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Deep Learning methods have achieved phenomenal success in several fields such as computer vision, natural language processing, and speech recognition. In particular, Convolutional neural networks (CNNs) are now ubiquitous in state-of-the-art approaches for 2D images such as image classification, detection, segmentation, etc. While CNNs naturally extend to other domains, such as audio and video, where data is also organized in rectangular grids, they do not easily generalize to different types of irregular data such as 3D meshes. This lack of generalization is the biggest challenge to extending deep learning methods to 3D shape data. This thesis presents our two main contributions for feature learning on 3D shape data, specifically meshes.

I am deeply indebted to my parents

In our first contribution, we propose a novel graph-convolutional network architecture that builds on a generic formulation that relaxes the 1-to-1 correspondence between filter weights and elements around the center of the convolution. The main novelty of our architecture is that the filter weight is a function of the features in the previous network layer, which are learnt as an integral part of the neural network. We perform experimental evaluations on 3D shape correspondence task yielding state-of-the-art results at the time of publication, significantly improving over previous work for shape correspondence.

In our second contribution, we explore how these networks can be extended to the dual face-based representation of triangular meshes, where nodes represent triangular faces instead of vertices. Compared to the primal vertex mesh, its dual face mesh offers several advantages: (i) it is regular, i.e. each triangular face has exactly three neighbors (ii) several input features are naturally defined over faces, such as surface normals and area. We also evaluate this approach on the 3D shape correspondence task and further study the robustness of the models to structural transformations of the input mesh.

Résumé

Les méthodes d'apprentissage profond ont connu un succès phénoménal dans plusieurs domaines scientifiques dont la vision par ordinateur, le traitement du langage naturel ou encore la reconnaissance vocale. C'est le cas des réseaux de neurones convolutifs (CNNs) qui sont désormais omniprésents dans les algorithmes qui considèrent des images 2D pour faire de la classification, de la détection ou bien de la segmentation. Si les CNNs s'étendent naturellement à d'autres domaines où les données sont également organisées en grilles rectangulaires, par exemple l'audio et la vidéo, ils généralisent mal à des structures de données irrégulières telles que celles utilisées pour représenter des formes 3D, notamment les maillages de points. Cette limitation constitue un défi à l'extension des méthodes d'apprentissage profond aux formes 3D. Dans cette thèse nous présentons deux contributions importantes dans ce contexte.

Dans notre première contribution, nous proposons une nouvelle architecture de réseau à convolution de graphe qui s'appuie sur une formulation générique de la couche de convolution dans un réseau. Cette formulation permet de relâcher la contrainte de correspondance fixe entre les poids des filtres de convolution et les éléments voisins du sommet au centre de la convolution. La principale nouveauté est alors que cette association entre poids du filtre et voisins sur le maillage se fait de manière dynamique en fonction des caractéristiques de la couche précédente du réseau, et est apprise comme une partie intégrante du réseau neuronal. Nous avons évalué cette stratégie en l'appliquant au problème de la mise en correspondance de formes 3D. Les résultats obtenus ont constitué, au moment de la publication, une amélioration significative de l'état de l'art sur la correspondance de formes.

Dans une deuxième contribution, nous explorons comment ces réseaux peuvent être étendus à une représentation duale des maillages triangulaires de surfaces, où les noeuds représentent alors les facettes triangulaires en lieu des sommets du maillage. Cette représentation duale offre plusieurs avantages par rapport à la représentation primaire basée sur les sommets : (i) elle est régulière, c'est-à-dire que chaque facette triangulaire a exactement trois voisins (ii) plusieurs propriétés des formes sont naturellement définies sur les facettes, par exemple les normales à la surface ou l'aire de la surface.

Nous avons également évalué cette approche avec la mise en correspondance de formes 3D et nous avons aussi étudié sa robustesse aux changements de connectivité des maillages considérés. 

Motivation

As we perceive the world surrounding us in three dimensions, it is interesting to develop real-world applications which can perceive the three-dimensional (3D) world. In medicine, some instances where 3D perception might be beneficial include creating patient-specific implants to replace a damaged bone or navigation in computer-assisted surgery. In robotics, tasks such as grasping objects or motion planning in a cluttered environment can benefit from 3D information. Automated self-driving vehicles need to detect and localize other vehicles and pedestrians on the streets in the 3D space. 3D data is increasingly used in the entertainment industry to make films, TV shows, and games. Increasingly, there is a demand for complex scenes or characters which are either not feasible or too expensive to shoot in real life. 3D models and their corresponding data representations for a teapot (Source: https://www.cs.utah.edu/~natevm/newell_teaset/) and human face [START_REF] Ranjan | Generating 3d faces using convolutional mesh autoencoders[END_REF].

These are instead digitally generated by tracking and animating the motions of performers. See Figure 1.1 for an illustration of these examples.

Over the past few decades, advancements in data acquisition technology have enabled the digitization of shapes around us. These digital 3D shapes offer many benefits over digital 2D images, such as proper tackling of occlusions in complex scenes, insensitivity to illumination changes, surface properties, rich structural and semantic information, etc.

The 3D models can be represented digitally in many different ways, varying in structure and properties. In Figure 1.2, we show an example of a 3D model of a teapot and a human face with two digital representations: point clouds and meshes. A point cloud gives the spatial locations of points on the shape.

A mesh additionally provides the local structure of these points representing the surface.

In order to extract meaning from these representations, we need specialized tools to perceive them. The field of 3D Computer Vision deals with automated tools to make computers learn a high-level understanding of our surroundings. It involves many problems such as object recognition, scene understanding, motion tracking, etc. These problems are highly challenging because of our world's inherent complexity and unbounded information.

The classical way to deal with these problems is by making use of feature descriptors. These are simplified vector representations encoding information about the content of the input. Local descriptors [START_REF] Matei | Rapid object indexing using locality sensitive hashing and joint 3d-signature space estimation[END_REF][START_REF] Bronstein | Shape google: Geometric words and expressions for invariant shape retrieval[END_REF] represent local surface information and should be invariant to transformations, such as translation. However, these low-level descriptors lack discriminative attributes and are thus limited in their suitability for different applications.

Context

In the past decade, deep learning has dramatically improved the state-ofthe-art in several research domains, including computer vision [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], audio processing [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF][START_REF] Deng | New types of deep neural network learning for speech recognition and related applications: An overview[END_REF], natural language processing [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], among many others [START_REF] Lecun | Deep learning[END_REF]. In particular, convolutional neural networks (CNNs) have now become ubiquitous in computational solutions to visual recognition problems such as image classification (He et al., 2016a,b), semantic segmentation [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF][START_REF] Chen | Semantic image segmentation with deep convolutional nets and fully connected CRFs[END_REF], object detection [START_REF] Girshick | Fast R-CNN[END_REF][START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF], etc.

Particularly intriguing is the application of deep learning techniques for 3D shape understanding. Early works [START_REF] Liu | High-level semantic feature for 3d shape based on deep belief networks[END_REF][START_REF] Fang | 3d deep shape descriptor[END_REF] directly use low-level descriptors as inputs to deep networks to learn highlevel discriminative features. However, these are heavily task-dependent and lack generalization. Several approaches [START_REF] Eitel | Multimodal deep learning for robust rgb-d object recognition[END_REF][START_REF] Su | Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views[END_REF] use RGB-D and multi-view representations, which are essentially 2D images directly as inputs to standard image-based networks. While successfully learning valuable 3D information, these methods are based on representations that do not preserve the geometric properties of the shape. Additionally, they lack invariance to shape deformations, making them more suitable for rigid objects. It is not obvious to extend these techniques to commonly used 3D representations such as point clouds and meshes due to their inherent complexity. In particular, point clouds lack global ordering of points and local structure. Several different kinds of approaches have been proposed for processing point clouds, such as pointwise MLPs (Qi et al., 2017a) and tree-based data structures [START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF] among many others. While beneficial in many practical applications, such as autonomous driving and robotics, point clouds lack surface information. These geometric properties are intrinsic to meshes making them more suitable for tasks related to deformable shapes such as humans.

This thesis focuses mainly on the application of deep learning for 3D meshes.

A standard deep learning technique, a convolutional neural network, is defined on grid-like structures for regular domains such as images. This regularity allows for certain specific properties encoded in the operator, for instance, compact local support and shared filter weights across space, leading to built-in translation equivariance. In contrast, there are several challenges to extending convolutional operators to irregular domains such as graphs and meshes:

• Unlike regular grids, which provide implicit ordering of neighbors of a node, local neighborhoods in meshes are irregular and do not have a specific ordering. • Regular grids have a fixed number of neighbors for every node. However, in the case of meshes, this number can be arbitrary and different for each node.

See Figure 1.3 for an example of structures in both regular and irregular domains.

Recent works have addressed these challenges in several different ways.

Meshes have been viewed as graphs in some works, which use standard graph-based deep learning techniques based on either spectral filtering [START_REF] Ranjan | Generating 3d faces using convolutional mesh autoencoders[END_REF] or spatial local filtering [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. Mesh-based deep networks leverage geometric properties using different filtering techniques, for instance, patch-based filtering [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF] or edge-based filtering [START_REF] Hanocka | MeshCNN: a network with an edge[END_REF]. This thesis presents two novel approaches to processing 3D meshes using deep learning, summarized in Section 1.3. The first approach is built on a graph-based local filtering technique, whereas the second approach is mesh-based learning on the faces of a triangular mesh.

Among the many applications of our proposed approaches, we mainly focus on dense shape correspondence. The goal is to find a set of corresponding points between a given shape and a template shape, see Figure 1.4. If this set of points includes only some key points, it is a sparse correspondence; other-wise, it is a dense correspondence. Finding correspondences is fundamental to many applications such as shape reconstruction, motion tracking, shape modeling, texture transfer etc. Following [START_REF] Rodola | Dense non-rigid shape correspondence using random forests[END_REF], we formulate the problem as a classification learning task where the points on the template shape are considered as labels. We evaluate both of our proposed approaches on this task in various challenging conditions.

Contributions

Our contributions in this thesis are summarized as below:

• We propose a novel graph-based spatial filtering approach called FeaSt-Net, where the associations between filter weights and neighbors are determined dynamically. We also present a translation-equivariant version of FeaStNet, designed specifically for spatial point locations, which we use as input features.

• We present a novel mesh-based deep learning approach called Dual-Conv, which utilizes the dual mesh defined over faces. We leverage the property of each vertex having exactly three neighbors to define a regular convolution operator. We also use features such as normals or areas defined over faces.

Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 presents the relevant background on 3D data representations and deep learning along with related work on deep learning for 3D data, specifically meshes. We further discuss these related works within the context of our contributions in Chapters 3 and 4.

Chapter 3 introduces FeaStNet, the local graph filtering approach based on dynamic data-adaptive networks. We present an evaluation on the two different tasks: shape correspondence and part labeling. This chapter is based on our paper "FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis", Nitika Verma, Edmond Boyer & Jakob Verbeek, Computer Vision and Pattern Recognition (CVPR), 2018.

Chapter 4 presents DualConv, the face-based dual mesh convolutional operator. We provide an analysis of the robustness of this approach to changing mesh topologies using the shape correspondence task. 

3D Data Representations

3D data can be captured using different acquisition devices leading to many different representations. Each of these representations has different properties, making them suitable for different tasks in computer graphics, vision, robotics, etc. We partition these representations into two categories based on their underlying structures. Regular representations, including RGB-D, multi-view, volumetric, are defined on equally spaced grid-like structures. On the other hand, irregular representations such as point cloud, meshes, and graphs, are defined on irregular structures. This section presents an overview of these representations; see Figure 2.1 for their visualization.

Regular Structured Representations

RGB-D and Multi-View Images

With the introduction of low-cost depth sensors such as Microsoft Kinect, it has become increasingly common to represent 3D shapes as RGB-D data. These sensors are used to capture 2.5D information, i.e. the color (RGB) and depth (D). The depth provides complementary information along with robustness in variations to illumination and scale. This data is suitable for tasks like object detection [START_REF] Qi | Frustum pointnets for 3d object detection from rgb-d data[END_REF][START_REF] Fan | Rethinking rgb-d salient object detection: Models, data sets, and large-scale benchmarks[END_REF], scene understanding [START_REF] Song | Sun rgb-d: A rgb-d scene understanding benchmark suite[END_REF][START_REF] Chang | Matterport3d: Learning from rgb-d data in indoor environments[END_REF], pose estimation [START_REF] Krull | Learning analysis-by-synthesis for 6d pose estimation in rgb-d images[END_REF]Wang et al., 2019a), among many others, specifically in cases with limited lighting or clutter in the background/foreground. The increasing popularity of this representation has led to the release of many datasets extensively covered in surveys [START_REF] Firman | Rgbd datasets: Past, present and future[END_REF][START_REF] Cai | Rgb-d datasets using microsoft kinect or similar sensors: a survey[END_REF]. Additionally, RGB-D images can be captured from different viewpoints and combined to form multi-view data representation. This allows for fully representing 3D shapes from multiple angles overcoming issues such as occlusions.

Volumetric

Like pixels in two-dimensional images, voxels represent values in threedimensional space. These voxels can be used to represent 3D shapes on a regular grid. This volumetric representation allows for categorizing voxels as free space, occluded, or surface. For a grid size of n × n × n, the voxel-based representation has a space complexity of O(n 3 ). This makes it computational and memory intensive and consequently not suitable for many tasks. Other volumetric representations which are more efficient than voxels include octrees [START_REF] Meagher | Geometric modeling using octree encoding[END_REF] and KD-trees [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF][START_REF] Xiao | Kd-tree based nonuniform simplification of 3d point cloud[END_REF]. These are hierarchical data structures that subdivide three-dimensional space into partitions saving a large amount of space. The major drawback of volumetric representations is that they do not preserve geometric surface properties.

Irregular Structured Representations Point Clouds

A point cloud is a set of 3D data points representing the coordinates in the three-dimensional space. This set is unordered globally by construction; however, the points are locally a part of a meaningful subset. Point clouds have recently gained attention for various tasks in computer vision, robotics, and autonomous driving. Unlike other previous representations, point clouds preserve the original 3D geometric information and form an efficient representation. However, there are several challenges posed with the use of point clouds in deep learning. Unlike pixels or voxels, point clouds are inherently unstructured, i.e. it is not possible to place them on a regular grid, and they are invariant to permutation of their ordering. Additionally, the absence of connectivity information introduces ambiguity about geometric properties such as normals.

Meshes

Meshes are the most commonly used 3D shape representations. 3D meshes are a combination of a set of points localized in three-dimensional space, a set of edges connecting these points, and a set of faces that can be any polygons (primarily triangles). These polygons are connected in a way such that each edge is shared by atmost two polygons. Meshes can also be described as graphs where the nodes of the graphs are the vertices, and the edges are the local connections between these vertices. Meshes can be used to represent non-rigid 3D shapes while capturing local geometric properties such as curvature. A mesh is watertight if each edge bounds an even number of triangles, i.e. there are no holes or missing features on the mesh. In contrast to point clouds which lack connectivity, meshes have an underlying irregular structure. However, this irregularity poses a challenge for deep learning methods, typically defined for regular-structured data.

Deep Learning Fundamentals

Deep Learning is a particular subfield of Machine Learning, where features are learnt from raw input data using a stacking of non-linear transformations called "layers". [START_REF] Goodfellow | Deep Learning[END_REF] 

Feedforward Neural Networks

Perceptrons are the building blocks of feedforward neural networks or multilayer perceptrons (MLP). They define a mapping y = f θ (x) from input features x into output features y by learning the parameter θ. In a typical feedforward neural network, the first layer is the input layer, and the last layer is the output layer. There are one or more hidden layers between the input and the output layers. Each hidden layer comprises a set of neurons, which are fully connected to the previous layer but are not connected within the same layer. In Eq. ( 2.1), we present a feedforward network parametrized using learnable weight matrix W ∈ IR m×n and bias vector b ∈ IR m .

y = f (W x + b), (2.1) 
where x ∈ IR n is the input vector, y ∈ IR m is the generated output vector and f is a point-wise non-linearity (e.g. ReLU [START_REF] Nair | Rectified linear units improve restricted Boltzmann machines[END_REF]). These networks are trained by minimizing a loss function using a technique called back-propagation [START_REF] Werbos | Applications of advances in nonlinear sensitivity analysis[END_REF]. The two main steps, forward pass and backward pass (weight update), are repeated for every input. During the forward pass, each input vector is propagated forward through the network and gives a certain output. This output is then used to compute the loss function and error. The backward pass involves calculating the gradient of loss function using the error, which is then used to update the weights to minimize the loss function. See Figure 2.3 for an illustration. with a filter size of 1 × 1, often called Linear Layer (Lin)1 , simply maps feature maps per pixel of the image. It can be considered as a perceptron (Section 2.2.1) applied to each pixel independently.

Convolutional Neural Networks

The Pooling/Subsampling Layer (Pool) is usually inserted after the Convolutional Layer to resize every slice of the input along its depth. It aims to merge semantically similar information and reduce input resolution. There are many types of pooling layers, the most common being MaxPooling, where we take the maximum of the activations of a given filter size (See Figure 2.5).

Fully-Connected Layers (FC) have full connections, i.e. the neurons are connected pairwise to all neurons in the previous layers. For instance, the hidden layers in an MLP (Figure 2.2) are essentially fully-connected layers.

Most commonly, convolutional architectures are formed by stacking a few Conv layers followed by Pool layers. The pooled feature maps are then flattened to pass into FC layers, the last of which contains the desired output. These multilayer architectures are a specialized form of feedforward neural networks and are trained using back-propagation, explained briefly in Section 2. et al., 1998, 2015) and Szegedy, 2015), Dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] 

Deep Learning for 3D Data

Deep Learning methods for 3D data representations can be subdivided into two main categories, i.e. extrinsic and intrinsic. Many standard techniques on 2D images can be directly extended to inherently extrinsic 3D data representations such as multi-view [START_REF] Eitel | Multimodal deep learning for robust rgb-d object recognition[END_REF][START_REF] Su | Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views[END_REF][START_REF] Chen | Multi-view 3d object detection network for autonomous driving[END_REF] or voxel grids [START_REF] Wu | 3D ShapeNets: A deep representation for volumetric shapes[END_REF][START_REF] Maturana | VoxNet: A 3D convolutional neural network for real-time object recognition[END_REF][START_REF] Choy | 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[END_REF][START_REF] Klokov | Probabilistic reconstruction networks for 3D shape inference from a single image[END_REF]. These methods are based on parameterizations external to the shape and henceforth referred to as extrinsic methods. Such methods adapt well with rigid shapes but fail in cases of simple isometric deformations of the shape. See Figure 2.7 for an example of a convolutional filter that responds differently to a straight and a bent cylinder. Moreover, discretizing space, instead of shapes, tends to be inefficient, particularly with moving and deforming objects for which a significant part of the space grid can be empty. This results in representations with often poor shape resolu-Fig. 2.7: Difference between extrinsic and intrinsic deep learning methods. In contrast to intrinsic methods, extrinsic are not invariant to shape transformations. Additionally, extrinsic methods are based on inherently extrinsic representations such as voxels, while intrinsic methods on intrinsic representations, for instance, meshes. Source: [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF] tions, e.g. using 20 × 20 × 20 voxel grids [START_REF] Girdhar | Learning a predictable and generative vector representation for objects[END_REF] or requiring special data structures to handle sparse inputs and/or outputs [START_REF] Riegler | OctNet: Learning deep 3D representations at high resolutions[END_REF][START_REF] Tatarchenko | Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs[END_REF]. On the other hand, methods that apply deep learning techniques directly on the fundamentally intrinsic shape surface are referred to as intrinsic methods. These methods describe the shapes more efficiently with discretizations attached to shapes and not the surrounding spaces. The convolutional filters for these methods are constructed on the surface and are thus equivariant to many shape deformations (Figure 2.7).

In this thesis, we focus mainly on these intrinsic methods, specifically for point clouds and 3D meshes. We examine recent approaches for point cloud processing using deep learning in Section 2.3.1. There have been mainly two approaches to generalizing deep learning methods on meshes. First is to consider the meshes as graphs, with nodes as the vertices and graph edges given by the edges of the faces. We review these graph-based deep learning methods in Section 2.3. 

Point Cloud Methods

Deep learning methods for processing point clouds take the 3D coordinates directly as input, and thus must be invariant to the ordering/permutation of points. PointNet (Qi et al., 2017a) [START_REF] Riegler | OctNet: Learning deep 3D representations at high resolutions[END_REF] and K-d trees [START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF] are used to learn features hierarchically.

The points in point clouds can be connected based on their local neighborhoods. The resulting graphs can then be processed using graph-based deep learning methods (Section 2.3.2). For instance, DGCNN (Wang et al., 2019b) uses edge convolution (MLP for each edge) on graphs constructed dynamically from features learnt on point clouds. While point clouds are commonly used in shape acquisition pipelines, they do not provide an explicit representation of surfaces. We note that a comprehensive review of the growing advances in point cloud deep learning methods is not in the scope of this thesis. We refer the readers to a survey paper in this area by [START_REF] Guo | Deep learning for 3d point clouds: A survey[END_REF].

Graph-based Methods

In recent years, there has been an increasing interest in deep learning for graphs. Graphs pose a particularly difficult problem for deep learning as basic operations on regular grids like convolution and pooling require new definitions on graphs. Previous approaches in this context use various techniques like Windowed Fourier Transform [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF] and wavelet constructions on graphs [START_REF] Gavish | Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning[END_REF][START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF]. In this section, we discuss recent approaches to generalize convolutional networks (Section 2.2.2) to non-regular graph-structured data. These can be divided into two broad categories: spectral and spatial methods. We refer the readers to [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF]; [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF] for a comprehensive review on different graph neural networks.

Spectral methods

Spectral methods build on an efficient and mathematically elegant approach to develop convolution-like operators over graphs based on the spectral eigen-decomposition of the graph Laplacian. Any function defined over the graph nodes, e.g. features, can be mapped, by projection on the eigenvectors of the Laplacian, to the spectral domain where filtering consists of scaling the signals in the eigenbasis. [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF] laid the groundwork for an extension of CNNs for graphs. This approach defines convolution operator in the spectral domain using Laplacian Eigen-decomposition. In order to address the challenges posed by the high computational cost of this approach, [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF] propose to use Chebyshev K-polynomials for localized and efficient convolution filters. A simplified variant was introduced by Kipf and Welling (2017), using a first-order approximation of the Chebyshev expansion. Following these works, several other approaches [START_REF] Levie | Cayleynets: Graph convolutional neural networks with complex rational spectral filters[END_REF][START_REF] Chen | FastGCN: Fast learning with graph convolutional networks via importance sampling[END_REF][START_REF] Huang | Adaptive sampling towards fast graph representation learning[END_REF] have been proposed specifically for graph convolution.

These methods have been used for deep learning on 3D shapes in a number of recent works [START_REF] Yi | Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation[END_REF][START_REF] Ranjan | Generating 3d faces using convolutional mesh autoencoders[END_REF][START_REF] Wang | Pixel2Mesh: Generating 3D mesh models from single RGB images[END_REF][START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF][START_REF] Zhou | Dense 3d face decoding over 2500fps: Joint texture & shape convolutional mesh decoders[END_REF]. For instance, [START_REF] Ranjan | Generating 3d faces using convolutional mesh autoencoders[END_REF] propose mesh autoencoder based on the spectral formulation proposed by [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF]. While successful with noise-free data such as synthetic 3D shape models, spectral techniques have more difficulties with real observed data for which global decompositions may be unstable across, for example, various shapes in various poses (see Figure 2.8). These methods are domain-dependent in the sense that they are defined over fixed graph structures and cannot be applied to a different graph in a straightforward manner. Consequently, they are mostly useful for inferring node properties in situations where the graph during training and testing is the same [START_REF] Sen | Collective classification in network data[END_REF][START_REF] Bouritsas | Neural 3d morphable models: Spiral convolutional networks for 3d shape representation learning and generation[END_REF].

Spatial Methods

In contrast to spectral methods which operate globally, spatial methods compute features by aggregating information within local neighborhoods, similar to traditional CNNs. These methods generalize well across different graphs, e.g. 3D shape meshes, but their construction for deep learning models is not straightforward because graphs usually have irregular local structures: (i) the number of neighbors per node may vary, and (ii) even if the number of neighbors is fixed, there might not be a consistent ordering among them. [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. The message step creates messages for propagation based on the local neighborhood of the node and the update step aggregates these messages to get updated feature. The formulation is detailed in Eq. (2.2).

steps in this network: (i) a message passing step where a message is created between each node and it's neighbors, (ii) an update step where the messages from the node's neighbors are aggregated and the node is updated with the feature y i . These steps are shown jointly in Eq. (2.2).

y i = γ(x i , j∈N i φ j,i (x i , x j , e j,i )), (2.2) 
where denotes an aggregation function, which is a differentiable, permutation invariant function like sum, max or mean. φ j,i and γ denote the message and update respectively, both of which are differentiable learnable functions e.g. MLPs. See Figure 2.9 for an illustration. We now look at some of the recent models with respect to the MPNN framework.

The pioneering work by [START_REF] Gori | A new model for learning in graph domains[END_REF]; [START_REF] Scarselli | The graph neural network model[END_REF] established the concept of Graph Neural Network (GNN) based on a recurrent neural network [START_REF] Elman | Finding structure in time[END_REF]. [START_REF] Li | Gated graph sequence neural networks[END_REF] proposed an extension to this GNN using a GRU, gated recurrent unit [START_REF] Cho | Learning phrase representations using RNN encoderdecoder for statistical machine translation[END_REF]. The approach is constructed with message φ j,i = W j,i x j and update γ = GRU (x i , j∈N i φ j,i ), where W is edge weight matrix. [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF] proposed MoNet, a parametric construction of local patch operators with learnable parameters built on their previous work [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF]. The nodes are updated using a set of K weighting functions W, modeled as Gaussian mixture models with trainable mean µ k and diagonal covariance matrix σ k . These weighting functions are conditioned on edge attributes or hand-designed pseudo-coordinates e j,i , for example local polar coordinates. The message φ j,i , weighting functions W and update γ functions are given in Eq. ( 2.3).

φ j,i = 1 K K k=0 W k (e j,i )x j , W k (e j,i ) = exp 1 2 (e j,i -µ k ) T σ -1 k (e j,i -µ k ) , γ = 1 |N i | j∈N i φ j,i , (2.3)
Simonovsky and Komodakis (2017) dynamically generate convolutional filter weights conditioned on edge attributes neighboring the nodes. The proposed Edge-Conditioned Convolution (ECC) is formalized with message φ j,i = ψ(e j,i )x j and update γ = ReLU ( j∈N i φ j,i ), where ψ is a filtergenerating neural network based on Dynamic Filter Networks [START_REF] Brabandere | Dynamic filter networks[END_REF]. [START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF] propose a spline-based convolutional operator called SplineConv. The fixed local support of B-Splines is used to process inputs with arbitrary dimensionality. In this approach, the message φ j,i = B Θ (e j,i ) is constructed using weighted B-Spline basis functions B, parameterized by Θ and the nodes are updated with γ = 1 [START_REF] Veličković | Graph attention networks[END_REF] follow the attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] to compute the feature of the node by 'attending' over its neighbors. The message φ j,i = α j,i Wx j with attention coefficients represented by α j,i = sof tmax j (a[Wx j , Wx i ]) are updated using γ = ReLU ( j∈N i φ j,i ). Here, a and W are learnable parameters.

|N i | j∈N i φ j,i .
We note that while the MPNN framework does not represent all different types of graph neural networks, it incorporates the models we consider in this thesis. Additionally, the model we propose in Chapter 4 can also be expressed in this framework.

Graph Pooling

Pooling layers are used in traditional CNNs to summarize local features and scale down the input size. Consequently, these layers introduce invariance to small translations in the input and make the network less computationally intensive. Graph coarsening methods can be used to performing pooling on graphs. [START_REF] Dhillon | Weighted graph cuts without eigenvectors: A multilevel approach[END_REF] propose the Graclus algorithm to perform graph coarsening. Given a graph with edge weights e ij and degrees d i = j e ij , this greedy clustering algorithm merges in each step the unmarked nodes that maximize the local normalized cut e ij (d -1

i + d -1 j ), and then marks these nodes as visited. [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF] use this algorithm to define maxpooling over the graph. The coarsened graph has approximately two times fewer nodes, and the edge weights in the coarsened graph are set to the sum of the corresponding weights before coarsening. This process is repeated to construct a binary tree over the nodes. This induces a complete ordering which can be used to apply standard 1-dimensional max-pooling layers. We use this method to perform pooling in Chapter 4. Other recent approaches [START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF][START_REF] Gao | Graph u-nets[END_REF][START_REF] Lee | Self-attention graph pooling[END_REF] leverage learnt node features to perform graph pooling, see [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF]; [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF] for details.

Mesh-based Methods

In treating meshes as graphs, these methods do not leverage all the information which can be provided by meshes like geometric properties or the arrangement in the 3D space of the vertices and faces. We review some recent approaches which define convolutional networks specifically for meshes.

Local hand-crafted patch-based methods form the foundation for CNNs on meshes (See Figure 2.10). Geodesic CNN [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF] extracts local patches on meshes which are convolved with filters expressed in polar coordinates. The orientation ambiguity of filters is dealt with by means of angular max-pooling, i.e. filters are applied in all possible orientations, and the maximum responses are retained. [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF] proposed the anisotropic CNN model which further extends the geodesic CNN model by using an anisotropic patch-extraction method, exploiting the maximum curvature directions to orient patches.

Several approaches have been proposed using surface properties to perform mesh convolutions. [START_REF] Maron | Convolutional neural networks on surfaces via seamless toric covers[END_REF] map the sphere-like surface to a flat-torus using an intermediate 4-cover made from four exact copies of the surface. Furthermore, a local translation-invariant convolution operator is defined for this flat torus. [START_REF] Poulenard | Multi-directional geodesic neural networks via equivariant convolution[END_REF] propose an extension of the Geodesic CNN [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF] to include directional information during convolution without losing the relative orientations of the filters. However, these methods involve more complex operations and are around ten times slower.

In order to make use of the unique arrangement of 3D points in space, [START_REF] Lim | A simple approach to intrinsic correspondence learning on unstructured 3d meshes[END_REF] propose a spiral operator. As presented in Figure 2.11, this operator enumerates the neighboring vertices following randomly generated spiral patterns around the central vertex. The enumerated sequence is then fed into an LSTM cell [START_REF] Hochreiter | Long short-term memory[END_REF] to learn a compact representation. A faster and more efficient extension of this approach is proposed in SpiralNet++ [START_REF] Gong | Spiralnet++: A fast and highly efficient mesh convolution operator[END_REF], where the spiral pattern is generated only once by assuming that all the meshes have fixed connectivity. However, real-world meshes, for example, deformable human meshes, have varying connectivities and have to be fitted to a fixed template mesh [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF] to train these methods. [START_REF] Hanocka | MeshCNN: a network with an edge[END_REF] propose a convolution operation based on edges aggregating information from their incident triangular edges; see Figure 2.11. Furthermore, it proposes a task-driven pooling operation based on the edgecollapse operation [START_REF] Hoppe | View-dependent refinement of progressive meshes[END_REF]. [START_REF] Milano | Primaldual mesh convolutional neural networks[END_REF] propose an attentionbased approach [START_REF] Veličković | Graph attention networks[END_REF] on primal and dual graphs constructed from a triangular mesh, thus combining graph and mesh based deep learning methods. They also introduce a pooling operation based on classical mesh simplification methods [START_REF] Garland | Hierarchical face clustering on polygonal surfaces[END_REF].

Shape Correspondence

The shape correspondence problem involves finding a meaningful set of corresponding points between two shapes. The methods addressing this problem can be categorized based on many different criteria, including the output density, the proposed approach, and the objective function. The density of the output set of correspondences can be sparse with some key points [START_REF] Rodola | A game-theoretic approach to deformable shape matching[END_REF][START_REF] Cosmo | Consistent partial matching of shape collections via sparse modeling[END_REF] or dense with all points [START_REF] Kim | Blended intrinsic maps[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]; see Figure 2.12. A fundamental way to approach the problem is to determine the similarity between the points of the shapes [START_REF] Liu | Finding surface correspondences using symmetry axis curves[END_REF][START_REF] Litany | Deep functional maps: Structured prediction for dense shape correspondence[END_REF]. Another way is to estimate a deformation to align the two shapes, thus obtaining the correspondence.

The objective functions depend on the approach; for instance, the similaritybased approach can have an objective function that maximizes the similarity between points, or the deformation-based approach can use an objective function that minimizes the distortion in the shapes when aligning them. This thesis focuses on estimating dense correspondences using a classificationbased approach. We give an overview of the relevant work in this particular domain and refer the readers to surveys by [START_REF] Van Kaick | A survey on shape correspondence[END_REF] and Sahillioglu (2020) for a detailed review.

Early approaches used hand-crafted descriptors such as Spin Images (Johnson and Hebert, 1999), Heat Kernel Signature [START_REF] Sun | A concise and provably informative multi-scale signature based on heat diffusion[END_REF], 3D Shape Context [START_REF] Körtgen | 3d shape matching with 3d shape contexts[END_REF][START_REF] Kokkinos | Intrinsic shape context descriptors for deformable shapes[END_REF] to extract shape correspondences. With the great success of deep learning methods in many domains, learning-based approaches gained popularity for finding shape correspondences. [START_REF] Rodola | Dense non-rigid shape correspondence using random forests[END_REF] formulate the correspondence problem as a classification problem where the goal is to predict the labels, which are points on the template mesh. We also use the same formulation in our approaches as do other recent approaches [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. Recent approaches (Ovsjanikov et al., 2012a;[START_REF] Litany | Deep functional maps: Structured prediction for dense shape correspondence[END_REF][START_REF] Halimi | Unsupervised learning of dense shape correspondence[END_REF] formulate the problem as mapping functions between the shape surfaces rather than points.

Summary and Outlook

In this chapter, we have examined the relevant background on different types of 3D representations and explored different related approaches to extending the success of deep learning to 3D shapes, specifically meshes, and provided an overview of shape correspondence approaches. The work presented in this thesis builds upon the presented background and related work presented in this chapter. In our first contribution (Chapter 4), we introduce a graph-based spatial model that learns the association between a node and its neighbors in a translation-equivariant manner devised specifically for 3D shapes. In our second contribution (Chapter 5), we propose a mesh-based convolution operator taking advantage of various geometric properties unique to meshes. Additionally, our operator does not rely on hand-crafted patch operators and is constructed to be robust to changes in mesh connectivity. We evaluate both approaches on the dense shape correspondence task.

Feature 

Introduction

Deep learning methods have gained immense popularity over the past few years in various areas. Specifically, convolutional neural networks (CNNs) are widely used in many tasks for 2D images, such as image recognition (He et al., 2016a), object detection [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF], etc. CNNs also extend beyond 2D visual information and easily generalize to other data that come in the form of regular rectangular grids. This has been demonstrated with, for instance, 1D convolution for audio signal [START_REF] Palaz | Analysis of CNN-based speech recognition system using raw speech as input[END_REF] and 3D convolution over space and time for video signal [START_REF] Tran | Learning spatiotemporal features with 3D convolutional networks[END_REF].

However, CNNs are not readily extended to data with underlying irregular structures, such as graphs or meshes. The challenge is to define convolutionlike operators over irregular local supports, which can be used as layers in deep networks for prediction tasks such as shape correspondence over 3D meshes. In this chapter, we aim to address this challenge and study the extension of CNNs for such representations. In particular, we focus on graph-based representations constructed using point clouds or meshes.

A number of architectures that generalize beyond data organized in regular grids have been recently proposed [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Sinha | Deep learning 3D shape surfaces using geometry images[END_REF][START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]Qi et al., 2017b). Some of these techniques generalize beyond 3D shape data to other domains where data can be organized into graph structures, including, for instance, social networks or molecular graphs [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF].

The existing approaches come, however, with several limitations. Spectral filtering approaches [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Henaff | Deep convolutional networks on graphstructured data[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] rely on the Eigen-decomposition of the graph Laplacian. Unfortunately, this decomposition is often unstable, making the generalization across different shapes difficult [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF].

Local filtering approaches [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF] rely on possibly suboptimal hard-coded local pseudo-coordinates
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Fig. 3.1: In CNNs for pixel grids (left), there is a 1-to-1 mapping between neighbors x j of the center pixel x i and filter weights. In our graph-convolutional approach (right), neighbors are soft-assigned across all weights, the assignments q m (x i , x j ) are computed using features from the preceding layer.

over the graph to define filters. Other approaches rely on point-cloud representations [START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF]Qi et al., 2017b) which cannot leverage surface information encoded in meshes or need ad-hoc transformations of mesh data to map it to the unit sphere [START_REF] Sinha | Deep learning 3D shape surfaces using geometry images[END_REF].

In order to handle 3D shape information, we propose to extend CNNs to nonregular structures in the form of generic graphs, e.g. 3D meshes. This chapter presents FeaStNet, a deep neural network based on a novel graph convolution operator. Unlike previous work [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF], it does not rely on static pre-defined local pseudo-coordinate systems over the graph. Instead, it uses the learned features of the preceding network layer to dynamically determine the association between filter weights and the nodes in a local graph neighborhood. Figure 3.1 illustrates the main idea behind the proposed graph convolutional layer.

In the remainder of this chapter, we first give a brief overview of the relevant related work in Section 3.2. We then present a reformulation of regular CNN convolutional layer in Section 3.3 in order to understand better our approach for graph convolutions described in Section 3.4. We report experimental results on the FAUST 3D shape correspondence benchmark, validating our approach in Section 3.5. Additional results on shape part labeling over point clouds illustrate that our approach generalizes to 3D data without explicit surface information. We then draw our final conclusions in Section 3.6.

Related Work

In this section, we present the related work in reference to our contributions briefly and refer the readers to Chapter 2 for a general literature review. In an effort to better generalize across graphs, a number of techniques follow a strategy based on local graph filtering [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Simonovsky | Dynamic edge-conditioned filters in convolutional neural networks on graphs[END_REF]. These methods differ in how they establish a correspondence between convolutional filters and nodes in local graph neighborhoods. 2016) use a spherical parametrization, filling holes in the mesh when needed, to map shapes onto octahedra. These octahedra are cut and unfolded to square images, which can then be processed using regular CNNs. [START_REF] Wei | Dense human body correspondence using convolutional networks[END_REF] render depth maps of shapes and process them with conventional CNNs to learn features that can be matched to establish shape correspondence. Contrary to these approaches, which transform 3D shape input data into 2D images that are fed to conventional CNNs, we propose a novel graph convolution that can directly process irregular graph-structured data.

Various architectures have been proposed to process point cloud data. For example, [START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF] propose a deep network based on kd-trees over 3D point clouds, sharing parameters across the tree based on the depth and direction of splits. Qi et al. (2017a,b) combine local per-point processing layers with max-pooling layers to process 3D point clouds. By construction, these approaches ignore the surface information available in mesh data and require sufficiently dense sampling to avoid artifacts due to spatial proximity of points that are geodesically remote. [START_REF] Vestner | Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space[END_REF] propose a correspondence refinement algorithm, used as a post-processing step in our experiments. Their Product Manifold Filter (PMF) technique recovers smooth bijective maps between deformable shapes given a set of dense correspondences obtained from our graph convolutional model for 3D shape data. Unlike other such methods, their algorithm does not rely on the assumption that the shapes are isometric. The correspondence computation as a kernel density estimation problem and their proposed filter guarantees bijective correspondences as it amounts to solving a linear assignment problem. The use of this filter significantly increases the accuracy and smoothness of the correspondences.

Data-adaptive convolutional networks

We now look at a recent class of convolutional networks where the filter weights are generated using the input data. The convolutional layers in a conventional CNN multiply together activations of the preceding feature map and learned filter weights and sum the results to obtain the output as a linear function of the input, after which a point-wise non-linearity is applied. The set of filters are always the same for every input in the dataset.

However, in spatial transformer networks [START_REF] Jaderberg | Spatial transformer networks[END_REF] and dynamic filter networks [START_REF] Brabandere | Dynamic filter networks[END_REF], a subnetwork, which takes the preceding feature map as input, replace a standard convolutional layer with a data-adaptive transformation. In the former, a localization subnetwork computes the parameters of a spatial transformation, e.g. cropping or resizing, which is used to spatially re-sample the preceding feature map before convolution. In the latter, a subnetwork is used to generate the convolutional filters that will be applied to the preceding feature maps. Figure 3.2 presents a schematic illustration of the architecture of a spatial transformer module and dynamic filter networks. Our approach uses similar techniques to define convolutions over graphstructured data; in particular, we use a subnetwork that locally assigns the elements of a local "patch" of the graph to the filter weights.

Reformulating Convolutional Layers in Regular CNNs

In this section, we present an alternative formulation of convolutional layers in conventional CNNs. This reformulation is a crucial first step in understanding the motivation behind our proposed approach. Here, we consider a standard convolutional layer that maps D-dimensional input features to E-dimensional output features. Conventionally, the parameters of this convolutional layer are represented as a set of learnable D × E convolutional filter weights F d,e , each of size w × h pixels. The top half of Figure 3.3 represents these parameters. The D input features are convolved with corresponding filter weights and then summed to get E output features.

The bottom half of Figure 3.3, we show an equivalent representation obtained by rearranging the set of filter weights as M = w × h weight matrices W m ∈ IR E×D . Each of these filter weights is used to project input features x ∈ IR D to output features y ∈ IR E . We use j(m, i) to refer to the index of the pixel in the m-th relative position w.r.t. pixel i. j(1, i) = i refers to the center pixel of the convolution, j(2, i) refers to the pixel one position to the left and top w.r.t. pixel i, and so on. Each neighbour x j(m,i) of the central pixel (pixel i is a neighbor of itself) is multiplied with a corresponding weight matrix W m . These are then summed over all M neighbors and added to the bias vector b ∈ IR E , to obtain the E output features. The activation y i ∈ IR E of pixel i in the output feature map is then written as

y i = b + M m=1 W m x j(m,i) , (3.1) 

Generalization to Non-Regular Input Domains

As seen in Section 3.3, there is a clear one-to-one mapping between the neighbors and the weight matrices in the case of convolutional filters on regular grid graphs. However, in the case of non-regular input data, there is no consistent assignment of neighbors to filter weights, and the neighborhood size may vary across nodes in the graph. In this section, we aim to solve this issue in non-regular graphs by establishing a correspondence between local neighbors and filter weights. We propose to learn the mapping as a part of the neural network using features computed in the preceding layer of the network. 

Proposed Convolutional Layers on Graphs

Let us consider a graph G = (V, E), where V is a set of n vertices and E is a set of edges. Neighborhood N i of a vertex i consists of all it's adjacent vertices (including i) and |N i | is the cardinal of this set of neighbors.

Conventionally, each neighbor j of a node i is assigned to a single weight matrix. Instead, in our approach we redefine this using a soft-assignment q m (x i , x j ) across the M weight matrices. Given these soft-assignments, we define the activation at node i as

y i = b + M m=1 1 |N i | j∈N i q m (x i , x j )W m x j , (3.2) 
where q m (x i , x j ) is the assignment of x j to the m-th weight matrix. These soft-assignments as a function of the local feature vectors are defined as

q m (x i , x j ) ∝ exp u m x i + v m x j + c m , (3.3) 
with M m=1 q m (x i , x j ) = 1. The weights involved in the update of node i sum to 1 regardless of the number of neighbors of a node (Eq. (3.4)).

Therefore, our formulation is robust to variations in the degree of the nodes and undefined vertex ordering.

j∈N i 1 |N i | M m=1 q m (x i , x j ) = j∈N i 1 |N i | = 1, (3.4) 
In our experiments, N i contains vertex i and all vertices connected to i by an edge, i.e. the first ring around vertex i. Our approach, however, allows using larger neighborhoods, e.g. up to ring 2 or more. This is analogous to filters with a larger support in conventional CNNs. A similar approach dilated convolution operator [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF] can use the same filter at increasing receptive fields (bigger neighborhood) without loss in resolution.

Importantly, and in contrast to standard CNNs, the above formulation decouples the neighborhood size |N i | from the number M of weight matrices, and thus the number of parameters. Consequently, filters with larger supports do not necessarily increase the number of parameters. Rather than forcing a weight-sharing pattern for large filters, our approach allows to learn the mapping between weights and neighbors.

Translation-Equivariant Assignments in Feature Space

Filter weights in conventional CNNs are shared across the input domains giving rise to translation-equivariance of the filters on the spatial domain. This property can be achieved as a special case of our approach by setting

u m = -v m in Eq. (3.3), which results in q ij m ∝ exp u m (x j -x i ) + c m , (3.5)
This is of particular interest in applications where the input features include spatial coordinates, in which case it is natural to impose translation equivari-ance on the assignment function. Our experiments demonstrate the positive effect of translation equivariance when directly using spatial coordinates as input features for 3D shape meshes.

Additional Properties

Recovering Standard CNNs

Conventional CNNs over grid-graphs are recovered if the neighborhood size for every node i in the graph G is equal to the number of filter weights, i.e. ∀ i |N i | = M . Also, the assignments of neighboring nodes to the filter weights need to be binary, i.e. q m (x i , x j ) ∈ {0, 1}, based on the relative position of neighbors w.r.t. node i. Also, instead of using a single linear transformation of the features in Eq. ( 3.3), more general transformations may be used, such as a MLP (Multi-layer perceptron).

Assignment by Mahalanobis Distance in Feature Space

Another interesting case occurs when considering a Mahalanobis distance to determine the assignments weights q m (x i , x j ). The Mahalanobis distance, parameterized by a positive definite matrix Σ, between reference points z m and a centered version of the neighbor features x ij = x jx i is given by

d Σ (x ij , z m ) = (x ij -z m ) Σ(x ij -z m ) (3.6) = -2x ij Σz m + z m Σz m + c, (3.7)
where c is a constant independent of m. It is easy to verify that softassignments based on the above Mahalanobis distances fits the form of Eq. (3.3) and Eq. (3.5) with c m = z m Σz m + c, and u m = -2Σz m , and v m = -u m . These soft-assignments may be interpreted as the posterior assignments of the neighbor's centered feature vectors x ij over the components of a Gaussian mixture model in feature space with components centered at the z m and with a shared covariance matrix Σ -1 .

This mixture model interpretation of the soft-assignments also helps to identify the connection with the related work of [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. They use a similar formulation in which centers z m are learned along with covariance matrices Σ m . However, this mixture is defined over an a-priori defined local coordinate space over the graph (e.g. local log-polar coordinates over a mesh), rather than learned features as in our formulation.

Using this formulation, we can recover a conventional grid-graph CNNs as a special case by letting the pixel coordinates be part of the feature vectors

x, having the Mahalanobis distance depend only on these coordinates, and placing the centers z m precisely on the relative positions of the neighboring pixels. Multiplying the Mahalanobis distances by a large constant will recover the hard-assignments used in the standard CNN model of Eq. (3.1).

Computational Complexity

The weight matrices W m are shared between a conventional CNN and our approach and contain M DE parameters. The only additional parameters in our approach w.r.t. a conventional CNN are the vectors u m , v m , which contain 2M D parameters. Thus the total number of parameters increases only by a factor of 1 + 2/E. Here we ignored bias terms, which contribute very few parameters.

To efficiently evaluate the activations, we first multiply all feature vectors The cost of a convolutional layer in a conventional CNN is O(N M ED), c.f . Eq. (3.1). The computational cost of our approach is comparable, provided the number of neighbors K is comparable or smaller than the number of features D, as is typically the case in practice. 

Experimental Evaluation

We evaluate our proposed convolutional layer on the 3D shape correspondence task in Section 3.5.1. In addition, we present results on part labeling of point cloud data in Section 3.5.2, where we apply our model on ad-hoc neighborhood graphs.

3D Shape Correspondence Experimental Setup

We follow the experimental setup in [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF]; [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF]; [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. For our experiments, we use the FAUST human shape dataset [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF]. This dataset consists of 100 watertight meshes with 6,890 vertices each. In total, there are ten shapes in ten different poses each. The shape correspondence problem, between a given reference shape and any other shape, is here formulated as a vertex labeling problem (Figure 3.5) where the label set consists of all the 6,890 vertices on the reference shape. The first 80 shape meshes are used as training data, and the last 20 meshes are used as test data (corresponding to the ten poses of two shapes not seen during training). Exact ground-truth correspondence is known, and the first shape in the first pose is used as a reference. The output of the last soft-max layer at each vertex gives a probability distribution over corresponding vertices on the reference shape.

Implementation

As input features for all shapes, we use either 3-dimensional raw spatial coordinates (XYZ) or the 544-dimensional SHOT (Signature of Histograms of Orientations) descriptor [START_REF] Tombari | Unique signatures of histograms for local surface description[END_REF]. These widely used 3D descriptors are rotation invariant and robust to clutter and noise. They encode spatial information within a spherical support region (illustrated in Figure 3.6) divided into bins with partitions along the elevation, radial and azimuth axes. For each of these bins, local histograms of surface normals are computed and then combined to get the final descriptor.

Unless specified otherwise, we follow the network architecture of [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF], which is similar to the ones used in [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. It consists of the following sequence of linear layers (1×1 convolutions) and graph convolutions: Lin16 + Conv32 + Conv64 + Conv128 + Lin256 + Lin6890; the numbers indicate the amount of output channels of each layer. In addition, we developed a multi-scale architecture with pooling and unpooling layers inspired by U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], which increases the field of view without losing spatial resolution. We use the Graclus algorithm [START_REF] Dhillon | Weighted graph cuts without eigenvectors: A multilevel approach[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF] to pool the graph (Section 2.3.2) and bilinear interpolation to upsample and recover the original resolution. Our multi-scale architecture is illustrated in Figure 3.7.

The models are trained using the standard cross-entropy classification loss. We use a learning rate of 10 -2 and a weight decay of 10 -4 . The accuracy is defined as the number of vertices for which the correspondence prediction is exact. However, we also evaluate the number of correspondence predictions within a certain tolerance on the error in terms of geodesic distance between the ground-truth correspondence and the predicted one.

Results

We first evaluate our single-scale model using the XYZ coordinates and the SHOT descriptor as input, and with and without translation equivariance in our model (See Table 3.1 for the results). For both descriptors, translationequivariance improves results. As expected, translation-equivariance is more critical in the case of raw XYZ inputs since the coordinates have no built-in translation equivariance. In contrast, the SHOT descriptor is equivariant to the absolute position of the local shape. In principle, translation-equivariance can be learnt from the data itself; however, it might be more beneficial to hard-code this property in the architecture due to limited training data. With translation-equivariance, the XYZ inputs clearly outperform the SHOT descriptor, demonstrating that our model can learn meaningful shape features.

Unless specified otherwise, we use XYZ inputs and translation-equivariance in the remaining experiments. In Figure 3.8 we visualize geodesic correspondence errors for both descriptors, clearly showing superior results using the raw XYZ coordinate input.

We evaluate the impact of the number of weight matrices M in Figure 3.9. We observe that the performance quickly improves from M = 2 to M = 8, after which the improvements are insignificant. This shows that the internal features learned by our model are effective in steering the graph convolutions and successfully assign different weight matrices across a graph neighborhood. We use M = 32 for the remaining experiments.

In Table 3.2, we present the accuracy obtained with FeaStNet using the singlescale and multi-scale architecture and compare it to the best-performing 2017) are directly taken from the corresponding papers, and for PointNet, we trained a model using the publicly available code. For the sake of direct comparability, we evaluate the quality of the correspondences directly predicted by our model, and after post-processing them with the refinement algorithm of [START_REF] Vestner | Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space[END_REF] which was also used by [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF]. Using our models, we obtain excellent correspondence predictions. Our multi-scale architecture, which allows to use more contextual information across the mesh, predicts 98.6% of the correspondences without any error.

In Figure 3.10 we plot the percentage of correspondences that are within a given geodesic distance from the ground truth on the reference shape. Figure 3.11 visualizes the geodesic correspondence errors using our single-scale and multi-scale architectures and the effect of refinement. While refinement has only a marginal effect on the accuracy, it does, in some instances, correct some of the rare relatively large errors. The correspondences predicted by our multi-scale network improve significantly over the previous state-of-the-art results of [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF].

To evaluate the robustness of our models, we add Gaussian noise to each vertex of the shapes, where we use a locally adaptive standard deviation proportional to the local average inter-vertex distance. We visualize the results of the multi-scale FeaStNet model on these new shapes in Figure 3.12. The blue curve demonstrates how the predictive performance deteriorates as the noise increases when training on noise-free data. The red curve is obtained when also using noisy training data, using noise levels 0.01, 0.05, 0.1, 0.15, and 0.2. Adding noise to the training data can be seen as a form of data augmentation and makes the model significantly more robust.

In order to understand what is being learnt by the models we train, we visualize the intermediate feature maps learned across all layers of our singlescale model. In Figure 3.13, we show activations of randomly selected features on a fixed shape. In Figure 3.14, we show activations of a particular feature on different shapes. We observe that the first linear layer shows activations as linear functions of the coordinates. Across the layers, the features become more pose invariant and more localized as required by the task.
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Part Labeling Experimental Setup

To validate our approach on graphs that are less clean than the ones in the FAUST dataset, we test it on the ShapeNet part benchmark [START_REF] Yi | A scalable active framework for region annotation in 3D shape collections[END_REF].

The dataset consists of 16,881 shapes from 16 categories, labeled with 50 parts in total. Ground-truth labels are available on points sampled from the original shapes but not on the original meshes themselves. Therefore, we apply our model to k-nearest neighbor (KNN) graphs over the labeled 3D points.

The task is to assign a part label (e.g. tabletop, airplane wings) for each point in a 3D shape. We formulate the task as a per-point classification problem.

We follow the standard experimental protocol [START_REF] Wu | Interactive shape co-segmentation via label propagation[END_REF][START_REF] Yi | A scalable active framework for region annotation in 3D shape collections[END_REF]Qi et al., 2017a;[START_REF] Klokov | Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models[END_REF], and report the mean intersection over union (mIoU) metric per category and across all shapes. For each shape, the mIoU is calculated per part, i.e. we compute IoU between ground-truth and prediction per part and then average over all parts in that specific category. mIoU per category is calculated by taking an average of mIoU of all shapes in that category.

We use k = 16 neighbors to construct the KNN graph and 3D point coordinates (XYZ) as input features. We use M = 16 weight matrices with the translation-equivariant property for our convolutional layer. We train the model with a cross-entropy loss over the part labels corresponding to the category of each sample. Our architecture consists of the following layers: Lin16 -Conv32 -Conv64 -Conv128 -Lin512 -Lin2048 -MaxPool. We concatenate the features from all the layers (skip connections) with the global max-pooled features and a one-hot vector of the input category. These are then fed into two linear layers (Lin1024 -Lin50) to get the final output. See Figure 3.15 for an illustration of the architecture.

Results

The results in Table 3.3 show that we obtain results that are comparable to the best-performing methods at the time of publication. This demonstrates that our approach is not only effective on clean mesh graphs but is also directly applicable to nearest neighbor graphs constructed from point clouds.

We show results with the number of nearest neighbors k = 16 as we did not observe much difference when varying k. In particular, we obtained mIoU of 79.9% (k = 4), 80.8% (k = 8), 81.5% (k = 16), 80.9% (k = 32).

We provide part labeling results on several test shapes from all categories in Figure 3.16 and Figure 3.17. We also visualize shapes with the worst predictions for each category in Figure 3.18. The failure cases mostly concern atypical shapes, e.g. for table and chair, and cases where the boundary between object labels is poorly estimated, e.g. for bag, guitar and gun. 

Conclusion

In this chapter, we presented FeaStNet, a novel graph-convolutional architecture based on local filtering and applies to generic graph structures, both regular and irregular. The main novelty is that our architecture determines local filters dynamically based on the features in the preceding layer of the network. Thus, the network learns features that are (i) effective to shape the local filters and (ii) informative for the final prediction task.

We use the raw 3D spatial coordinates as input, where previous work relied on pre-computed 3D shape descriptors. Additionally, we take advantage of the translation-equivariance provided by using XYZ coordinates. We obtain results that significantly improve over the state-of-the-art for 3D mesh correspondence on the FAUST dataset. Additionally, we present results comparable to the state-of-the-art for part labeling on the ShapeNet dataset. We apply our model on k-nearest neighbor graphs over point clouds. The TensorFlow-based implementation to replicate our experiments can be found at https://github.com/nitika-verma/FeaStNet.

Introduction

This chapter focuses on 3D mesh representations, which offer a topological graph structure on top of the vertex positions, allowing for compact and accurate surface characterization. The formulation of deep neural networks on meshes is not straightforward due to their irregular structure, where the number of neighbors can change from one vertex to another. Different approaches to treating meshes as graphs have been explored in prior work [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF][START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF]. In the previous chapter, we explored a graph-based local filtering approach using various assignment mechanisms to associate the neighbors with different filter weights.

On the other hand, methods such as those proposed by [START_REF] Lim | A simple approach to intrinsic correspondence learning on unstructured 3d meshes[END_REF]; [START_REF] Gong | Spiralnet++: A fast and highly efficient mesh convolution operator[END_REF] use an explicit ordering of neighboring vertices to define convolutional operators. However, these methods do not take advantage of various geometric properties unique to meshes.

In this chapter, we propose to use the dual mesh defined over the faces, where each vertex represents a face and is connected to the incident faces, see Figure 4.1. A watertight triangular mesh as an input ensures that each vertex in the dual mesh has precisely three neighbors. This allows us to define a regular convolution operator called DualConv on the dual mesh.

Using the faces rather than the vertices to represent the data, it is also natural to use input features such as the face normal or the area, among others, in combination with the location of the face center. We evaluate this convolution operator on the task of 3D shape correspondence between meshes. Since shape correspondence is typically defined over the mesh vertices rather than the faces, we introduce a dual-to-primal operator to map features from our dual-based network to the primal vertices, which can then be used to predict the correspondence.

We validate the feasibility of learning features in the dual domain and leveraging them for correspondence in the primal domain on the FAUST human shape dataset [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF], using merely the vertex/face center locations as input features on primal/dual meshes. We find that generic graph convolution methods improve in the dual domain compared to the primal. Moreover, our DualConv model, which additionally leverages the regularity of the dual mesh explicitly, performs even better. [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF] built the FAUST shape correspondence dataset by using texture information to align different meshes to a common template mesh, resulting in all the shapes having the same mesh topological vertices and connectivity. We observe that this allows the previous work [START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF] to exploit local topological connectivity patterns of the mesh rather than the shape. However, this is not exploitable in real-world settings where each shape will have a differently structured mesh. We argue that our approach, based on regular three-neighbor dual meshes, reduces the possibility to rely on local connectivity patterns to address the shape correspondence problem. We design more challenging evaluation setups for our approach to validate this hypothesis while comparing to previous work and evaluating various additional input dual features.

First, we consider evaluating models trained on FAUST using decimated versions of it at various scales. This is a scenario where the structure of the test data gradually deviates from that of the training. Second, we train and test the models on a re-meshed version of FAUST [START_REF] Ren | Continuous and orientation-preserving correspondences via functional maps[END_REF], in a setup where the mesh structure varies both in training and testing. While being on par with the state-of-the-art on the second setup, our approach manages to preserve its initial performance through the increasing structural changes in the first setup considerably better than the existing approaches, specifically with face-based features, indicating that it succeeds in learning geometric and connectivity-independent representations. We also observe that the location and normal features are critical to obtaining accurate results. Moreover, we present qualitative results of correspondence learning transfer between the various aforementioned datasets when ground-truth is unavailable, including the original raw FAUST scans. These visualizations confirm the numerical results.

In conclusion, our main contributions in this work can be summed up as follows:

• We propose to build a mesh-based regular convolution network on the face-based dual mesh.

• We propose a comparative evaluation of various input dual features and their combinations on the task of human shape correspondence.

• We demonstrate that the performance is better preserved by our dual approach compared to primal approaches under varying testing mesh topology.

In the next section, we review the most relevant related work. We then present our dual mesh approach in Section 4.3, followed by the presentation of experimental results in Section 4.4. Finally, we present our conclusions in Section 4.5.

Related Work

This section reviews the related work for deep learning on 3D meshes in the context of our contributions. Meshes are an efficient representation for 3D shapes that approximate object surfaces with polygonal, often triangular, faces defined over a connected set of points.

Meshes can be considered as graphs embedded in R 3 , with nodes as the vertices and graph edges given by the edges of the faces. [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF] parameterize the patch-extraction by learning a mixture of Gaussian kernels associated with local polar pseudo-coordinates. [START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF] formulate convolutional filters based on B-spline basis functions, parameterized by learnt control values. [START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF] proposed FeastNet, which learns the mapping between convolutional filters and neighboring vertices dynamically using features generated by the network. [START_REF] Veličković | Graph attention networks[END_REF] use a multihead attention mechanism to learn the association between two adjacent nodes. Contrary to these methods, we take advantage of various geometric properties and structures unique to meshes.

Recent mesh-based approaches leverage specific information such as the arrangement of mesh elements in 3D space. In particular, SpiralNet [START_REF] Lim | A simple approach to intrinsic correspondence learning on unstructured 3d meshes[END_REF][START_REF] Gong | Spiralnet++: A fast and highly efficient mesh convolution operator[END_REF] propose a spiral vertex-based convolution where the neighboring vertices are enumerated in spiral patterns. MeshCNN [START_REF] Hanocka | MeshCNN: a network with an edge[END_REF] propose an edge-based convolution operation leveraging the unique property of every edge having exactly four incident edges. Other approaches [START_REF] Maron | Convolutional neural networks on surfaces via seamless toric covers[END_REF][START_REF] Poulenard | Multi-directional geodesic neural networks via equivariant convolution[END_REF] propose surface-based mesh convolution operations. On the other hand, we propose a face-based convolution operator taking advantage of its fixed number of three neighbors.

One of the works most closely related to ours is that of [START_REF] Milano | Primaldual mesh convolutional neural networks[END_REF], which uses an attention-based approach on primal and dual graphs created from a triangular mesh. Their primal graph connects faces that share an edge, where the dual graph connects edges that are part of the same face. They use a pooling operation based on edge contraction on the mesh. We consider the vertices and edges of an input triangular mesh to form the primal graph, and construct a dual mesh built on the faces. Rather than using a generic graph-based convolution on the dual mesh, we exploit the threeneighbor regularity to propose a dual mesh-based convolution. Additionally, we present an extensive evaluation of different features defined on faces and examine the ability to learn connectivity-independent representations using different approaches. with vertices {v 0 , v 1 , v 2 , v 3 , v 4 , v 5 } and the corresponding dual mesh D (in red) with vertices {x 0 , x 1 , x 2 , x 3 }. Note that the central vertex for D has exactly three neighbors.

Method

We aim to benefit from the local geometric information encoded in a triangular mesh using deep learning models by applying convolution operations directly to this structure. The convolution operation hinges on the inductive bias stating that meaningful information can be extracted from a consistent local spatial neighborhood of the input. Typical convolutional networks are defined on regular grid-based images, where each pixel has an ordered set of neighbors of equal size. This allows the definition of a set of fixed-sized trainable filters that can be applied across the complete image. However, due to the irregular local structure of a mesh, it is difficult to define such filters in this case. We address this difficulty by designing convolution on the dual of triangular meshes, where each face has precisely three neighbors.

A primal mesh M is defined by N V vertices and N F faces. The dual D of M is defined as a graph where each vertex is centered on a face of M.

These vertices in the dual D are connected by an edge if their corresponding two faces in the primal mesh M share an edge. For a watertight mesh M, where primal vertices can have different numbers of neighbors as shown in Figure 4.2, each vertex in the dual D has exactly three neighbors by construction. In cases where the mesh M is not watertight, we can use zeropadding to ensure that every vertex in D has three neighbors. We note that in general, this approach can be extended to any N -edged polygonal mesh, where the face-based dual mesh will form a regular N -neighbor structure.

Our networks consist of two main building blocks. We introduce convolutional layers tailored explicitly for the fixed 3-neighborhood to process features on the dual mesh and an operation to transfer features from the dual mesh back to the primal one, as required when the targeted output information is defined over the primal mesh vertices. This is the case for our task of interest: dense shape correspondence. As the network is defined over faces, we consider various input features characteristic of the latter.

Dual Convolution

Given a face in M, represented by x 0 in Figure 4.2, we wish to define the convolution as the dot product of the weights with the features of the neighbors, similar to a convolutional layer over regular pixel grids. Although the neighbors of a face can be assigned a unique clock-wise or counter clock-wise orientation defined w.r.t. the central face normal, their order is not unique (i.e. which neighbor comes first). The possible neighborhood configurations include {x 1 ; x 2 ; x 3 }, {x 2 ; x 3 ; x 1 }, {x 3 ; x 1 ; x 2 } based on clockwise orientation or {x 1 ; x 3 ; x 2 }, {x 3 ; x 2 ; x 1 }, {x 2 ; x 1 ; x 3 } based on counter clock-wise orientation. In order to resolve the ordering ambiguity for the neighboring faces, we consider two different strategies inspired by previous work.

DualConvMax

This first strategy uses the surface normal to define neighbors' orientation and mitigates their order ambiguity by max-pooling over application of the filter, treating each one of the neighbors as the first, analogously to angular max-pooling [START_REF] Masci | Geodesic convolutional neural networks on Riemannian manifolds[END_REF]. Let C I and C O denote the number of feature channels in the input and output of the convolution respectively. The central node's feature x 0 is always multiplied with the same weights

U ∈ IR C O ×C I . Weights W ∈ IR C O ×3C
I are applied to the local neighbors using their three possible orderings, followed by a coordinate-wise max-pooling across the orderings:

y 0 = Ux 0 + max{Wx 1,2,3 , Wx 2,3,1 , Wx 3,1,2 }, (4.1) 
where y 0 ∈ IR C O is the output feature, x 1,2,3 ∈ IR 3C I denotes the concatenation of the neighbors x 1 , x 2 and x 3 in this order, and the max is taken elementwise.

DualConvInv

The second strategy follows the same principle as [START_REF] Hanocka | MeshCNN: a network with an edge[END_REF], which defines an order-invariant convolution on a set of four edges using simple symmetric functions (e.g., sum of pairs). In contrast, we define the convolution operation on a set of three neighboring faces. Moreover, we use a symmetric function on the input features to create order and orientation invariant features f ∈ IR 3C I for the neighborhood {x 1 , x 2 , x 3 } of x 0 :

f = x 1 + x 2 + x 3 , [x 1 -x 2 ] + + [x 2 -x 3 ] + + [x 3 -x 1 ] + , [x 2 -x 1 ] + + [x 3 -x 2 ] + + [x 1 -x 3 ] + , (4.2) 
where [a] + = max(0, a). These features are used together with the central node to compute the convolution output:

y 0 = Ux 0 + Wf (4.3)

Dual to Primal Feature Transfer

In many applications, the prediction targets and/or the ground-truth for training are defined on the vertices of the primal mesh only. To handle such cases, we define a Dual2Primal layer to transfer the features from the dual back to the original mesh. The features transferred to the primal mesh can then be used to measure the loss for training or make predictions for evaluation.

Given a mesh M, we construct a vertex-face adjacency matrix A ∈ IR N V ×N F , and derive the vertex-degree matrix D = diag(A1 N F ), where 1 N F is a vector of ones of size N F . The diagonal of D contains for each vertex in the primal mesh the number of faces to which it belongs. The output features F Dual obtained using the dual neural network are converted into features F P rimal on the primal mesh. We achieve this by averaging for each vertex of the primal mesh the features obtained from the dual network of all faces incident to that vertex:

F P rimal = D -1 AF Dual . (4.4) 
We then apply the loss defined on the primal mesh and back-propagate the gradients through the dual network.

Input Dual Features

Using faces rather than vertices as inputs for our deep network allows the use of features naturally defined over faces but not over vertices, such as face normals, face areas, or angles between faces. In our experiments, we explore the effectiveness of a variety of different input features defined for faces, including:

• XYZ: the coordinates of the center of mass of the face.

• Normal: the unit vector in the direction of the face normal.

• Dihedral: the angles (in radians) between the face and its neighbors.

• Area: the surface area of the face. 

Experimental Evaluation

In this section, we first describe our experimental setup in Section 4.4.1. We then present our experimental results when training our models on the FAUST and re-meshed FAUST datasets in Sections 4.4.2 and 4.4.3 respectively.

Experimental Setup

We closely follow the experimental setup of previous work [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF][START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF] on the FAUST dataset. In addition, for a more realistic evaluation accounting for mesh topological change, we extend experiments to other versions of FAUST, namely decimated versions of it, a re-meshed version of it, and its original scans (see Figure 4.5). Below, we describe these datasets, the network architectures with implementation details, and the evaluation metrics in detail.

Datasets

We perform evaluations on the FAUST human shape dataset [START_REF] Bogo | FAUST: Dataset and evaluation for 3D mesh registration[END_REF]. The version of the dataset used in prior work [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF][START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF] contains 100 watertight triangular meshes, in which there are 10 shapes of as many different people, with each shape striking 10 different poses. We use the first 80 meshes for training and the last 20 meshes for testing. The meshes in the dataset are obtained by [START_REF] Garland | Surface simplification using quadric error metrics[END_REF] fitting a fixed template mesh with 6,890 vertices and 13,776 faces each to raw scan data. We refer to this dataset as "Faust-Synthetic" in the evaluations.

All meshes have the same underlying connectivity, and the ground-truth is defined by a one-to-one correspondence of the vertices.

We consider three other versions of the dataset to allow for more challenging evaluations with varying mesh topologies. First, we use quadric edge collapse decimation [START_REF] Garland | Surface simplification using quadric error metrics[END_REF] to reduce the resolution of the meshes in Faust-Synthetic by up to 50%. Edges are selected to be collapsed in order of increasing lengths. The vertices corresponding to these edges are then merged to simply the mesh, see Figure 4.4. We refer to this version of the dataset as "Faust-Decimated". While mesh decimation is a fairly straightforward way to assess robustness to changes in the mesh structure, we note that it changes some parts of the mesh more drastically than others. We visualize this in Figure 4.5, where we observe substantial changes over the face, but the legs are barely affected. Moreover, we observe that decimation leads to substantial loss of detail in denser areas like the face, where key features are missing.

Second, we consider the re-meshed version of the dataset introduced by Ren et al. ( 2018) as a more realistic and challenging testbed. It was obtained by re-meshing every shape in the Faust-Synthetic dataset independently using the LRVD method [START_REF] Yan | Low-resolution remeshing using the localized restricted voronoi diagram[END_REF]. This re-meshing method proposes a specific Voronoi diagram (LRVD) to generate Voronoi cells on the shape surface, which are then used for re-meshing. Each mesh in the resulting dataset consists of around 5,000 vertices and has a unique mesh topology.

While offering an interesting testbed, the re-meshed data does not come with dense one-to-one vertex ground-truth correspondence. However, a
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Experimental Evaluation

partial ground-truth is calculated using a simple nearest-neighbor search and hence is available for roughly 3,500 vertices. We refer to this dataset as "Faust-Remeshed" below.

Finally, we also consider the raw scan data that underlies the dataset. It contains 200 high-resolution meshes, with the same 10 people striking 20 different poses. The average number of vertices in each scan is around 172,000, which we reduce to a resolution of the reference template ( 6,890 vertices) using quadric edge collapse decimation [START_REF] Garland | Surface simplification using quadric error metrics[END_REF]. We note that this dataset is very challenging as it does not contain any watertight meshes, and all meshes have different topologies. There is no ground-truth available, so we only perform a qualitative evaluation on this version of the dataset. We refer to this dataset as "Faust-Scan" in our experiments. Figure 4.5 illustrates the different versions of the data for one example mesh. to indicate graph-convolutional layers (defined in Section 4.3.1), producing each K output feature channels. "(N , K)" denotes feature maps of size N and dimension K. We apply the Exponential Linear Unit (ELU) non-linearity [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (ELUs)[END_REF] after every DualConv layer and every linear layer, except for the last one. We also indicate the dropout rate for the Dropout layer [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF].

Network Architectures and Training

Similar to previous work [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF][START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF], we formulate the shape correspondence task as a vertex labeling problem, where the labels are the set of vertices in a given reference shape. We implemented our method using the PyTorch Geometric framework [START_REF] Fey | Fast graph representation learning with PyTorch Geometric[END_REF]. We train models using the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] to minimize the cross-entropy classification loss. 

Evaluation Metrics

Following previous work [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF][START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF][START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF], we report the accuracy, i.e. the fraction of vertices for which the exact correspondence has been correctly predicted. Assuming correspondences are correct for predictions with geodesic distances to the ground-truth below a given threshold, we also plot the percentage of correct predictions as a function of this geodesic threshold, that we express both in cm and normalized by a diameter of 200cm. In addition, we report the mean geodesic error, i.e. the average of the geodesic distance between the ground-truth and the prediction, normalized by the geodesic diameter and multiplied by 100. We believe the mean geodesic error metric is more informative than the accuracy as a single-number comparison for the correspondence task. Rather than just counting the correspondence mistakes, it takes into account how large the correspondence errors are.

Results: Faust-Synthetic

Using the Faust-Synthetic dataset, we first validate the use of the dual mesh for shape correspondence with just XYZ positions as input features. We continue with more challenging experiments to test meshes with different topologies. Next, we explore the effectiveness of different features available on the dual mesh, and then we compare our results with previous work. We also present a qualitative evaluation of the transfer of models trained on Faust-Synthetic to the completely restructured meshes in Faust-Scan and Faust-Remeshed.

Validation of Networks trained on the Dual Mesh

The shape correspondence task on the FAUST dataset is defined on the mesh vertices. In our first experiment, we validate the use of the dual mesh to establish shape correspondence and the effectiveness of networks built on our DualConv (Section 4.3.1) and Dual2Primal (Section 4.3.2) operators.

For this purpose, we use the XYZ position of the face centers as input and compare results to those obtained with FeastNet [START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF] on the primal mesh. Since FeastNet is a generic graph convolution method, it can be readily applied to the dual mesh. We refer to the results obtained using this approach as FeaStNet-Dual. This allows us to separate the effects of using the primal vs. dual mesh form and our DualConv layers.

We present the results in Note that all dual-based approaches are better than FeaStNet in terms of accuracy and obtain much lower mean geodesic errors. The accuracy as a function of geodesic distance to the target is presented in Figure 4.7, confirming the improved correspondence prediction using the dual mesh.

Based on these encouraging results, we now turn to evaluations in more challenging conditions. The Faust-Synthetic dataset is unrealistic in that all meshes share one identical mesh structure connectivity. Therefore, it is possible that deep networks trained on them learn to exploit this property to solve the correspondence problem on this dataset without being able to generalize to shapes with other mesh topologies. To assess to what extent this happens, in the experiments below, we train the networks on Faust-Synthetic and test the resilience to connectivity changes on Faust-Decimated.

Feature Evaluation

We compare the effectiveness of the different input features on the dual mesh, described in Section 4.3.3, for networks built on both our DualConvMax and DualConvInv operators. In preliminary experiments, we observed that using XYZ in input features is essential for obtaining good performance on the Faust-Synthetic dataset. Therefore, we only report results on feature combinations which include XYZ.

In Figure 4.8, we plot the accuracy and mean geodesic errors on test meshes ranging from no reduction to 50% reduction of the original resolution. We first discuss the results on test meshes without decimation (the leftmost point on the curves). We observe that all feature combinations achieve similar mean geodesic errors, but that in terms of accuracy, just XYZ gives the best results. We observe that DualConvInv performs worse than DualConvMax for all input feature combinations in terms of accuracy.

We now compare how these features perform as we decimate the meshes up to 50% of their original resolutions. Overall, the results obtained with DualConvMax are better than those obtained with DualConvInv. For DualCon-vMax, the combination of XYZ+Normal and XYZ+Normal+Dihedral+DistCM are best in terms of mean geodesic error. While just XYZ is best in terms of accuracy, for the 50% decimation setting, it is suboptimal in terms of mean geodesic error. Adding the area feature to XYZ+Normal degrades the performance considerably because decimation leads to significant changes in local face areas. Based on these observations, we only consider the best performing XYZ+Normal and XYZ features using DualConvMax when comparing to primal methods below.

Comparison to Previous Work

We compare our approach with the previous state-of-the-art methods in Figure 4.9. We observe that the dual mesh-based networks are more robust to connectivity changes than MoNet, SplineCNN, and FeastNet, based on the primal mesh. Using XYZ as input features, our DualConvMax improves the accuracy by 2.8% as compared to FeastNet applied to the dual (FeastNet-Dual) in the case without connectivity changes, and leads to substantially better accuracy of 63.9% compared to the 44.2% when meshes are decimated by 50%. We note that the methods on the primal mesh all achieve poor mean geodesic errors on the decimated meshes. Considering the results obtained with FeaStNet-Dual, we note that the improved performance of DualConvMax w.r.t. previous methods (MoNet, SplineCNN, and FeastNet) is both due to the use of the dual mesh structure and to the DualConvMax operators that we designed for the dual mesh.

We qualitatively compare the results of MoNet, SplineCNN, and FeaStNet on the primal, FeastNet-Dual, and our DualConvMax using texture transfer and geodesic errors in Figure 4.10 for an example non-decimated test mesh and its 50% decimated version. We observed marked improvements in the results on the reduced mesh by using the dual rather than primal mesh, and further substantial improvements by using our DualConvMax approach rather than FeaStNet-Dual using both XYZ and XYZ+Normal features. This confirms what we observed in terms of the accuracy and mean geodesic error metrics before.

Qualitative Results on Faust-Remeshed and Faust-Scan

Above we observed that the approaches based on the dual mesh are more robust to topological changes induced by mesh decimation. We now turn to a qualitative evaluation on the Faust-Remeshed and Faust-Scan datasets. In these datasets, the topological changes appear across the complete shape.

In contrast, the mesh decimation in Faust-Decimated only has a local effect and can leave part of the meshes intact. We again train our models on the Faust-Synthetic dataset. Since there is no ground-truth correspondence across these different versions of the dataset, we only present qualitative results using texture transfer from the Faust-Synthetic reference mesh to the test meshes.

We compare MoNet, SplineCNN, and FeastNet on primal meshes to FeaStNet-Dual and our DualConvMax approach on dual meshes in Figure 4.11 (Faust-Remeshed) and Figure 4.12 (Faust-Scan). These texture transfer results show that the correspondence problem for these shapes is substantially more challenging than that for the decimated meshes. We observe similar trends in results on both Faust-Remeshed and Faust-Scan datasets. The methods based on the primal mesh fail to recover most correspondences. FeaStNet-Dual recovers more correspondences but is overall still very noisy. With our DualConvMax approach, we obtain significantly cleaner transfer results, in particular when adding the Normal features. These results show that our DualConvMax approach learns shape representations that do not rely on the fixed mesh topology of the training meshes, making it more robust to changes in the mesh.

Results: Faust-Remeshed

In the experiments so far, none of the methods were exposed to structural changes in the meshes during training on Faust-Synthetic. We observed that the primal-based methods failed to generalize to the substantially differently structured meshes in the Faust-Remeshed and Faust-Scan datasets. At the same time, our DualConvMax approach is still able to obtain reasonable results using the XYZ+Normal features (c.f . Figure 4.11). In this section, we consider to what extent the different methods can be trained to be robust to such topological changes by training the models on the Faust-Remeshed dataset, where each shape has a unique mesh structure. We study the different dual features and their combinations using our DualConv method in this setting, compare with previous methods, and present qualitative evaluation on Faust-Scan meshes.

Feature Evaluation

First, we evaluate the impact of using different input features and their combinations described in Section 4.3.3 in the current setting. We study the performance of each feature individually in the upper part of Table 4.4. In the lower part, we compare different feature combinations by combining the features which perform best individually.

Overall, comparing the two dual architectures we developed, we observe similar trends in performance across the features. DualConvMax generally leads to higher accuracy, except for settings where we include the XYZ features. The face normal and XYZ location of the face center provide similar accuracy, well above results obtained using other features. While face normals offer translation and scale invariance, the geodesic error is higher as compared to XYZ. The combination of XYZ and face normals improves their individual performances and obtains the smallest geodesic error, but does not offer any invariance.

Among the features which provide translation invariance, we combine Normal and DistCM, which encodes the plane in which the face lies. This translation-invariant feature combination yields similar accuracy as the XYZ+Normal combination but yields higher geodesic errors. To further add translation-invariant face information, we add the area feature. This further boosts the accuracy for both DualConvMax and DualConvInv and achieves the best performance in terms of accuracy. Similarly, we test the combinations Normal+Dihedral and Dihedral+Area+DistCM. Both these combinations offer an advantage of translation-invariance plus scale-invariance in the former and rotation in the latter. However, it leads to reduced accuracy and higher geodesic error using both DualConvMax and DualConvInv.

Comparison to Previous Work

In Table 4.5, we compare our DualConvMax and DualConvInv models with previous state-of-the-art models. MoNet uses SHOT local shape descriptor features as input, while other models use elementary XYZ features or combine these with the face normals. Using the XYZ location features, FeaStNet on dual performs worse compared to using these features on the primal mesh in terms of accuracy; however, the geodesic error is similar. Including the face normal features for the dual approaches leads to substantial improvements in accuracy for all three methods tested in the dual domain and reduces the mean geodesic errors. Our DualConv models give comparable accuracy and lower geodesic errors compared to state-of-the-art models in the primal domain.

We present a comparison of accuracy as a function of geodesic distance to the target for these methods in Figure 4.13. For clarity of presentation, we only display results for the XYZ+Normal feature combination for the dual methods. The results confirm what was observed in Table 4.5.

We provide qualitative evaluations by visualizing the texture transfer from the Faust-Remeshed reference shape to Faust-Remeshed test shapes and correspondence errors for these methods in Figure 4.14. Due to the partial ground-truth on re-meshed meshes, we represent the vertices for which the ground-truth is missing as blue in error meshes. Once exposed to structural mesh changes during training, we observe that primal-based methods perform much better than when they were trained on Faust-Synthetic (c.f . Figure 4.12). In particular, FeaStNet can obtain results that are roughly comparable to the results obtained using the dual-based methods. 

Qualitative Evaluation on Faust-Scan

Finally, we evaluate all methods trained on the Faust-Remeshed data and visualize texture transfer to the Faust-Scan meshes in Figure 4.15. We observe that training on re-meshed versions of the shapes helps make primal methods MoNet and FeaStNet more robust to topological changes. However, we observe that SplineCNN (also primal) is not able to generalize to topologically different meshes even after training on the re-meshed version of the data in Faust-Remeshed. Also, in this setting, the dual-based methods generalize best to differently structured meshes.

Failure modes of these models tend to appear on test poses in Faust-Scan that are very different from the training poses in Faust-Remeshed. We show two such instances in Figure 4.16. In particular, the bent pose is problematic for the correspondences for the upper body. 

Conclusion

This chapter explored the applicability of the dual mesh to learn shape representations for 3D mesh data as an alternative to the more commonly used primal mesh. Performing convolution operations in the dual domain presents the advantage of the neighborhood size being fixed. Additionally, it allows access to input features defined naturally on faces such as normals and face areas. We focused our experimental study on the real human shape dense correspondence task using the FAUST human shape dataset. We introduced two convolutional operators for the dual mesh and benchmarked them using multiple input features based on the dual mesh.

In our experiments, we compare our dual mesh approaches to existing methods based on the primal mesh and also apply the generic graph convolutional approach FeaStNet on the dual mesh. Through experiments where we train on one version of the dataset and test on another version of the dataset with different mesh topology, we assess the robustness of different models to such topological changes. We find that primal methods trained on the Faust-Synthetic dataset, with constant mesh topology across shapes, are very brittle and generalize poorly to meshes with different topologies. This can be remedied to some extent by training on meshes with varying topology, as we did by using the Faust-Remeshed dataset. Our results show the robustness of our convolutional operators applied on the dual mesh by achieving the best performances when testing on structurally different meshes, whether they are trained on fixed or variable mesh structures. In this chapter, we will first draw conclusions from our contributions in Section 5.1, and we further discuss the possible future directions based on our work in Section 5.2.

Conclusion and

Conclusion

Deep learning methods such as convolutional neural networks (CNNs) have had phenomenal success in helping machines gain a high-level understanding of many domains like images, natural language processing, etc. In this thesis, we addressed the goal of extending this success to the domain of 3D shapes.

We focus on 3D meshes as the underlying representation for the 3D shapes.

We presented two different methods to extend CNNs for 3D mesh and evaluated their performance on the shape correspondence task.

In Chapter 3, we proposed FeaStNet, a graph-based formulation of the standard CNN. The primary notion was to learn the convolutional filters dynamically based on the features. We showed a significant increase in performances for the shape correspondence task by incorporating translationequivariance in the network and using spatial coordinates as input features.

We presented a mesh-based convolutional network called DualConv in Chapter 4. The central idea was to define the convolution operator on the facebased dual mesh, allowing for face normals as additional input features. We observed robust performances of our approach under various challenging settings. Our main observation was that construction on dual meshes helps overcome the poor generalization of original mesh-based methods to varying topologies.

Future Directions

Based on our insights presented in this thesis, we expand on some promising future directions of our work in this section.

Pooling

Standard CNN architectures are built using alternating convolutional and pooling layers. We focus on extending the convolutional layers for 3D meshes in our work. We use a graph clustering method based on normalized cuts for the pooling layers. However, this is not the most natural extension of the pooling mechanism on meshes. Some recent works [START_REF] Hanocka | MeshCNN: a network with an edge[END_REF][START_REF] Milano | Primaldual mesh convolutional neural networks[END_REF][START_REF] Yuan | Mesh variational autoencoders with edge contraction pooling[END_REF] propose mesh-based pooling approaches that are based on edge collapse operations [START_REF] Garland | Surface simplification using quadric error metrics[END_REF].

A potential future direction could be to extend vertex-clustering algorithms [START_REF] Shaffer | Efficient adaptive simplification of massive meshes[END_REF][START_REF] Decoro | Real-time mesh simplification using the gpu[END_REF] to learned pooling operations.

Unsupervised Learning

We use the supervised learning approach where we rely on training using ground-truth shape correspondences in our work. However, this groundtruth data is difficult to compute and scarce. For instance, we have access to only 80 shapes with available ground-truth. These are all based on the same underlying template mesh, which is perfect and limited. We observe in Chapter 4 that this leads to poor generalization on real-world meshes with imperfections such as missing parts and holes.

These limitations can be addressed using unsupervised learning for the shape correspondence task. Recent approaches [START_REF] Halimi | Unsupervised learning of dense shape correspondence[END_REF][START_REF] Roufosse | Unsupervised deep learning for structured shape matching[END_REF][START_REF] Aygün | Unsupervised dense shape correspondence using heat kernels[END_REF] use geometric properties such as geodesic distance or heat kernels to learn shape correspondence without supervision.

Shape Tracking

One of the main applications of estimating shape correspondences is tracking shapes in dynamic scenes. Our work can be used to establish correspondences between shapes in independent static frames. However, this does not take into consideration the temporal coherence of the scene. An interesting future direction could be to incorporate this temporal consistency using physical attributes such as color as cues for self-supervised tracking [START_REF] Vondrick | Tracking emerges by colorizing videos[END_REF] or memory-based networks [START_REF] Lai | Mast: A memory-augmented self-supervised tracker[END_REF].
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  Fig. 1.1: Real-world applications of 3D Computer Vision. (a) Left: CT scan of bones; Right: Segmented 3D model (Shen et al., 2020) (b) Object detection for robotic grasping (Kahn et al., 2015) (c) Car and pedestrian localization for self driving cars (https://3dprint.com/116569/) (d) Marker-based motion capture for film-making (https://www.youtube.com/watch?v=nxypt9SwLfk)

Fig. 1 . 3 :

 13 Fig. 1.3: Left: Grid structure in regular domains such as images. Right: Variable structure in irregular domains such as graphs.

Fig. 1 . 4 :

 14 Fig. 1.4: Example of two shapes with lines connecting a set of corresponding points. Source: Boscaini (2017)

Fig. 2 . 1 :

 21 Fig. 2.1: Different 3D data representations for the Stanford Bunny (Turk and Levoy, 1994): Descriptors (Bronstein and Kokkinos, 2010), Depth Map, Multi-View, Volumetric (Voxels), Point Cloud and Mesh (left to right).

Fig. 2 . 2 :

 22 Fig. 2.2: Left: Perceptron with 3 inputs and 1 output. Right: Feedforward neural network (or multi-layer perceptron) with four input neurons, two hidden layers of 5 neurons each and one output layer.

Fig. 2 . 3 :

 23 Fig. 2.3: Back-propagation based on chain rule in neural networks. Source: https://montrealartificialintelligence.com/ai4all.pdf

Fig. 2 . 4 :

 24 Fig. 2.4: Convolutional Layer: Input (red) with D feature channels (H × W × D) is convolved with filter weights (h × w × D) in green to give the feature map (blue). Neurons in the convolutional layer are connected only to the receptive field (green).

Fig. 2 . 6 :

 26 Fig. 2.6: Example of a CNN architecture:LeNet-5 (LeCun et al., 1998[START_REF] Girshick | Fast R-CNN[END_REF] 

Fig. 2 . 8 :

 28 Fig. 2.8: An example to illustrate the problems with generalization of spectral methods across irregular graph structures. Left: Application of a spectral filter f in a domain. Right: The same filter f when applied on a nearly-isometric domain gives very different results. Source: Bronstein et al. (2017).

Fig. 2 . 9 :

 29 Fig. 2.9: An example of a Message Passing Neural Network, MPNN[START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. The message step creates messages for propagation based on the local neighborhood of the node and the update step aggregates these messages to get updated feature. The formulation is detailed in Eq. (2.2).
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 2 Fig. 2.10: Weighting functions used to create patch operators for Left: Geodesic CNN (Masci et al., 2015) with local polar coordinates and Right: Anistropic CNN (Boscaini et al., 2016) with elongated heat kernels. Source: Bronstein et al. (2017).
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 2 Fig. 2.11: Approaches leveraging 3D point arrangements in meshes. Left: The enumerated sequence around a node in SpiralNet (Lim et al., 2018). Right: Edge-based convolution operator in MeshCNN (Hanocka et al., 2019).

Fig. 2 .

 2 Fig. 2.12: Sparse vs Dense Shape Correspondences. Source: Sahillioglu (2020)

Fig. 3 . 2 :

 32 Fig. 3.2: Top: An illustration of the architecture of a spatial transformer module (affine transformation here). The input features are passed to a localization subnetwork, which is then used to obtain the transformed output. (Source: Jaderberg et al. (2015)) Bottom: Architecture of dynamic filtering networks. The filter-generating network generates filters that are applied over input feature maps. (Source: Brabandere et al. (2016))

Fig. 3 . 3 :

 33 Fig. 3.3: Top: Schematic illustration of a standard CNN where patches of w × h pixels are convolved with D × E filter weights F d,e , each of size w × h to map the D dimensional input features to E dimensional output features. Bottom: same, but representing the CNN parameters as a set of M = w × h weight matrices, each of size D × E. Each weight matrix is associated with a single relative position in the input patch.

Fig. 3 . 4 :

 34 Fig. 3.4:Our graph convolutional network, where each relative position in the input patch is associated in a soft manner to each of the M weight matrices using the function q(x i , x j ).

x

  i with the weight matrices W m and weight vectors u m , and v m . This takes O(N M DE) operations, where N is the number of nodes in the graph. Let K denote the average number of neighbors of each vertex, we can then compute the weights in Eq. (3.3) and the activations in Eq. (3.2) in O(N M KE) operations. The total computational cost is thus O(N M E(K + D)).

Fig. 3 . 5 :

 35 Fig. 3.5: Correspondence problem formulated as a vertex labelling problem. Each vertex on the query shape is labelled with the corresponding point on the reference shape. Source: Bronstein et al. (2017).

Fig. 3 . 6 :

 36 Fig. 3.6: Illustration of spherical support structure for SHOT descriptor. 4 azimuth partitions are shown for clarity. Source: Tombari et al. (2010).

Fig. 3 . 7 :

 37 Fig. 3.7: Our multi-scale graph convolution architecture.

  Fig. 3.8: Geodesic errors on two test shapes estimated using single-scale architecture (translation-equivariant) with XYZ and SHOT feature inputs.

  Fig.3.9: Accuracy as a function of the number of weight matrices for the FAUST dataset, using the single scale architecture.

Fig. 3 . 10 :

 310 Fig. 3.10: Fraction of geodesic shape correspondence errors within a certain distance. Dashed curves show results without refinement.

  Fig. 3.11: Visualization of correspondence errors in terms of the geodesic distance to the ground-truth correspondence on three test shapes, using (from left to right) the single-scale architecture (w/o refinement) and multi-scale architecture without and with refinement.

Fig. 3 .Fig. 3 . 13 :

 3313 Fig. 3.12: Top: Accuracy as a function of the standard deviation of Gaussian noise added to FAUST test shapes. Bottom: Texture transfer on test shapes with various levels of additive Gaussian noise using our multi-scale FeaStNet architecture (trained with noisy data).

Fig. 3 .

 3 Fig. 3.15: Our convolution architecture for the part labeling task.

Fig. 4 . 1 :

 41 Fig. 4.1: Illustration of a watertight triangular mesh (left) and its dual mesh defined on faces (right). Note that every vertex in the dual has exactly three neighbors, while the number of neighbors is not constant in the primal mesh (see top area of the left zoom).

Fig. 4 . 2 :

 42 Fig. 4.2: Illustration of the triangular face structure in primal mesh M (in black)with vertices {v 0 , v 1 , v 2 , v 3 , v 4 , v 5 } and the corresponding dual mesh D (in red) with vertices {x 0 , x 1 , x 2 , x 3 }. Note that the central vertex for D has exactly three neighbors.

Fig. 4 . 4 :

 44 Fig. 4.4: An example of an edge collapse operation. Source:[START_REF] Garland | Surface simplification using quadric error metrics[END_REF] 

Fig. 4 . 5 :

 45 Fig. 4.5: Visualizations of a FAUST test mesh from the template-fitted dataset, decimated at 50% resolution, re-meshed version, and original scan.

Figure 4 .

 4 Figure 4.6 describes the dual mesh-based architecture that we use in our experiments, where N V and N F are the number of vertices and faces in the original primal mesh respectively, N T the number of target labels and N I the number of input features. We use "Linear(K)" to indicate layers with 1 × 1 convolution applied to each vertex independently, and "DualConv(K)"

Fig. 4 . 8 :

 48 Fig. 4.8: Shape mean normalized geodesic error and correspondence accuracy for Faust-Decimated test meshes. Solid lines represent DualConvMax, and dashed lines represent DualConvInv. All networks are trained on the full resolution Faust-Synthetic meshes using different input features given in the legend at the top.

Fig. 4 . 9 :

 49 Fig. 4.9: Shape mean geodesic error and correspondence accuracy forFaust-Decimated test meshes with XYZ. All methods are trained on the original full resolution meshes.
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 444 Fig. 4.10: Visualizations of texture transfer and geodesic correspondence errors for a full resolution Faust-Synthetic test mesh (top two rows), and the same mesh decimated by 50% (bottom two rows) of the Faust-Decimated dataset. Models are trained on the full resolution Faust-Synthetic meshes.

Fig. 4 . 13 :

 413 Fig.4.13: Percentage of correct shape correspondences within a certain geodesic distance to the ground truth, using state-of-the-art methods on primal/dual meshes and using our best-performing methods/input features for the Faust-Remeshed dataset.

Fig. 4 .

 4 Fig. 4.14: Visualizations of texture transfer for Faust-Remeshed test results trained on Faust-Remeshed dataset using the state-of-the-art methods and our method. The vertices for which the ground-truth is missing are colored blue in the error meshes.

Fig. 4 .

 4 Fig. 4.15: Visualizations of texture transfer for Faust-Scan results for models trained on the Faust-Remeshed dataset using primal and dual meshes.

Fig. 4 .

 4 Fig. 4.16: Visualizations of results from Faust-Scan trained on the Faust-Remeshed dataset using XYZ+Normal as input features.
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  define Deep Learning, with emphasis on the importance of hierarchy and number of layers (depth), as: "The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning." In this section, we present a brief background on two main classes of deep neural networks, i.e. Feedforward Neural Networks in Section 2.2.1 and Convolutional Neural Networks in Section 2.2.2.

Fig. 2.5: MaxPooling

  with filter size 2 and stride 2 applied to input (H × W × D) gives output (H/2 × W/2 × D). Here, we take maximum over a 2 × 2 window.

	Convolutional Neural Networks (CNNs) are a kind of deep learning models
	designed explicitly for data with a regular grid-like structure like images.
	CNNs are constructed with a set of these main layers: Convolutional Layer,
	Pooling Layer, and Fully-Connected Layers (same as an MLP described in
	Section 2.2.1). Unlike regular neural networks, CNNs take images directly as
	inputs x ∈ IR H×W ×D , where H and W are the height and width of the image,
	respectively, and D is the number of input features.
	The Convolutional Layer (Conv) consists of a set of E learnable filter
	weights W ∈ IR h×w×D , each of which is convolved across the input height
	and width to get a 2-dimensional feature map. These feature maps are
	then stacked to form the output features y ∈ IR h×w×E . In each layer, the
	filter weights are shared across the image, a fundamental property of CNNs
	referred to as Parameter Sharing. Not all the neurons in two adjacent
	convolutional layers are connected; instead, each neuron is connected to a
	specific input region (receptive field: h × w). A non-linearity typically follows
	the Convolutional Layer. See Figure 2.4 for an illustration. A special case

  , Skip Connections(He et al., 2016a) to mention a few. The Batch normalization[START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] layer standardizes and normalizes each intermediate layer's inputs helping avoid exploding or vanishing gradients.[START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] propose Dropout layer to prevent large networks overfitting to training data. A set of randomly chosen neurons are dropped during training based on a dropout probability p. It can be used with most layers, though typically used with Fully-Connected Layers with a probability p = 0.5. Dropout is more effective when there is a limited amount of training data.
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  [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF] parameterize local patches of the graph using fixed local polar pseudo-coordinates around each node. They learn filter shapes by estimating the means and variances of Gaussians that associate filters to the local pseudo-coordinates. Simonovsky and Komodakis (2017) use edge labels, which play a similar role as the local pseudo coordinates, as input to a filter-generating subnetwork. Our work is related, though instead of relying on hand-designed local pseudo-coordinates, we learn the mapping between local graph patches and filter weights using the features in the previous network layer.

Besides local filtering approaches on graphs, several other techniques have been developed to handle 3D shape data in deep neural networks.

Sinha et al. (

Table Fig .

 Fig Part labeling accuracy in mIoU on the ShapeNet part dataset of our model and state-of-the-art approaches. Part labeling results on ShapeNet. On each row we show test shapes with accurate predictions per category. Best viewed in color.

	Airplane Bag Bike Cap Car Chair Earphone Guitar Fig. 3.16: Gun Knife Lamp Laptop Mug Rocket Skateboard	overall aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table	plane phone bike board	Number of shapes 16,881 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271	Wu et al. (2014) -63.2 ---73.5 ---74.4 ------74.8	Yi et al. (2016) 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3	Qi et al. (2017a) 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6	Klokov and Lempitsky (2017) 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3	FeaStNet 81.5 79.3 74.2 69.9 71.7 87.5 64.2 90.0 80.1 78.7 94.7 62.4 91.8 78.3 48.1 71.6 79.6	Tab. 3.3:

3.17: Part labeling results on ShapeNet. On each row we show test shapes with accurate predictions per category. Best viewed in color.

  Invariances provided by features defined on the dual mesh.

	Input	Translation Rotation Scale
	XYZ	×	×	×
	Normal		×	
	Area			×
	DistCM			×
	Dihedral			
	Tab. 4.1:			
				4.3 Method

  Comparison of the number of parameters and average execution time of the forward-pass per mesh for Faust-Remeshed dataset.

	Mesh Domain Method	Time (in ms) #Params
		MoNet	8.9 ± 0.25	1.4M
	Primal	SplineCNN	17.8 ± 0.15	3.1M
		FeaStNet	10.6 ± 0.17	1.4M
		FeaStConv-Dual 10.4 ± 0.14	1.4M
	Dual	DualConvMax	8.6 ± 0.57	1.3M
		DualConvInv	9.4 ± 0.16	1.3M
	Tab. 4.2:			

Table 4

 4 .3. Comparing FeaStNet and FeaStNet-Dual, we observe that the Dual2Primal layer successfully transfers features learned over the faces to the primal vertices. Moreover, using the dual mesh improves performance: the mean normalized geodesic error drops from 1.39 to 0.18, and the accuracy increases from 88.1% to 92.7%. Next, we evaluate our DualConvMax and DualConvInv layers, which are defined explicitly for the dual mesh. Both of our methods perform better than FeaStNet in terms of accuracy and mean geodesic error. Concerning mean geodesic error, they are slightly worse than FeastNet-Dual, while DualConvMax obtains the highest Percentage of correct shape correspondences within a certain geodesic distance to the ground truth, comparing primal and dual methods on the Faust-Synthetic dataset.overall accuracy (95.5%). DualConvInv performs worse than both these methods in terms of accuracy and intermediate in terms of geodesic error.

					Geodesic Error (cm)	
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	Fig. 4.7:							

  Mean geodesic errors and correspondence accuracy for DualConv using different input features on Faust-Remeshed meshes.

	Input	Translation Rotation Scale	DualConvMax	DualConvInv
					Mean Geo. Accuracy Mean Geo. Accuracy
					Error		Error	
	XYZ	×	×	×	1.8	37.3%	1.4	41.8%
	Normal		×		7.1	40.3%	7.2	39.7%
	Area			×	27.1	10.6%	27.8	9.5%
	Dihedral				22.6	15.7%	22.9	15.3%
	DistCM			×	18.1	14.7%	19.9	10.9%
	XYZ+Normal	×	×	×	1.3	45.8%	1.1	48.3%
	Normal+DistCM		×	×	2.4	48.3%	2.3	47.1%
	Normal+Area+DistCM		×	×	2.5	49.2%	2.1	48.4%
	Normal+Dihedral		×		6.3	41.3%	6.4	41.4%
	Dihedral+Area+DistCM			×	13.4	28.9%	14.5	25.9%
	Tab. 4.4:							

  Mean geodesic errors and correspondence accuracies using state-of-the-art methods on primal/dual meshes and using our best performing methods/input features for the Faust-Remeshed dataset.

	Mesh Domain Method	Input	Mean Geo. Error Accuracy
		MoNet	SHOT	4.1	48.7%
	Primal	SplineCNN	XYZ	7.2	39.7%
		FeaStNet	XYZ	1.6	47.6%
			XYZ	1.7	37.8%
		FeaStNet-Dual	XYZ+Normal	1.5	42.4%
	Dual		XYZ	1.8	37.3%
		DualConvMax	XYZ+Normal	1.3	45.8%
			XYZ	1.4	41.8%
		DualConvInv	XYZ+Normal	1.1	48.3%
	Tab. 4.5:				
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• DistCM: the Euclidean distance between the center of mass of the full mesh and the face.

We illustrate these features in Figure 4.3. Table 4.1 lists the different invariances offered by each, ranging from XYZ that does not offer any invariance to dihedral angles which are invariant to translation, rotation, and scaling of the 3D shape. We note that the dihedral angles are defined per adjacent face, so we use them by setting x 0 = 0 and x i = Dihedral 0,i in Equations 4.1, 4.2 and 4.3. As the remaining features are defined per face, we can directly use them as inputs following the former equations. In our experiments, we also consider combinations of these features by concatenating them into a larger input feature. We train the competing methods MoNet [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model CNNs[END_REF], SplineCNN [START_REF] Fey | SplineCNN: Fast geometric deep learning with continuous b-spline kernels[END_REF] and FeaStNet [START_REF] Verma | FeaStNet: Feature-steered graph convolutions for 3D shape analysis[END_REF] ourselves in our various evaluation setups using the PyTorch Geometric framework [START_REF] Fey | Fast graph representation learning with PyTorch Geometric[END_REF]. We use the same base architecture for primal and dual-based methods alike as given in Figure 4.6, where we replace the DualConv blocks with the corresponding convolutional blocks. Following the original contributions, we use SHOT descriptors [START_REF] Tombari | Unique signatures of histograms for local surface description[END_REF] as input features for MoNet, and XYZ for SplineCNN and FeaStNet. While our DualConv operators have three weights per filter by construction, due to the regularity of the dual mesh, for the other methods, the number of weights is a hyper-parameter. In our experiments, we use the same number of weights per filter as in the original papers, i.e. 8 for FeaStNet and FeaStNet-Dual (FeaStNet applied to the dual mesh) and 5 for SplineCNN. All the results are presented without the use of refinement algorithms as a post-processing step.

Table 4.2 shows the average execution time of a forward pass for a mesh of the re-meshed FAUST dataset for the different models used in our experiments on a Tesla P100 GPU, as well as the number of parameters of these models.

All methods have a comparable number of parameters and execution times except SplineCNN. It takes roughly twice longer to complete a forward pass and possesses roughly twice as many parameters as the other methods. For MoNet, the forward pass time does not include the computation of the SHOT descriptors, which are used as input to the model, and takes an additional 400 ms to compute per mesh on CPU.