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Chapitre 1

Introduction

Depuis ses débuts, la théorie des graphes a été un outil fondamental pour modéliser plusieurs structures et
problèmes d’intérêt théorique et pratique. Des sept ponts de Königsberg, jusqu’au problème du voyageur
de commerce. Des réseaux de régulation en biologie, jusqu’aux graphes quantiques en physique théorique.
Des réseaux de neurones, jusqu’à des réseaux sociaux. Cette thèse parle des aspects structuraux et algo-
rithmiques des graphes. Elle est divisée en deux parties, qui en développent deux perspectives différentes :
une perspective centralisée-séquentielle, et une perspective parallèle-distribuée.

La première partie de cette thèse concerne des algorithmes de graphes dans le sens classique, séquen-
tiel : le graphe est stocké en un seul lieu, et l’objectif est de concevoir des algorithmes qui résolvent des
problèmes d’optimisation autour de ces graphes, par exemple le problème du voyageur de commerce,
ou le problème de l’arbre couvrant de poids maximum, ou même le problème de la coloration. Cette
étude suit le point de vue classique de la théorie de la complexité, en particulier de l’étude des problèmes
NP-Difficiles dans des instances particulières.

De manière plus précise, la Partie I – intitulée « Algorithmes paramétriques via cliques maximales
potentielles » - étudie des applications algorithmiques de deux structures de graphes appelées séparateurs
minimaux et cliques maximales potentielles. Ces deux objets sont au cœur d’un méta-théorème, formulé
d’après Fomin, Todinca and Villanger [67], qui déclare qu’une grande famille de problèmes d’optimisation
en graphes peut être résolue en temps polynomial, si le graphe d’entrée contient un nombre polynomial
de séparateurs minimaux. La contribution de cette partie de la thèse est l’extension du méta-théorème de
Fomin et al., en deux directions différentes : d’un côté, on l’adapte pour le rendre valide pour une famille
plus grande de problèmes ; de l’autre, on prolonge ce résultat vers une version paramétrée, pour certains
paramètres des graphes.

La deuxième partie de cette thèse est consacrée à l’approche distribuée. Certaines applications des
graphes, par exemple celles que l’on retrouve dans les réseaux sociaux, dans les télécommunications ou
dans les systèmes des capteurs, n’arrivent pas à être bien modélisées par l’approche classique. Des phéno-
mènes comme l’existence des données dynamiques ou décentralisées, par exemple, rendent les algorithmes
classiques inutiles ou inutilisables dans la pratique. On étudie des algorithmes de graphes sous l’hypothèse
que les données ne se situent pas en un même lieu, mais sont distribuées dans un système. Chaque partie
du système en constitue une entité autonome, qui peut seulement accéder à une certaine information
locale. Ces entités exécutent des protocoles de communication, dont le but est de combiner des parties
essentielles des données locales, pour en obtenir une certaine information globale.

Plus spécifiquement, la Partie II constitue une étude du modèle de « Diffusion dans une Clique
Congestionnée » (en anglais : Broadcast Congested Clique). Dans ce modèle, les sommets d’un graphe
communiquent entre eux en des rondes synchroniques, en diffusant un message de petite taille visible par
tout autre sommet. On y conçoit des protocoles qui reconnaissent des propriétés de graphes en minimisant
la taille des messages et le nombre de rondes. La contribution de cette partie est l’exploration du rôle du
hasard dans ce modèle, ainsi que des protocoles pour la reconnaissance et la reconstruction des certaines
classes des graphes.

Les deux parties de cette thèse sont indépendantes, bien qu’elles partagent certaines définitions, cer-
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1.1. PARTIE I : ALGORITHMES PARAMÉTRÉES VIA CLIQUES MAXIMALES POTENTIELLES

taines classes des graphes, et certains paramètres. En préambule, le Chapitre 2 présente les définitions et
les résultats qui sont à la base des deux parties de cette thèse. La Partie I sera abordée dès le Chapitre 3
jusqu’au Chapitre 7, tandis que les Chapitres 8 à 13 forment la Partie II. Chaque partie contiendra son
propre chapitre de préliminaires, et sa propre conclusion.

Dans les prochaines sections on introduira les motivations et les objectifs des deux parties qui seront
développées dans cette présentation.

1.1 Partie I : Algorithmes paramétrées via cliques maximales po-
tentielles

Plusieurs problèmes en graphes, comme par exemple le problème stable maximale ou le problème de la
coloration, sont connus comme difficiles, dans le sens qu’il n’existe pas un algorithme efficace – c’est-à-
dire, qui prends un temps polynomial – pour les résoudre, à moins qu’une conjecture, ici P 6= NP (c.f.
[7]), soit fausse. Ce phénomène est encore plus évident lorsqu’on parle des problèmes réels, comme ceux
qu’on retrouve dans le domaine des télécommunications. Il existe diverses techniques pour aborder ces
problèmes : des algorithmes d’approximation, des algorithmes probabilistes (ou randomisés), des algo-
rithmes exacts exponentiels, et l’étude de cas particuliers. Dans cette partie de la thèse on va s’intéresser
principalement à l’étude des cas particuliers, ou, plus précisément, à l’étude des problèmes difficiles,
lorsque leur entrée est restreinte à une famille –ou classe- de graphes particulière, ou lorsqu’un certain
paramètre du problème -ou de l’entrée- reste assez petit.

1.1.1 Décompositions arborescentes

L’une des méthodes pour attaquer des problèmes difficiles c’est la décompositions des graphes. L’idée
c’est de découper le graphe dans plusieurs morceaux, définis par une certaine règle de découpage, et en
résoudre le problème morceau par morceau. La règle est définie de manière qu’il soit possible de coller les
solutions partielles obtenues dans chaque morceau, pour en déduire une solution globale. Pour résoudre le
problème dans chaque morceau, on peut y reappliquer la règle de découpage, afin d’obtenir des morceaux
de plus en plus petits, en obtenant une structure arborescente.

L’idée de décomposer un graphe vient des travaux en décomposition modulaires de Gallai [74]. Le
graphe y est décomposé en modules, c’est-à-dire, des ensembles de sommets qui ont le même voisinage
hors de l’ensemble. La décomposition modulaire est unique, et elle est calculable en temps polynomial
[47]. Pour résoudre un problème difficile, il suffirait – grosso modo – de résoudre le problème dans les
graphes premiers, qui sont les graphes où tous les modules son des singletons.

Les décompositions arborescentes constituent un autre type de décomposition des graphes, introduites
au début des années 1980 par Robertson et Seymour [126], dans le contexte de l’étude des mineurs de
graphes. Une décomposition arborescente est une décomposition d’un graphe dans plusieurs ensembles
appelés « sacs ». Chaque sac est identifié avec un sommet d’un arbre, de manière que l’arbre et l’ensemble
de sacs satisfassent : (1) pour chaque sommet il y a un sac qui le contient ; (2) pour chaque arête il y a
un sac qui contient les deux extrémités de l’arête ; (3) pour chaque sommet, l’ensemble des sacs qui le
contient forment un sous arbre, i.e., les sacs sont connectés dans l’arbre. La largeur d’une décomposition
arborescente est égale à la taille du plus grand sac moins un. La largeur arborescente d’un graphe G
correspond à la largeur minimum, parmi toutes les décompositions arborescentes de G.

Même si les décompositions arborescentes ont été introduites pour résoudre un problème combinatoire,
ces outils ont été rapidement utilisés pour concevoir des algorithmes. Le célèbre Théorème de Courcelle
[44] affirme qu’une grande famille de problèmes de graphes qui sont NP-Hard, comme le problème de
couverture par sommets ou le cycle Hamiltonien, peuvent être résolus en temps polynomial – voire
linéaire – lorsque l’entrée est restreinte une famille des graphes avec une largeur arborescente bornée par
une constante. La famille de problèmes qui sont résolubles dans ce contexte sont ceux qui consistent à
décider des propriétés exprimables dans la logique monadique de second ordre – notée CMSO2 d’après
son nom en anglais.

Dans CMSO2, les variables sont des sommets et des arêtes d’un graphe. Les opérations permises
sont l’égalité (=), la conjonction (∨), la disjonction (∧), et la négation ( 6=) avec l’adjacence entre deux
sommets (adj(x, y)). Les quantificateurs peuvent être appliqués à des sommets, des arêtes, des ensembles
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1.1. PARTIE I : ALGORITHMES PARAMÉTRÉES VIA CLIQUES MAXIMALES POTENTIELLES

de sommets, et des ensembles d’arêtes. On accepte aussi un opérateur de comptage. Par exemple, la
formule suivante exprime la propriété d’avoir une couverture par sommets de taille k :

∃v1, . . . vk ∈ V (∀u, v ∈ V (adj(u, v)⇒ ((u = v1) ∨ · · · ∨ (u = vk) ∨ (v = v1) ∨ · · · ∨ (v = vk))))

On peut définir aussi dans CMSO2 des formules avec des variables libres, ce qui permet d’exprimer
des problèmes d’optimisation qui consistent à trouver un ensemble maximum ou minimum de sommets
ou d’arêtes qui satisfassent une certaine propriété.

Le Théorème de Courcelle affirme que le problème de décider si un graphe satisfait une propriété P
exprimable en CMSO2 peut être résolu en temps f(tw,P) · n, où n est le nombre de sommets du graphe
d’entrée G et tw est le largeur arborescente du G. Il s’agit ici d’un exemple d’un problème résoluble à
paramètre fixé -en anglais : FPT pour fixed parameter tractable. Ce sont des problèmes résolubles en
temps f(k) · nc, où n est la taille de l’entrée, f est une fonction arbitraire -normalement on suppose que
f est calculable-, c > 0 est une constante et k est un paramètre du problème qui ne dépends pas de n.
Dans le cas du Théorème de Courcelle, le paramètre est la largeur arborescente du graphe d’entrée, plus
la taille de la formule qui exprime P.

Le point faible des algorithmes basés sur la largeur arborescente c’est qu’ils ont besoin de disposer d’une
décomposition arborescente optimale du graphe d’entrée. Le calcul de la largeur arborescente d’un graphe
arbitraire est NP-Difficile [5], même pour des familles restreintes des graphes, comme les graphes de dégré
borné [29], ou les graphes bipartits [88]. Néanmoins, il existe certaines familles des graphes où le calcul
de la largeur arborescente est polynomial. C’est le cas des graphes faiblement triangulés [32], les graphes
de permutation [25], les graphes distance-héréditaires [37], les graphes d’intervalles circulaires [133], et
les graphes de cercle [89]. Toutes ces classes des graphes ont en commun le fait d’avoir une quantité de
séparateurs minimaux polynomiale en le nombre de sommets.

1.1.2 Séparateurs Minimaux, triangulations et cliques maximales potentiels

Une conjecture proposée par Kloks et al., [90, 91] et démontrée par Bouchitté et Todinca [32, 33] confirme
que, pour toute classe de graphes ayant un nombre polynomial des séparateurs minimaux, le calcul de la
largeur arborescente se fait en temps polynomial.

Un graphe est appelé triangulé si tout cycle de largeur quatre ou plus contient une corde –c’est-
à-dire, une arête qui connecte deux sommets non consécutifs dans le cycle. Pour un graphe G, une
triangulation H est un graphe triangulé contenant G comme sous-graphe et ayant le même ensemble de
sommets. La largeur arborescente d’un graphe G peut être caractérisée comme le minimum, parmi toutes
les triangulations H de G, de ω(H)− 1, où ω(H) est la taille d’une clique de cardinalité maximum dans
H. Clairement, la triangulation optimale H de G -celle où ω(H) − 1 est égale à la largeur arborescente
de G- est trouvée parmi les triangulations minimales de G. Une triangulation H de G sera minimale si
aucun sous-graphe strict de H ne forme une triangulation de G.

Bouchitté et Todinca [32] ont constaté que les ensembles de sommets d’un graphe G qui forment une
clique maximale dans une triangulation minimale de G sont des objets ayant leur propre intérêt. Ils les
ont appelés cliques maximales potentielles, et ont démontré qu’on peut calculer la largeur arborescente
d’un graphe G en temps polynomial, si la liste des cliques maximales potentielles de G fait partie de
l’entrée du problème. Plus précisément : soit ΠG la liste des cliques maximales potentielles d’un graphe
G ; l’algorithme conçu par Bouchitté et Todinca calcule le largeur arborescente d’un graphe G en temps
O(|ΠG|d ·n). La technique principale derrière cet algorithme est un schéma de programmation dynamique
sur toutes les solutions partielles, coupées par un séparateur minimal où une clique maximale potentielle.
L’algorithme calcule la largeur arborescente du graphe au même temps qu’il construit la triangulation
minimale correspondante.

Ultérieurement, Fomin, Kratsch et Todinca [64] ont amélioré l’algorithme qui calcule la largeur arbo-
rescente dû à Bouchitté et Todinca, en obtenant un nouvel algorithme linéaire par rapport au nombre
de cliques maximales potentielles et polynomial en la taille du graphe -i.e., de complexité O(|ΠG| · n4),
pour une constante c > 0. Par un résultat dû à Fomin, Todinca et Villanger [67], le nombre de cliques
maximales potentielles dans un graphe quelconque à n sommets est O∗(1.7347n). Ce deux résultats im-
pliquent que la largeur arborescente est calculable en temps O∗(1.7347n), ce qui améliore la borne O∗(2n)
obtenue par la force brute.
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Bouchitté et Todinca [33] ont proposé aussi des caractérisations des cliques maximales potentielles
en termes de séparateurs minimaux. Ce résultat a été utilisé pour montrer que le nombre de cliques
maximales potentielles d’un graphe est borné par un polynôme qui dépend du nombre de ses séparateurs
minimaux. D’ailleurs, ils montrent que la liste des cliques maximales potentielles est calculable dans les
mêmes bornes. Ainsi, la largeur arborescente est calculable en temps polynomial pour toute classe de
graphes ayant un nombre polynomial de séparateurs minimaux.

1.1.3 Sous-graphe induit maximum de largeur arborescente t et propriété P
En 2010, Fomin et Villanger [68] ont trouvé une application nouvelle et assez surprenante pour les
séparateurs minimaux et les cliques maximales potentielles. Considérons l’observation suivante : pour tout
ensemble de sommets F d’un graphe G et pour toute triangulation HF de G[F ], il existe une triangulation
H de G tel que H[F ] = HF . Ils ont utilisé cette observation pour montrer que l’on peut trouver, dans
un graphe G, un plus grand sous-graphe de largeur arborescente au plus t en temps O(|ΠG| · nt+3).
Cet algorithme utilise un schéma de programmation dynamique similaire à celui conçu par Bouchitté et
Todinca [33] pour calculer la largeur arborescente.

Ce nouveau résultat a montré que plusieurs problèmes NP-Difficiles, au-delà du calcul de la largeur
arborescente, sont résolubles en temps polynomial dans des classes de graphes avec « peu » de séparateurs
minimaux. Par exemple, des problèmes comme le stable maximum ou forêt induite maximum peuvent
être exprimés comme des problèmes qui consistent à retrouver un sous-graphe induit maximum de largeur
arborescente 0 ou 1, respectivement. Il était connu que certains de ces problèmes étaient polynomiaux
dans des classes particulières des graphes avec « peu » de séparateurs minimaux, mais ces algorithmes
utilisaient jusque-là des propriétés spécifiques de chaque classe de graphes.

Dans le schéma de programmation dynamique utilisé pour calculer le sous-graphe induit maximum de
largeur arborescente t, la solution est construite au même temps qu’ne de ses décompositions arborescentes
optimales. Fomin, Todinca et Villanger[67] ont montré qu’en même temps qu’une solution est construite
-i.e. un sous-graphe induit maximum de largeur arborescente au plus t- on peut vérifier une propriété P
exprimable en CMSO2. Plus précisément, si t > 0 est une constante et P est une propriété CMSO2, alors
le problème Sous-graphe induit maximum de largeur arborescente t et propriété P consiste à calculer
un ensemble de sommets F de cardinalité maximum tel que G[F ] est un graphe de largeur arborescente
au plus t, qui satisfait la propriété P. Les auteurs montrent que ce problème peut être résolu en temps
polynomial pour les classes de graphes qui ont un nombre polynomial des séparateurs minimaux. Par
exemple le problème de trouver un arbre induit de taille maximum peut être exprimé comme le problème
de trouver un sous-graphe induit de largeur arborescente 1 avec la propriété d’être connecté.

Les résultats obtenus dans cette partie de la thèse se situent dans cette ligne de recherche. Ici, on étend
légèrement la famille de problèmes qu’on peut résoudre en temps polynomial dans classes de graphes avec
« peu » des séparateurs minimaux, mais principalement on élargit ce résultat vers une version paramétrée,
pour certaines paramètres de graphes.

1.1.4 Contribution
La contribution de cette partie est présentée en cinq chapitres.

Le Chapitre 3 introduit les définitions et les résultats principaux pour comprendre les chapitres sui-
vants. On commence avec les décompositions arborescentes et leur relation avec les triangulations mi-
nimales. Après, on donne quelques idées générales sur la logique monadique de second ordre et sur les
propriétés régulières. Ensuite, on énonce le Théorème de Courcelle dans la version donnée par Borie,
Parker et Tovey [31]. Ultérieurement, on présente les définitions et les principaux résultats autour des
séparateurs minimaux et des cliques maximales potentielles, notamment leur caractérisation et leurs
algorithmes d’énumération. Finalement, on esquisse les preuves et les algorithmes calculant la largeur
arborescente, et un sous-graphe induit maximum de largeur arborescente t avec propriété P.

Le Chapitre 4 présente un résultat de nature combinatoire. On montre que dans un graphe quelconque,
le nombre de séparateurs minimaux et le nombre de cliques maximales potentielles sont bornés par une
fonction de deux paramètres bien connus : le transversal minimum et la largeur modulaire. Le transversal
minimum d’un graphe G, dénoté vc(G) par son nom en anglais, est égal à la taille de la plus petite
couverture par sommets de G. La largeur modulaire d’un graphe G, notée mw(G), est égale au dégrée
maximum d’un nœud premier dans l’arbre de décomposition modulaire de G (voir Chapitre 3 pour des
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définitions plus précises). On montre que le nombre de séparateurs minimaux d’un graphe G est 3vc(G)

et O∗(1.6181mw(G)), et le nombre de cliques maximales potentielles est O∗(4vc(G)) et O∗(1.7347mw(G)).
D’ailleurs, ces objets son énumérables dans les mêmes bornes. Ici la notation O∗ indique que les facteurs
polynomiaux son cachés, i.e., O∗(f(n)) doit être lu comme O(f(n)) ·nO(1)). Combiné avec les applications
algorithmiques des cliques maximales potentielles, ces bornes montrent que le sous-graphe induit maxi-
mum de largeur arborescente t avec la propriété P est calculable en un temps d’exécution simplement
exponentiel en le transversal minimum ou la largeur modulaire du graphe d’entrée. On finit ce chapitre
avec une autre application, qui consiste à calculer la profondeur arborescente (en anglais, tree-depth).

La plupart des résultats de ce Chapitre ont été publiés dans le 14ème Symposium et atelier scandinave
en théorie des algorithmes (SWAT 2014), en collaboration avec Fedor Fomin, Mathieu Liedloff et Ioan
Todinca [66].

Le Chapitre 5 parle des graphes qui sont « proches » d’avoir un nombre polynomial de séparateurs
minimaux. Pour un polynôme poly, on appelle Gpoly la classe des graphes G qui ont au plus poly(n)
séparateurs minimaux, où n est le nombre de sommets de G. Pour k > 0, on appelle Gpoly + kv la
classe des graphes G qui contient un ensemble M ⊆ V (G), de taille au plus k, appelé modulateur, tel
que G˘M appartient à Gpoly. On montre que le problème du sous-graphe maximum induit de largeur
arborescente t avec propriété P, paramétré par la taille du modulateur, est FPT (résoluble à paramètre
fixé) si le modulateur fait partie de l’entrée. Ensuite, on montre que le problème de calculer le modulateur
est W [2]-Difficile. Plus précisément, on montre que pour tout polynôme poly = Ω(n), le problème qui
consiste à déterminer si un graphe appartient à la classe Gpoly + kv, paramétré par k, est W [2]-Hard.

La plupart de ces résultats ont été publiés dans les 41ème Colloque international sur les concepts
théoriques de graphes en informatique (WG 2015), et ont été obtenus en collaboration avec Mathieu
Liedloff et Ioan Todinca [102].

Le Chapitre 6 est un chapitre beaucoup plus exploratoire. Son objectif est d’étendre les résultats de
Fomin et al. [67] et leur algorithme résolvant le problème du sous-graphe induit maximum de largeur
arborescente t avec propriété P, vers une famille plus grande de problèmes. On montre un résultat de
nature combinatoire, qui est que pour tout graphe G, le nombre de séparateurs minimaux des puissances
impaires de G est au plus le nombre de séparateurs minimaux de G. Cela signifie que si G appartient
à Gpoly, pour un certain polynôme poly, alors Gk appartient aussi à Gpoly si k est impair. Il faut se
rappeler que la k-ème puissance Gk d’un graphe G est le super-graphe de G où deux sommets en Gk

sont adjacents s’ils sont à une distance au plus k dans G. Ce résultat combinatoire montre que des
problèmes comme ensemble d-dispersé est résoluble en temps polynomial quand d est pair. Le problème
ensemble d-dispersée, appelle d-scattered set en anglais, consiste à trouver l’ensemble de taille maximum
tel que tout paire de sommets dans l’ensemble soit à distance au mois d (par exemple le problème stable
maximum est équivalent au problème ensemble 2-dispersé). Ce problème a été posé par Eto et al. [59]
où les auteurs montrent que le problème ensemble d-dispersé avec d impair est NP -Dur restreint à des
graphes triangulés, et les auteurs se demandent si le problème est polynomial dans les graphes triangulés-
bipartites pour d pair.

Ensuite, on explore des problèmes comme la couverture par sommets connectée ou l’ensemble dominant
stable dans des classes spécifiques des graphes avec « peu » des séparateurs minimaux.

La plupart de ces résultats ont été publiés dans les 42ème Colloque international sur les concepts
théoriques de graphes en informatique (WG 2016) en ont été obtenus en collaboration avec Ioan To-
dinca [112].

Le Chapitre 7 conclut cette partie de la thèse en proposant des questions ouvertes.

1.2 Partie II : Une étude du modèle de Diffusion dans une clique
congestionnée

Comme on l’a déjà dit au début de ces pages, la deuxième partie de cette thèse parle d’algorithmes
distribués. L’étude des systèmes distribués commence avec l’émergence des réseaux d’ordinateurs. Parfois
inéluctables, comme dans les algorithmes qui manipulent le graphe d’Internet, les algorithmes distribués
fournissent aussi des outils pour améliorer les algorithmes classiques -via la parallélisation, par exemple.
La caractéristique principale d’un système distribué est qu’il y a plusieurs processeurs autonomes actifs,
qui manipulent des données de manière parallèle. Les processeurs ont seulement accès à une certaine
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partie de l’information, de manière locale, mais ils sont capables de communiquer entre eux pour accéder
à plus d’information et prendre une décision globale.

Il existe plusieurs réseaux larges et complexes, dont le cerveau, l’Internet ou la société humaine consti-
tuent quelques exemples, qui sont modélisables comme un graphe et où chaque sommet est une entité
capable de communiquer avec ses voisins dans le graphe. Dans tous ces exemples, la nature montre que
les éléments qui composent ces systèmes sont capables de se coordonner entre eux, en fournissant ainsi
une réponse globale.

Dans le modèle CONGEST , un ensemble de n sommets –connus comme nœuds- sont connectés dans
un graphe appelé réseau de communication. Chaque sommet de G correspond à un nœud, et chaque arête
de G correspond à un canal de communication entre deux sommets. On assume que les nœuds ont des
identifiants uniques, représentables avec O(log n) bits -bien que certaines auteurs considèrent aussi des
réseaux anonymes [71]). Les canaux de communication sont congestionnées, c’est-à-dire qu’ils ne peuvent
pas transmettre que b bits par ronde. La valeur de b est appelée la bande passante. Dans la littérature,
classiquement la bande passante des modèles congestionnée est bornée à O(log n) bits.

La connaissance initiale d’un nœud x correspond à sa liste des arêtes -éventuellement avec leur poids-
incidentes à x dans G. Les nœuds ont pour tâche de calculer ensemble une fonction du graphe G. Par
exemple, une tâche d’un sommet x peut être de choisir des arêtes, parmi toutes les arêtes incidentes à
x, afin que l’ensemble des arêtes choisies forme un arbre couvrant de poids maximal. La tâche peut être
aussi un problème de vérification. Dans un tel cas, les nœuds reçoivent aussi comme entrée les arêtes
incidentes à eux dans un autre graphe H, et la tâche s’avère de décider si G et H satisfont une certaine
propriété. Par exemple, la tâche peut être de déterminer si H est un arbre couvrant de G. Pour accomplir
ces objectifs, les sommets peuvent communiquer à travers les canaux de communication dans des rondes
synchroniques, en envoyant dans chaque ronde un message par chaque arête, de taille bornée par la bande
passante.

Un protocole du modèle CONGEST détermine les algorithmes locaux exécutés dans chaque nœud.
Après chaque ronde de communication, les nœuds doivent décider de s’arrêter ou d’utiliser leur informa-
tion locale et tous les messages reçus jusque-là pour en créer des nouveaux messages. Le protocole finit
lorsque tous les sommets se sont arrêtés ; il est correct si tout nœud a correctement calculé la fonction
de G. Dans le cas des problèmes de vérification, un protocole est correct si, lorsque G et H satisfont la
propriété, tous les nœuds acceptent, ou au moins un nœud rejette lorsque G et H ne satisfont pas la
propriété. Dans ce modèle on assume que la partie la plus lente d’un protocole est la transmission des
messages par les canaux de communication. C’est pour cela qu’on considère que les temps d’exécution
locaux des nœuds sont négligeables. Ainsi, dans le modèle CONGEST , le temps d’exécution d’un proto-
cole correspond au nombre de rondes nécessaires avant que tout nœud s’arrête -naturellement le temps
d’exécution dépend de la taille de l’entrée et de le bande passante.

Le modèle CONGEST combine deux des principaux défis des systèmes distribués : la localité et la
congestion. D’un point de vue théorique, c’est intéressant de séparer ces deux enjeux pour les mieux
comprendre. Le modèle LOCAL est un exemple d’un modèle qu’isole le problème de la localité. Ce
modèle est similaire au model CONGEST , sauf que la bande passante n’est plus bornée. Ce modèle a été
assez bien étudié, et il existe plusieurs résultats pour le modèle où les nœuds ont des identifiants uniques,
aussi bien que pour la version anonyme [119, 96, 70].

De l’autre côté, on retrouve le modèle Clique Congestionnée, qui isole le problème de la congestion.
Dans le modèle CONGEST , plusieurs bornes inférieures pour le temps de exécution des protocoles im-
pliquent le diamètre du graphe des canaux de communication. Par exemple, la borne pour le nombre des
rondes nécessaires pour calculer un arbre couvrant de poids maximum est Ω(

√
n/b+D) pour les graphes

de diamètre D = Ω(log n) [129]. La borne devient Ω( 3
√
n/
√
b) ou Ω( 4

√
n/
√
b), lorsque le graphe d’entrée

est restreint à avoir un diamètre trois ou quatre, respectivement [108]. Une question naturelle à poser est
de savoir qu’est ce qui se passe lorsque le diamètre D est égal à un, i.e., lorsque le graphe de chaînes de
communication est une clique.

1.2.1 Le modèle de la Clique Congestionnée

Le modèle de la clique congestionnée correspond au modèle CONGEST lorsque les n nœuds sont tous
connectés entre eux, et a été proposé par Lotker, Patt-Shamir, Pavlov, et Peleg [107] ; ici, les auteurs
montrent que le problème du calcul d’un arbre couvrant de poids maximum est calculable en O(log log n)
rondes. Par la suite, on considère que le modèle Clique Congestionné a toujours une bande passante de

6



1.2. PARTIE II : UNE ÉTUDE DU MODÈLE DE DIFFUSION DANS UNE CLIQUE
CONGESTIONNÉE

O(log n) bits.
La motivation derrière l’étude de ce modèle n’est pas seulement théorique [76]. Dans certaines appli-

cations concrètes, comme les algorithmes de haut-niveau exécutés dans le réseau Internet, il n’y a pas de
moyen de contrôler tous les sommets du graphe pour exécuter un protocole type CONGEST . À sa place,
on monte un réseau de superposition, où un plus petit nombre des nœuds sont répartis sur le réseau, et
chacun contrôle un certain nombre de sommets. Ces processeurs exécutent le protocole dans les sommets
qu’ils contrôlent, et en communiquent les résultats aux autres nœuds du réseau de superposition. Même
si les nœuds du réseau de superposition contrôlent des sommets qui ne sont pas adjacents entre eux, ce
n’est pas irréaliste de supposer une communication directe entre les nœuds du réseau de superposition.

Au cours des dernières années la recherche associée au modèle de la Clique Congestionnée a été
assez active. Lenzen a en obtenu [100] un protocole pour acheminer (routing en anglais) n messages
par sommet vers leurs destinations en temps constant, ainsi qu’un protocole en temps constant pour
trier O(n2) nombres, si chaque nœud connait initialement O(n) nombres. Ultérieurement, Hegeman et
al. [82, 81] ont donné des protocoles randomisés en temps espéré constant pour des problèmes comme le
calcul d’un ensemble 3-dispersé, et -sous certaines conditions- une approximation au facteur constant d’un
arbre couvrant de poids maximal. Plus récemment, Censor-Hillel et al. [38] ont démontré l’existence d’un
protocole qui exécute une sorte de multiplication des matrices en temps O(n(1−2/ω)), où ω < 2.3728639 est
l’exposant dans le temps d’exécution du meilleur algorithme centralisé pour la multiplication des matrices.
Ce résultat montre que des problèmes comme le fait de compter le nombre des triangles, calculer la maille,
ou de calculer une (1 + o(1)) approximation des plus courts chemins entre toutes les paires de sommets,
peuvent être résolus en temps O(n0.158) dans le modèle de la Clique Congestionnée. Très récemment,
Ghaffari et al. [76] ont montré un autre protocole randomisé, qui calcule un arbre couvrant de poids
maximum en temps O(log∗(n)), avec une haute probabilité.

Calculer des bornes inférieures pour le nombre des rondes dans le modèle de la Clique congestionnée est
beaucoup plus difficile que dans le modèle CONGEST . Comme le graphe de canaux de communication
est un graphe complet, chaque sommet peut communiquer O(n log n) bits à chaque ronde, ce qui fait
un total de O(n2 log n) bits communiqués dans chaque ronde. La quantité d’information communiquée
à chaque ronde est par conséquent énorme, ce qui suggère que les bornes inférieures provenant de la
complexité de communication ne seront pas utiles dans ce modèle. Druker et al. [57] ont montré –grosso
modo- que pour toute fonction f , une borne inférieure dans le temps de calcul de f dans le modèle de
la Clique Congestionnée implique une borne inférieure dans la taille du circuit Booléen qui calcule f . En
d’autres termes, de manière simplifiée, une borne inférieure dans le modèle de la Clique Congestionnée
aurait des impacts forts dans d’autres domaines de l’informatique fondamentale.

1.2.2 Le modèle de Diffusion dans une Clique Congestionnée

La difficulté extrême pour montrer des bornes inférieures dans le modèle de la Clique Congestionnée a
motivé l’étude des restrictions du modèle, pour mieux comprendre sa puissance et ce qui rend les bornes
inférieures si difficiles de trouver. Une manière de s’y attaquer consiste à affaiblir la notion irréalisable
qui dit que chaque nœud peut communiquer potentiellement n − 1 messages différents à chaque ronde,
i.e. un message différent par chaque canal de communication. Le modèle de Diffusion dans une Clique
Congestionnée est le modèle de la Clique Congestionnée, où chaque nœud ne peut pas communiquer
qu’un seul message -le même pour tous ses canaux de communication-, à chaque ronde.

On connait très peu des protocoles rapides pour le modèle de Diffusion dans une Clique Congestionnée.
Becker et al. [13] ont montré que, en une seule ronde, chaque nœud peut apprendre toutes les arêtes d’un
graphe si le graphe d’entrée est un arbre, un graphe planaire, ou n’importe quel graphe de dégénérescence
bornée. Plus formellement, si au début du protocole, le nœud x connait toutes les arêtes incidents à x
dans un graphe d-dégénéré G, alors il existe un protocole dans le modèle de Diffusion dans une Clique
Congestionnée qui permet de reconstruire G dans une ronde, et avec une bande passante O(d2 log n).
Reconstruire signifie que chaque nœud apprend toutes les arêtes du graphe G, et donc toute nœud peut
calculer n’importe quelle fonction dans le graphe G -même une fonction qui soit NP-Difficile à calculer, car
on ne limite pas le temps d’exécution locale. Il existe d’autres protocoles qui marchent aussi en une seule
ronde, par exemple pour décider si le graphe d’entrée est un certaine forêt fixée [57], ou un cographe [87].

Sans surprise, c’est plus facile de démontrer des bornes inférieures pour des protocoles dans le modèle
de Diffusion dans une Clique Congestionnée. Dans [13] les auteurs montrent qu’il n’existe pas un protocole
qui marche en une seule ronde et qui puisse détecter si le graphe d’entrée contient un triangle, ou s’il a
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un diamètre plus grand que trois, au moins d’utiliser une bande passante de Ω(n) bits. Dans[87] Kari et
al., les auteurs montrent que si H est un graphe non-biparti, alors tout protocole d’un seule ronde qui
détecte que le graphe d’entrée contient H sous-graphe doit avoir une bande passante Ω(n) bits.

Drucker et al. [57] ont été les premiers à montrer des bornes inférieures dans le modèle de Diffusion
dans une Clique Congestionnée avec plus d’une ronde. Ils ont montré que pour détecter si le graphe
d’entrée contient un cycle de longueur 4 on a besoin de Ω(n/b) rondes de communication, lorsque la
bande passante est O(b). Récemment, Holzer et al. [85] ont montré que l’on a besoin de Ω(n/b) rondes
pour calculer une (2− o(1)) approximation des plus courtes chemins entre toutes les pairs de sommets.

Le fait de calculer un arbre couvrant de poids maximal ou, plus simplement, de calculer les compo-
santes connexes d’un graphe, sont des problèmes fondateurs du modèle de la Clique Congestionnée. Un
algorithme classique qui calcule un arbre couvrant de poids maximale dû à Borůvka [115] peut être im-
plémenté dans le modèle de Diffusion dans une Clique Congestionnée avec un nombre O(log n) de rondes
et de bande passante O(log n). On ignore si ce protocole est optimal ou pas. L’un des problèmes qui ont
motivé cette thèse c’est précisément de savoir s’il existe un protocole non-trivial qui puisse calculer les
composantes connexes avec une ronde dans le modèle de Diffusion dans une Clique Congestionnée.

Ahn et al. [1, 2] ont conçu un protocole randomisé dans le modèle de Diffusion dans une Clique
Congestionnée qui calcule les composantes connexes -voire un arbre couvrant- d’un graphe avec une
haute probabilité et une bande passante poly-logarithmique. Leur protocole utilise une très belle technique
appelée « esquisses linéaires » (linear sketches), qui comprime l’information via une fonction linéaire. Les
auteurs utilisent cette technique pour simuler l’algorithme de Borůvka en une seule ronde, avec une haute
probabilité.

Une particularité des protocoles randomisés existants -par exemple le protocole mentionné dû à Ahn
et al., est l’utilisation des « pièces publiques », qui signifie que les bits randomisés utilisées par chaque
sommet sont les mêmes parmi toutes les nœuds. Cette situation contraste avec le modèle « pièces privées
», où les bits aléatoires utilisés par les nœuds son générés de manière indépendante. Cette partie de
cette thèse explore le rôle du hasard dans le modèle de Diffusion dans une Clique Congestionnée, et sous
certaines conditions, on arrive à simuler des protocoles randomisés par des protocoles déterministes.

1.2.3 Contribution
La contribution de cette partie sera présentée dans six chapitres.

Le Chapitre 8 commence avec les définitions formelles du modèle de Diffusion dans une Clique Conges-
tionnée, et il est accompagné des principaux résultats connus. On donne formellement les distinctions entre
des protocoles déterministes, des protocoles avec des « pièces privées », et des protocoles avec des « pièces
publiques ». Ensuite, on présente les principaux outils et techniques qui seront utilisés dans les prochains
chapitres.

Le Chapitre 9 parle de la distinction, du point de vue de la bande passante, des trois modalités
différentes de protocoles dans le modèle de Diffusion dans une Clique Congestionnée : des protocoles
déterministes, des protocoles avec des « pièces privées » et des protocoles avec « pièces publiques ».
Cette séparation est faite à partir d’une fonction très naturelle appelée Jumeaux (Twins en anglais), qui
consiste à décider si le graphe d’entrée contient deux sommets avec le même voisinage.

La plupart de ces résultats ont été publiés dans le 21éme Colloque international sur la structure de
l’information et la complexité de communication (SIROCCO 2016), et ils ont été obtenus avec Florent
Becker, Ivan Rapaport et Ioan Todinca [15].

Le Chapitre 10 donne des protocoles pour la reconnaissance et la reconstruction de petites classes de
graphes. On y améliore le résultat de [13] pour la reconstruction des graphes d-dégénérées en une ronde
avec un protocole de bande passante O(d · log n) -le protocole dû à Becker et al. [13] fonctionne avec
une bande passante de taille O(d2 · log n) . Après, on étend le résultat de Kari et al. [87], en donnant
des algorithmes randomisés pour la reconnaissance des graphes de distance héréditaire ou des graphes de
largeur modulaire bornée. Finalement, on donne un protocole déterministe à deux rondes –ou randomisé
à une ronde-, qui reconnait n’importe quelle famille de graphes de taille 2o(n

2), avec une bande passante
sous-linéaire -par exemple les graphes d’intervalle peuvent être reconnus dans deux rondes et avec une
bande passante O(

√
n log n).

Le Chapitre 11 étudie le problème de la détection des cycles -induits ou pas- dans le modèle de Diffusion
dans une Clique Congestionnée. On donne ici des protocoles d’une ronde qui détectent si le graphe d’entrée
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contient un cycle de taille au plus k -induit ou pas- avec une bande passante O(n2/(k−1) log n), si k est
pair et O(n2/k log n) si k est impair. Si k est plus grand que 4, on montre que ces bornes sont serrés
-modulo des facteurs logarithmiques. Ce borne inférieure est valide même si on permet que les nœuds ne
reçoivent pas seulement les arêtes incidentes dans le graphe d’entrée, mais toutes les arêtes des voisins à
distance bk/4c.

D’un autre côté, la détection de cycles induits de taille au moins k est équivalente à montrer que le
graphe d’entrée est k−1-triangulé. On prouve qu’on peut détecter un graphe k-triangulé en deux rondes et
bande passante poly-logarithmique dans le modèle où les nœuds peuvent voire jusqu’au distance bk/2c+1.
En particulier, cela montre que l’on peut détecter des graphes triangulés dans deux rondes et avec une
bande passante poly-logarithmique, dans le modèle où les sommets peuvent voire jusqu’au distance deux.

Dans le Chapitre 12 on discute le problème de la connectivité. Ce problème a été l’une des motivations
principales pour étudier le modèle de Diffusion dans une Clique Congestionnée. Le fait de ne pas avoir
trouvé des bornes inférieures pour ce problème dans ce modèle représente l’une des frustrations de cette
recherche. Cependant on donne des protocoles en nombre constant de rondes qui calculent les composantes
connexes du graphe d’entrée, avec une bande passante sous-linéaire. On montre aussi que si les nœuds
peuvent voir jusqu’au distance k, on peut calculer les composantes connexes en une ronde avec une bande
passante O(n1/k · log n).

Ces résultats ont été publiés comme une annonce courte dans le Symposium sur les principes du calcul
distribué (PODC 2016), et ils ont été obtenus en collaboration avec Ioan Todinca [112].

Le Chapitre 13 conclut cette partie de la thèse en proposant quelques pistes de recherche.
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Chapter 1

Introduction

From its origins, graph theory has been a fundamental tool to model countless discrete structures and
problems, both of theoretical and practical interest. From the famous bridges of Königsberg, to the
traveling salesman problem. From regulatory networks in biology, to quantum graphs in theoretical
physics. From neural networks to social networks. This thesis is about structural and algorithmic aspects
of graphs. It is divided in two parts, that develop two different perspectives: a centralized-sequential one,
and a parallel-distributed one.

The first part of this thesis is about graph algorithms in the classic centralized and sequential approach:
the graph is stored in a single machine, and the goal is to design efficient algorithms to solve optimization
problems, for example traveling salesman problem, minimum spanning tree or coloring. The study
follows the classical computational complexity point of view, in particular the study of NP-Hard problems
restricted to particular instances.

More concretely, Part I - entitled Parameterized algorithms via potential maximal cliques - studies
algorithmic applications of two graph structures called minimal separators and potential maximal cliques.
These two objects are in the core of a meta-theorem due to Fomin, Todinca and Villanger [67], which
states that a large family of graph optimization problems can be solved in polynomial time, when the
input is restricted to the family of graphs with polynomially many minimal separators. The contribution
of this part of the thesis is to extend the meta-theorem of Fomin et al. in two ways. On the one hand, we
adapt it to be valid into a larger family of problems. On the other hand, we extend it into a parameterized
version, for several graph parameters.

The second part of the thesis falls under the distributed approach. Several applications of graphs, for
example the ones found in social networks, telecommunications or sensor systems, do not suit the classic
approach. Indeed, phenomena like decentralized information, and dynamic information makes unusable
or unfeasible classic centralized algorithms. We study graph algorithms assuming that the information
is not located in the same place, but distributed in a system. Each part of the system is an autonomous
entity with access to local information. The entities run communication protocols in order to combine
crucial parts of the local knowledges and obtain some global information.

More concretely, Part II is a study of the Broadcast Congested Clique model. In this model, the nodes
of a graph communicate in synchronous rounds, broadcasting a message of small size visible to every
other node. The goal is to design protocols that recognize graph classes minimizing the number of rounds
and the message sizes. The contribution of this part is to explore the role of randomness on this model,
and provide protocols for the recognition and reconstruction of some graph classes.

The two parts of this thesis are independent and relatively unrelated, though several definitions, graph
classes and parameters are studied on both parts. Before exposing each part, Chapter 2 presents the
main definitions and results that will be common to the two perspectives of this thesis. Later, Chapters
3 to 7 contain Part I, while Chapters 8 to 13 contain Part II. Each part will contain its own specific
preliminaries chapters and its own conclusions.

In the following sections, we introduce the main motivations and objectives of the two perspectives
that are developed in this presentation.
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CLIQUES

1.1 Part I: Parameterized Algorithms via Potential Maximal Cliques

Many relevant graph problems, like maximum independent set or coloring, are known to be hard in
the sense that there are no efficient (polynomial time) algorithms to solve them, unless some wide-
believed conjecture is false, e.g., P 6= NP (c.f. [7]). This phenomenon occurs even more often when
we consider real-world problems, like the ones that one may encounter in telecommunications. In this
context, there exist several techniques to cope with these hard problems, for example: approximation
algorithms, randomized algorithms, moderately exponential algorithms and the study particular cases.
We will mainly focus on the analysis of particular cases, which consists in restricting the inputs of our
problems to belong to a particular family (for example a class of graphs), or restricting the problem to
show efficient algorithms if some parameter of the problem (or of the input) is small.

1.1.1 Tree decompositions
One of the tools to address hard problems are graph decompositions. The idea is to cut the graph in
several parts defined according to some rule, and solve the problem on each part. The rule is defined
so it is possible to glue the partial solutions, obtaining a solution for the whole graph. To solve the
problem, we may cut each each part into smaller parts recursively, according to the same rule, obtaining
an tree-structure.

The idea of decomposing graphs goes back to the work of Gallai [74] on modular decompositions. The
graph is decomposed into modules, which are sets of nodes that have the same neighborhood outside
the set. The modular decomposition is unique, and computable in linear time [47]. To solve our hard
problems, it would be enough (very roughly) to solve the problem in the prime graphs, which are the
ones that only have singleton modules.

Tree decompositions are another type of graph decompositions, introduced in the beginning of the 80’s
by Robertson and Seymour [126], in the context of their study of graph minors. A tree decomposition is
a decomposition of a graph into several (non-disjoint) vertex subsets called bags. The bags are identified
with the vertices of a tree, and both the bags and the tree must satisfy (1) each vertex of the graph must
belong to some bag (2) for each edge of the graph there is a bag that contain both endpoints of the edge
and (3) for every vertex, the bags containing that vertex must induce a (connected) subtree. The width
of a tree decomposition is the size of the largest bag minus one. The treewidth of a graph G corresponds
to the minimum width among all possible tree decompositions of G.

Even if tree decompositions were introduced to solve a combinatorial problem, these tools were rapidly
used from the algorithmic point of view. The celebrated Theorem of Courcelle [44] states that a wide
family of NP-hard graph problems, like Minimum Vertex Cover or Hamiltonian Cycle can be solved in
polynomial (even linear) time on graphs that admit tree decompositions with small sized bags. The
family of problems solvable in this context are the ones consisting in decide graph properties expressible
in CMSO2 (counting monadic second order logic).

In CMSO2, the variables are the vertices and edges of the graph. The allowed operations between
variables are equality (=), conjunction (∨), disjunction (∧), negation (¬) together with the adjacency of
two vertices (adj(u, v)). Quantifiers are allowed on vertices, edges, vertex sets or edge sets, and also the
counting operation over sets. For example, the graph property consisting in containing a vertex cover of
size exactly k can be expressed by the following CMSO2 formula (which is in fact a first order formula):

∃v1, . . . vk ∈ V (∀u, v ∈ V (adj(u, v)⇒ ((u = v1) ∨ · · · ∨ (u = vk) ∨ (v = v1) ∨ · · · ∨ (v = vk))))

We can also define CMSO2 formulas with free variables, which allow to express optimization problems
consisting in find a set of vertices or edges satisfying a property.

Courcelle’s Theorem states that deciding if a graph satisfies a CMSO2 property P can be solved in
time f(tw,P) · n, where n is the size of the input graph, and f is a computable function that depends
on the treewidth tw of the input graph, and the size of a CMSO2 formula that describes a property P.
This is an example of a fixed parameter tractable (FPT) problem, which are the problems that can be
solved by an algorithm of time f(k) · nc, where c > 0, f is an arbitrary computable function and k is
some parameter of the problem (in the case of Courcelle’s Theorem, the parameter is treewidth of the
input graph plus the size of the CMSO2 formula that expresses P).

The weakness of the algorithms based on treewidth is that they usually require that a minimal tree
decomposition of the input graph is given in the input, so it must be computed beforehand. Computing
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the treewidth of a graph is NP-Hard [5], even for restricted classes of graphs, like graphs of bounded degree
[29] or bipartite graphs [88]. However there exist some graph classes for which computing treewidth is
polynomial time solvable. It is the case of weakly chordal graphs [32], permutation graphs [25], distance-
hereditary graphs [37], circle graphs [89], circular-arc graphs [133]. All these classes have in common, that
the graphs that they contain have a number of minimal separators which is bounded by a polynomial on
the size of graph.

1.1.2 Minimal separators, triangulations and potential maximal cliques

The property of having polynomially many minimal separators has been used in algorithms for decades in
an ad-hoc manner - i.e., algorithms were based on minimal separators but also other specific features of
particular graph classes. It was conjectured by Kloks et al. [90, 91], and proved by Bouchitté and Todinca
[32, 33] that the property of having polynomially many minimal separators is sufficient to compute the
treewidth.

A graph is called chordal if every cycle of length at least four has an edge connecting two nonconsec-
utive vertices of the cycle. Given a graph G, a triangulation H of G is a chordal supergraph of G. The
treewidth of a graph G can be characterized then as the minimum, among all the triangulations H of G,
of ω(H)− 1, where ω(H) is the size of a maximum clique in H. Clearly the optimal triangulation H of
G (the one which the trewidth of G equals ω(H) − 1) is found among the minimal triangulations of G,
where a triangulation H of G is minimal if no strict subgraph of H is a triangulation of G.

Bouchitté and Todinca [32] observed that the sets of vertices inducing a maximal clique in some
minimal triangulation of a graph are objects with their own interest. They called them potential maximal
cliques, and showed that the treewidth can be computed in polynomial time if the list of these objects is
given in the input. More formally, let ΠG be the set of all potential maximal cliques of a graph G. The
algorithm of Bouchitté and Todinca computes the treewidth in time O(|ΠG|2n). The main technique is
a dynamic programing scheme over partial solutions cut by minimal separators and potential maximal
cliques. The algorithm computes the treewidth at the same time that it constructs the corresponding
minimal triangulation.

Later, Fomin, Kratsch and Todinca [64] improved the algorithm computing treewidth due to Bouchitté
and Todinca. They obtained an algorithm computing treewidth in a time that is linear in the number of
potential maximal cliques, and polynomial in the size of the input graph (i.e., O(|ΠG| ·nc), for a constant
c > 0). By a result due to Fomin, Todinca and Villanger [67], the number of potential maximal cliques
of an arbitrary graph of size n is in O∗(1.7347n). These two results imply that the treewdith can be
computed in time O∗(1.7347n), beating the bound O∗(2n) obtained via brute force search.

Bouchitté and Todinca [33] also gave new characterizations of potential maximal cliques in terms of
minimal separators. This new tool was used to show that the number of potential maximal cliques is
bounded by a polynomial that depends on the number of minimal separators and the size of the graph.
Moreover, they showed that the list of potential maximal cliques can be generated in the same bounds.
Thus, the treewidth can be computed in polynomial time when the input graph belongs to a class with
polynomially many minimal separators.

1.1.3 Maximum induced subgraph of treewidth t satisfying P
In 2010, Fomin and Villanger [68] found a new surprising application of minimal separators and potential
maximal cliques. Consider the following simple observation: for any subset of nodes F of a graph G, and
any triangulation HF of G[F ], there exists a triangulation H of G such that H[F ] = HF . They used
this observation to show that, using a similar dynamic programing scheme that Bouchitté and Todinca
used to compute the treewidth, one can found the maximum induced subgraph of treewidth t (where t is
fixed), in a running time in O(|ΠG| · nt+3), when ΠG is part of the input.

This new result showed that many NP-Hard problems, other than computing treewidth, are solvable
in any class with few minimal separators. For example, a maximum independent set, or maximum
induced forest are the problems consisting on finding a maximum induced subgraph of treewidth zero and
one, respectively. Many of these problems already had polynomial time algorithms in particular classes
with few minimal separators. However, those algorithms not only used the fact that the class contain
polynomially many minimal separators, but also specific properties of the classes, like the intersection
model.
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In the dynamic programing scheme used to compute a maximum induced subgraph of treewidth t, the
solution is found at the same time that is computed a minimal tree decomposition of it. Fomin, Todinca
and Villanger used this fact in [67] to show that at the same time that the solution is constructed (an
induced subgraph of treewidth at most t), an extra CMSO2 property P can be checked. More formally,
Max Induced Subgraph of tw ≤ t satisfying P is the problem consisting on find a maximum set of
vertices F in a graph G, such that G[F ] is of treewidth at most t and satisfies property P. The authors
showed in [67] that this problem can be solved in polynomial time in graph classes with polynomially
many minimal separators. This result extended even more the set of NP -hard problems that become
polynomial in graph classes with polynomially many minimal separators. For example, the problem
consisting in find a maximum induced tree can be solved in polynomial time thanks to this result, since
it consists in finding a maximum induced graph of treewitdh one that is connected (here the property P
express that G[F ] is connected).

The results presented in this part of the thesis are located in the above line of research. We slightly
extend the algorithm of Fomin et al. [67] solving Max Induced Subgraph of tw ≤ t satisfying P
to a bigger family of problems, but mostly enlarge this result into a parameterized version, with respect
to several graph parameters.

1.1.4 Contribution
The contribution of this part of the thesis is presented in five chapters.

In Chapter 3 we give the basic definitions for this part of the thesis and the main results that are going
to be the keys to understand the next chapters. We begin with tree decompositions and their relation
with minimal triangulations. We will give some definitions and hints on counting monadic second order
logic and regular properties. Then we describe Courcelle’s Theorem together with the version of Borie,
Parker and Tovey [31]. Later we present the definitions and main results involving minimal separators
and potential maximal cliques, including their characterizations and enumeration algorithms. Finally,
we sketch a proof of the algorithms used to compute the treewidth, the maximum induced subgraph of
treewidth at most t, and its variants.

In Chapter 4 we present a result of combinatorial nature. We show that the number of minimal
separators and the number of potential maximal cliques are bounded by a function of two well-known
parameters: the vertex cover and the modular width. The vertex cover of a graph G, denoted vc(G),
is the size of a minimum vertex cover of G. The modular width mw(G) of a graph G is the maximum
degree of a prime node in the modular decomposition of G (See Chapter 2 for definitions). We show that
the number of minimal separators in a graph G is at most 3vc(G) and O∗(1.6181mw(G)), and the number
of potential maximal cliques is O∗(4vc(G)) and O∗(1.7347mw(G)). Moreover, these objects can be listed
within the same running times. Here the O∗ notation suppresses polynomial factors in the size of the
input. Pipelined with the algorithmic applications of minimal separators and potential maximal cliques,
these bounds imply that the problems consisting in computing the treewidth, or find a maximum induced
subgraph of treewidth at most t satisfying a property P can be solved in a running time that is single
exponential in the number vertex cover and modular width of the graph. We finish this chapter giving
another application, consisting in the computation of the treedepth.

Most of the results of this chapter were published in the 14th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2014) and were obtained in collaboration with Fedor Fomin, Mathieu
Liedloff and Ioan Todinca [66].

Chapter 5 is about graphs that are close to having polynomially many minimal separators. For a
polynomial poly we call Gpoly the class of graphs G with at most poly(n) minimal separators, where n
is the size of G. For k > 0, we call Gpoly + kv the class of graphs G, that contain a set M ⊆ V (G) of
size at most k, called modulator, such that G−M ∈ Gpoly. We showed that Max Induced Subgraph
of tw ≤ t satisfying P on Gpoly + kv, parameterized by the size of the modulator k, is fixed parameter
tractable, when the modulator is part of the input. Finally, we show that is W [2]-hard to compute
a modulator. More precisely, we show that for any fixed polynomial poly(n) = Ω(n), the problem of
determine if a graph belongs to Gpoly + kv parameterized by k is W [2]-Hard.

Most of the results of this chapter were published in the 41st International Workshop of Graph-
Theoretic Concepts in Computer Science (WG 2015) and were obtained in collaboration with Mathieu
Liedloff and Ioan Todinca [102].
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Chapter 6 is a more exploratory chapter. Our goal is to extend the results of Fomin et al. [67]
solving Max Induced Subgraph of tw ≤ t satisfying P, to a wider family of problems. First, we
give a combinatorial result that shows that for any graph G, all its odd powers have at most the number
of minimal separators of G. This means that if for some polynomial poly a graph G belongs to Gpoly,
then for all odd number k ≥ 1, the graph Gk also belongs to Gpoly. Recall that the k-th power Gk of
a graph G consists in the graph on the same vertex set than G, where two vertices are adjacent if they
are at distance at most k in G. This combinatorial result implies that the problem d-Scattered Set (also
called d-Independent Set), consisting in find a set of vertices that are pairwise at distance at least d (e.g.,
an Independent Set is a 2-Scattered Set), is polynomial time solvable for every even distance d. This
problem was posed by Eto et al. in [59], where the authors show that the problem is NP-hard on chordal
graphs for any odd d ≥ 3 [59], and ask whether this problem is polynomial in chordal-bipartite graphs
for even d. Later, we explore problems like Connected Vertex Cover or Independent Dominating Set in
specific graph classes with polynomially many minimal separators.

The results of this chapter were published in the 42st International Workshop of Graph-Theoretic
Concepts in Computer Science (WG 2016) and were obtained in collaboration with Ioan Todinca [112].

Chapter 7 concludes this part of the thesis proposing open problems and further research.

1.2 Part II: A study of the Broadcast Congested Clique Model

The second part of the thesis is about distributed algorithms. The main characteristic of a distributed
system is that there are several autonomous processors acting in the system at any moment. The proces-
sors have access only to partial local information, but are able to communicate within each other in order
to accomplish some task. Distributed systems are sometimes unavoidable, as in the case of problems
handling the graph of Internet, other times they are used to improve the running time of a sequential
algorithm parallelizing tasks.

There are several large and complex networks, such as the Internet, human society or even the brain,
that can be modeled as distributed systems. Such networks can be represented by a graph, where each
vertex is only allowed to communicate with its adjacent vertices. Even if each part acts locally, nature
shows that systems are able to coordinate to give a global response.

In the CONGEST model, a set of n processors (called nodes) are connected in a graph G called com-
munication network. Each vertex of G corresponds to a node, and each edge of the graph corresponds
to a communication channel between two nodes. We assume that the nodes have unique identifiers,
representable in O(log n) bits (although for some authors consider anonymous networks [71]). The com-
munication channels are congested, meaning that they can transmit at most b of bits per round. The
value b is called the bandwidth. In literature, the bandwidth is normally restricted to be logarithmic in
the size of the graph, i.e., only O(log n) bits can be transmitted through each communication channel.

The initial knowledge of a node x is the set of edges (and possibly their weights) incident to x in G.
The nodes have as task to compute a function of G. For example, a task for node x might consist in
determining which of its incident edges belong to a maximum spanning tree of G. The task might also
consist in a verification problem. In that case, the nodes receive as input their incident edges in another
graph H, and the goal is to decide if G and H satisfy some property. For example, the nodes receive as
input their incident edges in graphs G and H, and the task is to decide if G is a spanning tree of H.
To accomplish their tasks, processors can communicate in synchronous rounds, sending at each round a
message over each communication channel.

A protocol in the CONGEST model consists in the local algorithms that run on each node to produce
the messages to be sent at each round. After each round of communication, the nodes decide to halt
or use their local information and all the received messages to create new messages to be transmitted
through the communication channels. A protocol finishes when every node halts. A protocol is correct if
every vertex had correctly computed the function of G. For verification problems, a protocol is correct if
every node accepts when G and H satisfy the desired property, and otherwise at least one vertex rejects.
The running time of a protocol is the number of communication rounds until each processor halts. In this
model, it is assumed that the slower part of the computation occurs in the transmission of information
through the communication channels, so the running times of local computations are not considered. The
time of a protocol is the maximum number of rounds before every node stops, in the worst case.
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The CONGEST model mixes two important challenges in distributed systems, which are locality and
congestion. It is interesting from a theoretical point of view to try to separate these two issues, in order
to understand them better. The LOCAL model is a nice example of a model that isolates the locality
issue. This model is very similar to the CONGEST model, except that the communication channels
are unrestricted, i.e., vertices can pass any quantity of information through the communication channels.
This model is quite well studied, and several positive and negative results exist both for the model with
vertices with unique identifiers, as well as the anonymous case [119, 96, 70].

The other extreme is to isolate the congestion issue. Several bottlenecks that lead to lower bounds in
the CONGEST model involve the diameter D of the graph of communication channels G. For example,
the bound on the number of rounds required to compute a maximum spanning tree (MST) is Ω(

√
n/b+D),

for graphs of diameter D = Ω(log n) [129]. This bound is Ω( 3
√
n/
√
b) or Ω( 4

√
n/
√
b), when the input graph

is restricted to be of diameter three or four, respectively [108]. A natural question is what happens with
this bound D equals one, i.e., when the graph of communication channels is a clique.

1.2.1 The Congested Clique Model

The Congested Clique model, corresponds to the CONGEST model, but when the n processors are
connected in a network of complete communication channels, i.e., G is a clique. This model was first
presented by Lotker, Patt-Shamir, Pavlov, and Peleg [107], where the authors studied the problem of
computing a minimum spanning tree (MST). They show a protocol in the Congested Clique that computes
a MST in time O(log log n).

The motivation behind this model is not merely theoretical [76]. In some real-world applications, such
as high-level algorithms running in the Internet, there is no way to control all the nodes of the graph
in order to compute a protocol. In change, an overlay network is defined, where a smaller number of
processors is spread over the network, each of them controlling a group of nodes. These processors run
the distributed algorithm in their controlled group of nodes, communicating to the others the results
of their local computations. Even if they are not necessarily adjacent in the original network, it is not
unrealistic to suppose direct communication between any pair of them.

In the recent years, the research on the Congested Clique model has been quite active. Lenzen obtained
in [100] a constant round protocol in the Congested Clique model for simultaneously routing n messages
per vertex to their assigned destination nodes, as well as an O(1) protocol for sorting O(n2) numbers,
given that each vertex begins the algorithm knowing O(n) numbers. Independently Patt-Shamir and
Teplitsky [118] showed a similar, but slightly weaker result on sorting in the Congested Clique model.
Later Hegeman et al. [82, 81] provided constant and near-constant (expected) time protocols for problems
such as computing a 3-ruling set, a constant-approximation to metric facility location, and (under some
assumptions) a constant-factor approximations to the minimum spanning tree. More recently, Censor-
Hillel et al. [38] showed that fast matrix multiplication can be performed in time O(n(1−2/ω)), where
ω < 2.3728639 is the exponent in the running time of the best centralized matrix multiplication algorithm.
This result implies that problems as counting the number of triangles, computing the girth, or computing
an (1 + o(1)) approximation of all-pairs shortest paths, can be done in time O(n0.158) in the Congested
Clique model. Recently Ghaffari et al. [76] obtained a randomized protocol in the Congested Clique
model that computes a MST in time O(log∗(n)) with high probability.

What about lower bounds? Since the graph of communication channels is a complete graph, each
vertex can send O(n log n) bits per round, so the total number of bits sent in each communication round
is O(n2 log n) bits. The enormous quantity of information transmitted at each round suggests that lower
bounds based on communication complexity will not be helpful for proving lower bounds in the Congested
Clique model. Recently, Druker et al. [57] showed that for any function f , a lower bound in the number
of rounds in order to compute function f in the Congested Clique Model implies, roughly speaking, a
lower bound in the complexity of the circuit computing f . In other words, a nontrivial lower bound for
some explicit function f in the Congested Clique might have a major impact in other fields of Theoretical
Computer Science.

1.2.2 The Broadcast Congested Clique

The extreme difficulty to obtain lower bounds in the Congested Clique model, motivates the study some
restrictions, to limit its power and to understand better what makes lower bounds so hard. One possible
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restriction is to weaken the unrealistic situation where in a single round a vertex may send n−1 different
messages, i.e., one different message per communication edge. The Broadcast Congested Clique model
is the Congested Clique model (which consequently is also called Unicast Congested Clique [57]), except
that in each round, each vertex sends one single message to every other vertex in the graph.

Few fast protocols are known in the broadcast congested clique model. Becker et al. [13] show that
in just one round every node can learn every edge of trees, planar graphs, or any graph of bounded
degeneracy. More formally, the authors show that if the input graph is of degeneracy d, then there exists
a one-round protocol with bandwidth O(d2 log n) such that, at the end of the round, each vertex is able to
completely reconstruct the input graph. Reconstruction means that every vertex knows all the edges in
the graph, and then can compute any function or parameter (even if computing the function is NP-Hard,
since local computation is unbounded). There exist other one-round protocols, e.g., to decide if the input
graph contains a fixed forest [57], or is a cograph [87].

Non-surprisingly, there are more results involving lower-bounds in the Broadcast Congested Clique.
In [13] the authors show that there is no one-round protocol that detects if the input graph contains a
triangle or diameter greater than three, unless some vertex communicates Ω(n) bits. In [87] it is shown
that if H is a non-bipartite graph, then any one-round protocol detecting graphs that contain H as a
subgraph or induced subgraph must have bandwidth Ω(n).

Drucker et al. [57] were the first to provide lower bounds in the multi-round Broadcast Congested
Clique model. They showed, reducing to the disjointness problem in two player communication complex-
ity, that detecting if the input graph contains a 4-cycle requires Ω(n/b) rounds of communication if O(b)
bit are sent at each round. Recently Holzer et al. [85] showed that Ω(n/b) bits are required to compute
all pairs shortest paths (APSP), or even a (2− o(1)) approximation. They also provide a O(

√
n log n/b)

round protocol computing an (2 + o(1))-approximation of APSP.
Computing the connected components and a maximum spanning tree are fundamental problems in

the Congested Clique model. A classical parallel algorithm computing a MST due to Borůvka [115], can
be implemented in the Broadcast Congested Clique model to run in O(log n) rounds with bandwidth
O(log n). It is unknown if this protocol is optimal. One of the problems that motivate this thesis is
whether there exist a non-trivial one-round deterministic protocol in the Broadcast Congested Clique
model that computes the connected components of the input graph.

In [1, 2] Ahn et al. provide a one-round randomized protocol in the Broadcast Congested Clique,
computing a spanning forest of the input graph with high probability and poly-logarithmic bandwidth.
Their protocol was in fact conceived for another related model called dynamic graph streams, but it is
directly implementable in the Broadcast Congested Clique model. The spanning forest protocol uses
an extremely beautiful technique called linear sketches, which is a technique to compress information
through a linear function. The authors use this technique to simulate Borůvka’s Algorithm in one-round
with high probability.

One particularity of the existent randomized protocols, e.g., the one of Ahn et al. for connectivity, is
the requirement of public coins, which means that the random bits generated in the protocol and used
by the different processors are the same for every node. This situation contrasts with the private coins
model, where the random bits are generated independently on each node. This part of the thesis explores
the role of randomness in the Broadcast Congested Clique, and under certain conditions we manage to
simulate randomized protocols deterministically.

1.2.3 Contribution

The contribution of this part of the thesis is presented in six chapters.

In Chapter 8, we begin giving the formal definitions and known results on the Broadcast Congested
Clique model. We give the relevant distinctions in randomized protocols, and some definitions that take
special relevance in one round protocols, like the distinction between public and private randomness.
Later, we present the main graph problems that are going to be mentioned in the following chapters.
Finally, we give an overview of the main tools and techniques to be used in our algorithms and lower-
bounds.

In Chapter 9, we separate from the point of view of the bandwidth three different settings: deter-
ministic protocols, randomized protocols with private coins, and randomized protocols with public coins.
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The separation is based on the natural function Twins (which returns 1 if and only if there are two
vertices with the same neighborhood) and variants of it.

The results of this chapter were published in the 21st International Colloquium, on Structural In-
formation and Communication Complexity (SIROCCO 2016) and were obtained in collaboration with
Florent Becker, Ivan Rapaport and Ioan Todinca [15].

In Chapter 10 we give some constant-round protocols to recognize some small graph classes. First, we
improve the result of [13] showing a deterministic protocol for detecting and reconstructing d-degenerate
graphs with bandwidth O(d · log n). Later, we extend the results of Kari et al. [87] giving public-coins
randomized one-round protocols to detect distance-hereditary graphs and graphs with bounded modular
width. Finally, we provide sublinear protocols recognizing and reconstructing small classes of graphs
(graphs classes with 2o(n

2) graphs of size n, for example interval graphs).

In Chapter 11 we explore the problem of the detection of cycles (induced and as subgraphs) in the
Broadcast Congested Clique model. We exhibit a deterministic one-round deterministic protocol that
detects if the input graph has a cycle (induced or not) of length at most k with bandwidth O(n2/k log n)
if k if k is an odd number and O(n2/(k−1) log n) if k is even. We prove that this result is tight for k ≥ 4,
up to logarithmic factors. The lower bound is valid even for randomized multi-round protocols, and even
if each vertex, instead of being able to see only its immediate neighbors, is allowed to see up to distance
bk/4c. On the other hand, we show that if each node is allowed to see up to distance bk/2c+ 1, then a
polylogarithmic bandwidth and two rounds are sufficient to detect if the input graph has long induced
cycles. In particular, this implies that we can detect chordal graphs in two rounds with polylogarithmic
bandwidth if the vertices can see up to distance two.

In Chapter 12 we discuss the connectivity problem, which was a main motivation to study the Broad-
cast Congested Clique model, and where the lack of lower bounds for one-round deterministic protocols is
the biggest frustration of this research. We give a constant-round protocol that computes the connected
components of the input graph in the Broadcast Congested Clique with sublinear bandwidth. We show
that in the model where the vertices can see up to distance k, then the connected components can be
computed in one round with bandwidth O(n1/k · log n).

The results of this chapter were published as a brief announcement in the 2016 ACM Symposium on
Principles of Distributed Computing (PODC 2016) and were obtained in collaboration with Ioan Todinca
[112].

Chapter 13 concludes the thesis proposing open problems and further research.

18



Chapter 2

Preliminaires

In this chapter, we give some general definitions and results, relevant for both parts the thesis. We start
giving some specific notations. We continue presenting a general overview of basic graph theory. Later,
we present the definitions of some graph classes. Finally, we briefly give some definitions in parameterized
complexity.

2.1 Notation

Let n > 0, we denote by [n] the set {1, . . . , n}. The cardinality of a set S, denoted |S| is the number
of elements in the set. For a function f : N → N we denote O(f) the set of functions g : N → N such
that limn→+∞ g(n)/f(n) < +∞. In other words, g belongs to O(f) if and only if there exists c > 0
and n0 > 0 such that g(n) ≤ c · f(n) for all n > n0. The set o(f) is the set of functions g : N → N
that satisfy limn→+∞ g(n)/f(n) = 0. We call O∗(f) the set of functions g : N → N such that there
exists a polynomial poly such that g ∈ O(f · poly). The set Ω(f) is the set of functions g that satisfy
g ∈ Ω(f) if and only if f ∈ O(g). We abuse notation and write g(n) = O(f(n)) (resp. g(N) = o(f(n)),
g(n) = Ω(f(n)), g = O∗(f(n))) to denote g ∈ O(f) (resp. g ∈ o(f), g ∈ Ω(f), g ∈ O∗(f)), where n is a
dummy variable.

2.2 Graph Theory

Here we give a short overview of standard graph terminology. For a more complete introduction to graph
theory we recommend for example the book by R. Diestel [53].

A graph will be denoted G = (V,E), where V is the set of vertices and E is the set of edges of
G. Conversely, V (G) and E(G) represent the set of vertices, respectively of edges, of a graph G. We
denote by n the number of vertices and by m the number of edges. Two vertices u, v ∈ V (G) such that
{u, v} ∈ E(G) is an edge of the graph G are called adjacent in G, and incident to edge e = {u, v}.

Let G = (V,E) be a graph, W ⊆ V and F ⊆ {{x, y} | x, y ∈ W}. The graph H = (W,E) is called
a sub-graph of G, and we denote this by H ⊆ G. If F = {{x, y} ∈ E | x, y ∈ W} then H is called the
sub-graph of G induced by W , and it is denoted H = G[W ]. We denote G −W the graph G[V \W ].
A graph H = (V, F ) such that E ⊂ F is called a super-graph of G. A sub-graph H of G such that
V (H) = V (G) is called a spanning sub-graph of G.

The neighborhood of a vertex x ∈⊂ V , denoted NG(x) = {y ∈ V | {x, y} ∈ E}, is the set of vertices
adjacent to v in G. In the following, the subscript is omitted if clear from the context. We say that a
vertex x sees a vertex subset S ⊆ V (or vice-versa) if NG(x) intersects S. For a vertex set S ⊆ V , the
open neighborhood of S, denoted by NG(S), is the set

⋃
v∈S NG(v) \ S. The closed neighborhood of S

(resp. x), denoted NG[S] (resp. N [x]) is NG(S)∪S (resp. NG(x)∪{x}). We denote by dG(x) the degree
of a vertex x in graph G, which is just the number of edges incident to v.

Let p > 1. A set of different vertices {x1, . . . , xp} of G is called a path of length p from x1 to xp (also
called x1, xp-path) if {xi, xi+1} are edges of G for every i ∈ [p− 1]. If p > 2 and {x1, xp} is also an edge,
then {x1, . . . , xp} is called a cycle of length p. In both cases, we call chord an edge that connects two
nonconsecutive vertices in a path or a cycle.

19



2.3. GRAPH CLASSES AND PARAMETERS

Let distG(x, y) denote the distance between vertices x and y, defined as the minimum number of
edges of a xy-path. The diameter of a subset of vertices S in a graph G is defined as diam(S) =
maxx,y∈S distG(x, y) We denote by Nk

G[x] the set of vertices at distance at most k from x. Let also
Nk
G(x) = Nk

G[x] \ {x}, and we call these sets the closed and open neighborhoods at distance k of x,
respectively. Similarly, for a set of vertices U ⊆ V , we call the sets Nk

G(U) =
⋃
u∈U N

k
G(u)\ U and

Nk
G[U ] =

⋃
u∈U N

k
G[u] the open and closed neighborhoods at distance k of U , respectively. Note that

NG(U) = N1
G(U), respectively NG[U ] = N1

G[U ]. Again, the subscripts in these definitions are omitted if
clear from the context.

The girth of a graph G is the shortest length of a cycle in G. A Hamiltonian path (cycle) in a graph
G is a path (cycle) passing through all the vertices of G. A graph is bipartite if V (G) can be partitioned
in two subsets (A,B) such that every edge of E(G) has one endpoint in A and the second in B. Partition
(A,B) is also called bipartition of G. Equivalently, G is bipartite if and only if G does not have any cycle
of odd length.

A graph G is called connected if for every pair of vertices x, y, there exists a x, y-path in G. A
vertex set X ⊆ V (G) is connected if the subgraph G[X] is connected. A subset of vertices that induces a
connected sub-graph of G, and is maximal by inclusion with this property is called a connected component
of G.

A forest is graph without cycles. A tree is a connected forest. A tree T can be rooted at vertex
r ∈ V (T ), which imposes on V (T ) natural parent-child and ancestor-descendant relations. A spanning
tree T of a graph G is a tree that is a spanning subgraph of G, i.e., T is such that V (T ) = V (G) and
E(T ) ⊆ E(G).

A matching M in a graph G is a set of edges that pairwise do not share endpoints. A perfect matching
is a matching M where every vertex of the graph is an endpoint of an edge in M . An independent set
I in a graph G is a subset of the vertex set V (G) such that the vertices of I are pairwise non adjacent.
A clique C in a graph G is a subset of the vertex set V (G) such that the of C are pairwise adjacent.
We denote by Kn the graph of size n that is a clique, and call it the complete graph of size n. We call
Kn,m the complete bipartite graph, which consists in a bipartite graph with parts of size n and m, which
contain all the possible edges between the two parts.

A vertex cover X of a graph G is a subset of the vertex set V (G) such that X covers the edge set
E(G), i.e., every edge of G has at least one endpoint in X. A dominating set D of a graph G is a subset
of the vertex set V (G) such that N [D] = V (G), in words, every vertex of V (G) \D has a neighbor in D.

For a graph G and edge e = {x, y} ∈ E(G), by contracting edge e we mean the following operation.
We remove x and y from the graph, introduce a new vertex zx,y, and connect it to all vertices x or y are
adjacent to (if both x and y are connected to the same vertex w, then we just add one edge {z, w}, i.e.,
the graph stays simple). A graph H is a minor of G if we can obtain H from G performing a sequence
of edge contractions, and vertex or edge deletions.

Two nodes x, y ∈ G are called twins if they share the same neighborhood, i.e., if N(y)\{x} =
N(x)\{y}. An a, b-minimal separator of a graph G is an inclusion minimal subset of the vertex set
V (G) such that a and b are in distinct connected components of G− S. We also say that S is a minimal
separator if it is an a, b-minimal separator for some pair of vertices a and b. The set of all minimal
separators of G is denoted ∆G.

2.3 Graph classes and parameters
In the following, we define some graph classes and parameters.

2.3.1 Treewdith and cliquewidth
A tree-decomposition of a graph G = (V,E) is a pair ({Xi, i ∈ I}, T = (I, ET )) where Xi are subsets of
vertices of G, called the bags of the decomposition, and T is a tree such that:

1.
⋃
i∈I Xi = V ,

2. for each edge {x, y} in G, there exists i ∈ I such that x, y ∈ Xi,

3. for every x ∈ V , the set Tx of vertices i ∈ I of T sucht that x ∈ Xi, induces a (connected) sub-tree
in T .
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Figure 2.1 – Example of two tree decompositions of a graph. In left (a) is the example graph G, which
is of treewdith 2. In the middle (b) is a tree decomposition of G of width 3. In right (c) there is a tree
decomposition of G of minimum width.

The width of a tree-decomposition ({Xi, i ∈ I}, T = (I, ET )) is defined as maxi∈I |Xi| − 1. The
treewidth of G, denoted tw(G), is the minimum width, taken over all the possible tree-decompositions of
G. The length of a tree-decomposition ({Xi, i ∈ I}, T = (I, ET )) is defined as the maximum distance
between to nodes in a bag, i.e., maxi∈I diamG(Xi) (note that the distance is taken in G, not in G[Xi]).
The treelength of G, denoted tl(G), is the minimum length, taken over all the possible tree-decompositions
of G. A graph class G is said to have bounded treewidth (respectively treelength) if there exists k > 0
such that tw(G) ≤ k (resp. tl(G) ≤ k) for all graphs G ∈ G.

The clique-width of a graph G is the minimum number of labels needed to construct G using the
following four operations:

1) The creation of a new vertex x with label i, denoted idi(x).

2) The disjoint union of two labeled graphs G1 and G2, denoted G⊕H.

3) Taking a labeled graph G = (V,E) and two different labels i and j, and join by an edge each vertex
with label i to each vertex with label j.

4) Taking a labeled graph G = (V,E) and two labels i and j, and relabel with j all vertices labeled i .

The cliquewidth of a graph G is denoted cw(G). A graph class G has bounded cliquewidth if there exists
k > 0 such that cw(G) ≤ k for all G ∈ G.

2.3.2 Chordal graphs and minimal triangulations

A graph H is chordal if it has no induced cycle with four or more vertices, i.e., every cycle of length
at least four has a chord, which is an edge between two nonconsecutive vertices of the cycle. A classic
characterization of chordal graphs due to Dirac [54] states that a graph is chordal if and only if all its
minimal separators induce a clique.

By a classical result due to Gavril [75], every chordal graph G has a tree decomposition such that
each bag of the tree decomposition is a maximal clique of G. Such tree is called a clique-tree, and the
edges of the tree correspond to minimal separators which are the intersection of two or more maximal
cliques (bags).

Let G = (V,E) be an arbitrary graph. We say that H = (V, F ) is a triangulation of G if H is a
chordal super-graph of G. If, moreover, H is inclusion-minimal for this property, then H is a minimal
triangulation of G. The treewidth of G is also equal to the minimum integer w such that G has a
(minimal) triangulation H, and each clique of H has at most w + 1 vertices.
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2.3.3 Distance hereditary graphs, modular width and cographs
A graph G = (V,E) is a cograph if G does not contain the four node path P4 as an induced subgraph.
The following is a characterization of cographs,

Proposition 1 ([10]). A graph G = (V,E) is a cograph if there exists an ordering {v1, . . . , vn} of the
nodes of G such that for every i, vertex vi has a twin in G[{vi, . . . , vn}]. Such ordering is called a
twin-decomposition.

A graph G = (V,E) is distance-hereditary if the distance between any two nodes of a same connected
component is preserved in any connected induced subgraph that contains them.

The class of cographs is contained in the class of distance-hereditary graphs, as follows from the next
characterization of the latter.

Proposition 2 ([10]). A graph G = (V,E) is distance-hereditary if there exists an ordering {v1, . . . , vn}
of the nodes of G such that every i satisfies one of the following two conditions:

1. vi has a twin in G[{vi, . . . , vn}].

2. vi has degree at most one in G[{vi, . . . , vn}] (vi is a pendant node).

Such ordering is called a twin-pendant vertex decomposition.

A module of a graph G = (V,E) is a set of nodes M ⊆ V that is indistinguishable to every node
outside M . Formally, for any node x ∈ V \M , either M ⊆ N(x) or M does not intersect N(x). A module
is trivial if it contains a single vertex, or the whole vertex set; otherwise it is non-trivial. A graph that
only has trivial modules is called prime. A graph G is of modular width at most w if:

1. G has at most one node (the base case).

2. G is a disjoint union of two graphs of modular width at most w.

3. G is a join of two graphs of modular width at most w, i.e., G is obtained from two disjoint graphs of
modular width at most w by taking their disjoint union and then adding all possible edges between
these graphs.

4. the node set of G can be partitioned into p ≤ k modules V1, . . . , Vp such that G[Vi] is of modular
width at most w, for all i, 1 ≤ i ≤ p.

Note that if operation 4 is not used, we obtain the class of cographs. Therefore, the class of cographs
is contained in the class of graph of modular width at most 2.

2.3.4 Bounded degeneracy
A graph G is called d-degenerate if each subgraph of G contains a vertex of degree at most d. This kind of
graphs have the following characterization: a graph G is d-degenerate if the vertices of G can be ordered
in a sequence {v1, . . . , vn} such that vi has degree at most d in G[{vi, . . . , vn}]. A class of graphs G has
bounded degeneracy if there exists d > 0 such that G is d-degenerate for all G ∈ G.

A graph G is planar if it can be drawn in the two dimensional euclidean plane without crossing edges.
The celebrated theorem of Kuratowski (also atributed to Wagner) implies that a graph is planar if it does
not contain K3,3 or K5 as a minor. Planar graphs are 5-degenerate.

2.4 Computational complexity
We briefly describe some concepts of computational complexity. For a more complete introduction we
recommend the books by Sipser, Arora and Barak or Downey and Fellows [130, 7, 56].

Parameterized Complexity can be seen as multi-variable computational complexity, in the sense that
we treat decision problems with two or more inputs. It deals with parameterized problems, which are
decision problems that depend on a parameter k. In this context, the time complexity will be measured
in terms of simultaneously |x| and k. The parameterized version of a problem is a parameterized problem

22



2.4. COMPUTATIONAL COMPLEXITY

where the role of the parameter will be normally obvious from the context. For example the Vertex
Cover parameterized by the size of the solution, is the problem consisting in decide if, for input graph
G and parameter k, graph G contains a vertex cover of size at most k.

We say that a parameterized problem with parameter k is fixed-parameter tractable (FPT) if there is
an algorithm that solves the problem in time f(k) · |x|c, where c > 0 and f is an arbitrary function and |x|
is the size of the input. Similarly, a parameterized problem with parameter k is in the class XP if there
is an algorithm that solves the problem in time |x|f(k), where f is an arbitrary function. Clearly FPT
is contained in XP. There is a notion of parameterized reduction between two parameterized problems.
A parameterized problem P1 reduces to another parameterized problem P2 if there a function h that
transforms an instance (x1, k1) of P1 into an instance (x2, k2) = h(x1, k1) of problem P2 that satisfies (1)
h(x1, k1) can be computed in time f(k1) · |x1|c, where f is an arbitrary function and c > 0; (2) there exist
a function g such that k2 = g(k1) (i.e., parameter k2 depends only in k1); (3) (x1, k1) is a Yes-instance of
P1 if and only if (x2, k2) is a Yes-instance of P2. The parameterized analogous to NP will be a hierarchy
of parameterized problems, called W [1],W [2], and so on, where W [i] ⊆ W [i + 1] for each integer i > 0.
The definitions of these classes is quite technical, and we refer to the book of Downey and Fellows for
precise definitions [56]. For the propose of this presentation is enough to point that the class FPT is
contained in W [1] (therefore in all W [i], for i ≥ 1) and it is conjectured that the containments of all the
hierarchy is is strict, i.e., there are problems that belong to W [i+ 1] that do not belong to W [i], and also
is conjectured that there are problems contained in W [1] that are not contained in FPT.

Let i ≥ 1 be an integer. The problems in W [i] that most likely do not belong to FPT are the W [i]-
Hard problems: a parameterized problem P is W [i]-Hard if and only if any other parameterized problem
in W [i] can be reduced to P via a parameterized reduction. As usual in complexity theory, a language is
W [i]-Complete if it is contained in W [i] and it is W [i]-Hard. Parameterized complexity can be used as a
tool to distinguish intractable problems, that seem indistinguishable in terms of classical computational
complexity. For example the problems Vertex Cover, Clique, Hitting Set are all NP-Hard, but in
terms of parameterized complexity are FPT,W [1]-Complete,W [2]-Complete, respectively, in the versions
of the problems that are parameterized by the size of the solutions [56, 48].

Another way to distinguish intractable problems is the research in exact exponential algorithms. The
objective of such algorithms is to exactly solve NP-Hard (or even harder) problems in a running time
that is moderately exponential. The goal is to look for techniques that beat trivial brute force algorithms.
A classic example is Independent set, where a brute force algorithm runs in time O∗(2n) in the worst
case, while a very simple branching algorithm leads to a running time in O∗(1.41421n) (in fact much
faster algorithms can be obtained with more technical and involved branching algorithms, the current
best exact exponential algorithm for Independent Set runs in time O∗(1.2002n) [136]). We refer to the
book of Fomin et Kratsch [63] for an excellent survey on exact exponential algorithms.

There are several NP-Hard problems for which the best exponential algorithm is the one obtained by
a brute force algorithm. Is the case of SAT. In fact the Exponential Time Hypothesis (ETH) conjectures
that there is no algorithm solving 3-SAT with running time in 2o(n) (the actual statement of ETH is
slightly different but implies it; we point out that ETH is less widely believed than other conjectures in
computational complexity ). The Strong Exponential Time Hypothesis states that, for any δ < 1, there
is no algorithm solving n-variable instances of Sat in time O(2δn).
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Chapter 3

Preliminaires

In this chapter, we give the main definitions and results to be used in this part of the thesis. We
begin with a characterization of treewidth in terms of a graph grammar, similar than to one we used to
define cliquewidth or modular width. We give the definition of graph properties expressible in monadic
second order logic, and how it is related with graphs of bounded treewidth and the aforementioned
grammar. Later, we give the main definition and characterizations of minimal separators and potential
maximal cliques, together with sketches of their enumeration algorithms. Finally, we give some important
algorithmic applications of minimal separators and potential maximal cliques.

3.1 Terminal recursive graphs and regular properties.

The research of Bruno Courcelle about graph grammars and monadic second-order logic can be interpreted
as an effort to generalize to graphs, concepts of formal languages and universal algebra. A context-
free grammar is a set of recursive rewriting rules, used to generate patterns of strings (languages).
Roughly, a context-free grammar consists in a set of terminal symbols, nonterminal symbols, and rules
for replacing nonterminal symbols by a string with other nonterminal or terminal symbols. In analogy with
context-free grammars, Bauderon and Courcelle [11] defined the concept of context-free graph-grammars.
These grammars roughly correspond to sets of graphs with terminal and nonterminal vertices, and the
replacement of hyperedges of terminal vertices, by graphs containing other terminal and nonterminal
vertices. Courcelle shows that for every graph property expressible in counting monadic-second order
logic, the set of graphs definable by a context-free graph-grammar satisfying f property, is also definable
by a context-free graph-grammar [44].

Graphs of bounded treewidth can be defined recursively, based on a graph grammar. Let w be a
non-negative integer. A w-terminal graph is a triple (V, T,E), where (V,E) is a graph and T is a totally
ordered subset of V , of size at most w. The vertices of T are called the terminals of the graph. Since T
is totally ordered, we can speak of the ith terminal, for i ≤ |T |.

The class of w-terminal recursive graphs is defined by the following operations. A base graph is a
w-terminal recursive graph of the form (V, T,E) with T = V . Hence it has at most w vertices, all of
them being terminals.

The gluing operation takes two disjoint w-terminal recursive graphs G1 = (V1, T1, E1) and G2 =
(V2, T2, E2) and creates a new graph G = gluem(G1, G2), depending on a matrix m. The matrix m has
two rows and at most w + 1 columns, with elements in {0, 1 . . . , w}. The gluing operation takes the
disjoint union of G1 and G2, and then identifies the terminal number i in G1 (resp. in G2) to terminal
m1i (resp. m2i) in G. Each terminal of G1 (resp. G2) is mapped on at most one terminal of G. We take
mji = 0, for j ∈ {1, 2}, if terminal number i in Gj does not exist or it is not mapped on any terminal of
G.

The forget operation takes a w-terminal recursive graph G1 = (V, T,E) and creates the graph G =
forgetm(G1) with G = (V, T ′, E) such that T ′ is a subset of T . The matrix m has only one row and
|T | columns, and m1i specifies as before that the ith terminal of G1 is mapped on terminal m1i of G.
The mapping is injective, and if m1i = 0 then the ith terminal of G1 is removed, in G, from the set of
terminals.
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We point out that the number of possible different matrices and hence of different operations is
bounded by a function on w.

Proposition 3 ([21, 67]). Graph H = (V, T,E) is (w + 1)-terminal recursive if and only if there exists
a tree decomposition of G = (V,E), of width at most w, having T as one of its bags. Hence the grammar
of (w + 1)-terminal recursive graphs constructs exactly the graphs of treewidth at most w (see [21, 67]).

3.1.1 Monadic Second-Order Logic

We use Counting Monadic Second Order Logic (CMSO2), an extension of MSO2, as a basic tool to express
properties of vertex/edge sets in graphs.

The syntax of Monadic Second Order Logic (MSO2) of graphs includes the logical connectives ∨, ∧,
¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be
applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that the edge
d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

The MSO1 is a restriction of MSO2 in which one cannot use edge set variables (in particular the
incidence relation becomes unnecessary). For example Hamiltonian Cycle is expressible in MSO2 but
not in MSO1.

In addition to the usual features of monadic second-order logic, if we have atomic sentences testing
whether the cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r
and r ≥ 2, then this extension of the MSO2 (resp. MSO1) is called the counting monadic second-order
logic CMSO2 (resp. CMSO1). So essentially CMSO2 (resp. CMSO1) is MSO2 (resp. MSO1) with the
following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

Informally, CMSO2 allows logic formulae with quantifiers over vertices, edges, edge sets and vertex
sets, and counting modulo constants. The CMSO1 formulae are more restricted, we are not allowed to
quantify over edge sets. We refer to [6, 44] and the book of Courcelle and Engelfriet [45] for a detailed
introduction on different types of logic.

3.1.2 Regular properties

Let P(G,X) be a property assigning to each graph G and vertex subset X of G a Boolean value. We
extend the gluing and forget operations to pairs (G,X) in the natural way (see, e.g., [31, 67]). In
particular, when we perform a gluing on (G1, X1) and (G2, X2), the result is a pair (G,X) where X is
obtained by the gluing of X1 and X2. Therefore the intersections of sets X1 and X2 with the terminals
of G1 and respectively G2 must be coherent with the gluing, in the sense that if two terminals x1 of G1

and x2 of G2 are identified in G, then we either have x1 ∈ X1 and x2 ∈ X2, or we have x1 /∈ X1 and
x2 /∈ X2.

Definition 1 (regular property). Property P is called regular if, for any value w, we can associate a
finite set C of classes and a homomorphism function h, assigning to each w-terminal recursive graph G
and to each vertex subset X a class h(G,X) ∈ C such that:

1. If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2).
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2. For each gluing operation gluem there exists a function �gluem : C × C → C such that, for any two
pairs (G1, X1) and (G2, X2),

h(gluem((G1, X1), (G2, X2)) = �gluem(h(G1, X1), h(G2, X2))

and for each operation forgetm there is a function �forgetm : C → C such that, for any pair (G,X),

h(forgetm(G,X)) = �forgetm(h(G,X)).

The first condition separates the classes into accepting ones (i.e., classes c ∈ C such that h(G,X) = c
implies that P(G,X) is true) and rejecting ones (s.t. h(G,X) = c implies that P(G,X) is false). In full
words, the second condition states that, if we perform a glue (resp. forget) operation on two graphs (resp.
one graph) and corresponding vertex subsets, the homomorphism class of the result can be obtained from
the homomorphism classes of the graphs on which these operations are applied. Therefore, if a w-terminal
recursive graph is given together with its expression in this grammar, and if moreover we know how to
compute the classes of the base graph, then the homomorphism class of the whole graph, for a regular
property P, can be obtained by dynamic programming. We simply need to parse the expression from
bottom to top and, at each node, we compute the class of the corresponding sub-expression thanks to
the second condition of regularity. At the root, the property is true if and only if we are in an accepting
class.

Proposition 4 (Borie, Parker, and Tovey [31], Courcelle [44]). Any property P(G,X) expressible by a
CMSO2 formula is regular.

Moreover, the result of Borie, Parker, and Tovey shows how to compute explicitly the set of classes,
the homomorphism function for base graphs as well as the composition functions �gluem and �forgetm .
Altogether, this provides an effective algorithm for checking the property in O(n) time in graphs of
bounded treewidth.

Proposition 5 (Courcelle [44]). Any graph property P, expressible by a CMSO2 property φ can be checked
in time f(P, tw) · n, where tw is the treewidth of the input graph and f is a computable function.

The reader may try to express the homomorphism classes and function for his/her favorite CMSO2

property. Let us consider the property “G[X] is connected”. We can choose, as homomorphism class
h((V, T,E), X), the partitions of T into subsets, such that each subset corresponds to the intersection
of T with a component of G[X]. Observe that each such subset Ti of T is encoded by the indices of
its elements in the ordered set T . Hence each homomorphism class will be a set of (disjoint) subsets
of {1, . . . , w}. We may assume w.l.o.g. that the homomorphism class c = h(G,X), for G = (V, T,E),
encodes the intersection of X with the set of terminals. This is not explicitly required by the definition
of regular properties, but it can be done since it only costs w bits to encode the number of the terminals
contained in X. Therefore we assume there is a function trm(c, T ) that, given a homomorphism class c
and an ordered set of terminals T returns the unique possible set X ∩T , over all pairs (G = (V, T,E), X)
mapped to c. Thanks to this function, when we will glue two terminal recursive graphs with their
corresponding vertex subsets, we will be able to check that the gluing is coherent.

3.2 Minimal separators and potential maximal cliques
Let us recall the definition of a minimal separator: Let G be a graph and x, y two vertices of G. We
say that S ⊂ V (G) is a x, y-separator of G if x and y are in different connected components of G − S.
Moreover, if S is inclusion-minimal among all x, y-separators, we say that S is a minimal x, y-separator.
A vertex subset S is called a minimal separator of G if S is a minimal x, y-separator for some pair of
vertices x and y. We call ∆G the set of all minimal separators of a graph G. We remark that even
if minimal separators are defined as inclusion minimal sets, it is possible to have a minimal separator
contained in another one, as far as they separate different pairs of vertices. See, for example, Figure 3.1.

For a set of vertices X, we call C(X) the set of components C of G − S. We say that C ∈ C(S) is a
full component associated to a minimal separator S, if N(C) = S, i.e., if every vertex of S is adjacent to
some vertex in C. For example in Figure 3.1 sets {b} and {d} are full components associated to S, while
{e} and {f} are not. The following proposition characterizes the minimal separators of a graph.
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a

b c

d
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f

Figure 3.1 – Example a minimal separator, in this case the set {a, c} is a minimal b, d-separator. Note
that the set {c} is also a minimal separator, e.g for pair e and b.

Proposition 6 (folklore). A vertex subset S of G is a minimal separator if G − S has at least two
full components associated to S. Moreover, S is a minimal x, y-separator if and only if x and y are in
different full components associated to S.

From this proposition, to test if a set S is a minimal separator we can simply compute the connected
components of G− S and test if two of them see the whole set S. Therefore, we have:

Corollary 1. There is an O(m) time algorithm testing if a given vertex subset S is a minimal separator
of G.

The first algorithms listing the minimal separators of a graph enumerate them by considering all
the minimal separators between each pair of nonadjacent vertices. Since a single minimal separator
may separate a big number of pair of nonadjacent vertices, this approach was somehow inefficient. Berry,
Bordat and Cogis [16] improved those algorithms enumerating minimal separators at the same time. Their
algorithm is based on the notion of close separators, and the definition of a Galois lattice representing all
the minimal separators.

Proposition 7 (Berry, Bordat and Cogis [16]). The set ∆G of minimal separators of graph G can be
listed in time O(n3|∆G|).

Minimal separators behave well with respect to induced subgraphs, as shown by the following propo-
sition.

Proposition 8. Let G be a graph and V ′ ⊆ V be a set of vertices of G. If S is a minimal x, y-separator
of G[V ′], then there is a minimal x, y-separator T of G, such that T ∩ V ′ = S.

This proposition implies that if G is a graph, a is a vertex of G, and S is a minimal separator of G−{a},
then either S or S ∪ {a} is a minimal separator of G. In particular this implies that |∆G| ≥ |∆G[V ′]| for
every V ′ ⊆ V (G).

We also have a way to construct a minimal separator associated to a given connected set of vertices.

Proposition 9 ([18]). Let G = (V,E) be a graph, C be a connected set of vertices, and let D be a
component of G−N [C]. Then N(D) is an a, b-minimal separator of G, for any a ∈ C and b ∈ D.

Recall that a triangulation of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′.
Graph H is a minimal triangulation of G if for every edge set E′′ with E ⊆ E′′ ⊂ E′, the graph
F = (V,E′′) is not chordal.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there is a minimal
triangulation H of G such that Ω is a maximal clique of H. We call ΠG the set of potential maximal
cliques of a graph G.

Minimal separators and potential maximal cliques are deeply related, as it shows the following char-
acterization of potential maximal cliques, due to Bouchitté and Todinca [32].

Proposition 10 ([32]). Let Ω ⊆ V be a set of vertices of the graph G = (V,E). We denote S(Ω) the
family of subsets of Ω such that S ∈ S(Ω) if S = N(C) for some C ∈ C(Ω). Then Ω is a potential
maximal clique of G if and only if

1. each S ∈ S(Ω) is strictly contained in Ω;

2. the graph on the vertex set Ω obtained from G[Ω] by completing each S ∈ S(Ω) into a clique is a
complete graph.
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Moreover, if Ω is a potential maximal clique, then S(Ω) is the set of minimal separators of G contained
in Ω.

Another way of stating the second condition is that for any pair of vertices u, v ∈ Ω, if they are not
adjacent in G then there is a component C of G− Ω seeing both x and y.

a

e

h

d

g

f

b

c

Figure 3.2 – Cube graph.

To illustrate Proposition 10, consider, e.g., the cube graph depicted in Figure 3.2. The set Ω1 =
{a, e, g, c, h} is a potential maximal clique and the minimal separators contained in Ω1 are {a, e, g, c} and
{a, h, c}. Another potential maximal clique of the cube graph is Ω2 = {a, c, f, h} containing the minimal
separators {a, c, f}, {a, c, h}, {a, f, h} and {c, f, h}.

Based on Propositions 6 and 10, one can easily deduce:

Corollary 2 (see e.g., [32]). There is an O(nm) time algorithm testing if a given vertex subset Ω is a
potential maximal clique of G.

Another observation that follows from Proposition 10 is the following.

Proposition 11 ([32]). Let Ω be a potential maximal clique of G and let S ⊂ Ω be a minimal separator.
Then Ω \ S is contained into a unique component C of G − S, and moreover C is a full component
associated to S.

For example in Figure 3.2, if we again consider the potential maximal clique Ω1 = {a, e, g, c, h} and
the minimal separator S = {a, e, g, c} of G contained in Ω1, then Ω1 \ S is contained in the component
{d, h} of the graph G− S.

Bouchitté and Todinca also proposed in [33] an algorithm to enumerate the potential maximal cliques
in polynomial time with respect to the number of potential maximal cliques and the size of the input
graph. Their technique uses a particular family of potential maximal cliques, which have active separators.

Definition 2 ([33]). Let Ω ⊆ V be a potential maximal clique of graph G = (V,E), and let S be a
minimal separator in S(Ω). Consider now the graph G+ obtained from G by completing into a clique all
minimal separators in S(Ω) \ {S}.

We say that S is an active separator for Ω if Ω is not a clique in this graph G+. A pair of vertices
x, y ∈ Ω that are not adjacent in G+ is called an active pair. Note that, by Proposition 10, we must have
x, y ∈ S.

Intuitively a minimal separator of a potential maximal clique Ω that is not active (that we call inactive)
is a minimal separator that do not create edges in GS(Ω), which correspond to the graph where every
minimal separator in S(Ω) is completed into a clique. The following statement characterizes potential
maximal cliques with active separators.

Proposition 12. Let Ω be a potential maximal clique having an active separator S ⊂ Ω, with an active
pair x, y ∈ S. Denote by C the unique component of G − S containing Ω \ S. Then Ω \ S is a minimal
x, y-separator in the graph G[C ∪ {x, y}].

Again on the cube graph of Figure 3.2, for the potential maximal clique Ω1 = {a, e, g, c, h}, both
minimal separators are active. E.g., for the minimal separator S = {a, e, g, c} the pair {e, g} is active.
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Not all potential maximal cliques have active separators, as illustrated by the potential maximal clique
Ω2 = {a, c, f, h} of the same graph.

For counting and enumerating all potential maximal cliques of graph G = (V,E), including the ones
with no active separators, we apply the following statement.

Proposition 13 ([33]). Let G = (V,E) be a graph, let u be an arbitrary vertex of G and Ω be a potential
maximal clique of G. Denote by G− u the graph G[V \ {u}]. Then one of the following holds.

1. Ω has an active minimal separator S.

2. Ω is a potential maximal clique of G− u.

3. Ω \ {u} is a potential maximal clique of G− u.

4. Ω \ {u} is a minimal separator of G.

Proposition 13 implies that the number of the potential maximal cliques ΠG of a graph G is polyno-
mially bounded in the size of the graph n, the number of minimal separators of G, the number of minimal
separators and potential maximal cliques of graph G− u, for every vertex u of G. It was proved that the
number of potential maximal cliques is polynomially bounded in the number of its minimal separators
and in the size of the graph.

Proposition 14 ([33]). A graph G of size n has at most n|∆G|2 + n|∆G|+ 1 potential maximal cliques.

Proposition 13 also leads to an algorithm that enumerates all the potential maximal cliques of the
input graph. Intuitively, the algorithm fixes an arbitrary ordering {v1, . . . , vn} of the vertex set of the
input graph G, and then uses Proposition 13 to compute the list potential maximal cliques of graph Gi+1

from the active potential maximal cliques of Gi+1 and the list of potential maximal cliques of graph Gi,
where Gi = G[{v1, . . . , vi}], for i ≥ 1. More details in [33].

Proposition 15 ([33]). The potential maximal cliques of a graph can be listed in polynomial time in its
size and the number of its minimal separators. More precisely, the potential maximal cliques of a graph
are computable in O(n2m|∆G|2) time.

3.2.1 Graph classes with few minimal separators
Let poly be some polynomial. We call Gpoly the family of graphs such that G ∈ Gpoly if and only if G
has at most poly(n) minimal separators. We say that a class of graphs has few minimal separators if it
is contained in Gpoly for some polynomial poly. We also say that such a class has polynomially many
minimal separators.

Note that from Proposition 14, the graphs in Gpoly have also polynomially many potential maximal
cliques. Moreover, the set of minimal separators ∆G and the potential maximal cliques ΠG of these
graphs can be listed in polynomial time.

Proposition 16 ([17, 33]). For any polynomial poly, there is a polynomial-time algorithm enumerating
the minimal separators and the potential maximal cliques of graphs on Gpoly.

There are several structured and well defined graph classes are known to have polynomially many
minimal separators. The first example is the family of chordal graphs, which have O(n) minimal separa-
tors: chordal graphs have at most n maximal cliques (which are also their potential maximal cliques), and
all minimal separators of chordal graphs are the intersection of maximal cliques. This obviously implies
that subclasses of chordal graphs like interval graphs or split graphs, have all O(n) minimal separators.

A graph G is called weakly chordal if G and its complement G have no induced cycle with more
than four vertices. Weakly chordal graphs have O(n2) minimal separators, and O(n2) potential maximal
cliques [18, 32]. This implies that graph classes contained in weakly chordal graphs but that are not
chordal, also have polynomially many minimal separators. An example is the class of chordal-bipartite
graphs, which are bipartite graphs where each cycle of length at least six have a chord (i.e., the longest
induced cycles are of length four).

Other examples of graphs with polynomially many minimal separators are defined by intersection
models of geometric objects. The class of circular-arc graphs are a generalization of interval graphs,
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where each vertex is represented by an arc of a circle, and two vertices are adjacent if the corresponding
arcs intersect. We may assume w.l.o.g. that, in the intersection model, no two chords (resp. no two arcs)
share an endpoint. On the circle, we add a scanpoint between each two consecutive endpoints of the set of
arcs. A scanline is a line segment between two scanpoints. Given an intersection model of a circular-arc
graph G, Kloks et al. [92] showed that for any minimal separator S of G there is a scanline such that
the vertices of S correspond exactly to the arcs intersecting the scanline. A potential maximal clique can
be characterized as the set of vertices intersecting a triangle of scanpoints defining three scanlines [32].
Since the number of scanpoints is 2n and consequently the number of scanlines is n(2n− 1) we conclude
that circular-arc graphs have O(n2) minimal separators, and O(n3) potential maximal cliques.

Another example of a class of graph defined by an intersection model in a circle, and which have
polynomially many minimal separators, are circle graphs. A graph G is a circle graph if every vertex of
the graph can be associated to a chord of a circle such that two vertices are adjacent in G if and only if the
corresponding chords intersect. Again, we may assume w.l.o.g. that, in the intersection model, no two
chords share an endpoint. We can define scanpoints and scanlines as before, where this time a scanpoint
occurs between each two consecutive endpoints of the set of chords. Minimal separators and potential
maximal cliques can be defined with respect to scanlines in the same way than for circular-arc graphs
[92]. Therefore circle graphs have O(n2) minimal separators, and O(n3) potential maximal cliques.

Circle graphs can be generalized as polygon-circle graphs, where each vertex is defined as a polygon
inscribed in a circle (i.e., the vertices of the polygon are points of the circle ). As observed by Suchan
[132], scanpoints and scanlines are defined for polygon circle graphs in the same way than for circle
graphs. Therefore polygon-circle graphs have O(n2) minimal separators, and O(n3) potential maximal
cliques.

The class of d-trapezoid graphs is another graph class that has polynomially many minimal separators.
We give the definition of this family following [67]. Let L1, . . . , Ld be d parallel lines in the plane. A
d-trapezoid is the polygon obtained by choosing an interval li on every line Li and connecting the left,
respectively, right endpoint of Ii with the left, respectively, right endpoint of Ii+1. A graph is a d-
trapezoid graph if it has an intersection model consisting of d-trapezoids between d parallel lines. Every
d-trapezoid graph has at most (2n− 3)d−1 minimal separators [26]. The family of permutation graphs is
a subclass of 2-trapezoid graphs, where each trapezoid is a line (the intervals li are reduced to a unique
point).
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Figure 3.3 – Representations of graph G = ({1, 2, 3, 4}, {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} as (a) arcs in
a circle (b) chords in a circle (c) intersection of intervals between two parallel lines. Therefore G belong
to the classes of circular-arc, circle and permutation graphs.

This table summarized the number of minimal separators and potential maximal cliques for the graph
classes mentioned above, together with the corresponding references.

Class minimal separators potential maximal cliques
Weakly chordal O(n2) [32] O(n2) [32]

Chordal O(n) [128] O(n)[128]
Polygon-circle O(n2) [132] O(n3) [132]

Circle O(n2) [92] O(n3) [92, 32]
Circular arc O(n2) [92] O(n3) [92, 32]
d-trapezoid O(nd) [27] O(nd+2) [27, 65]
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3.3 Algorithmic applications of minimal separators and potential
maximal cliques

3.3.1 Computing treewdith
Remember that the treewidth of a graph G = (V,E), denoted tw(G), is the minimum number k such that
G has a triangulation H = (V,E′) of clique size at most k+ 1. The minimum fill in of G is the minimum
size of F , over all (minimal) triangulations H = (V,E ∪ F ) of G.

It is well known that computing the treewidth of a graph is NP-Hard [5], even for restricted classes
of graphs, like graphs of bounded degree [29] or bipartite graphs [88]. However, for most of classes of
polynomially many minimal separators cited in the last section, there exist polynomial-time algorithms
computing the treewidth. It was conjectured in [90, 91] that the treewidth and the minimum-fill in
should be tractable in polynomial-time for every class having polynomially many minimal separators.
This conjecture was solved by Bouchitté and Todinca in [32], where they show that together with a graph
G, the list of potential maximal cliques ΠG is given in the input, then the treewidth and the minimum-fill
in can be solved in time O∗(|ΠG|). Together with Proposition 15, this result implies that Treewidth and
Minimum Fill-In are polynomial time solvable in graphs with polynomially many minimal separators.

Proposition 17 ([32]). Let ΠG denote the set of potential maximal cliques of graph G. Treewidth and
Minimum Fill-In are solvable in O∗(|ΠG|) time, when ΠG is given in the input.

The algorithm consists in a dynamic programming scheme over the blocks of the graph. Let G = (V,E)
be a graph, and S be a minimal separator of G. The pair (S,C) is called a block if C be a component of
G− S and N(C) = S. As a convention, we say that (∅, V ) is a block of G. For a minimal separator S of
G, call B(S) the set of components C of G− S such that (S,C) is a block of G.

Let X be a set of vertices of a graph G, and call GX the supergraph of G, where we complete X, i.e.,
we add an edge between each pair of nonadjacent vertices of X. Graph GS [S∪C] is called a realization of
the block (S,C). The treewidth of a graph G can be expressed as tw(GS [S ∪C]), where (S,C) = (∅, V ).

We show now how to express the treewidth of GS [S∪C] in terms of the realizations of blocks contained
in S ∪ C. Let Ω be a potential maximal clique of a graph G. We say that (S,C) is a block associated
to Ω if and only if (S,C) is a block where S ∈ S(Ω) and C is a component of G − Ω. For a potential
maximal clique Ω of G, call BG(Ω) the set of blocks associated to Ω in G.

Proposition 18. Let (S,C) be a block of graph G. A graph H is a minimal triangulation of GS [S ∪ C]
if and only if there is a potential maximal clique Ω ⊆ S ∪ C of G such that S ⊂ Ω, Ω is a clique in
H, and for every block (S′, C ′) associated to Ω in graph GS [S ∪ C], the graph H[S′ ∪ C ′] is a minimal
triangulation of GS′ [S′ ∪ C ′].

As a corollary, we obtain the following expressions

tw(GS [S ∪ C]) = min
S⊂Ω⊆S∪C

tw(GΩ[S ∪ C]), and

tw(GΩ[S ∪ C]) = max(|Ω| − 1, {tw(GS′ [S
′ ∪ C ′]) : (S′, C ′) ∈ BGS [S∪C](Ω)}).

Note that at the same time that we compute the treewidth, we find the corresponding minimal triangu-
lation, as the realizations of blocks. We deduce the following expressions to compute the minimum fill-In
mfi(G) of G (the minimum fill in of a graph G is the minimum number of edges to add to G in order to
obtain a chordal supergraph).

mfi(G) = min
S∈∆G

{fill(S) +
∑

C∈C(S)

mfi(GS [S ∪ C])}

 , and

mfi(GS [S ∪ C]) = min
S⊂Ω⊆S∪C

fill(Ω)− fill(S) +
∑

(S′,C′)∈B(Ω)

mfi(GS′ [S
′ ∪ C ′]

 ,

where for a set of vertices X of G, the value of fill(X) is the number of pairs of nonadjacent vertices
in G[X].
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These ideas can be translated in an algorithm that can be implemented in O(∆G ·m+ ΠG ·BG · n),
where BG is the set of blocks of G. However, doing a much careful counting in [65] the authors obtained
that the algorithm runs in time O∗(ΠG). Moreover, it can be modified to work in the weighted versions
of the problems.

Other graph parameters associated to minimal triangulations can be computed in graphs with a few
minimal separators. The treelength of G is the minimum k such that there exists a minimal triangulation
H, with the property that any two vertices adjacent in H are at distance at most k in graph G. In [105]
Lokshtanov showed that Treelength can be solved in time O∗(|ΠG|) time, when ΠG is given in the
input. We finish this section giving a proposition summarizing the previous result, for future reference.

Proposition 19. Let ΠG denote the set of potential maximal cliques of graph G. The following problems
are solvable in O∗(|ΠG|) time, when ΠG is given in the input:

• (Weighted) Treewidth [65, 28],

• (Weighted) Minimum Fill-In [65, 80],

• Treelength [105].

Together with Proposition 15, we obtain that these problems are polynomially time solvable in graphs
with polynomially many minimal separators. Moreover, the number of minimal separators and potential
maximal cliques of an arbitrary graph can be enumerated by an algorithm running in a time that beats
the brute force search.

Proposition 20 ([67, 69]). Every n-vertex graph has O∗(ρn) minimal separators, where ρ < 1.6181 is
the golden ratio, and O∗(1.7347n) potential maximal cliques. Moreover, these objects can be enumerated
within the same running times.

This result combined with Proposition 19 givesO(1.7347n) time algorithms for computing the treewidth,
minimum fill-in and treelength.

3.3.2 Dynamic programming over minimal triangulations and potential max-
imal cliques

Minimal separators and potential maximal cliques have not been used only for computing treewidth and
other parameters related to minimal triangulations. One may say that the main motivation to study the
graph classes known to have polynomially many minimal separators, is because many NP-Hard problems
were polynomial time solvable restricted to some of these classes. A natural question is whether these
(or some of these) problems have polynomial time algorithms restricted to any class of graphs with a few
minimal separators, rather than a particular class.

One positive result in this direction is due to Fomin and Villanger [68]. Consider the following problem.

Maximum Induced Subgraph of Treewidth at most t
Input: A graph G.
Task: Compute F ⊂ V such that G[F ] has treewidth at most t and |F | is maximum.

There are natural problems that can be expressed as the maximum induced forest of some fixed
treewidth. For example Vertex Cover is equivalent to Independent Set, which consists in find a
maximum induced subgraph of treewidth 0. The problem Feedback Vertex Set can be expressed
as a Maximum Induced Forest, which is a maximum induced subgraph of treewidth 1. Fomin and
Villanger [68] showed that for every fixed t ≥ 0, problem Maximum Induced Subgraph of Treewidth
at most t can be solved in polynomial time in graph classes with few minimal separators.

Proposition 21 ([68]). For any fixed integer t > 0, problem Maximum Induced Subgraph of
Treewidth at most t is solvable in O(|ΠG| · nt+4) time, when ΠG is given in the input.

Again, together with Proposition 20, this result O(1.7347n) time algorithms for Maximum Induced
Subgraph of Treewidth at most t on arbitrary graphs.

Later, Fomin, Todinca and Vilanger [67] extended this result to a larger family of problems. Fix an
integer t ≥ 0 and a CMSO2 formula ϕ. Consider the problem of finding, in the input graph G, an induced
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subgraph G[F ] together with a vertex subset X ⊆ F , such that the treewidth of G[F ] is at most t, the
graph G[F ] together with the vertex subset X satisfy formula ϕ, and X is of maximum size under these
conditions. This optimization problem is called Max Induced Subgraph of tw ≤ t satisfying P:

Max Induced Subgraph of tw ≤ t satisfying P
Input: A graph G.
Task: Compute

max |X|
subject to There is a set F ⊆ V such that X ⊆ F ;

The treewidth of G[F ] is at most t;
(G[F ], X) |= ϕ.

Note that the formula ϕ has a free variable corresponding to the vertex subsetX. For several examples,
in formula ϕ the vertex set X is actually equal to F . E.g., even when ϕ only states that X = F , the
obvious examples are for t = 0 the problem Maximum Independent set problem, and for t = 1 the
problem Maximum Induced Forest. If t = 1 and ϕ states that X = F and G[F ] is a path we obtain
the Longest Induced Path problem. Still under the assumption that X = F , we can express the
problem of finding the largest induced subgraph G[F ] excluding a fixed planar graph H as a minor, or
the largest induced subgraph with no cycles of length 0 mod l, since these properties imply that the
output solution has bounded treewidth (depending on |H| and l, respectively). But X can correspond to
other parameters, e.g., we can choose the formula ϕ such that |X| is the number of connected components
of G[F ]. Based on this we can express problems like Independent Cycle Packing, where the goal
is to find an induced subgraph with a maximum number of components, and such that each component
induces a cycle.

The result of [67] states that problem Max Induced Subgraph of tw ≤ t satisfying P can be
solved in a running time of the type |ΠG| · nt+4 · f(ϕ, t) where |ΠG| is the number of potential maximal
cliques of the graph, assuming that the set of all potential maximal cliques is also part of the input.

Proposition 22 ([67]). For any fixed integer t > 0 and any fixed CMSO2 formula ϕ, problem Max
Induced Subgraph of tw ≤ t satisfying P is solvable in O(|ΠG| · nt+4) time, when ΠG is given in
the input.

For sake of completeness, in the following1 we will give a sketch of the proof of Proposition [67]. The
first ingredient is the following observation.

Proposition 23 ([68]). Let G = (V,E) be a graph, F ⊆ V , and let HF be a minimal triangulation of
G[F ]. There exists a minimal triangulation HG of G such that HG[F ] = HF . We say that HG respects
the minimal triangulation HF of G[F ].

Note that, for any clique Ω of HG, we have that F ∩ Ω induces a clique in HF . In particular, if
tw(G[F ]) ≤ t and the clique size of HF is at most t+ 1, then every maximal clique of HG intersects F in
at most t+ 1 vertices.

The second ingredient is a dynamic programming scheme that we describe below. Recall that if S is
a minimal separator of G, and C be a component of G− S such that N(C) = S, then the pair (S,C) is
called a block. Let Ω be a potential maximal clique such that S ⊂ Ω ⊆ S ∪ C. Then (S,C,Ω) is called a
good triple. In the sequel, W denotes a set of at most t+ 1 vertices.

Definition 3 (partial compatible solution). Consider a block (S,C) and a good triple (S,C,Ω) of graph
G. Let W ⊆ S (resp. W ⊆ Ω) a vertex set of size at most t + 1. Let c be a homomorphism class for
property P on (t+1)-terminal recursive graphs. We say that a pair (F,X) is a partial solution compatible
with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if the following conditions hold :

1. X ⊆ F .

2. F ⊆ S ∪ C and F ∩ S = W (resp. F ∩ Ω = W ).

3. H = (F,W,E(G[F ])) is a (t+ 1)-terminal recursive graph, and the homomorphism class hP(H,X)
for property P is exactly c.

1The following arguments were mainly taken from [102], which in its turn was highly based on [67].
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4. There is a minimal triangulation TF of G[F ] and a minimal triangulation TG of G respecting TF ,
such that S is a minimal separator (resp. Ω is a maximal clique) of TG′ .

With the same notations as above, let α(S,C,W, c) (resp. β(S,C,Ω,W, c)) be the maximum size of
X over all partial solutions (F,X) compatible with (S,C,W, c) (resp. (S,C,Ω,W, c)). The situation is
depicted in Figure 3.4. For simplicity, we did not represent set X.

WS

C

F

W
S

C

Ω

F

Figure 3.4 – (a) Partial solutions compatible with (S,C,W, c) (left), and (b) with (S,C,Ω,W, c) (right).
Set F is depicted in grey. Note that set W corresponds to F ∩ S in the first case, and to F ∩ Ω in the
second case.

Algorithm 1: Max Induced Subgraph of tw ≤ t satisfying P
Input: graph G = (V,E) together with the list of the potential maximal cliques of G
Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t, P(G[F ], X) is true and,

subject to these constrains, X is of maximum size
1 Order all blocks (S,C) of G by inclusion on S ∪ C. for all blocks (S,C) in this order do
2 for all good triples (S,C,Ω) of G, all W ⊆ Ω of size ≤ t+ 1 and all c ∈ C do
3 if Ω = S ∪ C then Compute β(S,C,Ω,W, c) using Equation 3.1.;
4 else Compute β(S,C,Ω,W, c) using Equations 3.3, 3.4, 3.5, and 3.6.;

5 for all W ⊆ S of size ≤ t+ 1 and all c ∈ C do
6 Compute α(S,C,W, c) using Equation 3.2;

7 Compute an optimal solution using Equation 3.7;

The algorithm orders the blocks (S,C) by the size of S ∪C. It proceeds by dynamic programming on
blocks (S,C) in this order, and on good triples (S,C,Ω), computing all possible values α(S,C,W, c) and
β(S,C,Ω,W, c).

Base case: the good triple (S,C,Ω) is such that Ω = S ∪C. In this case the only possible partial
solutions (F,X) compatible with (S,C,Ω,W, c) correspond to base graphs G[F ], where all vertices are
terminals. Indeed, we must have that (W,W,E(G[F ])) corresponds to a base (t + 1)-terminal graph.
Thus set X is unique (or might not exist), because we must have X = trm(c,W ). For simplicity, we
denote by G[W ] the base graph (W,W,E(G[F ])). We have:

β(S,C,Ω,W, c) =

{
|X| if there is X ⊆W such that h(G[W ], X) = c
−∞ otherwise (3.1)

Each β(S,C,Ω,W, c), corresponding to a base case takes O(n) time, since we have to store the value
in a table indexed by (S,C,Ω, c). For each good triple, we try at most nt+1 possible sets W . The number
of good triples is O(n|ΠG|) so altogether these computations take O(nt+3|ΠG|) time.
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Figure 3.5 – Computing α form β (left), and β from α (right). Set M is not depicted for simplicity.

Computing α from β. We aim to compute α(S,C,W, c) from β values on good triples of type (S,C,Ω)
(see also Figure 3.5 (left)).

Let (F,X) be an optimal solution compatible with (S,C,W, c). We denote by H the (t+ 1)-terminal
recursive graph (F,W,E(G[F ])). By Definition 3, there is a minimal triangulation TF of F and a minimal
triangulation TG of G respecting TF , such that S is a minimal separator of TG. By Proposition 11, there
is a potential maximal clique Ω of G, inducing a maximal clique in TG, and such that (S,C,Ω) form a
good triple of G. Let W ′ = F ∩Ω. Note that the graph H ′ = (F,W ′, E(G[F ])) is also a (t+ 1)-terminal
recursive graph, and (G[F ], X) is a partial compatible solution for (S,C,Ω,W ′, c′), where c′ = h(H ′, X).
Also note that H = forgetW ′→W (H), where the forget operation corresponds to the fact that the set of
terminals W ′ is reduced to W . Therefore, we obtain

Proposition 24 ([67]).
α(S,C,W, c) = maxβ(S,C,Ω,W ′, c′), (3.2)

where the maximum is taken over potential maximal cliques Ω such that (S,C,Ω) is a good triple,
all subsets W ′ ⊆ Ω of size at most t + 1 such that W ′ ∩ S = W and all classes c′ ∈ C such that
�forgetW ′→W (c′) = c.

For computing all values α(S,C,W, c) from values β(S,C,Ω,W ′, c′), we update the value of α(S,C,W, c)
to the maximum between its previous value and β(S,C,Ω,W ′, c′), if �forgetW ′→W (c′) = c. This cost O(n)
for each quintuple (S,C,Ω,W ′, c′), and can be done in steps 3-4 of the algorithm. The number of quin-
tuples is O(nt+2|ΠG|), thus the total cost of these computations is O(nt+3|ΠG|).

Computing β from α. Let (S,C,Ω) be a good triple of G. Denote by C1, . . . , Cp the components of
G − Ω contained in C, and let Si be the neighborhood of Ci in G. Recall that we called (Si, Ci) the
blocks associated to Ω, and we suppose that they have been processed by the algorithm before (S,C).
Our goal is to compute β(S,C,Ω,W, c). (see Figure 3.5 (right)). Let Wi = W ∩ Si, for all i ∈ {1, . . . p}.
We will use, two intermediate functions γi and δi.

Let δi(S,C,Ω,W, c+i ) denote max |Xi| over the partial solutions (F+
i , Xi) compatible with (S,C,Ω,W, c+i )

and such that F+
i ⊆ Ω ∩ Ci. Let H+

i and Hi be the (t + 1)-terminal graphs (F+
i ,W,E(G[F+

i ]) and
(Si ∪ Ci,Wi, E(G[Si ∪ Ci]), respectively. Note that H+

i is obtained by gluing Hi with the base graph
G[W ], through the “canonical” gluing, obtained by identifying the vertices of Si from both sides. Let
glueWi;W denote this gluing operation.

Proposition 25 ([67]).

δi(S,C,Ω,W, c
+
i ) = maxα(Si, Ci,Wi, ci) + |trm(cW ,W ) \ trm(ci,Wi)|, (3.3)

where the maximum is taken over all ci, cW ∈ C s.t. �glueWi;W (ci, cW ) = c+i and cW = h(G[W ], XW ) for
some XW ⊆W . Here G[W ] denotes the base graph with terminals W .
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Notice the part |trm(cW ,W )\trm(ci,W)| in the formula, which avoids the overcounting of the vertices
of Xi ∩ Si.

These partial solutions (F+
i , X

+
i ) corresponding to δi(S,C,Ω,W, c+i ) cannot be glued together in one

step, since we are only allowed to glue two graphs at a time. Hence the need of the γ function which
allows to add, one by one, the partial solutions to the gluing. Now let γi(S,C,Ω,W, c) denote the size of
the optimal partial solution compatible with (S,C,Ω,W, c) and contained in Ω ∪C1 · · · ∪Ci. So we only
consider the first i components, the partial solution is the union of (F+

1 , X
+
1 ) to (F+

i , X
+
i ).

Proposition 26 ([67]).
γ1(S,C,Ω,W, c) = δ1(S,Ω, C,W, c) (3.4)

We then compute γi, for i from 2 to p as follows.

γi(S,C,Ω,W, c) = max γi−1(S,C,Ω,W, c′) + δi(S,Ω, C,W, c
′′)− |trm(c′,W ∪ FM )|, (3.5)

where the maximum is taken over all c′, c′′ ∈ C s. t. �glueW ;W
(c′, c′′) = c, where the gluing operation is

the canonical gluing, the set of terminals for both arguments being W .

By definition of γp, we have

β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (3.6)

For a fixed quadruple (S,C,Ω,W ) computing the values β(S,C,Ω,W, c), given the values of function
α in the smaller triples, takes O(n2) time. The smaller blocks (Si, Ci) can be listed in O(m) time. For
each i, the computation of δi(S,Ω, C,W,C+

i ) takes O(n) time, because we need to access the values
α(Si,Wi, Ci, ci). Computing γi(S,C,Ω,W, c) from values γi−1 and δi can be done in O(n) time for each
i. Therefore the running time of the algorithm is the number of quadruples (S,C,Ω,W, c) times n2, which
is O(|ΠG|nt+4).
The global solution. It remains to retrieve the optimal solution for the algorithm.

Proposition 27 ([67]).
maxα(∅, V, ∅, c), (3.7)

Where the maximum is taken over all accepting classes c, i.e., classes such that h(G,X) = c implies that
P(G,X):

Again from Proposition 15, we obtain that Max Induced Subgraph of tw ≤ t satisfying P is
polynomially time solvable in graphs classes with polynomially many minimal separators. As remarked
in [67], the only information required by this algorithm is the upper bound on the number of minimal
separators in the specific graph class. For some specific graph class defined by an intersection model,
the algorithms defined in such classes normally use the intersection model, which has to be computed
beforehand. This algorithm produce correct output regardless of whether the input actually belongs to
the specific class of graphs. If the number of minimal separators (and then potential maximal cliques)
is bounded, the algorithm correctly solves the problem. Otherwise, the algorithm correctly outputs that
the given input is not from the restricted graph class. Such types of algorithms were called robust by
Raghavan and Spinrad [122]. For example, the recognition of d-trapezoid graphs is NP-complete [137, 67],
however the algorithm of Proposition 22 either correctly solves the problem or outputs that the input
graph is not d-trapezoid.

We re-emphasis that problem Max Induced Subgraph of tw ≤ t satisfying P generalizes
many classical problems, e.g., Maximum Independent Set, Maximum Induced Forest, Longest
Induced Path, Maximum Matching, Independent Cycle Packing, k-in-a-Path, k-in-a-Tree,
Maximum Induced Subgraph With a Forbidden Planar Minor. More examples of particular
cases are given in the following subsection (see also [67]).

3.3.3 More aplications
We give here several problems that are all known to be particular cases of Max Induced Subgraph
of tw ≤ t satisfying P (see [67] proofs and more applications).

Let Fm be the set of cycles of length 0 (mod m). Let ` ≥ 0 be an integer. Our first example is the
following problem.
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Maximum Induced Subgraph with ≤ ` copies of Fm-cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex-disjoint
cycles from Fm.

Maximum Induced Subgraph with ≤ ` copies of Fm-cycles encompasses several interesting
problems. For example, when ` = 0, the problem is to find a maximum induced subgraph without cycles
divisible by m. For ` = 0 and m = 1 this is Maximum Induced Forest.

For integers ` ≥ 0 and p ≥ 3, the problem related to Maximum Induced Subgraph with ≤ `
copies of Fm-cycles is the following.

Maximum Induced Subgraph with ≤ ` copies of p-cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex-disjoint
cycles of length at least p.

Next example concerns properties described by forbidden minors. Graph H is a minor of graph G if
H can be obtained from a subgraph of G by a (possibly empty) sequence of edge contractions. A model
M of minor H in G is a minimal subgraph of G, where the edge set E(M) is partitioned into c-edges
(contraction edges) and m-edges (minor edges) such that the graph resulting from contracting all c-edges
is isomorphic to H. Thus, H is isomorphic to a minor of G if and only if there exists a model of H in
G. For an integer ` a finite set of graphs Fplan, containing a planar graph we define he following generic
problem.

Maximum Ind. Subgraph with ≤ ` copies of Minor Models from F
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex disjoint
minor models of graphs from Fplan
Even the special case with ` = 0, this problem and its complementary version called the Minimum

F-Deletion, encompass many different problems.

Let t ≥ 0 be an integer and ϕ be a CMSO-formula. Let G(t, ϕ) be a class of connected graphs of
treewidth at most t and with property expressible by ϕ. Our next example is the following problem.

Independent G(t, ϕ)-Packing
Input: A graph G.
Task: Find a set F ⊆ V (G) with maximum number of connected components such that each
connected component of G[F ] is in G(t, ϕ).

As natural sub cases studied in the literature we can cite Independent Triangle Pac king or In-
dependent Cycle Packing.

The next problem is an example of annotated version of optimization problem Max Induced Sub-
graph of tw ≤ t satisfying P.
k-in-a-Graph From G(t, ϕ)
Input: A graph G, with k terminal vertices.
Task: Find an induced graph from G(t, ϕ) containing all k terminal vertices.

Many variants of k-in-a-Graph From G(t, ϕ) can be found in the literature, like k-in-a-Path,
k-in-a-Tree, k-in-a-Cycle.
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Chapter 4

Vertex cover, modular width and
potential maximal cliques

In this chapter we give upper bounds on the number of minimal separators and potential maximal cliques
of graphs with respect to two graph parameters, namely vertex cover (vc) and modular width (mw).
We prove that for any graph, the number of its minimal separators is O∗(3vc) and O∗(1.6181mw), and
the number of potential maximal cliques is O∗(4vc) and O∗(1.7347mw), and these objects can be listed
within the same running times. Combined with Propositions 19 and 22), we deduce that a large family
of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced Path, Feedback vertex set
and many others, can be solved in time O∗(4vc) or O∗(1.7347mw).

With slightly different techniques, we prove that the Treedepth problem can be also solved in
single-exponential time, for both parameters.

Most of the results of this chapter were published in the 14th Scandinavian Symposium and Work-
shops (SWAT 2014) and were obtained in collaboration with Fedor Fomin, Mathieu Liedloff and Ioan
Todinca [66].

4.1 Introduction
The main results of this chapter are of combinatorial nature: we show that the number of minimal
separators and the number of potential maximal cliques of a graph are upper bounded by a function of
its vertex cover and its modular with. More specifically, we prove the number of minimal separators
in a graph G is at most 3vc(G) and O∗(1.6181mw(G)), and the number of potential maximal cliques is
O∗(4vc(G)) and O∗(1.7347mw(G)). Moreover, these objects can be listed within the same running time
bounds.

As we mentioned in the last chapter, minimal separators and potential maximal cliques have been used
for solving several classical optimization problems, e.g., Treewidth, Minimum Fill-In [65], Longest
Induced Path, Feedback Vertex Set or Independent Cycle Packing [67]. Pipelined with our
combinatorial bounds, we obtain a series of algorithmic consequences in the area of FPT algorithms
parameterized by the vertex cover and the modular width of the input graph. In particular, the problems
mentioned above can be solved in timeO∗(4vc(G)) andO∗(1.7347mw(G)). These results are complementary
in the sense that graphs with small vertex cover are sparse, while graphs with small modular width may
be dense.

Vertex cover and modular width are strongly related to treewidth (tw) and cliquewidth (cw) param-
eters, since for any graph G we have tw(G) ≤ vc(G) and cw(G) ≤ mw(G) + 2.

The celebrated theorem of Courcelle ([44] and Proposition 5) states that all problems expressible in
Counting Monadic Second Order Logic (CMSO2) can be solved in time f(tw) · n for some function f
depending on the problem. A similar result for cliquewidth [46] shows that all CMSO1 problems can be
solved in time f(cw) · n, if the clique-decomposition is also given as part of the input.

Typically function f is a tower of exponentials, and the height of the tower depends on the formula.
Moreover Frick and Grohe [72] proved that this dependency on the treewidth or cliquewidth of an input
graph G cannot be significantly improved in general.
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Lampis [99] shows that the running time for CMSO2 problems can be improved 22O(vc(G)) · n when
parametrized by vertex cover, but he also shows that this cannot be improved to O∗(22o(vc(G))

) (under the
exponential time hypothesis). We are not aware of similar improvements for parameter modular width,
but we refer to [73] for discussions on problems parameterized by modular width.

As we saw in Section 3.3.2, most of our algorithmic applications concern a restricted, though still
large subset of CMSO2 problems, but we guarantee algorithms that are single exponential in the vertex
cover: O∗(4vc(G)) and in the modular width: O∗(1.7347mw(G)). We point out that our result for modular
width extends the result of [68, 67], who show a similar bound of O∗(1.7347n) for the number of potential
maximal cliques and for the running times for these problems, but parameterized by the number of vertices
of the input graph. Thanks to our combinatorial bounds and Proposition 22, the problem Max Induced
Subgraph of tw ≤ t satisfying P can be solved in times O(4vc(G)nt+c) and O(1.7347mw(G)nt+c), for
some small constant c.

Naturally, our result can be applied in all other graph problems that can be solved in time O∗(|ΠG|) if
the input graph is given together with the set of its potential maximal cliques. Examples of such problems
are Treewidth, Minimum Fill-in [65], their weighted versions [23, 80] and several problems related
to phylogeny [80], or Treelength [105]. Pipelined with our main combinatorial result, we deduce
that all these problems can be solved in time O∗(4vc(G)) or O∗(1.7347mw(G)). Recently Chapelle et
al. [42] provided an algorithm solving Treewidth and Pathwidth in O∗(3vc(G)), but those completely
different techniques do not seem to work for Minimum Fill-in or Treelength. The interested reader
may also refer., e.g., to [49, 60] for more (layout) problems parameterized by vertex cover. The best
known parameterized algorithm deciding if a given n-vertex graph G is of treewidth at most t runs in
time O(tt

3

n) [20]. The treewidth of a graph can be computed in time O(1.7347n) [67].
Treedepth is a graph parameter that encountered a regain of interest in the area of sparse graphs,

cf. the book of Nešetřil and Ossona de Mendes [116]. Actually the parameter used to be known under
different names, e.g., vertex ranking [52]. A graph has treedepth/vertex ranking at most t if its vertices
can be labeled from 1 to t, such that each path connecting vertices of the same label i contains an
internal vertex with a label greater than i. The parameter is NP-hard to compute, but one can decide
if the treedepth of an n-vertex graph is at most t in time 2O(t2) · n [124]. The treedepth can be also
computed in time O(1.9602n) [62].

Deogun et al. [52] provide polynomial algorithms computing the vertex ranking for several graph
classes, using minimal separators. Based on their approach and new combinatorial boundss we show
that the treedepth of a graph can also be computed in parameterized single-exponential time, when
parameterized by the vertex cover or by the modular width of the input graph.

The rest of the chapter is organised as follows. Section 4.2 presents the combinatorial upper bounds on
the number of minimal separators and potential maximal cliques, with respect to vertex cover. Section 4.3
provides similar bounds, with respect to modular width. Applications of these results are presented in
Section 4.4. The results for treedepth do not rely directly on potential maximal cliques but on a different
tool; they can be found in Section 4.5. Conclusion section discusses further research directions.

4.2 Relations to vertex cover

A vertex subset W is a vertex cover of G if each edge has at least one endpoint in W . Note that if W is a
vertex cover, then V \W induces an independent set in G, i.e., G−W contains no edges. We denote by
vc(G) the size of a minimum vertex cover of G. The parameter vc(G) is called the vertex cover number
or simply (by a slight abuse of language) the vertex cover of G. After a long sequence of improvements,
the current fastest parameterized algorithm for Vertex Cover is the algorithm of Chen, Kanj, and Xia,
running in time O(1.2738vc(G) + n vc(G)) [43]. However, for our purposes even a weaker result will do
the job.

Proposition 28 (folklore). There is an algorithm computing the vertex cover of the input graph G in
time O∗(2vc(G)).

Let us show that any graph G has at most 3vc(G) minimal separators.

Lemma 1. Let G = (V,E) be a graph, W be a vertex cover and S ⊆ V be a minimal separator of G.
Consider a three-partition (D1, S,D2) of V such that both D1 and D2 are formed by a union of components
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of G− S, and both D1 and D2 contain some full component associated to S. Denote DW
1 = D1 ∩W and

DW
2 = D2 ∩W .
Then S \W = {x ∈ V \W | N(x) intersects both DW

1 and DW
2 }.

Proof. Let C1 ⊆ D1 and C2 ⊆ D2 be two full components associated to S. Let x ∈ S \W . Vertex x must
have neighbors both in C1 and C2, hence both in D1 and D2. Since x 6∈W and W is a vertex cover, we
have N(x) ⊆W . Consequently x has neighbors both in DW

1 and DW
2 .

Conversely, let x ∈ V \ W s.t. N(x) intersects both DW
1 and DW

2 . We prove that x ∈ S. By
contradiction, assume that x 6∈ S, thus x is in some component C of G − S. Suppose w.l.o.g. that
C ⊆ D1. Since N(x) ⊆ C ∪ N(C), we must have N(x) ⊆ D1 ∪ S. Thus N(x) cannot intersect D2—a
contradiction.

Theorem 1. Any graph G has at most 3vc(G) minimal separators. Moreover the set of its minimal
separators can be listed in O∗(3vc(G)) time.

Proof. Let W be a minimum size vertex cover of G. For each three-partition (DW
1 , SW , DW

2 ) of W , let
S = SW ∪ {x ∈ V \W | N(x) intersects DW

1 and DW
2 }. According to Lemma 1, each minimal separator

of G will be generated this way, by an appropriate partition (DW
1 , SW , DW

2 ) of W . Thus the number of
minimal separators is at most 3vc(G), the number of three-partitions of W .

These arguments can be easily turned into an enumeration algorithm, we simply need to compute an
optimum vertex cover then test, for each set S generated from a three-partition, if S is indeed a minimal
separator. The former part takes O∗(2vc(G)) time by Proposition 28, and the latter takes polynomial
time for each set S using Corollary 2.

Observe that the bound of Theorem 1 is tight up to a constant factor. Indeed consider the watermelon
graph Wk,3 formed by k disjoint paths of three vertices plus two vertices u and v adjacent to the left,
respectively right ends of the paths (see Figure 4.1). Note that this graph has vertex cover k + 2 (the
minimum vertex cover contains the middle of each path and vertices u and v) and it also has 3k minimal
u, v-separators, obtained by choosing arbitrarily one of the three vertices on each of the k paths.

x y

Figure 4.1 – The watermelon graph W6,3.

We now extend Theorem 1 to a similar result on potential maximal cliques. Let us first focus on
potential maximal cliques having an active separator (see Definition 2 and Proposition 12). We give a
result similar to Lemma 1, showing that such a potential maximal clique can be determined by a certain
partition of the vertex cover W of G.

Lemma 2. Let G = (V,E) be a graph and W be a vertex cover of G. Consider a potential maximal clique
Ω of G having an active separator S ⊆ Ω and an active pair x, y ∈ S. Let C be the unique connected
component of G− S intersecting Ω and let DS be the union of all other connected components of G− S.
Denote by Dx the union of components of G−Ω contained in C, seeing x, by Dy the union of components
of G− Ω contained in C not seeing x.

Now let DW
S = DS ∩W , DW

x = Dx ∩W and DW
y = Dy ∩W .

Then one of the following holds:

1. There is a vertex t ∈ Ω such that Ω \ S = N(t) ∩ C.

2. There is a vertex t ∈ Ω such that Ω = N [t].

3. A vertex z 6∈W is in Ω if and only if

(a) z sees DW
S and DW

x ∪DW
y , or
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(b) z does not see DW
S but is sees DW

x ∪ {x}, DW
y ∪ {y} and DW

x ∪DW
y .

Proof. Note that Dx, Dy, DS and Ω form a partition of the vertex set V .
We first prove that any vertex z 6∈W satisfying conditions 3a or 3b must be in Ω.
Consider first the case 3a when z sees DW

S and DW
x ∪ DW

y . So z sees DS and C; we can apply
Lemma 1 to partition (DS , S, C) thus z ∈ S. Consider now the case 3b when z sees DW

x ∪DW
y , Dx ∪{x}

and Dy ∪ {y} but not DW
S . Again by Lemma 1 applied to partition (DS , S, C), vertex z cannot be in S.

Since z has a neighbor in Dx ∪Dy, we have z ∈ C. Let H = G[C ∪ {x, y}] and T = Ω ∩ C (thus we also
have T = Ω \ S). Recall that T is an x, y-minimal separator in H by Proposition 12. By definition of
set Dx, we have that Dx ∪ {x} is exactly the component of H − T containing x. Note that Dy ∪ {y} is
the union of the component of H − T containing y and of all other components of H − T (that no not
see x nor y). By applying Lemma 1 on graph H, with vertex cover (W ∩ C) ∪ {x, y} and with partition
(Dx ∪ {x}, T,Dy ∪ {y}) we deduce that z ∈ T .

Conversely, let z ∈ Ω \W . We must prove that either z satisfies conditions 3a or 3b, or we are in
one of the first two cases of the Lemma. We distinguish the cases z ∈ S and z ∈ T . When z ∈ S, by
Lemma 1 applied to partition (DS , S, C), z must see DS and C. If z sees some vertex in C \ Ω, we are
done because z sees DW

x ∪ DW
y so we are in case 3a. Assume now that N(z) ∩ C ⊆ Ω, we prove that

actually N(z) ∩ C = Ω ∩ C = T , so we are in case 1. Assume there is u ∈ T \N(z). By Proposition 10,
there must be a connected component D of G− Ω such that z, u ∈ N(D). Since u ∈ C, this component
D must be a subset of C, so D ⊆ C \ Ω. Together with z ∈ N(D), this contradicts the assumption
N(z) ∩ C ⊆ Ω.

It remains to treat the case z ∈ T . Clearly z ∈ C cannot see DS because S separates C from
DS . We again take graph H, with vertex cover (W ∩ C) ∪ {x, y}, and apply Lemma 1 with partition
(Dx ∪ {x}, T,Dy ∪ {y}). We deduce that z sees both DW

x ∪ {x} and DW
y ∪ {y}. Assume that z does not

see DW
x ∪DW

y . So N(z) ∩ C \ Ω = ∅ thus N [z] ⊆ Ω. If Ω contains some vertex u 6∈ N [z], no component
of G − Ω can see both z and u (because N(z) ⊆ Ω), contradicting Proposition 10. We conclude that
either z sees DW

x ∪ DW
y (so satisfies condition 3b) or Ω = N [z] (thus we are in the second case of the

Lemma).

Theorem 2. Every graph G containss O∗(4vc(G)) potential maximal cliques with active separators. More-
over the set of its potential maximal cliques with active separators can be listed in O∗(4vc(G)) time.

Proof. The number of potential maximal cliques with active separators satisfying the second condition
of Lemma 2 is at most n, and they can all be listed in polynomial time by checking, for each vertex t, if
N [t] is a potential maximal clique.

For enumerating the potential maximal cliques with active separators satisfying the first condition of
Lemma 2, we enumerate all minimal separators S using Theorem 1, then for each t ∈ S and each of the
at most n components C of G− S we check if S ∪ (C ∩N(t)) is a potential maximal clique. Recall that
testing if a vertex set is a potential maximal clique can be done in polynomial time by Corollary 2. Thus
the whole process takes O∗(3vc(G)) time, and this is also an upper bound on the number of listed objects.

It remains to enumerate the potential maximal cliques with active separators satisfying the third
condition of Lemma 2. For this purpose, we “guess” the sets DW

S DW
x , DW

y as in the Lemma and then we
compute Ω. More formally, for each four-partition (DW

S , D
W
x , D

W
y ,Ω

W ) of W , we let ΩW be the set of
vertices z 6∈W satisfying conditions 3a or 3b of Lemma 2, and we test using Corollary 2 if Ω = ΩW ∪ΩW

is indeed a potential maximal clique. By Lemma 2, this enumerates in O∗(4vc(G)) all potential maximal
cliques of this type.

For counting and enumerating all potential maximal cliques of graph G = (V,E), including the ones
with no active separators, we apply the same ideas as in [33], based on Proposition 13.

Theorem 3. Any graph G has O∗(4vc(G)) potential maximal cliques. Moreover the set of its potential
maximal cliques can be listed in O∗(4vc(G)) time.

Proof. Let (v1, . . . , vn) be an arbitrary ordering of the vertices of V . Denote byGi the graphG[{v1, . . . , vi}]
induced by the first i vertices, for all i, 1 ≤ i ≤ n. Let k = vc(G). Note that for all i we have vc(Gi) ≤ k.
Actually, if W is a vertex cover of G, then Wi = W ∩ {v1, . . . , vi} is a vertex cover of Gi. In particular,
by Theorems 1 and 2, each Gi has at most 3k minimal separators and O∗(4k) potential maximal cliques
with active separators.
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For i = 1, graph G1 has a unique potential maximal clique equal to {v1}.
For each i from 2 to n, in increasing order, we compute the potential maximal cliques of Gi from those

of Gi−1 using Proposition 13. Observe that Gi−1 = Gi − vi. We initialize the set of potential maximal
cliques of Gi with the ones having active separators. This can be done in O∗(4k) time by Theorem 2.
Then for each minimal separator S of Gi we check if Ω = S ∪ {vi} is a potential maximal clique of Gi
and if so we add it to the set. This takes O∗(3k) time by Theorem 1 and Corollary 2. Eventually, for
each potential maximal clique Ω′ of Gi−1, we test using Corollary 2 if Ω′ (resp. Ω′ ∪ {vi}) is a potential
maximal clique of Gi. If so, we add it to the set of potential maximal cliques of Gi. The running time of
this last part is the number of potential maximal cliques of Gi−1 times nm. Altogether, it takes O∗(4k)
time.

By Proposition 13, this algorithm covers alls cases and thus lists all potential maximal cliques of Gi.
Hence for i = n we obtain all potential maximal cliques of G, and they have been enumerated in O∗(4k)
time.

4.3 Relations to modular width
Recall that a module of graph G = (V,E) is a set of vertices W such that, for any vertex x ∈ V \W ,
eitherW ⊆ N(x) orW does not intersect N(x). For the reader familiar with the modular decompositions
of graphs, the modular width mw(G) of a graph G is the maximum size of a prime node in the modular
decomposition tree. Equivalently,

graph G is of modular width at most k if:

1. G has at most one vertex (the base case).

2. G is a disjoint union of graphs of modular width at most k.

3. G is a join of graphs of modular width at most k. I.e., G is obtained from a family of disjoint
graphs of modular width at most k by taking the disjoint union and then adding all possible edges
between these graphs.

4. The vertex set of G can be partitioned into p ≤ k modules V1, . . . , Vp such that G[Vi] is of modular
width at most k, for all i, 1 ≤ i ≤ p.

The modular width of a graph can be computed in linear time, using e.g., [134]. Moreover, this
algorithm outputs the algebraic expression of G corresponding to the grammar above.

Let G = (V,E) be a graph with vertex set V = {v1, . . . , vk} and let Mi = (Vi, Ei) be a family of
pairwise disjoint graphs, for all i, 1 ≤ i ≤ k. Denote by H the graph obtained from G by replacing each
vertex vi by the module Mi. I.e., H = (V1 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek ∪ {ab | a ∈ Vi, b ∈ Vj s.t. vivj ∈ E}).
We say that graph H has been obtained from G by expanding each vertex vi by the module Mi.

A vertex subset W of H is an expansion of vertex subset WG of G if W = ∪vi∈WG
Vi. Given a vertex

subset W of H, the contraction of W is {vi | Vi intersects W}.

Lemma 3. Let S be a minimal y, z-separator of H, for y, z ∈ Vi. Then S ∩ Vi is a minimal separator of
Mi and S \ Vi = NH(Vi).

Proof. Note that all vertices of NH(Vi) are in NH(y) ∩NH(z), by construction of graph H and the fact
that y and z are in the same module Vi. Therefore NH(Vi) must be contained in S. Let Si = S ∩ Vi.
Since H[Vi] = Mi, we have that Si separates z and y in graph Mi. Assume that Si is not a minimal y, z-
separator of Mi, so let S′i ( Si be a minimal y, z-separator in graph Mi. We claim that S′i ∪NH(Vi) is a
y, z-separator in H. Indeed each y, z-path of H is either contained in Vi (in which case it intersects S′i) or
intersects NH(Vi). In both cases, it passes through S′i∪NH(Vi), which proves the claim. Since S′i∪NH(Vi)
is a subset of S and S is a y, z-minimal separator of H, the only possibility is that S = S′i∪NH(Vi). This
proves that S ∩ Vi is a minimal separator of Mi and S \ Vi = NH(Vi).

Lemma 4. Let S be a minimal separator of H. Assume that some Vi intersects S, but is not contained
in S.

Then Vi intersects all full components of H − S associated to S. In particular S ∩ Vi is a minimal
separator in Mi and S \ Vi = NH(Vi).
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Proof. Let x ∈ Vi ∩ S and t ∈ Vi \ S. By Proposition 6, there are at least two full components of H − S,
associated to S. Let C be one of them, not containing t. Let z be a neighbor of x in C, we prove that
z ∈ Vi. If z 6∈ Vi, then z ∈ NH(Vi), and since Vi is a module in H we also have z ∈ NH(t). This
contradicts the fact that t and z are in different components of H − S. It remains that z ∈ Vi. By
applying the same argument for z instead of t, it follows that Vi intersects each full component D of
H − S and moreover x has a neighbor in D ∩ Vi.

By Proposition 6, S is a minimal y, z-separator in H, for some y, z ∈ NH(x)∩ Vi. The rest follows by
Lemma 3.

Lemma 5. Let S be a minimal separator of H. Then one of the following holds

1. S is the expansion of a minimal separator SG of G.

2. There is i ∈ {1, . . . , k} such that S ∩ Vi is a minimal separator of Mi and S \ Vi = NH(Vi).

Proof. Assume there is a set Vi intersecting S but not contained in it. By Lemma 4, S ∩ Vi is a minimal
separator of Mi and S \ Vi = NH(Vi). Hence we are in the second case of the Lemma.

Otherwise, for any Vi intersecting S, we have Vi ⊆ S. Thus S is the expansion of a vertex subset SG of
G, formed exactly by the vertices vi of G such that Vi intersects S. Let C and D be two full components
of H−S associated to S and let a ∈ C, b ∈ D. Recall that, by Proposition 6, S is a minimal a, b-separator
of H. Let Vk be the set containing a and Vl the set containing b. Consider first the possibility that k = l.
Then, by Lemma 3, S satisfies the second condition of this lemma, for i = k = l. (This case may occur
when Mk is disconnected and S = NH(Vk).)

Finally, we consider the case k 6= l. We prove that SG is a minimal vk, vl-separator of G. Consider
a vk, vl path of G. If this path does not intersect SG in G, then there is a path from a to b in H − S,
obtained by replacing each vertex vj of the path by some vertex of Vj (vk and vl are replaced by a and
b respectively). This would contradict the fact that S separates a and b in H. Therefore SG is indeed a
vk, vl-separator in G. Assume that SG is not minimal among the vk, vl-separators of G, and let vj ∈ SG
such that SG \ {vj} separates vk and vl in G. We claim that S \ Vj also separates a from b in H. By
contradiction, assume there is a path from a ∈ C∩Vk to b ∈ D∩Vl in H, avoiding S \Vj . By contracting,
on this path, all vertices belonging to a same Vi into vertex vi, we obtain a path (or a connected subgraph)
joining vk to vl in G. This contradicts the fact that all such paths should intersect SG \ {vj}. Therefore
SG is a minimal separator of G.

Lemma 5 provides an injective mapping from the set of minimal separators of H to the union of the
sets of minimal separators of G and of the graphs Mi. Therefore we have:

Corollary 3. The number of minimal separators of H is at most the number of minimal separators of
G plus the number of minimal separators of each Mi.

We now aim to prove a statement equivalent of Corollary 3, for potential maximal cliques instead of
minimal separators.

Lemma 6. Let Ω be a potential maximal clique of H, and let ΩG = {vi | Vi intersects Ω}. Assume that
Ω is the expansion of ΩG, i.e., Ω = ∪vi∈ΩGVi. Then ΩG is a potential maximal clique of G.

Proof. We prove that ΩG satisfies, in graph G, the conditions of Proposition 10. For the first condition,
let CG be a component of G−ΩG and let SG = NG(CG). Assume that SG is not strictly contained in ΩG,
hence SG = ΩG. Let C be the expansion of CG in H and note that NH(C) is the expansion of NG(CG),
thus NH(C) = Ω. If CG is formed by at least two vertices, since G[CG] is connected then so is H[C].
Therefore, in graph H, we have NH(C) = Ω and C is a component of H − Ω. But this contradicts the
first condition of Proposition 10 applied to the potential maximal clique Ω of H. In the case that CG is
formed by a unique vertex vk, its expansion C = Vk might not induce a connected subset in H (if Mk is
disconnected). But it is sufficient to consider a connected component V ′k of H[Vk], and again this is also
a component of H − Ω with the property that its neighborhood in H is the whole set Ω, contradicting
Proposition 10 applied to Ω.

For the second condition of Proposition 10, let vj , vk ∈ ΩG such that vjvk is not an edge of G. Let
a ∈ Vj and b ∈ Vk. These vertices are non-adjacent in H, so by Proposition 10 applied to the potential
maximal clique Ω of H there must be a component C of H−Ω seeing both a and b. Consider an a, b-path

46



4.3. RELATIONS TO MODULAR WIDTH

in H[C ∪{a, b}]. The contraction of this path contains a vj , vk-path in G, whose internal vertices are not
in ΩG. This proves that vj and vk are in the neighborhood of a same component of G − ΩG, thus ΩG
satisfies the second condition of Proposition 10.

Lemma 7. Let Ω be a potential maximal clique of H, and assume that there is some set Vi that intersects
Ω but is not contained in Ω. Then Ω ∩ Vi is a potential maximal clique of Mi and Ω \ Vi = NH(Vi).

Proof. Let Vi be a vertex set that intersects Ω, but is not contained in Ω. We distinguish two cases.
Case 1. There is a minimal separator S ⊆ Ω of H, such that S intersects Vi.
By Lemma 4, S ∩ Vi is a minimal separator of Mi and Vi intersects all full components of H − S

associated to S. Let C be the unique component of H − S intersecting Ω; recall that it exists and
moreover it is full w.r.t. S, by Proposition 11. Then, by Lemma 4, C also intersects Vi. Also by
Lemma 4, S \ Vi = NH(Vi). We claim that actually C ⊆ Vi and C is also a full component of Mi − Si.
Recall that S \ Vi = NH(Vi) separates in graph H the vertices of Vi from the rest of the graph. Since C
intersects Vi, H[C] is connected and NH(Vi) separates Vi from all other vertices, we must have C ⊆ Vi.
Since H[C] is connected, so is Mi[C], thus C is contained in some component of Mi − Si. But each such
component is also a component of H − S, hence C is both a component of H − S and of Mi − Si. In
particular Ω ∩ C ⊆ Vi.

It remains to prove that Ωi = Ω∩ Vi is a potential maximal clique of Mi. By the above observations,
we also have Ωi = Ω \NH(Vi). We show that Ωi satisfies, in graph Mi, the conditions of Proposition 10.
Let D be a component of Mi − Ωi. Observe that D is also a component of H − Ω and let T = NMi

(D).
Either D is a component of Mi − Ωi disjoint from C, or it is contained in C. In the former case, T is
a subset of Si, hence T is a strict subset of Ωi (since Si is itself a strict subset of Ωi by Proposition 10
applied to potential maximal clique Ω of H). In the later case, if T = Ωi, note that NH(D) = Ω because
Ω\Vi = NH(Vi) is also contained in the neighborhood of D in H. This contradicts Proposition 10 applied
to potential maximal clique Ω of H.

For the second condition, let x, y ∈ Ωi, non-adjacent in Mi. Then there is a component F of H − Ω
seeing, in graph H, both x and y (by Proposition 10 applied to Ω). Since this component sees Vi, it must
be contained in Vi. So F is also a component of Mi−Ωi seeing both x and y in Mi, which concludes our
proof for this case.

Case 2. There is no minimal separator S ⊆ Ω of H, intersecting Vi.
Let us prove that, in this case, for any x ∈ Ωi we have that Ω = NH [x]. By Proposition 11, if x

has a neighbor outside Ω, hence in some component D of H −Ω, then NH(D) is a minimal separator of
H containing x – a contradiction. Therefore NH [x] ⊆ Ω. If there is y ∈ Ω \ NH [x], then by the same
proposition, x and y must see a same component of H − Ω, contradicting the fact that NH(x) ⊆ Ω. We
deduce that Ω = NH [x].

Since this holds for each vertex of Ωi, we have that Ωi is a clique in H (thus in Mi), and the vertices
of Ωi cannot have neighbors in Vi \ Ωi. Therefore Ωi is a clique and a connected component of Mi.
By Proposition 11, it is a potential maximal clique of Mi. The fact that Ω = NH [x] also implies that
Ω \ Vi = NH(Vi), which concludes our proof.

From Lemmata 6 and 7, we directly deduce:

Lemma 8. Let Ω be a potential maximal clique of H. One of the following holds

1. Ω is the expansion of a potential maximal clique ΩG of G.

2. There is some i ∈ {1, . . . , k} such that Ω∩Vi is a potential maximal clique ofMi and Ω\Vi = NH(Vi).

The previous lemma provides an injective mapping from the set of potential maximal cliques of H to
the union of the sets of potential maximal cliques of G and of the graphs Mi. Therefore we have:

Corollary 4. The number of potential maximal cliques of H is at most the number of potential maximal
cliques of G plus the number of potential maximal cliques of each Mi.

We use the bounds the number of minimal separators and potential maximal cliques of arbitrary
graphs with respect to n, given in Proposition 20, to prove the main result of this section.
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Theorem 4. For any graph G = (V,E), the number of its minimal separators is O(n ·ρmw(G)) where ρ <
1.6181 is the golden ratio. The number of its potential maximal cliques is O(n · 1.7347mw(G)). Moreover,
the minimal separators and the potential maximal cliques can be enumerated in time O∗(1.6181mw(G))
and O∗(1.7347mw(G)) time respectively.

Proof. Let k = mw(G). By definition of modular width, there is a decomposition tree of graph G, each
node corresponding to a leaf, a disjoint union, a join or a decomposition into at most k modules. The
leaves of the decomposition tree are disjoint graphs with at single vertex, thus these vertices form a
partition of V . In particular, there are at most n leaves and, since each internal node is of degree at
least two, there are O(n) nodes in the decomposition tree. For each node N , let G(N) be the graph
associated to the subtree rooted in N . We prove that G(N) has O(n(N) · ρk) minimal separators and
O(n(N) · 1.7347k) potential maximal clique, where n(N) is the number of nodes of the subtree rooted in
N . We proceed by induction from bottom to top. The statement is clear when N is a leaf.

Let N be an internal node N1, N2, . . . , Np be its sons in the tree.
Graph G(N) is the expansion of some graph G′(N) by replacing the i-th vertex with module G(Ni). If

N is a join node, then G′(N) is a clique. When N is a disjoint union node, graph G′(N) is an independent
set, and in the last case G′(N) is a graph of at most k vertices. In all cases, by Proposition 20 graph
G′(N) has O(ρk) minimal separators. Thus G(N) has at most O(ρk) more minimal separators than all
its sons taken together, which completes our proof for minimal separators.

Concerning potential maximal cliques, when G′(N) is a clique it has exactly one potential maximal
clique, and when G′(N) is of size at most k is has O(1.7347k) potential maximal cliques. We must be
more careful in the case when G′(N) is an independent set (i.e., N is a disjoint union node), since in
this case it has p potential maximal cliques, one for each vertex, and p can be as large as n. Consider a
potential maximal clique Ω of G(N) corresponding to an expansion of vertices of G′(N) (see Lemma 8).
It follows that this potential maximal clique is exactly the vertex set of some G(Ni), for a child Ni of N .
By construction this vertex set is disconnected from the rest of G(N), and by Proposition 10 the only
possibility is that this vertex set induces a clique in G(N). But in this case Ω is also a potential maximal
clique of G(Ni). This proves that, when N is of type disjoint union, G(N) has no more potential maximal
cliques than the sum of the numbers of potential maximal cliques of all its sons. We conclude that the
whole graph G has O(n · 1.7347k) potential maximal cliques. All our arguments are constructive and can
be turned directly into enumeration algorithms for these objects.

4.4 Applications

Recall that from Proposition 19 the following problems are solvable in O∗(|ΠG|) time, when ΠG is given
in the input: (Weighted) Treewidth, (Weighted) Minimum Fill-In, Treelength. Moreover,
from Proposition 22, for a fixed integer t and a fixed CMSO2 formula ϕ, Max Induced Subgraph of
tw ≤ t satisfying P is solvable in O(|ΠG| · nt+4) time. Pipelined with Theorems 3 and 4, we deduce:

Theorem 5. For an input graph G, the problems Max Induced Subgraph of tw ≤ t satisfy-
ing P (Weighted) Treewidth, (Weighted) Minimum Fill-In, Treelength are solvable in time
O∗(4vc(G)) and in time O∗(1.7347mw(G)).

We re-emphasis that problem Max Induced Subgraph of tw ≤ t satisfying P generalizes many
classical problems, e.g., Maximum Independent Set, Maximum Induced Forest, Longest In-
duced Path, Maximum Induced Matching, Independent Cycle Packing, k-in-a-Path, k-in-
a-Tree, Maximum Induced Subgraph With a Forbidden Planar Minor. More examples of
particular cases are given in [67].

4.5 Treedepth

In [52], Deogun et al. give the following formula for computing the treedepth of a graph.

Proposition 29 ([52]). Let G be a graph and ∆+
G a set of vertex subsets, containing all minimal separators

of G.
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td(G) = min
S∈∆+

G

(
|S|+ max

C
td(G[C])

)
where the maximum is taken over all components C of G− S.

Note that if G is a complete graph, then its treedepth is the number of vertices of G.
Following [52], we recursively define a piece D of G = (V,E) as a vertex subset such that D = V ,

or there exists a larger piece C of G and a minimal separator S of G[C] such that D is a connected
component of G[C]− S.

Let us say that (C, S) is a piece-separator pair of G if C is a piece and S is a minimal separator
of G[C]. Proposition 29 leads in [52] to a natural dynamic programming algorithm for computing the
treedepth. Let us restate it for our convenience.

Lemma 9. Given as input a graph G together with the set PS of all its piece-separator pairs (or a
superset of this set), the treedepth of G can be computing in O∗(|PS|) time.

Proof. Let Pieces be the set of all sets C such that (C, S) ∈ PS (hence a superset of all pieces). Assume
that the elements of Pieces are ordered by inclusion, or simply by size, using the bucket sort. The goal
is to compute, in this order, a quantity that corresponds to the treedepth of G[C], if C is really a piece.
For the minimal sets C ∈ Pieces, we set td[C]← |C|. Then for each C ∈ Pieces, sorted by inclusion, for
each S such that (C, S) ∈ PS, we check that all components D of G[C]− S belong to Pieces. If this is
not the case, then C is not a piece. Otherwise, we set compute |S| +

∑
D td[D] (the sum is taken over

all components D), and we set td[C] to the minimum among these values, over all such S. (If no such S
exist, we can set td[C]←∞). By Proposition 29, at the end of the algorithm, td(G) = td[V ].

Following the same ideas as in Theorem 1, we can list the piece-separator pairs of G in a running time
which is single-exponential in its vertex cover.

Lemma 10. Let W be a vertex cover of graph G = (V,E).
For each piece C of G, either C is a singleton or there is a three-partition (CW , TW , RW ) of W such

that C∩W = CW and C \W is formed by the vertices x ∈ V \W such that N(x) is contained in CW ∪TW
and intersects CW .

Proof. The proof goes by induction, from larger to smaller pieces. The base case corresponds to piece
C = V . The first condition holds, for the partition (W, ∅, ∅).

Let now C be a piece obtained as a component of G[F ] − Q, for some larger piece F and some
minimal separator Q of G[F ]. We may assume w.l.o.g. that C is a full component associated to Q in
G[F ]. Indeed, if this is not the case, then Q′ = NG[F ](C) is also a minimal separator of G[F ] (C is one
of the full components associated to Q′ in G[F ]; another one can be obtained from a full component D
associated to Q, by taking the component of G[F ] − Q′ containing D, see Proposition 6). Thus we can
replace Q by Q′.

By induction hypothesis, there is a partition (FW , TWF , RWF ) such that F ∩W = FW and for any
vertex y ∈ F \W , y is in F if and only if NG(y) intersects FW and is contained in FW ∪ TWF . Consider
the partition (C, S,D2) of F and apply Lemma 1 to G[F ], this partition and the vertex coverW ′ = W ∩F
of G[F ]. Let CW = C ∩W ′, SW = S ∩W ′ and DW

2 = D2 ∩W ′ (we obtain the same intersections if we
replace W ′ by W ). Denote TW = TWF ∪ SW , and RW = RWF ∪DW

2 . Observe that (CW , TW , RW ) is a
three-partition of W . It remains to prove that, if C has more than one vertex, then this three-partition
of W satisfies the condition of the lemma.

Let x be a vertex of C \W , in particular x ∈ F . Since C is not a singleton, x has at least one neighbor
in C ∩W = CW , in graph G. Since x ∈ F , its neighborhood NG(x) is contained in F ∪ TWF by induction
hypothesis. Now if NG(x) intersects DW

2 , we would have that NG[F ](x) intersects both CW and DW
2 ,

contradicting (by Lemma 1) the fact that x ∈ C. It remains that NG(x) is contained in CW ∪ TW .
Conversely, let x ∈ V \W such that NG(x) intersects CW and is contained in CW ∪ TF . Note that

x ∈ F , by induction hypothesis. We cannot have x ∈ S (its neighborhood would intersect DW
2 , hence

RW , by Lemma 1 applied on (C, S,D2) in G[F ]), nor x ∈ D2 (because S separates C from D2 in G[F ],
so NG(D2) cannot intersect C). It remains that x ∈ C, concluding the proof of the lemma.

Theorem 6. A graph G has at most n + 3vc(G) pieces and at most n + 5vc(G) piece-separator pairs.
Moreover, the piece-separator pairs of G can be listed in O∗(5vc(G)) time.
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Proof. The fact that G has at most n+3vc(G) pieces is a straightforward consequence of Lemma 10: each
piece C is either a single vertex, or is completely determined by some three-partition (CW , TW , RW ) of
a minimum vertex cover W . We point out that the singleton condition of Lemma 10 is crucial. Indeed, if
G is a star, its minimum vertex cover is of size one, and each of the other n− 1 vertices is a piece formed
by a single vertex.

Let us enumerate and upper bound the number of piece-separator pairs (C, S). There are at most n
such pairs where C is a singleton, so assume that C has at least two vertices. For each such pair, let
(CW , TW , RW ) be a partition of a minimum vertex cover W , like in Lemma 10. Since S is a minimal
separator of G[C], there is (by Lemma 1) a partition (DW

1 , SW , DW
2 ) of CW such that S \W corresponds

to vertices of x ∈ C \W whose neighborhood in G[C] intersects both DW
1 and DW

2 . By Lemmata 10
and 1, the pair (C, S) is completely determined by the five-partition (DW

1 , SW , DW
2 , TW , RW ). Hence

there are at most 5vc(G) such piece-separator pairs, which proves the upper bound. The enumeration
algorithm simply enumerates all pairs of type (C, ∅) where |C| = 1, and all other pairs (C, S), from
five-partitions of the vertex cover W , therefore enumerating a superset of the piece-separator pairs of G
within the required running time.

A similar result can be obtained using parameter modular width. As in Section 4.3, let G = (V,E)
be a graph with vertex set V = {v1, . . . , vk} and let Mi = (Vi, Ei) be a family of pairwise disjoint graphs,
for all i, 1 ≤ i ≤ k. We denote by H the graph obtained from G by expanding each vertex vi by the
module Mi.

Lemma 11. Let S be a minimal separator of H and C be a connected component of H − S. Then one
of the following holds:

1. C is the expansion of a vertex subset CG of G.

2. There is i ∈ {1, . . . , k} and a minimal separator Si of Mi = H[Vi] such that C is a connected
component of Mi − Si.

In particular, each piece of H is an expansion of a vertex subset of G, or a piece of some module Mi.

Proof. The two conditions are a straightforward consequence of Lemma 5. Recall that, by this Lemma,
S is the expansion of a minimal separator SG of S (in which case the first condition holds), or there is
some i and a minimal separator Si of Mi such that S = Si∪NH(Vi). In the latter case, the component C
is either contained in Vi (and the second condition holds), or does not intersect Vi, so it is the expansion
of some component of G−NG(vi) (implying the first condition of the lemma).

For the last part, we use the recursive definition of pieces. Consider a piece of H[C], for some
component C of H − S. If C is a component of Mi − Si for some i, then pieces of H[C] are also pieces
of Mi[C] and hence of Mi. If C is an expansion of a vertex subset CG of G, then H[C] is an expansion
of H ′ = G[CG] and we recursively apply the same argument on H ′.

Theorem 7. For any graph G, the number of its pieces is O∗(2mw(G)), and a superset of its piece-
separator pairs can be listed in time O∗(3.2361mw(G)).

Proof. Let us count the pieces of G. Consider the modular-decomposition tree of G, like in the proof of
Theorem 4. For each node N of the decomposition (corresponding to a leaf, a disjoint union, a join or a
decomposition into at most mw(G) modules), let G(N) be the graph whose corresponding decomposition
tree is the subtree rooted in N , and G′(N) be the prime, complete or independent graph corresponding to
node N . By Lemma 11, the pieces of G(N) are either pieces of G(Ni) for some son Ni of N , or correspond
to an expansion of G′(N). If G′(N) is prime, there are at most 2mw(G) such expansions. Also observe
that if G′(N) is independent then the only pieces of G(N) that are expansions of G′(N) correspond to
single vertices of G′(N). Hence, there are at most n such pieces. In the case when G′(N) is a complete
graph, the only possible piece of G(N) that is an expansion of G′(N) is the whole graph G(N), hence
this piece is unique. Altogether, G has O∗(2mw(G)) pieces.

For each piece C of G, there are O∗(ρmw(G)) minimal separators in G[C], where ρ is the golden ratio,
by Theorem 4 and the fact that the modular width of G[C] is at most mw(G). Hence the number of
piece-separator pairs of G is O∗((2 · ρ)mw(G)), thus O∗(3.2361mw(G)). The counting arguments can be
transformed into an enumeration algorithm for a superset of all possible such pairs, within the same
running time bounds.
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From Lemma 9 and Theorems 6 and 7 we deduce:

Theorem 8. The treedepth of a graph G is computable in time O∗(5vc(G)) and in time O∗(3.2361mw(G)).

4.6 Discussion
We have proved single exponential upper bounds for the number of minimal separators and the number
of potential maximal cliques of graphs, with respect to parameters vertex cover and modular width.

We point out that our bounds on the number of potential maximal cliques w.r.t. vertex cover and
to modular width do not seem to be tight. Any improvement on these bounds and of the enumeration
algorithm of potential maximal cliques would imply faster algorithms for the problems mentioned in
Section 4.4.

A natural question is whether these results can be extended to other natural graph parameters. We
observe that for parameters like feedback vertex set, clique-width or maximum leaf spanning tree, one
cannot obtain upper bounds of type O∗(f(k)) for any function f . A counterexample is provided by the
graph Wp,q, formed by p disjoint paths of q vertices plus two vertices u and v seeing the left, respectively
right ends of the paths (similar to the watermelon graph of Figure 4.1). Indeed this graph has feedback
vertex set 1, a maximum leaf spanning tree with p leaves and a clique-width of no more than 2p + 1,
but it has roughly pn/p minimal u, v-separators. Skodinis [131] observes that, if we chose as parameter
d the maximum degree of the complement graph, then the number of minimal separators is bounded by
O∗(2O(d)). The argument is that each a, b-minimal separator contains all common neighbors of a and
b, hence all but 2d vertices of the graph. A similar bound holds for the number of potential maximal
cliques.

A different extension of this technique will be considered in the next chapter, with different parameters
including feedback vertex set. We show that we can solve the problem Max Induced Subgraph of
tw ≤ t satisfying P in FPT time. The results of this chapter and the next one are complementary,
in the sense that in the results of this chapter we considered a more restricted family of graphs and
obtained single exponential algorithms. The results of next chapter consider a larger family of graphs,
but the algortihms are not single exponential anymore, and the results does not extend to problems like
Treewidth of Treedepth.
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Chapter 5

Beyond classes of graphs with few
minimal separators: FPT results
through potential maximal cliques

Consider the class Gpoly + kv, formed by graphs of Gpoly to which we may add a set of at most k vertices
with arbitrary adjacencies, called modulator. In this chapter, we prove that problem Max Induced
Subgraph of tw ≤ t satisfying P is fixed parameter tractable on Gpoly + kv, with parameter k, if the
modulator is also part of the input. The running time is of type O

(
f(k + t,P) · nt+5 · (poly(n)2)

)
, for

some function f .

Most of the results of this chapter were published in the 41st International Workshop of Graph-
Theoretic Concepts in Computer Science (WG 2015) and were obtained in collaboration with Mathieu
Liedloff and Ioan Todinca [102]. The hardness result was obtained also in collaboration with Iyad Kanj.

5.1 Introduction

As we remarked in the last chapter, the combinatorial bounds on the number of minimal separators
and potential maximal cliques with respect to vertex cover and modular width, can not be extended to
other natural graph parameters like feedback vertex set, clique-width or maximum leaf spanning tree.
The counterexample is the watermelon graph, where those parameters are bounded (constant), while
the number of minimal separators is exponential. However, there is another interesting property of the
watermelon graph: the bounded feedback vertex set (equals 1) implies that the deletion of one vertex
leads to a graph with polynomially many minimal separators (O(n) since it is a tree). In other words,
the watermelon graph is one vertex far from having polynomially many minimal separators.

In this chapter our goal is to study the algorithmic applications of potential maximal cliques in
classes of graphs that are close to have polynomially many minimal separators. From a parameterized
perspective, these are classes of graphs with “few” minimal separators, to which we are allowed to add k
vertices with arbitrary adjacencies. Let poly be some polynomial, and let Gpoly + kv denote the class of
graphs G = (V,E) containing a vertex subset M ⊆ V of size at most k, such that G −M ∈ Gpoly. The
set M is called the modulator of G.

Let Max Induced Subgraph of tw ≤ t satisfying P on Gpoly +kv be the problem Max Induced
Subgraph of tw ≤ t satisfying P on the graph class Gpoly+kv, with parameter k. Moreover, we assume
that the input graph G is given together with a modulator M (see also Section 5.6 for discussions on this
point). Our main result is that problem Max Induced Subgraph of tw ≤ t satisfying P on Gpoly+kv
is fixed-parameter tractable (FPT), i.e., there is an algorithm solving the problem in time f(k) ·nO(1) for
some function f . More specifically, the running time is of type O

(
f(k + t,P) · nt+5 · (poly(n)2)

)
, where

function f depends on property P and on k + t (see also the Conclusion section for further discussions).

Theorem 9. Problem Max Induced Subgraph of tw ≤ t satisfying P on Gpoly +kv with parameter
k is fixed-parameter tractable, when a modulator is also part of the input.
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A natural idea is to “guess” how the optimal solution intersects with the modulator M . But we still
need to carefully express how the rest of the solution intersects with the graph G −M . Think, e.g., of
the Longest Induced Path problem: we need to make sure that the solution restricted to G −M
forms indeed a connected path with the selected vertices of the modulator. Our algorithm extends, in a
non-trivial way, the one of [67] in order to handle this situation.

We also point out that several authors considered classes of graphs of similar flavor, e.g., Chordal +
kv [110] and Split+kv [109], providing both FPT and hardness results for various problems, parameterized
by k.

5.2 The algorithm
Our goal is to provide an FPT algorithm for the problem Max Induced Subgraph of tw ≤ t satis-
fying P on Gpoly + kv, thus proving our Main Theorem 9. Recall that in this problem, the input is a
graph G ∈ Gpoly + kv, together with a modulator M of size at most k.

We may assume w.l.o.g. that we also have as input the set ΠG′ of potential maximal cliques of graph
G′ = G−M . Indeed these objects can be computed in polynomial time by [33] (Proposition 15).

The following easy observation is crucial for the correctness of our algorithm.

Lemma 12 (compatibility lemma). Let G be the input graph, M be a vertex subset, and (F,X) be an
optimal solution for P and t. Let G′ = G −M and F ′ = F \M . There is a minimal triangulation TF ′
of G′[F ′] of width at most t, and a minimal triangulation TG′ of G′ respecting TF ′ , i.e., such that TF ′ is
the subgraph induced by F ′ in TG′ .

Proof. Since G[F ] is of treewidth at most t, so is its subgraph G′[F ′]. Therefore it exists a minimal
triangulation TF ′ of G′[F ′] of width at most t. By Proposition 23 applied to graph G′ and to TF ′ , there
is a minimal triangulation TG′ of G′, respecting the minimal triangulation TF ′ .

We will “guess”, by brute force, the intersections of F and X with the modulator M . Let us fix
FM = F ∩M and XM = X ∩M , with XM ⊆ FM . For each such pair (FM , XM ), we need to construct
F ′ = F \M and X ′ = X \M such that the pair (F,X) = (F ′ ∪ FM , X ′ ∪XM ) satisfies the constraints
and X ′ ∪XM is of maximum size under these conditions. (Eventually, the global solution is obtained by
trying all the 3k possible combinations for subsets XM ⊆ FM ⊆M .)

Our algorithm will constructX ′ and F ′ by dynamic programming on minimal separators and potential
maximal cliques. The graph G[F ′ ∪ FM ] has to be of treewidth at most t, and while we construct this
graph we also need to check property P on it. Unfortunately we will not be able to handle G[F ′∪FM ] as
a (t+1)-terminal recursive graph. Instead, we will see it as a (t+kM +1)-terminal recursive graph, where
kM = |FM | (and we will explicitly check that tw(G[F ]) ≤ t). Informally, while we construct F ′, we also
maintain some information on a tree-decomposition of G′[F ′], of width at most t. To this decomposition,
we simply add the whole set FM in each bag, hence obtaining a tree-decomposition of width at most
t+ kM of G[F ∪ FM ].

Now, on the (t + kM + 1)-terminal recursive graph G[F ′ ∪ FM ] having W ∪ FM as set of terminals
for some W (W will be memorized during the dynamic programming), we need to check the property
P but also the fact that the graph is of treewidth at most t. Therefore, let Q(H,Y ) be the property
P(H,Y ) ∧ (tw(H) ≤ t). Property Q is also regular (see Section 5.3). Of course our approach, keeping
the class hQ(G[F ], X) for property Q, ensures that if two partial solutions are of the same class, they are
equivalent w.r.t. extensions.

Our algorithm is an extension of the dynamic programming scheme proposed by Fomin et al. [67]
(Proposition 22, see Section 3.3.2). For a better understanding we completely describe the new algorithm,
trying to follow the same notations as in [67] and Section 3.3.2, and we emphasize the points that differ
from the result of Fomin et al.

Recall that sets XM and FM are fixed, and XM ⊆ FM ⊆M . We consider a total order (v1, . . . , vn)
on the vertices of G = (V,E). When we speak of a subset T of vertices as a set of terminals, T is
considered as the ordered set, with the ordered induced by (v1, . . . , vn) on its vertices.

Definition 4 (partial compatible solution). Consider a block (S,C) and a good triple (S,C,Ω) of graph
G′. Let W ⊆ S (resp. W ⊆ Ω) a vertex set of size at most t + 1. Let c be a homomorphism class for
property Q on (t + kM + 1)-terminal recursive graphs. We say that a pair (F,X) is a partial solution
compatible with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if the following conditions hold :
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1. X ∩M = XM , F ∩M = FM , and X ⊆ F .

2. F \M ⊆ S ∪ C and F ∩ S = W (resp. F ∩ Ω = W ).

3. H = (F,W ∪ FM , E(G[F ])) is a (t + kM + 1)-terminal recursive graph, and the homomorphism
class hQ(H,X) for property Q is exactly c.

4. There is a minimal triangulation TF ′ of G′[F ′] (here F ′ = F \M) and a minimal triangulation TG′
of G′ respecting TF ′ , such that S is a minimal separator (resp. Ω is a maximal clique) of TG′ .

WS
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Ω
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Figure 5.1 – (a) Partial solutions compatible with (S,C,W, c) (left), and (b) with (S,C,Ω,W, c) (right).
Set F is depicted in grey. Note that set W corresponds to F ∩ S in the first case, and to F ∩ Ω in the
second case.

With the same notations as in Section 3.3.2, let α(S,C,W, c) (resp. β(S,C,Ω,W, c)) be the maximum
size ofX over all partial solutions (F,X) compatible with (S,C,W, c) (resp. (S,C,Ω,W, c)). The situation
is depicted in Figure 5.1. For simplicity, we did not represent set X. The algorithm orders the blocks
(S,C) by the size of S ∪ C. It proceeds by dynamic programming on blocks (S,C) in this order, and
on good triples (S,C,Ω), computing all possible values α(S,C,W, c) and β(S,C,Ω,W, c). The outline
of Algorithm 2 is the same as in Section 3.3.2 (and [67]), the differences appear in the details of the
computations of α and β values.

Base case: the good triple (S,C,Ω) is such that Ω = S ∪C. In this case the only possible partial
solutions (F,X) compatible with (S,C,Ω,W, c) correspond to base graphs G[F ], where all vertices are
terminals (see [67]). Hence F = W ∪FM is also the set of terminals. Thus set X is unique (or might not

Algorithm 2: Max Induced Subgraph of tw ≤ t satisfying P on Gpoly + kv

Input: graph G = (V,E) and a modulator M of size at most k s.t. G′ = G−M is in Gpoly; the
potential maximal cliques of G′; sets XM ⊆ FM ⊆M

Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t, P(G[F ], X) is true,
X ∩M = XM , F ∩M = FM and, subject to these constrains, X is of maximum size

1 Order all blocks (S,C) of G′ by inclusion on S ∪ C;
2 for all blocks (S,C) in this order do
3 for all good triples (S,C,Ω) of G′, all W ⊆ Ω of size ≤ t+ 1 and all c ∈ C do
4 if Ω = S ∪ C then Compute β(S,C,Ω,W, c) using Equation 5.1 ;
5 else Compute β(S,C,Ω,W, c) using Equations 5.3, 5.4, 5.5, and 5.6 ;

6 for all W ⊆ S of size ≤ t+ 1 and all c ∈ C do
7 Compute α(S,C,W, c) using Equation 5.2;

8 Compute an optimal solution using Equation 5.7;
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exist), because we must have X = trm(c,W ∪ FM ). For simplicity, we denote by G[W ∪ FM ] the base
graph (W ∪ FM ,W ∪ FM , E(G[F ∪ FM ])). We have:

β(S,C,Ω,W, c) =

{
|X| if there is X ⊆W such that h(G[W ∪ FM ], X) = c
−∞ otherwise (5.1)
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Figure 5.2 – Computing α form β (left), and β from α (right). Set M is not depicted for simplicity.

Computing α from β. We aim to compute α(S,C,W, c) from β values on good triples of type (S,C,Ω)
(see also Figure 5.2(a)).

Let (F,X) be an optimal solution compatible with (S,C,W, c) and F ′ = F \M . We denote by H the
(t+ kM + 1)-terminal recursive graph G[F ] with W ∪FM as set of terminals. By Definition 4, there is a
minimal triangulation TF ′ of F ′ and a minimal triangulation TG′ of G′ respecting TF ′ , such that S is a
minimal separator of TG′ . By [32], there is a potential maximal clique Ω of G′, inducing a maximal clique
in TG′ , and such that (S,C,Ω) form a good triple of G′. Let W ′ = F ′ ∩Ω. The graph H ′, corresponding
to G[F ] with set of terminals W ′∪FM , is also a (t+kM +1)-terminal recursive graph (see Proposition 3,
or [67] for full details). Let c′ = h(H ′, X). Note that H = forgetW ′∪FM→W∪FM (H), where the forget
operation corresponds to the fact that the set of terminals W ′ ∪ FM is reduced to W ∪ FM . Therefore,
we have (see [67] for full details):

α(S,C,W, c) = maxβ(S,C,Ω,W ′, c′), (5.2)

where the maximum is taken over potential maximal cliques Ω such that (S,C,Ω) is a good triple,
all subsets W ′ ⊆ Ω of size at most t + 1 such that W ′ ∩ S = W and all classes c′ ∈ C such that
�forgetW ′∪FM→W∪FM (c′) = c.

Computing β from α. Let (S,C,Ω) be a good triple of G. Denote by C1, . . . , Cp the components of
G′ − Ω contained in C, and let Si be the neighborhood of Ci in G′. The pairs (Si, Ci) are also blocks
(see [32] for more details) and they have been processed by the algorithm before (S,C). Our goal is to
compute β(S,C,Ω,W, c). Let Wi = W ∩Si, for all i ∈ {1, . . . p}. We will use, as in [67], two intermediate
functions γi and δi.

Let δi(S,C,Ω,W, c+i ) denote max |Xi| over the partial solutions (F+
i , Xi) that are compatible with

(S,C,Ω,W, c+i ) and such that F+
i \ FM ⊆ Ω ∩ Ci. Let H+

i be the graph G[F+
i ] with set of terminals

W ∪ FM . Let also Hi be the graph H+
i [Si ∪ Ci ∪M ], with set of terminals Wi ∪ FM . Note that H+

i

is obtained by gluing Hi with the base graph G[W ∪ FM ], with the “canonical” gluing, obtained by
identifying the vertices of Si from both sides. Let glueWi∪FM ;W∪FM denote this gluing operation.

δi(S,C,Ω,W, c
+
i ) = maxα(Si, Ci,Wi, ci) + |trm(cW ,W ∪ FM ) \ trm(ci,Wi ∪ FM )|, (5.3)

where the maximum is taken over all ci, cW ∈ C s.t. �glueWi∪FM ;W∪FM
(ci, cW ) = c+i and cW = h(G[W ∪

FM ], XW ∪XM ) for some XW ⊆W . Here G[W ∪ FM ] denotes the base graph with terminals W ∪ FM .
Notice the part |trm(cW ,W ∪FM ) \ trm(ci,Wi ∪FM )| in the formula, which avoids the overcounting

of the vertices of Xi ∩ Si.
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These partial solutions (F+
i , X

+
i ) corresponding to δi(S,C,Ω,W, c+i ) cannot be glued together in one

step, since we are only allowed to glue two graphs at a time. Hence the need of the γ function which
allows to add, one by one, the partial solutions to the gluing. Now let γi(S,C,Ω,W, c) denote the size
of the optimal partial solution compatible with (S,C,Ω,W, c) and contained in M ∪ Ω ∪ C1 · · · ∪ Ci. So
we only consider the first i components, the partial solution is the union of (F+

1 , X
+
1 ) to (F+

i , X
+
i ). By

definition,
γ1(S,C,Ω,W, c) = δ1(S,Ω, C,W, c) (5.4)

We then compute γi, for i from 2 to p as follows.

γi(S,C,Ω,W, c) = max γi−1(S,C,Ω,W, c′) + δi(S,Ω, C,W, c
′′)− |trm(c′,W ∪ FM )|, (5.5)

where the maximum is taken over all c′, c′′ ∈ C s. t. �glueW∪FM ;W∪FM
(c′, c′′) = c, where the gluing

operation is the canonical gluing, the set of terminals for both arguments being W ∪ FM .
By definition of γp, we have

β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (5.6)

It remains to retrieve the optimal solution for the algorithm. The maximum is taken over all accepting
classes c, i.e., classes such that h(G,X) = c implies that P(G,X):

maxα(∅, V, ∅, c), (5.7)

We refer to Section 3.3.2 and [67] for detailed proofs of correctness and for complexity issues. Alto-
gether, the algorithm takes time O(f(t + kM ,P) · nt+4 · |ΠG′ |). The function f(t + kM ,P) comes from
the application of Proposition 4 on t+ kM + 1-recursive graphs. By applying Algorithm 2 on all possible
subsets XM ⊆ FM ⊆ F , we have proved Theorem 9.

We point out that our algorithm really needs to keep track of the homomorphism classes of partial
solutions (F,X) for property Q(G[F ], X) = P(G[F ], X) ∧ (tw(G[F ]) ≤ t). A naive approach would be
to only keep the class hP(G[F ], X) (for property P) and to reject partial solutions that do not satisfy
tw(G[F ]) ≤ t. We could have two different partial solutions (F,X) and (F ′, X) for the same part
of the graph (e.g., corresponding to the same parameters for function α), such that hP(G[F ], X) =
hP(G[F ′], X ′), and both tw(G[F ]) and tw(G[F ′]) are at most t. Or, it may happen that one of the
solution, say (F,X), can be extended into a better one of type (F ∪F ′′, X ∪X ′′), while the other cannot
because such an extension(F ′ ∪ F ′′, X ′ ∪X ′′) would violate the condition tw(G[F ′ ∪ F ′′]) ≤ t.

Of course our approach, keeping the class hQ(G[F ], X) for property Q, ensures that if two partial
solutions are of the same class, they are equivalent w.r.t. extensions.

5.3 On the regularity of Q
In this section, we explain why property Q is regular. Let us define this slightly more general lemma,
that will be useful also in Chapter 6 . Let Q(G,X, Y ) be a property assigning to each graph G and vetex
subsets X and Y a Boolean value. We extend the gluing and forget operations to triplets (G,X, Y ) in the
natural way, as we made with pairs (G,X). In particular if (G,X, Y ) = gluem((G1, X1, Y1), (G2, X2, Y2))
then (G,X) = gluem((G1, X1), (G2, X2)) and (G, Y ) = gluem((G1, Y1), (G2, Y2)), and if (G,X, Y ) =
forgetm(G′, X ′, Y ′) then (G,X) = forgetm(G′, X ′) and (G, Y ) = forgetm(G′, Y ′).

Lemma 13. Let P1(G,X), P2(G, Y ) regular properties on graphs and vertex sets, and let Q(G,X, Y ) be
the property P1(G,X) ∧ P2(G, Y ). Then property Q is regular.

Proof. Let CP , hP , �Pgluem and �Pforgetm be the set of classes, homomorphism function, gluing function
and forget function for a property P. We show that if two properties P1(G,X) and P2(G, Y ) are regular,
then property Q(G,X, Y ) = P1(G,X) ∧ P2(G, Y ) is also regular. In order to prove this, observe that

1) We may define the set of classes of Q as CQ = CP1
× CP2

.

2) The homomorphism function hQ for propertyQ is defined as hQ(G,X, Y ) = (hP1
(G,X), hP2

(G, Y )).
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3) For c1, c2 ∈ CQ, such that c1 = (cP1
1 , cP2

1 ) and c2 = (cP1
2 , cP2

2 ), then the gluing function of Q is

�Qgluem(c1, c2) =
(
�P1

gluem
(cP1

1 , cP1
2 ),�P2

gluem
(cP2

1 , cP2
2 )
)

4) For c = (cP1 , cP2) ∈ CQ, the forget function of Q is

�Qforgetm(c) =
(
�P1

forgetm
(cP1),�P2

forgetm
(cP2)

)
We must show that CQ, hQ, �Qgluem and �Qforgetm satisfy the properties asked in Definition 1.
Suppose first that hQ(G1, X1, Y1) = hQ(G2, X2, Y2). From observation 1) we have that hP1

(G1, X1) =
hP1

(G2, X2) and hP2
(G1, Y1) = hP2

(G2, Y2). Since P1 and P2 are regular, P1(G1, X1) = P1(G2, X2) and
P2(G1, Y1) = P2(G2, Y2). Hence hP1

(G1, X1) = hP1
(G2, X2) implies Q(G1, X1, Y1) = Q(G2, X2, Y2).

Let (G,X, Y ) = gluem((G1, X1, Y1), (G2, X2, Y2)). Then

hQ(G,X, Y ) = (hP1
(G,X), hP2

(G, Y ))

= (hP1
(gluem((G1, X1), (G2, X2))), hP2

(gluem((G1, Y1), (G2, Y2))))

= (�P1

gluem
(hP1

(G1, X1), hP1
(G2, X2)),�P2

gluem
(hP2

(G1, Y1), hP2
(G2, Y2)))

= �Qgluem((hP1
(G1, X1), hP2

(G1, Y1)), (hP1
(G2, X2), hP2

(G2, Y2)))

= �Qgluem(hQ(G1, X1, Y1), hQ(G2, X2, Y2))

Finally, if (G′, X ′, Y ′) = forgetm(G,X, Y ) then

hQ(G′, X ′, Y ′) = (hP1
(G′, X ′), hP2

(G′, Y ′))

= (hP1
(forgetm(G,X)), hP2

(forgetm(G, Y )))

= (�P1

forgetm
(hP1

(G,X)),�P2

forgetm
(hP2

(G, Y )))

= �Qforgetm(hP1(G,X), hP2(G, Y ))

= �Qforgetm(hQ(G,X, Y ))

Therefore CQ, hQ, �Qgluem and �Qforgetm satisfy the properties asked in the definition of a regular property
(Definition 1), so Q is regular.

Lemma 14. Let P(G,X) be a regular property on graphs and vertex sets, and let Q(G,X) be the property
P(G,X) ∧ (tw(G) ≤ t). Property Q is regular.

Proof. Suppose that property P ′(G) defined by “tw(G) ≤ t” is regular, then from Lemma 13, Q is regular.
It remains to argue that property P ′(G) is regular. One classical argument is that the class of graphs
of treewidth at most t is minor-closed (see, e.g., [22] for a similar discussion). Hence, by the Graph
Minors theorem [127], the class is defined by a finite set of forbidden minors, denoted Obs(t). Therefore,
tw(G) ≤ t if and only if G has no minor among the graphs of Obs(t). The property that a fixed graph
is a minor of G is expressible in CMSO (see, e.g., [31]), hence the property “tw(G) ≤ t” is regular by
Proposition 4. In order to turn this argument into a completely constructive one, we must build the
obstruction set Obs(t) for graphs of treewidth at most t. This can be done by brute force, thanks to
the result of Lagergren [98] showing that such obstructions are of size (number of vertices) at most f(t),
for some function doubly exponential in t5. Hence, one could enumerate all the graphs with number of
vertices bounded by this function, test the ones of treewidth strictly larger than t and extract the minimal
ones w.r.t. the minor relation. The output is precisely Obs(t).

For our purpose, a better alternative is provided by the celebrated algorithm of Bodlaender and
Kloks [24]. This algorithm takes as input a graph of treewidth at most w, for some constant w, and
decides if this graph has treewidth at most t. Its running time is O(n), and the hidden constant is
single exponential in a polynomial in w. Moreover, the algorithm precisely provides an effective way for
constructing the homomorphism class of property P ′(G) = (tw(G) ≤ t) for (w + 1)-terminal recursive
graphs. Such a class is addressed in [24] as a full set of characteristics. Recall that, in our case, we
need to construct these class for (w + 1)-terminal recursive graphs where w ≤ t + k, k being the size
of the modulator M . Therefore, for computing the homomorphism classes for property Q(G,X) =
P(G,X) ∧ (tw(G) ≤ t) one can combine the Borie, Parker, and Tovey approach (to obtain hP(G,X))
and the Bodlaender and Kloks approach (to obtain hP′(G) for P ′(G) = (tw(G) ≤ t)), and the couple
(hP(G,X), hP′(G)) is the homomorphism class hQ(G,X).
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5.4 Vertex and edge deletion/addition
For a polynomial poly, we denote Gpoly + ke (resp. Gpoly − ke) the class of graphs obtained from graphs
of Gpoly by adding (resp. removing) at most k edges, and by Gpoly−kv the class obtained by removing at
most k vertices. For each of these classes, the set of at most k edges/vertices that has to be added/removed
to/from the graph of Gpoly is called a modulator for the respective class.

The following observation allows us to relate these classes.

Proposition 30 (Lemma 3 in [33]). Let G′ = (V ′, E′) be an induced subgraph of G = (V,E). For any
minimal separator S′ of G′, there is a minimal separator S of G such that S′ = S ∩V ′. In particular, G′
has no more minimal separators than G.

We deduce that, for small values of k w.r.t. n, class Gpoly − kv is a subclass of Gpoly′ for some
polynomial poly′, and classes Gpoly − ke and Gpoly + ke are subclasses of Gpoly′ + 2kv:

Lemma 15. Let poly be a polynomial. There is a polynomial poly′ such that, for each n-vertex graph
G′ ∈ Gpoly:

1. for any graph G ∈ Gpoly − kv obtained by removing at most k ≤ n/2 vertices from G′, we have
G ∈ Gpoly′ ;

2. for any graph G ∈ Gpoly − ke (resp. G ∈ Gpoly + ke) obtained by removing (resp. adding) at most
k ≤ n/4 edges from (resp. to) G′, we have G ∈ Gpoly′ + 2kv.

Moreover, if G is given together with a modulator for class Gpoly − ke or Gpoly + ke, the modulator
for class Gpoly′ + 2kv can be found in linear time.

Proof. Choose a polynomial poly′ such that, for any n′ ≥ n/2, poly′(n′) ≥ poly(n).
Let G ∈ Gpoly − kv, obtained by removing a set M of at most k ≤ n/2 vertices from G′. By

Proposition 30, G has at most poly(n) minimal separators. It also has n′ vertices, with n′ ≥ n− k ≥ n/2
vertices. Since poly′(n′) ≥ poly(n), graph G belongs to class Gpoly′ . This proves the first part of the
lemma.

For the second part, let F be the set of edges removed from (resp. added to) G′ in order to obtain
graph G. Let M denote the set of vertices of G′ incident to at least one edge of F . Clearly, |M | ≤ 2k. By
the same arguments as above, graph G′′ = G′ −M is in Gpoly′ . Since G is obtained from G′′ by adding
the vertices of M together with a suitable set of edges incident to M , the conclusion follows.

We deduce that Theorem 9 can be extended to the classes of graphs Gpoly − ke and Gpoly + ke. On
the other hand, the generic problem Max Induced Subgraph of tw ≤ t satisfying P is polynomial
on Gpoly − kv, if k is small.

5.5 Deletion to Gpoly

One of the requirements of using our FPT algorithm is that the modulator of size at most k must be
explicitly given in the input. In this section we show that for any polynomial poly there is no FPT
algorithm computing a modulator to Gpoly, unless W [2] is contained in FPT.

Let us consider the following problem, for some fixed polynomial poly.

Deletion to Gpoly

Input: A graph G = (V,E) and a polynomial poly
Parameter: k
Question: A vertex subset M of size at most k, such that G−M is in Gpoly

We will show that Deletion to Gpoly is W [2]-Hard, reducing to it the problem Hitting set pa-
rameterized by the size of the solution. Our reduction is inspired in a similar reduction for Deletion
to Weakly Chordal [84]. Intuitively, we represent an instance of hitting set I = (U,A, k) as a graph
GI = (V,E), where U ⊂ V , and each A ∈ A will be represented (by non-necessarily disjoint) cycle CA.
The idea is that for two sets A1, A2 ∈ A, cycles CA1

∩ CA2
= A1 ∩ A2. Then, a solution X of instance

I will intersect every cycle of GI representing the sets of A. The reduction on the number of minimal
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separators follows, since a cycle of length l provide O(l2) minimal separators, while a path provide only
O(l) minimal separators. To obtain a proof that is valid for every polynomial poly(n) ≥ n, we replace the
gadgets of each edge in a cycle CA by a watermelon graph, obtaining that GI /∈ Gpoly and GI−X ∈ Gpoly,
where X is a solution of Hitting Set on instance I.

Let I = (U,A, k) be an instance of the problem Hitting Set, i.e., A = {A1, . . . , Am} is a family of
subsets of an universe U of size n, and k is a positive integer. The question is whether exists a set X ⊂ U
such that X ∩ Ai 6= ∅ for all i ∈ [m]. Without loss of generality we assume that ∀u ∈ U there exists
i ∈ [m] such that u ∈ Ai.

Let poly be a polynomial such that there exists t0 > 0 for which it becomes an increasing function,
i.e., poly(t2) > poly(t1) for every t2 > t1 > t0. Call g the degree of poly, and p = blog(poly((nm)2 −
n)/(n2m))c. We suppose that m and n are big enough to satisfy the following inequalities:

(mn)2 − n > t0, (5.8)

(nm)2 − n
nm

> 4p+ 1 (5.9)

and (
1− 1

nm2

)g
> 2/3, i.e., nm2 >

1

1− (2/3)1/g
. (5.10)

Let I = (U,A) be an instance of hitting set. We define GI to be the graph of size (nm)2 defined as
follows (see Figure 5.4).

• The vertex set of GI is divided in m+ 2 parts: a copy of U , a set called R and C̃i, for i ∈ [m].

• For each i ∈ [m], let si be the size ofAi. Let Ci be a cycle of length 2si such that if Ci = {c1, . . . , c2si}
and Ai = {a1, . . . , asi}, then c2j equals aj , for each j ∈ {1, . . . , si}.

• Call C̃i the graph obtained replacing each edge of Ci with a watermelon graph W2,p depicted in
Figure 5.3. The replacement means that if {x, y} is an edge of Ci, we remove that edge, make a
copy of the watermelon graph W2,p, and identify vertices x and y with the one shown in Figure 5.3.
We say that Ci is the cycle associated to Ai and C̃i is the super-cycle associated to Ai.

x y

Figure 5.3 – Watermelon graph W2,p, when p = 5. The watermelon graph consists in a set of p disjoint
paths of length 4, plus two other vertices connected to different endpoints of each path

Note that |C̃i| = (4p+ 2)|Ai|, U is contained in
⋃
i∈[m] C̃i, and that∣∣∣∣∣∣

⋃
i∈[m]

C̃i

∣∣∣∣∣∣ = |U |+
∑
i∈[m]

(4p+ 1)|Ai| ≤ n+ nm(4p+ 1) < (nm)2

.

• For each pair i, j ∈ [m] with i 6= j, add an edge incident to each pair of vertices {x, y} such that
x ∈ C̃i \ U and y ∈ C̃j \ U .

• Add a set R of (mn)2− (n+
∑
i∈[m](4p+ 1)|Ai|) vertices, adjacent to every other vertex in R∪U ∪⋃

i∈m C̃i. These vertices are added to GI in order to obtain a graph of size (nm)2 and simplify the
rest of the arguments. Note that (mn)2 > (n+

∑
i∈[m](4p+ 1)|Ai|) thanks to Equation 5.9.

In the following two lemmas, we show that GI has a modulator M of size k to Gpoly if and only if I
is a yes-Instance of Hitting Set.
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1 2 3 4 5 6 7

Figure 5.4 – Graph GI on input I = ({1, 2, 3, 4, 5, 6, 7}, {{1, 2, 4}, {2, 3, 5, 7}, {4, 6, 7}}, k). Note that I is
a Yes-instance if k = 2 (a solution is e.g., X = {2, 7}) but a No-Instance if k = 1. Set U is represented
in the white numbered nodes, and the other nodes in C1, C2 and C3 in black and gray (the different
colors are to help the recognition of the cycles in the figure). In this figure, only the cycles (and not the
super-cycles) associated to the sets are represented. To represent the super-cycles, dashed edges must be
replaced with a watermelon graph, with p = blog(poly((nm)2−n)/(nm))c. The nodes and edges incident
to R, and the edges incident to the nodes in the dashed edges were omitted.

Lemma 16. For each i ∈ [m], graph GI [C̃i] has more than poly((nm)2) minimal separators. Therefore,
GI does not belong to Gpoly.

Proof. For each pair of edges of the cycle associated to Ai there are (2p)2 possible choices for a minimal
separator contained in the watermelon graph corresponding to those edges in the super-cycle C̃i. Hence
the number of minimal separators contained in GI [C̃i] is at least

|∆GI [C̃i]
| ≥ |Ai|(|Ai| − 1)

2
· (2p)2 ≥ |Ai|

2

4
· poly((nm)2 − n)2

(nm)2
.

We claim that poly((nm)2 − n) ≥ (2/3) · poly((nm)2). Indeed (nm)2 − n = (nm) · (1 − 1/(nm2)).
Therefore poly((nm)2−n) ≥ (1−1/(nm2))g ·poly((nm)2) > (2/3)·poly((nm)2). Where the last inequality
follows from Equation 5.10. Then

|∆GI [C̃i]
| ≥ |Ai|2

4(nm)2
· 4

9
· poly((nm)2)2 ≥ |Ai|

2

9
· poly((nm)2)2

(nm)2
≥ poly((nm)2).

Where the last inequality follows from the fact that |Ai| ≥ 3 and poly((nm)2) ≥ (nm)2. Since a graph
has at least the number of minimal separators of any of its induced subgraphs, we deduce that GI is not
in Gpoly.

Lemma 17. An instance I = (U,A, k) is a Yes-Instance of Hitting Set if and only if there exists a
set M of k vertices of GI such that GI −M belongs to Gpoly.

Proof. Suppose that there exists a set M of k vertices of GI such that GI −M is in Gpoly. From Lemma
16, the number of minimal separators of GI [C̃i] is greater than poly((nm)2), for each i ∈ [m]. This
implies that necessarilyM must intersect C̃i, for each i ∈ [m]. Without loss of generality, we may assume
that for each i ∈ [m], the intersection M ∩Ci is contained in U . Indeed, for each i 6= j, (C̃i ∩ C̃j) \U = ∅,
so it is always more convenient to pick elements in U to break the cycles. We conclude that M ∩Ai 6= ∅
for all i ∈ [m], so X = M ∩ U is a solution of instance (U,A, k) of Hitting Set.

Conversely, let X ⊆ U , |X| ≤ k, be such that for each i ∈ [m], X ∩ Ai 6= ∅. Consider the graph
H = GI −X. Let x, y be two vertices of H and let S be a x, y-minimal separator of H. We claim that
either (1) S is the neighborhood of x or y, i.e S = NH(x) or S = NH(y), or (2) there exists i ∈ [m] such
that S = S̃ ∪R ∪ (

⋃
j 6=i C̃j \ U), where S̃ is a minimal separator of H[C̃i \X].

There are two kind of nonadjacent vertices x, y in H:

• For any i ∈ [m] the pair {x, y} is not contained in C̃i. In this case either S = N(x) or S = N(y).
Note that x ∈ U or y ∈ U , otherwise they are adjacent. If x belongs to U and y belongs to
VH \ (U ∪R) then S = N(x). Otherwise x,w, y is a x, y-path in H − S, for any w ∈ N(x) \ S. If x
and y belong to U , and neither S = N(x) or S = N(y), then x,w1, w2, y is an x, y-path in H − S,
for any w1 ∈ N(x) \ S and any w2 ∈ N(y) \ S (possibly w1 = w2).

61



5.6. DISCUSSION

• There exits i ∈ [m] such that x, y belong to C̃i. Suppose that neither S = N(x) or S = N(y). Let
Dx and Dy be the components of H[C̃i\X] containing x and y, respectively. Note that |Dx| > 1
and |Dy| > 1, because otherwise S contain (and for minimality is) the neighborhood of either x
or y. Hence there exists wx ∈ Dx and wy ∈ Dy such that one of {x,wx} and one of {y, wy} does
not belong to U . This implies that S must contain R and

⋃
i6=j C̃j . Since S̃ = S ∩ Ci is a minimal

separator of H[C̃i \X], we conclude that S = S̃ ∪R ∪ (
⋃
i 6=j C̃j). This proves the claim.

We obtain that the number of minimal separators of H is at most∑
i∈[m]

|Ai|(2p + 1) < nm · poly((nm)2 − n)

nm
≤ poly((nm)2 − n) ≤ poly((nm)2 − k).

Since H is of size (nm)2 − k, we conclude that H belongs to Gpoly.

The following theorem is a direct consequence of Lemma 17 and the fact that Hitting Set parameterized
by the size of the solution is W [2]-Hard [56].

Theorem 10. Let poly be a polynomial such that poly(n) ≥ n for every big enough n. Then Deletion
to Gpoly is W [2]-Hard.

5.6 Discussion
We gave an FPT algorithm for the problem Max Induced Subgraph of tw ≤ t satisfying P on
Gpoly + kv, under the assumption that the modulator is part of the input. The problem encompasses
many classical ones [67]. Moreover, the result can be extended to the classes of graphs Gpoly − ke and
Gpoly + ke (i.e., graphs of Gpoly minus or plus ar most k edges), and the generic problem is polynomial
on Gpoly − kv, if k is small.

Later, we have shown that the problem consisting in the computing of the modulator, that we called
Deletion to Gpoly, is W [2]-Hard. This result inhibits us to conclude that the problem Max Induced
Subgraph of tw ≤ t satisfying P is FPT on the class Gpoly + kv, without needing to require to have
the modulatorM as part of the input. However, we would like to mention that for some particular classes
with polynomially many minimal separators, the deletion problem is FPT. For example Deletion to
Chordal is FPT [111]. However for other classes, this is not the case, e.g., problem Deletion to
Weakly chordal is W [2]-hard [84].

One way that we would may extend this research is related with the complexity of our FPT algorithm,
which is

O
(
f(k + t,P) · nt+5 · (poly(n)2)

)
.

The dependency on P and t + k comes from Courcelle’s theorem (Proposition 4), applied for deciding
property P on graphs of treewidth t+k. As shown by Frick and Grohe [72], function f can be very huge,
typically a tower of exponentials in t+k, the height of the tower depending on the property to be checked.
Our algorithm actually constructs an induced subgraph of treewidth t, although we were only able to
build a decomposition of width t + k. In particular, if we do not need to check a particular property P
on the induced graph, but we only ask this graph to be of treewidth at most t, then function f becomes
(k+ t)O((k+t)3) — coming from the algorithm of Bodlaender and Kloks [24] that, given a graph and tree
decomposition of width k + t, checks whether the treewidth of the graph is at most t.

For easier cases, when t = 0 to t = 1, the function f becomes 2k and (k + t)O(k+t) respectively. Also,
for natural properties P, like “being connected” or “being a path” one can perform the property checking
using standard (ad-hoc) dynamic programming tools which avoid the heavy machinery of Proposition 4.
Again, the extra-cost becomes much more reasonable.

A natural and challenging question would be to separate the dependency on t and k, typically to
obtain a complexity of type f(t,P) · g(k) · nt+O(1), where g would be a “more reasonable” function. For
that purpose we would need to construct the partial solutions as a (t+1)-terminal recursive graph, maybe
by a more clever way of dealing with the intersection between this solution and the modulator.

We finish this chapter with the open question whether Treewidth on Gpoly + kv is FPT, when the
modulator is a part of the input. This question was the initial motivation of this research, and was
posed by Bart Jansen in a private communication, in the particular case when the input graph belongs
to Chordal + kv.
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Chapter 6

Distance-d Independent Set and
extensions

This chapter is composed of two parts. In the first, we give a result of combinatorial nature, showing that
the odd powers of a graph G have at most as many minimal separators as G. Consequently, Distance-d
Independent Set, which consists in finding maximum set of vertices at pairwise distance at least d, is
polynomial on Gpoly, for any even d. This problem was posed by Eto et al. in [59], where the authors
show that problem is NP-hard on chordal graphs for any odd d ≥ 3 [59], and ask whether this problem
is polynomial in chordal-bipartite graphs for even d.

Later, we study extensions of Proposition 22 into a wider set of problems. In [67] the authors asked
if Proposition 22 can be extended in order to solve problems like Connected Vertex Cover or
Connected Feedback Vertex Set. The this part of the chapter are of exploratory nature, and
some of the results are not very conclusive. We show that the mentioned problems are indeed polynomial
on chordal and circular-arc graphs. We finalize discussing variants of independent domination problems.

The results of this chapter were published in the 42st International Workshop of Graph-Theoretic
Concepts in Computer Science (WG 2016)and were obtained in collaboration with Ioan Todinca [113].

6.1 Introduction

This chapter explores extensions of the dynamic programming over minimal separators and potential
maximal cliques into a wider family of problems. The goal is to establish the limits of this technique,
exploring more general problems or new properties of graphs with a few minimal separators.

Recall that Max Induced Subgraph of tw ≤ t satisfying P, roughly consists in find the max-
imum induced subgraph of treewidth t satisfying a property P. In [67] the authors asked whether
Proposition 22 can be extended in order to warrant some property of the rest of the graph G − F . For
example, Connected Vertex Cover consists in finding a maximum independent set F , whose com-
plement G−F is connected. We explore this question providing polynomial algorithms for some specific
classes of graphs with a few minimal separators.

Let Q(G,F ) be a property assigning to each graph G and vertex subset F of G a Boolean value. We
ask, for which kinds of properties Q we can solve the following problem when the input graph has a few
minimal separators:

Max Induced Subgraph of tw ≤ t satisfying P and Q
Input: A graph G.
Task: Compute

max |F |
subject to The treewidth of G[F ] is at most t;

G[F ] |= ϕ;
Q(G,F ) = 1.
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Clearly, we will have to impose some restrictions in order to accomplish our task, otherwise the
problem quickly becomes NP-Hard, even if Q is regular. Notice that if Q is a regular property, so from
Lemma 13, property P ′(G,F,X) = P(G,X) ∧ Q(G,F ) is regular. However, we have no bounds on the
treewidth of graph G − F , so the set of characteristics may be exponential in the size of the graph.
Moreover, if we choose t = 0, we do not ask any formula ϕ, and Q is defined as the property "F is a
dominating set of G", then our problem becomes Independent Dominating Set, which is NP-hard on
chordal graphs [50].

We obtained some positive results, either for particular properties Q and/or by restricting ourselves
to specific classes of graphs with a few minimal separators.

First, we consider the problem Distance-d Independent Set on Gpoly, where the goal is to find a
maximum independent set F of the input graph G, such that the vertices of F are at pairwise distance at
least d in G (in the literature this problem is also known as Scattered-Set). In this case, the second
property Q could be stated as "the connected components of G[F ] are at distance at least d in G". This
problem is equivalent to finding a maximum independent set in graph Gd−1, the (d− 1)-th power of G.
Eto et al. [59] already studied the problem on chordal graphs, and proved that it is polynomial for every
even d, and NP-hard for any odd d ≥ 3 (it is even W [1]-hard when parameterized by the solution size).
Their positive result is based on the observation that for any even d, if G is chordal then so is Gd−1. Eto
et al. [59] ask if Distance-d Independent Set is polynomial on chordal bipartite graphs (which are
not chordal but weakly chordal, see Section 3.2), a subclass of Gpoly. We bring a positive answer to their
question for even values d, by a result of combinatorial nature: for any graph G and any odd k, the graph
Gk has no more minimal separators than G (see Section 6.2). Consequently, Distance-d Independent
Set is polynomial on Gpoly, for any even value d and any polynomial poly, and NP-hard for any odd
d ≥ 3 and any poly(n) asymptotically larger than n. Such a dichotomy between odd and even values
also appears when computing large d-clubs, that are induced subgraphs of diameter at most d [78], and
for quite similar reasons.

Second, we consider Connected Vertex Cover, Connected Feedback Vertex Set and more
generally the problem of finding a maximum induced subgraph G[F ] of treewidth at most t, such that
G − F is connected (i.e., in this case Q is "G − F is connected"). We show (Section 6.3) that the
problems are polynomially solvable for subclasses of Gpoly, like chordal and circular-arc graphs. This does
not settle the complexity of these problems on Gpoly. As we shall discuss in Section 6.4, when restricted
to bipartite graphs in Gpoly, Connected Vertex Cover can be reduced from Red-Blue Dominating
Set (see [55]). It might be that this latter problem is NP-hard on bipartite graphs of Gpoly; that was our
hope, since as we said the very related problem Independent Dominating Set is NP-hard on chordal
bipartite graphs [50], and on circle graphs [34]. This question is still open, however we will observe
that the Red-Blue Dominating Set is polynomial on the two natural classes of bipartite graphs with
polynomially many minimal separators: chordal bipartite and circle bipartite graphs.

6.2 Powers of graphs with polynomially many minimal separators
Let us prove that for any odd k, graph Gk has no more minimal separators than G.

Theorem 11. Consider a graph G, an odd number k = 2l+ 1 with l ≥ 0, and a minimal separator S of
Gk. Then there exists a minimal separator S of G such that S = N l

G[S].

Proof. The lemma is trivially true if S = ∅. Let a, b ∈ V such that S 6= ∅ is an a, b-minimal separator in
Gk, and call Ca, Cb the components of Gk−S that contain a and b, respectively. Let us call Da = N l

G[Ca]
and Db = N l

G[Cb].
Claim 1: distG(Da, Db) ≥ 2.
Suppose that distG(Da, Db) < 2, and pick x ∈ Da, y ∈ Db with distG(x, y) ≤ 1 (notice that possibly

x = y). Let xa ∈ Ca and xb ∈ Cb be such that there exists an xa, x-path and a y, xb -path in G, each
one of length at most l, called Pa and Pb, respectively. This implies that there must be a xa, xb-path of
length at most 2l + 1 = k in G, which means that {xa, xb} ∈ E(Gk), a contradiction with the fact that
S separates Ca from Cb in Gk.

Claim 2: S̃ = S \ (Da ∪Db) separates a and b in G.
Notice first that NG(Da) ⊆ N l+1

G (Ca) ⊆ S. Suppose that S̃ does not separate a and b, and let P be
an a, b-path in G that does not pass through S̃. Let x1, . . . , xs−2 the internal nodes of P , where s = |P |,
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and consider i = max{j | xj ∈ Da ∩ P}. Since P ∩ S̃ = ∅, necessarily xi+1 ∈ Db, a contradiction with
Claim 1.

Claim 3: Da and Db are connected subsets of G.
This is straightforward from the definition of the sets, Da = N l

G[Ca] and Db = N l
G[Cb], and the fact

that Ca and Cb are connected in G.

Let C̃b be the connected component of G − NG[Da] that contains b, and denote S = NG(C̃b). Note
that S ⊆ S̃ ⊂ S. By applying Proposition 9, we have that S is a minimal a, b-separator in G. Call C̃a
the component of G− S that contains a. Since S ⊆ S̃, we have that Db ⊆ C̃b and Da ⊆ C̃a.

Claim 4: N l
G[S] = S.

We first prove that N l
G[S] ⊆ S. By construction, S ⊆ NG(Da). Consequently S ⊆ N l+1

G (Ca)\N l
G(Ca),

therefore N l
G[S] ⊆ N2l+1

G (Ca) = NGk(Ca) = S.
Conversely, we must show that every vertex x of S is in N l

G[S].
By contradiction, let x ∈ S \ N l

G[S]. We distinguish two cases : x ∈ C̃a, and x ∈ S \ C̃a. In the
first case, since NGk(Cb) = S, there exists a path from some vertex y ∈ Cb to x of length at most k, in
graph G. Let us call P one of those y, x-paths. Observe that the first l + 1 vertices of the path belong
to Db ⊆ C̃b, and none of the last l + 1 vertices of the path belongs to S (otherwise x ∈ N l

G[S]). Then
P is a path that connects C̃b with C̃a without passing through S, a contradiction with the fact that S
separates a and b in graph G.

It remains to prove the last case, when x ∈ S \ C̃a. Since NGk(Ca) = S, there exists a node y ∈ Ca
such that there is a y, x-path P of length at most k in G. Since the first l+ 1 vertices of the path belong
to Da, and the last l + 1 vertices of the path do not belong to S, we deduce that P is an y, x-path in
G that does not intersect S. The path can be extended (through Ca) into an a, x-path that does not
intersect S, a contradiction with the fact that x does not belong to C̃a. This concludes the proof of our
theorem.

Recall that Distance-d Independent set on G is equivalent to Maximum Independent Set on
Gd−1. Since the latter problem is polynomial on Gpoly by Proposition 21, we deduce:

Theorem 12. For any even value d, and any polynomial poly, problem Distance-d Independent set
is polynomially solvable on Gpoly.

We remind that for any odd value d, problem Distance-d Independent set is NP-hard on chordal
graphs [59], thus on Gpoly for any polynomial poly asymptotically larger than n. The construction of [59]
also shows that even powers of chordal graphs may contain exponentially many minimal separators.

Let G = (V,E) be an arbitrary graph of size n and call H(G) the graph on |V |+ |E| vertices defined
as follows. We add to H(G) one vertex for each vertex and each edge in G, i.e., the vertex set of H(G) is
V ∪ E. Then we add an edge between every pair of vertices u, v of H(G) such that u represent a vertex
of G and v represents an edge of G which has u as an endpoint. Finally we add and edge between every
pair of vertices representing edges. An example of this construction is depicted in Figure 6.1.

Note that H(G) is a split graph. Note also that u, v ∈ V are adjacent in G if and only if u and v are
at distance 2 in H(G). Therefore H(G)2[V ] = G, so H(G)2 contain at least the same number of minimal
separators than G. Therefore, if we pick G that not contained in Gpoly for some polynomial poly, we
obtain that H(G) has a linear number of minimal separators, while H(G)2 does not belong to Gpoly.

6.3 On Connected Vertex Cover and Connected Feedback
Vertex Set

Let us consider the problem of finding a maximum induced subgraph G[F ] such that tw(G[F ]) ≤ t and
G − F is connected. One can easily observe that, for t = 0 (resp. t = 1), this problem is equivalent to
Connected Vertex Cover (resp. Connected Feedback Vertex Set), in the sense that if F is an
optimal solution for the former, than V (G)− F is an optimal solution for the latter.

Our goal is to enrich the dynamic programming scheme described in Section 3.3.2 in order to ensure
the connectivity of G−F . One should think of this dynamic programming scheme as similar to dynamic
programming algorithms for bounded treewidth. The difference is that the bags (here, the potential
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Figure 6.1 – Example of the construction of graph H(G) (in the right) when G is the graph in the left.

maximal cliques) are not small but polynomially many, and we parse simultaneously through a set of
decompositions. Nevertheless, we can borrow several classical ideas from treewidth-based algorithms.

In general, for checking some property for the solution F , we considered the notion of homomorphism
class of partial solutions. In literature, the homomorphism classes are also known as characteristics.
To distinguish the homomorphism classes of property P form the ones of Q, in the following we call
characteristics the homomorphism classes of Q

As usual in dynamic programming, the characteristics must satisfy several properties: (1) we must
be able to compute the characteristic for the base case, (2) the characteristic of a partial solution F
obtained from gluing smaller partial solutions Fi must only depend on the characteristics of Fi, and (3)
the characteristic of a global solution should indicate whether it is acceptable or not. Moreover, for a
polynomial algorithm, we need the set of possible characteristics to be polynomially bounded.

For simplicity, in the following we suppose that we are solving the problem only for the connectivity
property, ignoring property P, i.e., we are solving Max. Induced Connected Subgraph of tw ≤ t.
It is easy to extend the result asking also for a solution satisfying property P following Section 3.3.2.

For checking connectivity conditions on G − F , we define the characteristics of partial solutions in
a natural way1. Consider a block (S,C) (resp. a good triple (S,C,Ω)) and a subset W of S (resp. of
Ω). Let F be a partial solution compatible with (S,C,W ) (resp. (S,C,Ω,W )), see Definition 3. The
characteristic c of F and property Q (connectivity) for (S,C,W ) (resp. for (S,C,Ω,W )) is defined as
the partition induced on S \W (resp. on Ω \W ) by the connected components of G[S ∪ C] − F . More
formally, let D1, . . . , Dq denote the connected components of G[S ∪ C] − F , and let Pj = Dj ∩ S (resp.
Pj = Dj ∩ Ω), for all 1 ≤ j ≤ q. Then c′ = {P1, . . . , Pq}. We decide that if S 6= ∅, partial solutions F
having some component Dj that does not intersect S (resp. Ω) are immediately rejected; indeed, for any
extension F ′ of F , the graph G − F ′ remains disconnected. Hence we may assume that all sets Pj are
non-empty.

We say that a partial solution F is compatible with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if it satisfies
the conditions of Defintion 3, and c is the characteristic of F for (S,C,W ) (resp. for (S,C,Ω,W )).

We also define functions α(S,C,W, c), β(S,C,Ω,W, c) and γi(S,C,Ω,W, c) like in Subsection 3.3.2,
as the maximum size of partial solutions F compatible with the parameters. We can update Equa-
tions 3.1to 3.7 as follows.

1We assume, in this section, that the reader is familiar with the dynamic programming schemes over bounded treewidth
graphs, which consider the connectivity property of the solution (e.g., connected vertex cover).
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Base case. For the good triples (S,C,Ω) such that (S,C) is inclusion-minimal (hence Ω = S ∪ C),

β(S,C,Ω,W, c, c′) = |W | if c′ corresponds to the connected components of G[Ω \W ]. (6.1)

Otherwise we set β(S,C,Ω,W, c, c′) = −∞.

Computing α from β.
α(S,C,W, c) = max

Ω,W ′,c′
β(S,C,Ω,W ′, c′), (6.2)

where the maximum is taken over all potential maximal cliques Ω such that (S,C,Ω) is a good triple,
and all subsets W ′ of Ω, of size at most t+ 1, such that W = W ′ ∩ S, and all characteristics c′ such that
each part of c corresponds to the intersection between S and a part of c′. If S 6= ∅ we also request that
each part of c′ intersects S. This condition allows to reject partial solutions F for which a component of
G[S ∪ C]− F is strictly contained in C. Indeed, such partial solutions cannot extend to global solutions
F ′ such that G− F ′ is connected.

For the particular case S = ∅ (hence C = V and W = ∅) we only consider characteristics c′ with a
single part. This ensures that the global solution F satisfies that G− F is connected.

If there is no such triple (Ω,W ′, c′), then we set α(S,C,W, c) = −∞ (we can assume that, when it
has no parameters, function max returns −∞).

Computing β from α.

γ1(S,C,Ω,W, c) = max
c′

(α(S1, C1,Ω,W ∩ S1, c
′) + |W | − |W ∩ S1|), (6.3)

over all characteristics if c′ that map correctly on c, in the following sense. Consider a characteristic c′
and let Gc′ [Ω \W ] be the graph obtained from G[Ω \W ] by completing each part D ∈ c′ into a clique.
We say that a characteristic c′ maps correctly on c if c is the partition of Ω \W defined by the connected
components of Gc′ [Ω \W ].

The notion of mapping transforms the characteristic of the partial solution F1 w.r.t. (S1, C1,W ∩S1)
into the characteristic of F1 ∪W w.r.t. the quadruple (S,C,Ω,W ).

For all i, 2 ≤ i ≤ p,

γi(S,C,Ω,W, c) = max
ci−1,ci

(γi−1(S,C,Ω,W, ci−1) + α(S,C,Ω,W ∩ Si, ci)− |W ∩ Si|), (6.4)

over all pairs of characteristics ci−1, ci that map correctly on c. That is, c must correspond to the
connected components of Gci−1,ci [Ω \W ], obtained from G[Ω \W ] by completing each part of ci−1 and
each part ci of into a clique.

Finally
β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (6.5)

The optimal solution size is, as before, α(∅, V, ∅, {∅}).
In general, the number of characteristics may be exponential. Nevertheless, there are classes of

graphs with the property that each minimal separator S and each potential maximal clique Ω can be
partitioned into at most a constant number of cliques. With this constraint, the number of characteristics
is polynomial (even constant, for any given triple (S,C,W ) or quadruple (S,C,Ω,W )).

This is the case for chordal graphs, where each minimal separator and each potential maximal clique
induces a clique in G.

It is also the case for circular-arc graphs. Recall that each minimal separator corresponds to the
set of arcs intersecting a pair of scanpoints [92]. Moreover, by [92, 32], each potential maximal clique
corresponds to the set of arcs intersecting a triple of scanpoints. Since arcs intersecting a given scanpoint
form a clique, we have that each minimal separator can be partitioned into two cliques, and each potential
maximal clique can be partitioned into three cliques.

We deduce:

Theorem 13. On chordal and circular-arc graphs, problems Connected Vertex Cover and Con-
nected Feedback Vertex Set are solvable in polynomial time. More generally, one can compute
in polynomial time a maximum vertex subset F such that G[F ] is of treewidth at most t and G − F is
connected.
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Note that Escoffier et al. [58] already observed that Connected Vertex Cover is polynomial for
chordal graphs.

Theorem 13 does not settle the complexity of the connectivity condition of the rest of the graph for
any class of graphs with a few minimal separators.

Consider the problem Red-Blue Dominating Set. In this problem we are given a bipartite graph
G = (R,B,E) with red and blue vertices, and an integer k, and the goal is to find a set of at most k
red vertices dominating all the blue ones. Red-Blue Dominating Set can be reduced to Connected
Vertex Cover as follows [55]. Let G′ be the graph obtained from G = (R,B,E) by adding a new
vertex u adjacent to all vertices of R and then, for each v ∈ B ∪ {u}, a pendant vertex v′ adjacent only
to v. Then G has a red-blue dominating set of size at most k if and only if G′ has a connected vertex
cover of size at most k + |B|+ 1. Indeed any minimum connected vertex cover of G′ must contain u, B,
and a subset of R dominating B (see Figure 6.2).

u

Figure 6.2 – Graph G′ obtained in the reduction from Red-Blue Dominating Set on input G (repre-
sented in gray vertices) to Connected Vertex Cover

Lemma 18. Let G′ be the graph obtained from the bipartite graph G = (R,B,E) by adding a new vertex
u adjacent to all vertices of R and then, for each v ∈ B ∪ {u}, a pendant vertex v′ adjacent only to v.

G′ has at most |V (G′)| more minimal separators than G.

Proof. Let S be a minimal separator of G′ and let C,D be two components of G′−S such that NG′(C) =
NG′(D) = S.

Assume first that there are two blue vertices c ∈ C and d ∈ D. Then vertex u (seeing the whole set
R) must be in S. No pendant vertex can be in S because vertices of S have neighbors in both C and D.
Therefore S \ {u} also separates c and d in G, it is even a c, d-minimal separator. Indeed, by removing
the pendant vertices from C and D, we obtain two components of G − S whose neighborhood in graph
G is S \ {u}. Therefore, the number of minimal separators S of G′ of this type is at most the number of
minimal separators of G.

It remains to consider the case when one of the components, say C, does not contain any red vertex.
Then C contains at most two vertices. Actually, C either contains a unique pendant vertex, or a vertex
v ∈ B ∪ {u} and its pendant vertex (C cannot contain a unique vertex v ∈ B ∪ {u}, because its pendant
neighbor should be in S, or S cannot contain pendent vertices). Hence the number of minimal separators
of this type is at most |V (G′)|.

Therefore, if Red-Blue Dominating Set is NP-hard on bipartite graphs in Gpoly for some poly, so
is Connected Vertex Cover.

We did not succeed to establish the complexity of the problem on bipartite Gpoly. There are two
natural, well-studied classes of bipartite graphs with polynomial number of minimal separators, and it
turns out that Red-Blue Dominating Set is polynomial for both. One is the class of chordal bipartite
graphs (which are actually defined as the bipartite, weakly chordal graphs). For this class, Red-Blue
Dominating Set is polynomial by [50]. Reference [50] considers the total domination problem for the
class, but the approach is based on red-blue domination.

The second natural class is the class of circle bipartite graphs, i.e., bipartite graphs that are also
circle graphs. They have an elegant characterization established by de Fraysseix [51]. Let H = (V,E)
be a planar multigraph, and partition its edge set into two parts ER and EB such that T = (V,ER) is
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a spanning tree of H. Let B(H,ER) = (ER, EB , E
′) be the bipartite graph defined as follows: ER is

the set of red vertices, EB is the set of blue vertices, and eR ∈ ER is adjacent to eB ∈ EB if the unique
cycle obtained from the spanning tree T by adding eB contains the edge eR. We say that B(H,ER) is
a fundamental graph of H. By [51], a graph is circle bipartite if and only if it is the fundamental graph
B(H,ER) of a planar multigraph H.

Consider now the Tree augmentation problem that consists in finding, on input G and a spanning
tree T of G, a minimum set of edges D ⊆ E(G) − E(T ) such that each edge in E(T ) is contained in at
least one cycle of G′ = (V,E(T ) ∪D). In [120] is shown that Tree augmentation is polynomial when
the input graph is planar. Is direct to see that a set S ⊆ EB is a solution of the Tree augmentation
problem on input H = (V,ER ∪ EB) and T = (V,ER), if and only if S is a solution of Red-Blue
Dominating Set on input B(H) = (ER, EB , E

′). This observation, together with [51] and [120], impliy
that Red-Blue Dominating Set is polynomial in circle bipartite graphs.

6.4 Independent Dominating Set and variants

The Independent Dominating Set problem consists in finding a minimum independent set F of G
such that F dominates G. Hence the solution F induces a graph of treewidth 0 and it is natural to
ask if similar techniques work in this case. The fact that we have a minimization problem is not a
difficulty: the general dynamic programming scheme applies in this case, and for any weighted problem
with polynomially bounded weights, including negative ones [68, 67].

Independent Dominating Set is known to be NP-complete in chordal bipartite graphs [50] and
in circle graphs [34]. Therefore, it is NP-hard on Gpoly for some polynomials poly. But, again, we
can use our scheme in the case of circular-arc graphs, for this problem or any problem of the type
Max Induced Subgraph of tw ≤ t satisfying P and Q, where Q is the property “F is a dominating
set of G”. We call this problem Minimum dominating induced graph of tw ≤ t satisfying P.

The natural way for defining the homomorphism class of Q(G,F ), when F is a partial solution
compatible with (S,C,W, c) is to specify which vertices of S are dominated by F and which are not (we
already know that F ∩ S = W ). It is thus enough to memorize which vertices of S are dominated by
F ∩ C. In circular-arc graphs, this information can be encoded using a polynomial number of classes.
Indeed, a minimal separator S corresponds to arcs intersecting a scanline, between two scanpoints p1 and
p2 of some intersection model of G. Moreover (see [92]), the vertices of component C correspond to the
arcs situated on one of the sides of the scanline. Let s1

1, s
1
2, . . . , s

1
l1

be the arcs of the model containing
scanpoint p1, ordered by increasing intersection with the side of p1p2 corresponding to C. Simply observe
that if F ∩ C dominates vertex s1

i , it also dominates all vertices s1
j with j > i. Therefore we only have

to store the vertex s1
min1

dominated by F ∩ C which has a minimum intersection with the side of the
scanline corresponding to component C, and proceed similarly for the arcs of S containing scanpoint p2.
These two vertices of S will define the characteristic of F , and they suffice to identify all vertices of S
dominated by F ∩ C. These characteristics can be used to compute a Minimum dominating induced
graph of tw ≤ t satisfying P, for circular-arc graphs, in polynomial time.

p1p2

F ∩ C

s1
1

s1
2

s1
3

s2
1

s2
2

Figure 6.3 – Domination in circular-arc graphs. The characteristic of F w.r.t. (S,C) is (s1
3, s

2
2).

Problem Independent Dominating Set was already known to be polynomial for this class [41, 135].
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The algorithm of Vatshelle [135] is more general, based on parameters called Boolean-width and MIM-
width, which are small (O(log n) for the former, constant for the latter) on circular-arc graphs and also
other graph classes.

6.5 Discussion
We showed how the dynamic programming scheme of [68, 67] can be extended for other optimization
problems, on subclasses of Gpoly. Note that the algorithm of [67] (Proposition 22) allows to find in
polynomial time, on Gpoly, a maximum (weight) subgraph G[F ] of treewidth at most t, satisfying some
property expressible in CMSO2. It also handles annotated versions, where the vertices/edges of G[F ]
must be selected from a prescribed set.

We have seen that Distance-d Independent Set can be solved in polynomial time on Gpoly for
any even d. This also holds for the more general problem of finding an induced subgraph G[F ] whose
components are at pairwise distance at least d, and such that each component is isomorphic to a graph in a
fixed family. E.g., each component could be an edge, to have a variant of Maximum Induced Matching
where edges should be at pairwise distance at least d. For this we need to solve the corresponding problem
on Gd−1, using only edges from G, as in [67].

When seeking for maximum (resp. minimum) induced subgraphs G[F ] of treewidth at most t such
that G−F is connected (resp. F dominates G) on particular subclasses of Gpoly, we can add any CMSO2

condition on G[F ]. It is not unlikely that the techniques can be extended to other classes than circular-arc
graphs (and chordal graphs, for connectivity constraints).

An interesting open problem is the complexity of Connected Vertex Cover and Connected
Feedback Vertex set in weakly chordal graphs, and on Gpoly.
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Chapter 7

Conclusion and perspectives of Part I

This part of the thesis was devoted to the study of structural and algorithmic aspects of potential
maximal cliques and minimal separators, specially focused on graphs with a few minimal separators and
parameterized complexity.

We succeed to describe new relations between structural parameters of graphs and their number of
minimal separators and potential maximal cliques. We showed that for any graph the number of minimal
separators and potential maximal cliques is upper bounded by a single exponential function its vertex
cover number or a single exponential function of its the modular width. We also showed that odd powers
of a graph G have at most the number of minimal separators of G.

These new structural properties, pipelined with the algorithm of Fomin et al. (Proposition 22), imply
new complexity results for a large family of problems. The bound on the number of minimal separators of a
graph with respect its vertex cover number (respectively its modular width) implies FPT algorithms with
single-exponential function of the parameter for Max Induced Subgraph of tw ≤ t satisfying P pa-
rameterized by the vertex cover number (respectively the modular width of the input graph). The result
involving odd powers of minimal separators implies polynomial time algorithms for problems like d-
independent set, for even d.

There are several open questions which may motivate further research, the following where already
posed (though not stated in the same way) by Fomin et al. in [67]. It is still open which kind of properties
can we ask to the rest of the graph when we look for a maximum induced subgraph of bounded treewidth.
We proved in Chapter 6 that a set F such that G − F is connected and G[F ] is of treewidth at most
t, can be computed for graph classes like chordal graphs and circular-arc graphs. An interesting further
research is whether this problem is polynomial time solvable in graph classes with polynomially many
minimal separators. A good starting point would be to try to solve Connected Vertex Cover is the class
of weakly-chordal graphs.

The running time of the algorithm Max Induced Subgraph of tw ≤ t satisfying P given in
Proposition 22 is O(|ΠG| · f(P, t) · nt+3). We may ask is whether this can be improved, maybe for
some particular property P, into O(|ΠG| · g(P, t) · nO(1)), i.e., an FPT algorithm parameterized by t.
A more concrete question is whether problem Clique parameterized by the size of the solution is FPT
in graphs with polynomially many minimal separators. We remark that for every structured class of
graphs with few minimal separators presented in this thesis (weakly-chordal, polygon-circle, d-trapezoid,
and their subclasses) problem Clique is polynomial time solvable. However, Clique is NP-Hard re-
stricted to classes of graphs with a linear number of minimal separators [131]. It is unknown if Clique
parameterized by the size of the solution is FPT in graphs with polynomially many minimal separators.

Note that all the algorithms presented in this part of the thesis utilize all the minimal separators
and potential maximal cliques. Recently Lokshtanov, Vatshelle and Villanger [104] and Lokshtanov,
Pilipczuk and van Leeuwen [106] proposed polynomial and quasi-polynomial time algorithms for solving
independent set in P5-free and P6-free graphs. Their protocols are based on potential maximal cliques
(among other techniques and structures), however P5-free and P6-free graphs may contain exponentially
many minimal separators. The idea of designing algorithms that use some (not all) minimal separators
and potential maximal cliques is not new. Broersma et al. showed in [36] that Independent Set
can be solved in AT-Free graphs (which is also a class that does not have polynomially many minimal
separators) carefully selecting relevant minimal separators (the ones that are in the neighborhood of a
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vertex). A future research may explore the combination of the structural results presented in this thesis
with algorithms that use some (and not all) minimal separators and potential maximal cliques.

Finally, we believe that the interplay between graphs of bounded MIM-width [135] and Gpoly deserves
to be studied. None of the classes contains the other, but several natural graph classes are in their
intersection, and they are both somehow related to induced matchings.
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A study of the Broadcast Congested
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Chapter 8

Description of the model and tools

In this chapter, we will give a formal definition of the distributed computing model that we will consider
in this thesis: the Broadcast Congested Clique. Later, we will survey the main techniques that are going
to be used in the next chapters.

8.1 The Broadcast Congested Clique model
The Broadcast Congested Clique model is a message-passing model of distributed computation where a
set of nodes communicate with each other in synchronous rounds over a complete network [1, 2, 4, 13,
14, 15, 57, 79, 85, 87].

Let G be the set of all undirected graphs of size n, let Y be an arbitrary set, and let f : G → Y
be an arbitrary function. In the Broadcast Congested Clique model, that we denote BClique, there is
a set of n players, called nodes, which are numbered with unique identifiers in [n]. The nodes wish to
compute f(G) for some input graph G ∈ G. The difficulty is that only node i knows the i-th row of the
adjacency matrix of G (which is called the input of node i). In order to evaluate function f , the nodes
communicate according to a fixed protocol which depends only on f . A protocol consists in a certain
number of communication rounds (or simply rounds) where each node simultaneously transmit a single
message visible to every other node. We say that nodes broadcast their messages. At each communication
round, the nodes must decide which message they will broadcast based only in their inputs and all the
messages received so far. The protocol finalizes when the value of f(G) can be determined by every node,
so every node terminates. The maximum size of a message sent by a node is called the bandwidth of the
protocol, and the number of rounds needed until every node terminates is called the time of a protocol.
The product of the bandwidth and the time is called cost of a protocol.

This model can be seen a multi-player generalization of the model of simultaneous messages in com-
munication complexity. In such a model, there are two players, Alice and Bob, which communicate in
simultaneous rounds in order to compute some function. To generalize this to several players, there exist
in the literature (e.g, [97]) two main schemes. In the Number-in-hand model, each player has its own
private input, not known to other players. This model has some interest, though its often more restricted
two the two players case. The other extreme is the Number-on-the-forehead model, where each
player knows everyone’s input, except it own. In this presentation, we will focus only in graph problems,
which lies somehow in between of the Number-on-the-forehead and the Number-in-Hand models.
In this scenario, the joint input to the n nodes is an undirected graph G whose set of vertices coincides
with the set of nodes. Note that the adjacency matrix of a graph is symmetric, so every bit of the input
(edge of the graph) is known by two players.

Note that we do not bound the computational resources that the nodes require to compute the
messages. Since the input of each node belongs to {0, 1}n, any node can reconstruct the whole input
graph simply communicating xi. Therefore, we will be interested only in protocols with sub-linear cost,
i.e., where the product of the number of rounds R and the bandwidth b satisfies Rb = o(n).

For many natural functions, the cost of a protocol computing it can be drastically reduced when
randomization is allowed. A deterministic protocol for a function f is a protocol where the algorithm
performed by the nodes have no access to any randomness and correctly evaluate function f on any input.
An ε-error randomized protocol is a protocol where the nodes receive, together with the corresponding
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inputs, a random Boolean vector, which they may use to produce their messages. In this case, we do not
ask that the protocol outputs the correct answer for every input. Instead we ask that for every input the
protocol gives the correct answer with probability at least 1 − ε. We also say that a protocol gives the
correct answer with high probability if the probability of error smaller than 1/nc, where c > 0 and n is
the number of nodes (or the size of the input).

We distinguish two types of randomized protocols: the public coins protocols and the private coins
protocols. In the public coins case, the random Boolean vector (that can be viewed as the result a certain
number of coin tosses) is of public knowledge, which means that every node knows it. In other words,
every node receives the same random vector. In private coins protocol, the random vector received to
each node is private, so every node receives a potentially different random vector, and they have no
knowledge about the ones received by other nodes. We will discuss the power of deterministic, public and
private coins protocols in Chapter 9. When we do not specify, a randomized protocol will be a public-coin
protocol.

The deterministic cost of a function f , denoted Cdet(f), is the minimum cost of any deterministic
protocol in the BClique model computing f . Analogously, we denote Cpriv

ε (f), Cpub
ε (f), as the costs

for ε-error public and private protocols, respectively.
Sometimes we consider protocols with a fixed number of rounds. In a such case the cost of the protocol

equals its bandwidth. Moreover, we are interested in one-round protocols, which can be characterized
in a slightly different but equivalent way. We assume that there is a global memory, represented in a
whiteboard, where every node can write a single message of the size of the bandwidth. Then, we consider
another player called the referee. This player has no access to the input of the problem. Instead it reads
the whiteboard, i.e., receives the messages produced by each node in the first (and unique) communication
round, and writes on the whiteboard the evaluation of f in the corresponding input.

We emphasize that the model with the whiteboard and the referee is equivalent (up to one bit) to the
one-round BClique model. Indeed, suppose that there is a one-round protocol P in the BClique model
computing a function f . As we said in the definition of the broadcast congested clique model, after the
first round every node i must be able to evaluate f(x1, . . . , xn) only knowing xi and the messages sent
in the communication round. We simulate this with a referee with no access to any input as follows.
Consider the protocol P ′, where each node i writes on the whiteboard the message that it would send
in protocol P, together with xi,1, i.e., the first coordinate of xi. Since the input is a graph, necessarily
the first coordinate of the inputs of the n nodes must be equal to the input of node 1, in other words
x1 = (x1,1, . . . , xn,1). Then, the referee can use the nmessages on the whiteboard to simulate the behavior
of node 1 in protocol P. Note that this equivalence may be not possible if the joint input of the n nodes
is not a graph.

In [14] Becker et al. proposed the first study of one-round protocols Broadcast Congested Clique. The
authors showed that any d-degenerate graph can be reconstructed by a one-round deterministic protocol
in the BClique model with cost O(d2 · log n).

Proposition 31 ([14]). There is a one-round deterministic protocol in the BClique model with cost
O(d2 log n) which reconstructs and recognize d-degenerate graphs.

The family of graphs of bounded degeneracy contains many relevant classes of graphs, including
graphs of bounded tree-width, planar graphs, and graphs that not contain a particular graph as a minor.
Another result involving recognition of classes of graphs is due to Kari et. al [87], where the authors show
that the class of cographs can be recognized by a one-round public-coin protocol in the BClique model
with high probabilty and cost O(log n).

Proposition 32 ([87]). There is a one-round public-coins protocol in the BClique model with cost
O(log n) which with high probability determines if the input graph is a cograph, and if it is, the referee
reconstructs the graph.

In [14], the authors also give some lower bounds for one-round deterministic protocols, i.e., problems
that require each node to communicate Ω(n) bits in any one-round deterministic protocol. Some examples
of hard functions are the problem consisting in computing the diameter of the input graph, of determining
if the graph contains a triangle (cycle of length three). Other examples of lower bounds for one-round
protocols appear in [87], where is studied the problem of recognizing whether a fixed graph H appears
in the input graph as a subgraph or an induced subgraph. The authors show that for any non-bipartite
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graph H, any one-round ε-error public-coin protocol recognizing graphs where H is a subgraph (or an
induced subgraph) has cost Ω(n).

Druker et al. [57] were the first giving lower bounds in the Broadcast Congested Clique model, without
restricting to one-round protocols. The authors showed that for any fixed l ≥ 4, any ε-error public coin
protocol recognizing graphs containing a clique Kl as a subgraph has cost Ω(n), recognizing graphs
containing a cycle Cl as a subgraph has cost Ω(n) if l is odd and Ω(n2/l) if l is even, and for l,m ≥ 1 any
protocol recognizing graphs containing a biclique Kl,m has cost Ω(

√
n). The authors also give a lower

bound in the detection of triangles, using a reduction from the disjointness problem in the three-players
Number-on-the-forehead model in communication complexity (see Section 8.2.1 for more details).

One way to increase the computing power of the model is to lift the broadcast restriction and to allow
the nodes the possibility of sending different messages through different links. This model, that we will
call unicast congested clique [57], is often called the congested clique model in the literature, because
it corresponds to the CONGEST model when the communication network is a clique. Sending different
messages through different communication channels gives the possibility to perform a load balancing
procedure efficiently. Such enormous intrinsic power has allowed some authors to provide fast protocols
for solving natural problems: a O(log log log n)-round protocol for finding a 3-ruling set [83], O(n0.158)-
round protocols for counting triangles, for counting 4-cycles and for computing the girth [38], aO(1)-round
protocol for detecting a 4-cycle [38], a O(log∗ n)-round protocol for constructing a minimum spanning
tree [76]. We denote UClique the Unicast Congested Clique.

The unicast and broadcast congested clique models in graphs are equivalent when they are restricted
to one-round protocols. The argument is similar to the equivalence between one round protocols in the
BClique model and the model defined with the whiteboard and the referee. Indeed, if P is a protocol
in the UClique model, then all nodes must accept in one round, each one of them sending potentially a
different message to every other player. Consider now the following protocol P ′ in the BClique model
defined from P as follows: each node i writes the message that it would send to node 1 in protocol P,
together with bit xi,1. The referee then reconstructs the input of player 1 and collects all the messages
that node 1 would receive in protocol P, and outputs the answer that node 1 would output in protocol
P. We reemphasize that this equivalence may be not possible if the joint input of the n nodes is not a
graph.

In [12] the authors show that the space between the unicast and broadcast congested clique models
is very rich and interesting. For instance, they show the existence of a problem that takes Ω(n/ log n)
rounds in the broadcast model while it can be solved in two rounds if only two different messages can be
sent by each node.

Another very natural, much more limited and less dramatic way to increase the computing power
of the broadcast congested clique model, is to expand the local knowledge the nodes initially have about
G. The idea of a constant-radius neighborhood independent of the size of the network is present in the
research on local algorithms pioneered by Angluin [3], Linial [103] and Naor and Stockmeyer [114]. We
call BCliquer the extension of the broadcast congested clique model where each node u sees (receives
as input) the set of all edges lying on a path of length at most r, starting in u, and each message is of
size at most b. Note that BClique1 corresponds to the classical BClique model.

8.1.1 Problems

We present here some of the problems that will appear in the next chapters.
The first function is Reconstruction(G), whose output is G itself, i.e., the adjacency matrix of

G. Note that if a protocol computes Reconstruction, then cost of the protocol must be Ω(n) [14].
Indeed, there are 2(n2) labeled graphs of size n, which can be coded in

(
n
2

)
bits. Since any protocol with

cost C communicates nC bits, we obtain that C = Ω(n).
For a class of graphs C, the function Recognition of C on an input graph G outputs 1 if and only

if G belongs to the class C. We also define Reconstruction on C, which is the same problem than
Reconstruction, but with the promise that the input graph belongs to C.

The problem Triangle(G) equals 1 if and only if G contain a triangle and 0 otherwise. More
in general, we consider functions Induced-Cycle=k, Induced-Cycle≤k, Induced-Cycle>k, which
output 1 if and only if, respectively, the input graph has an induced cycle of length exactly k, at most
k, strictly larger than k. Problems Cycle=k, Cycle≤k, Cycle>k are defined in a similar way, but here
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we ask whether the input graph has a cycle (induced or not) of length k, at most k, strictly larger than
k. The function Diamk(G), for k > 0 asks if the input graph G has diameter at most k.

We call Connectivity(G) to the function that outputs 1 if and only if G is connected. Similarly,
Connected Components (respectively Maximum Spanning tree) is the problem consisting on com-
puting the connected components (respectively a maximum spanning tree) of the input graph G. At the
end of the protocol each node must know the connected components (respectively the same spanning
tree).

The problem Bipartiteness(G) is the function that outputs 1 if and only if G is bipartite. We point
a remark made in [1], where the authors reduce the problem Bipartiteness to the problem of counting
the number of connected components. Indeed, for a graph G of size n call D(G) the graph of size 2n,
where for each vertex v of G, we construct verices v1, v2 in D(G), and for each edge {u, v} of G, we create
edges {u, v2} and {u2, v1} in G.

Proposition 33 ([1]). Let k be the number of connected components in G. Then D(G) has 2k connected
components if and only if G is bipartite.

Proof. The proof of this proposition appears in [1]. Let G1, . . . , Gk be the connected components of G.
By construction of D(G), each D(Gi) is disconnected of D(Gj) for i 6= j. Then, is suffices to count the
number of connected components of D(G), for G connected.

Suppose that there exists an odd cycle in G which contains a vertex u. The odd cycle corresponds
to a u1, u2-path in D(G). Each path from a u to v in G corresponds to a path from u1 to w and a path
from u2 to w′ in D(G), where w ∈ {v1, v2} and w′ ∈ {v1, v2} \ {w}. Since G is connected, there exists
a path from u to any v in V (G). Therefore, there is a path from u1 to any vertex of D(G), so D(G) is
connected. On the other hand, if G is connected then D(G) is not connected because any path from u1

to u2 in D(G) corresponds to a odd cycle in G.

8.2 Tools
In this section we give an overview of the main tools used in this part of the thesis: Communication
complexity lower bounds, fingerprints, linear sketches, deterministic sparse linear sketches, and finally
error correcting codes.

8.2.1 Communication Complexity lower bounds
For many functions, we are going to be able to separate the information in roughly two (or a constant)
independent parts, even if every bit of the input is shared by two nodes. In such cases, the lowerbounds
of communication complexity translate to the broadcast congested clique. The simultaneous messages
communication model is simply the Broadcast Congested Clique model with two nodes, which we name
Alice and Bob. Note that we do not ask in this case that the join input of the two players is a graph,
but any pair of n-bit input. All definitions are the same, including the definitions of randomized and
deterministic protocols.

Newmann [117] showed that in the two players case private and public coin multi-round random-
ized protocols are equivalent, up to a logarithmic factor in the message size complexity. Let f :
{0, 1}n × {0, 1}n → {0, 1} be a function, and call Rpriv

ε (f) (respectively Rpub
ε (f)) the product of the

bandwidth times number of rounds of the best ε-error private coins (resp. public coins) randomized
protocol computing f .

Proposition 34 (Newman [117], see also Kushilevitz and Nissan [97]). Let f : {0, 1}n×{0, 1}n → {0, 1}
be a function. For every δ > 0 and every ε > 0, Rpriv

ε+δ (f) ≤ Rpub
ε (f) +O(log n+ log(δ−1).

In Chapter 9 we will show that this is true in general for any number of players.
Clear separations have been proved between one-round deterministic, private coins and public coins

protocols. For instance, consider the EQn function, which simply tests whether the n-bit inputs of Alice
and Bob are equal. I can be shown, e.g., using the fooling set technique [97], that for any deterministic
protocol the bandwidth b times the number of rounds r satisfy rb = Θ(n) [97]. Using the fingerprint
technique (see next subsection) it was shown that a bandwidth ofO(1) is enough for one round randomized
protocols with public coins with constant one-sided error [9], and Θ(

√
n) for randomized protocols with

private coins and constant one-sided error [9].
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Proposition 35 ([9]). Let ε > 0. The function EQn has the following costs: Cdet(EQ) = n, Cpriv
ε (EQn) =

Θ(
√
n) and Cpub

ε (EQn) = O(1).

More generally, Babai and Kimmel [9] proved that for any function f its randomized message size
complexity, for private coins protocols, is at least the square root of its deterministic message size com-
plexity.

Proposition 36 ([9]). Consider the number-in-hand model with two players and a constant ε > 0. For
any two input Boolean function f , Cpriv

ε (f) = Ω(
√
Cdet(f)).

Chakrabarti et al. [39] proved that, for some family of functions, the gap between deterministic and
randomized message size complexity with private coins is smaller than the square root. They consider
the function OREQn that takes as input two Boolean n× n matrices, and the output is 1 if and only if
there is some 1 ≤ i ≤ n such that the i-th lines of the two matrices are equal.

Proposition 37 ([39]). For any ε < 1/3, Cpriv
ε (OREQn) = Ω(n

√
n). Also, Cdet(OREQn) = Θ(n2).

Naturally, there are functions which are hard for deterministic and randomized protocols. For one-
round protocols a canonical example is the function Indexn, where Alice receives a n-bit input x and
Bob receives an index i ∈ [n], and the output is the value of xi. Evidently this function can be computed
in two rounds and bandwidth O(log n): in the first round Bob sends i (O(log n) bits) and in the second
sound Alice communicates xi (one bit). However, restricted to one round protocols this function is hard,
even in the randomized setting. Intuitively, Alice has no way to guess which coordinate will be asked by
Bob, so she has no option but communicate all the coordinates of her input x.

Proposition 38 ([97]). For any ε < 1/3, Cdet(Indexn) = Cpub
ε (Indexn) = Ω(n).

There are also examples of hard functions for randomized multiround protocols. Consider the function
DISJn tests whether the n-bit inputs of Alice and Bob are disjoint. In other words, if we call x and
y the inputs of Alice and Bob respectively, DISJn(x, y) = 1 if there is a coordinate i ∈ [n] such that
xi = yi = 1. It can be shown, using techniques from information complexity, that any r round protocol
(deterministic or randomized) of bandwidth b satisfy rb = Θ(n) [97].

Proposition 39 ([97]). For any ε < 1/3, Cdet(DISJn) = Cpub
ε (DISJn) = Ω(n).

In Chapter 11 we will give a reduction, based on a result of Druker et al. [57] that uses the disjointness
problem DISJn in the three-player Number-on-the-forehead model. Consider three players Alice,
Bob and Charlie, each one has a subset XA (resp. XB , XC) of {1, . . .m}, and each player sees the vector
of the two others. Their common goal is to decide whether the three sets have a non-empty intersection.
It is known that this problem requires a communication of Ω(n) in the deterministic case, and Ω(

√
m)

for any ε-error probabilistic protocol with ε < 1/3. Moreover, Pǎtraşcu and Williams [121] showed that
the linear lower bound extends to the probabilistic case under the Strong Exponential Time Hypothesis
(stating that, for any δ < 1, there is no algorithm solving n-variable instances of Sat in time O(2δn), see
Section 2.4).

Proposition 40 (Pǎtraşcu and Williams [121]). Let ε < 1/3. An ε-error randomized protocol for DISJm
in the three-player Number-on-the-forehead model with communication complexity o(m), and local
2o(m) running time, implies that the Strong Exponential time hypothesis fails.

In other words, under the Strong Exponential Time hypothesis and the assumption that local com-
putations must be performed in time 2o(n), there is no nontrivial randomized algorithm for disjointness
in the 3-party Number-on-the-forehead model communicating only o(n) bits.

8.2.2 Fingerprints
The following technique, that we call fingerprints, is based on a result known as the Schwartz–Zippel
Lemma, used in verification of polynomial identities. Let n be a positive integer and p be a prime
number. In the following, we denote by Fp the finite field of size p (we refer to the book of Lidl and
Niederreiter [101] for further details and definitions around finite fields). A polynomial P ∈ Fp[X] of
degree d is an expression of the form P (x) =

∑d
i=0 aix

i, where ai ∈ Fp and ai 6= 0 for each i ∈ d. We
denote by Fp[X] the polynomial ring on Fp. An element b ∈ Fp is called a root of a polynomial P ∈ Fp[X]
if P (b) = 0.
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Proposition 41. [101] A polynomial of degree d in Fp[X] has at most d roots in Fp.

Let n be a positive integer, p and q be two prime numbers such that q < p and p > n. For each a ∈ Fnq
and t ∈ Fp, consider the polynomial in P (a, ·) ∈ Fp[X] defined as

P (a, t) =
∑
i∈[n]

ait
i−1.

For t ∈ Fp, we call P (a, t) the fingerprint of a and t. Note in the last expression that the coordinates of
a are interpreted as elements of Fp.

Lemma 19. Let n be a positive integer, p and q be two prime numbers such that q < p and p > n, and
let a, b ∈ Fnq be such that a 6= b. Then

|{t ∈ Fp : P (a, t) = P (b, t)}| ≤ n.

Proof. Note that P (a, t) = P (b, t) implies that P (a − b, t) = P (a, t) − P (b, t) = 0. Since P (a − b, t) is a
polynomial of degree at most n in Fp[X], from Proposition 41 it has at most n roots in Fp. Therefore
|{t ∈ Fp : P (a, t) = P (b, t)}| ≤ n.

Recall the problem EQn, where two players Alice and Bob receive each an n-bit vector, called a and
b respectively, and the question is to determine if a = b. Consider the following one-round public coins
randomized protocol for solving EQn [97]. First, fix a prime number p in (nc+1, 2nc+1), for some constant
c > 0 (p exists thanks to the Prime Number Theorem). Then using the public coins, Alice and Bob pick
(the same) t ∈ Fp uniformly at random. Alice sends to the referee P (a, t) and Bob sends P (b, t). Note
that both messages are in Fp, so they can be encoded in O(log p) = O(log n) bits. The referee then checks
if the messages of Alice equals the message of Bob.

Let us show that the referee fails with a very low probability. Clearly two equal vectors have equal
fingerprints for every t ∈ Fp, i.e., if P (a, t) 6= P (b, t) then a 6= b, so the referee does not obtain false
negatives. More important, if a 6= b, the probability that P (a, t) = P (b, t) is at most 1/nc. Indeed,
because t was chosen uniformly at random, and from Lemma 19, we obtain that the probability that t is
a root of Pa − Pb is at most n/p < 1/nc.

8.2.3 Linear sketches and graph connectivity
Connectivity and maximum spanning tree (MST) are one of the most relevant and foundational problems
in the Congested Clique model. In fact, the Unicast version of the model was defined in [108, 107] where
the authors studied the maximum spanning tree in the CONGEST model, when the communication graph
has constant diameter. The authors showed that a MST can be computed in the deterministic UClique
model in O(log log n) rounds and bandwidth O(log n). More recently, Ghaffari et al. [76] showed that
a MST can be computed by a randomized protocol in the UClique model in O(log∗ n) rounds with
bandwidth O(log n).

These two protocols are based on a quite simple algorithm published in 1926 by Borůvka [115]. Let G
be a graph, and denote by V̂ the set of supernodes, which initially are the n singletons {{u}|u ∈ V }. The
protocol runs int t = dlog ne phases. At phase 0 ≤ i < t, each supernode picks an incident edge to each set
v̂ ∈ V̂ . Then, we merge the obtained connected components of supernodes into a single supernode. The
procedure finishes when all supernodes are isolated, in which case the supernodes represent the connected
components of G. The procedure finishes before t = dlog ne steps since the number of supernodes at least
halves at each step.

Borůvka’s algorithm directly implies a O(log n) round deterministic protocol for computing a MST in
the deterministic BClique model with bandwidth O(log n). Despite its simplicity, to our knowledge
there is no randomized or deterministic protocol in the Broadcast Congested Clique that computes
the connected components of the input graph in a number of rounds r and bandwidth b that satisfy
rb = o(log2 n). Moreover, no nontrivial lower-bounds exist, even in the one-round case.

In their SODA 2012 paper [1], Ahn, Guha and McGregor provided the first one-round (randomized)
protocol for graph connectivity in the Broadcast Congested Clique, with polylogarithmic bandwidth. To
be precise, their protocol was designed for the dynamic graph streams model, however their techniques
can be directly applied to our model.
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Their algorithm is based on a extremely beautiful technique called linear sketches. This technique uses
randomization to compress any vector into a another with an exponential reduction in the coordinates.
This compression is such that one can recover, with high probability, a nonzero component of the original
vector with high probability. Moreover, the compression operation is a linear function, therefore adding
to compressed vectors we obtain the compression of the sum of the two vectors. Formally,

Definition 5. Let n, k, δ > 0. A δ-linear sketch of size k is a function S : {0, 1}O(logn) × {−1, 0, 1}n →
{0, 1}k, such that, if we call Sr = S(r, ·), then

• Sr is linear, for each r ∈ {0, 1}O(logn);

• If r is chosen uniformly at random, then there is an algorithm that on input Sr(x) returns ERROR
with probability at most δ, and otherwise returns a pair (i, xi) such that xi 6= 0 and coordinate i is
picked uniformly at random between the non-zero coordinates of x. The probabilities are taken over
the random choices of r.

In [86] it is shown a construction of δ-linear sketches that compress input vectors of size n into vectors
with polylog (n) coordinates. Their construction is performed in two steps: the first step is a sampling
procedure, the input vector is sampled log(n) times, where the i-th time each coordinate is picked with
probability 2−i. This way we obtain that one of the samples is roughly O(log n)-sparse (has at most
that number of nonzero coordinates) with high probability. The second step is a reduction procedure,
where using O(log n)-wise independent hashing functions of range O(n3), each sample of the input vector
is reduced into a vector of dimension O(log n). The reduction procedure satisfies that if the sample is
O(log n)-sparse then each nonzero coordinate is hashed into a different value with high probability.

Proposition 42 ([86]). For each n, δ > 0, there exists a δ-linear sketch of size O(log2 n log δ−1).

In the Connectivity protocol of [1], each node constructs O(log n) linear sketches based on its
neighborhood and on a sequence of public random coins, and broadcasts them to all other nodes. Using
all these messages, the referee can simulate the phases of Borůvka’s algorithm by (1) finding an outgoing
edge of each supernode (2) summing the linear sketches of the clusters to obtain the linear sketches of the
union of adjacent supernodes. The crucial point is that everything is done in one round of communication.

Proposition 43 (Ahn et al. [1]). Let n, δ > 0 and t = dlog ne. There exists an algorithm that receives t
independent δ-connectivity sketches of a graph G, produced with r1, . . . , rt ∈ {0, 1}O(logn) random strings
picked uniformly at random, and outputs a spanning forest of G with probability 1− δ.

Let G = (V,E) be a graph of size n, and x ∈ V . We call connectivity vector of x in G the vector of
dimension

(
n
2

)
defined as follows:

ax{u,v} =

 1 if {u, v} ∈ E, x = u and u < v,
−1 if {u, v} ∈ E, x = v and u < v,
0 otherwise.

For r ∈ {0, 1}O(logn), we say that Sr(G) = {Sr(ax)}x∈V (G) is a δ-connectivity sketch of G, where S is
a δ-linear sketch. Note that for any x ∈ V , each non-zero coordinate of ax represents an edge of N(x),
and for any U ⊆ V the non zero coordinates of

∑
x∈U ax are exactly the edges in the cut between U and

its complement V \ U .
Let G = (V,E) be the input graph. The one-round protocol in the BClique model devised by

Ahn et al. for computing a spanning forest of G with cost O(log3 n)works as follows. Let t = dlog ne.
Each node computes and sends t independent δ-linear sketches of its connectivity vector, using t random
strings r1, . . . , rt picked uniformly at random. Using these messages, any node can compute t independent
δ-connectivity sketches of G and therefore, it can compute a spanning tree using the following t steps
procedure. First, as in Borůvka’s algorithm, let us denote by V̂ the set of supernodes, which initially are
the n singletons {{u}|u ∈ V }. At step 0 ≤ i < t, each node samples an incident edge to each set v̂ ∈ V̂
using the ith collection of linear sketches

∑
x∈v̂ Sri(a

x), and merge the obtained connected components
into a single supernode.
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8.2.4 Deterministic sparse linear sketches

The following technique is a deterministic version of linear sketches. The idea is to design a function that
compress a vector into a smaller one via a linear function, with the promise that we can recover some
information of the original vector if we only know the compression. This task might be impossible to
accomplish if we want to deterministically compress any vector into a much smaller one (e.g., of sub-linear
size). Indeed, if such function existed, we might solve the Equality problem in communication complexity
with sub-linear communication cost. Instead, we will build deterministic sparse linear sketches.

Let d be a positive integer. A n-dimensional Boolean vector x is called d-sparse if the sum of its
coordinates is at most d. We will show a technique that permits to compress any n-dimensional Boolean
vector via a linear function `. This function has the property of being injective when restricted to d-sparse
Boolean vectors. For example, if x, y ∈ {0, 1}n are such that x− y is d-sparse, then we can recover x− y
knowing `(x) and `(y).

Note that, in contrast with the setting of (randomized) linear sketches, the following lemma does not
use randomization. In fact, our technique is a form of derandomization of the fingerprint technique.

Lemma 20. Let n, d > 0. There exists a function ` : Zn → Fp, for some prime number p = 2O(d·logn),
such that:

• ` is linear, and

• ` is injective when restricted to d-sparse Boolean inputs.

Proof. Let B = {b ∈ {0, 1}n :
∑n
i=1 bi ≤ d} be the family of d-sparse Boolean vectors of dimension n,

and call H = {h ∈ {−1, 0, 1}n : ∃ distinct b, b′ ∈ B, h = b − b′}. Note that |B| ≤ (1 + n)d and then
|H| ≤ (1 + n)2d.

Call p = p(n, d) the smallest prime number greater than (1 + n)2d · n. From the Prime Number
Theorem, we know that p lies in [(1+n)2d ·n, 2 · (1+n)2d ·n]. Let now P (H) be the family of polynomials
over the field Fp associating to each h ∈ T the polynomial P (h, x) =

∑n
i=1 hix

i−1 (values are taken
modulo p). In other words, P (h, x) is the fingerprint of h and x.

Let x = x(n, d) be the minimum integer in Fp which is not a root of any polynomial in P (H). We
claim that x exists because there are at most |H| polynomials in P (H), each polynomial has at most n
roots in Fp, and p > |H| · n.

We define then, for each v ∈ Fn, the function `(v) = P (v, x). Clearly, ` is linear, and, by definition of
x, for any distinct b, b′ ∈ B, we have `(b) = P (b, x) 6= P (b′, x) = `(b′).

This technique will be used in Chapter 10 to improve the d-degenerate graph reconstruction of Propo-
sition 31.

8.2.5 Error correcting codes

The last technique that we present in this chapter are the error correcting codes. These techniques were
originally used to obtain reliable communication in a noisy communication channel. An error correcting
code with parameters (n,m, d) is a mapping C : {0, 1}n → {0, 1}m such that for any x, y ∈ {0, 1}n, x 6= y
implies dH(C(x), C(y)) ≥ d, where dH(·, ·) is the Hamming distance (the number of coordinates where
two vectors differ). The idea of an error correcting code is that x is the unique n-dimensional Boolean
vector that can produce a value in the ball of center C(x) with radius d measured with the Hamming
distance.

Consider the following error correcting code with parameters (n,m, d), wherem = n+ddlog(2(n+d))e,
introduced by Reed and Solomon [123]. Let n + d < q < 2(n + d) be a prime number, and fix a
set {a1, . . . , an+d} ∈ Fq, where Fq is the finite field of size q. Let px be the unique polynomial in
Fq such that px(ai) = xi for each i ∈ [n]. Consider now the function C : {0, 1}n → Fmq defined as
C(x) = (px(a1), . . . , px(an+d)). Clearly if x, y ∈ {0, 1}n such that x 6= y, then dH(C(x), C(y)) ≥ d − 1,
since two different polynomials of degree n coincide in at most n − 1 points. Note that the first n
coordinates of C(x) equal x, and we can encode the other d coordinates as elements of {0, 1}dlog(2(n+d))e.
Therefore C, as a function with range {0, 1}m, is a (n,m, d) error correcting code. In such case, we say
that C is a Reed-Solomon code with parameters n and d.

We will use error correcting codes in Chapter 10 to recognize and reconstruct small classes of graphs.
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8.3 The role of node identifiers
In the definition of the Broadcast Congested Clique model, it is assumed that the nodes have unique
identifiers in [n], where n is the number of vertices on the graph. However, this might not be the case
in some real-world applications, for example when the identifiers contain a prefix with the address of the
geographical position of the nodes.

In case where the (unique) identifiers are not bounded by the number of nodes, it we would be still
interesting to find protocols with costs which are sublinear in the size of the graph (that we still call n)
and not necessarily in the maximum size of a node identifier (that we call maxid). Note that in that case
when maxid > n, we look for protocols solving problems on graphs of size n labeled with numbers in
[maxid]. The nodes receive as input the list of the identifiers of the nodes adjacent to it in the graph G.
However, in this scenario the nodes do not know which are the identifiers of their nonadjacent vertices.
Therefore, for a node the graph is of size maxid, where some vertices (at most n) are real players and
the others are isolated vertices that cannot communicate. We assume that nodes know at least a linear
bound in the size of the graph n, and all know the maximum identifier maxid.

We can easily relax the condition on the labels assuming that maxid is upper bounded by poly(n).
In such a case, it would be enough to add one more round of bandwidth O(log n) to reduce any protocol
to one where the identifiers are bounded by n: every node communicates its identifier (which can be
encoded in dlog(poly(n))e = O(log n) bits), and once the nodes have received the identifiers of the others,
they make an ordered list and relabel according to the obtained ordering.

We might relax even more the assumption on the identifiers if we admit public randomness. Indeed,
suppose that the node identifiers are upper-bounded by 2n. We can reduce this case (with high proba-
bility) to the case where the node identifiers are bounded by a polynomial poly, using the fingerprints
technique. Fix c > 1 and a prime number in p ∈ [nc+2, 2nc+2]. Each node x takes its identifier id(x) repre-
sented in binary, and compute a new identifier id′(x) from the fingerprint of id(v), i.e., id′(x) = P (id(x), t),
where t ∈ [p] is picked uniformly at random using the public coins and P (a, t) =

∑
i ait

i−1 mod p. From
Lemma 19, all the identifiers will be different with probability 1− 1/nc and bounded by 2nc+2.

Fortunately, the protocols and lower-bounds presented in this thesis do not require the relabeling
round, and can be easily adapted to be valid in the case when the identifiers are bounded by poly(n), for
some polynomial poly. For simplicity, the results will be presented in the first definition of the Broadcast
Congested Clique model, i.e identifiers are in [n].
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Chapter 9

Separation of deterministic and
randomized models

The goal of this chapter is to separate, from the point of view of message size complexity (bandwidth),
three different variants of the Broadcast Congested Clique model: deterministic protocols, randomized
protocols with private coins and randomized protocols with public coins. For this purpose, we introduce
variants of the Boolean function Twins. This Boolean function returns 1 if and only if there are two
nodes with the same neighborhood.

Most of the results of this chapter were published in the 21st International Colloquium, on Structural
Information and Communication Complexity (SIROCCO 2016) and were obtained in collaboration with
Florent Becker, Ivan Rapaport and Ioan Todinca [15].

9.1 Introduction
In this chapter, we study the power of deterministic, public coins and private coins randomized protocols
in the BClique model. Our goal is to define problems which separate, from the point of view of the
communication cost, the different models. Our strategy is to try to translate the results obtained in the
simultaneous messages communication model, to the BClique model. In other words, the motivation of
this chapter can be resumed as follows: does there exists a function f whose deterministic cost, private-
coin cost and public-coin cost are Ω(n), Ω(

√
n) and O(log n), respectively? (like the equality function in

the case of two players, see Proposition 35).
Very recently, Fischer et al. [61] showed that such a gap can be extended for any function to the

multi-player simultaneous messages number-in-hand model. Recall that this model is equivalent to the
Broadcast Congested Clique model, but the inputs of each player is completely independent (in particular
not a graph). In [61] the authors showed an extension of Proposition 35 to the Number-in-hand model,
showing that the cost of any private coin protocol computing a function f is lower bounded by the
deterministic cost of computing f .

To separate the three types of protocols, we tried to find an equivalent of the function EQ in the
BClique mode. The natural candidate is the function Twins(G), which outputs 1 if and only if G
has two vertices u and v with the same neighborhood, i.e., such that N(u) = N(v). We obtained that
this function easily separates one-round deterministic and public-coin randomized protocols. However,
showing lower bounds for this function and one-round private-coin protocols, or multiround deterministic
protocols appears to be more challenging.

To cope with this lack of lower bounds, we defined variants of the function Twins. First, we define a
“pointed” version of previous Twins function. Let x ∈ [n], and consider the function Twinsx(G) which
outputs 1 if and only if there is a vertex y 6= x in a graph G of size n such that N(y) = N(x). For this
function, we showed that there is a private coins protocol that computes Twinsx(G) with high probability
in the BClique[log n] model. This shows that in the BClique model we do not have in general a result
analogous to Proposition 36.

In order to separate the private and public coins models for one-round protocols, we use a Boolean
function called Translated-Twins. We prove that the cost of this function in the private coins setting
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is Ω(
√
n), while it is O(log n) for public coins protocols. The main results of this paper are summarized

in Table 9.1.

Twins Twinx Translated-Twins
Deterministic Θ(n) Θ(n) Θ(n)

Randomized private-coins O(
√
n log n) O(log n) Ω(

√
n), O(

√
n log n)

Randomized public-coins O(log n) O(log n) O(log n)

Table 9.1 – Main results of this chapter.

With respect to multi-round protocols, we will show first that for multi-round randomized protocols,
there is no distinction of private and public coin randomized protocols. Indeed, we extend Proposition 34
to show that any public coin randomized protocol in the BClique model can be simulated by a private
coin protocol, slightly increasing the number of rounds, the bandwidth and the error probability. To
separate multi-round deterministic and randomized protocols, we introduce the function GraphEq(G)
defined on graphs of size 2n. This function which equals 1 if and only if the adjacency matrix of
G[{1, . . . , n}] is equal to the adjacency matrix of G[{n+ 1, . . . , 2n}], in other words if for every i, j ∈ [n],
vertex j belongs to NG(i) implies that vertex j+n belongs to NG(i+n). We prove that the randomized
cost of this function is O(log n) (even for one-round protocols) while the deterministic cost is Ω(n).

There are several natural problems that cannot be solved with one-round randomized protocols with
cost o(n) bits. In the last part of this paper (Theorem 5) we sketch how the arguments of [14], for proving
negative results on one-round deterministic protocols, can be extended to the randomized setting. More
precisely, we prove that the randomized public coin cost of the Boolean functions Triangle(G) (that
outputs 1 if and only if G has a triangle) and Diam3(G) (that outputs 1 if and only if G has diameter at
most 3) is Ω(n).

9.2 Equivalence of public and private coin protocols for multi
round protocols

In this section we show that up to a logarithmic factor, private and public coin multi-round protocols are
equivalent, in the BClique model with bandwidth at least O(log n)

Theorem 14. Let ε, δ > 0 be such that ε < 1/3, and let f be a function f : Gn → {0, 1}, where Gn is the
set of all graphs of size n. For every r-round ε-error public coin protocol computing f in the BClique
model with bandwidth b, there exists a r + 1-round ε + δ-error private coin protocol computing f in the
BClique model with bandwidth b+ log(n) + log(δ−1).

To show this theorem we reason following the same arguments as Newman in [117] for the two-player
case (see Proposition 34). Intuitively, to construct a private coins protocol from a public coins protocol,
we may ask to some arbitrary node to privately generate the number of random bits required to run the
public coin protocol, and communicate those bits to the other nodes in a first round. However, in our
definition of randomized protocols, we did not bound the number of random bits that a protocol is able
to use, so this first round may require a very big bandwidth (or too many rounds). In the next lemma,
we show that by slightly increasing the error, we can transform any public coin randomized protocol that
uses an arbitrary number of random bits, to another public coin protocol that uses a number of random
bits that is logarithmic in the size of the input.

Lemma 21. Let ε, δ > 0 be such that ε < 1/3, and let f be a function f : Gn → {0, 1}. Suppose that
there exists a r-round ε-error public coins protocol P computing f in the BClique model with bandwidth
b. Then there exits a r round ε + δ-error public coins protocol P ′′ computing f in the BClique model
with bandwidth b that uses O(log n+ log δ−1) public random bits.

Proof. Let G be the input graph and denote denote by xi the input of node i. Let q be a Boolean vector
of the dimensions required for the random vector of protocol P. Let P(G, q) be the output of the protocol
P with input G and public random vector q.

Denote by Z(G, q) the random variable over the bits q picked uniformly at random indicating if
P(G, q) equals f(G), formally:
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Z(G, q) =

{
1 if P(G, q) 6= f(G)
0 otherwise

Since P has error probability ε, then for every fixed graph G, the expected value of Z(G, q) is at most ε.
Indeed, Eq(Z(G, q)) = Pr(Z(G, q) = 1) = Pr(P(G, q) 6= f(G)) ≤ ε.

Let ~q = q1, . . . qt be t random strings, with t = (2n2)/(3δ2), and define the following public coin
randomized protocol P~q as follows. On input G, each node picks using the public coins an integer
i ∈ {1, . . . , t} uniformly at random, and then run P on input G with random string qi. In other words
they pick i ∈ {1, . . . t} and, compute P(G, qi).

Suppose we pick ~q = q1, . . . , qk independently and uniformly at random, and we fix a graph G. Let
ηi(G) be a random variable for each i ∈ [t] defined as ηi(G) = Z(G, qi)− ε. Note that {η1(G), . . . , ηt(G)}
are independent, E~q(ηi(G)) = E~q(Z(G, qi)) − ε = 0, and |ηi(G)| ≤ 1 (since ε < 1/2). Therefore, we can
use a Chernoff bound to obtain:

Pr~q

∑
i∈[t]

ηi(G) > δ · t

 ≤ e−δ
2·t/2 = 2−δ

2·t/2·log2(e) = 2−n
2·log2(e)/3 < 2−n

2

Then

Pr~q

∃G ∈ Gn,∑
i∈[t]

ηi(G) > δ · t

 ≤ ∑
G∈Gn

Pr~q

∑
i∈[t]

ηi(G) > δ · t

 <
∑
G∈Gn

1

2n2 = 2(n2) · 1

2n2 < 1

Thus

Pr~q

∀G ∈ Gn,∑
i∈[t]

ηi(G) ≤ δ · t

 > 0

so there exists a choice q = (q1, . . . , qt) such that

1

t

∑
i∈[t]

Z(G, qi) ≤ ε+ δ ∀G ∈ Gn

We define then P ′ = Pq, and we obtain that ∀G ∈ Gn:

Pri(P ′(G, i) 6= f(G)) =
∑
i∈[t]

Pr([the protocol chooses i] ∧ [P(x, qi) 6= f(x)])

≤ 1

t

∑
i∈[t]

Z(G, qi) ≤ ε+ δ

Therefore P ′′ is an r round ε+ δ-error public coin randomized protocol for f in the BClique[b] model,
that uses dlog te = O(log n+ log δ−1) random bits.

We are now ready to show Theorem 14.

Proof of Theorem 14. Let P a protocol as in the statement of the theorem, and for δ > 0 let P ′′ be the
protocol obtained from P using Lemma 21, i.e., P ′′ is a r round ε+δ-error public coin randomized protocol
on the BClique[b] model, that uses dlog te = O(log n + log δ−1) random bits. We simply construct an
ε+δ-error private coin randomized protocol P ′ on the BClique model as follows. First, node 1 produces
using its private coins a Boolean random vector q of size dlog te, and communicates it in the first round.
Then, all the nodes simulate P ′′ on their inputs considering q as public random vector. Clearly P ′ runs
in r + 1 rounds and has bandwidth b+ dlog te = O(b+ log n+ log δ−1).
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9.3 Lower bounds on deterministic protocols

Theorem 15. Any one-round deterministic protocol that computes Twins, Twinx or Translated-
Twins in the BClique model has cost Θ(n).

The upper bounds of O(n) are trivial so we only need to prove the lower bounds. For the first two
problems, we use the following reduction.

Lemma 22. Assume that there is a one-round deterministic protocol solving Twins (resp. Twins2n+1)
on in the BClique model on graphs of size 2n+1, with cost g(n). Then one can solve Reconstruction
on graphs of size n using messages of size 2g(n).

Proof. Let G be an arbitrary graph of size n, i be an integer between 1 and n and S be a subset of
{1, . . . , n} not containing i. Denote by H(i, S) the graph on 2n + 1 vertices obtained as follows (see
Figure 1):

1. H[{1, . . . , n}] = G.

2. For each n+ 1 ≤ j ≤ 2n, its unique neighbor with identifier at most n is j − n.

3. Vertex 2n+ 1 is adjacent exactly to the nodes of S and to i+ n.

Claim. We claim that Twins(H(i, S)) (resp. Twins2n+1(H(i, S)) is true if and only if NG(i) = S.

Clearly, if NG(i) = S then vertex i is a twin of 2n + 1 in graph H. Conversely, we prove that if
H(i, S) has two twins u and v then one of them is 2n + 1. This comes from the fact that the edges
between {1, . . . , n} and {n+ 1, . . . , 2n} in H(i, S) form a matching, so no two vertices of {1, . . . , 2n} may
be twins. Now assume that 2n+ 1 has a twin u. Since NH(i,S)(2n+ 1) ∩ {n+ 1, . . . , 2n} = {i+ n}, the
only possibility is that u = i. Eventually, i and 2n+ 1 are twins if and only if NG(i) = S, which proves
our claim.

Now assume that we have a distributed protocol for Twins (or Twins2n+1) on graphs with 2n + 1
vertices (actually it suffices to consider graphs from the family H described above). We construct an
algorithm for Reconstruction on an arbitrary graph G of size n.

The nodes construct their messages as follows. Each vertex i sends the message mi that it would send
in the Twins protocol if it had neighborhood NG(i)∪ {i+n} and the message m+

i that it would send in
the same protocol with neighborhood NG(i) ∪ {i+ n, 2n+ 1}. That makes messages of size 2g(n).

The referee needs to retrieve the neighborhood NG(i) for each i, from the set of messages. For
each i and each subset S of {1, . . . , n} not containing i, we simulate the behavior of the referee in the
protocol for Twins on graph H(i, S). For this purpose, for each j ≤ n we use message mj if j /∈ S and
message m+

j if j ∈ S. The messages for nodes k > n can be constructed directly by the referee. Note
that Twins(H(i, S)) is true iff NG(i) = S, thus we can reconstruct NG(i). Eventually, this allows to
solve Reconstruction on graph G. The same arguments work of we replace the Twins protocol by
Twins2n+1.

1

2

3

4

G 5

6

7

8

9

Figure 9.1 – H(4, S), when S = {2, 3}
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Since problem Reconstruction on graphs of size n has cost Ω(n) (see Section 8.1.1), we conclude
that any one-round deterministic protocol for either Twins or Twins2n+1 also requires messages of
size Ω(n).

For problem Translated-Twins, we provide a reduction from OREQ (see Proposition 37 in Sec-
tion 8.2.1). It will be used both for deterministic and randomized protocols with private coins.
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x =

 1 1 0
0 1 0
0 1 1


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 0 1 0
1 0 1
0 1 1



Figure 9.2 – Examples of graphs G1
x (top) and G2

y (bottom), for a given input (x, y). This is a yes instance
since x3 = y3.

Lemma 23. Assume that there is a one-round protocol solving Translated-Twins on graphs of size
6n in the BClique model, with (deterministic, private-coin or public coin) cost g(n). Then there is a
(deterministic, private-coin or public coin) protocol for function OREQ using messages of size 3ng(n).

Proof. Let x and y be two n× n Boolean matrices. We construct a graph Gx,y with 6n nodes such that
Translated-Twins(Gx,y) = OREQ(x, y).

The graph G is formed by two connected components G1
x and G2

y of 3n nodes each, encoding the two
matrices as follows (see Figure 9.2 for an example).

G1
x has 3n nodes numbered from 1 to 2n and from 5n+ 1 to 6n. For any i, j ∈ {1, . . . , n} we put an

edge between node i and node j + n if and only if xi,j = 1. Then for any i ∈ {1, . . . , n} we put an edge
between node i + n and node i + 4n. In other words, the node subsets {1, . . . , n} and {n + 1, . . . , 2n}
induce a bipartite graph representing matrix x, and the node subsets {n+1, . . . , 2n} and {5n+1, . . . , 6n}
induce a perfect matching.

The construction of G2
y, with nodes numbered from 2n+ 1 to 5n is similar. For any i, j ∈ {1, . . . , n}

we put an edge between node i+ 3n and node j + 4n if and only if yi,j = 1. Also, for any i ∈ {1, . . . , n},
we put an edge between node 4n + i and node 2n + i. Thus the node subsets {3n + 1, . . . , 4n} and
{4n + 1, . . . , 5n} form a bipartite graph corresponding to matrix y. The subsets {4n + 1, . . . , 5n} and
{2n+ 1, . . . , 3n} induce a matching.

We claim that Translated-Twins(Gx,y) = OREQ(x, y). Assume that OREQ(x, y) = 1. There is
an index i such that line number i in x equals line number i in y. Then, by construction, the neighborhood
of node i+ 3n in Gx,y is the neighborhood of node i, translated by an additive term 3n.

Conversely, assume that there is some node u ∈ {1, . . . , 3n} such that the neighborhood of u is the
translated neighborhood of u + 3n. By construction, the only possibility is that u ≤ n (because of the
numberings of the matchings the other nodes cannot have translated twins), thus line number u is the
same in the two matrices.

To achieve the proof of our lemma, assume that we have a protocol for Translated-Twins for graphs
with 3n nodes, with g(n) bits per message. We design a protocol for OREQ. Recall that for OREQ,
each player has a matrix, say x for the first one and y for the second one. The first player constructs
graph Gx,0 = (G1

x, G
2
0), the second constructs G0,y = (G1

0, G
2
y) (here 0 denotes the n× n Boolean matrix

whose elements are all 0). The first player sends the 3n messages corresponding to the nodes of G1
x in the

Translated-Twins protocol for graph Gx,0. The second player sends the 3n messages corresponding
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to the nodes of G2
y in protocol Translated-Twins for G0,y. The referee collects these 6n messages;

observe that they are exactly those sent by protocol Translated-Twins for the graph Gx,y. He applies
the same algorithm as the referee of Translated-Twins on these messages. By the claim above, its
output is Translated-Twins(Gx,y), thus OREQ(x, y). Note that the messages used here are of size
O(3ng(n)) and that our arguments hold for any type of protocol.

This achieves the proof of Theorem 15. We finalize this section giving a deterministic lower bound
for multi-round protocols solving GraphEq.

Theorem 16. Any deterministic protocol that computes GraphEq in the BClique model has cost Ω(n).

Proof. Let P be a deterministic protocol that computes GraphEq in the BClique model, with cost
g(n) on input graphs of size 2n. Call m =

(
n
2

)
, and let x, y ∈ {0, 1}m be an input of problem Eqm.

Let Gx and Gy be graphs of size n, where the vertex set is [n] and the edge sets are given by x and
y, interpreted as their adjacency matrices. Consider now the graph of size 2n called Gx,y, which is the
union of Gx and Gy, after relabel each vertex i of Gy by i+ n (see Figure 9.3).

2

3

4

1

8

5

6

7

Figure 9.3 – Reduction of Eqm to GraphEq where n = 4, and the inputs of Eqm are x =
(1, 1, 1, 0, 0, 1) and y = (1, 1, 1, 0, 1, 0) (the coordinates 1 (resp. 0) in x represent the presence (ab-
sence) of edges ({1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}) in Gx,y, while the coordinates of y represent
edges ({5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8}).

Note that GraphEq(Gx,y) equals 1 if and only Gx = Gy, i.e., if x = y. We define a two-player
protocol P ′ for Eqm as follows. At each round, Alice (resp. Bob) simulates protocol P on each vertex
of Gx (resp. Gy), and communicates the obtained messages. Since the cost of P in Gx,y is g(n), the
cost of protocol P ′ is n · g(n). Recall that the deterministic cost of Eqm is Ω(m). We obtain that
n · g(n) = Ω(

(
n
2

)
), so g(n) = Ω(n).

9.4 Randomized protocols

Theorem 17. For any constant c > 0, Twins, Twinsx, Translated-Twins and GraphEq can be
computed with high probability by one-round public coins protocols of cost O(log n). Problem Twinsx can
also be computed with high probability by a private coins protocol with cost O(log n).

Proof. Let nc+3 < p ≤ 2nc+3 be a prime number. A random t ∈ Zp is chosen uniformly at random using
O(log(n)) public random bits. Let xi be the input vector of node i, i.e., the i-th row of the adjacency
matrix of G. A protocol for Twins consists in each node sending the message mi = P (xi, t), i.e., the
fingerprint of x (see Section 8.2.2). The referee outputs 1 if and only if mi = mj for some pair i 6= j.
A protocol for Twinsx send the same messages, but this time the referee checks whether mx = mi for
some i 6= x.

In the protocol for GraphEq on graphs of size 2n, each node i ∈ [n] calls yi the first n coordinates
of xi, and each node i ∈ [2n] \ [n], calls yi the last n coordinates of xi. Then, each node i communicates
mi = P (yi, t), the fingerprint of yi produced using t.

The protocol for Translated-Twins on n-node graphs is slightly different. If a node i ≤ n/2 has a
neighbor j > n/2, it sends a special “no” message specifying that it cannot be a candidate for having a
translated twin. Otherwise, let y1

i be the n/2-bits vector formed by the n/2 first bits of xi. Thus y1
i is the

characteristic vector of N(i)∩{1, . . . , n/2}. Player i sends the message mi = P (y1
i , t). Symmetrically, for

nodes labeled i > n/2, if i has some neighbor j ≤ n/2 it sends the “no” message. Otherwise, let y2
i be the

n/2-bits vector formed by the last n/2 bits of xi. Hence y2
i corresponds toN(i)∩{n/2, . . . , n}, “translated”
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by −n/2. Player i sends the message mi = P (y2
i , t). Then the referee returns 1 if mi = mi+n/2 for some

i ≤ n/2.
Clearly, for protocol Twins (resp. Twinsx, Translated-Twins, GraphEq), if the input graph is

a yes-instance then the protocol outputs 1. The probability that Twins answers 1 on a no-instance is
the probability that two fingerprints of two different vectors are equal. For each fixed pair of nodes this
probability is at most 1/nc+2, so altogether the probability of a wrong answer is at most 1/nc. With
similar arguments for Twinsx, Translated-Twins and GraphEq the probability of a wrong answer
is at most 1/nc+1, since the referee makes n tests and each may be a false positive with probability at
most 1/nc+2.

For Twinsx with private coins, each node i sends a bit stating if it sees x, a number ti chosen uniformly
at random in the interval nc+2 < p ≤ 2nc+2 and also FP (xi, ti). The referee retrieves the neighborhood of
node x (which was sent bit by bit by all the others) and then, for each i 6= x, it constructs FP (xx, ti) and
compares it to FP (xi, ti). If the values are equal for some i, the referee outputs 1, otherwise it outputs
0. Again, any yes-instance will answer 1, and the probability that a no-instance (wrongly) answers 1 is
at most 1/nc.

The fact that Translated-Twins requires Ω(
√
n) bits per node for any private coins, ε-error ran-

domized protocol follows directly by Lemma 23 and Proposition 37.

Theorem 18. For any ε < 1/2, Cpriv
ε (Translated-Twins) = Ω(

√
n).

Theorems 17 and 18 show that problem Translated-Twins separates the private coins and the
public coins protocols.

In order to complete the table of the Introduction, we also observe that problems Twins and
Translated-Twins can be solved by randomized private coins protocols using O(

√
n log n) bits.

Theorem 19. For any c > 0, there is a randomized private coins protocol for Twins, and Translated-
Twins using messages of size O(

√
n log n) and having 1/nc one-sided error.

Proof. Babai and Kimmel in [9] propose a private coins protocol with 1/3 one sided error and O(
√
n)

communication cost for EQn, in the number-in-hand model with two players (see Proposition 35). Let
us call this protocol P0. As the authors point out, this protocol is symmetrical, in the sense that both
players compute the same function on their own input. We define the protocol P as one obtained by
simulating (c+ 2) log3 n calls to protocol P0. More formally, in P each player creates (c+ 2) log3 n times
the message that it would create in P0, using at each time independent tosses of private coins. The referee
answers 1 if and only if the referee of P0 would have answered 1 on each of the (c + 2) log3 n pairs of
messages. Therefore P is a private coin randomized protocol for EQn with one sided error smaller than
1/nc+2, and cost O(

√
n log n).

A one sided private coin randomized protocol P ′ for Twins is one where each node plays the role of
Alice in P taking as an input the characteristic function of its neighborhood, and then the referee simulates
the role of the referee in P for each pair of messages. Similarly, a protocol P ′′ for Translated-Twins
works as follows: each node i sends “no” in the same cases described in the proof of Theorem 17, and
otherwise it simulates the role of Alice on input y1

i formed by the first n/2 bits of xi, if i ≤ n/2 or on
input y2

i formed by the n/2 last bits of xi if i > n/2, where xi is the characteristic function of N(i). The
referee then simulates the referee of P on the messages of i and i+ n every time none of them say “no”.

Since P has just one sided error, if Twins (resp. Translated-Twins) is true, P ′ (resp. P ′′) will
always accept. On the other hand, if Twins (resp. Translated-Twins) is false, then the probability
that P ′ (resp. P ′′) accepts is the probability that P accepts for at least one pair of vertices, and then
the error of P ′ (resp. P ′′) is at most n2 times (resp. n times) the error of P. We obtain that P ′ and P ′′
have at most 1/nc one sided error, and communication cost O(

√
n log n).

Consider the Boolean function Triangle(G) that outputs 1 if and only if G has a triangle, and
the function Diam3(G), that outputs 1 if and only if G has diameter at most 3. In [14] is shown that
the deterministic message sizes of these problems are lower-bounded by Ω(n), using a reduction from
Reconstruction. However, as seen in Theorem 15, a reduction from Reconstruction does not
imply lower-bounds on the message sizes of randomized protocols.

In the following theorem, we extend the techniques in [14] to reduce the problems Triangle(G) and
Diam3(G) from Index, showing that the message sizes of randomized protocols for these problems are
also of size Ω(n).
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Theorem 20. For any ε < 1/3, any one-round ε-error public coins protocol computing Triangle(G)
(resp. Diam3(G)) has cost Ω(n).

Proof. Consider the Index function in the model number-in-hand with two players: the first player, say
Alice, has as input an m-bits Boolean vector x and the second player, Bob, has an integer q, 1 ≤ i ≤ m.
Then Index(x, q) = xq, the qth coordinate of Alice’s vector. We will use the fact that for any ε < 1/2,
any public coins randomized protocol for Index requires Ω(m) bits (see, e.g., [94, 95] for a proof). We
may assume w.l.o.g. that m = n2.

In [14], Becker et al. show that for the deterministic communication cost for Triangle and Diam3 is
Θ(n), by showing that if there is a protocol P of cost c for Triangle or Diam3, then there is a protocol
for Reconstruction in bipartite graphs of cost 2c. We slightly modify their proof to obtain a reduction
from Index.

Let ε < 1/2, and P be a ε-error randomized public coins protocol for Triangles on n-nodes graphs,
using c(n) bits. We give a protocol for Index using 2n · c(2n+ 1) bits.

Let x be an m = n2-bits vector. Let Hx be the bipartite graph with vertex set {1, . . . , 2n}, such that
for any 1 ≤ k, l ≤ n, if x(k−1)n+l = 1 then Hx has an edge between nodes k and l + n. Consider the
family of graphs Hx(i, j) obtained from Hx by adding a node 2n + 1 whose neighbors are nodes i and
j + n (for any 1 ≤ i, j ≤ n). Observe that Hx(i, j) has a triangle if and only if x(i−1)n+j = 1, in which
case the triangle is formed by the nodes {i, j + n, 2n + 1}. To simplify the notation we also define the
graph Hx(0, 0) obtained from Hx by adding an isolated node 2n+ 1.
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x = (1 1 0 1 0 1 0 0 1)
q = 9

Figure 9.4 – An illustration of Hx(3, 6) when x = (1, 1, 0, 1, 0, 1, 0, 0, 1) and q = 9.

The protocol for Index is as follows. Bob sends its input q, which only costs O(log n) bits. Alice
constructs the family of graphs Hx(i, j), for all pairs 1 ≤ i, j ≤ n and for (i, j) = (0, 0). Any node k ≤ 2n
has exactly two possible of neighborhoods, depending whether it is adjacent to 2n + 1 or not. For each
k ≤ 2n, Alice creates the message m+(k) that the protocol for Triangle would send for node k in the
graph Hx(k, 1) (if k ≤ n) or in the graph H(1, k − n) (if k > n). It also creates the message m−(k) that
Triangle would construct for node k in the graph Hx(0, 0). In full words, m−(k) corresponds to the
case when the neighborhood of k is the same as in Hx, and m+(k) to the case when this neighborhood is
the neighborhood in Hx, plus node 2n+1. Then Alice sends, for each k, 1 ≤ k ≤ 2n, the pair of messages
(m−(k),m+(k)). Therefore Alice uses 2n · c(2n+ 1) bits. It remains to explain how the referee retrieves
the bit xq. Let i, j such that q = (i − 1)n + j. Observe that xq = 1 if and only if graph Hx(i, j) has a
triangle, therefore the referee must simulate the behavior of the referee for Triangle on Hx(i, j). For
this purpose, the referee computes the message that node 2n+ 1 would have sent on this graph (it only
depends on i and j) and observes that protocol P on Hx(i, j) would have sent message m+(i), m+(j+n)
and m−(k) for any k ≤ 2n different from i and j. Therefore the referee can give the same output as P
on Hx(i, j), that is it outputs bit xq. The protocol for Index will have ε error and will use 2n · c(2n+ 1)
bits. Thus P requires Ω(n) bits.

The proof for Diam3 is based on a similar reduction. Let Dx(i, j) be the graph obtained from Hx by
adding three nodes : node 2n + 1 seeing all nodes k ≤ 2n, node 2n + 2 seeing i and node 2n + 3 seeing
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j+n. Graph Dx(0, 0) is similar with the difference that nodes 2n+ 2 and 2n+ 3. Observe (see also [14])
that Dx(i, j) has diameter 3 if and only if x(i−1)n+j = 1. The rest of the proof follows as before.

9.5 Discussion
We succeed to separate, with respect to the bandwidth, different types of one-round protocols, say
deterministic, private-coin and public-coin protocols. An interesting research perspective consists in
identify for which problems the cost of a private-coin protocol is lower bounded by the square root of the
cost of the best deterministic protocol.

We conjecture that any graph property that is preserved under isomorphism can not be recognized
with high probability by a private-coin protocol with a cost that is asymptotically smaller than the square
root of a deterministic protocol.

There exist some other techniques that might allow to simulate public-coin protocols in the private-
coin model. For example, using the birthday paradox. Suppose that we can bound the number of possible
sequences of random bits that uses a public coin protocol P to O(n). Consider now the following private-
coin protocol P ′. Each node x picks uniformly at random, using its own private coins, s = O(

√
n)

different sequences of random bits from the O(n) sequences that use protocol P. Then x produces s
messages simulating P in each one of the sequences, and communicates the messages together with the
s sequences of random bits. Now take the messages sent by two different nodes. With high probability,
these two nodes will coincide in at least one of the s different sequences of random bits. It would be
interesting to find if this reasoning can be applied to design a private coin protocol for Connectivity.

The natural challenge is to determine the cost of function Twins for randomized protocols with private
coins. Using the techniques of Babai and Kimmel [9] for EQ, one can prove that Twins can be solved
by a one-sided, bounded error protocol with private coins and messages of size O(

√
n log n). We believe

that the message size complexity of Twins for private coins protocols is Ω(
√
n). Another challenge is

to determine the cost of Twins for multi-round deterministic protocols. Using the matrix multiplication
protocol of [38], we can obtain a deterministic protocol with cost O(n1/3 log n) in the UClique model.
This protocol runs in O(n1/3) rounds with bandwidth O(log n).

Another interesting question is Connectivity, that will be discussed in Chapter 12. To the best of
our knowledge, the cost of one round protocols computing this function is wide open. Recall that, in the
randomized, public coins setting, there exists one-round protocol with cost O(log4 n) bits, due to Ahn,
Guha and McGregor [1]. Can this upper bound be improved to O(log n)? For randomized protocols
with private coins and/or for deterministic protocols, can one prove a lower bound of Ω(nc) for some
constant c < 1?
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Chapter 10

Distributed recognition of graph classes

The goal of this chapter is to study the reconstruction and recognition of small classes of graphs in the
BClique model. We start improving a one-round deterministic protocol of Becker et al. (Proposition
31) to reconstruct and recognize graphs of bounded degeneracy. Later, we give one-round public-coins
protocols for recognizing and reconstructing distance-hereditary graphs and graphs of bounded modular
width with high probability. Finally, we give a generic constant-round protocols that recognize and
reconstruct any small family of graphs with sublinear cost. We finish extending this last result to the
UClique.

10.1 Introduction

The known lower bounds in the BClique model, that use reductions from communication complexity
and Reconstruction, are based on the following idea: if there exists a protocol for computing some
function (to which we are reducing), then we can use that protocol to communicate too much information
(for example, enough information to reconstruct the graph). One may ask then what happens when the
input of our problem does not contain much information, i.e., is restricted to some small family. Since
a protocol of cost c(n) communicates n · c(n) bits, a class G of graphs of size n can be potentially be
recognized and/or reconstructed with cost log |G|/n.

We say that a class of graphs G is small if the subset of graphs in G of size n, called Gn is in 2o(n
2).

Examples of such classes are planar graphs, or more generally graphs of bounded genus, line graphs,
graphs of bounded treewidth, cliquewidth or modular width, interval graphs, circle graphs, circular arc
graphs, k-polygon, etc.

Recall that the problem Recognition of G consists in determining if the input graph belongs to G.
We say that a protocol solves Reconstruction on G when on input graph G ∈ G, at the end of the
protocol each node knows E(G). Solving Reconstruction on G with some nontrivial protocol means
that we can solve in the same bounds any graph problem restricted to the class G.

We first improve the result of Proposition 31, showing that there is a one-round deterministic protocol
that recognizes and reconstruct d-degenerate graphs with cost O(d · log n) in the BClique model. Our
protocol uses deterministic linear sketches (see Section 8.2.4) to find a sequence of vertices {v1, . . . , vn}
such that vi has degree at most d in G[{vi+1, . . . , vn}]. The family of d-degenerate graphs is a big family
of sparse graphs, containing for example graphs of bounded treewidth, or planar graphs. We show that
our protocol for reconstruction is tight, even for one-round public-coin protocols.

Then, we improve extend the protocol that recognizes and reconstruct cographs (Proposition 32), to
the class of Distance-Hereditary and Bounded Modular width graphs. We show that such families can
be reconstructed and recognized with high probability by randomized protocols with cost O(log n) in the
BClique model.

Finally, we show a more general result involving any small class of graphs. We show that for any
class of graphs G, there exists a one-round deterministic protocol that in the BClique model that solves
Reconstruction on G with cost O(

√
log(|Gn|) · log n+ log n). We also show a one-round private-coin

protocol and a two-round deterministic protocol solving Reconstruction of G with the same cost.
This last result implies sublinear recognition and reconstruction protocols for small graph classes

95



10.2. BOUNDED DEGENERACY

which are not covered by the previous chapters. For example, many graph classes with a few minimal
separators, e.g., interval graphs, polygon-circle graphs, d-trapezoid graphs have 2O(n logn) labeled graphs,
so they can be reconstructed and recognized with our protocols with cost O(

√
n log n). Other example

is the class of chordal bipartite graphs, which contain 2O(n(logn)2) labeled graphs [35], so it can also be
reconstructed and recognized with cost O(

√
n log n). In general, if a class of graphs contain 2n

1+ε

graphs,
then it can be recognized and reconstructed with our protocol with cost O(n(1+ε)/2

√
log n).

We finish this chapter e extend this results to constant-round deterministic protocols in the UClique
model, with cost O(log(|Gn|)/n+ log n).

10.2 Bounded degeneracy

In this section we show an optimal one-round deterministic protocol for reconstruct and recognize d-
degenerate graphs with cost O(d · log n), for any 0 ≤ d ≤ n. In fact, our protocol computes the d-Core,
which is a maximum set of vertices V ′ such that every vertex in V ′ has at least d+ 1 neighbors in G[V ′].
Our protocol computes a maximum sequence of vertices W = {w1, . . . , wk}, such that wi has degree at
most d in G[V \ {w1, . . . , wk−1}], and outputs all the edges adjacent to nodes in W . The set W is called
a d-prunning. Clearly, if W 6= V , then G[V \W ] is a d-Core.

Theorem 21. There is a one-round, deterministic protocol in the BClique model with cost O(d · log n)
that reconstructs the input graph G if the graph is d-degenerate, otherwise returns a d-prunning W and
all the edges adjacent to nodes in W .

Proof. In the d-pruning protocol, each player i sends the message Mi = (M1
i ,M

2
i ) = (di, f(ai)), where

di is its degree, ai is the row of the adjacency matrix corresponding to node i, and f is the function of
Lemma 20. The number of communicated bits is O(d log n). Observe that the second coordinate M2

i of
message i is seen as an element of Fp, hence all arithmetic operations performed on M2

i are modulo p.
Call M = {Mj}j∈V (G) the messages vector of G. The referee use M to prune the graph in at most n

phases (without any communication). Initially we call G1 = G, M(1) = M . The input of phase i is the
messages vector M(i) of a graph Gi. The idea is to look in Gi for a node ui of degree at most d, together
with all its adjacent edges E(ui) in Gi. Then update M(i) to obtain the messages vector M(i + 1) of
the graph Gi+1, which corresponds to the deletion of ui from Gi. The output of each phase is M(i+ 1)
together with ui and E(ui).

Formally, let B = {b ∈ {0, 1}n :
∑n
i=1 bi ≤ d} be the family of d-sparse Boolean vectors of dimension

n. The first step of phase i is to look for a node ui such that M(i)1
ui ≤ d. Then, using M(i)2

ui , we obtain
E(ui). This can be done testing, for each b ∈ B if f(b) = M(i)2

ui . Since M1
ui ≤ d, we have that the

adjacency vector of ui in Gi is d-sparse, then according to the injectivity property of f , the unique vector
of B that satisfies f(b) = M2

ui is the adjacency vector of ui in Gi. Finally, we can use E(ui) and M(i) to
compute M(i+ 1) = {M(i+ 1)j}j∈V (Gi+1) as follows:

M(i+ 1)j =

{
M(i)j if {ui, j} /∈ E(ui)
(M(i)1

j − 1,M(i)2
j − f(eui)) if {ui, j} ∈ E(ui)

where ek is the Boolean vector of dimension n with a single one in the k-th coordinate. Notice that
if M(i) corresponds to the messages vector of Gi, then M(i + 1) corresponds to the messages vector
of Gi+1 = G[V (Gi) − {ui}]. Indeed, let a(i)j , d(i)j and a(i + 1)j , d(i + 1)j be the adjacency vectors
and degrees of node j in G(i) and G(i + 1), respectively. If {ui, j} /∈ E(ui), then a(i)j = a(i + 1)j
and d(i)j = d(i + 1)j , so M(i)j = M(i + 1)j . On the other hand, if {ui, j} ∈ E(ui),then M(i + 1)j =
d(i + 1)j = d(i)j − 1 = M(i)j − 1 and a(i + 1)j = a(i)j − eui . By the linearity of f , we obtain that
M(i + 1)j = f(a(i)j − eui) = M(i)j − f(eui). Note that each node communicates their messages using
bandwidth O(d · log n).

We remark that for many classes of graphs we can bound the degeneracy. In the following we present
some results that relate some graph structures with the degeneracy. We start giving a result that states
that graphs of bounded degeneracy have bounded treewidth.

Proposition 44. [125] For any graph G, the degeneracy of G upper bounded by tw(G).
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Proof. Let T = ({Xi}i∈[I], T = (I, Ek)) be a tree decomposition of G, such that maxi∈I |Xi| = tw(G) and
|I| is minimum. We claim that exists a vertex v ∈ V such that there exists only one bag Xi containing
it. This vertex must exists, otherwise any leaf node i1 of T , which is adjacent to a node i2, must satisfy
Xi1 ⊆ Xi2 . Therefore ({Xi}i∈[I]\{i1}, T = (I \ {i1}, ET \ {i1, i2})) is also a tree decomposition of G that
contradicts the minimality of I. Note that such vertex v must have degree at most tw(G), since all its
neighbors belong to the unique bag containing it.

For k ∈ {0, . . . , n}, pick vk+1 as any vertex that is contained in a unique bag of Tk, where Tk =
({Xi}i∈[Ik], Tk = (Ik, Ek)) is a tree decomposition of Gk = G−{v1, . . . , vi} (with the convention G0 = G)
and which satisfies that maxi∈Ik |Xi| ≤ tw(G) and |Ik| is minimum. Note that the degree of vk+1 in Gk
is at most tw(G). Therefore G is of degeneracy at most tw(G), since {v1, . . . , vn} is a sequence of vertices
such that vk has degree at most tw(G) in G[vk+1, . . . , vn], for every k ∈ [n].

Let H be some graph, and call ex(n,H) be maximum number of edges over all graphs of size n that
not containing H as a subgraph. Druker et al. [57] showed that the class of graphs not containing H as
a subgraph is a class of degeneracy bounded by ex(n,H) and n.

Proposition 45. [57] Let H be a graph and G be another graph not containing H as a subgraph. Then
G is 2 · ex(n,H)/n-degenerate.

Another important family of graph classes that have bounded degeneracy is the class of H-minor free,
for some graph H. Recall that the family of H-minor-free graphs is the set of all graphs not containing
H minor. From a result due to Kostochka [93] we know that any H-minor-free graph is d-degenerate,
where the constant d depends only on the number of vertices of H.

Proposition 46 (Kostochka [93]). There exists a function f such that any H-minor-free graph is f(|H|)-
degenerate.

This last result implies in particular that planar graphs, and in general graphs of bounded genus, have
bounded degeneracy.

We finish this section showing that the protocol for recognition is tight. We show that any protocol
(including randomized public coins or multi-round protocols) that reconstructs graphs of degeneracy d
must communicate Ω(d log n) bits.

Theorem 22. Any ε-error randomized protocol that with high probability reconstructs a d-degenerate
graph in the BClique model has cost Ω(d log n) bits.

Proof. Let c(n) be the cost of an optimal protocol that computes the d-pruning of the input graph in
the broadcast congested clique model. Since any d-pruning protocol reconstructs d-degenerate graphs,
then with n · c(n) bits we can completely encode any graph of degeneracy d. Consider G the familly of
bipartite graphs G = (V1 ∪ V2, E), with |V1| = |V2| = n/2, and such that any vertex v ∈ V1 has exactly d

neighbors in V2. Clearly any graph in G is d-degenerate, and |G| ≥
(
n/2
d

)n/2
, i.e., |G| ≥ 2Ω(nd logn). Then

n · c(n) ≥ log(2Ω(nd logn)), so c(n) = Ω(d log n).

10.3 Distance-Hereditary and bounded modular width graphs
In this section we give a one-round public-coin protocol to recognize the classes of distance-hereditary
graphs and graphs of bounded modular width in the BClique model with high probability and cost
cO(log n). Our result is inspired in a protocol of Kari et al. [87], used for the recognition and reconstruction
of cographs.

Recall that a graph G = (V,E) is distance-hereditary if, the distance between any two nodes of
a same connected component is preserved in any induced subgraph that contains them. Moreover,
distance-hereditary graphs have a characterization according to the existence of a twin-pendant vertex
decomposition.

On the other hand, recall that a graph G is of modular width at most k if:

1. G has at most one node (the base case).

2. G is a disjoint union of two graphs of modular width at most k.
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3. G is a join of two graphs of modular width at most k, i.e., G is obtained from two disjoint graphs of
modular width at most k by taking their disjoint union and then adding all possible edges between
these graphs.

4. the node set of G can be partitioned into p ≤ k modules V1, . . . , Vp such that G[Vi] is of modular
width at most k, for all i, 1 ≤ i ≤ p.

Given a graph of modular-width at most k, one can associate to it a rooted decomposition tree
T following the rules above. Each internal node of the tree corresponds to operations 2 to 4, and
leaves correspond to single vertices (operation 1). This tree is very similar to the well-known modular
decomposition tree of the graph. It easy to observe that, given the decomposition tree of graph G, for
any node u of the tree, the set of leaves V [u] of the subtree rooted in u is a module of G (see e.g., [66]).
The following observations are crucial for our algorithm.

Lemma 24. Let G be a graph of modular-width at most k, having strictly more than k vertices. Then G
has a non-trivial module of at most k vertices.

Proof. We prove that G, of modular width at most k, has a module of size at most k. Consider a
decomposition tree T of G. Let u be one of the internal nodes such that all sons of u are leaves. Then
the corresponding module V [u] is formed by the at most k leaves of the subtree rooted in u, and satisfies
the lemma.

Lemma 25. Let G be a graph and {u1, . . . , ul} be a module of G, with 2 ≤ l ≤ k. G is of modular-width
at most k if and only if G− {u2, . . . , ul} is a of modular width at most k.

Proof. Let G = (V,E) be of modular width at most k. Actually, any induced subgraph G[W ] is of
modular width at most k. Indeed, consider a decomposition tree for G, remove all leaves contained in
V \W , and shortcut all nodes with at most one son. We obtain a decomposition tree of G[W ], proving
that it is of modular width at most k.

Conversely, assume that {u1, . . . , ul} is a module of G, and G′ = G−{u2, . . . , ul} is a of modular width
at most k. Replace, in a decomposition tree of G′ the leaf u1 with a decomposition tree of G[{u1, . . . , ul}].
We obtain a decomposition tree of G, certifying that its modular width is at most k.

Let p be a prime number, and let G = (V,E) be a graph. A vector m = ((av, bv))v∈V is valid for G at
t ∈ Fp if there is a linearly independent family of polynomials Φ = (φv)v∈V in Fp[X] such that av = φv(t)
and bv =

∑
w∈NG(v) φw(t), for each v ∈ V . Note that a if node w in G has degree 1 and neighbor u,

then bw = au. Moreover, two twin nodes u,w in G satisfy either bu = bw (if they are non-adjacent) or
bu + au = bw + aw (if they are adjacent). In the following lemma, we show how to compute from a valid
vector of a graph G, a valid vector of the graph obtained by the deletion of some specific nodes.

Lemma 26. Let m = ((av, bv))v∈V ∈ (Fp)2n be valid for G = (V,E) at t.

1. Let u,w be twins in G such that au 6= aw. Then, the vector m′ = ((a′v, b
′
v))v∈V \{w} ∈ (Fp)2n−2 is

valid for G− w at t, where

a′v =

{
av if v 6= u

au + aw if v = u
b′v =

{
bv if v 6= u

bu − awδuw if v = u

where δuw = 1 if au + bu = aw + bw and 0 otherwise.

2. Let w be a node of degree 1 in G, and let u be its unique neighbor in G. Then, the vector m′ =
((a′v, b

′
v))v∈V \{w} ∈ (Zp)2n−2 is valid for G− w at t, where

a′v = av for all v ∈ V \{w}, b′v =

{
bv if v 6= u

bu − aw if v = u

3. Let M = {u1, . . . , uk} be a module in G of size k. The vector m′ = ((a′v, b
′
v))v∈V \{u2,...,uk} of

(Zp)2n−2k is valid for G− {u2, . . . , uk} at t, where

a′v =

{
av if v 6= u∑k
i=1 auk if v = u1

b′v =

{
bv if v 6= u

bu1 −
∑
u∈M∩NG(u1) au if v = u1
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Proof. Let Φ = (φv)v∈V be a linearly independent family of polynomials associated to m.
To prove case (1), consider the family of polynomials Φ′ = (φ′v)v∈V \{w}, given by φ′v = φv for

each v 6= u and φ′u = φu + φw, which is trivially linearly independent because Φ is. We will show
that m′ = ((a′v, b

′
v))v∈V \{w} ∈ (Fp)2n−2 is valid for G − w at t for the family of polynomials Φ′, i.e.,

a′v = φ′v(t) and b′v =
∑
x∈NG(v)\{w} φ

′
x(t). First, if v 6= u then a′v = φ′v(t) = φv(t) = av. On the other

hand, a′u = φ′u(t) = φu(t) + φw(t) = au + aw. Now fix v 6= u, and note that either both u and w are
neighbors of v, or none of them, because u and w are twins. If u and w are neighbors of v, then b′v =∑
x∈NG(v)\{w} φ

′
x(t) = φ′u(t)+

∑
x∈NG(v)\{u,w} φ

′
x(t) = φu(t)+φw(t)+

∑
x∈NG(v)\{u,w} φx(t) = bv. On the

other hand, if u and w are not neighbors of v, then b′v =
∑
x∈NG(v)\{w} φ

′
x(t) =

∑
x∈NG(v)\{u,w} φ

′
x(t) =∑

x∈NG(v)\{u,w} φx(t) = bv. Finally, note that δuw equals 1 if u and w are adjacent, and 0 otherwise.
Therefore b′u =

∑
x∈NG(v)\{w} φ

′
x(t) =

∑
x∈NG(v)\{w} φx(t) =

∑
x∈NG(v) φx(t)− δuwφw(t) = bu − δuwaw.

In case (2), we simply note that m′ is a valid vector of G − w in t for the family of polynomials
Φ′ = (φ′v)v∈V \{w} such that φ′v = φv for all v ∈ V \ {w}. Indeed, for all v ∈ V \ {w}, a′v = φ′v(t) =
φv(t) = av. On the other hand, for all v 6= u,w, b′v =

∑
x∈NG(v)\{w} φ

′
x(t) =

∑
x∈NG(v)\{w} φx(t) = bv.

Finally, b′u =
∑
x∈NG(v)\{w} φ

′
x(t) =

∑
x∈NG(v) φx(t)− φw(t) = bu − aw.

With respect to case (3), we show that m′ is valid for G′ = G − {u2, . . . , un} at t for the family
of polynomials Φ′ = (φ′v)v∈V \{u2,...,un} given by φ′v = φv for each v 6= u1 and φ′u1

=
∑k
i=1 φui , which

is trivially linearly independent. For w 6= u1, we have that a′w = aw = φw(t) = φ′w(t). Since M is
a module in G any node w ∈ V \M is either adjacent to {u1, . . . , uk} or to none of them. In both
cases b′w = bw =

∑
v∈N(w) φ

′
v(t). By definition, a′u1

= φ′u1
(t) =

∑k
i=1 φui =

∑k
i=1 aui . Finally, b′u1

=∑
u∈NG′ (u1) φ

′
u =

∑
u∈NG(u1)\M φu = bu1 −

∑
u∈M∩NG(u1) au.

Both distance hereditary and modular width recognition and reconstruction protocols will consist two
parts: first, using the public random bits the nodes will conjointly produce a valid vector for the input
graph, which is written on the whiteboard (or, equivalently, communicated to all nodes). Then, each
node will use the information in the valid vector to produce a decomposition (this part does not require
any extra communication). In the case of distance hereditary graph recognition, it will look for either
a pendant node w or a pair of twins u,w, and then delete node w from the graph updating the valid
vector according to Lemma 26. The process is reiterated until the whole graph is deleted (if the graph
is distance hereditary), or the process is blocked (so the graph is not distance-hereditary). In the case of
graphs of modular width at most k, it guesses a non-trivial module by testing every set W of at most
k nodes, together with the graph induced by the module. Then, it suppresses all vertices of the module
except one, as in Lemma 26, and repeats the process.

Theorem 23. Let G = (V,E) be the input graph and let k ∈ N. There exist one-round public-coin
protocols in the BClique model computing Reconstruction on G and Recognition of G with
high probability and cost c(n), where

• G is the class of distance-hereditary graphs and c(n) = O(log n),

• G is the class of graphs of modular-width at most k, and c(n) = O(k2 log n).

Proof. Let G = (V,E) the input graph of size n. Let p be a prime number to be fixed later and
Φ = (xv)v∈V as a family of polynomials in Zp[X]. The node protocol for both recognition problems is
the following: nodes pick t ∈ Fp uniformly at random using the public randomness, and write on the
whiteboard the message mv such that m = (mv)v∈V is valid for G at t for the family of polynomials
Φ = (xi)i∈V . Using the information on the whiteboard, the referee will decompose the input graph using
the properties of distance hereditary graphs and graphs of modular width at most k.

First, if the decision problem is distance hereditary recognition, the referee defines G1 = G and iterates
n times in order to find a twin-pendant vertex decomposition of G. At step i the referee looks for a pair
of nodes u,w in Gi that satisfies one of the following: (1) au = bw, or (2) au 6= aw and either bu = bw
or au + bu = aw + bw. If the referee finds a pair satisfying (1) he deduces that that w has degree 1 and
his unique neighbor is u. If he finds a pair that satisfying (2), he deduces that u and w are twins. In
either case he computes a valid vector for Gi − {w} in t according to the corresponding case of Lemma
26, and iterate in Gi+1 = Gi − {w}. The process stops when the remaining graph is empty (and the
referee accepts) or any pair satisfy neither (1) nor (2) (and the referee rejects).
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Let φi be the linearly independent family of polynomials corresponding to the valid vector of Gi in
the i-th iteration. For each u, v ∈ V (Gi), u 6= v, consider the polynomials αiu,v = φiu − φiv, βiu,v =∑
w∈NGi (u) φ

i
w −

∑
w∈NGi (v) φ

i
w, γiu,v =

∑
w∈NGi [u] φ

i
w −

∑
w∈NGi [v] φ

i
w and σiu,v = φiu −

∑
w∈NGi (v) φ

i
w.

The protocol errs when a pair of nodes u,w satisfy (1) or (2) without being twins nor one node pending
of the other. The probability of this event is at most the probability that at any iteration t is a root of
a nonzero polynomial αiu,v, βiu,v, γiu,v, σiu,v for some pair u, v in any iteration. The union of the families
αi = (αiu,v)u,v∈V , βi = (βiu,v)u,v∈V , γi = (γiu,v)u,v∈V and σi = (σiu,v)u,v∈V , have at most 4n2 polynomials,
there are at most n iterations, and each polyinomial has degree at most n. This implies that the protocol
fails with probability at most 4n4/p. If we pick p ∈ [4nc+4, 4nc+5] for c > 1 we obtain that the protocol
fails with probability at most 1/nc.

In the case of modular width k graph recognition, the referee looks in G for a set of at most k nodes
that induce module M , and then compute the valid vector of the graph obtained from the deletion
of the module excepting one node, according to Lemma 26. The referee will test every possible set
of k′ ≤ k nodes M = {u1, . . . , uk′}, and every possible prime graph H = (M,E′) if M is a module
with G[M ] = H. Notice that a set of nodes {u1, . . . , uk′} is a module with induced graph H, then (3)
su1

= · · · = suk′ , where su =
∑
w∈NG(v) aw −

∑
w∈NH(v) aw. Once a module is found, a valid vector of

the graph G − {u2, . . . , uk′} in t is computed according to Lemma 26, and then the referee iterates in
G − {u2, . . . , uk′}. The process stops when the remaining graph is empty (and the referee accepts), or
any module of size at most k is found in the graph, and the referee rejects.

Let φi be the linearly independent family of polynomials corresponding to the valid vector of the graph
Gi corresponding to the i-th iteration. For each u, v ∈ V (Gi) and H = (W,E′) with u, v ∈ W ⊂ V (Gi),
consider the polynomials ρiH,v =

∑
w∈NGi (v) φ

i
w −

∑
w∈NH(v) φ

i
w, and τ iH,u,v = ρiH,u − ρiH,v. The protocol

errs if at some iteration there exists a set of at most k nodesM and a prime graph H = (M,E′) satisfying
(3) but not being a module. The probability of that event is at most the probability that at any iteration
t is a root of a nonzero polynomial τ iu,v,H for every possible choice of set M of at most k nodes, prime
graph H(M,E′), and nodes u, v ∈M . The union of these families have at most k2 ·2k2 ·nk+2 polynomials
at any iteration. Since there are at most n iterations, and each polynomial has at most n roots, the
protocol fails with probability at most nf(k)(n/p), with f(k) = O(k2). Picking p ∈ [nf(k)+c, nf(k)+c+1]
we obtain that the protocol fails with probability at most 1/nc.

10.4 Small classes of graphs

In this section, we show that in the Congested Clique model, we can efficiently reconstruct (therefore
compute any function in) any small class of graphs with sub linear cost. Moreover, we show that this
reconstruction and recognition can be done by a deterministic protocol with just two rounds, or with
high probability by a one-round private-coins protocol.

For to graphs G1 = (V,E1), G2 = (V,E2) we define the vertex-distance between G1 and G2, denoted
d(G1, G2), as the number of nodes v ∈ V such that NG1(v) 6= NG2(v). In an analogy with error correcting
codes, we define error correcting supergraphs with parameter d as follows: For a graph G = (V,E) of size
n, and a Reed-Solomon code C with parameters n and d, call C(G) the graph on m = n+ddlog(2(n+d))e
vertices such that, V (C(G)) = V ∪ V ′ where |V ′| = m − n,V ′ × V ′ ∩ E(C(G)) = ∅ and if xi is the i-th
row of the adjacency matrix of G, then the i-th row of the adjacency matrix of C(G) is C(xi). Note that
C(G)[V ] = G. We call V the original vertices and the set V ′ the correcting vertices.

Error correcting supergraphs satisfy that if G and G′ are two different graphs on the same vertex set
V , then the vertex-distance between C(G) and C(G′) is at least d (i.e., there are at least d vertices in
C(G) with a different neighborhood than the corresponding vertex in C(G′)). Indeed, since G and G′

are different, there exist at least one vertex v in V with different neighborhoods in G and G′. From the
definition of function C, the row of the adjacency matrix of C(G) corresponding to v differ in at least d
coordinates with respect to the one in C(G′). Since the adjacency matrix is symmetric, there are at least
d vertices which have different neighborhoods in C(G) and C(G′).

Let p > n be a prime number, a ∈ Zn and t ∈ Fp. Let P (a, t) =
∑n
i=1 ait

i−1 mod p the fingerprint of
a and t. For A = (ai,j)i,j∈[n] ∈ Zn2

and T ∈ Fnp , call P (A, T ) = (F (ai, ti))i∈[n], where ai = (ai,j)j∈[n]. Let
G be a graph of size n and T ∈ Fnp , we call P (G,T ) the fingerprint of G, which corresponds to the vector
P (A, T ), where A is the adjacency matrix of G. Let G be a class of graphs, and let C be a Reed-Solomon
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code with parameters n and d, and m = n+ ddlog(2(n+ d))e. The set,

Rp,d(Gn) = {R ∈ (Fp)m : ∃G 6= G′ ∈ Gn such that P (C(G), R) = P (C(G′), R)}

is called the set of roots of Gn. In the following lemma, we give a bound on the size of Rp(Gn) with
respect to the size of Gn, n, p and d.

Lemma 27. Let G be a class of graphs, n, d > 0, and p > n be a prime number, then

|Rd,p(Gn)| ≤ nd · pm−d · |Gn|2

Proof. Let G and G′ be two different graphs in Gn. Since the distance between C(G) and C(G′) is at
least d, there exist a set I ⊂ [m] such that, for all i ∈ I the i-th row of the adjacency matrices of
C(G) and C(G′), called C(xi) and C(x′i), are different. Since the number of elements r ∈ Fp such that
P (C(xi), r) = P (C(x′i), r) is at most n (since P (xi−x′i, ·) is a polynomial of degree at most n), we obtain
that the number of elements R ∈ Fmp such that P (G,R) = P (G′, R) is at most nd · pm−d. Therefore
|Rd,p(Gn)| ≤ nd · pm−d · |Gn|2.

This lemma implies that there exists T ∈ Fmp such that, for all G,G′ ∈ G, the fingerprint F (C(G), T )
of G is different than the fingerprint P (C(G′), T ) of G′. Notice that this T depends only in the class
of graphs and n. In our protocol, each node will compute the Reed-Solomon code of its input vector
to obtain the input that it would obtain as an original vector of the error correcting supergraph of the
input graph G. The problem is that only the original vertices of C(G) are real nodes (players), while the
correcting vertices cannot communicate. This issue is solved making each node to send the last m − n
coordinates of its neighborhood as original vertex in C(G). Then, the referee uses all messages sent by
real vertices to reconstruct the neighborhoods of the correcting vertices.

Theorem 24. Let G be a class of graphs. Then for each 0 < d < n,

1) There exist a one-round deterministic protocol in the BClique model that computes Reconstruc-
tion on G with cost O(log n+ log |Gn|/d+ d log(n+ d)).

2) There exist a two-round deterministic protocol in the BClique model that computes Recognition
of G with cost O(log n+ log |Gn|/d+ d log(n+ d)).

3) There exist a one-round private-coins protocol in the BClique model that computes Recognition
of G with high probability and cost O(log n+ log |Gn|/d+ d log(n+ d)).

Proof. 1) Let p be the first prime greater that n · |Gn|2/d (then p ≤ 2n · |Gn|2/d). Let m = n+ddlog(2(n+
d))e. Each node computes a vector T = (ti)i∈[m] ∈ Fmp such that T /∈ Rp,d(Gn) (each node computes
the same T ). This vector exists since using Lemma 27 we know that |(Fp)m| = pm > pm−n · (nd ·
|Gn|2) ≥ |Rp,d(Gn)|. Then, in the first (and unique) round each node i computes and communicates (1)
P (C(xi), ti), where xi is the row of the adjacency matrix of the input graph G (i.e C(xi) is the adjacency
row of vertex i in C(G)); and (2) the d log(n+d) last coordinates of C(xi). Note that cost of the protocol
is d log(n+ d) + log p = O(d log(n+ d) + log n+ log |Gn|/d) bits.

After the communication round, the referee uses the d log(n + d) last coordinates of each C(xi),
i ∈ V (G) to compute the rows of the adjacency matrix of C(G) corresponding to vertices i ∈ [n+d log(n+
d)] \ [n]. Recall that form definition of C(G), the subgraph of C(G) induced by vertices in [m] \ [n] is
edgeless. Then the referee computes T and P (xi, ti) for i ∈ [m] \ [n], obtaining the P (C(G), T ).

Finally the referee searches for a labeled graph G′ in Gn that satisfies P (C(G′), T ) = P (C(G), T ).
The fact that T /∈ Rp,d(Gn), means that for every pair G,G′ ∈ Gn, G 6= G′ implies that P (C(G), T ) 6=
P (C(G′), T ). Since the input graph G belongs to Gn and P (C(G), T ) = P (C(G′), T ), necessarily G = G′.

2) Let us now transform the previous protocol into a two-round protocol deterministic for Recogni-
tion of G. The first round is exactly the same than in the previous protocol. In the second round,
each node knows P (C(G), T ) and uses this information search for a labeled graph G′ ∈ Gn that satisfy
P (C(G′), T ) = P (C(G), T ) (we call such a graph a candidate). If no such a graph exists, the nodes
deduce that the input graph does not belong to Gn. Otherwise, each node i checks if its neighborhood
in G corresponds with the one of vertex i in G′, and communicates the answer. The protocol accepts
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if every node communicates yes in the second round. From the definition of T , each node necessarily
compute the same candidate G′, therefore the protocol accepting means that the neighborhood of each
node coincides with the one of the candidate.

3) We show now how to transform the last protocol into a one-round private-coins protocol that solves
Recognition of G with high probability. The idea is to check the identity of the candidate G′ commu-
nicating also an equality-tester (fingerprint) in the first round. Let p′ ∈ [nc+2, 2nc+2] be a prime number
where c > 2. In our randomized protocol, each node repeats the deterministic protocol of point (1), but
also chooses si ∈ Fp uniformly random, and communicates the value P (xi, si) together with si. In this
case each node communicates d+ log p+ 2 log p′ = O(d+ log n+ log |Gn|/d) bits.

After the communication round the referee searches for a candidate G′ ∈ Gn satisfying P (C(G), T ) =
P (C(G′), T ). As before, if no such graph exists the referee deduces that G does not belong to G.
Otherwise, the referee checks if P (G,S) = P (G′, S), where S = (s1, . . . , sn). The probability that
P (G,S) = P (G′, S) when G 6= G′ is at most n/p ≤ 1/nc+1 (indeed is (n/p)k ≤ 1/nk(c+1), where
k = d(G,G′)). Therefore, the referee correctly identify if G′ equals the input graph with probability at
least 1− 1/nc.

Note that the optimal 0 < d < n for a class of graphs G is obtained noticing that if d < n then
log(2(n + d)) < 2 log n, and picking d =

√
log |Gn|

logn . In that case the cost of the protocols becomes

O(log n+
√

log |Gn| log n).

Corollary 5. Let G be a class of graphs. The following holds

1) There exist a one-round deterministic protocol in the BClique model that computes Reconstruc-
tion on G with cost O(log n+

√
log |Gn| log n).

2) There exist a two-round deterministic protocol in the BClique model that computes Recognition
of G with cost O(log n+

√
log |Gn| log n).

3) There exist a one-round private-coins protocol in the BClique model that computes Recognition
of G with high probability and cost O(log n+

√
log |Gn| log n).

We finish this section showing that in the UClique model, we can the same ideas to build protocols
that recognize and reconstruct any class of graphs G in a constant number of rounds with cost O(log n+
log(|Gn|)/n). The key idea is to use the extra power provided by the UClique model to communicate the
fingerprints of the Θ(n) correcting vertices. To do this without increasing much the size of the messages
we have to slightly modify some definitions.

Recall when we defined Solomon-Reed codes in Section 8.2.5, we initially defined the function C with
range in Fn+d

q , where q ∈ (n+d, 2(n+2)) is a prime number and n, d are the parameters of the correcting
code. Note that the first n coordinates of C(x) are still equal to the input x, but seen as elements of Fq.
For a graph G, call MC(G) the squared matrix of dimension n+ d on elements of Fq defined as follows.

• For each i ∈ [n], the i-th line of MC(G) is C(xi) ∈ Fn+d
q , where xi is the i-th row of the adjacency

matrix of G.

• For each i ∈ [d], the n+i-th line ofMC(G) is the vector (C(x1)n+i, . . . , C(xn)n+i,~0) ∈ Fn+d
q , where

~0 is the zero-vector of Fd, and C(x)j ∈ Fq is the j-th coordinate of C(x).

Note that if G 6= G′, then the number of lines where MC(G) and MC(G′) differ is at least d.
Let p > q be another prime number. The fingerprint of an element of x ∈ Fnq and t ∈ Fp is defined

in the same way we defined fingerprints for Boolean vectors, i.e., the polynomial in Fp[X] such that
P (x, t) =

∑
i∈[n] xit

i−1 (where the coordinates of x are seen as elements of Fp). In a similar way, if A is
a squared matrix of dimension n with coordinates in Fq, the fingerprint of A and T ∈ Fnp is defined as a
vector P (A, T ) = (P (Ai, T ))i∈[n] where Ai is the i− th line of A.

Obviously if x, y ∈ Fnq , are such that x 6= y, then there are at most n elements in Fp where the
fingerprint of x equals to the fingerprint of y. Moreover, for a class of graphs G if we define for a class of
graphs the set of roots

Sp,d(Gn) = {S ∈ (Fp)n+d : ∃G 6= G′ ∈ Gn such that P (MC(G), S) = P (MC(G′), S)}
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Following the same arguments than in the proof of Lemma 27, we obtain that for any class G,
|Rd,p(Gn)| ≤ nd · pn · |Gn|2. We are now ready to show our result.

Theorem 25. Let G be a class of graphs. The following holds

1) There exist a two-round deterministic protocol in the UClique model that computes Reconstruc-
tion on G with cost O(log n+ log |Gn|/n).

2) There exist a three-round deterministic protocol in the UClique model that computes Recognition
of G with cost O(log n+ log |Gn|/n).

3) There exist a two-round public-coin protocol in the UClique model that computes Recognition
of G with high probability and cost O(log n+ log |Gn|/n).

Proof. Let p be the first prime greater than n · |Gn|2/n (then p ≤ 2n · |Gn|2/n), and let q be the smallest
prime number such that 2n < q (i.e., q < 4n). Before the first communication round, each node i
computes C(xi) ∈ F2n

q , where C us the Solomon-Reed code with parameters n and d = n. Then, for
each j ∈ [n] each player i it communicates C(xi)j+n to player j. This communication round requires
bandwidth 2dlog qe = O(log n).

After the first communication round, node i possesses C(xi) and (C(x1)i+n, . . . , C(xn)i+n), i.e., it
knows lines i and i + n of matrix MC(G). Each node computes a vector T = (ti)i∈[2n] ∈ F2n

p such that
T /∈ Sp,n(Gn) (each node computes the same T ). This vector exists since p2n > pn·(nn·|Gn|2) ≥ |Sp,n(Gn)|.
Then, node i communicates (broadcasts) P (MC(G)i, Ti) and P (MC(G)i+n, Ti+n). This communication
round requires bandwidth 2dlog pe = O(log n+ (log |Gn|)/n).

After the second communication round, each node knows P (MC(G), T ), so locally they compute the
unique candidate G′ ∈ Gn such that P (MC(G′), T ) = P (MC(G), T ). If we are solving Reconstruction
on G, then necessarily G = G′. If we are solving Recognition of G then in one more (broadcast) round,
each node announces if the candidate corresponds with what they have in their input. For the randomized
protocol for Recognition of G, we save one round sending a fingerprint as we did in the private-coin
protocol of Theorem 24. In any case, the protocol can be performed in the bounds on the bandwidth
required by the second round.

10.5 Discussion

We presented several protocols for reconstructing and recognizing small families of graphs. Between all
the protocols presented in this chapter, if there is the alternative (for example if we know that our input
is d-degenerate and of modular width k), it would be preferable to use the protocol for reconstructing d-
degenerate graphs. Our protocol runs in one round, it is deterministic, and asks a logarithmic bandwidth,
so basically has less possible requirements in terms of the measures that we defined for the broadcast
congested clique model.

However, even if our protocol for d-degenerate graphs has a smaller cost compared by the one given by
Becker et al. (Proposition 31), i.e a reduction from O(d2 log n) to O(d · log n), the local computation time
of our protocol might be quite large compared to the one of [13]. Indeed, our protocol uses deterministic
linear sketches, which involve to compute and test all possible vectors T ∈ Fnp , for p = O(nd). Even if we
assume that the deterministic linear sketches are computed beforehand, our protocol may still need to
compute and compare eventually all the possible fingerprints for d-sparse vectors. It is an open question
whether this can be optimized, to obtain a protocol with local time that is FPT parameterized by d.

Note that this issue may be more delicate for the protocols given in Section10.4, since they require
a local computation that may take an enormous quantity of time. To compute T the nodes may have
to construct all the possible fingerprints for all graphs in the class (or the error correcting graphs of the
class, to be precise), which is exponential. Since the value of T depends only in the class of graphs, we
may assume that it was computed beforehand. However, even in this case the nodes must then compute
a candidate graph from the communicated fingerprints, so they may have to test again every graph in the
class. An interesting open problem is whether the candidate G′ can be computed from the fingerprint of
a graph, so these parts of the protocols can be improved to be performed in polynomial time. Possibly
some recovery properties of Reed-Solomon graphs may give some clues to this question.
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An interesting remark is that our protocol reconstructing d-degenerate graphs and the protocols of
Section 10.4 can be implemented as protocols in the dynamic graph streaming model, within the same
space bounds (the number of rounds equals the number of passes, and bandwidth is the space).

For classes of graphs of bounded degeneracy, bounded modular width, or the class of distance hered-
itary graphs, the protocols on Sections 10.2 and 10.3 might be preferable than the ones provided by
Corollary 5. Indeed, there are at most 2O(n logn) labeled distance hereditary graphs, and families of
graphs with degeneracy or modular width at most k contain at most 2f(k)n logn graphs. Corollary 5
provides protocols with cost O(

√
n log n), which is worse than the cost O(log n) required by our protocols

in Section 10.3 and 10.2. However, the protocols for bounded modular width and distance hereditary
graphs of Section 10.3 require public-coins coins, while the ones of Corollary 5 are deterministic or require
only private-coins.

Many classes of graphs with few minimal separators can be recognized and reconstructed by our
protocols. For example, many graph classes with a few minimal separators, e.g., interval graphs, polygon-
circle graphs, d-trapezoid graphs have 2O(n logn) labeled graphs. Indeed, these classes of graphs can be
represented by intersection models of geometric objects, which can be encoded in O(log n) bits per node.
Therefore, they can be reconstructed and recognized with our protocols with cost O(

√
n log n). Other

example is the class of chordal bipartite graphs, which contain 2O(n(logn)2) labeled graphs [35], so it can
also be reconstructed and recognized with cost O(

√
n log3 n). In general, if a class of graphs contain

2n
1+ε

graphs, then it can be recognized and reconstructed with our protocol with cost O(n(1+ε)/2
√

log n).
Two important exceptions are chordal graphs and weakly chordal graphs. These two classes of graphs

are not small, so they cannot be reconstructed in the broadcast congested clique model. However, in the
next chapter, we will show that these classes can be recognized by two-round randomized protocols with
polylogarithmic cost in the BClique2 and BClique3 models, respectively. Recall that these models, the
initial local knowledge of the nodes is expanded to more than just their immediate neighbors. Further
research in this sense is to look for protocols in the BClique model that recognize chordal and weakly
chordal graphs, as well as any class of all graphs with polynomially many minimal separators.
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Chapter 11

Detection of short cycles and chordality

In this chapter, we consider several problems: Induced-Cycle=k, Induced-Cycle≤k, and the problem
Induced-Cycle>k, which consists in deciding, respectively, whether the input graph has an induced cycle
of length exactly k, at most k, strictly larger than k. Problems Cycle=k, Cycle≤k, Cycle>k are defined
in a similar way, but here we ask whether the input graph has a cycle (induced or not) of length k, at most
k, strictly larger than k. We show first that problems Induced-Cycle≤k, Cycle=k and Cycle>k can
be solved by using our deterministic one round protocols reconstructing graphs of bounded degeneracy.
Later, we show that Induced-Cycle>2k+1 can be solved by a two-round randomized protocol in the
BCliquek model with high probability. Note that problem Induced-Cycle>3 is equivalent to the
problem of recognize the class of chordal graphs. Finally, we give some lower bounds including multi-
round, randomized protocols in BCliquer. Recall that BCliquer is the extension of the broadcast
congested clique model where each node x receives as input the set of all edges lying on a path of length
at most r, starting in x.

11.1 Introduction
One of the most studied problems in the BClique model are related to the existence of cycles in the
input graph G. The first natural question one can formulate, that is, deciding whether G contains a cycle
has been, until now, the only question amenable to a simple protocol. In fact, Becker et al. [13] show
that a simple set of logarithmic bandwidth is sufficient to recognize, deterministically and in one round,
whether the input graph G is a forest.

Natural questions concerning cycles has given strong negative results. Drucker et al. [57] showed
that, if ` ≥ 4, then any protocol that decides whether the `-node cycle C` is a subgraph (or an induced
subgraph) of the input graph G needs Ω(ex(n,C`)/nb) rounds, where ex(n,H) is the maximum number
of edges of an n-node graph which does not contain a subgraph isomorphic to H. Remark that ex(n,C`)
is Θ(n2) for odd values `, and Θ(n1+1/`) for even values [30].

Recall that an induced path (resp. cycle) of graph G is also called a chordless path (cycle). A graph
is called k-chordal if it does not contain any induced cycle of length greater than k. The 3-chordal graphs
are simply known as chordal graphs. Weakly chordal graphs are a subclass of 4-chordal graphs.

In this chapter, we consider several problems: Induced-Cycle=k, Induced-Cycle≤k, and the
problem Induced-Cycle>k, which consists in deciding, respectively, whether the input graph has an
induced cycle of length exactly k, at most k, strictly larger than k. Problems Cycle=k, Cycle≤k,
Cycle>k are defined in a similar way, but here we ask whether the input graph has a cycle (induced or
not) of length k, at most k, strictly larger than k.

Note that the existence of an induced cycle of length at most k is equivalent to the existence of
a cycle (not necessarily induced) of length at most k. Therefore problem Cycle≤k is identical to
Induced-Cycle≤k, so the upper and lower bounds for these problems coincide. On the other hand,
as we are going to explain later, finding a protocol for detecting induced cycles of length at least k+ 1 re-
quires much more involved arguments than finding protocols for detecting cycles (not necessarily induced)
of length at least k + 1.

We are going to study positive results and lower bounds in the BCliquer model, which recall that
is the extension of the broadcast congested clique model where each node u receives as input the set of
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11.2. UPPER BOUNDS BASED ON DEGENERACY

all edges lying on a path of length at most r, starting in u.Notice that the BClique1 is the BClique
model.

We start in Section 11.2 giving upper bounds based on degeneracy. We use a result by Druker et
al. [57], showing that graphs without short cycles have sublinear degeneracy, and a result from Birmelé
showing that graphs without long cycles have bounded treewdith. Using Theorem 21, we obtain one-round
deterministic protocols for Induced-Cycle≤k, Cycle=k and Cycle>k with sublinear costs.

Then, in Section 11.3 we give a useful, “local" characterization of graphs which do not have long
induced cycles. Using this, together with linear sketches of [1, 86] (see Section 8.2.2), we show that, if
each node is allowed to see at distance bk/2c+ 1, then a polylogarithmic number of bits is sufficient for
detecting in two rounds an induced cycle of length strictly larger than k. More precisely, we prove that
for every k ≥ 3, there exists a two-round protocol in the BCliquebk/2c+1 model with cost O(log4 n)
that solves Induced-Cycle>k with high probability. The approach is based on the randomized protocol
of Ahn et al. [1] for computing a spanning forest in the BClique model. Note that this implies that
in particular we can detect chordal graphs in two-rounds with poly-logarithmic cost in the BClique2

model.
Finally, in Section 11.4 we give study some lower bounds in the mentioned problems. We show

that our protocol for short cycles is essentially sharp, even for multi-round protocols and the BCliquer
model with r > 1. More precisely, we show that our one-round deterministic protocol for recognizing
and reconstructing graphs without induced cycles of length at most k can not be beaten by randomized
multiround protocols, even if we allow the nodes to see up to distance bk/4c. We found a similar
situation for problems Induced-Cycle=k, Induced-Cycle≤k, Induced-Cycle>k and Cycle=k, and
extend them for the BCliquelfloork/4c model restricted to one-round protocols, or multi-round protocols
conditioned bounds in the local running time.

11.2 Upper bounds based on degeneracy
A very helpful result in the study of graphs without short cycles is the one that relates the nonexistence
of even cycles in G with the degeneracy of G. More precisely, for any even value k, graphs with no cycles
of length exactly k (as subgraphs) have a relatively small degeneracy.

Proposition 47 ([57]). Let k be even. Graphs with no cycles of length k are of degeneracy O(n2/k).

With respect to long cycles, by a result of Birmelé [19], graphs with no long cycles of length greater
than k have treewidth at most k.

Proposition 48 ([19]). A graph without cycles of length greater than k have treewidth at most k.

Together with Proposition 44, we obtain that a graph without cycles of length greater than k is
k-degenerate.

Theorem 26. There is a one-round deterministic protocol in the BClique model for:

1. Induced-Cycle≤k, that communicates with cost O(n2/k log n) bits, if k is even.

2. Induced-Cycle≤k, that communicates with cost O(n2/(k−1) log n) bits, if k is odd.

3. Cycle=k, that communicates with cost O(n2/k log n) bits, if k is even.

4. Cycle>k, that communicates with cost O(k log n) bits.

Proof. The NO-instances of these problems are of small degeneracy by Propositions 47. We simply apply
Theorem 21 on the input graph and the corresponding degeneracy bound (O(n2/k) for Induced-Cycle≤k
and Cycle=k when k is even, O(n2/(k−1)) for Induced-Cycle≤k when k is odd, k for Cycle>k).
Therefore, in one round each node either (1) fully reconstructs the graph and decides the property, or
(2) notices that the degeneracy of the input graph is larger than the bound requested for NO instances
of the first three problems and concludes that the graph is a YES instance.

Previous protocol is rather restrictive. It is deterministic, it works in one-round and the information
each node has about the graph is minimal, consisting in the 1-neighborhood. The question we ask
here is the following: is it possible, by lifting previous restrictions, to decrease the total number of bits
broadcasted by each node? In Section 11.4 we give negative answer to this question. In other words, the
one-round deterministic protocol based on the degeneracy seems to be the best we can do.
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11.3 Chordality

Unlike the case of short cycles, there is a significant difference between detecting long induced cycles and
detecting long cycles (induced or not).

Recall that graphs without induced cycles of length greater than k are called k-chordal [35]. 3-chordal
graphs, i.e., graphs in which every cycle (not necessarily induced) of 4 or more vertices has a chord, are
called chordal graphs. It is known that a graph G is chordal if and only if, for each vertex u ∈ V , and each
connected component C in G −N [u], the neighborhood N(C) of this component induces a clique in G.
This “local" characterization has been exploited by Chandrasekharan et al. [40] for devising a fast parallel
algorithm recognizing chordal graphs. We begin this section by extending previous characterization to
arbitrary chordalities k > 3 in order to take advantage of this in our distributed framework.

LetG be a graph, u ∈ V (G) and k > 0. LetD1, . . . , Dp be the p connected components ofG−Nbk/2c[u]
(obtained by removing the vertices at distance at most bk/2c from u). Let Hk

u denote the graph obtained
from G by contracting each component Di into a single node di.

Lemma 28. Let G be a graph. G is k-chordal if and only if, for every u ∈ V (G), Hk
u is k-chordal.

Proof. Suppose first that G is not k-chordal. Let u ∈ V (G) be a vertex contained in some chordless cycle
of length greater than k. Among the chordless cycles of length greater than k containing u, let Cl be
one that has a minimum size intersection with Nbk/2c[u]. We call u0, . . . , ul−1 the nodes of the cycle Cl,
where u0 = u and ui is adjacent to ui−1 mod l and ui+1 mod l.

The cycle Cl may leave the set Nbk/2c[u] and then get in again potentially many times. We will show
that each time that it does that, the cycle intersects a different connected component of G −Nbk/2c[u].
Thus, when we contract each such component into a single node, we obtain a chordless cycle of length
greater than k. For t ≥ 0, call P1, . . . , Pt the connected components of G[Cl] − Nbk/2c[u]. Since Cl is
chordless, there exists for each i ∈ {1, . . . , t} a pair ai, bi ∈ {0, . . . , l− 1} such that Pi = {uj ∈ Cl : ai <
j < bj}, and |Cl ∩Pi| = {uai , ubi}. Moreover, since Pi ∩Nbk/2c[u] = ∅, uai and ubiare at distance exactly
bk/2c from u in G.

For i ∈ {1, . . . , t}, let Di be the component of G −Nbk/2c[u] that contains Pi. Notice that N(Di) ∩
Cl = {ai, bi}. Indeed, suppose that |Di ∩ Cl| ≥ 3, and let J ⊂ {1, . . . , l} be such that j ∈ J if
xj ∈ N(Di). Let m = min(J) and M = max(J), and call P ′ a shortest path between um and xM
contained in Di. Clearly uj /∈ N(Ci) for any j ∈ {0, . . . ,m − 1,M + 1, . . . , l − 1}. Therefore the cycle
C ′ = u0, . . . , um−1, um, P

′, uM , uM+1, . . . , xl−1, x0 is chordless. Since xm and xM are at distance bk/2c
from x in G, C ′ is of length greater or equal to k + 1. Then C ′ is a chodless cycle of length greater
than k that contains u and whose intersection with Nbk/2c[u] is strictly smaller than the one of Cl, which
contradicts the fact that, by our choice of Cl, the intersection of Cl with Nbk/2c[u] is a minimum one.
We conclude that each component of G −Nbk/2c[u] contains at most one of {P1, . . . , Pt}. Therefore, in
the graph Hk

u , each path Pi of Cl will be contracted into a different vertex di. The new cycle is still a
chordless cycle of length greater than k, in the graph Hk

u . So Hk
u is not k-chordal.

For the converse, suppose that there exists u ∈ V (G) such that Hk
u contains a chordless cycle of length

l greater than k , call Cl = u0, . . . , ul−1, x0 such a cycle. Consider the set I = {i ∈ {0, . . . , l − 1} | ui ∈
Cl\Nbk/2c[u]}, of the indices of nodes in Cl that correspond to contracted components of G−Nbk/2c[u].
For each i ∈ I, call Di the connected component of G − Nbk/2c[u] corresponding to ui. Notice that
since Cl is chordless N(Di) ∩ Cl = {ui−1, ui+1} (where the subindices are taken modulo l). Let Pi be a
chordless ui−1, ui+1-path in G[Di ∪ {ui−1, ui+1}].

Call C the cycle of G corresponding to Cl when we replace for each i ∈ I the subpath ui−1, ui, ui+1

with Pi. Clearly the length of C is greater or equal than that of Cl. Also C is chordless since for each
i ∈ I, the node ui corresponds to a different component Di, |N(Pi) ∩ C| = {ui−1, ui+1}, and Pi is a
chordless ui−1, ui+1-path. We conclude that G is not k-chordal.

Lemma 28 provides us with a strategy for deciding k-chordality, i.e., for deciding whether the input
graph G is a NO instance of problem Induced-Cycle>k. For doing this every node x must compute
the graph Hk

x and then decides whether Hk
x is k-chordal. In order to compute Hk

x , each node x needs
first to find the connected components of G−Nbk/2c[x]. Each nodes implements this by computing the
connected components of G − Fx outside Nbk/2c[x], where Fx is the set of all edges lying on a path of
length at most bk/2c+ 1 starting in x.
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11.3.1 Computing the connected components of G− Fx

Ahn et al. provide a probabilistic, one-round protocol for computing, in the BClique1[O(log3 n)] model,
a spanning forest of the input graph G with ε-error [1]. In their protocol, each node constructs a message
based on its neighborhood and on a sequence of public random coins, and broadcasts it to all other nodes.
Using all these messages, every node is able to construct a spanning forest of the graph with probability
1− ε.

Here, we want each node x to compute the connected components of G − Fx. To do that, we place
ourselves in the BCliquebk/2c+1[O(log4 n)] model. We do so because (i) we must amplify the bandwidth
by a log(n) factor to ensure that the spanning tree protocol of [1] succeed with high probability, and (ii)
every node needs to know the set of edges Fx. Using the spanning forest protocol of [1], we prove that
each node x can construct a spanning forest of G−Fx with high probability. The key observation is that,
in the protocol of [1], the message of each vertex is a linear function (w.r.t. to the edges of the graph).
Therefore, from the messages of G, each vertex x computes the messages that the protocol would have
constructed on G− Fx.

Let G be a graph. Suppose that a node knows a set of edges F ⊆ E(G), and in a previous round it
has received enough information to construct a set of linear sketches of the graph G. We will show that
we can use algorithm of Proposition 43 and the linearity of the sketch function to compute the connected
components of G− F .

Algorithm 3: Spanning forest after removing edges
Input: A set of t = dlog ne random strings r1, . . . , rt picked uniformly at random; a set of t

connectivity sketches Sr1(G), . . . , Srt(G) of a graph G of size n, produced with r1, . . . , rt.
A set of edges F ⊆ E(G).

Output: A spanning forest of G− F .
1 foreach x ∈ V (G) and r ∈ {r1, . . . , rt} do Sxr ← Sr(x) ;
2 foreach e ∈ F and x ∈ e do
3 Compute the vector bx,e as in Lemma 29;
4 foreach r ∈ {r1, . . . , rt} do
5 Compute Sr(bx,e);
6 Sxr ← Sxr + Sr(b

x,e);

7 Run the spanning tree algorithm of Proposition 43 on input {{Sxr }x∈V (G)}}r∈{r1,...,rt}. Call T the
spanning forest produced by it;

8 return T .

Lemma 29. There exists a one-round protocol in the BCliquebk/2c+1 model which computes, for every
node x ∈ V , the connected components of G−Nbk/2c[x], with high probability and cost O(log4 n).

Proof. The protocol works as follows. First, each node x sends t = dlog ne different 1/n2-linear sketches
(see Section 8.2.3) of its connectivity vector ax, using t random strings r1, . . . , rt. Note that each node
knows Fx. Observe that the components of G−Nbk/2c[x] are exactly the components of G−Fx without
considering the nodes in Nbk/2c[x]. In the following, we show that after the communication round, each
node x can compute a spanning forest of G−Fx with probability at least 1− 1/n2. Therefore, the whole
protocol succeeds with probability at least 1− 1/n.

Let Sr(G) = (Sr(a
x1), . . . , Sr(a

xn)) be one of the 1/n2-connectivity sketches of G, produced with the
random string r, received in the communication round. Consider, for each e ∈ Fx and u ∈ e, the vector
bu,e of dimension

(
n
2

)
where,

bu,ee′ =

{
−aue if e′ = e,

0 otherwise , for each e′ ∈
(
n

2

)
.

Let us call cu be the connectivity vector of node u in G− Fx. Note that, for each e ∈
(
n
2

)
,

cue = aue +
∑

{e′∈F :u∈e′}

bu,e
′

e =

{
aue if e ∈ E(G) \ Fx,
0 otherwise.
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If we define Sur = Sr(a
u) +

∑
{e∈F :u∈e} Sr(b

u,e), we obtain, by linearity of Sr, that Sur = Sr(c
u) and

then {Sr(cu)}u∈V is a 1/n2-connectivity sketch of G− Fx produced with r.
Then, after the communication round, any node x can obtain t different 1/n2-connectivity sketches of

G− Fx produced with random strings r1, . . . , rt picked uniformly at random. Therefore, by Proposition
43, it can produce a spanning forest of that graph with probability at least 1/n2.

11.3.2 Deciding k-chordality

We are now able to express the distributed algorithm recognizing k-chordal graphs, see Algorithm 4.

Theorem 27. For every k ≥ 3 there exists a two-round randomized BCliquebk/2c+1 protocol that
recognizes k-chordal graphs, and thus solves problem Induced-Cycle>k, with high probability and cost
O(log4 n).

Proof. In the first round, each node x ∈ G computes the connected components of G−Nbk/2c[x] using the
protocol of Lemma 29. After the first round, each node x uses its knowledge of G to locally reconstruct
Hk
x by identifying the connected components D1, . . . , Dp of G−Nbk/2c[x] and contracting each Di into a

unique vertex di. Note that x sees the edges between Di and Nbk/2c[x]. Finally, x checks whether Hk
x is

k-chordal and communicates the answer in the second round. By Lemma 28, the input graph is chordal
if and only if each vertex x communicated a YES answer. We emphasis that the second round is needed
only because the nodes must all agree on the output.

We remark that the protocol may fail only when some node x tries to compute without success the
components of G−Nbk/2c[x]; this event may occur, from Lemma 29, with probability at most 1/n.

Algorithm 4: k-chordality
1 Round 1
2 Run the protocol of Lemma 29 to compute the components of G−Nbk/2c[x];

3 Round 2
4 Each node x builds Hk

x contracting each component of G−Nbk/2c[x] into a single node;
5 Each node x checks whether Hk

x is k-chordal and communicates the answer to the other nodes;
6 The graph is k-chordal if all messages communicated during this round are YES messages;

11.4 Lower bounds

Recall that BCliquer is the extension of the broadcast congested clique model where each node u receives
as input the set of all edges lying on a path of length at most r, starting in u. Our first result tackles the
case where r ≤ bk/4c.

Theorem 28. Let ε ≤ 1/3 and k/4 < r ≤ k/3. Then, any ε-error randomized protocol in the BCliquer
model that solves Induced-Cycle≤k, (resp. Cycle=k) has cost Ω(log(|Gn|)/(n log n)), where Gn is the
family of connected graphs of size n without cycles of length at most k (resp. without cycles of length k).

Proof. The proof of this theorem is very similar to a proof found in [57] where this result is proved
for the BClique1 model. Let P be a ε-error, one-round protocol in the BCliquer model that solves
Induced-Cycle≤k (resp. Induced-Cycle≤k, Cycle=k) communicating b(n) bits in R(n) rounds on
input graphs is of size n. Let {Gn}n be a family of graphs of size n with the maximum number of edges
not containing a cycle of length at most k (resp. without cycles of length k).

We show that we can use P to solve the communication complexity problem DISJm. Recall that in
this problem two players (Alice and Bob) receive each a subset of {1, . . . ,m} and have to decide if the
intersection of their sets is nonempty. The communication complexity of DISJm is Ω(m) (see Section
8.2.1 and [97]).

The reduction works as follows: Alice and Bob interpret their inputs as subsets of E(Gn), called EA
and EB , respectively. Let G̃n be the graph composed by two copies of V (Gn), called VA and VB , and
where each node in VA is connected by a path of length 2bk/4c with its corresponding copy in VB . The
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edges between nodes in VA (resp. VB) are given by EA (resp. EB). Notice that G̃n has an cycle of length
at most k (resp. a cycle of length k) if and only if EA ∩ EB 6= ∅.

Let u be a vertex in V (Gn) and let uA and uB the copies of u in VA and VB , respectively. We call Pu
the path of length 2r from uA to uB in G̃. For each u ∈ V (G), Alice (resp. Bob) can simulate P on each
node uA (resp. uB ∈ VB) and in the first (resp. the last) bk/4c nodes in Pu, since the messages sent by
those nodes only depend on EA (resp. EB). We say that Alice (resp. Bob) owns those nodes.

We obtain a communication protocol for DISJm, where at each round Alice and Bob exchange the
messages produced simulating protocol P on all the nodes that they own. This implies that protocol P
on graphs of size 2nbk/4c is such that 2nbk/4c ·R(2nbk/4c) · b(2nbk/4c) = Ω(m(n)). Therefore, protocol
P on n-vertex graphs is such that R · b = Ω(n1+2/k) if k is even and R · b = Ω(n1+2/(k−1)) if k is odd.

The number of graphs without cycles of length at most 2` is 2Ω(n1+1/`) [30], and the number of graphs
without cycles of length exactly k is 2Ω(n1+2/k) [30] for k even and 2Ω(n2) if k is odd.

Corollary 6. Let 0 < r < k/4. Any one-round ε-error randomized protocol in the BCliquer model for:

• Induced-Cycle≤k has cost Ω(n2/k) if k is even, and cost Ω(n2/(k−1)) if k is odd.

• Cycle=k has cost Ω(n2/k) if k is even, and cost Ω(n) if k is odd.

In the case where the nodes have more knowledge of the graph, i.e, when k/4 ≤ r ≤ k/3, we can
obtain a tight bound for one-round protocols. Our result use a reduction from a classical simultaneous
communication problem called Indexn (see Section 8.2.1). Recall that in such problem there are two
players, Alice and Bob. Alice receives a vector a ∈ {0, 1}n and Bob an index b ∈ {1, . . . , n}. Alice needs
to send a single message to Bob allowing him to compute ab. It is well known that even with shared
randomness, Alice must send a message of size Ω(n) [97].

Theorem 29. Let ε ≤ 1/3 and k/4 < r ≤ k/3. Then, any ε-error, one-round protocol in the BCliquer
model that solves Induced-Cycle>k (resp. Induced-Cycle=k, Induced-Cycle≤k, Cycle=k) has
cost Ω(log(|Gn|)/(n log n)), where Gn is the family of connected graphs of size n without induced cycles
greater than k (resp. without induced cycles of length k, without cycles of length at most k, without cycles
of length k).

Proof. Let P ′ an ε-error one-round randomized protocol in the BCliquer model which solves problem
Induced-Cycle>k (resp. Induced-Cycle=k, Induced-Cycle≤k, Cycle=k) using messages of size
c(n). Since ε ≤ 1/3, we can construct a new one-round protocol P for the same problem(s), using
messages of size O(c(n) log n), whose error probability is smaller than 1/n3. In protocol P each vertex
constructs t independent messages as in P ′, which is equivalent to t independent runs of protocol P ′. It
suffices to take t such that εt ≤ 1/n3.

Let m = blog |Gn|c, with Gn is the family of connected graphs of n nodes without induced cycles
greater than k (resp. without induced cycles of length k, without cycles of length at most k, without
cycles of length k). Let a, b an input of the Indexm problem. In the following, we will show that P can
be turned into a protocol for Indexm where Alice sends a message of size 4rn · c(k(n+ 1)).

Let G1, . . . , G|Gn| be the graphs in Gn. Alice interprets her input a ∈ {0, 1}m as a number in 1, . . . , 2m,
and then picks Ga ∈ Gn. Then, she attaches to each node v ∈ V (Ga) a disjoint path Pv = v, v2, v3, . . . , vr
of length r, obtaining a graph G̃a. For u, v ∈ V (Ga) call G̃a(u, v) the graph obtained from G̃a by adding
a new path Pu,v of length k − 2r from ur to vr. Notice that Pu ∪ Pu,v ∪ Pv is a chordless u, v-path of
length k.

Alice then uses P to produce three messages for each node w in V (G̃a), such that w ∈ Pu for some
u ∈ Ga (possibly u = w). In the first message M1(w), Alice communicates the message that w would
output simulating P on input graph G̃a. The second and third messages M2(w) and M3(w) are the ones
that w would produce, for some v ∈ V (Ga), v 6= u, on input G̃a(u, v) and G̃a(v, u), respectively. Notice
that if w /∈ Pu ∪Pv then the message of w on G̃a equals the one on G̃a(u, v). Moreover, the message that
w sends in G̃a(u, v) (respectively G̃a(v, u)) in protocol P is the same for all vertices v 6= u, v ∈ V (Ga).

For each pair u, v ∈ V (Ga), Bob uses the messages received form Alice to build the set of messages
that one would receive running P on input G̃a(u, v). Let M(G̃a(u, v)) = (M(w) : w ∈ V (Ga(u, v))) be
such set of messages, where
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• If w is a vertex of G̃a then

M(w) =

 M1(w) if w /∈ Pu ∪ Pv
M2(w) if w ∈ Pu
M3(w) if w ∈ Pv

• If w is a vertex of G̃a(u, v) but not of G̃a, then the message can be constructed directly by Bob.
Indeed in this case w is internal to some path Pu,v, so all the edges seen by w in the model are on
Pu,v, on Pu or on Pv. In particular, they do not depend on graph Ga.

Then, simulating again P, but this time in M(G̃a(u, v)), Bob obtains the answer of the problem
Induced-Cycle>k (resp. Induced-Cycle=k, Induced-Cycle≤k, Cycle=k) on input Ga(u, v) which
has r(n− 2) + k vertices.

For the problem Induced-Cycle>k, we claim that G̃a(u, v) has an induced cycle of length at most
k if and only if u, v are not adjacent in Ga. Indeed, since G̃a(u, v) is connected, if u, v are not adjacent
in Ga, then Pu ∪ Pu,v ∪ Pv plus any shortest u, v-path in Ga form a cycle of length greater than k. By
the other hand since Ga is k-chordal, so is G̃a, so any chordless cycle of length greater than k in G̃a(u, v)
must intersect Pu,v. The only possibility is when u and v are not adjacent.

For the other problems, we claim that G̃a(u, v) is a YES instance if and only if u, v are adjacent in
Ga. Indeed, if u, v are adjacent then Pu ∪ Pu,v ∪ Pv is an (induced) cycle of length k. Conversely, by
definition of Gn for each problem, if Ga contains an induced cycle of length exactly k (resp. a cycle of
length at most k, a cycle of length exactly k) then it must contain the path Pu ∪Pu,v ∪Pv, which already
has k nodes, so necessarily {u, v} is an edge of Ga.

We deduce that using the messages of Alice, Bob can check if any pair u, v ∈ V (Ga) are adjacent with
error probability smaller than 1/n3. Then, by querying all pairs u, v, Bob obtains the whole graph Ga
with probability at least 1 − 1/n. In particular, Bob obtained ab. We conclude that 3rn · c(r(n − 2) +
k) · log(r(n− 2) + k) = Ω(m). Therefore, c(n) = Ω(log(Gn)/n log n).

Recall again that the number of graphs without cycles of length at most 2` is 2Ω(n1+1/`) [30]. Recall
also that the number of graphs without cycles of length exactly k is 2Ω(n1+2/k) [30] for k even and 2Ω(n2)

if k is odd. On the other hand, the number of chordal graphs (hence, without induced cycles of length
at least 4) is trivially 2Ω(n2) (consider for instance the well-known class of split graphs [35]). From these
bounds, we obtain:

Corollary 7. Let 0 < r < k/3. Any one-round ε-error randomized protocol in the BCliquer model for:

• Induced-Cycle≤k has cost Ω(n2/k/ log n) if k is even, and cost Ω(n2/(k−1)/ log n) if k is odd.

• Cycle=k has cost Ω(n2/k/ log n) if k is even, and cost Ω(n/ log n) if k is odd.

• Induced-Cycle=k, has cost Ω(n/ log n).

• Induced-Cycle>k, has cost Ω(n/ log n).

11.4.1 A Conditional multi-round lower bound for odd cycles
We give here a reduction based on the disjointness problem DISJm in the number-on-the-forehead model.
Consider three players Alice, Bob and Charlie, each one has a subset XA (resp. XB , XC) of {1, . . .m},
and each player sees the vector of the two others. Their common goal is to decide whether the three sets
have a non-empty intersection.

It is known that this problem requires a communication of Ω(m) in the deterministic case, and
Ω(
√
m) for any ε-error probabilistic protocol with ε < 1/3. Moreover, the linear lower bound extends to

the probabilistic case under the Strong Exponential Time Hypothesis (stating that, for any δ < 1, there is
no algorithm solving n-variable instances of Sat in time O(2δn). It is shown that, under this hypothesis
and the assumption that local computations must be performed in time 2o(n), there is no probabilistic
algorithm for 3-party number-on-the-forehead disjointness communicating only o(m) bits (see Section
sec:comcom and [57] for discussions on these problems).

Proposition 49 ([57]). There is a family of graphs {Gn}n>0 with the following properties:
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• Gn is a tripartite graph Gn = (X ∪ Y ∪ Z,E) where |X| = |Y | = n, |Z| = n/3.

• Gn contains m = n2/eO(
√

logn) triangles, and each edge belongs to exactly one triangle.

Drucker et al. used these tools providing lower bounds for triangle detection in BClique1[b]. We
extend their bounds in the following sense.

Theorem 30. Let k be an odd number and let 0 < r ≤ k/3. Any ε-error randomized protocol in the
BCliquer model for problems Cycle=k and Induced-Cycle=k satisfies has cost R3−NOF

ε (DISJm)/O(n),
where R3−NOF

ε (DISJm) is the communication complexity of the 3-party number-on-the-forehead version
of DISJm.

Proof. Let k ≥ 3d odd and G = (X ∪ Y ∪ Z,E) be a tripartite graph with m triangles, and where
|X| = n1, |Y | = n2, |Z| = n3. Consider the graph G̃, called the expansion of G, defined as follows:

• Replace each node x ∈ X, and each y ∈ Y by paths of length d called Px = x1, . . . , xr and
Py = y1, . . . , yr.

• Replace each node z ∈ Z by a path of length k − 2r called Pz = z1, . . . , zk−2r.

• For each {x, y} ∈ (X × Y ) ∩ E(G), {y, z} ∈ (Y × Z) ∩ E(G) and {x, z} ∈ (X × Z) ∩ E(G), add to
G̃ the edges {xr, y1}, {yr, z1} and {x1, zk−2r}, respectively.

Call Xj = {xj}x∈X , Yj = {yj}y∈Y , Zj = {zj}z∈Z .
We obtain that G̃ is a graph of size N = r(n1 +n2)+(k−2r)n3, that contains m cycles of length k, all

induced. Indeed, if {x, y, z} ∈ X × Y ×Z induce a triangle in G, then x1, . . . , xr, y1, . . . , yr, z1, . . . , zk−2r

induce an induced cycle of length k in G̃. By the other hand, if C is a cycle in G̃ that intersects each
Xj , Yj and Zl in only one node, with 2 ≤ j ≤ r − 1 and 2 ≤ l ≤ k − 2r − 1, then C must contain
x1, . . . , xr, y1, . . . , yr, z1, . . . , zk−2r, for some x, y, z ∈ X × Y × Z, so C corresponds to a triangle in G.

We show that a cycle C of odd length smaller or equal than k in G̃ can not intersect Xj , Y j or Zl in
more than one node, for any 2 ≤ j ≤ r − 1 and 2 ≤ l ≤ k − 2r − 1. Indeed, suppose w.l.g. that there
exists x1, x2 ∈ X such that x1

j and x2
j are in C for some j ∈ {2, . . . , r − 1} . Then Px1 and Px2 must

be contained in C. Moreover, since the length of C is smaller than k, besides Px1 and Px2 , the cycle can
only contain edges from Xd × Y1 and X1 × Zk−2r. Let P1, P2 the parts of C in Xr ∪ Y1 and X1 ∪ Zk−2r

respectively. Notice that P1 and P2 must be paths of even length, and Px1 and Px2 have both the same
length. Therefore, the length of C must be even, which contradicts the fact that k is odd.

The rest of the proof is very similar to the one of [57] for triangle detection in BClique1. Fix n and
let Gn = (X ∪ Y ∪ Z,E) be a graph of the family described in Proposition 49. Let m = n2/eO(

√
logn)

be the number of triangles in Gn and let T = {t1, . . . , tm}, be the set of triangles of Gn. Call G̃n the
expansion of Gn, and C = {C1, . . . , Cm} the set of cycles of length k in G̃n.

For each ti ∈ T let xi, yi, zi be such that ti = {xi, yi, zi} ∈ X×Y ×Z. From the arguments above, we
know that for each triangle ti ∈ T there exists an induced cycle Ci ∈ C, such that V (C) = Pxi ∪Pyi ∪Pzi .
Then, we can map each edge e ∈ E(Gn) into an edge e′ in (Xr × Y1)∪ (Yr ×Z1)∪ (X1 ×Zk−2r), and we
identify such edge e′ an index i(e′) ∈ {1, . . . ,m} such that e ∈ Ci.

Let A be a protocol in BCliquer that solves Cycle=k,N in R rounds with bandwidth b. We will
use A to build a protocol for P for DISJm in the 3-party number-in-the-forehead model. Let A,B,C ⊂
{1, . . . ,m} the input of DISJm. The three parties construct a subgraph H of G̃n in which:

• All nodes V (G̃n) are present in H.

• All edges in paths Px, Py and Pz are present in H, for each x ∈ X, y ∈ Y and z ∈ Z

• An edge e ∈ Xr × Y1 is present in H if i(e) ∈ C, an edge e ∈ Yr × Z1 is present if i(e) ∈ A, and an
edge e ∈ X1 × Zk−2r is present if i(e) ∈ B.

Notice that in the BCliquer model, nodes in ∪x∈XPx do not see any edges in Br×C1, nodes in ∪y∈Y Py
do not see any edges in X1×Zk−2r, and nodes in ∪z∈ZPz do not see any edges in Ar ×B1. Since we are
working in the number-in-the-forehead model, Alice knows B and C, Bob A and C and Charlie A and
B. Hence Alice can simulate A in all nodes in ∪x∈XPx, Bob in all nodes in ∪y∈Y Py, and Charlie in all
nodes ∪z∈ZPz, and send in each round the corresponding messages.
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The subgraphH contains a cycle of odd length smaller or equal than k if and only if there is a (induced)
cycle Ci ∈ C whose edges appear in H, and this occurs iff A ∩ B ∩ C 6= ∅. When A terminates, with
probability 1− ε the players can know if H contains a triangle, and then if A,B,C are disjoint. The total
cost of P is N ·R · b bits, and since P solves DISJm with error at most ε, 2nk ·R · b ≥ R3−NOF

ε (DISJm).

We can easily replace the randomized protocols of the previous theorem with deterministic ones.
Therefore, we have:

Corollary 8. Let 0 < r ≤ bk/3c, with k odd.

• Any R-round deterministic protocol in the BCliquer model for Cycle=k or Induced-Cycle=k

has cost Ω(n/eO
√

logn)) = Ω(n1−o(1)).

• Any R-round ε ≤ 1/3-error randomized protocol in the BCliquer model, where the node’s local
computation is in time 2o(n), has cost Ω(n/eO(

√
logn)) = Ω(n1−o(1)), unless the exponential time

hypothesis fails.

11.5 Discussion
The results of this chapter are summarized in Table 11.1, the main ones are presented in bold characters.

One important open problem is the question whether Induced-Cycle>k can be solved by a one-
round protocol in the BCliquebk/2c+1 model with polylogarithmic (or even sublinear) cost, as well as
the question of multi-round lower bounds for this problem in the BCliquer model for r < k/2.

Another interesting further research is lack of lower bounds in the BCliquer model for problems
Induced-Cycle≤ k, Cycle=k, Induced-Cycle= k, when 2r < k < 3r, either for one or multi-round
protocols.

We would like to point out that even in the very powerful UClique model, the protocols for cycle
detection are rather slow. In fact, the best protocols for Cycle=k has cost O(nρ log n), for every k ≥ 3,
where ρ < 0.15715 [38]. One exception is the detection of squares C4, for which an extremely elegant
O(1)-round protocol has been devised [38].

Note that our deterministic protocol given in Theorem 25 beats the protocol of [38] when k ≥ 14 > 2/ρ
and k is even. Indeed, the class of graphs not containing a cycle of length k as a subgraph is of size
2O(n1+2/k), if k is even. Therefore, our protocol reconstructs and recognizes graphs without cycles of
length even length k > 14 with cost O(n2/k + log n).

k ≤ 2r k ≥ 3r k ≥ 4r

Cycle≤k,
&
Induced-
Cycle≤k

There is a one-round deterministic BClique1[b] protocol,

b =

{
O(n2/k log n), if k is even,
O(n2/(k−1) log n), if k is odd.

There is a one-round
deterministic
BCliquer[O(1)]
protocol.

Any one-round, ε-error
BCliquer[b]
protocol satisfies
b = Ω(n2/k/ log n), k even,
b = Ω(n2/(k−1)/ log n), k odd.

Any R-round ε-error
BCliquer[b]
protocol satisfies
R · b = Ω(n2/k), k even,
R · b = Ω(n2/(k−1)), k odd.

Cycle>k Single-round deterministic BClique1[O(k log n)] protocol.

k ≤ 2r − 2 k ≥ 3r

Induced-
Cycle>k

There is a two-round, randomized
BCliquer[O(log4 n)] protocol.

Any one-round ε-error BCliquer[b]
protocol requires b = Ω(n/ log n).

Table 11.1 – Summary of the results.
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Chapter 12

About graph connectivity

In this short chapter, we would briefly discuss the Connectivity problem, which consists in determining
if the input graph is connected. We first give a very simple R-round deterministic protocol in the
BClique model that solves Connectivity with bandwidth O(n1/R log n). Later, we show a one-round
deterministic protocol in BCliquer model that solves Connectivity with bandwidth O(n1/r log n).

The results of this chapter were published in the 2016 ACM Symposium on Principles of Distributed
Computing (PODC 2016) and were obtained in collaboration with Ioan Todinca [112].

12.1 Introduction

As we said in Chapter 8 and in the introduction of this thesis, the connectivity problem, or more specif-
ically problem Maximum Spanning Tree (MST) is in the very beginning and somehow triggers the
interest in the Congested Clique model. More precisely, the UClique model was defined in [107] where
the authors studied the maximum spanning tree in the CONGEST model, when the communication graph
has constant diameter. The authors showed a protocol in the UClique model that computes a MST
in O(log log n) rounds with bandwidth O(log n). More recently, Ghaffari et al. [76] showed that a MST
can be computed in the UClique model by a randomized protocol with O(log∗ n − log∗ b) rounds and
bandwidth O(b · log n). This last result implies in particular a O(log∗ n)-round protocol with bandwidth
O(log n), or a constant round-protocol with cost O(log n · log . . . log n), where log . . . log n represent d
compositions of the logarithmic function ,where d is a constant that depends in the number of rounds.

These two protocols are based on a parallel algorithm that computes a MST published in 1926 and
due to Borůvka [115]. Let G be a graph, and denote by V̂ the set of supernodes, which initially are
the n singletons {{u}|u ∈ V }. The protocol runs int t = dlog ne phases. At phase 0 ≤ i < t, each
supernode picks an incident edge to each set v̂ ∈ V̂ . Then, we merge the obtained connected components
of supernodes into a single supernode. The procedure finishes when all supernodes are isolated, in which
case the supernodes represent the connected components of G. The procedure finishes before t = dlog ne
steps since the number of supernodes at least halves at each step. This algorithm can be easily simulated
in the Broadcast Congested Clique model. Indeed, at each round a node sends the identifier of an adjacent
neighbor on G contained in a different supernode (or a bit indicating that no such node exists). Then
every node merge the supernodes and repeat. This way, we obtain a protocol in the BClique model
that computes a MST in O(log n) rounds with bandwidth O(log n)

The super-fast protocols computing a MST in the UClique are basically Borůvka’s algorithms,
where multiple phases are simulated in a reduced number of rounds, identifying sets of vertices that will
form a supernode, and then using load-balancing techniques (between other sophisticated techniques) to
simulate several phases in one communication round. These techniques do not seem to be applicable in
the broadcast version of the model. In fact, no protocol exists (randomized or deterministic) computing
a MST that beats the cost O(log2 n) obtained simulating Borůvka’s algorithm. This is still the case if we
try to solve Connectivity.

As we explained in Section 8.2.3, Ahn, Guha and McGregor provided in [1] the first one-round
randomized protocol in the Broadcast Congested Clique model that solves Connectivity with high
probability and with bandwidth O(log4 n).
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12.2. A CONSTANT ROUND DETERMINISTIC PROTOCOL

In this chapter, we observe that Borůvka’s algorithm can be used to produce, for each 0 < ε ≤ 1 a
O(1/ε)-round protocol that computes a spanning forest in the BClique model with cost nε · log n. Later,
we propose a one-round connectivity protocol, this time the BCliquer model with cost O(n1/r log n).
Recall that BCliquer corresponds to the broadcast congested clique model, when each node receives
as input the graph induced by the nodes at distance at most r (one may think of this model as the
one where vertices are allowed to perform r unrestricted local communications, and then some congested
global communications).

12.2 A constant round deterministic protocol

In this section, we show that Borůvka’s algorithm can be implemented in a constant number of rounds,
increasing the bandwidth of the protocol to a super-logarithmic though sub-linear number of bits. The
idea is to not send just one, but instead n1/ε neighbors in pairwise different supernodes at each round,
for ε > 0. At each round, the number of supernodes will be reduced by a factor of n−1/ε, so the protocol
will finish after at most ε rounds.

Theorem 31. Let ε > 0. There is a ε-round deterministic protocol that computes the connected compo-
nents of the input graph in the BClique model with bandwidth O(n1/ε · log n). The protocol returns a
spanning forest of the input graph.

Proof. Let G = (V,E) the input graph. First, denote V̂ the set of supernodes, which initially are the n
singletons {{u}|u ∈ V }. At each round, every node sends n1/ε arbitrary neighbors in pairwise different
supernodes (if it sees less than n1/ε supernodes, then it sends one neighbor for each of them). At the
end of each round adjacent supernodes are merged. Note that the number of bits communicated in each
round is O(n1/ε log n).

A supernode of round t > 1 is called active if it contains at least n1/ε supernodes of round t − 1,
and otherwise is called inactive. Note that at any round t > 0, an inactive supernode corresponds to a
connected component of G. The protocol finishes when every supernode is inactive.

Let nt be the number of active supernodes at round t ≥ 0. Since the number of active nodes at round
t+ 1 at most nt/n1/ε, the protocol stops in at most ε rounds.

We remark that this result implies a two-round deterministic protocol for Connectivity in the
BClique model with cost O(

√
n log n).

12.3 A one-round deterministic protocol in the distance r model

We use our protocol reconstructing graphs of bounded degeneracy to produce a one-round deterministic
protocol that solves Connectivity, this time in the BCliquer model. Our protocol is based on the
following idea: if we pick and remove one edge of each cycle of length at most 2r in the graph, then the
resulting graph has the same connected components than the original graph and is O(n1/r) degenerate.
The key is that in the BCliquer model, every node knows all the cycles of length at most 2r containing
it without any communication.

Let G = (V,E) be a graph, r > 0, and σ some total ordering of E. Call Ẽ the set of edges e in E
satisfying that there exists a cycle Cl of length l ≤ 2r in G, such that e is the maximum edge of Cl with
respect to σ. Call now G̃ = (V,E − Ẽ). Note that G̃ has no cycles of length at most 2r.

Proposition 50. [8] G is connected if and only if G̃ is connected, and any spanning forest of G̃ is a
spanning forest of G.

We are ready now to formally show our result.

Theorem 32. There is a one-round deterministic protocol that computes the connected components of
the input graph in the BCliquer model with cost O(n1/r · log n). The protocol returns a spanning forest
of the input graph.

Proof. Choose an ordering of the edges of the input graph G, for example if we denote the edges e = (u, v)
with u < v, then (u1, v1) < (u2, v2) if either u1 < u2 or u1 = u2 and v1 < v2.
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In the protocol, a node v looks for all cycles of length at most 2r in G that contain it. Notice
that nodes do this without any communication since they see all neighbors at distance at most r. For
each such cycle, v picks the maximum edge according to the edge ordering, obtaining the row of the
adjacency matrix of G̃ corresponding to v. Recall from Proposition 47 in the last chapter, that a graph
without cycles of length 2r is of degeneracy d = O(n1/r. Therefore, each node can simulate the protocol
recognizing d-degeneracy graphs (Theorem 21) when the input graph is G̃. Each node then reconstructs
G̃ and outputs a spanning forest of G̃. From Proposition 50, a spanning forest of G̃ is a spanning forest
of G.

12.4 Discussion
We have shown that, in the BClique model, O(ε) rounds are enough to decide connectivity determinis-
tically with bandwidth O(n1/ε · log n). On the other hand, if nodes see the graph induced by the nodes
at distance at most r, then connectivity can be decided by a deterministic one-round protocol, with
messages of size O(n1/r · log n). Of course, unless r > log n/ log log n, this protocol does not beat the cost
O(logn) obtained from Borůvka’s algorithm.

Like the results of Ahn et al. [1], our connectivity protocol can be transformed into protocols to detect
if the input graph is bipartite. Indeed, we can use our protocol to find the connected components of graph
D(G), defined just before Proposition 33. The protocol asks to each node v to simulate the role of nodes
v1 and v2 in graph D(G). From Proposition 33 we know that G is bipartite if D(G) has twice the number
of connected components of G.

Let us recall that the existence of a one-round deterministic protocol for connectivity, in the broadcast
congested clique with sub-linear message size, is still open. We might as well ask whether the problem
could be solved by randomized protocols using only private coins, or even if there is a one-round public-
coin protocol with cost O(log n).

One explanation of why lack of lower-bounds for Connectivity in the Broadcast Congested Clique
model, is because all the lower-bounds known for this model are are obtained by reductions to problems
in communication complexity. As noticed by Becker et al. [14], we can easily solve the problem Connec-
tivity in the model where each edge of the graph is divided between k different players in one round
communicating O(k log n) bits. We wonder if the techniques leading to lower-bounds in the communi-
cation rounds in the CONGEST model could be used in this context, since they are not only based on
communication complexity but also exploit the structure of the communication network.
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Chapter 13

Conclusion and perspectives of Part II

All the second part of this thesis was devoted to the study of the Broadcast Congested Clique model.
We succeed to separate, with respect to the bandwidth, different types of one-round protocols, say

deterministic, private-coin and public-coin protocols. This is a clear aspect where the local shared infor-
mation (i.e., the fact that every edge and non-edge is known by two players) plays an important role.
Compared to the Number-in-hand model, we obtained that Translated-Twins have similar gaps as
Equality for deterministic, private-coins and public-coins protocols (i.e Ω(n) for deterministic protocols,
Ω(
√
n) and O(

√
n · log n) for private-coins randomized, and Θ(log n) for public-coins protocols). However,

the gap on the cost between private-coins and deterministic protocols for problem Twinsx is exponential.
An interesting research perspective consists in identify for which problems the cost of a private-

coin protocol is lower bounded by the square root of the cost of the best deterministic protocol. We
conjecture that any graph property that is preserved under isomorphism cannot be recognized with high
probability by a private-coins protocol with a cost that is asymptotically smaller than the square root of
a deterministic protocol.

The Broadcast Congested Clique model might seem a weak model, especially when it is restricted
to one-round protocols. However, the results of Chapter 10 show that any small class of graphs can be
recognized and reconstructed by one or constant-round protocols with sub-linear cost. Maybe surprisingly,
many classes of graphs with few minimal separators can be recognized and reconstructed by our protocols.
This includes polygon-circle, d-trapezoid, circular arc, chordal and weakly chordal graphs. The protocols
for the two last classes run in the broadcast congested clique where the nodes have some extra information
about their neighbors at distance more than one. Further research in this sense is to look for protocols in
the BClique model that recognize chordal and weakly chordal graphs, as well as any class of all graphs
with polynomially many minimal separators.

Another interesting question is whether all graphs can be reconstructed in a non-trivial number of
rounds on UClique model with O(log n) bandwidth. Unlike the BClique model, the unicast version of
the congested clique communicates at least n2 log n bits per round, so potentially all the information in
the graph could be transmitted in a round. If we were able to somehow confine an arbitrary input graph
into a small class combining only local information, then we may reconstruct it using the protocol that
reconstruct graphs in a known small class (Theorem 25).

More formally, let Gn be the set of all labeled graphs of size n. Let ε ∈ (0, 1) and Qn,ε be the set of
all classes of graphs on n vertices (i.e., the subset of 2Gn) containing at most 2n

1+ε

graphs. We pose the
following open question: Determine if there exist a subset Q of Qn,ε and function f : Gn → [|Q|] such
that

1) G belongs to the f(G)-th class in Q, and

2) f can be computed in the UClique model with cost o(n− nε log n)

If the answer is affirmative, then there would be a protocol solving Reconstruction (i.e., reconstruct
an arbitrary graph) with cost o(n). Indeed, the protocol first compute f(G) with cost o(n − nε log n)
and deduce that G belongs to the f(G)-th class in Q, that we call C. Then, use Theorem 25 to solve
Reconstruction onC on input G, with cost O(nε log n).

Other interesting open questions involve problems Twins and Connectivity: We leave as an open
question whether the one-round private-coin protocol with cost O(

√
n log n) given in Theorem 19 is
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optimal (this again is a particular case of the question on the gap between deterministic and private-coin
protocols). On the other hand, we do not know any nontrivial protocols in the multi-round deterministic
setting. As we mentioned in Chapter 9, using the matrix multiplication protocol of Censor-Hillel et
al. [38] we can solve Twins in the UClique model with cost O(n0.158).

Problem Connectivity has somehow complementary difficulties: Unlike Twins, we do not know
any nontrivial one-round protocols in the deterministic or private-coins settings. On the other hand,
there is the one-round public-coins protocol with polylogarithmic cost due to Ahn et al. [1], and constant
round deterministic protocols, as we showed in Chapter 12.

Finally, we would like to point out that some of the techniques presented in this thesis, e.g., the
deterministic sparse linear sketches, can be implemented in the dynamic graph streaming model. In this
model, each item of the data stream is a pair of nodes on a graph n and the goal is to compute some
property of the graph obtained at the end of the stream. The restriction is that the algorithm can only
examine the data stream one item at a time, and must have memory of size o(n2). The linearity property
of the sketches technique allows to handle the edge additions and deletions, so the protocol detecting
graphs of bounded degeneracy can be implemented in the dynamic graph streaming model with space
O(d log n). In this context, further research should consider the study of the techniques developed during
this thesis in other models of computation.
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Appendix A

List of Problems

In this section we give the formal definitions of the problems that will be mentioned in the first part of this
thesis. These definitions were taken from the book of Cygan et. al. in Parameterized Complexity [48].

Clique
Input: A graph G and an integer k.
Question: Does there exist a set of k vertices of G that is a clique in G?

Connected Dominating Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is connected and
NG[X] = V (G)?

Connected Feedback Vertex Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is connected and
G−X is a forest?

Connected Vertex Cover
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is connected and
G−X is edgeless?

Cycle Packing
Input: A graph G and an integer k.
Question: Does there exist in G a family of k pairwise vertex-disjoint cycles?

Dominating Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that NG[X] = V (G)?

Feedback Vertex Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G−X is a forest?

Hamiltonian Cycle
Input: A graph G.
Question: Does there exist a chordless cycle C in G such that V (C) = V (G)?
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Hamiltonian Path
Input: A graph G.
Question: Does there exist a chordless path P in G such that V (P ) = V (G)?

Hitting Set
Input: A universe U , a family A of sets over U , and an integer k.
Question: Does there exist a set X ⊆ U of size at most k that has nonempty intersection with every
element of A?

Independent Dominating Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is edgeless and
NG[X] = V (G)?

Independent Feedback Vertex Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is edgeless and G−X
is a forest?

Independent Set
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is edgeless?

Induced Matching
Input: A graph G and an integer k.
Question: Does there exist a set X of exactly 2k vertices of G such that G[X] is a matching
consisting of k edges?

Longest Induced Path
Input: A graph G and an integer k.
Question: Does there exist a chordless path P in G consisting of k vertices?

Maximum Leaf Spanning Tree
Input: A graph G and an integer k.
Question: Does there exist a set a spanning tree of G with at least k leaves?

Maximum Matching
Input: A graph G and an integer k.
Question: Does there exist an edge set S ⊆ E(G) of size at least k such that no two edges in S
share an endpoint?

Minimum Fill-In
Input: A graph G and an integer k.
Question: Does there exist an edge set F of size at most k such that H = (V (G), E(G) ∪ F ) is
chordal?

Odd Cycle Transversal
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G−X is bipartite?

122



Red-Blue Dominating Set
Input: A graph bipartite graph G with bipartition classes R and B and an integer k.
Question: Does there exist a set X ⊆ R of size at most k such that NG[X] = B?

Scattered Set (d-independent set)
Input: A graph G and integers k and d.
Question: Does there exist a set X of at least k vertices of G such that distG(x, y) > d for every
distinct x, y ∈ X?

Traveling salesman Problem (TSP)
Input: A graph G with edge weights w : E(G)→ R+.
Task: Find a closed walk of minimum possible total weight that visits all vertices of G.

Treedepth
Input: A graph G and an integer k.
Question: Is the treedepth of G at most k?

Treelength
Input: A graph G and an integer k.
Question: Is the treelength of G at most k?

Treewidth
Input: A graph G and an integer k.
Question: Is the treewidth of G at most k?

Vertex Cover
Input: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G−X is edgeless?
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Pedro MONTEALEGRE BARBA
Algorithmes en Graphes Séquentiels et Distribués

Cette thèse porte sur des aspects structuraux et algorithmiques des graphes. Elle est divisée en deux parties,
qui comportent deux études différentes : une partie sur des algorithmes centralisés-séquentiels, et une autre
sur des algorithmes distribués.

Dans la première partie, on étudie des aspects algorithmiques de deux structures de graphes appelés
séparateurs minimaux et cliques maximales potentielles. Ces deux objets sont au cœur d’un méta-théorème
dû à Fomin, Todinca and Villanger (SIAM J. Comput. 2015), qui affirme qu’une grande famille des problèmes
d’optimisation en graphes peut être résolue en temps polynomial, si le graphe d’entrée contient un nombre
polynomial de séparateurs minimaux. La contribution de cette partie consiste à prolonger le méta-théorème
de Fomin et al. de deux manières : d’un côté, on l’adapte pour qu’il soit valide pour une plus grande famille
des problèmes ; de l’autre, on étend ces résultats à des version paramétrées, pour certains paramètres des
graphes.

La deuxième partie de la thèse corresponde à une étude du modèle appelé « Diffusion dans une Clique
Congestionnée ». Dans ce modèle, les sommets d’un graphe communiquent entre eux dans des ron-
des synchroniques, en diffusant un message de petite taille, visible par tout autre sommet. L’objectif
ici est d’élaborer des protocoles qui reconnaissent des classes de graphes, en minimisant la taille des
messages et le nombre de rondes. La contribution de cette partie est l’étude du rôle du hasard dans ce mod-
èle, et la conception de protocoles pour la reconnaissance et la reconstruction des certaines classes des graphes.

Mots clés : algorithmes paramétrés, cliques maximales potentielles, séparateurs minimaux, algorithmes dis-
tribués, modèle de diffusion dans une clique congestionnée.

Sequential and Distributed Graph Algorithms

This thesis is about structural and algorithmic aspects of graphs. It is divided in two parts, which are
about two different studies: one part is about centralized-sequential algorithms, and the other part is about
distributed algorithms.

In the first part of the thesis we study algorithmic applications of two graph structures called minimal
separators and potential maximal cliques. These two objects are in the core of a meta-theorem due
to Fomin, Todinca and Villanger (SIAM J. Comput. 2015), which states that a large family of graph
optimization problems can be solved in polynomial time, when the input is restricted to the family of
graphs with polynomially many minimal separators. The contribution of this part of the thesis is to
extend the meta-theorem of Fomin et al. in two ways. On one hand, we adapt it to be valid into a larger
family of problems. On the other hand, we extend it into a parameterized version, for several graph parameters.

In the second part of this thesis we study the broadcast congested clique model. In this model, the nodes
of a graph communicate in synchronous rounds, broadcasting a message of small size visible to every other
node. The goal is to design protocols that recognize graph classes minimizing the number of rounds and the
message sizes. The contribution of this part is to explore the role of randomness on this model, and provide
protocols for the recognition and reconstruction of some graph classes.

Keywords : parameterized algorithms, potential maximal cliques, minimal separators, distributed algorithms,
broadcast congested clique
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