sphyrna database, they differ by the new
context in which they were recorded. Indeed, the Sphyrna database is mostly composed
of echolocation clicks, while the Sarano database mostly contains socializing clicks, which
are composed of codas and creaks. The presence of this social aspect is also magnified
by the video signal, the use of which allows clicks to be associated with their emitters.
This association is what allows us to link behaviour that occurs after an exchange of
coda between one or more individuals.
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In this part, made up of two chapters we will apply novel machine learning techniques
to the analysis of the recorded sperm whale calls.

Machine learning is becoming an indispensable tool, and in [145] one can find an
excellent survey of the recent advances and transformative potential of machine learning
(ML), including deep learning, in the field of underwater acoustics.



Chapter 7

Overview of Machine Learning
Techniques for Bioacoustics

7.1 Click Classification
Passive acoustic monitoring is today a common approach for biodiversity monitoring.
Its efficiency relies on a large dataset, and thus reliable automatic detection of species.
This paper deals with a particular type of emission, transients from odontocetes, which
are short-duration wide-band impulses. We will present a case study, the CARI’MAM
project, and describe how a reference dataset could be built for such monitoring. Then
we propose a novel approach for click classification based on an End-to-End CNN model.

The CARI’MAM project aims to create a network of Marine Protected Area Man-
agers spread across the whole Caribbean sea for the conservation of marine mammals.
In order to survey the distribution of marine mammals, a mono-hydrophone system was
to be deployed this spring during 40 days in 20 different locations, but the deployment
have been delayed . The amount of data collected will be too large to analyse manually.
To prepare for this analysis, we created a first dataset made of clicks from the various
species present in the Caribbean. The proposed dataset contains 10 out of the 30 species
that the CARI’MAM project aims to study. This first corpus will allow us to test the
different techniques of semi- or fully automated analysis as well as train preliminary
deep learning models to solve the classification task. This dataset is also distributed as a
benchmark for click classification in the DOCC10 (Dyni Odontocete Click Classification)
challenge.1

To build a dataset large enough to train neural networks we gathered data from differ-
ent sources: i) the 2018 DLCDE challenge2, created by HILDEBRAND John, GLOTIN
Hervé, FRASIER kait, ROCH Marie et al. [146], and ii) sperm whale clicks from the
2018 Sphyrna Odyssey expedition [132]. These existing sets contain long sequences of
audio with rough annotations of the temporal regions with clicks. Our goal is to produce
a set with individual clicks associated to a particular species. In this work we present

1https://challengedata.ens.fr/participants/challenges/32/
2http://sabiod.univ-tln.fr/DCLDE/challenge.html
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our methodology to extract the clicks and label them with the species identity. We also
present a preliminary analysis of the resulting corpus, a data split useful for benchmark-
ing and a baseline deep learning model to classify the clicks. Even though our method
to extract clicks and labels may induce some label noise, this is a situation encountered
in a real scenario, thus increasing the ecological validity of the dataset. Furthermore
this permits exploring the use of techniques specifically dealing with these issues, such
as negative learning [147, 148]. We thus decided to increase the number of samples, at
the cost of a possible increase of mislabeling.

7.2 Construction of the DOCC10 dataset
7.2.1 2018 DCLDE challenge
The high-frequency dataset from the 2018 DCLDE challenge [146] consists of marked
encounters with echolocation clicks of species commonly found along the US Atlantic
Coast and in the Gulf of Mexico:

• Mesoplodon europaeus - Gervais’ beaked whale

• Ziphius cavirostris - Cuvier’s beaked whale

• Mesoplodon bidens - Sowerby’s beaked whale

• Lagenorhynchus acutus - Atlantic white-sided dolphin

• Grampus griseus - Risso’s dolphin

• Globicephala macrorhynchus - Short-finned pilot whale

• Stenella sp. - Stenellid dolphins

• Delphinid type A

• Delphinid type B

The goal for the DCLDE dataset is to identify the times at which echolocating in-
dividuals of a particular species approached the area covered by the sensors. Analysts
examined the data in search of echolocation clicks and approximated the start and end
times of acoustic encounters. Any period that was separated from another by five min-
utes or more was marked as a separate encounter. Whistle activity was not considered.
Consequently, while the use of whistle information during echolocation activity is ap-
propriate, reporting a species based on whistles in the absence of echolocation activity
would be considered a false positive for this classification task.

Data were recorded at different locations in the Western North Atlantic and Gulf of
Mexico as shown in Figure 7.1. In the accompanying Table 7.1, we list the coordinates
and depths of the various sites. These data were collected between 2011 and 2015, and
the time period for each recording can be inferred directly from the data.
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Figure 7.1: Recording locations of the 2018 DCLDE challenge

7.2.2 Enhancing the weak labels of DCLDE 2018
For each of the 9 species contained in the DCLDE dataset, the labels are lapse of time
indicating the presence of the corresponding species. The longest interval between two
clicks in a segment can last up to 5 minutes. We consider these labels as weak, in the
sense that they do not reflect precisely the timestamp of each click. We are interested in
the detection and classification of the individual clicks, therefore annotations at a much
finer temporal scale are required. These are the labels that we will refer to as strong.

In order to extract strong labels from the weak DCLDE 2018 weak labels, we first re-
tain only energy components in the frequency ranges of the clicks by applying a bandpass
filter. After this filtering step, we use a Teager-Kaiser (TK) filter [109, 110] combined
with a local maximum extractor having a half window length of 0.02 s, to obtain the
position of all these clicks. Since most of the maxima will not be actual clicks but back-
ground noise, a median filter is used on the logarithms of these maxima to evaluate
the background noise level. Any maxima above the noise level plus 0.5 dB are kept.
Windows of 8192 samples are then extracted around these clicks.

We then proceed to label these maxima with the labels from the DCLDE challenge.
If a click is in the interval of two or more weak labels, we assign it all of the corresponding
labels. We also extract multiple acoustic features to curate the new DOCC10 dataset
from mislabeled clicks. One must note that in the DCLDE data the clicks of all present
species are not labeled. There may be segments labeled as containing a single species
that contain clicks from other species that are not part of the DCLDE label set, such
as sperm whales. We decided to use the spectral centroid as the feature to perform the
final filtering, since it is the feature with which the outliers are better distinguishable
from actual clicks. The spectral centroid is the weighted mean of the frequency, using
the Fourier transform amplitude as weights.
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Project Site D
ep

lo
ym

en
t

Preamp Lat N Long W Depth
WAT HZ 1 734 41-03.7 66-21.1 850
WAT OC 1 707 40-15.8 67-59.2 1100
WAT NC 1 740 39-49.9 69-58.9 980
HAT A 4 685 35-20.8 74-50.9 840
WAT BP 1 810 32-06.4 77-05.7 945
JAX D 11 681 30-09.0 79-46.2 800
GofMX DT 8 638 25-32.3 84-37.9 1200

Table 7.1: DCLDE recording meta data

The spectral centroid is however not useful to classify clicks on its own, as most of
the DCLDE species will have clicks with similar spectral centroids, mainly in the range
30 kHz - 40 kHz. Thus it cannot be used to chose one label for clicks that have multiple
labels.

7.2.3 Sphyrna Odyssey expedition data
Many applications, such as the one faced in the CARI’MAM project, require the detec-
tion of species not available in the DCLDE 2018 dataset. We consider the possibility of
mixing data from different recording experiments into the corpus. In our case we use
data obtained from the 2018 Sphyrna Odyssey expedition. This set contains clicks from
sperm whales, Physeter Macrocephalus. All the clicks are from a single sperm whale 3
hour encounter.

The clicks were recorded at 300 kHz by a Cetacean Research C57 hydrophone and
JASON sound card from SMIoT UTLN. The sperm whale clicks were detected using
a detection process similar to the one used to create strong labels from the DCLDE
dataset. We cross-correlated the signal with one period of a 12.5 kHz sine wave which
acts as a band-pass filter (bandwidth of echolocation clicks is 10–15 kHz [88]). We then
apply a Teager-Kaiser filter [109, 110] and extract the local maxima in 20ms windows
(twice the largest inter-pulse interval of 10ms [120]). For each 1 minute audio file we
compute the mean and standard deviation of the maxima values in decibels (dB), and
only keep samples over three times the standard deviation [111]. To incorporate them
in DOCC10, we down-sampled the signal at 200 kHz to match the sampling rate of the
DCLDE datset.

Since the data added contain a single unseen species, we are introducing a bias of
high correlation between recording configuration, environment and the species label.
However this can be seen as a usual approach to composing bioacoustics datasets for



CHAPTER 7. MACHINE LEARNING FOR BIOACOUSTICS 118

Label Scientific name Common name
Gg Grampus griseus Risso’s dolphin
Gma Globicephala macrorhynchus Short-finned pilot whale
La Lagenorhynchus acutus Atlantic white-sided dolphin
Mb Mesoplodon bidens Sowerby’s beaked whale
Me Mesoplodon europaeus Gervais’ beaked whale
Pm Physeter macrocephalus Sperm whale
Ssp Stenella sp. Stenellid dolphins
UDA Delphinid type A
UDB Delphinid type B
Zc Ziphius cavirostris Cuvier’s beaked whale

Table 7.2: Class labels

machine learning and will evidence the issues with such a method in the benchmark.

7.2.4 DOCC10 challenge
The new DOCC10 dataset consists of clicks centered in a window of 8192 samples. This
was motivated by the possibility of analysing clicks in a window of 4096 samples while
being able to offset this shorter window. The combination of DCLDE and Sphyrna
Odyssey brought this new dataset to a total count of 134, 080, that we split into a
training set of 113, 120 clicks and a test set of 20, 960 clicks for the DOCC10 challenge,
which produces an approximately 85-15 split. The test set is balanced with 2096 clicks
per class. For the challenge, the test set was split into a private test set (90%) and a
public test set (10%). This split was done randomly, so that the classes are no longer
perfectly balanced. The training set is also perfectly balanced with 11, 312 clicks per
class. The class names are detailed in Table 7.2. Figures 7.2 and 7.3 show example
clicks contained in the DOCC10 dataset for each class except for the sperm whale.

This challenge is distributed by DYNI LIS UTLN on sabiod.fr and MADICS CNRS
(http://sabiod.fr/pub/docc10) and similarly in the DATA challenge of ENS (https:
//challengedata.ens.fr/challenges/32).

7.3 Baseline
A large part of machine learning research is done on image classification [149, 150,
151]. When working on sounds, the usage of spectrograms or Mel-frequency cepstral
coefficients (MFCC) allows one to convert these 1D signals into images, and use the
state of the art techniques such as ResNet [152]. Even if this trick is largely used in
signal processing, it has the disadvantage of having a number of parameters that need
to be tuned beforehand, such as the stride, the window size for the FFT, which will
affect the time/frequency resolution. Not only choosing the right representation for each
specific task is not obvious, but choosing the wrong parameters for these hand-crafted
features might decrease the performance.

http://sabiod.fr/pub/docc10
https://challengedata.ens.fr/challenges/32
https://challengedata.ens.fr/challenges/32
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Figure 7.2: Examples of DCLDE test instances for each class (4096 samples long)

Figure 7.3: Zoom on the same examples of DCLDE test instances for each class (256
samples long)

In bioacoustics, bulbul and sparrow [153] are two architectures using the STFT mag-
nitude spectrograms that were made for the Bird audio detection challenge3 and are
nowadays used as the state of the art since bulbul won the challenge [154, 155].

The first test we did with this architecture did not work, which is to be expected
3http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge

http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge
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Figure 7.4: Examples of DCLDE test instances for each class (4096 samples long)

since clicks are far from the long signals of bird vocalisations. Instead of using 2D
spectrograms, which are better for the analysis of chirps or stationary signals, we decided
to learn directly from the raw signal, starting with convolution layers similarly to what
is done in the study of ECG signals [156, 157]. The advantage of a convolution layer
over a dense layer is that it will force the learned filter to be invariant to a translation of
the signal [158]. The multiple filters of a convolution layer will output multiple features
per time step, which can be considered as a new dimension with one feature. Two-
dimensional convolution can thus be used on this 2D signal, reducing the amount of
parameters per layer amongst the other advantages of convolutions [159]. This can be
done after the first layer, or after multiple 1D convolution layers [160, 161]. The operation
can then be repeated to perform a 3D convolution. For convenience, we call this increase
of dimension followed by a convolution, UpDim. This operation could then be repeated
to increase the number of dimensions to 4D and more. However, usual deep learning
libraries such as Tensorflow or PyTorch do not support convolution on tensors with more
than 3 dimension (5 if the batch and feature dimension are taken into account).

7.3.1 Topology of the baseline
We apply the new operator UpDim in a CNN of 12 layers using the raw audio as an
input. Windows of 4096 bins are extracted randomly from the 8192-wide samples, and
random pink, white and transient noises are added to it, each having an independent
amplitude distribution that is log-uniform (to be uniform in dB scale). The result is
then normalised and given to the first layer of the CNN. Figure 7.4 shows samples of
this process, which are the inputs of the CNN for its training. The topology of the model
is given in Table 7.3. The first layers of this model are alternates of convolution and
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Conv-1D N ∗ 4096 5 2 1 16
Conv-2D N ∗ 2048 ∗ 16 5*3 2*1 1 16
Conv-3D N ∗ 512 ∗ 16 ∗ 16 5*3*3 4*1*1 1 16
Conv-3D N ∗ 128 ∗ 16 ∗ 16 ∗ 16 5*3*3 2*1*1 16 32
Conv-3D N ∗ 64 ∗ 16 ∗ 16 ∗ 32 5*3*3 2*2*2 32 64
MaxPool N ∗ 32 ∗ 8 ∗ 8 ∗ 64 5*3*3 4*2*2 64 64
Conv-3D N ∗ 8 ∗ 4 ∗ 4 ∗ 64 5*3*3 2*2*2 64 64
Conv-3D N ∗ 4 ∗ 2 ∗ 2 ∗ 64 5*3*3 2*2*2 64 64
Reshape N ∗ 2 ∗ 1 ∗ 1 ∗ 64

OneByOne N ∗ 2 ∗ 1 ∗ 64 1*1 1*1 64 64
Max

OneByOne N ∗ 1 ∗ 1 ∗ 64 1*1 1*1 64 64
OneByOne N ∗ 1 ∗ 1 ∗ 64 1*1 1*1 64 11
Flatten N ∗ 1 ∗ 1 ∗ 11

Table 7.3: Topology of baseline model
Note that the 11th class was trained to detect noise and was discarded for DOCC10 prediction.

Dimensions are given in NHWC order.

increase in dimension using our proposed UpDim operator.
The activation between each layer is a leaky ReLu with an alpha of 0.01. The loss

is the cross entropy with softmax. An L2 loss on the weights is added as regularization,
with a factor of 0.0005. The model was trained with Adam [162] with a learning rate of
0.0005, during 16 epochs, with mini batches of 32 samples.

7.4 Results
As this baseline was originally built for the CARI’MAM project, it was trained with
an additional class, the noise class, which was trained with the artificial noise cited
earlier. Hence the network topology has 11 classes instead of the 10 of the dataset. For
the evalutation of the full DOCC10 test set, the logit of the noise class was dropped
before the softmax. The confusion matrix shown in Figure 7.5 is thus obtained by the
prediction without the noise logit. Note that the confusion matrix on a test set which
includes noise sample is the same as the one shown in this paper, with all the noise



CHAPTER 7. MACHINE LEARNING FOR BIOACOUSTICS 122

Gg Gma La Mb Me Pm Ssp UDA UDB Zc
Predicted label

Gg

Gma

La

Mb

Me

Pm

Ssp

UDA

UDB

Zc

T
ru

e
 l
a
b

e
l

0.29 0.0038 0.35 0 0.00095 0 0.0076 0.34 0.0072 0.0019

0.0024 0.86 0.051 0.0019 0.0019 0.013 0.0057 0.054 0.011 0.0024

0.0029 0 0.68 0.00048 0.0057 0 0 0.31 0.00048 0

0 0 0.0014 0.99 0.011 0 0 0 0 0

0.022 0.0076 0.0024 0.052 0.82 0.0024 0.0029 0.0095 0.037 0.044

0 0 0 0 0 1 0 0 0 0

0.08 0.23 0.27 0.00048 0.00048 0.00048 0.11 0.066 0.24 0

0.03 0 0.11 0 0.015 0 0 0.83 0.014 0

0.044 0.17 0.00095 0 0.015 0 0.017 0 0.71 0.038

0.014 0.027 0.012 0 0.032 0 0.012 0.017 0.066 0.82

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.5: Baseline confusion matrix on the test set

sample being classified as noise, and one Stenellid dolphin being classified as noise. The
baseline obtains a MAP (mean Average Precision) of 77.12% and an accuracy of 71.13%
on the full test set. On the public portion of the test set, the MAP is 77.68% and the
accuracy is 70.52%.

7.4.1 First challenger results
Since the release of the DOCC10 challenge in early 2020, 26 challengers have participated.
The current top 10 scores are reported in Table 7.4. The full up-to-date leaderboard can
be found on the Challenge Data website (https://challengedata.ens.fr/participa
nts/challenges/32/ranking/public). The top two scores were obtained by the same
team, who used a semi-supervised approach on the test set, hence the score gap with
the other participants.

For this challenge, we decided to try a modified version of a resnet that uses the
UpDim principle as shown in Table 7.5. The activation functions used are leaky ReLu

https://challengedata.ens.fr/participants/challenges/32/ranking/public
https://challengedata.ens.fr/participants/challenges/32/ranking/public
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Ranking Date User(s) Public score
1 March 22, 2020 alain.dr 0.8702

2 March 23, 2020 Judy35 & alcodias_data
& levilain

0.8659

3 March 28, 2020 TBF 0.8034
4 April 21, 2020 jvasso & RaphaelGin 0.8015
5 March 28, 2020 mclergue 0.7963
6 Feb. 24, 2020 BastienD 0.7953
7 March 19, 2020 trollinou 0.7867
8 March 17, 2020 nattochaduke 0.7858
9 March 3, 2020 BastienD & morhan 0.7772
10 March 18, 2020 LeGrosTroll 0.7677

Table 7.4: Top 10 scores as of May 1, 2020

with an alpha of 0.001. Batchnorm was also used after each convolution layer except the
ones of the skip connections.The loss is the cross entropy with softmax. An L2 loss on
the weights is added as regularization, with a factor of 0.05. The model was also trained
with Adam using beta’s of (0.8, 0.999) and a epsilon of 0.0001, with a learning rate of
0.0002. These parameters were not optimised. A Mixup data augmentation [163, 164,
165] using an alpha of 0.2 was also used. The confusion matrix of this experiment with
an accuracy of 80.62% can be seen in Figure 7.6.

7.5 DOCC7
An alternate version of the DOCC10 dataset, called DOCC7, has been generated. It
has the same samples, but restricted to only 7 species, which are Gg, Gma, La, Mb,
Me, Pm, and Zc. The reason for the removal of UDA and UDB is more straightforward.
When the DCLDE dataset was made, they used clustering methods to detect the various
species. These two labels were then given to dolphin species that could not be identified.
We decided to leave them in the DOCC10 challenge since they still represent clicks that
belong to groups of dolphins, even if they do not represent only one species, unlike the
other labels. These clusters are also useful to train a classifier that would be used after a
click detector, and prevent it to classify these dolphin clicks as another species. However,
trained network (with various architectures from various labs) have shown that, unlike
the seven other classes in DOCC7, the trained networks had lower accuracy on the UDA
and UDB labels. We believe that the networks prediction might not be wrong, meaning
that these classes have a higher label noise. Finally, the Ssp were also removed for two
reasons. Firstly, Stenella is a genus and not a species unlike the other remaining classes.
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Figure 7.6: Confusion matrix on the test set
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Figure 7.7: Confusion matrix on the test set of DOCC7

Secondly, there seems to be a large covariate shift between the training and test sets for
this class. A number of reasons could explain this difference between the training and
test set, such as different species, different groups, different types of clicks, or mislabeling.
As seen in Figure 7.6, these three classes represent the majority of the confusions. The
modified resnet of Table 7.5 was also tried on DOCC7, and it obtains an accuracy of
95.09%.

However, this smaller version of the test dataset will not be released until the end of
the challenge, to prevent any challenger from gaining information on the test set.

7.6 Conclusion
We created a new DOCC10 dataset with strong labels for marine mammal transient
classification. It has a total of 134,080 clicks for 10 species. Except for part of the
test reserved for the scoring of the DOCC10 challenge that has been opened with this
dataset, the dataset is publicly available. We also proposed a new neural network model



CHAPTER 7. MACHINE LEARNING FOR BIOACOUSTICS 126

to classify these marine mammal transients. With the new recording from the Sphyrna
Odyssey 2019-2020 mission, containing other species, we plan to release an augmented
version of the DOCC10 dataset with more classes, such as Tursiops, or Globicephala
Macrorhynchus. We also plan to include records from the CARI’MAM project, composed
of 20 recording stations spread over the Caribbean islands. The CARI’MAM project
targeted around 30 species. This augmented dataset will probably be released in late
2020 or early 2021. The increase of variety in the acoustic environment and recording
devices should allow networks trained on it to be more robust to unseen background
noise and other details linked to these changes.
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Conv-1D N ∗ 4096 ∗ 1 3 1 32
Conv-1D N ∗ 4096 ∗ 32 3 2 32

Skip N ∗ 4096 ∗ 1 1 2 32
Conv-1D N ∗ 2048 ∗ 32 3 2 64
Conv-1D N ∗ 1024 ∗ 64 3 2 128

Skip N ∗ 2048 ∗ 32 1 4 128
Conv-2D N ∗ 1024 ∗ 128 ∗ 1 3*3 1*1 32
Conv-2D N ∗ 1024 ∗ 128 ∗ 32 3*3 2*2 32

Skip N ∗ 1024 ∗ 128 ∗ 1 1*1 2*2 32
Conv-2D N ∗ 512 ∗ 64 ∗ 32 3*3 2*2 64
Conv-2D N ∗ 256 ∗ 32 ∗ 64 3*3 2*2 128

Skip N ∗ 512 ∗ 64 ∗ 32 1*1 4*4 128
Conv-3D N ∗ 128 ∗ 16 ∗ 128 ∗ 1 3*3*3 1*2*1 32
Conv-3D N ∗ 128 ∗ 8 ∗ 128 ∗ 32 3*3*3 2*2*2 64

Skip N ∗ 128 ∗ 8 ∗ 128 ∗ 1 1*1*1 2*4*2 64
Conv-3D N ∗ 64 ∗ 4 ∗ 64 ∗ 64 3*3*3 2*2*2 128
Conv-3D N ∗ 32 ∗ 2 ∗ 32 ∗ 128 3*3*3 2*2*2 256

Skip N ∗ 64 ∗ 8 ∗ 64 ∗ 64 1*1*1 4*4*4 256
Softmax N ∗ 16 ∗ 1 ∗ 16 ∗ 256 16*1*1
MaxPool N ∗ 16 ∗ 1 ∗ 16 ∗ 256 16*1*1
Flatten N ∗ 1 ∗ 1 ∗ 16 ∗ 256
Dense N ∗ 4096 1024
Dense N ∗ 1024 512
Dense N ∗ 512 10

Table 7.5: Topology of UpDimV2 model
Dimensions are given in NHWC order. Horizontal lines separate each residual block.



Chapter 8

Application of Autoencoders to
Click Analysis

8.1 An Introduction to Autoencoders
In the bioacoustic domain, there are many unknown or badly known signals. Usual
approaches based on neural networks (NN) for sound signals are made for human speech,
and use knowledge on how this signal is created, such as existing phonemes or even
language structure, to improve performance. Some research has been done on raw audio
signals [166, 167]. NN on raw waveforms have also shown to obtain better denoising
abilities [168, 169], especially compared to other methods that just copy the original
phase [170]. Without this knowledge of a dictionary of signals to classify, one might try
unsupervised learning, such as an autoencoder. In this paper we study stereo datasets of
transient noises. We show that by adding a second branch in the decoder, it is possible
to achieve a better untangling of the embeddings. This study was motivated by the
analysis of an unlabeled sperm whales’ click dataset.

8.2 The Two Models
In this paper, we compare two Autoencoders. Their goal is to reconstruct the noisy stereo
inputs they are given. Both share the same encoder which is composed of 7 convolution
layers and 3 dense layers. The two models then share a part of the decoder which is made
of 3 dense layers and 3 transpose convolution layers, with the only difference being that
the first model decoder will reconstruct the channel whereas the second model decoder
will reconstruct only one signal which will be tiled to two channels. For the first model
an alternative decoder has been made with two additional dense layers in order to have a
fairer comparison with the second model. The second model has an extra branch (Table
8.1) coming from the embedding that will predict a filter. This filter will then be applied
to the tiled signal using a cross convolution. The noisy signal is fed raw to the network,
with no normalization, in order to let the network learn the loudness of the signal, or

128



CHAPTER 8. APPLICATION OF AUTOENCODERS TO CLICK ANALYSIS 129

Layer type, Activation Input shape Kernel, stride Filters
Encoder

Convolution layer, tanh 2*1024*1 1*11, 1*4 64
Convolution layer,
leaky relu 5% 2*256*64*1 1*1*64, 1*1*1 1
Convolution layer, tanh 2*256*64 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*64*128*1 1*1*128, 1*1*1 1
Convolution layer, tanh 2*64*128 1*11, 1*4 128
Convolution layer,
leaky relu 5% 2*16*128*1 1*1*128, 1*1*1 1
Convolution layer 2*16*128 2*1, 1*1 256
Dense layer leaky relu 5% 4096 2048
Dense layer leaky relu 5% 2048 512
Dense layer 512 128

Decoder
Dense layer leaky relu 5% 128 1024
Dense layer leaky relu 5% 1024 2048
Dense layer leaky relu 5% 2048 2048
Transpose convolution,
leaky relu 5% 2*128*8 1*5, 1*2 8
Transpose convolution 2*256*8 1*5, 1*2 8
Transpose convolution 2*512*8 1*5, 1*2 1

Extra branch
Dense layer,
leaky relu 5% 128 1024
Dense layer,
leaky relu 5%% 1024 2048
Softmax 2*1024 1*1024 1024

Table 8.1: Model architecture
Note that for the decoder of the Extra branch autoencoder, the shape only has one channel instead of two.

the SNR. Both networks have the same 2 losses. The main loss is the reconstruction loss
which is the mean squared error loss between the input noisy signals and the output of
the autoencoder. The regulation losses are L2 losses on the weights. The optimizer used
is ADAM [162].

8.3 Proof of concept
The 3 datasets that we introduce here all have different characteristics, which can be
used to compute the various capabilities of the network to cluster and separate the data.
The metric used was the error (for the wanted clustering parameters) between the point
and each of its 40 nearest neighbours in the embedding space. This choice was motivated
by the study of 3D t-SNE on the embedding [171], which showed that embeddings were
composed of manifolds inter-twinned together, with most of the time only one manifold
per family. All the datasets have the center of each pulse as a feature, which can also be
viewed as one center and a Time Difference Of Arrival (TDOA).
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8.3.1 Description of the first synthetic dataset
The first dataset is made of a sinusoid with a Gaussian envelope. It is spread into five
families. Each child of a family is created with a carrier frequency which is sampled
from a Gaussian distribution around the frequency of the family. The support size and
the amplitude of each child is also randomly chosen. With all these parameters defined,
each transient is created with a random offset from the center, with a different offset
for the second channel, to create a TDOA. Then a white noise is added to the signal
with a random level. This mean that this dataset has a distribution of SNR, but also a
distribution of signal loudness.

8.3.2 Description of the second synthetic dataset
The second synthetic dataset is made from an adaptation of a model of dolphin click
generation [119], which is used here to generate the pulse P1 of the sperm whale click.

U(t) = U0 ReLU
(
aReLU(t/T−m) − at/T

1− am

)
, (8.1)

wherem is the number of periods to reach the maximum of amplitude, a is the reflectance
factor, and T is the period of the carrier waveform. The parameters that were m =
5 and a = 0.84 for the dolphins have been changed to m = 1 and a = 0.25 for sperm
whales. The denominator has also been changed from 1− a to 1− am in order to have
a maximum magnitude of U0.

A sperm whale click is composed of a first pulse P0, leaking from its monkey lips
dorsal bursae (MLDB) complex, the main pulses P1, and other echo pulses following the
same path as P1 (Figure 8.1) . The other echo pulses all have the same inter pulse interval
(IPI), while the IPI of P0P1 can have a ±10% length depending on the orientation of
the animal with regard to the recorder. The pulse P0 is also in opposition of phase, since
it was not affected by the reflection from the back of the head of the sperm whale.
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Figure 8.1: Example of a real click with its spectrogram
The pulses present between the labeled pulses are pulses leaking from the back of the sperm whale head and are called

false pulses

This dataset is thus based on these facts, and has 9 families, bred from 3 main
values of IPI and 3 main carrier frequencies. The IPI values are 3, 5 and 7 ms, and the
center frequency values are from the set {3.25 kHz, 6.5 kHz, 13 kHz}. The time is 1024
samples from −0.01 to 0.01, endpoints included. The amplitude of P2 is around 35% of
the amplitude of P1, while P0 is only 20%. In the same manner as the previous dataset,
each click is off-centered, and TDOA is introduced between the channels.
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8.3.3 Description of the third synthetic dataset
The third synthetic dataset was created with the aim of showing what would happen
when the discrimination criterion for the families is not a temporal or frequency criterion,
but a variation in the spectrum. All families have the same fundamental frequency at
3.25 kHz (with a slight variation on it for each child) and the second and fourth harmonic.
The signal has the same envelope as the second dataset (8.1), but only has one pulse.
The five families shown in Figure 8.2 are [1, 2, 3], [3, 2, 1], [3, 1, 2], [1, 3, 2], [2, 3, 1] where
each digit is the respective relative amplitude of the harmonics 1, 2 and 4. The pulses
are off centered and TDOA shifted the same way as the previous datasets were.

Figure 8.2: One member of each of the five families
The pulses present between the labeled pulses are pulses leaking from the back of the

sperm whale head and are called false pulses

8.4 Results
In Section 8.2, we explained that the main loss was an MSE between the noisy inputs
and the outputs. Since the two datasets presented here are synthetic, we also have the
known TDOA and known clean signal as a metric to observe how well the networks were
learning these parameters. The clean metric is a MSE between the clean signal and the
output, while the TDOA metric is a MSE between the TDOA and the position of the
maximum of the cross correlation of the outputs.

The clean metric helps to quantify the fact that even if the task of the autoencoders is
to reproduce the inputs, they are unable to reproduce the random noise and are learning
the clean version of the signals. Since the outputs are denoised versions of the signal,
the TDOA metric was also improving during the learning.
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Figure 8.3: Autoencoder with the extra branch

Assuming we use the notation of Figure 8.3, what happens to the Soft signal and
the Sig signal for the extra branch autoencoder is interesting. The only restriction on
these two signals is that the Soft signal is positive and must sum to 1. Other than that,
the network is free to encode each feature on either one of the signals, or mix it in both.
This will happen most of the time, but we had some iterations where the network was
learning the signal with Sig, while Soft was learning the position. In future studies,
we will investigate what changes can be made to improve this behaviour. For example,
reducing Sig to a short support, or having the last layer of the extra branch being a
convolution. Another behaviour that can be noted is that the network will use zero
padding of the convolution as a perk. For example, when the noise makes the two input
clean signals a bit too different, the network will reconstruct a pulse at each extremity
of Sig, and the shifting of the Soft signals will make each Out only have one of them at
the right position.

After the training, we computed the l1 loss between the ground truth TDOA and
the predicted TDOA. As it is shown in Figure 8.4, we compared the TDOA with three
oracle versions of generalized cross correlation with Eckart weight. The first version is
the usual weight, the second has a mean noise amplitude throughout frequency bins, and
the last has its weight clipped to 1 (best clipping possible). We also added the results of
networks trained with only one channel, and then applied separately on both channels
to denoise the signal and compute the TDOA. The cumulative histogram (Figure 8.5)
for the third dataset has secondary peaks that are located on periods of the signal, while
the histogram for the second dataset has a second local maximum that is located on the
IPI.

The previous results have shown the possibilities of the autoencoders on the TDOA
estimation. As it was said in the introduction, the autoencoders are also used to cluster
the data with regards to their physical features.

The aim of the first dataset was to introduce five simple families of clicks, which
were determined by frequency and by support width to see if the two networks were
able to cluster them. With this simple dataset both networks are able to disentangle the
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Figure 8.4: Cumulative histogram of the error between the predicted TDOA and the
ground truth for the first 100 bins
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Figure 8.5: Cumulative histogram of the error between the predicted TDOA and the
ground truth for the first 40 samples
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Figure 8.6: Precision of the predicted TDOA within an error smaller than 3 samples.
Remarkably, the autoencoder enhances GCC by 3dB at precision 0.5.

Dataset AE 5 25 Med. Mean 75 95
1 SA -0,068 0,111 0,243 0,263 0,359 0,789

Freq EB -0,146 0,00 0,133 0,163 0,272 0,674
RN 0.756 0.82 0.888 0.903 0.99 1.07

2 SA 2,06 2,28 2,81 2,74 3,10 3,43
Freq EB 2,05 2,27 2,53 2,36 2,76 3,07

RN 3.47 3.55 3.64 3.64 3.72 3.81
2 SA -2,90 -2,83 -2,73 -2,74 -2,67 -2,60
IPI EB -2,91 -2,83 -2,74 -2,75 -2,67 -2,60

RN -2.90 -2.82 -2.73 -2.74 -2.66 -2.60
3 SA 0,55 0,65 0,725 0,711 0,755 0,85

EB 0,45 0,55 0,625 0,618 0,7 0,8
RN 0.70 0.75 0.80 0.80 0.85 0.90

Table 8.2: Statistics on the mean difference between each example and its 40 nearest
neighbours in the embedding space. The frequency and IPI stats on the log10 distribution
of errors. For the third datatset, an error of one was attributed to neighbours that
belong to other families. SA : Simple Autoencoder model, EB : Extra Branch model,
RN : random neighbours
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embedding by family, but even in this case, the extra branch network is able to disen-
tangle the embedding more. With the second dataset, the goal was to see if the networks
were able to distinguish between the two families with the same center frequency and
the same pulse, but with various echoes. This dataset is kind of a disadvantage for
the extra branch, because the pulse P0 has the opposite phase, which the network can-
not reproduce with the shifting of the positive Soft signals. As the Table 8.2 shows,
the extra branch network is able to disentangle the frequencies, however it performs as
badly as the other network on the IPI. This can be explained by the fact that the other
pulses were not always reconstructed by the network, since they were most of the time
hidden in the noise. The aim of the last dataset was to see if the networks were able
to distinguish between clicks with the same frequency content, but with variations on
the amplitude. The extra branch model did once again better, even thought it may
have done even better if the families were less entangled (the Gaussian variation on each
harmonic amplitude is large enough to mix some families together)

8.5 Test on real data
We tested our method on two real datasets. We used a month of data from the sonobouy
Bombyx [123], which represent 500 000 clicks. Bombyx is located in the Mediterranean
sea, near the island of Porquerolles, at 27 meters depth. It records at 50 kHz on two
hydrophones distant of 1.8 meters. The second dataset we used is made of clicks that
came from an antenna that we fixed under the Sphyrna [137], a surface drone. This
Sphyrna dataset is small (6 000 clicks on 4 channels). To stay coherent with the previous
datasets, the signals have been downsampled to 50 kHz. The clicks were fed to the
network in windows of 1024 samples. Both datasets have been filtered with an 8-th
order high-pass Butterworth filter at 2 kHz in order to remove low frequency noise that
was magnitudes higher compared to the signal. Without this filtering, the networks
will mainly learn how to reconstruct this low frequency noise. We also found that a
normalization on the energy of each signal allowed the networks to learn with the same
number of epochs as when they learn on the synthetic datasets. Otherwise they take at
least twice the number of epochs. However, we were not able to quantify the results as
we do not have any precise ground truth. Even though we have TDOA for the Sphyrna,
the signals contained multiple sources and the network sometimes predicts where other
sources should be (using interpolation). We will inspect these results more thoroughly
in future works.

8.6 Conclusion
We have shown, for synthetic data, that a simple autoencoder can be used as an unsu-
pervised tool to compute the TDOA on noisy data, and that by adding an extra branch,
we are able to better disentangle the embedding in order to cluster the data.



Part III

Wave Propagation and
Simulation for Bioacoustics
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This part, consisting of three chapters, sets up the models and numerical methods
that are required for simulating the generation and propagation of sounds in the com-
plex medium made up of the head of the sperm whale and its surrounding environment.
Particular attention will be paid to an accurate representation of the anatomy and mor-
phology, as well as the different types of waves, acoustic and elastic, that play a role.
Though we restrict our treatment here to linear theory, there are nonlinear phenomena
which could be taken into account in future work.

Note that the propagation model will be needed for the final part of the thesis, where
we aim to couple models and data in an inverse problem approach.



Chapter 9

State of the Art in Wave
Propagation

This part of this manuscript is dedicated to simulation of the sperm whale sonar. The
theory of acoustic is thus explain in order to have the multiple equation that will be used
in the simulation, but also used to interpret the results.

The vast majority of the acoustic studies will use results or equations related to the
acoustic wave equation,

∂2p

∂t2
−∇ · (c(x)∇p) = 0, (9.1)

where p is the acoustic pressure, c = c(x), is the sound speed at point x ∈ Ω, and Ω is
the domain of propagation that we want to study. This equation must be completed by
initial and boundary conditions. and is the basis of linear acoustics. If c is constant, we
can write

∇2p =
1

c2
∂2p

∂t2
, (9.2)

However, this is only an approximation, and in numerous applications nonlinear terms
becomes non negligible. This area of acoustics is called nonlinear acoustics, and includes
the sound generation of musical instruments, voices, or shock waves—see Appendix A.

9.1 Linear wave propagation
To derive the equations that govern linear acoustics, we use the two main equations of
continuum mechanics, the conservation of mass and Newton’s second law,

∂ρ

∂t
+∇ · (ρv) = 0, (9.3)

Dv

Dt = ρg +

3∑
i=1

3∑
j=1

∂σij
∂xj

ei, (9.4)
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where ρ is the local mass density, v is the particle velocity, g is the gravitational ac-
celeration, ei are the unit vectors of a Cartesian basis in Galilean reference frame, σij
are Cartesian components of the stress tensor and D

Dt is the Stokes’ total time derivative
operator [172],

D
Dt =

∂

∂t
+ v · ∇. (9.5)

9.1.1 Fluid
The second starting point that is needed for fluids is the convective form of the Cauchy
momentum equation.

Du
Dt = −∇q +

3∑
i=1

3∑
j=1

σij
∂vi
∂xj

, (9.6)

which can incorporate the entropy since

Tds = du+ pdρ−1, (9.7)

dρ =
1

c2
dp− αρT

cp
ds, (9.8)

where cp is the specific heat at constant pressure and α is the coefficient of thermal
expansion. To link the stress to the viscosity of a fluid, the properties of the material need
to be considered. Here the hypothesis is made that the fluids considered are Newtonian
fluids. Then

σij = σnδ
j
i + µϕij , (9.9)

ϕij =
∂vi
∂xj

+
∂vj
∂xi

− 2/3∇ · vδji , (9.10)

σn = −p+ ζ∇ · v, (9.11)

where ϕij is rate of shear, ζ is the bulk viscosity, µ is the shear viscosity and σn is the
average normal stress.

Finally, the theory of heat [173] says that the flux vector q should be the opposite of
the temperature gradient times the thermal conduction κ,

q = −κ∇T. (9.12)

All the previous equations can then be combined to obtain the Navier-Stokes-Fourier
equations

ρ
Dv

Dt = −∇p+∇(ζ∇ · v) + ρg +

3∑
i=1

3∑
j=1

∂µϕ2ij
xj

ei, (9.13)

ρT
Ds
Dt = ζ(∇ · v)2 +∇ · (κ∇T ) + 1

2
µ

3∑
i=1

3∑
j=1

ϕ2ij . (9.14)
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In most applications, both viscosity and thermal conductivity can be neglected, which
allows us to simplify the Navier-Stokes-Fourier equations and obtain the Euler equation,

ρ
Dv

Dt = −∇p+ ρg. (9.15)

Since Ds
Dt = 0 with the new hypothesis, (9.3) and (9.8) can be used to obtain

ρ
Dp
Dt = +ρc2∇ · v, (9.16)

which will lead to the wave equation.

9.1.2 Elastic solids
If we consider a solid to be an ideal elastic solid [174], and make the hypothesis that the
displacement of the particles are small enough to neglect the convective time derivative,
then (9.4) becomes

ρ
∂2ξi
∂t2

=

3∑
j=1

∂σij
∂xj

, (9.17)

where ξi is the displacement of the particle in the ei direction relative to its nominal
position. With the former hypothesis, the stress σij can be computed using the strains
εij with Hooke’s law [175],

εij =
1

2

(
∂ξi
∂xj

+
∂ξj
∂xi

)
, (9.18)

σij =
3∑

k=1

3∑
l=1

cijklεkl, (9.19)

where cijkl are the components of the stiffness tensor. Note that only 21 components
of the stiffness tensor are independent due to major and minor symmetries [176]. The
Voigt notation [177] allows us to reduce the number of indices by taking advantage of
the lower number of independent stiffness components. We will write

σ11
σ22
σ33
σ23
σ13
σ12

 =



σ1
σ2
σ3
σ4
σ5
σ6

 ,



ε11
ε22
ε33
ε23
ε13
ε12

 =



ε1
ε2
ε3
ε4
ε5
ε6

 , σi = Cijεj . (9.20)

Isotropic solids
Isotropic solids are solids that have identical proprieties in any direction. With this much
symmetry, the number of independent components is reduced to 2. Now (9.19) can thus
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be rewritten as

σij = 2µεij + δji λ

3∑
k=1

εkk, (9.21)

where δji is the Kronecker delta, and (λ, µ) are the Lamé parameters.

9.1.3 Wave equation
For a compressible fluid, if there is no ambient velocity, and the impact of the gravity is
neglected, (9.15) and (9.16) become

ρ
∂v

∂t
= −∇p, (9.22)

∂p

∂t
+ ρc2∇ · v = 0. (9.23)

These two equations can then be combined to obtain

∇ ·
(
1

ρ
∇p
)
− 1

ρc2
∂2p

∂t2
= 0. (9.24)

A constant density will allow us to simplify this to

∇2p− 1

c2
∂2p

∂t2
= 0. (9.25)

For isotropic elastic solids, by taking the same hypothesis of a constant density,
and also considering that the Lamé coefficients are independent of the position, we can
combine the equations (9.17), (9.18), and (9.21) to obtain

∂2ξ

∂t2
=
λ+ 2µ

ρ
∇(∇ · ξ)− µ

ρ
∇× (∇× ξ). (9.26)

By using the Helmholtz decomposition [178], the vector field ξ can be decomposed
into two fields, an irrotational (curl-free) vector field, and a solenoidal (divergence-free)
vector field by using the scalar potential Φ and the vector potential A.

ξ = ∇Φ+∇×A (9.27)

This allows us to decompose (9.26) into two equations,

∇2Φ− 1

c21

∂2Φ

∂t2
= 0, (9.28)

the equation of the longitudinal wave propagation and

∇2A− 1

c22

∂2A
∂t2

= 0, (9.29)
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the equation of the shear wave propagation, where c1 =
√

λ+2µ
ρ and c2 =

√
µ
ρ .

Equations (9.25), (9.28) are (9.29) the linear wave equations and are often noted as

□cp = 0, (9.30)

where □ is the d’Alembert operator, which is defined by □c = ∇2− 1
c2

∂2

∂t2
. Using a unique

notation for this equation adds to the fact that similarly to the diffusion equation, it
can then be used in multiple fields. For example, the wave equation is also used in
electromagnetism (see Section 10.1).

9.1.4 Plane waves
A simple solution to the wave equation is the plane wave. This is a wave whose features
are independent along the directions that are normal to the wave propagation. By
choosing the Cartesian base to have its x-axis aligned with this normal, (9.25) becomes

∂2p

∂x2
− 1

c2
∂2p

∂t2
= 0, (9.31)(

∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1

c

∂

∂t

)
p = 0. (9.32)

This is solve by nullifying either one of the factors, thus the general solution is the sum
of two functions, f zeroing the left factor and g taking care of the right one. We obtain

p(x, t) = f(x+ ct) + g(x− ct), (9.33)

where f represents the backward propagation of a plane wave, and g the forward propa-
gation, both at a speed of c. For a plane wave travelling in the direction of a unit vector
n, for any point x we thus have

p = g(x · n− ct). (9.34)

9.1.5 Acoustic impedance and intensity
The acoustic impedance Z represent the relation between the pressure and acoustic flow,
and is similar to the electrical impedance. For a plane wave, the acoustic impedance is

Z =
p

v
= ρc. (9.35)

The sound intensity is defined by
I = pv. (9.36)

It is a value that measures the power per unit area of a sound wave.
The effective pressure pe is defined as the root mean square of the pressure,

pe =
√
< p2 >τ =

√
1

τ

∫ τ

0
p2 dt, (9.37)
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Figure 9.1: Example of multiple wavefront

where τ is the length of the signal. The effective velocity ve is defined in the same way.
With these definitions, the average sound intensity can be obtained,

I =< pv >τ=
1

τ

∫ τ

0
pvdt =

1

τ

∫ τ

0

p2

ρc
dt =

p2e
ρc

= peve. (9.38)

9.1.6 Wavefront
A wavefront is a surface on which each point shares the same waveform characteristics.
The theory of plane waves can be applied on each infinitesimal part of the surface of the
wavefront, showing that the wavefront will locally move toward its normal at a speed of
c. An example of a multiple wavefront is shown in Figure 9.1.

9.2 Nonlinear wave propagation
Please see Appendix A for details of the nonlinear theory. Although this theory is not
used directly in the thesis, it is nonetheless very important and will enable a much finer
analysis of the complex sound generation and propagation in the head of the sperm
whale.

9.3 Conclusion
This chapter defined the basis of linear acoustic theory, with the key equations of wave
propagation in solid and fluid, and the first order equations linking the stress and the
velocity that were used to obtain them. These equations are key, since they are the
foundation needed to build any kind of wave propagation simulation, and are a require-
ment to interpret the results produced by these models or further analyses of the signals
obtained in real recordings. Moreover this chapter also introduces other useful concepts
such as the acoustic impedance, or the notion of a plane wave.



Chapter 10

Numerical methods

With the equations presented in the previous chapter, a numerical method is needed in
order to build a simulation. This chapter presents an overview of the existing numerical
methods and their characteristics.

For simple geometries and homogeneous materials, analytical solutions to the acoustic
propagation model can be found, which provide insight on what is happening and the
mechanisms involved. However in most real world applications with irregular geometries
and inhomogeneous media, analytical solutions cannot be found. One thus has to resort
to the use of numerical methods to solve the model. Even though numerical methods
give only an approximation of the solution, they have the advantage that they can easily
adapt to any parameter changes (geometry, materials, etc.). Many numerical methods
exist, each answering to different needs. One will thus choose the appropriate method
depending on the needs (accuracy, types of material) and available resources, such as
time, or CPU, GPU and memory usage.

10.1 Finite difference approximation
Finite difference methods (FDM) are a type of numerical method used to solve differential
equations. FDM are usually chosen as a first approach, since they are easy to program
and are able to give an estimation of the solution with a relatively short computation
time [179]. Unlike other more precise methods, such as finite element methods, FDM are
easier to implement. This allows the user to implement one’s own program, which leads
to an easier implementation of any additional custom code needed for data analysis, or
adding effects that were not modelled by the differential equations.

For a differentiable function f , let us denote its derivative f ′. Then Taylor’s theorem
implies that

∀a ∈ R f(a+ h) = f(a) + f ′(a)h+O(h2). (10.1)
The finite difference aproximation will thus replace the derivative f ′ in the differential
equations with either the forward difference ∆h(f), the backward difference ∇h(f), or
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the central difference δh(f), divided by the step size h. These are defined by

∆h(f)(a)

h
=
f(a+ h)− f(a)

h
= f ′(a) +O(h), (10.2)

∇h(f)(a)

h
=
f(a)− f(a− h)

h
= f ′(a) +O(h), (10.3)

δh(f)(a)

h
=
f(a+ h

2 )− f(a− h
2 )

h
= f ′(a) +O(h2). (10.4)

Higher order differences also exist, defined recursively by ∀n ∈ N∗, ∆n
h(f) = ∆(∆n−1

h (f)),
with ∇n

h(f) and δnh(f) defined in a similar manner. Using the Binomial theorem, this
can be expanded into

∆n
h(f)(a) =

n∑
k=0

(−1)k
(
n

k

)
f(a+ (n− k)h), (10.5)

∇n
h(f)(a) =

n∑
k=0

(−1)k
(
n

k

)
f(a− kh), (10.6)

δnh(f)(a) =

n∑
k=0

(−1)k
(
n

k

)
f(a+ (

n

2
− k)h). (10.7)

The nth order derivatives f (n) can also be approximated using the nth order difference,

f (n) =
δnh(f)

hn
+O(hn+1) =

∆n
h(f)

hn
+O(hn) =

∇n
h(f)

hn
+O(hn). (10.8)

10.2 Finite element approximations
Another method to numerically solve partial differential equation is the finite element
method (FEM). FEM will solve the problem by using a mesh of finite elements, which
are small subdivisions of the global domain Ω. Once the subdivision is done, the partial
differential equations are locally approximated for each element. Once approximated,
the partial differential equations become ordinary differential equations for transient
problems, and are algebraic equations for steady state problems. The problem is solved at
the mesh nodes, and basis functions (also called shape functions) are used to interpolate
between the values obtained at the nodes.

Another way to explain the FEM, is that it will try to approximate the solution u
with û, which is the weighted sum over the finite elements of the local solutions ui, using
the basis functions Ni as weights,

u(x, t) ≈ û(x, t) =

n∑
i=1

Ni(x)ui(t), (10.9)
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Figure 10.1: Example of multiple rays

with Ni having a non zero value only around its node. For example, in a 1D domain
split into finite elements at the nodes xi, the shape function Ni could be defined by

Ni =


x−xi

xi−xi−1
if x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

if x ∈ [xi, xi+1],

0 otherwise.
(10.10)

10.2.1 Spectral element method
The spectral element method [180] is a special case of FEM, where the basis functions
are high degree piecewise polynomials. Since the spectral element method uses high
degree piecewise polynomials basis functions, it can achieve a high order of accuracy.

10.3 Ray tracing
In an analogy to light, acoustics can be modelled using rays. In [181], a ray is defined as
the curve whose tangent at each point is in the direction of the velocity of the waveform
that passes through the point. An example is shown in Figure 10.1.

In a medium moving at a velocity v, if the wave velocity is cn, where n is the normal
to the waveform and c the speed of sound at the studied position x, the velocity vray of
the point will be

vray = v + cn. (10.11)
For any point x in space, let us define the function τ which returns the first time at

which the wavefront passes through x (any further passage can still be studied with the
same following process by restricting the function to some time interval). Let us also
call s the gradient of τ so that s = ∇τ(x). Then

s =
n

c+ v · n
, (10.12)

n =
cs

1− v · s
. (10.13)
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Figure 10.2: Ray of sound splitting into reflected and transmitted sound at the interface
of two media.

Differentiating, we obtain the ray equations,

dx
dt =

c2s

1− v · s
+ v, (10.14)

ds
dt = −1− v · s

c
∇c− (s · ∇)v − s× (∇× v). (10.15)

In the simpler case when there is no ambient velocity v, the equations can be simplified
to

dx
dt = c2s, (10.16)
ds
dt = −1

c
∇c. (10.17)

If c is also constant, then s will be constant, leading to a constant normal n, meaning
that the rays are lines.

10.3.1 Interfaces and diffraction
Similarly to light, a ray of sound will follow Snell’s law at the interfaces between two
media, as shown in Figure 10.2.

We have
1

c1
sin θ1 =

1

c2
sin θ2. (10.18)

For a normal incident wave (θ1 = 0), the pressure must be continuous at the bound-
ary, meaning that the sum of the incident wave pressure pi and the reflected wave pres-
sure pr must equate the value of the transmitted wave pressure pt. The same continuity
condition holds for the velocity, thus
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pi + pr = pt, (10.19)
vi − vr = vt. (10.20)

By using the acoustic impedance, the latter equation can be rewritten as pi
Z1

− pr
Z1

=
pt
Z2

. This pair of equations leads to relations between the reflection and transmission
coefficients and the acoustic impedances,

r =
pr
pi

=
Z2 − Z1

Z2 + Z1
, (10.21)

t =
pt
pi

=
2Z2

Z2 + Z1
. (10.22)

Equation (10.21) is useful to derive global behaviour of waves interacting with media
interfaces. The first simple case is when the two impedances are matching (i.e. Z1 = Z2).
In that case there will be no reflection, with everything being transferred from one
medium to the other. The other case will be when one impedance is far greater than the
other. In this case, the wave will be totally reflected, with little or no energy going to
the other medium. Note that r will be close to 1 if Z1 is small compared to Z2, whereas
r will tend to −1 if Z1 is large compared to Z2, meaning that the reflected wave will be
in opposition of phase.

In the case of the sperm whale, the complete acoustic path is composed of media
with an acoustic impedance close to that of water. On the other hand, the acoustic
impedance of the air of the distal and frontal sac is small compared to the impedance of
the spermaceti oil, explaining why they are often referred to as acoustic mirrors.

Note that by using (10.18), one can deduce the value of the transmission and reflection
coefficients for any angle of incidence θ1,

r =
pr
pi

=
Z2 cos θ1 − Z1 cos θ2
Z2 cos θ1 + Z1 cos θ2

, (10.23)

t =
pt
pi

=
2Z2 cos θ1

Z2 cos θ1 + Z1 cos θ2
. (10.24)

In an analogy to the study of light, the intensity ratio can be deduced, which in the
case of a normal incidence gives

R =
Ir
Ii

=

(
Z2 − Z1

Z2 + Z1

)2

, (10.25)

T =
It
Ii

=
4Z2Z2

(Z2 + Z1)2
, (10.26)

T +R = 1. (10.27)

Regarding the diffraction, [182] developed the geometrical theory of diffraction which
allows rays with discontinuous direction.
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10.4 Numerical stability
The Courant-Friedrichs-Lewy (CFL) criterion [183] is a criterion that determines if a nu-
merical simulation is stable, meaning that the values of the solution will remain bounded.
Stability does not mean accuracy. In fact, using a finer mesh to increase accuracy may
invalidate the CFL criteria.

To satisfy the CFL criteria, the Courant number C needs to be lower than a limit
Cmax

C = ∆t

n∑
i=1

vi
∆xi

≤ Cmax, (10.28)

where vi is the magnitude of the velocity in the ith dimension, ∆t is the time step size
and ∆xi is the length interval in the ith dimension. Cmax depends on the discretization
method used.

The main outcome of this numerical stability condition is that the time step size
needs to be proportionally smaller than the space step size. There are two reasons to
decrease the space step size. The first one is to obtain a solution with a higher spatial
resolution. The second one is the need to simulate higher frequencies, since the space
step size determines the lowest wavelength that can be approximated. One will thus
usually determine a space step size to validate accuracy criteria, then chose a time step
size to validate the CFL criterion.

The complexity of a 3D numerical solver is O(NTNn) where NT is the number of
time steps and Nn the number of nodes, since a step size of the solver is usually linearly
dependent on the number of nodes Nn. The number of nodes is itself proportional to Vsim

∆x3

where V is the volume simulated. Since NT = Tsim
∆t , with T the total time simulated, the

complexity becomes O(VsimTsim

∆t∆x3 ), or O( 1
∆t∆x3 ) if both Vsim and Tsim are not considered

as parameters.
Finally the CFL condition simplifies the complexity to O( 1

∆x4 ) or O(f4m) with fm the
maximum frequency of the simulation. This means that for the same problem, refining
the mesh by a factor 2 will increase the number of operation by a factor of 24 = 16.
Note that the spatial complexity (memory consumption) is proportional to the number
of nodes Nn, thus a complexity of O( 1

∆x3 ), implies that the same refinement will also
increase the memory consumption by a factor of 8.

Thankfully, the update of each node can be done independently of the other nodes.
Each time step still needs to be done sequentially, but the computation time of each
single time step will gain from parallelizing the problem as predicted by Amdahl’s law
[184]. This is why most implementations of the aforementioned numerical methods are
done on HPC (high performance computer) systems or GPUs. Note that if the number
of nodes Nn already surpasses the available processing power, then all the nodes will not
be processed simultaneously, and despite a speedup provided by a partial parallelization,
the total computation time will still grow following the complexity of O( 1

∆x4 ).
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10.5 Conclusion
As presented in this chapter, multiple numerical methods exist to approximate a solution
of a problem which has no (easily obtainable) analytic solution. All these methods have
their pros and cons, but are usually compared and chosen based on the two opposing
criteria that are the accuracy, and the computation time, with sometimes an added
criterion for the easiness of implementing additional custom code. The CFL criterion
was also introduced, with its implication on the temporal complexity.



Chapter 11

Sound Propagation in the Head
of Sperm Whales

Amongst the previously described methods, the finite difference method was chosen to
build the simulation for its easiness of implementation, and the speed of the simulation,
allowing for more time steps for a given spatial discretization. In this chapter, this
method is used in the time domain in order to model the wave propagation inside the
sperm whale’s head.

Since the 90’s [185], scientists have been modeling the propagation of vocalized sound
waves in marine mammals’ heads. The ability to model wave propagation in marine
mammals allows a better understanding of the interaction between all the organs re-
sponsible for the sound creation, or the molding of the sound wave, to achieve the highly
directive beam pattern of such species [186, 187]. To the best of our knowledge these
types of simulations have not been performed on the biosonar of sperm whales.

Most of these simulations are based on anatomical data derived from computed to-
mography (CT) scans. This information enables the construction of the model geometry,
and to obtain the mechanical parameters for each material and their location (up to the
CT scan resolution). However, most of the employed scans were performed on post-
mortem individuals. In [188], data was compared between dead and live specimens and
their effects on the simulations. Dead specimens are prone to introducing artifacts in
the model, such as air-filled blood vessels, but will not suffer from scanning errors due
to the movement of a living specimen. However these deviations are likely not to change
the mechanical parameters of the various tissues, and thus the Hounsfield unit that the
CT-scan will measure, has been shown [189] to be well correlated to the density and
speed of sound.

11.1 Model
Unlike other small marine mammals, sperm whales cannot be CT-scanned by normal
means due to their size and weight. The only tomography data available have been
performed on postmortem neonate sperm whales [90, 190]. However, those models can-
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not be simply scaled up since some anatomical elements do not match those of adult
individuals obtained from dissections, such as the one shown in [96, 191]. In order to
shape our model we have used dissection data. We model each organ using Computer
Assisted Design (CAD) software based on the slices from [96]. Since single blueprints
did not match each other exactly, we had to scale some of them, or take the mean shape.
While the shapes used to model the junk are basic and might not model some focusing
effects, its complex shape might have evolved to serve a structural aspect [192], with less
influence on the acoustic effect.

For our numerical experiments we had to chose the mechanical parameters for each
of the simulated media (skin, bones, spermaceti, water, etc.). While FDTD and our
model are able to cope with anisotropic coefficients, for the sake of simplicity, in this
first approach we have made an isotropic assumption. We have combined the measure-
ments of [193] (assuming a temperature of 30 ◦C and atmospheric pressure), [96] and the
measurements done on the Kogia breviceps in [194]. For the parameters not found in the
literature, we have used values from the human body, based on the observation that the
other parameter values are shared between the species (Physeter macrocephalus, Kogia
breviceps, Ziphius cavirostris, Homo sapiens sapiens). The little variation introduced
by the values borrowed from the other species will not have a significant impact on the
results, since even a change of the order of 5% to 10% has little effect on the resultant
beam [186]. The most important factor for the position of the various focal points is the
geometry of the organs.

11.2 Finite difference in time domain
As stated in its name, Finite Difference Time Domain (FDTD) is a finite difference
method. This method was developed by Kane S. Yee for solving Maxwell’s equations on
a transitory electromagnetic field [195]. This method was latter adapted to acoustics in
elastic media [196, 197].

We will formulate below a discrete FDTD form of the following initial-boundary
value problem. In the fluid regions, Ωf, we will solve the acoustic wave equation system,

ρ
∂v

∂t
= −∇p in Ωf × [0, T ], (9.22)

∂p

∂t
= −ρc2∇ · v in Ωf × [0, T ]. (9.23)

In the solid regions, Ωs, we will solve the elastic wave equation system,

ρ
∂vi
∂t

=
3∑

j=1

∂σij
∂xj

in Ωs × [0, T ], (9.17)

∂σij
∂t

=
1

2

3∑
k=1

3∑
l=1

cijkl

(
∂vk
∂xl

+
∂vl
∂xk

)
in Ωs × [0, T ]. (11.1)
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The acoustic source will be simulated as a forcing term, f(x, t), on the right-hand side
of the pressure equation (9.23), or (11.1), depending on whether it is located in the fluid
or solid regions, respectively. The exact form of the forcing function will be described
below. To complete this system, we add the following boundary conditions:

• On the exterior, fluid boundary, an absorbing boundary condition on p.

• On the interior boundaries, between different materials, interface conditions that
are described below.

Finally, the initial conditions are set equal to zero for p, v and σ since a forcing function
is used.

11.2.1 FDTD applied to acoustics equation
The FDTD method uses a central difference approximation to approximate the space
and time partial derivatives. In a grid using a spacing ∆xi in the direction ei, the fluid
equations (9.22) and (9.23) become with a time step size ∆t,

ρ
vi(t+

∆t
2 ,x)− vi(t− ∆t

2 ,x)

∆t
= −

p(t,x+ ∆xi
2 ei)− p(t,x− ∆xi

2 ei)

∆xi
, (11.2)

p(t+ ∆t
2 ,x)− p(t− ∆t

2 ,x)

∆t
= −ρc2

3∑
i=1

vi(t,x+ ∆xi
2 ei)− vi(t,x− ∆xi

2 ei)

∆xi
. (11.3)

Similarly, by using the velocity vi = ∂ξi
∂t , the elastic solid equations (9.17), (9.18),

and (9.19) become

ρ
vi(t+

∆t
2 ,x)− vi(t− ∆t

2 ,x)

∆t
=

3∑
j=1

σij(t,x+
∆xj

2 ej)− σij(t,x− ∆xj

2 ej)

∆xj
, (11.4)

σij(t+
∆t
2 ,x)− σij(t− ∆t

2 ,x)

∆t
=

1

2

3∑
k=1

3∑
l=1

cijkl

(
vk(t,x+ ∆xl

2 el)− vk(t,x− ∆xl
2 el)

∆xl

+
vl(t,x+ ∆xk

2 ek)− vl(t,x− ∆xk
2 ek)

∆xk

)
. (11.5)

As shown in both fluid and solid equations, The FDTD method will create two
grids, a stress/pressure grid and a velocity grid, with the latter shifted one-half a space
step size from the former. In the solid case, a third grid is needed for the cross stress
(σ23, σ13, σ12), as seen in Figure 11.1 which is tiled into Figure 11.2.
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Figure 11.1: Part of the FDTD grid
Sphere: normal stress. Triangle: velocity. Cross: cross-stress.

For an isotropic elastic solid, (11.5) can be simplified to

σij(t+
∆t
2 ,x)− σij(t− ∆t

2 ,x)

∆t
= µ

vi(t,x+
∆xj

2 ej)− vi(t,x− ∆xj

2 ej)

∆xj

+ µ
vj(t,x+ ∆xi

2 ei)− vj(t,x− ∆xi
2 ei)

∆xi

+ λδji
vi(t,x+ ∆xi

2 ei)− vi(t,x− ∆xi
2 ei)

∆xi
,

(11.6)

where δji is the Kronecker’s delta.
Instead of using the pair of equations (11.2) and (11.3), fluids can be modelled

using the isotropic elastic solid equations (11.4) and (11.6) by letting µfluid = 0 and
λfluid = ρfluidc2fluid. In this case the pressure will be equal to minus the average normal
stress (9.11). Thus to compute the pressure at a node, the average of the stress on this
node should be taken. One could also take the value of only one of the stress components
on this node, as they should all have the same value since they are updated by the same
amount, except for some numerical erosion, or a different initialisation which should not
be done since they model fluid nodes.

Having the pressure node modelled this way, will increase the memory consumption
and also increase the computation time, but allow to have a simpler program when both
fluid and solid materials are present. The other way to model a volume containing both
fluid and solid is to ignore the shear wave modes and model the solids as equivalent
fluids [198].

After the initialisation, the grid will be updated in a leapfrog manner, alternating
between the stress update and the velocity update as shown in Figure 11.3. One iteration
of the algorithm is one time step size, meaning one update of the velocity and one update
of the pressure. When updating elements on the border of the grid, the elements needed
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Figure 11.2: Part of the FDTD grid (tiled once more in every direction compared to
Figure 11.1).
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Ti

Ti +
∆t

2

Ti + 2
∆t

2

Update the pressures/stress and cross stress

Update the velocities

Update the pressures/stress and cross stress

Figure 11.3: Update scheme of the FDTD at iteration Ti.

for the update that are outside of the grid will be considered as zero. Depending on the
type of node chosen (either pressure or velocity) to be on the outer layer, the border of
the simulation will act as an infinitely stiff wall or as void. In both cases, any incoming
wave will be reflected.

11.2.2 Absorbing boundary condition
As usual for this kind of simulation, where we have a finite-sized object of interest (the
sperm whale, or its head) evolving in an infinite domain (the ocean), the aim is to
simulate the target body inside an infinite medium. To do this, we must use a finite
simulation domain. The standard way of getting rid of reflections from the border of
the simulation, and thus simulating a infinite medium while treating only a finite box,
consists either of having multiple dampening layers near the border, or having special
equations for the border that will make them ’invisible’ to waves. All of those methods
are always an approximation and will still produce some reflections in certain cases. For
FDTD, multiple Absorbing Boundary Conditions (ABC) have been developed, starting
with [199]. Since ABCs only deals with the nodes near the surface of the simulation,
the computation time is usually multiple orders of magnitude smaller compared to the
update of the computation time needed to update the nodes inside the whole volume of
the simulation.

Initially, we have used the ABC from [200], with angles of 2.86 ◦ (0.05 rad) and 65 ◦.
The computation time of the boundary update is negligible compared to the stress and
speed update (two orders of magnitude in our case), and we could have increased the
number of angles of incidence with perfect absorption without any perceptible decrease
in performance. However we consider this number of absorption angles to be enough.

In [200] it is shown that for a wave with an incidence angle θ (the angle between the
normal of the boundary and the normal of the wave), the boundary condition(

cos θ ∂
∂t

− c
∂

∂x

)
p = 0 (11.7)
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will totally absorb the reflection. Thus for multiple absorption angles (αi), the boundary
condition (

n∏
i=1

(
cosαi

∂

∂t
− c

∂

∂x

))
p = 0 (11.8)

can be used. This boundary condition can then be discretized using the box scheme
operator that was proposed and developed in [201, 202],(

n∏
i=1

(
cosαi

I − Z−1

∆t

I +K

2
− c

I − Z−1

2

I +K

∆x

))
p = 0, (11.9)

where I is the identity, K is the space shift operator respectively to the normal n of the
boundary, and Z is the time shift operator, meaning that

K (p(x, t)) = p(x+∆xn, t), (11.10)
Z−1 (p(x, t)) = p(x, t+∆t). (11.11)

The reflection coefficient r defined as the ratio between the amplitude of the reflec-
tion and outgoing wave can be calculated as follows, when using (11.8) as a boundary
condition,

r(θ) = −
n∏

i=1

cosαi − cos θ
cosαi + cos θ . (11.12)

This means that for this boundary condition, a wave with a tangential incidence (θ =
90◦) will always have a reflection coefficient of 1, no matter the number of absorption
angles. However these kinds of waves do not matter as they do not enter the rest of the
simulation. The choice of the absorption angles should be done by trying to keep the
reflection coefficient below a desired threshold, knowing that the angle close to 90◦ will
not satisfy this threshold, unless choosing other absorption angles close to them. An
absorption angle near 0◦ should be used to prevent the main modes of the simulation
box. Using an absorption angle near 0◦ instead of exactly 0◦ allows to have a wave
with an incident angle near 90◦ matter less, as they stay close to the border and will be
absorbed by another wall of the simulation as a wave with a normal incidence.

Figure 11.4 shows the behaviour of the reflection for an angle α1 of 2.86◦ and various
values of α2. As the absorption angle tends to 90◦, (cosαi − cos θ) / (cosαi + cos θ) will
tend to 1 (the reflection coefficient made of one absorption angle of 90◦ is a constant
1) for incident angles θ smaller than the absorption angle. One might choose to use a
smaller absorption angle in order to have a greater impact on other incident angles than
just around the chosen angle.

C-PML
An alternative to the Higdon ABCs are the so-called perfectly matched layers (PML)
that are shown schematically in Figure 11.5. They were introduced by [203] for Maxwell’s
equations. PML have the propriety of having a theoretically zero reflection coefficient,
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Figure 11.4: Reflection coefficient level for multiple absorption angle α2.

for any incidence angle and any frequency. While this zero reflection coefficient does not
hold once the discretization is done, this technique is widely applied as it is more efficient
than other classical techniques. In [204], a comparison can be seen between Higdon ABC
and the PML, in which the PML do perform better.

In [203] a reformulation based on a complex coordinate stretching technique was
developed [205, 206], leading to a more efficient implementation of the PML, with

x̃i =

∫ xi

0
si(x

′
i)dx

′
i, (11.13)

where si are complex-coordinate stretching functions. In the PML region, the spatial
derivatives need to be replaced by a stretched version,

∂

∂x̃i
=

1

Si(xi, ω)

∂

∂xi
, (11.14)

Si(xi, ω) = 1 +
di(xi)

jω
, (11.15)

where ω is the angular frequency and j =
√
−1. Here, di(xi) is the damping profile of the

PML region, thus equal to 0 outside the border. In the time domain, (11.14) becomes

∂

∂x̃i
= si(xi, t) ∗t

∂

∂xi
, (11.16)

where ∗t is the temporal correlation, hence the name convolutional PML, or C-PML,
and si is the inverse Fourier transform of Si. As said before, the discrete version of the
PML does not absorb perfectly all incoming waves, especially for incoming waves that
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Outside of the domain

PMLDomain without PML

n

Figure 11.5: Slice of the domain showing the C-PML region with its normal n.

are almost orthogonal with the normal of the border–the so-called grazing angles. This
was solved by changing the scaling factor Si [206, 207, 208] which becomes,

Si(xi, ω) = κi(xi) +
di(xi)

βi(xi) + jω
si(xi, t) =

1

κi(xi)
δ(t) + ζi(xi, t), (11.17)

where δ is the Dirac distribution, κi and βi are profile parameters and ζi(xi, t) is

ζi(xi, t) =
di(xi)

κi(xi)2
e
−(

di(xi)

κi(xi)
+βi(xi))tH(t), (11.18)

where H is the Heaviside distribution. The new spatial derivative which is now

∂

∂x̃i
=

1

κi(xi)

∂

∂xi
+ ζi(t) ∗t

∂

∂xi
(11.19)

needs a temporal convolution, which is not computationally friendly, since for each time
step a sum over all the previous time steps is needed. Fortunately, it is possible to use a
memory variable as in [209] to replace the computation of the correlation. Let us name
ψxi(t) the memory variable at position xi in the direction ei at time t. Then (11.19)
becomes

∂

∂x̃i
=

1

κi(xi)

∂

∂xi
+ ψxi(t). (11.20)

In the discrete case, using the superscript n to indicate time step n, the memory
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variable is updated using the following scheme,

ψn
xi

= biψ
n−1
i + ai(

∂

∂xi
)n−

1
2 , (11.21)

ai(xi) =
di(xv)

κi(xi)(di(xi) + κi(xi)βi(xi)
(bi(xi)− 1), (11.22)

bi(xi) = e
−(

di(xi)

κi(xi)
+βi(xi))∆t

. (11.23)

As in [208], κi(xi) = 1 is used, thus simplifying the equations, which when applied to
(11.4) and (11.6) become

ρ
∂vi
∂t

=
3∑

j=1

∂σij
∂x̃j

=
3∑

j=1

(
∂σij
∂xj

+ ψxj ,σij (t)

)
, (11.24)

∂σij
∂t

= µ

(
∂vi
∂x̃j

+
∂vj
∂x̃i

)
+ δji λ

3∑
k=1

∂vk
∂x̃k

= µ

(
∂vi
∂xj

+ ψxj ,vi(t) +
∂vj
∂xi

+ ψxi,vj (t)

)
+ δji λ

3∑
k=1

(
∂vk
∂xk

+ ψxk,vk(t)

)
, (11.25)

where ψxi,u(t) is ψxi(t) applied to the variable u according to (11.21) if the local PML
boundary has ei as its normal, otherwise ψxi,u(t) = 0. Henceforth, in the corner where
the PML domains of two faces overlap, the PML terms ψxi,u(t) of the two or more faces
are added together. Note that the first terms of these equations are the update terms
without the C-PML. Thus the update can be done in two steps, within each step of the
leapfrog scheme that was described previously (see Figure 11.3). The first part is the
usual update of the values that need to be updated at this time step, followed by the
update of the memory variable which is then added to the previously updated value.
Separating the update into two, allows us to keep the code for the standard update
separated from the code for the C-PML update, which is both useful for easily changing
the type of boundary treatment used, but also simplifies the cost of the update as the
C-PML is only applied on a small region of the model. By using ˜ to indicate the variable
updated with the standard scheme, the update equations become

vi(t+
∆t

2
,x) = ṽi(t+

∆t

2
,x) +

∆t

ρ

3∑
j=1

ψxj ,σij (t), (11.26)

σij(t+
∆t

2
,x) = σ̃ij(t+

∆t

2
,x) + µ∆t(ψxj ,vi(t) + ψxi,vj (t)) + λ∆tδji

3∑
k=1

ψxk,vk(t),

(11.27)
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and the memory variables

ψxi,vj (t) = biψxi,vj (t−∆t) + ai
vj(t− ∆t

2 ,x+ ∆xk
2 ek)− vj(t− ∆t

2 ,x− ∆xk
2 ek)

∆xk
,

(11.28)

ψxi,σij (t) = biψxi,σij (t−∆t) + ai
σij(t− ∆t

2 ,x+ ∆xi
2 ei)− σij(t− ∆t

2 ,x− ∆xi
2 ei)

∆xi
.

(11.29)
Figure 11.6 shows a comparison of three simulations with different treatments of the

boundary. The figure shows the evolution of the amplitude of the stress component σx
along the x-axis at y = 45 and z = 10. The simulations were done in a 200*200*100
box, with the source placed at (45, 45, 10). The simulation material is water. The source
is the same as the one that will be used in the sperm whale simulation (11.47), which
is a sinusoidal wave at 10 kHz multiply by half a period of a sinusoidal wave at 5 kHz
to serve as an envelope. The parameters for the C-PML are taken similarly to those in
[208], which in this case are,

N = 2, (11.30)
L = 5, (11.31)
cp = 1500, (11.32)

d0 = −(N + 1)cp
log(0.01)

2L
, (11.33)

d(x) = d0

(x
L

)N
, (11.34)

βmax = π10000, (11.35)

β(x) = βmax
(
1− x

L

)
. (11.36)

Here cp is the sound speed of water, L is the thickness of the PML region and x is the
distance to the start of the considered PML boundary.

Since these simulations are homogeneously made in water, the speed of sound is
constant throughout the simulation. For the direct signal coming from the source, and
advancing though the line used in Figure 11.6, the wavefront will form a straight line in
this figure with a slope of plus or minus the speed of sound in water. In the case without
any boundary treatment, a parabolic shape starting at 0.25ms can be seen. This shape
is the reflection from the border z = 0. It is a parabola since the distance the wave
needs to travel to reach position x on this line is made up of the difference between x
and 45 (position of the source) for the xaxis and the difference between the source and
the z = 0 border plus the difference between the z = 0 border and the recorded line for
the z-axis, leading to the equation t = 1

cp

√
(x− 45)2 + 202. Globally, reflection with any

number of faces will form a parabolic curve in this figure, with the particular case of the
two straight lines starting at approximately 0.4ms and 1.2ms which are the reflections
on the x = 0 and x = 200 borders. We clearly observe the improvements due to the use
of the C-PML.
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Figure 11.6: Comparison between different treatment of the limits of the simulation
Top: nothing, middle: second order Higdon ABC, bottom : 5 layer C-PML. The color

scale is in dB.
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11.2.3 Grid initialisation
Before the first update of the velocities, the grids need to be initialised. If they are not
initialised at rest (both velocities and stress nodes are set to zero), they can be initialised
as the stress/velocity distribution matching a wave that needs to be studied. If the gird
is initialised at rest, the model will stay at rest. To have a useful simulation, an outside
source thus needs to be added. An outside source can be added in two manners. The
first one is to manually set the value of the stress velocity field in the source volume
amid the source activation period, discarding the update for those nodes. The second
option is to include the source directly into the equation. While the former option allows
a more precise control over the source nodes, and allows to simulate node values that
would be totally controlled by the source mechanism, it prevents any incoming wave to
pass through the source field. We will thus use the second option.

11.2.4 Material grids
As shown in the FDTD equations, physical characteristics of the materials are required
for the simulation. For inhomogeneous materials, each node of both the stress and
velocity grids needs to have access to the local values of these characteristics. This can
be seen as a three-material grid, having respectively the shape of the two stress grids
and the velocity grid, where each node contains the mechanical characteristics needed,
such as the density. When the distribution of the mechanical parameters are described
by an analytical function (these functions being constant functions for homogeneous
media), the values on these grids can be calculated on the fly. When sufficient memory
is available, it is preferable to store these values multiplied by the other constants (e.g.
time step size, space step size, etc.) that will be used in the equations, as it will reduce
the computation time of each iteration of the simulation.

The simulation of multiple materials requires the simulation of the boundary between
these materials. The boundaries geometries are approximated and fitted to the nodes
as seen in Figure 11.7. As shown in [210], these boundary mechanical values can be
calculated to have a simulation generating a solution close to the analytical solution.

On a boundary between two materials (red and blue) whose normal is in the ei vector,
one can use the forward or backward difference to obtain equations that are defined in
only one material, as shown in Figure 11.8. Let us use the subscript b and r to denote
the blue and red material respectively, and let j and k be the indices of the two other
directions (see [210] for a non uniform grid using different space step size per material).
We write

ρr
∂vi
∂t

=
∆∆xi/2(σii)(t,x)

∆xi/2
+
δ∆xj (σij)(t,x)

∆xj
+
δ∆xk

(σik)(t,x)

∆xk
, (11.37)

ρb
∂vi
∂t

=
∇∆xi/2(σii)(t,x)

∆xi/2
+
δ∆xj (σij)(t,x)

∆xj
+
δ∆xk

(σik)(t,x)

∆xk
. (11.38)

These equations can then be combined to remove the stress node σii(x), which allows
to obtain an equation using only nodes that were already present in our staggered grids,
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Figure 11.7: Material approximation in a 2D grid
The full line is the actual material boundary between the blue and red materials. The
background is the discretized materials. The blue and red nodes use the materials
characteristics, while the purple nodes will used a mixture of the two materials.
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Figure 11.8: Separation of a two-medium velocity node problem into two one-medium
subproblems.
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Figure 11.9: Four media layout around a cross stress node.

ρr + ρb
2

∂vi
∂t

=
δ∆xi(σii)(t,x)

∆xi
+
δ∆xj (σij)(t,x)

∆xj
+
δ∆xk

(σik)(t,x)

∆xk
. (11.39)

Here, a comparison with (11.4) allows to identify a density ρ̄ that can be used to simulate
the boundary without changing the equation used,

ρ̄ =
ρr + ρb

2
. (11.40)

For the cross stress, the same process can be applied to derive the Lamé coefficient
µ. However, since up to four different media can surround the cross stress, the equation
(11.6) needs to be rewritten four times using only forward and backward differences such
that they are applied on only one medium. Thus, with the subscript (r,g ,b ,y ) for the
four media red, green, blue and yellow respectively, in a configuration shown by Figure
11.9. We have

1

µr

∂σij
∂t

=
∇∆xj/2(vi)(t,x)

∆xj/2
+

∆∆xi/2(vj)(t,x)

∆xi/2
, (11.41)

1

µg

∂σij
∂t

=
∆∆xj/2(vi)(t,x)

∆xj/2
+

∆∆xi/2(vj)(t,x)

∆xi/2
, (11.42)

1

µb

∂σij
∂t

=
∇∆xj/2(vi)(t,x)

∆xj/2
+

∇∆xi/2(vj)(t,x)

∆xi/2
, (11.43)

1

µy

∂σij
∂t

=
∆∆xj/2(vi)(t,x)

∆xj/2
+

∇∆xi/2(vj)(t,x)

∆xi/2
. (11.44)

We can sum the 4 medium-dependent equations to remove the two speed values vi(x)
and vj(x),(

1

µr
+

1

µg
+

1

µb
+

1

µy

)
∂σij
∂t

= 4
δ∆xj (vi)(t,x)

∆xj
+ 4

δ∆xi(vj)(t,x)

∆xi
. (11.45)
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Material λ (GPa) µ (GPa) ρ (kg.m−3) Calculated from Re
fe
re
nc

e

Water 2.250 0 1000 speed of sound 1500m/s
Bone 9.808 6.538 1600 human bone
Blubber 1.946 1.297 939 human with p-speed of 1730

m/s and Poisson ratio of 0.3,
but with actual sperm whale
blubber density

[96]

Spermaceti oil 1.702 0 832 speed of sound 1405m/s at
30°C

[193]

Air 0.1521 0 1.293 speed of sound
Muscle 1.846 1.231 1075 human with p-speed of

1575m/s and Poisson ratio
of 0.3

Table 11.1: Mechanical parameters used in the simulation.

The parameter identification with (11.6) defines the boundary Lamé parameter value µ̄
as

µ̄ =
4

1
µr

+ 1
µg

+ 1
µb

+ 1
µy

. (11.46)

11.3 Results
We simulated a sperm whale head in a 520 ∗ 240 ∗ 220 cm3 volume, with 1 cm resolution,
and the materials were averaged following [210]. The simulation was implemented using
PyTorch (a Deep Learning Python library) and run on an NVidia Titan X GPU. The
implementation performs at 4.6 iterations per second. Thus for a simulation of 20 ms
with a time step of 1µs, the computation time is 1 h 12. The simulation starts at rest.
We then add to pressure nodes located next to the museau de singe in the spermaceti,
the difference of a 10 kHz sinusoidal wave during one period, defined by

σi(t) = sin
(
2π

t

0.0001 s

)
∗ sin

(
π

t

0.0001 s

)
χ[0,0.0001 s](t) (11.47)

where χ[0,0.0001 s] is the characteristic function of the interval [0, 0.0001 s].
Figure 11.11 shows a recorded sound wave of a sperm whale click and the simulated

pressure at the museau de singe. In both the recorded and simulated sounds we observe
three pulses of a sperm whale click. In the simulated case these correspond to P0, P1
and P2. In the simulation we measure an offset of 6662 bins (or µs) between each of
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Figure 11.10: Material in the sagittal plane. Colors: deep blue=water, blue=blubber
and skin, cyan=muscle, yellow=junk, green=spermaceti, orange=bone, dark red=air.
Numbers: 1=museau de singe, 2=distal sac, 3=frontal sac, 4=right nasal passage.

these pulses. These intervals are known as the inter pulse interval (IPI) and have often
been used to estimate the total body length of the sperm whale ([96], [95], and [98]).

While the proposed model still fails to reproduce individual pulse wave shapes, such
as those found in recorded vocalisations, it does produce a signal with a valid IPI. By
using the three different methods cited above to estimate the body size from the IPI, we
obtain sizes of 14.97 m, 14.47m and 14.12m respectively, which match the length of the
actual sperm whale that the model is based on (14.2m). This result mainly depends on
three parameters: the bulk modulus, the density, and the length of the spermaceti. Yet,
it is still a comforting proof that this part of the model is working. In Chapters 12 and
13 we will study a parameter identification inverse problem that will allow an improved
approximation of these parameters.

In Figure 11.12, we can see the evolution of the simulation, with the sound wave
propagating from the museau de singe to the frontal sac, then being reflected by it, and
going back to the museau de singe to be reflected by the distal sac.

11.4 Conclusion
The FDTD method, along with ABC and methodical treatment of boundaries between
various media, was introduced in this chapter. This method was then applied to a 3D
model of a sperm whale head, in order to simulate the wave propagation inside said
head from the emission of the first pulse by the sperm whale, to the moment when the
acoustic wave reaches the water.
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Figure 11.11: Top: Recording of sperm whale. Bottom: Simulated pressure at the
excitation point.
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Figure 11.12: Multiple frames of the simulation, with the stress component (normalized)
being plotted. Each picture is made of three slices of the 3D volume. The right one is
the sagittal plane, the middle one is a plane 10 cm on the left of the sagittal plane, and
the left one has an offset of 20 cm regarding the sagittal plane. Time steps shown are
(top-left to bottom-right): 0.06µs, 0.6µs, 2.8µs, 3.5µs, 5.8µs and 6.6µs
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This final part of the thesis lays the theoretical and algorithmic groundwork for
solving parameter identification inverse problems, that combine measurement data and
propagation models. As was seen in all the previous parts, we can never have a completely
accurate model of the acoustics. So, the objective of the inverse approach is to use the
recorded data to improve the models, and then these improved models can be used in
their turn to better analyze, identify and predict the sounds themselves. In particular, we
could then study the effects of externalities on the behavior and safety of the cetaceans.

This part is not complete, due to lack of time, but is the subject of ongoing and
future research efforts.



Chapter 12

The Inverse Problem

In this chapter we present the theoretical basis for coupling the measurements with the
propagation models. The approach we use is based on an adjoint equation and is closely
related to data assimilation [211]. If there is noise in the measurements, and we would
like to obtain a complete characterisation of the uncertainty, then a Bayesian approach
can be used. Other couplings are possible between machine learning and PDE models.
In particular, we could use the model to generate realizations for the ML algorithm.
Another possibility is to insert the differential equations into the neural net, forming a
so-called “neural differential equation” method that couples the two. This will be the
object of longer term research projects.

12.1 Parameter Estimation and Inverse Problems
Direct and inverse problems are depicted in Figure 12.1.

Our aim here is to couple data and models in order to improve the model. We seek
to estimate the unknown, or badly known parameters of the model so that the model
output is as close as possible to the observation data and the updated model can thus
be used as a better predictive tool. This coupling can be done in several ways:

1. Adjoint methods, continuous or discrete.

2. Bayesian estimation.

3. Linear or nonlinear optimisation.

4. Machine learning approaches.
We will present in detail the first method, then briefly touch on the remaining three.

12.1.1 Adjoint Method
Let u be the state of a dynamical system whose behaviour depends on model parameters
m and is described by a differential operator equation

L(u,m) = f,

173
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s (x, t ) ! (u; m) = s u(x
r
, t ),

r = 1, . . . ,N
r

source unknown medium
array

model

Figure 12.1: Ingredients of an inverse problem: the physical reality (top) and the direct
mathematical model (bottom). The inverse problem uses the difference between the
model-predicted observations, u, (calculated at the receiver array points xr) and the real
observations measured on the array, in order to find the unknown model parameters, m,
or the source s (or both).

where f represents external forces. Define a cost function J(m) as an energy functional
or, more commonly, as a misfit functional that quantifies the error (L2-distance1) between
the observation and the model prediction u(x, t;m). For example,

J(m) =

∫ T

0

∫
Ω

(
u(x, t;m)− uobs(x, t)

)2
dx dt,

where x ∈ Ω ⊂ Rn, n = 1, 2, 3, 0 ≤ t ≤ T. Our objective is to choose the model
parameters m as a function of the observed output uobs, such that the cost function
J(m) is minimized.

The minimisation is most frequently performed by a gradient-based method, the
simplest of which is steepest gradient, though usually some variant of a quasi-Newton
approach is used [212]. If we can obtain an expression for the gradient, then the min-
imisation is greatly facilitated. This is the objective of the adjoint method that provides
an explicit formula for the gradient of J(m).

Suppose we are given a pde,
F (u;m) = 0, (12.1)

where u is the state vector, m is the parameter vector (for simplicity, we drop the bold
face notation here) and F represents a partial differential operator with right-hand side
(source), boundary and initial conditions, such as the wave equatiuon, for example.
Note that the components of m can appear as coefficients in the equation, the source,

1The L2-space is a Hilbert space of (measurable) functions that are square-integrable (in Lebesgue sense).
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Figure 12.2: Data flow for an adjoint-based inversion.
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or as components of the boundary/initial conditions. To solve the parameter estimation
problem, we are given a cost function J(u). The optimization problem is then,{

minimizem J (u(m),m)

subject to F (u;m) = 0,
(12.2)

where J can depend on both u and on m explicitly in the presence of eventual regular-
ization terms. The gradient of J with respect to m (also known as the sensitivity) is
then given by

∇mJ =
∂J

∂u

∂u

∂m
+
∂J

∂m
.

The derivatives of J with respect to u and m are readily computed from the expression
for J, but the derivative of u with respect to m requires a potentially huge number of
evaluations, corresponding to the product of the dimensions of u and m that can both
be very large. The adjoint method is a way to avoid calculating all of these derivatives.
We use the fact that F (u;m) = 0 everywhere, implies that the total derivative of F with
respect to m is equal to zero everywhere too. Differentiating the PDE (12.1), we can
thus write

∂F

∂u

∂u

∂m
+∇mF = 0.

This can be solved to give,
∂u

∂m
= −

(
∂F

∂u

)−1

∇mF

assuming that the inverse of Fu exists. Substituting in the expression for the gradient
of J, we obtain

∇mJ = −∂J
∂u

(
∂F

∂u

)−1

∇mF +
∂J

∂m
,

= λ∇mF +
∂J

∂m
(12.3)

where λ is the solution of the adjoint equation(
∂F

∂u

)T

λ = −∂J
∂u

. (12.4)

In summary, we have a three-step procedure:

1. Solve (12.4) for the adjoint state, λ.

2. Compute the gradient of the cost function J from (12.3), where we suppose that
∂J/∂m and ∇mF are known (or easily computed).

3. Solve the optimisation problem (12.2) to estimate the parameters m that minimise
the mismatch between model and observations.

The complete data flow is shown in Figure 12.2.
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12.1.2 Continuous and Discrete Adjoints
There are basically two approaches for forming and computing the adjoint state:

1. A continuous approach based on integration by parts of the (continuous) partial
differential equation. This is sometimes called “adjoint then discretize (AtD).”

2. A discrete approach based on taking the adjoint of the discrete approximation of
the partial differential equation. This is sometimes called “discretize then adjoint
(DtA).”

A third approach, used for example in weather prediction codes, is automatic differen-
tiation of the numerical code itself—see [213], [214], [215]. The use of this method is
justified in cases where the system equations are very complex, and usually composed
of coupled systems for which analytical and discrete adjoints are not feasible to derive.
We will not use this approach here.

The continuous approach is described below, in Section 12.2, where it is applied
to the wave equation. Here, we will briefly present the discrete approach which can be
particularly useful in cases where the continuous adjoint is difficult to derive analytically.

Suppose now that we have a solution vector x of a discretized partial differential
equation, or of any other set of n equations. Assume that x depends as usual on a
parameter vector, m, made up of p components - these are sometimes called control
variables, design parameters or decision parameters. If we want to optimize these values
for a given cost function, J(x,m), we need to compute, as for the continuous case, the
gradient dJ/dm. As we have seen above, this should be possible with an adjoint method
at a cost that is independent of p and comparable to the cost of a single solution for x. In
the finite-dimensional case, this implies the inversion of a linear system, usually O(n3)
operations. This efficiency, especially for large values of p, is what makes the solution of
the inverse problem tractable - if it were not for this, many problems would be simply
impossible to solve within reasonable resource limits.

We will first consider systems of linear algebraic equations, then we can readily
generalize to nonlinear systems of algebraic equations and to initial-value problems for
linear systems of ordinary differential equations.

Linear systems
Let x be the solution of the (n× n) linear system

Ax = b (12.5)

and suppose that x depends on the parameters m through A(m) and b(m). Define
a cost function J = J(x,m) that depends on m through x. In order to evaluate the
gradient of J with respect to m directly, we need to compute by the chain rule

dJ

dm =
∂J

∂m +
∂J

∂x
∂x
∂m = Jm + Jxxm, (12.6)
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where Jm is a (p × 1) column vector, Jx is an (1 × n) row vector and xm is an (n × p)
matrix. For a given function, J, the derivatives with respect to x and m are assumed
to be easily computable. However, it is clearly much more difficult to differentiate x
with respect to m. Let us try and do this directly. We can differentiate, term-by-term,
equation (12.5) with respect to the parameter mi and solve for xmi from (applying the
chain rule)

xmi = A−1(bmi −Amix).
This must be done p times, and rapidly becomes unfeasible for large n and p. Recall that
p can be of the order of 106 in practical data assimilation problems.

The adjoint method, which reduces this to a single solve, relies on the trick of adding
zero in an astute way. We can do this, as was done above in the continuous case, by
introducing a “Lagrange multiplier”. Since the residual vector r(x,m) = Ax−b vanishes
for the true solution x, we can replace the function J by the augmented function

Ĵ = J − λT r (12.7)
where we are free to choose λ at our convenience and we will use this liberty in order to
make the difficult-to-compute term in (12.6), xm, disappear. So let us take the expression
for the gradient (12.6) and evaluate it at r = 0,

dJ

dm

∣∣∣∣
r=0

=
dĴ

dm

∣∣∣∣∣
r=0

,

= Jm − λT rm +
(
Jx − λT rx

)
xm. (12.8)

Then in order to “kill” the troublesome xm term, we must require that
(
Jx − λT rx

)
vanishes, that implies

rTxλ = JT
x .

But rx = A and hence λ must satisfy the adjoint equation
ATλ = JT

x , (12.9)
which is a single (n × n) linear system. Equation (12.9) is of identical complexity as
the original system (12.5) since the adjoint matrix AT has the same condition number,
sparsity and preconditioner as A i.e. if we have a numerical scheme (and hence a
computer code) for solving the direct system, we will use precisely the same one for the
adjoint.

With λ known now, we can compute the gradient of J from (12.8) as follows,
dJ

dm

∣∣∣∣
r=0

= Jm − λT rm + 0

= Jm − λT (Amx− bm).
Once again, we assume that when A(m) and b(m) are explicitly known, this permits
an easy calculation of the derivatives with respect to m. If this is not the case, we must
resort to automatic differentiation (AD) in order to compute these derivatives. The AD
approach will be presented below, after we have discussed nonlinear and initial-value
problems.
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Initial-value problems
We consider an initial-value problem for a linear, time-independent, homogeneous system
of ordinary differential equations, in matrix-vector form,

ẋ = Bx

with x(0) = b. We know that the solution is given by
x(t) = eBtb,

but this can be rewritten as a linear system, Ax = b where A = e−Bt. Now we simply
can use our results from above. Suppose we want to minimize J(x,m) based on the
solution x at time t. As before, we can compute the adjoint vector λ using (12.9),

e−BT tλ = JT
x ,

but this is equivalent to the adjoint ODE,
λ̇ = BTλ,

with λ(0) = JT
x . This is exactly what we would expect: solving for the adjoint state

vector, λ, is a problem of the same complexity and type as that of finding the state vector
x. Clearly we are not obliged to use matrix exponentials for the solution, but can choose
among: Runge-Kutta formulas, forward Euler, Crank-Nicolson, etc. [216]. What about
the important issue of stability? The eigenvalues of B and BT are complex conjugates
and thus the stability of one (spectral radius less than one) implies the stability of the
other. Finally, using

dJ

dm

∣∣∣∣
r=0

= Jm − λT rm, (12.10)

we obtain the gradient of the cost function in the time-dependent case,
dJ

dm = Jm − λT (Amx− bm)

= Jm +

∫ t

0
λT (t− t′)Bmx(t′) dt′ + λTbm,

where we have differentiated the expression for A. We observe that this computation of
the gradient via the adjoint requires that we save in memory x(t′) for all times 0 ≤ t′ ≤ t
in order to be able to compute the gradient. This is a well-known issue in adjoint
approaches for time-dependent problems and can be dealt with in three ways (that are
problem-, or more precisely, dimension-dependent):

1. Store everything in memory, if feasible.

2. If not, use some kind of checkpointing [217], which means that we divide the time
interval into a number of subintervals, and store consecutively sub-interval by sub-
interval.

3. Re-solve “simultaneously” forward and adjoint, and at the same time compute the
integral. i.e. at each time step of the adjoint solution process, recompute the direct
solution up to this time.
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12.1.3 Linear and Nonlinear Optimization
If we do not choose to use an adjoint approach, then the optimisation problem where we
seek the parameters to minimise the model-observations mismatch, can be solved directly
by classical optimisation techniques. These problems arise from the discretisation of the
underlying PDE model.

A linear inverse problem is one that can be written as a linear system of equations,

Gm = d, (12.11)

where m ∈ Rp and d ∈ Rn are vectors, and G ∈ Rn×p is an (n× p) dimensional matrix.
To invert this equation for m, and solve the inverse problem, we need to “simply” invert
G. But this is not a trivial linear algebra problem because of the dimensions and rank of
G that make the problem (12.11), in general, undetermined or inconsistent. We need to
find the best solution possible in this case, one that will reduce to the classical solution,

m = G−1d,

when G is a square, invertible (or non singular) matrix.
The most frequent situation is the least squares solution, which is optimal in the

sense that it minimizes the squares of the errors between the model predictions and the
data. The errors, or residuals, are defined as

r = Gm− d,

and their sum of squares can be expressed as a discrete L2-norm of r.
In the most commonly encountered case, there will be more equations than unknowns,

more rows than columns, in the matrix A. In this overdetermined case, there is a very
important theorem.

Theorem 12.1.1 The optimal least-squares solution of any system, Ax = b, is the
vector x̄ given by

x̄ = A†b,

where the pseudoinverse, A†, is defined as

A† =
(
ATA

)−1
AT .

A more general result for the existence of a unique least squares solution is provided by
the following theorem.

Theorem 12.1.2 For A ∈ Rm×n and b ∈ Rm, let ϵ = ϵ(x) = Ax − b. The general
least-squares problem is to find the vector x that minimizes the residual sum of squares,

m∑
i=1

ϵ2i = ϵT ϵ = (Ax− b)T (Ax− b).
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Any vector that provides a minimal value is called a least-squares solution. The set
of all least-squares solutions is precisely the set of solutions of the normal equations,
ATAx = AT b.

There exists a unique least-squares solution, given by x =
(
ATA

)−1
AT b, if and only

if rank(A) = n. If the linear system Ax = b is consistant, then the solution of Ax = b is
the same as the least-squares solution.

Note that when A is invertible (implying that its transpose is invertible as well), we
indeed obtain

A† =
(
ATA

)−1
AT = A−1

(
AT
)−1

AT = A−1.

However, if A is rank deficient, then the inverse of ATA does not exist and we have to
resort to regularization techniques, or to pseudoinverses based on singular value decom-
positions.

Nonlinear Case We suppose that the discrete inverse problem is now nonlinear,

G(m) = d,

where G is some nonlinear operator, or function, describing the relation between m
and d and we seek m from known measurements d. There is no general theory for the
solution of the nonlinear inverse problem, but iterative methods, based on underlying
linear strategies, are usually quite effective for their solution.

The methods commonly employed are precisely methods that are used in nonlinear
optimization, namely Newton’s method and certain of its variants that are specific for
least-squares problems–in this case, Gauss-Newton and Levenberg-Marquardt methods.
These are also the methods employed for nonlinear regression.

Let the objective function,

ϕ(x) =
1

2

p∑
j=1

r2j (x),

where each rj(x) = yj − f(tj , x) is the residual function, with observations (ti, yi), and
maps Rn into R. This type of objective function appears in most parameter identification
problems where the discrepancy (or residual) measures the mismatch between modelled
and measured system behavior. The minimization clearly finds the best match between
model and observations.

The special structure of ϕ enables us to formulate adapted algorithms for its mini-
mization. Writing the residual function as a vector function,

ϕ(x) =
1

2
∥r(x)∥22 =

1

2
rT r,

we can express the derivatives (or variation) of ϕ(x) with respect to x as the Jacobian
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matrix of first partial derivatives

J(x) =

[
∂rj
∂xi

]
j=1,...,m, i=1,...,n

=

 ∇r1(x)T
...

∇rm(x)T


=


∂r1
∂x1

· · · ∂r1
∂xn... . . . ...

∂rm
∂x1

· · · ∂rm
∂xn

 .
The gradient and Hessian of the objective function, ϕ, can then be written in terms of
J and r as

∇ϕ(x) = JT (x)r(x),

∇2ϕ(x) = JT (x)J(x) +

m∑
j=1

rj(x)∇2rj(x).

In many applications, the first derivatives can be obtained relatively easily, by various
approximation methods. It is the second derivatives, present in the Hessian, that are
delicate to compute accurately. But, if the second term in the expression for the Hessian
is small—which it will be when r is small, or when the residuals are almost affine—we
can compute everything with only the knowledge of J. In fact, the term JTJ is often
larger than the second term, and then this approximation can be exploited to formulate
nice algorithms. These are based on Newton or quasi-Newton approaches.

12.1.4 Machine Learning and Neural Networks
There is much potential, and recent interest, in using machine learning methods to solve
inverse problems. This entails some kind of coupling between the model, the observations
and the statistical learning approaches. There are several promising avenues to explore
here:

1. Use the model to generate additional members of the training set for a neural
network.

2. From the observations (assuming that we have a large volume) deduce the param-
eters of the model, or the model itself, by machine learning techniques.

3. Incorporate the differential equations directly into the neural network using a neu-
ral differential equation approach.

We will not consider here the first point. Regarding point number 2, a number of
recent works have been inspired by the approach of [218] who proposed a new feed-
forward deep network, called PDE-Net, that fulfills two objectives simultaneously: to
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accurately predict dynamics of complex systems and to uncover the underlying hidden
PDE models. A recent contribution in [219] combines symbolic calculus and a neural
network generator.

In the paper, [220], the problem of learning complex spatio-temporal dynamics with
neural networks is also treated, but using an adjoint. The dynamical system is expressed
as

dx
dt = fθ(x),

with (partial) observations
y = h(x).

The adjoint approach is used to express the parameter estimation problem to estimate
fθ, as was see above. Then a residual net (ResNet) architecture is used to learn the
evolution operator, fθ. The training algorithm, though purely data-driven, is then very
similar to the one shown above in Figure 12.2.

The basic method, used in these cases, is a neural differential equation approach -
see https://github.com/SciML/DiffEqFlux.jl. With this package one can explore
various ways to integrate the two methodologies (NN and ODE):

• Neural networks can be defined where the “activations” are nonlinear functions
described by differential equations.

• Neural networks can be defined where some layers are ODE solves.

• ODEs can be defined where some terms are neural networks.

• Cost functions on ODEs can define neural networks.

The basic principle derives from the fact that a recurrent neural network,

xk+1 = xk +DNN(xk, k; p),

is equivalent to a forward Euler method, with time-step equal to one, applied to the
neural ODE,

x′ = DNN(x, t; p),

where p represents the parameters and DNN is a deep neural network architecture. This
can easily be extended to neural PDEs. We just use the method of lines to convert the
PDE into a system of ODES and then apply the neural ODE approach.

This can be generalized to more complicated finite difference stencils (eg. for higher
order derivatives), and to other ODE solvers, such a Runge-Kutta methods. For this, a
new package, PDE-NetgGen, that combines Keras and sympy, a symbolic mathematics
package for the stencil evaluations, has been developed in [219].

In a series of very recent papers, Ying’s group at Stanford University has developed
a similar approach that is based on a wavelet basis for approximating integral operators
[221]. This approach has been successfully applied to a number of parameter estimation
and inverse problems, and in particular to scattering problems for the wave equation.

https://github.com/SciML/DiffEqFlux.jl
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12.2 Application to the Wave Equation: Adjoint Method
12.2.1 Wave propagation
Traditionally, seismo-acoustic wave propagation for underwater acoustics is modelled in a
bounded computational domain Ω in R3×(0, T ) that represents a layered medium, under-
lying a seawater layer with varying bathymetry. The sea surface is traction- (pressure-)
free and the lateral boundaries (sides and bottom) are suitably absorbing. Continuity
conditions are imposed on all interfaces between layers. There is a source and there are
points in the domain where the signals are measured (receivers). Mathematically, this
situation can be described by an initial-boundary-value-problem for the seismo-acoustic,
linear wave equation,

ρutt − (λ+ µ)∇(∇ · u)− µ∇2u = f , (12.12)

where u = (u1, u2, u3)
T is the displacement in the x-, y- and z-direction, λ and µ are the

Lamé coefficients, ρ is the medium density and f is an initial impulse that represents
the acoustic source. The relations between these coefficients and the wave speeds are

c2p =
λ+ 2µ

ρ
and c2s =

µ

ρ
,

where cp is the pressure (or primary) wave speed and cs is the shear (or secondary) wave
speed. Thus an acoustic layer is obtained in the model by simply setting µ = 0 locally.

Note that the elastodynamic system (12.12) can also be expressed in displacement-
stress form, component-by-component, as

ρ
∂2ui
∂t2

=
∂σij
∂xj

+ fi ,

σij = λδijϵkk + 2µϵij , (12.13)

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

or

ρui,tt = σij,j + fi in �× (0,T),
σij = λδijϵkk + 2µϵij = cijklϵkl , (12.14)

ϵij =
1

2
(ui,j + uj,i) ,

where i, j, k, l = 1, . . . , 3, we have used Einstein’s summation convention for the indices,
and δ is the Kronecker delta function. Finally, this can be written as a single vector
equation,

ρü−∇ · σ = f. (12.15)
The advantage of the system (12.12) or (12.13) is that it intrinsically models all the
different types of waves that can arise in layered media - compressional and shear waves
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in the bulk, and Love, Stoneley and Raleigh waves along the interfaces. These equa-
tions must be completed with physically relevant boundary and initial conditions. On
the surface of the water we usually specify a zero pressure condition. Between layers,
continuity conditions on the normal components of u and the stresses must be satisfied.
At the bottom-most level we give a suitable absorbing condition. On the lateral bound-
aries, suitable absorbing/radiating conditions need to be specified. The initial condition
is usually a Ricker wavelet with the desired frequency content, located at the source
position in the water layer - other initial conditions are possible. The hydrophones (or
other measurement devices) are “simulated” by simply recording the solution at given
points.

We recognize that this is directly applicable to our wave propagation problem of
Chapter 11 inside and surrounding the sperm whale’s head.

12.2.2 Adjoint of the Wave Equation
As a preliminary step, we will derive the adjoint of the scalar wave equation. Then in
Section 12.2.3 below, we will obtain an adapted version for the sperm whale head, that
in particular will enable us to reuse the simulation code of Chapter 11 for solving the
inverse problem.

The initial boundary value problem for the (scalar) wave equation is,

∂2u

∂t2
−∇ · (ν∇u) = 0, x ∈ (0, L), t > 0,

u(x, 0) = u0(x),
∂u
∂t (x, 0) = 0, t = 0,

u(0, t) = 0, u(L, t) = η(t), t > 0.

A variety of different inverse problems can be formulated for this system:

• internal control: ν(x) - this is the parameter identification problem, also known as
tomography;

• initial control: ξ(x) = u0(x) - this is a source detection IP or DA problem;

• boundary control: η(t) = u(L, t) - this is the “classical” boundary control problem,
also a parameter identification IP.

As above, we can define the cost function,

J [ν, ξ, η] =
1

LT

∫ T

0

∫ L

0

(
u− uobs

)2
dx dt,

which is now a space-time multiple integral, and its related Lagrangian,

J∗ =
1

LT

∫ T

0

∫ L

0

(
u− uobs

)2
dx dt+ 1

LT

∫ T

0

∫ L

0
p [utt − (νux)x] dx dt.
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Now take the variation of J∗,

δJ∗ =
1

LT

∫ T

0

∫ L

0
2(u− uobs)δu dx dt+ 1

LT

∫ T

0

∫ L

0
δp

=0︷ ︸︸ ︷
[utt − (νux)x] dx dt

+
1

LT

∫ T

0

∫ L

0
p [δutt − (δν ux + νδux)x] dx dt

and perform integration by parts to obtain,

δJ∗ =
1

LT

∫ T

0

∫ L

0
δν uxpx dx dt+

1

LT

∫ L

0
pt δu|t=0 dx +

1

LT

∫ T

0
p δη|x=L dt, (12.16)

where we have defined the adjoint equation as

∂2p

∂t2
−∇ · (ν∇p) = 2(u− uobs), x ∈ (0, L), t > 0,

p(0, t) = 0, p(L, t) = 0,

p(x, T ) = 0, pt(x, T ) = 0.

As before, this equation is of the same type as the original wave equation, but must be
solved backwards in time. Now we use the definition of the variation of u with respect
to the parameters m in the direction δm (the Gâteaux differential),

δu = ∇mu δm

to write the variation of J as

δJ = ∇mJ δm
= ∇uJ δu
= ⟨∇uJ1 δu⟩ , (12.17)

where in the second line we have used the chain rule together with the above definition
of δu, and in the third line ⟨·⟩ denotes the space-time integral. Here we have passed the
“derivative” under the integral sign and J1 is the integrand. Finally, based on the result
(12.17), we can pick off in (12.16) each of the three desired terms of the gradient,

∇ν(x)J
∗ =

1

T

∫ T

0
uxpx dt,

∇u|t=0
J∗ = pt|t=0 ,

∇η|x=L
J∗ = p|x=L .

At the expense of a single (backward) solution of the adjoint equation, we obtain
explicit expressions for the gradient of the cost function with respect to each of the
three control variables. This is quite remarkable and completely avoids “brute force” or
exhaustive minimization, though, as mentioned earlier, we only have the guarantee to
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find a local minimum. However, if we have a good starting guess that is usually obtained
from historical or other “physical” knowledge of the system, we are sure to arrive at a
good (or at least, better) minimum.

An alternative approach for seismo-acoustic inversion, based on Fréchet kernels, is
implemented in the SPECFEM framework [222]. Details can be found in Appendix B.

12.2.3 Tangent linear model
In our context, where we seek to model the sound generation and propagation inside the
sperm whale’s head, we use (see Section 11.2.1):

• A system of two first-order partial differential equations.

• Piecewise constant material properties in each anatomical subdomain of the head,
following the data of Table 11.1.

To derive the adjoint in this specific case, we need to use a different approach based
on a tangent linear model. The tangent linear model (TLM) is used to obtain the the
gradient of the cost function J by perturbing it with a small perturbation. Unlike the
Lagrangian method, it can be used with constant-valued parameters.

Let us consider the following matrix definitions

D1 =

 ∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

, D2 =
1
2



2 ∂
∂x1

0 0

0 2 ∂
∂x2

0

0 0 2 ∂
∂x1

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


,

N1 =

n1 0 0 0 n3 n2
0 n2 0 n3 0 n1
0 0 n3 n2 n1 0

 , N2 =
1
2



2n1 0 0
0 2n2 0
0 0 2n3
0 n3 n2
n3 0 n1
n2 n1 0

 ,

D3 =

(
06,6 D2

D1 03,3

)
, N3 =

(
06,6 N2

N1 03,3

)
,

P1 =

(
C 06,3
03,6 I3

)
, P2 =

(
I6 06,3
03,6 ρI3

)
,

R =

(
I6
03,6

)
where n =

n1n2
n3

 is the local normal of the surface considered, In is the identity
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matrix and 0m,n is the null matrix. With these matrices, the solid wave equations
(9.17), (9.18), (9.19) can be rewritten using Voigt notation (see (9.20)), to obtain a
matrix relation between the stress σ, the strain ε, and the particle speed v, which is the
temporal partial derivative of the particle displacement ξ,

ρ
∂v

∂t
= D1σ, (12.18)

∂ε

∂t
= D2v, (12.19)

σ = Cε+ f(x, t) (12.20)

where f(x, t) is an added source term.
If we define the augmented unknown vector as u =

(
σ
v

)
, then we can rewrite the

wave equation as
P2
∂u

∂t
= P1D3u+Rf(x, t). (12.21)

On the boundary Γ of the simulation domain Ω, the vector u is

uΓ = 0 (12.22)

since both v and σ are at rest outside the model, and on its boundary. Since the model
starts at rest, we also have

u(t = 0) = 0 (12.23)
Using this unknown, we now define the cost function to be minimized,

J(C, ρ) =
1

2

∫ T

0

∫
Ω
∥u− uobs∥22dV dt (12.24)

and we can compute the perturbation difference,

J(C + αδC, ρ+ αδρ)− J(C, ρ) =
1

2

∫ T

0

∫
Ω
∥ũ− uobs∥22 − ∥u− uobs∥22dV dt (12.25)

=
1

2

∫ T

0

∫
Ω
< ũ+ u− 2uobs|ũ− u > dV dt. (12.26)

Now, the variation of the cost function is defined by

δJC,ρ(δC, δρ) =

∫ T

0

∫
Ω
< u− uobs|û > dV dt, (12.27)

and ũ is the solution of the perturbed system,
(P2 + αδP2)

∂ũ
∂t − (P1 + αδP1)D3ũ = Rf(x, t),

ũΓ = 0,

ũ(t = 0) = 0.

(12.28)
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To obtain the TLM, we must now subtract and divide by α, then take the limit as α→ 0,

P2
∂ ũ−u

α

∂t
+ δP2

∂ũ

∂t
− PD3

ũ− u

α
− δP1D3ũ = 0, (12.29)

P2
∂û

∂t
+ δP2

∂u

∂t
− P1D3û− δP1D3u = 0. (12.30)

along with the boundary condition{
ûΓ = 0,

û(t = 0) = 0.
(12.31)

The scalar product of (12.30) with a vector η is taken and then integrated over the
simulation time and the domain Ω which results in∫ T

0

∫
Ω
< P2

∂û

∂t
|η > dV dt−

∫ T

0

∫
Ω
< P1D3û|η > dV dt =∫ T

0

∫
Ω
< δP2

∂u

∂t
− δP1D3u|η > dV dt. (12.32)

The goal is now to transfer the derivatives of ũ onto the newly introduced vector η. In
order to do so, integration by parts can be used which on the first term is∫ T

0

∫
Ω
< P2

∂û

∂t
|η > dV dt =

[∫
Ω
< û|P ∗

2 η > dV

]T
0

−
∫ T

0

∫
Ω
< û|P ∗

2

∂η

∂t
> dV dt

(12.33)
Here the first term on the right side can be simplified since û(t = 0) = 0. Integration by
parts on the second term of (12.32), using Gauss’ theorem, is∫ T

0

∫
Ω
< P1D3û|η > dV dt =

∫ T

0

∫
Γ
< û|N∗

3P
∗
1 η > dSdt−

∫ T

0

∫
Ω
< D∗

3P
∗
1 η|û > dV dt,

(12.34)
which can be simplified due to the Dirichlet boundary condition on û, which when
integrated back into (12.32) leads to the equation

∫
Ω
< û|P ∗

2 η > (t = T )dV−
∫ T

0

∫
Ω
< û|P ∗

2

∂η

∂t
> dV dt+

∫ T

0

∫
Ω
< D∗

3P
∗
1 η|û > dV dt =∫ T

0

∫
Ω
< δP2

∂u

∂t
− δP1D3u|η > dV dt. (12.35)

The adjoint model can now be defined to get rid of the remaining terms in û, which in
this case is defined as {

−P ∗
2
∂η
∂t +D∗

3P
∗
1 η = u− uobs,

η(t = T ) = 0.
(12.36)
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Since the initial conditions are at t = T, this is a backward model in time. With this
model, the previous equation becomes∫ T

0

∫
Ω
< u− uobs|û > dV dt =

∫ T

0

∫
Ω
< δP2

∂u

∂t
− δP1D3u|η > dV dt, (12.37)

δJC,ρ(δC, δρ) =

∫ T

0

∫
Ω
< δP2

∂u

∂t
− δP1D3u|η > dV dt, (12.38)

∇CJ(C) =

∫ T

0

∫
Ω
< CD2v|R∗η > dV dt, (12.39)

∇ρJ(ρ) =

∫ T

0

∫
Ω

3∑
i=1

∂vi
∂t

|ηi+6dV dt. (12.40)

Isotropic solids
In the case of an isotropic solid, the stiffness tensor C is

C =



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

 , (12.41)

which means that the gradient of J can be expressed in terms of λ and µ as

∇λJ(λ) =

∫ T

0

∫
Ω
< 4λ

3∑
i=1

3∑
j=3

∂vj
∂xj

ηiv|R∗η > dV dt, (12.42)

∇µJ(µ) =

∫ T

0

∫
Ω
< 2µI6D2v|R∗η > dV dt. (12.43)

Absorbing Boundary Conditions
The TLM can also be applied to the equation applied on the boundary. The Higdon
ABCs are (

n∏
i=1

(
cosαi

∂

∂t
− c

∂

∂x

))
p = 0 (11.8)

and the initial conditions are{
∂kp
∂tk

(t = 0) = 0,∀k ∈ J0, nK,
∂kp
∂xk (t = 0) = 0,∀k ∈ J0, nK, (12.44)
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since the simulation starts at rest. The Higdon ABCs are defined using coordinates
related to the normal n of the surface Γ of the boundary. To make this clearer (11.8)
can be rewritten as (

n∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

))
p = 0. (12.45)

Similarly to the TLM applied on the wave propagation equation, a cost function is
defined as follows,

J(P ) =
1

2

∫ T

0

∫
Ω
(p− pobs)2dV dt, (12.46)

which after the same process of applying a small perturbation and taking the limit, the
variation of the cost J with respect to the parameters of the model P is

δJP (δP ) =

∫ T

0

∫
Ω
(p− pobs)(p̂)dV dt. (12.47)

Since none of the parameters in P intervene in (12.45), the equation obtained in p̂ is the
same, (

n∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

))
p̂ = 0. (12.48)

Once again, a variable η is introduced in the aim to transfer the derivatives from p to η
in the equation ∫ T

0

∫
Γ
η

n∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

)
p̂ dSdt = 0, (12.49)
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for which the integration by parts is (see below for proof)

∫ T

0

∫
Γ
η

n∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

)
p̂ dSdt =[∫

Γ

n∑
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(−1)k+1
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cosαi

∂

∂t
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)
η

cosαk
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i=k+1
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cosαi

∂

∂t
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)
p̂dS

]T
0

+

∫ T

0

∫
L

n∑
k=1

(−1)k
k−1∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

)
η

c

n∏
i=k+1

(
cosαi

∂

∂t
− c < n|∇ >

)
p̂ dldt

+ (−1)n
∫ T

0

∫
Γ
p̂

n∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

)
η dSdt, (12.50)

with the convention that an empty product is equal to 1, and L is the boundary of the
surface Γ. As before, the goal is to remove the remaining terms in p̂. The first term in
the time bracket vanishes at t = 0, since p̂ and its derivative are null. To simplify at
t = T , the same condition will be applied on η at that time, creating the initial condition
for the backward model as before. The second terms is null since the surface Γ is a closed
surface. We obtain the adjoint system

∏n
i=1

(
cosαi

∂
∂t − c < n|∇ >

)
η = p− pobs,

∂kη
∂tk

(t = T ) = 0, ∀k ∈ J0, nK,
∂kη
∂xk (t = T ) = 0,∀k ∈ J0, nK. (12.51)

Proof For n = 1, (12.45) only has one term, for which the integration by parts is∫ T

0

∫
Γ
η

(
cosα1

∂

∂t
− c < n|∇ >

)
p̂ dSdt =[∫

Γ
η cosαkp̂dS

]T
0

−
∫ T

0

∫
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η cp dldt−

∫ T

0

∫
Γ
p̂

(
cosα1

∂

∂t
− c < n|∇ >

)
η dSdt.

(12.52)
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This shows that (12.50) is true for n = 1. For n ∈ N, let us assume (12.50) to be true.
For n+1, the term in αn+1 can be separated from the product of derivatives as follows,

∫ T

0

∫
Γ
η
n+1∏
i=1

(
cosαi

∂

∂t
− c < n|∇ >

)
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0
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∂
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)(
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∂
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− c < n|∇ >

)
p̂ dSdt, (12.53)

which then allows us to use the hypothesis in n to develop the product terms, thus giving∫ T

0
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(12.54)

The integration by parts of the last term is

(−1)n
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0
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(12.55)
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thus finally giving∫ T
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(12.56)

Since (12.50) is true for n = 1, and if it is true for n, it is true for n+1, then by induction
(12.50) is true ∀n ∈ N∗.

Adjoint for C-PML In [223], using a Lagrange multiplier technique, the authors de-
rive a complete adjoint system for the C-PML boundary conditions in the wave equation.

12.3 Conclusion
We have shown that the adjoint approach can provide explicit expressions for the gradient
of a cost function that we want to minimize in order to find optimal material parameters.
These optimal values guarantee the best possible fit between model simulations and
measured data. The solution of the inverse problem of parameter identification can
thus be found by solving for the adjoint state, computing the gradient, then using this
gradient to minimize the mismatch cost function.

This theoretical approach will be applied in the next Chapter to wave propagation in
and around the sperm whale’s head. Then, using data from the measurement campaigns
that were described in the first Part of this thesis, we should be able to construct an
efficient simulation tool of the whale’s biosonar system.



Chapter 13

Feasibility and Implementation
of Coupling

In this chapter we describe how to apply the results from our propagation model and
inverse problem formulations, based first on synthetic and then on field measurements,
to the sperm whale biosonar acoustic system.

13.1 Introduction
As explained in the previous chapter, we can use parameter estimation methods to solve
the inverse problem that consists of determining (or estimating) the material properties
(or the properties of the source) so that the output of the model simulations reproduces
the measured signals as closely as possible. This can be done in three ways:

1. Adjoint method.

2. Bayesian inference.

3. Neural networks.

The second and third approaches will not be dealt with here, but are an important
element in our future research plans, where we would like to combine them in some
intelligent way. We will concentrate here on the adjoint method, which itself can later
be used as a basis for a neural differential equation approach.

Before attempting to invert real data, it is customary to begin with twin experiments
[211], where we use the propagation model to generate synthetic signals, and then use
these synthetics for solving the inverse problem. This approach enables an initial cali-
bration of the inversion method, which is vital to obtain before attempting inversions of
field data.
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Figure 13.1: Simple model of a sperm whale’s head.

13.2 Twin Experiments
Twin experiments, or synthetic runs, are a basic and indispensable tool for all inverse
problems. In order to evaluate the performance of an inversion chain we begin with the
following methodology.

1. Fix all parameters and unknowns and define a reference trajectory, obtained from
a run of the direct model - call this the ”truth”.

2. Derive a set of (synthetic) measurements, or background data, from this ”true” run.

3. Optionally, perturb these observations with random noise in order to generate a
more realistic observed state.

4. Run the inverse problem algorithm, starting from an initial guess (different from
the ”true” initial state used above), using the synthetic observations.

5. Evaluate the performance using a suitable loss function, modify the model/algorithm/observations
and cycle back to Step 1.

13.3 Inverse Problem Formulation
We set up a model problem, based on a simplified representation of the sperm whale’s
head (see Figure 11.10), that is shown in Figure 13.1. We define a domain Ω =

⋃4
i=0Ωi,

where
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• Ω0 represents the surrounding sea water,

• Ω1 represents the blubber and skin,

• Ω2 represents the junk,

• Ω3 represents the spermaceti, and

• Ω4 represents the bone,

in the whale’s head. We formulate the direct problem of elastic wave propagation in
the domain Ω and apply absorbing boundary conditions on Γ, its outer border. We
suppose that we have measurements/recordings available in the water layer Ω0 and we
will use these to solve the following inverse problem of parameter estimation: for given
measurements of the acoustic field, find the material properties that minimize the cost
function J defined by

J(θ) =
1

2

∫ T

0

∫
Ω
e2(x, t; θ) dx dt+ α

∫ T

0

∫
Ω
|∇θ|2 dx dt,

where e is the mismatch between simulated and measured data, and α is a regularization
coefficient.

More specific inverse problems can be formulated from the general setting. In par-
ticular:

1. Measurements are partially known, either in a restricted spatial domain, or on sub
intervals of time.

2. Some material parameters are known, and we seek a subset consisting of the un-
known (or badly known) materials.

3. Different recordings, possibly from different individuals, can be accumulated in a
composite cost function.

13.4 Implementation of Coupling
Our initial objective will be to implement a complete inversion chain for the simplified,
twin experiment described in the previous sections. Then we will describe the steps
required for extending the methodology to real, measured data. The actual implemen-
tations in the synthetic and real cases, are work in progress.

13.4.1 Synthetic Inversion
As detailed above, we want to start by performing an inversion on an “academic” case,
where we suppose in particular that data is available at all points on the boundary of
the domain. We then relax the conditions, by:
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1. Taking sparse measurements, at a few grid points only.

2. Increasing the noise level of the synthetic signals.

By doing this, we can test and tune the inversion algorithm, thus preparing the system
for dealing with real data. These simulations are in progress, and due to a lack of time,
will be reported later.

13.4.2 Towards Inversion of Real Data
The major difficulties that we encounter when dealing with real data, are due to the
limited number of points where we have measurements available and to the noisy nature
of the recorded signals. The measurement points are the hydrophone positions in the
sea campaigns and they cannot capture all the points surrounding the head. As a result,
the cost function can be evaluated at relatively few positions and this results in a very
ill-posed inverse problem. The question is then, how to regularize this problem in order
to ensure convergence to meaningful parameter estimations? Numerous regularization
options exist:

1. Test and choose among a range of different regularization norms.

2. Use a composite (sum) cost function, possibly from distinct measurements, indi-
viduals and campaigns.

3. Perform second-order, sensitivity analysis to find the best (most sensitive) param-
eters to estimate.

4. Use machine learning techniques to obtain a surrogate model.

5. Use Bayesian estimation techniques that take into account the stochastic, or prob-
abilistic nature of the signals.

This requires a vast modelling and simulation effort, and is the subject of ongoing
and future research in the framework of the ANR-funded AI chair, ADSIL, led by H.
Glotin.

13.5 Conclusion
Although the actual numerical computations have not been performed yet, due to lack
of time, all the necessary ingredients have been prepared in this chapter and the two
preceding ones in order to construct an efficient simulation tool for the complete biosonar
system of the sperm whale.



Chapter 14

Conclusions and Outlook

The complete chain of analysis developed throughout this manuscript is aimed at im-
proving our knowledge of the mechanisms that govern the sperm whale sonar. With
sperm whales, classical experiments that are done on bats or dolphins to fully qualify
their sonar in every aspect cannot be done, since sperm whales are wild and large species.
This means that there are no measurements of their nervous response, testing their hear-
ing capability, precise measurement of their beam pattern, or any other experiment that
requires the animal to wear large equipment, or be trained to have a specific behaviour
for an experiment. Hence, the need for a simulation of the sperm whale sonar.

As described in Chapter 1, the need was split into three goals:
• The making of the simulation.

• The coupling of the measurement with the simulation.

• The use of machine learning to classify and improve measurements.
The results of these goals that were explored by this thesis will be now summarized,

and then some promising research outlooks will be presented.

Data acquisition and processing
Three databases were presented, each one having specific characteristics:

• BOMBYX, a database made from two hydrophones, at 50 kHz, during long term
sessions, presented in Chapter 4.

• Sphyrna, a database made from five hydrophones, at 384 kHz, recorded on ASV,
presented in Chapter 5.

• Sarano, a database made from two to four hydrophones, at 300 kHz, recorded near
the sperm whale, presented in Chapter 6.

These databases were analysed using the signal processing techniques introduced in
Chapter 3, following the pipeline of detection, TDOA estimation, and filtering.
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Detection The detection step that was proposed and used for the three databases
is also made up of successive steps, starting with a band-pass filter, followed by a TK
filter, and ending with the use of a threshold. An alternative detection process is also
mentioned, using the neural network architecture of Chapter 7 to classify ten species of
marine mammals based on raw recordings of their clicks.

TDOA estimation The geometric SRP method was presented to estimate the TDOA,
and was compared to the standard SRP. Both methods have the same complexity and
have the same advantages when compared to a single pair of channel TDOA estimations,
when used on a system with the same amount of noise and signal level on all channels.
However, they differ in the fact that SRP uses addition, while geometric SRP uses
multiplication. If a click is not present on a channel, SRP will still produce good TDOA
for the other channels, while the geometric SRP will produce random TDOA with a
lower correlation value. When all the TDOAs are needed to estimate the position of the
source, these two elements make it easier to filter out these clicks. Since BOMBYX has
only two hydrophones, the geometric SRP was not used for its analysis, but it was used
for the two other databases.

Filtering Two methods of post filtering were presented. First, the ellipse method was
used to recover the shape of the antenna, but also use to filter out spurious clicks not
generated from signals coming from the water, thus with TDOA far from the ellipsoid.
The other filtering method was the DBSCAN clustering presented in Section 5.5.1. From
the idea that a point inside a track with its two neighbours can be seen as a cluster of
three points, with the track being a succession of connected clusters, DBSCAN is the
clustering method that corresponds to this exact definition. With BOMBYX only having
two channels, clicks with random TDOA have a higher chance to be considered as a part
of one cluster, and not be filtered out. However, this method was still employed for all
three databases as it showed good results even on BOMBYX.

Machine learning
In Chapter 7 we introduce a new challenge ofOdontoceti click detection, named DOCC10.
It answers the need for a large database of marine mammal transients in the intent of
having enough training examples to train a neural network, or other machine learning
method, to be able to classify each click according to its species. The presentation
of DOCC10 was introduced along with another database named DOCC7, a version of
DOCC10 where three classes have been removed, as they intersect other classes, or are
too different between the train and test sets.

A neural network architecture was also proposed alongside the DOCC10 database.
As of today, it achieved a state of the art score on DOCC10 when only the train set is
used during training. This model, which uses directly the raw signal as an input, can
also be used as a detector.
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Coupling and simulation
With the theory of wave propagation and a finite difference in time domain method, a
simulation was built to model the sperm whale sonar. To correctly calibrate the param-
eters of this simulation, a coupling method using a tangent linear model was conceived.
The use of this method, which improves the parameters of the simulation using measure-
ments as a target, was not applied to real data in this thesis, due to time constraints.
Yet the simulation was still run by itself, showing that at least some mechanisms that
govern the sonar of the sperm whale were recovered, namely, the multiple pulse structure
of sperm whale clicks and the correct IPI value were measured.

Outlook
As explained in Chapter 13, the implementations of coupling in the synthetic and the real
cases are ongoing work, and did not make it into this manuscript due to time constraints.
The implementation in the real case will tune the parameters of the model, improving
the synthetic click generated. At this point, the mechanisms that appear in the model
can be studied to hypothesize the actual mechanisms that govern the sonar. However,
the model could still be improved at this point. Indeed the numerical method that
was chosen was the FDTD due to its simplicity and iteration speed, with the downfall
of having a lesser accuracy. With the improved parameters, the model and coupling
method could be implemented with a more accurate numerical method, such as the
spectral finite element method. The ultimate objective is to combine this propagation
modelling with the machine learning techniques used for signal analysis. This is ongoing
work.

As stated in Chapter 12, machine learning can also be used to estimate the parame-
ters of a model using observation as an input. This usage alongside with the possibility of
incorporating the differential equations directly into the neural network are two key as-
pects of neural networks that could help solving inverse problems, making them research
axes with great potential.

Another improvement point is the use of nonlinear wave theory. The use of linear
wave theory is useful as a first approach, and makes it easier to interpret the results
generated by the model. Yet, we are well aware that the louder clicks emitted by sperm
whales have a short shock distance, meaning that nonlinear effects cannot be neglected,
even inside its head.

The database created at the end of Chapter 6 linked clicks to the sperm whale that
emitted them. This database have the advantages of exploring the features that are
shared between clicks from the same sperm whale, which if they exist and are discrim-
inatory enough (thus excluding the IPI) would lead to a classifier able to distinguish
sperm whales by only using acoustics. Moreover, social interaction between multiple
individuals can be studied, since the video channel allows us to see the behaviour that
resulted from various coda exchanges, while the video database, allows us to know which
individual emitted which coda.
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These three research outlooks show that the amount of work remaining is not small,
but will surely lead to interesting results.
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Appendix A

Nonlinear Acoustics

Nonlinear acoustics might seem to be a rare phenomenon, yet it was the first form of
acoustics observed [224, 225, 226]. Nonlinear acoustics is mostly seen in sound gener-
ation, while sound propagation is usually linear, especially in mediums such as water
or air when the signal amplitude is not too high to let the nonlinear effect be observed
within the distance of the observable environment.

A.1 Nonlinear wave propagation in solids
As presented earlier, linear wave propagation is based on Hooke’s law, which describes
the linear elastic theory using second order elastic constants cijkl. Nonlinear effects
start to appear in the equation when third order elastic constants are introduced, in the
strain-stress relation. This relation is developed in the nonlinear elastic theory [227] to
include those additional nonlinear term. These third order elastic constants cijklmn will
affect the speeds of sound, causing what is called the acoustoelastic effect, which was
first studied by [228].

By assuming that the elastic potential energy E can be approximated by a Taylor
series, and that it is null at the equilibrium, E is obtain by

E(ε) =
1

2!

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεijεkl +
1

3!

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

3∑
m=1

3∑
n=1

cijklmnεijεklεmn + ...

(A.1)
which can be used to define the constants cijkl and cijklmn. Note that similarly to the
second order elastic constants, the Voigt notation can be used for the third order elastic
constants (i.e. Cijk). In the case of cubic crystals, only 6 independent constants are
needed ( C111, C112, C144, C166, C123, C456) [229]. In [230] they demonstrate that for a
cubic crystal, in the direction [100], [110] and [111], only purely longitudinal waves exist,
and follow the equation

ρ0
∂2u

∂t2
= K2

∂2u

∂x2
+ (3K2 +K3)

∂u

∂x

∂2u

∂x2
= K2

∂2u

∂x2

(
1 +

(
3 +

K3

K2

)
∂u

∂x

)
, (A.2)
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Direction K2 K3

[100] C11 C111

[110] C11+C12+2C44
2

C111+3C112+12C166
4

[111] C11+2C12+4C44
3

C111+C112+12C144+24C166+2C123+16C456
9

Table A.1: K2 and K3 value in a cubic crystal

where K2 and K3 are the coefficients given in Table A.1
From (A.2), the nonlinear coefficient β for a cubic crystal can be defined as

β = −
(
3 +

K3

K2

)
. (A.3)

The minus sign is introduced to ensure that β is positive. In case that the nonlinear
term can be neglected, the remaining linear term gives ρ0 ∂

2u
∂t2

= K2
∂2u
∂x2 leading to the

relation K2 = ρ0c0.

A.2 Nonlinear wave propagation in fluids
To solve the state of a fluid at a point, 6 equations are needed to evaluate the 6 state
variable p, ρ, T and v. The 6 equations needed are the conservation of mass (9.3),
the conservation of momentum (9.13), the conservation of energy (9.14), and a state
equation,

p = p(ρ, s), (A.4)
which can be developed in a Taylor series. In the isentropic case

p = p0 + (ρ− ρ0)

(
∂p

∂ρ

)
s,ρ=ρ0

+
(ρ− ρ0)

2

2

(
∂2p

∂ρ2

)
s,ρ=ρ0

+O
(
(ρ− ρ0)

3
)

(A.5)

Here and going on, the following common notation is adopted. The subscript 0 denotes
the quantities at rest (in a medium without perturbation) while the superscript ′ denotes
a small perturbation around that state (e.g. p′ = p − p0). The superscript ′ is often
dropped (e.g. p′ is simply denoted by p) and will be dropped starting from (A.19). Note
that since the value at rest represents a valid state, the equations can be simplified by
cancelling out the terms describing that state.
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Let us define the coefficients A and B [231] as

A = ρ0

(
∂p

∂ρ

)
s,ρ=ρ0

= ρ0c
2
0, (A.6)

B = ρ20

(
∂2p

∂ρ2

)
s,ρ=ρ0

, (A.7)

c0 =

√(
∂p

∂ρ

)
s,ρ=ρ0

, (A.8)

where c0 is the isentropic sound velocity. The Taylor development thus becomes

p− p0 = A
ρ− ρ0
ρ0

+B
(ρ− ρ0)

2

2ρ20
+O

(
(ρ− ρ0)

3
)
. (A.9)

The ratio B
A = ρ0

c20

(
∂2p
∂ρ2

)
s,ρ=ρ0

is called the nonlinearity parameter. However, this ratio
cannot be measured using this definition in part due to the error induced by the second
order derivative, (

∂2p

∂ρ2

)
s,ρ=ρ0

=

(
∂c2

∂ρ

)
s,ρ=ρ0

=2c0

(
∂c

∂ρ

)
s,ρ=ρ0

=2c0

(
∂c

∂p

)
s,p=p0

(
∂p

∂ρ

)
s,ρ=ρ0

=2c30

(
∂c

∂p

)
s,p=p0

. (A.10)

This leads to a definition of the nonlinearity parameter that can be obtained with a
measure of the variation of the sound speed due to an isentropic pressure variation,

B

A
= 2ρ0c0

(
∂c

∂p

)
s,p=p0

(A.11)

and
β = 1 +

B

2A
. (A.12)

A.2.1 Dimensionless quantities
As for the wave equation section, the ambient velocity will be considered as negligible.

The usual solution for a thermoviscous fluid is the sum of three modes [232, 233,
234]. The first one is the acoustic mode vp, which is studied below. The second one is
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the entropy mode vs, which is used to study conduction and heat transfer. Finally the
last one is the vorticity mode v×. We have

v′ = vp + vs + v×. (A.13)
In this decomposition, only the vorticity mode has a non zero curl, but its divergence is
zero (similar to the Helmholtz decomposition (9.27)).

The hypothesis can be made that these modes are only coupled in the boundary
conditions, if the two following conditions are met:

w ≪ ρc2

4
3µ+ ζ

, (A.14)

w ≪ ρc2cp
κ

, (A.15)

where ω = 2πf is the angular frequency. This means that the hypothesis is met for
frequencies below 1GHz in the air, and below 1THz in water.

The acoustic mach number is
ϵ =

v

c0
(A.16)

and
η =

µω

ρ0c20
=

1

Re
(A.17)

which measures the ratio between the amplitude of the viscous stress and the amplitude
of pressure variation for a plane wave. It is the inverse of Re the acoustic Reynolds
number. The Prandtl number is

Pr =
µcp
κ
. (A.18)

The difference between the acoustic mode and the entropy mode, is that the acous-
tic modes have no entropy perturbation, while the entropy modes have zero pressure
perturbation.

A.2.2 Second order equation
By assuming that the conditions (A.14) and (A.15) are met, and that the fluid is studied
outside of the boundary layers, then the acoustics mode can be studied independently
of the other two modes. To shorten the notation, the acoustic mode will now be noted
v instead of vp.The conservation of mass (9.3) can be approximated at the first order in
ϵ, by assuming that ϵ and η have the same order of magnitude, to become

∂ρ

∂t
+ ρ0∇ · v = −ρ∇ · v − v · ∇ρ. (A.19)
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Its two right terms can be expanded using (9.22) and (9.23)

−ρ∇ · v = −
(
p

c20

)(
− 1

ρ0

∂ρ

∂t

)
= −

(
p

c20

)(
− 1

ρ0c20

∂p

∂t

)
=

p

ρ0c40

∂p

∂t
, (A.20)

−v · ∇ρ = −v · ∇p
c20

= − 1

c20
v ·
(
−ρ0

∂v

∂t

)
=

ρ0
2c20

∂v

∂t
=

1

c20

∂

∂t

(
1

2
ρ0v

2

)
. (A.21)

Thus leading to the simplification

∂ρ

∂t
+ ρ0∇ · v =

p

ρ0c40

∂p

∂t
+

1

c20

∂

∂t

(
1

2
ρ0v

2

)
=

1

ρ0c40

∂p2

∂t
− 1

2

1

ρ0c40

∂p2

∂t
+

1

c20

∂

∂t

(
1

2
ρ0v

2

)
=

1

ρ0c40

∂p2

∂t
+

1

c20

∂L

∂t
, (A.22)

where L is the Lagrangian density, defined as

L =
1

2

(
ρ0v

2 − p2

ρ0c20

)
. (A.23)

In the same manner, the momentum equation (9.13) becomes

ρ0
∂v

∂t
+∇p = −ρ0v · ∇v + µ∇2v +

(
ζ +

1

3
µ

)
∇(∇ · v)− ρ

∂v

∂t
. (A.24)

To further develop this equation the following identities can be used

∇(∇ · v) = ∇2v +∇×∇× v, (A.25)

v · ∇v =
1

2
∇v2 − v ×∇× v (A.26)

Since the curl is null for the acoustic mode (∇× v = 0), (A.24) becomes

ρ0
∂v

∂t
+∇p = −1

2
ρ0∇v2 +

(
ζ +

4

3
µ

)
∇(∇ · v)− ρ

∂v

∂t
. (A.27)

The two most right terms can then be treated(
ζ +

4

3
µ

)
∇(∇ · v) =

(
ζ +

4

3
µ

)
∇
(
− 1

ρ0

∂ρ

∂t

)
= − 1

ρ0c20

(
ζ +

4

3
µ

)
∇∂p

∂t
, (A.28)

−ρ∂v
∂t

= − p

c20

(
− 1

ρ0
∇
)

=
1

2ρ0c20
∇p2 = ∇

(
p2

2ρ0c20

)
. (A.29)

Thus leading to a linearized version of the conservation of momentum equation

ρ0
∂v

∂t
+∇p = − 1

ρ0c20

(
ζ +

4

3
µ

)
∇∂p

∂t
−∇L. (A.30)
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The next equation that needs to be considered is the density state equation

ρ =
p

c20
− 1

ρ0c40

B

2A
p2 − 1

c20

(
∂p

∂s

)
ρ

s (A.31)

At the first order, the temperature state equation is

T =
T0α

ρ0cp
p (A.32)

which allows us to integrate the first order approximation of the energy conservation
(9.14) regarding time

ρ0T0
∂s

∂t
= κ∇2T =

κ

c20

∂2T

∂t2
, (A.33)

s =
κ

c20ρ0T0

∂T

∂t
. (A.34)

The temperature can then be replaced by the pressure since(
∂p

∂s

)
ρ

∂T

∂t
=

(
∂p

∂s

)
ρ

(
∂T

∂ρ

)
s

∂ρ

∂t
=

1

c20

(
∂p

∂s

)
ρ

(
∂T

∂ρ

)
s

∂p

∂t
, (A.35)

and by using (
∂p

∂s

)
ρ

= ρ2
(
∂T

∂ρ

)
s

, (A.36)(
∂T

∂ρ

)2

s

= (cp − cv)
T0c

2
0

cpcvρ0
, (A.37)

the density state equation become

ρ =
p

c20
− 1

ρ0c40

B

2A
p2 − κ

ρ0c40

(
1

cv
− 1

cp

)
∂p

∂t
. (A.38)

Finally, to obtain the second order equation, the conservation of mass (A.22) is
derived and the divergence of the conservation of momentum (A.30) are taken

∂2ρ

∂t2
+ ρ0∇ · ∂v

∂t
=

1

ρ0c40

∂2p2

∂t2
+

1

c20

∂2L

∂t2
, (A.39)

ρ0∇ · ∂v
∂t

+∇2p = − 1

ρ0c20

(
ζ +

4

3
µ

)
∇2∂p

∂t
−∇2L, (A.40)
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and are subtracted together and simplified using the state equation (A.38),

∇2p− ∂2ρ

∂t2
= − 1

ρ0c20

(
ζ +

4

3
µ

)
∇2∂p

∂t
−∇2L− 1

ρ0c40

∂2p2

∂t2
− 1

c20

∂2L

∂t2
(A.41)

∇2p− 1

c20

∂2p

∂t2
+

1

ρ0c40

B

2A

∂2p2

∂t2
+

κ

ρ0c40

(
1

cv
− 1

cp

)
∂3p

∂t3
=

− 1

ρ0c20

(
ζ +

4

3
µ

)
∇2∂p

∂t
−∇2L− 1

ρ0c40

∂2p2

∂t2
− 1

c20

∂2L

∂t2
(A.42)

∇2p− 1

c20

∂2p

∂t2
+

(
κ

ρ0c40

(
1

cv
− 1

cp

)
+

1

ρ0c20

(
ζ +

4

3
µ

))
∂3p

∂t3
=

− β

ρ0c40

∂2p2

∂t2
−
(

1

c20

∂2L

∂t2
+∇2L

)
. (A.43)

The last equation can be clarified by introducing the sound diffusivity δ defined as

δ =
1

ρ0

(
4

3
µ+ ζ

)
+
κ

ρ0

(
1

cv
− 1

cp

)
= 2δcl, (A.44)

where δcl characterizes the dissipation in the acoustic mode. We then obtain

∇2p− 1

c20

∂2p

∂t2
+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p

∂t2
−
(
∇2 +

1

c20

∂2

∂t2

)
L. (A.45)

This equation was first published by [235] and is used to derive the mainly used nonlinear
acoustic equations.

A.2.3 Kuznetsov’s equation
Equation (A.45) also has an alternate form know as the Kuznetsov’s equation. It is
obtained by using the velocity potential ϕ defined by

v = −∇ϕ. (A.46)

The Lagrangian density (A.23) can be rewritten using the velocity potential,

L =
ρ0
2

(
(∇ϕ)2 − 1

c20

(
∂ϕ

∂t

)2
)
, (A.47)

which can be further developed using the trick

∂2ϕ2

∂t2
=

∂

∂t

(
2ϕ
∂ϕ

∂t

)
=

(
∂ϕ

∂t

)2

+ 2ϕ
∂2ϕ

∂t2
, (A.48)

L =
ρ0
4

(
∇2ϕ2 − 1

c20

∂2ϕ

∂t2

)
− 1

2
ρ0ϕ

(
∇2ϕ2 − 1

c20

∂2ϕ

∂t2

)
. (A.49)
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Meanwhile, the first order equations (9.22) and (9.25) thus become

−ρ0
∂∇ϕ
∂t

+∇p = 0 (A.50)

∇
(
−ρ0

∂ϕ

∂t
+ p

)
= 0 (A.51)

Which after integrating in time gives

p = ρ0
∂ϕ

∂t
, (A.52)

∇2ϕ2 − 1

c20

∂2ϕ

∂t2
= 0. (A.53)

These first order equation thus lead to the approximation

L ≈ ρ0
4

(
∇2ϕ2 − 1

c20

∂2ϕ

∂t2

)
. (A.54)

By inserting the state equation (A.38) into the mass conservation (A.22), the follow-
ing equation is obtained

∂p

∂t
+ ρ0c

2
0∇ · v − κ

ρ0c20

(
1

cv
− 1

cp

)
∂2p

∂t2
=

β

ρc20

∂p2

∂t
+
∂L

∂t
, (A.55)

in which the the velocity potential can be used

∂p

∂t
− ρ0c

2
0∇2ϕ− κ

c20

(
1

cv
− 1

cp

)
∂3ϕ

∂t3
=
ρβ

c20

∂

∂t

(
∂ϕ

∂t

)2

+
∂L

∂t
, (A.56)

∂∇p
∂t

− ρ0c
2
0∇(∇2ϕ)− κ

c20

(
1

cv
− 1

cp

)
∇∂3ϕ

∂t3
=
ρβ

c20
∇ ∂

∂t

(
∂ϕ

∂t

)2

+∇∂L

∂t
. (A.57)

Here ∇p can be obtained by using (A.30), rewritten using the velocity potential ϕ,

∇p = ρ0
∂∇ϕ
∂t

− (ζ +
4

3
µ)∇2(∇ϕ)−∇L. (A.58)

Thus

ρ0∇
(
∂2ϕ

∂t2
− c20∇2ϕ− 1

ρ0c20

(
ζ +

4

3
µ+

κ

cv
− κ

cp

)
∂3ϕ

∂t3

)
= ρ0∇

(
β

c20

∂

∂t

(
∂ϕ

∂t

)2

+
2

ρ0

∂L

∂t

)
.

(A.59)
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By using (A.47), the right term can then be simplified since

β

c20

∂

∂t

(
∂ϕ

∂t

)2

+
2

ρ0

∂L

∂t
=

1

c20

∂

∂t

(
β

(
∂ϕ

∂t

)2

+
2

ρ0

ρ0
2

(
(∇ϕ)2 −

(
∂ϕ

∂t

)2
))

(A.60)

=
1

c20

∂

∂t

(
(β − 1)

(
∂ϕ

∂t

)2

+ c20(∇ϕ)2
)

(A.61)

=
1

c20

∂

∂t

(
B

2A

(
∂ϕ

∂t

)2

+ c20(∇ϕ)2
)
. (A.62)

With this simplification and the integration of the terms, the equation becomes

∂2ϕ

∂t2
− c20∇2ϕ− δ

c20

∂3ϕ

∂t3
=

∂

∂t

(
B

2A

1

c20

(
∂ϕ

∂t

)2

+ (∇ϕ)2
)
, (A.63)

which is know as Kuznetsov’s equation.

A.2.4 Westervelt’s equation
By assuming the L = 0, which is true for plane waves for which p = ρ0c0v, (A.45) reduces
to

∇2p− 1

c20

∂2p

∂t2
+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p

∂t2
, (A.64)

which is know as Westervelt’s equation

A.2.5 Burgers’ equation
Burgers’ equation describes a nonlinear thermo-viscous fluid wave in 1D [236]. In 1D, the
condition for Westervelt’s equation are valid. In this situation, the Westervelt’s equation
becomes

∂2p

∂z2
− 1

c20

∂2p

∂t2
+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p

∂t2
. (A.65)

Let us introduce two variables: τ = t − z
c0

the retarded time, and z′ = ϵz the slow
space scale. Then

∂

∂z
=
∂z′

∂z

∂

∂z′
+
∂τ

∂z

∂

∂τ
= ϵ

∂

∂z′
− 1

c0

∂

∂τ
, (A.66)

∂2

∂z2
=

(
ϵ
∂

∂z′
− 1

c0

∂

∂τ

)2

= ϵ2
∂2

∂z′2
− 2ϵ

c0

∂2

∂τ∂z′
+

1

c20

∂2

∂τ2
, (A.67)

∂

∂t
=
∂z′

∂t

∂

∂z′
+
∂τ

∂t

∂

∂τ
=

∂

∂τ
. (A.68)
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By applying this change of variables and only keeping the terms in ≀(ϵ),

ϵ2
∂2p

∂z12
− 2ϵ

c0

∂2p

∂τ∂z′
+

1

c20

∂2p

∂τ2
− 1

c20

∂2p

∂τ2
+
δ

c40

∂3p

∂τ3
= − β

ρ0c40

∂2p

∂τ2
, (A.69)

−2ϵ

c0

∂2p

∂τ∂z′
+
δ

c40

∂3p

∂τ3
= − β

ρ0c40

∂2p

∂τ2
, (A.70)

which can be integrated with respect to τ,

ϵ
∂p

∂z′
− β

2ρ0c30
p
∂p

∂τ
=

δ

2c30

∂2p

∂τ2
. (A.71)

Finally, by expressing the equation using z instead of the slow scale z′

∂p

∂z
=

β

2ρ0c30
p
∂p

∂τ
+

δ

2c30

∂2p

∂τ2
. (A.72)

The right part of the equation is made of two terms. The first one represents the
attenuation, while the second one manages the nonlinearities.

For a source pressure p(0, t) = p0F (t), the Burgers’ equation has a general solution.
It is obtained by using the Hopf-Cole change of variables [237, 238],

p =
ρ0δ

β

∂ ln (ζ)
∂τ

, (A.73)

where ζ is not the bulk viscosity but a dimensionless variable. The Burgers’ equation
thus reduces to

∂ζ

∂z
=

δ

2c20

∂2ζ

∂τ2
, (A.74)

which is a diffusion equation, for which the solution is known. We have
ζ(z, τ) =

√
c30

2πzδ

∫∞
−∞ ζ(0, τ ′)e−

c30(τ−τ ′)2

2zδ dτ ′,

ζ(0, τ ′) = e
βp0
ρ0δ

∫ τ ′
−∞ F (τ ′′)dτ ′′

, (A.75)


p(z, τ) =

ρ0c30
βz

∫∞
−∞ ζ(0,τ ′)(τ−τ ′)e−

c30(τ−τ ′)2
2zδ dτ ′∫∞

−∞ ζ(0,τ ′)e−
c30(τ−τ ′)2

2zδ dτ ′

,

p(0, τ ′) = p0F (t).

(A.76)

An alternative version of the Burgers’ equation exists that models other mechanisms
of attenuation [239]. Some examples are given in Table A.2 using the generalized Burgers’
equation,

∂p

∂z
=

β

2ρ0c30
p
∂p

∂τ
+ ν(p). (A.77)
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ν(p) Attenuation mechanism

α ∂2p
∂τ2

Nonlinear attenuation

γ ∂3p
∂τ3

Pure dispersion

1
2c0

(
c2∞
c20

− 1
)

∂
∂τ

∫ τ
−∞ e

− τ−τ ′
τR

∂p(z,τ ′)
∂τ ′ dτ ′ Relaxation

−b
√

2
π

∫ τ
−∞

∂p(z,τ ′)
∂τ ′

dτ ′√
τ−τ ′

Rigid cylinder

α ∂γ

∂τγ

∫ τ
−∞

∂p(z,τ ′)
∂τ ′

dτ ′

(τ−τ ′)β
viscoelastic medium

Table A.2: Various attenuation mechanisms in the generalized Burgers’ equation

A.2.6 KZK’s equation
KZK’s equation is an extension of the Burgers’ equation in 3D [235, 240]. It is meant to
take into account the diffraction effect from a directional sound beam, in addition to the
nonlinearity and absorption. Here the hypothesis is made that the sound beam direction
is the z-axis, and as for the Burgers’ equation the variables τ and z′ are defined, in
addition to the variables x′ = √

ϵx and y′ = √
ϵy. The Laplacian ∇2 thus becomes

∇2 = ϵ

(
∂2

∂x2
+

∂2

∂y2

)
+ ϵ2

∂2

∂z′2
− 2ϵ

c0

∂2

∂τ∂z′
+

1

c20

∂2

∂τ2
, (A.78)

changing the Westervelt’s equation into

ϵ

(
∂2p

∂x2
+
∂2p

∂y2

)
+ ϵ2

∂2p

∂z′2
− 2ϵ

c0

∂2p

∂τ∂z′
+

1

c20

∂2p

∂τ2
− 1

c20

∂2p

∂τ2
+
δ

c40

∂3p

∂τ3
= − β

ρ0c40

∂2p

∂τ2
,

(A.79)

ϵ

(
∂2p

∂x2
+
∂2p

∂y2

)
− 2ϵ

c0

∂2p

∂τ∂z′
+
δ

c40

∂3p

∂τ3
= − β

ρ0c40

∂2p

∂τ2
.

(A.80)

By noting ∇⊥ =

 ∂
∂z
∂
∂z
0

, integrating in τ , and going back to (x, y, z, τ),

∂p

∂z∂
=
c0
2
∇2

⊥p+
β

2ρ0c30

∂p

∂τ
+

δ

2c30

∂2p

∂τ2
. (A.81)
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Figure A.1: Evolution of a sinusoidal wave

As for the Burgers’ equation, the two right terms representing nonlinearity and ab-
sorption are present, with the addition of a third new term c0

2 ∇
2
⊥p representing the

diffraction.

A.3 Shock waves
[241] [242]

∂v

∂t
+ (v + c)

∂v

∂z
= 0 (A.82)

v = f

(
t− z

c+ v

)
(A.83)

v = f

(
t− z

c0 + βv

)
(A.84)

In Figure A.1 we show how a sinusoidal wave evolves and develops a shock.

z̄ =
(c0 + βv)2

β df
dz

(A.85)

For a sinusoidal wave source, v = v0 sin (ωt) at z = 0, the implicit solution is

v = v0 sin
(
ω

(
t− z

c0 + βv

))
, (A.86)
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which can be rewritten using the retarded time τ as

v = v0 sin
(
ω

(
τ +

z

c0

βv
c0

1 + βv
c0

))
. (A.87)

If β v
c0

≪ 1 then, by defining σ = ωzv0β
c20

= ωzp0β
ρ0c30

= z
z̄ ,

v = v0 sin
(
ω

(
τ +

zβv

c20

))
= v0 sin

(
ωτ + σ

v

v0

)
, (A.88)

p = p0 sin
(
ωτ + σ

p

p0

)
, (A.89)

z̄ =
c20

ωv0β
. (A.90)

In [243] there is an explicit solution using a Fourier series,

p = p0

∞∑
n=1

2Jn(nσ)

nσ
sin (nωτ), (A.91)

where Jn are the Bessel functions of the first kind. This solution is only valid until the
shock distance z̄ is reached. For small σ ≪ 1, the pressure p can be considered to only
have the two first harmonics p1 and p2,{

p1 = p0
2J1(σ)

σ sin (ωτ) = p0 sin (ωτ),
p2 = p0

2J2(2σ)
2σ sin (2ωτ) = z

ωp20β

ρ0c30
sin (2ωτ).

(A.92)

This shows that the second harmonic is linearly proportionally to the distance and the
nonlinear coefficient β, while it has a quadratic relation with the source pressure.

In a medium with loss, the Burgers’ equation needs to be used. With the same source
p(0, t) = p0 sin (ωt), the solution obtained using (A.76) is

p(σ, τ) = p0
4Γ−1

∑∞
n=1(−1)n+1In

(
Γ
2

)
e−n2 σ

Γ sin (nωτ)
I0
(
Γ
2

)
+ 2

∑∞
n=1(−1)n+1In

(
Γ
2

)
e−n2 σ

Γ cos (nωτ)
, (A.93)

where In(x) = i−nJn(ix) are the modified Bessel functions, Γ = βϵω
c0α

= la
z̄ is the Gol’dberg

number, α = δω2

c3o
= 1

la
is the damping constant for linear wave and la is the attenuation

length. The Gol’dberg number measures the importance of the nonlinearity compared
to the damping. A large Γ > 1 means that the nonlinearity effect will prevail, whereas
a small Γ < 1 means that the damping prevents the nonlinearity effect from appearing.
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A.4 Bubbly liquids
Bubbles in liquid will increase the nonlinear property of a material. Compared to the
liquid, bubbles are made of compressible gas, and will also oscillate following the non-
linear equation [244]. This interaction between bubble and nonlinear acoustics leads to
many effects, with some of them, such as acoustic cavitation [245, 246], having useful
applications in the industry. Other notable effects are ultrasound self focusing [247],
sound amplification [248, 249], sub harmonic generation [250], or difference frequency
generation [251, 252].



Appendix B

Adjoint Inversion with Fréchet
Kernels

For the full wavefield inversions, in the SPECFEM framework [222], we use a continuous
adjoint approach that we formulate, following [253, 254, 255, 256], in terms of Fréchet
kernels. The continuous adjoint, when it is feasible to obtain, is far less complex to pro-
gram and to maintain than a discrete adjoint generated by automatic or semi-automatic
differentiators, such as Tapenade [213] or YAO [214], for example.

The kernels are obtained as follows. Suppose that u(x, t) is a displacement (or
pressure) field that is related to a set of model parameters, m(x), and a force field,
f(x, t), by a wave equation (such as (12.15))

L(u,m) = f(x, t),

which is completed by initial and boundary conditions. Suppose that we have a cost
function in the form of a time integral,

E(u) =

∫ t1

t0

e(u(xr, t)) dt,

where the receiver positions are given by x = xr and e is a mismatch term describing
the (squared) error between the model solution and the physical measurements or ob-
servations. Additional terms can be added to E to provide regularization of the inverse
problem. The Fréchet kernel (or sensitivity kernel) is the volumetric density of E with
respect to the model parameters m. In its most general form, it is given by

δmE
.
= ∇mE δm =

∫
T
u† · ∂mL(u,m) dt,

where the subscript m denotes variation or partial differentiation with respect to each
of the model parameters, T = [t0, t1] is the time interval and u† is the adjoint field,
solution of the adjoint (wave) equation,

ρü† −∇ · σ = −∇uE, (B.1)
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subject to zero terminal conditions and adjoint boundary conditions. This equation is
to be solved backwards in time. In the case of (12.12), m = (ρ, λ, µ), and the kernels
with respect to the individual parameters ρ, µ and λ can be easily shown to be

δρE = −
∫
T
∂tu

† · ∂tu dt,

δµE =

∫
T

(
∇ · u†

)
: (∇ · u) +

(
∇ · u†

)
: (∇ · u)T dt, (B.2)

δλE =

∫
T

(
∇ · u†

)
(∇ · u) dt.

The kernels with respect to the wave speeds cp and cs can be computed from the above
three expressions. The code SPECFEM provides these kernels.

The solution of the inverse problem for finding the model parameters from knowledge
of the measurements at the receivers, consists of using these kernels in a minimization
of the cost function, usually accomplished by a variant of a gradient method,

m(k+1) = m(k) − αk∇mE(m(k)).

Here k represents the iteration number and αk the (optimal) step in the minimisation
direction (such as steepest descent). We must still choose a suitable cost function,
which might include regularization terms, and construct an optimization loop in order to
compute the minimum. Here one customarily uses a quasi-Newton algorithm, but there
is some interest in investigating full Newton methods, though these require Hessians that
can be computed by taking the second variation of the cost function, following the same
steps as above.
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Abstract
he sperm whale, Physeter macrocephalus, possesses the largest biosonar in nature. Made of
multiple oil sacs, the sperm whale sonar is tailored to function from the sea surface down
to a depth of 2 kilometers, emitting clicks as loud as 236 dB, and is multipurpose, as it
produces clicks for either echolocation or socializing. However, the liquid wax that composes
its sonar, made the sperm whales the target of whaling until 1986, when the remaining
population was far too small to remain commercially viable, especially with the arrival of
similar products from the petrochemical industry. The sperm whale population still faces
some human threats, with the ingestion of plastic and collision with boats continuing to take
a toll on their numbers. Studying sperm whales thus will have outcomes in multiple fields,
in conservation, ethology, as well as in bioacoustics. Understanding the mechanism that
governs the sperm whale sonar will help to study these other fields, as it is a key element in
the sperm whale life. Aiming for this goal, this thesis analyzes three databases with distinct
characteristics, obtaining the trajectory of sperm whale dives. Clicks were also linked with
the sperm whale that emitted them over multiple years of recording of the same population.
An efficient End-to-End deep learning classifier was trained to classify biosonar waveforms.
A simulation of wave propagation through the sperm whale head was also developed to
better understand the complex mechanism of this sonar. Finally, a coupling method was
developed to improve the parameters of the simulation using the recorded clicks from the
aforementioned databases.
Keyword: Sperm whale, Sonar, Simulation

Résumé
Le cachalot, Physeter macrocephalus, possède le plus grand biosonar de la nature. Composé
de plusieurs poches d’huile, le sonar du cachalot est conçu pour fonctionner de la surface de la
mer jusqu’à une profondeur de 2 kilomètres, émettant des clics pouvant aller jusqu’à 236 dB,
et est polyvalent, car il produit des clics pour l’écholocation ou la socialisation. Cependant,
la cire liquide qui compose le sonar a fait des cachalots la cible de la chasse jusqu’en 1986,
lorsque la population restante était beaucoup trop petite pour rester commercialement viable,
en particulier avec l’arrivée de produits similaires développés par l’industrie pétrochimique.
La population de cachalots est toujours confrontée à certaines menaces humaines, comme
l’ingestion de plastique et la collision avec des bateaux qui continuent de faire des ravages sur
leur nombres. L’étude des cachalots donne ainsi des résultats dans de multiples domaines,
en conservation, en éthologie, ainsi qu’en bioacoustique. Comprendre le mécanisme qui régit
le sonar du cachalot aidera à étudier ces autres domaines, car il s’agit d’un élément clé de la
vie du cachalot. Dans ce but, cette thèse analyse trois bases de données aux caractéristiques
distinctes, obtenant la trajectoire des plongées de cachalots. Les clics enregistrés ont été
également reliés au cachalot qui les avait émis, et ce sur plusieurs années d’enregistrement
fait sur la même population. Un modèle original End-to-End par Deep Learning est construit
pour classer efficacement les formes d’onde de biosonars. Une simulation de propagation des
ondes à travers la tête du cachalot a également été développée pour mieux comprendre le
mécanisme complexe de ce sonar. Enfin, une méthode de couplage a été développée pour
améliorer les paramètres de la simulation en utilisant les clics enregistrés des bases de données
précédemment citées. Un résumé de la thèse en français est présent au début du manuscrit.
Mots clé : Cachalot, Sonar, Simulation
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