George Labahn

Sergei Abramov

Alin Je Remercie Galement

Guillaume Bostan

Simoné Chèze

Vladimir Naldi

Salnikov D'avoir

Paul Armand

Samir Adly

Moulay Barkatou

Noureddine Igbida

Olivier Ruatta

Loïc Bourdin

Jaques-Arthur Weil

Olivier

Keywords: Computer algebra, Functional equations, Pseudo-linear systems, Simple forms, Rational solutions, Implementation

Tout d'abord, je tiens à exprimer ma plus profonde gratitude à Moulay Barkatou et Thomas Cluzeau pour leurs généreux conseils en temps et en connaissances, leur assistance, leur disponibilité, leur patience, et leur soutien continu tout au long de ma thése. J'ai eu beaucoup de chance de les avoir comme directeurs. Travailler avec eux a été extrêmement enrichissant sur les niveaux scientifique et personnel. Leur perfectionnisme m'a poussée à donner le meilleur de moi-même.

Notations

N

The set of nonnegative integers

N *
The set of positive integers

Z

The ring of integers

Q

The field of rational numbers

C

The field of complex numbers

C

The algebraic closure of a field C

C[x]

The ring of polynomials in x over a field C

C[[x]]

The ring of formal power series in x over a field C

C(x)

The field of rational functions in x over a field C

C((x))

The field of formal Laurent series in x over a field C

M m×n (K)

The K-vector space of m × n matrices with entries in a field K

M n (K)

The K-algebra of n × n matrices with entries in a field K GL n (K)

The group of n × n invertible matrices with entries in a field K

K n = M 1×n (K) id K
The identity map over a field K

0 n
The n-dimensional zero vector

I n
The identity matrix of size n diag(x 1 , x 2 , . . . , x n)

The diagonal matrix

       x 1 0 • • • 0 0 x 2 0 0 • • • 0 x n        A -1
The inverse of an invertible square matrix A A T The transpose of a matrix or vector A A(i, j)

The (i, j) th entry of a matrix A A(i, .)

The i th row of a matrix A ii rank(A)

The rank of a matrix A det(A)

The determinant of a square matrix A den(A)

The denominator of a matrix A ∈ M m×n (C(x)): the least common multiple (lcm) of the denominators of all entries of A f ′ (x)

The first derivative of a function f (x) w.r.t. x deg(p)

The degree of a univariate polynomial p p | q A polynomial p divides a polynomial q p ∤ q A polynomial p does not divide a polynomial q ν(f) with f ∈ C((t))

The t-adic valuation of f :

ν(f) = m if f = t m (f 0 + f 1 t + . . .), f 0 ̸ = 0 and ν(0) = ∞ ν(M) with M ∈ M m×n (C((t))) The t-adic valuation of M : ν(M) = min {ν (M (i, j)) ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} General Introduction
Nowadays, the theory of linear functional equations plays a central role in mathematics and widely contributes to the treatment of scientific problems in various fields such as chemistry, physics, mechanics, and control theory. Two well known particular systems of linear functional equations are first oder differential systems having the form

y ′ (x) = A(x) y(x) + b(x),
and first order difference systems having the form

y(x + 1) = A(x) y(x) + b(x),
where in both equations, the unknown column vector y, the matrix A and the column vector b, have entries which are functions of the variable x. These two familiar systems have been extensively studied over the past years from both a theoretical and algorithmic perspective, and significant progress has been achieved in these topics [START_REF] Abramov | On solutions of linear functional systems[END_REF][START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | Computing the exponential part of a formal fundamental matrix solution of a linear difference system[END_REF][START_REF] Barkatou | Formal solutions of linear differential and difference equations[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF][START_REF] Hardouin | Differential Galois theory of linear difference equations[END_REF][START_REF] Hilali | Solutions formelles de systèmes différentiels linéaires au voisinage d'un point singulier[END_REF][START_REF] Singer | Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients[END_REF][START_REF] Tournier | Solutions formelles d'équations Différentielles, le logiciel de calcul formel: DÉSIR, étude théorique et réalisation[END_REF]. In spite of this progress, it has been shown, see e.g. [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF][START_REF] Petkovšek | Finding all hypergeometric solutions of linear differential equations[END_REF], that linear differential and difference systems are strongly connected and share interesting properties. Moreover, some algorithms designed for one type of system can be adapted for the other. For instance, the Moser-and super-reduction algorithms [START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF][START_REF] Moser | The order of a singularity in Fuchs theory[END_REF] originally developed for differential systems, have been adapted to treat difference systems, see [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF][START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF]. Also, existing algorithms for computing rational solutions follow the same general strategy for both systems, see for instance [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF]. So the theoretical and algorithmic similarities that both differential and difference systems share, suggest the existence of a common mathematical framework behind them. This mathematical framework is given by pseudo-linear algebra.

Pseudo-linear algebra is a wide area of mathematics with origins in the 1930's from works by Ore [START_REF] Ore | Formale theorie der linearen differentialgleichungen[END_REF] and Jacobson [START_REF] Jacobson | Pseudo-linear transformations[END_REF]. Around 60 years later, Bronstein and Petkovšek introduced in [START_REF] Bronstein | An introduction to pseudo-linear algebra[END_REF] the basic objects (pseudo-linear systems, pseudo-derivations, skew polynomials) of pseudo-linear algebra in the context of computer algebra. In its most general form, a pseudo-linear system of size n is a system

δ (y) = M ϕ (y) , (1
)
where y is a column-vector of n unknowns, M ∈ M n (K) where K is a field, ϕ is an automorphism over K and δ is a pseudo-derivation with respect to ϕ, which means Pseudo-linear systems form a large class of linear functional systems including the usual differential, difference and also q-difference systems: y(q x) = A(x)y(x). When General Introduction specialised to these particular types of systems, efficient methods have been designed for treating local problems (i.e. around a singularity) such as:

• Construction of formal solutions [START_REF] Barkatou | Computing the exponential part of a formal fundamental matrix solution of a linear difference system[END_REF][START_REF] Barkatou | On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems[END_REF][START_REF] Barkatou | Formal solutions of linear differential and difference equations[END_REF][START_REF] Birkhof | The generalized Riemann problem[END_REF][START_REF] Trjitzinsky | Analytic theory of linear q-difference equations[END_REF][START_REF] Van Hoeij | Formal solutions and factorization of differential operators with power series coefficients[END_REF].

• Formal reduction of systems [START_REF] Abramov | EG-eliminations[END_REF][START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF][START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF][START_REF] Barkatou | Formal reduction of singular linear differential systems using eigenrings: A refined approach[END_REF][START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF][START_REF] Moser | The order of a singularity in Fuchs theory[END_REF].

There are also several algorithms treating global problems such as:

• Computation of closed-form solutions: rational solutions [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF][START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF], hypergeometric solutions [START_REF] Abramov | q-Hypergeometric solutions of q-difference equations[END_REF][START_REF] Cluzeau | Computing hypergeometric solutions of linear difference equations[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF], liouvillian solutions [START_REF] Feng | An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations[END_REF][START_REF] Singer | Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients[END_REF] • Decomposition and factorization of systems [START_REF] Barkatou | An algorithm for computing a companion block diagonal form for a system of linear differential equations[END_REF][START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF][START_REF] Barkatou | On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems[END_REF].

Nevertheless, algorithms handling directly general pseudo-linear systems have been less elaborated. In particular, Barkatou treated in [START_REF] Barkatou | Factoring Systems of Linear Functional Systems Using Eigenrings[END_REF] the problem of (global) factorization of a pseudo-linear system of the form [START_REF] Abramov | On the summation of rational functions[END_REF]. Later on, Barkatou, Broughton and Pflügel studied in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF] System [START_REF] Abramov | On the summation of rational functions[END_REF] and introduced a reduction which generalizes the notions of Moser-and super-irreducible forms known for differential and difference systems. The same authors then derived in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF] the structure of regular solutions for general pseudolinear systems, and developed an algorithm to compute them.

In this thesis, the research carried out concerns the development of symbolic algorithms for studying and solving pseudo-linear systems. Our work excludes the reduction of systems into scalar equations via a cyclic-vector method [START_REF] Churchull | Cyclic vectors. In Differential Algebra and Related Topics[END_REF] or any related method [START_REF] Barkatou | An algorithm for computing a companion block diagonal form for a system of linear differential equations[END_REF][START_REF] Cope | Formal solutions of irregular linear differential equations, Part II[END_REF].

The thesis is split into three essential parts. In the first part, which consists of Chapter 2, we are interested in the local analysis of systems of the form (1). Moser's reduction [START_REF] Barkatou | A rational version of Moser's algorithm[END_REF][START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF][START_REF] Moser | The order of a singularity in Fuchs theory[END_REF] and super-reduction algorithms [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF][START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF][START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF] have been proved to be relevant for the local study of differential and difference systems. These algorithms provide useful information on the local invariants at a singular point such as the nature of the singularity [START_REF] Moser | The order of a singularity in Fuchs theory[END_REF], and the integer slopes of the corresponding Newton polygon [START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system[END_REF][START_REF] Barkatou | Some formal invariants of linear difference systems and their Computations[END_REF][START_REF] Levelt | Stabilizing differential operators: a method for computing invariants at irregular singularities[END_REF][START_REF] Pflügel | Effective formal reduction of linear differential systems[END_REF]. They are also used to compute formal solutions [START_REF] Barkatou | An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system[END_REF][START_REF] Barkatou | Computing the exponential part of a formal fundamental matrix solution of a linear difference system[END_REF][START_REF] Barkatou | On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems[END_REF] as well as closed-form solutions such as rational solutions [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF], exponential solutions [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] and hypergeometric solutions [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF]. However, solving some of these problems requires a weaker form than super-irreducible forms. This weaker form is called simple form and it has been first introduced by Barkatou in [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF]. Simple forms are easier to compute than superirreducible ones and they are often sufficient to get the most important local data. The notions of super-irreducible forms and simple forms have been generalised in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] in the pseudo-linear setting and a generic algorithm for computing super-irreducible forms has been given. The method proposed in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] to construct a simple form requires to compute first a super-irreducible form. The first direct (that is, without recourse to super-reduction) algorithm for computing simple forms has been developed in [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] for differential systems and then in [START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] for difference systems. However, no results seem to be published on q-difference systems and the unifying view for the pseudo-linear case had not been considered. In this spirit, the first main contribution of the present thesis is to prove that the algorithms developed in [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] for computing simple forms can be extended to handle more general pseudo-linear systems. In particular, this shall provide the first method available for q-difference systems.

In the second part of this thesis, which consists of Chapters 3 and 4, we are concerned with the problem of computing closed-form solutions of pseudo-linear systems.

In particular, we shall present two new recursive algorithms for computing respectively rational and hypergeometric solutions of a partial pseudo-linear system of the form:

       L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y) = 0, . . . L m (y) := δ m (y) -M m ϕ m (y) = 0, (2)
where for all i = 1, . . . , m, M i is a square matrix with rational function entries in m variables x 1 , . . . , x m , ϕ i is an automorphism acting on x i and δ i is a pseudo-derivation with respect to ϕ i such that for all j ̸ = i, x j is a constant with respect to ϕ i and δ i , i.e., ϕ i (x j) = x j and δ i (x j) = 0. Here L i := I n δ i -M i ϕ i denotes the matrix pseudo-linear operator associated to the i th system of [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF]. One underlying motivation for developing such algorithms is that many special (transcendental) functions satisfy such partial pseudo-linear systems. We can think for instance of Hermite, Legendre, Bessel or Tchebychev polynomials which satisfy both a system of differential equations and a system of difference equations. Partial pseudo-linear systems have already been considered and studied in the literature. In particular, an algorithm for computing rational solutions of integrable connections (i.e., the case of System (2) with m differential systems) is developed in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF] and an algorithm for computing hyperexponential solutions of systems over Laurent-Ore algebras is proposed in [START_REF] Li | A recursive method for determining the onedimensional submodules of Laurent-Ore modules[END_REF]. Also, in [START_REF] Bronstein | Picard-Vessiot extensions for linear functional systems[END_REF][START_REF] Feng | An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations[END_REF][START_REF] Li | On solutions of linear systems and factorization of Laurent-Ore modules[END_REF][START_REF] Wu | On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras[END_REF], the authors study different issues concerning partial pseudo-linear systems.

Our two recursive algorithms require, in particular, an algorithm for computing solutions of one sole pseudo-linear system of the form [START_REF] Abramov | On the summation of rational functions[END_REF]. Therefore, before considering the case of a partial pseudo-linear system with an arbitrary order m, we first concentrate on the case of a single pseudo-linear system, i.e., m = 1 in System [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF]. For the case m = 1, the computation of rational and hypergeometric solutions, and other kind of closed form solutions (such as polynomial, Liouvillian, etc…) of linear functional systems has been widely studied in the particular cases of differential and (q-)difference systems: see, for instance, [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF][START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Abramov | Hypergeometric solutions of first-order linear difference systems with rational-function coefficients[END_REF][START_REF] Abramov | rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF][START_REF] Cluzeau | Computing hypergeometric solutions of linear difference equations[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF][START_REF] Singer | Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients[END_REF]. However, a unified approach handling pseudo-linear systems has not been introduced. In this spirit, we shall also present an efficient algorithm for computing rational solutions of a general pseudo-linear system of the form [START_REF] Abramov | On the summation of rational functions[END_REF].

Besides the theoretical results elaborated in this thesis, a further important contribution arises in the implementation in Maple of all the algorithms presented in the different chapters. All the implementations are gathered and incarnated as internal procedures in our new Maple package PseudoLinearSystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. Whilst some existing packages such as Isolde [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF], LinearFunctionalSystems 1 , LREtools 2 and QDifferenceEquations 3 are dedicated to the study of individual differential, difference and q-difference systems, the PseudoLinearSystems package is dedicated to the study of more general pseudo-linear systems. The third and last part of this thesis, which consists in Chapter 5, hence concerns the demonstration of the use of the main procedures contained in our package. Moreover, we shall also present throughout this thesis results of some experiments comparing our implementations to those performing same tasks in the Isolde and LinearFunctionalSystems packages. All experiments were carried out using Maple 2017 on a Mac PC with a 2.3 GHz Intel Core i5 processor and a 16 Go 2133 MHz LPDDR3 memory.

The main contributions of this thesis can be summarised as follows:

1. A "direct" and generic algorithm for computing simple forms of general pseudolinear systems with power series coefficients.

2. A unified and efficient algorithm to compute rational solutions of general pseudolinear systems with rational functions coefficients.

3. Two new efficient algorithms for computing respectively rational and hypergeometric solutions of partial pseudo-linear systems with rational functions coefficients and arbitrary number of variables.

4. The implementation of these algorithms in the computer algebra software Maple.

The content of the thesis is organised as follows. In Chapter 1 we set our mathematical framework by presenting some basic definitions and results from pseudo-linear algebra [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Bronstein | An introduction to pseudo-linear algebra[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] that will be used in the following chapters. The remaining four chapters contain our contributions. In the sequel, we briefly describe the material of each of them.

General Introduction

Chapter 2: On Simple Forms of Pseudo-Linear Systems and Their Computations

This chapter constitutes the subject of the first half of the published paper [START_REF] Barkatou | Simple forms and rational solutions of pseudolinear systems[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and K = C((t)) equipped with the t-adic valuation ν. We consider a pseudo-linear system of the form

A δ(y) + B ϕ(y) = 0, (3)
where

A, B ∈ M n (C[[t]]
) such that det(A) ̸ = 0, ϕ is a C-automorphism over K such that it preserves the valuation, i.e., ν(ϕ(f)) = ν(f) for all f ∈ K, and δ is a non-zero pseudoderivation with respect to ϕ. The matrices A and B admit unique t-adic expansions

A(t) = ∑ i≥0 A i t i , B(t) = ∑ i≥0 B i t i .
The leading matrix pencil of a pseudo-linear system (3) is defined as the matrix polynomial L λ = A 0 λ + B 0 , where A 0 and B 0 are the constant terms in the t-adic expansions of A and B. System (3) is said to be simple if det(L λ) ̸ = 0 (as a polynomial in λ).

Otherwise, it is said to be non-simple.

In this chapter, we present a direct algorithm to compute a simple form (in other words, an equivalent simple system) of any pseudo-linear system of the form [START_REF] Abramov | EG-eliminations[END_REF]. By direct we mean without computing a super-irreducible form as it is done in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF]. The algorithm is recursive and it follows the ideas of the algorithms developed in [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] for purely differential and difference systems. When System (3) is not simple, then we have ν(det(A)) > 0 (otherwise, A 0 would be invertible and hence det(A 0 λ + B) ̸ = 0). The principle of the algorithm then consists in computing iteratively equivalent pseudo-linear systems A (i) δ(y) + B (i) ϕ(y) = 0, i ≥ 1 satisfying ν(det(A (i+1))) < ν(det(A (i))) with A (0) = A. Doing so, we are guaranteed to find a simple system at some stage of the recusrsion.

Moreover, we show how we can use simple forms as an essential tool for computing important local data: indicial equation, regular solutions and k-simple forms. Finally, we derive a new method for computing a super-irreducible form of a pseudo-linear system based on successive computations of simple forms.

Chapter 3: On Rational Solutions of First Order Pseudo-Linear Systems

This chapter constitutes the subject of the first half of the published paper [START_REF] Barkatou | On rational solutions of pseudo-linear systems[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and F = C(x). We are interested in the problem of computing rational solutions of a pseudo-linear system of the form

δ(y) = M ϕ(y), (4)
where M ∈ M n (F), ϕ is a C-automorphism over F and δ is a pseudo-derivation with respect to ϕ. We follow the same strategy proposed in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF][START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF] for the differential and (q-)difference cases. We first compute a so called universal denominator [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF], namely, a polynomial that is a multiple of the denominator of any rational solution. Then, by performing a suitable change of dependent variables in (4), we will be reduced to computing polynomial solutions of a system of the same type.

In the sequel, we present a unified algorithm for computing a universal denominator for all rational solutions of a pseudo-linear system. We will see that in the case ϕ is not the identity map, a universal denominator is composed of two parts: what we call the ϕ-fixed part and the non ϕ-fixed part. On one hand, the ϕ-fixed part can be computed using simple forms. On the other hand, following the ideas of [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] (see also [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF][START_REF] Khmelnov | Improved algorithms for solving difference and q-difference equations[END_REF]), we propose an efficient algorithm for computing the non ϕ-fixed part. Polynomial solutions are computed by adapting the ideas in [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF][START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF]. We provide details on how this can be efficiently done for pseudo-linear systems.

Chapter 4: On Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

This chapter constitutes the subjects of the second halves of the published papers [START_REF] Barkatou | Simple forms and rational solutions of pseudolinear systems[END_REF][START_REF] Barkatou | On rational solutions of pseudo-linear systems[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

Let C be a field of characteristic zero and K = C(x 1 , . . . , x m). The object of study in this chapter is a partial pseudo-linear system [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF] with M i ∈ M n (F) for all i = 1, . . . , m. We assume that (2) is integrable, i.e., it satisfies the integrability conditions

[L i , L j] := L i • L j -L j • L i = 0, ∀i, j = 1, . . . , m.
The main contribution of this chapter consists in two new efficient algorithms for re-spectively computing rational and hypergeometric solutions of an integrable system [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF]. In both algorithms, the strategy proceeds by recursion by considering one by one each system L i (y) = 0 appearing in (2) as a system in one variable x i with the other variables viewed as transcendental constants. In particular, we shall prove that in both strategies, we can reduce the number m of variables and maybe the size n of the matrices before applying recursion and considering the second system.

We also provide some remarks concerning the implementation of both algorithms.

Chapter 5: PseudoLinearSystems: A Maple Package for Studying Systems of Pseudo-linear Equations

In this final chapter, we demonstrate the use of several important procedures contained in our Maple package PseudoLinearSystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. This includes, in particular, a procedure to compute a simple form of a pseudo-linear system (3), as well as procedures to compute rational and hypergeometric solutions of a partial pseudo-linear system [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF]. The package is free available online and a manual for downloading and installing the package, as well as Maple examples covering several types of pseudo-linear systems, are provided on the webpage: http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

Chapter 1

Basics on Pseudo-linear Systems In this chapter, we prepare the mathematical framework in which the work of the thesis is based on. This mathematical framework is pseudo-linear algebra which concerns the study of pseudo-linear systems: a large class of linear functional systems including the usual differential, difference and q-difference systems. In the same line as the authors in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Bronstein | An introduction to pseudo-linear algebra[END_REF], we define the basic objects that form our framework.

Throughout this chapter, we let K be a commutative field of characteristic zero and ϕ an automorphism of K.

Chapter 1

Basics on Pseudo-linear Systems

Pseudo-derivations and ϕδ-fields

If ϕ = id K , then δ is a standard derivation. Otherwise if ϕ ̸ = id K , then for any γ ∈ K, the map δ = γ(id K -ϕ) given by δ(a) = γ(a -ϕ(a)
) is a pseudo-derivation with respect to ϕ. Indeed, we have for all a, b ∈ K:

δ(a + b) = γ (a + b -ϕ(a + b)) = γ (a -ϕ(a)) + γ (b -ϕ(b)) = δ(a) + δ(b),
and

δ(a b) = γ(a b -ϕ(a b)) = ϕ(a)γ(b -ϕ(b)) + γ(a -ϕ(a))b = ϕ(a)δ(b) + δ(a)b.
The above example covers all the possible pseudo-derivations over a commutative field. Indeed, we have the following result: Lemma 1]). Let K be a commutative field, ϕ an automorphism over K and δ a pseudo-derivation w.r.t. ϕ. If ϕ ̸ = id K then δ has to be of the form

Lemma 1.1. ([48,
δ = γ (id K -ϕ),
for some γ ∈ K.

Proof. Since K is commutative, then we have δ(a b) = δ(b a) for all a, b ∈ K. Using Equation (1.1) on both sides yields, after rearranging :

(a -ϕ(a)) δ(b) = (b -ϕ(b)) δ(a). (1.2) Now if ϕ ̸ = id K , then there exists a ∈ K such that ϕ(a) ̸ = a. Let γ = δ(a)/(a -ϕ(a)), then it follows from (1.2) that δ(b) = γ (b -ϕ(b)) for all b ∈ K. Remark 1.1. With the notations of Lemma 1.1, if δ ̸ = 0 then δ = γ (id K -ϕ) for some γ ∈ K * .
Definition 1.2. Let K be a commutative field, ϕ an automorphism over K and δ a pseudo-derivation w.r.t. ϕ. We refer to the triplet (K, ϕ, δ) as a ϕδ-field.

Chapter 1

Basics on Pseudo-linear Systems Example 1.2. The familiar differential, difference and q-difference fields can be expressed as ϕδ-fields in the following way:

-Differential case: K = C(x), ϕ = id K , and δ = d dx .

-Difference case: K = C(x), ϕ the C-automorphism over K defined by ϕ : x → x+1, and δ = id K -ϕ.

q-Difference case: K = C(x), ϕ the C-automorphism defined by ϕ : x → q x, q ∈ C * , and δ = id K -ϕ.

Definition 1.3. Given a ϕδ-field (K, ϕ, δ), the subfield C K ⊂ K containing all elements c in K that satisfy ϕ(c) = c and δ(c) = 0 is called the field of constants of (K, ϕ, δ). Remark 1.2. When ϕ ̸ = id K , then ϕ(c) = c ⇐⇒ δ(c) = 0 for any c ∈ K.
We note that the operations on matrices (vectors) commute with ϕ and for two matrices

M and N , one has δ(M + N) = δ(M) + δ(N),
and

δ(M N) = δ(M)ϕ(N) + M δ(N) = ϕ(M)δ(N) + δ(M)N.

Pseudo-linear systems

We present in this section the notion of pseudo-linear systems as a unified class for expressing common types of linear functional systems such as linear differential and (q-)difference systems.

Definition 1.4. A pseudo-linear system of size n over a ϕδ-field (K, ϕ, δ) is a system of the form

δ(y) = M ϕ(y), (1.3)
where y is a column-vector of n unknowns and M ∈ M n (K).

Definition 1.5. A solution of pseudo-linear system (1.3) over K is a vector y ∈ K n such that δ(y) = M ϕ(y).

Remark 1.3. The set of solutions of System (1.3) over K is a vector space over C K of dimension at most n (see [START_REF] Barkatou | Factoring Systems of Linear Functional Systems Using Eigenrings[END_REF]).

For ϕ ̸ = id K , previous authors considered pseudo-linear systems of the form

ϕ(y) = M y. (1.4)
Chapter 1

Basics on Pseudo-linear Systems

In particular, Harris [START_REF] Harris | Linear systems of difference equations[END_REF] studied difference systems where ϕ : x → x+1, while Adams [START_REF] Admas | On the linear ordinary q-difference equation[END_REF] and Trjitzinsky [START_REF] Trjitzinsky | Analytic theory of linear q-difference equations[END_REF] explored the q-difference case ϕ : x → q x. A system of the form (1.4) is what we call a ϕ-system in this thesis, and such a system will be considered later in Chapter 3. Moreover, the authors in [START_REF] Barkatou | Computing the exponential part of a formal fundamental matrix solution of a linear difference system[END_REF][START_REF] Barkatou | Some formal invariants of linear difference systems and their Computations[END_REF][START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] found it convenient to consider linear difference systems of the form δ(y) = M y. (1.5) In this thesis, we see System (1.3) the most general form to consider as introduced by Jacobson [START_REF] Jacobson | Pseudo-linear transformations[END_REF], and the most adaptable for (most of) the algorithms developed later. Anyhow, the conversion between systems (1.4), (1.5) and (1.3) could be easily carried out. Indeed (recall that δ = γ(id K -ϕ) for some γ ∈ K *):

1. System (1.4) can be rewritten as

y = ϕ -1 (M) ϕ -1 (y). (1.6)
Let ϕ = ϕ -1 and δ be a new pseudo-derivation w.r.t. ϕ defined as δ = id K -ϕ.

One thus has y = δ(y) + ϕ(y). Substituting this for y in the left hand side of (1.6) yields, after rearranging, the system

δ(y) = N ϕ(y),
where N = ϕ(M) -I n .

2. System (1.5) can be rewritten as

γ(y -ϕ(y)) = M y.
Applying ϕ -1 on both sides yields the system δ(y) = N ϕ(y), where ϕ = ϕ -1 ,

δ = ϕ(γ)(ϕ -id K) and N = ϕ(M).
3. Given a system of the form δ(y) = M ϕ(y). Applying ϕ -1 on both sides yields the system

δ(y) = N y, where δ = ϕ(γ)(ϕ -id K), ϕ = ϕ -1 and N = ϕ(M).
4. Given a system of the form δ(y) = M ϕ(y). Applying ϕ -1 on both sides yields, after rearranging, the system

ϕ(y) = N y,
where ϕ = ϕ -1 and N = ϕ(γ -1 M + I n). Note that a system of the form (1.3) can be also written as

ϕ(y) = N y, Chapter 1
Basics on Pseudo-linear Systems with N = (γ -1 M + I n) -1 provided that this matrix exists.

Consequently, after looking at the last sentence of Item 4, when we consider a pseudolinear system (1.3) with ϕ ̸ = id K and δ = γ (id K -ϕ) for some γ ∈ K * , we will always assume that the matrix M + γ I n is invertible. In this case, System (1.3) is called fully integrable. Note that for a ϕ-system (1.4), being fully integrable means that the matrix of the system is invertible.

Remark 1.4. Considering solutions over a suitable field extension F of K, every fully integrable system admits a solution space of dimension n over C F = C K . We refer to [START_REF] Li | On solutions of linear systems and factorization of Laurent-Ore modules[END_REF] where a notion of Picard-Vessiot extension is introduced in the pseudo-linear setting. Moreover, from [START_REF] Barkatou | Some formal invariants of linear difference systems and their Computations[END_REF]Proposition 2], every ϕ-system ϕ(y) = B y can be effectively reduced to a ϕ-system of smaller size with either B invertible (i.e., we have an equivalent fully integrable system) or B = 0. For instance, the system

δ(y) =        -1 1 • • • 1 0 1 0 • • • 0 -1        ϕ(y), ϕ ̸ = id K , δ = id K -ϕ,
is not fully integrable. It can be reduced to the scalar pseudo-linear equation δ(y) = -ϕ(y) which is equivalent to y = 0.

Given a pseudo-linear system of the form (1.3). For a matrix T ∈ GL n (K), performing the change of variable y = T z yields a new pseudo-linear system δ(z) = N ϕ(z) where

N ∈ M n (K) is given by N = T -1 (M ϕ(T) -δ(T)).
Consequently, the notion of equivalence of two pseudo-linear systems of the form (1.3) is given by the following definition:

Definition 1.6. Two pseudo-linear systems δ(y) = M ϕ(y) and δ(y) = N ϕ(y) over a ϕδ-field (K, ϕ, δ), are said to be equivalent if there exists an invertible matrix T ∈ GL n (K) such that

N = T -1 (M ϕ(T) -δ(T)) . (1.7)
We now define the notion of partial pseudo-linear systems. Such systems are the object of study in Chapter 4. For i = 1, . . . , m, let ϕ i be an automorphism over K and δ i be a pseudo-derivation with respect to ϕ i . We shall also refer to (K, {ϕ i , δ i } 1≤i≤m) as a ϕδ-field.

The field of constants of (K, {ϕ i , δ i } 1≤i≤m) is the subfield C K of K containing all elements c in K that satisfy ϕ i (c) = c and δ i (c) = 0 for all i ∈ {1, . . . , m}. In general, one has

C K = m ∩ i=1 C i K , Chapter 1
Basics on Pseudo-linear Systems where C i K denotes the field of constants of the (particular) ϕδ-field (K, ϕ i , δ i).

Definition 1.7. Given a ϕδ-field (K, {ϕ i , δ i } 1≤i≤m) such that C i K ̸ = C j K for all i ̸ = j. A partial pseudo-linear system over (K, {ϕ i , δ i } 1≤i≤m) of size n in m variables, is a system of the form        δ 1 (y) -M 1 ϕ 1 (y) = 0, . . . δ m (y) -M m ϕ m (y) = 0,
where y is a vector of n unknowns and M i ∈ M n (K) for all i ∈ {1, . . . , m}.

Local ϕδ-fields

In many situations, when looking for solutions (rational, series, ...) of a pseudo-linear system, we may need some information at a "singularity". In this thesis, the notion of a singularity of pseudo-linear systems differs from that in the differential and difference cases. Recall that for a first order differential system y ′ (x) = A(x)y(x), it is well known (see e.g. [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF]) that the finite singularities are exactly the singularities of the matrix A, i.e., the zeros of den(A). On the other hand, for a difference system ϕ(y

(x)) = A(x)y(x)
where A is an invertible matrix and ϕ : x → x + 1, the finite singularities are among the shifts of the zeros of den(A) and den(A *), where A * = ϕ -1 (A -1) (see [START_REF] Barkatou | Removing apparent singularities of linear difference systems[END_REF] for more details).

Definition 1.8. Given a ϕδ-field (K, ϕ, δ) where ϕ is an automorphism over K acting on a variable x, and δ is a ϕ-derivation. Denote by C K the field of constants of (K, ϕ, δ). A point x 0 in C K is said to be ϕ-fixed, or fixed by ϕ, if x -x 0 and ϕ j (x -x 0) divide each other for some j ∈ Z * .

Definition 1.9. The singularities of a pseudo-linear system (1.3) defined over a ϕδ-field (K, ϕ, δ) are all ϕ-fixed points, and the point at infinity.

Example 1.3. Given a a pseudo-linear system (1.3) over a ϕδ-field (K, ϕ, δ). Denote by C K the field of constants of (K, ϕ, δ).

1. In the differential case where ϕ = id K , all the points in C K are ϕ-fixed.

2. In the difference case where ϕ : x → x + r with r ∈ C * K , there are no ϕ-fixed points. The only singularity here is ∞.

3. In the q-difference case ϕ : x → q x where q ∈ C * K is not a root of unity, the point 0 is the only ϕ-fixed point. The only singularities here are 0 and ∞.

Chapter 1

Basics on Pseudo-linear Systems 4. Let ϕ be the automorphism defined as ϕ : x → q x + r where q ∈ C * K is not a root of unity and r ∈ C K . The only ϕ-fixed point is x 0 = r 1-q (see Proposition 3.3 in Chapter 3). The only singularities here are x 0 and ∞. Definition 1.10. A local ϕδ-field (K, ϕ, δ) is a ϕδ-field equipped with a discrete valuation

ν : K → Z ∪ {∞}.
Recall that for a local ϕδ-field (K, ϕ, δ) equipped with a valuation ν, the following properties hold: for a, b ∈ K one has: We introduce now some terminology from [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF] that could help to understand the concept of local ϕδ-fields. The valuation ring of a local ϕδ-field (K, ϕ, δ) is defined as

1. ν(a) = +∞ ⇐⇒ a = 0. 2. ν(a b) = ν(a) + ν(b).
O = { a ∈ K ; ν(a) ≥ 0 }. The set M = { a ∈ K ; ν(a) > 0 } coincides
(f) = m if f = x m (f 0 + f 1 x + . . .), f 0 ̸ = 0 and ν(0) := ∞. The valuation ring is O = C[[x]
]. The residue field can be identified with C and π(a) = a(0) for a ∈ O.

Let

K = C((x -1
)), ϕ be the automorphism defined as ϕ : x → x + r where r ∈ C * , and Let (K, ϕ, δ) be a local ϕδ-field equipped with a discrete valuation ν, and denote by R its residue field. We fix a local parameter t of K. Every element f ∈ K can be uniquely expanded as

δ = id K -ϕ. Let t = x -1 . The field (K, ϕ, δ) is a local ϕδ-field equipped with the t-adic valuation defined by ν(f) = m if f = t m (f 0 + f 1 t + . . .), f 0 ̸ = 0 and ν(0) := ∞. The valuation ring is O = C[[x -1]].
f (t) = t ν(f) +∞ ∑ i=0 f i t i , Chapter 1
Basics on Pseudo-linear Systems where the f i 's are in R and f 0 ̸ = 0. The definition of the valuation can be extended to a matrix A ∈ M m×n (K) by ν(A) = min {ν (A(i, j)) ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} where A(i, j) denotes the (i, j)th entry of A. Any non zero matrix A ∈ M m×n (K) can be uniquely expanded as

A(t) = t ν(A) +∞ ∑ i=0 A i t i ,
where the A i 's are matrices with entries in R and A 0 ̸ = 0. Definition 1.12. Given a local ϕδ-field (K, ϕ, δ). We define the degree of δ as

ω(δ) = inf a∈K,a̸ =0 ν(a -1 δ(a)). Note that δ is continuous if and only if ω(δ) > -∞. Lemma 1.2. ([23, Lemma 3.2]). Given a local ϕδ-field (K, ϕ, δ) and t a local parameter of K. If δ ̸ = 0 and ω(δ) > -∞. Then ω(δ) = ν(t -1 δ(t)).
Throughout this thesis, when talking about local ϕδ-fields, we assume that δ ̸ = 0 and ω(δ) > -∞, and that the automorphism ϕ is an isometry with respect to the valuation, which means that ϕ preserves the valuation:

ν(ϕ(a)) = ν(a), ∀a ∈ K.
Using the latter assumption on ϕ, we can define the following: Definition 1.13. Let (K, ϕ, δ) be a local ϕδ-field and R be its residue field. Let t be a local parameter of K. We denote by c and d the two elements in R * satisfying

ϕ(t) = c t + O(t 2), t -ω δ(t) = d t + O(t 2),
where ω is the degree of δ, and inductively for h ∈ N + :

ϕ(t h) = c h t h + O(t h+1), t -ω δ(t h) = d [h] c t h + O(t h+1),
where [h] c is defined by:

[h] c =      1 -c h 1 -c ; c ̸ = 1, h ; c = 1. Example 1.5. 1. Let K = C((x)), ϕ = id K , δ = d dx . The field (K, ϕ, δ) is a local ϕδ-field equipped Chapter 1
Basics on Pseudo-linear Systems with the t-adic valuation, where t = x is a local parameter of K. We have ω(δ) = -1 and c = d = 1.

Let

K = C((x -1
)), ϕ be the C-automorphism over K defined by ϕ : x → x -1, and δ = id K -ϕ be a pseudo-derivation w.r.t. ϕ. The field (K, ϕ, δ) is a local ϕδ-field equipped with the t-adic valuation, where t = x -1 is a local parameter of K. We have

ω(δ) = ν(t -1 δ(t)) = ν(-(x -1) -1) = 1.
Moreover, we have c = 1 and d = -1.

3. Let ϕ be the C-automorphism defined by ϕ : x → q x + r such that q ∈ C \ {0, 1} and

r ∈ C. Let K = C((x -x 0)
) where x 0 = r 1-q and δ = id K -ϕ be a pseudo-derivation w.r.t. ϕ. The field (K, ϕ, δ) is a local ϕδ-field equipped with the t-adic valuation, where

t = x -x 0 is a local parameter of K. We have ω = ω(δ) = ν(t -1 δ(t)) = ν ((x -x 0) -1 (x -x 0 -ϕ(x -x 0))) = ν(1 -q) = 0.
Moreover, we have c = q and d = 1 -q.

Local pseudo-linear systems

In the rest of this chapter, we let (K, ϕ, δ) be a local ϕδ-field. We denote by O, respectively R, its valuations ring, respectively residue field, and we fix a local parameter t of K.

Given a pseudo-linear system

δ(y) = M ϕ(y), (1.8)
defined ove (K, ϕ, δ). The matrix M ∈ M n (K) can be written as M = t ω-p (M 0 +M 1 t+. . .) where the M i 's are matrices with entries in R with M 0 ̸ = 0, p ∈ N is called the Poincaré rank of (1.8) and ω ∈ Z is the degree of the ϕ-derivation δ. Multiplying (1.8) by t p-ω on both sides yields the system

t p-ω δ(y) = N ϕ(y), (1.9)
where N ∈ M n (O).

Definition 1.14. A local pseudo-linear system of size n over a local ϕδ-field (K, ϕ, δ) is a system of the form (1.9).

A local pseudo-linear system of the form (1.9) is obtained when we want to study a pseudo-linear system of the form (1.3) in the neighbourhood of a given singularity x 0 . For instance, System (1.3) defined over C(x) can be written as local pseudo-linear system by Chapter 1

Basics on Pseudo-linear Systems means of the map x → t + x 0 if x 0 ̸ = ∞ or x → t -1 otherwise, and by embedding C(x) into C((t)).

Example 1.6.

1. Let ϕ be the identity map over C(x) and δ = d dx . Consider the following differential system defined over (C(x), ϕ, δ):

δ(y) =     x 2 -1 x (x 2 + 1) 0 1 x 2 + 1 - 1 x     y.
We want to study the system near the ϕ-fixed (singular) point x 0 = 0. We introduce the local parameter t = x. The idea is to work with K = C((t)) equipped with the t-adic valuation. The degree of δ is thus ω = -1 and the system can be written in the local form (1.9) over (K, ϕ, δ) as

t δ(y) =     t 2 -1 t 2 + 1 0 t t 2 + 1 -1     y,
with Poincaré rank p = 0.

2. Let ϕ be an automorphism over C(x) defined as ϕ : x → x -1, and δ = id K -ϕ be a ϕ-derivation. Consider the following system defined over (C(x), ϕ, δ):

δ(y) =    x + 1 1 x x 2 1    ϕ(y),
We want to study the system near the only singularity ∞. We introduce the local parameter t = x -1 and we work now with K = C((t)) equipped with the t-adic valuation. The degree of δ is thus ω = 1 and the system can be written in the local form (1.9) over (K, ϕ, δ) as

t 2 δ(y) =   t + t 2 t 3 1 t 2   ϕ(y),
with Poincaré rank p = 3.

A local pseudo-linear system (1.9) can be written in the form

A δ(y) + B ϕ(y) = 0, (1.10)
where δ = t -ω δ, A = diag(t α 1 , . . . , t αn), α i = -min{0, ν(N (i, .)) -p}, and

B = -t -p A N ∈ M n (O).
Here N (i, .) denotes the i th row of N . A system of the form (1.10) will be the object of study in Chapter 2 and we shall also call it a local pseudo-linear system. In the sequel, we define the notion of equivalence of two pseudo-linear systems of the form (1.10).

Without any loss of generality, we suppose that ω = 0 and thus have δ = δ. To any pseudo-linear system (1.10), we associate the pseudo-linear operator

L = A δ + B ϕ,
acting on K n . The system is then written as L(y) = 0. Note that, in terms of operators, we have

ϕ.T = ϕ(T) ϕ, δ.T = T δ + δ(T) ϕ, for all T ∈ M n (K).
Definition 1.15. Two pseudo-linear operators L = A δ +B ϕ and L ′ = A ′ δ +B ′ ϕ are said to be equivalent if there exist two invertible matrices S, T ∈ GL n (K) such that L ′ = S L T , that is:

A ′ = S A T, B ′ = S A δ(T) + S B ϕ(T). (1.11)
Two pseudo-linear systems L(y) = 0 and L ′ (y) = 0 are equivalent if the operators L and L ′ are equivalent.

For further reading concerning pseudo-linear algebra, we refer to the introductory work by Jacobson [START_REF] Jacobson | Pseudo-linear transformations[END_REF], the modern exposition in the context of computer algebra by Bronstein and Petkovšek [START_REF] Bronstein | An introduction to pseudo-linear algebra[END_REF], and other notable works [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Bronstein | On ore rings, linear operators and factorisation[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF][START_REF] Ore | Formale theorie der linearen differentialgleichungen[END_REF].

Chapter 2

On Simple Forms of Pseudo-Linear Systems and their Applications This chapter constitutes the subject of the first half of the published paper [START_REF] Barkatou | Simple forms and rational solutions of pseudolinear systems[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

Chapter 2

Simple Forms of Pseudo-Linear Systems

Introduction and motivation

In this chapter, we consider pseudo-linear systems over a local ϕδ-field (K, ϕ, δ). To fix ideas, we let C be a field of characteristic zero and K = C((t)) be the field of Laurent series in a variable t with coefficients in C, equipped with the t-adic valuation ν :

K → Z ∪ {∞} defined by ν(f) = m if f = x m (f 0 + f 1 x + . . .), f 0 ̸ = 0 and ν(0) = ∞.
In our algorithms and implementations, we assume that C is a computable field of characteristic zero. In this chapter, we are merely interested in a (local) pseudo-linear system of the form

L(y) = A δ(y) + B ϕ(y) = 0, (2.1)
where

A, B ∈ M n (C[[t]]
) with det(A) ̸ = 0. We assume that the C-automorphism ϕ over K is an isometry with respect to ν, i.e., it preserves the valuation: ν(ϕ(a)) = ν(a), for all a ∈ K, and δ is a non-trivial pseudo-derivation w.r.t. ϕ. The matrices A and B admit unique t-adic expansions

A(t) = ∑ i≥0 A i t i , B(t) = ∑ i≥0 B i t i .
Definition 2.1. The leading matrix pencil of a pseudo-linear system (2.1) is defined as the matrix polynomial L λ = A 0 λ + B 0 , where A 0 and B 0 are the constant terms in the t-adic expansions of A and B.

We define the notion of simple form for a pseudo-linear system (2.1) as follows:

Definition 2.2. We say that System (2.1) is simple if det(L λ) ̸ = 0 (or equivalently, L λ is non-singular). Otherwise, we say that (2.1) is non-simple. This definition also applies to pseudo-linear operators and to non-homogeneous systems A δ(y)

+ B ϕ(y) = b, where b ∈ C[[t]] n .
Example 2.1. The pseudo-linear system

  1 0 0 t   δ(y) +   -1 + 2 t + O (t 2) 0 -3 2 + 3 t + O (t 2) 0   ϕ(y) = 0, (2.2)
is non-simple since its associated leading matrix pencil

L λ =   λ -1 0 -3 2 0   is singular.
The need of simple forms is essential in studying pseudo-linear systems. To see why, let us consider, for instance, the problem of computing polynomial solutions of a linear Chapter 2

Simple Forms of Pseudo-Linear Systems q-difference system y(q x) = N (x) y(x), (2.3) where q ∈ C * is not a root of unity and N (x) is an n × n matrix with rational functions entries in x and coefficients in C. A polynomial solution of degree s ∈ N can be viewed as a local formal solution (at x = ∞) of the form

y(x) = ∑ i≥0 y i x -i+s
where y i ∈ C n , y 0 ̸ = 0 and y i = 0 for i > s. The idea now is to work with K = C((t)) where t = x -1 , and we rewrite System (2.3) as a local pseudo-linear system of the form (2.1) (see Sections 1.2 and 1.4) with ϕ(t) = q t and δ = id K -ϕ. We now look for formal solutions of the form y(t) = ∑ i≥0 y i t i+s where s ∈ N and y i ∈ C n with y 0 ̸ = 0. Replacing ϕ(y), δ(y), A and B by their respective t-adic expansions in System (2.1) and comparing coefficients of the same power of t yields, amongst others, the equation

(A 0 (q -s -1) + B 0)y 0 = 0.
This implies that, if a q-difference system (2.3) has a non-zero polynomial solution of degree s, then (q -s -1) must be a root of det(A 0 λ + B 0) = det(L λ). Consequently, the degree of any polynomial solution of (2.3) can be bounded by the largest non-negative integer s such that (q -s -1) is a root of det(L λ). But, it may happen that det(L λ) vanishes identically in λ, which means that (2.1) is non-simple. In this case, no useful information can be obtained, unless we are able to compute an equivalent system (see Definition 1.15) which is simple, or in other words, a simple form of (2.1). In this spirit, we present in this chapter an efficient algorithm that allows to compute a simple form of any pseudo-linear system of the form (2.1).

Example 2.2. The equivalence transformations defined by the two matrices

S(t) =    1 t - 2 3 t 0 1 t    , T (t) =    t 2 3 t 0 1    reduce (2.
2) to the equivalent simple system

δ(y) +   -1 -2 3 -3 + 6 t + O (t 2) -2 + 4 t + O (t 2)   ϕ(y) = 0, (2.4)
Chapter 2

Simple Forms of Pseudo-Linear Systems with a non-singular leading matrix pencil

L ′ λ =   λ -1 -2 3 -3 λ -2   .
Prior to our work, the existing methods [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] for computing a simple form of a pseudo-linear system require to compute first a super-irreducible form [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF]. Motivated by the fact that a simple system is not necessarily super-irreducible, the authors in [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] developed the first direct (that is, without recourse to super-reduction) algorithm for computing simple forms for differential systems and later on in [START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] for difference systems.

The main contribution of this chapter is to provide a unified and direct algorithm for computing simple forms of general pseudo-linear systems. Consequently, this shall give the first method available for q-difference systems.

The rest of the chapter is organized as follows. Section 2.2 contains our main contribution of this chapter, i.e., an algorithm for computing simple forms for general pseudo-linear systems of the form (2.1). We show that for a given pseudo-linear operator L, we can always compute two invertible matrices S and T in M n (K) such that the equivalent operator S L T is simple. We illustrate our approach with a detailed example and we provide a complexity estimate of the algorithm. Section 2.3 is devoted to the applications of simple forms for the local study of pseudo-linear systems. We show how we can use simple forms as an essential tool for computing regular solutions. Moreover, we introduce the notion of k-simple forms in the pseudo-linear setting, and we derive a new method for computing a super-irreducible form of a pseudo-linear system based on successive computations of simple forms.

The algorithms and methods developed in this chapter manipulate matrices with power series entries. However, in practice only a finite number of coefficients is necessary and we work with truncated power series. Moreover, the different algorithms developed in this chapter are fully implemented in Maple in our PseudoLinearsystems package [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. A Maple demonstration for the implementations is given in Chapter 5.

A direct algorithm to compute simple forms

The goal of this section is to provide a unified direct algorithm for computing simple forms of a general pseudo-linear system of the form (2.1). We shall prove that the method developed in [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF][START_REF] Barkatou | On k-simple forms of first-order linear differential systems and their computation[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] for the purely differential (or difference) case can be adapted to the general pseudo-linear setting. The key points are the use of the general notion of equivalence (see Definition 1.15) and the fact that the C-automorphism ϕ preserves the Chapter 2

Simple Forms of Pseudo-Linear Systems valuation. When System (2.1) is not simple, then we have ν(det(A)) > 0 (otherwise, A 0 would be invertible and hence det(A 0 λ + B) ̸ = 0). The principle of the algorithm then consists in computing iteratively equivalent pseudo-linear systems A (i) δ(y)+B (i) ϕ(y) = 0, i ≥ 1 satisfying ν(det(A (i+1))) < ν(det(A (i))) with A (0) = A. Doing so, either we find a simple system or we finally obtain an equivalent system satisfying ν(det(A (i))) = 0 and such a system is necessarily simple. In order to decrease ν(det(A)), we shall first apply equivalence transformations in order to put the leading matrix pencil under a particular form from which we can reduce ν(det(A)).

The distinct steps

Let us consider a non-simple pseudo-linear system of the form (2.1). The constant term A 0 of A is then necessarily singular, so we have r = rank(A 0) < n. Applying, if necessary, two constant equivalence transformations S and T as in Definition 1.15, we can always suppose that A 0 has the form:

A 0 = (I r 0 0 0) . (2.5)
All non-simple systems considered in the method described below are transformed so that A 0 complies to the form (2.5). If we partition B 0 and L λ in four blocks as in (2.5), we get:

B 0 =   B 11 0 B 12 0 B 21 0 B 22 0   , L λ =   I r λ + B 11 0 B 12 0 B 21 0 B 22 0   . (2.6)
Following the terminology of [START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF], we refer to the last (n-r) rows of L λ as the λ-free rows.

We are now ready to state the main results on which our algorithm for computing simple forms relies: Proposition 2.1 shows that it is always possible to transform a pseudo-linear operator into an equivalent one with a leading matrix pencil having its λ-free rows linearly dependent. Proposition 2.2 shows that if the λ-free rows of the leading matrix pencil are linearly dependent, then we can reduce ν(det(A)).

Proposition 2.1. Consider a non-simple pseudo-linear system of the form (2.1) such that A 0 has the form (2.5) and the λ-free rows of L λ are linearly independent. Then one can compute two matrices

S ∈ GL n (C[[t -1]]) and T ∈ GL n (C[[t]]
) such that the equivalent operator L = S L T has an associated leading matrix pencil of the form

L λ =    I p λ + R 11 R 12 R 13 0 I r-p λ + R 22 R 23 0 R 32 R 33    , { 0 ≤ p ≤ r, rank(R 32 R 33) < n -r.
(2.7)

Moreover if we note L = A δ + B ϕ, then ν(det(A)) = ν(det(A)).
Chapter 2

Simple Forms of Pseudo-Linear Systems

Proof. The proof is an adaptation of those of [28, Lemma 1 and Proposition 8] to the general pseudo-linear setting. The first step consists in applying recursively constant equivalence transformations in order to obtain an operator L ′ = S L T having a leading matrix pencil of the particular form:

L ′ λ =    I p λ + R 11 0 0 R 21 I r-p λ + R 22 R 23 R 31 R 32 R 33    , (2.8)
where 0 ≤ p ≤ r and rank (R 32 R 33) < n -r.

(2.9)

To do so, we initialize an integer q to 0, and let

S (q) =    I q 0 0 0 1 v 0 0 I n-q-1    , T (q) =    1 -u 0 0 I r-q-1 0 0 0 I n-r+q    ,
be two n×n constant matrices where (1 v) is an (n-q)-dimensional row vector in the left null space of L λ/λ=0 , and u is the subvector of v of index 1 to r -q -1. Multiplying L on the left by S (q) and on the right by T (q) yields the (non-simple) operator L = S (q) L T (q) , such that its associated leading matrix pencil L λ is of the form (2.8) with p = q + 1. Now, if Condition (2.9) is satisfied, then we move to the second step. Otherwise, by incrementing the value of q by 1, we shall repeat this process for the (singular) submatrix of L λ composed of rows and columns of indices q +1 to n. Thus, after at most r iterations, we reach an equivalent operator L ′ = S L T = A ′ δ + B ′ ϕ whose leading matrix pencil L ′ λ satisfies Condition (2.9), with

S = S (q) • • • S (0) , T = T (0) • • • T (q) .
It is important to note here that since the above transformations are constants, the valuation of the determinant of matrix A does not change (more importantly, it does not increase). Now we partition A ′ and B ′ into blocks of the same sizes as those of the matrix given in (2.8), that is

A ′ =    A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33    , B ′ =    B 11 B 12
A = S A ′ T =    A 11 t -1 A 12 t -1 A 13 t A 21 A 22 A 23 t A 31 A 32 A 33    ,
and

B = S A ′ δ(T) + S B ϕ(T) =    t -1 δ(t) A 11 + t -1 ϕ(t) B 11 t -1 B 12 t -1 B 13 δ(t) A 21 + ϕ(t) B 21 B 22 B 23 δ(t) A 31 + ϕ(t) B 31 B 32 B 33    .
Finally, since ϕ preserves the valuation, the leading matrix pencil L λ of L has the form (2.7) with ν(det(A)) = ν(det(A ′)) = ν(det(A)). This ends the proof.

Example 2.3. Let us illustrate the result of Proposition 2.1 on a q-difference system. Let t = x and q ∈ C be a nonzero element which is not a root of unity. We consider the q-difference system ϕ(y) = N y with ϕ defined by ϕ : x → q x and

N =     q 2 + 1 q - (β + x) q x x q x + β 0     .
Here β denotes a nonzero parameter. Note that for β = 100, we find again the q-difference system considered in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]Section 4]. Introducing the ϕ-derivation δ = ϕ -id K , this system can be rewritten as the pseudo-linear system δ(y) = M ϕ(y) where

M = I 2 -N -1 =     1 - q x + β x x (β + x) q - (q 3 -q 2 + q) x + β (β + x) q 2     .
In order to get the form (2.1), it is enough to multiply the latter system on the left by the diagonal matrix diag(x, x + β). This yields the (local) pseudo-linear system L(y) = A δ(y) + B ϕ(y) = 0, where

A =   x 0 0 x + β   , B =     -x q x + β - x q (q 3 -q 2 + q) x + β q 2     . (2

.10)

We are now ready to illustrate the result of Proposition 2.1. The leading matrix of A and Chapter 2

Simple Forms of Pseudo-Linear Systems the associated leading matrix pencil are

A 0 =   0 0 0 β   , L λ =   0 β 0 β λ + β q -2   .
The operator L is clearly not simple as det(L λ) = 0 and we have ν(det(A)) = 1. First of all, we apply on L the constant transformations

S (1) =   0 β -1 1 0   , T (1) =   0 1 1 0   ,
in order to put A 0 in the form (2.5) with r = 1. We then get a new operator L (1) = S (1) L T (1) whose leading matrix pencil is

L (1) λ =        λ + q -2 0 β 0       
.

We now multiply L (1) on the left by the constant matrix

S (2) =    1 - 1 β q 2 0 1    ,
whose first row is a "convenient" element of the left null-space of L

(1) 0 . This yields an equivalent operator L (2) = S (2) L (1) whose leading matrix pencil is

L (2) λ =   λ 0 β 0   ,
which complies with the form (2.8) and where Condition (2.9) is satisfied. We then proceed by applying on L (2) the two diagonal transformations defined by S (3) = diag(x -1 , 1) and 3) whose leading matrix pencil

T (3) = diag(x, 1) to get a new operator L (3) = S (3) L (2) T (
L (3) λ =    λ + q -1 -λ -q + 1 β q 2 0 0    ,
is of the form (2.7). Finally, we multiply L (3) on the right by the constant matrix Chapter 2

Simple Forms of Pseudo-Linear Systems

T (4) =    1 1 β q 2 0 1   
to put A 0 in the required form (2.5), and get an equivalent operator L (4) = A (4) δ + B (4) ϕ with

A (4) =    β + x β x β 2 q 2 0 x    , B (4) =     (q -1) (β + x (q + 1)) β x (q 2 -1) β 2 q 2 (q x + β) q x ((-q + 1) β + q x) x q β     , L (4) λ =        λ + q -1 0 0 0       
.

Note that we have ν(det(A (4))) = ν(det(A)) = 1.

Proposition 2.2. Consider a non-simple pseudo-linear system of the form (2.1) such that its associated leading matrix pencil L λ has the form (2.6) with rank(B 21 0

B 22 0) < n -r. Then one can compute an invertible matrix S ∈ GL n (C[[t -1]]) such that the equivalent operator L = S L = A δ + B ϕ satisfies ν(det(A)) < ν(det(A)).
Proof. The proof is an adaptation of those of [START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF]Proposition 9] and [START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF]Proposition 4.3.1]. First of all, we can compute a non zero row vector of the form u = (0 . . . 0 1 w) in the left null space of the submatrix (B 21 0 B 22 0). Here w ∈ K n-i where i stands for the position of 1 in u. Multiplying L on the left by the constant matrix

S 1 =    I i-1 0 0 0 1 w 0 0 I n-i    ,
yields an equivalent operator L = S 1 L = A δ + B ϕ such that the matrices A 0 and B 0 have their (r + i)th row equal to zero. We then apply the diagonal transformation S 2 := diag(1, . . . , 1, t -µ , 1, . . . , 1) where µ = min{ν(A(r + i, .)), ν(B(r + i, .))} > 0 to get an equivalent operator L = S 2 S 1 L = A δ + B ϕ. We thus have the equalities

ν(det(A)) = ν(det(S 2)) + ν(det(S 1)) + ν(det(A)) = -µ + ν(det(A)).
This implies ν(det(A)) < ν(det(A)) which ends the proof.

Example 2.4. In Example 2.3, without modifying the valuation of the determinant of the matrix A, we have obtained an equivalent operator L (4) whose leading pencil is of the form (2.7). We shall then proceed by reducing the value of the valuation of the determinant of the matrix A (4) . We note that here r = 1 and the second row of the leading pencil L (4) λ

Chapter 2

Simple Forms of Pseudo-Linear Systems is already zero. The second rows of both A (4) and B (4) are of valuation 1, so we apply the transformation defined by S (5) = diag(1, x -1) to obtain the new equivalent operator L (5) = S (5) L (4) = A (5) δ + B (5) ϕ with

A (5) =    x β + 1 x β 2 q 2 0 1    , B (5) =      (q -1) (β + x (q + 1)) β x (q 2 -1) β 2 q 2 (qx + β) q β + (x -β) q β q      . (2.11)
As expected, we have ν(det(A (5))) = 0 < 1. The leading matrix pencil of L (5) is given by

L (5) λ =          λ + q -1 0 β q 1 + (λ -1) q q         
, and L (5) is a simple q-difference operator. Finally the matrices that transform the nonsimple operator L into the simple operator L (5) are given by

S = S (5) S (3) S (2) S (1) =     - 1 β x q 2 1 β x 1 x 0     , T = T (1) T (3) T (4) =   0 1 x x β q 2   .

An example

Let ϕ : x → 2 x -1 be a C-automorphism over K and δ = id K -ϕ be a ϕ-derivation.

Consider the pseudo-linear operator L = A δ + B ϕ, where A and B are given by:

A =             1 0 0 0 0 0 x 0 0 0 0 0 x -1 0 0 0 0 0 x -1 0 0 0 0 0 x -1             , B =             1 x 0 0 x -1 0 0 0 0 1 0 1 0 (x -1) 2 0 1 0 x -1 0 0 0 1 0 0 x 3 -2 x 2 + x             .
Let us compute a simple form at the ϕ-fixed point x 0 = 1 (see Definition 1.8). For this we set t = x -1 and we note that ν(det(A)) = 3. The associated leading matrix pencil is

L λ = A 0 λ + B 0 =             λ + 1 1 0 0 0 0 λ 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0             , Chapter 2
Simple Forms of Pseudo-Linear Systems and its determinant vanishes identically in λ, therefore the operator L is non-simple. The λ-free rows of L λ are linearly dependent and A 0 is already of the form (2.5) with r = rank(A 0) = 2. So we shall first apply Proposition 2.2. The vector (1

w 1 w 2) = (1 0 -1)
is in the left null space of the matrix constituting the λ-free rows of L λ . Multiplying L on the left by the constant matrix

S (1) =             1 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 0 0 0 1 0 0 0 0 0 1            
, yields an equivalent operator L (1) = S (1) L = A (1) δ + B (1) ϕ, where

A (1) =             1 0 0 0 0 0 x 0 0 0 0 0 x -1 0 -x + 1 0 0 0 x -1 0 0 0 0 0 x -1             , B (1) =             1 x 0 0 x -1 0 0 0 0 1 0 0 0 (x -1) 2 -x (x -1) 2 1 0 x -1 0 0 0 1 0 0 x (x -1) 2             .
The third rows of A (1) and B (1) have valuations equal to 1 and 2 respectively. Let µ = min{1, 2} = 1 and multiply L (1) on the left by the diagonal matrix

S (2) = diag(1, 1, (x -1) -µ , 1 , 1).
This yields an equivalent operator L (2) = S (2) L (1) = A (2) δ + B (2) ϕ, with

A (2) =             1 0 0 0 0 0 x 0 0 0 0 0 1 0 -1 0 0 0 x -1 0 0 0 0 0 x -1             , B (2) =             1 x 0 0 x -1 0 0 0 0 1 0 0 0 x -1 -(x -1) x 1 0 x -1 0 0 0 1 0 0 x (x -1) 2             , Chapter 2
Simple Forms of Pseudo-Linear Systems

L (2) λ = A (2) 0 λ + B (2) 0 =             λ + 1 1 0 0 0 0 λ 0 0 1 0 0 λ 0 -λ 1 0 0 0 0 0 1 0 0 0             .
The operator L (2) is still non-simple but we have decreased the valuation of the determinant of the A-matrix as ν (det(A (2))

) = 2 < ν (det(A)) = 3.
We restart the process on L (2) . Multiply first L (2) on the right by the constant matrix

T (3) =             1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1             , in order to put A (2) 0
in the required form (2.5). This yields the equivalent operator

L (3) = L (2) T (3) = A (3) δ + B (3) ϕ, with A (3) =             1 0 0 0 0 0 x 0 0 0 0 0 1 0 0 0 0 0 x -1 0 0 0 0 0 x -1             , B (3) =             1 x 0 0 x -1 0 0 0 0 1 0 0 0 x -1 -(x -1) x 1 0 x -1 0 x -1 0 1 0 0 x 3 -2 x 2 + x             , L (3)
λ = A (3) 0 λ + B (3) 0 =             λ + 1 1 0 0 0 0 λ 0 0 1 0 0 λ 0 0 1 0 0 0 0 0 1 0 0 0             .
The λ-free rows of L

(3) λ are linearly independent and A

(3) 0 is of the form (2.5) with r = rank(A (3) 0) = 3. So we shall now apply Proposition 2.1. The vector

(1 v 1 v 2 v 3 v 4) = (1 0 0 -1 -1) is in the left null space of L (3)
λ/λ=0 . Multiplying L (3) on the left by the constant matrix Chapter 2

Simple Forms of Pseudo-Linear Systems

S (4) =             1 0 0 -1 -1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1            
, and on the right by T (4) = I 5 , yields an equivalent operator L (4) = S (4) L (3) T (4) = A (4) δ + B (4) ϕ, with

A (4) =             1 0 0 -x + 1 -x + 1 0 x 0 0 0 0 0 1 0 0 0 0 0 x -1 0 0 0 0 0 x -1             , B (4) =             0 x -1 -x + 1 0 -x 3 + 2 x 2 -x 0 0 0 0 1 0 0 0 x -1 -(x -1) x 1 0 x -1 0 x -1 0 1 0 0 x 3 -2 x 2 + x             , L (4)
λ = A (4) 0 λ + B (4) 0 =             λ 0 0 0 0 0 λ 0 0 1 0 0 λ 0 0 1 0 0 0 0 0 1 0 0 0             . L (4)
λ complies with the form (2.8) with p = 1 and Condition (2.9) is satisfied. We then proceed by applying on L (4) the diagonal transformations defined by

S (5) = diag((x -1) -1 , 1, 1, 1, 1), T (5) = diag(x -1, 1, 1, 1, 1),
to get a new operator L (5) = S (5) L (4) T (5) = A (5) δ + B (5) ϕ, with

A (5) =             1 0 0 -1 -1 0 x 0 0 0 0 0 1 0 0 0 0 0 x -1 0 0 0 0 0 x -1             , B (5) =             -1 1 -1 0 -(x -1) x 0 0 0 0 1 0 0 0 x -1 -(x -1) x 2 x -2 0 x -1 0 x -1 0 1 0 0 x (x -1) 2             , Chapter 2
Simple Forms of Pseudo-Linear Systems

L (5) λ = A (5) 0 λ + B (5) 0 =             λ -1 1 -1 -λ -λ 0 λ 0 0 1 0 0 λ 0 0 0 0 0 0 0 0 1 0 0 0            
.

The matrix A

(5) 0

is not in the form (2.5) so we can multiply L (5) on the right by the constant matrix

T (6) =             1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1            
, and get an equivalent operator L (6) = L (5) T (6) = A (6) δ + B (6) ϕ, where

A (6) =             1 0 0 0 0 0 x 0 0 0 0 0 1 0 0 0 0 0 x -1 0 0 0 0 0 x -1             , B (6) =             -1 1 -1 -1 -x 2 + x -1 0 0 0 0 1 0 0 0 x -1 -(x -1) x 2 x -2 0 x -1 2 x -2 3 x -3 0 1 0 0 x (x -1) 2             ,
and with an associated leading matrix pencil

L (6) λ = A (6) 0 λ + B (6) 0 =             λ -1 1 -1 -1 -1 0 λ 0 0 1 0 0 λ 0 0 0 0 0 0 0 0 1 0 0 0            
, having the form (2.7). Note that we have ν (det(A (6))

) = ν (det(A (3))) = 2
(in fact we have A (6) = A (3) by coincidence). We are now ready to apply Proposition 2.2 in order to reduce ν (det(A (6))

)

. The fourth row of L (6) λ is already zero and the fourth rows of both matrices A (6) and B (6) are of valuations 1, so we multiply L (6) on the left by the matrix S (7) = diag(1, 1, 1, (x -1) -1 , 1) to obtain the new equivalent operator L (7) = S (7) L (6) = A (7) δ + B (7) ϕ, where Chapter 2 Simple Forms of Pseudo-Linear Systems

A (7) =             1 0 0 0 0 0 x 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 x -1             , B (7) =             -1 1 -1 -1 -x 2 + x -1 0 0 0 0 1 0 0 0 x -1 -(x -1) x 2 0 1 2 3 0 1 0 0 x 3 -2 x 2 + x             .
As expected, we have ν (det(A (7))

) = 1 < ν (det(A (6))) = 2.
Moreover, L (7) is an equivalent simple pseudo-linear operator with a non-singular leading matrix pencil given by

L (7) λ = A (7) 0 λ + B (7) 0 =             λ -1 1 -1 -1 -1 0 λ 0 0 1 0 0 λ 0 0 2 0 1 λ + 2 3 0 1 0 0 0             .
Finally the matrices that transform the non-simple operator L into the equivalent simple operator L (7) are given by S = S (7) S (5)

S (4) S (2) S (1) =                1 x -1 0 0 - 1 x -1 - 1 x -1 0 1 0 0 0 0 0 1 x -1 0 - 1 x -1 0 0 0 1 x -1 0 0 0 0 0 1                , T = T (3) T (4) T (5) T (6) =             x -1 0 0 x -1 x -1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1             . Chapter 2
Simple Forms of Pseudo-Linear Systems

The complete algorithm

Applying recursively Propositions 2.1 and 2.2 provides an algorithm, called SimpleForm below, to compute a simple form of a pseudo-linear system of the form (2.1). The algorithm takes as an input the two matrices A and Initialization: Remark 2.1. Before Steps 1 and 3 of the above algorithm, one needs to apply, if necessary, constant transformations in order to put A 0 in the form (2.5).

B in M n (C[[t]]),
S ← I n , T ← I n , A ← A, B ← B and L λ ← A 0 λ + B 0 ; While det(L λ)=0 do 1. Compute two matrices S and T as in Proposition 2.1; 2. Update A ← S A T , B ← S A δ(T) + S B ϕ(T), S ← S S

Remark 2.2. As it is explained in the beginning of Section 2.2, in each passage through the While loop in Algorithm SimpleForm, the value of ν(det(A)) decreases at least by 1. This happens in Step 4 of the algorithm (see Proposition 2.2). Thus, after at most ν(det(A)) iterations where A is the matrix given in input, we find an equivalent simple system.

The arithmetic complexity of this algorithm is studied in [START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] in the case of differential systems. However, the algorithm merely performs linear algebra calculations on the first coefficients in the t-adic expansions of the matrices A and B defining System (2.1). Indeed, apart from constant transformations, Formulas (1.11) are only used with diagonal matrices S and T of a very particular form, e.g., only powers of t can appear in the diagonal, so that the automorphism ϕ and the ϕ-derivation δ will not influence the number of arithmetic operations. We thus state the following complexity estimate of Algorithm SimpleForm.

Chapter 2

Simple Forms of Pseudo-Linear Systems Proposition 2.3. Let us consider a pseudo-linear system (2.1). Let h = ν(det(A)) and suppose that the t-adic expansions of A and B are known up to an order m ≥ h. Then Algorithm SimpleForm computes a simple form of (2.1) using at most O(n ω+1 h+m n 3 h) arithmetic operations in the field C, where ω denotes the linear algebra exponent (see [START_REF] Von Zur Gathen | Modern computer algebra[END_REF]).

Proof. This follows from the previous explanations and [START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF]Lemmas 4.3.1,4.3.2,4.3.3].

Simple forms and local analysis

Simple forms are very useful for the local analysis of pseudo-linear systems over the field C(x) of rational functions near a ϕ-fixed singular point x 0 -see Definition 1.8. Recall that (see Section 1.4) in order to locally study a pseudo-linear system, we fix a local parameter t (for instance, t = x -x 0 or t = x -1 depending on x 0 being finite or not), we imbed C(x) in the local ϕδ-field (K, ϕ, δ) where K = C((t)), and we write the system as a local pseudo-linear system (1.9). We remind the reader that this latter system is a system of the form

t p-ω δ(y) = M ϕ(y), (2.12)
where

M = ∑ i≥0 M i t i ∈ M n (O) with O = C[[t]], p ∈ N is the Poincaré rank of (2.
12) and ω ∈ Z is the degree of the ϕ-derivation δ. Recall that System (2.12) can be written as

A δ(y) + B ϕ(y) = 0, (2.13)
where

δ = t -ω δ, A = diag(t α 1 , . . . , t αn) ∈ M n (O) with α i = -min{0, ν(M (i, .
)) -p}, and

B = -t -p A M ∈ M n (O).
Here M (i, .) denotes the i th row of M . Then, System (2.12) is said to be simple if System (2.13) is simple.

Definition 2.3. ([START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF][START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF]). With the above notations, a local pseudo-linear system of the form (2.12) or (2.13) is said to be of the first kind if it is equivalent to a system with Poincaré rank equal to 0. In this case, the singularity x 0 is said to be regular. Otherwise,

x 0 is said to be an irregular singularity.

Note that an equivalent system of (2.12) has to be of the form

t p-ω δ(y) = T -1 (M ϕ(T) -t p-ω δ(T)) ϕ(y),
for some T ∈ GL n (K) (see Definition 1.6). We define the indicial polynomial of a simple pseudo-linear system as follows:

Definition 2.4. With the above notations, let us consider a simple system of the Chapter 2

Simple Forms of Pseudo-Linear Systems form (2.13) or (2.12). We define its indicial polynomial as

φ(λ) = det(d [λ] c A 0 + c λ B 0), (2.14)
where d, c and [λ] c are defined in Definition 1.13.

Remark 2.3. When System (2.13) or (2.12) is simple, we have det(L λ) = det(A 0 λ + B 0) ̸ = 0 so that φ(λ) ̸ = 0. For the differential case (ϕ = id K) and the difference case (ϕ :

t → t + 1), we have c = d = 1 which yields φ(λ) = det(L λ) a polynomial in λ. In general, if c = 1 then φ(λ) is a polynomial in λ. Otherwise, if c ∈ C * is not a root of

unity and d is not an eigenvalue of the matrix

A 0 λ + (c -1) B 0 , then φ(λ) is a polynomial in c λ .
By abuse of language, we shall also call it polynomial and its "roots" are the values of λ such that c λ annihilates φ(λ). They can be computed using [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF]Lemma 3.1].

In this section, we first recall the notions of Moser-and super-irreducible forms of pseudolinear systems in the same context as introduced in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF], and we establish the connection between the notions of super-irreducibility and simplicity. Then we show how Algorithm SimpleForm can be used to determine the nature of a singularity in the regular / irregular classification, to compute a basis of regular solutions, and to compute so called k-simple forms which are closely related to super-irreducible forms. Finally we propose a new method to compute a super-irreducible form of a pseudo-linear system based on successive computations of k-simple forms.

Moser-and super-irreducible forms

The notion of Moser-irreducible forms introduced by Moser [START_REF] Moser | The order of a singularity in Fuchs theory[END_REF] and its generalisation, the super-irreducible forms introduced by Hilali and Wazner [START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF], have been proven to be essential concepts for the symbolic resolution of differential and difference systems, see for instance [START_REF] Barkatou | Computing the exponential part of a formal fundamental matrix solution of a linear difference system[END_REF][START_REF] Pflügel | Effective formal reduction of linear differential systems[END_REF]. The notions of Moser-and super-irreducible forms have been extended for more general pseudo-linear systems in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF]. In the following, we briefly recall these notions. Denote by π the canonical homomorphism from

O = C[[t]] into C.
We associate to the local pseudo-linear system (2.12) with Poincaré rank p the following rational numbers:

m ϕ,δ (M) =    p + rank(M 0) n if p > 0, 0 if p = 0, and
µ ϕ,δ (M) = min { m ϕ,δ (T -1 (M ϕ(T) -t p-ω δ(T))) ; T ∈ GL n (K) } .
Chapter 2

Simple Forms of Pseudo-Linear Systems Definition 2.5. System (2.12) is said to be Moser

-irreducible if m ϕ,δ (M) = µ ϕ,δ (M).
Otherwise it is said to be Moser-reducible.

Remark 2.4. The singularity is regular in the sense of Definition 2.3 if and only if

µ ϕ,δ (M) = 0.
The following result gives a criterion for Moser-irreducibility:

Theorem 2.1. [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF]Theorem 3.1]). Suppose that p > 0 and let n 0 = rank(M 0). Then System (2.12) is Moser-irreducible if and only if the polynomial

θ 1 (λ) = π (t n 0 det (I n λ -t -1 M)) ∈ O[λ],
does not vanish identically in λ.

Remark 2.5. One can easily verify that the polynomial θ 1 (λ) depends only on M 0 and

M 1 : θ 1 (λ) = π (t n 0 det (I n λ -t -1 M 0 -M 1)
) .

Now suppose that the Poincaré rank p of System (2.12) satisfies p > 0. Denote by n i the number of rows of M with valuation i. Define, for 1 ≤ k ≤ p, the rational numbers

m (k) ϕ,δ (M) = p + n 0 n + n 1 n 2 + • • • + n k-1 n k ,
and

µ (k) ϕ,δ (M) = min { m (k) ϕ,δ (T -1 (M ϕ(T) -t p-ω δ(T))) ; T ∈ GL n (K) } . Definition 2.6. System (2.12) is said to be k-irreducible if m (k) ϕ,δ (M) = µ (k) ϕ,δ (M). Oth- erwise it is said to be k-reducible. System (2.12) is said to be super-irreducible if it is k-irreducible for every k, or equivalently if m (p) ϕ,δ (M) = µ (p) ϕ,δ (M).
A criterion for k-reducibility is obtained in the following way (as in the differential case [START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF]). Define the non-negative integer s k as

s k = k n 0 + (k -1) n 1 + • • • + n k-1 , (2.15)
and the polynomial [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF]Theorem 3.2]). System (2.12) is k-irreducible if and only if, for j = 1, . . . , k, the polynomials θ j (λ) do not vanish identically in λ.

θ k (λ) = π (t s k det(I n λ -t -k M)) ∈ O[λ]. (2.16) Theorem 2.2. ([
Remark 2.6. The notion of 1-irreducible system coincides with that of Moser-irreducible systems.

Chapter 2

Simple Forms of Pseudo-Linear Systems

We establish now the connection between the notions of super-irreducibility and simplicity.

Proposition 2.4. If System (2.12) is super-irreducible then it is simple.

Proof. We have to prove that System (2.13) is simple. Denote by L λ = A 0 λ + B 0 its leading matrix pencil. If p = 0 then the matrix A is just the identity matrix and this easily results into a simple system. Suppose now that p > 0. It is easy to verify that det(A) = t sp , and one has

det(L λ) = π (det(A λ + B)) = π (det(A λ -t -p A M)) = π (t sp det(I n λ -t -p M)) = θ p (λ). Now if System (2.
12) is super-irreducible, then it follows from Theorem 2.2 that the polynomial θ p (λ) is not zero and (2.13) is simple.

Note that if a system is simple, then it is not necessarily super-irreducible. It is not even k-irreducible for some positive integer k. Indeed, super-irreducibility requires that θ k (λ) ̸ = 0 for all 1 ≤ k ≤ p, while simplicity requires that only θ p (λ) ̸ = 0.

Example 2.5. Let ϕ be the C-automorphism over K defined by ϕ : t → q t such that q ∈ C * is not a root of unity, and δ be a ϕ-derivation defined as δ = id K -ϕ having degree ω = 0. The pseudo-linear operator

L = A δ + B ϕ =      1 0 0 0 1 t 0 0 t 2      δ +      -t 2 + 2 t 2 -3 0 2 -3 -t 2 0 0 -t 3 -1      ϕ, is simple since det(L λ) = det(A 0 λ + B 0) = -λ 2 + λ ̸ = 0. Write the system L(y) = 0 in the form δ(y) = N ϕ(y) with N = -A -1 B =        t 2 -2 -t 2 + 3 0 -2 3 t 2 + -t 3 -1 t 0 0 t 3 + 1 t 2        .
The latter system has a Poincaré rank p = 2 and it can be written in the local form (2.12) as

t 2 δ(y) =      t 2 (t 2 -2) -t 2 (t 2 -3) 0 -2 t 2 3 t 2 -t 0 0 t 3 + 1      ϕ(y).
The polynomial θ 2 (λ) defined in (2.16) is equal to

θ 2 (λ) = π (t (λ t 2 -t 3 -1) (-λ t 2 + λ 2 + t 2 -λ)) = 0, Chapter 2
Simple Forms of Pseudo-Linear Systems and it follows form Theorem 2.2 that the system is not super-irreducible.

Regular solutions and regular singularities

We are interested here in the task of computing so called regular solutions (see Definition 2.7 below) of pseudo-linear systems. Appropriate methods have been designed in the past for computing such solutions for the individual types of systems: see for instance [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Barkatou | An algorithm computing the regular formal solutions of a system of linear differential equations[END_REF] for differential, [START_REF] Abramov | On solutions of linear functional systems[END_REF][START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] for difference, and [4,[START_REF] Admas | On the linear ordinary q-difference equation[END_REF] for q-difference systems. More recently, a generic algorithm has been developed in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF] for general pseudo-linear systems.

Consider again System (2.12) and recall that it can be written as System (2.13).

We denote by e λ and u the two scalar functions of the variable t in some extension of K satisfying:

ϕ(e λ (t)) e λ (t) = c λ + O(t), t -ω δ(e λ (t)) e λ (t) = d [λ] c + O(t), t -ω δ(u(t)) = 1 + O(t),
where c and d are defined in Definition 1.13. It has been shown in [24, Appendix A] that, when looking for regular solutions for specific classes of linear functional systems, e λ and u can be expressed using the exponential and logarithm function. For instance, in the the pure differential and difference cases, one has e λ (t) = t λ and u(t) = ln(t), while in the q-difference case (ϕ : x → q x, q ̸ = 0, 1), one has e λ (t) = t λ and u(t) = log q (t).

According to [24, Theorem 4.3], a simple pseudo-linear system (2.13) admits deg(φ(λ)) linearly independent local solutions y i 's of the form:

y i (t) = e λ i (t) m i -1 ∑ j=0 z i,j (t) u(t) m i -j (m i -j)! , i = 1, . . . , deg(φ(λ)), (2.17)
where

λ i ∈ C is a root of multiplicity m i of the indicial polynomial φ(λ) and z i,j (t) ∈ C[[t]] n .
Definition 2.7. Local solutions of the form (2.17) are called regular solutions of Systems (2.12) and (2.13).

In order to compute a basis of regular solutions of a given pseudo-linear system, one then needs to effectively compute the polynomial φ(λ). This polynomial can be read off from System (2.13) only if the system is in simple form. Recall that (see Proposition 2.4) if the system is super-irreducible then it is simple with det(L λ) = θ p (λ) ̸ = 0, where θ p (λ) is defined in (2.16). In [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] and in previous works restricted to the differential or difference case, it is proposed to compute a super-irreducible form of the system to effectively compute θ p (λ), which allows to obtain det(L λ) and φ(λ). The algorithm SimpleForm Chapter 2

Simple Forms of Pseudo-Linear Systems developed in the present dissertation can then be used to compute det(L λ) and φ(λ) for any pseudo-linear system directly without recourse to reduction algorithms. Note that such an approach has already been proposed for the differential [START_REF] Barkatou | Simple forms of higher-order linear differential systems and their applications in computing regular solutions[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] and difference [START_REF] Barkatou | On the computation of simple forms and regular solutions of linear difference systems[END_REF] cases.

Once φ(λ) is computed, we proceed as follows: let λ i be root of multiplicity m i of φ(λ). The change of variable y = e λ i z reduces the problem to computing m i series solutions z i,j (t) ∈ C[[t]] n with j = 0, . . . , m i -1. Computing these series solutions can be done using the monomial-by-monomial method described in [24, Section 5]. Doing so, we obtain one regular solution of the form (2.17). Repeating the same process for each root of φ(λ), we finally obtain deg(φ(λ)) regular solutions of (2.13). We refer to [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF][START_REF] Broughton | Symbolic algorithms for the local analysis of systems of pseudo-linear equations[END_REF] for more details on regular solutions of pseudo-linear systems.

Example 2.6. Let us go back to the q-difference system considered in Examples 2.3 and 2.4. For a local q-difference system at x = 0, we take as local parameter t = x and consider the local pseudo-linear system Aδ(y) + Bϕ(y) = 0, where A and B are given by (2.10). Then we have ω = 0, c = q so that c ̸ = 1, d = q -1, e λ (x) = x λ , and u(x) = log q (x). The output of Algorithm SimpleForm provides an equivalent simple system A (5) δ(y) + B (5) ϕ(y), where A (5) and B (5) are given by (2.11) and with det(L λ) = (λ q -q + 1) (λ + q -1) q -1 , which yields

φ(λ) = q 2 λ -q λ-1 -q λ+1 + 1.
The roots of φ(λ) are thus λ = ±1 (see Remark 2.3) and from (2.17), it follows that the system admits two linearly independent regular solutions at x = 0 given by y 1 (x) =

x z 1,0 (x), y 2 (x) = x -1 z 2,0 (x) with z 1,0 =   β -1 β -2 q -2 x + O (x 2)   , z 2,0 =   1 β -1 x + O (x 2)   .
Algorithm SimpleForm can also be used to determine the nature of a singularity in the regular / irregular classification. Indeed, the singularity of System (2.13) is regular if and only if the system admits a basis of n regular solutions of the form (2.17). We then get the following lemma: Simple Forms of Pseudo-Linear Systems provides an alternative to Moser's reduction [START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | A rational version of Moser's algorithm[END_REF][START_REF] Moser | The order of a singularity in Fuchs theory[END_REF] for recognising the nature of a singularity.

k-simple forms

The notion of k-simple forms has been first introduced by Pflügel [START_REF] Pflügel | Effective formal reduction of linear differential systems[END_REF] for differential systems as a generalisation of the notion of simple form [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF]. These forms turned out to be very useful for computing important local data of a differential system such as formal solutions and the integer slopes of the Newton polygon [START_REF] Barkatou | An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system[END_REF][START_REF] Tournier | Solutions formelles d'équations Différentielles, le logiciel de calcul formel: DÉSIR, étude théorique et réalisation[END_REF]. The method proposed in [START_REF] Pflügel | Effective formal reduction of linear differential systems[END_REF] to compute k-simple forms consists in applying super-reduction algorithms [START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF] first. Later on, a direct, i.e. without applying super-reduction, algorithm was developed in [START_REF] Barkatou | On k-simple forms of first-order linear differential systems and their computation[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] for computing k-simple forms of differential systems. We introduce here the notion of k-simple forms in the general pseudo-linear setting.

Consider again a local pseudo-linear system of the form (2.12). For any nonnegative integer k, we define

A (k) = diag(t α 1 , . . . , t αn), α i = max (0, p -k -ν(M (i, .)) , (2.18)
and

B (k) = -t k-p A (k) M. (2.19) Note that B (k) ∈ M n (C[[t]]) since we have ν(A (k) M) ≥ k -p.
Definition 2.8. Let k be a nonnegative integer and δ k = t k-ω δ. Then System (2.12) is said to be k-simple if the pseudo-linear system

A (k) δ k (y) + B (k) ϕ(y) = 0 (2.20)
is simple, i.e., det(A

(k) 0 λ + B (k) 0) ̸ = 0.
When this is the case, we call

Ψ k (λ) = det(A (k) 0 λ + B (k) 0),
the characteristic polynomial of (2.12) associated to k.

Remark 2.7. The notion of 0-simple systems coincides with the notion of simple systems.

If System (2.12) is not k-simple, then applying Algorithm SimpleForm to the non-simple system (2.20), produces a new simple system

A (k) δ k (y) + B (k) ϕ(y) = 0. The system t p-ω δ(y) = M ϕ(y) where M = -t p-k A (k) -1 B (k) is then an equivalent Chapter 2
Simple Forms of Pseudo-Linear Systems k-simple system of (2.12) (or a k-simple form of (2.12)). Note that System (2.12) is necessarily k-simple for k ≥ p since in this case the α i 's in (2.18) are all equal to zero so that

A (k) = I n .
Example 2.7. Let ϕ : x → x -1 be a C-automorphism over K and δ = (x -1)(id K -ϕ) be a ϕ-derivation. As ∞ is the only singularity in this case, then we introduce the local parameter t = x -1 . The degree of δ is thus ω = 0. Let us compute a 2-simple form of the pseudo-linear system

x -3 δ(y) =             0 1 x 4 - 1 x 5 0 1 x 3 1 x 4 0 4 x 6 0 1 x 2 1 x 3 0 1 x + 1 x 3 0 4 x 3 + 2 x 2 + 1 0 1 x 3 - 1 x             ϕ(y) (2.21)
having Poincaré rank p = 3. Using the above notations, System (2.21) can be transformed into the pseudo linear system A (2) δ 2 (y) + B (2) ϕ(y) = 0 where δ 2 = x -2 δ and

A (2) =         1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 x -1         , B (2) =             0 - x -1 x 4 0 - 1 x 2 - 1 x 3 0 - 4 x 5 0 - 1 x - 1 x 2 0 - x 2 + 1 x 2 0 - x 3 + 2 x + 4 x 3 0 x 2 -1 x 3            
.

The latter system is not simple and, using Algorithm SimpleForm, we compute an equivalent simple system A (2) δ 2 (y) + B (2) ϕ(y) = 0 where A (2) = I 4 and

B (2) =              - 1 x 2 - 1 x 3 0 - 1 x - 1 (x -1) x 2 - 1 x 2 - 4 x 4 0 - 1 x (x -1) - 1 (x -1) x 2 0 - x 2 + 1 x 2 0 - x 3 + 2 x + 4 (x -1) x 2 0 x 2 -1 x 2              .
Finally, the latter system can be written as

x -3 δ(y) = M ϕ(y), (2.22)
Chapter 2

Simple Forms of Pseudo-Linear Systems

where M = -x -1 A (2) -1
B (2) , and we say that System (2.22) is a 2-simple form of System (2.21).

As it has already been pointed out, super-reduction algorithms can be used to compute simple forms of pseudo-linear systems. More generally, we have the following result: Lemma 2.2. Any super-irreducible system of the form (2.12) is k-simple for k = 0, . . . , p -1.

Proof. Consider a system of the form (2.12) and let A (k) and B (k) be defined as in (2.18) and (2.19). One can easily verify that the matrix A (k) satisfies det(A (k)) = s p-k where s p-k is defined in (2.15). Moreover one has for k = 0, . . . , p -1,

det (A (k) 0 λ + B (k) 0) = π (det (A (k) λ + B (k))) = π (det (A λ -t k-p A (k) M)) = π (t s p-k det (I n λ -t k-p M)) = θ p-k (λ),
where θ p-k (λ) is defined in (2.16). If System (2.12) is super-irreducible, then it is in particular p-irreducible. It follows from Theorem 2.2 that θ p-k (λ) ̸ = 0 for k = 0, . . . , p-1, and hence (2.12) is k-simple.

Computing super-irreducible forms can then be a way to compute k-simple forms. However, a pseudo-linear system which is k-simple for a fixed k is not necessarily super-) operations in C, while using the super-reduction algorithm [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF], it can be done in O(m p n 4 min(n -1, p)) operations in C (see [START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF]Proposition 4.3]). Therefore, using Algorithm SimpleForm, we gain the factor min(n -1, p) w.r.t. the super-reduction algorithm. This can be explained by the fact that the super-reduction algorithm provides k-simple forms for all k = 0, . . . , p -1, while Algorithm SimpleForm provides a k-simple form for a single integer k between 0 and p -1.

Chapter 2

Simple Forms of Pseudo-Linear Systems

Super-reduction using simple forms

The following two lemmas give rise to a new method, based on successive computations of k-simple forms, to compute a super-irreducible form of a pseudo-linear system of the form (2.12).

Lemma 2.3. For any k ∈ {1, . . . , p}, if t p-ω δ(y) = M ϕ(y) is a k-simple form of t p-ω δ(y) = M ϕ(y), and t p-ω δ(y) = M ϕ(y) is a (k -1)-simple form of t p-ω δ(y) = M ϕ(y), then t p-ω δ(y) = M ϕ(y) is k-simple and (k -1)-simple.
Proof. The proof is based on the results on the preservation of the simplicity developed in [34, Section 3]

(k) 0 λ + B (k) 0) = θ p-k (λ),
where θ p-k (λ) is defined in (2.16). System (2.12) being k-simple for all values of k ∈ {0, . . . , p -1}, means that det(A

(k) 0 λ + B (k)
0) ̸ = 0, and then it follows from Theorem 2.2 that System (2.12) is super-irreducible. Lemma 2.4 suggests the following algorithm for computing a super-irreducible form of a pseudo-linear system (2.12): compute first a (p -1)-simple form t p-ω δ(y) = M ϕ(y) of (2.12). Then compute a (p -2)-simple form t p-ω δ(y) = M ϕ(y) of t p-ω δ(y) = M ϕ(y). Iterate this process until we get a 0-simple form. According to Lemma 2.3, the last system obtained is guaranteed to be k-simple for all values of k ∈ {0, . . . , p -1}, and thus super-irreducible.

Example 2.8. Let us compute a super-irreducible form near the singularity 0 of a q-difference system y(q x) = W (x) y(x) where q ∈ C * is not a root of unity, and

W =         0 1 x 3 q x 3 x 2 + 1 x q x -q x 2 -1 1 q x 2 -1 0 x         .
Define the local parameter t = x. The system can be written in the local form (2.12) as

x 3 δ(y) = M ϕ(y) (2.23)
Chapter 2

Simple Forms of Pseudo-Linear Systems where ϕ : x → x/q, δ = id K -ϕ with degree ω = 0 and

M = x 3 (ϕ(W) -I 3) =          -x 3 q 3 x 6 q 2 x 2 (q 3 + x 3) q 2 x 2 (q 2 -x) - x 3 (x 2 + q) q x (-x 2 + q) 0 - x 3 (-x + q) q          .
Here the Poincaré rank is p = 3. First we compute a 2-simple form. For this, we write (2.23) under the form A (2) δ 2 (y) + B (2) ϕ(y) = 0 where

δ 2 = x 2 δ, A (2) = diag(x, 1, 1), B (2) = -x -1 A (2) M.
Using Algorithm SimpleForm, we compute an equivalent simple system

A (2) δ 2 (y) + B (2) ϕ(y) = 0, (2.24)
where

A (2) = I 3 , B (2) =          -x (-x + q) x (x 2 + q) q -q 3 -x 3 q 2 0 x 2 (-x + q) q x 2 -q -q 2 - x 5 q 2 x 2          .
The system

x 3 δ(y) = M ϕ(y), (2.25
)

where M = -x A (2) -1
B (2) , is thus a 2-simple form of (2.23). Now we compute a 1-simple form of (2.25). For this, we write (2.25) under the form D (1) δ 1 (y) + N (1)

ϕ(y) = 0, (2.26)
where δ 1 = x δ, D (1) = diag(x, x, x) and N (1) = -x -2 D (1) M . Note that (2.26) can be directly obtained from (2.24) by setting D (1) = x A (2) and N (1) = B (2) . Applying Algorithm SimpleForm to (2.26) produces an equivalent simple system

D (1) δ 1 (y) + N (1) ϕ(y) = 0, (2.27)
where Chapter 2

Simple Forms of Pseudo-Linear Systems

D (1) = diag(1, x, x), N (1) =          x -q -q 2 + 2 x 2 + q q - x (q 2 + x) q 2 0 x 2 (-x + q) q x 2 -q -q 2 -x 5 -q 4 q 2 x 2          .
The system

x 3 δ(y) = M ϕ(y), (2.28)
where

M = -x 2 D (1)
-1

N (1) =          x 2 (-x + q) x 2 (q 2 -2 x 2 -q) q x 3 (q 2 + x) q 2 0 - x 3 (-x + q) q x (-x 2 + q) q 2 x x (x 5 + q 4) q 2 -x 3         
, is thus a 1-simple form of (2.25). Note that System (2.28) is also 2-simple. Then, one can easily check that (2.28) is already 0-simple. Therefore, System (2.28) is an equivalent k-simple system of (2.23) for all k = 0, . . . , p -1, and hence it is a super-irreducible form of (2.23). Finally, we can say that the system y(q x) = W (x) y(x) where

W (x) = I 3 + q -3 x -3 M (qx) =          1 x -2 q x 2 + q -1 x q q + x q 0 x -q x 2 + 1 q x 2 1 x 2 q x 5 + 1 x 2 0         
, is a super-irreducible form of y(qx) = W (x) y(x) near the singularity 0.

Our new method developed in the present section requires "p times" the computation of a k-simple form. Hence, computing a super-irreducible form of System (2.12) using our method can be done in at most O(m p 2 n 4) operations in C where m denotes the order of the t-adic expansion of the matrix M in (2.12) (see Remark 2.8). From a complexity perspective, the method developed in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF], which is implemented in the current version of the Isolde [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF] package, seems to be better as it requires at most O(m p n 4 min(n -1, p)) operations in C (see [START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF]Proposition 4.3]). However, after performing some practical experiments, we have noticed an advantage of our method compared to the one in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF].

But we do believe that if (some of) the internal procedures of the Isolde package are updated, then the method in [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF] will claim the practical advantage. We end this chapter by presenting, without commenting, the timings obtained from one of our experiments held for series of differential systems of sizes n and Poincaré ranks p. The first, respectively second, entry of each cell denotes the time (in seconds) obtained using our method, respectively the method from [START_REF] Barkatou | Regular systems of linear functional equations and applications[END_REF]. [START_REF] Barkatou | On rational solutions of pseudo-linear systems[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

n

This chapter constitutes the subject of the first half of the published paper

Chapter 3

Rational Solutions of Pseudo-Linear Systems

Introduction

Let F = C(x) be the field of rational functions in a variable x with coefficients in a field C of characteristic zero, ϕ be a C-automorphism over F and δ be a pseudo-derivation with respect to ϕ. The main objective of this chapter is to develop a unified algorithm to compute all rational solutions of a first order pseudo-linear system defined over the ϕδ-field (F, ϕ, δ), having the form

δ(y) = M ϕ(y), (3.1)
where M ∈ M n (F). The problem of computing rational solutions has been studied for the particular types of differential, difference, and q-difference systems respectively in [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF], [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF], and [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF] (see also [START_REF] Abramov | Rational solutions of linear differential and difference equations with polynomial coefficients[END_REF][START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Wu | On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras[END_REF]). Our approach for computing rational solutions follows the same strategy as the one used in the latter works. This strategy mainly consists in two steps:

1. We first compute a so called universal denominator u ∈ C[x] which satisfies that every rational solution y ∈ F n of (3.1) can be written as

y = z/u, z ∈ C[x] n .
2. We perform the change of variable y = z/u and we compute polynomial solutions z ∈ C[x] n of the new pseudo-linear system

δ(z) = ϕ (u -1) (u M + δ(u)) ϕ(z), (3.2)
which is of the same type as System (3.1).

To begin, in the next section we present a unified method for computing polynomial solutions of a general pseudo-linear system of the form (3.1). We show that the degree of a polynomial solution can be obtained by "inspecting" the integer roots of the indicial polynomial at infinity. However, this indicial polynomial is not immediately apparent, and so we propose to use simple forms to effectively compute it. The other parts (monomials) of the polynomial solution can afterwards be computed using existing methods in the literature. In Section 3.3, we develop a unified algorithm for computing a universal denominator for all rational solutions of System (3.1). We will see that in the case where ϕ is not the identity map, a universal denominator is composed of two parts: what we call the ϕ-fixed part and the non ϕ-fixed part. On one hand, the ϕ-fixed part can be computed using simple forms. On the other hand, following the ideas of [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] (see also [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF][START_REF] Khmelnov | Improved algorithms for solving difference and q-difference equations[END_REF]), we propose an efficient algorithm for computing the non ϕ-fixed part. Examples of computations are also given to clarify our approaches.

Chapter 3

Rational Solutions of Pseudo-Linear Systems

The different algorithms proposed in this chapter are fully implemented in Maple in our PseudoLinearsystems package [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. We shall also present throughout this chapter some experimental results obtained while comparing our implementations with the existing ones from the Isolde [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF] and LinearFunctionalSystems 1 packages. A demonstration for our implementations is provided in Chapter 5.

A unified algorithm to compute polynomial solutions

We consider in this section the problem of computing all polynomial solutions of a first order pseudo-linear system of the form (3.1). In order to compute a polynomial solution y ∈ C[x] n , we carry out the following two tasks:

1. Compute a degree bound of the polynomial.

2. Once a degree bound is obtained, compute the different monomials

α i x µ i (α i ∈ C n , µ i ∈ N) of the polynomial.
The second task is completely accomplished using the monomial-by-monomial method developed in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF], and we shall not explain more on this. We only focus on the task of computing a degree bound of a possible polynomial solution.

Computing a degree bound

Given a pseudo-linear system (3.1) defined over the ϕδ-field (F, ϕ, δ). The idea is to imbed (F, ϕ, δ) in the local ϕδ-field (K, ϕ, δ) where K = C((x -1)), equipped with the t-adic valuation ν (here t = x -1). Denote by ω the degree of δ (see Definition 1.12). Our system (3.1) can then be written as a local pseudo-linear system of the form

L(y) = A δ(y) + B ϕ(y) = 0, (3.3)
where

δ = t -ω δ, A = diag(t α 1 , . . . , t αn) ∈ M n (C[[t]]), α i = -min{0, ν (M (i, .)) -ω},
and

B = -t -ω A M ∈ M n (C[[t]]).
1 https://www.maplesoft.com/support/help/Maple/view.aspx?path= LinearFunctionalSystems&cid=301

Chapter 3

Rational Solutions of Pseudo-Linear Systems Here M (i, .) denotes the i th row of M . A polynomial solution of degree s ∈ N can be viewed as a local formal solution (at x = ∞) of the form

y(t) = ∑ i≥0 t i-s y i , (3.4)
where y i ∈ C n with y 0 ̸ = 0. Recall that (see Definition 1.13) there exist c, d ∈ C * such that

ϕ(t) = c t + O(t 2), t -ω δ(t) = d t + O(t 2),
and for h ∈ Z:

ϕ(t h) = c h t h + O(t h+1), t -ω δ(t h) = d [h] c t h + O(t h+1),
where [h] c is defined by:

[h] c =      1 -c h 1 -c ; c ̸ = 1, h ; c = 1.
Replacing ϕ(y), δ(y), A and B by their respective t-adic expansions in System (3.3) and comparing coefficients of the same power of t (after simplifying the factor t -s) yields, amongst others, the equation

(d [-s] c A 0 + c -s B 0) y 0 = 0,
where A 0 and B 0 are the constant terms in the t-adic expansions of A and B. Thus, in order that System (3.3) admits a formal solution (3.4), -s must be a root (see Remark 2.3) of the indicial polynomial

φ(λ) = det(d [λ] c A 0 + c λ B 0).
If System (3.3) is simple, which means det(A 0 λ + B 0) ̸ = 0, then φ(λ) ̸ = 0 and the degree of any polynomial solution can be bounded by the largest nonnegative integer s such that -s is a root of φ(λ). Otherwise if (3.3) is non-simple, then φ(λ) vanishes identically in λ, and in this case one needs to compute a simple form of (3.3) in order to effectively compute φ(λ). This can be done by applying Algorithm SimpleForm developed in Chapter 2 to System (3.3). Note that in previous works related to differential [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF] and difference [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF] systems, the method proposed to compute φ(λ) consists in applying superreduction algorithms [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF][START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF], while in the q-difference case [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF], due to the absence of a super-reduction algorithm for q-difference systems in that period, Abramov proposed to use the technique of EG-eliminations [START_REF] Abramov | EG-eliminations[END_REF] in order to compute φ(λ). We present in Section 3.2.3 some experimental results obtained when comparing the three approaches.

then z = T -1 y is a polynomial solution of the equivalent system δ(z) = M ϕ(z)
where

M = T -1 (M ϕ(T) -δ(T)) .

Examples

We clarify our approach for computing polynomial solutions of pseudo-linear systems with the following two examples:

Example 3.1. Let ϕ : x → q x be a C-automorphism over F such that q ∈ C * is not a root of unity, and let us compute the polynomial solutions of the q-difference system ϕ(z) = N z where

N (x) =     (q x + β) (q 2 + 1) β + x - (q x + β) q 2 x q x β + x 0     .
Here β is a non-zero parameter. Note that for β = 100, we find again the system considered in the second part of [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]Section 4]. The given system can be written as a first order pseudo-linear system δ(z) = M ϕ(z) where δ = id F -ϕ and

M (x) = N (x) -1 -I 2 =     -1 β + x q x - x q 2 (q x + β) -q 3 + q 2 + 1 q 3     .
As explained above, we now work with K = C((x -1)): the completion of F w.r.t. the t-adic valuation ν (here t = x -1). The degree of δ is thus ω = 0 and one has c = q -1 , d = 1-q -1 (see Definition 1.13). The system can be written in a local form A δ(z)+ B ϕ(z) = 0 where A = I n and B = -M . The leading matrix pencil of the latter system

L λ =    λ + 1 -q -1 q -3 λ - -q 3 + q 2 + 1 q 3   
satisfies det(L λ) ̸ = 0. Hence the system is already simple and its associated indicial Chapter 3

Rational Solutions of Pseudo-Linear Systems polynomial is given by

φ(λ) = 1 -q -λ-1 -q -λ-3 + q -2 λ-4 .
The integer roots of φ(λ) are -1 and -3 (see Remark 2.3) so that we get the degree bound s = 3. We then proceed by using the method in [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF] to compute the monomials of the solutions, and we finally obtain a basis of polynomial solutions given by

z 1 (x) = [β + x x] , z 2 (x) =     x 2 + x 3 β x 3 q 2 β     . (3.5)
The results are coherent with those obtained in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]Section 4] for the case β = 100. Note that in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]Section 4], the author needs to apply EG-eliminations to get the indicial polynomial at infinity whereas for this particular example, we can get it directly since the system is already simple at infinity.

Example 3.2. Let ϕ : x → 3 x + 2 be a C-automorphism over F and δ = id F -ϕ be a ϕ-derivation. Consider the pseudo-linear system

δ(y) =      - 242 x 3 + 410 x 2 + 208 x + 40 9 (3 x + 2) 2 (3 x + 1) 0 - 2 (x + 1) 3 (x -2) 9 (13 x + 2) (3 x + 2) 2 (3 x + 1) x - 26 x + 2 27x      ϕ(y). (3

.6)

We now work with K = C((t)) equipped with the t-adic valuation ν where t = x -1 . One thus has ω = 0 with c = 1 3 and d = 2 3 . System (3.6) can be written as a local pseudo-linear system A δ(y) + B ϕ(y) = 0 where A(x) = diag(1, x -1) and

B(x) =      242 x 3 + 410 x 2 + 208 x + 40 9 (3 x + 2) 2 (3 x + 1) 0 2 (x + 1) 3 (x -2) (13 x + 2) 9x 2 (3 x + 2) 2 (3 x + 1) 26 x + 2 27x 2      .
The latter system is non-simple since its leading matrix pencil

L λ =    λ + 242 243 0 26 243 0    ,
is singular. Using Algorithm SimpleForm, we compute an equivalent simple system I n δ(y) + Bϕ(y) = 0 where Chapter 3

Rational Solutions of Pseudo-Linear Systems

B =    6318 x 5 +18548 x 4 +27804 x 3 +24254 x 2 +9648 x+968 117 x(3 x+2) 3 (3 x+1) -1019304 x 5 -1251624 x 4 +2872782 x 3 +5840670 x 2 +2986280 x+326216 4563 x(3 x+2) 3 (3 x+1) 2(x+1) 3 (x-2)(13 x+2) 9x(3 x+2) 3 (3 x+1) 36816 x 5 +76878 x 4 +32808 x 3 -27054 x 2 -21872 x-2696 351 x(3 x+2) 3 (3 x+1)    ,
and with an associated indicial polynomial

φ(λ) = 1 - 28 729 3 -λ + 3 -2 λ 19683 .
The integer roots of φ(λ) are -6 and -3 (see Remark 2.3) so that we get the degree bound s = 6. Now using the monomial-by-monomial method [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF] we can finally get the basis of polynomial solutions

y 1 (x) =   x 5 -5x 4 + 8x 3 -4x 2 x 6 -3 x 5 -x 4 + 17 x + 14   , y 2 (x) =   0 x 3 -3 x -2   . (3.7)

Comparison with existing implementations

The above explanations give rise to an algorithm, called PolySols_1PLS, which takes as an input a pseudo-linear system of the form (3.1) and return a matrix whose columns form a basis of all polynomial solutions, or 0 n (the zero vector of dimension n) if there are no non-trivial polynomial solutions. The algorithm is implemented in our Maple package PseudoLinearSystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF].

Besides being generic enough to cover all types of pseudo-linear systems, Algorithm PolySols_1PLS appears to be, most of the times, faster than existing algorithms for computing polynomial solutions of familiar linear functional systems. To illustrate this fact, we present some timings of two of our experiments. All the input systems considered were constructed in such a way they had a full fundamental matrix of polynomial solutions whose all entries are generated using the Maple command: Looking at the results of the experiment held for differential systems, we can spot a clear advantage of PolySols_1PLS compared to Mpolsolde. The only difference between the two implementations is that we use simple forms to compute a degree bound of polynomial solutions while Mpolsolde uses super-reduction [START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF]. We noticed that this is where most of the time is spent after going deeper into the analysis of each step of both implementations. On the other hand, PolySols_1PLS and PolynomialSolution appear to have a somehow similar performance (we couldn't analyse each step of the procedure PolynomialSolution since it is embedded in the Maple system).

The results of the second experiment show that PolySols_1PLS and deltaPS behave likewise (with a slight advantage of PolySols_1PLS), while PolynomialSolution behaves badly for difference systems (the symbol * indicates that a computation did not terminate after 4 hours).

Universal denominator

In the general setting of pseudo-linear algebra with F = C(x), two cases can be distinguished:

1. The case ϕ = id F corresponds to differential systems.

2. The case ϕ ̸ = id F corresponds to all systems of the form

ϕ(y) = N y, (3.8)
where N ∈ GL n (F) and ϕ : x → q x + r. Here r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. We will refer to a system of Chapter 3

Rational Solutions of Pseudo-Linear Systems the form (3.8) as a ϕ-system. Recall that such a system can be written (in various ways) as a pseudo-linear system δ(y) = M ϕ(y) (see Section 1.2). Systems of the form (3.8) include pure difference (q = 1 and r ̸ = 0) and pure q-difference (r = 0) systems.

In the differential case ϕ = id F , assuming that δ = d dx is the usual derivation of F , we have a linear differential system of the form y ′ = A y, with ′ := d dx and A ∈ M n (F). We briefly review the method used in [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF] for computing a universal denominator. Here, the poles of any rational solution are among the poles of the matrix A. Consequently, the denominator of any rational solution has the form

s ∏ i=1 p α i i ,
where p 1 , . . . , p s are the irreducible factors of the denominator den(A) of the matrix A and, for i = 1, . . . , s, α i is a local exponent at p i . A universal denominator can thus be deduced from the knowledge of the local exponents at each p i . In order to compute a local exponent α i , one needs to compute the integer roots of the indicial polynomial φ(λ) at p i and take -α i as the smallest integer root of φ(λ). However, φ(λ) can not be read off unless the system is in simple form. In [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF], the method proposed to compute a simple form is to apply first super-reduction [START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF]. The SimpleForm algorithm developed in Chapter 2 thus provides an alternative as it allows to compute directly a simple form without recourse to super-reduction algorithms. For further reading on the computation of a universal denominator and rational solutions of differential systems, we recommend the reader to consult [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF] and the references therein.

Concerning the case ϕ ̸ = id F , algorithms for computing a universal denominator have been developed only for the pure difference [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF] and q-difference [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF] cases. In Section 3.3.2, we shall develop a unified and efficient method for computing a universal denominator of a ϕ-system (3.8) in the case where the automorphism ϕ of F = C(x) is given by ϕ : x → q x + r, with r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. Note that this restriction on the automorphism ϕ of F is natural as, for the purposes of the present chapter, one needs ϕ to send polynomials to polynomials. Following the same lines as [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF], we define the following two polynomials in the variable x from the denominators of the matrix N ∈ GL n (F) of System (3.8) and its inverse:

a := ϕ -1 (den(N)), b := den(N -1
).

(3.9)

The dispersion set E ϕ (a, b) of the polynomials a and b is defined as:

E ϕ (a, b) := {s ∈ N ; deg (gcd(a, ϕ s (b))) > 0} , (3.10)
Chapter 3

Rational Solutions of Pseudo-Linear Systems and plays an important role in the following. Note that the notion of dispersion set was firstly introduced by Abramov in [START_REF] Abramov | On the summation of rational functions[END_REF]. Except in the pure difference case (r ̸ = 0 and q = 1) which is considered in Section 3.3.1 below, a universal denominator for rational solutions of a ϕ-system (3.8) is decomposed into two distinct parts, i.e., two polynomial factors. One part is called the ϕ-fixed part as it corresponds to the ϕ-fixed singularity x ϕ := r 1-q

(see Proposition 3.3 below) and the other part is called the non ϕ-fixed part. On one hand, the computation of the ϕ-fixed part can be tackled by computing a simple form at x ϕ to get the local exponents at x ϕ (it is similar to the computation of the part of a universal denominator corresponding to a given p i in the differential case considered above). On the other hand, the non ϕ-fixed part can be computed from the dispersion set E ϕ (a, b). Before developing our unified and efficient approach (see Section 3.3.2) to compute a universal denominator, we briefly recall how one proceeds in the known cases of pure difference and q-difference systems.

Existing methods for pure difference and q-difference systems

Let us consider a pure difference system of the form

ϕ(y) = N y, ϕ : x → x + 1, (3.11)
where N ∈ GL n (F). This means that we have q = r = 1. It has been shown in [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF] that the irreducible factors of a universal denominator for System (3.11) are among the irreducible factors of a and b defined in (3.9) or their shifts2 . Indeed, we have the following: Proposition 3.1 ([21], Proposition 1). Let y ∈ F n be a rational solution of (3.11) and p be an irreducible polynomial in C[x] such that p s divides den(y) for some s ∈ N * . Let a and b be defined as in (3.9). Then:

1. If ϕ(p) does not divide den(y), then p s divides a.

2. If ϕ -1 (p) does not divide den(y), then p s divides b.

If both ϕ(p) and

G(x) = gcd (h ∏ i=0 ϕ -i (a(x)), h ∏ j=0 ϕ j (b(x))
)

, h := max(E ϕ (a, b)).

(3.12)

Remark 3.2. The method proposed in [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF][START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF] From a computational point of view, the algorithm developed in [21, Proposition 3] (see also [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF]Section 3.1]) allows to compute a universal denominator without expanding the products in Formula (3.12). For the sake of completeness, we shall present it here (we call it Algorithm UD as in [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF]):

Algorithm UD Input: A system of the form (3.11).

Output: A universal denominator for all rational solutions of (3.11).

1. Compute the polynomials a and b as in (3.9), and the dispersion set

E ϕ (a, b). 2. Initialize v = a, w = b, G(x) = 1 and E = E ϕ (a, b). While E is not empty do •Set i = max(E). •Compute d = gcd(v, ϕ i (w)), v = v/d and w = w/ϕ -i (d). •Put G(x) = G(x) ∏ i j=0 ϕ -j (d). •Update E = E \ {i}.

End While Return G(x).

Let us now consider a pure q-difference system of the form

ϕ(y) = N y, ϕ : x → q x, (3.13)
where q ∈ C * is not a root of unity, and N ∈ GL n (F). The computation of rational solutions of q-difference systems is studied in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]. One might think at first sight, due to the similar forms of (3.13) and (3.11), that a universal denominator of a q-difference system can be computed in the same way as the pure difference case. However, this is not true. The polynomial p = x is the only monic irreducible polynomial that is fixed by ϕ in the sense that p and ϕ(p) divide each other. More generally, p and ϕ j (p) divide each other for all j ∈ Z. Consequently, if y ∈ F n is a rational solution of (3.13) and p s = x s divides den(y) for some s ∈ N * , then for sure both ϕ(p) and ϕ -1 (p) divide den(y). Therefore, the hypotheses of Proposition 3.1 are not valid for the polynomial p = x. This is why a Chapter 3

Rational Solutions of Pseudo-Linear Systems universal denominator for a q-difference system 3.13 is written under the form

x α G(x),
where α ∈ N and G(x) ∈ C[x] is not divisible by x. The factor x α is thus what we call the ϕ-fixed part of a universal denominator for a q-difference system. A bound for α can be obtained from the local exponents at the ϕ-fixed singularity x ϕ = 0. In [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF], the technique proposed to compute a bound for α is EG-eliminations [START_REF] Abramov | EG-eliminations[END_REF]. In this thesis, we propose to use simple forms. This can be done first by imbedding F into the local field K = C((t)) where t = x and rewriting (3.13) as a local pseudo-linear system of the form (2.1). Applying next Algorithm SimpleForm to this system yields an equivalent simple system with an associated indicial polynomial φ(λ) which is non-zero. Finally, α is the largest non-negative integer such that -α is a root of φ(λ) (see Remark 2.3).

The other factor G(x) is what we call the non ϕ-fixed part. It can be computed as in the pure difference case using the formula (3.12) in Proposition 3.2 above (with the appropriate ϕ). Equivalently, G(x) can be seen as the output of Algorithm UD applied to (3.13). Moreover, following the ideas of [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] (see also [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF][START_REF] Khmelnov | Improved algorithms for solving difference and q-difference equations[END_REF]), we propose in Section 3.3.4 an alternative efficient algorithm for computing the non ϕ-fixed part. The reader can consult [START_REF] Abramov | EG-eliminations[END_REF][START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF] for additional details concerning universal denominators and rational solutions of q-difference systems.

Example 3.3. Let us go back to the q-difference system considered in Examples 2.3 and 2.4. We remind the reader that this is the system

ϕ(y) =     q 2 + 1 q - (β + x) q x x q x + β 0     y, ϕ : x → q x,
where q ∈ C * is not a root of unity and β is a non-zero parameter. As mentioned above, a universal denominator for all rational solutions can be written as u(x) = x α G(x), where α ∈ N and G(x) ∈ C[x] is not divisible by x. Let us first compute α. Instead of using EG-eliminations as it is done in [5, Section 4], we will use the SimpleForm algorithm. Let K = C((t)) where t = x is the local parameter, and we introduce the ϕ-derivation δ = ϕ -id K . We then have ω = 0 (the degree of δ), c = q so that c ̸ = 1 and d = q -1 (see Definition 1.13). The system can be written as the local pseudo-linear system A δ(y)+B ϕ(y) = 0 defined over the local ϕδ-field (K, ϕ, δ), where A and B happen to be given by (2.10). From Examples 2.3 and 2.4, the output of Algorithm SimpleForm provided an equivalent simple system A (5) δ(y) + B (5) ϕ(y) where A (5) and B (5) are given Chapter 3

Rational Solutions of Pseudo-Linear Systems by (2.11) and with det(L λ) = (λ q -q + 1) (λ + q -1) q -1 , which yields the indicial polynomial φ(λ) = q 2 λ -q λ-1 -q λ+1 + 1.

The roots of φ(λ) are thus λ = ±1 (see Remark 2.3), which implies that α = 1. On the other hand, applying Algorithm UD on the given system, we get that G(x) = x + β. It follows that a universal denominator is given by

u(x) = x (x + β).
One then can proceed to compute a basis of rational solutions. The change of variable y = z/u yields the q-difference system considered in Example 3.1. We have seen that this system admits a basis of polynomial solutions given by (3.5). Finally, we obtain the rational solutions of the original system:

y 1 (x) =      1 x 1 β + x      , y 2 (x) =       x β x 2 (β + x) β q 2       .
The results are coherent with those obtained in [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]Section 4] for the case β = 100.

A unified and efficient approach for pseudo-linear systems

We consider a ϕ-system (3.8), where the automorphism ϕ of F = C(x) is given by ϕ : x → q x + r, with r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. Let us first remark that in the case r ̸ = 0 and q ̸ = 1 is not a root of unity, performing the change of independent variable x = z -r 1-q , we are reduced to a pure q-difference system. In other words, after performing (if necessary) a change of independent variables, the computation of a universal denominator for the class of ϕ-systems considered here can always be done using one of the algorithms recalled in Section 3.3.1 for the pure difference and q-difference cases. However, in the following, we prefer to develop a unified approach treating directly all ϕ-systems.

As for pure q-difference systems, we shall decompose a universal denominator as a product of two factors: the ϕ-fixed part and the non ϕ-fixed part. To achieve this, we first need to determine the polynomials that are fixed by ϕ. We say that two polynomials p 1 and p 2 in C[x] are associated, and we write p 1 ∼ p 2 , if they divide each other. We Chapter 3

Rational Solutions of Pseudo-Linear Systems introduce the set

F ϕ := {p ∈ C[x] \ {0} ; deg(p) ≥ 1, ∃s ∈ N * , p ∼ ϕ s (p)} ,
where ϕ s (p(x)) = p(ϕ s (x)). We remark that

∀s ∈ N, ϕ s (x) = q s x + r [s] q , [s] q :=      q s -1 q -1 ; q ̸ = 1, s ; q = 1.
(3.14) Proposition 3.3. With the previous notation, we have the following:

1. If q = 1, then F ϕ = ∅. 2. Otherwise, F ϕ = { c (x - r 1 -q) s ; c ∈ C * , s ∈ N * } .
Proof. If q = 1, then p ∼ ϕ j (p) for some j ̸ = 0 if and only if p is a constant and we are done. Now let q ̸ = 1. From (3.14), we have that, for all j ∈ N * , ϕ j (x) = q j x + r q j -1 q -1 = q x + r has the same form as ϕ(x) = q x+r so that it suffices to look for non constant polynomials p such that p ∼ ϕ(p). Let us write p(x) = ∑ s i=0 p i x s-i with p 0 = 1 and s ≥ 1. Then p ∼ ϕ(p) means that there exists α ∈ C * such that ϕ(p) = α p which yields

(q x + r) s + p 1 (q x + r) s-1 + • • • + p s = α (x s + p 1 x s-1 + • • • + p s).
By expanding the lefthand side of the latter equality and equating the coefficients of each x i , i = 0, . . . , s, we get

q s = α, ∀i = 1, . . . , s, (q i -1) p i = i-1 ∑ j=0 (s -j s -i) r i-j p j .
Solving the latter linear system successively for p 1 , p 2 , . . . , p s , we obtain ∀i = 1, . . . , s, p i = (s i Rational Solutions of Pseudo-Linear Systems From Proposition 3.3, for q = 1 and r ̸ = 0, the set F ϕ is empty which justifies why in the pure difference case, one does not have to consider a ϕ-fixed part in a universal denominator. Moreover, for the pure q-difference case q ̸ = 1 and r = 0, Proposition 3.3 implies that the only monic irreducible element in F ϕ is p = x meaning that the only ϕ-fixed singularity is x ϕ = 0. In the general case with q ̸ = 1, the only monic irreducible element in F ϕ is x -r 1-q and we thus write a universal denominator as a product

) (r q -1) i , which yields p(x) = (x - r 1 -q) s . (3
(x - r 1 -q) α G(x), (3.16)
where α ∈ N and the polynomial G(x) is not divisible by x -r 1-q . Here,

(x -r 1-q) α
is the ϕ-fixed part and G(x) is the non ϕ-fixed part. In order to construct a universal denominator, one needs to compute both α and G(x) in (3.16). On one hand, α can be obtained from a simple form at the ϕ-fixed singularity x ϕ = r 1-q . This will be the subject of the next section.

On the other hand, the non ϕ-fixed part G(x) can be obtained using Proposition 3.2 (with the appropriate ϕ). Equivalently, applying Algorithm UD from Section 3.3.1 to System (3.8) allows to compute G(x). To achieve this, one first needs to compute the dispersion set E ϕ (a, b) defined by (3.10), which is usually done by a resultant computation (see Remark 3.2 and [START_REF] Abramov | A direct algorithm to compute rational solutions of first order linear q-difference systems[END_REF]), and then, for each element in E ϕ (a, b), several gcd's are computed in order to get G(x). However, in [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] (see also [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF][START_REF] Khmelnov | Improved algorithms for solving difference and q-difference equations[END_REF]), the authors remark that if we first compute a factorisation of the polynomials a and b, then E ϕ (a, b) can be computed without computing resultants, which is often more efficient in practice. This fact is assured in [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF][START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] by complexity analysis and experimental evidences. In Section 3.3.4, we give a unified version of the latter efficient approach for all ϕ-systems.

Computing the ϕ-fixed part

As we have seen above, a universal denominator of a ϕ-system (3.8) can be written as (3.16): a product of ϕ-fixed part and non ϕ-fixed part. We focus here on the computation of the ϕ-fixed part, mainly the computation of the non-negative ineteger α in (3.16). As in the q-difference case, we use Algorithm Simpleform. We introduce the ϕ-derivation δ = id F -ϕ. System (3.8) can thus be written as the pseudo-linear system δ(y) = M ϕ(y) where M = N -1 -I n ∈ M n (F). Remark 3.3. In our implementations, we prefer to write System (3.8) as the pseudolinear system δ(y) = M ϕ(y) where ϕ = ϕ -1 , δ = id F -ϕ and M = ϕ(N) -I n . From a computational point of view, this is better since we avoid matrix inversion when we compute M .

Chapter 3

Rational Solutions of Pseudo-Linear Systems Let K = C((t)) with t = x -x ϕ , be the completion of F w.r.t. to the t-adic valuation ν. The degree of δ is thus ω = 0 and the system δ(y) = M ϕ(y) can be written as the local pseudo-linear system

A δ(y) + B ϕ(y) = 0, (3.17)
where

A = diag(t α 1 , . . . , t αn), α i = -min{0, ν(M (i, .))}, B = -A M ∈ M n (C[[t]]).
Applying Algorithm SimpleForm developed in Chapter 2 to System (3.17) yields an equivalent simple system with an associated indicial polynomial φ(λ). Finally, α is the largest non-negative integer root such that -α is a root of φ(λ) (see Remark 2.3). The algorithm to compute the ϕ-fixed part of a universal denominator for System (3.8) can be summarised in the following scheme. The input is either a ϕ-system (3.8) or a pseudolinear system (3.1) where ϕ : x → q x + r and δ = γ(id F -ϕ) with γ ∈ F * . Here r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be 1.

Algorithm FixedPart

Input: A ϕ-system (3.8) or System (3.1) with the above conditions. Output: The ϕ-fixed part of a universal denominator. 1. Localisation: Rewrite the input system as the local pseudo-linear system (3.17).

2. Apply Algorithm SimpleForm to (3.17) to obtain the indicial polynomial φ(λ).

3. Compute α = max{ λ ∈ N ; φ(-λ) = 0 }. Return (x - r 1 -q) α .
Example 3.4. Consider the ϕ-system (3.8) with q = 3, r = 2 and

N =     3 x + 2 9 x 0 2 (x + 1) 3 (13 x + 2) 3 (3 x + 2) (3 x + 1) x (x -1) (x -2) 3 (3 x + 2) (3 x + 1)     .
The only ϕ-fixed singularity is x ϕ = -1 and thus we write a universal denominator under the form

u(x) = (x + 1) α G(x),
where G(x) is not divisible by x + 1. Let us compute α. The idea is to work with K = C((t)) with t = x + 1, equipped with the t-adic valuation ν. We introduce the ϕderivation δ = id K -ϕ, and then we have ω = 0 (the degree of δ), c = q and d = 1 -q (see Definition 1.13). The system can be rewritten as the local pseudo-linear system

B =     - 6 x -2 3 x + 2 0 18 (x + 1) 3 (13 x + 2) 3 x 3 -7 x 2 + 4 - 26 x 2 + 30 x + 4 (x -1) (x -2)     .
The latter system is already simple, and the indicial polynomial is

φ(λ) = (-1 + 9 3 λ) (-1 + 3 λ) .
The only non-negative integer root of φ(λ) is -2 which implies that α = 2.

Computing the dispersion set and the non ϕ-fixed part

Let us consider a ϕ-system (3.). Moreover, its coefficients are expected to be significantly larger than those of a and b. Consequently, this resultant-based algorithm to compute the dispersion set appears to be inefficient in practice.

In this section, we extend the ideas of [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF] to compute the dispersion set E ϕ (a, b) for any automorphism ϕ of F defined by ϕ : x → q x + r with r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. The approach relies on a factorization into irreducible factors of the polynomials a and b given in (3.9). Moreover, we will see that this approach allows to compute directly all the factors of the non ϕ-fixed part of a universal denominator (this means while computing E ϕ (a, b)), unlike the existing resultant-based algorithms who require the computation of several gcd's afterwards (see Algorithm UD above).

First note that there exists s ∈ N such that deg (gcd(a, ϕ s (b))) > 0, this means s ∈ E ϕ (a, b), if and only if there exist an irreducible factor f of a and an irreducible factor g of b such that f ∼ ϕ s (g). Then, we have the following result: Proposition 3.4. Let us consider two monic irreducible polynomials f and g of the same degree d and write

f (x) = ∑ d i=0 f i x d-i , f 0 = 1, g(x) = ∑ d i=0 g i x d-i , g 0 = 1. If f ∼ ϕ s (g

), then we have the following explicit formulas for s:

Chapter 3 Rational Solutions of Pseudo-Linear Systems

1. If q = 1, then s = f 1 -g 1 d r
(see [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF]).

2. Otherwise, if f and g are both different from x -r 1-q , then if k denotes the smallest positive integer such that (q -1)

k f k - (d k) r k ̸ = 0, we have s = log(A k) k log(q) , A k := 1 + (q -1) k (g k -f k) (q -1) k f k - (d k) r k . (3.18)
Proof. If f ∼ ϕ s (g), then necessarily ϕ s (g) = q d s f . Now, a direct calculation shows that

ϕ s (g) = d ∑ k=0 d ∑ i=d-k q s (d-k) (i d -k) g d-i r i-d+k [s] i-d+k q x d-k .
Therefore, equating the coefficients of x d-k in the equality ϕ s (g) = q d s f , for k ∈ {1, . . . , d}, yields an equation of degree k in [s] q which can be written as:

f k -g k + k ∑ i=1 (f k (k i) (q -1) i - (d -k + i i) r i g k-i) [s] i q = 0. (3.19)
For k = 1, Equation (3.19) implies

((q -1)f 1 -d r) [s] q + f 1 -g 1 = 0. (3.20) If q = 1, then (3.20) yields [s] q = s = f 1 -g 1 d r
which was also the result obtained in [START_REF] Man | Fast polynomial dispersion computation and its application to indefnite summation[END_REF]. Otherwise, when q ̸ = 1, it may happen (namely, when f 1 (q -1) -d r = 0) that the coefficient of [s] q in (3.20) vanishes which implies g 1 = f 1 and in this case Equation (3.19) for k = 1 will not provide any formula for [s] q . Let k be the smallest positive integer such that

f k (q -1) k - (d k) r k ̸ = 0.
Such a k always exists as, by hypothesis, f (x) ̸ = x -r q-1 / ∈ F ϕ . From Equation (3.19), we then have that, for all i = 1, . . . , k,

g k-i = f k-i = (d k-i) r k-i (q -1) k-i .
Moreover, Equation (3.19) has then exactly degree k in [s] q and can be simplified to get:

f k -g k + (f k - (d k) r k (q -1) k) ((1 + (q -1) [s] q) k -1) = 0.
Chapter 3

Rational Solutions of Pseudo-Linear Systems Finally, using the definition (3.14) of [s] q , we obtain q s k = A k where A k is defined in the statement of the proposition. This ends the proof.

Proposition 3.4 leads to an efficient unified algorithm for computing the dispersion set. Note also that, for our purpose, an important advantage of this approach, compared to resultant based algorithms that still need gcd's calculations, is that it also provides directly the factors of the non ϕ-fixed part of a universal denominator of the rational solutions of a ϕ-system. This is summarised in the following scheme. We call the algorithm NonFixedPart. Note that a (somehow) similar algorithm is developed in [START_REF] Abramov | Factorization of polynomials and gcd computations for finding universal denominators[END_REF] for the pure-difference case.

Algorithm NonFixedPart

Input: A ϕ-system of the form (3.8).

Output: The dispersion set E ϕ (a, b) of a and b defined by (3.9) and the non ϕ-fixed part of a universal denominator for rational solutions of (3.8).

1. Set E ϕ (a, b) = ∅ and G(x) = 1.
2. Factor a and b defined by (3.9) as products of powers of distinct monic irreducible polynomials called respectively u j 's and v l 's.

For each pair

(u j , v l) such that deg(v l) = deg(u j) = d (we write u j (x) = ∑ d i=0 f i x d-i , v l (x) = ∑ d i=0 g i x d-i -see Proposition 3.4) • If q = 1, then s = f 1 -g 1 d r
. Else let k be the smallest positive integer such that

f k (q -1) k - (d k) r k ̸ = 0
and s be as in (3.18). End If

• If s ∈ N and u j ∼ ϕ s (v l), then set E ϕ (a, b) = E ϕ (a, b) ∪ {s} and G(x) = G(x) s ∏ i=0 ϕ -i (u j).

End If

End For

Return E ϕ (a, b) and G(x).

Chapter 3 Rational Solutions of Pseudo-Linear Systems Example 3.5. Let us come back to the ϕ-system considered in Example 3.4. We have already computed the ϕ-fixed part so that a universal denominator is of the form

u(x) = (x + 1) 2 G(x),
where G(x) is not divisible by x + 1. Now we shall compute the non ϕ-fixed part G(x). The factorisations of the polynomials a and b defined in (3.9) are given by:

a(x) = x (x -1) (x -2) , b(x) = (x -1) (x -2) (x + 2 3
) .

Here, inspecting directly pairs of irreducible factors of a and b, we easily check that:

x ∼ ϕ 1 (x -2), x -1 ∼ ϕ 0 (x -1), x -2 ∼ ϕ 0 (x -2),
are the only possible associations. The dispersion set is thus

E ϕ (a, b) = {0, 1} and the multiple of G(x) obtained is ϕ 0 (x) ϕ -1 (x) ϕ 0 (x -1) ϕ 0 (x -2) = x (x -1) (x -2) 2 because ϕ -1 (x) = 1 3 (x -2)
. A universal denominator is thus given by

u(x) = (x + 1) 2 x (x -1) (x -2) 2 .
One then can compute a basis of rational solutions. We perform the change of variable y = z/u. This a yields a new ϕ-system of the form

ϕ(y(x)) =      (27 x + 9) (3 x + 2) 2 (x -1) (x -2) 2 0 (702 x + 108) (x + 1) 3 (x -1) (x -2) 2 27 x x -2      y(x),
for which we are reduced to compute its polynomial solutions. The latter system can be written as the pseudo-linear system (3.6), and we have seen that it admits a basis of polynomial solutions given by (3.7). Finally, a basis of the rational solutions of the original ϕ-system is given by:

y 1 (x) =    x (x + 1) 2 1    , y 2 (x) =    0 1 x (x -1) (x -2)    .

The complete algorithm

The results developed in the previous sections of this chapter naturally yield a generic algorithm to compute all rational solutions of a pseudo-linear system of the form (3.1), Chapter 3

Rational Solutions of Pseudo-Linear Systems where either ϕ = id F and δ = d dx , or ϕ : x → q x + r and δ = γ(id F -ϕ) with γ ∈ F * . Here r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. We call the algorithm RatSols_1PLS and it proceeds as follows:

Algorithm RatSols_1PLS

Input: A pseudo-linear system (3.1): δ(y) = M ϕ(y). Output: A matrix whose columns form a basis of all rational solutions, or 0 n (the zero vector of dimension n) if there are no non-trivial rational solutions.

Compute a universal denominator:

If ϕ = id F (differential systems) then for each irreducible factor p i of den(M), use Algorithm SimpleForm to compute the corresponding local exponent α i , and set

u(x) = ∏ p α i i .
Else -Rewrite (3.1) as a ϕ-system (3.8).

-Let G(x) be the polynomial output of Algorithm NonFixedPart applied to (3.8).

-If q = 1 then set u(x) = G(x). Else * Let (x -r 1-q
) α be the output of Algorithm FixedPart applied to (3.1). * Set u(x) =

(x -r 1-q) α G(x).

End If

End If

Compute polynomial solutions:

Let Z be the output of applying Algorithm PolySols_1PLS (see Section 3.2) to System (3.2). Here Z is either a matrix whose columns form a basis of all polynomial solutions or the vector 0 n .

Return u -1 Z.

Some comparison tests

We present in this section some of the experimental results that we have obtained when comparing the performance of our implementation to that of existing algorithms. For our From these results, we can notice an evident advantage of our implementation compared to Mratsolde, but RationalSolution appears to be significantly the best 3 (just for differential systems, see the next experiments).

Remark 3.4. Going deeper through the analysis of each value of t 1 , we have noticed that in all cases, almost all the time is spent while computing a degree bound (which is zero) of p n (x). This is expected as p n (x) is very "complicated". Note that to compute this bound, we use simple forms, Mratsolde uses super-reduction [START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF] and RationalSolution uses EG-eliminations [START_REF] Abramov | EG-eliminations[END_REF].

Experiment 2: difference systems

In this experiment we chose den(Y) = x (x + 1) (4 x 5 + 2 x 4 -5 x 3 -9 x 2 + 1). We have tested input systems of the form y(x + 1) = A(x) y(x) with matrix dimensions n = 5, 10, 15, 20. We compare our implementation with the procedures deltaRS from Isolde and RationalSolution from the LinearfunctionalSystems package. The table below shows the results, in terms of the time (in seconds), between the three different implementations. Looking at the results of the above table, we can see that in our implementation, the values of t 1 , t 2 and T are better than those of deltaRS, and much better than those of RationalSolution which behaves badly (the symbol * indicates that a computation did not terminate after 4 hours).

RatSols_1PLS deltaRS

Experiment 3: q-difference systems

Here we chose den(Y) = x f (x) f (q x) where f (x) = 4 x 5 + 2 x 4 -5 x 3 -9 x 2 + 1. The test input systems are of the form y(q x) = A(x) y(x) with matrix dimensions n = 3, 5, 7, 10. The results of the experiment are presented in the next table. The symbol * indicates that a computation did not terminate after 4 hours.

RatSols_1PLS

RationalSolution The obtained results explain themselves. RationalSolution behaves surprisingly in a bad and weird manner. We don't believe that this is just due to the different methods used to compute a universal denominator or polynomial solutions. We believe that there is a defect in the internal procedures of the LinearfunctionalSystems package (for q-difference systems). This defect is also illustrated by the fact that, for all input systems, there is a huge difference between t 1 + t 2 and T .

t

Chapter 4

On Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Introduction

Let C be a field of characteristic zero and K = C(x 1 , . . . , x m) be the field of rational functions in m independent variables x 1 , . . . , x m with coefficients in C. For i = 1, . . . , m, let ϕ i be a C-automorphism of K, and δ i be a pseudo-derivation with respect to ϕ i such that for all j ̸ = i, x j is a constant with respect to ϕ i and δ i , i.e., ϕ i (x j) = x j and δ i (x j) = 0.

In the present chapter, the object of study is a partial pseudo-linear system defined over the ϕδ-field (K, {ϕ i , δ i } 1≤i≤m) (see Section 1.2), having the form:

       L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y) = 0, . . . L m (y) := δ m (y) -M m ϕ m (y) = 0, (4.1)
where y is a vector of n unknown functions of x 1 , . . . , x m and the matrix M i ∈ M n (K) for all i = 1, . . . , m. One underlying motivation for studying partial pseudo-linear systems is that many special and transcendental functions are solutions of such systems. For instance, one can check that the vector y(x, k) = (H(x, k), H(x, k + 1)) T , where H(x, k) are the Hermite polynomials

H(x, k) = k! [k/2] ∑ j=0 (-1) j (2 x) k-2j j!(k -2 j)! , (4.2)
satisfies the system

y(k + 1, x) = (0 1 -2 k 2 x) y(k, x), ∂y ∂x (k, x) = (2 x -1 2 k 0) y(k, x). (4.3)
We assume that System (4.1) is integrable, this means it satisfies the integrability conditions:

[L i , L j] := L i • L j -L j • L i = 0, ∀i, j = 1, . . . , m, (4.4)
where L i := I n δ i -M i ϕ i denotes the matrix pseudo-linear operator associated to the ith system of (4.1). Following the terminology of [46, Definition 2] and [START_REF] Li | On solutions of linear systems and factorization of Laurent-Ore modules[END_REF][START_REF] Wu | On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras[END_REF], we further suppose that (4.1) is fully integrable, i.e., for all i = 1, . . . , m with ϕ i ̸ = id K and

δ i = γ i (id K -ϕ i) where γ i ∈ K * , the matrix M i + γ i I n is invertible (see Section 1.
2). The integrability conditions assure that the space of rational solutions of System (4.1) is of finite dimension over C (at most n). This implies, in particular, that there exists a (not necessarily unique) polynomial (called universal denominator) U ∈ C[x 1 , . . . , x m] such that for any rational solution y of (4.1), U y is a vector of polynomials. Note that, the existence of a universal denominator is not always guaranteed if one considers other kinds of linear partial differential (or difference) systems or equations. For instance, it was shown Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems in [START_REF] Paramonov | On rational solutions of linear partial differential or difference equations[END_REF][START_REF] Paramonov | Checking existence of solutions of partial differential equations in the fields of Laurent series[END_REF] that there is no algorithm for testing the existence of a universal denominator for rational solutions of linear partial differential or difference equations with rational function coefficients (i.e., even an algorithm that only answers YES or NO to the question of existence, does not exist). One can also consult [START_REF] Kauers | Partial denominator bounds for partial linear difference equations[END_REF][START_REF] Kauers | A refined denominator bounding algorithm for multivariate linear difference equations[END_REF] where it was shown that for some scalar linear partial difference equations (such as (y(x 1 + 1, x 2) -y(x 1 , x 2 + 1) = 0), there is no universal denominator for all rational solutions.

In this chapter, we are interested in computing rational solutions, and more generally hypergeometric solutions, of fully integrable systems of the form (4.1). In both cases, we shall use a recursive approach that has been already adapted in different contexts.

In particular, this recursive approach is adapted in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF] for computing rational solutions of integrable connections (i.e., the case of System (4.1) with m differential systems), and in [START_REF] Li | A recursive method for determining the onedimensional submodules of Laurent-Ore modules[END_REF] for computing hypergeometric solutions1 of more general partial systems over Laurent-Ore algebras. Contrary to [START_REF] Li | A recursive method for determining the onedimensional submodules of Laurent-Ore modules[END_REF], this chapter contains a specific algorithm for computing rational solutions which is useful in itself for computing eigenrings (see Section 4.2.2.5).

The first main contribution of the present chapter consists in a new efficient algorithm for computing all rational solutions of a partial pseudo-linear system (4.1). The method proceeds by recursion and, in particular, it requires, for i = 1, . . . , m, an algorithm for computing all rational solutions of a sole pseudo-linear system of the form δ i (y) -N ϕ i (y) = 0, where N ∈ M s (C(p 1 , . . . , p r)(x i)), 1 ≤ s ≤ n and p 1 , . . . , p r are parameters which are constants with respect to ϕ i and δ i . This can be done using Algorithm RatSol_1PLS developed in Chapter 3. In order to speed up the computation of rational solutions of System (4.1), our implementation [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF] takes into account two aspects. First, some necessary conditions for an irreducible polynomial to appear in the denominator of a rational solution are obtained by inspecting the irreducible factors of the denominators of all the matrices M i (see Section 4.2.2.3). Moreover, in the recursive process, as the m pseudo-linear systems in (4.1) can be considered in an arbitrary order, we tried to see, through experiments, if there are some orders better than others from the computational point of view. The timings obtained from most of our experiments indicate that the best strategy seems to be to consider first the non-differential systems (i.e., ϕ i ̸ = id K) and then the differential systems (see Section 4.2.2.4).

The second main contribution of this chapter is a new efficient algorithm for computing hypergeometric solutions of System (4.1). The method also proceeds by recursion and uses the same strategy as in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF]Sections 5] for integrable connections. Our approach relies on an algorithm for computing hypergeometric solutions of a general first Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems where

ϕ 1 = id K , δ 1 = ∂ ∂x 1 , ϕ 2 : (x 1 , x 2) → (x 1 , x 2 -1), δ 2 = id K -ϕ 2 .
One can check that the function y(x 1 , x 2) = x x 2 1 is a solution of the system but it is not a rational solution in the sense of Definition 4.1. Also, the vector

y(x, k) = (H(x, k), H(x, k + 1)) T ,
where the H(x, k)'s are the Hermite polynomials (4.2), is not a rational solution of (4.3) in the sense of Definition 4.1.

The objective of this section is to develop an algorithm for computing all rational solutions of (4.1). For the sake of clarity, we explain first the details of the algorithm in the case m = 2 with one difference system and one differential system. We then extend these ideas for a general system (4.1) with arbitrary order m, composed of any type of pseudo-linear systems.

The case of one difference and one differential system

Let K = C(k, x) and consider the fully integrable system

{y(k + 1, x) = A(k, x) y(k, x), y ′ (k, x) = B(k, x) y(k, x)} , (4.5)
where y ′ = ∂y/∂x, A ∈ GL n (K), B ∈ M n (K). The integrability condition reads:

A ′ (k, x) = B(k + 1, x) A(k, x) -A(k, x) B(k, x). (4.6)

Description of the approach

Let us describe our method for computing rational solutions of System (4.5). We first consider the system y(k + 1, x) = A(k, x) y(k, x) as a difference system over C(x)(k) viewing x as a constant parameter independent from k. We compute a basis w 1 , . . . , w s ∈ K n (0 ≤ s ≤ n) of its rational solutions (see Chapter 3 or [START_REF] Abramov | Rational solutions of first order linear difference systems[END_REF]). If we do not find any nonzero rational solution, then we are done as (4.5) does not admit any nonzero rational solution. Let W ∈ M n×s (K) be a matrix having for columns the w i 's.

Lemma 4.1. With the above notations, the matrix W

′ -B W ∈ M n×s (K) is a solution of y(k + 1, x) = A(k, x) y(k, x). Proof. Let Z = W ′ -B W . Using the fact that W (k + 1, x) = A(k, x) W (k, x), we get Z(k + 1, x) = A ′ (k, x) W (k, x) + A(k, x) W ′ (k, x) -B(k + 1, x) A(k, x) W (k, x).
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems Example 4.2. Consider the system (4.5) with matrices A(x, k) and B(x, k) given by:

A(k, x) =               k k+1 0 2 (k+1) (x+k) 0 -k 2 +(-x-1) k-x-1 k+1 x 2 -1+x (k+1) k+1 2 (k+1) (x+k) -k 2 +x 2 -2 k-2 k+1 0 0 x+k+1 x+k 0 (x-1) k+x k+1 -x 2 +1 k+1 -2 (k+1) (x+k) x (k+1)-x 2 +1 k+1               , B(k, x) =             1 x 0 -2 x (x+k) 0 x 2 -1+(-k 2 -k) x x 3 -x x 2 -2 x-1 x 2 -1 -2 x (x+k) -k 2 +x 2 -k-2 x-1 x 2 -1 0 0 (x+k) -1 0 - 1 x -1 2 x (x+k) -1             .
Computing rational solutions of y(k + 1, x) = A(k, x) y(k, x) we get s = 2 linearly independent solutions given by the columns of

W =            2 1 k 2 1 k x + k 0 -2 - 1 k           
. Now, solving the linear system W N 11 = -(W ′ -B W) we get:

N 11 =    1 x 0 0 0    ∈ M 2 (C(x)).
The differential system z ′ (x) = N 11 (x) z(x) admits r = 2 linearly independent rational solutions given by the columns of

Z =   0 1 x 0   .
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems Finally, a basis of rational solutions of the original system is spanned by the columns of

Y = W Z =           x k 2 x k 2 0 x + k - x k -2           .

The general case: partial pseudo-linear systems

Let K = C(x 1 , . . . , x m). The process explained in Section 4.2.1 can be generalised to an arbitrary number of pseudo-linear systems of any type, in other words, to a general system (4.1). Our method proceeds by recursion and relies on an algorithm for computing rational solutions of a first order pseudo-linear system δ(y) = M ϕ(y). Such an algorithm has been described in Chapter 3 (in particular Section 3.4) both for differential systems (ϕ = id C(x)) and for ϕ-systems where ϕ(f (x)) = f (q x+r) for all f ∈ C(x), with r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. Consequently, for all i = 1, . . . , m such that ϕ i ̸ = id K , we assume that ϕ i satisfies the above conditions.

A recursive approach

Let us now give the details of our recursive approach. We first consider the pseudo-linear system L 1 (y) = 0 (see also Section 4.2.2.4) over C(x 2 , . . . , x m)(x 1). We compute a basis w 1 , . . . , w s ∈ K n (0 ≤ s ≤ n) of rational solutions of L 1 (y) = 0 (see Section 3.4). If we do not find any nonzero rational solution, then we stop as (4.1) does not admit any nonzero rational solution. Otherwise, denote by W ∈ M n×s (K) the matrix whose columns are the w i 's. We complete w 1 , . . . , w s into a basis w 1 , . . . , w n of K n and we define the matrix P = (W V) ∈ GL n (K), where V ∈ M n×(n-s) (K) has w s+1 , . . . , w n as columns.

Performing the change of dependent variables y = P z in System (4.1), we obtain the equivalent system

       L 1 (z) := δ 1 (z) -N 1 ϕ 1 (z) = 0, . . . L m (z) := δ m (z) -N m ϕ m (z) = 0, (4.7)
where

N i = P -1 [M i ϕ i (P) -δ i (P)] for all i = 1, . . . ,
N i =   N 11 i N 12 i N 21 i N 22 i   , Chapter 4
Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems where N 11 i ∈ M s (K). Then, for all i = 1, . . . , m, the matrix N 11 i ∈ M s (C(x 2 , . . . , x m)) does not depend on x 1 . Moreover it can be computed as the unique solution of the matrix linear system W N 11 i = -L i (W), and in particular N 11 1 = 0. Finally, N 21 i = 0 for all i = 1, . . . , m.

Proof. The equation

P N i = M i ϕ i (P) -δ i (P) yields W N 11 i + V N 21 i = -L i (W).
From the integrability conditions (4.4), we get that, for all i = 1, . . . , m, L i (W) is a rational solution of the system L 1 (y) = 0 so that there exists a unique constant matrix

C ∈ M s (C(x 2 , . . . , x m)), i.e., not depending on x 1 , such that L i (W) = W C.
We then obtain, for all i = 1, . . . , m,

W (N 11 i + C) + V N 21 i = 0,
which ends the proof as the columns of P = (W V) form a basis of K n .

From Lemma 4.3, we deduce the following result justifying the correctness of our iterative algorithm for computing rational solutions of System (4.1).

Theorem 4.2. Given a partial pseudo-linear system (4.1). Let W ∈ M n×s (K) be a matrix whose columns form a basis of the rational solutions of L 1 (y) = 0. For i = 2, . . . , m, let

N 11 i ∈ M s (C(x 2 , . . . , x m
)) be the unique solution of the matrix linear system W N 11 i = -L i (W). Suppose that Z ∈ M s×r (C(x 2 , . . . , x m)) is a matrix whose columns form a basis of the rational solutions of the partial pseudo-linear system of size s over C(x 2 , . . . , x m)

       δ 2 (y) -N 11 2 ϕ 2 (y) = 0, . . . δ m (y) -N 11 m ϕ m (y) = 0, (4.8)
then the columns of the matrix W Z ∈ M n×r (K) form a basis of all rational solutions of (4.1). Moreover, every rational solution of (4.1) can be obtained in such a way.

Proof. Let Z ∈ M s×r (C(x 2 , . . . , x m)) be a matrix whose columns form a basis of all rational solutions of (4.8) and let us consider Y = W Z. We have

L 1 (Y) = δ 1 (W) ϕ 1 (Z) + W δ 1 (Z) -M 1 ϕ 1 (W) ϕ 1 (Z) = δ 1 (W) Z -M 1 ϕ 1 (W) Z = 0,
since W is a solution of L 1 (y) = 0. Now for i = 2, . . . , m, by definition of N 11 i , we have:

L i (Y) = δ i (W) ϕ i (Z) + W δ i (Z) -M i ϕ i (W) ϕ i (Z) = [δ i (W) + W N 11 i -M i ϕ i (W)] ϕ i (Z) = 0.
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems This ends the first part of the proof. Now let Y be a solution of (4.1). In particular, Y is a rational solution of L 1 (y) = 0 so that there exists Z ∈ M s (C(x 2 , . . . , x m)) such that

Y = W Z = (W V) (Z T 0 T) T . Thus, for i = 2, . . . , m, Y is a solution of L i (y) = 0 if and only if (Z T 0 T)
T is a solution of the system (4.7). This is equivalent to Z being a solution to system (4.8) and yields the desired result.

Algorithm and examples

Theorem 4.2 shows that rational solutions of (4.1) can be computed recursively. Indeed, we have reduced the problem of computing rational solutions of System (4.1) of size n in m variables to that of computing rational solutions of System (4.8) of size s ≤ n in m -1 variables. This gives rise to the following iterative algorithm for computing a basis of rational solutions of System (4.1).

Algorithm RationalSolutions_PPLS

Input: An integrable system of the form (4.1).

Output: A matrix whose columns form a basis of rational solutions of (4.1) or 0 n (the zero vector of dimension n) if no non-trivial rational solution exists.

1. Compute a basis of rational solutions of L 1 (y) = 0 (see Section 3.4).

2. If there are no non-trivial rational solutions of L 1 (y) = 0, then Return 0 n and Stop.

3. Let W ∈ M n×s (K) be a matrix whose columns form a basis of the rational solutions of L 1 (y) = 0.

4. If m = 1, then Return W and Stop.

5. For i = 2, . . . , m, compute the unique solution N 11 i ∈ M s (C(x 2 , . . . , x m)) of the matrix linear system W N 11 i = -L i (W).

6. Return W multiplied by the result of applying the current algorithm to System (4.8).

Let us illustrate our algorithm on the following examples:

Example 4.3. We consider a partial pseudo-linear system composed of one pure difference system, one pure q-difference system and one pure differential system, defined as follows:

     y(x 1 + 1, x 2 , x 3) = A 1 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3), y(x 1 , qx 2 , x 3) = A 2 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3), ∂ ∂x 3 y(x 1 , x 2 , x 3) = A 3 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3), (4.9)
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems where q ∈ Q * is not a root of unity. Let K = Q(q)(x 1 , x 2 , x 3). The matrices A 1 , A 2 ∈ GL 2 (K) and A 3 ∈ M 2 (K) are given by:

A 1 =     x 1 + 1 x 1 -q x 3 (x 3 + x 1) x 2 2 x 1 0 x 3 + x 1 x 3 + x 1 + 1     , A 2 =    1 -x 3 (x 3 + x 1) (q -1) x 2 2 0 q    , A 3 =     0 q (x 3 + x 1) x 2 2 0 -1 x 1 + x 3     .
Rewriting the three systems as pseudo-linear systems (see Section 1.2 for more details), System (4.9) can be transformed into the form (4.1) with

     L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y), M 1 = ϕ 1 (A 1) -I 2 , L 2 (y) := δ 2 (y) -M 2 ϕ 2 (y), M 2 = ϕ 2 (A 2) -I 2 , L 3 (y) := δ 3 (y) -M 3 ϕ 3 (y), M 3 = A 3 , (4.10)
where the ϕ i 's are the automorphisms defined by:

ϕ 1 : (x 1 , x 2 , x 3) → (x 1 -1, x 2 , x 3), ϕ 2 : (x 1 , x 2 , x 3) → (x 1 , x 2 /q, x 3), ϕ 3 = id K ,
and the δ i 's are the ϕ i -derivations defined by:

δ 1 = id K -ϕ 1 , δ 2 = id K -ϕ 2 , δ 3 = ∂/∂x 3 .
Let us describe our iterative process for computing rational solutions of System (4.10). Computing rational solutions of the system L 1 (y) = 0, we get two linearly independent rational solutions given by the columns of

W 1 =     x 1 -x 3 x 4 2 1 x 4 2 -1 q x 2 2 (x 3 + x 1) 1 q x 2 2 x 3 (x 3 + x 1)     .
Solving the linear systems

W 1 N 11 2 = -L 2 (W 1) and W 1 N 11 3 = -L 3 (W 1)
we get:

N 11 2 =   -q 4 + 1 0 -q 3 (q -1) x 3 -q 3 + 1   , N 11 3 =   0 0 0 -1   ,
with N 11 2 and N 11 3 both independent from x 1 . We are then reduced to solving the partial Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems pseudo-linear system { L 2 (y) := δ 2 (y) -N 11 2 ϕ 2 (y) = 0, L 3 (y) := δ 3 (y) -N 11 3 ϕ 3 (y) = 0.

The rational solutions of the system L 2 (y) = 0 are given by the columns of the matrix

W 2 =   x 4 2 0 x 4 2 x 3 x 3 2   .
Now, solving the linear system

W 2 N 3 11 = -L 3 (W 2), we get N 3 11 =   0 0 0 -1   ,
which is independent from x 1 and x 2 . We are next reduced to computing rational solutions of the system δ 3 (y) -N 3 11 ϕ 3 (y) = 0. We find that they are given by the columns of the matrix

W 3 =   0 1 x 3 0   .
Finally, a basis of rational solutions of (4.9) is spanned by the columns of

W 1 W 2 W 3 =    x 3 x 2 x 1 x 2 (x 3 + x 1) q 0    . Example 4.4. Let K = Q(x 1 , x 2 , x 3
) and consider the following partial pseudo-linear system

     L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y), L 2 (y) := δ 2 (y) -M 2 ϕ 2 (y), L 3 (y) := δ 3 (y) -M 3 ϕ 3 (y), (4.11)
where the ϕ i 's are the automorphisms over K defined by:

ϕ 1 : (x 1 , x 2 , x 3) → (x 1 -5, x 2 , x 3), ϕ 2 : (x 1 , x 2 , x 3) → (x 1 , -3 x 2 -5, x 3), ϕ 3 : (x 1 , x 2 , x 3) → (x 1 , x 2 , -3 x 3),
and the δ i 's are the ϕ i -derivations defined by:

δ 1 = id K -ϕ 1 , δ 2 = id K -ϕ 2 , δ 3 = id K -ϕ 3 .
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

The matrices M i ∈ M 2 (K) are given by

M 1 =     5 x 3 +5 x 1 -25 x 1 2 +(x 3 -10) x 1 -6 x 3 +25 -5 x 3 (x 3 +x 1 -5) (x 1 2 +(x 3 -10) x 1 -6 x 3 +25) x 2 -5 x 2 (x 1 2 +(x 3 -10) x 1 -6 x 3 +25) (x 3 +x 1) 5 x 3 (x 1 2 +(x 3 -10) x 1 -6 x 3 +25) (x 3 +x 1)     , M 2 =      x 3 (4 x 2 + 5) ((x 1 -1) x 3 + x 1 2) x 2 x 3 (4 x 2 + 5) x 1 (x 3 + x 1) x 2 (3 x 2 + 5) (x 1 2 + x 1 x 3 -x 3) 4 x 2 + 5 (x 1 -1) x 3 + x 1 2 x 3 (4 x 2 + 5) (3 x 2 + 5) (x 1 2 + x 1 x 3 -x 3)      , M 3 =      - 4 x 3 x 1 2 -3 x 1 x 3 + 3 x 3 4 x 3 x 1 (-3 x 3 + x 1) ((-3 x 1 + 3) x 3 + x 1 2) x 2 - 4 x 2 x 3 (x 1 2 -3 x 1 x 3 + 3 x 3) (x 3 + x 1) - 12 x 3 2 (x 1 2 -3 x 1 x 3 + 3 x 3) (x 3 + x 1)      .
Computing rational solutions of the system L 1 (y) = 0, we obtain two linearly independent rational solutions given by the columns of

W 1 =    x 1 -x 3 1 - x 2 (x 1 + x 3 -1) x 3 + x 1 x 2 x 3    .
The unique solutions of the linear systems W 1 N 11 2 = -L 2 (W 1) and W 1 N 11 3 = -L 3 (W 1) are given by:

N 11 2 =    0 0 x 3 (4 x 2 + 5) x 2 - 4 x 2 + 5 x 2    , N 11 3 =    0 0 0 - 4 3    ,
with N 11 2 and N 11 3 both independent from x 1 . We are then reduced to solving the partial pseudo-linear system

{ L 2 (y) := δ 2 (y) -N 11 2 ϕ 2 (y) = 0, L 3 (y) := δ 3 (y) -N 11 3 ϕ 3 (y) = 0.
The rational solutions of the system L 2 (y) = 0 are given by the columns of the matrix

W 2 =    1 0 x 3 1 x 2    .
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

The unique solution of the matrix linear system W 2 N 3 11

= -L 3 (W 2) is N 3 11 =    0 0 0 - 4 3    ,
which is independent from the variables x 1 and x 2 . The rational solutions of the system δ 3 (y) -N 3 11 ϕ 3 (y) = 0 are given by the columns of

W 3 =   0 1 x 3 0   .
Finally, a basis of rational solutions of System (4.11) is spanned by the columns of

W 1 W 2 W 3 =    x 3 x 2 x 1 1 x 2 x 3 + x 1    . Example 4.5. Let K = Q(x 1 , x 2 , x 3
) and consider the partial pseudo-linear system

     L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y), L 2 (y) := δ 2 (y) -M 2 ϕ 2 (y), L 3 (y) := δ 3 (y) -M 3 ϕ 3 (y),
where the ϕ i 's are the automorphisms over K defined by:

ϕ 1 : (x 1 , x 2 , x 3) → (x 1 -1, x 2 , x 3), ϕ 2 : (x 1 , x 2 , x 3) → (x 1 , x 2 + 1, x 3), ϕ 3 = id K ,
and the δ i 's are the ϕ i -derivations defined by:

δ 1 = id K -ϕ 1 , δ 2 = id K -ϕ 2 , δ 3 = ∂/∂x 3 .
The matrices M 1 , M 2 and M 3 are matrices in M 3 (K) given by:

M 1 =         (x 3 -1) x 1 -1 + (x 3 -1) x 2 2 x 1 + 2 x 2 0 (x 3 -1) x 1 + 1 + (x 3 -1) x 2 2 x 1 + 2 x 2 0 x 3 -1 0 (x 3 -1) x 1 + 1 + (x 3 -1) x 2 2 x 1 + 2 x 2 0 (x 3 -1) x 1 -1 + (x 3 -1) x 2 2 x 1 + 2 x 2         , M 2 =        (-x 3 +1)x 2 2 -(x 3 -1)(x 3 +x 1 +1)x 2 +(-x 1 +1)x 3 2 -x 3 x 1 +x 1 2 (x 1 +x 2)(x 3 +x 2 +1)x 3 0 (-x 3 +1)x 2 2 -(x 3 -1)(x 3 +x 1 +1)x 2 +(-x 1 -1)x 3 2 +x 3 x 1 +x 1 2 (x 1 +x 2)(x 3 +x 2 +1)x 3 0 -x 3 +1 x 3 0 (-x 3 +1)x 2 2 -(x 3 -1)(x 3 +x 1 +1)x 2 +(-x 1 -1)x 3 2 +x 3 x 1 +x 1 2 (x 1 +x 2)(x 3 +x 2 +1)x 3 0 (-x 3 +1)x 2 2 -(x 3 -1)(x 3 +x 1 +1)x 2 +(-x 1 +1)x 3 2 -x 3 x 1 +x 1 2 (x 1 +x 2)(x 3 +x 2 +1)x 3        , Chapter 4
Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

M 3 =          x 3 (x 1 + 1 + x 2) + x 2 (x 1 + x 2) 2 (x 3 + x 2) x 3 0 (x 1 + x 2 -1) x 3 + x 2 (x 1 + x 2) 2 (x 3 + x 2) x 3 0 x 1 + x 2 x 3 0 (x 1 + x 2 -1) x 3 + x 2 (x 1 + x 2) 2 (x 3 + x 2) x 3 0 x 3 (x 1 + 1 + x 2) + x 2 (x 1 + x 2) 2 (x 3 + x 2) x 3          .
The system L 1 (y) = 0 admits only one (s = 1) rational solution given by

W 1 =        - 1 x 1 + x 2 0 1 x 1 + x 2       
, so we expect to be reduced to solving a partial system of size s = 1, i.e., a system of partial scalar equations. Indeed, the unique solutions of the linear systems

W 1 N 11 2 = -L 2 (W 1) and W 1 N 11 3 = -L 3 (W 1
) are given by:

N 11 2 = - 1 x 2 + x 3 + 1 , N 11 3 = 1 x 2 + x 3 ,
and then we consider the partial system

         δ 2 (y) + 1 x 2 + x 3 + 1 ϕ 2 (y) = 0, δ 3 (y) - 1 x 2 + x 3 ϕ 3 (y) = 0.
One can check that the latter partial system has a solution y(x 2 , x 3) = x 2 + x 3 . Finally the original system admits only one rational solution given by:

W 1 y =        -x 2 -x 3 x 1 + x 2 0 x 3 + x 2 x 1 + x 2        .

Necessary conditions for denominators

A rational solution of the partial pseudo-linear system (4.1) is, in particular, a rational solution of each pseudo-linear system δ i (y) = M i ϕ(y), i = 1, . . . , m. This necessarily imposes some necessary conditions on the irreducible factors of the denominator of a rational solution of System (4.1) (see [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF]Proposition 8] in the integrable connection case).

In some cases, taking into account these necessary conditions can significantly speed up Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems the timings of Algorithm RationalSolutions_PPLS as it allows to not consider some irreducible factors when computing universal denominators.

For a pure differential system (ϕ i = id K and δ i = ∂/∂x i), an irreducible factor of the denominator of a rational solution must divide the denominator of the matrix M i (see e.g. [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF]). For the case of a ϕ-system we have the following consequence of Proposition 3.2. This result can be found in [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF] for the pure difference case and can be adapted directly for any ϕ-system considered here.

where N ∈ M n (C(x)) and ϕ : x → q x + r with r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. With the notations of Section 3.3, assume that

E ϕ (a, b) ̸ = ∅ and let h = max(E ϕ (a, b)). Let p ̸ = x -r 1-q ∈ C[x]
be an irreducible polynomial. If p divides the denominator of a non-zero rational solution of System (4.12), then there exist 1 ≤ i ≤ h + 1 and 0 ≤ j ≤ h such that i + j ∈ E ϕ (a, b) and p divides both ϕ -i (den(N)) and ϕ j (den(N -1)).

For the sake of clarity, before giving a result in the general case, we first consider the case of a partial pseudo-linear system with only m = 2 pseudo-linear systems being written either as a pure differential system or a ϕ-system. We obtain the following result as a consequence of the discussion above and Proposition 4.1.

Necessary Condition 1.

Let K = C(x 1 , x 2) and consider a partial pseudo-linear system

L 1 (y) = 0, L 2 (y) = 0. (4

.13)

Let A 1 denote the matrix of the system L 1 (y) = 0 and p ∈ C[x 1 , x 2] be an irreducible factor of den(A 1) which involves the variable x 2 . Then we have the following result depending on the type of each pseudo-linear system:

1. If for i = 1, 2, L i = I n ∂ ∂x i -A i then if p
appears in the denominator of a rational solution of (4.13), then p | den(A 2) (see [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF]Proposition 8]).

If

L 1 = I n ∂ ∂x 1 -A 1 , L 2 = I n ϕ 2 -A 2 ,
then if p appears in the denominator of a rational solution of (4.13), there exists i ∈ N * such that p | ϕ -i 2 (den(A 2)).

If

L 1 = I n ϕ 1 -A 1 , L 2 = I n ∂ ∂x 2 -A 2 ,
then if p appears in the denominator of a rational solution of (4.13), there exists i ∈ N * such that p | ϕ i 1 (den(A 2)).

If for

i = 1, 2, L i = I n ϕ i -A i ,
then if p appears in the denominator of a rational solution of (4.13), there exists i, j ∈ N * such that p | ϕ i 1 (ϕ -j 2 (den(A 2))).

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems Let us illustrate the latter necessary condition on an example.

Example 4.6. Consider a partial pseudo linear system of the form

∂y ∂x (x, k) = A(x, k) y(x, k), y(x, k + 1) = B(x, k) y(x, k),
where the matrices A and B are given by:

A(x, k) =     -1 (x + k) -k (k -x) (x + 2 k) (x + k) x 3 (k 2 -kx + x) 0 k (k -x) (k 2 -kx + x)     , B(x, k) =      x + k x + k + 1 (k -x) (2 k + x + 1) (x + k + 1) x 2 (k 2 -kx + x) 0 (k 2 -kx + 2 k + 1) (k -x) (k + 1 -x) (k 2 -kx + x)      .
The factorizations of the denominators of the matrices A and B are given respectively by:

den(A)(x, k) = (x + k) x 3 (k 2 -k x + x) (k -x) , den(B)(x, k) = (x + k + 1) x 2 (k 2 -k x + x) (k + 1 -x) .
The irreducible factor p(x, k) = k 2 -k x + x of den(A) clearly satisfies that, for all i ∈ N * , p ∤ den(B)(x, k -i). Therefore, from Case 2 of Necessary Condition 1, p can not appear in the denominator of any rational solution of the system. However, the latter necessary condition does not allow to draw any conclusion concerning the factors x + k and k -x of den(A) (the factor x does not involve the variable k so that it can not be considered in our result). We can indeed check the previous observations as the rational solutions of the original system are given by:

y 1 (x, k) =    1 (x + k) 0    , y 2 (x, k) =    k x 2 k + x k -x    .
The gain for our algorithm is that when computing a universal denominator for the differential system ∂y ∂x (x, k) = A(x, k) y(x, k), there is no need to compute a simple form (or a super-irreducible form) at p(x) = k 2 -k x + x (see Section 3.3).

We now give a generalisation of the latter necessary condition in the case of a partial pseudo-linear system (4.1) composed of m pseudo-linear systems. We distinguish the case when the first system is a differential system (Necessary Condition 2) from that where it is a ϕ-system (Necessary Condition 3). Note that for ϕ i ̸ = id K , the systems are written Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems here under the form of a pseudo-linear system δ i (y) = M i ϕ i (y) and not of a ϕ-system ϕ i (y) = N i y. This is the reason why matrices γ -1 i M i + I n appear in the following results (see Section 1.2).

Necessary Condition 2.

Let K = C(x 1 , . . . , x m). Consider a system of the form (4.1) and suppose that L 1 (y) = 0 is a pure differential system, i.e., ϕ 1 = id K and δ 1 = ∂ ∂x 1 . Let p ∈ C[x 1 , . . . , x m] be an irreducible factor of den(M 1) such that p involves the variable x i for some i ∈ {2, . . . , m}. Moreover, suppose that one of the following two conditions holds:

1. (ϕ i , δ i) = (id K , ∂ ∂x i
) and p ∤ den(M i).

ϕ

i ̸ = id K (i.e., δ i = γ i (id K -ϕ i) for some γ i ∈ K *) and ∀j ∈ N * , ϕ j i (p) ∤ den((γ -1 i M i + I n) -1).
Then p cannot appear in the denominator of any rational solution of (4.1).

Necessary Condition 3.

Let K = C(x 1 , . . . , x m). Consider a system of the form (4.1) and suppose that

ϕ 1 ̸ = id K (i.e., δ 1 = γ 1 (id K -ϕ 1) for some γ 1 ∈ K *). Let p ∈ C[x 1 , . . . , x m] be an irreducible factor of den((γ -1 1 M 1 + I n) -1
) such that p involves the variable x i for some i ∈ {2, . . . , m}. Moreover, suppose that one of the following two conditions holds:

1. (ϕ i , δ i) = (id K , ∂ ∂x i)
and, for all j ∈ N * , p ∤ ϕ j i (den(M i)).

ϕ

i ̸ = id K (i.e., δ i = γ i (id K -ϕ i) for some γ i ∈ K *) and ∀j, k ∈ N * , p ∤ ϕ j 1 (ϕ -k i (den((γ -1 i M i + I n) -1))) .
Then p cannot appear in the denominator of any rational solution of (4.1).

Implementation and comparison of different strategies

Algorithm RationalSolutions_PPLS has been implemented in Maple in our package PseudoLinearSystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. It includes part of the necessary conditions given in Section 4.2.2.3. Note that we have also implemented a similar version of Algorithm RationalSolutions_PPLS which takes directly as input a partial pseudo-linear system composed of pure differential, difference or q-difference systems (such as System (4.9)), i.e., there is no need to transform every system into a pseudo-linear system as we did in Example 4.3.

In the recursive process of Algorithm RationalSolutions_PPLS, the pseudo-linear Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems systems in (4.1) can be considered in an arbitrary order. We have thus tried to see (through examples) if there are some orders better than others from the computational point of view. Let us give some timings of one of our experiments in the case of m = 2 pseudo-linear systems where one system is a pure differential system (with independent variable x and usual derivation ∂ ∂x) and the other is a pure difference system (with independent variable k, ϕ : (x, k) → (x, k -1) and δ = id K -ϕ). In this experiment the matrices of the systems are generated from a randomly chosen fundamental matrix of rational solutions but whose denominator denoted by U is fixed as a product of some of the following three polynomials:

U 1 (x, k) = (x + k) (x -k) 2 (-k 2 + x) (-k 3 + x 2 + 3) , U 2 (x, k) = -77 k 8 x 6 +
U 3 (x, k) = k (6 k 10 x + 5 kx 9 + 6 k 2 x 7 + 3 k 7 + 2 k 6 x -4 x 7 + 4 k 4 x 2 + k 4 x -3 x 4 -5 k).
We compare two strategies:

1. Strategy 1: we start with the differential system.

2. Strategy 2: we start with the difference system.

The following table gives the timings (in seconds) obtained for computing the fundamental matrix of rational solutions with each strategy, for different dimensions n of the systems, and for different fixed denominators U of the rational solutions. The table seems to indicate that Strategy 2, i.e., starting with the difference system, gives, in general, better timings. In particular, the difference between the distinct timings seems to be particularly significant when the denominator includes large irreducible factors as U 2 and U 3 . In the case U = U 1 , we do not have large singularities in the denominator and Strategy 1 behaves well. Going deeper into the analysis of these timings for each step of the algorithm, we can see that, in Strategy 1, most of the time is spent in computing simple forms which can be quite involved for singularities as the ones given by U 2 and U 3 . In Strategy 2, we have no simple form computations to get a universal Chapter 4

U = U 1 U = U 1 U 2 U = U 1 U 2 U 3 n = 3 n = 6 n = 9 n = 3 n = 6 n = 9 n = 3 n = 6 n =
Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems denominator of the first system (as it is a difference system, see Section 3.3.1) and then, the large factors U 2 and U 3 disappear as the differential system to be considered next only involves the variable x. For instance, in Example 4.3, if we start with the differential system with matrix M 3 = A 3 , we must compute a simple form at the singularity given by the irreducible factor x 1 + x 3 of den(A 3). But if we treat first the difference and the q-difference systems as it is done in Example 4.3, we can see that at the end of the process, the differential system to be considered is δ 3 (y) -N 3 11 ϕ 3 (y) = 0, where N 3 11 has no finite singularities, and therefore no simple form computations are needed to get a universal denominator of the differential system.

From these observations (and other comparisons that we have performed), we make the choice to treat the ϕ-systems (ϕ i ̸ = id K) first and to consider the differential systems at the end of the iterative process, where the systems involve fewer independent variables and may also be of smaller size.

Applications: eigenring and decomposition of systems

Computing rational solutions of partial pseudo-linear systems is useful for computing hypergeometric solutions as we will see in Section 4.3. It can also be useful for computing the so called eigenring of System (4.1).

Let K = C(x). For a differential system y ′ (x) = M (x) y(x) over K, the eigenring is defined as the set of matrices P ∈ M n (K) such that P ′ = M P -P M (see [START_REF] Barkatou | Formal reduction of singular linear differential systems using eigenrings: A refined approach[END_REF][START_REF] Singer | Testing reducibility of linear differential operators : a group theoretic perspective[END_REF]), while for a ϕ-system ϕ(y) = M y over K, the eigenring is defined as the set of matrices P ∈ M n (K) such that M P = ϕ(P) M (see [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF]). These notions can be generalised for pseudo-linear systems as follows. Let (K, ϕ, δ) be ϕδ-field and denote by C K its field of constants (see Definition 1.3). Consider a fully integrable first order pseudo-linear system over (K, ϕ, δ) of the form Let P ∈ M n (K) be an element of E(M). The equation δ(P) = M ϕ(P) -P M can be viewed as a first order pseudo-linear system of size n 2 over (K, ϕ, δ). This can be realised through the linear map Chapter 4

δ(y) = M ϕ(y), M ∈ M n (K). (4
Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems Example 4.7. Let us go back to the partial pseudo-linear system (4.11) defined over

K = Q(x 1 , x 2 , x 3
). Its eigenring is defined as the set of matrices P ∈ M 2 (K) verifying ∀i = 1, 2, 3, δ i (P) = M i ϕ i (P) -P M i .

Applying Algorithm RationalSolutions_PPLS to the partial system of size 4

     δ 1 (y) = ((M 1 + I 2) ⊗ (M T 1 + I 2) -1 -I 4) ϕ 1 (y), δ 2 (y) = ((M 2 + I 2) ⊗ (M T 2 + I 2) -1 -I 4) ϕ 2 (y), δ 3 (y) = ((M 3 + I 2) ⊗ (M T 3 + I 2) -1 -I 4) ϕ 3 (y),
yields a basis of rational solutions given by the columns of

              - (x 3 + x 1) x 3 x 2 (x 1 2 + x 1 x 3 -x 3) - x 2 x 1 x 1 2 + x 1 x 3 -x 3 2 x 3 x 1 2 + x 1 x 3 -x 3 1 (x 3 + x 1) x 3 2 x 2 2 (x 1 2 + x 1 x 3 -x 3) (x 3 + x 1) x 1 2 x 1 2 + x 1 x 3 -x 3 - (2 x 3 + 2 x 1) x 3 x 1 ((x 1 -1) x 3 + x 1 2) x 2 0 -x 3 -x 1 (x 1 -1) x 3 + x 1 2 - x 2 2 ((x 1 -1) x 3 + x 1 2) (x 3 + x 1) 2 x 2 (x 1 -1) x 3 + x 1 2 0 (x 3 + x 1) x 3 x 2 (x 1 2 + x 1 x 3 -x 3) x 2 x 1 x 1 2 + x 1 x 3 -x 3 - (2 x 3 + 2 x 1) x 1 x 1 2 + x 1 x 3 -x 3 1               .
Hence, a basis of the eigenring of (4.11) is given by

{      - (x 3 + x 1) x 3 x 2 (x 1 2 + x 1 x 3 -x 3) (x 3 + x 1) x 3 2 x 2 2 (x 1 2 + x 1 x 3 -x 3) -x 3 -x 1 (x 1 -1) x 3 + x 1 2 (x 3 + x 1) x 3 x 2 (x 1 2 + x 1 x 3 -x 3)      ,     - x 2 x 1 x 1 2 + x 1 x 3 -x 3 (x 3 + x 1) x 1 2 x 1 2 + x 1 x 3 -x 3 - x 2 2 ((x 1 -1) x 3 + x 1 2) (x 3 + x 1) x 2 x 1 x 1 2 + x 1 x 3 -x 3     ,      2 x 3 x 1 2 + x 1 x 3 -x 3 - 2 x 3 (x 3 + x 1) x 1 ((x 1 -1) x 3 + x 1 2) x 2 2 x 2 (x 1 -1) x 3 + x 1 2 - 2 (x 3 + x 1) x 1 x 1 2 + x 1 x 3 -x 3      ,   1 0 0 1   } . Chapter 4
Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

Let P ∈ M 2 (K) be the third element of the latter basis. Then P admits two distinct eigenvalues 0 and -2. Consider the matrix

T =     (x 3 + x 1) x 1 x 1 2 + x 1 x 3 -x 3 - x 3 x 1 2 + x 1 x 3 -x 3 x 2 x 1 2 + x 1 x 3 -x 3 - x 2 x 1 2 + x 1 x 3 -x 3     .
One has J = T -1 P T = diag(0, -2) is in Jordan form. Therefore, System (4.11) can be decomposed into the equivalent system

     δ 1 (y) = N 1 ϕ 1 (y), δ 2 (y) = N 2 ϕ 2 (y), δ 3 (y) = N 3 ϕ 3 (y),
where for all i = 1, 2, 3,

N i = T -1 (M i ϕ i (T) -δ i (T)
) is a (block) diagonal matrix:

N 1 =     5 x 1 2 + (10 x 3 -25) x 1 + 5 x 3 2 -20 x 3 (x 3 + x 1) (x 1 2 + (x 3 -10) x 1 -6 x 3 + 25) 0 0 10 x 1 + 5 x 3 -25 x 1 2 + (x 3 -10) x 1 -6 x 3 + 25     , N 2 =    0 0 0 -4 x 2 -5 x 2    , N 3 =     - 4 x 1 x 3 (x 3 + x 1) ((-3 x 1 + 3) x 3 + x 1 2) 0 0 4 (x 1 -1) x 3 (-3 x 1 + 3) x 3 + x 1 2     .

Hypergeometric solutions

In this section, we present our second contribution of this chapter: a recursive algorithm for computing hypergeometric solutions of a partial pseudo-linear system (4.1) which is fully integrable and satisfies the integrability conditions (4.4). The recursive approach that we follow is the one used in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF] for integrable connections and in [START_REF] Li | A recursive method for determining the onedimensional submodules of Laurent-Ore modules[END_REF] in the more general context of Laurent-Ore algebras. Here we provide details on how this can be efficiently done for partial pseudo-linear systems. Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems field of constants. A non zero element h ∈ H is said to be a hypergeometric term over

(K, ϕ, δ) if δ(h)/ϕ(h) ∈ K. A hypergeometric solution of System (4.16
) is a product hg of a hypergeometric term h over (K, ϕ, δ) by a vector g ∈ K n such that δ(hg) = M ϕ(hg).

Remark 4.2. In [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF], a hypergeometric solution of a differential system is referred to as an exponential solution, and a hypergeometric term is referred to as an exponential part (see also Section 4.3.1.1 below). For a ϕ-system ϕ(y) = M y, the authors in [START_REF] Abramov | q-Hypergeometric solutions of q-difference equations[END_REF][START_REF] Abramov | Hypergeometric solutions of first-order linear difference systems with rational-function coefficients[END_REF]

{ δ 1 (y) = (x 2 /x 1) ϕ 1 (y), δ 2 (y) = (x 1 -1) ϕ 2 (y),
where

ϕ 1 = id K , δ 1 = ∂ ∂x 1 , ϕ 2 : (x 1 , x 2) → (x 1 , x 2 -1), δ 2 = id K -ϕ 2 .
The function y(x 1 , x 2) = x x 2 1 is a solution of the system. Moreover,

h = x x 2 1 is a hyper- geometric term over (K, {ϕ i , δ i } 1≤i≤2) since δ 1 (h)/ϕ 1 (h) = x 2 x -1 1 ∈ K, δ 2 (h)/ϕ 2 (h) = x -1 1 -1 ∈ K.
Therefore, y is a hypergeometric solution in the sense of Definition 4.5. It can be written as y = hg where g = 1 ∈ K.

Before entering the details of our recursive algorithm for (4.1), let us recall how one proceeds in the case m = 1 for differential and difference systems.

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

The differential and difference cases

Let K = C(x). In this section, we review the principle of the algorithms developed in [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] for computing hypergeometric solutions of differential and difference systems.

Pflügel's algorithm for differential systems

Consider a first order differential system

y ′ (x) = M (x)y(x), (4.17)
where M ∈ M n (K), and let x 0 ∈ C be a singularity of the system. Define t = xx 0 if

x 0 is finite and t = x -1 otherwise. The matrix M can be written as

M = t -1-p +∞ ∑ i=0 M i t i ,
where p ∈ N is the Poincaré rank of the system, and the matrices

M i ∈ M n (C) with M 0 ̸ = 0.
Definition 4.6. With the above notations, a non-ramified local exponential part of System (4.17) at x 0 , is a polynomial in t -1 of the form

f = ω k t k+1 + ω k-1 t k + • • • + ω 0 t , (4.18)
where 0 ≤ k ≤ p and the ω i 's are in C, such that there exists a formal local solution of the system of the form

y(t) = e ∫ f (t) dt z(t), (4.19)
where z(t) is a vector of formal power series in t.

For a differential system (4.17), we seek a solution of the form

y(x) = e ∫ u(x) dx P (x), (4.20)
where u(x) ∈ K and P (x) ∈ C[x] n . Such a solution is called an exponential solution in [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] (we shall also call it a hypergeometric solution) and e ∫ u(x)dx is called the exponential part. The algorithm given in [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] to compute an exponential solution of the form (4.20) can be summarised as follows.

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems 1. Compute the possible values of u(x): this can be done by computing the nonramified local exponential parts at each singularity, including infinity. We shall explain below how to compute these parts. Each combination composed of one nonramified exponential part at each singularity yields a possible candidate for u(x).

2. Perform the change of variable y = e ∫ u(x) dx z in (4.17).

3. Search for a basis of polynomial solutions of the resulting system

z ′ (x) = (M (x) -u(x)I n) z(x).
Each polynomial solution P (x) gives an exponential solution (4.20).

A classical approach to compute the non-ramified local exponential parts at a singularity x 0 is the Newton algorithm [START_REF] Barkatou | Contribution à l'étude des équations différentielles et aux différences dans le champ complexe[END_REF][START_REF] Barkatou | Formal solutions of linear differential and difference equations[END_REF][START_REF] Tournier | Solutions formelles d'équations Différentielles, le logiciel de calcul formel: DÉSIR, étude théorique et réalisation[END_REF]. This algorithm consists first in reducing the system, via a cyclic vector method [START_REF] Barkatou | An algorithm for computing a companion block diagonal form for a system of linear differential equations[END_REF][START_REF] Churchull | Cyclic vectors. In Differential Algebra and Related Topics[END_REF][START_REF] Cope | Formal solutions of irregular linear differential equations, Part II[END_REF], to an nth scalar differential equation, and then constructing the Newton Polygon [START_REF] Barkatou | An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system[END_REF][START_REF] Tournier | Solutions formelles d'équations Différentielles, le logiciel de calcul formel: DÉSIR, étude théorique et réalisation[END_REF]. The roots of the Newton polynomials 2give the values of the ω i 's occurring in (4.18). However, one would like to avoid such approach since computing an equivalent scalar equation can be very costly in general: see for instance [START_REF] Cluzeau | Algorithmique modulaire des équations différentielles linéaires[END_REF][START_REF] Macuatn | Formal Solutions of Scalar Singularly-Perturbed Linear Differential Equations[END_REF]. An alternative method has been proposed by Pflügel in [START_REF] Pflügel | Effective formal reduction of linear differential systems[END_REF] to compute the non-ramified local exponential parts without reduction to scalar equations.

In particular, Pflügel proved that if System (4.17) is in k-simple form, then its associated characteristic polynomial Ψ k (λ) (see Definition 2.8) plays the same role as the Newton polynomial.

The algorithm in [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] then proceeds as follows: let k = p. Compute a k-simple form of (4.17) (note that the system is already is simple at p) and let Ψ k (λ) be its associated characteristic polynomial. The possible values of ω k appearing in (4.18) are then roots of Ψ k (λ). For each root ω k of Ψ k (λ), perform the change of variable y = e The method proposed in [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] to compute a k-simple form at each stage of the recursion consists in applying first super-reduction [START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF][START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF]. However, a system which is k-simple for a fixed k is not necessarily super-irreducible (see for instance Example 2.5 or [START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF]Remark 4.3.2]). So if one is interested in computing a k-simple form for just one Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems value of k then direct methods have to be preferred. Our Algorithm SimpleForm from Chapter 2 (and the algorithm in [START_REF] Barkatou | On k-simple forms of first-order linear differential systems and their computation[END_REF][START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] for differential systems) provides such a direct method. Note that Pflügel's algorithm [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] is implemented in the current version of the Isolde package [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF]. In our PseudoLinearSystems package [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF] we have updated this implementation in such a way that it uses simple forms instead of super-reduction.

Example 4.9. Consider System (4.17) with

M =      x 2 -x -1 x (x -1) 2 x 2 -3 x + 3 x (x -1) 2 -x 2 + 2 x -2 (x -1) 2 x 3 -2 x + 2 x (x -1) 2      .
The system has three singularities, 0, 1 and ∞. Let us compute first the non-ramified local exponential parts at 0. In this case, the Poincaré rank of the system is p = 0. So It is enough to compute a 0-simple form of the system, but as expected it is already 0-simple with an associated characteristic (indicial) polynomial Ψ 0 (λ) = (λ + 1) (λ -2).

The roots of Ψ 0 (λ) are -1 and 2, therefore the non-ramified local exponential parts at 0 are -1 x and 2

x . Concerning the singularity 1, the system has a Poincaré rank p = 1. The system is already 1-simple with an associated characteristic polynomial Ψ 1 (λ) = λ 2 . The only root of Ψ 1 (λ) is 0. Now we have to consider again the system y ′ (x) = M (x) y(x) since M -0 (x-1) 2 I 2 = M . Using our Algorithm SimpleForm, we compute an equivalent 0-simple system

y ′ (x) =      -2 x 3 + 5 x 2 -5 x + 1 (x -1) x 4 x 3 -10 x 2 + 14 x -6 (x -1) x -x 2 + 2 x -2 x -1 2 x 3 -4 x 2 + 6 x -2 (x -1) x      y(x),
with an associated characteristic (indicial) polynomial Ψ 0 (λ) = λ 2 -λ having 0 and 1 as roots. The non-ramified local exponential parts at 1 are thus 0 and 1 x-1 . Using the same concept for the singularity ∞, we find two non-ramified local exponential parts given by 0 and 1. If the original system has an exponential solution (4.20), then the possible candidates of u(x) are

{ - 1 x , - 1 x + 1 x -1 , - 1 x + 1, - 1 x + 1 + 1 x -1 , 2 x , 2 x + 1 x -1 , 2 x + 1, 2 x + 1 + 1 x -1 } .
Note that the number of these candidates can be furthermore reduced using the method in [START_REF] Cluzeau | A modular algorithm for computing the exponential solutions of a linear differential operator[END_REF]. Computing polynomial solutions of the system z ′

(x) = (M + 1 x I 2) z(x) and those of z ′ (x) = (M - (-1 x + 1) I 2)
z(x) we get respectively:

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

P 1 (x) =   x 3 x 3   , P 2 (x) =   x -1 x 2 -x   .
A basis of exponential solutions of the original system is hence given by:

y 1 (x) =   x 2 x 2   , y 2 (x) =    e x (x -1) x e x (x -1)    .

Barkatou and Van Hoeij algorithm for difference systems

Let ϕ : x → x+1 be the forward shift automorphism over K and consider a pure difference system of the form

ϕ(y) = N y, (4.22)
where N ∈ GL n (K). We are interested in computing hypergeometric solutions of the form y

(x) = c x Sol (ϕ - a(x) b(x)) P (x), (4.23)
where

c ∈ C * , P (x) ∈ C[x] n and a(x), b(x) ∈ C[x] * . The notation Sol (ϕ -a(x) b(x)
) stands for the solution of the scalar recurrence equation ϕ(z(x)) = a(x) b(x) z(x). Here the hypergeometric term over

K is h = c x Sol (ϕ -a(x) b(x)
)

. Algorithms for computing hypergeometric solutions of scalar difference equations have been proposed in [START_REF] Cluzeau | Computing hypergeometric solutions of linear difference equations[END_REF][START_REF] Petkovšek | Hypergeometric solutions of linear recurrences with polynomial coefficients[END_REF]. For a difference system (4.22), an algorithm was developed by Barkatou and Van Hoeij in [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF]. It can be summarised as follows:

1. Compute possible candidates for a(x), b(x) and c: this is explained below. 3. Search for a basis of polynomial solutions of the resulting system

ϕ(z) = (b(x) a(x) c N) z.
Each polynomial solution P (x) gives a hypergeometric solution (4.23).

According to [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF], the possible candidates for the polynomial a(x), respectively b(x), are amongst the factors of the denominator of N -1 , respectively N . Let us now explain how to compute a possible candidate for c. The idea is to localize the system at infinity. Let

K 1 = C((x -1
)): the completion of the field K with respect to the t-adic valuation ν (here Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems But it may happen that Ψ k (λ) vanishes identically in λ. The method proposed in [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF] to effectively compute the polynomials Ψ k (λ) for k = 0, . . . , p, is to compute (once) a superirreducible form (see Section 2.3.1) of (4.24) using the algorithm in [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF]. The possible values of c can then be obtained from the roots of the polynomials Ψ 0 (λ), . . . , Ψ p (λ).

The algorithm of [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF] is implemented in the current version of the Isolde package [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF]. This implementation takes advantage of the results developed in [START_REF] Cluzeau | Computing hypergeometric solutions of linear difference equations[END_REF][START_REF] Petkovšek | Hypergeometric solutions of linear recurrences with polynomial coefficients[END_REF] to reduce the number of combinations (a(x), b(x), c) to be checked. In our PseudoLinearSystems package [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF] we have modified this implementation in such a way that it uses the algorithm developed in Section 2.3.4 instead of the one in [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF], for computing a super-irreducible form of (4.24). We have noticed that in several examples, our implementation is more often better from a computational point of view. See for instance "HS_DifferenceExample" on the webpage of [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF].

N =             x -1 x 0 - x -1 x + 1 0 1 0 2 x + 1 -x -1 1 x -1 1 - x + 2 x x + 1 x x 2 -x -1 x (x + 1) x 2 + x + 1 x             .
One has den(N) = x (x + 1) and den(N -1) = x 2 (x -1) (x 2 -x -1). The system can be written in the local form (4.24) as

δ(y) =             - 1 x -1 0 - x -2 x 0 1 -1 2 x -x + 1 -1 1 x -3 1 - x + 1 x -1 x x -1 x 2 -3 x + 1 x (x -1) x 2 -2 x + 2 x -1             ϕ(y),
with Poincaré rank p = 2. The latter system can be transformed into an equivalent super-irreducible system Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

δ(y) =             -- 1 x -1 0 -x + 2 x 0 - 2 x -1 1 x -1 x 2 -x -1 x (x -1) 0 -1 1 x -3 0 -x -1 x -1 x x -1 x 2 -3 x + 1 x (x -1) x -2             ϕ(y),
with associated characteristic polynomials

ψ 0 (λ) = (λ + 1) 2 , ψ 1 (λ) = λ 2 , ψ 2 (λ) = λ 2 (λ -1) 2 .
Thus, if the original system admits a hypergeometric solution (4.23), then the possible values of c are -1, 0 and 1. For c = 1, a(x) = x(x -1) and b(x) = x + 1, the system

ϕ(z) = (b(x) a(x) c N
) z admits only one polynomial solution

P (x) =         0 x 2 -x 0 -x 2 + x         .
A hypergeometric solution is thus given by

y(x) = c x Sol (ϕ - a(x) b(x)) P (x) =         0 -Γ (x) 0 Γ (x)        
, and it is in fact the only hypergeometric solution of the original system.

Description of the recursive approach

Let K = C(x 1 , . . . , x m). Let us sketch the general iterative process for computing a basis of hypergeometric solutions of an integrable partial pseudo-linear system of the form (4.1). We extend the ideas developed in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF] for integrable connections (i.e., the case where all the systems are differential systems) to handle a more general system (4.1). The recursive process described below resembles the one proposed in Subsection 4.2.2.1 for computing rational solutions. For i = 1, . . . , m, the variable x j 's (j ̸ = i) are constants with respect to ϕ i and δ i . This allows to view L i (y) = 0 as a pseudo-linear system with respect to x i and where the other variables x j 's are considered as constant parameters.

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems Lemma 4.4. Let h be a hypergeometric term over (K, {ϕ i , δ i } 1≤i≤m) and g ∈ K n . If hg is a hypergeometric solution of System (4.1) then g is a rational solution of the system

       L 1 (z) := δ 1 (z) -h -1 ϕ 1 (h) [M 1 -f 1 I n] ϕ 1 (z) = 0, . . . L m (z) := δ m (z) -h -1 ϕ m (h) [M m -f m I n] ϕ m (z) = 0,
where f i = δ i (h)/ϕ i (h) for all i = 1, . . . , m.

Proof. For all i = 1, . . . , m, we have

L i (g) = δ i (z) -h -1 [M i ϕ i (hg) + δ(h) ϕ(g)]. Using the equality δ i (hg) = δ i (h) ϕ i (g) + h δ i (g), we get L i (g) = h -1 [δ i (hg) -M i ϕ i (hg)] = 0,
since hg is a solution of (4.1).

We consider first the pseudo-linear system L 1 (y) = 0 defined over C(x 2 , . . . , x m)(x 1). We compute a basis of hypergeometric solutions of L 1 (y) = 0. If we do not find any nonzero hypergeometric solution, then we stop as (4.1) does not admit any nonzero hypergeometric solution. Otherwise, let hg be a hypergeometric solution of L 1 (y) = 0, where h is a hypergeometric term over (K, {ϕ i , δ i } 1≤i≤m) and g ∈ K n . Performing the change of dependent variables y = h z in System (4.1) yields the system

       L 1 (z) := δ 1 (z) -h -1 ϕ 1 (h) [M 1 -f 1 I n] ϕ 1 (z) = 0, . . . L m (z) := δ m (z) -h -1 ϕ m (h) [M m -f m I n] ϕ m (z) = 0, (4.27)
where f i = δ i (h)/ϕ i (h) for all i = 1, . . . , m. From the integrability conditions (4.4) and Lemma 4.4, it follows that System (4.27) is integrable.

We compute now a basis w 1 , . . . , w s ∈ K n (0 ≤ s ≤ n) of rational solutions of L 1 (z) = 0 (see Section 3.4) and denote by W ∈ M n×s (K) the matrix whose columns are the w i 's. We complete w 1 , . . . , w s into a basis w 1 , . . . , w n of K n and define P = (W V) ∈ GL n (K), where V ∈ M n×(n-s) (K) has w s+1 , . . . , w n as columns. Performing the change of dependent variables z = P y in System (4.27) yields the system

       δ 1 (y) -N 1 ϕ 1 (y) = 0, . . . δ m (y) -N m ϕ m (y) = 0, (4.28)
where for all i = 1, . . . , m,

N i = P -1 [h -1 ϕ i (h) (M i -f i I n) ϕ i (P) -δ i (P)] . (4
N i =   N 11 i N 12 i N 21 i N 22 i   ,
where N 11 i ∈ M s (K). Then, for all i = 1, . . . , m, the matrix N 11 i ∈ M s (C(x 2 , . . . , x m)) does not depend on x 1 . Moreover it can be computed as the unique solution of the matrix linear system W N 11 Proof. Equation (4.29) yields in particular

W N 11 i + V N 21 i = -L i (W).
From the integrability conditions [L i , L j] := L i • L j -L j • L i = 0, for all 1 ≤ i, j ≤ m, we get that, for all i = 1, . . . , m, L i (W) is a rational solution of the system L 1 (y) = 0 so that there exists a unique constant matrix C ∈ M s (C(x 2 , . . . , x m)), i.e., not depending on x 1 , such that L i (W) = W C. We then obtain, for all i = 1, . . . , m,

W (N 11 i + C) + V N 21 i = 0,
which ends the proof as the columns of P = (W V) form a basis of K n .

From Lemma 4.5, we deduce the following analog of Theorem 4.2 which proves that all hypergeometric solutions of (4.1) can be computed recursively.

Theorem 4.4. Given a partial pseudo-linear system (4.1). Let hg, where h is a hypergeometric term over (K, {ϕ i , δ i } 1≤i≤m) and g ∈ K n , be a hypergeometric solution of L 1 (y) = 0. For all i = 1, . . . , m, denote by L i the pseudo linear operator of the form

L i = δ i -h -1 ϕ i (h) [M i -f i I n] ϕ i , where f i = δ i (h)/ϕ i (h) ∈ K.
Let W ∈ M n×s (K) be a matrix whose columns form a basis of the rational solutions of L 1 (y) = 0. For i = 2, . . . , m, let N 11 i ∈ M s (C(x 2 , . . . , x m)) be the unique solution of the matrix linear system W N 11 i = -L i (W). Suppose that Z ∈ M s×r (C(x 2 , . . . , x m)) is a matrix whose columns form a basis of all hypergeometric solutions of the partial pseudo-lineas system of size s over C(x 2 , . . . , x m)

       δ 2 (y) -N 11 2 ϕ 2 (y) = 0, . . . δ m (y) -N 11 m ϕ m (y) = 0, (4.30)
Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems then the columns of the matrix hW Z ∈ M n×r (K) form a basis of all hypergeometric solutions of (4.1). Moreover, every hypergeometric solution of (4.1) can be obtained in such a way.

Proof. Let Z ∈ M s×r (C(x 2 , . . . , x m)) be a matrix whose columns form a basis of all hypergeometric solutions of (4.30) and let us consider Y = h W Z. We have

L 1 (Y) = δ 1 (h) ϕ 1 (W) ϕ 1 (Z) + h δ 1 (W) ϕ 1 (Z) + h W δ 1 (Z) -M 1 ϕ 1 (h) ϕ 1 (W) ϕ 1 (Z) = ϕ 1 (h) [δ 1 (W) -h -1 ϕ 1 (h) (M 1 -f 1 I n) ϕ 1 (W)] Z = 0.
Now for i = 2, . . . , m, we have

L i (Y) = δ i (h) ϕ i (W) ϕ i (Z) + h δ i (W) ϕ i (Z) + h W δ i (Z) -M i ϕ i (h) ϕ i (W) ϕ i (Z) = ϕ i (h) [[(f i I n -M i) ϕ i (W) + h ϕ i (h) δ i (W)] ϕ i (Z) + h ϕ i (h) W δ i (W)] = h W [-N 11 i ϕ i (Z) + δ i (Z)] = 0.
This ends the first part of the proof. Now let Y = hg be a hypergeometric solution of (4.1), where h is a hypergeometric term over (K, {ϕ i , δ i } 1≤i≤m) and g ∈ K n . From Lemma 4.4, g is a rational solution of L i (y) = 0 for all i = 1, . . . , m. In particular g is a rational solution of L 1 (y) = 0 so that there exists Z ∈ M s (C(x 2 , . . . , x m)) such that g = W Z. This implies that Y = h (W V) (Z T 0 T) T . Thus, for i = 2, . . . , m, Y is a solution of L i (y) = 0 if and only if (Z T 0 T) T is a solution of the system (4.28). This is equivalent to Z being a solution to system (4.30) and yields the desired result.

Algorithm and example

Set S =

[] : an empty matrix.

5.

For every h in {h 1 , . . . , h d } do

• Let L i = δ i -h -1 ϕ i (h) (M i -f i I n) ϕ i , where f i = δ i (h)/ϕ i (h).
• Compute a matrix W ∈ M n×s (K) whose columns form a basis of the rational solutions of L 1 (y) = 0.

• For i = 2, . . . , m, compute the unique solution N 11 i ∈ M s (C(x 2 , . . . , x m)) of the matrix linear system W N 11 i = -L i (W). • Compute Z: the result of applying the current algorithm to System (4.30).

• If Z = 0 n then Return 0 n and Stop.

• S := the matrix having the columns of S and those of the matrix h W Z.

End For

Return S.

Example 4.11. Let K = C(x, k) and consider the partial pseudo-linear system composed of one difference and one differential system:

   y(x, k + 1) = A(x, k) y(x, k) ∂ ∂x y(x, k) = B(x, k) y(x, k) (4.31)
where A ∈ GL n (K) and B ∈ M n (K) are given by: Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

A =           (k + 1) (-x + k) 2 k (-x + k + 1) 2 0 0 - (k + 1) (k 2 x -2 kx 2 + x 3 -k 2 + 4 kx -3 x 2 + x) k (-x + k + 1) 2 x (k + 1) k 0 (k 2 -k -1) x 2 k - (k 2 -k -1) x 2 k kx           , B =         2 + x -k -x + k 0 0 2 x 2 + (-k + 2) x -k 2 x (-x + k) x + k x 0 -x -1 x + 1 k x        
.

Rewriting the two systems as pseudo-linear systems (see Section 1.2 for more details), System (4.31) can be transformed into the form (4.1) with

{ L 1 (y) := δ 1 (y) -M 1 ϕ 1 (y), M 1 = ϕ 1 (A) -I 2 , L 2 (y) := δ 2 (y) -M 2 ϕ 2 (y), M 2 = B, (4.32)
where

ϕ 1 : (x, k) → (x, k -1), ϕ 2 = id K , δ 1 = id K -ϕ 1 , δ 2 = ∂ ∂x .
Computing hypergeometric solutions of the difference system L 1 (y) = 0 using the algorithm of [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF] (see also Section 4.3.1.2), we get a basis composed of three hypergeometric solutions given by:

Sol (σ - a(k) b(k))      k k 0      , x k Sol (σ - a(k) b(k))       0 (-x + k) 2 k x (-x + k) 2 k       , x k Sol (σ - k a(k) b(k))      0 0 (-x + k) 2 x      , where σ = ϕ -1 1 : (x, k) → (x, k + 1), a(k) = (-x + k) 2 and b(k) = (-x + k + 1) 2 . The notation Sol (σ -a(k) b(k)
) stands for the solution of the scalar recurrence equation

σ(z) = a(k) b(k) z.
The hypergeometric terms of latter basis are the elements of the set Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

{h 1 , h 2 , h 3 } = { 1 k Sol (σ - a(k) b(k)) , x k Sol (σ - a(k) b(k)) , x k Sol (σ - k a(k) b(k))} = { 1 (-x + k) 2 , x k (-x + k) 2 , x k Γ (k) (-x + k) 2 } .
Now take h = h 1 and perform the change of variable y = h z in (4.32). This yields the system over C(x, k):

{ L 1 (z) := δ 1 (z) -h -1 ϕ 1 (h) [M 1 -f 1 I 3] ϕ 1 (z) = 0, L 2 (z) := δ 2 (z) -h -1 ϕ 2 (h) [M 2 -f 2 I 3] ϕ 2 (z) = 0, where f i = δ i (h)/ϕ i (h) for i = 1, 2.
The only rational solution of the difference system

L 1 (z) = 0 is W =      k k 0      .

Now, solving the matrix linear system

W N 11 = -L 2 (W) we get N 11 = -1 ∈ C(x).
We are then reduced to computing the hypergeometric (exponential) solution of the scalar differential equation δ 2 (y) -N 11 ϕ 2 (y) = 0. We find that it is given by Z = e -x ∈ C(x). Therefore, we get a hypergeometric solution of (4.31) given by

S 1 = h W Z =         k e -x (-x + k) 2 k e -x (-x + k) 2 0         .
Finally, repeating the same process for h = h 2 and h = h 3 , we get two other hypergeometric solutions

S 2 =      0 x k k e x x k+1 k e x      , S 3 =      0 0 x k Γ (k)      .

Remarks on the implementation

The recursive algorithm HypergeometricSolutions is implemented in our Maple package PseudoLinearsystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. We repeat that our current implementation only deals with a partial pseudo-linear system (4.1) composed of differential and/or difference systems. We use the algorithm form [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF], respectively [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF], to compute hypergeometric

Introduction

One major contribution of the present thesis arises in the implementation in Maple of all the algorithms developed in the previous chapters. All implementations are gathered and incarnated as internal procedures in our package PseudoLinearSystems [START_REF] Barkatou | The Pseudo-linearSystems package[END_REF]. Whilst some existing packages (such as LinearFunctionalSystems and Isolde [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF]) are dedicated to the study of the individual differential, difference and q-difference systems, the PseudoLinearSystems package is dedicated to the study of pseudo-linear systems: a very large class of linear functional systems including differential and (q-)difference systems.

Another novelty of our package is that it uses simple forms as a basic tool to compute necessary local data. This is not the case in the existing packages where super-reduction algorithms [START_REF] Barkatou | On the reduction of linear systems of difference equations[END_REF][START_REF] Barkatou | On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity[END_REF][START_REF] Hilali | Formes super-irréductibles des systèmes différentiels linéaires[END_REF] or EG-eliminations [START_REF] Abramov | EG-eliminations[END_REF] are used. So in particular, the package PseudoLinearSystems contains a generic procedure for computing a simple form of a pseudo-linear system, as well as local data useful for the local analysis: k-simple forms, super-irreducible forms, indicial polynomials, etc. The package also contains generic procedures devoted to the computation of closed form (polynomial, rational, hypergeometric) solutions for first order pseudo-linear systems and for partial pseudo-linear systems.

In this final chapter, we shall demonstrate the use of several important procedures contained in the package. Note that the package is freely available online. A manual for downloading and installing the package, as well as Maple examples covering several types of pseudo-linear systems, are provided on the webpage: http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

Simple and super-irreducible forms

Let K = C((t)) be the field of Laurent series in a variable t over a constant field C ⊂ Q, and equipped with the t-adic valuation ν. Moreover, let ϕ be C-automorphism over K preserving the valuation, i.e. ν(ϕ(a)) = ν(a) for all a ∈ K, and δ be a pseudo-derivation with respect to ϕ. The triplet (K, ϕ, δ) is thus a local ϕδ-field (see Definition 1.10).

The SimpleForm procedure

In Chapter 2, we have developed a generic algorithm to compute a simple form of any (local) pseudo-linear system of the form The algorithm is called SimpleForm and it proceeds as presented in the scheme of Section 2.2.3. It is implemented in the PseudoLinearSystems package as a procedure holding the same name. The inputs of the procedure are:

• The matrices A and B with rational function entries in x admitting power series expansions.

• The variable x and the local parameter t (for instance t = x -x 0 for the singularity x 0 , and t = 1/x for the singularity ∞).

• The automorphism ϕ and the derivation δ provided as Maple procedures.

• λ: a name.

The output is a list containing respectively the matrices A and B of the equivalent simple system L(y) = A δ(y) + B ϕ(y) = 0, the leading matrix pencil L λ = A 0 λ + B 0 , the determinant of L λ which is thus not zero, and finally the two invertible matrices S and T such that L = S L T . For instance, to treat the pseudo-linear system considered in Example 2.2.2, the user must first define:

> PhiAction:= proc(M,x) return subs(x=2*x-1,M) end: > DeltaAction:= proc(M,x) return M-PhiAction(M,x) end:

The user then enters the matrices A and B, specifies the local parameter t = x -1 and runs:

> SimpleForm(A,B,x,t,PhiAction,DeltaAction,lambda);

           
1 0 0 0 0 0 x 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 x -1             ,             -1 1 -1 -1 -x 2 + x -1 0 0 0 0 1 0 0 0 x -1 -(x -1) x 2 0 1 2 3 0 1 0 0 x 3 -2 x 2 + x             ,             λ -1 1 -1 -1 -1 0 λ 0 0 1 0 0 λ 0 0 2 0 1 λ + 2 3 0 1 0 0 0             , -λ 3 -λ 2 ,
Chapter 5

The PseudoLinearSystems Package

               1 x -1 0 0 - 1 x -1 1 x -1 0 1 0 0 0 0 0 1 x -1 0 - 1 x -1 0 0 0 1 x -1 0 0 0 0 0 1                ,            
x -1 0 0 x -1 x -1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 1            

The SuperReduced procedure

The PseudoLinearSystems package contains procedures based on the SimpleForm procedure for computing important local data of pseudo-linear systems. In particular, it contains the procedure SuperReduced which computes a super-irreducible form (see Section 2.3.1) of any local pseudo-linear system t -ω δ(y) = M ϕ(y), (

where ω ∈ Z is the degree of the ϕ-derivation δ (see Definition 1.12), and M ∈ M n (K) is uniquely written as M = t -p ∑ +∞ i=0 M i t i , with M 0 ̸ = 0 and p ∈ N is the Poincaré rank of the system.

Computing a super-irreducible form can be done, as explained in Section 2.3.4, by iteratively computing a k-simple form (see Definition 2.8) for k = p -1, . . . , 0, using the SimpleForm procedure just by altering at each iteration the derivation δ in its input. The SuperReduced procedure takes as input:

• The matrix M with rational function entries in x.

• The variable x and the local parameter t.

• The automorphism ϕ and the derivation δ provided as Maple procedures, as well as the degree ω of δ.

• λ: a name.

It returns the matrix M of an equivalent super-irreducible system t -ω δ(y) = M ϕ(y), and the list of pairs [k, Ψ k (λ)] for k = m, . . . , 0, where m is the minimal Poincaré rank, and where the Ψ k (λ)'s are the characteristic polynomials of each of the k-simple systems. The last output is the matrix T ∈ GL n (K) such that M = T -1 (M ϕ(T) -δ(T)). Let us treat for instance System (2.23) written in the form (5.1) where ϕ : x → x/q with Chapter 5

The PseudoLinearSystems Package q / ∈ {0, 1}, δ = id K -ϕ with degree ω = 0 and

M =          -1 q 3 x 3
x 3 q 2 q 3 + x 3 q 2 x q 2 -x x -x 2 -q q -x 2 + q x 2 0 x -q q

         .
Here the Poincaré rank is p = 3. The user should first enter the matrix M and then run the following commands:

> t:=x: > PhiAction:= proc(M,x) return subs(x=x/q,M) end: > DeltaAction:= proc(M,x) return PhiAction(M,x)-M end: > omega:=0: > SuperReduced(M,x,t,PhiAction,DeltaAction,omega,lambda);

         -x + q x q 2 -2 x 2 -q xq q 2 + x q 2 0
x -q q -x 2 + q x 2 q 2 x 2

x 5 + q 4

x 2 q 2 -1

         , [[2, λ (-q 3 + λ 2)
], [1, -q 3 (λ -1)], [0,

q 3]] ,      0 0 x x 0 1      .
The minimal Poincaré rank obtained is m = 2. If one is interested in computing just m (without additional information), then it is sufficient to use the procedure MinimalPoincareRank. The package also contains the procedure K_SimpleForm which computes a k-simple form, for a given k ∈ {0, . . . , p}, of any local pseudo-linear system (5.1).

Closed-form solutions of first order pseudo-linear systems

Let K = C(x) be the field of rational functions in a variable x with coefficients in a constant field C ⊂ Q. In this section we demonstrate the use of some procedures devoted for the computation of: rational solutions of a first order pseudo-linear system, exponential solutions of differential systems, and hypergeometric solutions of difference systems. x 3 -3 x 2 + 2 x -7

x (x -1) (x -2)

1 x (x -1) (x -2)    
The PseudoLinearSystems package contains another version of the RatSols_1PLS procedure, called the RationalSolutions_1System procedure, which is devoted to computing all rational solutions of first order differential, difference, or q-difference systems: y ′ (x) = A(x) y(x), y(x + 1) = A(x) y(x), y(q x) = A(x) y(x), where A(x) ∈ M n (K). This procedure takes as an input the matrix A(x) defining the system, the variable x, and the type of the system: 'differential', 'difference', or 'qdifference'. For instance let A(x) be the matrix given by:

A =      x 2 -3 x -3 x (x -3) (x -1)
x 2 -5 x + 9 3 x (x -3) (x -1) -3 x 2 + 12 x -18 (x -3) (x -1) • UnivDenom_PLS: computes a universal denominator of a pseudo-linear system of the form (5.2). It takes the same inputs as procedure RatSols_1PLS.

x 3 -2 x 2 -2 x + 6 x (x -3) (x -1)      . (5
• PolySols_1PLS: computes all polynomial solutions of a pseudo-linear system of the form (5.2). It also takes the same inputs as procedure RatSols_1PLS.

• UnivDenom_PhiSystem: computes a universal denominator of a ϕ-system ϕ(y) = M y where ϕ : x → q x + r. It takes as input the matrix defining the Chapter 5

The PseudoLinearSystems Package

The HypergeoemtericSolutions_Difference procedure for difference systems

PseudoLinearSystems also contains the HypergeoemtericSolutions_Difference procedure. This procedure computes all hypergeometric solutions of a first order difference system ϕ(y(x)) = A(x) y(x) where ϕ : x → x + 1 and A(x) ∈ GL n (K), see Section 4.3.1.2. It implements the algorithm from [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF] but it uses the SimpleForm procedure to compute the values of c in a hypergeometric solution (4.23). This is the main difference compared to the current procedure in Isolde. HypergeoemtericSolutions_Difference takes as input the matrix A(x) and the variable x. It returns a matrix whose columns form a basis of all hypergeometric solutions. The HS_Difference procedure is another version of HypergeoemtericSolutions_Difference. It returns a sequence For instance let

A(x) =              
x 3 + 4 x 2 + 4 x -2 (x + 4) (x + 2) (x + 1)

x 2 + 3 x + 1 (x + 2) (x + 1)

x + 1 x + 4

        x + 1, x + 4, -1,         x 2 + 7 2 x + 5 2 -x 2 -7 2 x -5 2 -3 x 2 -23 2 x -19 2 x 2 + 7 2 x + 5 2                 ,         x + 1, x + 4, 1,         x + 1 -x -1 -x + 1 x + 1                 ,         x +

Closed-form solutions of partial pseudo-linear systems

Let K = C(x 1 , . . . , x m) be the field of rational functions in the variables x 1 , . . . , x m with coefficients in a constant field C ⊂ Q. For i = 1, . . . , m, let ϕ i be a C-automorphism over K, and δ i be a ϕ i -derivation such that for all j ̸ = i, x j is a constant with respect to ϕ i and δ i , i.e., ϕ i (x j) = x j and δ i (x j) = 0. We consider a partial pseudo-linear system of the form        where M i ∈ M n (K) for all i = 1, . . . , m. Each automorphism ϕ i with its corresponding ϕ i -derivation δ i should be as in one of the following two cases:

Case 1: ϕ i : (x 1 , . . . , x i , . . . , x m) → (x 1 , . . . , q i x i +r i , . . . , x m) and δ i = γ i (id K -ϕ i) with γ i ∈ K * .

Here r i ∈ C and q i ∈ C * is not a root of unity, but if r i ̸ = 0 then q i is allowed to be 1.

Case 2:

ϕ i = id K and δ i = ∂ ∂x i .

We assume that System (4.1) is integrable, i.e., it satisfies the integrability conditions:

[L i , L j] := L i • L j -L j • L i = 0, ∀i, j = 1, . . . , m, (

where L i := I n δ i -M i ϕ i denotes the matrix pseudo-linear operator associated to the ith system of (5.4).

123

Chapter 5

The PseudoLinearSystems Package

The RationalSolutions_PPLS procedure

In Chapter 4, we have first developed a recursive algorithm which computes all rational solutions of a system of the form (5.4). It is called RationalSolutions_PPLS and it is sketched in details in Section 4.2.2.2. We have implemented this algorithm as a procedure holding the same name. This procedure calls the RatSols_1PLS procedure to compute, at each iteration, rational solutions of a first order order pseudo-linear system. It takes as input:

• A list [M 1 , . . . , M m] of the matrices defining System (5.4).

• A list of the respective variables [x 1 , . . . , x m].

• A list [E 1 , . . . , E m] where each E i is either a list [q i , r i , γ i] indicating Case 1, or a list [0, 1] indicating Case 2.

If the integrability conditions (5.5) are satisfied, RationalSolutions_PPLS then returns a matrix whose columns form a basis of all rational solutions of (5.4). For example, to compute rational solutions of System 4.10, the user should run the following commands: The PseudoLinearSystems Package • PolynomialSolutions_PPLS: computes all polynomial solutions of a partial pseudo-linear system (5.4). It takes the same inputs as the procedure RationalSolutions_PPLS.

• RationalSolutions, resp.

PolynomialSolutions:

another version of RationalSolutions_PPLS, resp. PolynomialSolutions_PPLS. It computes all rational, resp. polynomial solutions of a partial pseudo-linear system composed of first order differential, difference and q-difference systems (such as System 4.9). The two procedures take as input a list of the matrices defining the system, a list of the respective variables, and a list of respective types: 'differential', 'difference', or 'qdifference'.

• EigenRing: computes the eigenring of a partial pseudo-linear system (5.4) (see Section 4.2.2.5). It takes the same inputs as the RationalSolutions_PPLS procedure.

The HypergeometricSolutions procedure

In the second part of Chapter 4, we have developed the recursive algorithm HypergeometricSolutions which computes all hypergeometric solutions of a partial pseudo-linear system (5.4). The steps of the algorithm are provided in Section 4.3.3.

Our current implementation only deals with a partial pseudo-linear system composed of first order differential and /or difference systems. The procedure HypergeometricSolutions uses procedure ExponentialSolutions, resp. HypergeometricSolutions_Difference, to compute hypergeometric solutions of a first order differential, resp. difference, system. It takes as input a list of the matrices defining the system, a list of the respective variables, and a list of respective types: with Nous étudions des systèmes d'équations pseudo-linéaires: une grande classe de systèmes fonctionnels linéaires comprenant les systèmes différentiels, différences et q-différences. La thèse se compose de trois grandes parties. Dans la première partie, nous nous intéressons à l'analyse locale d'un système pseudo-linéaire au voisinage d'une singularité. Nous développons d'abord un algorithme direct pour le calcul de formes simples de systèmes pseudo-linéaires. Alors que des algorithmes directs pour le calcul de formes simples ont déj été proposés pour les systèmes différentiels et différences, aucun unificateur pour les systèmes pseudo-linéaires n'était connu avant nos travaux. Ensuite, nous montrons comment la réduction à une forme simple peut être utilisée pour calculer efficacement des données locales pour des systèmes pseudo-linéaires.

A 1 =     4 x 3 + x 1 4 x 1 x 3 + x 1 2 x 1 x 3 -2 x 3 4 x 1 x 3 + x 1 2 x 1 -2 4 x 1 x 3 + x 1 4 x 1 x 3 + 1 4 x 1 x 3 + x 1     , A 2 =     4 x 3 4 x 3 x 2 2 + x 2 2 - 2 x 3 4 x 3 x 2 2 + x - 2 4 x 3 x 2 2 + x 2
La deuxième partie traite du calcul des solutions de forme fermée. Tout d'abord, nous présentons un algorithme générique et efficace pour le calcul de solutions rationnelles de systèmes pseudo-linéaires du premier ordre. Ensuite, nous développons deux nouveaux algorithmes récursifs pour le calcul de solutions rationnelles et hypergéométriques de systèmes pseudolinéaires avec un nombre arbitraire de variables.. Une contribution importante de cette thèse se pose dans l'implémentation de tous les algorithmes dans Maple dans le cadre de notre package PseudoLinearSystems disponible gratuitement. Dans la dernière partie de la thèse, nous proposons une démonstration de plusieurs procédures contenues dans le package.

Mots-clés:

Calcul formel, Équations fonctionnelles, Systèmes pseudo-linéaires, Formes simples, Solutions rationnelles, Implémentation.

 δ(a + b) = δ(a) + δ(b) and δ(a b) = ϕ(a)δ(b) + δ(a)b for all a, b ∈ K.

Definition 1 . 1 .

 11 Given a commutative field K and an automorphism ϕ over K. A pseudoderivation with respect to ϕ, or a ϕ-derivation, is any map δ : K → K satisfying Leibniz rule: for all a, b ∈ K, δ(a + b) = δ(a) + δ(b), and δ(a b) = ϕ(a)δ(b) + δ(a)b.

3 .

 3 ν(a + b) ≥ min(ν(a), ν(b)), and equality holds if ν(a) ̸ = ν(b).

 with the set of non-invertible elements of O, and it is the unique maximal ideal of O. The field R = O \ M is called the residue field of (K, ϕ, δ). We denote by π the canonical homomorphism from O into R. Example 1.4. 1. Let K = C((x)), ϕ = id K and δ = d dx . The field (K, ϕ, δ) is a local ϕδ-field equipped with the x-adic valuation ν defined by ν

Definition 1 . 11 .

 111 The residue field can be identified with C and π(a) = a(∞) for a ∈ O. Let (K, ϕ, δ) be a local ϕδ-field equipped with a valuation ν. Denote by O its valuation ring. An element t ∈ O is said to be a local parameter of K if ν(t) = 1.

B 13 B 21 B 2 Simple

 13212 22 B 23 B 31 B 32 B 33    , with A 11 = I p , A 22 = I r-p , and the blocks A ij , B 12 and B 13 are of positive valuations. The second step consists in multiplying the operator L on the left by the diagonal matrix S = diag(t -1 I p , I r-p , I n-r), and on the right by T = S -1 . This yields an equivalent Chapter Forms of Pseudo-Linear Systems operator L = S L ′ T = A δ + B ϕ, where A and B are given by

 the C-automorphism ϕ, the ϕ-derivation δ (those of the pseudo-linear operator L = A δ + B ϕ) and the local parameter t. It returns four matrices A, B, S and T such that the equivalent operator L = S L T = A δ + B ϕ is simple, and the polynomial det(L λ) which is thus non-zero. Algorithm SimpleForm Input: Two matrices A and B, the automorphism ϕ, the ϕ-derivation δ (those of L = A δ + B ϕ) and a local parameter t. Output: Four matrices A, B, S and T such that the operator L = S L T = A δ + B ϕ is simple, and the polynomial det(L λ).

 and T ← T T ; 3. Compute a matrix S as in Proposition 2.2; 4. Update A ← S A, B ← S A + S B and S ← S S; 5. Set L λ = A 0 λ + B 0 ; end do Return A, B, S, T and det(L λ);

Lemma 2 . 1 .

 21 [START_REF] Barkatou | A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations[END_REF] Theorem 3.2]). The singularity of a simple pseudo-linear system (2.13) is regular if and only if deg(φ(λ)) = n, where φ(λ) is the indicial polynomial of (2.13).Note that deg(φ(λ)) = n is equivalent to det(A 0) ̸ = 0. Algorithm SimpleForm then Chapter 2

 randpoly(x, coeffs = rand(-20 .. 20), degree = 10, terms = 10);The first experiment was carried out on several differential systems y ′ (x) = A(x) y(x): we compare our implementation with the procedures Mpolsolde from the Isolde[START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF] package and PolynomialSolution from the LinearFunctionalSystems package. The second experiment was carried out on several difference systems y(x + 1) = A(x) y(x): we compare our implementation with the procedures deltaPS from the Isolde package and also PolynomialSolution from the LinearFunctionalSystems package. The two tables below show the respective CPU times (in seconds) needed by each implementation to compute all polynomial solutions of differential and difference systems with sizes n = 5, 10, 15, 20.

 to compute E ϕ (a, b) consists in computing first the resultant Res x (a, ϕ m (b)) which is a polynomial in m. Then the elements of E ϕ (a, b) are exactly the roots of Res x (a, ϕ m (b)).

. 15)

 15 Finally, F ϕ contains only polynomials of the form (3.15) up to a multiplicative constant c ∈ C * . Chapter 3

Chapter 3 Rational

 3 Solutions of Pseudo-Linear SystemsA δ(y) + B ϕ(y) = 0 where A = I 2 and

 8). The dispersion set E ϕ (a, b) defined by (3.10) is usually computed as follows. One first compute the resultant Res x (a, ϕ m (b)). This resultant is a polynomial in [m] q defined in (3.14) and the elements of E ϕ (a, b) are computed from the roots in C of this polynomial. Note that if d 1 = deg(a) and d 2 = deg(b), then the resultant Res x (a, ϕ m (b)) is of degree d 1 d 2 (see for instance [77, Proposition 1]

Proposition 4 . 1 (

 41 [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF], Proposition 2). Consider a ϕ-system ϕ(y) = N y,

. 14) 4 . 2 .

 1442 Definition([22]). The eigenring of System (4.14) is defined as the setE(M) = { P ∈ M n (K) ; δ(P) = M ϕ(P) -P M } .

Definition 4 . 4 .

 44 Let K = C(x) and consider a first order pseudo-linear system δ(y) = M ϕ(y),(4.16) defined over the ϕδ-field (K, ϕ, δ). Let H be an extension field of K having the same Chapter 4

Remark 4 . 3 .

 43 We can refer to e ∫ u(x) dx as the hypergeometric term over K. Indeed, System (4.17) can be written as δ(y) = M ϕ(y) where ϕ = id K and δ = d dx . If we denote by h = e ∫ u(x) dx then one has δ(h)/ϕ(h) = u(x) ∈ K.

 dt z. This leads a new systemy ′ (x) = N (x) y(x), N = M -ω k t k+1 I n . (4.21)One then applies recursion by computing a (k -1)-simple form of System (4.21). At the end of the recursive process, one finds several combinations of the form (ω k , ω k-1 , . . . , ω 0). Each combination yields a non-ramified local exponential part of the form (4.18).

2 .

 2 For each combination (a(x), b(x), c), perform the change of dependent variables y = c x Sol (ϕ -a(x) b(x)) z in (4.22).

Example 4 . 10 .

 410 Consider System (4.22) with

i= 21 i= 0

 210 -L i (W), and in particular N 11 1 = 0. Finally, N for all i = 1, . . . , m.

 A δ(y) + B ϕ(y) = 0, where A and B are square matrices inM n (C[[t]]), with C[[t]] the ring of formal power series in t, such that det(A) ̸ = 0. Here L denotes the pseudo-linear operator L = A δ + B ϕ.



 Below are some additional useful procedures:

[a 1

 1 , b 1 , c 1 , P 1], . . . , [a m , b m , c m , P m], where a i , b i ∈ C[x], c i ∈ C * and P i ∈ C[x] n . Each list [a i , b i , c i , P i] represents a hyper-

x 3 + 6 x 2 + 11 x + 6 (-x 4 -6 x 3 --x 3 -6 x 2 -11 x - 6 x 4 + 6 x 3 + 11 x 2 x 2 -

 326433264322 1, (x + 4) (x + 2) , -1, 11 x 2 -6 x 690 x -570) (-1) x (x + 1) (x + 3) (x + 2)

L 1 (

 1 y) := δ 1 (y) -M 1 ϕ 1 (y) = 0, . . . L m (y) := δ m (y) -M m ϕ m (y) = 0, (5.4)

 While for System(4.11), the user should run:> Mat:= [M[1], M[2], M[3]]: > X:= [x[1], x[2], x[3In the sequel we give the following useful procedures: Chapter 5

'

 differential' or 'difference'. For instance, to treat System (4.31), the user should run:> HypergeometricSolutions([A,B],[k,x],['difference','differential']); + k) 2 x k k e x 0 0 x k+1 k e x x k Γ (k) 1 , x 2 , x 3) = A 1 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3) ∂ ∂x 2 y(x 1 , x 2 , x 3) = A 2 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3) ∂ ∂x 3 y(x 1 , x 2 , x 3) = A 3 (x 1 , x 2 , x 3) y(x 1 , x 2 , x 3)

 run:> Mat:= [A[1], A[2], A[3]]: > X:= [x[1], x[2], x[START_REF] Abramov | EG-eliminations[END_REF]]: > type:= ['differential', 'differential', 'differential']: > HypergeometricSolutions(Mat, X, type); Cette thèse porte sur le développement d'algorithmes symboliques en calcul formel.

 and[START_REF] Bacha | Méthodes algébriques pour la résolution d'équations différentielles matricielles d'ordre arbitraire[END_REF] Section 4.5] for differential systems, which can be translated to pseudo-linear systems.

Lemma 2.4. If System (2.12) is k-simple for all values of k ∈ {0, . . . , p -1}, then it is super-irreducible. Proof. Let A (k) and B (k) be defined as in (2.18) and (2.19). One has det(A

Table 2 .

 2 1: Computing a super-irreducible form of a differential system. The complete algorithm . 3.5 Some comparison tests .

	Chapter 3
	On Rational Solutions of First Order
	Pseudo-Linear Systems

3.1 Introduction . 3.2 A unified algorithm to compute polynomial solutions 3.2.1 Computing a degree bound . 3.2.2 Examples . 3.2.3 Comparison with existing implementations 3.3 Universal denominator . 3.3.1 Existing methods for pure difference and q-difference systems . . . 3.3.2 A unified and efficient approach for pseudo-linear systems 3.3.3 Computing the ϕ-fixed part . 3.3.4 Computing the dispersion set and the non ϕ-fixed part 3.4

 It is important to note here that computing a simple form of System(3.3) does not affect the degree bound of any polynomial solution of System (3.1). Indeed, applying Algorithm SimpleForm to (3.3) yields an equivalent simple operator L ′ = S L T where in particular T is an invertible matrix which is polynomial in t = x -1 . Moreover, due to the special forms of the entries of T (see the proof of Proposition 2.1), the matrix T -1 is polynomial in x. So if y is a polynomial solution of System(3.1)

	Chapter 3	Rational Solutions of Pseudo-Linear Systems
	Remark 3.1.	

Table 3 .

 3 1: Results of the first experiment (differential systems).

	Chapter 3		Rational Solutions of Pseudo-Linear Systems
	n PolySols_1PLS Mpolsolde PolynomialSolution
	5	0.459	0.953	0.451
	10	3.950	9.832	4.722
	15	23.846	59.158	24.139
	20	78.481	227.034	86.412
	n PolySols_1PLS deltaPS PolynomialSolution
	5	0.379	0.334	2.612
	10	5.650	4.295	55.188
	15	23.239	30.095	1385.85
	20	90.323	99.686	*

Table 3 .

 3 2: Results of the second experiment (difference systems).

Table 3 .

 3 3: Results of Experiment 1 (differential systems).

	Chapter 3					Rational Solutions of Pseudo-Linear Systems
		RatSols_1PLS	Mratsolde	RationalSolution
		t 1	t 2	T	t 1	t 2	T	t 1	t 2	T
	n = 5	0.27	0.09	0.40	0.21	0.31	0.53	1.14	0.09	1.30
	n = 7	1.65	0.20	1.94	1.88	0.50	2.25	7.00	0.09	7.15
	n = 9	40.07 0.21 40.49	45.04 1.20 47.11	35.14 0.20 37.18
	n = 11 376.55 0.23 376.99 470.79 1.62 472.44 150.23 0.24 152.12
	n = 12 1013.9 0.35 1015.5 2015.2 2.92 2019.0 294.10 0.37 298.15

Table 3 .

 3

	RationalSolution

4: Results of Experiment 2 (difference systems).

Table 3 .

 3

		1	t 2	T	t 1	t 2	T
	n = 3	0.36	0.10	0.50	1.536 0.08 147.55
	n = 5	0.90	0.20	1.58	63.20 0.20 346.28
	n = 7	3.14	0.53	4.20 928.62 0.58	*
	n = 10 59.10 2.582 63.16	*	*	*

5: Results of Experiment 3 (q-difference systems).

 m. We have the following result as an analogue of Lemma 4.2.

	Lemma 4.3. With the above notations, let us decompose the matrices N i 's of System (4.7)
	by blocks as

 51 k 2 x 12 -31 k 5 x 8 + 10 k 4 x 9 -68 x 13 -91 x 12 + 81 k 10 -40 k 4 x 6 + 47 k 2 x 5 + 49 kx,

 Let K = C(x 1 , . . . , x m) and consider a partial pseudo-linear system of the form (4.1) defined over the ϕδ-field (K, {ϕ i , δ i } 1≤i≤m). Let H be an extension field of K having the same field of constants. A non zero element h ∈ H is said to be a hypergeometric term over (K,{ϕ i , δ i } 1≤i≤m) if δ i (h)/ϕ i (h) ∈ K for all i ∈ {1, . . . , m}. A hypergeometric solution of (4.1) is a product hg of a hypergeometric term h over (K, {ϕ i , δ i } 1≤i≤m) by a vector g ∈ K n such that δ i (hg) = M i ϕ i (hg) for all i ∈ {1, . . . , m}. Let K = C(x 1 , x 2) and let us consider the same system in Example 4.1:

	give the following definition for
	hypergeometric terms: "A non zero element h ∈ K = C(x) is called a hyper-
	geometric term over K if ϕ(h)/h ∈ K." In this case, ϕ(h)/h ∈ K is equivalent
	to δ(h)/ϕ(h) ∈ K since δ(h)/ϕ(h) = γ(h/ϕ(h) -1) for some γ ∈ K * . Therefore, Defi-
	nition 4.4 for the general pseudo-linear setting covers the previously reported differential
	and ϕ-system cases.
	Definition 4.5. Example 4.8.

 Rational and Hypergeometric Solutions of Partial Pseudo-Linear SystemsWe have the following result as an analogue of Lemma 4.3. With the above notations, let us decompose the matrices N i 's of System (4.28) by blocks as

	Chapter 4
	Lemma 4.5.
	.29)

 Theorem 4.4 shows that hypergeometric solutions of (4.1) can be computed recursively. Again we have reduced the problem of computing hypergeometric solutions of System (4.1) of size n in m variables to that of computing hypergeometric solutions of System (4.30) of size s ≤ n in m -1 variables. The algorithm proceeds as follows: An integrable system of the form (4.1). Output: A matrix whose columns form a basis of hypergeometric solutions of (4.1) or 0 n (the zero vector of dimension n) if no non-trivial hypergeometric solution exists.1. If there are no non-trivial hypergeometric solutions of L 1 (y) = 0, then Return 0 n and Stop.2. Compute an n × d matrix H = (h 1 g 1 . . . h d g d) whose columns form a basis of all hypergeometric solutions of L 1 (y) = 0, where g i ∈ K n and h i are hypergeometric terms over (K, {ϕ i , δ i } 1≤i≤m).

	Chapter 4	Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems
		Algorithm HypergeometricSolutions
	Input:	

3. If m = 1, then Return H and Stop.

f (x) is a shift of g(x) if f (x) = g(x + r) for some r ∈ Z *

In[START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF][START_REF] Li | A recursive method for determining the onedimensional submodules of Laurent-Ore modules[END_REF], hypergeometric solutions are called hyperexponential solutions

Newton polynomials are polynomials associated with the slopes of the Newton polygon

Remerciements

m'ont aidé réaliser mon rêve de devenir docteur. Enfin, à ma femme Carine, cette thèse repose sur ton soutien et tes encouragements de le début et jusqu'au dernier moment. Difficile en quelques mots de t'exprimer toute ma reconnaissance et tout mon amour. i help/Maple/view.aspx?path= LinearFunctionalSystems&cid=301 2 https://www.maplesoft.com/support/help/Maple/view.aspx?path=LREtools&cid=284 3 https://www.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations& cid=282

Chapter 3

Rational Solutions of Pseudo-Linear Systems knowledge, the (implemented) existing algorithms only deals with the three particular systems: differential, difference, and q-difference. For this reason, the experiments were held on these three kind of systems. More precisely:

• Experiment 1 held for differential systems y ′ (x) = A(x) y(x).

• Experiment 2 held for difference systems y(x + 1) = A(x) y(x).

• Experiment 3 held for q-difference systems y(q x) = A(x) y(x).

All input systems in each experiment have been constructed from a full fundamental matrix Y (x) of rational solutions such that the numerator of each entry of Y (x) is generated by the Maple command randpoly(x, degree = 5) and such that the denominator den(Y) is fixed for each experiment. Moreover, all the implementations used in the experiments perform two main computational tasks (universal denominator + polynomial solutions), so it is also interesting to compare the times needed in each implementation to accomplish each task. We denote by • t 1 : the time needed to compute a universal denominator.

• t 2 : the time needed to compute the polynomial solutions (after the suitable change of variable).

• T : the overall time needed to compute all rational solutions (normally T is almost equal to t 1 + t 2).

Experiment 1: differential systems

Here we chose den(Y) = x, and we have tested matrix dimensions n = 5, 7, 9, 11, 12.

The matrix A(x) of each input system thus satisfies den(A) = x p n (x),

where p n (x) is an irreducible (large) polynomial that changes as n changes. For instance, for n = 7 we have We compare our implementation with the procedures Mratsolde from the Isolde [START_REF] Barkatou | The ISOLDE package. A SourceForge Open Source project[END_REF] package and RationalSolution from the LinearfunctionalSystems package. The table below shows the results of Experiment 1 in terms of the CPU time (in seconds).

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems order pseudo-linear system δ i (y) -N ϕ i (y) = 0, where N ∈ M s (C(p 1 , . . . , p r)(x i)),

1 ≤ s ≤ n and p 1 , . . . , p r are parameters which are constants with respect to ϕ i and δ i . To our knowledge, such an algorithm exists only for differential [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF], difference [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF], and q-difference [START_REF] Abramov | rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients[END_REF] systems. Note that the algorithm in [START_REF] Abramov | rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients[END_REF] reduces the search of solutions of the given system to the search of solutions of several scalar equations, while the algorithms in [START_REF] Barkatou | Hypergeometric solutions of systems of linear difference equations[END_REF][START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] are direct, i.e., they do not reduce to the scalar case. Our current implementation for computing hypergeometric solutions of partial pseudo-linear systems only deals with a system (4.1) composed of differential and/or difference systems.

The rest of the chapter is organised as follows. In Section 4.2, we present our first contribution, that is a new recursive algorithm for computing rational solutions of partial pseudo-linear systems. For the sake of clarity, we first give in Section 4.2.1 the basic ideas of our algorithm for a System (4.1) composed of one pure differential system and one pure difference system. In Section 4.2.2, we extend these ideas to handle System (4.1) with arbitrary order m and develop the general algorithm. We also provide some explanations concerning our implementation. This includes necessary conditions for an irreducible polynomial to appear in the denominator of a rational solution and also includes timings comparing different strategies. Some applications of the algorithm are also given. Section 4.3 is devoted to the computation of hypergeometric solutions of partial pseudo-linear systems. We first review the algorithms developed for pure differential and difference systems and then develop our algorithm. Examples of computations are also given to clarify our approaches, and a demonstration of the different implementations is provided in Chapter 5.

Rational solutions

In this section, we present a new algorithm for computing rational solutions of a partial pseudo-linear system (4.1) which is fully integrable and satisfies the integrability conditions (4.4). We extend the ideas developed in [START_REF] Barkatou | Computing closed form solutions of integrable connections[END_REF] for integrable connections (i.e., the case where all the systems are differential systems) to handle a more general system (4.1). For i, j = 1, . . . , m, the variable x j 's (j ̸ = i) are constants with respect to ϕ i and δ i . This allows to view L i (y) = 0 as a pseudo-linear system with respect to x i and where the other variables x j 's are considered as constant parameters.

Definition 4.1. Let K = C(x 1 , . . . , x m). A rational solution of a partial pseudo-linear system (4.1) is a vector y ∈ K n that satisfies L i (y) = 0, for all i = 1, . . . , m.

Example 4.1. Let K = C(x 1 , x 2) and consider the partial pseudo-linear system

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems It then follows from integrability condition (4.6) that

Let us complete w 1 , . . . , w s into a basis w 1 , . . . , w n of K n and define

where V ∈ M n×(n-s) (K) has w s+1 , . . . , w n as columns. Performing the change of variables y = P z in System (4.5), the differential system becomes

and has the following properties:

Lemma 4.2. With the above notations, let us write

)

where

does not depend on k and it is the unique solution of the matrix linear system W N 11 = -(W ′ -B W). Furthermore

Proof. The equation P N = B P -P ′ yields

We then obtain

which ends the proof as the columns of P = (W V) form a basis of K n .

The next theorem shows that we are now reduced to computing the rational solutions of the differential system z ′ (x) = N 11 (x) z(x).

Theorem 4.1. Let W ∈ M n×s (K) be a matrix whose columns form a basis of the rational solutions of y(k

) be the unique solution of the matrix linear system

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems rational solutions of z ′ (x) = N 11 (x) z(x), then W z 1 , . . . , W z r ∈ K n is a basis of rational solutions of (4.5). Moreover, every rational solution of (4.5) can be obtained in such a way.

Proof. Let z ∈ C(x) s be a rational solution of z ′ (x) = N 11 (x) z(x) and let us consider y(k, x) = W (k, x) z(x). We have 11 . This ends the first part of the proof. Now let y be a solution of (4.5). In particular, y is a solution of y(k + 1, x) = A(k, x) y(k, x) so that there exists z ∈ C(x) s such that

Thus, y is a solution of y ′ (k, x) = B(k, x) y(k, x) if and only if (z T 0 T) T is a solution of y ′ = N y where N = P -1 (B P -P ′). This is equivalent to z ′ (x) = N 11 (x) z(x) and yields the desired result.

Algorithm and example

Theorem 4.1 naturally provides an algorithm for computing a basis of rational solutions of System (4.5). It proceeds as follows:

Algorithm RationalSolutions_DifferenceDifferential Input: A system of the form (4.5).

Output: A matrix whose columns form a basis of rational solutions of (4.5).

1. Compute a basis of rational solutions of y(k

2. Let W ∈ M n×s (K) be a matrix whose columns form a basis of the rational solutions of y(k

3. Compute the unique solution N 11 ∈ M s (C(x)) of the matrix linear system

4. Compute a basis z 1 , . . . , z r of the rational solutions of the differential system z ′ (x) = N 11 (x) z(x),

In Steps 1 and 3 if we do not find any nonzero rational solution, then we return 0 n (the zero vector of dimension n) since this implies that (4.5) does not admit nonzero rational solutions.

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems

where A(i, .) is the i th row of A. Using the fact that Vec(

where ⊗ is the Kronecker product of the matrices, we get that if ϕ = id K then y = Vec(P) is a solution of

The eigenring E(M) is thus a C K -vector space of dimension at most n 2 . Moreover, E(M) contains the identity matrix I n and the product of two elements in E(M) belongs to E(M).

Consequently, E(M) is a C K -algebra.

Remark 4.1. For a ϕ-system ϕ(y) = M y with M ∈ GL n (K), its eigenring can be viewed as the set of matrices P ∈ M n (K) such that Vec(P) is a solutions of the system

) y, see [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF].

Definition 4.3. ([22]

). A pseudo-linear system (4.14) is said to be decomposable if it is equivalent to a system δ(y) = N ϕ(y) such that N is a block diagonal matrix of the form

where for all i = 1, . . . , k, N i,i is a square matrix of size n i < n.

The computation of the eigenring is useful for decomposing systems. Indeed, we have the following result: The interested reader can consult [START_REF] Barkatou | Rational solutions of matrix difference equations: the problem of equivalence and factorization[END_REF][START_REF] Barkatou | Factoring Systems of Linear Functional Systems Using Eigenrings[END_REF][START_REF] Barkatou | On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems[END_REF][START_REF] Barkatou | Formal reduction of singular linear differential systems using eigenrings: A refined approach[END_REF][START_REF] Cluzeau | Factoring and decomposing a class of linear functional systems[END_REF][START_REF] Saadé | Méthodes symboliques pour les systèmes différentiels linéaires à singularité irrégulière[END_REF][START_REF] Singer | Testing reducibility of linear differential operators : a group theoretic perspective[END_REF][START_REF] Wu | On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras[END_REF] for more details on eigenrings of linear functional systems and their applications.

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems t = x -1). Our System (4.22) can be written as the local pseudo-linear system

where φ = ϕ -1 , δ = id K 1 -φ and M = φ(N) -I n ∈ M n (K 1). Here the degree of δ is ω = 1 (see Definition 1.12). The matrix M is uniquely written as

where p ∈ N is the Poincaré rank of the system, and the matrices

where Γ(x) is the Gamma function, k ∈ N, d ∈ C, and z(x) is an n-dimensional vector of formal power series in x -1 = t. A formal solution (4.25) is called a local hypergeometric solution. Let k be a non-negative integer such that k ≤ p and let δ k = t k-1 δ. System (4.24) can then be written as

where

and

The action of the pseudo-linear operator L on a local solution (4.25) yields

) ,

where ε k = 1 if k = 1 and ε k = 0 otherwise. It follows that if a local hypergeometric solution (4.25) exists, then one must have

which means that c -ε k must be a root of the polynomial

) .

Chapter 4

Rational and Hypergeometric Solutions of Partial Pseudo-Linear Systems solutions of a differential, respectively difference, system, but with simple forms instead of super-reduction as explained in Sections 4.3.1.1 and 4.3.1.2.

During the calculation of hypergeometric solutions of L 1 (y) = 0, non-hypergeometric terms (see Definition 4.5) appearing as functions of x 2 , . . . , x m may be involved. When this is the case, we discard these terms since they can not lead to hypergeometric solutions in the sense of Definition 4.5). We explain more on when and where this case might happen. Denote by F = C(x 2 , . . . , x m). Suppose that L 1 (y) = 0, defined over F (x 1), is a differential system The hypergeometric term over

The base field here is F , so u might depend on a variable x i for some i = 2, . . . , m. When this is the case, the term h might not be hypergeometric over (K, ϕ i , δ i). Thus, the solution y should not be considered in further computations as it will not lead to hypergeometric solutions of (4.1) in the sense of Definition 4.5. To settle this dilemma, we perform a series of verification tests, for each u obtained during the computation of hypergeometric solutions of the differential system L 1 (y) = 0, to check whether h is indeed a hypergeometric term over (K, {ϕ i , δ i } 2≤i≤m) or not. If not, we discard u.

Example 4.12. Let m = 2 and suppose that we have obtained u = x -1 1 x 2 . If L 2 (y) = 0 is a differential system with ϕ 2 = id K and δ 2 = ∂ ∂x 2 , then one has δ 2 (h)/ϕ 2 (h) = log(x 1) / ∈ K. This means that the term h is not hypergeometric over (K, ϕ 2 , δ 2) and thus we discard u.

This means that the term h is hypergeometric over (K, ϕ 2 , δ 2) and thus we keep u.

The same concept is applied if L 1 (y) = 0 is a difference system with

Suppose that L 1 (y) = 0, defined over F (x 1), admits a hypergeometric solution

. The base field here is F , so the values of c, a and b might involve a variable x i for some i = 2, . . . , m. When this is the case, the term h might not be hypergeometric over (K, ϕ i , δ i), so it will not lead to hypergeometric solutions of (4.1) in the sense of Definition 4.5. Therefore, while This chapter constitutes the subject of a part of the published paper [START_REF] Barkatou | PseudoLinearSystems -a maple package for studying systems of pseudo-linear equations[END_REF] in collaboration with M. A. Barkatou and T. Cluzeau.

Chapter 5

The PseudoLinearSystems Package

The RatSols_1PLS procedure

Consider a first order pseudo-linear system of the form δ(y) = M ϕ(y), (

where M ∈ M n (K) and, either ϕ = id K and δ = d dx , or ϕ : x → q x + r and δ = γ(id K -ϕ) with γ ∈ K * . Here r ∈ C and q ∈ C * is not a root of unity, but if r ̸ = 0 then q is allowed to be equal to 1. In Chapter 3 we have developed a unified algorithm to compute all rational solutions of any system of the form (5.2). It is called RatSols_1PLS and it is sketched precisely in Section 3.4. We have implemented the algorithm in our PseudoLinearSystems package as a procedure holding the same name. The algorithm consists mainly in two steps: the computation of a universal denominator and then the computation of polynomial solutions.

If ϕ ̸ = id K , then we have seen that a universal denominator is composed of a ϕ-fixed part and a non ϕ-fixed part (if q = 1 then there is no ϕ-fixed part). We use the implementation of Algorithm NonFixedPart from Section 3.3.4 to compute the non ϕ-fixed part, and then (if q ̸ = 1) we use the implementation of Algorithm FixedPart from Section 3.3.3 to compute the ϕ-fixed part. Otherwise if ϕ = id K , then (5.2) is simply a pure differential system and a universal denominator is obtained by calling the procedure SimpleForm at each finite singularity of the system. For the computation of polynomial solutions, we use the implementation of Algorithm PolySols_1PLS described in Section 3.2.

The RatSols_1PLS procedure takes as input:

• The matrix M with rational function entries in x.

• The variable x.

• The list [q, r, γ] indicating that ϕ : x → q x + r and δ = γ(id K -ϕ) for some γ ∈ K * , or the list [START_REF] Abramov | On the summation of rational functions[END_REF]0] indicating that ϕ = id K and δ = d dx .

The output is a matrix whose columns form a basis of all rational solutions of (5.2), or 0 n (the zero vector of dimension n) if there are no non-trivial rational solutions. For instance, in order to compute the rational solutions of System (5.2) with ϕ :

The PseudoLinearSystems Package system, the variable, and the two rational numbers q and r such that q ∈ C * is not a root of unity but if r ̸ = 0 then q is allowed to be equal to 1.

• RatSols_PhiSystem, resp. PolySols_PhiSystem: computes all rational, resp. polynomial, solutions of a ϕ-system ϕ(y) = M y where ϕ : x → q x + r. It takes the same inputs as procedure UnivDenom_PhiSystem.

• Disp_PLS: Given two polynomials a(x) and b(x) in C[x]. This procedure computes the set of the nonnegative integers s such that deg(gcd(a, ϕ s (b))) > 0 where ϕ is the automorphism defined by ϕ : x → q x + r. In particular, this procedure uses the idea of the full factorisation explained in Section 3.3.4. It takes as input a(x), b(x), the variable x and the two rational numbers q and r.

The ExponentialSolutions procedure for differential systems

The package also contains the procedure ExponentialSolutions which computes all exponential solutions of a differential system y ′ (x) = A(x) y(x) where A(x) ∈ M n (K) (see Section 4.3.1.1). This procedure implements the algorithm from [START_REF] Pflügel | An algorithm for computing exponential solutions of first order linear differential systems[END_REF] but it uses the SimpleForm procedure to compute non-ramified local exponential parts (see Definition 4.6). This is the main difference compared to the current procedure in the Isolde package. ExponentialSolutions takes as input the matrix A(x) and the variable x. It returns a matrix whose columns form a basis of all exponential solutions. Our package also includes the following procedures:

• LocalExpParts: computes a list of admissible non-ramified local exponential parts of the system at a given singularity. Again, this procedure uses the SimpleForm procedure to compute the different ω's in (4.18).

• Exp_Sols: another version of ExponentialSolutions. It returns a sequence For instance let A(x) be the matrix defined in (5.3). The poles of A(x) are x, x -1 and

x -3.

> LocalExpParts(A,x,x);