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RÉSUMÉ 

La thermophorèse ou thermodiffusion est un processus thermique par lequel la composition 

d’un mélange devient inhomogène sous l'effet d'un gradient de température, ce phénomène est 

connu sous le nom d'effet Soret. La nature de la thermophorèse n'est pas encore complètement 

comprise et reste très débattue, par contre est un phénomène assez présent dans la nature. Un 

cadre de recherche important où la thermophorèse avec la convection thermique pourrait 

expliquer l'accumulation de précurseurs dans des conditions prébiotiques, un processus crucial 

pour l'émergence de la vie en l'absence de toute compartimentation. 

L'objectif principal de ce projet est de comprendre les bases moléculaires de la thermophorèse 

dans les solutions aqueuses diluées. La thermophorèse est par essence un phénomène de non-

équilibre, et certaines théories moléculaires se sont concentrées sur l'interprétation des 

gradients de concentration observés en termes de coefficients de transport. Néanmoins, 

expériences récentes ont suggéré que la thermophorèse en conditions d’état stationnaire peut-

être comprise en prenant des considérations thermodynamiques dans équilibre.  

Les simulations dans le cadre de dynamique moléculaire sont un outil idéal pour déchiffrer ces 

questions sur de petits systèmes modèles. Nous nous sommes particulièrement intéressés aux 

petites molécules amphiphiles dans l'eau, qui englobent les caractéristiques moléculaires de 

base des solutés avec des parties hydrophiles et hydrophobes. Tout d'abord, nous avons proposé 

une approche de dynamique moléculaire robuste et fiable pour simuler la thermophorèse dans 

des solutions diluées réalistes en utilisant des simulations de dynamique moléculaire tout-

atome. Ensuite, nous avons recherché des multiples propriétés physiques qui pourraient être 

corrélées avec le coefficient de Soret (c'est-à-dire l'ampleur du gradient de concentration en 

réponse à un gradient de température). Finalement, nous avons vérifié la viabilité de ce 

processus thermique qui pourrait être compris en termes de thermodynamique ou de cinétique 

à l'équilibre, comme c’est suggéré précédemment dans la littérature. 

Mots clés : Hors équilibre, coefficient de Soret, dynamique moléculaire, diffusion, énergie libre 

de solvatation 
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ABSTRACT 

Thermophoresis or thermodiffusion is a thermally-driven process whereby the composition of 

a mixture becomes inhomogeneous under a temperature gradient, a phenomenon known as the 

Soret effect. The nature of thermophoresis is still not completely understood and it remains 

highly debated, though it is a phenomenon fairly present in the nature. One important 

framework field is that thermophoresis together with thermal convection could unveil the 

precursor accumulation in prebiotic conditions, a crucial process for the emergence of life in 

the absence of any compartmentalization. 

The main goal of this project is to understand the molecular bases for thermophoresis in dilute 

aqueous solutions. Thermophoresis is in essence a non-equilibrium phenomenon, and some 

molecular theories have focused on the interpretation of the observed concentration gradients 

in terms of transport coefficients. However, recent experiments have suggested that 

thermophoresis steady-states could be understood using equilibrium thermodynamic 

considerations.  

Molecular dynamics simulations are an ideally suited tool to decipher these questions on small 

model systems. We especially scoped small and amphiphilic molecules in water, which 

encompasses the basic molecular features of solutes with hydrophilic and hydrophobic 

moieties. Firstly, we proposed a robust and reliable molecular dynamic approach to undertake 

thermophoresis in dilute realistic solutions using all-atom molecular dynamics simulations. 

Secondly, we enquired into multiple physical properties that could be correlated with the Soret 

coefficient (i.e., the extent of the concentration-gradient in response to a temperature-gradient). 

Finally, we checked the viability of this thermally-driven process could be understood in terms 

of equilibrium thermodynamics of kinetics, as suggested before in the literature. 

Keywords: Non equilibrium, Soret coefficient, molecular dynamics, diffusion, solvation free-

energy 
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RESUMEN 

La termoforesis o termodifusión es un proceso térmico por el cuál la composición de una 

mezcla se vuelve inhomogénea bajo un gradiente de temperatura, este fenómeno es conocido 

como efecto Soret. La naturaleza de la termoforesis aún no se entiende del todo y sigue siendo 

muy debatida, aunque en realidad es un fenómeno bastante común en la naturaleza. Un campo 

de investigación importante es dónde la termoforesis junto con la convección térmica podrían 

explicar la acumulación de precursores en condiciones prebióticas, un proceso crucial para el 

origen de la vida en ausencia de cualquier compartimentación. 

El objetivo principal de este proyecto es entender las bases moleculares de la termoforesis en 

soluciones acuosas diluidas. La termoforesis es en esencia un fenómeno de no equilibrio y 

algunas teorías moleculares se han centrado en la interpretación de los gradientes de 

concentración observados en términos de coeficientes de transporte. Sin embargo, 

experimentos recientes han sugerido que la termoforesis en condiciones de estado estacionario 

podría entenderse tomando consideraciones termodinámicas en el equilibrio.  

Las simulaciones de dinámica molecular son una herramienta muy útil para estudiar estos 

fenómenos utilizando pequeños sistemas. En esta tesis nos hemos centrado específicamente en 

pequeñas moléculas anfifílicas en el agua, estas moléculas abarcan características moleculares 

básicas con partes hidrofílicas e hidrofóbicas. En primer lugar, propusimos una metodología 

de dinámica molecular robusta y fiable para llevar a cabo la termoforesis en soluciones diluidas 

realistas, mediante simulaciones de dinámica molecular de “all atom”. En segundo lugar, 

investigamos las múltiples propiedades físicas que podrían correlacionarse con el coeficiente 

de Soret (es decir, la magnitud del gradiente de concentración en respuesta a un gradiente de 

temperatura). Por último, comprobamos la viabilidad de que este proceso térmico pudiera 

entenderse en términos de termodinámica y cinética en equilibrio, como la literatura ha 

sugerido anteriormente. 

Palabras clave: No equilibrio, coeficiente de Soret, dinámica molecular, difusión, energía libre 

de solvatación 
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Prelude 

The present manuscript will expose the work carried out during my three years PhD, under the 

supervision of Dr. Guillaume Stirnemann with the grant ERC-ABIOS (Grant agreement ID: 

757111). The entire work has been done at the LBT (Laboratoire de Biochimie Théorique) 

from the IBPC (Institut de Biologie Physico-Chimique) starting in October 2018.  

This study is part of a larger project which focuses on the emergence of live, which is one of 

the most fascinating and yet unsolved questions of natural science. The ultimate goal is to 

understand the synthesis paths of prebiotic systems under prebiotic conditions. Mainly, the 

focus is on RNA synthesis in the absence of biological catalysis, where this leads to 

thermodynamically forbidden reactions, rearrangements and polymerisation paths. 

My thesis focuses on a thermally-driven process that is considered as a good candidate in order 

to explain precursor accumulation in the absence of compartmentalization. While this 

phenomenon has been experimentally shown to be efficient in the context of prebiotic 

chemistry, it is still poorly understood at a theoretical level. The goal of this PhD was to provide 

a better comprehension of the phenomenon in aqueous solutions, starting with simple solutes. 
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1. Introduction 

Thermophoresis is a thermally-driven process, where a mixture of components becomes 

inhomogeneous under a temperature gradient. It was evidenced for the first time 150 years ago 

by C. Ludwig,1,2 and later by C. Soret.3 This phenomenon manifests itself for a wide range of 

system sizes. Thermally-driven movements have been studied for molecular systems ranging 

from the nanometre scale, to systems of the size of microscopic particles,4 where thermally-

driven processes are still present at millimetric lengths.5,6 

This effect is observed because different particles exhibit different responses to the thermal 

gradient. Perhaps more familiar is the phenomenon of electrophoresis, where the particles 

move under the influence of a uniform electrical field. Positively charged molecules drift 

towards the cathode (negatively charged), negatively charged molecules drift towards the 

anode (positively charged), and neutral molecules are not affected by the electric field since 

they do not possess a net charge.  

 

Figure 1.1: Electrophoresis vs thermophoresis. The left graph shows a schematic representation of electrophoresis, 

cathode (-) region in the left and anode (+) region in the right. Red (-) and pink (+) particles move along the 

electric field. The right graph shows a schematic representation of thermophoresis, hot region in the left and cold 

region in the right. Yellow and blue particles move along the thermal gradient. Bottom bars represent the 

concentration colour of each particle along thermophoretic axis. 

Similar effects apply for the thermophoresis, where the particles move according to a thermal 

field rather than an electrical field as in electrophoresis. However, the “thermal affinity” is not 
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a simple property as the charge of the particles in electrophoresis. There are several intrinsic 

properties in the molecule that can affect this thermally-driven process (e.g. mass, size, charge, 

polarity…) as well as some external factors (e.g. concentration and temperature).7 Our work 

studied some of these effects to better understand the “thermal affinity” of a binary solution. 

The thermophoresis of a molecule can be achieved simply by inducing a temperature gap 

between two connected areas. 

 

Figure 1.2: Binary mixture under a thermophoretic gradient. The left graph shows the homogeneity of a binary 

mixture at constant temperature. The right image shows how the binary mixture becomes inhomogeneus under a 

thermal gradient, with the hot region on the left, and the cold region on the right. The yellow and blue particle 

represents different molecules. 

Figure 1.2 represents a schematic binary system (blue and yellow particles), where the system 

(a) is in equilibrium at a constant temperature and evolves towards the system (b) once a 

thermal-gradient is turned on. Since the coloured particles possess different physico-chemical 

properties, each set of particles behaves differently under the same thermal gradient, thus 

inducing a non-homogeneous distribution. In this example, yellow and blue particles 

accumulate in the hot and the cold region respectively. As we can imagine, thermophoresis is 

present in most processes where spatial variations of temperature are present in the system, 

leading to a thermal-gradient. 

Nevertheless, most of the thermodynamic systems are represented in equilibrium conditions, 

and their thermodynamic properties are time independent. Under equilibrium conditions, the 

median temperature is constant and the particle motion follows the Boltzmann distribution: 
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 𝐾̅ =
𝑛𝐷

2
𝑘𝐵𝑇 , (1.1) 

where 𝐾̅ is the averaged ensemble kinetic energy, 𝑛𝐷 is the number of degrees of freedom, 𝑘𝐵 

is the Boltzmann constant, and 𝑇 is the temperature. However, particles do not follow the 

Boltzman distribution during thermophoresis as their median temperature is not the same 

throughout the system. Once a thermal gradient is present in the system, thermally-driven 

processes disrupt the prior thermodynamic equilibrium, and the system is out of equilibrium. 

After a transient regime, the system usually reaches a particular state, known as the steady 

state, in which the system properties do not evolve anymore. The Braun group8 has shown in 

experiments that thermophoresis for moderate temperature gradients follows the Boltzmann 

distributions once the system reaches the steady state. 

In recent years, thermodiffusion has attracted great interest both academically and industrially 

due to its importance in many scientific and engineering applications. One example is the 

microscale thermophoresis (MST),9,10 which analyses biomolecular systems based on the 

directed movement of particles in a thermal-gradient, as used e.g. by the Nanotemper company. 

Temperature control allows real-time and immobilization-free measurements of interaction in 

liquid molecular complexes at a lower cost and sample consumption compared with similar 

methods,11 such as surface plasmon resonance (SPR)12 or isothermal microcalorimetry 

(IMC).13,14  

Another example in the industrial application field is that thermodiffusion, together with 

gravitational effects, could play an important role in the compositional grading of oil 

reservoirs15,16 induced by the geothermal gradient.16,17 Compositional grading has a strong 

impact on the estimation of the initial (before production) hydrocarbon in place and is 

important for selecting the best reservoir development scenario. Further studies quantitatively 

confirmedthat thermodiffusion in multi-component mixtures noticeably impacts the 

distribution of species in a petroleum reservoir and should be taken into account to determine 

accurately the initial state of a reservoir.18–20 

On the other hand, several physico-chemical processes can be studied in the context of life 

science from a theoretical point of view. There are key new applications for this effect,7 

including: 
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- Monitoring protein binding reactions through the sensitivity of thermodiffusion to 

complex formation.21 

- Accumulation of a component in microfluidic devices through a combination of 

thermodiffusion and convection.22 

Therefore, thermophoresis is gaining particular interest in the origins of life context.23 Recent 

studies have demonstrated that this thermally-driven process combined with thermal 

convection could act as a thermal trap and lead to an accumulation of precursors,24–26 which is 

crucial for understanding certain aspects of the origin of life (abiogenesis). The following 

section will give a brief overview of the origin of life and will explain the fundamental role of 

thermophoresis in this role. 

1.1 Abiogenesis 

What is life? How did it come to be? What was the first living organism? Is it possible to find 

extra-terrestrial life? These questions are still highly debated, without a clear answer, and 

multiple hypotheses have been proposed.27 Life is a characteristic of biological systems, which 

distinguishes them from the inorganic matter, but this distinction becomes more vague as the 

biological system becomes simpler.28  For example, the NASA defined life broadly as:29 

‘Life is a self-sustained chemical system capable of undergoing Darwinian evolution.’ 

Over the years, life’s definition was expanded:28 

‘A system which is self-sustaining by utilizing external energy/nutrients owing to its internal 

process of component production and coupled to the medium via adaptive changes which 

persist during the time history of the system.’ 

Even if several definitions can be found in the literature,28 the self-replication process is a key 

point that differentiates living organism from non-living matter. Self-replication is the ability 

of dynamical system to replicate itself.30 In general terms, abiogenesis (origin of life) is the 

process in which life was generated from non-living matter, such as small molecular organic 

compounds, reaching the capacity to self-sustain and replicate. This process and the required 
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environmental conditions for life generation are still highly debated,27 with several hypotheses 

trying to explain this phenomenon.  

One of these is the Panspermia hypothesis,31 which proposes that life was generated outside 

the Earth, and that extra-terrestrial living organisms reached Earth vectorised by meteorites. 

Other hypotheses describe abiogenesis as an intra-terrestrial process. It has been suggested 

several times that life originated about 3.5 billon years ago.32–34 The best-known theories on 

the origins of organic compounds are based on the ‘primordial soup’ idea proposed by Oparin 

in 1924,35 and later supported by the Miller experiment in 1953,36,37 where the possibility of 

generating amino acid from simple molecules available on the early Earth (CH4, NH3, H2O and 

H2) was demonstrated by applying an electric discharge. However, the atmospheric 

composition of the early Earth makes it unlikely that the origins of life can be explained by the 

yield of Miller experiment.38,39  

 

Figure 1.3: Hydrothermal vent at the seabed.40  

The hydrothermal origin of life theory gained particular interest since the discovery of 

thermophilic organisms in deep-sea hydrothermal systems in the late 1970s.41 The perceived 

benefits afforded to primitive life in this environment include protection from intense asteroid 

bombardment and ultraviolet radiation, and a source of thermal and chemical energy, along 

with potentially catalytic minerals.42 These optimal conditions led to a new idea that life might 

have originated in hydrothermal systems on the primitive Earth,43–45 where hydrothermal vents 

were proposed as a suitable habitat for the emergence of life,43,46,47 and a sustained prebiotic 

synthesis.  
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Although the theory of hydrothermal vents gives the optimal conditions for primitive life, an 

important part of this theory is the accumulation of precursors, where prebiotic molecules 

accumulate in a defined region inside the hydrothermal vents and the chemical reactions of 

abiogenesis take place. In the next section, the process of precursor accumulation and its 

relevance to the origins of life will be explained in more detail.  

1.2 Precursor accumulation 

One crucial aspect in the origins of life hypothesis is the precursor accumulation, because any 

chemical reaction requires molecules to come in contact with each other. In modern cells, this 

question is easily answered, since they are confined by a membraned system in a reduced 

volume in the 10-14 litre range, with high concentrations that critically enhance the reaction 

rates, and further assisted by an enzymatic system that catalyses the reaction. How can we 

imagine such efficient chemistry leading to the emergence of life, where the concentrations of 

precursor molecules are significantly lower and without a complex enzymatic catalyser, since 

the enzymes were developed long after over the emergence of life? 

Consequently, the precursor accumulation in early Earth conditions must have occurred by 

some physico-chemical processes without the intervention of any biological mechanism, which 

is present in actual cells. The thermally-driven processes could have played an important role 

in precursor accumulation, which is essential for some abiogenesis theories. This process does 

not depend on any structured system, since it requires only an inhomogeneous distribution of 

temperatures. In 1987, Gaeta et al.23 introduced a connection between precursor accumulation 

and temperature gradients. However, this hypothesis was not extensively developed until the 

early 2000s, when pioneering experiment from Braun’s group have demonstrated the viability 

of dilute solute accumulation under thermally-driven processes48,49 acting as thermal traps for 

the oligomerization of  RNA strands.26,50–52  

The Braun group described the precursor accumulation process as a combination between 

thermophoresis and thermal convection, which can lead to a precursor migration in a specific 

region of the system: 
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Figure 1.4: Braun description of precursor accumulation. Schematic representation of the precursor (yellow dots) 

introduced into a system in which thermal convection (orange arrows) and thermophoresis (purple arrows) are 

generated by a thermal gradient, which results in a precursor accumulation in a specific region of the space, acting 

as a thermal trap.  

These simple systems are not simply physico-chemical lab-inventions, but rather occur in 

natural thermophoretic settings. One example is the hydrothermal vents that have already been 

introduced in one of the abiogenesis hypotheses. Hydrothermal vents are systems located at the 

bottom of the ocean, and are generated by volcanic activity. These systems gain a particular 

interest due to the large temperature gradients that can be achieved over relatively short 

distances. Hydrothermal vents are the result of geothermally heated water (400 ºC) that is 

discharged through a hydrothermal system to the oceanic water (2 ºC), causing large 

temperature differences. In addition, the porous rocks of hydrothermal vents on the ocean’s 

floor25 may have also played a key role in the emergence of biological chemistry,25,43,53,54 acting 

as precursor accumulator and catalyst. 

The idea of precursor accumulation driven by thermophoretic motion and thermal convection 

opened a door to new research areas, supported by the hydrothermal vent hypothesis. This 

particular system has been applied in the context of several life’s origins related studies, e.g. 

trapping nucleotides,50,52,55,56 RNA57–61 and DNA24,26,51,62,63 accumulation and replication, lipid 

phase transition,64,65 as well as other studies outside the origins of life, e.g. colloidal 

systems,48,66–68 charged particles,63,68,69 etc.  

Currently, the thermally-driven accumulation process of a given molecule remains poorly 

understood, and the molecular origins of thermophoresis are still unknown. Several theoretical 
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models have been proposed to describe thermophoresis phenomenologically by explaining the 

dependence on several molecular properties (e.g. mass, size, charge, polarity…).7 

Understanding the molecular basis of thermophoresis could shed some light on the process of 

precursor accumulation in the context of the origins of life, and this thesis makes a contribution 

in that regard. 
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2.  Objective 

Our main goal is to understand the nature of thermophoresis in dilute aqueous solutions. We 

study aqueous solutions of small amphiphilic molecules under a thermal gradient in order to 

understand thermally-driven effects that are crucial for precursor accumulation in the origins 

of life context. We decide to work with such solute molecules in order to avoid pure 

hydrophobic effects (solute aggregation) or very hydrophilic molecules that strongly interact 

with water, which we use as solvent. Moreover, the considered molecules are neutral, which 

prevents electrophoretic effects on top of thermophoretic ones. 

The first part of our work consists in establishing a good set-up for thermophoretic simulations. 

We study the evolution and energy conservation in a system that contains a the thermal gradient 

and a posterior concentration gradient, by using a non-equilibrium molecular dynamics 

algorithm based on heat exchange (eHEX).70  We focus on the effects of box length, thermal 

gradient amplitude, heat exchange rate, and the force field dependence in order to test the 

robustness of our thermophoretic simulations.  

In the second part, we analyse thermodynamic conditions (median temperature, pressure, and 

concentration) and intrinsic molecular properties (mass, charge and solute) that could have 

some effect in the molecular accumulation in a specific region. These effects are quantified by 

means of the Soret coefficient, and we compare our results with some phenomenological 

theories available in the literature.  

In the final part, we check the viability of two plausible models, which could be attributed to 

the molecular origins of the thermophoresis. The first model tries to relate the thermally-driven 

effect of a molecule to a temperature-dependence of a solvation free-energy process.71 The 

second model conjectures that the thermophoretic motion of a molecule is related to the 

activation energies for the diffusion of the solute and solvent molecules.72–76 
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3. The Soret Coefficient 

3.1 Generalities 

The thermophoresis of a binary mixture, e.g. a solute in an aqueous system, results from a 

competition between the ordinary particle diffusion, described by the diffusion coefficient 

(𝐷),77 and the motion of particles under a thermal gradient, which is phenomenologically 

described in terms of drift velocity proportional to the temperature gradient through a thermal 

diffusion coefficient (𝐷𝑇). The ratio between Fick’s diffusion and the thermal diffusion defines 

the Soret coefficient (𝑆𝑇), whose sign dictates whether molecules will accumulate in the cold 

or the hot region, and its value determines the amplitude of the concentration gradient:  

 
𝑆𝑇 =  

𝐷𝑇

𝐷
 .  (3.1) 

In this work, we consider a uni-dimensional linear and uniform thermal gradient ∇𝑇 along the 

𝑧 axis. The total flux of solute particles moving at a 𝑧 position 𝑗𝑠(𝑧) can be phenomenologically 

written as a sum of the diffusion current 𝑗𝐷(𝑧) and thermal diffusion current 𝑗𝐷𝑇
(𝑧),8,78 such 

that: 

 𝑗𝑠(𝑧) = 𝑗𝐷(𝑧) + 𝑗𝐷𝑇
(𝑧) . (3.2) 

The first term is the diffusion current, and takes the first Fick law form for dilute 

concentrations: 

 𝑗𝐷(𝑧) =  −𝐷𝑠(𝑧)∇cs|𝑧 ,  (3.3) 

where 𝐷𝑠 is the solute diffusion coefficient, and ∇𝑐𝑠|𝑧 is the solute concentration gradient along 

𝑧. The second term of equation (3.2) is the thermal diffusion current, which for dilute solutions 

can be written: 
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 𝑗𝐷𝑇
(𝑧) =  −𝐷𝑇

𝑠(𝑧)𝑐𝑠∇𝑇 ,  (3.4) 

where 𝐷𝑇
𝑠  is the phenomenological solute thermal diffusion coefficient, 𝑐𝑠 is the solute 

concentration, and ∇𝑇 is the thermal gradient.  

Experiments show that a steady-state can be reached (more details in Section 4.2), where 

ordinary diffusion and thermal diffusion are balanced, implying that  𝑗𝑠(𝑧) = 0: 

 𝑗𝐷(𝑧) = − 𝑗𝐷𝑇
(𝑧) . (3.5) 

Combining equations (3.3) and (3.4): 

 ∇𝑐𝑠

𝑐𝑠
|

𝑧
= − 

𝐷𝑇
𝑠(𝑧)

𝐷(𝑧)
∇𝑇 . (3.6) 

Since we consider a uni-dimensional thermal gradient, we can thus rewrite the equation as a 

finite derivative: 

 𝑑𝑐𝑠

𝑐𝑠
|

𝑧
= − 

𝐷𝑇
𝑠(𝑧)

𝐷(𝑧)
𝑑𝑇 .  (3.7) 

Rearranging the equation, we obtain the following form: 

 𝑑𝑙𝑛𝑐𝑠

𝑑𝑇
|

𝑧
= − 

𝐷𝑇
𝑠(𝑧)

𝐷(𝑧)
 ,   (3.8) 

or, equivalently, into: 

 𝑑𝑙𝑛𝑐𝑠

𝑑𝑇
|

𝑧
= − 𝑆𝑇

𝑠(𝑧) ,   (3.9) 

where 𝑆𝑇
𝑠(𝑧) = − 𝐷𝑇

𝑠(𝑧) 𝐷(𝑧)⁄  is the uni-dimensional Soret coefficient, which determines the 

magnitude of thermodiffusion in the steady state. In principle, each position is associated to a 

given concentration 𝑐𝑠(𝑧) and temperature 𝑇(𝑧), and 𝑆𝑇 depends on both the concentration and 

temperature. In the thermophoretic simulations described below, even under pretty significant 

temperature gradients but more moderate concentration gradients, 𝑙𝑛 𝑐𝑠 is often a linear 
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function of the temperature (𝑇), suggesting that 𝑆𝑇 can be considered constant under these 

thermal gradient conditions. Therefore, if diffusion and thermodiffusion coefficients are taken 

along the constant gradient, this leads to an exponential depletion law:  

 𝑐𝑠

𝑐0
𝑠 = exp(−𝑆𝑇(𝑇 − 𝑇0)) , (3.10) 

with the normalized concentration 𝑐𝑠 𝑐0
𝑠⁄ , which depends on the temperature difference 𝑇 −

 𝑇0 only. 

3.2 From experimental measurements to phenomenological 

description 

Experimental results show that the thermodiffusion behaviour of a particle dependents on a 

large number of molecular factors.7  Mass, size and moment of inertia influence the Soret effect 

and are independent of particle interactions. On the other hand, heat of transfer, hydrogen 

bonding, cross interactions, ionic strength and interfacial tension depend on the particle 

interaction in the solution. Moreover, temperature, pressure and concentration are external 

factors independent of the nature of the solution that also have an influence in the Soret 

effect.49,79 The complexity of the Soret effect makes the understanding of its molecular origin 

very arduous.   

In this work, we have focused on few key parameters influencing the Soret coefficient and we 

study their trends for dilute aqueous solutions, where only small amphiphilic neutral solutes 

are considered. We first analyse the effect of the external factors (temperature, concentration 

and pressure) that may influence the Soret effect for these systems and compared our results 

with phenomenological descriptions available in the literature. Furthermore, the mass effect is 

extensively studied in this work, and we check if some interesting phenomenological 

approaches are in agreement with our results.  
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3.2.1 External factors (concentration, temperature and pressure) 

It has been observed in many aqueous systems that the Soret coefficient increases with 

increasing median temperature, often a sign change is observed from a negative 𝑆𝑇 < 0 K−1 

(thermophilic behaviour) to a 𝑆𝑇 > 0 K−1 positive value (thermophobic). Moreover, the 

increase is abrupt at lower median temperatures and becomes flat at high median temperatures. 

One phenomenological description comes from Iacopini and Piazza,79,80 who proposed an 

empirical equation to model the temperature dependence of the Soret coefficient: 

 
𝑆𝑇(𝑇) = 𝑆𝑇

∞ [1 − 𝑒𝑥𝑝
(𝑇∗ − 𝑇)

𝑇𝑖
] , (3.11) 

where 𝑆𝑇
∞ represents the limiting value of 𝑆𝑇(𝑇) at high temperatures, 𝑇∗ the temperature at 

which the Soret coefficient changes the sign, i.e. 𝑆𝑇(𝑇) = 0 K−1, and 𝑇𝑖 embodies the strength 

of temperature effect. This equation describes accurately the thermodiffusion of 

macromolecules in dilute aqueous solutions,81,82 but fails with low-molecular-weight mixtures, 

usually at high concentrations.83 Moreover, this equation also does not describe properly an 

ethanol/water  mixture in a dilute regime,84 and molecular dynamics simulations found a 

monotonous decrease of 𝑆𝑇 with the increment of the temperature in agreement with 

experiments.85–87 

Further studies have demonstrated some particularities on the 𝑆𝑇(𝑇) evolution as a function of 

median temperature. Often there is a sign change from a negative 𝑆𝑇 (thermophilic behaviour) 

to a positive 𝑆𝑇 (thermophobic behaviour) for some solutes at high concentrations,88–90  as well 

as specific concentration points where the 𝑆𝑇 becomes independent of the median 

temperature.90 Therefore, concentration effects are also relevant for the explanation of the Soret 

coefficient. Wittko and Köhler91 proposed an empirical equation, splitting the Soret coefficient 

in two additive terms. First, the chemical contribution (𝑆𝑇
𝑐ℎ) is caused by the interactions 

between the particles in the solution, which depends neither on 𝑇 nor on 𝑐. Second, 

concentration-dependent function 𝛼𝑐(𝑐) augmented with a temperature-dependent 

multiplicative amplitude factor 𝛽𝑐(𝑇): 
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 𝑆𝑇(𝑐, 𝑇) = 𝛼𝑐(𝑐)𝛽𝑇(𝑇) + 𝑆𝑇
𝑐ℎ , (3.12) 

Where 𝑆𝑇
𝑐ℎ is the chemical contribution for the Soret coefficient of the different species,  𝛼𝑐(𝑐) 

and 𝛽𝑐(𝑇) are polynomial empirical fits, fitting the concentration and the median temperature 

respectively:  

 𝛼𝑐(𝑐) = 𝑎0 + 𝑎1𝑐 + 𝑎2𝑐2 + 𝑎3𝑐3 + ⋯ , 

𝛽𝑇(𝑇) = 1 + 𝑏1(𝑇 − 𝑇0) + 𝑏2(𝑇 − 𝑇0)2 + 𝑏3(𝑇 − 𝑇0)3 + ⋯ , 
(3.13) 

where 𝑇0 is the reference temperature. The temperature and concentration dependence of 

aqueous solutions can also be described with these equations, but 𝑎𝑖 and 𝑏𝑖 fitting values do 

not explain the physical effect behind these dependences.  

The Wiegand group92 has recently proposed a modified version for eq. (3.11). The authors 

assumed that the temperature and the concentration dependence of 𝑆𝑇 for aqueous solutions is 

directly related to the formation and breaking of hydrogen bonds: 

 𝑆𝑇(𝑐, 𝑇) = 𝑆𝑇
∞ − 𝐶𝐻 exp(−𝐴𝐻𝑇) , (3.14) 

where 𝑆𝑇
∞ are the thermal properties of the molecule, possible charges, and so forth, excluding 

the presence of hydrogen bonds, 𝐶𝐻 is a measure of the number of hydrogen bonds, and the 

parameter 𝐴𝐻 > 0 measures the temperature-dependent strength of a hydrogen bond. The 

temperature-dependent exponential factor describes the diminishing contribution of hydrogen 

bonds as they weaken with increasing temperature. 

Other studies reported phenomenologically that thermophoresis is a consequence of a pressure 

change generated by the temperature gradient. Semenov and Schimpf93 described the 

thermophoretic movement of the solute molecule as a net force from the combined action of 

the local pressure gradient around the molecule and the force caused by the macroscopic 

pressure gradient. The thermal diffusion coefficient is defined as an empirical ratio between 

the isobaric thermal expansion and the dynamic viscosity for dilute solutions: 
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𝐷𝑇 = −

8

27

𝐴𝑟𝑠
2

𝑣𝑜𝜂
𝛼𝑇 , (3.15) 

where 𝐴 is Hamaker constant that defines its interaction with the solvent, 𝑟𝑠 is the solute radius, 

𝑣𝑜 is the specific volume of one particle, 𝜂 is the dynamic viscosity. The authors empirically 

associated the temperature dependence as an indirect effect of the isobaric thermal expansion 

coefficient 𝛼𝑇 for the thermal diffusion coefficient: 

 
𝛼𝑇 ≡

1

𝑣
(

𝜕𝑣

𝜕𝑇
)

𝑝
= −

1

𝜌
(

𝜕𝜌

𝜕𝑇
)

𝑝
 , (3.16) 

where 𝑣 is the specific volume, and 𝜌 is the density. Even if thermophoretic movement 

described with a thermal expansion coefficient works for non-polar solutes, eq. (3.16) failed 

for aqueous solutions.7 The explanation is due to the thermal expansion coefficient is 

significantly small for aqueous solutions, which could be related to the stronger hydrogen 

bonds of aqueous systems,94 so associated pressure effects in the Soret coefficient are relatively 

small for the aqueous systems.  

3.2.2 Mass effect 

Previously, we introduced the fact that the mass, the moment of inertia and the size are intrinsic 

properties of the molecule that do not depend on particle interactions. In 1939, Clusius and 

Dickel95 used a continuously thermal convective method to the separation of isotopes. The 

authors observed that mass has a direct effect to the Soret coefficient by comparing the molar 

masses of different isotopes. Galliéro et al.96 justified this behaviour as a density effect, where 

a thermal gradient causes a concentration gradient in the opposite direction, and the heavier 

molecules, which occupy the same volume as the lighter ones, participate more efficiently in 

the generation of the strong density zone and the heavier molecules tend to migrate towards 

the cold areas more than the lighter ones. Chapman97 showed that for equimolar mixtures, it is 

possible to expand the Soret coefficient in powers of relative mass difference 𝛿𝑀 = (𝑀1 −

𝑀2)/(𝑀1 + 𝑀2) for a binary gas mixture: 
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𝑆𝑇 =

𝑆𝑇
0𝛿𝑀

𝑇
+ ⋯  . (3.17) 

The mixtures of many linear n-alkanes were also studied,98–100 and it was observed that their 

Soret coefficients depends weakly on the concentration, and their values for equimolar 

mixtures show a linear evolution as a function of this relative mass difference 𝛿𝑀 = (𝑀1 −

𝑀2)/(𝑀1 + 𝑀2). However, the Wiegand group101 has also demonstrated a linear correlation 

between 𝛿𝐼 = (𝐼1 − 𝐼2)/(𝐼1 + 𝐼2) and the Soret coefficient for linear alkanes, making it more 

difficult to separate the mass and moment of inertia contributions. The explanation of such 

contribution can be explained in the same manner as the one deduced for the mass alone. 

Galliéro et al 96 justified this effect as a rotational process, where the molecules with the bigger 

moment of inertia will rotate more slowly than the other ones and so will tend to migrate, 

compared to the other species, toward the area of strong density, which is located in the cold 

part of the simulation box. The Köhler group76,102 previously observed that the Soret coefficient 

coefficient can be split in two independent and additive terms for non-polar molecules 

(𝑆𝑡
𝑐ℎ+𝑆𝑡

𝑖𝑠𝑜): 

 𝑆𝑇 = 𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜 , (3.18) 

where 𝑆𝑇
𝑖𝑠𝑜 is the isotopic contribution that depends only on mass and moment of inertia, and 

𝑆𝑇
𝑐ℎ is the chemical contribution, which depends on molecular interactions. These two 

contributions are independent, which means that identical particles with different masses could 

exhibit a variation in their respective Soret coefficients. Even if there are several formulations 

for describing 𝑆𝑇
𝑖𝑠𝑜 term,103 the most common is: 

 
𝑆𝑇

𝑖𝑠𝑜 = 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
+ 𝑏𝐼

𝐼2 − 𝐼1

𝐼2 + 𝐼1
 , (3.19) 

where 𝑀𝑖 and 𝐼𝑖 are the mass and the inertia moment of each particle, and 𝑎𝑀 and 𝑏𝐼 are 

empirical coefficients. However, the “chemical” contribution description is harder to define. 

Artola and Rousseau90 computationally described the “chemical” contribution of the Soret 

coefficient in terms of the Lennard-Jones 12-6 (LJ) potential: 
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𝐿𝐽𝑖𝑗(𝑟𝑖𝑗) = 4 𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

] , (3.20) 

where 𝜀𝑖𝑗 is the depth of the LJ potential, 𝜎𝑖𝑗 is the distance at which the particle-particle 

potential energy is zero, and 𝑟𝑖𝑗 is the distance between the 𝑖 and  𝑗 particles. Artola and 

Rousseau demonstrated that the “chemical” contribution of the Soret coefficient is due purely 

to the nature of these interactions. More precisely, this effect depends on the strength of direct 

and cross interaction energies between particles, and the interaction energy parameter between 

different particles (𝜀12) can be obtained by their own modified version of the Lorentz-Berthelot 

mixing rule: 

 𝜀12 = 𝑘12√𝜀11𝜀22 , (3.21) 

where 𝑘12 controls the strength of the interaction between different particles, the original 

Lorentz-Berthelot mixing rule104 is the case that 𝑘12 = 1 . Furthermore, the authors included a 

second parameter which is the energy ratio 𝜓𝜀 = 𝜀22/𝜀11, and this parameter indicates the 

difference of the thermodynamic properties. The Wiegand group105 experimentally correlated 

the thermophilicity of peptide model systems to its hydrophilicity, and demonstrated a higher 

complexity for polar systems as compared to non-polar systems due to the cross interaction 

effects among these peptides by just including the energy ratio (𝜓𝜀) of Artola and Rousseau as 

the “chemical” contribution: 

 𝑆𝑇
𝑖 = 𝑎𝑀𝛿𝑀 + 𝑏𝐼𝛿𝐼 + 𝑐𝜀∆𝜓𝜀 , (3.22) 

where 𝛿𝐼 = (𝐼2 − 𝐼1) (𝐼2 + 𝐼1⁄ ). Even if the Wiegand group determined 𝑎𝑀 and 𝑏𝐼 for amides, 

the authors did not find a solution which also covers aqueous solutions of ethanol and glucose. 

Therefore, the Wiegand group assumed that non-ideal structural changes (e.g., excess effects) 

of the polar systems are not fully covered by this simple approach.  

In our work, we study the mass effect of the Soret coefficient using another strategy. Instead 

of using molecules chemically different, we focus on the use of isotopes. Basically, isotopes 

are atoms that differs only in the number of neutrons in the atomic nucleus, and hence atomic 

properties remains largely unchanged. Therefore, isotopic mixtures allow us to study 
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chemically equivalent systems at different masses. The first isotopic thermodiffusive 

experimental studies were made with binary mixtures of deuterated and non-deuterated water 

(D2O-H2O) systems.95,106,107 Moreover, several studies have also demonstrated an isotopic 

thermodiffusive effect in mixtures of benzene of various degrees of deuteration.108–112 The 

Köhler group76,91,102,113 has widened the isotopic effect in the Soret coefficient for organic 

isotopic mixtures of different liquids. The authors have been shown that the isotope substitution 

(deuteration) of one of the components leads to a constant shift of the Soret coefficient 

depending neither on concentration nor on the mixing partner. 

Most of these systems were organic based mixtures due to the high amount of hydrogen atoms 

in the molecule that could be deuterated, and hence a wide range of mases could be explored. 

However, the range of masses are quite limited for small molecules. High isotopic atoms make 

them often unstable i.e., radioactive isotopes. Even if there are stable isotopes such as 2H, 13C, 

15N…  their masses only differ from 1 to 2 atomic units of their respective most abundant 

isotopes i.e., 1H, 12C, 14N. As a consequence, experimental studies are rather limited by the 

nature of their systems in order to study similar molecular systems which only differs on mass 

for small solutes. 

On the other hand, molecular dynamics simulations allow us to more freely explore the mass 

“isotopic” effect in the Soret coefficient. Since atomic mass is just an input parameter, we can 

artificially modify the mass value without the experimental constrains. Several computational 

studies have focused on the isotopic substitution’s effect on the Soret coefficient, but are mainly 

focused on Lennard-Jones model particles,86,114–116 which is a convenient representation of an 

isotopic binary/ternary mixture of noble gases. All their results pointed out to a direct 

correlation between the relative mass and an increment of the Soret coefficient. In this work, 

we analyse the viability to describe the mass effect to the Soret coefficient for some small 

solutes in aqueous solutions by the following equation: 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 , (3.23) 

where 𝑆𝑇
0 is the molecular contribution of the Soret coefficient, which encompasses the 

“chemical” and moment of inertial terms (𝑆𝑇
0 = 𝑆𝑇

𝑐ℎ + 𝑏𝐼𝛿𝐼) of eq. (3.18) . 
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3.3 Molecular model and theories 

The temperature/concentration and mass dependence studies of the Soret coefficient evidenced 

some connexion between these factors and the amplitude of the thermal gradient, leading to 

phenomenological descriptions, as described above. In the literature, we can find some models 

based on thermodynamic or kinetic theories that try to explain the molecular basis of 

thermophoretic motion. Two are of particular interest and relevance for molecular systems, but 

come from different perspectives. The first model tries to relate the thermally-driven effect of 

a molecule to a temperature dependence of a solvation free-energy process,71 and the second 

model conjectures that the thermophoretic motion of a molecule is related to the activation 

energies for the diffusion of the solute and solvent molecules.72–76 

3.3.1 Temperature dependence of the solvation free energy 

 

Figure 3.1: Hydration free energy. Schematic representation of the hydration free energy process of the trimethyl 

ammine N-oxide molecule (TMAO). The blue box represents the liquid phase and outer box the gas phase. ∆𝐺ℎ𝑦𝑑 

is the hydration free energy of the process. 

An appealing idea that was first suggested by Eastman is that the Soret coefficient can be 

understood in terms of equilibrium thermodynamic considerations, relating the Soret 

coefficient to the temperature-dependence of the solute hydration free-energy. The hydration 

free-energy (∆𝐺ℎ𝑦𝑑) is the difference of energy between a molecule in the gas phase and the 

same molecule in a liquid phase, which is surrounded by solvent, see Figure 3.1.  
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In an early approach, Eastman71 considered that the probability of a particle moving along a 

temperature gradient is related to the corresponding entropy change, which is absorbed or 

released by the surrounding liquid. Recalling that the Soret effect is a “steady state” condition 

in which a concentration gradient arises from a temperature gradient. The transfer of any 

particle from one region towards another one can only be considered as an equilibrium process, 

if no net change in entropy results from this virtual transfer. Eastman divided the total entropy 

variation of the system in two parts; the entropy of the reservoirs (𝑆𝑅) and the entropy of the 

system (𝑆𝑆𝑦𝑠). Therefore, the author described this virtual transfer under equilibrium conditions 

by the following equation: 

 𝛿𝑆𝑅 +  𝛿𝑆𝑆𝑦𝑠 = 0 , (3.24) 

The removal of a solute from one region at a certain temperature (𝑇1) produce an infinitesimal 

change in the concentration, see Figure 3.2. 

 

Figure 3.2: Schematic representation of the Eastman idea. The blue particle represents the virtual transfer from 

the cold region to the hot region. The green arrows represent the heat effect (𝑄𝑠) of the solution rearrangement. 

The yellow arrow represents the partial molar heat (𝑑𝐻𝑠) exchanged with the reservoir.  

This change may be assumed to give rise to a corresponding change in the intensity of 

intermolecular forces in general terms. The rearrangements resulting from the change in forces 

may result in a finite heat effect (𝑄𝑠). Moreover, there is a heat absorbed by the system from 
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the reservoirs in this process in partial molal heat terms (𝑑𝐻𝑠), since the virtual transferred 

particle has to reach the corresponding kinetic energy of the temperature (𝑇2) of the new region.  

The total change in entropy for the reservoirs is then: 

 
𝛿𝑆𝑅 = −

𝑑𝐻𝑠

𝑇
−

𝑄𝑠

𝑇2
𝑑𝑇 = − (

1

𝑇
) [(

𝜕𝐻𝑠

𝜕𝑇
)

𝑃,𝑁
𝑑𝑇 + (

𝜕𝐻𝑠

𝜕𝑁𝑠
)

𝑃,𝑇
𝑑𝑁𝑠] −  

𝑄𝑠

𝑇2
𝑑𝑇 , (3.25) 

and the entropy change of the system is:  

 
𝛿𝑆𝑆𝑦𝑠 = 𝑑𝑆𝑠 = (

𝜕𝑆𝑠

𝜕𝑇
)

𝑃,𝑁
𝑑𝑇 + (

𝜕𝑆𝑠

𝜕𝑁𝑠
)

𝑃,𝑇
𝑑𝑁𝑠  . (3.26) 

Replacing both terms of the equation (3.24) yields to:   

 
𝑑𝐺𝑠 = (

𝜕𝐺𝑠

𝜕𝑇
)

𝑃,𝑁
𝑑𝑇 + (

𝜕𝐺𝑠

𝜕𝑁𝑠
)

𝑃,𝑇
𝑑𝑁𝑠 = −

𝑄𝑠

𝑇
𝑑𝑇 , (3.27) 

where 𝐺𝑠 represents a solute single-particle free enthalpy. Eq. (3.27) shows that the solutions 

whose internal dynamic conditions are independent of the concentration ((𝜕𝐺𝑠 𝜕𝑁𝑠⁄ )𝑃,𝑇 = 0) 

at a constant temperature ((𝜕𝐺𝑠 𝜕𝑇𝑠⁄ )𝑃,𝑁 = 0) , the exchanged heat (𝑄𝑠) is zero. In these ideal 

solutions the Soret coefficient, governed by Eq. (3.27) (𝑑𝐺𝑠 𝑑𝑇⁄ = − 𝑄𝑠 𝑇⁄ ), is therefore zero. 

In the case of non-ideal solutions, Eastman considered that 𝑄𝑠 must reach a maximum at some 

finite concentration, which implies that the partial free energy term of concentration 

dependence is non-zero ((𝜕𝐺𝑠 𝜕𝑁𝑠⁄ )𝑃,𝑇 ≠ 0). The author associated this effect to an 

irreversible process, which defines the Soret coefficient value. Eastman justified this 

irreversible process as a pressure effect for gaseous solutions. However, the author noted that 

liquid solutions present a more difficult problem, since their irreversible effects may be less 

important but still relevant. Therefore, Eastman defined the Soret effects as a combination of a 

reversible (𝑆𝑇
𝑟) and irreversible (𝑆𝑇

𝑖 ) parts: 

 𝑆𝑇 = 𝑆𝑇
𝑟 + 𝑆𝑇

𝑖  . (3.28) 

Eastman generalized the Eq. (3.27) to define the reversible and irreversible Soret coefficients, 

as follows: 
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𝑆𝑇

𝑟 =
(𝑑𝐺𝑠)𝑟 

𝑑𝑇
= −

𝑄𝑠

𝑇
 , (3.29) 

 
𝑆𝑇

𝑖 =
(𝑑𝐺𝑠)𝑖

𝑑𝑇
 , (3.30) 

where (𝑑𝐺𝑠)𝑟 and (𝑑𝐺𝑠)𝑖 are the reversible and irreversible free energies respectively. 

Replacing both terms of the eq. (3.33) yields to:   

 
𝑆𝑇 =

(𝑑𝐺𝑠)𝑟 

𝑑𝑇
+

(𝑑𝐺𝑠)𝑖

𝑑𝑇
 . (3.31) 

In 2005, the Braun group49 extended this previous idea and their experimental results shown 

that the thermophoretic steady states could be described by a Boltzmann distribution in local 

thermodynamics equilibrium of the equation (3.10) (exp (−𝑆𝑇 (𝑇 − 𝑇0)). Even if 

thermophoresis is a local non-equilibrium effect, the Braun group demonstrated that for 

moderate temperature gradients the thermal fluctuations of the molecule are still a local 

equilibrium.8 This allows the description of the thermodiffusion in a steady state by a 

succession of local Boltzmann laws: 

 𝑐𝑠

𝑐0
𝑠 = exp (−

(𝐺𝑠(𝑇) − 𝐺𝑠(𝑇0))

𝑘𝐵𝑇
 ) . (3.32) 

Their experiments demonstrated that the Soret coefficients of carboxyl-modified beads of 

different radii scales with its particle surface, resulting in a direct relation between the Soret 

coefficient (𝑆𝑇) and the solute particle free enthalpy (𝐺𝑠), combining equations (3.10) and 

(3.32): 

 𝐷𝑇
𝑠

𝐷𝑠
(𝑇 − 𝑇0) =

(𝐺𝑠(𝑇) − 𝐺𝑠(𝑇0))

𝑅𝑇
 , (3.33) 

which can be rewritten as 𝑆𝑇 = 𝐷𝑇
𝑠/𝐷𝑠 and as a function of partial derivatives 𝑑𝐺𝑠 𝑑𝑇⁄  

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
  . (3.34) 
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This relation can be generalized by locally applying the thermodynamic relation 𝑑𝐺 ≡ −𝑆𝑑𝑇 +

𝑉𝑑𝑝 + 𝜇𝑑𝑁. For single molecules at a constant pressure, the Soret coefficient is related to the 

solvation entropy of the solute particle in the solvent (𝑆𝑇 = −𝑆/𝑅𝑇). 

3.3.2 Temperature dependence of diffusion 

A very different approach was initiated by Prigogine.72,73 The thermal diffusion process is 

described as an activated process in a thermal gradient, where the mass fluxes are expressed as 

a function of the activation energies for the Fick’s diffusion of the different species. Their 

temperature dependence can be represented as an Arrhenius form:  

 
𝐷𝑠 = 𝐷0

𝑠 exp (−
𝐸𝑎

𝑠

𝑅𝑇
) , (3.35) 

where 𝐸𝑎
𝑠 is the activation energy for diffusion. In Prigogine’s approach, this energy is seen as 

the sum of the energy needed to form a hole in which the molecule will be placed, and the 

energy needed for the particle to detach itself from its neighbours. The diffusive flux of the 

solute molecule can be described as: 

 
𝑗𝑠(𝑧) = −

1

𝑁
𝐷0

𝑠 exp (−
𝐸𝑎

𝑠

𝑅𝑇
)

𝜕𝑁𝑠

𝜕𝑧
 . (3.36) 

In the steady state of thermodiffusion, Prigogine defined that the diffusive flux of any molecule 

in the system is zero, and therefore the motion of a molecule from one position to another is 

just defined by a difference in the activation energies between the molecules in the solution: 

 1

𝑁𝑠𝑁𝑤

𝜕𝑁𝑠

𝜕𝑧
=

𝐸𝑎
𝑤 − 𝐸𝑎

𝑠

𝑅𝑇2

𝜕𝑇

𝜕𝑧
 . (3.37) 

Recalling the equation (3.9), and expressing the number of molecules (𝑁𝑠) in terms of the 

solute concentration (𝑐𝑠), the Soret coefficient of a binary mixture can be written as a simple 

relation between the activation energies of the two components: 

 
𝑆𝑇 =  

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
 . (3.38) 
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We note that the original Prigogine equation presents a sign error, because the Prigogine’s 

Soret coefficient is defined as (𝐸𝑎
𝑤 − 𝐸𝑎

𝑠)/𝑅𝑇2.  This description yields to a negative Soret 

coefficient value for the solute. However, the solute should present a positive Soret coefficient, 

since the activation energy of the solute is usually higher than the solvent. Therefore, we switch 

the activation energies (𝐸𝑎
𝑠 − 𝐸𝑎

𝑤)/𝑅𝑇2 of equations (3.37) and (3.38) to be in accordance with 

the thermophilic or thermophobic character of the solute. Furthermore, eq. (3.38) does not take 

into account explicitly the mass effect of the Soret coefficient. Artola, Rousseau and Galliéro 

75 rescaled the temperature in terms of the ideal part of the partitional function means to displace 

the position of the diffusion transition state as a barycentre of the relative masses. The authors 

defined a positive mass flux as: 

 
𝐽+(𝑧) ∝ 𝑐𝑤 (𝑧 −

𝑑𝑧

2
) 𝑐𝑠 (𝑧

+
𝑑𝑧

2
) exp (−

𝐸𝑎
𝑤

𝑅(𝑇 − 𝜉𝑤𝑑𝑇)
) exp (−

𝐸𝑎
𝑠

𝑅(𝑇 + 𝜉𝑠𝑑𝑇)
) , 

(3.39) 

where 𝜉𝑖 which defines the transition state position, is given by: 

 
𝜉𝑤 =

𝑀𝑤

𝑀𝑠 + 𝑀𝑤
 , (3.40) 

and the same for 𝜉𝑠. In the steady state of thermodiffusion, the mass fluxes compensate 

(𝐽+(𝑧) = −𝐽−(𝑧)), and the authors obtained the following expression of the Soret coefficient:  

 
𝑆𝑇 =

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
+

𝐸𝑎
𝑠 + 𝐸𝑎

𝑤

𝑅𝑇2

𝑀𝑠 − 𝑀𝑤

𝑀𝑠 + 𝑀𝑤
 , (3.41) 

where the first term is the Prigogine model description of the Soret coefficient, eq. (3.38), 

which may describe the chemical contribution (𝑆𝑇
𝑐ℎ). After a discussion with Guillaume 

Galliéro, the third author of this model, he agrees that the sign problem of the Prigogine’s 

approach is still present in their article.75 For this reason, we also switch the activation energies 

for the eq. (3.41). Although Artola, Rousseau and Galliéro included the mass effect in 

Prigogine’s approach, which improved the description of 𝑆𝑇 as an activated process, it is shown 

that their predictions of the Soret coefficient were underestimated for water-ethanol mixtures.75 
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3.4 Overview 

The Soret coefficient has been studied from different perspectives, but there is not a general 

consensus on its molecular origins. The following insights can be extracted: 

Phenomenological descriptions 

- The Soret coefficient exhibits a clear dependence on temperature and concentration, 

but a clear molecular picture is missing. For example, the Soret coefficient values reach 

a certain saturation point at higher temperatures, and under certain temperature and 

concentration conditions, the molecules could change from the cold region to the hot 

region, which means that the molecule is no longer thermophobic and becomes 

thermophilic:79,80 

 
𝑆𝑇(𝑇) = 𝑆𝑇

∞ [1 − 𝑒𝑥𝑝
(𝑇∗ − 𝑇)

𝑇𝑖
] . (3.42) 

- A chemical contribution that is neither concentration nor temperature dependent (𝑆𝑇
𝑐ℎ) 

often appears in some descriptions and is usually associated with solute and solvent 

interactions.90 

- The mass effect seems to play an important role in the Soret coefficient, which depends 

on the mass ratio of the components of the binary mixture:76,102,103 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 . (3.43) 

 

Molecular models 

- Eastman’s thermodynamic approach defines the molecular origins of the Soret 

coefficient as a temperature-dependent free energy solvation:71 

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
 . (3.44) 
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- Prigogine's kinetic point describes the molecular origins of the Soret coefficient as an 

activation process of molecular diffusion:72,73  

 
𝑆𝑇 =  

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
 . (3.45) 

This overview summarizes the most relevant molecular properties and external factors study 

in this work as well as introduces two plausible molecular models that could describe the Soret 

coefficient. The next chapter will discuss the technical part of the thermophoretic study.  
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4. Molecular dynamics simulations 

4.1 Brief introduction 

Molecular dynamics (MD) is an important computational technique, used to study condensed 

matter in silico at the molecular level. The idea of MD is simple: atoms or molecules are 

considered as point particles, interacting with each other via molecular interactions. Their 

dynamical interactions are solved numerically by integrating the equations of motion of 

Newtonian dynamics in discrete time steps. The basic ingredients of MD can be summarized 

as follow 

• Model describing the interaction between particles (force field) 

• Calculation of energies and forces from the model 

• Integration of the equations of motions 

There are several types of MD simulations depending on the system size and the accuracy level. 

Ab-initio MDs117 are high-level precision simulations, where the forces between atoms are 

calculated at the quantum level, commonly by the density functional theory (DFT).118. The 

DFT method works in terms of electronic density rather than discretized electrons, and thus 

reduces computational cost. However, these simulations are limited to a few hundred of 

picoseconds and short length scales, because they still require high computational cost. On the 

opposite side, coarse-grained simulations represent groups of atoms as a single particle, with 

an averaged chemical character of a chunk of atoms. This leads to a reduction in the number of 

interactions among the many-particles system, allowing faster simulations exploration of large 

systems, such as biological systems: membranes or protein folding. Nevertheless, since our 

main goal is understanding thermophoresis at the molecular level, the target molecules must 

translate, rotate, and interact classically with the solvent and other particles. For these reasons, 

all-atom MD simulations are at the optimal accuracy level for our purposes, representing the 

system at the atomistic level, whereby each atom is represented as a particle. Simulations in 

this range can easily reach the microsecond timescale, with many-particle systems made of 

several thousands of interacting particles.   
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Molecular dynamics is a powerful tool for studying the physico-chemical processes that occur 

in nature at the molecular level. Some of these processes are for example: the diffusion of a 

particle, the viscosity of the medium, thermal conductivity, adsorption processes, dielectrical 

properties of the system... Most of these properties are usually studied at equilibrium and are 

time-independent. Unlike thermophoresis, which is a phoretic response of particles to a thermal 

gradient, moving particles from one region to another as a function of time. Consequently, 

thermophoresis can only be observed outside equilibrium.119 Therefore, non-equilibrium 

molecular dynamics is a suitable method for physical systems that are not in thermodynamic 

equilibrium. Time-dependent effects or chemical reactions rates are some examples that are 

studied outside equilibrium. In what follows, we inspect whether thermophoresis could be 

studied as a time-independent phenomenon. 

To answer this question, we need to understand what is the main difference between 

equilibrium and non-equilibrium thermodynamics. This difference can be described 

thermodynamically, by resorting the second law of thermodynamics, which introduces the 

thermodynamic variable called the entropy 𝑆:  

 𝑑𝑆

𝑑𝑡
≥ 0 . (4.1) 

Equation (4.1) shows that any time-dependent change generates a change in entropy higher or 

equal than zero. A non-equilibrium process is subject to an increase in entropy, and the 

evolution between two states becomes irreversible. On the other hand, equilibrium 

thermodynamics is the systematic study of transformation of matter and energy at constant total 

entropy. Once the system is in thermodynamic equilibrium, all the processes inside this system 

are reversible, and entropy remains constant.120 Consequently, the properties of system at 

“equilibrium” do not depend on time: 

 𝑑𝑆

𝑑𝑡
= 0 . (4.2) 

Statistical mechanics defines entropy as a number of microscopic configurations (𝛺) that 

represent a mechanical system defined by macroscopic variables. Maxwell-Boltzmann 
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theory120 defines the relation between entropy and possible microstates for a mechanical system 

as: 

 𝑆 = 𝑘𝐵 ln 𝛺𝑚 , (4.3) 

where 𝛺𝑚 is the number of possible microstates. This equation assumes that all microstates 

have the same probability of occurrence. Thermodynamic ensembles are a particular variety of 

statistical ensemble that can be described a finite set of thermodynamic variables (i.e., energy, 

number of particles, temperature, pressure, volume...). One example is the microcanonical 

ensemble (NVE), which represents possible states of a mechanical system whose number of 

particles (𝑁), volume (𝑉), and total energy (𝐸) are constant. The entropy un such a system is 

thus a function of those variables: 

 𝑆 = 𝑆(𝑁, 𝑉, 𝐸) . (4.4) 

Sometimes the total energy of the system is unknown, while the temperature is known. This 

situation is in fact more common in reality than knowing the energy of the system. These 

systems are described by another ensemble, which is the canonical ensemble (NVT) that fixes 

temperature instead of energy, and allows the energy to fluctuate. Furthermore, another 

common ensemble exists that fixes the pressure instead of the volume, and it is known as the 

isothermal–isobaric ensemble (NPT). In this work, we make us of all three ensembles; NVE, 

NVT and NPT. 

Within the framework of a statistical-mechanical ensemble, the connection between 

macroscopic variables and microscopic configurations are described statistically with their 

respective partition functions. For a canonical ensemble (NVT), which is classical and discrete, 

the canonical partition function (𝑍) is defined as: 

 
𝑍 = 𝑒−

𝐹
𝑅𝑇 , (4.5) 

where 𝐹(𝑁𝑉𝑇) is the Helmholtz free energy. Once 𝑍 is known, it is straightforward to compute 

the average energy and other thermodynamic quantities. 



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

56 

 

In fact, the idea behind equilibrium MD simulations is precisely that we can study the average 

property of a many-particle system in the phase space by averaging the quantity of interest over 

a sufficiently long time (𝑡):121   

 
𝑎𝑖 = lim

𝑡→∞

1

𝑡
∫ 𝑑𝑡′

𝑡

0

𝑎𝑖(𝑡′) , (4.6) 

where 𝑎𝑖  is a time-dependent quantity, and 𝑎𝑖  its temporal average. Moreover, the ergodic 

hypothesis122 enables averaging a stochastic process as a function of a large collection of 

random samples (𝑁), instead of averaging over the time:  

 
〈𝑎𝑖〉 =

1

𝑁
∑ 𝑎𝑖

𝑁

𝑖=1

 , (4.7) 

where 𝑁 is the number of samples. This can be done, because there is a one-to-one 

correspondence between the initial phase space coordinates of a system and those specified the 

state of the system at late time (𝑡′). Therefore, according to the ergodic principle, averaging 

over the time evolved phase space coordinates is equivalent to averaging over all initial phase 

space coordinates. Combining time-average and sample average, we can enhance the sampling, 

by the following expression: 

 

𝑎𝑖 =
∑ (lim

𝑡→∞

1
𝑡 ∫ 𝑑𝑡′𝑡

0
𝑎𝑖(𝑡′))𝑁

𝑁
 . 

(4.8) 

4.2 Steady state 

The ergodic hypothesis is no longer valid for non-equilibrium MD because system properties 

are expected to vary along simulation time. Therefore, some thermodynamic states become 

more complex to define, as they are not constant, and the system cannot be studied in a 

thermodynamic ensemble. A non-equilibrium system can reach a particular state that is close 

enough to thermodynamic equilibrium, and its non-equilibrium properties can be measured 

locally using equilibrium measurement techniques. 
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To define properties in non-equilibrium thermodynamics, the assumption of local equilibrium 

is essential. It allows the application of the statistical ensemble as well as ergodicity. Due to 

Onsager's variational principle,123 the entropy must be minimised. The non-equilibrium steady 

state is one in which the least amount of total entropy is produced. The steady state can be 

reached after a period of relaxation as long as the external perturbation is constant over time. 

In the steady state, macroscopic parameters such as temperature, concentration and pressure at 

each point of the thermodynamically open or closed system are time-independent values. For 

example, if a constant heat flux is applied across two separate spatial regions in an aqueous 

solution, the parameters of the system will approach time-invariant values. Thus, the 

equilibrium theory can be used in order to provide a thermodynamic framework for 

determining the composition gradient across a thermal gradient. 

4.3 Molecular models 

Our work focuses on dilute aqueous solutions, and to avoid working with very large systems, 

we have selected small polar solutes. Unlike completely non-polar solutes, these types of 

molecules usually do not aggregate at low concentrations, which is crucial for determining 

variations in concentration gradient during thermophoresis, because are solely due to the 

temperature-gradient and are not further enhanced by non-thermophoretic aggregation. A 

natural choice for such polar solutes are amphiphilic molecules. These molecules contain a 

hydrophilic head and a hydrophobic body. Moreover, we seek solutes sufficiently different in 

order to observe different behaviours under the thermal gradient, and hence have significantly 

different Soret coefficients.  

    
 

TMAO Urea Ethanol Methanol D-Glucose 

Figure 4.1: Solutes. Three-dimensional structures from left to right for trimethylamine N-oxide (TMAO), urea, 

ethanol and methanol. Lewis’s structure of D-Glucose. 
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Our main solute is trimethylamine N-oxide (TMAO), which has interesting properties in the 

biochemical processes related to deep ocean conditions.124,125 It is a small solute that offers 

both a very polarized hydrophilic moiety, as well as bulky hydrophobic region. In addition, 

TMAO is large enough to show a clear accumulation behaviour under thermal gradient, and it 

is known not to aggregate unless very high concentrations, much higher than those used in this 

study, are used.126,127 The Kast TMAO force field model128,129 is employed in our simulations. 

It is a non-polarisable force field and has demonstrated high stability over a wide range of 

temperature and pressure. In addition, its results come in close comparison to the ab-initio 

molecular dynamics simulations and experimental data.130 

Urea is a planar organic molecule, widely used as a protein denaturant in aqueous solutions, as 

well as in studies on protein folding and stability.131 Urea is also a well-known solubilizer,132 

and it might have been useful to some molecular mechanisms linked to the origins of life,133  

acting in an urea-mediated phosphoryl transfer mechanism.134 Here, we select a new 

nonpolarizable force field for mixtures of urea and water available in the literature. The Smith 

group135,136 parametrized it to reproduce the experimental Kirkwood-Buff (KB) integrals, as 

the KB integrals were observed to be most sensitive to charge distribution employed and the 

authors experimentally well reproduced urea changes in his activity. The force field parameters 

from the Smith group135 are employed for our urea molecule, but this version of the urea force 

field constrained the bonds with the SHAKE algorithm, and we want a fully unconstrained 

molecule. For this reason, the bond stretching parameters are obtained from a posterior work 

from the Shimizu group,136 which are also parametrized by experimental Kirkwood-Buff (KB) 

integrals. We analysed both versions of the force field, and we did not observe any relevant 

difference if the bonded parameters are constrained or not.  

Ethanol and methanol are selected because they are the smallest amphiphilic organic 

molecules, and they were well-suited for observing the limits of thermophoretic calculations. 

The CHARMM General Force Field (CGenFF) is the chosen force field for ethanol,137 and an 

OPLS based force field is selected for methanol.138 We consider that these general force fields 

describe simple molecules such as ethanol and methanol with sufficient accuracy.  

Glucose is an important carbohydrate, relevant both for its biological functions139 and for 

industrial processes.140 As a monomer of cellulose, the most abundant biopolymer, it is the 
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most important source of energy in all organisms as well as an alternative feedstock for fuels 

and chemicals in the biorefinery framework.139,141 In general, most force fields predict self-

aggregation of solute molecules due to the overestimation of solute−solute interactions for 

aqueous solutions of carbohydrates.142 To alleviate this effect, The Vlugt group optimized 

nonbonded interactions of the OPLS Force Field.143  The authors scaled the nonbonded 

interaction parameters of sucrose, a disaccharide which is composed by a fructose and a 

glucose. The scaling factors were chosen in such a way that experimental thermodynamic and 

transport properties of aqueous solutions of sucrose are accurately reproduced. The Vlugt group 

found excellent agreement between experimental and computed liquid densities, 

thermodynamic factors, shear viscosities, self- diffusion coefficients, and Fick (mutual) 

diffusion coefficient. 

In the case of water, it is of vital importance to choose a force field that is valid over a wide 

range of temperature and pressure, which accurately describes the physico-chemical properties 

of water, and which is compatible with other force fields of molecules of interest. 

TIP4P/2005144 is the principal water model for our work, which is a rigid four-site model, 

consisting of three fixed point charges and one Lennard-Jones centre, see Figure 4.2. As an 

important detail, we noted that this model leads to Coulombic cut-off extension of a distance 

of 2 ∗ (𝑂𝑀 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (Oxygen-Massless dummy charge),144 due to the extra distance of the 

fictional oxygen charge in this water model. Thus, it is typically best sense to extend Lennard-

Jonnes potential by the following equation to improve efficiency: 𝐿𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐶𝑜𝑢𝑙𝑐𝑢𝑡𝑜𝑓𝑓 + 2 ∗

(𝑂 − 𝑀). 

Moreover, the TIP4P/2005 model  has a good performance regarding several physico-chemical 

characteristics of water;144 thermodynamic properties of the liquid and solid phases, phase 

diagram involving condensed phases, properties at melting and vaporization, dielectric 

constant, pair distribution function, and self-diffusion coefficient. These properties cover a 

temperature range from 123 to 573 K and pressures up to 40 000 bar. Among all the four-site 

models, it is probably the best at reproducing water thermodynamical, structural and dynamical 

properties, at least when one does not deviate too much from the ambient conditions. 
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TIP4P 2005 SPC/E 

Figure 4.2: Water models. The left water representation is the 4-site water model (TIP4P 2005). The right 

water representation is the 3-site water model (SPC/E). 

We have occasionally performed some extra calculations with the SPC/E water model,145 a 3-

site model, Figure 4.2, which is an older but popular water model. 

4.4 Temperature gradient 

Our simulations require a stable and well-defined temperature gradient in order to understand 

the thermophoretic forces applied to particles, and to study their motion. It is well known that 

equilibrium MD simulations can be run at constant temperature by the implementation of 

thermostats for several ensembles, i.e., canonical (NVT) or isothermal-isobaric (NPT). While 

there are several thermostat implementations (Berendsen,146 Andersen147 and Langevin148), the 

most commonly used is the Nose-Hoover thermostat,121,149 which defines an external bath, 

where particle motion inside the system is affected by the following Hamiltonian: 

 

𝐻𝑁𝑜𝑠𝑒 = ∑
𝑝𝑖

2

2𝑚𝑖𝑠2

𝑁

𝑖=1

+ 𝑈(𝑟𝑁) + 𝑔𝑘𝐵𝑇𝑙𝑛(𝑠) + (
𝑝𝑠

2

2𝑄
) , (4.9) 

where 𝐻𝑁𝑜𝑠𝑒 is the Hamiltonian of the extended system of 𝑁 particles, 𝑝𝑖 is the momentum and 

𝑚𝑖 the mass of the particle, 𝑠 is an extra degree of freedom for the heat bath, 𝑈(𝑟𝑁) is the 

potential energy, 𝑔 = 3𝑁 for canonical ensembles, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the 

temperature, 𝑝𝑠 is the heat bath momentum, and 𝑄 its imaginary mass. 

We can split the equation (4.9) in two parts, where the first part describes the motion of 

particles, and the second part is the extra motion effect due to the external bath. This method 

was designed to keep temperature throughout the system equal by applying an external thermal 
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bath for all particles. However, thermophoretic simulations require a spatially resolved 

thermostat, where particles can be discretized depending on their motion and space region in 

the system, because different particles must be at different temperature at the same time. 

For this reason, at least two regions in the system must be generated, one at lower temperature 

(cold region), and the other at high temperature (hot region). Once these two regions are well 

defined, cold and hot slabs can be achieved by thermostatting particles belonging to these two 

regions.  

 

Figure 4.3: Thermostats. The left picture is a schematic representation of a simulation box under a thermal bath. 

The right picture represents two thermostatted regions. 

Current implementations of thermostats applied to different space regions require the definition 

of a set of thermostatted particles before running the simulation, which cannot be directly 

updated each simulation step. Since some of these molecules will leave or enter the slab at a 

given timestep, these algorithms are not feasible. Consequently, harmonic restraints are usually 

employed to constrain solvent particles in the thermostatted regions.79,150,151 Even though not 

all particles in the thermostatted region are affected, the constrained particles can still affect 

molecular motions along the direction of the gradient, producing artefacts.  

Another possible approach is the heat-exchange algorithm (HEX) introduced by Hafskjold and 

Ikesoji,152 where an algorithm transfers kinetic energy in the form of heat instead of controlling 

temperature inside each slab. This algorithm extracts a certain amount of heat −∆𝑄𝛤𝑐𝑜𝑙𝑑
 from 

the designed cold region, and injects the same amount of heat ∆𝑄𝛤ℎ𝑜𝑡
  into the corresponding 

hot region. As a consequence, the temperature difference between the hot/cold regions is a 

consequence of heat transfer instead of a thermostatic effect. Hence, modulating the 
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amount/frequency of heat-exchanged transfers leads to a larger or smaller temperature gradient 

indirectly.  

In these simulations, no temperature control is applied since the simulations are performed in 

the microcanonical ensemble (NVE), posing an energy conservation problem. For instance, 

adding the HEX algorithm on top of independent factors that could lead to poor conservation 

in equilibrium simulation in the microcanonical ensemble could aggravate total energy 

conservation. However, it has been shown that many versions of this algorithm evoke energy- 

 

Figure 4.4: eHEX algorithm. Illustration of the simulation box, 𝛺 , with non thermostatted regions, 𝛤0, a hot region, 

𝛤ℎ𝑜𝑡 (red), and a cold region, 𝛤𝑐𝑜𝑙𝑑 (blue). The centre of mass velocities of 𝛺, 𝛤ℎ𝑜𝑡 and 𝛤𝑐𝑜𝑙𝑑 are 𝒗𝛺,  𝒗𝛤ℎ𝑜𝑡
 and 

𝒗𝛤𝑐𝑜𝑙
, respectively. Particles are represented by red/blue circles, if they are located in the hot/cold region and by 

empty circles otherwise. Readapted from eHEX article 70. 

conservation problems, which was only recently solved by an enhanced version of the 

algorithm by Wirnsberger et al.,70 known as the enhanced Heat EXchange algorithm (eHEX), 

see Figure 4.4. Their improvement focuses on energy conservation compared with the previous 
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HEX algorithm. The authors identify the problem as a truncation error in the propagation 

operator splitting, which was solved by adding an extra integration step in the propagation of 

equations of motion.  

Wirnsberger et al. compared both HEX and eHEX algorithms in order to study energy 

conservation. First, the authors described the basis of the kinetic exchange algorithm, where 

two spatial disjoint subdomains (𝛤𝑘) are defined. Hot spatial region (𝛤ℎ𝑜𝑡) is where a certain 

amount of heat is injected (∆𝑄𝛤𝑘
), and cold spatial region (𝛤𝑐𝑜𝑙𝑑) is where the same amount of 

heat is subtracted (−∆𝑄𝛤𝑘
). Moreover, the authors assume that there is no net energy flux 

applied to the simulation box (𝛺): 

 ∑ ∆𝑄𝛤𝑘
𝑘

= 0 . (4.10) 

The system will approach a steady-state in which heat fluxes are established between the two 

subdomains, leaving other regions (𝛤0) of simulation box unthermostatted. One crucial aspect 

of the heat-exchange algorithm is the special treatment of kinetic motion in the thermostatted 

regions, whereby the algorithm exchanges only non-translational kinetic energy. Energy is 

added or removed by rescaling velocities (𝑣𝑖) of all the particles in the active regions (𝛤𝑘), but 

leaving the centre of mass velocities (𝑣𝛤𝑘
) of these regions unchanged. The non-translational 

kinetic energy in one region can then be described as: 

 
𝐾𝛤𝑘

= ∑
𝑚𝑖𝑣𝑖

2

2
−

𝑚𝛤𝑘
𝑣𝛤𝑘

2

2
𝑖∈𝛾𝑘

 , (4.11) 

where 𝑚𝛤𝑘
 is the total mass contained in 𝛤𝑘 and 𝑚𝑖 is the mass of the particle. The time-

dependent index set 𝛾𝑘 comprises all particles which are located in 𝛤𝑘. An important point is 

that particles outside the thermostatted region are not affected by this procedure. The velocity 

upgrade of each particle inside thermostatted regions can be formulated as:153 

 𝑣𝑖 → 𝑣̅𝑖 =  𝜉𝑘𝑣𝑖 + (1 − 𝜉𝑘)𝑣𝛤𝑘
 , (4.12) 

where 𝑣̅𝑖 is the particle velocity after applying the algorithm, and 𝜉𝑘 is the rescaling factor, 

which is defined for the HEX algorithm as: 
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𝜉𝑘 = √1 +
∆𝑄𝛤𝑘

𝐾𝛤𝑘

 . (4.13) 

Previous equations satisfy the following relations: (i) the updated non-translational kinetic 

energy (𝐾̅𝛤𝑘
) is equal to the sum of the non-translational kinetic energy (𝐾𝛤𝑘

) and the amount 

of heat (∆𝑄𝛤𝑘
) added in the thermostatted region, (ii) the updated center of mass velocity (𝑣̅𝛤𝑘

) 

is conserved: 

 𝐾̅𝛤𝑘
= 𝐾𝛤𝑘

+ ∆𝑄𝛤𝑘
 , (4.14) 

 𝑣̅𝛤𝑘
= 𝑣𝛤𝑘

 . (4.15) 

In this setup, the system is described by 6N-dimensional vector 𝑥 = (𝑟, 𝑣) in the phase space. 

In order to study time evolution, Wirnsberger et al.70 propose the following steps in their 

algorithm: 

 𝑣̅𝑖
𝑛 = 𝜉𝑘(𝑟𝑖)𝑣𝑖

𝑛 + (1 − 𝜉𝑘(𝑟𝑖)
𝑛 )𝑣𝛤𝑘(𝑟𝑖)

 ,  (4.16) 

 
𝑣̅

𝑖

𝑛+
1
2 = 𝑣̅𝑖

𝑛 +
∆𝑡

2𝑚𝑖
𝑓𝑖

𝑛 , 
(4.17) 

 
𝑟𝑖

𝑛+1 = 𝑟𝑖
𝑛 +  ∆𝑡𝑣̅

𝑖

𝑛+
1
2 , 

(4.18) 

 𝑓𝑖
𝑛+1 = −∇𝑈(𝑟)|𝑟=𝑟𝑛+1  , (4.19) 

 
𝑣̅𝑖

𝑛+1 = 𝑣̅
𝑖

𝑛+
1
2 +

∆𝑡

2𝑚𝑖
𝑓𝑖

𝑛+1 , 
(4.20) 

 𝑣𝑖
𝑛+1 = 𝜉𝑘̅(𝑟𝑖)

𝑛+1  𝑣̅𝑖
𝑛+1 + (1 − 𝜉𝑘̅(𝑟𝑖)

𝑛+1 )𝑣̅𝛤𝑘(𝑟𝑖)

𝑛+1  , (4.21) 

where the time evolution is defined as 𝑡 = 𝑛∆𝑡 with 𝑛 as a superscript and ∆𝑡 the timestep. 

𝑈(𝑟) is the potential energy and 𝑓 is the force acting on each particle 𝑖. Wirnsberger et al. 

applied their formulation of the HEX algorithm for a Lennard-Jones fluid and to the SPC/E 
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water model, and the authors observed an energy drift scaling as 𝑂(∆𝑡2), which becomes 

restrictive for long simulations. Therefore, the authors improved the description of the HEX 

algorithm. The energy drift was identified to be due to higher order truncation terms, which are 

not taken into account in the adapted velocity Verlet time integration. Therefore, the authors 

reformulated the HEX algorithm as a Trotter factorisation of Liouville operator (𝑖𝐿), following 

Tuckerman et al.154 who demonstrated that reversible integrators can be created by a Trotter 

factorisation. The exact evolution of the system as described by a 6N-dimensional vector 

𝑥(𝑟, 𝑣) in space is: 

 𝑥𝑒𝑥(𝑡) = 𝑒𝑡𝑖𝐿𝑥(0) , (4.22) 

where the Liouville operator is split in two parts 𝑖𝐿 = 𝑖𝐿1 + 𝑖𝐿2. In order to solve the 

integration step, the Strang splitting155 is applied to approximate time evolution:  

 
𝑥(𝑡) = [𝑒

∆𝑡
2

𝑖𝐿1𝑒
∆𝑡
2

𝑖𝐿2𝑒
∆𝑡
2

𝑖𝐿1]
𝑃

𝑥(0) , (4.23) 

where 𝐿1 and 𝐿2 describes the partial derivative of velocities and positions. The Strang splitting 

has the following local truncation error:156 

 𝑥(∆𝑡) − 𝑥𝑒𝑥(∆𝑡) = ∆𝑡3ℰ𝑥𝑒𝑥(0) + 𝑂(∆𝑡4) , (4.24) 

where ℰ is the leading-order error term from the Liouville operator splitting. Wirnsberger et 

al.70 found that it is sufficient to consider a coordinate correction in the form of eq. (4.24). One 

of the reasons is that velocity Verlet integration is less accurate and its local truncation error is 

𝑂(∆𝑡3), which is larger than local truncation error from trotter factorisation 𝑂(∆𝑡4). 

Consequently, the authors ignored the additional Verlet truncation error and all other correction 

terms which affect the velocities.  

Finally, a coordinate correction in the time integration sequence from the previous definition 

of the HEX algorithm (equations (4.16) to (4.21)) was included, which is redefined as the 

enhanced heat exchange algorithm (eHEX): 
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 𝑟𝑖
𝑛+1 = 𝑟̅𝑖

𝑛 − ∆𝑡3ℰ𝑟̅𝑖
𝑛+1 .  (4.25) 

The eHEX demonstrates a significant reduction of the energy loss as compared to the HEX 

algorithm. The simulations of SPC/E water systems demonstrate an energy stability for a 

nanosecond simulation and timesteps up to 3.5 fs. For that reason, we rely on the 

implementation of this algorithm within the LAMMPS simulation package157,158 in order to 

perform simulations with a thermal gradient.   
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5. Thermophoresis simulations 

5.1 Thermophoretic set-up 

To generate a unidimensional temperature gradient along one chosen direction 𝑧, 

parallelepipedic boxes are considered, where the axes orthogonal to the thermophoretic 

gradient are kept equidistant 𝐿𝑥 = 𝐿𝑦 and the 𝐿𝑧  distance is typically larger than 𝐿𝑦 and 𝐿𝑧. 

The box is centered in (0,0,0), with a right equiangular distribution (90°, 90°, 90°), such as 

square cuboid. 

The solvent particles are randomly introduced in the box with the Packmol package.159 The 

solutes particles are inserted uniformly along the z-direction of the thermal gradient, resulting 

in a flat concentration profile as the initial configuration. For the z-direction, we simply divide 

the box width (𝐿𝑧) by the number of particles (𝑛𝑠𝑜𝑙𝑢𝑡𝑒):  

 
𝛿𝑧 =

𝐿𝑧

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
 , (5.1) 

where 𝛿𝑧 is the amplitude of the z-direction slab. For the axes 𝑥 and 𝑦, we define a small area 

for each solute between 52  ↔  72 Å2, and we randomly insert the particles inside these areas. 

This strategy allows us to gain more control during the insertion process, which generates a 

better homogeneous concentration distribution in the 𝑥𝑦 plane, and avoids the overlap between 

two consecutive particles at high concentrations. 

In Figure 5.1, we show the distribution of 10 solute particles in the plane 𝑥𝑧 and 𝑥𝑦. The 10 

solute molecules are equi-distributed along 𝐿𝑧 distance. However, the 10 solute molecules are 

randomly placed along 𝐿𝑥 and  𝐿𝑦 lengths. In addition, the blue area represents the predefined 

region in which each solute is randomly inserted.   
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Figure 5.1: Schematic representation of flat concentration profile. Left picture represents the plane 𝑥𝑧, where the 

particles are randomly distributed along 𝐿𝑧 distance, but equidistributed along 𝐿𝑧 distance. The right picture 

represents the plane 𝑥𝑦, where the blue areas are defined for each solute and the solutes are randomly placed 

within this area.  

In our simulations, the real space cutoff of Coulombic interaction is 8.5 Å,144 although the 

Lennard-Jonnes potential is 9 Å. The particle-particle particle-mesh (PPPM) solver160 has been 

employed for the calculation of the long-range electrostatic forces, including the analytic 

differentiation approach which smooths the PPPM long range electrostatic forces. We follow 

a similar procedure as the eHEX thermal gradient activation work70 for the equilibration 

process of our systems and the posterior temperature gradient generation, following these 

general steps: 

1. Minimization process 

2. Velocity rescaling: driving the system to the target temperature 

3. NPT simulation 

4. Box rescaling  

5. NVT simulation: with the correct volume 

6. 1st NVE simulation 

7. Adjusting the energy of the last configuration  

8. 2nd NVE simulation: with the correct temperature 

As may be seen, this process requires the use of several ensembles in order to ensure suitable 

conditions for the posteriori set-up of thermal gradient. The first three steps are commonly used 
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for bringing the system into our working conditions. The system is first minimized using a 

Polak-Ribiere161 version of the conjugate gradient algorithm until relative changes in energy 

and forces fall below cut-off values of energy tolerance limit = 10−4 kcal · mol−1 and force 

tolerance limit = 10−6 kcal · mol−1 (step 1). Velocities are then set to correspond to the target 

median temperature (step 2), and a NPT equilibration of 400 ps is performed using the Nose-

Hoover162–164 thermostat and barostat (step 3), with the damping times of 𝑃𝑑𝑎𝑚𝑝 = 1000 fs 

(barostat) and 𝑇𝑑𝑎𝑚𝑝 = 100 fs  (thermostat). We want to emphasise that NPT barostat only 

applies for the plane 𝑥𝑦 and keeping 𝐿𝑥 = 𝐿𝑦, since the 𝑧 axis is going to be the thermal 

gradient axis, we keep invariant 𝐿𝑧 distance to gain control of the thermal gradient length, as 

we do not want the thermal gradient direction to vary in length. 

A critical point is the transition between the NPT and the NVT ensembles, steps 3 and 5 

respectively, in which the volume must be fixed for the rest of the simulation. Therefore, the 

average volume is determined once the NPT reached pressure and temperature equilibrium 

(step 4). The box is modified to ensure the correct volume for the given conditions by rescaling 

the plane 𝑥𝑦. The system is then equilibrated in the NVT ensemble for 200 ps at this 

equilibrium volume (step 5), using the Nose-Hoover thermostat with the same damping time 

of 100 fs as step 3.  

After the NVT simulation, the total energy of its last step could differ from the median 

temperature of the system. Therefore, the last frame of this second equilibration is then used 

for a first, short propagation in the NVE ensemble (step 6) for 1 ps, and the total energy of the 

box is calculated during the 1st NVE simulation (𝐸𝑁𝑉𝐸), and thus compare with the previous 

total energy average of the NVT simulation (𝐸𝑁𝑉𝑇), the 𝐸𝑁𝑉𝑇 is defined by the median 

temperature of the system. The energy difference between these two ensembles (𝐸𝑑𝑖𝑓𝑓 =

𝐸𝑁𝑉𝑇 − 𝐸𝑁𝑉𝐸) is reintroduced in the system by rescaling the velocities of the system particles 

in the last 1st NVE frame (step 7). In this case, we apply the eHEX algorithm to add or remove 

this energy difference in the system. Finally, a second NVE simulation of 200 ps prepares the 

system for the temperature gradient activation process at the previously fixed the total energy 

(step 8), which defines the target median temperature of the system. It should be noted that 

steps 4 and 7 are crucial rescaling processes in volume and energy respectively. These steps 

ensure the desired conditions for subsequent thermophoretic simulations under NVE ensemble. 
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Once the equilibration part is done, we define the cold and hot slab along z-axis. These two 

regions are symmetrically positioned at 𝑧𝑐 and 𝑧ℎ respectively, with a thickness of 𝛿𝑧 = 4 Å. 

One strategy would be to include these regions at the edges of the simulation box, i.e., 𝑧𝑐  ≈

 −𝐿𝑧/2 and 𝑧ℎ  ≈  𝐿𝑧/2, leading a temperature gradient along 𝐿𝑧. However, this would 

generate a discontinuity in the transition between two periodic simulations boxes because of 

the periodic boundary conditions and would lead to an extreme temperature-gradient. Thus, we 

prefer to place these two regions symmetrically at: 𝑧𝑐  ≈  −𝐿𝑧/4 and 𝑧ℎ  ≈  𝐿𝑧/4. In this case, 

the temperature-gradient over the half of the box size  𝐿𝑧/2, and a second symmetrical gradient 

along the other half of the box. The second advantage is that we double the thermal-gradient 

for one simulation. 

 

Figure 5.2: Thermostatted regions. The left figure shows a schematic representation of thermostatted regions at 

± 𝐿𝑧/2, where a temperature gradient of 𝐿𝑧 distance is generated, but leading a temperature discontinuity at the 

edges. The right figure shows a schematic representation of thermostatted regions at ± 𝐿𝑧/4, where two 

temperature gradients of 𝐿𝑧/2 distance are generated, without a temperature discontinuity at the edges. 

Once both regions are well defined, the next step is the thermal-gradient generation by 

activating the eHEX algorithm.70 As have mentioned before, not defining a set of thermostatted 

particles before running the simulation is one of the key points of this algorithm. The fact that 

we do not need to fix thermostatted molecules prevents having non-natural “obstacles” to the 

fluid flow in the thermostatted regions. Furthermore, water molecules are the only ones affected 

by the eHEX algorithm. We exclude solute molecules even if they enter in the reservoirs to 

have the most natural representation of the Soret effect. In addition, our systems are based on 

dilute aqueous solutions, which are largely dominated by water, so sufficient number of 
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molecules inside reservoirs will avoid any problems in the heat exchange process. This is one 

of the reasons why we choose a thickness of 𝛿 = 4 Å for each region, and not a thinner slab.  

After the eHEX algorithm is activated, the system requires some simulation time until the 

steady state condition is reached. First, a temperature gradient starts to emerge (step 9), which 

takes approximately 100 ps to stabilize (step 9). This is followed by a concentration gradient 

as a consequence of the previous temperature gradient, which takes 2 ns to converge (step 10).  

Step Action Ensemble Length 

0 Preparation - - 

1 Energy minimization - - 

2 Velocity scaling - - 

3 Equilibration NPT 400 ps 

4 Volume rescaling - - 

5 Equilibration NVT 200 ps 

6 Energy average NVE 1 ps 

7 Energy rescaling - - 

8 Equilibration NVE 200 ps 

9 Temperature-gradient convergence NVE ≈ 100 ps 

10 Concentration-gradient convergence NVE ≈ 2 ns 

11 Production NVE = 10 ns 

Table 5.1: Summary of the generation of a steady-state thermophoretic setting. 

After this point, the system reaches the steady-state condition, where both solute and solvent 

concentrations gradients will remain invariant for the rest of the simulation (step 11). 

Therefore, the concentration profiles as a function of the temperature gradient are independent 

on time, and the Soret coefficient value can be determined. In the next section, we will discuss 

the convergence of these two last steps in more detail. 

During the analysis, if we represent logarithmic concentration as a function of the temperature 

gradient, we can determine the Soret coefficient as its linear regression, see eq. (3.9). Moreover, 
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we overlap both gradients in order to improve the statistics, since the concentration gradients 

are double represented for one simulation box.   

The Soret coefficient errors are calculated by the bootstrap method,165 which is a statistical 

technique for estimating quantities about a population by averaging estimates from multiple 

small data samples. This method consists in taking 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (in our case, 50), where each 

sample comprises of a certain number of independent trajectories 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 (in our case, 10) 

randomly selected among our simulated trajectories that are 20 independent trajectories for 

most simulations. The error is thus determined by the standard deviation of these 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. In 

the next section, we will discuss the energy conservation over the simulation time, and the time 

required for the establishment of the temperature and concentration gradients. 

5.2 Convergence 

We first assess the ability of the thermophoretic simulation set-up to generate a temperature 

gradient for the timescale of the gradient onset. Our aim of this section is to investigate the 

conservation of energy throughout the simulation, whether the temperature and concentration 

gradients are adequately generated for any system that we are interested in studying.  

5.2.1 Energy conservation 

The original implementation of heat exchange algorithm166,167 faces an important problem in 

the energy conservation due to a truncation error in the operator splitting, which leads an energy 

drift that scales 𝑂(∆𝑡2). Wirnsberger et al70 eHEX algorithm largely improved the truncation 

error by adding an coordinate correction in the velocity Verlet propagation algorithm, which 

reduces the error to 𝑂(∆𝑡4). However, their work focuses on relatively short timescales for 

simple models (SPC/E and Lennard-Jones fluids), not longer than 1 ns, which becomes 

unpractical for our simulations that requires a longer time for equilibration and production runs. 

Consequently, we first assess the energy conservation for this algorithm over longer timescales 

(10 ns), and its robustness at different time integration steps. 
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 Figure 5.3: Energy conservation study. One single trajectory is represented. Data are shown for four different 

timesteps; ∆𝑡1 = 0.5 fs, ∆𝑡2 = 1 fs, ∆𝑡3 = 2 fs and ∆𝑡4 = 5 fs, in a pure aqueous solution. The energy drift of 

∆𝑡4 = 5 fs is divided by 50. 𝑃 = 1 bar. 𝑇0 = 300 K. 𝐿𝑧 = 50 Å.  The left graph represents the energy drift over 

10 ns simulation without eHEX algorithm. The right graph represents the energy drift over 10 ns simulation 

with eHEX algorithm, and the energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a 

thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 

In Figure 5.3, we compare the energy drift of NVE simulations for pure water systems at 300 

K composed of 1064 water molecules in a box with the length of 𝐿𝑧 = 50 Å. The left graph 

represents the NVE simulation without the implementation of eHEX algorithm, and the right 

graph represents the same NVE simulation once the eHEX is active. We do not observe any 

relevant difference on the energy drift, prior and post the activation of the kinetic exchange 

algorithm. The results show that energies are conserved for timesteps 0.5 fs (magenta), 1 fs 

(red) and 2 fs (blue) along 10 ns simulation, which follows the same energy conservation line 

as shown by Wirnsberger et al.70 However, the energy drift is much more pronounced at 5 fs 

(green), therefore, we divide the energy drift value by 50 in Figure 5.3.  

The 0.5-fs simulations show a high energy conservation for both simulations, which indicates 

the good energy conservation of the NVE simulations with and without the eHEX algorithm 

for a timescale of 10 ns. The 1-fs simulation has the same energy conservation than 0.5 fs 

simulation for the NVE simulation without the eHEX algorithm, but it has a very small constant 

energy drift once the eHEX is activated, −0.05 kcal · mol−1 · ns−1, causing the total energy 

drift for the NVE simulation with the active eHEX is lower than −0.5 kcal · mol−1. We also 

observe some energy conservation deviation for the 2-fs simulations. The left graph shows an 

eHEX = on eHEX = off 
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energy drift smaller than 1 kcal · mol−1 on the first nanoseconds of the simulation, but after 

some steps the energy becomes constant. The right graph does not show any energy drift, but 

it has a small energy peak on the last nanoseconds (8-10 ns). Finally, the energy completely 

drifts for the 5-fs simulation. Consequently, the lower integration timestep, the better the 

energy conservation, because we observe that the integration step of 0.5 fs keeps better the total 

energy. 

In this work, a 1-fs integration step is the best choice for our thermophoretic simulations and 

appears a good compromise, 0.5-fs demonstrated a better energy conservation but a 1-fs 

timestep significantly reduces the computational cost. We would also like to point out that 

thermophoretic simulations have been attempted using 2-fs, giving similar concentration 

gradients as in 1-fs simulations, but we decided to stay at 1-fs to be able to study flexible 

molecules due to energy drift of 2-fs simulation in NVE. 

5.2.2 Convergence of the temperature gradient  

A crucial part for thermophoretic simulations is the establishment of a stable and constant 

thermal gradient during the whole simulation time, because the system will only be able to 

reach the steady-state condition if we first ensure a constant thermal gradient independent of 

time. The energy conservation study from the previous section confirmed that the eHEX 

algorithm allow us to study a non-equilibrium thermally-driven effect from the NVE ensemble, 

since the total energy of the system is conserved in a nanoscale time.  

The median temperature (𝑇0) is established during the NPT and posterior NVT equilibration 

steps by using the Nose-Hoover thermostat.162–164 On the other hand, the temperature gradient 

(∆𝑇) is directly proportional to the amount of non-translational kinetic energy transferred from 

the cold region to the hot region of the simulation box every timestep. Therefore, the quantity 

of heat transfer process (∆𝑄𝛤𝑘
) will determine the amplitude of the temperature gradient.  

The amount of heat required to generate a specific thermal gradient depends on the solvent 

molecules (water) affected by the eHEX algorithm, the length and the width of the simulation 

box, and the thermalised regions. In this work, the main system is composed of 1024 water 

molecules, and 20 to 80 solutes, because we want to remain in a dilute regime. Even if we 

expect that the partial volume of the solvent is not symmetric between both regions, we do not 
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take into account this difference for determining the amount of kinetic energy necessary. 

Moreover, we have analysed the thermal gradient amplitude by adding 80 molecules of TMAO 

in 1024 water molecules, and we do not observe a substantial difference on the thermal 

gradient, after the equilibration and the posterior generation of the thermal gradient, compared 

with the pure water box (1024 water). 

Our main parallelepipedic simulation box has a total fixed length of  𝐿𝑧 = 50 Å, but variable 

widths around 𝐿𝑥 = 𝐿𝑦 ≈ 𝐿𝑧 2⁄ , depending on the number of solutes, the temperature and the 

pressure, because the barostat is applied in the 𝑥 and  𝑦 directions. In the stationary state, the 

heat flux between the reservoirs is given by:70 

 
𝐽𝑄(𝑧) =

∆𝐹𝛤𝑘

2∆𝑡𝐿𝑥𝐿𝑦
 , (5.2) 

and the volume of the reservoirs is: 

 𝑉𝛤𝑘
= 𝛿 · 𝐿𝑥 · 𝐿𝑦 , (5.3) 

where 𝛿 = 4 Å is the thickness of the reservoir. The imposed amount of heat per timestep for 

this system is ∆𝑄𝛤𝑘
= ∆𝐹𝛤𝑘

/∆𝑡 = 0.0375 kcal · mol−1fs−1. However, longer systems (i.e., 

𝐿𝑧 = 75, 100 Å) with the same width requires lower heat transfer, as the distance between the 

hot and cold reservoir increases. Longer distances require less energy to keep the same 

temperature gradient, because the thermal conduction of the solution needs to propagate along 

longer distances to equilibrate the two reservoirs due to the same heat flow rate (𝜑𝑞): 

 
𝜑𝑞 =

∆𝐹𝛤𝑘

2∆𝑡
= −𝑘𝐵𝐿𝑥𝐿𝑦

∆𝑇(𝑧)

∆𝑧
  . (5.4) 

In order to capture the spatial variation of the temperature, we divide the z-axis into 𝑁𝑏 bins: 

 
𝑇𝑗 =

2𝐾𝑗

(𝑁𝑗𝑓 − 3)𝑘𝐵

 , (5.5) 
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where 𝑗 is one bin, 𝑇𝑗 is the instantaneous kinetic energy, 𝑁𝑗  is the number of atoms contained 

in the bin, 𝑓 is the number of degrees of freedom per atom, and 𝐾𝑗 is the total non-translational 

kinetic energy. The total number of bins is calculated by:  

 
𝑁𝑏 =

𝛿𝑏

𝐿𝑧
 , (5.6) 

where 𝛿𝑏 = 0.6 Å. We thus verify the convergence of the temperature gradient in our 

simulations, which will induce a posterior concentration gradient in response of the generated 

thermally-driven forces, and we also check the ability to generate temperature gradient for the 

timescale of the gradient onset. Several thermophoretic systems have been taken into account, 

represented in Figure 5.4.  

We have analysed the evolution of the temperature gradient for a simulation time of 100 ps, 

except 200 ps for Figure 5.4.D. Temperature evolution is analysed by blocks from 1 to 5 ps, 

depending on the thermal gradient timestep. Once the simulations reached the thermal steady-

state, the thermal gradients are represented by a black line. The resulting amplitude of the 

thermal gradient is thus ∆𝑇 ≈  60 K for all the thermophoretic systems.  

Figure 5.4.A and Figure 5.4.B represent a pure water box of 1024 molecules, and we show the 

thermal gradient growth as a function of time for temperatures of 300 K and 330 K respectively. 

We observe that these thermal gradients progressively increase for both simulations, and they 

converge in less than 10 ps (purple line (10 ps) reaches the shape of the black line (steady-

state)). This first analysis shows that the median temperature (300 K or 330 K) does not have 

an impact on the eHEX algorithm during the thermal gradient generation, which means that 

the amplitude of the thermal gradient does not depend on the median temperature of the system.  

Figure 5.4.B and Figure 5.4.C represent a pure water box of 1024 and 2048 molecules 

respectively at 330 K. In this case, we double the system size from Figure 5.4.B to Figure 5.4.C, 

and we observe instead a slow gradient convergency, which takes almost 5 to 10 times longer 

to reach the stead-state expected for our target thermal gradient (∆𝑇 ≈  60 K ). Two effects 

can explain this slower convergence which is also justified by the eq. (5.4). First, doubled-size 

system implies that heat flow (𝜑𝑞) needs to double the distance along the z-axis (∆𝑡 ∝
∆𝐹𝛤𝑘

∆𝑇
∆𝑧),  
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Figure 5.4: Convergence of the water temperature-gradient. Data was averaged over 20 independent trajectories. The 

energy flux was set to ∆𝑄𝛤𝑘

50Å = 0.0375 kcal · mol−1fs−1 (𝐿𝑧 = 50 Å) and ∆𝑄𝛤𝑘

100Å = 0.01875 kcal · mol−1fs−1 

(𝐿𝑧 = 100 Å) in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝑃 = 1 bar. The blue and red bars 

represent the reservoirs where heat is pumped and injected, respectively. (A) Pure water (1024 molecules), 𝐿𝑧 = 50 Å,

𝑇0 = 300 K. (B) Pure water (1024 molecules), 𝐿𝑧 = 50 Å, 𝑇0 = 330 K. (C) Pure water (2048 molecules), 𝐿𝑧 =

100 Å, 𝑇0 = 330 K. (D) Aqueous solution of TMAO (2.17 m) (40 TMAO /1024 water), 𝐿𝑧 = 50 Å, 𝑇0 = 330 K. 

since the total length of the box (𝐿𝑧) increases from 50 Å  to 100 Å. Secondly, the heat transfer 

is reduced for longer systems (∆𝑄𝛤𝑘

100Å = ∆𝑄𝛤𝑘

50Å 2⁄ ), since they require less energy to generate 

the same amplitude of the temperature gradient (∆𝑇 ≈  60 𝐾), but reducing the amount of heat 

transfer slows the thermal gradient generation process. 
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Figure 5.4.B and Figure 5.4.D represent the pure water box of 1024 molecules and the aqueous 

solution of TMAO 2.17 m (40 TMAO /1024 water) respectively. In this case, we check if the 

addition of solute molecules has any impact on the heat transfer timescale. Comparing both 

systems do not reveal any relevant difference on the timescale thermal gradient generation. The 

first reason is that the solute is not directly affected by the eHEX algorithm, which means that 

the kinetic energy of each solute is given by the thermal gradient generated by the solvent. The 

second reason is that the TMAO aqueous solution is in a dilute regime, where the heat transfer 

from solvent to solute is relatively small enough to alter the amplitude of the thermal gradient. 

The third reason is that the amount of TMAO molecules inside the reservoirs is not high enough 

to displace the minimal quantity of water molecules required for a correct operation of the 

eHEX algorithm. 

We show that the equilibration timescale of 100 ps for 5 nm box length systems and 200 ps for 

10 nm box length systems are enough to reach the thermal gradient (∆𝑇 ≈  60 K) in steady 

state condition. Moreover, we also confirm that solutes added in our systems do not affect the 

thermal gradient. 

5.2.3 Convergence of the concentration gradient 

We already set-up the timescale for a proper and constant temperature gradient generated along 

the simulation box, and we reach a thermal steady state from the perspective of the temperature 

gradient. We can now focus on the concentration gradient profile for our dilute aqueous 

solutions. As we can imagine, the concentration gradients require much longer timescales to 

equilibrate as compared to the temperature gradients.151 The thermal gradients work in terms 

of heat transfer, but the concentration gradients generated in the thermophoretic simulations 

are instead thermally-driven diffusion processes in response to these thermal gradients, which 

takes longer to reach the diffusive steady state. Furthermore, our work focuses on dilute 

solutions, since there are only a few solute molecules inside the simulation box, these solutes 

must diffuse all over the box to fully sample the thermophoretic effect. For a typical molecular 

size solute, the diffusion coefficient under ambient conditions is on the order of 0.01-0.1 Å2/ps, 

so one solute molecule will sample 1 nm over ≈ 0.5 - 5 ns. For this reason, we average 40 

independent trajectories of the same simulation for a total duration of 10 ns to get better 

concentration profiles. We also divide the z-axis into the same number of bins (𝑁𝑏) as a 
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function of the box size, see eq. (5.6), in order to capture the spatial variation of the 

concentration, same bins as the temperature gradient. We now investigate the evolution of the 

concentration gradient for the model TMAO solute in a dilute aqueous solution at different 

median temperatures, concentrations, and box lengths. 

Schematic representation of the simulation boxes  

  

  

 

Figure 5.5: Convergence of the TMAO concentration-gradient (temperature). Data was averaged over 40 

independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a 

thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝑃 = 1 bar. 𝐿𝑧 = 50 Å . The blue and red zones represent the cold 

and hot regions, where the heat is pumped and injected. The left graph is a 2.17-m TMAO average concentration 

at 𝑇0 = 330 K. The right graph is a 2.17-m TMAO average concentration at 𝑇0 = 300 K . The simulation boxes 

above the graph shows the difference between both graphs. 

The concentration profiles of the 2.17-m TMAO solutions are shown in Figure 5.5 at the 

median temperatures of 300 K and 330 K respectively. The concentration profile is seen to 

converge on a 2 ns (magenta line) timescale for the reference median temperature of 300 K, 

and 1 ns (green line) timescale for the median temperature of 330 K. These convergence time 

difference can be associated the corresponding TMAO diffusion coefficient (𝐷𝑠) at the 
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corresponding temperatures of 300 K and 330 K, which are equal to 0.049 and 0.101 Å2/ps, 

respectively. While a proper determination of a scaling law would require more extensive tests 

involving other solutes and concentrations, a rule of thumbs that we can derive here is that the 

equilibration time (𝜏𝑒𝑞) for 𝑁 solute molecules along a gradient spanning 𝐿𝑧/2 is on the order 

of: 

 
𝜏𝑒𝑞 ≈

𝐿𝑧
2

𝐷𝑠 · 𝑁
 . (5.7) 

While we do not expect this relationship to remain valid varying extensively the solute or the 

simulation conditions, this does provide a rough estimate of the required timescale before 

reaching a steady-state in these systems. If we assume that solute molecules do not directly 

interact with each other in sufficiently dilute solutions, this timescale also imposes a lower limit 

to the average concentrations that can be studied in practice. At the maximum dilution of 1 

solute molecule in the simulation box, simulations involving similar system and gradient sizes 

would likely require 50 ns to converge and then provide very poor statistics anyway. As a 

consequence, studying thermophoresis for dilute solutions within this simulation framework 

requires a reasonable trade-off between the number of solute molecules in the system and 

convergence of the concentration-gradient on accessible timescales. Moreover, we also notice 

that the amplitude of the concentration profile of 330 K is larger than 300 K, which might 

indicate a higher thermophobicity for the TMAO molecule as the median temperature of the 

system increases. This aspect will be quantified by the Soret coefficient calculations in the next 

chapter. 
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Schematic representation of the simulation boxes  

  

  

 

Figure 5.6: Convergence of the TMAO concentration-gradient (concentration). Data was averaged over 40 

independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a 

thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝑃 = 1 bar. 𝐿𝑧 = 50 Å. 𝑇0 =  330 K. The blue and red zones 

represent the cold and hot regions, where the heat is pumped and injected. The left graph is a 2.17-m TMAO 

average concentration. The right graph is a 4.4-m TMAO average concentration. The simulation boxes above 

the graph shows the difference between both graphs.  

The concentration profiles of 2.17-m and 4,4-m TMAO solutions are shown in Figure 5.6 

respectively at a median temperature of 330 K. The concentration profile is seen to converge 

on a 1 ns (green line) timescale for the median temperature of 330 K for the higher 

concentration system, which is the same as the 2.17-m TMAO solution timescale previously 

discussed. These results manifest that solute concentration does not alter the convergence time. 

Moreover, once the steady state is reached for both simulations, the amplitude of the 

concentration gradients are very similar for both simulations, which indicates that the Soret 

effect might not depend on the concentration. This aspect will be also quantified by the Soret 

coefficient calculations in the next chapter. 
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Schematic representation of the simulation boxes  

  

  

 

Figure 5.7: Convergence of the TMAO concentration-gradient (length). Data was averaged over 40 independent 

trajectories. 𝑃 = 1 bar. 𝑇0 =  330 K. The blue and red zones represent the cold and hot regions, where the 

kinetic exchange is active. The left graph is a 2.17-m TMAO average concentration, 𝐿𝑧 = 50 Å and ∆𝑄𝛤𝑘

50 =

0.0375 kcal · mol−1fs−1. The right graph is a 2.17-m TMAO average concentration, 𝐿𝑧 = 100 Å and ∆𝑄𝛤𝑘

100∗
=

0.009375 kcal · mol−1fs−1. The simulation boxes above the graph shows the difference between both graphs.  

The concentration profiles of the 2.17-m TMAO solutions are shown in Figure 5.7 at the box 

lengths of 50 Å to 100 Å respectively along the thermal gradient direction 𝑧. The volume is the 

same (𝑉𝐸 = 𝑉𝐵), which means that the right graph simulation box has 𝐿𝑥 = 𝐿𝑦 ≈ 18 Å lengths 

perpendicular to the thermal gradient. The box area (𝐿𝑥 · 𝐿𝑦) is reduced by 2 while the distance 

between the two reservoirs is multiplied by 2. Therefore, the imposed heat transfer (∆𝑄𝛤𝑘
) is 

set to 0.009375 kcal · mol−1fs−1, which is four times lower than heat transfer of the left graph 

to keep constant the heat flow rate (𝜑𝑞), see eq. (5.4). One problem that arises on extending the 

box length in the z-direction is that the same amount of TMAO molecules have to sample a 

distance which is twice as long in the gradient direction. As we have mentioned before, 

concentration gradients profiles are generated by sampling the solutes molecules moving along 

the thermal gradient. The concentration gradient in the left graph is represented by 40 TMAO 
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molecules (𝑁𝑇𝑀𝐴𝑂) in a box of length 50 Å, which means that its uni-dimensional z-density is 

equal to 𝜌𝑧 = 𝑁𝑇𝑀𝐴𝑂 𝐿𝑧⁄ = 0.8 Å−1. On the other hand, the concentration gradient in the right 

graph is represented by 40 TMAO molecules in a box of length 100 Å, so its uni-dimensional 

z-density is equal to 𝜌𝑧 = 0.4 Å−1. The reduction of the heat transfer between the reservoirs 

together with the lower z-density (𝜌𝑧) increases and hinders the concentration gradient 

convergence on the time. The fact that the concentration gradient in the left graph is different 

as compared to the right graph might be because this system does not converge during a 10 ns 

simulation. Therefore, longer simulations should be done to correctly describe the 

concentration gradient for the system in the right graph. However, we have not performed 

longer simulations for this system as this is not our main objective, and would require higher 

computational costs. We investigate instead the evolution of the concentration gradient for a 

larger system size in Figure 5.8. 

The concentration profiles of the 2.17-m TMAO solutions are shown in Figure 5.8 at the box 

lengths of 50 Å to 100 Å respectively along the thermal gradient direction 𝑧. The volume is the 

double (𝑉𝐹 = 2 · 𝑉𝐵), which means that the axes perpendicular to the thermal gradient remained 

unaltered, but the length of the z-axis was doubled (𝐿𝑧 = 100 Å) in the right graph. The box 

area (𝐿𝑥 · 𝐿𝑦) is conserved while the distance between the two reservoirs is multiplied by 2. 

Consequently, it is observed that the concentration profile converges on ~2 ns, which is 2 times 

longer than that of the left graph. This result is in agreement with the quadratic part of a 

diffusive process (𝜏𝑒𝑞 ≈  𝐿𝑧
2/(𝐷𝑠 · 𝑁)), which will require four times longer to sample a 

doubled distance. However, once the steady state is reached for the concentration profile in the 

left graph, the resulting concentration gradient is very similar to the concentration gradient of 

the right graph, which indicates that the Soret effect does not depend on the system size. 
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Schematic representation of the simulation boxes  

  

  

 

Figure 5.8: Convergence of the TMAO concentration-gradient (size). Data was averaged over 40 independent 

trajectories. 𝑃 = 1 bar. 𝑇0 =  330 K. The blue and red zones represent the cold and hot regions, where the 

kinetic exchange is active. The left graph is a 2.17-m TMAO average concentration, 𝐿𝑧 = 50 Å and ∆𝑄𝛤𝑘

50 =

0.0375 kcal · mol−1fs−1. The right graph is a 2.17-m TMAO average concentration, 𝐿𝑧 = 100 Å and ∆𝑄𝛤𝑘

100∗
=

0.001875 kcal · mol−1fs−1. The simulation boxes above the graph shows the difference between both graphs. 

As we have mentioned before, even though the ideal dilute solution should be just a single 

solute molecule in the simulation box, these simulations would require an enormous amount 

of time to converge, because the solute molecule must sample the entire concentration gradient 

profile and thus travel through the simulation box several times. Considering that solute 

molecules do not interact directly with each other at sufficiently dilute solutions, a larger 

number of molecules in the same system would improve the sampling process and thus reduce 

the time scale of the simulation. Moreover, we will obtain better estimates of average 

concentration gradients, and reduce the statistical errors. We find that 2.17-m TMAO solution 

is a good compromise, because it allows to accelerate convergence while being in the dilute 

regimes where solute-solute interactions are negligible. For such systems, we estimate that a 

2-ns timescale can safely be chosen as the time required to reach the steady state for the solute 
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concentration profile as long as the conditions for the simulation and the system sizes do not 

significantly differ from the ones studied here.  

5.3 Robustness of the results 

In this section, we will analyse different aspects of thermophoretic systems once they reach 

steady state equilibrium. First, we will focus on the effect of the box size and of the gradient 

amplitude. Second, we will investigate the effect of the rate at which heat is exchanged between 

the reservoirs as well as testing different force fields available in the literature. 

5.3.1 Dependence on the box length (𝑳𝒛) 

A first important check is to verify that the Soret coefficient does neither critically depend on 

the box size nor the amplitude of the thermal gradient. We have repeated our simulations on 

the model TMAO system. The thermal gradient z-axis (𝐿𝑧) was increased from 50 Å to 100 Å, 

the other two distances (𝐿𝑦 = 𝐿𝑥) perpendicular to the thermal gradient remained invariant 

(𝐿𝑥
50 Å ≈ 𝐿𝑥

100 Å) and the number of molecules was rescaled in order to keep the 𝑧-density 

constant (𝜌𝑧 = 0.8 Å−1). We have seen before that the main consequence of increasing the box 

size is the equilibrium time scale, with a doubled equilibration time for a doubled box size (see 

above). However, the results in Figure 5.8 suggest that the achieved concentration profiles are 

independent of the box length. In this section, we have analysed the concentration gradient as 

a function of thermal-gradient length (𝐿𝑧) in more detail. We study three simulations box 

lengths (𝐿𝑧) of 50 Å, 75 Å and 100 Å, and their Soret coefficient value is determined for these 

systems. The previous equation (3.10) described the Soret coefficient (𝑆𝑇 = 𝐷𝑇
𝑠 𝐷⁄ ) as an 

exponential depletion law, and we can thus rewrite the expression as: 

 
ln (

𝑐𝑠

𝑐0
𝑠) = −𝑆𝑇(𝑇 − 𝑇0) , (5.8) 

where the Soret coefficient is then defined as the slope of the normalised logarithmic 

concentration of the solute as a function of the temperature difference from the median 

temperature. Moreover, our simulations are composed by two zones under thermal gradients, 
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they are combined in order to double the statistics of our logarithmic concentration gradients 

as a function of the temperature.  

  

Figure 5.9: Box size dependence. Data was averaged over 20 independent trajectories (40 for 𝐿𝑧  = 100 Å). 

The energy flux was set to ∆𝑄𝛤𝑘

50Å = 0.0375 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

75Å = 0.025 kcal · mol−1fs−1 and ∆𝑄𝛤𝑘

100Å =

0.01875 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝑃 = 1 bar . 𝑇0 =

330 K.. The blue and red bars indicate the regions where heat is pumped and injected, respectively; their width 

is not at scale. Data is shown for three different box lengths in a 2.17-m TMAO solution of 𝐿𝑧 = 50, 75, 100 Å. 

The left graph represents the molality vs reduced box length. The right graph represents the same data on a log-

scale for the molality and as a function of temperature. 

The concentration profiles of the 2.17-m TMAO solutions are shown in the left graph of Figure 

5.9 for the box lengths of 50 Å, 75 Å and 100 Å. The box length 𝐿𝑧 is represented in reduced 

units to observe the overlap among the three concentration gradients. The reduced units 

represent each box length (50, 75 and 100 Å) in an interval from -1 to 1. While the concentration 

profiles are not exactly similar, the amplitude of the concentration difference between the two 

extremes in the hot and cold regions are the same within error bars. The right graph represents 

the ln (𝐶 𝐶0⁄ ) as a function of the temperature difference (𝑇 − 𝑇0), which might indicate lower 

slope for largest simulation length (𝐿𝑧 = 100 Å). Therefore, the corresponding Soret 

coefficients are: 𝑆𝑇
50 Å = 5 ± 0.9 10−3K−1, 𝑆𝑇

75 Å = 5.6 ± 1.3 10−3K−1, 𝑆𝑇
100 Å = 3.6 ±

1.5 10−3K−1. Even if the Soret coefficient from the largest simulation is noticeably lower than 

the other two simulations, its associated error is large enough to be in the range of the Soret 

coefficient value from the shorter length simulation (𝐿𝑧 = 50 Å). However, the simulations of 
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𝐿𝑧 = 50 Å and 𝐿𝑧 = 75 Å exhibit very similar Soret coefficient values. We also observe that 

the Soret coefficient associated error increases with the system size. We detailed above those 

longer simulations lead to longer equilibration times, which could explain that our estimations 

may be limited for the largest system due to limited statistics. Even if more statistics would be 

better to improve the description of these systems, we can conclude that the concentration 

gradient is practically insensitive to the size of the system box, once the steady state condition 

for the concentration gradient is reached at a given median temperature. Therefore, the smallest 

box system of 50 Å is the best option in terms of computational resources and lower statistic 

errors.  

5.3.2 Dependence on the gradient amplitude (𝛁𝑻) 

Another aspect that could affect the Soret coefficient value is the thermal gradient amplitude. 

Larger thermal gradient amplitudes will induce stronger thermally-driven effect, and hence a 

stronger response of the solute molecules inside the thermal gradient. The objective of this 

chapter is to check whether there is a variation in the slope of the concentration profiles as a 

function of the temperature for various temperature gradient amplitudes, the range of these 

thermal amplitudes (∇𝑇) is set from 0.8 to 3.6 K · Å−1.  

The concentration profiles of the 2.17-m TMAO solutions are shown in Figure 5.10 at different 

thermal gradient amplitudes (∇𝑇) of 0.8, 1.2, 2.4 and 3.6 K · Å−1. The left graph represents the 

concentration gradient profile for a simulation box (𝐿𝑧) of 50 Å at a median temperature of 330 

K. The temperature difference (∆𝑇) increases from 20 K to 90 K. The shaded areas indicate the 

standard deviations estimated from 20 independent trajectories for the largest and the smallest 

thermal gradients. We observe that the difference in TMAO concentration between hot and 

cold regions is accentuated as the amplitude of the thermal gradient increases, as expected from 

eq. (3.9) (𝑑𝑙𝑛𝑐𝑠 𝑑𝑇⁄ |𝑧 = − 𝑆𝑇
𝑠(𝑧)). We notice that the concentration profile gets smoother as 

the gradient amplitude increases. 
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Figure 5.10: Gradient amplitude dependence. Data was averaged over 20 independent trajectories. The energy 

flux was set to ∆𝑄𝛤𝑘

0.8K·Å−1
= 0.0125 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

1.2K·Å−1
= 0.01875 kcal · mol−1fs−1 ,  ∆𝑄𝛤𝑘

2.4K·Å−1
=

0.0375 kcal · mol−1fs−1 and ∆𝑄𝛤𝑘

3.6K·Å−1
= 0.05625 kcal · mol−1fs−1. Data are shown for four different 

gradients 𝛻𝑇 , ranging from 0.8 to 3.6 K · Å−1 , in a 2.17-m TMAO solution. 𝑃 = 1 bar .  𝑇0 = 330 K. 𝐿𝑧 =

50 Å. The left graph represents the TMAO molality as a function of z. The shaded areas indicate the standard 

deviations estimated from 20 independent trajectories at the two extreme gradients. The blue and red bars 

indicate the regions where heat is pumped and injected, respectively. The right graph represents the same data 

on a log-scale for the molality and as a function of temperature. The Soret coefficient at the reference 

temperature can be interpreted as the slope of the curves, which are basically identical at the centre of the 

gradient.  

We confirm that the absolute concentration differences increase as ∆𝑇 increase. However, the 

Soret coefficient values around the median temperature remain constant. This effect can be 

observed by plotting the concentrations as a function of the temperature, which are represented 

in the right graph of Figure 5.10. We observe similar concentration gradient variation for the 

different thermal amplitudes as long as they are outside the thermostatted regions. Therefore, 

a critical effect of the gradient amplitude is to increase the signal-to-noise ratio. While the 

smallest investigated gradient of 0.8 K · Å−1 , which corresponds to ∆𝑇 = 20 K here, readily 

leads to a noticeable concentration-gradient, the resulting profile suffer from statistical 

uncertainties that are almost as large as the concentration-difference themselves. For the largest 

investigated gradient (∇𝑇 = 3.6 K · Å−1 , i.e., ∆𝑇 = 90 K), the concentration-difference is much 

larger than the statistical uncertainties. A compromise has to be found between the accuracy of 

the measured concentration-gradient, that should be large enough to exceed the statistical 

uncertainties, while employing a reasonable temperature-gradient where the water phase lies 
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within, or not too far, from its equilibrium liquid phase domain (namely, between 273 and 373 

K). In the following, we chose to employ the 2.4 K · Å−1 gradient, which allows to satisfy these 

conditions in most cases. 

5.3.3 Testing eHEX exchange rate algorithm 

The enhanced kinetic exchange algorithm (eHEX) allows us to adapt the amount of non-

translational energy transferred from the cold region to the hot region, as well as its periodicity 

(𝜏𝑒𝐻𝐸𝑋), which is the equivalent of the damping parameter of the thermostats or the barostats. 

However, the thermal gradient in the previous simulations was generated by transferring a 

certain amount of heat (∆𝑄𝛤𝑘
) at each timestep (𝜏𝑒𝐻𝐸𝑋 = ∆𝑡). In this section, we analyse the 

effect of decreasing this heat transfer frequency, but we increased the amount of heat 

transferred to keep the same amplitude of the thermal gradient. We thus decrease the eHEX 

frequency (𝜏𝑒𝐻𝐸𝑋 = 10 · ∆𝑡), so the eHEX algorithm will transfer 10 times more heat every 10 

timesteps. Our aim is to see if the concentration gradient is affected by the way in which the 

eHEX algorithm is applied. The simulation timestep (∆𝑡) is 1 fs, so the eHEX algorithm is 

applied every 10 fs.  

First, we have checked that the total energy is conserved along the whole simulation, and the 

thermal gradient profiles are the same for both simulations. The concentration profiles of the 

2.17-m TMAO solutions are shown in the left graph of Figure 5.11. The concentration gradients 

at different 𝜏𝑒𝐻𝐸𝑋 have the same amplitude, and they are not really affected by the eHEX 

algorithm. Moreover, the Soret coefficients values extracted are really similar. This result 

demonstrates the consistency of the eHEX algorithm for our systems and their respective 

thermalised regions, since reservoirs contain sufficient amount of water molecules inside, and 

hence the exchanged non-translational kinetic energy can be always distributed among the 

water molecules inside the reservoirs.  

Moreover, the concentration gradient in the left graph of Figure 5.11 shows a higher 

deformation inside the reservoirs for the system with a larger eHEX periodicity (𝜏𝑒𝐻𝐸𝑋 =

10 fs), this particularity can also be observed in the concentration gradient profile of the 

simulation at the thermal gradient amplitude of (∆𝑇 = 90 K) from Figure 5.10. This effect 
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could be explained due to the amount of heat transferred per time. The simulation 𝜏𝑒𝐻𝐸𝑋 =

10 fs transfers a large amount of heat every 10 fs, however the simulation 𝜏𝑒𝐻𝐸𝑋 = 1 fs 

  

Figure 5.11: Heat exchange rate dependence. Data was averaged over 20 independent trajectories. The energy 

flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of ∆𝑇 ≈

60 K. Data are shown for two different heat exchange rates 𝜏𝑒𝐻𝐸𝑋  for 1 fs and 10 fs, in a 2.17-m TMAO 

solution. 𝑃 = 1 bar . 𝑇0 = 330 K. 𝐿𝑧 = 50 Å. The left graph represents the TMAO average concentration as a 

function of the box length. The blue and red bars indicate the regions where heat is pumped and injected, 

respectively. The right graph represents the same data on a log-scale for the molality and as a function of 

temperature. 

transfers smaller amounts of heat in shorter timesteps of 1 fs. Therefore, the frequency of heat 

transfer might play an important role in the molecular concentration inside the reservoir, but it 

does not really affect the concentration profile outside the thermalised regions. For this reason, 

we always determine the Soret coefficient from the concentration profile in the white region, 

as shown in the right graph of Figure 5.11. The blue and red zones are the thermalised regions, 

and the grey zone is a transition zone and it is also discarded, because it could have some side 

effects from the implementation of the eHEX algorithm in the concentration gradient. The 

exclusion grey zones are the first 10 K of the thermal gradient after the temperatures for both 

reservoirs (𝑇ℎ𝑜𝑡 and 𝑇𝑐𝑜𝑙𝑑). For example, our thermal gradient has 60 K and it varies between 

300 K 360 K. The white zone is suitable for the calculation of the Soret coefficient, and 

comprises the temperature range from 310 K to 350 K, which is a thermal gradient amplitude 

of 40 K. In the following, we chose to employ the 𝜏𝑒𝐻𝐸𝑋 = 1 fs, which gives us better 

concentration gradient profiles in the thermalised regions. 
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5.3.4 Different force fields 

Most force fields are parametrized at constant temperature and pressure. However, our systems 

exhibit large thermal gradients in a small box at the same time. In this section, we test different 

force field combinations for the solute (TMAO) and the solvent (water) to the possible effects 

in the TMAO concentration profile and hence a difference in the Soret coefficient. We choose 

two different force field for each molecule. The TMAO molecule is simulated with the Kast 

model,128,129 which is the one used during the previous sections, and we have compared it with 

the CgenFF36,137 which is a Charmm general force field. The water molecule is represented by 

two known models; the 4-site TIP4P-2005 model,144 and the 3-site SPC/E model.145  

 

Figure 5.12: Force fields dependence. TIP4P/2005+CgenFF (green circle), TIP4P/2005+Kast17 (magenta circle), 

SPC/E+CgenFF (green square) and SPC/E+Kast17 (magenta square), in a 2.17-m TMAO solution. Data was 

averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order 

to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝑃 = 1 bar. 𝐿𝑧 = 50 Å.  𝑇0 = 330 K. The blue and red bars 

represent the reservoirs where heat is pumped and injected, respectively. Inset graph: Soret coefficient (𝑆𝑇) vs 

logarithmic pressure (𝑙𝑜𝑔10(𝑃)), the Soret coefficient values are calculated using the data outside the grey regions, 

and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10). 



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

92 

 

Figure 5.12 represents the ln (𝐶 𝐶0⁄ ) as a function of the temperature difference (𝑇 − 𝑇0) for 

four possible force field combinations; (1) TIP4P/2005+CgenFF36, (2) TIP4P/2005+Kast, (3) 

SPC/E+CgenFF36 and (4) SPC/E+Kast. Colours represent the TMAO model force field, and 

point shape represents the different water model force fields. We have checked that the total 

energy is conserved for all the force field couples, and the thermal gradient profiles are the 

same for all the simulations. We do not observe any particular behaviour that might indicate 

an incompatibility between each pair of force fields. Moreover, we also represent the Soret 

coefficient for each force field combination in the inset graph in Figure 5.12.  

The concentration profiles as a function of the temperature are pretty linear in the white regions 

of the graph. These results demonstrate a certain stability, which is independent of the force 

field combination applied. However, the first force field combination 

(TIP4P/2005+CgenFF36) has a lower Soret coefficient compared with the rest of the 

combinations. This lower value of the Soret coefficient might be caused by the charge 

distribution, we have analysed the charges of the CgenFF36 force field and the charge 

difference between the oxygen and the nitrogen of the TMAO molecules is (𝑞𝑂 − 𝑞𝑁 = 0.46), 

and the Kast model is (𝑞𝑂 − 𝑞𝑁 = 1.42). Even if the global molecule is neutral, the dipole 

moment associated to the TMAO for the Kast model is higher than the TMAO CgenFF36 

model, which might explain this difference. We have analysed in more detail the TMAO force 

fields, and the Kast model was parametrized first with TIP3P water mater,128 and it was later 

improved with the TIP4P/2005 for higher pressures,129 which sustains the combination of the 

Kast model with the TIP4P/2005 water model, but it could not be compatible with the SPC/E 

water model.  

On the other hand, the third force field combination (SPC/E+CgenFF36) has the same Soret 

coefficient as the second force field combination (TIP4P/2005+Kast) as well as the fourth force 

field combination (SPC/E+Kast). Usually, CgenFF36 are parametrized with the SPC/E or 

TIP3P water models, which can explain the good agreement with the other results. As a 

conclusion, three of four force field combinations give us the same results, which indicates a 

good consistency for the force field combination between the TIP4P/2005 water model and the 

Kast TMAO model.  
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6. Intrinsic and thermodynamic conditions 

modulating the Soret coefficient 

Previously, we observed that the amplitude of the concentration gradient in response to a 

temperature gradient was little sensitive to the following technical simulations details; the box 

size, the amplitude of thermal gradient, the non-translational kinetic exchange rate, and the 

force field. We now focus on the system dependence of the Soret coefficient. Several heuristic 

descriptions in the literature exist, which try to decompose the Soret coefficient into different 

contributions to gain a better understanding of this effect. Each description focuses on a few 

contributions and tries to describe a specific system, but often fails when it is applied to another 

system. The goal of this chapter is to see whether similar conclusions can be reached by our 

simulations. 

In this chapter, we mainly take the example of a dilute TMAO solution as our reference 

molecule to study the Soret coefficient. However, other solutes (ethanol, urea, methanol and 

glucose) are also included in some sections of this work to support the discussion of a particular 

phenomenological aspect. The first three sections, we focus on external thermodynamic 

factors, which are pressure, median temperature and solute concentration. Furthermore, we 

study some intrinsic properties of solutes that can affect the Soret coefficient. We analyse the 

nature of the solute by comparing solutes which are “chemically” different. Finally, we perform 

an extensive study of the effect of mass on the Soret effect. We analyse different mass ratios 

between the solute and the solvent. We check the sensibility of the mass effect for different 

molecules and we carry out an “isotopic” study of water molecules with different masses in the 

same system.  
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6.1 Low-sensitivity of pressure effect 

In this section, we test whether median pressure makes a relevant contribution to the Soret 

effect. We are interested to see if pressure has a strong impact or not on the Soret coefficient. 

The different median pressures are established during the equilibration process. Each median 

pressure of our system is defined during the NPT simulation process, which is the third step in 

the equilibration part, before the activation of the eHEX thermal gradient. The resulting volume 

of the box together with the median temperature dictates the median pressure for the NVE 

ensemble. Although the generation of a thermal gradient induces local pressure differences 

among the thermal slabs, these condensed aqueous phase systems have relatively low thermal 

expansion coefficients, so we do not expect large local pressures variations along the thermal 

gradient. Therefore, the median pressure of the whole system is the only pressure effect studied 

in this section, and we do not evaluate local pressures along the thermal gradient in our 

simulation system.  

We prepare a 2.17 m dilute aqueous solution of TMAO with a box length (𝐿𝑧) equal to 50 Å, 

and the other lengths equal (𝐿𝑧 ≈ 𝐿𝑥 = 𝐿𝑦). These simulations are performed at a median 

temperature (𝑇0) of 330 K, a thermal gradient amplitude (∆𝑇) of 60 K and we analyse a range 

of median pressures from 1 bar to 1 kbar.  All Soret coefficients are determined for a median 

temperature of 330 K. 

We now investigate the pressure dependence of the Soret effect. In Figure 6.1, we show the 

concentration gradient evolution as a function of the temperature for a TMAO solution at 

different median pressures: 𝑃1 = 1 bar, 𝑃2 = 10 bar, 𝑃3 = 100 bar and 𝑃4 = 1 kbar. We do 

not observe a great difference in behaviour as median pressure increases. All logarithmic 

concentrations profiles exhibit similar response under the thermal gradient and the TMAO 

molecule tends to accumulate in the cold region regardless of the pressure exerted in the system. 

The inset graph represents the Soret coefficient values as a function of the decimal logarithm 

of the pressure. Inside this graph, we can observe the pressure effect in more detail. 𝑃1 = 1 bar 

and 𝑃2 = 10 bar have almost the same Soret coefficient value, which is around 𝑆𝑇
𝑃1 ≈ 𝑆𝑇

𝑃2 ≈

5 ∗ 10−3K−1. The only difference is that 𝑃2 has a slightly smaller error in its Soret coefficient, 

but it is not possible to conclude that higher pressures improve the concentration profile by this 
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difference. However, we observe a small increase of the Soret coefficient for the median 

pressures of 𝑃3 = 100 bar and 𝑃4 = 1000 bar, which are around 𝑆𝑇
𝑃3 ≈ 6 ∗ 10−3K−1 and 

𝑆𝑇
𝑃4 ≈ 7 ∗ 10−3K−1 respectively: 

 𝑆𝑇
𝑃1 ≈ 𝑆𝑇

𝑃2 < 𝑆𝑇
𝑃3 < 𝑆𝑇

𝑃4 . (6.1) 

 

Figure 6.1: Median pressure dependence. 𝑃1 = 1 bar, 𝑃2 = 10 bar, 𝑃3 = 100 bar and 𝑃4 = 1000 bar, in a 2.17-

m TMAO solution. Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
=

0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K. 𝐿𝑧 = 50 Å.  𝑇0 =

330 K. The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. Inset graph: 

Soret coefficient (𝑆𝑇) vs logarithmic pressure (𝑙𝑜𝑔10(𝑃)), the Soret coefficient values are calculated using the data 

outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 10). 

Although we observe an increase of the Soret coefficient as a function of the median pressure, 

the slope is very low (𝑑𝑆𝑇 𝑑𝑃⁄ ≈ 2 ∗ 10−6 K−1bar−1). Therefore, large pressures must be 

applied to observe a significant effect in the Soret coefficient for dilute aqueous solutions. We 

can thus ensure that the median pressure does not have an important effect in thermophoresis, 
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and the median pressure and local pressure differences that may be generated along the 

temperature gradient should not greatly affect the Soret coefficient value.  

6.2 Temperature effect 

In this section, we study the contribution of the median temperature to the Soret coefficient. As 

seen before, the amplitude of thermal gradient does not have a significant effect on the 

behaviour of solute accumulation. However, several experiments and computational studies 

have demonstrated that the Soret coefficient does actually have a median temperature 

dependence 80,91,92. However, there is no clear consensus on how the Soret coefficient changes 

as a function of the median temperature, as different mixtures exhibit different behaviours.  

For example, ethanol/water mixtures84 have a thermophobic behaviour 𝑆𝑇 > 0 at lower 

concentrations consistent with our previous simulations of TMAO aqueous solutions, but it 

was found that the ethanol thermophobicity decreases with temperature 𝜕𝑆𝑇/𝜕𝑇 < 0. On the 

other hand, urea/water mixtures79 exhibit a thermophobic behaviour for all possible 

concentrations 𝑆𝑇 > 0, but its evolution as a function of temperature depends on the urea 

concentration. The Soret coefficient increases with the temperature 𝜕𝑆𝑇/𝜕𝑇 > 0  at lower 

concentrations (< 30% weight fraction) (~5.4 m), but decreases 𝜕𝑆𝑇/𝜕𝑇 < 0  at higher 

concentrations (> 30% weight fraction) (~5.4 m).79  

Therefore, we analyse whether our results show these temperature trends for urea and ethanol, 

and we see how the TMAO molecule behaves as a function of the median temperature. It should 

be considered that simulations at 270 K and 390 K are slightly outside the condensed liquid 

phase, and are just included to support to our simulations in the 300-360 K range.  

6.2.1 Ethanol molecule 

We now investigate the temperature dependence of the Soret effect for the ethanol molecule. 

In Figure 6.2, we show the concentration gradient evolution as a function of the temperature 

for an ethanol solution at different median temperatures: 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

=

330 K and 𝑇0
(4)

= 360 K. The logarithmic concentrations for median temperatures between 

270 K and 330 K exhibit similar response under the thermal gradient and the ethanol molecule 
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tends to accumulate in the cold region. However, the simulation at a median temperature of 

360 K shows a practically flat concentration profile, which might indicate that the ethanol 

molecule at this median temperature (𝑇0
(4)

) does not have a preference for the cold or the hot 

region. Moreover, we observe an inversion of the concentration gradient in the grey regions as 

they approach the thermostatted regions, which might indicate a higher sensibility to the eHEX 

algorithm. 

 

Figure 6.2: Median temperature dependence of ethanol. 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

= 330 K and 𝑇0
(4)

=

360 K, in a 2.17-m ethanol solution. Data was averaged over 20 independent trajectories. The energy flux was set 

to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 =

 1 bar.  𝐿𝑧 = 50 Å. The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. 

Inset graph: Soret coefficient (𝑆𝑇) vs median temperature (𝑇0), the Soret coefficient values are calculated using 

the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 =

10). The black dots are the experimental data of Köhler et al. 84 and the grey line is the linear fit. 

Furthermore, the inset graph represents the Soret coefficient values as a function of the median 

temperature. We observe a small increase of the Soret coefficient along the median 

temperatures of 𝑇0
(1)

, 𝑇0
(2)

 and 𝑇0
(3)

, which are around 𝑆𝑇
270𝐾 ≈ 2.8 ∗ 10−3K−1, 𝑆𝑇

300𝐾 ≈ 3.5 ∗
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10−3K−1 and 𝑆𝑇
330𝐾 ≈ 4.1 ∗ 10−3K−1 respectively, but the Soret coefficient completely drops 

to zero (𝑆𝑇
360𝐾 ≈ 0 K−1) at the highest median temperature (𝑇0

(4)
= 360 K). 

 𝑆𝑇
270𝐾 < 𝑆𝑇

300𝐾 < 𝑆𝑇
330𝐾 ≫ 𝑆𝑇

360𝐾 . (6.2) 

The Köhler group84 experimentally measured several Soret coefficients for the ethanol/water 

mixtures at several temperatures and concentrations, and supported their results with previous 

experimental data.168–170 Our results show similar values in the Soret coefficient for the median 

temperature at 330 K, 𝑆𝑇
330𝐾(this work) ≈ 𝑆𝑇

330𝐾(Köhler). However, our Soret coefficients at 

the lowest temperatures (𝑇0
(1)

 and 𝑇0
(2)

) underestimate their experimental values, but they are 

still at the same order of magnitude. Unfortunately, we do not have experimental data for their 

Soret coefficient at the median temperature of 360 K, but their results show that the 

thermophobicity of ethanol decreases with temperature, 𝜕𝑆𝑇 𝜕𝑇⁄ < 0, as we have mentioned 

before. We have thus extrapolated their trend, and we found that the Soret coefficient is zero 

at a median temperature of 380 K, 𝑆𝑇
380𝐾(Köhler) ≈ 0 K−1, which is a temperature difference 

of 20 K between our results and this extrapolation.  

6.2.2 Urea molecule 

We now investigate the temperature dependence of the Soret effect for the urea molecule. In 

Figure 6.3, we show the concentration gradient evolution as a function of the temperature for 

a urea solution at different median temperatures: 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

= 330 K 

and 𝑇0
(4)

= 360 K. All concentrations for median temperatures between 270 K and 360 K 

exhibit similar response under the thermal gradient, and the urea molecule tends to accumulate 

in the cold region. The simulation at a median temperature of 270 K shows a small slope in 

concentration profile, which might indicate that the urea molecule at this median temperature 

(𝑇0
(4)

) does have a relatively small thermophobic behaviour. However, no inversion of the 

concentration gradient is observed in the grey regions in contradiction with the previous study 

of ethanol, which may indicate that urea is less sensitive to the eHEX algorithm in the 

reservoirs.  

 



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

99 

 

 

Figure 6.3: Median temperature dependence of urea. 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

= 330 K and 𝑇0
(4)

=

360 K, in a 2.17-m urea solution. Data was averaged over 20 independent trajectories. The energy flux was set 

to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 =

 1 bar.  𝐿𝑧 = 50 Å. The blue and red bars represent the reservoirs where heat is pumped and injected, 

respectively. Inset graph: Soret coefficient (𝑆𝑇) vs median temperature (𝑇0), the Soret coefficient values are 

calculated using the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =

 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10). The dots are the experimental (black) and computational (red) data of Wiegand et al. 

79 

The inset graph represents the Soret coefficient values as a function of the median temperature. 

We observe a progressive small increase of the Soret coefficient along the median temperatures 

of 𝑇0
(1)

, 𝑇0
(2)

 and 𝑇0
(3)

, which are around 𝑆𝑇
270𝐾 ≈ 1.7 ∗ 10−3K−1, 𝑆𝑇

300𝐾 ≈ 3.8 ∗ 10−3K−1, 

𝑆𝑇
330𝐾 ≈ 4.3 ∗ 10−3K−1, but the Soret coefficient is slightly reduced, 𝑆𝑇

360𝐾 ≈ 3.7 ∗ 10−3K−1  

at the highest median temperature (𝑇0
(4)

= 360 K). Even if we observe small variations between 

300 K and 360 K, these differences are inside their error bars, and we can consider that the 

Soret coefficient between 300 K and 360 K is in practice the same: 
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 𝑆𝑇
270𝐾 < 𝑆𝑇

300𝐾 ≈ 𝑆𝑇
330𝐾 ≈ 𝑆𝑇

360𝐾  . (6.3) 

Wiegand et al.79 experiments (IR-TDFRS) and simulations (NEMD) calculated several Soret 

coefficients for the urea/water mixtures at several temperatures and concentrations. Our Soret 

coefficient results overestimate their experimental (black dots) results by a difference of ∆𝑆𝑇 =

𝑆𝑇 (this work) − 𝑆𝑇(Wiegand)~ 2.5 ∗ 10−3K−1. However, our results follow a similar trend 

of the Soret coefficient as a function of the median temperature. On the other hand, our results 

are comparable to their Soret coefficient (red dots) computationally obtained at median 

temperature of 𝑇0
(3)

= 330 K (𝑆𝑇
330𝐾(this work) ≈ 𝑆𝑇

330𝐾(Wiegand)), but our Soret 

coefficients are overestimated at lower median temperature (𝑆𝑇
300𝐾(this work) ≫

𝑆𝑇
300𝐾(Wiegand)). In conclusion, our results are approximately in agreement with the trends 

observe by experimental works and we obtain similar Soret coefficient values for some 

temperatures in relation to these non-equilibrium studies.  

6.2.3 TMAO molecule 

We have noted in the last two sections that both ethanol/water and urea/water mixtures exhibit 

positive Soret coefficients, so that ethanol and urea tend to accumulate in the cold region. Our 

simulations show a positive and progressive evolution of the Soret coefficient for both solutes. 

However, ethanol/water and urea/water solutions start to behave differently at higher 

temperatures (𝑇0
4 = 360 K); the Soret coefficient of urea seems to stabilise at higher 

temperatures, but the Soret coefficient of ethanol decays to zero. These preliminary results for 

urea and ethanol are qualitatively in agreement with the experimental results of the Köhler 

group84 and Wiegand et al.79 Therefore, we now proceed to the study of temperature 

dependence for our main solute TMAO.   

In the previous section, we were already able to observe some aspects of the TMAO/water 

solutions that are relevant for the study of their Soret coefficient. These simulations showed a 

TMAO accumulation in the cold region, which is similar to the thermophobic behaviour of the 

urea/water and ethanol/water solutions. Therefore, a positive Soret coefficient value is expected 

for these dilute TMAO solutions, even if no experimental data is currently available. 



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

101 

 

 

Figure 6.4: Median temperature dependence of TMAO. 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

= 330 K, 𝑇0
(4)

=

360 K and 𝑇0
(5)

= 390 K, in a 2.17-m TMAO solution. Data was averaged over 20 independent trajectories. The 

energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈

60 K.  𝑃 =  1 bar.  𝐿𝑧 = 50 Å. The blue and red bars represent the reservoirs where heat is pumped and injected, 

respectively. Inset graph: Soret coefficient (𝑆𝑇) vs median temperature (𝑇0), the Soret coefficient values are 

calculated using the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =

 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10). 

We now investigate the temperature dependence of the Soret effect for the TMAO molecule. 

In Figure 6.4, we show the concentration gradient evolution as a function of the temperature 

for a TMAO solution at different median temperatures: 𝑇0
(1)

= 270 K, 𝑇0
(2)

= 300 K, 𝑇0
(3)

=

330 K, 𝑇0
(4)

= 360 K and 𝑇0
(5)

= 390 K. A. We observe that higher temperatures show a 

stronger TMAO thermophobic behaviour, since the concentration increases in the cold region 

as the median temperature increases. Moreover, we notice that the concentration gradients at 

higher median temperature are smoother. For example, 270 K and 300 K median temperatures 

have larger fluctuations on their concentration profiles than higher temperature. One possible 

explanation of these fluctuations could be that the TMAO molecule aggregates at these 
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temperatures. However, several studies have demonstrated that TMAO does not easily 

aggregate,126 where concentrations up to 5,6 M do not exhibit any sign of aggregation,127 and 

we are largely below these concentrations. Moreover, we have analysed in more detail these 

simulation boxes, and we do not find any indication of aggregation. Furthermore, simulations 

at lower concentrations also exhibit these fluctuation effects at a median temperature of 300 K. 

We conclude that these observations are merely a fluctuation effect, since the concentration 

gradient decreases with the temperature, and it makes more difficult to get well defined linear 

gradients. Another possible reason could be that lower temperatures translate into less kinetic 

motion, and hence the TMAO molecules require more time to sample all the possible positions 

in the box system, but the statistical errors in the Soret coefficient do not really differ from the 

highest temperature ones. This particularity also appears in the ethanol and urea systems from 

Figure 6.2 and Figure 6.3 respectively. 

The Soret coefficient of TMAO in the inset graph does not present any abrupt change in the 

Soret coefficient evolution. This result lets us think that the TMAO/water mixture behaviour 

is more alike to urea solutions than ethanol ones, since it always exhibits 𝜕𝑆𝑇/𝜕𝑇 > 0. We thus 

observe a progressive increase of the Soret coefficient along all median temperatures, which 

are around 𝑆𝑇
270𝐾 ≈ 1.2 ∗ 10−3K−1, 𝑆𝑇

300𝐾 ≈ 3.1 ∗ 10−3K−1, 𝑆𝑇
330𝐾 ≈ 5.0 ∗ 10−3K−1, 

𝑆𝑇
360𝐾 ≈ 6.0 ∗ 10−3K−1 and 𝑆𝑇

390𝐾 ≈ 6.7 ∗ 10−3K−1: 

 𝑆𝑇
270𝐾 < 𝑆𝑇

300𝐾 < 𝑆𝑇
330𝐾 < 𝑆𝑇

360𝐾 < 𝑆𝑇
390𝐾 . (6.4) 

This behaviour confirms a decrease in the thermophobic character of the TMAO molecule with 

increasing the median temperature, and these Soret coefficients of TMAO follows an 

exponential depletion form, which might be fitted with the phenomenological equations 

described in the previous chapters.  

6.2.4 Empirical equations 

We analyse this thermal evolution of the Soret coefficient in more detail for the three solutions 

studied before. We replot the Soret coefficients obtained from Figure 6.2, Figure 6.3 and Figure 

6.4. 
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Figure 6.5: Empirical fits. Ethanol (olive), urea (cyan) and TMAO (magenta) solutions. Data was averaged over 

20 independent trajectories.  𝑃 =  1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. The errors are calculated by the bootstrap 

method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10). The dashed lines are fittings of the exponential function 

𝑆𝑇 = 𝑆𝑇
∞[1 − 𝑒𝑥𝑝 (𝑇∗ − 𝑇) 𝑇𝑖⁄ ] for urea and TMAO.  

We also investigate the temperature dependence of the Soret effect for the three solutes. In 

Figure 6.5, we show the Soret coefficient vs the median temperature (𝑇0) for the ethanol (olive), 

urea (cyan) and TMAO (magenta) solutions and their respective error bars. We also include 

the respective exponential function fittings (𝑆𝑇 = 𝑆𝑇
∞[1 − 𝑒𝑥𝑝 (𝑇∗ − 𝑇) 𝑇𝑖⁄ ]) for urea and 

TMAO. We do not fit the ethanol Soret coefficients, because we already observed that ethanol 

does not follow same exponential depletion form from the literature84 and our results confirmed 

this trend at high median temperatures. We observe that the Soret coefficient values are 

practically the same at the lowest median temperatures for the three solutes (270 K and 300 K), 

but they start to diverge from 330 K onwards, and finally they are completely different at the 

median temperature of 360 K.  
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As discussed before, the absolute value of the Soret coefficient depends on a large number of 

properties, which makes it difficult to get a direct comparison among the different solutes. In 

fact, the temperature dependence of the Soret coefficient is determined by the interactions 

between the solute and water. Wiegand et al.79 discussed that the chemical potential varies in 

a linear way, increasing with temperature for the urea, hence indicating a decrease in solubility, 

which might explain the different temperature behaviours of these solutes. However, we have 

not gone deeper into this aspect, since we have focused on getting a more global perspective 

of the different contributions on the Soret effect.  

Empirical equations 

Urea TMAO 

This work Wiegand et al.79 

(exp) 

This work 

𝑆𝑇(𝑇) = 

𝑆𝑇
∞ [1 − 𝑒𝑥𝑝

(𝑇∗−𝑇)

𝑇𝑖
]80 

𝑆𝑇
∞(10−3K−1) 4.02 1.9 8.33 

𝑇∗(K−1) 264 269 253 

𝑇𝑖(K−1) 11 29 84 

𝑆𝑇(𝑐, 𝑇) = 

𝑆𝑇
∞ − 𝐶𝐻𝑒𝑥𝑝 (−𝐴𝐻𝑇)92 

𝑆𝑇
∞(10−3K−1) 4.02 1.74 8.33 

𝐶𝐻(K−1) 2.75·1010 2.14·106 167 

𝐴𝐻(K−1) 0.086 0.051 0.012 

Table 6.1 : Empirical fits. Phenomenological empirical fits 80,92 for the urea and TMAO molecules. 

The table above represents the fitted Iacopini/Piazza and Wiegand phenomenological 

descriptions for our TMAO and urea molecules, and we also include the urea’s experimental 

results of Wiegand et al.79  The equation of Iacopini and Piazza80 described the Soret coefficient 

by these factors: 𝑆𝑇
∞ represents the limiting value of 𝑆𝑇(𝑇) at high temperatures, 𝑇∗ the 

temperature at which the Soret coefficient changes the sign, i.e. 𝑆𝑇(𝑇) = 0 K−1, and 𝑇𝑖 

embodies the strength of temperature effect. The equation of the Wiegand group92  described 

the Soret coefficient by these other factors: 𝑆𝑇
∞ are the thermal properties of the core material, 

possible charges, and so forth, excluding the presence of hydrogen bonds, 𝐶𝐻 is a measure of 

the contribution of the hydrogen bonds, and the parameter 𝐴𝐻 > 0 measures the temperature-

dependent strength of a hydrogen bond. 
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The limiting Soret coefficient value for the Iacopini and Piazza80 equation at high temperatures 

was 𝑆𝑇
∞ = 0.00402 K−1 for the urea solution, which indicates the maximun point of 

thermophobicity that urea/water mixture can reach at this given concentration 2.17 m. The 

𝑆𝑇
∞ = 0.0019 K−1 experimental result from Wiegand et al.79 is two times smaller, which is not 

surprising since we are overestimating the Soret coefficient of urea in our simulations 

compared with these experimental results. However, the Soret coefficient sign changes at a 

median temperature of 𝑇∗ = 264 K and is comparable with the experimental results of  𝑇∗ =

269 K, so we should expect a thermophobic behaviour over a wide temperature range for urea 

systems in dilute aqueous solutions (𝑇0 > 270 𝐾). Finally, 𝑇𝑖 = 11 K is the strength of the 

temperature effect for our results and 𝑇𝑖 = 29 K for Wiegand results. 

In the case of the TMAO molecule, the limiting Soret coefficient value at high temperatures 

was 𝑆𝑇
∞ = 0.00833 K−1, which indicates the maximun point of thermophobicity that 

TMAO/water mixture can reach, and TMAO thermophoretic strenght is the double as urea. 

The Soret coefficients at 330 K and 360 K have relatively high values compared to this limit 

𝑆𝑇
∞, which may indicate that TMAO could reach his higher thermophobicity at not relatively 

high temperatures. Furthermore, the sign changes at the median temperature of 𝑇∗ = 253 K, 

so we must denote thermophobic behaviour over a wide temperature range for TMAO systems 

in dilute aqueous solutions similar to urea. Finally, 𝑇𝑖 = 84 K was the strength of the 

temperature effect, which is bigger than the urea solution.  

The phenomenological description of the Soret coefficient in the Wiegand group92 shows 

similar limiting Soret coefficients (𝑆𝑇
∞) as compared with the Iacopini and Piazza80 exponential 

fit. The Wiegand group defined that the contribution of hydrogen bonds is expected to be the 

main cause of temperature dependence of the Soret coefficient, so the preexponential factor 

(𝐶𝐻) describes describes the diminishing contribution of hydrogen bonds as they weaken with 

increasing temperature. Our results show that the urea molecule has a large preexponential 

factor, but the TMAO molecule temperature dependence is not really relevant (𝐶𝐻
𝑢𝑟𝑒𝑎 ≫

𝐶𝐻
𝑇𝑀𝐴𝑂). Moreover, hydrogen bonds weaken more strongly with increasing temperature for 

larger values of 𝐴𝐻. Then we should expect that TMAO hydrogen bonds (𝐴𝐻 = 0.012 K−1) 

remain stable with increasing temperature, but the urea hydrogen bonds strength (𝐴𝐻 =

0.085 K−1) decreases with the median temperature. Moroever, the Wiegand group found a 
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linear correlation between 𝑙𝑛(𝐶𝐻) and 𝐴𝐻, which is a really practical, because reduces 

sensitivity of the strength of hydrogen bonds to one parameter instead of two, but this concept 

needs to be tested for a larger number of systems.7 

6.3 Concentration effect 

The previous studies analysing the effect of the median temperature have also reported a 

concentration effect in their Soret coefficients.79,84 Often concentration and temperature effects 

are studied together, but they do not usually include the concentration effect of the solute in 

their empirical equations to describe the Soret coefficient. We found an example that includes 

a concentration effect, which is the Wittko and Köhler91 phenomenological equation, 

𝑆𝑇(𝑐, 𝑇) = 𝛼𝑐(𝑐)𝛽𝑇(𝑇) + 𝑆𝑇
𝑐ℎ, where 𝛼𝑐(𝑐) and 𝛽𝑐(𝑇) are polynomial empirical fits. 

However, this equation is still purely empirical and does not attempt to inquire into the nature 

of the Soret coefficient.  

Usually, the Soret coefficient remains unchanged in sufficiently dilute solutions, but at high 

concentrations, the Soret coefficient exhibits stronger variation with concentration. These non-

ideality and association effects has been widely studied during the 1950s by Prigogine72,73 and 

later by Drickamer.171 The authors often observed a change in the sign of the Soret coefficient 

with concentration, where particles exhibit thermophobic behaviour at low concentrations, but 

the same particles in the system become thermophilic at high concentrations. Moreover, 

Kolodner168 and later Köhler84 described a detailed transition in the thermal diffusion of the 

ethanol/water mixture. Kolodner and Köhler observed a transition point of the Soret coefficient 

at a mass fraction of 0.3, independently of the median temperature. 

These studies are carried out for a wide range of concentrations, to describe the evolution of 

the Soret coefficient as a function of concentration, with mass fractions ranging from to 1. 

However, our project does not explicitly address the concentration issue, since we are mostly 

interested by the dilute regime. Our main concern is that we could perform the simulations at 

high enough concentrations such that convergence of the concentration gradient occurs on 

reasonably accessible timescales (hundreds of ns), while being in a sufficiently dilute regime 

such that the Soret coefficient is almost concentration independent. Therefore, we study the 

stability of the Soret coefficient for the TMAO dilute concentrations in the mass fraction range 
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of 0.08-0.25. This range of concentrations would allow us to confirm whether or not there is 

an effect for our main concentration of 0.14 mass fraction (2.17 m). Furthermore, the dilute 

aqueous solutions guarantee that enough water molecules are thermalised, and avoids 

additional considerations for the eHEX algorithm, as it will not alter the temperature gradient, 

nor we will apply the eHEX algorithm for the TMAO molecules. 

 

Figure 6.6: Average concentration dependence of TMAO. 𝐶0
(1)

= 1.09 mol · kg−1, 𝐶0
(2)

= 2.17 mol · kg−1, 

𝐶0
(3)

= 3.26 mol · kg−1and 𝐶0
(4)

= 4.34 mol · kg−1. Data was averaged over 20 independent trajectories. The 

energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈

60 K.  𝑃 =  1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. The blue and red bars represent the reservoirs where heat is pumped 

and injected, respectively. Inset graph: Soret coefficient (𝑆𝑇) vs average concentration (𝐶0), the Soret coefficient 

values are calculated using the data outside the grey regions, and errors are calculated by the bootstrap method 

(𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the concentration dependence of the Soret effect. In Figure 6.6, we show 

the concentration gradient evolution as a function of the temperature for a TMAO solution at 

different molalities: 𝐶0
(1)

= 1.09 mol · kg−1, 𝐶0
(2)

= 2.17 mol · kg−1, 𝐶0
(3)

= 3.26 mol ·



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

108 

 

kg−1and 𝐶0
(4)

= 4.34 mol · kg−1. As we have mentioned before, several studies have 

demonstrated that TMAO does not easily aggregate,126 with the first coordination shell of 

TMAO that is slightly reduced with concentration. Moreover, it is known that concentrations 

lower than 𝐶0 < 6 mol/kg  do not exhibit any sign of aggregation,127 and our systems are below 

these concentrations.  

The Soret coefficients of TMAO in the inset graph does not exhibit a strong dependence with 

concentration. The Soret coefficients for median concentrations no larger than  𝐶0
(3)

=

3.26 mol · kg−1 are the same within error bars. This may indicate that in sufficiently dilute 

solutions, the Soret coefficient is not concentration dependent. This effect could be understood 

by the fact that the TMAO molecules practically do not interact among themselves, and their 

respective water solvation shell depends only on the temperature gradient, and thus keeping 

the “chemical” interaction solute-solvent invariant.126 However, a small deviation is observed 

for the Soret coefficient at the largest concentration (𝐶0
(4)

= 4.34 mol · kg−1), which might 

show a variation in the solvation shell between the molecules located in the hot and cold slab. 

Increasing the total TMAO concentration makes solute-solute interactions more predominant, 

then concentration differences between the hot and cold regions may accentuate a larger 

differentiation in their respective “chemical” contributions. This reduction in the Soret 

coefficient may be caused by a change in the chemical contribution along the concentration 

gradient that directly competes with the effect of thermophoresis, making TMAO molecules 

less likely to accumulate in the cold region. The molal concentration of 𝐶0
(4)

= 4.34 mol · kg−1 

is a relatively high concentration, this represents 12.8 water molecules per TMAO, which is 

larger than the hydration shell: therefore, hydration shells overlap and TMAO molecules are in 

close contact, and we start observing some effects on the Soret coefficient for this reason: 

 
𝑆𝑇

𝐶𝑜
(1)

≈ 𝑆𝑇

𝐶𝑜
(2)

≈ 𝑆𝑇

𝐶𝑜
(3)

> 𝑆𝑇

𝐶𝑜
(4)

 . (6.5) 

Furthermore, the Soret coefficient error decreases with increasing TMAO concentration. 

Therefore, we have opted for the median concentration of 𝐶0
(2)

= 2.17 mol · kg−1, since it 

contains enough TMAO molecules to obtain good statistics for the determination of the Soret 



A. DIAZ MARQUEZ  MOLECULAR BASIS OF THERMOPHORESIS 
 

 

 

109 

 

coefficient while being in a regime that is dilute enough such that it does not affect too much 

the Soret coefficient.  

6.4 Solute effect 

We have already seen that external effects contribute to the Soret coefficient, like the median 

temperature, pressure or concentration. However, the Soret coefficient depends also on several 

physico-chemical properties of the molecule in itself, e.g., mass, size, moment of inertia or 

polarity.7 

In the literature, the Soret coefficient is usually phenomenologically divided into two 

independent terms (𝑆𝑇 = 𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜):76,102 𝑆𝑇
𝑖𝑠𝑜 corresponds to “isotopic contribution”, which 

is the additive part related to the difference in mass and moment of inertia of the components, 

and 𝑆𝑇
𝑐ℎ correspond to “chemical contribution”, which reflects the actual chemical activity of 

the compounds. Typically, the isotopic term of the Soret coefficient has been proposed in some 

empirical formulations, which describe the effect of mass and inertia with limited accuracy. 

However, the “chemical” term is still described in vague terms, because it tries to describe the 

interactions between solute-solvent as well as solute-solute along the thermal gradient, and as 

it already mentioned, it could be related to the chemical potential of the solution.79 

Consequently, the 𝑆𝑇
𝑐ℎ dependends on the particle environment and is therefore sensitive to 

temperature and concentration. Understanding it is a key point of thermophoresis for dilute 

aqueous solutions. 

In this section, we study different solutes that have similar characteristics in comparison to the 

TMAO molecule. These molecules are methanol, ethanol, urea and glucose. Our objective is 

to unveil some trends of their Soret coefficients, even if we are restricted in precision by the 

statistical error. First, we validated each step of the simulation for all solutes, using a similar 

procedure as for TMAO. The total energy is conserved during all the stages for all solutes, the 

temperature gradient is constant and linear along the box, and we confirm the absence of any 

aggregation for all solutes under the following conditions; P =  1 bar, T0  =  330 K, ∆T =

 60 K, Lz = 50 Å, C0 = 2.17 mol · kg−1(40 solute molecules in 1024 water). 
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Figure 6.7: Concentration gradient representations. 

Methanol (yellow), ethanol (olive), urea (cyan), 

TMAO (magenta) and glucose (green). Data was 

averaged over 20 independent trajectories. The 

energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal ·

mol−1fs−1 to generate a thermal gradient amplitude 

of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 =

330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red bars 

represent the reservoirs where heat is pumped and 

injected, respectively. Error area was calculated by 

the standard deviation from 20 independent 

trajectories. 

In Figure 6.7, we show the concentration gradient for each solute as a function of the box length 

𝐿𝑧. The blue and red areas represent the cold and hot regions, where the kinetic exchange is 

active ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1. The error area is the standard deviation of 20 independent 
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trajectories. All solutes exhibit thermophobic behaviour, as they accumulate in the cold region 

(blue area), and therefore we expect a positive value for their Soret coefficients. This behaviour 

was already observed in the previous sections for TMAO (magenta), ethanol (olive) and urea 

(cyan), and we also have the same effect for methanol (yellow) and glucose (green).  

The error areas are similar for all solutes in their respective plots in Figure 6.7, indicating that 

methanol and glucose can be studied under the same simulation conditions as we the previously 

studied molecules of TMAO, ethanol and urea, and therefore they are able to sample the phase-

space region for a 10 nanoseconds simulation. However, we observe a loss of definition of the 

concentration gradient for methanol and glucose, which could be due to the lower amplitude 

gradient for these solutes. As we have seen before, larger concentrations amplitudes exhibit 

clearer linear concentration gradient, such as TMAO or urea. 

Small abrupt variations can be also observed in the regions subject to the heat exchange, where 

the eHEX algorithm is active. One clear example is the concentration gradient of the ethanol 

molecule. The nature of this effect remains unclear. It may be due to the constant alteration of 

the kinetic energy in that region, which prevents reaching thermodynamic equilibrium and 

leads to an inversion of the Soret coefficient, and the ethanol or methanol solutions are more 

sensitive to this effect than urea or TMAO. For this reason, this affected area and its 

surroundings are excluded for the determination of the Soret coefficient and only the central 

part of the concentration gradient part is considered.  
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Figure 6.8: Solute effect. methanol (yellow), ethanol (olive), TMAO (magenta), urea (cyan) and glucose (green). 

Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 

in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 =

2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. 

Inset graph: Soret coefficient (𝑆𝑇) vs different solutes, the Soret coefficient values are calculated using the data 

outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the “chemical” dependence of the Soret effect. In Figure 6.8, we show the 

concentration gradient evolution as a function of temperature for the solutes; methanol, ethanol, 

urea, TMAO and glucose. The Soret coefficients for each solute are represented in the inset 

graph in order to gain a more detailed description of the understanding of the “chemical” and 

isotopic contributions. These results are in agreement with previous studies79,84,172 since we are 

working on dilute solutions and the solute molecules are larger than the solvent one. Moreover, 

we notice that their Soret coefficients remain in the same order of magnitude, because these 

molecules exhibit similar characteristics of mass, size, and polarity.  
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 Molar mass 

(𝑔 · 𝑚𝑜𝑙−1) 

Dipole moment 

(𝐷) 

Molecular 

volume (Å3) 

Soret 

coefficient 

(10−3𝐾−1) 

Water 18 2.4 30 - 

Methanol 32 2.3 66 2.9 ± 0.7 

Ethanol 46 2.4 119 4.1 ± 1.0 

Urea 60 4.5 77 4.4 ± 1.0 

TMAO 75 6.4 124 5.0 ± 0.7 

Glucose 180 1.0 196 3.1 ± 1.1 

Table 6.2: Solute effect. Molar mass, dipole moments, molecular volume and Soret coefficients for the water, 

methanol, ethanol, urea, TMAO and glucose molecules. 

Table 6.2 shows some intrinsic molecular properties for our solutes to better understand their 

respective Soret coefficient values. We determined the dipole moment of each molecule in the 

gas phase for each force field to qualitatively check if there is a correlation between the dipole 

moment and the Soret coefficient, and we compared our dipole moment values with the 

literature results.173–176 Even if we obtained dipole moments 30% larger than those observed in 

the literature, we observed that all solutes have same trend except for glucose, which 

corresponds to the solvation effect since our dipole moments are determined in the gas phase. 

Molecular volumes are calculated by the volume difference between a pure water box 

composed of 1024 water molecules and a solution of the respective 40 solutes and 1024 water 

molecules. These simulations are carried out at 𝑃 = 1 bar and 𝑇0  = 330 K in the NPT 

ensemble, and the average volume is determined along 200 ps. Even if we do not take into 

account the excess volume for each system, these molecular volumes approximations are 

enough to decipher some trends.    

The following formula orders the Soret coefficient as a function of the solute: 

 𝑆𝑡
𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝑆𝑡
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝑈𝑟𝑒𝑎 < 𝑆𝑡
𝑇𝑀𝐴𝑂 . (6.6) 
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As we have mentioned before, “chemical” contributions of the Soret coefficient are mainly 

dominated by the interactions between solute and solvent for dilute solutions. Hydrophilic parts 

of the molecule are the predominant interaction part in aqueous solutions, such as dipole-dipole 

forces. Therefore, we compare the Soret coefficient for each molecule with the calculated 

dipole moments in the gas phase: 

 𝜇𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝜇𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝜇𝑈𝑟𝑒𝑎 < 𝜇𝑇𝑀𝐴𝑂 . (6.7) 

Broadly speaking, we observe larger Soret coefficients for molecules with larger dipole 

moments such as TMAO or urea.  

 

Figure 6.9: Dipole moment dependence of urea. 𝜇1 𝜇𝑛⁄ = 0.5, 𝜇2 𝜇𝑛⁄ = 1, 𝜇3 𝜇𝑛⁄ = 1.5 and 𝜇4 𝜇𝑛⁄ = 0.5. Data 

was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in 

order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 =

2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. 

Inset graph: Soret coefficient (𝑆𝑇) vs relative dipole moment (𝜇𝑖 𝜇𝑛⁄ ), the Soret coefficient values are calculated 

using the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 

𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  
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To investigate the effect of the solute dipole moment independently of other effects (mass, 

volume, etc), we repeated our simulation of the urea solution after rescaling the atomic charges 

of each atom by the factors 0.5, 1.5 and 2.0. Rescaling all charges by the same factor allow us 

to get different total dipole moments, conserving the neutrality of the molecule.    

We now investigate the dipole moment dependence of the Soret effect for the urea molecule. 

In Figure 6.9, we show the concentration gradient evolution as a function of relative dipole 

moments: 𝜇1/𝜇𝑛 = 0.5, 𝜇2/𝜇𝑛 = 1, 𝜇3/𝜇𝑛 = 1.5 and 𝜇4/𝜇𝑛 = 2. In all cases, urea remains 

thermophobic and any urea dipole variation does not show any indication to accumulate in the 

hot region. Surprisingly, the Soret coefficients of urea in the inset graph decreases as the dipole 

moment of the modified urea increases. This result contradicts the trends previously discussed 

regarding the dipole moment for different solutes. Previous studies already discussed this 

higher complexity for polar systems as compared to non-polar systems,105 where the authors 

phenomenologically included a new term which is the energy ratio  𝜓𝜀 = 𝜀22/𝜀11
90 in the 

description of the Soret coefficient (𝑆𝑇
𝑖 = 𝑎𝑀𝛿𝑀 + 𝑏𝐼𝛿𝐼 + 𝑐𝜀∆𝜓𝜀). From our results, we can 

only predict that 𝑐𝜀∆𝜓𝜀  has a negative effect on the Soret coefficient, seeing how urea behaves 

as its polarity increases, but the authors assumed that non-ideal structural changes (e.g., excess 

effects) of the polar systems are not fully covered by this simple approach.105 

Furthermore, we observe a certain instability on the concentration gradient, when the atomic 

charges of the urea are manipulated. Concentration profiles from Figure 6.9 show large 

fluctuations for simulations that are not the natural dipole moment of urea (𝜇1 𝜇𝑛⁄ = 1), and 

posterior calculations of radial distribution functions have shown differences among these 

systems. Usually, force-fields are parametrized to describe the inter-molecular interactions as 

an equilibrium between the Lennard-Jones potential together with the Coulombic form, so 

altering the Coulombic forces might lead to unrealistic description of the inter-molecular 

forces, and hence invalidate the force-field. In conclusion, further studies must be done in order 

to understand the evolution of the Soret coefficient as a function of the dipole moment of a 

molecule. 

The “isotopic” contributions of the Soret coefficient are also analysed by comparing the molar 

masses and the molecular volumes of these solutes. A priori, the evolution of the Soret 
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coefficient might indicate a direct correlation between his value and the molar mass of each 

solute: 

 𝑀𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝑈𝑟𝑒𝑎 < 𝑀𝑇𝑀𝐴𝑂 < 𝑀𝐺𝑙𝑢𝑐𝑜𝑠𝑒 . (6.8) 

A progressive increase of the Soret coefficient is observed, as the molar mass of the molecules 

increases.  However, some discrepancies have been found. Glucose molecule shows a 

concentration gradient lower as expected, even if it is the largest molecules 𝑀𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ≈

180 g/mol in our set of molecules, his Soret coefficient value (𝑆𝑡
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ≈ 3 ∗ 10−3K−1) is 

significantly lower than TMAO (𝑆𝑡
𝑇𝑀𝐴𝑂  ≈ 5 ∗ 10−3 K−1), which has a molecular mass of 

𝑀𝑇𝑀𝐴𝑂 ≈ 75 g · mol−1. This result emphasises the idea that the Soret coefficient is not only 

dependent on the molar mass of the solute, and the mass effect actually acts as an additive term 

in the Soret coefficient together with other factors. Furthermore, we qualitatively check the 

evolution of the Soret coefficient as a function of the size of molecules: 

 𝑉𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑈𝑟𝑒𝑎 < 𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑇𝑀𝐴𝑂 < 𝑉𝐺𝑙𝑢𝑐𝑜𝑠𝑒 . (6.9) 

Some interesting points can be extracted from this point. We observe a direct relation between 

the Soret coefficient and the molecular volume of each molecule, except for glucose. This trend 

indicates that particle size could be relevant for the determination of the Soret coefficient, 

which is in agreement with previous studies that have reported a size dependency in colloidal 

solutions,49,68,177 but the dependence of the Soret coefficient on the radius of the solute particle 

is still controversial.7 It is worth noting that this rough approach does not take into account the 

shape, space-distribution and types of atoms that conforms the molecules. These aspects are 

relevant for the inertial moments of the molecule, which forms part of the “isotopic” 

contribution of some phenomenological descriptions in the literature,90,103 so more detailed 

description should be made in case one wants to go deeper into this effect.  

In general terms, we observe that the lowest values in their Soret coefficients are associated 

with alcohol groups (methanol, ethanol and glucose). These organic molecules are composed 

of hydroxyl groups as functional groups (polar moiety) and a carbon chain as hydrophobic part. 

The difference between methanol and ethanol is only one methyl group, but the resulting Soret 

coefficient of the ethanol molecule is higher than methanol (𝑆𝑡
𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 <  𝑆𝑡

𝐸𝑡ℎ𝑎𝑛𝑜𝑙). Table 6.2 
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show that their dipole moments are essentially the same (𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝜇𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙), but the molar 

mass (𝑀𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙) and molecular volume (𝑉𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙) of ethanol are 

bigger than methanol due to its extra carbon in his chain. These results indicate that the 

hydrophobic part of the molecule also plays a role in the thermal accumulation, as larger 

molecules could lead to a higher “isotopic” contribution. On the other hand, the glucose 

molecule does not follow this trend. In Table 6.2, we show that the molar mass (𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙 <

𝑀𝐺𝑙𝑢𝑐𝑜𝑠𝑒) and the molecular volume (𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝐺𝑙𝑢𝑐𝑜𝑠𝑒) of glucose are bigger than ethanol, 

but the Soret coefficient (𝑆𝑡
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 >  𝑆𝑡

𝐺𝑙𝑢𝑐𝑜𝑠𝑒) and dipole moment  (𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 > 𝜇𝐺𝑙𝑢𝑐𝑜𝑠𝑒) of 

glucose are lower than ethanol. Glucose is a big molecule with several hydroxyl groups, so an 

equilibrium between hydrophobic and hydrophilic parts of the molecule might explain the 

reduction the thermophoretic motion toward the cold region. Nevertheless, high fluctuations 

are present in the concentration gradients for ethanol and glucose, and hence the Soret 

coefficient associated errors are higher, it is thus harder to get a clear conclusion from these 

systems. 

The TMAO molecule has the highest Soret coefficient value (𝑆𝑡
𝑇𝑀𝐴𝑂 = 5 · 10−3K−1), which is 

not surprising as this molecule contains the highest dipole moment and if we disregard the 

glucose molecule, it also has the highest molecular mass and molecular volume. The high 

dipole moment value (𝜇𝑇𝑀𝐴𝑂 = 6.4 D) comes from his amino oxide functional group, which 

forms a strong hydrophilic head. Moreover, the TMAO molecules also contains a large 

hydrophobic moiety provided by three methyl groups which confers a high molecular mass 

(𝑀𝑇𝑀𝐴𝑂 = 75 g/mol) and a high molecular volume (𝑉𝑇𝑀𝐴𝑂 = 124 Å3). All these intrinsic 

properties of TMAO could explain the relatively high value of its Soret coefficient compared 

to the other solutes, since the high dipole moment could be compensated by his mass and size. 

We also observe that ethanol and urea have similar Soret coefficients (𝑆𝑡
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈  𝑆𝑡

𝑈𝑟𝑒𝑎). Urea 

is a completely polar molecule with two amine groups as well as carboxyl group, which 

justifies a higher dipole moment compared to the ethanol molecule (𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝜇𝑈𝑟𝑒𝑎). On the 

other hand, the urea molecule lacks a hydrophobic body, which explains its lower molecular 

volume compared to the ethanol molecule (𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙 > 𝑉𝑈𝑟𝑒𝑎). Focusing on the dipole moment 

and size, we should expect the Soret coefficient of urea to be smaller than that of ethanol, but 

they are quite similar. On the other hand, the molecular masses between ethanol and urea are 
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similar (𝑀𝑈𝑟𝑒𝑎 ≈ 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙), which can explain the similar Soret coefficients between ethanol 

and urea. Therefore, the mass effect as an intrinsic property of the molecule might determine 

the Soret coefficient rather than the size or the dipole moment.   

6.5  Mass effect 

Previously, we discussed the fact that the molar mass has a direct contribution in the Soret 

coefficient when comparing the masses of different solutes. The results have shown that an 

increase in molecular mass of the solute (𝑀𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝑈𝑟𝑒𝑎 < 𝑀𝑇𝑀𝐴𝑂) generally 

resulted in a higher Soret coefficient (𝑆𝑡
𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑆𝑡

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡
𝑈𝑟𝑒𝑎 < 𝑆𝑡

𝑇𝑀𝐴𝑂). However, this 

trend is difficult to appreciate as there are other factors intrinsic to the molecule that also affect 

the Soret coefficient (size and polarity). In this section, we go one step further. The masses of 

some solutes are rescaled in order to gain a better understanding in the mass effect to the Soret 

coefficient, and all other things being equal. 

The mass effect for a particular molecule can be studied by rescaling each atomic mass that 

forms part of the target molecule. 𝑀𝑛 represents the molar mass of the natural molecule without 

any mass rescaling. In the case that the new molecular mass is larger than the natural molecular 

mass of the rescaled molecule, all atomic masses are multiplied by the same factor. However, 

when the new molecular mass is smaller than the natural molecular mass, special consideration 

must be taken into account to their hydrogen atoms. Small hydrogen mass could affect the 

stability of the molecular dynamics with energy conservation issues. In these cases, we only 

rescale the atomic masses of the atoms heavier than hydrogen in the molecule and retained the 

natural hydrogen mass. In addition, we distribute the percentage of hydrogen mass that should 

lose among the rest of heavier atoms in the molecule. This method allows us to study lighter 

molecules without constraining the bonds, angles and dihedrals of the whole molecule. 

However, we rescale the hydrogen masses of the water molecule, since this molecule has its 

bonds and angle already constrained and would not affect the dynamic of the system.  
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6.5.1 TMAO molecule 

 

Figure 6.10: Mass effect of TMAO. 𝑀𝑇𝑀𝐴𝑂
1 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑇𝑀𝐴𝑂
2 = 𝑀𝑇𝑀𝐴𝑂

𝑛 , 𝑀𝑇𝑀𝐴𝑂
3 = 4 · 𝑀𝑇𝑀𝐴𝑂

𝑛  and 𝑀𝑇𝑀𝐴𝑂
4 =

8 · 𝑀𝑇𝑀𝐴𝑂
𝑛 . Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘

= 0.0375 kcal ·

mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 =

330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat is pumped and injected, 

respectively. Inset graph: Soret coefficient (𝑆𝑇) vs relative mass difference (𝛿𝑀), the Soret coefficient values are 

calculated using the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =

 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the mass ratio dependence of the Soret effect for the TMAO molecule. In 

Figure 6.10, we show the concentration gradient evolution as a function of the temperature for 

a TMAO solution at different molar masses; 𝑀𝑇𝑀𝐴𝑂
1 = 18 g · mol−1, 𝑀𝑇𝑀𝐴𝑂

2 = 𝑀𝑇𝑀𝐴𝑂
𝑛 =

75g · mol−1, 𝑀𝑇𝑀𝐴𝑂
3 = 300 g · mol−1 and 𝑀𝑇𝑀𝐴𝑂

4 = 601 g · mol−1. A small increase in the 

concentration gradient can be perceived as the mass increases, as compared to normal mass 

and a smaller concentration gradient is observed when the mass of TMAO (𝑀𝑇𝑀𝐴𝑂
1 ) is equal to 

the mass of water (𝑀𝑤𝑎𝑡𝑒𝑟
𝑛 ). These early indications suggest that mass plays an active role in 
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thermophoresis. As we have mentioned previously, Galliéro et al.96 justified this behaviour as 

a density effect. The TMAO molecule participates more efficiently in the generation of the 

strong density zone as its mass increases, because heavier molecules tend to migrate towards 

the cold areas more than the lighter ones, once the system is in steady state equilibrium. 

The Soret coefficients of TMAO in the inset graph increase as a function of the mass ratio 

(𝛿𝑀 = (𝑀𝑇𝑀𝐴𝑂
𝑖 − 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 )/(𝑀𝑇𝑀𝐴𝑂
𝑖 + 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 )  → 𝑖 = 1,2,3,4), which their values are 

represented in this table. 

 Molar mass solute 

(𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

(𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝑻𝑴𝑨𝑶
𝟏  18 18 3.2 ± 0.7 

𝑴𝑻𝑴𝑨𝑶
𝟐  75 18 5.0 ± 0.9 

𝑴𝑻𝑴𝑨𝑶
𝟑  300 18 6.2 ± 0.6 

𝑴𝑻𝑴𝑨𝑶
𝟒  601 18 7.1 ± 1.1 

Table 6.3: Mass effect of TMAO. Molar masses of TMAO and water and its Soret coefficient value. 

The Soret coefficient values in Table 6.3 shows the following trend as the mass of the TMAO 

molecule increases: 

 𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
1

< 𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
2

< 𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
3

< 𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
4

 . (6.10) 

This trend shows the thermophobic character of TMAO increases with its mass. The Soret 

coefficients of TMAO progressively grow with the mass ratio.  An interesting point is that the 

TMAO solute with the water molar mass (𝑀𝑇𝑀𝐴𝑂
1 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 ) shows a positive contribution in 

its Soret coefficient (𝑆𝑡
𝑀𝑇𝑀𝐴𝑂

1

≈ 3 ∗ 10−3 K−1). As discussed above in Chapter 3, the Köhler 

group76,102 defined the Soret coefficient as a contribution of two independent terms (𝑆𝑇 =

𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜), and the isotopic part of the Soret coefficient is described in terms of mass and 

moment of inertia ratios (𝑆𝑇
𝑖𝑠𝑜 = 𝑎𝑀𝛿𝑀 + 𝑏𝐼𝛿𝐼). In the case where the mass ratio is zero (𝛿𝑀 =

0), the Soret coefficient (𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
1

) can be redefined as: 
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 𝑆𝑇
𝛿𝑀=0 =  𝑆𝑇

𝑐ℎ + 𝑏𝐼𝛿𝐼 , (6.11) 

𝑆𝑡
𝛿𝑀=0 could be the key to deciphering the other intrinsic properties effects of the molecule that 

affect the Soret coefficient. The moment of inertia depends on the mass and size of the 

molecule. Assume for a moment that these molecules behave as solid spherical particles. Thus, 

the inertial moments of these solid spherical particles can be defined by the following 

expression: 

 
𝐼 =

2

5
𝑀𝑅2 , (6.12) 

where 𝐼 is the inertial moment, 𝑀 is the molecular mass and 𝑅 is the molecular radius, and we 

can rewrite the isotopic contribution of the Soret coefficient from as: 

 
𝑆𝑇

𝑖𝑠𝑜 = 𝑎𝑀

𝑀𝑇𝑀𝐴𝑂 − 𝑀𝑤𝑎𝑡𝑒𝑟

𝑀𝑇𝑀𝐴𝑂 + 𝑀𝑤𝑎𝑡𝑒𝑟
+ 𝑏𝐼

2

5

𝑀𝑇𝑀𝐴𝑂𝑅𝑇𝑀𝐴𝑂
2 − 𝑀𝑤𝑎𝑡𝑒𝑟𝑅𝑤𝑎𝑡𝑒𝑟

2

𝑀𝑇𝑀𝐴𝑂𝑅𝑇𝑀𝐴𝑂
2 + 𝑀𝑤𝑎𝑡𝑒𝑟𝑅𝑤𝑎𝑡𝑒𝑟

2  . (6.13) 

If we consider that both components have the same mass (𝑀 = 𝑀𝑇𝑀𝐴𝑂 = 𝑀𝑤𝑎𝑡𝑒𝑟), the isotopic 

Soret coefficient is simplified to: 

 
𝑆𝑇

𝑖𝑠𝑜 = 𝑏𝐼

2

5

𝑅𝑇𝑀𝐴𝑂
2 − 𝑅𝑤𝑎𝑡𝑒𝑟

2

𝑅𝑇𝑀𝐴𝑂
2 + 𝑅𝑤𝑎𝑡𝑒𝑟

2  , (6.14) 

and the volume of a solid sphere is defined as 𝑉 =
4

3
𝜋𝑅3, the isotopic Soret coefficient as a 

function of the molecular volume takes the form: 

 
𝑆𝑇

𝑖𝑠𝑜 = 𝑏𝐼
∗

𝑉𝑇𝑀𝐴𝑂
2/3

− 𝑉𝑤𝑎𝑡𝑒𝑟
2/3

𝑉𝑇𝑀𝐴𝑂
2/3

+ 𝑉𝑤𝑎𝑡𝑒𝑟
2/3

 , (6.15) 

where 𝑏𝐼
∗ is the spherical inertial factor. Thus, the Soret coefficient for the spherical particles 

of the binary mixture with the same mass (𝑆𝑡
𝛿𝑀=0) can be understood in terms of molecular 

volume and "chemical" contribution. However, this approach needs to be studied in more detail 

as it does not take into account the shape of the molecules and therefore does not accurately 

describe the moments of inertia of each molecule. 
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On the other hand, we have also studied a system in which the mass of the water (𝑀𝑤𝑎𝑡𝑒𝑟 ≈

144 g · mol−1) is eight times its natural mass, while the mass of the TMAO keeps its natural 

mass (𝑀𝑇𝑀𝐴𝑂
𝑛 ). The result shows a Soret coefficient of 𝑆𝑇 ≈ 2 ∗ 10−3K−1. Therefore, we 

observe that the Soret coefficient of the TMAO molecule decreases as the mass of water 

(solvent) increases, which indicates that the water mass also plays a role in the Soret coefficient 

value of the solute molecules. In the next step, we analyse whether the effect of mass on the 

Soret coefficient is due to the absolute value of the molecular mass of the solute and solvent 

molecules or rather to the difference in mass between them. 

 

Figure 6.11: Mass ratio effect of TMAO. multiplicative factors are 𝑋1 = 0.5, 𝑋2 = 1 and 𝑋3 = 4. Data was 

averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑋1 =

0.0530 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑋2 = 0.0375 kcal · mol−1fs−1 and ∆𝑄𝛤𝑘

𝑋3 = 0.01875 kcal · mol−1fs−1 in order to 

generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. 

The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. Inset graph: Soret 

coefficient (𝑆𝑇) vs multiplicative factor (𝑋), the Soret coefficient values are calculated using the data outside the 

grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  
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We now investigate the total mass dependence of the Soret effect for the TMAO molecule. In 

Figure 6.11, we show the concentration gradient evolution as a function of the temperature for 

a TMAO solution at different molar masses for both TMAO and water. We rescale the mass of 

the TMAO and water molecules by the following multiplicative factors: 𝑋1 = 0.5, 𝑋2 = 1 and 

𝑋3 = 4. We observe that the Soret coefficient is little sensitive to a rescaling of both particles 

by the same factor in the case of binary mixture of TMAO and water. All TMAO concentration 

profiles for these multiplicative factors exhibit almost the same response under the thermal 

gradient and the TMAO molecule clearly tends to accumulate in the cold region. 

 Molar mass solute 

(𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

(𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑿𝟏 38 9 4.5 ± 0.7 

𝑿𝟐 75 18 5.0 ± 0.9 

𝑿𝟑 300 36 5.5 ± 1.2 

Table 6.4: Mass ratio effect of TMAO. Molar masses of TMAO and water for each multiplicative factor and its 

Soret coefficient value. 

The Soret coefficients of the TMAO molecule represented in the inset graph of Figure 6.11  and 

in Table 6.4 do not vary significantly as we increase overall mass of the system (𝑆𝑇
𝑋1 ≈ 𝑆𝑇

𝑋2 ≈

𝑆𝑇
𝑋3) as long as the mass ratio between solute and solvent is preserved. This result emphasizes 

the fact that the Soret coefficient of a solute depends on both its intrinsic properties and the 

intrinsic properties of its solvent.  
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6.5.2 Urea molecule 

Furthermore, we have studied the mass effect of the urea molecule. We want to observe 

whether the trends obtained for TMAO are the same as for urea, a smaller and fully polar solute.  

 

Figure 6.12: Mass effect of urea. 𝑀𝑢𝑟𝑒𝑎
1 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑢𝑟𝑒𝑎
2 = 𝑀𝑢𝑟𝑒𝑎

𝑛  and 𝑀𝑢𝑟𝑒𝑎
3 = 4 · 𝑀𝑢𝑟𝑒𝑎

𝑛 . Data was averaged 

over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1 in order to generate 

a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. The blue 

and red bars represent the reservoirs where heat is pumped and injected, respectively. Inset graph: Soret coefficient 

(𝑆𝑇) vs relative mass difference (𝛿𝑀), the Soret coefficient values are calculated using the data outside the grey 

regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the mass ratio dependence of the Soret effect for the urea molecule. In 

Figure 6.12, we show the concentration gradient evolution as a function of the temperature for 

a urea solution at different masses. The rescaled molar masses for urea are represented; 

𝑀𝑢𝑟𝑒𝑎
1 = 18 g · mol−1, 𝑀𝑢𝑟𝑒𝑎

2 = 60.024 g · mol−1 and 𝑀𝑢𝑟𝑒𝑎
3 = 240.096 g · mol−1. We 

observe a progressive increment of the concentration in the cold side as we increase the mass 

of the urea, which is similar to TMAO in Figure 6.10. The Soret coefficients of urea in the inset 
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graph highly increase as a function of the mass ratio, which their values are represented in this 

table. 

 Molar mass solute 

(𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

(𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝒖𝒓𝒆𝒂
𝟏  18 18 1.2 ± 0.8 

𝑴𝒖𝒓𝒆𝒂
𝟐  60 18 4.4 ± 0.7 

𝑴𝒖𝒓𝒆𝒂
𝟑  240 18 8.1 ± 1.1 

Table 6.5: Mass effect of urea. Molar masses of urea and water and its Soret coefficient value 

In fact, we notice that the Soret coefficient value increases as a function of the mass ratio for 

the urea molecule, and is higher than that observed for the TMAO molecule. When solutes 

have the mass of water (𝑀𝑤𝑎𝑡𝑒𝑟
𝑛 = 𝑀𝑇𝑀𝐴𝑂

1 = 𝑀𝑢𝑟𝑒𝑎
1 ), the TMAO molecule has a higher Soret 

coefficient than the urea molecule (𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
1

> 𝑆𝑇
𝑀𝑢𝑟𝑒𝑎

1

), which is consistent with the previous 

results, where the Soret coefficient is larger for TMAO rather than urea as we can see by 

comparing the Soret coefficients at their natural mass. However, when solute masses are four 

times higher than their natural masses, we observe a rebound in the thermophobicity of urea, 

exceeding that of TMAO (𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
3

< 𝑆𝑇
𝑀𝑢𝑟𝑒𝑎

3

), even though the mass of TMAO is still higher 

than the mass of urea (𝑀𝑇𝑀𝐴𝑂
3 > 𝑀𝑢𝑟𝑒𝑎

3 ). This highlights that the mass effect with respect the 

migration to colder regions depends in itself on the nature of the solute, which means that the 

empirical factor for mass dependence (𝑎𝑀) as well as inertial empirical factor (𝑏𝐼) are then 

actually defined by the nature of the solute.  

We thus proceed to analyse the effect of the mass ratio once both water and urea masses are 

rescaled by the same factors (𝑋 = 0.5, 1, 4), as done previously with TMAO molecule (Figure 

6.11). 
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Figure 6.13: Mass ratio effect of urea. multiplicative factors are 𝑋1 = 0.5, 𝑋2 = 1 and 𝑋3 = 4. Data was averaged 

over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
= 0.0375 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑋1 =

0.0530 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑋2 = 0.0375 kcal · mol−1fs−1 and ∆𝑄𝛤𝑘

𝑋3 = 0.01875 kcal · mol−1fs−1 in order to 

generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. 

The blue and red bars represent the reservoirs where heat is pumped and injected, respectively. Inset graph: Soret 

coefficient (𝑆𝑇) vs multiplicative factor (𝑋), the Soret coefficient values are calculated using the data outside the 

grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the total mass dependence of the Soret effect for the urea molecule. In 

Figure 6.13, we show the concentration gradient evolution as a function of the temperature for 

a urea solution at different molar masses for both urea and water. We rescale the mass of the 

urea and water molecules by the following multiplicative factors: 𝑋1 = 0.5, 𝑋2 = 1 and 𝑋3 =

4. We observe the same behaviour for the urea molecule as the one observed for the TMAO 

molecule, same mass ratios (solute/solvent) exhibit a similar Soret coefficient value, which 

reinforces the idea that mass effect is due to the relation between solute/solvent masses and not 

just a pure mass effect of one component.  
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 Molar mass solute 

(𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

(𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑿𝟏 30 9 4.3 ± 0.8 

𝑿𝟐 60 18 4.4 ± 0.9 

𝑿𝟑 240 36 3.3 ± 1.7 

Table 6.6: Mass ratio effect of urea. Molar masses of urea and water for each multiplicative factor and its Soret 

coefficient value. 

Table 6.6 shows the Soret coefficients for the different multiplicative factors. We observe that 

the Soret coefficient of 𝑋3 is slightly lower than the other two results. However, the inset graph 

in Figure 6.13 shows that this Soret coefficient has higher error bars which comprises the other 

values, so we do not consider as a different Soret coefficient value. 

The last part of the urea study is to examine what is the effect of the water mass instead of the 

urea mass. We noticed that the simulation with a urea mass equal to the mass of water (𝑀𝑢𝑟𝑒𝑎
1 =

𝑀𝑤𝑎𝑡𝑒𝑟
𝑛 ) has a very small Soret coefficient value (𝑆𝑇

𝑀𝑢𝑟𝑒𝑎
1

= 1.2 · 10−3K−1), which means that 

the urea molecule with a small mass has a modest thermophobic behaviour. A roughly 

extrapolation from our results predicts that the urea molecule could reach 𝑆𝑇
𝑢𝑟𝑒𝑎 = 0 K−1 at 

𝑀𝑢𝑟𝑒𝑎 = 10.5 g · mol−1, but it is not recommended to reduce the mass by that much without 

constraining the molecule. For this reason, we modify the water masses of the solution instead, 

as we have already seen that the mass effect on the Soret coefficient depends on the difference 

in mass between the solute and the solvent and not on the absolute mass. We prepared a set of 

four systems, where the urea mass is always the mass of water (𝑀𝑢𝑟𝑒𝑎
3 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 ), and we 

rescale the mass of water by these factors (0.5, 1, 2, 4). 

We now investigate the water mass dependence of the Soret effect for the urea molecule. In  

Figure 6.14, we show the concentration gradient evolution as a function of the temperature for 

a urea solution at different water molar masses: 𝑀𝑤𝑎𝑡𝑒𝑟
1 = 9 g · mol−1, 𝑀𝑤𝑎𝑡𝑒𝑟

2 = 18 g ·

mol−1, 𝑀𝑤𝑎𝑡𝑒𝑟
3 = 36 g · mol−1 and 𝑀𝑤𝑎𝑡𝑒𝑟

4 = 144 g · mol−1. All these urea concentration 

profiles exhibit really flat concentration gradients. The urea molecule with the water molar 

mass (𝑀𝑢𝑟𝑒𝑎 = 18 g/mol) does not have a clear trend to accumulate in the cold or the hot 
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Figure 6.14: Water mass effect of urea. 𝑀𝑤𝑎𝑡𝑒𝑟
1 = 0.5 · 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑤𝑎𝑡𝑒𝑟
2 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑤𝑎𝑡𝑒𝑟
3 = 2 · 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛  and 

𝑀𝑤𝑎𝑡𝑒𝑟
4 = 8 · 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 . Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
1

=

0.0530 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
2

= 0.0375 kcal · mol−1fs−1, ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
3

= 0.0265 kcal · mol−1fs−1 and 

∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
4

= 0.0133 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 =

1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat 

is pumped and injected, respectively. Inset graph: Soret coefficient (𝑆𝑇) vs relative mass difference (𝛿𝑀), the 

Soret coefficient values are calculated using the data outside the grey regions, and errors are calculated by the 

bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

region. Furthermore, we observe a small decrease in the concentration gradient as the water 

mass (solvent) increases. It can be barely perceived that the urea molecule shows thermophobic 

behaviour for water masses equal to or less than 18 g · mol−1, but the urea molecule becomes 

thermophilic for water masses higher than 18 g · mol−1. The Soret coefficients for the urea 

molecule represented in the inset graph confirm these trends and the values are represented in 

the following table.  
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 Molar mass solute 

( 𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

( 𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟏  18 9 2.8 ± 1.0 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟐  18 18 1.2 ± 0.7 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟑  18 36 -0.5 ± 1.0 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟒  18 144 -0.9 ± 1.9 

Table 6.7: Water mass effect of urea. Molar masses of urea and water for each multiplicative factor and its Soret 

coefficient value. 

The Soret coefficient for urea is positive for water masses lower or equal than the isotopic mass 

of urea (𝑀𝑤𝑎𝑡𝑒𝑟
1  and 𝑀𝑤𝑎𝑡𝑒𝑟

2 ). However, we observe an inversion of the sign in the Soret 

coefficient for the urea molecule, once the water mass becomes larger (𝑀𝑤𝑎𝑡𝑒𝑟
3  and 𝑀𝑤𝑎𝑡𝑒𝑟

4 ) 

than the isotopic mass of urea, which confirms that urea starts to accumulate in the hot region. 

These results support the idea that heavier molecules tend to accumulate in the cold region, 

since they participate more efficiently to generate the area of strong density. Consequently, the 

water molecules (solvent) for systems 𝑀3
𝑤𝑎𝑡𝑒𝑟 and 𝑀4

𝑤𝑎𝑡𝑒𝑟 become heavier than the urea 

molecules, and displace the urea molecules towards the hot region. We try to reproduce the 

negative Soret coefficient value for the TMAO molecule, but we do not achieve the 

thermophilic behaviour for the TMAO molecule, even if we increase the mass of water eight 

times. A strong “chemical” contribution and a larger size could explain that the TMAO 

molecule does not lose the thermophobic behaviour and makes it stay in the colder region, even 

if the mass of the water (solvent) is larger. 

6.5.3 Methanol molecule 

In this section, we are going to see in more detail the mass effect for the methanol molecule, 

which is the solute with the lowest Soret coefficient value among the molecules studied in the 

section 6.4. First, we studied the effect of mass for the methanol molecule, thus we performed 

the same simulations as previously performed for the TMAO and urea solutes, see Figure 6.10 

and Figure 6.12 respectively. 
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Figure 6.15: Mass effect of methanol. 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1 = 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2 = 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑛  and 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3 = 4 ·

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
𝑛 . Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘

= 0.0375 kcal ·

mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 =

330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat is pumped and injected, 

respectively. Inset graph: Soret coefficient (𝑆𝑇) vs relative mass difference (𝛿𝑀), the Soret coefficient values are 

calculated using the data outside the grey regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =

 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

We now investigate the mass dependence of the Soret effect for the methanol molecule. In 

Figure 6.15, we show the concentration gradient evolution as a function of the temperature for 

a methanol solution at different masses. The rescaled molar masses for methanol are 

represented: 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1 = 18 g · mol−1, 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

2 = 32.04 g · mol−1 and 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3 =

128.16 g · mol−1. The first two methanol concentration profiles (𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1  and 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

2 ) 

exhibit almost flat concentration gradients. However, the methanol molecule tends to 

accumulate in the cold region the third concentration profile (𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1 ), where its mass is 

significantly higher. Therefore, we always observe a progressive increase of the concentration 

in the cold region as we increase the mass for any kind of molecule regardless of its nature.  
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The Soret coefficients of methanol in the inset graph shows a high value for the heaviest 

methanol system while the other two Soret coefficient values are practically zero. These values 

are represented in this table. 

 Molar mass solute 

( 𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

( 𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝒎𝒆𝒕𝒉𝒂𝒏𝒐𝒍
𝟏  18 18 1.4 ± 1.1 

𝑴𝒎𝒆𝒕𝒉𝒂𝒏𝒐𝒍
𝟐  32 18 1.5 ± 0.7 

𝑴𝒎𝒆𝒕𝒉𝒂𝒏𝒐𝒍
𝟑  128 18 6.4 ± 0.8 

Table 6.8: Mass effect of methanol. Molar masses of methanol and water and its Soret coefficient value. 

One interesting point is that the first two systems exhibit the same value of the Soret coefficient 

(𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1

= 𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2

) despite the fact that their mass difference is almost twice as large 

(𝑀methanol
1 < 𝑀methanol

2 ). On the other hand, we confirm that the mass effect (𝑀methanol
1 <

𝑀methanol
2 ≪ 𝑀methanol

3 ) in the Soret coefficient value for the last simulation (𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1

=

𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2

≪ 𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3

) is similar to the mass effects previously observed for urea and 

TMAO.  

The Soret coefficient evolution as a function of the methanol mass ratio is actually similar to 

that observed for the urea molecule rather than the TMAO molecule behaviour. We notice that 

urea and methanol have relative similar molecular size as compared to TMAO (𝑉𝑢𝑟𝑒𝑎 ≈

𝑉𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑇𝑀𝐴𝑂), see Table 6.2. This might suggest that smaller molecules have a larger 

mass effect than bigger molecules in terms of size. Moreover, the simulations of these solutes 

at mass of 18 g/mol (𝑀TMAO
1 = 𝑀urea

1 = 𝑀methanol
1 ) reinforce this idea. Urea and methanol 

exhibit the same Soret coefficient value but it is not the same for the TMAO molecule 

(𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1

= 𝑆𝑇
𝑀𝑢𝑟𝑒𝑎

1

< 𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
1

). However, when the masses of the solutes are four times 

higher than their natural masses (𝑀3), we observe the same rebound in the thermophobicity of 

methanol as for urea, but in this case the Soret coefficient is the same as that of TMAO 

(𝑆𝑇

𝑀𝑇𝑀𝐴𝑂
3

= 𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3

), and the mass of TMAO is still higher than that of methanol (𝑀𝑇𝑀𝐴𝑂
3 >

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3 ). On the other hand, the Soret coefficient of methanol is lower than urea (𝑆𝑇

𝑀𝑢𝑟𝑒𝑎
3

>
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𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
3

), because urea is significantly heavier (𝑀𝑢𝑟𝑒𝑎
3 > 𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

3 ). These results 

emphasise that the mass effect with respect the migration to colder regions is itself dependent 

on the nature of the solute and the size effect, which means that the moment of inertia empirical 

factor dependence (𝑏𝐼) is defined in somehow by the nature of the solute, and gains importance 

depending on the size of the molecule. 

 

Figure 6.16: Water mass effect of methanol. 𝑀𝑤𝑎𝑡𝑒𝑟
1 = 0.5 · 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛 , 𝑀𝑤𝑎𝑡𝑒𝑟
2 = 4 · 𝑀𝑤𝑎𝑡𝑒𝑟

𝑛  and 𝑀𝑤𝑎𝑡𝑒𝑟
3 = 8 ·

𝑀𝑤𝑎𝑡𝑒𝑟
𝑛 . Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
1

= 0.0375 kcal ·

mol−1fs−1, ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
2

= 0.0188 kcal · mol−1fs−1 and ∆𝑄𝛤𝑘

𝑀𝑤𝑎𝑡𝑒𝑟
3

= 0.0133 kcal · mol−1fs−1 in order to generate 

a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. The blue 

and red bars represent the reservoirs where heat is pumped and injected, respectively. Inset graph: Soret coefficient 

(𝑆𝑇) vs relative mass difference (𝛿𝑀), the Soret coefficient values are calculated using the data outside the grey 

regions, and errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10).  

The last part of the methanol study is to examine what is the effect of the water mass instead 

of the urea mass. We noticed that the simulation with the methanol natural mass (𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
2 ) 
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has a very small Soret coefficient value (𝑆𝑇

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙
1

= 1.5 · 10−3K−1), which means that the 

methanol molecule has a small thermophobic behaviour. In this case, we modify the water 

mases of the solution by these factors (1,4, 8).  

We now investigate the water mass dependence of the Soret effect for the methanol molecule. 

In Figure 6.16, we show the concentration gradient evolution as a function of the temperature 

for a methanol solution at different water molar masses: 𝑀𝑤𝑎𝑡𝑒𝑟
1 = 18 g · mol−1, 𝑀𝑤𝑎𝑡𝑒𝑟

2 =

72 g · mol−1, 𝑀𝑤𝑎𝑡𝑒𝑟
3 = 144 g · mol−1. The methanol concentration profiles show a 

progressive gradient reversal as the water mass increase. This progressive effect can be 

observed in the Soret coefficients in the inner graph, and their values are represented in the 

following table. 

 Molar mass solute 

( 𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

( 𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟏  32 18 1.5 ± 0.7 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟐  32 72 -0.5 ± 1.1 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟑  32 144 -2.2 ± 1.6 

Table 6.9: Water mass effect of methanol. Molar masses of methanol and water for each multiplicative factor 

and its Soret coefficient value. 

We observe that the Soret coefficient of methanol reaches a negative value (𝑆𝑇
𝑀𝑤𝑎𝑡𝑒𝑟

1

< 0 <

𝑆𝑇
𝑀𝑤𝑎𝑡𝑒𝑟

2

< 𝑆𝑇
𝑀𝑤𝑎𝑡𝑒𝑟

3

) once the water mass is larger than the mass of methanol (𝑀𝑤𝑎𝑡𝑒𝑟
1 <

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝑤𝑎𝑡𝑒𝑟
2 < 𝑀𝑤𝑎𝑡𝑒𝑟

3 ). This trend is in agreement with our previous results obtained 

for urea in Figure 6.14, which exhibit a positive Soret coefficient for systems where the solute 

mass is higher than solvent mass (𝑀𝑠𝑜𝑙𝑢𝑡𝑒 > 𝑀𝑤𝑎𝑡𝑒𝑟), and a negative Soret coefficient (𝑆𝑇 <

0) for systems where the solute mass is lower than the solvent mass (𝑀𝑠𝑜𝑙𝑢𝑡𝑒 < 𝑀𝑤𝑎𝑡𝑒𝑟). 
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 Urea (18 g/mol) Methanol (32 g/mol) 

Mass ratio 

(δM) 

Soret coefficient  

(10−3K−1) 

Mass ratio 

(δM) 

Soret coefficient  

(10−3K−1) 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟏  0.33 2.8 ± 1 0.28 1.5 ± 0.8 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟐  0 1.2 ± 0.7  -0.38 -0.5 ± 0.9 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟑  -0.33 -0.5 ± 1  -0.63 -2.2 ± 1.7 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟒  -0.78 -0.9 ± 1.6   

Table 6.10: Urea and methanol mass effect. Mass ratios of the urea and methanol solutions and its respective 

Soret coefficient value. The errors are calculated by the bootstrap method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 10). 

Table 6.10 summarizes the Soret coefficient values of urea and methanol of Table 6.7 and 

Table 6.9 in terms of mass ratios. We observe a fairly good correlation between the Soret 

coefficients of urea and methanol with a similar mass ratio (the pairs are bolded in blue, red 

and violet). Although the violet comparison does not show exactly the same Soret coefficient 

value between urea and methanol, we observe that the Soret coefficients of systems with heavy 

water mass have larger errors. The following graph represents the results of the Table 6.10. 

In Figure 6.17, we show the Soret coefficients for urea and methanol at different mass ratios. 

We observe that close mass ratios exhibit similar Soret coefficient values. Moreover, we 

observe that both Soret coefficient values increase in parallel as the mass ratio increases. 
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Figure 6.17: Urea and methanol mass effect. Urea (cyan) and methanol (magenta) solutions. Data was averaged 

over 20 independent trajectories.  𝑃 =  1 bar.  𝐿𝑧 = 50 Å.  𝑇0 = 330 K. The errors are calculated by the bootstrap 

method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒  =  50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠  =  10). The Soret coefficient of urea are the inset graph values from Figure 

6.14. The Soret coefficient of methanol are the inset graph values from Figure 6.16. 

6.5.4 Water molecule 

The last aspect of the mass effect on the Soret coefficient is the analysis of a pure water system. 

Experimental works have already demonstrated a mass effect in a binary mixtures of water 

with deuterated water.95,106,107 We find that the best way to see if there is indeed an isotopic 

effect on the Soret coefficient is to perform simulations with the same substance at different 

masses where the "chemical" contribution term and the size of the Soret coefficient become 

irrelevant. Moreover, the water molecule is a small molecular system with almost all of its 

mass centred on one atom (oxygen), so the moment of inertia should not have a large impact 

on the Soret coefficient compared to the effect of mass.  
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In this case, we modify the mass of a small number of water molecules to preserve the idea of 

dilute aqueous solutions for a large range of masses. In addition, we exclude the isotopic water 

molecules from the eHEX algorithm, which allows us to have a better control of the 

temperature gradient, since it depends on the amount of energy exchanged between the two 

regions and the mass of the molecules that are affected. We validated each step of the 

simulation for this pure water systems, using a similar procedure as the previous solute systems.  

 

Figure 6.18: Mass effect of isotopic water. Isotopic water at different molar masses; 𝑀𝑤𝑎𝑡𝑒𝑟
𝑖𝑠𝑜 = 𝑋 · 𝑀𝑤𝑎𝑡𝑒𝑟  and 

𝑋 = 0.5, 1, 1.5, 2, 4, 8, 15. Data was averaged over 20 independent trajectories. The energy flux was set to ∆𝑄𝛤𝑘
=

0.0375 kcal · mol−1fs−1 in order to generate a thermal gradient amplitude of 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 =

50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red bars represent the reservoirs where heat is pumped 

and injected, respectively. Inset graph: Soret coefficient (𝑆𝑇) vs relative mass difference (𝛿𝑀), the Soret 

coefficient values are calculated using the data outside the grey regions, and errors are calculated by the bootstrap 

method (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 50, 𝑁𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 10).  

We confirmed that the total energy does not vary for all steps of the simulation. The 

temperature gradient is constant with an amplitude of 60 K. These simulations are performed 

at a median temperature of 330 K. Finally, the system consists of 40 isotopic water molecules 
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and 1024 water solvent molecules, which maintain the same number of particles as the previous 

solute studies.  

We now investigate the mass dependence of the Soret effect for the water molecule. In Figure 

6.18, we show the concentration gradient evolution as a function of the temperature for a water 

system at different isotopic water molecules. The mass has been rescaled for a certain number 

(40 water molecules) of isotopic waters (𝑀𝑤𝑎𝑡𝑒𝑟
𝑖𝑠𝑜 = 𝑋 · 𝑀𝑤𝑎𝑡𝑒𝑟) by the following factors 𝑋 =

0.5, 1.5, 2, 4, 8, 15. A progressive increase in the concentration gradient towards the cold region 

can be observed as the mass of the isotopic waters increases. Moreover, the Soret coefficients, 

represented in the inner graph, show a gradual growth as a function of the mass ration between 

the isotopic waters and natural ones. This result confirms that the mass effect is an additive 

factor in the global Soret coefficient. Furthermore, the isotopic water with its water mass 

reduced by the half (𝑀𝑤𝑎𝑡𝑒𝑟
1 ) exhibit a thermophilic behaviour instead the rest of systems, 

where their isotopic water molecules are higher than the natural water mass.  

 Molar mass isotopic 

water ( 𝑔 · 𝑚𝑜𝑙−1) 

Molar mass water 

( 𝑔 · 𝑚𝑜𝑙−1) 

Soret coefficient 

(10−3𝐾−1) 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟏  9 18 -1.8 ± 0.5 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟐  27 18 0.7 ± 0.5 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟑  36 18 2 ± 0.6 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟒  72 18 2.3 ± 0.9 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟓  144 18 2.9 ± 0.7 

𝑴𝒘𝒂𝒕𝒆𝒓
𝟔  270 18 4.3 ± 0.8 

Table 6.11: Mass effect of isotopic water. Molar masses of the isotopic water (solute) and water (solvent) 

molecules and its Soret coefficient value. 

Table 6.11 shows the molar mass of each isotopic water and its resulting Soret coefficient 

value. We confirm that a higher mass ratio leads to higher thermophobic behaviour. Moreover, 

the inversely proportional mass ratios (𝑀𝑤𝑎𝑡𝑒𝑟
1  and 𝑀𝑤𝑎𝑡𝑒𝑟

2 ) also have the same Soret 

coefficient value but have opposite sign (𝑆𝑇
𝑀𝑤𝑎𝑡𝑒𝑟

1

≈ −𝑆𝑇
𝑀𝑤𝑎𝑡𝑒𝑟

3

), which confirms that the Soret 
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coefficient for “chemically” identical particles depends only on the difference in mass between 

the solute and the solvent, therefore, the thermophobic or thermophilic behaviour of the particle 

is simply a mass effect.  

6.5.5 Mass effect conclusion 

In this section we have studied the effect of mass on the Soret coefficient for different solutes. 

We have been modifying the mass of the solute, the solvent and both in different simulations. 

 

Figure 6.19 : Mass effect summary. Methanol (yellow), ethanol (olive), urea (cyan), TMAO (magenta), glucose 

(green), and water (grey). Data was averaged over 20 independent trajectories. 𝛥𝑇 ≈ 60 K.  𝑃 = 1 bar.  𝐿𝑧 =

50 Å.  𝑇0 = 330 K. 𝐶0 = 2.17 mol · kg−1. The blue and red zones represent thermophobic and thermophilic 

regions. The cross dots are the simulations at natural mass for both solute and solvent. The dashed lines are linear 

regressions of the equation 𝑆𝑇 = 𝑆𝑇
0 + 𝑎𝑀𝛿𝑀.  
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In Figure 6.19, we show all the Soret coefficients obtained above for methanol (yellow), 

ethanol (olive), urea (cyan), TMAO (magenta), glucose (green), and isotopic water (grey). The 

dots with crosses represent the simulations when both the solute (𝑀𝑠𝑜𝑙𝑢𝑡𝑒
𝑛 ) and the solvent 

(𝑀𝑤𝑎𝑡𝑒𝑟
𝑛 ) have their natural mass. The three dots at the same mass ratio (𝛿𝑀) represent the 

TMAO and urea molecules in the simulations in which the mass has been rescaled for both 

molecules in the simulation (solute and water). The blue part shows the thermophobic (𝑆𝑇 >

0 K−1) behaviour for the solutes in certain simulations, and the red part shows the thermophilic 

(𝑆𝑇 < 0 K−1) behaviour. We observe that all molecules show a thermophobic character for 

positive mass ratios.  On the other hand, urea, methanol and water acquire a thermophilic 

character at certain negative mass ratios.   

Even if the solutes studied are larger than the water molecule (solvent), we should expect a 

moment of inertia effect in the isotopic Soret coefficient. However, the Soret coefficients 

evolution for the methanol, urea, TMAO solutes show a constant increase as a function of the 

mass ration (𝑆𝑡 ∝  𝛿𝑀). Therefore, we have employed the description of the Soret coefficient: 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 , (6.16) 

where the isotopic moments of inertia effects are neglected and included in the constant Soret 

coefficient term  𝑆𝑇
0 = 𝑆𝑇

𝑐ℎ + 𝑏𝐼𝛿𝐼. 

 𝑆𝑇
0 (10−3𝐾−1) 𝑎𝑀 Coefficient of 

determination (𝑅2) 

Water 0.0 4.5 0.96 

Methanol 1.1 5.9 0.97 

Urea 1.5 5.3 0.92 

TMAO 3.2 3.4 0.94 

Table 6.12: Empirical fit mass effect. Constant values of the linear fit of 𝑆𝑇 = 𝑆𝑇
0 + 𝑎𝑀𝛿𝑀 from Figure 6.19 for 

the water, methanol, urea and TMAO molecules.  
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The coefficients of the linear regression of equation (6.16) are shown in Table 6.12 for water, 

methanol, urea and TMAO. It should be noted that 𝑆𝑇
0 ≈ 0 K−1 for the isotopic water 

simulations. This value can be explained by the fact that these simulations are pure water 

solutions in which we only modify the mass of certain water molecules, and therefore we just 

expect a pure mass effect in the Soret coefficient. These simulations are isotopic water in water, 

so we do not have a chemical contribution of the Soret coefficient (𝑆𝑇
𝑐ℎ = 0), and the moment 

of inertia contribution (𝑏𝐼𝛿𝐼 = 0) should not affect the Soret coefficient for two reasons. 

Previously, we discussed the fact that the moment of inertia contribution of the Soret coefficient 

for the spherical particles of the binary mixture with the same mass (𝑆𝑡
𝛿𝑀=0) can be understood 

in terms of molecular volume (𝛿𝐼 = 𝑏𝐼
∗𝛿𝑉(2 3)⁄ ), which would be 𝛿𝐼 = 0 for the same 

molecule. Moreover, the water barycentre is mostly centred on the oxygen atom so the effect 

of the moment of inertia should be very small as the mass increases. 

We note that 𝑆𝑇
0 is larger for the TMAO molecule as compared to urea or methanol, which 

indicate a higher “chemical” contribution or moment of inertial effect of the Soret coefficient. 

However, a more extensive study should be done to know the moment of inertia effect to isolate 

the “chemical” contribution. 

Finally, we observe that all coefficients of determination are higher than 0.9 for all solutes, 

which indicates a trend of the Soret coefficient as a function of mass ratio and reinforces the 

approximation made in equation (6.16). 
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7.  Molecular origins of thermophoresis 

In the previous chapter, we discussed some intrinsic properties of the solutes, as well as some 

external factors that affect the thermophoretic motion of these solutes under a thermal gradient 

and the Soret coefficient value. In addition, we analysed several phenomenological descriptions 

suggested in the literature that describe particular thermophoretic trends for certain systems, 

but they do not reveal the molecular origin of thermophoresis and the Soret coefficient.  

On the other hand, some molecular models have been proposed to explain the molecular basis 

of thermophoresis. In this section, we will test the feasibility of two plausible models, which 

are of particular interest and relevance for molecular systems, but which come from different 

perspectives. The first model is the Eastman’s approach,71 which tries to relate the thermally-

driven effects on a molecule to a temperature dependence of its solvation free-energy. The 

second model is the Prigogine’s model which conjectures that the thermophoretic motion of a 

molecule is related to the difference in the activation energies for the diffusion of the solute 

and solvent molecules.72–76 

7.1 Thermophoresis as a result of temperature dependence 

solvation free energy 

Eastman defined the thermophoretic motion of a particle as a thermodynamic effect. In a 

system at a non-constant temperature, the movement of a particle from one region to another 

is associated with a change in entropy. The author described this entropic change as a 

rearrangement of particles when a particle moves away and leaves an empty space and the 

energy required to heat or cool that particle in the new medium which is at a different 

temperature. Therefore, Eastman justified that the Soret coefficient can be understood in terms 

of equilibrium thermodynamic considerations, relating the Soret coefficient to the temperature-

dependence of the solute hydration free-energy. The hydration free-energy (∆𝐺𝑠) is the 

difference in free energy between a molecule in the gas phase and the same molecule in a liquid 

phase, which is surrounded by solvent. 
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The process of solvation describes the rearrangement of the molecules in a system when a new 

molecule is added. Normally, water is the most commonly used solvent in chemistry, and hence 

the solvation process particular to aqueous systems is commonly known as hydration, which is 

the case here. Depending on the properties of the solvent and the solute, their interactions are 

relatively thermodynamically stable. Experimental measurements are usually carried out under 

constant temperature and pressure conditions, and hence the thermodynamic property in which 

the solvation process will be described is the Gibbs free energy (symbol G). 

 

Figure 7.1: (Replot) Hydration free energy. Schematic representation of the hydration free energy process of the 

trimethyl ammine N-oxide molecule (TMAO). The blue box represents the liquid phase and outer box the gas 

phase. ∆𝐺ℎ𝑦𝑑 is the hydration free energy of the process. 

Figure 7.1 is the same as Figure 3.1. We replot this figure to visualize the solvation process. 

The hydration free energy (∆𝐺𝑠 = ∆𝐺ℎ𝑦𝑑) is a difference between two states. First, a solute 

molecule (TMAO in Figure 7.1) is outside the system, and this solute molecule does not interact 

with the rest of the molecules in the system, this state is commonly referred as the gas phase of 

the solute. The last step of the reaction coordinate represents the solute completely solvated in 

the solution, which is known as the liquid phase. The difference in energy between the solute 

in the gas phase and the solute in the liquid phase is the hydration free energy (red arrow), 

which takes into account the solute-solvent and solute-solute interactions as well as the 

rearrangement of the solution due to solute insertion. Furthermore, the hydration free energy 

sign will determine whether the process would be favourable (exergonic ∆𝐺 < 0) or 

unfavourable (endergonic ∆𝐺 < 0). The same process can be carried out in the other direction, 
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since the free energy is a thermodynamic state, and does not depend on the path but on the two 

final states. The inverse process is known as the dehydration process, which is equivalent to 

the negative free energy value from the hydration process (∆𝐺ℎ𝑦𝑑 = −∆𝐺𝑑𝑒ℎ𝑦𝑑). 

Molecular dynamics can evaluate the hydration free energy process by just decoupling the 

solute interactions from the solution. The free energy perturbation (FEP) method is one 

technique that was introduced by Zwanzig in 1954.178 According to this method, the free energy 

dehydration difference is obtained from the following equation: 

 
∆𝐺𝑑𝑒ℎ𝑦𝑑(𝑙 → 𝑙∗) = 𝐺𝑙∗ − 𝐺𝑙 = −𝑘𝐵𝑇𝑙𝑛 ⟨𝑒𝑥𝑝 (−

𝐸𝑙∗ − 𝐸𝑙

𝑅𝑇
)⟩

𝑙
 , (7.1) 

where 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, the triangular brackets denote an 

average over a simulation run for the liquid state transition (𝑙 → 𝑙∗), 𝐸𝑙 is the total energy of 

the system in the liquid phase, and 𝐸𝑙∗ is the total energy of the decoupled system in the liquid 

phase. In practice, a normal simulation is run for the liquid state (𝑙), but the energy of the 

decoupled system in the liquid state (𝑙∗) is also calculated. Moreover, the free energy 

perturbation calculations only converge properly as the difference between two states is small 

enough; therefore, it is necessary to divide a perturbation in smaller "windows", which are 

computed independently. One technique consists of progressively modifying the 

intermolecular interactions between our target solute molecule and the other molecules in the 

solution. The “windows” are discretized by a decoupling factor or 𝜆, which varies between one 

and zero. In the case that 𝜆 is equal to one, the intermolecular interactions (Lennard-Jones or 

Coulombic) between the solute molecule and the rest of the molecules are full active, but once 

𝜆 is equal to zero, the intermolecular interactions are deactivated. Therefore, we can thus 

monitor the level of decoupling by simply controlling the value of 𝜆, and the hydration (𝜆0→1) 

or dehydration (𝜆1→0)  processes can be studied by simply modifying this parameter (𝜆). 

There are several methods in order to quantify the free energy differences between two states, 

apart from the free energy perturbation  method (FEP).178 The other methods used in this work 

are; the Bennet’s acceptance ratio method (BAR),179 the thermodynamic integration method 

(TI),121 the Multistate Bennett Acceptance Ratio method (MBAR).180 Most of them compare 

free energy differences between two states, except the MBAR method, which calculates the 
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(relative) free energies of several states. It essentially reduces to the BAR method when only 

two states are involved. Henceforth, the total free energy dehydration (∆1
0𝐺) for all these 

methods can be calculated by just adding these free energy differences for each 𝜆: 

 

∆1
0𝐺 = ∑ ∆𝜆𝑖

𝜆𝑖+1

𝑛−1

𝑖=0

𝐺 . (7.2) 

7.1.1 Simulation details 

In this work, the desolvation process (∆1
0𝐺𝑠) is studied for different molecular systems to 

determine the free energy of dehydration at several temperatures and thus check the viability 

of viewing the thermophoresis as a thermodynamic process. In addition, the solvation process 

has also been tested with results similar to those of the desolvation process. The Coulombic 

cut-off is put at 8.5 Å with the particle-particle particle-mesh (PPPM) solver160 for the long-

range electrostatic force, and the Lennard-Jones cut-off is put at 9 Å, the same as the 

thermophoretic conditions. For the free energy calculations, a cubic box of size 𝐿𝑥 = 𝐿𝑦 =

𝐿𝑧 ≈ 33.15 Å, centred at (0,0,0), with equiangular and perpendicular distribution 

(90°, 90°, 90°) was considered. The solvent molecules are randomly inserted into the 

simulation box using the Packmol software159 without any spatial constraint. The system is 

then minimized using a Polak-Ribiere161 version of the conjugate gradient algorithm (energy 

tolerance limit = 10−4 kcal · mol−1 and force tolerance limit = 10−6 kcal · mol−1). The 

velocities are set to correspond to the target median temperature, and after a NPT equilibration 

of 200 ps is performed at this median temperature, with the Nose-Hoover162–164 barostat and 

thermostat. The damping parameters for the barostat and the thermostat are 𝑃𝑑𝑎𝑚𝑝 = 1000 fs 

and 𝑇𝑑𝑎𝑚𝑝 = 100 fs  respectively. All simulations are performed under the NPT ensemble at 

1 atm of pressure, which is vital for the determination of the free Gibbs energy, because this 

ensemble controls the temperature and pressure of the system. 

Moreover, we use a modified version of the Lennard-Jones and Coulombic potentials, which 

are known as the soft core potentials.181 The soft-core potentials slightly modify the standard 

potentials in order to avoid the asymptotic functions during the decoupling process. These 

potentials have a soft repulsive core, tunable by the parameter 𝜆 , in order to avoid singularities 
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during free energy calculations when sites are created or annihilated. When 𝜆 tends to 0, the 

pair interaction vanishes with a soft repulsive core. When 𝜆 tends to 1, the pair interaction 

approaches the normal, non-soft potential. 

The next step is to progressively decrease these Coulombic and Lennard-Jones interactions 

along 40 steps. First, we switch off Coulombic interactions, and we decrease the Coulombic 

part (𝜆𝐶𝑜𝑢𝑙) over 20 free energy steps (𝑑𝜆𝐶𝑜𝑢𝑙 = −0.05). Once the Coulombic term is 

completely decoupled, we proceed to decrease the Lennard-Jones potential in the same way as 

the Coulombic, the Lennard-Jones part (𝜆𝐿𝐽) decreases over 20 free energy steps (𝑑𝜆𝐿𝐽 =

−0.05). Moreover, we impose that the new 𝜆𝑖+1 starts with the previous 𝜆𝑖 configuration, and 

we always perform an equilibration process of 200 ps and the following production of 200 ps 

for each 𝜆. We first switch off the Coulombic interactions to avoid pure attractive or repulsive 

interactions due to the electrostatic forces, and thus prevent the system from collapsing. As 

long as the Lennard-Jones forces are active, the particles will maintain the minimum energy 

distance. 

 

Figure 7.2: Schematic representation of our desolvation process used in LAMMPS. ∆𝐺1 is the free energy 

corresponding to the desolvation process of the target molecule represented with a TMAO molecule, the TMAO 

molecule with greyish colours represents that none of its atoms have charges.  ∆𝐺2 is the same process as ∆𝐺1, 

but the target molecule is isolated. The sum of both energies results in the free energy of dehydration (∆𝐺𝑑𝑒ℎ𝑦𝑑 =

∆𝐺1 + ∆𝐺2). 

The LAMMPS software (version 07Aug19) is used with the FEP-package (Agilio Padua). One 

of the problems we face in this package is in the implementation when modifying the 

Coulombic interactions. The FEP-package decouple the Coulombic interactions by directly 

rescaling the charges of the target molecule, instead of decoupling the Coulombic pairs with 

the other molecules of the solute. Consequently, the Coulombic intramolecular interactions of 

the target molecule also progressively vanish with this technique, which makes all atoms of the 
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target molecule completely uncharged at the end of the decoupling process, see ∆𝐺1 in Figure 

7.2. 

Therefore, we have performed a second free energy calculation with the same molecule in the 

gas phase to quantify the corresponding free energy associated with the intramolecular 

Coulombic, which is represented as ∆𝐺2 in Figure 7.2. These simulations are performed in the 

NVT ensemble to keep the same size of the system as the liquid phase, as we are now working 

just with the target molecule. 

Additional simulations are performed with the GROMACS package (version 2019.4) to 

support the LAMMPS results. The Coulombic and Lennard-Jones cut-offs are 9 Å, the particle-

mesh Ewald (PME) solver182 is used for the long-range electrostatics. The same cubic box 

system is used and 50000 steps are set for the minimisation process. The velocities are set to 

correspond to the target mean temperature. A 200 ps NPT equilibration is performed at the 

respective median temperatures, with the Nose-Hoover thermostat, 162–164 and the Parrinello-

Rahman barostat.183 The damping parameters for barostat and thermostat are set at 2 ps, and 

the barostat compressibility is set at 4.46−5 bar−1. All simulations are performed under the 

NPT ensemble at 1 bar of pressure. The Coulombic and Lennard-Jones interactions are 

decoupled over 14 steps. First, we decouple the Coulombic interactions, decreasing 𝜆𝐶𝑜𝑢𝑙 over 

4 free energy steps (𝑑𝜆𝐶𝑜𝑢𝑙 = −0.25). Once the Coulombic term is completely decoupled, we 

proceed to decrease the Lennard-Jones potential in the same way as the Coulombic, where 𝜆𝐿𝐽 

decrease over 10 steps (𝑑𝜆𝐿𝐽 = −0.1). Moreover, we impose that the new 𝜆𝑖+1 starts with the 

previous 𝜆𝑖 configuration, and we always perform an equilibration process of 200 ps and the 

following production of 200 ps for each 𝜆, which is the same procedure as the LAMMPS free 

energy calculations. The implementation of the GROMACS free energy directly decouples the 

Coulombic pair interactions instead of modifying the charges, therefore the second step 

depicted in Figure 7.2 is not necessary. 

The subsequent free energy analysis has been performed by the Alchemical Analysis tool,184 

which is compatible with the GROMACS software, and this tool handles, the analysis through 

a number of free energy methods, including BAR, MBAR and TI. However, LAMMPS free 

energy calculations are not included in this tool. First, they have been determined by the tool 

available in the USER FEP-package of the LAMMPS software. In addition, we have re-adapted 
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the LAMMPS inputs to be able to calculate the BAR and MBAR free energy methods, and we 

have modified the resulting free energy outputs to be readable by the Alchemical Analysis tool.  

7.1.2 Results 

First, we check the robustness of the free energy desolvation process for a TMAO molecule in 

a 2.17 m aqueous solution. We plot the evolution of the free energy as a function of the inverse 

of the temperature for both programs (LAMMPS and GROMACS) and several subsequent 

analysis techniques (TI, FEP, BAR, MBAR). The TI method is only analysed for the 

GROMACS simulations by the Alchemical Analysis, and the FEP method is only analysed for 

the LAMMPS simulations by the python script FEP-package available. 

 

Figure 7.3: Free energy methods. Free energy desolvation process vs temperature for TMAO with different 

software and several post-analysis methods (TI (empty blue), BAR (empty green) and MBAR (empty orange) for 

GROMACS, and FEP (fill red), BAR (fill green) and MBAR (fill orange) for LAMMPS. Range of temperatures 

between 290-360 K. P = 1 bar. TMAO molal concentration of 2.17 m. 
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The desolvation free energies plotted in Figure 7.3 show that the trends are well reproduced by 

the two programs (GROMACS and LAMMPS) as well as among all the methods (TI, FEP, 

BAR and MBAR). However, we note that the calculations of the free energies for a temperature 

of 330 K do not fully coincide, but we observe that these differences are lower than 1 kcal/mol. 

One of the reasons could be due to the different implementations between LAMMPS and 

GROMACS, so that they do not reproduce exactly the same conditions. We have tried to 

reproduce as well as possible the same conditions but we have found some particular 

limitations for each programme. A clear example is how the Coulombic intermolecular 

interactions are managed in the free energy calculation for each programme. On the other hand, 

the long range electrostatic interactions are calculated with the particle-mesh Ewald technique 

(PME)182 for the GROMACS simulations, and the particle-particle particle-mesh solver 

(PPPM)160 for the LAMMPS simulations. The GROMACS simulations are performed with the 

leap-frog integrator,154 and the LAMMPS simulations are performed with the velocity Verlet 

algorithm.185 The GROMACS NPT simulations are performed with the Nose-Hoover162–164 

thermostat, and the Parrinello-Rahman183 barostat, but the LAMMPS NPT simulations are 

performed, with the Nose-Hoover162–164 barostat and thermostat. All these differences make 

comparisons between the two programmes more complex and could explain these differences 

in energy. 

Furthermore, we observe a clear trend as a function of temperature in Figure 7.3. The free 

energy of desolvation increases as the temperature decreases. These results are in agreement 

with the solvation energies of aqueous solutions with polar molecules, for example the 

solvation of methanol in water.186 Lower temperatures make the TMAO molecule more stable 

in the aqueous solution and thus require a higher energy to desolvate. However, as the 

temperature increases, the intermolecular interactions between the TMAO molecule and the 

solution are weaker, and the free energy required to desolvate a TMAO molecule is thus lower.   

Eastman's approximation71 predicted that the Soret coefficient can be estimated by calculating 

free energies as a function of temperature. Later, the Braun group72,73 developed this idea and 

proposed the following expression: 

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
 . (7.3) 
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Even if thermophoresis is a non-equilibrium effect, the Braun group demonstrated that for 

moderate temperature gradients, the spatial distribution of molecules follow local equilibrium 

thermodynamics.8 Our next step is to determine the Soret coefficients for the desolvation free 

energies in Figure 7.3. by using the Braun’s equation described above, see eq. (7.3). The 

following graph represents the Soret coefficient values for each method shown in Figure 7.3, 

and we also include the TMAO Soret coefficient value obtained by the thermophoretic 

simulations. Moreover, all these Soret coefficients are represented at a median temperature of 

330 K. 

 

Figure 7.4: Soret coefficient methods. Soret coefficient values at 330 K using several methods (FEP, TI, BAR and 

MBAR). The LAMMPS results are represented by solid blocs and the GROMACS results are represented by 

weaved blocks. The methods are FEP or TI (blue), BAR (green) and MBAR (orange). The black column 

represents the Soret coefficient determined by the thermophoretic calculations. 

The TMAO Soret coefficient represented in Figure 7.4 shows the values for each free energy 

methods. We do not perceive that any post analysis method gives a completely different result 
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compared to the other methods. However, the Soret coefficients for the different methods are 

quite disparate and without any clear trend among them. For example, the MBAR method has 

the lowest Soret coefficient for the LAMMPS simulation, but the highest for the GROMACS 

simulation. To improve these results, more statistics should be considered for each solvation 

free energy calculations at a determined temperature and include more temperatures to improve 

the description of (𝑑𝐺/𝑑𝑇). We do not consider it necessary to modify the 𝜆 decoupling process 

by more than 20 steps, neither to increase the equilibration or production time for each 𝜆. For 

this level of accuracy, we observe that the Soret coefficients calculated by the desolvation free 

energy as a function of the temperature are between 28 − 46 · 10−3 · K−1, which are one order 

of magnitude larger than thermophoretic one (𝑆𝑇 = 5 10−3 · K−1). In addition, we have studied 

the solvation free energy for urea and methanol. The following graph represents the solvation 

free energy as a function of the inverse of temperature for TMAO, urea and methanol.  

 

Figure 7.5: Free energy of desolvation vs temperature for different solutes:  methanol (yellow), TMAO (magenta) 

and urea (cyan). Range of temperatures between 290-360 K. 𝑃 =  1 bar. Molal concentration of 2.17 m. Free 

energies obtained with the LAMMPS software and the FEP as post-analysis method. 
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We have only plotted LAMMPS free energy calculations with the FEP post-analysis method. 

However, we have also analysed these results with the BAR and MBAR methods and their 

results are similar to those obtained with the FEP method. 

We now investigate the desolvation free energies as a function of the inverse of the temperature. 

In Figure 7.5, we show the free energies of TMAO, urea and methanol for the temperatures; 

300 K, 330 K and 360 K. The free energies for urea and methanol show similar trends compared 

to the free energies of TMAO. In addition, we observe that higher temperatures require lower 

free desolvation energies for all these solutes, which means that molecules are more easily 

desolvated as the temperature increases. We also observe that TMAO has the largest 

desolvation free energies, and the methanol molecule has the lowest desolvation free energies. 

These results manifest that the energy required to desolvate a TMAO molecule is thus larger 

than the methanol. Some factors could explain this trend such as the intermolecular interactions 

or the molecular volume, but it will require a further analysis to understand the nature of these 

free energy trends for the different solutes, and the posterior relation with thermophoresis.  

Figure 7.6: Free energy of desolvation vs temperature for methanol. Range of temperatures between 280-360 K. 

𝑃 =  1 bar. Molal concentration of 2.17 m. The green (MEOH-4P) and red (OPLS-2016) dots are computational 

data of Saint-Martin et al.186 The black line is the experimental linear fit of Staudinger et al.187 
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Moreover, we compare the free energy results for the methanol molecule in Figure 7.5, with 

the solvation free energy data available in the literature.186,187. In Figure 7.6, we show the free 

energies of methanol for a temperature range from 270 K to 370 K. The yellow dots represent 

the free energies of methanol, already observed in Figure 7.5. Saint-Martin et al.186 

computational free energy results are represented by the dashed lines. The red dots are the free 

energies of the methanol molecule for simulations with a non-polarisable forcefield (OPLS-

2016). The green dots are the free energies of the methanol molecule for simulations with its 

polarisable forcefield (MEOH-4P).  The black line represents the experimental results of 

Staudinger et al. 187 Our free energy results for the methanol molecule underestimates the 

experimental values and the Saint-Martin et al.186 values with the polarizable force field by 1 

kcal/mol of difference, but our results are in good agreement with the free energies results with 

a non-polarizable force field. This difference could be explained by the fact that the 

computational free energies186 were determined with a polarisable four-site potential for 

methanol (MEOH-4P), which describes better the charge distribution of themethanol molecule 

and hence improves the free energy calculations. However, the force field used in this work for 

methanol, which is OPLS based force field,138 exhibit the same values as the results of Saint-

Martin et al.186 for the non-polarizable results. Actually, our work does not focus in the absolute 

desolvation free energy values, but on its variations as a function of temperature, and we 

observe that our trend is the same as the polarizable methanol force field and the experimental 

results. For this reason, we do not contemplate a polarizable force field for our simulations in 

this work, and we observe the same trends for this accuracy level. Therefore, we focus on the 

dependence of the free energy on temperature (𝑑𝐺/𝑑𝑇) to check the validity of the Braun’s 

group model for urea and methanol. We represent the correlation between the Soret coefficient 

determined by the Braun's model and the Soret coefficients previously calculated during the 

thermophoresis simulations, see Figure 7.7. 

We note that the Soret coefficients determined by free energy calculations clearly overestimate 

the Soret coefficient calculated by molecular dynamics under a thermal gradient for urea, 

methanol and TMAO. Therefore, the Soret coefficient cannot be understood only in terms of 

an entropic solvation effect for this kind of systems, since it largely overestimates the 

thermophoretic value obtained previously.  
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Figure 7.7: Eastman model. The Soret coefficient obtained by the Eastman model vs the thermophoretic Soret 

coefficient at 330 K for TMAO (magenta), urea (cyan) and methanol (yellow).  

The theoretical approach of Braun remains valid for moderate temperature gradients, because 

the thermal fluctuations of the molecule are still a local equilibrium and then the 

thermophoretic depletion follows a Boltzmann distribution,8 which relates small concentration 

changes with small Gibbs-free energy differences. Although, our thermophoresis simulations 

are performed at large thermal gradients amplitudes, ∆𝑇 = 60 K, which corresponds a 

temperature gradient of ∇𝑇 = 2.4 K · Å−1 for a box length of 𝐿𝑧 = 50 Å, we remember that our 

system is composed by two thermal gradients. The Braun group validated this approach (𝑆𝑇 =

1

𝑘𝐵𝑇

𝑑𝐺𝑠

𝑑𝑇
 ) only if the temperature gradient ∇𝑇 is below a threshold ∇𝑇 <  (𝑎𝑆𝑇)−1, which is 

given by the particle fluctuations with the hydrodynamic radius (𝑎) and Soret coefficient (𝑆𝑇), 

and therefore, the temperature gradient should be really small to respect this inequality. We 

obtain that the left part of the previous inequality is one order of magnitude larger than the 

temperature gradient studied, we obtain at least, (𝑎𝑆𝑇)−1 > 40 K · Å−1, for all the solutes 

studied in this work. The value is determined by approaching the molecular volume of Table 
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6.2 as the hydrodynamic radius. We should increase the thermal gradient amplitude, ∆𝑇 >

1000 K, to invalidate the Braun’s group approach. For this reason, we consider that the 

thermophoretic depletion of our systems follows a Boltzmann distribution, and can be studied 

in terms of local equilibrium. 

A few precisions should be considered that may explain this difference in the Soret coefficient 

order of magnitude for our system. The Braun’s group applied this model for polystyrene beads 

of diameter 1.1, 0.5, and 0.2 μm and 1000-bp (base pair) DNA molecules,49  which are much 

larger than our solutes. Moreover, we should mention that one of the intrinsic properties that 

affect the Soret effect is the mass effect, as we already ratified in the previous chapter and was 

experimentally confirmed.98–100 However, Neither Eastman or the Braun group consider the 

mass effect in their thermodynamic models and the solvation free energy does not depends on 

the mass of the solute. In conclusion, further considerations on this theory must be applied to 

describe the thermophoretic behaviour in terms of solvation free energies for small molecular 

systems.  

7.2  Diffusion effect (in process) 

The last part of this project tries to understand the thermophoresis effect from a kinetic point 

of view. As we have mentioned before, the Soret coefficient is defined as a ratio of two 

diffusive effects once the system reaches the static equilibrium;  𝐷𝑠 is the diffusion coefficient 

of the solute, and 𝐷𝑇
𝑠  is the phenomenological thermal diffusion coefficient of the solute. 

Prigogine’s approach72,73 is an appealing theory, because the author proposes that the Soret 

coefficient can be understood in terms of activation processes of the diffusion between the 

solute and the solvent: 

 
𝑆𝑇 =  

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
 , (7.4) 

where the activation process of the diffusion is seen as the sum of the energy needed to form a 

hole in which the molecule will be placed, and the energy needed for the particle to detach 

itself from its neighbours. Furthermore, these activation energies can be extracted from the 
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temperature dependence of the Fick’s diffusion for the different species, which, if we assume 

an Arrhenius temperature-dependence, is: 

 
𝐷𝑠 = 𝐷0

𝑠 exp (−
𝐸𝑎

𝑠

𝑅𝑇
) , (7.5) 

where 𝐷0
𝑠 is the pre-exponential term and describes some factors such as the collision frequency 

and the orientation between the particles. However, diffusion itself does not depend on the 

mass of the particles, so the Prigogine model does not take into account the effect of mass, 

which is an intrinsic property affecting the Soret coefficient already observed in the previous 

chapter. Therefore, Artola, Rousseau and Galliéro75 have proposed an extended version the 

Prigogine model to explicitly include the mass effect in the Soret coefficient determination.  

 
𝑆𝑇 =

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
+

𝐸𝑎
𝑠 + 𝐸𝑎

𝑤

𝑅𝑇2

𝑀𝑠 − 𝑀𝑤

𝑀𝑠 + 𝑀𝑤
 (7.6) 

where the authors expressed the Soret coefficient in form of different contributions, which 

takes a similar form as introduced by the Köhler group76,102  (𝑆𝑇 = 𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜). The first term 

is the usual Prigogine model for thermal diffusion and the second term is the mass term, which 

is described in terms of the activation energies of the different species and their mass ratio. In 

this section, we will review the feasibility of both models for our particular aqueous systems, 

as well as the mass effect from a kinetic point of view. 

7.2.1 Simulation details 

The diffusion for several systems has been studied to determine the Soret coefficient. All 

simulations are performed with the LAMMPS package. The same cubic box (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 ≈

33.15 Å) is considered from the previous free energy calculations, which is centred at (0,0,0), 

with equiangular and perpendicular distributions (90°, 90°, 90°). The equilibration part is 

replicated from thermophoretic simulations. The same steps have been followed up to the 

second NVE simulation, which are the steps 1 to 8. The Coulombic cut-off is 8.5 Å with 

particle-particle particle-mesh (PPPM) solver160 for the long-range electrostatic forces, and the 

Lennard-Jones cut-off is 9 Å, which are the same as the thermophoretic conditions. The 

diffusion analysis has been studied under the microcanonical ensemble (NVE), which has no 
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barostat or thermostat. We have used the NVE ensemble for these two reasons; the constant 

volume avoids changes in the size of the box, which make it difficult to analyse diffusive 

movements across the boundaries; and the absence of thermostat avoids any kinetic 

perturbation due to the action of an external thermostat.  

The diffusion constants have been determined by measurements of mean squared 

displacements (MSD): 

 MSD = ∑ 〈(𝑥𝑖(𝑡) − 𝑥𝑖(0))2〉

𝑖=1,𝑛

= 2𝑛𝐷𝑠𝑡 , (7.7) 

where 〈(𝑥𝑖(𝑡) − 𝑥𝑖(0))2〉 is the uni-dimensional mean squared displacement, and 𝑛 is the 

number of dimensions. The MSD gives us the information on the position of a particle relative 

to a reference position over time.  

 

 

Figure 7.8: Uni-dimensional mean squared displacement (MSD) vs time. The first steps of the MSD correspond 

to the ballistic region, and after some steps the motion goes towards the diffusive region, where the diffusion 

constant can be obtained. Dotted points correspond to the transition regime that is approximately to 170 fs. 

The motion of a particle can be divided in two regions, see Figure 7.8 . The first steps are 

dominated by the ballistic region, which is the mean free path that the particle can travel freely 

in the solution, before a collision, which could change its momentum. After a few time steps, 

there is a transition process whereby the slope of the MSD as a function of time decreases 

(𝑑𝑀𝑆𝐷/𝑑𝑡). At this moment the particle starts to collide with the other particles in the solution, 
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so their trajectory would be modified. After this transition regime, the mean squared 

displacement will describe the diffusive part of the molecule in the system. This part of the 

molecular motion is known as diffusive region, and its slope as a function of time is considered 

as the diffusion constant of the particle in this system, see Figure 7.8. 

The MSD analysis has been performed with a modified version of the PyLAT analysis tool 188. 

The total NVE production time is 5 ns and the molecular coordinates are printed each 1 ps. The 

following graph represents the MSD for the first 100 ps. 

 

Figure 7.9: MSD for the TMAO solution. Mean square displacement vs time. The magenta dots represent the 

MSD displacement of the TMAO molecule. The grey dots represent the MSD displacement of the water molecule. 

2.17 m molal concentration.  

In Figure 7.9, we show the MSD for the TMAO and water molecules at 300 K. All simulations 

are performed at 2.17 m concentration.  We observe the slope of water is larger than the slope 

of TMAO, which indicates a larger diffusion coefficient. In the next section, we will check the 

viability of both models (Prigogine and Artola) for our molecular systems in the diffusive 

regime.  
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7.2.2 Diffusion regime results 

The diffusion coefficients are calculated for the TMAO, urea, methanol and glucose solutes 

and their respective waters in the solution. Activation energies are determined by the logarithm 

of the diffusion coefficient as a function of the inverse of temperature for a range of 

temperatures between 280-360 K: 

 
𝑙𝑛𝐷𝑠 = 𝑙𝑛𝐷0

𝑠 −
𝐸𝑎

𝑠

𝑅𝑇
 . (7.8) 

 

Figure 7.10: Diffusion coefficients. Logarithmic diffusion vs inverse of the temperature for the TMAO molecule 

and the waters in the solution. Range of temperatures between 280-380 K. P = 1 bar. TMAO molal concentration 

of 2.17-m.  

First, we check the robustness of the diffusion process for the TMAO molecules in a 2.17 m 

aqueous solution. We plot the evolution of the logarithmic diffusion as a function of the inverse 

of the temperature for the TMAO and water molecules inside the solutions, see Figure 7.10. 
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The slope of these trend will determine the activation energy for both molecules in this system 

conditions. 

The logarithmic diffusion coefficients determined by the MSD calculations at different 

temperatures are represented in Figure 7.10. We perceive that the water diffusion is higher than 

the TMAO diffusion, and both molecules exhibit the same trend of ln (𝐷) as a function of the 

inverse of the temperature. Moreover, we observe that ln (𝐷) decreases with temperature, 

which means that the diffusion coefficient for TMAO and water increases with the temperature. 

This result agrees with the thermodynamics principles on which an increase in temperature 

leads to a higher molecular kinetic energy, and hence higher diffusion rates for all molecules 

in the system. 

On the other hand, the activation energy is defined as the minimum energy that a system needs 

to be able to initiate a certain process. In our case, the Arrhenius equation defines this activation 

energy as the energy needed for a given particle to diffuse into the medium. Therefore, higher 

activation energies lead to lower diffusions. Thus, we expect the TMAO molecules to have a 

higher activation energy than the water molecule. Therefore, we have calculated the difference 

between the activation energies from their respective slopes in Figure 7.10. The energy 

difference between the solute and the solvent in this system is ∆𝐸𝑎
𝑠 − ∆𝐸𝑎

𝑤 ≈ 0.4 kcal/mol and 

the Soret coefficient according to the Prigogine model is 𝑆𝑇 ≈ 2 · 10−3 ·  K−1, which is on the 

same order of magnitude of the Soret coefficient obtained by thermophoresis, 𝑆𝑇 ≈ 5 · 10−3 ·

K−1, but we do not get the same value. We have also calculated the Soret coefficient from the 

Prigogine model for other solutes presented below. 
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Figure 7.11:  Prigogine model. The Soret coefficient obtained by the Prigogine model vs the thermophoretic 

Soret coefficient at 330 K for TMAO (magenta), urea (cyan), methanol (yellow) and glucose (green). 

The Soret coefficients determined by the thermophoresis simulations and by the diffusive 

Prigogine model are represented in Figure 7.11. We note that the Soret coefficient for the 

TMAO molecular system calculated by the Prigogine model is smaller than the Soret 

coefficient determined by thermophoresis, as described above. However, the glucose molecule 

has a higher Soret coefficient by the Prigogine model than by thermophoresis. On the other 

hand, both Soret coefficients for urea and methanol calculated by the Prigogine model are one 

order of magnitude lower than those previously obtained by the thermophoresis simulations. 

From these results we do not observe any clear trend with respect to the solutes studied. 

However, the mass and size of the molecule could have an effect on their activation energies, 
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since larger or heavier molecules would make their movement more costly in terms of energy. 

Therefore, these intrinsic properties of the solutes could have an impact in the resulting Soret 

coefficient calculated by the Prigogine's model, and could explain that these Soret coefficients 

by the Prigogine’s model increases as the size and mass of the solute increases.  

However, we have already confirmed that mass is one of the intrinsic properties of the molecule 

that affects solute accumulation under a thermal gradient. We observed a progressive increase 

of the Soret coefficient of the thermophoresis simulations as we increase the mass ratio between 

the solute and the solvent. However, the Prigogine model does not take into account the mass 

effect. Artola, Rousseau and Galliéro75 included the mass effect in the Prigogine’s approach, 

see eq. (7.6). The authors rescaled the temperature in terms of the ideal part of the partitional 

function means to displace the position of the diffusion transition state as a ratio of the relative 

masses. 

Therefore, we have performed isotopic simulations of TMAO under the same conditions as 

TMAO in its natural mass. The first simulation is with half the mass of TMAO and we have 

doubled the mass of TMAO in the second simulation. The activation energies have been 

obtained from the same Arrhenius expression, see eq. (7.8). 

Different Soret coefficients for a TMAO solution are shown in Figure 7.12 as a function of 

relative mass (𝛿𝑀 =
𝑀𝑠−𝑀𝑤

𝑀𝑠+𝑀𝑤
). The Soret coefficients determined by the thermophoresis 

simulations are represented by circles. The Soret coefficients determined by the Prigogine 

model are represented by triangles, see eq. (7.4). The Soret coefficients determined by the 

Artola, Rousseau and Galliéro model are represented by squares, see eq. (7.6). The Prigogine 

model shows no effect on mass as we increase the mass of TMAO. Indeed, diffusion does not 

depend on mass, since we do not observe any noticeable change in the activation energy. 

Therefore, the activation free energies are mass independent, which leaves the solute effect 

observer in Figure 7.11 for the Soret coefficients calculated by the Prigogine model to a particle 

size effect. 
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Figure 7.12: Mass correction on the Prigogine model. Soret coefficient vs relative mass difference (𝛿𝑀) for 

TMAO at 330 K. Thermophoretic simulations (circles), Prigogine’s diffusion hypothesis (triangles) and 

Prigogine’s diffusion with mass effect hypothesis (squares). 

On the other hand, adding mass effect results in an exponential increase of the Soret coefficient 

value as a function of the mass ration. However, this increase does not correspond to the mass 

effect observed in the thermophoretic results. The kinetic model proposed by Artola, Rousseau 

and Galliéro 75 describes the mass effect for mass ratios of  𝑀2/𝑀1  = 1 and  𝑀2/𝑀1  = 2, 

which is lower than our mass ration, which are between the TMAO and water 

𝑀𝑇𝑀𝐴𝑂/𝑀𝑤𝑎𝑡𝑒𝑟  ≈ (2, 4, 8), so the mass effect described in the equation (7.6) could be no 

longer valid for a large mass difference. Moreover, the authors discussed about some additional 

effects that should be taken into account to properly describe the Soret coefficient and its mass 

effect. Inertial moments in the diffusive process, which could be part of the isotopic effect, 

should also be studied. Furthermore, the authors formula seems to predict composition-

independent Soret coefficients, but we already observed that the Soret coefficient depends on 

the molality.  
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7.2.3 Ballistic regime 

One of the last points of our research is that we observe a correlation between the 

thermophoretic Soret coefficient and the Soret coefficient determined by the molecular motion 

in the ballistic region. We analysed the MSD calculation for shorter timesteps of 10 fs for a 

total simulation time of 1 ns to describe the ballistic region. In addition, we include a jump 

parameter of 1000 for the time averaging to avoid a correlation between too close time steps, 

which means that the MSD for 10 fs is averaged over the distance differences of the following 

time steps; 0-10, 1000-1010, 2000-2010.... 

 

Figure 7.13: Ballistic regime. The thermophoretic Soret coefficient vs the MSD (〈∆𝑥2〉) displacement at 170 

(Å/ps) for several solutes at 330 K: methanol (yellow), urea (cyan), TMAO (magenta), glucose (green) and water 

(grey). 

The ballistic MSD is determined for several molecules, as well as some isotopic masses of 

certain molecules. We consider 170 fs to be the limit of the ballistic region, because the first 

derivative of the MSD reaches the maximum at this point (𝜕〈∆𝑥2 〉/𝜕𝑡 = 0). The Soret 
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coefficients are represented in Figure 7.13 as a function of the ballistic MSD. We observe a 

linear correlation between the Soret coefficient calculated by the thermophoresis simulations 

and the mean squared displacement of each molecule after 170 fs. These results could indicate 

that the thermophoretic forces applied on the molecules under a thermal gradient are actually 

on very short timescales, and hence the Soret coefficient could be understood in terms of pure 

kinetic effect of the particles rather than a diffusive effect. However, these results are really 

preliminary due to the lack of time in this project, and more studies should be carried out on 

this idea to better understand this relationship.  
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8.  Conclusions 

This thesis seeks to understand the effect of thermophoresis for dilute aqueous solutions, as 

this phenomenon could explain the precursor accumulation in the context of the origins of life. 

However, its nature is still not completely understood, and hence several hypotheses have been 

proposed in the literature.  

For this purpose, we presented a robust all atom molecular dynamic approach to undertake 

thermophoresis in dilute realistic solutions at the molecular level. A homogeneous thermal 

gradient prior to concentration gradient is vital for the proper evolution of the thermally-driven 

processes. The recent heat-exchange algorithm (eHEX)70 lead to an excellent energy 

conservation for nanoscale simulation range and integration steps no larger than 2-fs. The 

advantage of this temperature gradient generator is that it does not require the use of 

thermostats with restrained solvent molecules and an ill-defined simulation ensemble.  

8.1 In silico thermophoresis set-up 

The first part of our work was to ensure that the total energy is conserved throughout the 

simulation time. We have ensured that the total energy does not diverge over 10 ns as long as 

the timestep is no longer than 2 fs. We assumed that the equilibration timescale of 100 ps for 5 

nm box length systems and 200 ps for 10 nm box length systems are enough to reach the 

thermal gradient (∆𝑇 ≈  60 K) in the steady state condition. Furthermore, we considered that 

solute molecules do not interact directly with each other in sufficiently dilute solutions. We 

found that the 2.17-m TMAO solution was a good compromise, because they allow to 

accelerate convergence while being in the dilute regimes where solute-solute interactions are 

negligible. For such systems, we estimated that a 2-ns timescale can safely be chosen as the 

time required to reach the steady state for the solute concentration profile as long as the 

conditions for the simulation and the system sizes do not significantly differ from the ones 

studied here.  
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Moreover, we explored several factors that could affect the stability of the thermal and 

concentration gradient and the robustness of the results. We first studied the system size effect 

of the system, and we concluded that the concentration gradient is practically insensitive to the 

size of the system box, because the Soret coefficient expression is, by definition, an intensive 

variable. Once the steady state condition for the concentration gradient is reached at a given 

median temperature. However, we observed that the Soret coefficient associated error increases 

with the system size. For this reason, the smallest box system of 50 Å was the best option in 

terms of computational resources and lower statistic errors.  

Secondly, we studied the effect of the amplitude gradient for a temperature gradient range from 

0.8 to 3.6 K · Å−1. We did not observe any effect on the Soret coefficient, but we found that 

larger is the amplitude of the thermal gradient lower are the statistical uncertainties. However, 

a compromise had to be found between the accuracy of the measured concentration-gradient, 

that should be large enough to exceed the statistical uncertainties, while employing a 

reasonable temperature-gradient where the water phase lies within, or not too far, from its 

equilibrium liquid phase domain (namely, between 273 and 373 K). For these reasons, we 

chose to employ the 2.4 𝐾 · Å−1 gradient, which satisfies these conditions in most cases. 

The third aspect was the frequency of heat transfer, which plays an important role in the 

molecular concentration inside the reservoir, but it does not really affect the concentration 

profile outside the thermalised regions. For this reason, we always determined the Soret 

coefficient from the concentration profile far apart of the thermalised regions. 

Finally, we tested different force fields for the TMAO solute and the water molecule, and a 

certain stability has been observed for the same system by using different force fields available 

in the literature, just one force field set gave a disparity in the concentration gradient. As a 

conclusion, three of four force field combinations gave us the same results, which indicates a 

good consistency for the force field combination between the TIP4P/2005 water model and the 

Kast TMAO model.  
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8.2 Intrinsic and thermodynamic contributions 

There are several heuristic descriptions in the literature, which try to decompose the Soret 

coefficient into different contributions. Here, we enquired into some of these physical 

properties most relevant for the Soret effect. The first part was the study of the external factors 

such as pressure, temperature and concentration that could affect the Soret coefficient.  

We observed a small increase of the Soret coefficient for high median pressures of 100 bar and 

1000 bar, but we did not notice any difference for relatively low median pressures of 1 bar and 

10 bar in their respective Soret coefficients: 

 𝑆𝑇
1 bar ≈ 𝑆𝑇

10 bar < 𝑆𝑇
100 bar < 𝑆𝑇

1 kbar . (8.1) 

Although we observed an increase of the Soret coefficient as a function of the median pressure, 

the effect is very low. Therefore, we did not consider that the Soret coefficient depends on the 

median pressure, since large pressures must be applied to observe a significant effect in the 

Soret coefficient for dilute aqueous solutions.  

We also investigated the median temperature dependence of the Soret effect for ethanol, urea 

and TMAO. One result was that the Soret coefficient of TMAO increases as a function of the 

median temperature: 

 𝑆𝑇
270K < 𝑆𝑇

300K < 𝑆𝑇
330K < 𝑆𝑇

360K < 𝑆𝑇
390K . (8.2) 

We observed that the Soret coefficients for TMAO and urea followed the exponential depletion 

form described phenomenologically by the equation of Iacopini and Piazza79,80 (𝑆𝑇 = 𝑆𝑇
∞[1 −

𝑒𝑥𝑝 (𝑇∗ − 𝑇) 𝑇𝑖⁄ ]), but the ethanol molecules did not follow the same exponential depletion 

form. This was not surprisingly, as this Soret coefficients results for ethanol are in agreement 

with the previous literature results.84 We thus concluded that temperature has an effect on the 

Soret coefficient, but its effect depends on the nature of the solute. In general terms, we 

observed a progressive increase of the Soret coefficient as a function of the temperature for 

low median temperatures, which means that thermophobicity increases with the temperature. 
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In general terms, solute molecules try to accumulate in the cold region as the median 

temperature increases in dilute aqueous solutions.  

Furthermore, we analysed the concentration effect of the Soret coefficient, and we observed 

that the Soret coefficients of TMAO does not exhibit a strong dependence with concentration: 

 𝑆𝑇
1.1 m ≈ 𝑆𝑇

2.2 m ≈ 𝑆𝑇
3.3 m > 𝑆𝑇

4.3 m . (8.3) 

This trend indicated that in sufficiently dilute solutions, the Soret coefficient is not 

concentration dependent in dilute aqueous solutions. This effect could be understood by the 

fact that the TMAO molecules practically do not interact among themselves, and their 

respective water solvation shell depends only on the temperature gradient, and thus keeping 

the “chemical” interaction solute-solvent invariant.126 However, the molal concentration of 

𝐶0
(4)

= 4.34 mol/kg is a relatively high concentration, where the hydration shells overlap and 

TMAO molecules are in close contact. For this reason, we started to observe some effects on 

the Soret coefficient, and we opted for the median concentration of 𝐶0
(2)

= 2.17 mol/kg. This 

concentration contains enough TMAO molecules to obtain good statistics for the determination 

of the Soret coefficient while being in a regime that is dilute enough such that it does not affect 

too much the Soret coefficient.  

The second part was the study of the intrinsic properties such as the dipole moment, molecular 

size or mass effect of different molecules (ethanol, methanol, urea, TMAO, glucose): 

 𝜇𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝜇𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝜇𝑈𝑟𝑒𝑎 < 𝜇𝑇𝑀𝐴𝑂 , (8.4) 

 𝑉𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑈𝑟𝑒𝑎 < 𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑇𝑀𝐴𝑂 < 𝑉𝐺𝑙𝑢𝑐𝑜𝑠𝑒 , (8.5) 

 𝑀𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝑈𝑟𝑒𝑎 < 𝑀𝑇𝑀𝐴𝑂 < 𝑀𝐺𝑙𝑢𝑐𝑜𝑠𝑒 . (8.6) 

The following formula orders the Soret coefficient as a function of the solute: 

 𝑆𝑡
𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝑆𝑡
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝑈𝑟𝑒𝑎 < 𝑆𝑡
𝑇𝑀𝐴𝑂. (8.7) 

Broadly speaking, we observed larger Soret coefficients for molecules with larger dipole 

moments such as TMAO or urea. However, a further analysis at different dipole moments for 
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urea demonstrated that its Soret coefficient decreases as the dipole moment of the modified 

urea increases. Previous studies already discussed this higher complexity for polar systems as 

compared to non-polar systems,105 the authors assumed that non-ideal structural changes (e.g., 

excess effects) must be considered to understand the effect of the polarity in the Soret 

coefficient. Moreover, the modification of a force field by rescaling charges could lead to an 

unrealistic description of the inter-molecular forces and thus invalidate the force field. 

Therefore, further studies are required to understand the evolution of the Soret coefficient as a 

function of the dipole moment of a molecule.  

In general terms, we also observed that the lowest values in the Soret coefficients are associated 

to small molecular systems in terms of mass and size. A progressive increase of the Soret 

coefficient is observed as the molar mass and the size of the molecules increases, except for 

glucose. These trends are in agreement with previous studies that have reported a size 

dependence in colloidal solutions,49,68,177 and a mass effect in linear n-alkanes.98–100 However, 

all these intrinsic contributions combined make it difficult to understand the physical meaning 

of a particular contribution in the Soret effect. For this reason, we examined the effect of 

isotopic molecules in the Soret coefficient in order to observe the pure mass effect. 

In the literature, the Soret coefficient is usually phenomenologically divided into two 

independent terms (𝑆𝑇 = 𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜),76,102 where 𝑆𝑇
𝑖𝑠𝑜 is the isotopic contribution that depends 

only on mass and moment of inertia. In this work, we analysed the viability to describe the 

mass effect to the Soret coefficient for small solutes in aqueous solutions by this equation: 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 . (8.8) 

We assumed that the moment of inertia effect does not significantly affect the isotopic Soret 

coefficient as the mass ratio increases.  
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Our results showed that all 

molecules studied exhibit a 

thermophobic behaviour for 

positive mass ratios at their natural 

mass. Furthermore, urea, methanol 

and water acquired a thermophilic 

character at certain negative mass 

ratios. We thus confirmed that 

heavier molecules have higher 

Soret coefficient values, and we 

demonstrated a linear relation 

between the Soret coefficient and 

the mass ratio (𝛿𝑀), the dotted 

lines show the linear fit of eq. (8.8). 

We also evidenced that the Soret 

coefficient depends only on the mass ratio between the solute and the solvent and it is not really 

affected on the absolute mass of the solution. These results are represented by three vertical 

points for TMAO and urea in Figure 8.1. Moreover, we wanted to highlight that 𝑆𝑇
0 ≈ 0 K−1 

for the isotopic water simulations. This value can be explained by the fact that these simulations 

are pure water solutions in which we only modify the mass of certain water molecules, and 

therefore we just expected a pure mass effect in the Soret coefficient. Finally, we noted that 𝑆𝑇
0 

was larger for the TMAO molecule as compared to urea or methanol, which indicated a higher 

“chemical” contribution or moment of inertial effect of the Soret coefficient. However, an 

extensive study should be done to know the moment of inertia effect to isolate the “chemical” 

contribution. 

8.3 Molecular models 

The final part of this work was testing the feasibility of two plausible models, which were of 

particular interest and relevance for molecular systems, but which came from different 

perspectives.  

 

Figure 8.1: Mass effect summary. Methanol (yellow), ethanol 

(olive), urea (cyan), TMAO (magenta), glucose (green), and water 

(grey). 
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The first model was the Eastman’s approach,71 which tried to relate the thermally-driven effect 

of a molecule to a temperature dependence of a solvation free-energy process, and the Braun 

group49 developed this previous idea and their experimental results shown that the 

thermophoretic steady states could be described by a Boltzmann distribution in local 

thermodynamics equilibrium of the equation:  

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
 .   (8.9) 

Therefore, we represented the correlation between the Soret coefficient determined by the 

Braun's model and the Soret coefficients previously calculated during the thermophoresis 

simulations.  

We noted that the Soret 

coefficients determined by free 

energy calculations clearly 

overestimated the Soret coefficient 

calculated by molecular dynamics 

under a thermal gradient for all 

solutes. Furthermore, we should 

mention that this model does not 

take into account the mass effect 

already ratified and experimentally 

demonstrated,98–100 and we 

concluded that the Soret coefficient 

cannot be understood only in terms 

of an entropic solvation effect for dilute aqueous solutions, since it largely overestimated the 

thermophoretic value obtained previously.  

The second model was the Prigogine’s model, which conjectures that the thermophoretic 

motion of a molecule is related to the activation energies for the diffusion of the solute and 

solvent molecules.72–76 

 

Figure 8.2: Eastman model. The Soret coefficient obtained by the 

Eastman model vs the thermophoretic Soret coefficient at 330 K 

for TMAO (magenta), urea (cyan) and methanol (yellow). 
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The Soret coefficients determined 

by the thermophoresis simulations 

and by the diffusive Prigogine 

model are represented in Figure 

8.3. The results did not show any 

clear trend with respect to the 

solutes studied. One explanation 

could be that mass and size could 

have an effect on their activation 

energies, since larger or heavier 

molecules would make their 

movement more costly in terms of 

energy.  

Furthermore, we analysed the 

Artola, Rousseau and Galliéro75 

model that include the mass effect 

in the Prigogine’s approach. However, the mass effect resulted in an exponential increase of 

the Soret coefficient value as a function of the mass ration, which did not correspond to the 

mass effect observed in the thermophoretic results. The authors discussed about some 

additional effects that should be taken into account to properly describe the Soret coefficient 

and its mass effect. Inertial moments in the diffusive process, which could be part of the 

isotopic effect, should also be studied. In conclusion, a more detailed study should be done in 

order to understand thermophoresis as an activated process of diffusion. 

The last point of this work was to check whether the Soret coefficient can be understood as a 

ballistic effect of molecular motion.  

 

Figure 8.3: Prigogine model. The Soret coefficient obtained by the 

Prigogine model vs the thermophoretic Soret coefficient at 330 K 

for TMAO (magenta), urea (cyan), methanol (yellow) and glucose 

(green). 
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The ballistic MSD was determined 

for several molecules, as well as 

some isotopic masses of certain 

molecules. We considered 170 fs to 

be the limit of the ballistic region. 

We observed a linear correlation 

between the Soret coefficient 

calculated by the thermophoresis 

simulations and the ballistic MSD 

at 170 fs. These results could 

indicate that the thermophoretic 

forces applied on the molecules 

under a thermal gradient are 

actually on very short timescales, 

and hence the Soret coefficient could be understood in terms of pure kinetic effect of the 

particles rather than a diffusive effect. However, these results were really preliminary due to 

the lack of time in this project, and more studies should be carried out on this idea to better 

understand this relationship.  

 

Figure 8.4: Ballistic regime. The thermophoretic Soret coefficient 

vs the MSD (〈∆𝑥2〉) displacement at 170 (Å/ps) for several solutes 

at 330 K: methanol (yellow), urea (cyan), TMAO (magenta), 

glucose (green) and water (grey). 
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9. Résumé de la thèse 

Dans les pages suivantes, nous donnerons un aperçu des principaux sujets de cette thèse et des 

résultats obtenus. Nous suivrons le même ordre que dans le texte principal, qui est divisé en 

quatre parties liées aux principaux domaines de contenu. Le premier chapitre présente le 

contexte général de ce travail et les objectifs. Le deuxième chapitre décrira le terme du 

coefficient de Soret et le processus suivi pour générer les conditions de la thermophorèse. Dans 

le troisième chapitre, nous étudierons certaines propriétés intrinsèques des molécules et les 

conditions thermodynamiques qui peuvent affecter l'effet Soret. Enfin, nous discuterons de 

certains modèles qui pourraient expliquer les origines moléculaires de la thermophorèse dans 

le dernier chapitre. 

9.1 Introduction 

La thermophorèse est un processus thermique, dans lequel un mélange de composants devient 

inhomogène sous l'effet d'un gradient de température. Mis en évidence pour la première fois il 

y a 150 ans par C. Ludwig1,2 puis plus tard par C. Soret,3 ce phénomène se manifeste pour une 

large gamme de tailles de systèmes. Ces mouvements thermodynamiques, dont l’amplitude 

peut atteindre plusieurs millimètres,5,6 ont été étudiés pour des systèmes moléculaires allant de 

l'échelle nanométrique à microscopiques.4 

Ces dernières années, la thermodiffusion a suscité un grand intérêt, au niveau académique et 

industriel, en raison de son importance dans de nombreuses applications scientifiques et 

techniques. Un exemple est la thermophorèse à micro-échelle (MST),9,10 qui analyse les 

systèmes biomoléculaires en se basant sur le mouvement dirigé des particules dans un gradient 

thermique, comme l'utilise la société Nanotemper. Un autre application que l’on retrouve dans 

l’industrie est la thermodiffusion qui, associée aux effets gravitationnels, pourrait jouer un rôle 

important dans la séparation des composées par gradient géothermique5,6 dans les réservoirs de 

pétrole.15,16 
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En outre, la thermophorèse suscite un intérêt particulier dans le contexte des origines de la 

vie.23 Depuis la découverte d'organismes thermophiles et des systèmes hydrothermaux dans les 

profondeurs océaniques à la fin des années 1970,41 l’idée selon laquelle la vie aurait pu naître 

au sein des systèmes hydrothermaux de la Terre primitive43–45 a gagné en popularité. En effet, 

les avantages de cet environnement sont multiples : sous-marin, il procure une protection 

efficace contre le bombardement intense d'astéroïdes et le rayonnement ultraviolet. Par ailleurs, 

l’activité volcanique est source de minéraux potentiellement catalytiques,42 et d'énergie 

chimique et thermique. Les gradients thermiques résultants induisent la thermophorèse, qui, 

combinée à la convection thermique, pourrait agir comme un piège et conduire à une 

accumulation de précurseurs.24–26 Or la concentration des réactifs est un condition nécessaire a 

toute synthèse prébiotique soutenue, et donc à l’apparition de la vie.43,46,47 

La thermophorèse serait donc un processus clef de la théorie de l'origine hydrothermale. 

Plusieurs travaux ont porté spécifiquement sur ces applications aux origines de la vie comme 

par exemple le piégeage des nucléotides,50,52,55,56 ou encore l'accumulation et la réplication de 

l'ARN57–61 et de l'ADN.24,26,51,62,63  

Cependant, le processus d'accumulation thermique d'une molécule donnée reste incompris, et 

les origines moléculaires de la thermophorèse sont encore inconnues. Plusieurs modèles 

théoriques ont été proposés pour décrire la thermophorèse de manière phénoménologique afin 

d'expliquer la dépendance à plusieurs propriétés des molécules du système (la masse, la taille, 

la charge, la polarité, etc.).7 Une meilleure compréhension de cette contribution moléculaire 

permettrait in fine d’éclairer le processus d'accumulation des précurseurs abiotiques. 

Notre objectif principal est de comprendre la nature de la thermophorèse pour les solutions 

aqueuses diluées. Nous étudions ici des solutions aqueuses de petites molécules amphiphiles 

sous un gradient thermique. Les solutés étudiés ont été choisis pour éviter les effets 

hydrophobes purs (agrégation de solutés), et les interactions hydrophiles trop fortes avec l'eau 

(notre solvant). De plus, les molécules considérées sont neutres, ce qui évite les effets 

électrophorétiques en plus des effets thermophorétiques. 

La première partie de notre travail consiste à établir une bonne configuration pour les 

simulations thermophorétiques. Nous étudions l'évolution du gradient thermique, du gradient 

de concentration qui en résulte, et la conservation de l'énergie via un algorithme de dynamique 
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moléculaire hors-équilibre basé sur l'échange thermique (eHEX).70  De manière à vérifier la 

robustesse de nos simulations thermophorétiques, nous testons les effets lies à la longueur de 

la boîte, à l'amplitude du gradient thermique, au taux d'échange de chaleur et à la dépendance 

du champ de force.  

Dans la deuxième partie, nous analysons les conditions thermodynamiques (température, 

pression et concentration moyennes) et les propriétés moléculaires intrinsèques (masse, charge 

et soluté) qui pourraient avoir un effet sur l'accumulation de la molécule dans une région 

spécifique. Ces effets sont quantifiés par un coefficient appelé coefficient de Soret, et nous 

comparons nos résultats avec certaines théories phénoménologiques disponibles dans la 

littérature.  

Dans la dernière partie, nous vérifions la viabilité de deux modèles, auxquels on pourrait 

attribuer les origines moléculaires de la thermophorèse. Le premier modèle tente de relier l'effet 

thermique d'une molécule à la dépendance en température d'un processus d'énergie libre de 

solvatation.71 Le second modèle conjecture que le mouvement thermophorétique d'une 

molécule est lié aux énergies d'activation pour la diffusion des molécules de soluté et de 

solvant.72–76 

9.2 L’effet Soret et les dynamiques de la thermophorèse 

La thermophorèse d'un mélange binaire résulte d'une compétition entre la diffusion ordinaire 

des particules, décrite par le coefficient de diffusion (𝐷),77 et leur mouvement sous un gradient 

thermique. Ce dernier est décrit phénoménologiquement en termes de vitesse de dérive 

proportionnelle au gradient de température par un coefficient de diffusion thermique (𝐷𝑇). Le 

rapport entre la diffusion de Fick et la diffusion thermique définit le coefficient de Soret (𝑆𝑇). 

Le signe d’un tel coefficient dicte si les molécules s'accumuleront dans la région froide ou 

chaude, et sa valeur détermine l'amplitude du gradient de concentration : 

 
𝑆𝑇 =  

𝐷𝑇

𝐷
 , (9.1) 
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Dans ce travail, nous considérons un gradient thermique uni-dimensionnel linéaire et uniforme 

∇T le long de l'axe z. Le flux total de particules de soluté se déplaçant à une position z 

𝑗𝑠(𝑧) peut être phénoménologiquement écrit comme une somme du courant de diffusion  𝑗𝐷(𝑧) 

et du courant de diffusion thermique 𝑗𝐷𝑇
(𝑧):8,78 

 𝑗𝑠(𝑧) = 𝑗𝐷(𝑧) + 𝑗𝐷𝑇
(𝑧) . (9.2) 

Le premier terme est le courant de diffusion, et est décrit par la loi de Fick pour les 

concentrations diluées : 

 𝑗𝐷(𝑧) =  −𝐷𝑠(𝑧)∇cs|𝑧 , (9.3) 

où 𝐷𝑠 est le coefficient de diffusion du soluté, et ∇𝑐𝑠|𝑧 est le gradient de concentration du 

soluté le long de z. Le deuxième terme de l'équation (3.2) est le courant de diffusion thermique, 

qui, pour les solutions diluées, peut s'écrire : 

 𝑗𝐷𝑇
(𝑧) =  −𝐷𝑇

𝑠(𝑧)𝑐𝑠∇𝑇 , (9.4) 

où 𝐷𝑇
𝑠  st le coefficient phénoménologique de diffusion thermique du soluté, 𝑐𝑠 est la 

concentration du soluté, et 𝛻𝑇 est le gradient thermique. Les expériences montrent qu'un état 

stationnaire peut être atteint. Un tel état se caractérise par le fait que ses variables sont 

considérées comme indépendantes du temps, tout en étant hors équilibre. Ainsi, les techniques 

de mesures développées pour les systèmes à l’équilibre thermodynamiques peuvent être 

appliqué pour caractériser ses propriétés. 

Cet état stationnaire peut être atteint après une période de relaxation, à condition que les 

perturbations externes et que les paramètres macroscopiques (température, concentration et 

pression en chaque point du système) soient des valeurs indépendantes du temps. Par exemple, 

si un flux thermique constant est appliqué à travers deux régions spatiales distinctes dans une 

solution aqueuse, le système tendra vers un état stationnaire. Ainsi, la théorie peut être utilisée 

pour déterminer le gradient de concentration à travers un gradient thermique via le coefficient 

de Soret.  
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De plus, lorsque l’état stationnaire est atteint, la diffusion ordinaire et la diffusion thermique 

sont équilibrées, ce qui implique que 𝑗𝑠(𝑧) = 0. En combinant les équations (9.12) et (9.13), 

le coefficient de Soret dans une dimension est décrit par le logarithme de la concentration en 

fonction de la température :  

 𝑑𝑙𝑛𝑐𝑠

𝑑𝑇
|

𝑧
= − 𝑆𝑇

𝑠(𝑧) , (9.5) 

Par contre, les résultats expérimentaux montrent que le comportement de thermodiffusion d'une 

particule dépend d'un grand nombre de facteurs moléculaires qui ne sont pas pris en compte 

dans cette équation.7  Il faudrait considérer d’une des facteurs indépendants des interactions 

entre les particules comme la masse, la taille et le moment d'inertie. D'autre part, la chaleur de 

transfert, les liaisons hydrogènes, les interactions croisées, la force ionique et la tension 

interfaciale sont autant de paramètres dépendants de l'interaction des particules qui influencent 

aussi le coefficient de Soret. Enfin, la température, la pression et la concentration sont des 

facteurs externes indépendants de la nature de la solution qui ne peuvent être négligés.49,79 La 

complexité de l'effet Soret rend la compréhension de son origine moléculaire très ardue.  Dans 

ce travail, nous avons étudié quelques contributions de l’effet de Soret dans les solutions 

aqueuses. 

Descriptions phénoménologiques 

- Le coefficient de Soret présente une dépendance à la température. Nous étudions 

notamment un modèle disponible dans la littérature basé sur ce paramètre, qui donne 

comme particularité que les valeurs du coefficient de Soret atteignent un certain point 

de saturation à des températures plus élevées :79,80 

 
𝑆𝑇(𝑇) = 𝑆𝑇

∞ [1 − 𝑒𝑥𝑝
(𝑇∗ − 𝑇)

𝑇𝑖
] . (9.6) 

- Le coefficient de Soret présente une dépendance à la concentration. Cette influence est 

par exemple visible lorsque, sous l’effet d’une variation de concentration, les molécules 

passent de la région froide à la région chaude. La molécule passe ainsi de l’état 

thermophobe à thermophile.79,80 
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- Une contribution chimique qui ne dépend ni de la concentration ni de la température 

(𝑆𝑇
𝑐ℎ) apparaît souvent dans certaines descriptions et est généralement associée aux 

interactions entre soluté et solvant.90 

- L'effet du rapport de masse des composants du mélange binaire masse semble aussi 

jouer un rôle important dans le coefficient de Soret :76,102,103 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 . (9.7) 

 

Modeles moleculaires  

De plus, nous pouvons trouver dans la littérature quelques modèles moléculaires basés sur des 

théories thermodynamiques ou cinétiques qui tentent d'expliquer fondamentalement le principe 

du mouvement thermophorétique. Deux d'entre eux sont particulièrement intéressants et 

pertinents, et proviennent de perspectives différentes. 

- L'approche thermodynamique d'Eastman établi les origines moléculaires du coefficient 

de Soret comme l'énergie libre de solvatation en fonction de la température :71 

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
 . (9.8) 

- Le point cinétique de Prigogine établi les origines moléculaires du coefficient de Soret 

comme un processus d'activation de la diffusion moléculaire :72,73 

 
𝑆𝑇 =  

𝐸𝑎
𝑠 − 𝐸𝑎

𝑤

𝑅𝑇2
 . (9.9) 

Notre étude se concentre sur les solutions aqueuses diluées. Afin d’éviter de travailler avec de 

très grands systèmes, nous avons choisi de petits solutés polaires. Contrairement aux solutés 

totalement apolaires, ce type de molécules ne s'agrègent généralement pas à de faibles 

concentrations. Ce comportement est crucial pour pouvoir déterminer les variations du gradient 

de concentration uniquement dues au gradient de température et non renforcées par 

l'agrégation.  
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 De plus, nous choisissons des molécules amphiphiles. En effet, les petites molécules purement 

polaires présentent un coefficient de Soret quasi nul en solution aqueuse. Pour observer une 

sensibilité à la thermophorèse, nous choisissons des molécules contiennent une tête hydrophile 

et un corps hydrophobe dont le coefficient de Soret est non négligeable. 

Enfin, ces solutés doivent être suffisamment différents les uns des autres afin d'observer des 

comportements différents sous le gradient thermique, et donc des coefficients de Soret 

significativement différents. 

    
 

TMAO 128,129 Urée 135,136 Ethanol 137 Méthanol 138 D-Glucose 143 

Figure 9.1: Solutés. Structures tridimensionnelles de gauche à droite pour le N-oxyde de triméthylamine 

(TMAO), l'urée, l'éthanol et le méthanol. Structure de Lewis du D-Glucose. 

Pour le l’éluant, le modèle TIP4P/2005144 a été le principal modèle d'eau pour notre travail, 

mais aussi nous avons effectué quelques calculs supplémentaires avec le modèle d'eau 

SPC/E.145 

Pour l’étude de la thermophorèse, nous considérons des boîtes parallélépipédiques, pour 

générer un gradient de température unidimensionnel le long d'une direction choisie z. Les axes 

orthogonaux au gradient thermophorétique sont maintenus équidistants 𝐿𝑥 = 𝐿𝑦 et la distance 

𝐿𝑧 est typiquement plus grande que 𝐿𝑦 et 𝐿𝑧. La boîte est centrée en (0,0,0), avec une 

distribution équiangulaire droite (90°, 90°, 90°), comme un cuboïde carré. Les particules de 

soluté sont insérées uniformément le long de la direction z du gradient thermique, ce qui donne 

un profil de concentration plat comme configuration initiale avec le logiciel Packmol.159 En 

revanche, les particules de soluté sont insérées aléatoirement dans les autres deux directions 

(𝑥, 𝑦). 

Dans nos simulations, les interaction coulombiennes sont tronquées à 8,5 Å,144 bien que le 

potentiel de Lennard-Jonnes soit tronqué à 9 Å. Le PPPM (particule-particule particule-
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maille)160 est utilisé pour le calcul des forces électrostatiques à longue portée, y compris 

l'approche de différenciation analytique qui lisse les forces électrostatiques à longue portée 

PPPM. Le système est d'abord minimisé en utilisant une version Polak-Ribiere161 de 

l'algorithme du gradient conjugué (limite de tolérance de l'énergie = 10−4 kcal · mol−1 et limite 

de tolérance de la force = 10−6 kcal · mol−1). Les vitesses sont ensuite réglées pour 

correspondre à la température médiane cible, et les équilibrages NPT/NVT sont effectués avec 

le barostat (en NPT) et thermostat (en NVT) Nose-Hoover.162–164 Les paramètres 

d'amortissement pour le barostat et le thermostat sont respectivement 𝑃𝑑𝑎𝑚𝑝 =1000 fs et 

𝑇𝑑𝑎𝑚𝑝 =100 fs. 

La prochaine étape est la génération d’un gradient de température. Nos simulations nécessitent 

un gradient de température stable et bien défini pour comprendre les forces thermophorétiques 

appliquées à nos particules et étudier leur mouvement. Nous utilisons un mécanisme d’échange 

de chaleur introduit pour la première fois par Hafskjold and Ikesoji.152 Cet algorithme présente 

toutefois des problèmes de conservation d’énergie. Une nouvelle version, connu sous le nom 

de « enhanced Heat EXchange algorithm » (eHEX) et lancée par Wirnsberger et al.,70 a 

néanmoins permis de dépasser ce problème de conservation d’énergie.  

Nous suivons une procédure similaire à celle du travail d'activation du gradient thermique 

d'eHEX70 pour le processus d'équilibrage de nos systèmes et la génération du gradient 

thermique postérieur, en suivant ces étapes générales : 

1. Minimization  

2. Remise à l'échelle de la vitesse : conduire le système à la température cible 

3. 1ère simulation dans le NPT ensemble  

4. Remise à l'échelle de la boîte  

5. 2ème simulation dans le NPT ensemble avec le volume correct 

6. 1ère simulation dans le NVE ensemble 

7. Ajustement de l'énergie de la dernière configuration  

8. 2ème simulation NVE : avec la température correcte 

Il convient de noter que les étapes 4 et 7 sont des processus cruciaux de remise à l'échelle du 

volume et de l'énergie respectivement. Ces étapes garantissent les conditions souhaitées lors 

des simulations d'ensemble NVE. 
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Une fois que la partie d'équilibrage est faite, 

nous définissons les régions froides et chaudes 

le long de l'axe z. Nous plaçons ces deux 

régions de façon symétrique à 𝑧𝑐  ≈  −𝐿𝑧/4 et 

𝑧ℎ  ≈  𝐿𝑧/4 et nous appliquons l’algorithme 

eHEX dans ces régions pour les molécules 

d’eau. 

La prochaine partie de notre travail consiste à 

s'assurer que l'énergie totale est conservée tout 

au long du temps de simulation. Nous nous 

sommes assurés que l'énergie totale ne diverge 

pas sur 10 ns pour un pas de temps inférieur à 

2 fs. L’échelle de temps d'équilibrage de 100 ps 

pour les systèmes de 5 nm de longueur de boîte 

et de 200 ps pour les systèmes de 10 nm de longueur de boîte est suffisante pour atteindre le 

gradient thermique (∆𝑇 ≈  60 K) dans l'état d'équilibre.  

En outre, la concentration choisie pour les solutions de TMAO est de 2,17-m, de manière à 

atteindre un bon compromis entre dilution suffisante pour négliger les interactions soluté-

soluté, et concentration suffisante pour diminuer le temps de convergence. Pour de tels 

systèmes, nous estimons qu'une échelle de temps de 2-ns peut être choisie sans risque. En effet, 

2ns correspond au temps nécessaire pour atteindre l'état d'équilibre du profil de concentration 

du soluté (tant que les conditions de la simulation et les tailles des systèmes ne diffèrent pas 

significativement).  

De plus, nous explorons plusieurs facteurs qui pourraient affecter la stabilité des gradients 

thermique et de concentration, et la robustesse des résultats. Nous avons d'abord étudié l'effet 

de la taille du système, et nous concluons que le gradient de concentration est pratiquement 

insensible à la taille de la boîte. L'expression du coefficient de Soret est, par définition, une 

variable intensive une fois que la condition d'équilibre du gradient de concentration est atteinte 

pour une température médiane donnée. Cependant, nous observons que l'erreur associée au 

coefficient de Soret augmente avec la taille du système. Pour cette raison, le plus petit système 

 

Figure 9.2: Régions thermostatées. Représentation 

schématique des régions thermostatées à ± 𝐿𝑧/4  

figure de droite, où deux gradients de température 

de distance 𝐿𝑧/2  sont générés, sans transition de 

discontinuité de température aux bords. 
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de boîtes de 50 Å est la meilleure option en termes de ressources de calcul et d'erreurs 

statistiques.  

Deuxièmement, nous étudions l'effet de l'amplitude du gradient de température, dans un 

intervalle allant de 0,8 à 3,6 K ·  Å−1  . Nous n’observons pas d'effet sur le coefficient de Soret, 

mais nous constatons que, plus l'amplitude est grande, meilleure est la précision de la mesure 

du gradient de concentration engendré. Cependant, les températures visitées doivent se trouver 

dans, ou pas trop loin, de l’intervalle de phase liquide à l’équilibre (à savoir, entre 273 et 373 

K). Pour ces raisons, nous avons choisi d'utiliser le gradient de 2,4 K ·  Å−1  qui satisfait à ces 

conditions dans la plupart des cas.  

Le troisième aspect est la fréquence du transfert de chaleur, qui joue un rôle important dans la 

concentration moléculaire à l'intérieur du réservoir. Dans les régions thermalisées, le transfert 

provoque de fortes variations dans les profils de concentration, c’est pourquoi nous 

déterminons toujours le coefficient de Soret à partir du profil de concentration à l'extérieur des 

régions thermalisées.  

Enfin, nous testons différents champs de force pour le soluté TMAO et la molécule d'eau. Nous 

constatons une certaine reproductibilité pour un système donné en utilisant différents champs 

de force disponibles dans la littérature, à l’exception d’une combinaison de champs qui donne 

une disparité dans le gradient de concentration. La combinaison de champs de force du modèle 

d'eau TIP4P/2005144 avec le modèle TMAO de Kast128,129 est retenue pour le reste de cette 

étude. 

9.3 L’effet de Soret : Propriétés des molécules et conditions 

thermodynamiques  

Nous avons présenté dans le paragraphe précédent plusieurs descriptions heuristiques issue de 

la littérature, qui tentent de décomposer le coefficient de Soret en différentes contributions.  

Dans le cadre de notre étude, nous avons choisi d’examiner plus en détail certaines de ces 

propriétés physiques, considérées comme les plus pertinentes pour l'effet Soret. Dans une 

première partie, nous nous concentrons sur des facteurs externes tels que la pression, la 

température et la concentration qui pourraient affecter le coefficient de Soret.  
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Nous observons une légère augmentation du coefficient de Soret pour les pressions moyennes 

élevées de 100 bar et 1000 bar, mais nous ne remarquons pas de différence pour les pressions 

moyennes relativement faibles de 1 bar et 10 bar. 

 𝑆𝑇
1 bar ≈ 𝑆𝑇

10 bar < 𝑆𝑇
100 bar < 𝑆𝑇

1 kbar (9.10) 

Bien que nous observions une augmentation du coefficient de Soret en fonction de la pression 

médiane, l'effet est très faible. Par conséquent, nous ne considérons pas que le coefficient de 

Soret dépend de la pression moyenne, puisque de grandes pressions doivent être appliquées 

pour observer un effet significatif.  

Nous étudions également la dépendance de la température médiane de l'effet Soret pour 

l'éthanol, l'urée et le TMAO. Un des résultats est que le coefficient de Soret du TMAO 

augmente en fonction de la température médiane : 

 𝑆𝑇
270K < 𝑆𝑇

300K < 𝑆𝑇
330K < 𝑆𝑇

360K < 𝑆𝑇
390K . (9.11) 

Nous observons que les coefficients de Soret pour le TMAO et l'urée vérifie une déplétion 

exponentielle décrite phénoménologiquement par l'équation de Iacopini et Piazza79,80 

(𝑆𝑇 = 𝑆𝑇
∞[1 − 𝑒𝑥𝑝 (𝑇∗ − 𝑇) 𝑇𝑖⁄ ]), au contraire des molécules d'éthanol. Ces résultats sont en 

accord avec la littérature.84 Nous en déduisons que la température a un effet sur le coefficient 

de Soret, mais que cet effet dépend de la nature du soluté. De manière générale, nous observons 

une augmentation progressive du coefficient de Soret en fonction de la température pour des 

températures moyennes basses, ce qui signifie que la thermophobie augmente avec la 

température. Les molécules de soluté tentent de s'accumuler dans la région froide lorsque la 

température médiane augmente dans les solutions aqueuses diluées.  

Par ailleurs, nous analysons l'effet de la concentration sur le coefficient de Soret, et nous 

observons que les coefficients de Soret du TMAO ne présentent pas de forte dépendance avec 

la concentration : 

 𝑆𝑇
1,1 m ≈ 𝑆𝑇

2,2 m ≈ 𝑆𝑇
3,3 m > 𝑆𝑇

4,3 m . (9.12) 
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Cette tendance indique que dans les solutions aqueuses suffisamment diluées, le coefficient de 

Soret ne dépend pas de la concentration. Cet effet pourrait être expliqué par le fait que les 

molécules de TMAO n'interagissent pratiquement pas entre elles.  A ce niveau de dilution, 

l'interaction "chimique" soluté-solvant reste invariante, et la coquille de solvatation ne dépend 

pas du gradient de concentration.126 

Cependant, la concentration molaire 𝐶0
(4)

= 4,34 mol · kg−1 est relativement élevée, où les 

coquilles d'hydratation se recouvrent et où les molécules de TMAO sont en contact étroit. Pour 

cette raison, nous commençons à observer certains effets sur le coefficient de Soret, et nous 

optons pour la concentration médiane 𝐶0
(2)

= 2,17 mol · kg−1. Cette dernière contient 

suffisamment de molécules de TMAO pour obtenir de bonnes statistiques pour la détermination 

du coefficient de Soret tout en étant dans un régime suffisamment dilué.  

Dans la deuxième partie de notre étude, nous nous intéressons aux propriétés intrinsèques telles 

que le moment dipolaire, la taille moléculaire ou l'effet de masse de différentes molécules 

(éthanol, méthanol, urée, TMAO, glucose) : 

 𝜇𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝜇𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝜇𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝜇𝑈𝑟𝑒𝑎 < 𝜇𝑇𝑀𝐴𝑂 , (9.13) 

 𝑉𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑈𝑟𝑒𝑎 < 𝑉𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑉𝑇𝑀𝐴𝑂 < 𝑉𝐺𝑙𝑢𝑐𝑜𝑠𝑒 , (9.14) 

 𝑀𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝐸𝑡ℎ𝑎𝑛𝑜𝑙 < 𝑀𝑈𝑟𝑒𝑎 < 𝑀𝑇𝑀𝐴𝑂 < 𝑀𝐺𝑙𝑢𝑐𝑜𝑠𝑒 . (9.15) 

La formule suivante ordonne le coefficient de Soret en fonction du soluté : 

 𝑆𝑡
𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 < 𝑆𝑡
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ≈ 𝑆𝑡

𝑈𝑟𝑒𝑎 < 𝑆𝑡
𝑇𝑀𝐴𝑂 . (9.16) 

De manière générale, nous observons des coefficients de Soret plus importants pour les 

molécules ayant des moments dipolaires plus grands, comme le TMAO ou l'urée. Cependant, 

une analyse plus poussée où nous imposons différents moments dipolaires pour l'urée démontre 

que son coefficient de Soret diminue lorsque le moment dipolaire de l'urée modifiée augmente. 

Des travaux précédents ont déjà discuté de cette plus grande complexité pour les systèmes 

polaires par rapport aux systèmes non polaires.105 Les auteurs ont supposé que les changements 

structurels non idéaux (par exemple, les effets d'excès) doivent être pris en compte pour 
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comprendre l'effet de la polarité dans le coefficient de Soret. Par ailleurs, nous estimons que la 

remise à l'échelle des charges du champ de force induite par les modifications du moment 

dipolaire pourrait conduire à une description irréaliste des forces intermoléculaires et donc 

invalider la pertinence de nos résultats. Par conséquent, des études supplémentaires sont 

nécessaires pour comprendre l'évolution du coefficient de Soret en fonction du moment 

dipolaire d'une molécule. 

De manière générale, nous observons que les valeurs les plus faibles des coefficients de Soret 

sont associées à de petits systèmes moléculaires en termes de masse et de taille. Plus 

précisément, une augmentation progressive du coefficient de Soret est observée lorsque la 

masse molaire et la taille des molécules augmentent, sauf pour le glucose. Ces tendances sont 

en accord avec les études précédentes qui ont rapporté une dépendance de la taille dans les 

solutions colloïdales,49,68,177 et un effet de masse dans les n-alcanes linéaires.98–100 

Cependant, la corrélation et l’intrication de ces contributions intrinsèques rend difficile 

l’interprétation physique de leurs contributions respectives pour l'effet Soret. Pour cette raison, 

nous examinons l'effet des molécules isotopiques dans le coefficient de Soret afin de mettre en 

évidence l'effet de masse.  

Dans la littérature, le coefficient de Soret est généralement divisé de manière 

phénoménologique en deux termes indépendants (𝑆𝑇 = 𝑆𝑇
𝑐ℎ + 𝑆𝑇

𝑖𝑠𝑜),76,102 où 𝑆𝑇
𝑖𝑠𝑜 est la 

contribution isotopique qui ne dépend que de la masse et du moment d'inertie. Dans ce travail, 

la description de l'effet de masse pour les petits solutés en solutions aqueuses est approximée 

par cette équation : 

 
𝑆𝑇 = 𝑆𝑇

0 + 𝑎𝑀

𝑀2 − 𝑀1

𝑀2 + 𝑀1
 . (9.17) 

Où 𝛿𝑀 = 𝑀2 − 𝑀1 𝑀2 + 𝑀1⁄ . Nous supposons que l'effet du moment d'inertie n'affecte pas de 

manière significative le coefficient de Soret isotopique lorsque le rapport de masse augmente. 
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Nos résultats montrent que toutes 

les molécules étudiées présentent 

un comportement thermophobe 

pour des rapports de masse entre 

soluté et solvant positifs à leur 

masse naturelle. De plus, l'urée, le 

méthanol et l'eau ont acquis un 

caractère thermophile pour certains 

rapports de masse négatifs. Nous 

confirmons donc que les molécules 

plus lourdes ont des valeurs de 

coefficient de Soret plus élevées, et 

nous démontrons une relation 

linéaire entre le coefficient de Soret 

et le rapport de masse (𝛿𝑀) (les 

lignes pointillées dans la Figure 9.3 montrent l'ajustement linéaire de l'éq. (8.8)).  

Si le coefficient de Soret dépend bien du rapport de masse, nous avons montré qu'il n'est pas 

vraiment affecté par la masse absolue de la solution. Ces résultats sont représentés par trois 

points verticaux pour le TMAO et l'urée dans la Figure 8.1.  

De plus, nous avons voulu mettre en évidence que 𝑆𝑇
0 ≈ 0 K−1 pour les simulations de l'eau 

seule. Pour étudier les effets de masse de l’eau dans l’eau, nous modifions la masse de certaines 

molécules d'eau, et calculons le coefficient de Soret de ces isotopes. Nous constatons un effet 

de masse pure, attestant de la valeur nulle du 𝑆𝑇
0 de l’eau. 

Enfin, nous observons que 𝑆𝑇
0 est plus grand pour la molécule de TMAO par rapport à l'urée 

ou au méthanol, ce qui indique une plus grande contribution "chimique" de celui-ci, ou un 

moment d'effet. Cependant, une étude approfondie doit être menée pour connaître l'effet du 

moment d'inertie afin d'isoler cette contribution " chimique ". 

 

Figure 9.3: Résumé de l’effet de la masse. methanol (jaune), 

éthanol (olive), urée (cyan), TMAO (magenta), glucose (vert), and 

eau (gris). 
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9.4 Origins moléculaires de la thermophorèse 

La dernière partie de ce travail consiste à tester la faisabilité de deux modèles plausibles, qui 

présentent un intérêt et une pertinence particuliers pour les systèmes moléculaires, mais qui 

proviennent de perspectives différentes.  

Le premier modèle est l'approche d'Eastman,71 qui tente de relier l'effet thermodynamique d'une 

molécule à la dépendance de la température d'un processus d'énergie libre de solvatation. Le 

groupe de Braun,49 parti cette même idée, développa et testa expérimentalement un modèle 

plus aboutit. Leurs résultats montrent que les états stables thermophorétiques pourraient être 

décrits par une distribution de Boltzmann dans l'équilibre thermodynamique local de 

l'équation : 

 
𝑆𝑇 =

1

𝑅𝑇

𝑑𝐺𝑠

𝑑𝑇
 . (9.18) 

 La corrélation entre le coefficient de Soret déterminé par le modèle de Braun et les coefficients 

de Soret précédemment calculés lors des simulations de thermophorèse est représenté ci-

dessous : 

Les coefficients de Soret 

déterminés par les calculs 

d'énergie libre surestiment 

clairement le coefficient de Soret 

calculé par dynamique 

moléculaire sous un gradient 

thermique pour tous les solutés. 

De plus, ce modèle ne tient pas 

compte de l'effet de masse déjà 

ratifié et démontré 

expérimentalement.98–100 Ainsi, le 

coefficient de Soret ne peut pas 

être compris uniquement en 

 

Figure 9.4: Modèle d’Eastman. Le coefficient de Soret déterminé à 

partir du modèle d’Eastman vs le coefficient de Soret déterminé à 

partir de la thermophorèse à 330 K et pour les solutés : TMAO 

(magenta), urée (cyan) et méthanol (jaune). 
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termes d'effet de solvatation entropique pour les solutions aqueuses diluées, puisqu'il 

surestimerait largement la valeur de thermophorèse obtenue précédemment.  

Le deuxième modèle est celui de Prigogine, qui suppose que le mouvement thermophorétique 

d'une molécule est lié aux énergies d'activation pour la diffusion des molécules de soluté et de 

solvant.72–76 Le coefficient de diffusion est obtenu a partir du déplacement quadratique 

moyenne (MSD). 

Les coefficients de Soret 

déterminés par le modèle diffusif 

de Prigogine sont comparés dans la 

Figure 8.3 à ceux obtenus par les 

simulations de thermophorèse. 

Aucune tendance ne se dégage : la 

masse et la taille pourraient avoir 

un effet sur leurs énergies 

d'activation, puisque des molécules 

plus grandes ou plus lourdes 

rendraient leur mouvement plus 

coûteux en termes d'énergie.  

Enfin, nous analysons la correction 

au modèle proposée par Artola, 

Rousseau et Galliéro,75 qui ajoute 

l'effet de masse à l'approche de 

Prigogine. Nous observons que la 

prise en compte de ce terme supplémentaire entraine une augmentation exponentielle de la 

valeur du coefficient de Soret en fonction du rapport de masse, ce qui ne correspond pas à 

l'effet de masse observé dans les résultats de thermophorèse.  

Cet écart pourrait être expliqué par la non prise en de certains effets, notamment mentionnés 

par les auteurs á la fin de leur article. Les moments d'inertie dans le processus de diffusion, qui 

pourraient faire partie de l'effet isotopique, devraient également être étudiés. En conclusion, 

 

Figure 9.5: Modèle de Prigogine. Le coefficient de Soret 

déterminé à partir pour le modèle de Prigogine vs le coefficient de 

Soret déterminé à partir de la thermophorèse à 330 K, pour les 

solutés : TMAO (magenta), urée (cyan), méthanol (jaune) et 

glucose (vert). 
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une étude plus détaillée doit être menée afin de comprendre la thermophorèse comme un 

processus de diffusion activé.  

Le dernier axe de ce travail propose de considérer le coefficient de Soret comme un effet 

balistique du mouvement moléculaire. Ce mouvement peut être détermine via les déplacements 

moléculaires à temps très courtes de la dynamique avec des calculs MSD.  

Le coefficient de Soret dans le 

régime balistique est déterminé 

pour plusieurs molécules, prises à 

différentes masses. Nous 

considérons que 170 fs comme la 

limite de la région balistique. Nous 

observons une corrélation linéaire 

entre le coefficient de Soret calculé 

par les simulations de 

thermophorèse et la MSD 

balistique à 170 fs. Cette 

corrélation est présente que dans le 

régime balistique.  

Ces résultats pourraient indiquer que les forces thermophorétiques sont en fait appliquées sur 

des échelles de temps très courtes. Ainsi, le coefficient de Soret devrait être compris comme 

un effet cinétique et non comme un effet diffusif. Cependant, ces résultats doivent être 

considérées comme préliminaires, et d'autres études seront nécessaires pour interpréter la 

relation entre coefficient de Soret et MSD balistique. 

 

Figure 9.6: Régime balistique. Coefficient de Soret déterminé à 

partir de la thermophorèse vs MSD (〈∆𝑥2〉) déplacement jusqu’a 

170 (Å/ps) à 330 K et pour les solutés : TMAO (magenta), urée 

(cyan), méthanol (jaune), glucose (vert) et eau (gris). 
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