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Synopsis 

This thesis manuscript entitled “Strategy of non-physiological EGFR endocytosis and aptamer-

vectorization”, will be presented as follow: 

Introduction:  

An overview on glioblastoma (GBM) characteristics and therapeutic challenge is presented, 

followed by the description of two GBM therapeutic targets (EGFR (Epidermal Growth Factor 

Receptor) and α5β1 integrin (expression, oncogenic signalling pathway, intracellular 

trafficking and targeted therapies). Finally, aptamers, small nucleic acids molecules, also called 

chemical antibodies, are described as antibodies alternative for vectorization and detection 

tools.  

M&M: 

The description of methodologies I performed during my PhD in the four different projects 

presented in results are described.   

Results: 

My PhD research results, presented in three scientific articles and one section of recents results, 

followed two main objectives:  

(1) the description of the effect of tyrosine kinase inhibitors of EGFR used in clinic on the 

endocytosis of the two therapeutic targets described herein in glioma cell models. We first 

described that in different GBM cell lines, EGFR-tyrosine kinase inhibitors trigger exuberant 

endocytosis of EGFR and α5β1 integrin, which may modulate glioma cell invasiveness under 

therapeutic treatment (Blandin, Cruz da Silva et al., 2020). In order to better understand the 

molecular mechanism, we identify several proteins involved in this non-physiological 

endocytosis (Cruz da Silva et al, under writing). 

(2) the validation of aptamers targeting integrin or EGFR, as an alternative to antibodies, for 

diagnosis and intracellular delivery of cytotoxic agents. We first described and characterized 

aptamer H02, a new aptamer targeting α5 integrin. Its affinity and specificity toward GBM cells 

and tumoral tissues expressing α5 integrin were determined (Fechter, Cruz Da Silva et al., 
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2019). EGFR-targeting aptamers are studied in the 4th section. Integrin α5 and EGFR targeting 

aptamers were used in aptafluorescence in GBM cells and tissues (Cruz da Silva, under writing). 

Discussion 

Finally, a critical discussion about the main experimental results of my thesis is presented. Some 

preliminary results and future perspectives are also presented. 

Annexes 

Annex 1 presents a draft of a revue about glioblastoma molecular targeted therapies in Phases 

II, III, IV clinical trials (Cruz da Silva et al., under writing). 

Annex 2 presents a revue about the role of integrins in therapy resistance to tyrosine kinase 

receptor-targeted therapies in cancer (Cruz da Silva et al., 2019)  

Annex 3 presents a scientific article characterizing gold particles conjugated to cetuximab for 

future GBM treatment using targeted radiotherapy. This work is the result of a collaboration 

with Dr. Guy Zuber team (Groysbeck et al., 2019). 
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1. Glioblastoma  

1.1 Definition 

Central nervous system (CNS) tumors represent approximately 3% of the cancer cases 

worldwide (Miranda-Filho et al., 2017). In 2016, were reported 330 000 incident cases of CNS 

cancer and 227 000 deaths in the world (Patel et al., 2019). Glioblastoma (GBM) is the most 

common and most aggressive malignant tumor in CNS representing 60% of all brain tumors in 

adults (Hanif et al., 2017). Despite numerous efforts, the median survival is around 15 months 

(Hanif et al., 2017; Thakkar et al., 2014). GBM can develop anywhere in the brain, but 

preferentially in the supratentorial region, having edema surrounding the tumor (Thakkar et al., 

2014). GBM is more prominent in men than women, with a median age of incidence of 64 years 

old (Tamimi and Juweid, 2017).  

The risk factors associated with GBM development include therapeutic or high-dose radiation,   

decreased susceptibility to allergy, immune factors and genetic alterations (Bondy et al., 2008). 

Overactive immune response resulting in allergic and/or autoimmune conditions is associated 

with reduced risk glioma (Safaeian et al., 2013). Genome-wide association studies associated 

germline variants with an increased risk for development of GBM. 27 single nucleotide 

polymorphisms (SNP) were associated with glioma genetic risk  (DeAngelis, 2001; Kinnersley 

et al., 2018; Thakkar et al., 2014). Moreover, increased telomere length was described as a risk 

factor for glioma. This association is based on analysis of blood cells, however, no data is 

available in brain cells (JAMA Onc, 2017).  

GBM symptoms are variable depending on tumor localization and volume. GBM can appear 

progressively with neurologic deficit, cognitive problems, intracranial hypertension syndrome, 

and epileptic seizures. The usual symptoms involve headache, seizures, nausea, vomiting and 

hemiparesis. Cranial magnetic resonance imaging is the reference exam in brain tumor doubts, 

that allows differential diagnosis between brain tumor, stroke and encephalopathy (DeAngelis, 

2001; Thakkar et al., 2014).  

1.2. Glioblastoma classifications  

The World Health Organization (WHO) classification of CNS tumors dated from 2007 

described 3 major groups: astrocytoma (grade I to IV), oligodendroglioma (grade II to III) and 
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oligoastrocytoma (grade II to III). Brain tumors were classified according to their 

anatomopathological features: histological and grade elements. Histological analysis describes 

the most frequent cell types (astrocytes, oligodendrocytes or mix) and possible morphological 

similarities with normal glia. While in grading, malignancy criteria such as like cell density, 

nuclear atypia, number of mitoses, micro vascularization and necrosis are evaluated (Louis et 

al., 2007). In 2016, a new classification has emerged based on an integrated diagnostic with 

phenotypic and genotypic characteristics (Figure 1) (Louis et al., 2016).   

GBMs are now classified as grade IV diffuse astrocytic and oligodendroglial tumors. These 

tumors are further segregated based on Isocitrate dehydrogenase (IDH) status. 90% of GBM 

expressed wildtype IDH and the remaining 10% share a genetic driver mutation on IDH1 and 

rarely on IDH2 genes (Cohen et al., 2013). The 3 isocitrate dehydrogenases are encoded by 5 

different genes. IDH1 is found in the cytoplasm and peroxisomes where it participates in lipid 

and glucose metabolism. While IDH2 and IDH3 are found in mitochondria. IDH1 protects cells 

against oxidative stress from oxygen reactive species by catalyzing the decarboxylation of 

isocitrate from α-ketoglutarate (α-KG) in the citric acid cycle to produce NADPH from NADP+ 

(Madala et al., 2018; Smolková and Ježek, 2012).  The evaluation of IDH status is established 

by immunohistochemistry to detect the mutant protein and by IDH gene sequencing. In 91% of 

the cases, the mutation consists in the replacement of an arginine by a histidine in position 132. 

Mutated IDH1 R132H results in a decrease of α-KG and NADPH production. As a 

consequence, glutathione (GSH) levels are reduced, and deoxyribonucleic acid (DNA) 

methylation and hypoxia are increased (Dang et al., 2009). IDH status is used as prognostic 

factor in GBM. GBM patients with mutated IDH have a longer survival than IDH WT patients 

and present small tumor size and less necrotic lesions (Madala et al., 2018).  

When IDH evaluation cannot be performed, the tumor is classified as GBM NOS (not otherwise 

specified) (Louis et al., 2016).  

Primary and secondary GBM  

Contrary to secondary GBMs, primary GBMs are diagnosed without clinical or histologic 

evidence of a previous lesions.  

Primary GBMs represent 90% of all GBM and usually affect older patients (over 55 years old). 

They are characterized by frequent necrotic and ischemic areas. Genetically, primary GBMs 
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are characterized by a wildtype IDH status, erbB1 amplification (40% of cases), phosphatase 

and tensin homolog (PTEN) mutations (45% of cases), p16 deletions and hTERT promotor 

mutations. The chromosomal events associated to this GBM subgroup are: 

- amplification of the 7p12 region, that encodes erbB1. 

- amplification of the 12q14 region, that encodes CDK4 and MDM2 genes. Thus, p53 and Rb1 

pathways are disrupted.  

- homozygous deletion of 9p, that encodes p16, p15 and p14 ARF genes. 

- loss of heterozygosity of 10q, that encodes the PTEN gene, leading to a constitutive activation 

of PI3K (Phosphoinositide 3-kinase)/AKT pathway. 

Secondary GBM affect young patients and are characterized by less necrotic areas and genetic 

alterations found in low grade tumors such as TP53, Platelet-derived growth Factor Receptor-

alpha (PDGFR-α), Retinoblastoma1 (Rb1), ATRX, and IDH1. They are associated with a 

significantly better prognosis (Behin et al., 2003; DeAngelis, 2001).  
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Figure 1: Algorithm used on WHO CNS tumor classification in 2016. CNS tumors are first divided by their histological 
features. Glioblastomas are now divided into IDH-wild type (about 90 % of GBM cases), and IDH-mutant. IDH-mutant 
correspond to younger patients and present a better prognosis of survival. Another denomination is used when IDH evaluation 
cannot be performed (GBM NOS). The other tumors are also divided accordingly with IDH mutation, 1p/19q codeletion, TP53 
mutation and ATRX loss. NOS nomination is given when genetic testing is not available or inconclusive. Adapted from (Louis 
et al., 2016). 

1.3 Main GBM hallmarks 

1.3.1 Glioblastoma Invasive behavior  

Highly invasive growth is a GBM hallmark. GBM cell invasion can promote therapy resistance 

(Lefranc et al., 2018; Vehlow and Cordes, 2013).  

GBM cells can develop a tumor in the opposite hemisphere from the primary site or even 

produce a multifocal GBM tumor. However, GBM rarely metastasizes outside of the brain. 

(Thakkar et al., 2014). Syngeneic GBM cells were orthotopically implanted into rat to study 

cell invasion profiles. GBM cells moved along blood vessel wall, neural fibers of corpus 

callosum and astrocytes of glia limitans. When GBM cells migrate along blood vessels, they 

present a spindled shape with a single pseudopodium extended toward the movement direction 

through polarization of actin polymerization. Brain parenchyma migration is achieved by 

multiple pseudopodia pointed in different directions (Hirata et al., 2012). 

Most of the time, migrating GBM cells adopt a mesenchymal phenotype, dependent on the 

adhesion to the extra cellular matrix (ECM) and their remodulation. Modification on cell shape, 

position and tissue architecture are needed for effective invasion together with PI3K signaling 

and small GTPase activation. GBM cells interact with ECM mainly through integrins and their 

adhesomes, and acid hyaluronan receptor CD44 (Alves et al., 2011; Cha et al., 2016). ECM 

proteins are overexpressed in GBM parenchyma (Lal et al., 1999). Hyaluronan, collagen, 

fibronectin and laminin present in brain parenchyma are some of the main ligands of integrins 

and CD44 (Giese and Westphal, 1996; Rape et al., 2014). ECM is remodeled by serine 

proteases, cysteine proteases and metalloproteases (MMP). The most studied serine protease is 

the complex urokinase-type plasminogen activator (uPA) / uPA receptor that activates plasmin 

and degrades fibronectin and laminin (Deryugina and Quigley, 2012). While a common 

cysteine protease is Cathepsin B, that is involved in laminin and collagen degradation and thus 

GBM invasion (Mohanam et al., 2001). Moreover, the most important MMPs involved in GBM 

cell invasion are MMP-2 and -9 (Hagemann et al., 2012). The inhibition of these MMPs leads 

to less migration and invasion in glioma cell lines and glioma cells xenografts (Badiga et al., 
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2011; Kesanakurti et al., 2012). Tissue inhibitors of MMP (TIMP) modulate the proteases 

activity by forming complexes and reducing cell invasion (Valente et al., 1998).  

Glutamate enhances cancer cell invasion through activation of AMPA receptors. AMPA 

receptor expression correlates with β1 integrin expression, focal adhesion kinase (FAK) 

activation and cell invasion (Piao et al., 2009). Moreover, exosomes release from GBM cells 

upon radiation enhances tumor migration via FAK signaling (Arscott et al., 2013).  

Crosstalk between GBM cells and cells from their microenvironment enhances cancer cells 

migration and invasion. For instance, the perivascular niche regulates glioma stem-like cells 

(GSCs) and promotes GBM invasion. Using co-culture of patient-derived GBM spheroids with 

brain endothelial cells in microfabricated collagen gels, McCoy et al have recently shown that 

endothelial cells increase GBM invasiveness and growth through enrichment of GSC via 

secretion of interleukin-8 (IL-8) (McCoy et al., 2019). Moreover, crosstalk between GBM cells 

and mesenchymal stem-like cells (MSLCs) boosted GBM invasion into parenchymal brain 

tissue. This mechanism is dependent of p38-MAPK (Mitogen-activated protein kinase)/ZEB1 

signaling (Lim et al., 2020). Interaction between GBM cells and astrocytes can promote tumor 

cell invasion (Zhang et al., 2020a). Astrocytes remodulate ECM by enhancing MMP expression 

and activation of uPAR signal (Le et al., 2003). Astrocytes secrete cytokine IL-6 that induces 

cytomembrane MMP14 in glioma cells. Thus, MMP2 is activated and promotes glioma cell 

migration and invasion (Chen et al., 2016b).  

Communication within tumor site and surroundings through extracellular vesicles is also 

possible. For example, miR-21-positive extracellular vesicles released by GBM cells enhance 

macrophages proliferation. On the other hand, macrophages also transfer miR-21 positive 

extracellular vesicles to GBM cells, increasing signal transducer and activator of transcription 

3 (STAT3) activity and thus stimulating cell invasion, proliferation and therapy resistance 

(Buruiană et al., 2020).  

Brain tumor cells form thick and long cellular protrusions, called tumor microtubes, to 

interconnect multicellular networks.  Tumor microtubes were identified in GBM xenograft via 

longitudinal intravital two‐photon microscopy (Osswald et al., 2015). Tumor microtubes 

facilitate cell proliferation, cell invasion into healthy brain tissue, and transfer of molecules and 

organelles between tumor and stromal cells (Osswald et al., 2015). Moreover, these networks 

protected cells from radiotherapy and chemotherapy cytotoxicity (Weil et al., 2017). In other 
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tumors, mitochondrial transfer through tumor microtubes rescued apoptotic cells and facilitate 

cell invasion (Lu et al., 2017; Wang and Gerdes, 2015).  

1.3.2 GBM heterogeneity as a cause of tumor aggressiveness and therapy 

resistance 

Interestingly, the name multiforme was proposed thanks to the presence of different histological 

regions of pseudo-palisading necrosis, hemorrhage and angiogenesis. At the genetic level, 

GBM has various deletions, amplifications and point mutations that activate different signal 

pathways (Holland, 2000). GBM presents a high inter-patient and inter-tumoral variability, that 

makes GBM a very aggressive and resistant tumor (Parker et al., 2015).  

1.3.2.1 Inter-tumoral heterogeneity 

Using microarray analysis on a cohort of two hundred human GBM biopsies, the group of 

Verhaak demonstrates for the first time a great inter-tumoral heterogeneity between patients. 

Verhaak classification divided GBM on 4 groups: classical, mesenchymal, proneural and neural 

(Verhaak et al., 2010). 

Classical GBM are characterized by high levels of erbB1 transcription and they are more 

responsive to therapy with a better prognosis compared to other groups. The mesenchymal 

GBM presents high expression of ECM remodeling genes (CHI3L1, MET and CD44). The 

proneural subtype is characterized by alterations of PDGFRA, points mutations in IDH1 and 

TP53 mutations, and is correlated with a worst survival prognosis. This group was further 

divided according to the G-CIMP methylation status (Verhaak et al., 2010).  The majority of 

GBM non-methylated G-CIMP exhibits chromosome 7 amplification and chromosome 10 loss. 

However, methylated G-CIMP proneural seems to result from a low-grade glioma evolution 

(Ozawa et al., 2014). Finally, the neural subtype is characterized by the expression of neuronal 

markers such as NEFL, GABRA1, SYT1 and SLC12A5 (Verhaak et al., 2010). 

The main limitation of Verhaak’s study is that it was based on a single GBM biopsy. It does 

not consider different areas of tumor or even infiltrated cells on surrounding parenchyma. 

Moreover, proportion between tumor cells and normal microenvironment cells are unknown by 

using single biopsies. 
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Later on, the same group published a study based on a transcriptome analysis of IDH-WT GBM 

tissues and cells which showed the existence of only 3 groups partly shaped by tumor immune 

environment.  The neural subgroup was eliminated and considered as a microenvironment 

normal tissue. The mesenchymal group presented the worst survival. Comparison of matched 

primary and recurrent tumors revealed tumor plasticity with subtype change (Wang et al., 

2017a).  

The existence of different areas inside the same tumor and the capacity of a subtype of cells to 

evolve highlights the intra-tumoral heterogeneity, not yet explored in Verhaak’s papers. 

1.3.2.2 Intra-tumoral heterogeneity 

Intra-tumoral heterogeneity plays a major role in tumor development and therapy resistance.  

Using fluorescence in-situ hybridization (FISH) analysis, Snuderl et al. described a mosaic 

amplification of RTKs (Epidermal Growth Factor Receptor (EGFR), c-MET, PDGFRA) in 

GBM adjacent cells. All subpopulation participated in tumor growth and all shared early genetic 

changes from a common precursor (Snuderl et al., 2011).  

Sottoriva et al studied the copy-number and gene expression of 38 biopsies from 9 patients and 

demonstrated the presence of different GBM subgroups inside the same tumor (Sottoriva et al., 

2013). Another study using single-cell transcriptomic analysis corroborated the previous study.  

Interestingly, GBM with cells derived from more than one subgroup have a worst prognostic 

(Patel et al., 2014).  

Using single-cell RNA (ribonucleic acid)-sequencing of 28 tumors, genetic and expression 

analysis of TCGA tumors and single-cell lineage, a recent study showed the complex and 

dynamic intra-heterogeneity of GBM tumors (Neftel et al., 2019). Four subtypes of GBM cells 

were identified, each one characterized by specific genetic alterations (CDK4, EGFR, 

PDGFRA, NF1). GBM subtypes are highly influenced by the tumor microenvironment, and 

present a huge plasticity since a single cell can generate all four subtypes with multiple possible 

transitions (Neftel et al., 2019).  

Tumor plasticity have important impact on clinical outcome. This plasticity can be seen in the 

appearance of a recurrent tumor with a different molecular signature than the previous resected 

tumor.  This transition of molecular characteristics is associated with GBM radiation resistance 
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(Bhat et al., 2013). A primary tumor characterized by proneural molecular markers gives rise 

to a recurrent tumor with mesenchymal characteristics. This transition is regulated by tumor-

associated macrophages (TAM) through NF-κB activation (Bhat et al., 2013).  Short-term 

relapse GBMs presented a high amount of M2 macrophages upon radiotherapy. Moreover, NF1 

deficiency was associated with increased TAM infiltration (Wang et al., 2017a).   

The presence of tumor initiating cells (TIC) or GSC creates tumors with cells genetically 

different, giving a certain tumor plasticity. These cells have some stem cell properties such as: 

renewing capability, unspecialized characteristics and capability to become differentiated cells 

(Bonavia et al., 2011). These cells are identified by their capacity of self-renewal and to initiate 

a tumor (Rahman et al., 2011). Neural stem and progenitor cells are cell types present in the 

brain, expressing both CD133+. In Singhs et al study, CD133+ cells with stem cell properties 

in vitro were isolated from human brain tumors. CD133+ GBM cells represent between 3-30% 

of the tumor. These cells were able to produce tumors in NOD-SCID (non-obese diabetic, 

severe combined immunodeficient) mice. These tumors resemble the original human tumor 

with the same expression of markers (nestin, MIB-1, GFAP, MAP2). Moreover, CD133+ 

initiating cells were shown to give rise to differentiated cells. Sub-populations of TIC have high 

levels of SOX2, OCT4, and NANOG, all known to maintain self-renewal and cellular 

proliferation (Singh et al., 2004). Moreover, these cells are known to be highly resistant to 

therapy. They survive to standard therapy and can give rise to a recurrence. Therefore, strategies 

targeting GSC cells can overcome GBM therapy resistance. One of these strategies is the use 

of ALDH1 inhibitors. ALDH1A1 encodes the aldehyde dehydrogenase 1 family member A1 

protein and is enriched in GSC promoting TMZ GBM resistance. ALDH1A1 expression is 

promoted by long noncoding RNAs TP73-AS1 (Mazor et al., 2019). Combination of ALDH 

inhibitors with the Stupp protocol is in clinical trials and may have efficacy in some GBM 

patients (Huang et al., 2019a). 

The spatial and temporal intra-tumoral heterogeneity are major causes for tumor recurrence.  

Spatially, 90% of times, recurrence occurs in peritumoral areas, that usually contains tumoral 

cells in one third of the area (Lemée et al., 2015). Genetically, cells from primary site mainly 

expressed anti-apoptotic genes while cells from peritumoral site expressed survival genes. 

Moreover, peritumoral cells are more proliferative, invasive and resistant to therapy (Lemée et 

al., 2015).  Additionally, genome sequencing of primary tumor and its recurrence demonstrated 

that distant recurrence presents divergence mutational landscape from primary tumor (Kim et 
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al., 2015). Demonstrating once more that migrating cells are submitted to a totally different 

evolution than cells on primary site.  Another interesting area is the physiological site of 

neurogenesis, the subependymal zone. In GBM, this area contains approximately 65% of 

tumoral cells and is associated to recurrence (Piccirillo et al., 2015). 

Usually, the recurrent tumor presents a different genetic signature compared to the primary 

tumor, suggesting a temporal heterogeneity and adaptation to stress (treatment). Interestingly, 

the mesenchymal subgroup, being aggressive and resistant to therapy, seems to be genetically 

stable temporally, with similarities between primary and recurrent tumors. However, the GBM 

proneural and classical subgroups change genetically to survive therapy and to acquire a more 

mesenchymal profile (Wang et al., 2017a).  

Furthermore, inter-cooperation between tumoral cells and surrounding microenvironment 

facilitates therapy resistance and tumor recurrence. The microenvironment is composed by 

different cells (macrophages, endothelial cells, pericytes, astrocytes) and different extracellular 

matrix components, that can modify the phenotype of tumor cells (Bonavia et al., 2011). For 

example, tumor-associated astrocytes are activated upon direct contact with GBM cells. They 

facilitate tumor progression, proliferation, migration, evasion of immune system and 

chemoradiotherapy resistance of tumor cells (Zhang et al., 2020a). Moreover, different tumor 

cells can cooperate with each other. For instance, mutant EGFRvIII expressing cells enhance 

EGFR WT cells proliferation by secretion of IL-6 and LIF (Bonavia et al., 2012; Inda et al., 

2010). Furthermore, oxygen gradient and vascularization induce a certain cell adaptation to 

environment and thus promote tumor heterogeneity. Each tumoral cell that migrates to different 

areas, adapts to the new microenvironment through additional mutations. Interestingly, the 

expression of RTK are spatially distinct (Little et al., 2012; Szerlip et al., 2012). For example, 

PDGFR positive cells are usually found on highly vascularized areas, while EGFR positive 

cells are detected in more hypoxic sites (Little et al., 2012).  

1.4 Glioblastoma Treatment  

Whenever possible surgical resection is the first therapeutic step for the treatment of GBM. It 

reduces and decompress the tumor area. Complete tumor resection is associated with increased 

survival. To facilitate tumor removal, a fluorescence molecule derived from 5-aminolevulinic 

acid is used during surgical resection to enhance the contrast between normal and tumoral 

tissues (Ferraro et al., 2016). However, due to the highly invasive nature of the GBM and the 
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late diagnosis, resections are only partial. Chemo- and radio-therapies are required. Until 2005, 

surgical resection was followed by radiotherapy (RT) and chemotherapy with carmustine, a 

nitrosourea drug with alkylating function, as adjuvant treatment (DeAngelis, 2001). In 2005, an 

improved protocol was established (Stupp et al., 2005). The efficiency of this protocol was 

verified in the clinical trial (NCT 22981/26981) where concomitant administration of an 

alkylating chemotherapeutic, temozolomide (TMZ), with RT upon surgical resection, together 

with adjuvant TMZ resulted in a better treatment. Improved survival was observed for TMZ/RT 

compared to RT alone (for recursive partitioning analysis (RPA)-III 21 months versus 15 

months, while for RPA-IV 16 versus 13 months, respectively) for GBM patients with minimal 

levels of toxicity (Mirimanoff et al., 2006). The radiotherapy used in Stupp protocol is a 

fractionated focal type, with irradiation of 2 Gy/ fraction, once a day for five days/week, for a 

period of six weeks (total of radiation given is 60Gy).  

The choice of chemotherapeutic drugs needs to be rational and follows several criteria. The 

drug should have (i) a low molecular weight to be able to cross the blood-brain barrier (BBB), 

(ii) a high lipidic solubility, (iii) a low ionization, and (iv) a minimal protein binding capability 

(Newton, 2006). TMZ is an oral alkylating agent with small size (194 Da) possessing all these 

characteritics. TMZ is a pro-drug that is spontaneously converted to an active metabolite, 

imidazole-4-carboxamide that can methylate DNA (Figure 2), in N-7 or O-6 positions of 

guanine residues (Agarwala and Kirkwood, 2000; Zhu et al., 2014). The rational of giving TMZ 

concomitantly with RT is based on:  

- A daily administration of low doses has a greater intensity of activity without additional 

toxicity (Newlands et al., 1992; Wick et al., 2009),  

- After RT, O-6-methylguanine-DNA methyltransferase (MGMT) enzyme is activated and 

repairs DNA damage. A continued administration of alkylating agents like TMZ reduces 

MGMT expression (van Nifterik et al., 2007),  

- A synergy effect is observed by the concomitant use of TMZ and RT (Parisi et al., 2015). 

1.5 Predictive and prognostic factors of GBM  

In GBM, young patient’s age, tumor cerebral location and maximal tumor resection are good 

prognostic factors. Other molecular biomarkers may be considered as valuable genetic 

prognostic factors.  
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IDH-mutant gliomas present hypermethylation at a large number of loci, known as cytosine-

phosphate-guanine (CpG) island. This GBM CpG island methylator phenotype is called G-

CIMP. G-CIMP occurs in 10% of GBM, mainly in secondary GBM (Seymour et al., 2015; 

Thakkar et al., 2014). G-CIMP positive tumors present a better prognosis (Noushmehr et al., 

2010). IDH mutation and 1p/19q deletion associated with high expression of CHI3L1, a gene 

coding a secreted glycoprotein involved in ECM remodulation and inflammation, and low 

expression of NTRK2, a gene coding a neurotrophic RTK-2 that induces neuronal 

differentiation and survival, defines an unfavorable prognosis of glioma patients (Deluche et 

al., 2019). ATRX mutations cause alternative lengthening of telomeres and are associated with 

IDH1/2 and TP53 mutations in secondary GBM. TERT mutations, more frequently found in 

primary GBM than in secondary GBM, are correlated with erbB1 amplification and a shorter 

patient survival. EGFR overexpression is associated with worse prognosis in younger patients 

with TP53-wildtype tumors (Simmons et al., 2001). MGMT is implicated in DNA repair and 

resistance to alkylating therapy. MGMT gene promotor is rich in CpG, which methylation 

reduces MGMT expression. The MGMT promotor is hypermethylated in approximately 50% of 

GBM and is associated with IDH1/2 mutations. MGMT promotor hypermethylation is a 

predictive factor for alkylating therapy and is associated with a better survival (Yu et al., 2020).  

Moreover, several others molecular alterations that are studied in preclinical and clinical studies 

can be used as predictive factors or therapeutic targets to better treat GBM patients. Molecular 

studies  (Ceccarelli et al., 2016; Verhaak et al., 2010) are not yet used in GBM treatment 

algorithm.  In the last years, the several clinical trials on GBM patients clearly showed the need 

to better stratify patients and provide a more personalized treatment related to the genetic 

signature and evolution of GBMs. 

Even with treatment, the median survival is around 15 months (Hanif et al., 2017; Thakkar et 

al., 2014). GBM is still uncurable and most tumors give rise to a recurrence.  

1.6 New therapeutic approaches in GBM 

The standard care of GBM (Stupp protocol) has not changed since 15 years. Currently, several 

studies are being made to develop new treatments. However, most of them are disappointing.  
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1.6.1 Targeted therapies 

GBM molecular characterization identified molecular biomarkers involved in tumor 

progression that can be targeted in order to impair tumor aggressiveness. Therapies inhibiting 

specifically these biomarkers are called targeted-therapies. 

In annex 1 (manuscript under writing), we are currently describing all targeted-therapies tested 

in 259 GBM clinical trials. Within these clinical trials, proteins involved in tumor growth and 

migration, cell cycle and cell death’s escape, angiogenesis, and unlimited replication were 

targeted. These studies, being extensively described in this draft (Annex 1), are not repeated in 

this paragraph. 

1.6.2 Metabolism targeting 

GBMs redirect metabolism to the macromolecule synthesis and antioxidant regeneration 

mediating tumor progression and therapy resistance (Zhou and Wahl, 2019). 
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Figure 2: Metabolism of TMZ in aqueous solution. When it enters in contact with basic pH solutions like blood or tissues, 
TMZ undergoes hydrolysis and gives rise to the active metabolite MTIC. MTIC originates the reactive methyldiazonium ion, 
and 5-aminoimidazole4-carboxamide (AIC) that will be excreted by the urine. Adapted from (Agarwala and Kirkwood, 2000; 
Newlands et al., 1997). 

Isoform-selective IDH inhibitors suppress 2-HG production. Preclinical studies using an 

inhibitor of mutant IDH1 showed the impairment of glioma cell growth (Rohle et al., 2013). 

Six inhibitors of the mutated IDH1/2 enzymes are being tested in glioma phase I and II clinical 

trials (Kaminska et al., 2019). An IDH1-R132H targeting peptide vaccine was evaluated in a 

phase I (NOA-16) on GBM patients to evaluate safety, tolerance and immune response (Platten 

et al., 2018). One-carbon (1C) metabolism is based on a series of connected metabolic 

pathways, including methionine and folate cycles. This metabolic process is essential to provide 

methyl groups for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids 

(Clare et al., 2019). Interestingly, methionine-restricted diet increases cell response to radio and 

chemotherapy in mice, by depleting circulating antioxidant agents and nucleotide levels (Gao 

et al., 2019).  Methionine can be inhibited in cancer treatment by blocking protein arginine 

methyltransferase 5 (PRMT5). In cancer cells, depletion of 5-methylthioadenosine 

phosphorylase (MTAP), an enzyme involved in the methionine pathway, promotes PRMT5 

dependency. Moreover, PRMT5 inhibition selectively killed MTAP-null cancer cells (Kryukov 

et al., 2016). Interestingly, MTAP is deleted in half of GBM tumors (Cerami 2012). An ongoing 

clinical trial (NCT02783300) addresses the potential interest of PRMT5 inhibitor in several 

solid tumors including GBM (Zhou and Wahl, 2019).  
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NAD+ is a critical metabolic co-factor that affects base excision repair and single strand break 

repair pathways through Poly(ADP-ribose) polymerases (PARPs) (Almeida and Sobol, 2007). 

NAD+ is highly present in GBM since its metabolic enzyme nicotinamide 

phosphoribosyltransferase (NAMPT) is often upregulated in GSC (Gujar et al., 2016). This 

pathway can be blocked using NAMPT inhibitors. Clinical trials of NAMPT inhibitors as 

monotherapy have been discontinued due to toxicity and minimal activity (Sampath et al., 

2015). Another way to block this pathway is to use PARP inhibitors. PARP can be 

inhibitedmtap by two mechanisms: (i) antagonist competition with NAD+ at PARP catalytic 

site and (ii) PARP entrapment to DNA.  Concomitant PARP inhibition with RT/TMZ reduced 

tumor size in human glioma xenografts (Blakeley et al., 2015). GBM preclinical studies of 

PARP inhibition increased cell radio-sensitivity (Barazzuol et al., 2013; Russo et al., 2009). 

Glutamine breakdown contributes to GBM growth and survival (Zhou and Wahl, 2019). 

Glutaminase (GLS), which converts glutamine to an ammonium ion and glutamate, is a 

therapeutic target in many cancers. A glutaminase inhibitor CB-839 sensitized IDH mutant cells 

to radiation in vitro and in vivo (McBrayer et al., 2018). A phase Ib clinical trial in IDH-mutated 

GBM patients is using CB-839 in combination with the Stupp protocol (NCT03528642). Also 

combination with a PARP inhibitor, talazoparib, is being tested in GBM patients 

(NCT03875313) (Annex 1). Recently, EGFR was described as a promotor of glutamine 

metabolism, through ELK1 phosphorylation to activate GDH1 transcription and thus 

glutaminolysis (Yang et al., 2020). This correlation can be exploited by using concomitant 

glutaminase inhibitor and EGFR-targeted therapies. This combination improved anti-EGFR 

therapy efficiency in preclinical models of colorectal cancer (Cohen et al., 2020). Also this 

combination provoked metabolic crisis and cell death in mouse lung cancer xenografts 

(Momcilovic et al., 2017). 

1.6.3 Immunotherapy 

One hallmark of GBM is its highly immunosuppressive profile. This opens the opportunity to 

use immunotherapy, already successful in the treatment of other solid tumors, to improve GBM 

suppression.   

Nobel prize for medicine 2018 awarded the discovery of checkpoint inhibitors and their use for 

cancer therapy. Inhibitors of immune checkpoints such as PD-1, PD-L1, and CTLA-4 increase 

immune activation (McGranahan et al., 2019). In GBM clinical trials, immune checkpoints 
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inhibitors are being used in monotherapy or combined with other immune stimulating therapies. 

However, serious concerns exist due to severe complications, even fatal, upon over activation 

of immune system in the brain (Leitinger et al., 2018). 

The vast existence of tumor-associated antigens opened ways to use them as tumor 

identification card. Vaccines can induce a specific immune response against tumor antigens by 

teaching patient own immune system to better fight cancer cells. Nowadays, the use of tumor 

antigen vaccines is restricted to some conditions. Before administration, tumoral antigen 

expression has to be confirmed. Patients are stratified based on their human leukocyte antigen 

(HLA) type as well (McGranahan et al., 2019). Several tumor antigens (HER-2, IL13Ra2, 

MAGE-1, and survivin) are restricted to specific HLA types (class I restricted cytotoxic T cell 

or class II restricted helper T cell). For targeting these antigens, vaccines need to present the 

antigen on restricted HLA alleles to generate an immune response (Zhang et al., 2007a).  In 

GBM, single-tumor-antigen vaccines targeting EGFRvIII mutation (rindopepimut) (Annex 1) 

improved median survival of mice with hetero- and orthotopic GBM xenografts (Heimberger 

et al., 2003). A phase III clinical trial combining rindopepimut with TMZ did not improve 

patient survival compared to control (Weller et al., 2017). A phase II with an anti-VEGF 

(vascular endothelial growth factor) antibody, bevacizumab, showed beneficial results that need 

to be confirmed in a larger patient set (Reardon et al., 2020).  Another target of interest is 

survivin, a member of the inhibitor of apoptosis family. Survivin overexpression is associated 

with worst prognostic in GBM, ovarian, breast cancer (Chakravarti et al., 2002; Tong et al., 

2019). A single-tumor-antigen vaccine against surviving (SurVaxM) has been developed and 

is currently tested in association with check-point inhibitor or TMZ (NCT04013672 and 

NCT02455557, respectively). Furthermore, a multi-targeting vaccine, SL701, targets IL-

13Ra2, ephrin A2, and survivin (McGranahan et al., 2019; Peereboom et al., 2018). Moreover, 

vaccines can be customized according to resected tumor analysis. Two promising custom 

vaccines (HSPPC-96 (Prophage) and DC-Vax-L) are tested as single agent or in combination 

with checkpoint inhibitors (McGranahan et al., 2019).  

Another immunotherapy is based on the use of chimeric antigen receptor- T (CAR-T) cells 

which are autologous or allogeneic T cells modified to recognize a tumor antigen. CAR-T 

recognize tumor cells through their extracellular domain, while their intracellular domain 

activates T cell. Clinical trials using CAR-T cells in hematological cancers have shown 

promising results (Miliotou and Papadopoulou, 2018). However, solid tumors fail to respond 
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to infusions of CAR-T cells. Several studies are being made to overcome CAR-T efficiency 

obstacles and to better stratify patients through companion tests (Ma et al., 2019). The GBM 

tumor antigens used as targets in CAR-T cells are IL-13Ra2, EGFRvIII, and HER2. Several 

clinical trials are studying the range of different administration ways. Encouraging results 

concern safety and penetrance of CAR-T cells were achieved, although effect on tumor growth 

and recurrence are less convincing (McGranahan et al., 2019). 

 

Intra-heterogeneity is usually associated with therapy failure. Thus, it would be important to 

perform tumor molecular analysis in distinct biopsies from different parts of the tumor. 

However, not only genetic profile can affect tumor biology and therapy response. In this thesis 

we will evaluate how membrane cell surface receptor trafficking can affect GBM cell evasion 

and response to targeted-therapies. 
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 2. Epidermal growth factor receptor 
Forty years ago, Cohen identified a 170 kDa protein able to bind EGF which possess a kinase 

activity, called EGFR (Cohen et al., 1980). EGFR overexpression contribution to cancer 

progression was first described few years later (Thompson and Gill, 1985). Since then, large 

amount of data established that EGFR signaling network promotes cancer cell survival, growth 

and invasion and is therefore critical for tumor progression (Jones and Rappoport, 2014; 

Normanno et al., 2006).  

2.1 Generality on EGFR 

EGFR belongs to the HER gene family, which contains four genes encoding transmembrane 

receptors: EGFR (HER1), ERBB2 (HER2), ERBB3 (HER3) and ERBB4 (HER4) (Figure 3) 

(Olayioye et al., 2000). EGFR is a 170 kDa glycoprotein, with 1186 amino acids and is 

composed by three main domains: an extracellular ligand-binding domain (ectodomain), a 

hydrophobic transmembrane domain and a cytoplasmic tail bearing a tyrosine kinase domain 

(Roskoski, 2014; Wieduwilt and Moasser, 2008). 

The ectodomain contains four subdomains: two leucine-rich subdomains and two cysteine-rich 

subdomains. The leucine domains directly bind to the various ligands (domains I and III), while 

the cysteine domains (domains II and IV) are involved in interaction and homo- and hetero-

dimerization with other receptors. The leucine domain is different among all family members, 

giving them ligand specificity (Berasain and Avila, 2014; Wieduwilt and Moasser, 2008).  

The cytoplasmic domain contains a highly conserved bi-lobed tyrosine kinase (TK). HER3 

lacks TK activity, and it must form heterodimers to activate signaling pathways. Between the 

two lobes exists an ATP binding site (Figure 4). The activation of the receptor by ligand binding 

creates an extended conformation followed by receptor dimerization. Interaction between the 

N-lobe of one domain with the C-lobe of another domain transphosphorylates the receptor on 

tyrosine residues and creates many phosphorylated docking sites (Harari, 2004; Roskoski, 

2014; Wieduwilt and Moasser, 2008) . 
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Figure 3: HER family. A family of 4 receptors tyrosine-kinase. HER1, HER2 and HER4 present an intracellular tyrosine 
kinase domain, while HER3 lacks this domain. Extracellular domains I and III play a part in ligand binding, while domains II 
and IV participate in homo- and hetero-dimerization upon ligand-binding. Adapted from (Berasain and Avila, 2014). 

 

Figure 4: ATP binding site of tyrosine kinase domain. ATP binding site was evaluated using AMP-PNP, a non-hydrolysable 
analogue of ATP, and was found to be located between N- and C- lobes of TK domain. Adapted from (Heppner et al., 2016) 

 

The EGFR known ligands are EGF, TGFA/TGF- , amphiregulin, epigen/EPGN, 

BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (Harari, 2004; 

Wieduwilt and Moasser, 2008). They are synthesized as membrane-anchored precursors. EGF  

needs to be proteolytically released to be active, whereas HBEGF promotes  receptor activation 

while anchored to the membrane (Dong et al., 2005). Upon ligand binding, EGFR is stabilized 
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in open conformation and a homo- (with EGFR) or hetero- (with other receptors of ErbB 

family) dimerization is occurring. Moreover, EGFR can also be activated by ligand-

independent mechanisms induced by unphysiological stimuli (such as oxidative stress, UV, and 

irradiation), by others RTK (such as c-MET, IGFR), by G-protein coupled receptors (GPCRs) 

and adhesion receptors like integrins (Sheng and Liu, 2011; Siwak et al., 2010). 

2.2 EGFR signaling  

Once activated, the phosphorylated tyrosine residues in the intracellular tail act as docking sites 

for signaling molecules and endocytic adaptors. EGFR mostly activates   

Ras/Raf/MEK/MAPK, PI3K, PLC- γ and STAT signaling cascades (Figure 5).  

2.2.1 Ras/Raf/MEK/MAPK signaling pathway 

The RAS/RAF/MAPK signaling pathway stimulates cell proliferation, migration, 

differentiation and vascular angiogenesis (Wieduwilt and Moasser, 2008). This pathway starts 

with the binding of the  adaptor protein Grb2 to residues pTyr1068 and pTyr1173 (Batzer et al., 

1994). Grb2 interacts with SOS, a GTP exchange factor that stimulates GTP-binding to the 

monomeric GTPase RAS and its subsequent activation. RAS-GTP binds to and activates the 

serine kinase RAF, a cascade of serine phosphorylation in then initiated, from RAF to ERK via 

the kinase MEK. ERK is translocated to the nucleus, activating other kinases and/or 

transcription factors. Alternatively, ERK pathway can be activated by the recruitment of the 

protein Shc to EGFR via their SH2 domains (Pelicci et al., 1992). Once phosphorylated by 

activated EGFR, Shc binds to Grb2 and activates the RAS/RAF/MEK/ERK pathway (Rozakis-

Adcock et al., 1992).  

2.2.2 PI3K signaling pathway 

On the other hand, PI3K/Akt pathway enhances tumor cell survival and apoptosis. Human 

expresses 3 classes of PI3K. Within class I PI3K, mammals have 4 catalytic isoforms (p110 α, 

β, γ, and δ) and 7 regulatory subunits (p85α, p85β, p55α, p50α, p55γ, p84, p101). p110α 

catalytic isoform forms a dimer with a p85 regulatory subunit through binding of domain ABC 

to a coiled-coil region inter-SH2 domain (iSH2). p85 interacts to EGFR, either directly through 

SH2 domain binding to pTyr residues, or  indirectly via-Gab1 interaction (Carpenter et al., 

1990; Harari, 2004; Wieduwilt and Moasser, 2008). Upon activation, PI3K phosphorylates the 
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3′-hydroxyl group of the inositol ring of a phospholipid from the plasma membrane 

(phosphatidylinositol-4,5-bisphosphate (PIP2)), converting it to phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) (Whitman et al., 1988). PIP3 recruits AKT to the plasma membrane by its 

PH domain. PDK1, also mobilized to the plasma membrane by PIP3, partially activates AKT 

by phosphorylation of Thr308 residue in the kinase domain. AKT needs Ser473 

phosphorylation in the C-terminal domain to achieve full activation, by mTORC2 complex, 

PDK2 or integrin-linked kinase (ILK) (Knight et al., 2006; Vanhaesebroeck et al., 2012). Upon 

full activation, AKT dissociates from PIP3 and phosphorylates several cytosolic and nuclear 

proteins. This signaling pathway is negatively regulated by the tumor suppressor protein PTEN, 

a phosphatase that dephosphorylates PIP3 to form PIP2, shuting down the signal.  

2.2.3 STAT signaling pathway 

Upon binding to activated EGFR, STAT3 dimerizes and is translocated into the nucleus. 

STAT3 acts as a transcription factor to regulate cell proliferation, differentiation, survival and 

apoptosis (Jorissen et al., 2003).  

2.2.4 PLC- γ signaling pathway 

Moreover, EGFR can also directly interact with phospholipase C- γ (PLC-γ) through pTyr992 

residue.  PLC-γ activation catalyzes PIP2 hydrolysis into IP3 and DAG. Herein, DAG can 

activate PKC, a family of serine kinases involved in cell proliferation, survival, migration and 

adhesion. PLC-γ/EGFR interaction leads to actin reorganization and asymmetric motile 

phenotype (Normanno et al., 2006).  

EGFR activation is attenuated by tyrosine dephosphorylation of active receptor, through 

phosphatases such as density-enhanced phosphatase-1 and protein-tyrosine phosphatase 1B 

(PTP1B). Their catalytic activities remove the docking sites that stimulates cell signaling 

(Sebastian et al., 2006). 
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Upon EGFR activation, the receptor is internalized. EGFR endocytosis and intracellular 

trafficking closely regulates receptor activity and tumor progression. 

Figure 5: EGFR signaling. EGFR through four main signaling pathways (PI3K/AKT, MAPK, STAT3 and PLC-γ) promotes 
tumor cell proliferation, survival and invasion.  

2.3 Endocytic pathway of EGFR  

EGFR membrane localization and signaling function is tightly regulated by receptor 

endocytosis and intracellular trafficking.Unstimulated EGFR is internalized at a very slow rate 

and its rarely degraded, returning back to the plasma membrane, whereas ligand binding and 

kinase activation increase the endocytic constant rate (Caldieri et al., 2018). Ligand-induced 

endocytosis can occur through different pathways classified as clathrin-mediated endocytosis 

(CME) and non-clathrin dependent endocytosis (NCE), depending on receptor homo- or 

heterodimers formation, ligand type and concentration. For instance, EGF and TGFα induce 

CME, while HB-EGF or high EGF concentration promotes NCE. Furthermore, NCE leads to 

90% of EGFR degradation while CME has a more important impact on spatial and temporal 

signaling control with signal amplification on clathrin-coated pits and a rate of 70% of recycled 

EGFR (Henriksen et al., 2013; Sigismund et al., 2008).  

EGFR ubiquitination is a critical signal for the endocytosis since it determines endocytic route 

and receptor fate (degradation or recycling) (Caldieri et al., 2018).  The E3 ligase, Cbl,   directly 

binds to EGFR pTyr1045 residue or to Grb2 (Sorkin and Goh, 2008). After binding, Cbl 

ubiquitinates lysine residues in the EGFR kinase domain. Lys63 polyUb chains and multi-

monoUb are the most common ubiquitin residues. Cbl remains associated to EGFR throughout 

the endocytic route (Caldieri et al., 2018). EGFR Protein tyrosine kinase Substrate 15 (Eps15), 
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a scaffolding protein, interacts with ubiquitinated motif of EGFR, allowing the binding to a 

major endocytic adaptor, AP-2.  

AP-2 mediates the link of the receptor to the clathrin-coated pit (Parachoniak and Park, 2009; 

Sigismund et al., 2005; Tomas et al., 2014). Generation of an endocytic vesicle requires plasma 

membrane invagination and fission. AP-2 increases clathrin coat stiffness, facilitating cargo 

sequestration and coated vesicle formation (Lherbette et al., 2019). Dynamin, a family of 

GTPase proteins is involved in the fission of the vesicule and consequently in EGFR 

endocytosis (Sousa et al., 2012). Three isoforms of dynamin (dynamin-1, dynamin-2 and 

dynamin-3) have been identified in humans. Dynamin-2 (DNM2) is ubiquitously expressed 

while dynamin-1 is expressed only in neurons and dynamin-3 in brain, testis and lung cells. 

After GTP binding, dynamin assembles as helical polymers in the neck of clathrin pit. GTP 

hydrolysis mediates dynamin conformation change generating forces that results in fission by 

constriction or stretching (Ferguson and De Camilli, 2012; Sundborger and Hinshaw, 2014).   

2.4 EGFR trafficking  

2.4.1 Ligand-induced EGFR trafficking 

After endocytosis, independently of the entry route, EGFR reachs early endosomes and is 

adressed either to recycling endosomes to return back to the plasma membrane or to late 

endosomes for degradation through an endosomes progressive maturation (Caldieri et al., 2018; 

Tomas et al., 2014). The two Eps15 existing isoforms have different roles in EGFR membrane 

trafficking. Eps15s, which lacks the ubiquitin-interacting motifs (UIMs), promotes EGFR 

transfer to the endocytic recycling compartment (ERC) via Ras-associated binding 11 (Rab11) 

(Chi et al., 2011),  while eps15b interacts with Hrs (hepatocyte growth factor-regulated tyrosine 

kinase substrate), a vesicular transport protein with a double zinc finger domain, and sorts 

EGFR to multi-vesicular bodies (MVBs) (Figure 6) (van Bergen en Henegouwen, 2009; 

Komada and Soriano, 1999; Roxrud et al., 2008). 

The small GTPase Rab proteins family, which are regulated by a dynamic cycling between their 

GTP-bound (active) form to their GDP-bound (inactive) form (Jovic et al., 2010), are critical 

regulators of endocytosis and membrane trafficking. Rab5 and its effectors, like early-

endosome antigen 1 (EEA1), are involved in the (i) regulation of cargo entry from the plasma 

membrane to the early endosomes, (ii) generation of early endosome components such as 
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phosphotidylinositol-3-phosphate (PtdIns(3)P) lipid, (iii) early endosome homotypic fusion, 

(iv) early endosome motility on actin and microtubules, and (v) regulation of endosomal 

signaling pathways. Ligand-activated EGFR is sorted to Rab5-positive early endosomes, and 

continuously activated Rab5 induces EGFR accumulation in enlarged endosomes (Dinneen and 

Ceresa, 2004). 

Rab11 together with Rab4 and Rab25 is involved in EGFR recycling. Rab11 promotes 

EGFR/β1 integrin recycling and enhanced epithelial migration (Caswell et al., 2008; Palmieri 

et al., 2005). Rab4 promotes enlarged early endosomes that prolong EGFR activation in breast 

cancer cells (Tubbesing et al., 2020). Rab4 dominant negative reduces EGFR recycling and 

degradation, demonstrating an important role of Rab4 in early endosome sorting (McCaffrey et 

al., 2001). Rab25 favors EGFR recycling and its overexpression is associated with in vitro and 

in vivo cancer cell resistance to radiotherapy, and lung adenocarcinoma and nasopharyngeal 

carcinoma’s patients worst prognosis (Zhang et al., 2020b). Moreover, Rab25 overexpression 

is associated with EGFR-tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer 

(NSCLC) patients (Wang et al., 2019b). Rab7 is required to the transfer of receptors from late 

endosomes to lysosomes (Vanlandingham and Ceresa, 2009) and its activity correlates with 

EGFR degradation (Ceresa and Bahr, 2006). Rab35 is activated by EGF, leading to EGFR 

degradation and attenuation of EGFR signaling (Zheng et al., 2017). 

Increase in H+ concentration in endosomal compartment differently influence ligand/receptor 

interaction and dictates EGFR membrane trafficking. In acidic endosomal environment, TGFα 

dissociates from EGFR leading to its inactivation, Cbl detachment and consequent receptor 

deubiquitylation. This cascade of events promotes a fast EGFR recycling. On the other hand, 

EGF/EGFR interaction is more stable at low pH and ligand-bound receptor is mostly degraded 

in lysosomes (Longva et al., 2002).  

Ubiquitinated EGFRs are sorted along the degradative pathway by the ESCRT (endosomal 

sorting complexes required for transport) complexes. ESCRT machinery is composed by 4 

cytosolic protein complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) that are 

involved in membrane remodeling and, for example, in MVB biogenesis (Frankel and Audhya, 

2018; Williams and Urbé, 2007).  ESCRT-0 complex recognizes ubiquitinated EGFR in early 

endosomes and induces receptor sorting into MVB. In the MVB, a complex is formed between 

Hrs and STAM1/2 (signal transducing adaptor molecule 1 and 2), followed by a sequential 

recruitment of ESCRT-I, -II and -III to the MVB membrane. After cargo transfer between the 
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different ESCRT complexes, ESCRT-III drives inner MVB membrane invagination forming 

intraluminal vesicles (ILVs) into which ubiquitinated EGFR is found (Caldieri et al., 2018). 

ILVs are then released from MVBs into the lumen of the lysosome.  

Spatio-temporal regulation of EGFR signalling is under the control of its endocytic trafficking. 

Dynamin inhibition revealed that EGFR predominantly activates MAPK or AKT signaling 

pathways at the plasma membrane.  Receptor internalization and consequently degradation is 

associated with signaling shutdown. However, other reports demonstrated that receptor can also 

signal through its trafficking journey inside endosomal compartments. Endosomal EGFR 

signaling suppressed cell apoptosis induced by serum starvation (Wang et al., 2002).   

 

 

Figure 6: EGFR membrane trafficking. 1- Upon ligand binding, EGFR is activated, ubiquitylated by Cbl and recruited into 
clathrin-coated pits. 2- EGFR interacts with ESCRT machinery on early endosomes, and it is sorted to MVBs and finally to 
lysosomes for degradation (3). 4- When EGFR ligand dissociates, EGFR is deactivated, deubiquitylated and recycled to the 
plasma membrane. Adapted from (Madshus and Stang, 2009). 

2.4.2 Stress-induced EGFR trafficking dysregulation 

Studies made in HeLa cells and in head and neck cancer cells demonstrated that stress stimulus 

such as radiation (UVB and UVC) or chemotherapy can affect EGFR traffic and play a role in 

cancer progression independently of DNA damage (Tomas et al., 2017). The possible 
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generation of reactive oxygen species alters kinase/phosphatases equilibrium, promoting EGFR 

activation independently of ligand binding (Tomas et al., 2017).  UV-stimulated internalization 

is tyrosine kinase-independent (Oksvold et al., 2002). It requires phosphorylation of EGFR 

serine and threonine residues (Oksvold et al., 2004) and continuous stress-activated p38-MAPK 

(MAPK14) activation (Zwang and Yarden, 2006). Cisplatin has also been shown to induce p38 

MAPK-dependent EGFR internalization and therapy resistance in breast cancer cells 

(Winograd-Katz and Levitzki, 2006). Stress conditions can induce also EGFR degradation, that 

contrary to stress-induced endocytosis does not require p38, but it is catalyzed by caspase-3 

activity (Peng et al., 2016). p38-MAPK can activate Rab5 by phosphorylating its effectors 

EEA1 and GDI, promoting thus EGFR internalization and endosomal fusion (Cavalli, 2001). 

UV and cisplatin-induced EGFR endocytosis seems to use a different route compared to EGF-

induced EGFR endocytosis. Stress-induced internalized EGFR is accumulated and trapped in a 

lyso-bisphosphatidic acid-rich MVB, different from the MVB containing EGF-induced 

endocytic EGFR, after early-endosome sorting by WASH complex (nucleation-promoting 

factor that activates actin cytoskeleton regulator Arp2/3 (Duleh and Welch, 2010). This stress-

induced EGFR intracellular retention is ubiquitin-independent but requires ESCRT complex 

and ALG-2-interacting Protein X (ALIX) (Tomas et al., 2015). These intraluminal vesicles do 

not fuse with lysosomes but are able to back-fuse with the MVB-limiting membrane and move 

towards the cell surface after p38 inhibition. Stress-induced EGFR is activated after 

internalization and endosomal retention (Tomas et al., 2015). EGFR signaling from these 

perinuclear compartments delayed apoptosis induced by UVC or cisplatin, but afterwards cell 

death happens maybe due to prolonged p38 signal (Tomas et al., 2017).  

 

2.5 EGFR a therapeutic target in GBM  

2.5.1 Oncogenic activity of EGFR in GBM 

In GBM, erbB1 is amplified in 40-60% of the cases after gene rearrangement and/or focal 

amplification is often associated with mutations (Frederick et al., 2000). The most common 

EGFR mutation (occurred in more than 50% of the cases) is the loss of exons 2-7 corresponding 

to a 801 base pair deletion and giving rise to EGFRvIII   (Huang et al., 2009). The amino acids 

6 to 273 are replaced by a glycine residue, resulting in a 145 kDa glycoprotein with constitutive, 

ligand-independent activation. The constitutive activation is potentiated by the reduced 
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interaction with E3-ligase Cbl, leading to a decreased degradation of the receptor (Normanno 

et al., 2006). Other mutations occurring are a N-terminal truncation (EGFRvI), deletion of 

exons 14 – 15 (EGFRvII), deletion of exons 25 – 27 (EGFRvIV), C-terminal truncation 

(EGFRvV) and C-terminal duplications and truncations.  

GBM is a highly heterogeneous tumor, presenting variable EGFR expression in certain group 

of cells (Neftel et al., 2019; Snuderl et al., 2011; Verhaak et al., 2010). Histological studies 

showed a heterogeneous distribution of EGFR in GBM tissues. EGFR expression was found 

diffuse within the tumor mass (Hatanpaa et al., 2010), or more focalized in tumor edges (Okada 

et al., 2003), being associated with GBM invasion. 

Several studies clearly established that activation of downstream signaling pathways by EGFR 

overexpression promoted GBM cell proliferation, migration and invasion, tumor growth and 

angiogenesis (An et al., 2018). PI3K signal is amplified by EGFR overexpression in GBM, but 

also by PTEN lost in 45% of GBM. Additionally, mutations in the regulatory domain of PI3K 

were found in GBM leading to an aberrant PI3K activation and signal (Wang et al., 2004a). 

Moreover, PI3K signaling pathway targeting through inhibition of mTOR provides GBM 

regression (Fan et al., 2017; Zhang et al., 2015b). However,  clinical application of rapamycin 

(mTOR inhibitor) and its analogs had few relevant responses in GBM (Xu et al., 2017a). 

PKC/PI3K/AKT inhibitor, enzastaurin, induced glioma cell apoptosis and suppress 

proliferation in U87 MG cell line, and reduced tumor growth and angiogenesis in mouse 

xenografts (Graff et al., 2005). Enzastaurin was evaluated in a GBM phase III clinical trial as 

monotherapy (Wick et al., 2010). Even though enzastaurin was well tolerated and had less toxic 

effects compared to lomustine, it failed to demonstrate clinical benefit (Wick et al., 2010). 

MAPK in GBM is involved in glioma cell invasion, in neo-angiogenic processes and in neural 

stemness (Sangpairoj et al., 2016). Inhibition of this pathway decreases tumor growth in glioma 

xenografts (Campbell et al., 2014). In GBM, EGFR can phosphorylate the co-expressed 

EGFRvIII, promoting its nuclear translocation where it can interact with STAT3,  increasing 

preclinical tumor aggressiveness (Fan et al., 2013).  

 2.5.2 EGFR trafficking dysregulation in GBM 

Over the years, different studies have showed that EGFR membrane trafficking is often altered 

in tumors including GBM and contributes to disease progression (Table 1). Recent reports 
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indicate that endocytic pathway may be used as pertinent predictive molecular biomarkers and 

therapeutic tools in vivo and in clinics (Chew et al., 2020; Joseph et al., 2019; Ye et al., 2019).  

Golgi phosphoprotein 3 (GOLPH3) was initially identified as a Golgi protein through its 

binding to phosphatidylinositol-4-phosphate (Bell et al., 2001; Dippold et al., 2009). It was 

showed to regulate membrane receptor trafficking, including EGFR, in drosophila (Korolchuk 

et al., 2007). GOLPH3 is overexpressed in GBM and other solid tumors, and is considered as 

“Golgi oncoprotein” (Sechi et al., 2015). Through interaction and inactivation of Rab5, 

overexpressed GOLPH3 dampens EGFR endocytosis, promoting tumoral progression both in 

vitro and in vivo. Downregulating GOLPH3 promotes EGFR internalization and degradation, 

and decreases downstream PI3K-AKT-mTOR signaling (Zhou et al., 2017). Moreover, 

GOLPH3 increases GBM sensitivity to EGFR-TKI gefitinib treatment (Wang et al., 2019c). On 

the other hand, compared to monotherapies, co-delivery of siRNA targeting GOLPH3 and 

gefitinib in brain tumors reduces cancer progression and improves mice survival (Ye et al., 

2019). 

NHE9 is a NA+/H+ channel, first identified in autism where it induces hyperacidification of 

sorting endosomes and cellular trafficking defects (Kondapalli et al., 2013). NHE9 is highly 

expressed in brain tissues (Kondapalli et al., 2014). In GBM, NHE9 overexpression promotes 

GBM invasion by stimulating EGFR recycling and signaling through restriction of luminal 

acidification of endosomes and therefore bypass EGFR turnover. The higher EGFR density at 

the plasma membrane promoted by NHE9 makes GBM more resistant to EGFR-TKI 

(Kondapalli et al., 2015). NHE9 expression is downregulated by microRNA 135a (miR-135a)  

in U87 cells (Gomez Zubieta et al., 2017).  

Mig-6 was originally identified as a mitogen-inducible gene and its depletion induced tumor 

formation (Zhang et al., 2007b). Mig-6 regulates EGFR trafficking and signaling by promoting 

EGFR endocytosis and degradation, reducing EGFR activity and consequently GBM cell 

proliferation (Walsh and Lazzara, 2013; Ying et al., 2010). Mig-6 binds to the SNARE protein 

STX8 promoting EGFR trafficking into late endosomes and further receptor degradation (Ying 

et al., 2010). In GBM, miR-148a expression is associated with a more aggressive cell phenotype 

and a patient poor prognosis. MiR148-a by targeting Mig-6 reduces EGFR transition to late 

endosomes and lysosomes and consequently EGFR degradation (Kim et al., 2014).  



28 

 

Galectins are a family of β-galactosidase–binding proteins usually involved in cell‐cell and cell‐

matrix interactions. Galectin‐3 plays an important role in cancer cell adhesion, growth, 

differentiation, apoptosis, and tumor angiogenesis (He et al., 2019). Galectin-3 impairs EGFR 

endocytosis and inhibits keratinocytes migration (Liu et al., 2012). Galectin-3 is overexpressed 

in breast, gastric, colorectal, liver and brain cancers. Its expression is associated with patient 

poor prognosis (He et al., 2019) and radio- and chemotherapy resistance in GBM cell lines 

(Wang et al., 2019a).  Galectin-3 inhibition sensitizes esophageal squamous cell to gefitinib 

treatment, by decreasing EGFR endocytosis in resistant cells (Cui et al., 2015). Another 

interesting protein is sortilin, a member of the vacuolar protein sorting 10 protein family of 

sorting receptors (Marcusson et al., 1994). Sortilin low expression is associated with higher 

grade of lung cancer and a worst patient prognosis. Sortilin downregulation leads to sustained 

EGFR signaling and EGFR-promoted cell proliferation by decreasing EGFR internalization. 

Sortilin binds to EGFR at the plasma membrane even if sortilin usually is found in trans-golgi 

network (TGN). EGFR/sortilin interaction and consequent internalization was independent of 

ligand-binding and receptor activation. Sortilin expression in gefitinib resistance cells promotes 

a more responsive phenotype to the treatment (Al-Akhrass et al., 2017).  Moreover, sortilin 

expression is elevated in high-grade glioma and is associated with patient poor prognosis. 

Increased levels are present in the mesenchymal subtype of GBM (Xiong et al., 2013). Sortilin 

induces GBM invasion through Glycogen synthase kinase 3 β (GSK-3β)/β-catenin/Twist. 

Sortilin inhibition suppressed EMT-like mesenchymal transition, glioma cell migration and 

invasion (Yang et al., 2019). Moreover, membrane trafficking of EGFR WT and EGFRvIII are 

not the same. EGFRvIII is poorly internalized and is recycled back to the plasma membrane 

rather than being degraded. EGFRvIII prolonged presence in the plasma membrane sustains a 

signaling pathway different from the EGFR WT. This impaired degradation is due to a deficient 

receptor ubiquitination by Cbl as its binding site to EGFR pTyr1045 is hypo-phosphorylated 

(Grandal et al., 2007; Han et al., 2006; Schmidt et al., 2003). 

2.5.3 Anti-EGFR therapies and clinical trials 

Several EGFR-targeted therapies have been developed including antagonist antibodies, TKIs, 

anti-EGFR antibody-drug conjugated (ADC) (Figure 7), antisense gene or immunotherapies 

(CAR-T and vaccines based therapies) (Xu et al., 2017b). In the present thesis, only TKI and 

antibody based targeted therapies will be described in detail. GBM clinical trials using EGFR-

inhibitors are reviewed in Annex 1. 
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Tyrosine kinase inhibitors  

TKIs are small synthetic molecules derived in most of the case from a quinazoline core (Figure 

8). TKIs bind to intracellular tyrosine kinase domain of the receptor through a hydrogen bond. 

TKIs are homologous to adenosine triphosphate (ATP), competing for the ATP-binding domain 

of the kinases. TKIs prevent tyrosine kinase activation, EGFR autophosphorylation and 

downstream signaling pathway (Sun et al., 2015). 

Gefitinib is a first-generation EGFR-TKI that reversibly inhibits the TK activity of isolated 

EGFR with an IC50 in the nanomolar range around 0.023 µM (Wakeling et al., 2002). In vivo, 

gefitinib needs to be used in higher concentrations (in vivo/cell lines around 0.8-4 µM) in order 

to block EGFR phosphorylation due to the existence of intracellular ATP (Anderson et al., 

2001; Arteaga and Johnson, 2001). However, at higher concentrations gefitinib can also inhibit 

others RTK such as erbB2 (Arteaga and Johnson, 2001). Gefitinib is metabolized by 

cytochrome P450,  a family of highly polymorphic genes that contribute to the inter-individual 

variability  response to gefitinib treatment (Cersosimo, 2004; Lin and Lu, 2001). Gefitinib 

selectively inhibits EGFR-positive glioma cell invasion (Parker et al., 2013). In clinic, gefitinib 

was approved by FDA in 2015 for the treatment of metastatic NSCLC harboring EGFR-

activating mutations such as EGFR exon 19 deletions or exon 21 (L858R) substitution 

mutations (Kazandjian et al., 2016).  

Erlotinib, another first-generation TKI, was approved by FDA as a monotherapy for previously 

treated, locally advanced or metastatic NSCLC in 2004. In 2005, erlotinib was approved in 

combination with gemcitabine for a first-line treatment of locally advanced pancreatic cancer 

(Rocha-Lima and Raez, 2009). In vitro, erlotinib downregulates pro-invasive genes in GBM 

cells, leading to a reduced glioma cell invasion (Lal et al., 2002) and reduces cell viability of 

six human derived GSC (Griffero et al., 2009).  
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Table 1: EGFR trafficking dysregulation in GBM 

Protein 
Protein 

Function 

Expression 

status in GBM 

Impact on 

EGFR 

trafficking 

Impact on GBM 

biology 
References 

GOLPH3 

Peripheral 
membrane 
protein of 

Golgi 

Overexpression 
↓ EGFR 

endocytosis 

↑ PI3K-AKT-
mTOR signaling 
↑ Tumor 
progression 

Zhou et al., 
2017 

NHE9 
NA+/H+ 
channel 

Overexpression 

↑ EGFR 
recycling 

and 
signaling 

↓ endosomal 
luminal 
acidification 
↑GBM invasion 
↑ERK, Cyclin D 

and AKT 
↑GBM TKI 
resistance 

Kondapalli 
et al., 2015 

Mig-6 
Cytoplasmic 

protein 
Loss 

↓ EGFR 
endocytosis 

and 
degradation 

↓ EGFR trafficking 
into late endosomes 
(normally Mig-6 
binds to SNARE 
protein STX8) 
↑ cell proliferation 
↑ miR-148a 
downregulates 
Mig-6 

Walsh and 
Lazzara, 

2013 
Ying et al., 

2010 
Kim et al., 

2014 

Sortilin 

Membrane in 
the vacuolar 

protein sorting 
10 protein 

Expressed 
EGFR 

endocytosis 

↑ GBM cell 
proliferation 
↑ GBM p-EGFR 
↑ GBM invasion 

Al-Akhrass 
et al., 2017 
Yang et al., 

2019 
 

The second-generation of TKI, afatinib, dacomitinib and lapatinib, are characterized by their 

irreversible binding to EGFR-TK ATP pocket (Chang et al., 2016). In 2018, FDA indicated 

afatinib for the first-line treatment of metastatic NSCLC with no EGFR resistant mutations 

(T790M) but with EGFR-activating mutations (exon 19 deletion, L858R,L861Q, G719X or 

S768I) (Ricciuti et al., 2018). Afatinib was also approved for lung squamous cell carcinoma in 

2016 (Ricciuti et al., 2018; Soria et al., 2015). Dacomitinib is a multi-HER family targeting 

TKI approved by FDA in 2018 for the treatment of NSCLC with EGFR activating mutations 

(Lavacchi et al., 2019). In vitro, dacomitinib inhibits GBM cell viability, self-renewal, and 

proliferation. In vivo, continuous administration is needed to reduce tumor growth rate 

(Zahonero et al., 2015). Lapatinib, an EGFR/ErbB2 inhibitor, was approved by FDA in 2010 

in combination with capecitabine for first-line treatment of metastatic breast cancer. Moreover, 

lapatinib can also be combined with letrozole, an aromatase inhibitor, for the treatment of 
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postmenopausal women with HER2-positive breast cancer (Liao et al., 2010). Lapatinib 

inhibited cell proliferation of GSC cells (Clark et al., 2012).  

In NSCLC, even tumors responding to gefitinib or erlotinib treatment develop resistance upon 

one year, mainly associated with the occurrence of T790M mutation on the kinase domain (50-

60% of cases) (Majem and Remon, 2013). Third generation TKI (osimertinib and rociletinib) 

were developed to overcome T790M mutation (Wang et al., 2016). Since 2018, osimertinib is 

indicated for first-line treatment of NSCLC (Ito and Hataji, 2018). Preclinical promising results 

showed osimertinib efficiency on EGFRvIII positive GBM cells (Chagoya et al., 2020), making 

this TKI a promising therapeutic agent even though no clinical studies has started yet.  

1st and 2nd generation of EGFR-TKI as monotherapy, or in co-treatment with Stupp protocol, 

bevacizumab or multi-kinase inhibitor sorafenib as adjuvant therapy did not provide patient 

beneficial in GBM clinical trials (Annex 1). Undergoing preclinical studies aim to developp 

new approachs to sensitize GBM cells to EGFR TKIs either by targeting reductant signaling 

pathways (Day et al., 2020; Goodwin et al., 2018), affecting modulators of EGFR trafficking 

(Ye et al., 2019) or by inducing autophagy (Liu et al., 2020). 

Antagonist antibodies  

One of the best known anti-EGFR therapeutic antibody is cetuximab, a chimeric murine IgG1 

antibody with high specificity for EGFR. Cetuximab is an EGFR antagonist, preventing ligand 

binding and receptor activation. However, therapeutic anti-tumor efficiency relies also on its 

antibody dependent cell cytotoxicity (ADCC) activity (Kimura et al., 2007). It was approved 

by FDA on February 2004 for colorectal cancer treatment with KRAS wild type. KRAS 

mutation status is a predictive factor for anti-EGFR therapy response (Lièvre et al., 2006). Use 

of cetuximab was expanded to head and neck squamous cell carcinoma (HNSCC) in 2006. 

Panitumumab is a fully humanized antibody against EGFR, approved by FDA on September 

2006 for treatment of colorectal cancer with KRAS wild type. Both antibodies are given by 

intravenous injection (Zhu, 2007).  

Nimotuzumab is a humanized anti-EGFR antibody which requires a bivalent binding, thus this 

antibody preferentially targets cells with high level of EGFR expression and have less cytotoxic 

effects in healthy tissues. Nimotuzumab shows anti-tumor activity associated with absence of 
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severe secondary toxicity (Garrido et al., 2011).  Nimotuzumab is currently approved in USA 

and Europe as an orphan drug for glioma and pancreatic cancer (Ramakrishnan et al., 2009). 

Preclinical studies using cetuximab with RT and chemotherapeutic drugs showed a beneficial 

addictive effect on GBM cells and tumors (Eller et al., 2005). Two Phase II studies with 

cetuximab did not show any therapeutic benefit as monotherapy (Combs et al., 2008) or in 

combination with bevacizumab and irinotecan (Hasselbalch et al., 2010). Strategies to 

overcome cetuximab resistance are being studied through dual targeting of other erbB members 

(Iida et al., 2014) or other signaling pathways (Lu et al., 2019). New antibody constructions are 

exploring tumor heterogeneity (Jo et al., 2012) or EGFR overexpression (Ilda et al., 2013) to 

override therapy resistance. Nimotuzumab presented a prolonged survival when co-treated with 

RT (Solomón et al., 2013). However, a phase III showed no benefit on patient survival 

(Westphal et al., 2015). More encouraging results in a recent phase II with Stupp protocol 

demonstrated increased survival in GBM patients with high EGFR expression levels (Du et al., 

2019).  

 Antibody-drug conjugates 

The inefficiency of conventional anti-EGFR therapies (TKIs and antibodies) created the need 

for the development of new therapeutic strategies. Antibody–drug conjugates (ADCs) combine 

monoclonal antibodies linked to active cytotoxic agents.  ADCs have exhibited strong clinical 

benefits in cancer therapy by delivering selectively drugs to antigen-positive tumor cells. 

Actually, eight ADCs are approved by FDA (Table 2), two of them target ErbB2. 

Among the 40 ADCs in cancer clinical trials, three are targeting EGFR (Polakis, 2016).  Two 

of them (IMGN289 and AMG595) are conjugated to maytansinoid DM1 (derivative of 

maytansine). DM1 is a potent microtubule polymerization inhibitor that was indicated as the 

ideal payload for an ADC since it displays almost 100 times higher cytotoxicity than other 

chemotherapeutic agents (Oroudjev et al., 2010; Yang et al., 2016). 
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Table 2: ADC in clinics 

ADC Target Condition 

Brentuximab vedotin 

(Adcetris) 
CD30 

Hodgkin lymphoma 

and primary 

cutaneous anaplastic 

large cell lymphoma 

Trastuzumab 

emtansine (Kadcyla) 
HER2 

HER2-positive 

breast cancer 

Gemtuzumab 

ozogamicin 

(Mylotarg) 

CD33 
Acute myelogenous 

leukemia 

Inotuzumab 

ozogamicin 

(Besponsa) 

CD22 

B-cell precursor 

acute 

lymphoblastic 
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Furthermore, AMG 595 and depatuxizumab mafodotin (ABT-414) are being tested in clinics 

for GBM treatment. AMG 595 can recognize specifically EGFRVIII positive cells, while ABT-

414 recognizes both EGFR WT and EGFRvIII in highly expressing cells (Hamblett et al., 2015; 

Phillips et al., 2016). ABT-414 is a humanized anti-EGFR antibody linked to monomethyl 

auristatin F (MMAF) by a non-cleavable maleimidocaproyl linkers. Its potential was 

demonstrated in preclinical in vitro and in vivo studies (Phillips et al., 2016) and in phase I/II 

clinical trials (Narita et al., 2019). A phase II suggested a role for ABT-414 in combination with 

TMZ (Van Den Bent et al., 2020). Unfortunately, ABT-414 did not demonstrate a survival 

benefit in the Phase III INTELLANCE-1 study (NCT02573324).   

Figure 7: EGFR-targeting therapies. EGFR can be inhibited by impairing ligand-binding (antibody) or activation of tyrosine-
kinase domain (tyrosine kinase inhibitor). Moreover, EGFR can be used as a target for therapeutic vectorization using antibody-
drug conjugate. Antisense therapy that inhibits EGFR mRNA is tested in clinical trials. 
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Figure 8: Structures of EGFR-TKI. Adapted from Selleckchem database.  
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3. Integrins 

In normal tissues, integrins, a family of cell surface adhesion receptors, are expressed in all cell 

types in a tissue-dependent way (Lowell and Mayadas, 2012). Integrins and their ligands are 

involved in early stages of embryonic development such as fertilization, implantation and 

blastula formation (Tarone et al., 2000). Integrins play important roles during physiological 

tissue development, remodeling and homeostasis by controlling cell growth, survival, and 

motility and due to their role in keeping the cell stemness and determining cell fate. For 

example, integrin α5 controls pancreatic duct lineage differentiation via actin-YAP1-Notch 

mechanotransduction (Mamidi et al., 2018). Often overexpressed in solid tumors, integrins  

contribute to cancer cell survival, proliferation, invasion,  and stemness maintenance and play 

a major role in disease progression and resistance to therapies (Blandin et al., 2015; Cruz da 

Silva et al., 2019; Harburger and Calderwood, 2009).  

3.1 The integrin family 

Integrins are a family of transmembrane heterodimeric glycoproteins composed by non-

covalent association of α and β subunits. In Human, this family is composed by 24 integrins, 

originated by combination between 18 α subunits and 8 β subunits. Each integrin can bind to 

one or more ligands including ECM proteins or cell surface receptors (Figure 9) (Takada et al., 

2007).  

Based on the evolutionary history of α subunits and their ligand specificity, integrins’ family is 

divided in four sub-families. One group is composed by integrins that recognize an arginine-

glycine-aspartic acid (RGD) motif on their ligands, for example ECM proteins such as 

fibronectin, vitronectin or fibrinogen. Other groups are composed by the laminin- or collagen-

binding integrins and finally by the leukocyte integrins. Collagen-binding and leukocyte 

integrins come from the same large group of integrins that differ structurally from the others 

integrins due to their α subunit (Barczyk et al., 2010; Takada et al., 2007) (Figure 9). 
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3.2 Integrin Structure 

Structurally, integrins possess 3 domains (Figure 10). The globular extracellular domain 

contains between 700 and 1000 amino acids and allows ligand binding.  After exists a linear 

transmembrane domain with 20 to 30 amino acids and a cytoplasmic domain, containing 70 

amino acids, with the notable exception of the β4 subunit that possess a cytoplasmic domain 

with 1000 amino acids. The cytoplasmic domains of β subunits are composed of one or two 

specific and conserved motifs NPxY and NPxxY. Through these motifs, β subunits interact 

with several intracellular proteins that contain a PTB domain (Takada et al., 2007). 3D 

structures of human αVβ3 and αIIbβ3 integrins were determined and used to model other 

integrins structures (Xiao et al., 2004; Xiong et al., 2001, 2002).  

As mentioned above, α subunits diverged during evolution and can be split into two structural 

subgroups. The extracellular domain of the α5, α6, α7, α8, α9, αv, αIIb subunits is composed 

by a β-propeller with 7 repeated sequences of 60 amino acids, and a linear region with thigh, 

genu and calfs 1/2 domains. Moreover, these subunits are processed by the furin convertases, 

the two polypeptides remaining linked by a disulfide bridge (Lissitzky et al., 2000). The 

subunits α1, α2, α10, α11, αM, αL, αD, αX, αE possess an α-I domain between two repeated 

sequences of β-propeller domain (Figure 9) (Barczyk et al., 2010; Takada et al., 2007). The 

extracellular domain of the β-subunit is composed of 7 domains: one domain-β-I-like (domain 

βa), one hybridization domain, one domain PSI (plexin, semaphoring and integrin) and four 

EGF-like domains (Figure 10) (Takada et al., 2007). Integrin-ligand interaction was described 

by comparing the crystal structures of RGD-bound and unbound integrins (Xiong et al., 2001, 

2002). The ligand binding site is found on the interface between α-subunit (precisely domain 

β-propeller) and β-subunit (precisely domain β-I) (Xiong et al., 2001, 2002). ECM proteins 

binding is bridged by divalent cations (calcium, magnesium, manganese) and the MIDAS motif 

(Metal Ion-dependent adhesion site). The MIDAS motif is present on a-I or b-I domains. In β-

I domains, the MIDAS motif is flanked by the ADMIDAS (Adjacent Metal Ion-Dependent 

adhesion site) and the SyMBS (synergistic metal ion binding site) motifs (Zhang and Chen, 

2012).  
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3.3 Integrin signaling pathways  

Studies on the platelet integrin αIIbβ3 or on the leucocyte integrins, revealed that integrins are 

mainly expressed as resting state at the cell surface and required to be activated to fulfill their 

adhesive function (Durrant et al., 2017; Huang et al., 2019b). Structural and functional analysis 

showed that, remarkably, integrins can adopt three conformations: bent and closed 

conformations of low affinity, an extended and closed conformation and extended and open 

fully active conformations (Figure 11) (Takada et al., 2007). However, a recent electronic 

microscopy study showed that integrins can adopt a larger array of conformation states in vitro, 

suggesting a more complex and diversified regulation of integrin conformations in vivo 

(Miyazaki et al., 2018). Cryo-electronic microscopy data analysis of αvβ8 and αvβ3 integrins 

showed that αvβ3 integrin can adopt a bent low affinity conformation, while αvβ8 integrin is 

only found in extended conformation and shifts from a low affinity to a high affinity 

conformation (Cormier et al., 2018). Because they share the same αv, this suggest that β subunit 

plays a major role in the integrin conformational dynamics.  

 

Figure 9: Integrin family. Integrin ligand specificity depends on α subunit. Depending on ligand, integrin family is divided 
in four subgroups: RGD, Collagen, Laminin and Leukocyte. In Collagen and Leukocyte integrins exist heterodimers that are 
structurally different from the others since they have an extra domain in the α subunit (αI domain).  
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Figure 10: Integrin structure. Schematic of α and β integrin domain organization. The pink loop and black bar represent the 
6-7 loop and 7-helix of the I domain, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Integrin conformations. Integrin changes conformation as response to intracellular stimulus like talin binding. 
The different conformations have different affinities for ligands. A close and bent conformation has low binding affinity. A 
full-activated extended and open integrin has maximal affinity to ligand binding. The conformational change starts in 
extracellular β-subunit that achieves a complete extension. Then occurs a separation of the cytoplasmic leg domains. 
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The conformational changes occurs in the extracellular β-subunit followed by the separation of 

the intracellular domains of both subunits (Askari et al., 2009; Barczyk et al., 2010). 

Binding of cytoplasmic proteins, like talins or kindlins, to the cytoplasmic tail of β-integrins is 

a crucial step in integrin activation. This binding breaks saline bridge between the two integrin 

subunits and reorganizes the extracellular domains to increase ligand affinity in an opened and 

extended conformation (Campbell and Humphries, 2011). Interestingly, talin regulates integrin 

affinity and kindlin its avidity (Sun et al., 2019). Moreover, filamins and other proteins compete 

with talin for the binding to β-integrin tails, whereby filamin inhibits integrin activity (Kiema 

et al., 2006). Upon activation and adhesion to ECM, integrins form clusters, and connect with 

numerous intracellular proteins to form a complex network called “adhesome”. Adhesome is a 

highly dynamic multi-protein structure involved in cell survival, polarity and migration 

(Winograd-Katz et al., 2014). The first description of adhesome ermerged from an in silico 

study that identified 180 components interacting between each other (Zaidel-Bar and Geiger, 

2010; Zaidel-Bar et al., 2007). Proteomics analysis identified hundreds of proteins including 

protein kinases, cytoskeleton adaptors, phosphoproteins and others (Robertson et al., 2017). 

Despite important and dynamic variations in composition of the integrin adhesome that depends 

the nature of the integrins, or of their ligand, the cell type or ECM rigidity, a consensus 

adhesome has emerged (Horton et al., 2015). For example, integrins need to recruit cytoplasmic 

kinases, such focal adhesion kinase (FAK), ILK and Src, in order to transduce biochemical 

signals. Upon ligand binding, FAK is recruited to the intracellular domain of β integrin via 

FERM (4.1/ezrin/radixin/moesin) domain, where FAK is autophosphorylated (Tyr397), 

creating a docking site for Src (Dunty et al., 2004). The complex FAK/Src activates several 

downstream signaling cascades like NF-kB, MAPK and PI3K. The recruitment of cytosolic 

signaling molecules can also transactivate RTK (VEGFR, FGFR, EGFR…) activity (Barczyk 

et al., 2010; Cruz da Silva et al., 2019; Harburger and Calderwood, 2009; Schlaepfer et al., 

1997). Interestingly, studies in cancer cells revealed that integrin signaling is even more 

complex. For instance, inactive integrin interacts with the RTK c-MET to promote FAK signal 

from an autophagy-related endomembrane. This inside-in signaling promoted anchorage-

independent survival, tumor growth and cancer cell dissemination to form metastasis (Barrow-

McGee et al., 2016).   

Moreover, integrins can promote a bidirectional mechanotransduction signal. Particularly 

integrin adhesome senses microenvironmental changes in rigidity and elasticity, affecting 
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cytoskeleton organization, cellular morphology and gene transcription. Outside-in 

mechanotransduction activates YAP and TAZ, two Hippo pathway transcriptional activators. 

In rigid substrates, integrin clusters favor actomyosin-depending intracellular tension and 

activate YAP/TAZ, leading to cell elongation and polarization. While soft substratum promotes  

cells roundness due to reduced focal adhesion maturation, actomyosin contractility and 

YAP/TAZ activation (Prager-Khoutorsky et al., 2011; Totaro et al., 2018). Integrin-mediated 

mechanotransduction also modulates gene expression via nesprin and activation of serum 

response factor–mediated transcription involved in cancer metastasis (Baarlink et al., 2013; 

Esnault et al., 2014). Besides, ECM rigidity can also alter integrin expression and therefore 

focal adhesion dynamics (Yeh et al., 2017). Additionally, integrin transduces cell tension to the 

surrounding ECM, in an inside-out signal. For example, cancer-associated fibroblasts (CAFs) 

can apply mechanical forces to external ECM through actomyosin contractibility to increase 

environment rigidity or promote ECM fibers formation (fibrillogenesis) (Goetz et al., 2011).  

3.4 Integrins and cancer 

As known from the cancer hallmarks, tumor microenvironment is as important as the mutation 

burden of the tumors, and stimulates cancer cell survival, proliferation, migration and immune 

escape (Hanahan and Weinberg, 2011). ECM has been associated with tumor aggressiveness, 

metastases and tumor recurrence (Paolillo and Schinelli, 2019; Poltavets et al., 2018; Stevens 

et al., 2017). Integrins signaling pathway activates cancer cell survival, growth, invasion and 

therapy resistance (Blandin et al., 2015; Cruz da Silva et al., 2019; Harburger and Calderwood, 

2009). 

Although integrins do not have any mutation associated with cancer, integrins are often 

overexpressed in solid tumors, being associated with cancer progression and patient worst 

prognosis. Integrin expression varies in cancer in function of the heterodimer nature, the cell 

type or state of disease. Table 3 summarizes variation of expression of integrins in cancer. 

Integrin crosstalk with growth factor receptors is involved in tumor progression and therapy 

resistance  (Cruz da Silva et al., 2019; Ivaska, 2011). Integrin/RTK crosstalk was described in 

a review found in annex 2, and therefore will not be repeated extensively in this paragraph 

(Cruz da Silva et al., 2019). 
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Table 3: Integrin overexpression in cancer. Adapted from (Blandin et al., 2015; Desgrosellier and Cheresh, 2010; Schaffner 
et al., 2013) 

Tumor Integrin 

Melanoma α5β1 and αvβ3 

Prostate cancer αvβ3 

Pancreas cancer α5β1 and αvβ3 

Ovarian cancer α5β1, αvβ3 and α4β1 

GBM α5β1, αvβ3, αvβ5, α7β1, αvβ8 

Colon cancer α5β1 and αvβ6 

NSCLC α5β1 

Breast cancer αvβ3 and α6β4 

Cervical cancer αvβ3 and αvβ6 

Integrin can affect RTK signaling. For example, integrin α5β1 participates in EGFR-PI3K and 

MAPK signaling (Morozevich et al., 2012). Integrin/RTK complexes can stimulate cell 

invasion (Morello et al., 2011; Williams and Coppolino, 2014). Inhibition of EGFR using an 

aptamer, a nucleic acid structure also called chemical antibody, blocked EGFR/αvβ3 integrin 

interaction and prevented vasculogenic mimicry events in triple negative breast cancer 

(Camorani et al., 2017). Vasculogenic mimicry is a blood supply, independent of angiogenesis 

and endothelial cells (Fernández-Cortés et al., 2019).  

In addition to being expressed in cancer cells, integrins are also overexpressed by non-tumoral 

cells such as CAFs and endothelial cells. CAFs change ECM composition and increase ECM 

rigidity by mechanotransduction (Goetz et al., 2011) and also through the controlled release of 

lysyl oxidase (LOX) enzymes, an ECM protein crosslinking enzyme (Cox et al., 2013). LOX 

expression in CAF cells can be enhanced by αv integrin and TGFβ signal transduction (Khan 

and Marshall, 2016). Moreover, upon α2β1 integrin binding to collagen, LOX expression is 

increased (Gao et al., 2016). This CAF-mediated excessive production of fibrillary ECM 

proteins and ECM remodeling creates tumor microenvironment fibrosis, called desmoplasia 

(Jang and Beningo, 2019). Moreover, CAF enhances cancer cell invasion through α3 and α5 

integrin that promotes matrix remodeling and creation of tracks in the matrix that guide cancer 

cell migration (Grasset et al., 2018).  

During tumor angiogenesis, endothelial cells upregulate αvβ3 and αvβ5 integrin expression to 

enhance endothelial cell proliferation, migration and survival (Avraamides et al., 2008; 
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Friedlander et al., 1995; Stupack and Cheresh, 2003).  Also integrin α5β1 is expressed in cancer-

associated endothelial cells, and contributes to angiogenesis and tumor growth through a 

VEGF-mediated process (Kim et al., 2000).   

Exosomes are extracellular vesicles secreted by cells that allow communication between tumor 

primary cells and distant tissues. Tumor exosome integrins determine organotropic metastasis, 

α6β1 and α6β4 integrins bind to lung fibroblasts and epithelial cells, while αvβ5 integrin binds 

to liver Kupffer cells.  On metastatic niche, integrins in the exosomes trigger the expression of 

ECM proteins (laminin and Src in lung fibroblasts, and fibronectin in liver fibroblasts) and pro-

inflammatory S100 proteins that help cancer cell survival (Hoshino et al., 2015).  

3.4.1 Integrin trafficking fuel cancer cell migration and invasion 

Integrins constantly travel inside the cells whatever their bent or open conformation state 

(Arjonen et al., 2012). This constant flow allows better sensing of the microenvironment and 

adaption to its physical and biochemical changes (Moreno-Layseca et al., 2019).  Regulation of 

integrin endocytosis is under the control of the β-subunit, via a conserved NPxY/NxxY motif 

in the cytoplasmic domain that interacts with clathrin-mediated endocytosis adaptors and others 

accessory proteins such as EPS8, Dab2 and Numb (Calderwood et al., 2003). Nevertheless, 

some integrin α-subunits contain a Yxxϕ motif that can interact with AP-2 and promote clathrin-

mediated endocytosis (De Franceschi et al., 2016).  

Integrin recycling controls invasive cell migration  

During cell migration, precise control of cell adhesion and of focal adhesion turnover 

coordinates cell protrusions, tail retractions and cytoskeletal forces. Integrin recycling plays an 

important role in this regulation (Figure 12). 

Rab35, the first oncogenic Rab protein identified (Wheeler et al., 2015), interplays with EGFR 

function and trafficking to promote cancer cell migration (Ye et al., 2018; Zheng et al., 2017). 

When Rab35 is inactivated, α5β1-integrin is internalized and recycled by the small GTPase 

Arf6 (Allaire et al., 2013). Arf6-dependent α5β1 recycling can be inhibited by Src-mediated 

phosphorylation of an ECM transmembrane heparan sulfate proteoglycan syndecan-4, 

promoting αvβ3 recycling. This leads to a stabilization of focal adhesion and promotion of cell 

migration (Morgan et al., 2013). α5β1 integrin also interacts with Rab25 to recycled to specific 

invasive protrusions in 3D-ECM (Caswell et al., 2007), facilitating focal adhesion disassembly 
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and rear cell detachment in metastatic ovarian carcinoma cells (Dozynkiewicz et al., 2012). 

APPL1 is a double-edge sword, on one side it inhibits α5β1 integrin endocytosis, and on the 

other side it promotes integrin recycling to adhesion sites, keeping high levels of integrin at cell 

surface and thus promoting cell migration (Diggins et al., 2018).  Also, APPL1 is required for 

rapid recycling of β1 integrins and EGFR, and thus increases focal adhesion turnover and cell 

migration (Lakoduk et al., 2019). Rabgap1 facilitates active β1 integrin recycling by attenuating 

Rab11 activity and promoting breast cancer migration (Samarelli et al., 2020). On the other 

hand, Rab11-mediated recycling of integrin β1 can be stimulated by LRP-1 in thyroid cancer 

cells (Theret et al., 2017). Moreover, this recycling favors brain metastasis through efficient 

engagement of breast cancer cells with brain ECM (Howe et al., 2020). In glioma cells, the 

Na+/H+ exchanger 5 is overexpressed and promotes β1 recycling and glioma cell invasion 

(Kurata et al., 2019). 

β3 integrin recycling is also important for cell migration. Internalization and traffic to recycling 

endosomes of β3 integrin upon binding to Rab34, enhances breast cancer cell migration and 

invasion (Sun et al., 2018). Evidences showed that β3 integrin recycling is mediated by a Rab5-

effector Rabaptin-5 and Rab4, promoting 3D invasion on vitronectin-rich environments 

(Christoforides et al., 2012).  

Integrin endosomal signal 

Endocytosed ligand-unbound integrins can be kept in an active state inside the endosomes by 

talin while interacting with FAK. Furthermore, they move from Rab5-early endosomes to 

Rab11-recycling endosomes to be recycled to the cell front for adhesion assembly and 

directional cell migration (Nader et al., 2016). Active β1 integrin leads to sustained c-MET 

endomembranar signalling required to anchorage-independent cell growth and in vivo invasion 

in zebrafish (Barrow-McGee et al., 2016). In endosomal compartiment, Rab21 stabilizes β1-

integrin /FAK interaction to stimulate a signalling pathway that suppress anoikis and promotes 

survival of metastatic cancer cells (Alanko et al., 2015).   
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Figure 12: Integrin trafficking in cell migration. α5β1 integrins can be recycled via Rab25/CLIC3 pathway to drive cell 
migration in 3D environments. APPL1 decreases internalization and increases recycling of α5β1 integrin in migrating cells. 
Inhibition of Rab35 promotes Arf6-dependent α5β1 recycling. αvβ3 integrins can be recycled by a Rab4-Rabaptin-5 pathway 
to drive vitronectin-rich-3D migration.  

Integrin/RTK journey together in trafficking 

Furthermore, integrin crosstalk with other membrane receptors can also control their endosomal 

trafficking. It has been demonstrated that blocking αvβ3 integrin with cilengitide promoted 

α5β1 integrin recycling to ruffling protrusions at the cell front of migrating cells. Recycling of 

α5β1 integrin requires integrin association with Rab-coupling protein (RCP). Moreover, 

integrin promotes interaction of EGFR with RCP, and therefore α5β1 integrin coordinates a 

jointed recycling of both receptors and a promotion of Akt signaling and a migratory profile in 

3D-matrices (Figure 13) (Caswell et al., 2008). Also, c-MET/integrin co-recycling mediated by 

RCP drives cancer cell invasion (Muller et al., 2013, 2009). Morphological changes induced by 

c-MET and integrin activity can modulate cell migration and invasion. c-MET activation leads 

to a collective mesenchymal cell invasion in a 3D Matrigel. HGF-induced cell invasion, 

mediated by HIP-1, needs transient RhoA activation and β1-integrin turnover. Sustained c-MET 

activity stimulates integrin-independent cell rounding mediated by the constitutive activation 

of RhoA  (Mai et al., 2014).   
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Figure 13: Integrin/EGFR crosstalk as response to therapy. Blocking of αvβ3 integrin with cilengitide enhances α5β1 

integrin and EGFR recycling to ruffling protrusions at the cell front of migrating cells. This interaction is mediated by Rab-
coupling protein (RCP) and promotes Akt signaling and cell migration in 3D-matrices through formation of actin spikes and 
filopodial bundles. Adapted from (Caswell et al., 2008a). 

 

3.4.2 Role of integrins in resistance to anti-tumor therapies  

Numerous studies described the role of integrin in chemo- and radiotherapy. This resistance 

can be mediated by integrin expression and signaling, and also integrin crosstalk with RTK.  

For example, β1 integrin promotes paclitaxel resistance in breast cancer by inhibiting drug-

induced apoptosis (Aoudjit and Vuori, 2001). Integrin interacts with CXCR4 chemokine 

receptor enhancing small cell lung cancer cells adhesion to matrix and stromal cells. Thus, 

stromal cells protected cancer cells from chemotherapy-induced apoptosis (Hartmann et al., 

2005).  In GBM, α5β1 integrin prevents p53 activation leading to TMZ resistance (Janouskova 

et al., 2012; Renner et al., 2016a). EGFR/β1 integrin complex is involved in radiotherapy 

response, since its formation is considered as a prognostic factor in glioma (Petrás et al., 2013) 

and inhibition of complex sensitizes cancer cells to radiotherapy (Eke et al., 2013, 2015). 

However,  simultaneous inhibition of β1 integrin and EGFR in HNSCC spheroids (Zscheppang 

et al., 2016) and colon carcinoma (Poschau et al., 2015) did not improve radiotherapy efficacy. 

For instance, integrin β8 promotes GSC differentiation and radio-resistance (Malric et al., 

2019). Combined radiotherapy and integrin αv blockage in nasopharyngeal carcinoma 

xenografts reduced tumor size (Ou et al., 2012).  
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Moreover, numerous reports describe that functional synergy between integrins and RTK 

triggers resistance to targeted therapies (Cruz da Silva et al., 2019; Ivaska, 2011). These results 

being described in detail in the revue added in annex 2 of the thesis (Cruz da Silva et al., 2019), 

are briefly summarized herein. β1 integrin plays a role in endothelial cell migration and 

survival, in angiogenesis, and in anti-angiogenic therapy resistance (Jahangiri et al., 2014). 

Micro-array analysis in bevacizumab-resistant GBM showed α5 integrin and fibronectin 

overexpression (DeLay et al., 2012). Interestingly, β1 integrin and c-MET crosstalk represents 

an anti-angiogenic therapy resistance mechanism (Jahangiri et al., 2017; Mitra et al., 2011). 

Ligand-activated VEGFR-2 binds to both α5β1 integrin and c-MET, blocking β1 integrin/c-

MET complex formation.  When cells are treated with bevacizumab, VEGF binding to VEGFR-

2 decreases, and thus β1 integrin/c-MET complex is promoted.  This complex activates the 

AKT signaling pathway and thus resistance to anti-angiogenic therapies (Jahangiri et al., 2017). 

EGFR-TKI resistance in NSCLC cells has been correlated with β1 integrin expression (Deng 

et al., 2016; Ju et al., 2010; Kanda et al., 2013).  Moreover, β1 integrin inhibition sensitizes 

NSCLC to TKIs in vitro and in vivo (Deng et al., 2016; Kanda et al., 2013; Morello et al., 2011). 

In pancreatic ductal adenocarcinoma cells, β1 integrin overexpression promotes the 

FAK/Src/Akt pathway, activating EGFR independently of ligand binding. This EGFR signaling 

enhances cell growth and cetuximab resistance (Kim et al., 2017). 

3.4.3 Integrins and GBM 

Several integrins (αvβ3, αvβ5, α6β4, α5β1, αvβ6, α6β1, αvβ8, α2, α3, α4, α7, α10) are 

overexpressed in GBM either in cancer cells or endothelial cells and contribute to cancer 

progression and resistance to therapies (Blandin et al., 2015; Gingras et al., 1995; Haas et al., 

2017; Malric et al., 2017; Munksgaard Thorén et al., 2019), making integrins interesting 

therapeutic targets (Figure 14). 

Integrins αvβ3 and αvβ5 

αvβ3 and αvβ5 integrins bind to RGD-containing ECM proteins such as vitronectin and 

fibronectin. They are overexpressed in cancer cells and in cancer-associated endothelial cells 

compared to normal tissue (Bello et al., 2001; Gladson, 1996; Schittenhelm et al., 2013). These 

integrins are mainly involved in tumoral angiogenesis, their inhibition induces endothelial cells 

apoptosis and reduces tumoral neo-vessel formation (Brooks et al., 1994; Mahabeleshwar et al., 

2008). Moreover, a GBM subtype dependent of αvβ3 integrin activates YAP/TAZ/Glut3 (high-
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affinity glucose transporter) pathway that enhances cancer cell stemness (Cosset et al., 2017). 

Integrins αvβ3 and αvβ5 signaling promotes chemo- and radiotherapy resistance in glioma cells 

(Haeger et al., 2020; Mikkelsen et al., 2009; Monferran et al., 2008). Their overexpression in 

tumor is associated with patient poor prognostics (Bello et al., 2001; Schittenhelm et al., 2013; 

Schnell et al., 2008), and thus appraising their targeted therapy.  

Cilengitide is a cyclic RGD pentapeptide inhibitor of αvβ3 and αvβ5 integrins (Mas-Moruno et 

al., 2010). In preclinical studies, it was efficient as anti-angiogenic and as anti-tumoral agent in 

vitro and in vivo (Brooks et al., 1994; Mikkelsen et al., 2009; Yamada et al., 2006). The first 

clinical trials were in pancreatic carcinoma (Friess et al., 2006) and melanoma (Kim et al., 

2012), where it showed no beneficial effect. But, in a GBM phase I/II, cilengitide as 

concomitant and adjuvant treatment to standard treatment, showed promising results (Stupp et 

al., 2010) (Annex 1). Afterwards, in newly diagnosed GBM patients with methylated MGMT 

expression, a phase III clinical trial (CENTRIC) was performed in which cilengitide was used 

in combination with radio- and chemotherapy (Stupp et al., 2014).  Next, a companion phase II 

trial (CORE) tested cilengitide with standard treatment in MGMT unmethylated patients 

(Nabors et al., 2015). Unfortunately, both studies did not show any clinical benefit. Cilengitide 

also failed to provide a beneficial outcome in phase II in HNSCC and NSCLC, when 

administrated with cetuximab and cisplatin or platinum-chemotherapy, respectively 

(Vansteenkiste et al., 2015; Vermorken et al., 2014). Cilengitide failure in clinical trials can be 

explained by its rapid plasma clearance or inadequate perfusion of the brain tumor environment 

or even the possibility of tumorigenic effect of low doses of cilengitide. Continuous infusion of 

cilengitide improves drug accumulation on site, since cilengitide has a short half-life of 3-5 

hours. The pharmacokinetics of cilengitide is not yet studied in combination with GBM 

standard treatment (O’Donnell et al., 2012). Failure of cilengitide can also be explained by 

some preclinical studies. For instance, low concentrations of cilengitide have been shown to 

promote VEGF-mediated angiogenesis by increasing VEGFR2 recycling to the cell surface, 

thus promoting angiogenesis and tumor growth (Reynolds et al., 2009). In another study, 

cilengitide promotes the association of RCP with α5β1 integrin and EGFR, and thus drives their 

recycling back to the plasma membrane to cell front protrusions. At the plasma membrane, 

EGFR can signal and activate AKT pathway to promote tumor migration in 3D matrices 

(Caswell et al., 2008). Moreover, genetic approachs showed that β3 and β5 integrin-deficient 

mice are characterized by enhanced tumor angiogenesis (Reynolds et al., 2002).  
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It is hoped that stratification of patients could improve therapies based on αvβ3 inhibition. A 

retrospective study analysed αvβ3/ αvβ5 expression of patients that participated in CORE and 

CENTRIC clinical trials. αvβ3 integrin expression may predict integrin inhibition benefit in 

patients without MGMT promoter methylation (Weller et al., 2016). Another study identified a 

subset of GBM more sensitive to cilengitide treatment in mice, characterized by a high level of 

expression of αvβ3 integrin and glucose transporter (Glut3) (Cosset et al., 2017).  

Integrin α5β1 

The fibronectin receptor, α5β1 integrin, presents higher expression levels in GBM tissues 

compared to adjacent normal tissue (Gingras et al., 1995; Janouskova et al., 2012). This 

overexpression is associated with worse patient prognosis (Janouskova et al., 2012; Lathia et 

al., 2014). Preclinical data demonstrated the role of α5β1 integrin in glioma cell growth and 

survival (Färber et al., 2008; Kesanakurti et al., 2013), cell motility (Blandin et al., 2016; 

Mallawaaratchy et al., 2015; Patil et al., 2015) and therapy resistance (Janouskova et al., 2012; 

Martinkova et al., 2010; Renner et al., 2016a). Integrin α5β1 inhibition reduced in vitro cell 

proliferation and in vivo tumor size (Färber et al., 2008). Integrin α5β1 activated β-catenin 

pathway to stimulate GBM cell migration (Ray et al., 2014; Renner et al., 2016b). siRNA 

depletion of α5 integrin reduced invadopodia formation in U87 cells (Mallawaaratchy et al., 

2015). Inhibition of α5β1 integrin promoted p53 activation and sensitized GBM cells to TMZ 

(Janouskova et al., 2012; Renner et al., 2016a). Also, integrin α5β1 inhibited TMZ-induced 

apoptosis and stimulated p53-dependent cell senescence, inducing chemotherapy resistance 

(Martinkova et al., 2010). Inhibition of β1 integrin/EGFR complexes sensitized cancer cells to 

RT (Eke et al., 2013, 2015). Moreover, α5β1 integrin is involved in tumor angiogenesis 

(Dudvarski Stanković et al., 2018; Li et al., 2012; Lugano et al., 2018). α5β1 integrin promotes 

brain endothelial cells proliferation in response to cerebral hypoxia, demonstrating the interest 

of targeting integrin as an anti-angiogenic therapy (Li et al., 2012). Integrin α5β1 expression on 

endothelial cells stimulated GBM vascularization in in vivo models. β1 integrin-mediated 

fibronectin fibrillogenesis in endothelial cells promotes GBM tumor vascularization in vivo (Li 

et al., 2012). 

Several integrin α5β1 inhibitors have been tested in other solid tumor or angiogenic situations, 

however in GBM where integrin is a therapeutic target of interest, just phase I and II clinical 

studies were realized. Further studies are needed to better evaluate the efficiency of these 

targeted-therapies.  
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Volociximab is a chimeric antibody inhibiting α5β1 integrin, used as anti-angiogenic for solid 

tumors and wet age-related macular degenerative disease (Raab-Westphal et al., 2017).  In 

ovarian cancer, a phase II with volociximab as monotherapy in platinum-resistant patients 

showed to be inefficient but tolerated (Bell-McGuinn et al., 2011). The tolerance and 

pharmacokinetics were further evaluated in a phase I in NSCLC. Volociximab was combined 

with carboplatin and paclitaxel and revealed a well-tolerance and a preliminary efficiency 

(Besse et al., 2013). Despite the important role of α5β1 integrin in neo-angiogenesis, 

volociximab remains inefficient. Other antibodies targeting β1 integrin were used in clinical 

trials. Antibody OS2966 received orphan drug designation by FDA for the treatment of GBM 

in 2014 and for ovarian cancer in 2015, after presenting active action in preclinical studies. In 

2019, OS2966 was used as investigational new drug in a phase I GBM clinical trial 

(OncoSynergy, 2019). The monoclonal antibody P5 was in phase III clinical trial for lung 

adenocarcinoma (Kim et al., 2016). RGD-like inhibitors FR248 and K34c are selective to α5β1 

integrin at the nanomolar range. Their affinity was determined by inhibition tests on cell 

adhesion on purified integrins (Heckmann et al., 2008; Rechenmacher et al., 2013). These 

inhibitors reduced glioma cell migration (Ray et al., 2014) and sensitized cells to TMZ in p53-

WT GBM cells (Martinkova et al., 2010). Different integrin targeted strategies have developed 

the use of RGD integrins as vectors for drug or immunotherapy delivery. An internalized-RGD, 

specific to integrin and neuropilin 1, allowed the uptake of irinotecan-loaded-nanoparticles on 

pancreatic adenocarcinoma to reduce metastasis (Liu et al., 2017). Another molecule JSM-6427 

induces cell death of endothelial cells and, thus, inhibits ocular neo-angiogenesis (Maier et al., 

2007). A phase I clinical trial was completed in macular degeneration treatment and did not 

show any signs of toxicity (NCT00536016). The non-RGD peptide ATN-161 mimics the 

synergy domain of fibronectin. A phase I clinical trial in resistant solid tumors showed a 

disease-stabilization upon ATN-161 treatment (Cianfrocca et al., 2006). It was also used with 

carboplatin in a phase I/II in GBM (NCT00352313). A RGD peptide was fused to a Fc-domain 

of an immunoglobulin to induce ADCC, and administered with an anti-PD-1 antibody. Overall 

the treatment was well-tolerated and showed antitumor efficacy in murine models of cancer 

(Kwan et al., 2017). 

Other potential integrins as therapeutic target in GBM 

An RGD-binding β8 integrin is overexpressed in GBM cells, promoting their invasion through 

Rho activation by sequestering a Rho GTPase (Reyes et al., 2013).  Moreover, αvβ8 integrin is 



51 

 

expressed in GSC and stimulates TGFβ1 signaling to maintain stem perivascular niche 

(Guerrero et al., 2017; Malric et al., 2019). Combination of radiotherapy and β8 integrin 

blockade significantly induced GSC apoptosis (Malric et al., 2019). 

Collagen is overexpressed in GBM parenchyma and is associated with tumor angiogenesis and 

progression (Mammoto et al., 2013; Pointer et al., 2017). A collagen-receptor, integrin α10β1, 

was found overexpressed in GBM tissues and cells. Integrin α10 expression enhanced GBM 

cell proliferation and migration (Munksgaard Thorén et al., 2019).  

Laminins are present in blood vessel basement membranes and are overexpressed in GBM 

(Ljubimova et al., 2006). Laminin interaction with integrin α7β1 promotes GBM progression. 

Integrin α7-laminin interaction promotes GSC growth and invasion. Integrin α7 blockage 

reduced xenografts tumors size and invasion (Haas et al., 2017). Also laminin interaction with 

integrin α6 activates STAT3 signaling leading to methylation of important genes for GSC, 

increasing their aggressivity and therapy resistance (Herrmann et al., 2020). 

Figure 14 : Strategies targeting integrins in clinical trials. Out of the 24 integrins, nineteen have been considered as pertinent 
therapeutic targets as anti-inflammatory or anti-aggregating molecules and cancer treatment. Four integrin antagonists have 
proven their effectiveness and are used in human clinics for the treatment of chronic inflammation or coronary syndrome. 
Unfortunately, until now no clinical trial showed any benefit in targeting integrins for cancer treatment (drugs in violet). 
Underlined drugs are commercialized and broken underlined were withdrawn. Adapted from (Raab-Westphal et al., 2017) 
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4. Aptamers as alternative to antibodies 

Aptamers are oligonucleotides of single stranded DNA (ssDNA) or RNA. Aptamers recognize 

various targets (proteins, small molecules, nucleic acids, sugars, lipids, virus, cells, 

biopolymers,…) with high affinity and selectivity. The name aptamer derives from the latin 

aptus which means to fit (Nimjee et al., 2017). Moreover, the ability of the aptamer to bind 

selectively to its target is based on the aptamer three dimensional structure which allows it to 

bind to the target via non-covalent interactions (Zhu and Chen, 2018).  

4.1 Conformation 

The aptamer three-dimensional conformation is dependent on the sequence of the nucleotides, 

therefore aptamers can acquire a vast amount of different conformations. RNA aptamers can 

fold into more varied three-dimensional conformations compared to ssDNA aptamers. This 

advantage is due to their 2′-hydroxyl (2′-OH) group on ribose and the non-Watson-Crick base 

pairing (Zhu et al., 2015b). The G-quadruplex conformation is a guanine enriched structure of 

RNA or ssDNA in which the guanines associate between themselves via non-covalent 

interactions. This structure allows the folding in a stable conformation with the maximum 

interactions possible between nucleotides.  

4.2 Advantages of aptamers 

Aptamers are analogous to antibodies in their vast target recognition and possible applications 

and therefore aptamers are also called chemical antibodies. Aptamers possess numerous 

advantages over antibodies (Table 4), like smaller size, temperature stability, self-refolding, 

lack of immunogenicity and toxicity, chemical synthesis with high batch fidelity (Zhou and 

Rossi, 2017; Zhu and Chen, 2018). Even with all differences, aptamers and antibodies are more 

complementary than enemies.  

Aptamers seem to have a larger panel of potential targets than antibodies. Antibodies need 

animal immune reactions for their production and only substances that provoke an immune 

response can be used as antibody targets. Research are being made to replace whole antibodies 

for antibody, in order to substitute animals or cells use.  Aptamers can be screened for a wide 

array of molecular targets, including toxins or poorly immunogenic targets (Zhou and Rossi, 

2017).  
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Aptamers are more stable than antibodies and have an unlimited shelf-life. Hard conditions of 

pH, temperature and salt concentration, for example, cause antibody irreversible denaturation. 

This might limit antibody storage time and conditions.  Contrary to antibodies, aptamers are 

thermally stable and therefore their denaturation is reversible. After heating, aptamers are able 

to refold when cooled down to room temperature, making aptamers adapted for long term 

storage. Moreover, as aptamers are selected in vitro, some of these non-physiological conditions 

can be implemented during selection. This advantage can be used to identify aptamers against 

targets only available in these harsh conditions (Zhou and Rossi, 2017).    

Aptamers normally are composed of 15 to 50 nucleotides and they have a molecular weight 

ranging from 5 to 15 kDa. Aptamers size is between antibodies (150 kDa) and small peptides 

(1-5 kDa). This small size of aptamers versus antibodies, improved the permeability of aptamers 

in tissues (Lakhin et al., 2013).  

Advances in chemical modifications and bioconjugation allow easier aptamer’s modification. 

Increasing biostability of aptamers, conjugation to fluorogenic or radioisotope reporters or with 

therapeutic agents and keeping reproducibility are possible. Even some steps can be automated. 

While antibodies are subjected to a limited panel of chemical modifications (Zhou and Rossi, 

2017).  

When considering molecules for therapeutic uses not only pharmacodynamics or 

pharmacokinetics are to be kept in mind, but also the immunogenicity of the molecule. Except 

if desired, therapeutic agents should not elicit any immune response. Most antibodies induce 

immune response due to their constant domain. This effect has been reduced with humanized 

antibodies but not fully eliminated (Ryman and Meibohm, 2017). Aptamers present low 

immunogenicity and/or toxicity reactions associated to their nature. This statement seems to be 

based on the sole clinical phases I and II of the aptamer Mucagen. But conjugation with poly 

ethylene glycol (PEG), for example, can induce a certain immunogenicity. Relatively to this 

problem, REG aptamer’s phase III was stopped due to allergies induced by PEG (Ganson et al., 

2016; Lincoff et al., 2016). For pharmaceutical companies, the time and price of molecule 

production have strong impacts. Aptamers appear to be more advantageous than antibodies.  

Since antibody production requires the use of animals or cells, their production is very 

expensive. The costs of aptamer production is believed to be considerable reduced compared to 

antibodies. The in vivo element in antibody production turns large-scale and homogeneity 

between batches more difficult. On another hand, aptamers are chemically synthetized, so 
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independent of any biological system, reducing the risk of bacterial or viral contamination, 

reducing the variation from batch to batch and having a huge bioethical advantage (Lakhin et 

al., 2013). Furthermore, actual technologies of automated DNA/RNA synthesis allow an easy, 

cost-effective and a large-scale production of any chemical modified aptamer (Jayasena, 1999; 

Nimjee et al., 2017; Zhou and Rossi, 2017; Zhu and Chen, 2018). 

4.3 Disadvantages of aptamers 

However, aptamers have disadvantages as well. They suffer from the action of nucleases and 

renal clearance, decreasing their circulating half-life. Mainly RNA aptamers are highly 

susceptible to nucleases activity. They can be eliminated from the circulation within seconds 

(Zhou and Rossi, 2017). To circumvent this disadvantage, aptamers can be chemical modified 

to render them resistant to nucleases and thus increase their stability. These chemical 

modifications include 3’ end capping strategies, phosphodiester backbone, sugar ring 

modifications and/or mirror image (Ni et al., 2017).  The capping strategies are accomplished 

by inverting the nucleotide at the 3′-terminus, creating a oligonucleotide sequence with two 5′-

termini and no 3′ since 3′-exonuclease activity is considerably higher than the 5′ one (Keefe et 

al., 2010). The nucleophilic attack occurs in the 2′-OH group. So, sugar ring modifications like 

the replacement of 2’-OH for 2’fluoro or amino reduce aptamer susceptibility to nucleases 

(Ruckman et al., 1998). Mirror image technique is based on spiegelmers (Vater and Klussmann, 

2015). RNA-spiegelmers are RNA-aptamers composed by L-ribose units linked by 

phosphodiesters. L-ribose units are enantiomers (non-superimposable mirror images) of WT-

nucleic acid sugars D-ribose units. L-ribose is more resistant to nucleases and therefore more 

stable in vivo. The SELEX process is performed on WT-RNA with enantiomer of the target. 

After aptamer identification, the sequences which bind to the target are synthetized with L-

riboses. This technique only covers small proteins domains or peptides as targets since 

enantiomeric targets need to be synthetically prepared (Keefe et al., 2010; Ni et al., 2017).   

However, due to their “small” size, aptamers are easily submitted to renal clearance. Molecular 

mass cut-off for the renal glomerulus is 30-50 kDa. Strategies such as the addition of a bulky 

groups, like PEG,  poly (D,L-lactic-co-glycolic acid) (PLGA) or cholesterol groups, on 5’ of 

aptamers, increases aptamer size and renders them resistant to renal filtration (Healy et al., 

2004; Keefe et al., 2010).   
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The chemical diversity of a four nucleotides based DNA/RNA library may be limited compared 

to a 20 amino acids based library (Zhou and Rossi, 2017). But we should have in mind that the 

specificity of aptamers is not due to their sequence but to their tertiary structure (Tan and Fang, 

2015). One aptamer can adopt different conformations and therefore detect different targets 

(Ruscito and DeRosa, 2016). Moreover, new synthetic nucleotides called Xeno nucleic acid 

(XNA) are created. For example, the addition of modified nucleotide triphosphate increases 

protein binding through direct hydrophobic contacts between aptamer and a proteic target 

(Hasegawa et al., 2016). Besides increasing aptamers diversity, XNA also increased their 

resistance to nucleases (Rangel et al., 2018). 

 

Table 4: Aptamer versus monoclonal antibody 

 Aptamer Monoclonal antibody 

Size >5 000 Da 150 000 Da 

Target potential 
Any small molecule, 
biopolymer or cell 

Immunogenic targets 

Tissue penetration High Low 

Stability (pH, temperature) 
High, possibility of 
renaturation 

Low 

Long-term availability Unlimited shelf-life Limited shelf-life 

Circulating half-live 

Susceptible to nucleases 
(limited by modified 
nucleotides) 
Eliminated by renal filtration 
(limited by bioconjugation) 

Nuclease susceptibility 
absent and no elimination by 
renal filtration 

Immunogenicity No evidence Significant 

Production cost and scale-up 
Cheaper and possible to 
scale-up 

Expensive and low 
possibility to scale-up 

Homogeneity batch Uniform between batches 
Activity varies between 
batches 

Modifications 
Wide variety of chemical 
modifications can be applied 

Very limited modifications 

Reversibility Antidote can be produced No method available 
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4.4 SELEX 

Aptamers are selected through an in vitro interactive process called ‘selective evolution of 

ligands by exponential enrichment’ (SELEX) (Figure 15) (Zhou and Rossi, 2017). 

SELEX was described simultaneously by 3 independents American teams. Gold team called 

SELEX to their process of RNA selection for T4 DNA polymerase ligands (Tuerk and Gold, 

1990). An in vitro selection of organic colorants’ RNA was used by Ellington and Szostak 

(Ellington and Szostak, 1990). And, Joyce and Robertson selected the first artificial ribozyme 

(Robertson and Joyce, 1990).  

In SELEX, a large library of around 1014–1015 nucleic acid sequences (ssDNA or RNA) of 20–

50 random and variable bases is put in contact with a given target. The SELEX process is 

composed of three steps: selection, partitioning and amplification. Upon selection, some of the 

nucleic acid sequences bind to the target, the others that did not bind are washed away during 

the partitioning step. Next, an amplification step is performed to enrich the candidates’ 

population. The variable nucleic acid sequences are flanked by primer-binding sequences, 

which allow by PCR (for ssDNA) or RT-PCR (for RNA) the amplification of the molecules. 

Upon PCR, double-stranded DNA molecules are separated to get the ssDNA sequences needed 

for DNA-SELEX, while for RNA an in vitro transcription is performed by a T7-RNA 

polymerase. It can be important to perform a negative selection to ensure binding selectivity 

and eliminate non-specific binding nucleic acids. The negative selection can be performed to 

environmental elements (filters or beads) and/or to target’s counterparts (related proteins or 

cells). Several rounds of selection are performed with progressively increased stringency, and 

under temperature and buffer conditions required, until molecules with a desired binding profile 

are obtained. The selected molecules are then cloned and sequenced (Mercier et al., 2017). 

4.4.1 Protein-SELEX 

Protein-SELEX is a common method where either full-length or truncated versions of proteins 

are used as targets. They are usually used as recombinant proteins conjugated to tags to facilitate 

their purification and selection on affinity columns (Mercier et al., 2017). Many proteins, in 

endogenous cellular-context, present post-translational modifications (phosphorylation, 

glycosylation, ubiquitination, methylation, myristoylation, acetylation…), different 
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conformations or lengths. That might be a reason why some aptamers selected by protein-

SELEX failed to recognize their target in whole cells (Chauveau et al., 2007; Liu et al., 2009).  

4.4.2 Cell-SELEX 

More complexes SELEX processes have been developed to adapt to more complex targets, for 

example, in oncology. Identification of tumor biomarkers is needed for the performance of 

targeted-therapies and vectorization strategies. Cell surface targets are the ‘sexiest’ biomarkers 

for vectorization due to their easy access. Therefore, aptamers’ selection against targets 

expressed at the surface of cells or tumor tissues have been performed using cell fragments, 

living cells or tumor tissues (Blank et al., 2001; Camorani et al., 2020; Fang and Tan, 2010; Mi 

et al., 2010). The so-called cell-SELEX, that uses whole living cells, allows the selection of 

functional cell surface molecules in their native conformation status, for example, with the 

presence of post-translational modifications or interacting with cofactors. Aptamers specific to 

tumor cells can also be used to identify new biomarkers of these tumors even if the aptamer 

target is not yet characterized as a biomarker. Another dimension of cell-SELEX is the 

internalized cell-SELEX, for which only aptamers that able to bind to cell-surface target and be 

internalized are selected (Mercier et al., 2017; Thiel et al., 2012; Wan et al., 2019). Cell-

internalizing aptamers conjugated to therapeutic siRNA provided a strong RNAi response, 

which means that the cargo was delivered to the cytoplasm (Thiel et al., 2012). In this SELEX, 

the initial library was incubated with cells at 37°C to facilitate internalization. After, a stringent 

wash at high salt solution (0.5 M NaCl ± 0.2 N acetic wash) was performed to remove unbound 

and surface bound nucleic acids. The internalized nuclei acids were recovered using a trizol and 

then amplified (Hernandez et al., 2013). This technique allows the selection of internalized 

aptamers but not of aptamers that escape the endosomes and are found in the cytosol. Certain 

therapeutic uses of aptamer require the presence of aptamers in the cytosol. For example,  

aptamers conjugated to siRNAs need to escape from endosomal compartments before fusion 

with lysosomes, where the complex is destroyed by nucleases and acidity (Varkouhi et al., 

2011). Therefore, addition of steps to cell-internalization SELEX like fractionation to separate 

endosome-bound and cytoplasmic nucleic acids sequences can be performed to recover more 

suitable aptamers (Hernandez et al., 2013). Both uptake kinetics and endosomal escape are still 

unknown for aptamers (Hernandez et al., 2013). 
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Selection can also be realized in more complex cellular environments. A selection of aptamers 

that are able to bind to cellular spheroids in 3D cell culture systems was described (Souza et al., 

2016).  

4.4.3 Protein-SELEX versus cell-SELEX  

Contrary to protein-SELEX, cell-SELEX does not need production and purification of targets, 

that can be advantageous if the target is difficult to be synthetized (Chen et al., 2016a).  

However, cell-SELEX is a complex process: (i) it needs the culture of stable cell lines, (ii) cell 

lines need often to be modified to change protein expression for positive and negative 

selections, (iii) cell-SELEX takes usually longer time than protein-SELEX, as it needs more 

rounds to improve aptamers’ selectivity (Chen et al., 2016a). 

4.4.4 Other SELEX methodologies 

Animal-SELEX can be useful in cancer or pathogen-infected mouse models. First of all, the 

initial nucleic acid library is injected to the mice and subsequently organs of interest are 

harvested for aptamer recovery. Then, aptamers are isolated and amplified. Negative selection 

can be made by using a healthy mouse.  Using this technique, were identified aptamers able to 

penetrate the BBB (Cheng et al., 2013), to target bones in a prostate cancer bone metastasis 

model (Chen et al., 2019), or to target Toll-like receptor 4 (TLR4) blocking aptamers in acute 

stroke (Fernández et al., 2018). Finally, biomarker-aptamers for neurological disorders were 

discovered (Lecocq et al., 2018). 

New biotechnology advances, such as capillary electrophoresis, microfluidics, flow cytometry 

and atomic force microscopy facilitate the selection of aptamers (Mayer et al., 2010; Mosing 

and Bowser, 2007; Mosing et al., 2005; Takenaka et al., 2017).  

Moreover, advances are made on automate SELEX to reduce selection’s time to only few days 

(Breuers et al., 2019; Eulberg et al., 2005; Hünniger et al., 2014).  
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Figure 15: SELEX. SELEX is a molecular technique of aptamer selection. A library of nucleic acids is put in contact with a 
target (positive selection). All unbound sequences are eliminated. The bound molecules are amplified and enter in a counter 
selection, in contact with a random/negative target. The unbound sequences are retained to start a new cycle. In the end of 
several cycles with increasing stringency, the molecules selected are cloned and sequenced.  

4.5 Applications of Aptamers 

Aptamers have a large panel of different applications in molecular biology, biotechnology and 

biomedicine associated to their target-specificity, stability and chemical production. Aptamers 

have been used in diagnostics for the molecular recognition of their targets in pathogens, cancer 

or stem recognition, environmental protection, and food safety (Zhang et al., 2019). 

SELEX has been used to generate aptamers for the detection of a number of pathogens such as 

bacteria, parasites and virus. In bacteria, aptamers were selected against outer membrane 

proteins of enterotoxaemia E. coli using FRET HTS (Bruno et al., 2010), surface proteins of 

Campylobacter jejuni (Bruno et al., 2009) and whole-bacterium for several other bacteria 

(Zhang et al., 2019) like some virulent strain as Mycobacterium tuberculosis (Chen et al., 2007).  

For cancer recognition, aptamers have been developed against cancer cell-biomarkers (MUC1, 

HER2 for example) (Zhang et al., 2019) or tumor-related soluble biomarkers 

(carcinoembryonic antigen (CEA) and prostate specific antigen (PSA)) (Yang et al., 2015; 

Zhang et al., 2015a) and against cancer cells (like for leukemia CCRF-CEM cells) (Ye et al., 

2015). Camorani et al demonstrated that EGFR-targeting aptamer CL4 was also able to bind 

mutant EGFRvIII. Moreover, the aptamer inhibits EGFRvIII activation (Camorani et al., 2015). 
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Aptamers were able to detect metastatic tumor tissues  (Li et al., 2015a) and to perform in vivo 

imaging of different cancers (Wu et al., 2015).  

In the clinic, aptamers can have a dual-performance: therapeutic and diagnostic. An aptamer 

against PDGFRβ blocked 3D cancer cell invasion and lung metastases formation on a triple-

negative breast cancer mice model. The same aptamer conjugated to near-infrared fluorophore 

bound to triple-negative breast cancer subcutaneous xenografts and lung metastases (Camorani 

et al., 2018). There are only few aptamers for stem cell recognition, and they recognize 

biomarkers of cancer stem cells (epithelial cell adhesion molecule, CD133, CD117, and CD44) 

(Ababneh et al., 2013), and mouse embryonic stem cells (Iwagawa et al., 2012). 

Environment can be contaminated by antibiotics, heavy metals, toxins, and pathogens that can 

be toxic to human health. Aptamers against antibiotics used for farm animals such as 

chloramphenicol (Burke et al., 1997) and tetracycline (Kim et al., 2010) were developed, and 

they determined if the antibiotics are accumulated in the animal tissues. Furthermore, aptamers 

have been also developed for environmental toxins, heavy metals, pesticides, herbicides and 

insecticides (Zhang et al., 2019).  

Aptamers are more and more used as biosensors for different proposes. Biosensors are 

analytical devices that measure biological or chemical response by the generation of signals 

that are proportional to the concentration of the reaction’s analyte (Bhalla et al., 2016). The 

biosensor capacity of aptamers can be enhanced by the use of nanomaterials, like ultrafine 

graphene (Yang et al., 2017), or the use of biomaterials, like antibodies to form a sandwich 

(Shui et al., 2018; Zhu et al., 2020). Electric and optic/fluorescent signals are used as methods 

of aptamer-biosensor signal detection.   

4.5.1 Aptamers as Therapeutics 

Aptamers are promising therapeutics since they can activate target receptor functions upon 

binding, they can also compete with molecules and/or ligands to inhibit target activation, or 

they can be used as vectors for the delivery of therapeutic agents.  

As written above aptamers have been selected for different targets, thus aptamers can be used 

as therapeutics in different fields. They might be used as agents against bacterial infection or as 

antiviral agent, in immune diseases and cancer. 
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Aptamers as antiviral agents have been described, such as RNA aptamers for human 

immunodeficiency virus-1 (HIV-1) (Mufhandu et al., 2012), Newcastle disease virus, vesicular 

1stomatitis virus, influenza virus replication (Hwang et al., 2012) and hepatitis C virus 

(Nishikawa et al., 2003; Umehara et al., 2004). Anti-HIV-1 aptamer UCLA1 is able to inhibit 

HIV-1 entry in the cell by binding to a HIV-1 subtype gp120 (Mufhandu et al., 2012). Hepatitis 

C virus replication and proliferation need the non-structural protein 3 that is a bi-functional 

protein with protease and helicase actions. Individual aptamers against protease or helicase 

domains of the virus were obtained (Nishikawa et al., 2003). Then, bi-functional aptamers were 

constructed by conjugating protease and helicase aptamers via a spacer. They were more 

performant than aptamers in monomers (Mufhandu et al., 2012).  

In cancer treatment, aptamers target different growth factors and their respective membrane 

receptors and the microenvironment. A DNA aptamer, called NAS-24, targets vimentin, a 

common ECM protein found in tumor microenvironment, and was described to lead mouse 

ascites adenocarcinoma cells to apoptosis in in vitro and in vivo models (Zamay et al., 2014). 

A novel therapeutic strategy of aptamers in cancer is bispecific antibody–aptamer conjugates. 

Passariello et al conjugated an anti-EGFR aptamer with an anti-PD-L1 immunomodulatory 

antibody. The complex decreased cancer cell survival and enhanced activation of T cells against 

cancer cells. In a co-culture of cancer cells with lymphocytes, the complex was able to increase 

levels of IL-2 and IFN-γ in cell supernatants (Passariello et al., 2019).  

Aptamer BC007 is a ssDNA against β1-adrenoreceptor agonistic autoantibodies, activator of 

GPCR in cardiomyopathies. This aptamer can help the neutralization of autoantibodies while 

overcoming logistics problems of actual strategy, immunoadsorption (Wallukat et al., 2016).  

4.5.1.1 Aptamers used in clinical trials 

Several clinical trials have been using aptamers for different pathologies as shown in table 5. 

Only two are in cancer treatment. This low use of aptamers in cancer can be due to tumor 

heterogeneity or to the microenvironment changes provoked by cancer cells. Even if aptamers 

are being tested in several clinical trials, to date only one aptamer reached the market. 

Macugen/Pegaptanib is a short RNA aptamer of 28 nucleotides against VEGF-165, used for 

neo-vascular age-related macular degeneration of the retina (NVAMD). The RNA molecule 

was submitted to modifications to improve its resistance to 3’-5’ exonucleases (2’-modified 

pyrimidines and purines, addition of a 3’-3’ inverted deoxythymidine) and was also conjugated 
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to PEG to enhance its pharmacokinetics. Macugen was approved by FDA in 2004 (Drolet et 

al., 2016; Ng et al., 2006). The same year a humanized monoclonal antibody, bevacizumab, 

was approved by FDA against the same target, VEGF, as a metastatic colorectal cancer 

treatment (Wang et al., 2004b).  Later, bevacizumab was tested on NVAMD treatment and it 

showed improvement but unfortunately, it diffused through the retina. A modified version of 

bevacizumab, ranibizumab, was created and showed improvement in NVAMD treatment, so it 

was approved by FDA in 2006 (Kim and D’Amore, 2012).   

Ø Macugen 

Interestingly, Macugen was previously thought to target cancer cells but the movement towards 

eye degenerative diseases happened due to different factors: (i) VEGF was characterized to be 

an inducer of pathogenic angiogenesis in eyes, (ii) retina cells will continuously need VEGF 

while the dependency of cancer cells towards this growth factor can fade away (accumulation 

of mutations and signaling crosstalk), (iii) local administration in the eye compared to plasma 

will reduce possible undesirable reactions and lower the price of treatment (Drolet et al., 2016). 

In 2014, the French Haute Autorité de Santé compared Macugen with other anti-VEGF 

molecules and concluded that Ranibizumab and Aflibercept (a recombinant fusion protein 

composed of fragments of the extracellular domains of human VEGFR types 1 and 2 fused to 

the Fc fragment of human IgG1) are more relevant with improved visual acuity while macugen 

just reduced the loss of visual acuity. Thus, Macugen was declared as not expected to benefit 

public health.  

Aptamers also present limiting points that delay their use in clinics: few knowledge about their 

pharmacokinetics profile, their cost comparing to small molecules and the intellectual property 

exclusivity of SELEX.  

Ø AS1411 aptamer 

The first aptamer in clinical trials against cancer is a nucleolin DNA aptamer, AS1411, in phase 

II for acute myeloid leukemia. Nucleolin is a nuclear protein, but in several cancer cells 

nucleolin is present at cell surface (Chen and Xu, 2016; Hovanessian et al., 2010). AS1411 

binds to cancer cell surface nucleolin and prevented tumor growth in over 80 cancer cell lines  

in lung, colorectal, breast and hepatocellular carcinoma cancer cells (Alibolandi et al., 2017; 

Bates et al., 2009; Cho et al., 2016; Wang et al., 2017b).  
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4.5.1.2 Aptamer as therapeutic vector 

Aptamer-based therapeutic delivery systems include aptamer-therapeutic oligonucleotide 

conjugates (Shu et al., 2015), aptamer-drug conjugates (Dou et al., 2018; Powell Gray et al., 

2018), and aptamer-coupled to nanoparticles (Liang et al., 2015). A more thorough overview 

of the recent advances on aptamers-drug conjugates was reviewed by Zhu G et al (Zhu et al., 

2015a). The use of vectors for drug delivery faces different challenges and issues to take into 

account: manufacture cost, therapeutic formulation, bio-stability, bio-availability, and 

pharmacokinetics. Aptamer-drug conjugates (AptDC) over their counterparts’ antibody-drug 

conjugates (ADC) are easy and cost-effective produced and modified. Moreover, they present 

a higher homogeneity between batches of production that is essential for therapeutic use.  

The efficiency of an aptamer-drug conjugate is dependent of various factors that need to be 

optimal to favor therapy efficiency. Aptamer binding to target, subsequent internalization of 

complex aptamer-target, fate of complex target in membrane trafficking and drug ability to act 

on their target (depending on drug availability on site of action, drug degradation and/or 

inhibition). After internalization, the complex aptamer-target is found inside intracellular 

endosomal compartments. Usually drugs conjugated to aptamers are chemotherapeutics, which 

targets are cytosolic or nuclear.  The use of aptamers in therapy faces the challenge of its 

internalization and endosomal escape (Tawiah et al., 2017).  
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Table 5: Aptamers in clinical trials 

 Name Target Type and 

modifications 

Clinical 

Trial 

realized  

Indication 
M

a
cu

la
r 

d
eg

en
er

a
ti

o
n

 

Macugen 
Pegaptanib 
sodium 

VEGF165 RNA (27nt) 
2’-
fluoropyrimidines 
2’-O-
methylpurines 
3’-inverted dT 
40kDa PEG 
 

2 Phase 
I 
1 Phase 
II 
2 Phase 
II/III 
1 Phase 
Iv 

-Age-related 
macular 
degeneration 
(AMD) (FDA 
approval in 2004) 
-Diabetic macular 
edema 
-Proliferative 
diabetic 
retinopathy 

ARC1905 Human 
complement C5 

RNA (38nt) 
2’-
fluoropyrimidines 
2’-O-
methylpurines 
3’-inverted dT 
40kDa PEG 

2 Phase 
I 
3 
Phase II 
1 Phase 
II/III 

-AMD 
-Wet-AMD 
-Stargardt disease 
1 
-Idiopathic 
polypoidal 
choroidal 
vasculopathy 
-Geographic 
atrophy 
conditions 

E-100030 PDGF DNA (29nt) 
2’-O-
methylpurines 
3’-inverted dT 
40kDa PEG 

3 Phase 
I 
1 
Phase 
I/II 
3 Phase 
II 
3 Phase 
III 

-AMD 
-Von Hippel-
Lindau 
 

C
o

a
g

u
la

ti
o

n
 

REG1 
(Drug:RB0006) 
(Antidote/Active 
control 
agente:RB0007) 

Coagulation 
factor IXa 
(FIXa) 

RB0006 
RNA (31nt) 
2’-
fluoropyrimidines 
or 2’- ribo purine 
3’-inverted dT 
40kDa PEG 
RB0007 
RNA (15-nt) 
2’-O-methyl 

2 Phase 
I 
2 Phase 
II 
1 Phase 
III 
 

-Acute coronary 
syndrome 
-Coronary artery 
disease 

ARC1779 A1 domain of 
von Willebrand 
factor 

DNA (39nt) 
2’-O-methyl with 
a single 
phosphorothioate 
linkage 

1 Phase 
I 
5 Phase 
II 
 

-von Willebrand 
disease and type 
2b 
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3’-inverted dT 
20kDa PEG 
 

thrombotic 
thrombocytopenic 
purpura 
-Percutaneous 
coronary 
intervention 
-Thrombosis 

NU172 Thrombin DNA (26nt) 1 Phase 
II 

-Heart disease 

ARC183 Thrombin DNA (15nt) 1 Phase 
I 

-Acute 
cardiovascular 
settings 

BX499 
(previously 
known as 
ARC19499) 

Tissue Factor 
Pathway 
Inhibitor 
(TFP1) 

RNA (32nt) 
2’-O-
methylpurines 
3’-inverted dT 
40kDa PEG 
 

1 Phase 
I 

-Hemophilia 

O
n

co
lo

g
y

 

AS1411 Nucleolin DNA (26nt) 
PEG 

1 Phase 
I 
3 Phase 
II 

-Acute myeloid 
leukemia 
-Metastatic renal 
cell carcinoma 
-Advanced solid 
tumor (renal, colon, 
pancreatic, lung, 
lymphoma, gastric, 
cervical, melanoma, 
prostate, synovial 
sarcoma, 
hemangiopericytoma) 
-Leukemia 
myeloid 

NOX-A12 CXCL12 (C-X-
C Chemokine 
Ligand 12 

RNA spiegelmer 
(45 nt) 
L-ribonucleic acid 
40 kDa PEG 

2 Phase 
I 
2 Phase 
I/II 
2 Phase 
II 

-Multiple 
myeloma 
-Non-Hodgkin 
lymphoma 
-Chronic 
lymphocytic 
leukemia 
-Autologous stem 
cell 
transplantation 
-Hematopoietic 
stem cell 
transplantation 
-Metastatic 
colorectal cancer 
-Metastatic 
pancreatic cancer 
-GBM  
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In
fl

a
m

m
a

ti
o

n
 

NOX-E36 CCL2 (C-C 
Chemokine 
Ligand 
2)/MCP-1 
(Monocyte 
chemoattractant 
protein 1) 

RNA spiegelmer 
(40 nt) 
L-ribonucleic acid 
40 kDa PEG 

2 Phase 
I 
1 Phase 
I/II 
1 Phase 
II 

-Type 2 diabetes 
mellitus 
-Systemic Lupus 
erythematosus 
-Albuminuria 
-Renal 
impairment  

NOX-H94 Hepcidin 
peptide 
hormone 

RNA spiegelmer 
(44 nt) 
L-ribonucleic acid 
40kDa PEG 

2 Phase 
I 
1 Phase 
I/II 
1 Phase 
II 
1 Phase 
II 

-Anemia 
-End-stage renal 
disease 
-Inflammation 

4.5.1.3 Mechanisms of aptamer internalization  

Several studies described two internalization mechanisms of aptamers, the receptor-mediated 

endocytosis and macropinocytosis (Figure 16) (Wan et al., 2019). The first mechanism is based 

on the ability of the aptamer to bind to membrane receptors and stay bound during all process 

of internalization of the target. This mechanism of internalization is the most commonly 

reported for aptamers, and it has been described to aptamers targeting transferrin, human protein 

tyrosine kinase-7, EGFR and prostate-specific membrane antigen (PSMA) (Chen et al., 2008; 

Wan et al., 2019). On the other hand, the macropinocytosis mechanism was described to be 

involved in nucleolin aptamer internalization (Reyes-Reyes et al., 2010). This entry pathway 

facilitates free shuttling between nucleus and cytoplasm, with any features of endosomal 

entrapment (Bates et al., 2017; Kotula et al., 2012). Under physiological conditions, 

macropinocytosis forms vacuoles of 10 µm of diameter by using lipid rafts, NA+/H+ exchange 

pumps at the plasma membrane and actin filament polymerization (El-Sayed and Harashima, 

2013). Several strategies have been used to better describe aptamer internalization pathway, the 

use of chemical inhibitors (for macropinocytosis, amiloride, for clathrin-dependent, Pitstop2, 

and for dynamin-dependent one dynasore or dyngo-4a) or the expression modulation of key 

proteins on each mechanism (Reyes-Reyes et al., 2010; Wan et al., 2019). The interference with 

a determinate pathway, can improve also the selection of aptamers in cell-internalization 

SELEX, since macropinocytosis is not the most common way of internalization but the one 

with more advances for therapy cytosolic delivery.  



67 

 

4.5.1.4 Overcoming endosomal escape  

Several techniques have been implemented to improve endosomal escape: pore formation in 

the endosomal membrane, pH-buffering effect of protonable groups and fusion into the lipid 

bilayer of endosomes (Varkouhi et al., 2011). Conjugation of cationic amphiphilic peptide-tag 

to aptamers can help disrupting endosomal membrane, leading to release of aptamer in the 

cytosol (Aaldering et al., 2015). These peptides after binding to endosomal lipid bilayer induce 

tension on the internal membrane that is strong enough to create pores (Huang et al., 2004; 

Varkouhi et al., 2011). Proton sponge effect is mediated by agents that protonate at low pH and 

thus increase inflow of ions and water, resulting in osmotic swelling and endosomal membrane 

disruption (Varkouhi et al., 2011). Fusogenic peptides, often found in viruses, undergo a 

conformational change upon pH change, being able to fuse with the lipid bilayer (Varkouhi et 

al., 2011).  

Besides all the challenges associated to the use of aptamers for vectorization of therapeutic 

agents, these nucleic acids molecules are promising agents for cancer therapy and also 

diagnostics.  

4.5.2 Aptamers as diagnostic tools 

Aptamers can be used as diagnostic tools for cell detection, staining of ex vivo tissue samples 

and as non-invasive in vivo imaging-probes for tumor assessment (Cerchia, 2018; Sun et al., 

2016).  

Aptamers can be used to detect and image specific tumor cells. Several aptamers targeting GBM 

cells were selected and can be used as imaging tools or even to isolate tumor cells from biopsies 

(Delač et al., 2015). 
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Figure 16: Aptamer-internalization mechanisms. The majority of aptamers against cell surface receptors are internalized 
upon binding to their target. Most of this receptor-mediated endocytosis is clathrin-dependent, and involves creation of a 
vesicle, pitch from the plasma membrane and release of vesicle into the cytoplasm. The amount of receptor internalized will 
dependent on the internalization rate of the receptor. Interestingly, aptamers against nucleolin can also be internalized through 
macropinocytosis process. This mechanism involves actin polymerization to create an extension of the plasma membrane ruffle 
that will incorporate nucleolin-aptamer complex. The retraction of this membrane creates large intracellular vacuoles called 
macropinosomes. Both mechanisms will lead aptamers to intracellular trafficking.  

 

Moreover, aptamers have been tested to detect circulating cancer cells. For example, Zhao et al 

created an activable aptamer to a simultaneous detection of multiple tumor biomarkers (MUC1, 

estrogen receptor (ER) and HER2 in breast cancer). The aptamer probe is composed by an 

aptamer targeting a tumor biomarker, a fluorophore and a quencher. In the absence of 

biomarker, fluorophore and quencher are in close proximity and signal is quenched by 

fluorescent resonance energy transfer. Upon binding of aptamer to the tumor biomarker, 

aptamer suffers a conformational change, physical separation of fluorophore and quencher, and 

thus fluorescence signal is observed  Simultaneous multi-detection can be achieved with 

different activable aptamer conjugated to various fluorophore/quencher arrangements (Zhao et 

al., 2015).  

Studies comparing antibodies and aptamers in the gold standard of cancer diagnosis, the 

histochemistry, showed several advantages of nucleic acid probes. 

First, aptamers need to be functionalized through conjugation with biotin or fluorophores. 

Aptamers-biotin conjugates can interact with streptavidin conjugated with horseradish 

peroxidase (HRP). Upon addition of a substrate for the HRP, a classical brown precipitate will 



69 

 

be generated (Bukari et al., 2017; Camorani et al., 2020).  Aptamer-fluorophores conjugates 

allow fluorescence studies in tissues with uni- or multi-detections.  

Simpler conditions are required to perform an appropriate aptamer histo-labelling. For example, 

lower temperature (37° versus 96 °C for antibody) can be used for antigen retrieval, and also 

less probing times (20 versus 90 min for antibody) (Zeng et al., 2010). The reason for lower 

temperature for antigen retrieval in aptahistochemistry can be explained by the higher 

permeability of an aptamer compared to an antibody, and thus aptamer can penetrate the spaces 

between the cross-links without complete reversal. In the same study, differences staining 

patterns were observed probably due to recognition of different epitopes and/or easier aptamer 

access to deeper targets. Moreover, aptamer labelling exhibited less background staining in 

necrotic areas (Zeng et al., 2010). 

Aptamer for tumor imaging have been developed using fluorescence, positron emission 

tomography (PET), single-photon emission computed tomography (SPECT), and magnetic 

resonance imaging (MRI). 

PET and SPECT are highly sensible techniques for in vivo tumor progression imaging. 

Aptamers were conjugated to radionuclides to improve tumor-specificity of these techniques. 

For example, aptamer-targeting EGFRvIII in GBM cells was conjugated to 188Re and used for 

SPECT imaging on GBM xenografts (Wu et al., 2014).  

For MRI, aptamers were conjugated to magnetic nanoparticles. For angiogenesis detection on 

GBM, an aptamer against VEGFR2 was added to a magnetic nanocrystal. In in vivo tests, the 

aptamer-probe was injected in the tail vein, and it successfully targeted VEGFR2 and produced 

sensitive MRI images of GBM orthotropic tumors with no cytotoxicity (Kim et al., 2013). 

The advantages of aptamers as diagnostic tools and their future use in research and hospital 

routine are reinforced by the label WHO’s “ASSURED” (affordable, sensitive, specific, user-

friendly, robust) of several aptamer-based diagnostic assays (Dhiman et al., 2017). 

Other aptamers applications and functionalities might still be unexplored. We believe that 

aptamers will acquire more and more importance as tools for innovative academic and 

industrial research.  
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5. Objectives 

GBM is the most frequent and aggressive brain tumor. GBM is extremely refractive to 

radiotherapy, chemotherapy and targeted therapies. This aggressiveness can be explained by 

the overexpression of cell surface receptors promoting tumor cell survival, growth and invasion. 

EGFR, a member of HER tyrosine kinase receptor family, is overexpressed in around 50% of 

GBM cases. Another cell surface receptor overexpressed in GBM is α5β1 integrin, a member 

of ECM receptor family.  Remarkably, α5β1 integrin crosstalks with EGFR leads to increased 

EGFR oncogenic signalling and resistance to EGFR targeted therapy. These two receptors share 

the common feature of being spatio-temporally regulated by their endocytosis and membrane 

trafficking. a5b1 has been described in EGFR endocytosis and recycling to the surface. 

Expression level of endocytosis proteins is often altered in GBMs, which contributes to the 

enhanced oncogenic activity of EGFR and foster GBM progession and aggresivness. Even 

though, EGFR and integrin are pertinent therapeutic targets in GBM, targeted therapies failed 

in GBM clinical trials. Despite numerous studies, many questions remain about the behaviors 

of these 2 receptors during tumor progression and therapeutic treatments and new therapeutic 

tools, such as aptamers, might be needed to target EGFR and integrin. 

My PhD research followed two main objectives:  

Ø I first seek to characterize the effect of EGFR tyrosine kinase inhibitors in EGFR 

trafficking in GBM-derived cells. We showed that gefitinib induce ligand-independent 

EGFR and integrin endocytosis, and identified 3 endocytosis proteins which contribute 

to this effect. Moreover, we found that repression of endocytosis protects GBM cells 

from gefitinib-induced inhibition of GBM cell dissemination. Articles 1 and 2 (Blandin, 

Cruz da Silva et al, 2020; Cruz da Silva et al, under writing).  

Ø I participate to the characterization of a new aptamer targeting α5 integrin and in the 

validation of aptamers targeting integrin or EGFR and other RTK, as alternative to 

antibodies, for receptor detection in glioma cells and in human tissue samples. We 

further analyzed the effect of gefitinib treatment in aptamer internalization in glioma 

cells, exploring new opportunities for aptamers as vectorization agents (Articles 3 

(Fechter, Cruz da Silva et al., 2019) and recent results. 
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In parallel, I also participated in the redaction of two reviews; one is presented as a draft (still 

in writing process) in Annex 1 and another (Annex 2), already published (Cruz da Silva et al., 

2019). These manuscripts are about the role of integrin in resistance to growth factor receptors 

targeted therapies, and a systematic review on GBM clinical trials using targeted therapies. 

Moreover, I collaborated in the characterization of gold particles conjugated to EGFR antibody 

cetuximab, which may ameliorate targeted-radiotherapy (Groysbeck et al., 2019), in Annex 3.  
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Material and Methods 
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Table 6, 7, 8 and 9 describe the dilution of antibodies used in this manuscript, the concentration 

of inhibitors, the characteristics and culture conditions of the cell lines used, and the nature and 

sequences of aptamers, respectively. 

 

Table 6: Dilutions of antibodies used  

Application Protein Antibody 

Reference 

Company Dilution 

WB DNM2 G-4 Santa Cruz 1-1000 
EGFR D38B1 Cell signalling 1-1000 
GAPDH 6C5 Millipore 1-5000 
Integrin α5 H104 Santa Cruz 1-1000 
LRP-1 PPR3724 Abcam 1-1000 
Rab5 D-11 Santa Cruz 1-1000 
Sortilin 16640 Abcam 1-1000 

IF (cells) CD63   1-50 

EEA1 
610457 BD   

Transductions 
1-1000 

EGFR D1D4J  Cell signalling 1-200 
Integrin α5 
(active) 

SNAKA  1-100 

Integrin α5 
(inactive) 

IIA1 BD   
Transductions 

1-100 

Integrin β1 
(active and 
inactive) 

TSC2/16 BioLegend 1-100 

LAMP1   1-50 
LRP-1 8G1 GeneTex 1-1000 
Rab5 C8B1 Cell signalling 1-200 

IF (tissues) Integrin α5 AB 1928 Millipore 1-200 
 

Table 7: Concentration of inhibitors used 

Target Drug 

name 

Stock 

concentration 

Working 

concentration 

Company Reference 

DNM2 Dyngo-
4a 

10 mM 12 µM Selleckchem S7163 

Dynasore 10 mM 10 µM S8047 
EGFR Gefitinib 20 mM 5-20µM Chemitek CT-GF001 

Lapatinib 10 mM 10 µM CT-LP002 
Erlotinib 10 mM 10 µM CT-EL002 
Afatinib 10 mM 5 µM CT-BW2992 

LRP-1 RAP 2.65 ng/nl 500 nM Provided by 
Prof. 
Stéphane 
Dedieu 

(Perrot et al., 2012) 
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Table 8: Cell lines used 

Type of 

tumor 
Cell lines Origin Characteristics Medium 

GBM 

U87 
ATCC 

Obtained from ATCC 
(Molsheim, France) 

Glioblastoma with PTEN 
mutated (splice deletion 
of exon 3, intron 3 and 
codon 54), homozygous 
deletions in the p16 and 
p14ARF genes, TP53 and 
EGFR WT. 

EMEM 
10% FBS 
1% Non-
essential 
amino acids 
1% sodium 
pyruvate 

U87 
shRNA 
α5 

U87 cell line modified by 
shRNA against mRNA of 
α5 integrin 

U87 
EGFR 
WT 

Provided by Professor 
Furnari (California, 
USA) 

U87 cell line modified by 
transfection with 
pcDNA3.1 plasmid 
containing coding 
sequence of EGFR 

U87 D4 

Obtained from ATCC 
(Molsheim, France) 

U87 cell line modified by 
shRNA against mRNA of 
α5 integrin 

EMEM 
10% FBS 

U87 F8 

U87 cell line modified by 
transfection with 
pcDNA3.1 plasmid 
containing coding 
sequence of α5 integrin 

LN443 

Provided by Professor 
Hegi (Lausanne, 
Switzerland) 

Glioblastoma with PTEN 
mutated (splice deletion 
exon 5), homozygous 
deletions in the p16 and 
p14ARF genes and TP53 
WT. 
 

LNZ308 

Glioblastoma with 
deleted TP53, and 
mutated PTEN (splice 
deletion of exon 6), and 
EGFR WT. 

LN319 

Human astrocytoma with 
mutated TP53 (codon 175 
CGC(Arg)→CAC(His)) 
and mutated PTEN 
(codon 15 AGA (Arg) → 
AGT (Ile)). 

T98 
Obtained from EACC 
(Saint Quentin 
Fallavier,France) 

Glioblastoma with 
mutated TP53 (codon 237 
ATG(Met)→ATA(Ile)), 
homozygous deletions in 

EMEM 
10% FBS 
1% Non-
essential 
amino acids 
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the p16 and p14ARF 
genes, PTEN deleted and 
EGFR amplified. 

1% sodium 
pyruvate 

Breast 
cancer 

MCF7 
Provided by IGBMC 
collaborators 
Origin unknown. 

Luminal A breast cancer 
with estrogen and 
progesterone receptor 
expression, EGFR and 
HER expression. 
Homozygous deletion in 
CDKN2A and TP53 WT. 

DMEM 
(1g/L 
glucose) 
10% FBS 
0.6 µg/ml 
Insuline 
40 µg/ml 
gentamicine 

MDA-
MB-231 

Provided by IGBMC 
Origin ATCC 

Triple negative breast 
cancer type. EGFR and 
BRCA1 WT, p16 and 
p14ARF mutated. 
Homozygotic deletion 
CDKN2A, homozygotic 
TP53 mutation 
Arg280Lys, 
heterozygotic BRAF 
mutation Gly464Val, 
heterozygotic KRAS 
mutation Gly13Asp 

RPMI 1640 
without 
HEPES 
10% FBS 
40 µg/ml 
gentamicine 

Skin 
squamous 
cell 
carcinoma 

A-431 

Provided by IGBMC 
Origin Dr. B. Magun 
(Oregon University, 
USA) 

Epidermoid carcinoma 
with oncogenic gene 
fusion EGFR-
PPARGC1A and mutated 
TP53 Arg273His 

DMEM 
(1g/L 
glucose) 
10% FBS 
40 µg/ml 
gentamicine 

Melanoma 
MDA-
MB-435 

Provided by IGBMC 
Origin Frederick 
Cancer Center DCTD 
Tumor Repository, 
USA 

Melanoma cell line 
previously described as 
breast cancer cell line.  
Heterozygous BRAF 
Val600G, TP53 
Gly266Glu. EGFR 
negative 

RPMI 1640 
10% FBS 
40 µg/ml 
gentamicine 
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Table 9: Sequences of aptamers used 

Target Aptamer Type Sequence (from 5’ to 3’) 

Integrin 
α5 

H02-2’F-
Cy5 

RNA GGUUACCAGCCUUCACUGCGGACGGACAGAGAGUGCAACCUGCCGUGCCGCACCACGGUCGGUCACAC(CY5) 

EGFR Cy5-E07 RNA 
2’ 
fluoro 

(CY5)GGACGGAUUUAAUCGCCGUAGAAAAGCAUGUCAAAGCCGGAACCGUCC 
 

Alexa 
488-E07 

RNA 
2’ 
fluoro 

(Al488)GGACGGAUUUAAUCGCCGUAGAAAAGCAUGUCAAAGCCGGAACCGUCC 
 

 Anti-
human 
EGFR 
aptamer 
Janellia 
Fluor 646 
conjugate 

ssDNA Commercial aptamer - No information available 

c-MET Alexa 568- 
SL1 

ssDNA (Al568)ATCAGGCTGGATGGTAGCTCGGTCGGGGTGGGTGGGTTGGCAAGTCTGAT 

 

Reagents 

The primary antibodies used for immunostaining are described in table 6. Fluorescently labeled 

secondary antibodies were purchased from Invitrogen (AlexaFluor −488; −568; −647). DAPI 

was purchased from Santa Cruz Biotechnology. Phalloïdin-Atto 488 was purchased from 

Sigma-Aldrich. The primary antibodies used for immunoblot are described in table 6. HRP-

conjugated secondary antibodies were purchased from Invitrogen. Cell culture medium and 

reagents were from Lonza. Tyrosine kinase inhibitors, dynasore and dyngo-4a were obtained 

from ChemiTek. His-tagged RAP was purified by gravity-flow chromatography using a nickel-

charged resin as described previously (Perrot et al., 2012). Detailed information concerning 

drug concentrations are in table 7. Aptamers and chemicals were purchased from IBA 

(Goettingen, Germany), Eurogentec (Liège, Belgium) and Sigma-Aldrich (Hamburg, 

Germany), respectively, unless otherwise stated. The sequences of aptamers used on this study 

are described in Table 9.  All other reagents were of molecular biology quality.  

Cell culture 

The human glioblastoma cell line U87 was obtained from ATCC. The human glioblastoma cell 

line U87 EGFR WT cells were kindly provided by Prof. Furnani (California, USA). U87 cells 

were maintained in Eagle’s minimum essential medium (EMEM) supplemented with 10% 
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foetal bovine serum (FBS), 1% sodium pyruvate and 1% nonessential amino-acid, in a 37 °C 

humidified incubator with 5% CO2. U87 cells were transfected by a specific shRNA targeting 

α5mRNA and considered as U87 cells expressing α5-shRNA as low α5 expressing (U87α5−) 

(Blandin et al., 2016). LN443, T98 and LNZ308 cells were cultured as described in (Renner et 

al., 2016a). LN319 cells were kindly provided by Prof. Monika Hegi (Lausanne, Switzerland). 

Cells were maintained in Eagle’s minimum essential medium (EMEM) supplemented with 10% 

FBS in a 37 °C humidified incubator with 5% CO2. A-431, MCF-7, MDA-MB-435 and MDA-

MB-231 were obtained from UMR 7104. A-431 and MCF-7 were maintained in Dulbeco 

modified Eagle’s minimum essential medium (1g/L glucose) supplemented with 10 % FBS and 

40 µg/ml of gentamicine. MCF-7 medium also contained 0.6µg/ml of insulin. MDA-MB-435 

and MDA-MB-231 were maintained in Roswell Park Memorial Institute medium (RPMI) 1640 

medium supplemented with 10 % FBS and 40 µg/ml of gentamicine. Detailed information 

concerning cell lines are in table 8.  

Plasmid amplification 

Competent bacteria DH5α (One Shot™ TOP10 Chemically Competent E. coli) (Invitrogen) 

were used for bacterial transformation by heat-shock method. Bacteria suspension was thaw on 

ice. 100ng of plasmid was added and incubated during 30 min on ice. Membrane pores to allow 

plasmid entry were made by an exposition to 42°C during 30 sec and closure of pores was 

obtain by placement on ice during 2 min. Lysogeny-Broth (LB) medium was added and bacteria 

placed at 37°C during one hour with agitation. Different dilutions were scrap on warmed 

previously made agar plates with respective antibiotic. Plates were left overnight at 37°C. 

Isolated colonies were selected and put in 2ml of LB medium at 37°C during 8 hours with 

agitation. Then bacterial solution was added to 250ml LB and left overnight at 37°C with 

agitation. Suspension was centrifuged at 4°C and plasmid was purified from the bacterial pellet 

using NucleoBond® Xtra Midi kit (Macherey-Nagel®). Plasmid concentration was determined 

at 260nm on Nanodrop.  

Plasmid transfection 

Plasmid α5-GFP was kindly provided by Dr. Alan Horwitz (University of Virginia, USA), 

pEYFP-Rab5a (kindly provided Dr. Marino Zerial (MaxPlanck Institut, Germany)), GFP-

Rab5S324N (Addgene #35141) and GFP-Rab5Q79L (Addgene #35140), siGENOMETM Non-
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targeting siRNA pools (Dharmacon D-001206-14-05), siRNA-DNM2 (Dharmacon M-004007-

03-0005), siRNA-LRP-1 (Dharmacon M-004721-01-0005) plasmids were used. A total of 0.25 

× 106 cells was used for each transient transfection using 1.5 µg for expression plasmid or 50 

nM for siRNA using JetPrime® (PolyPlus-Transfection) following the manufacturer's 

instructions. Fusion protein expression was confirmed by fluorescent microscopy the day after 

and downregulation of DNM2 or LRP-1 was assessed by immunoblot 72h after siRNA 

transfection.  

Confocal microscopy and Image Analysis 

Coverslips were coated with fibronectin (20 μg.mL-1 in DPBS). 15 000 cells were seeded in 

serum containing medium and cultured for 24 hours before TKI treatment. Alternatively, two-

day-old U87 cell spheroids were seeded in complete medium in presence or absence of TKIs. 

Cells were then fixed in 3.7% (v/v) paraformaldehyde during 10 minutes, and permeabilized 

with 0.1% Triton-X100 for 2 min. After a 60-minutes blocking step using PBS-BSA 3% 

solution, cells were incubated with primary antibodies O/N at 4 °C (2 μg.mL-1 each in PBS-

BSA 3%). Cells were rinsed in PBS and incubated with appropriate secondary antibodies (1 

μg.mL-1 in PBS-BSA 3%) and DAPI for 45 min. Samples were mounted on microscope slides 

using fluorescence mounting medium (Dako). Images were acquired using a confocal 

microscope (LEICA TCS SPE II, 60× magnification oil-immersion, N/A 1.3). For each 

experiment, identical background subtraction and scaling was applied to all images. Pearson 

correlation coefficient from 10-12 images (4-5 cells per images) from 3 independent 

experiments were calculated using JACoP plugin or Colocalization Finder ImageJ softwares. 

3D reconstruction corresponds to confocal images Z-stacks obtained using stacks of 300 nm. 

3D image reconstruction was performed using IMARIS software.  

EGF endocytosis and uptake quantification 

EGF coupled to AlexaFluor488 (Molecular Probes, Invitrogen) was used to study the ligand-

induced EGFR internalization. To this end, cells were plated on coverslips previously coated 

with fibronectin (20 µg.mL−1 in DPBS). Cells were starved in OptiMEM (Gibco) for 1h at 37 

°C. Cells were first washed in ice-cold DPBS and then incubated on ice in OptiMEM medium 

containing 100 ng.mL−1 AlexaFluor488–EGF. After incubation on ice for 30 min, cells were 

gently washed in ice-cold DPBS. Cells fixed at this step were used as negative control. 
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Otherwise, cells were incubated with pre-warmed complete medium at 37°C during 1h in 

presence of gefitinib as indicated. Non-internalized EGF was strip by incubating the cells with 

a solution of sodium acetate 0.2M pH 2.7 for 5 min on ice. After washing, cells were fixed and 

stained with DAPI. Images were acquired using a confocal microscope. The analysis was 

performed after a threshold (identical for all conditions) applied to eliminate background. The 

integrated fluorescence intensity of EGF-Alexa488 was determined in each cell. Image analysis 

was performed using ImageJ in between 20-30 cells per condition on 3 independent 

experiments. 

STORM imaging and analysis 

Samples were prepared as previously described for confocal microscopy, except that cells were 

incubated with quantum dots 655 (Invitrogen). Super-resolution imaging was performed on an 

inverted microscope Nikon Eclipse Ti-E (Nikon) equipped with 100x, 1.49 N.A. oil-immersion 

objective. Fluorescence signal was collected with an EM-CCD camera (Hamamatsu) using a 

previously optimized protocol (Glushonkov et al., 2018). Image reconstruction was performed 

using Thunderstorm, QDs were used for drift correction of both channels. The reference image 

with TetraSpek beads (ThermoFischer) was acquired to correct the lateral shift and chromatic 

aberrations (UnwarpJ plugin, ImageJ) between the two channels. 

Aptafluorescence on cells 

U87 α5+ (F8) and U87 α5- (D4) were plated on sterile glass slides for one night at 37°C in 

culture medium, washed three times with washing buffer (DPBS, 1 mM MgCl2 and 0.5 mM 

CaCl2) and then saturated for 1 h at RT in washing buffer containing 2% BSA. Cy5-labeled 

aptamers (sequence table 9) were denatured at 95°C for 3 min and incubated on ice for 5 min 

and then on cells in washing buffer for 30 min at 37°C at different concentrations dependent on 

the assay (5, 2.5, 1.25, 0.6, or 0.3 μM). Cells were then washed, fixed for 10 min in 4% PFA, 

washed, permeabilized for 1 min with 0.1% Triton-X, and washed again. Incubation with 

primary antibodies was made overnight at 4°C.  After washing, secondary antibody at a 

2 μg/mL final concentration was added with DAPI (for nuclear labelling) for 1 h at RT. F-actin 

was labelled by Phalloidin-ATTO 488 (Sigma) at 1/4,000. Washing steps preceded mounting 

using fluorescent mounting medium. Images were acquired using a confocal microscope (Leica 

TCS SPE II, 63× magnification, oil immersion). For all magnifications, an initial background 
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subtraction equal to all conditions was performed on immunofluorescence images to enhance 

intracellular immunolabelling. Mean fluorescence intensity on cells was measured using 

ImageJ software. Statistical analysis of data was performed with Student’s t test. Data were 

analyzed with GraphPad Prism version 5.04 and are represented as mean ± SEM. 

Aptahistochemistry 

GBM patients’ histologic tissues were obtained from the the CRB (Centre de Ressources 

Biologiques, CHRU Hautepierre, Strasbourg) tumor bank.  Integrin α5 and EGFR were apta- 

and immuno-stained using formalin-fixed paraffin-embedded tissues mounted on glass slides. 

Sections were deparaffinized with a 6 minutes bath on Roti-Histol (ROTH) at room temperature 

(RT). Sections were further rehydrated with a decreasing scale of ethanol containing two baths 

of absolute ethanol, two of 95% ethanol, one at 70% ethanol and finally one of H2O. Sections 

were subjected to an antigen unmasking protocol. Briefly, sections were boiled at 100ºC for 10 

min in target retrieval solution (pH 9) (S2367, DAKO) in the micro-wave, cooled down to RT 

for 20–40 min, and rinsed in H2O. For aptafluorescence, slides were rinsed for 5 min in washing 

buffer (DPBS, 1 mM MgCl2 and 0.5 mM CaCl2), dried, incubated in blocking buffer (2% BSA 

in washing buffer) for 1 h at RT, rinsed in washing buffer, and dried. Aptamers were denatured 

at 95ºC for 3 min and incubated on ice for 5 min before dilution in washing buffer to a final 

concentration of 1µM for integrin α5 aptamer or 500 nM, for EGFR and c-MET aptamer. 

Aptamers were incubated on tumor sections for 1 h at RT in a humid chamber, washed in 

washing buffer, dried, fixed in 4% PFA for 8 minutes, and then washed three times in PBS. 

DAPI (10 µg. mL-1) staining for 30 min at RT was performed to visualize cell nuclei. The 

stained samples were then washed in PBS for 5 minutes, and coverslips were mounted onto 

tissue sections using fluorescent mounting medium (S3023, Dako). For immunofluorescence 

of integrin α5, slides were rinsed in PBS, followed by 5 minutes in PBS-T (0.1% Tween-20 

PBS) and incubation in blocking buffer (5% goat serum in PBS-0.1% Triton X-100) for 1h at 

RT. After drying, slides were incubated with primary antibody at 4°C overnight on a humid 

chamber. Slides were rinsed three times for 3 minutes in PBS-T, dried, incubated with 

secondary antibody diluted on blocking buffer during 2h at RT, and then washed three times 

for 3 minutes in PBS-T. DAPI (10 mg.mL-1) staining for 30 min at RT was performed to 

visualize cell nuclei. The stained samples were then washed in PBS for 5 minutes, and 

coverslips were mounted onto tissue sections using fluorescent mounting medium (S3023, 

Dako). Images were acquired using NANOZOOMER S60.  



81 

 

Methylcellulose solution 

Six grams of methylcellulose are dissolved in 250 ml of EMEM medium without FBS. Then 

the solution is heated at 60°C for one hour. 250 ml of EMEM medium supplemented with 20% 

of FBS, 2% of sodium pyruvate and 2% non-essential amino acids are added. The solution wass 

mixed overnight at 4°C. The solution wass centrifuged at 5000g for two hours. The supernadant 

is aliquoted and conserved at 4°C. Methylcellulose solution was made as previously described 

(Blandin et al., 2016). 

Spheroid migration assays 

Single cell suspension was mixed in EMEM/10% FBS containing 10% of methylcellulose. All 

the spheroids were made with 1000 cells by hanging drop method in a 20 μL drop as previously 

described (Blandin et al., 2016).  Tissue culture plates were coated with fibronectin (20 µg.ml-

1 in DPBS solution) for 2 h at 37 °C. Two-day-old spheroids were allowed to adhere and 

migrate in complete medium (EMEM, 10% FBS). Twenty-four hours later, cells were fixed 

with paraformaldehyde 3.7% (Electron Microscopy Sciences) and stained with DAPI. Nucleus 

were picturized under the objective 5x in the fluorescence microscope ZEISS-Axio (ZEISS). 

Image analysis to evaluate the number of cells that migrated out of the spheroid was performed 

with ImageJ software using a homemade plugin (Blandin et al., 2016). Phase-contrast images 

(EVOS Xl, Core5× magnification, Thermo Scientific) were acquired. For 3D evasion assays, 

collagen/fibronectin gels were made as described (Thuault et al., 2013) except that fibronectin 

(20µg.ml-1) was added to the collagen solution prior polymerization. 

Flow cytometry 

Flow cytometry was performed with individual aptamers directly coupled to Cy5 at their 3’ 

end. For determination of equilibrium binding affinities of different aptamers to GBM EGFR 

positive and negative cells, aptamer E07 and aptamer anti-EGFR Janellia 646 conjugate were 

used at the concentrations indicated. After detachment with EDTA (0.2 M), 300,000 cells were 

incubated for 30 min at 4ºC with Cy5-labeled aptamers. As a control, cells were incubated with 

1µg.ml-1 of an anti-EGFR antibody (cetuximab-Cy5) for 30 min. After washing, cells were 

analyzed using a FACSCalibur flow cytometer (Becton Dickinson), and the mean fluorescence 

intensity (counting 10 000 events) was measured using Flowing software 2.5.1. For KD 
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determination, experiments were repeated three times, and data were evaluated using GraphPad 

Prism. 

Immunoblot 

Proteins were separated on precast gradient 4-20% SDS-PAGE gels (Bio-Rad) and transferred 

to PVDF membrane (GE Healthcare). Membranes were probed with primary antibodies at 

1µg/ml (with the exception of anti-GAPDH at 0.2µg/ml) in blocking solution (TBS- 5% non-

fat dry milk). Immunological complexes were revealed with anti-rabbit or anti-mouse IgG 

coupled peroxidase antibodies using chemoluminescence (ECL, Bio-Rad) and visualized with 

LAS4000 image analyser (GE Healthcare). GAPDH was used as the loading control for all 

samples.  

Statistical analysis 

Data are reported as Tukey’s box and whiskers or mean ± 95% confidence interval histograms, 

unless otherwise stated. Statistical analysis between samples was done by one-way analysis of 

the variance (ANOVA) corrected by Bonferroni post-test with the GraphPad Prism program. 

Significance level is controlled by 95% confidence interval, unless otherwise stated. Different 

statistical analysis is stated on respective legends. 
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Introduction Articles 1 and 2 

Molecular characterization of GBM demonstrate the importance of Epidermal growth factor 

receptor, EGFR, on tumor progression. The signaling of this receptor tyrosine kinase enhances 

GBM growth, survival, invasion and therapy resistance (An et al., 2018). Several clinical trials 

in GBM used EGFR-targeting therapies efficient in other solid tumors, nevertheless, no 

therapeutic improvement was obtained (Taylor et al., 2012). Several mechanisms were explored 

to uncover GBM resistance to EGFR targeting without any clinically relevant results. Better 

undersanting of EGFR biology in tumor setting and its relationship with targeted therapy may 

help to identify new avenues for therapy improvement. EGFR and integrins are partners in 

crime during cancer progression and resistance to therapy (Silva, 2019).  In particular, the 

fibronectin receptor a5b1 integrin has been shown to regulate EGFR activity to promote cancer 

cell invasion. This integrin is of a particular interest, described by our team and others as 

promising therapeutic target in GBM (Schaffner et al., 2013). 

Endocytosis and membrane trafficking are now considered as fundamental regulators of cell 

surface receptor oncosignalling. During the last decade, EGFR and integrin membrane 

trafficking deregulation in GBM emerged as key contributors to tumor progression and 

resitance to therapy (Al-Akhrass et al., 2017; Kondapalli et al., 2015; Kurata et al., 2019; Walsh 

et al., 2015; Wang et al., 2019c; Ying et al., 2010). Morevover, several studies showed that 

therapeutic agents trigger stress-induced endocytosis of EGFR in cancer cells (Cao et al., 2011; 

Dittmann et al., 2005; Tan et al., 2016).  

Concerning gefitinib, studies reported somehow confusing and conflicting data. Gefitinib can 

suppress ligand-induced EGFR endocytosis in lung cancer cells (Nishimura et al., 2007) and in 

squamous carcinoma cells xenografted in mice (Pinilla-Macua et al., 2017). However, another 

study showed an increased radiolabeled human EGF uptake in HNSCC, NSCLC and colon 

carcinoma cells (He and Li, 2013), suggesting an increase in endocytosis. Gefitinib has been 

shown to initiate autophagy in a EGFR-dependant, way in mammary carcinoma cells (Tan et 

al., 2015) or glioma cells (Chang et al., 2014; Liu et al., 2020). Kinase independent 

accumulation of EGFR in autophagic compartiments upon gefitinib treatment wad also 

observed in carcinoma cells (Tan et al., 2015). Of note autophagy and endocytosis are intimely 

interconnected (Birgisdottir and Johansen, 2020). Finally, dowregulation of endocytic pathway 

is often observed in gefitinib-resistant cancer cells (Cui et al., 2015; Nishimura et al., 2008).  
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In front of the lack of experimental in vitro data, I aimed to explore in detail the impact of 

gefitinib in EGFR and integrin trafficking in glioma, in hope to find new clues to improve TKI-

based therapy on GBM. 

Using GBM cell lines, we showed that gefitinib induced a ligand-independent and massive 

EGFR endocytosis, assessed by a fluorescent EGF-uptake assay, endocytosis assay of cell-

surface biotinylated EGFR, and EGFR immunolabelling. Process we named ‘gefitinib-

mediated endocytosis’ (GME). In a dose-dependent way, gefitinib caused EGF internalization 

and EGFR co-localization in enlarged EEA1-positive early-endosomes. GME leaded to the 

accumulation for hours of fluorescent EGF, whereas in untreated cells, a slow decrease of 

intracellular fluorescent EGF occured, suggesting receptor degradation. Results were confirmed 

by a biochemical technique of biotinylation endocytosis. GME increased around 25% of EGFR 

internalized. GME was observed in 4 different GBM cell lines presenting various level of EGFR 

expression (article 1). Gefitinib induced EGFR endocytosis occured via a DNM2 and Rab5 

dependent mechanism (article 2) and promoted EGFR transport into integrin α5β1 positive 

(article 1) and LRP-1 positive (article 2) endosomes. Close proximity between receptors was 

established by PALM-STORM imaging and suggested a potential functional link. Functional 

studies confirmed that expression of integrin and LRP-1 are also involved in GME (article 1 

and 2 respectively). Finally, we evaluated the importance of endocytosis in gefitinib anti-

tumoral activity, in cell evasion assay from 3D spheroids.  Blocking of DNM2 and LRP-1 

dependent GME protected the cells from treatment (article 2). However, integrin α5 depletion 

sensitizes cells to gefitinib treatment (article 1).  

Overall this work reveals that EGFR and integrin endocytosis plays an unexpected role in 

gefitinib action and that expression level of endocytosis proteins such as DNM2, LRP-1 or 

Rab5 could be relevant biomarkers to predict TKI efficiency in limiting invasion of GBM cells. 
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Supplemental Figure 1: Gefitinib provokes EGFR endocytosis in GBM cells. (A) Immunodetection of EGFR (red) and the 
endosomal marker EEA1 (green) after 4h treatment with DMSO (control) or gefitinib in LN443 and T98G GBM cells. 
Magnified images are from the inserts to the peri-nuclear area.  Scale bar = 20 μm. (B) Quantification of EGFR/EEA1 
colocalization following gefitinib treatment from 10–12 images (3 independent experiments). ***p < 0.001. (C-D) Endocytosis 
assays of EGF-Alexa488 was performed on LN443, T98G and LNZ308 cells during 1h in presence of gefitinib (20µM). The 
internalization was measured by integrating fluorescence density of 20-30 cells from 3 independent experiments. ****p < 
0.0001. (E) Immunoblot showing a5 integrin and EGFR expression in the 4 cell lines used in this study.  
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Supplemental Figure 2: Gefitinib provokes integrin re-localization in early endosomes. (A) Fluorescence microscopy 
images of U87 cells treated with gefitinib showing peri-nuclear co-localization of the ß1 integrin (cyan) and the early-endosome 
marker Rab5 (red). (B) The Pearson correlation and Mender’s coefficient were used to quantify the degree of colocalization 

between the ß1 integrin and Rab5. ***p < 0.001.  
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Supplemental Figure 3: Second and third-generation TKIs also induce co-internalization of α5β1 integrin and EGFR during 
U87 GBM cell evasion.  (A) Confocal images of U87 cells treated with vehicle (control) or TKIs gefitinib (20 µM), afatinib (5 
µM), erlotinib (10 µM), dacomitinib (10 µM) or lapatinib (10 µM). Images are representative of 3 independent experiments. 
High-magnification images are from the inserts into the peri-nuclear area. Scale bar = 20 μm. (B) Quantification of the number 
of evading cells from U87 and U87α5- treated spheroids.  Spheroids were incubated for 24 hours in the presence of DMSO or 
different TKIs (erlotinib, dacomitinib, lapatinib and afatinib) at the indicated concentrations. Nuclei were stained with DAPI 
and the number of evading cells was quantified using an ImageJ homemade plugin. Mean of 15 spheroids from 3 independent 
experiments. **p < 0.05, ***p < 0.001.  
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Supplemental Figure 4: Gefitinib treatment provokes integrin/EGFR relocalization in endosomal compartments of 
GBM cell lines. Confocal images showing the intracellular locations (perinuclear region enriched in endomembrane) of EGFR 
and b1 integrin in LN443, T98G and LNZ308 gefitinib-treated cells.  
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Supplemental Figure 5: Gefitinib treatment does not affect the expression of total EGFR in U87 cells. Left panel: (A) 
Protein expression of EGFR and α5 integrin in U87 GBM cells and U87α5- cells after 24h treatment with DMSO (-) or gefitinib 
20µM (+). GADPH was used as loading control. Right panel: Histogram showing the quantification of GADPH-normalized 
EGFR level of 3 independent experiments. Data represented are the mean +/- s.e.m. (B) Quantification of the ratio 

integrin/EGFR colocalized pixels in the perinuclear compartments of U87 or U87a5- cells that migrated at distance from 
spheroids after 24 hours of incubation in presence of 20µM gefitinib  or DMSO (control). The degree of colocalization between 
the integrin ß1 and EGFR was quantified using an home-made plugin with the ImageJ software. Data expressed as box and 
whiskers are from at least 30 cells from 10 different fields.  
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Supplemental Figure 6: a5 expression does not affect U87 cell sensitivity to gefitinib in cell growth and cell survival 

experiments. (A) Comparative time course of U87 and U87a5- cells 2D growth in serum-containing medium. (B) Dose-
response curve of gefitinib on 2D cell growth after 3 days of treatment. (C) Left panel: phase contrast images of spheroids after 
8 days of treatment with indicated concentration of gefitinib. Right panel: dose-response curves of gefitinib on spheroid growth. 
(D) Clonogenic assay in soft agar comparing U87 and U87a5- cell survival in presence of the indicated concentrations of 
gefitinib. 
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Article 2 

Role of endocytosis proteins in gefitinib-mediated EGFR 

internalization in gliomas cells. 

Authors: E. Cruz Da Silva1, L. Choulier1, J. Thevenard-Devy2, C. Schneider2, M. Dontenwill1, 

S Dedieu2, M. Lehmann1.  

1-University of Strasbourg, Laboratory of Bioimaging and Pathologies – UMR CNRS 7021, 
Illkirch, France  

2- UMR CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université 
de Reims Champagne Ardenne (URCA), Reims, France. 

Abstract 

EGFR (epidermal growth factor receptor), a member of the ErbB tyrosine kinase receptor 

family, is a clinical therapeutic target in numerous solid tumors. EGFR overexpression in 

glioblastoma (GBM) drives cell invasion and tumor progression. However, clinical trials were 

disappointing, and we are still missing a molecular basis to explain these poor results. EGFR 

endocytosis and membrane trafficking which tightly regulates EGFR oncosignaling are often 

dysregulated in glioma. In a previous work, we showed that EGFR tyrosine kinase inhibitors, 

like gefitinib, lead to a massive and ligand-independent EGFR endocytosis into fused early-

endosomes. Here, using pharmacological inhibitors, siRNA-mediated silencing, or expression 

of mutant proteins we showed that in glioma cells dynamin 2 (DNM2), the small GTPase Rab5 

and the endocytosis receptor LDL receptor-related protein 1 (LRP-1) contribute significantly 

in gefitinib-mediated EGFR endocytosis. Importantly, we showed that DNM2 or LRP-1 

targeting inhibited gefitinib-mediated endocytosis and decreased glioma cell responsiveness to 

gefitinib during cell evasion from tumor spheroids. By highlighting the contribution of 

endocytosis proteins in the activity of gefitinib on glioma cells, this study suggests that 

endocytosis and membrane trafficking might be an attractive therapeutic target to improve 

GBM treatment. 
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Introduction  

EGFR (epidermal growth factor receptor), a member of the ErbB tyrosine kinase receptor 

family, is commonly found amplified and/or mutated in near 60% of glioblastoma (GBM), the 

most aggressive brain tumor. In GBM, activated EGFR promotes PI3K/Akt (Phosphatidyl-

inositol-Kinase/Akt), MAPK/ERK (mitogen-activated protein kinases/ extracellular signal-

regulated kinases), signal transducer and activator of transcription 3 (STAT3), and 

phospholipase C gamma signalling cascades. These EGFR transduced signals promote GBM 

cell proliferation and invasion, and tumor progression (An et al., 2018; Eskilsson et al., 2018) 

EGFR signalling function is tightly regulated by endocytosis and membrane trafficking. 

Physiological EGFR endocytosis can occur through different pathways such as clathrin-

mediated endocytosis and non-clathrin endocytic pathway, depending on the nature and 

concentration of the ligand. Upon-vesicle formation, dynamin-2 (DNM2), a GTPase protein, is 

recruited to pitch the vesicle from the plasma membrane (Henriksen et al., 2013; Sigismund et 

al., 2008) giving rise to early endosomes (EE). In the EE, EGFR fate is decided, where the 

receptor is either transported to lysosomes for degradation or recycled back to the plasma 

membrane (Tomas et al., 2014). A critical group of endocytic regulators are the Ras-associated 

binding (Rab) proteins. In EE, Rab5 is responsible for cargo entry from the plasma membrane 

to the EE, generation of phosphotidylinositol-3-phosphate (PtdIns(3)P) lipid, homotypic fusion 

and actin/microtubules motility of EE  and activation of endosomal signalling pathways (Jovic 

et al., 2010). 

In GBM, altered expression of EGFR membrane trafficking regulators, resulting in aberrant 

EGFR localization, has been associated with tumor progression and therapy resistance to 

EGFR-targeted therapies (Al-Akhrass et al., 2017; Kondapalli et al., 2015; Walsh et al., 2015; 

Wang et al., 2019; Ying et al., 2010). Dysregulation of EGFR trafficking also occurs upon 

receptor mutation. For instance, EGFRvIII, the most common EGFR mutant in GBM, is 

inefficiently degraded as a consequence of a high rate of recycling to the plasma membrane 

(Grandal et al., 2007) or its translocation to the mitochondria wherein it triggers resistance to 

apoptosis (Cao et al., 2011).  

Other studies have shown that EGFR trafficking is altered during therapeutic interventions and 

enlighten that this process may have important impact on patient therapeutic responses (Tan et 

al., 2016). Compared to physiological situation, under therapeutic stress, EGFR follows distinct 
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endocytosis and trafficking routes in a ligand- and tyrosine kinase- independent way (Tan et 

al., 2015; Tomas et al., 2015). For instance, in vitro studies indicate that X-ray irradiation of 

human bronchial carcinoma cells promotes caveolin1-mediated EGFR internalization, in a Src 

(Proto-oncogene tyrosine-protein kinase) kinase activity dependent. After being internalized, 

EGFR is transported to the nucleus where it activates DNA-PK (Deoxyribonucleic acid-

dependent protein kinase) phosphorylation and enhances double strand breaks repair (Dittmann 

et al., 2005). Moreover, cisplatin treatment induces EGFR endocytosis and its accumulation 

into multivesicular bodies (MVB), through the activation of the stress-induced p38-MAPK 

pathway (Tan et al., 2016; Tomas et al., 2015; Zwang and Yarden, 2006). EGFR accumulation 

in MVB activates ERK pathway to delay apoptosis and to promote chemoresistance (Tomas et 

al., 2015). Is has also been shown that EGFR-targeting antibodies used in clinic or ongoing 

clinical development are able to induce EGFR internalization (Jones et al., 2020; Keir et al., 

2018; Liao and Carpenter, 2009). Additionally, it has been shown that EGFR-targeting tyrosine 

kinase inhibitors (TKIs) also disturb EGFR trafficking in GBM cells and various other cancer 

cell types. TKI can trigger EGFR translocation, in autophagy compartment (Tan et al., 2016), 

in mitochondria (Cao et al., 2011) or in nucleuses (Dittmann et al., 2005). 

Dysregulation of EGFR trafficking play an essential role in cancer progression and response to 

anti-EGFR therapies. In a previous work, we showed that gefitinib and others TKIs promote 

massive EGFR endocytosis and EGFR accumulation in fused early endosomes (Blandin et al., 

2020). The aim of the present work was to identify key proteins that contribute to gefitinib-

mediated EGFR endocytosis. In the present study, we identified the contribution of 3 endocytic 

proteins DNM2, Rab5 and the LDL receptor-related protein 1 (LRP-1) in this process. 

Importantly, inhibiting endocytosis by targeting DNM2 or LRP-1 protects glioma cells against 

TKI treatment during cell dissemination from tumor spheroids. The present study enlightens 

the importance of endocytosis proteins in gefitinib anti-tumoral effects on glioma cells. 

Material and methods 

Reagents 

Following antibodies were used for immunostaining. Anti-EGFR antibody (D1D4J) was from 

Cell Signaling. Anti–EEA1 (610457) was from BD Transductions. Anti–LRP-1 (8G1) was 

from Genetex. Fluorescently labeled secondary antibodies were purchased from Invitrogen 

(AlexaFluor −488; −568; −647). DAPI was purchased from Santa Cruz Biotechnology. 
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Following antibodies were used for immunoblot. Anti-EGFR antibody (D38B1) were from Cell 

Signaling, anti-LRP-1 (PPR3724) from Abcam, anti-DNM2 (G-4) and anti-Rab5 (D-11) were 

from Santa Cruz and GAPDH from Millipore. HRP-conjugated secondary antibodies were 

purchased from Invitrogen. Cell culture medium and reagents were from Lonza. Tyrosine 

kinase inhibitors, dynasore and dyngo-4a were obtained from ChemiTek. His-tagged RAP was 

purified by gravity-flow chromatography using a nickel-charged resin as described previously 

(Perrot et al., 2012). All other reagents were of molecular biology quality. 

Cell culture 

The human glioblastoma cell line U87 was obtained from ATCC, T98 cells were from ECACC 

(European Collection of Authenticated Cell Cultures, Sigma). LN443 cells were kindly 

provided by Prof. Monika Hegi (Lausanne, Switzerland). GBM cells were maintained in 

Eagle’s minimum essential medium (EMEM) supplemented with 10% fetal bovine serum 

(FBS), 1% sodium pyruvate and 1% nonessential amino acid, in a 37 °C humidified incubator 

with 5% CO2.  

Plasmid transfection 

YFP-Rab5 (kindly provided Dr. Marino Zerial (MaxPlanck Institut, Germany)), GFP-

Rab5S34N (Addgene #35141) and GFP-Rab5Q79L (Addgene #35140), siGENOMETM Non-

targeting siRNA pools (Dharmacon D-001206-14-05), siRNA-DNM2 (Dharmacon M-004007-

03-0005), siRNA-LRP-1 (Dharmacon M-004721-01-0005) plasmids were used. A total of 0.25 

× 106 cells was used for each transient transfection using 1.5 µg for expression plasmid or 50 

nM for siRNA using JetPrime® (PolyPlus-Transfection) following the manufacturer's 

instructions. Fusion protein expression was confirmed by fluorescent microscopy the day after 

and downregulation of DNM2 or LRP-1 was assessed by immunoblot 72h after siRNA 

transfection. 

EGF endocytosis and uptake quantification 

EGF coupled to AlexaFluor 488 (Molecular Probes, Invitrogen) was used for studying the 

ligand-induced EGFR endocytosis. For EGF uptake, cells were plated on coverslips previously 

coated with Collagen-I (20 µg. ml−1 in DPBS) (Advanced BioMatrix). Cells were serum 

starved for 1h at 37 °C. Cells were first washed in ice-cold DPBS and then incubated on ice in 

serum-free culture medium containing 100 ng.ml−1 AlexaFluor 488–EGF. After incubation on 
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ice for 30 min, cells were briefly washed with ice-cold DPBS. Cells fixed at this step were used 

as negative control. Otherwise, cells were incubated with pre-warmed complete medium at 

37°C for 1h in the presence of 20 µM gefitinib and pharmacological inhibitors as indicated. 

Non-internalized EGF was strip by incubating the cells with a solution of sodium acetate 0.2M 

pH 2.7 for 5 min on ice. After washing, cells were fixed and stained with DAPI. Images were 

acquired using a confocal microscope. The analysis was performed after a threshold (identical 

for all conditions) applied to eliminate background. The integrated fluorescence intensity of 

EGF-Alexa488 was determined in each cell. Image analysis was performed using ImageJ in 

between 20 cells per condition on 3 independent experiments. 

Cell-surface EGFR endocytosis assay 

Subconfluent cells were placed at 4°C to prevent internalization, washed twice with ice-cold 

Hank's Balanced Salt Solution containing 0.5 mM MgCl2 and 1.26 mM CaCl2 (Ca/Mg-HBSS) 

adjusted to pH 8, then incubated for 30 min with 1 mg.ml-1 EZ-Link Sulfo-NHS-LC-Biotin in 

Ca/Mg-HBSS. After washing with ice-cold Ca/Mg-HBSS, free biotin was quenched with 20 

mM glycine in Ca/Mg-HBSS. Following cell-surface biotinylation, cells were incubated 2 

hours at 37°C in complete medium (w/wo gefitinib and/or RAP), to allow endocytosis. Cells 

were quickly replaced on ice, washed thrice with ice-cold Ca/Mg-HBSS, then washed twice to 

remove biotin to cell-surface proteins with 300 mM Mesna in buffer composed of Tris 50 mM 

pH 8,6, NaCl 100 mM, EDTA 1 mM, BSA 0,2%. Cells were rinsed twice with Ca/Mg-HBSS, 

incubated with iodoacetamide (5 mg ml) in Ca/Mg-HBSS, then washed with Ca/Mg-HBSS. To 

determine the total amount of surface biotinylation and to serve as a control, dishes were kept 

on ice after biotin labeling and protected from MesnNa treatment. Whole-cells extracts were 

prepared, and biotinylated proteins were recovered from 100 µg of cell lysate by using avidin 

protein immobilized on agarose beads, subjected to SDS-PAGE, and revealed by 

immunoblotting with anti-EGFR.  

Immunoblot 

Proteins were separated on precast gradient 4-20% SDS-PAGE gels (Bio-Rad) and transferred 

to PVDF membrane (GE Healthcare). Membranes were probed with primary antibodies: anti-

EGFR antibody, anti-DNM2, anti-Rab5 and anti-LRP-1 at 1µg.ml-1 and anti-GAPDH at 

0.2µg.ml-1 in blocking solution (TBS- 5% non-fat dry milk). Immunological complexes were 

revealed with anti-rabbit or anti-mouse IgG coupled peroxidase antibodies using 
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chemoluminescence (ECL, Bio-Rad) and visualized with LAS4000 image analyser (GE 

Healthcare). GAPDH was used as the loading control for all samples.  

Confocal microscopy and Image Analysis 

Coverslips were coated with Collagen-I (20 µg. ml−1 in DPBS). 20 000 cells were seeded in 

serum containing medium and cultured for twenty-four hours before TKI treatment. 

Alternatively, two-day-old spheroids were seeded in complete medium and treated with 20 µM 

of gefitinib. Cells were fixed in 3.7% (v/v) paraformaldehyde (Electron Microscopy Sciences) 

during 20 min, permeabilized with 0.1% Triton-X100 for maximum 5 min. After 3 hours 

blocking step using PBS-BSA 3% solution, cells were incubated with primary antibodies O/N 

at 4 °C (2 µg. ml−1each in PBS-BSA 3%). Cells were rinsed in PBS 1X and incubated with 

appropriate secondary antibodies (1 µg. ml−1 in PBS-BSA 3%) and DAPI for 2 hours. Samples 

were mounted on microscope slides using fluorescence mounting medium (Dako). Images were 

acquired using a confocal microscope (LEICA TCS SPE II, 60× magnification oil-immersion). 

For each experiment, identical background subtraction was applied to all images. Pearson 

correlation coefficient from 8 images (2-4 cells per images) from 3 independent experiments 

were calculated using Colocalization_Finder ImageJ software. 3D reconstruction corresponds 

to confocal images Z-stacks obtained using stacks of 350 nm. 3D image reconstruction was 

performed using IMARIS software.  

Spheroid migration assays 

Methylcellulose solution was made as previously described (Blandin et al., 2016).  Single cell 

suspension was mixed in EMEM/10%FBS containing 10% of methylcellulose. All the 

spheroids were made with 1000 cells by hanging drop methods in a 20 μL drop (Blandin et al., 

2016). Tissue culture plastic dishes were previously coated with 10 µg.ml-1 of Collagen-I in 

DPBS solution for 2 h at 37 °C. Two-day-old spheroids were allowed to adhere and migrate in 

complete medium (EMEM, 10% FBS). Twenty-four hours later, cells were fixed with 

paraformaldehyde 3.7% and nucleus were stained with DAPI. Nucleus were picturized under 

the objective 5x in the fluorescence microscope ZEISS-Axio (ZEISS). Image analysis to 

evaluate the number of cells that migrated out of the spheroid was performed with ImageJ 

software using a homemade plugin.  

Statistical analysis 
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Data are reported as mean ± 95% confidence interval column histograms unless otherwise 

stated. Statistical analysis between samples was done by one-way analysis of the variance 

(ANOVA) followed by Bonferroni post-test with the GraphPad Prism program, unless 

otherwise stated. Significance level is controlled by 95% confidence interval. 

Results 

Knock-down of DNM2 decreases gefitinib-mediated EGF endocytosis 

We have previously shown that in U87, T98 and LN443 GBM cells, cytostatic concentrations 

of gefitinib lead to the accumulation of EGFR in enlarged early-endosomes and promote a 

massive increase in EGF endocytosis, a phenomenon we called gefitinib-mediated endocytosis 

(GME) (Blandin et al., 2020). To better characterize the molecular mechanisms underlying 

GME, we first seek to determine the potential involvement of DNM2 which is critical in 

physiological EGFR endocytosis (Sousa et al., 2012). As shown by immunoblot experiments, 

DNM2 is expressed in the three GBM cell lines used in this study (Figure S1). We firstly 

examined the effect of dynasore and dyngo-4A, two potent pharmacological inhibitors of 

DNM2 GTPase activity (Kirchhausen et al., 2008; Robertson et al., 2014),  on EGF-Alexa488 

endocytosis in U87 cells. As previously described (Blandin et al., 2020), compared to 

physiological untreated-conditions, gefitinib addition in the culture medium of U87 cells 

increased EGF endocytosis as shown by its strong intracellular accumulation (Figure 1A). 

Importantly, addition of dynasore in culture medium clearly decreased intracellular EGF 

endocytosis in both control (DMSO-treated) or gefitinib-treated cells. Quantification of 

integrated fluorescence in each cell confirmed, as expected, that dynasore (12µM) and dyngo-

4A (10µM) were able to inhibit physiological EGF endocytosis by 86% and 49% respectively, 

which is in agreement with the established role of DNM2 in EGFR ligand-endocytosis (Sousa, 

PNAS 2012). As already been published, gefitinib (20µM) increased by 3- fold EGF 

endocytosis. Interestingly, dynamin inhibitors significantly inhibited GME of EGFR (96% for 

dynasore and 53% for dyngo4A) (Figure 1A-right panel). As shown in Figure 1B, dynasore and 

dyngo-4a inhibited GME in both T98 and LN443 cell lines, confirming data obtained with U87 

cells. To further confirm the involvement of DNM2 in gefitinib-mediated EGF endocytosis, we 

silenced DNM2 expression in U87 cells using siRNA strategy. SiRNA-DNM2 efficiently 

repressed DNM2 expression and had no impact on EGFR expression (Figure 1C). DNM2 

downregulation inhibited physiological EGF-Alexa448 endocytosis. Of note, siRNA-DNM2  
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Figure 1- Gefitinib-mediated EGF internalisation is dependent of DNM2. EGF-internalization assays were performed in 
the presence gefitinib (20µM) during 1 hour.  (A, B) DNM2 GTPase activity was inhibited by treatment with either dynasore 
(12µM) or dyngo-4a (10µM) (A) Left panel: confocal images of control and dynasore-treated cells, showing, in green, 
fluorescence internalized EGF-Alexa 488 upon incubation at 37°C. Arrows enlighten internalized EGF. Scale bar = 12µm 
Right panel: the internalization was quantified by integrated fluorescence density on 20 cells of 3 independent experiments. 
Data are reported in columns histograms. ****p < 0.0001. (B) Results were confirmed in other GBM cell lines. EGF-
internalization assay was performed in T98 and LN443 cells using dynasore and dyngo-4a. ****p < 0.0001. (C) 
Downregulation of DNM2 expression was obtained by 50 nM of siRNA transiently transfected using JetPrime®. DNM2 
silencing was confirmed by immunoblot after 72h. EGFR protein level was also immunoblotted and remained constant in both 
conditions. GAPDH was used as loading control.  (D) EGF-internalization assay was performed on U87 cells transfected with 
siRNA-control or U87 siRNA-DNM2. **p < 0.01. 

  



114 

 

also dampened EGF internalisation of gefitinib treated cells (Figure 1D), confirming that GME 

is dependent of DNM2 expression and function. 

Gefitinib-mediated EGFR endocytosis requires Rab5 activation 

The monomeric GTPase Rab5 has been shown to play an essential function during EGFR 

endocytosis (Barbieri et al., 2000; Chen et al., 2009; Dinneen and Ceresa, 2004). Notably, 

overactivation of Rab5 leads to EGFR accumulation in large, fused endosomes (Ceresa et al., 

2001; Chen and Wang, 2001; Dinneen and Ceresa, 2004). In the first few hours of gefitinib 

treatment, GME is also characterized by the formation of enlarged early-endosomes that 

accumulates EGFR (Blandin et al., 2020). Thus, we seek to determine the potential role of Rab5 

in GME. First, we transiently expressed a recombinant wild-type Rab5 (YFP-Rab5) or a 

constitutively active Rab5 mutant (GFP-Rab5-Q79L) in U87 cells. In line with data from 

Ceresa’s studies, we observed that overexpression of GFP-Rab5-Q79L, and to a lesser extent 

YFP-Rab5, triggered an accumulation of EGFR into enlarged early endosome antigen 1 

(EEA1)-positive early endosomes (Figure 2A). Quantification of EGFR/EEA1 co-localization 

was performed in each cell expressing or not GFP-Rab5-Q79L (Figure 2B). As expected, 

EGFR/EEA1 co-localization was increased in cells expressing constitutively active Rab5 

compared to non-expressing cells. We next assessed whether Rab5 activation is required for 

GME. For this purpose, we analysed EGFR recruitment into early endosomes in U87 cells that 

transiently expressed the dominant-negative (DN) Rab5 mutant (GFP-Rab5-S34N) compared 

to non-expressing cells. As shown in Figures 2C and 2D, after 2h of gefitinib treatment, DN-

Rab5 null cells were sensitive to TKI, and presented a significant increase in EGFR/EEA1 

colocalization. By contrast, in GFP-Rab5-S34N expressing U87 cells, EGFR was barely found 

in EEA1-positive endosome after gefitinib treatment (Figure 2C) and image quantification 

showed that gefitinib failed to promote EGFR/EEA1 co-localization (Figure 2D). These data 

showed that GME requires Rab5 activation and suggest that gefitinib may activate Rab5 by a 

still unknown mechanism. Furthermore, these results enlighten that GME shares common 

features with physiological endocytosis of EGFR 

LRP-1 and EGFR are co-endocytosed upon gefitinib treatment 

Global endocytosis processes appear to be affected by gefitinib treatment thus opening up the 

possibility that, like Rab5 or DNM2, other endocytosis proteins may be involved in GME. The 

low-density lipoprotein receptor-related protein-1 (LRP-1) is a large multifunctional endocytic  
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Figure 2- EGFR GME requires Rab5 activation. (A) U87 cells that transiently expresses a recombinant wild-type Rab5 
(YFP-Rab5) (green) or a constitutively active Rab5 mutant (GFP-Rab5-Q79L) (green) were seeded on glass coverslips. Cells 
were fixed, then EGFR (red) and EEA1 (cyan) were immunodetected and analyzed by confocal imaging. Single or merge 
channel images are represented. Transfected cells are delimited in yellow in all images. Arrows enlighten internalized EGFR. 
Scale bar = 20 μm. (B) EGFR/EEA1 co-localization on cells transfected with GFP-Rab5-Q79L (yellow) and no transfected 
cells (black) was evaluated using Pearson’s correlation coefficient from 10 images (2-4 cells per images). Data are reported in 
column histogram. ****p < 0.0001. (C) U87 cells that transiently expresses a dominant negative Rab5 mutant (GFP-Rab5-
S34N) (green) were seeded on glass coverslips. After 4 hours of treatment with 20 µM of gefitinib, cells were fixed, then EGFR 
(red) and EEA1 (cyan) were immunodetected and analyzed by confocal imaging. Single or merge channel images are 
represented. Positive cells for GFP-Rab5-S34N are delimited in yellow and no transfected cells in white. Arrows enlighten 
GME internalized EGFR. Scale bar = 20 μm. (D) EGFR/EEA1 co-localization upon gefitinib treatment in each cell negative 
(white bars) and positive (yellow bars) for GFP-Rab5-S34N was evaluated using Pearson’s correlation coefficient from 8 
images (2-4 cells per images) from 3 independent experiments. Data are reported in column histogram. ****p < 0.0001. 
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receptor belonging to the low-density lipoprotein receptor family. LRP-1 is a transmembrane 

receptor involved in the endocytosis of more than 30 different ligands including growth factor 

receptors, however, no functional interaction with EGFR has been yet establish (Etique et al., 

2013). Data depicted in Figure S1 indicates that LRP-1 was expressed in the three GBM cell 

lines studied. We then analysed the impact of gefitinib on LRP-1 and EGFR localization in cells 

that were treated for 24h with gefitinib (Figure 3). Confocal imaging and 3D reconstructed 

images revealed that in U87 control cells EGFR was mainly present at the cell-surface level 

and that LRP-1 was distributed in small intracellular vesicles and at the plasma membrane 

(Figure 3A-left panel and online movie 1). Upon gefitinib-treatment, EGFR was massively 

translocated in large LRP-1-positive endosomes, suggesting a co-trafficking of both receptors 

(Figure 3A-right panel and online movie 2). We obtained similar results on T98 and LN443 cell 

lines (Figure 3B). Image analysis showed that gefitinib treatment significantly increased 

EGFR/LRP-1 co-localization in the three GBM cell lines (Figure 3C). These data enlighten that 

gefitinib triggered EGFR and LRP-1 co-endocytosis and trafficking.  

LRP-1 is involved in gefitinib-mediated EGFR endocytosis 

We then sought to determine whether LRP-1 may have any impact on gefitinib-mediated EGFR 

endocytosis. To this end, we first used the recombinant protein RAP (receptor-associated 

protein) an endogenous competitive antagonist of LRP-1 binding to extracellular ligands (Bu 

and Schwartz, 1998; Bu et al., 1995). Confocal images in Figure 4A showed that addition of 

RAP decreased fluorescent EGF accumulation in intracellular vesicles upon gefitinib treatment. 

Quantification of integrated fluorescence in individual cells, showed that RAP had limited 

impact on physiological EGFR endocytosis but significantly inhibited gefitinib-mediated EGF 

endocytosis on U87 cells (Figure 4A-right panel). To confirm these data, we directly monitored 

EGFR endocytosis by cell surface biotinylation and confirmed that LRP-1 inhibition by RAP 

decreased EGFR internalization mediated by gefitinib (Figure 4B). To better demonstrate the 

role of LRP-1 in GME, we next used siRNA-mediated LRP-1 silencing in U87 cells. As 

depicted in Figure 4C, LRP-1 expression was efficiently downregulated by siRNA-LRP-1, 

while EGFR expression remained intact. EGF endocytosis assays revealed that LRP-1 

knockdown inhibited gefitinib-induced EGF internalization in a similar extent compared to 

RAP treatment (Figures 4C and 4A). As observed on U87 cells, in T98 and LN443 cells, LRP-

1 inhibition by RAP efficiently overrode the stimulation of EGF internalization by gefitinib but 

not the physiological endocytosis (Figure 4D and 4E). Endocytosis of cell surface biotinylated- 
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Figure 3 – Gefitinib re-localizes EGFR on LRP-1-positive endosomes. U87 (A), T98 and LN443 (B) two-days old spheroids 
were seeded on collagen-I-coated (20 μg.mL-1) glass coverslips. After 24 hours of treatment with vehicle DMSO (Control) or 
20 µM of gefitinib (Gefitinib), spheroids were fixed, EGFR (red) and LRP-1 (green) were immunodetected and analysed by 
confocal microscopy. Magnified images are from the inserts into the peri-nuclear area, either in single channel or in merge. 
Arrows enlighten GME co-internalized EGFR and LRP-1. Scale bar = 20 μm. (C) EGFR/EEA1 co-localization upon gefitinib 
treatment was determined using Pearson’s correlation coefficient from 8 images (2-4 cells per images) from 3 independent 
experiments. Data are reported in column histogram. **p < 0.01, ****p < 0.0001.  
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Figure 4- Inhibition of LRP-1-mediated endocytosis decreases GME. (A) After 30 min starvation, U87 cells were incubated 
30 min at 4°C with 100 ng.mL-1 EGF-Alexa 488 for EGF-internalization assay. The cells were replaced again in complete 
medium at 37°C for 1 hour to allow internalization of the ligand, in presence of 20 µM of gefitinib and/or 500nM of RAP for 
LRP-1 inhibition. Remaining cell surface EGF was removed by acid wash, cells were fixed, and nucleus stained with DAPI. 
Left panel: Confocal images of Control and RAP-treated conditions, showing in green EGF-Alexa 488 internalized upon 
incubation at 37°C. Arrows enlighten internalized EGF. Scale bar = 12µm. Right panel: The internalization was measured by 
integrated fluorescence density on 20 cells of 3 independent experiments. Data are reported in columns histograms. *p < 0.5, 
***p < 0.001. , ****p < 0.0001 (B) EGFR internalization assay. Left panel: Immunoblot showing the endocytosis of 
biotinylated EGFR. Following cell-surface biotinylation, cells were incubated in complete media (with or without 15 µM 
gefitinib and with or without RAP) for 3 hours. Cells were treated with MESNa agent to remove biotin present on cell-surface 
proteins. After purification, biotinylated proteins were then subjected to EGFR immunoblot. Right panel: Quantification of 
EGFR protein bands (mean of 4 independent experiment). *p < 0.05.  (C) Left panel: Downregulation of LRP-1 expression 
was obtained by 50 nm of siRNA-LRP-1 transiently transfected using JetPrime®. LRP-1 silencing was confirmed by 
immunoblot 72h after transfection. EGFR protein level was controlled and remained constant in both conditions. GAPDH was 
used as loading control.  Right panel: EGF-internalization assay was further performed on U87 transfected with siRNA-control 
(white bars) and siRNA-LRP-1 (green bars). *p < 0.5**p < 0.01. (D-E) EGF-internalization assay was performed in T98 (D) 
and LN443 (E) cells as described in A. *p < 0.5, **p < 0.01, ****p < 0.0001. (F-G) EGFR-internalization assay was performed 
in T98 (F) and LN443 (G) cells as described in B. *p < 0.5  
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EGFR experiments unexpectedly failed to reveal an increase in EGFR internalization by 

gefitinib in T98 cells (Figure 4F), but confirmed the results obtained on U87 in LN443 cells 

(Figure 4G). Together, our results highlight the contribution of LRP-1 in GME and shed light 

on the first ever functional interplay between LRP-1 and EGFR.  

Endocytosis is critical for gefitinib-mediated inhibition of GBM cell dissemination from 

3D spheroids 

Endocytosis and membrane trafficking play important role in tumor cell migration and invasion 

(Díaz et al., 2014; Maritzen et al., 2015; Wilson et al., 2018) and EGFR trafficking 

dysregulation has been associated with an invasive profile on glioma cells (Kondapalli et al., 

2015). It thus appears important to determine whether GME may have an impact in gefitinib-

mediated inhibition on glioma cell invasion. We showed using cell evasion from 3D tumor 

spheroid assays (Blandin et al., 2016), as already been shown (Blandin et al., 2020), that 

gefitinib reduced by almost 50% the number of evading cells. In a first series of experiments, 

cell evasion of GBM cells was quantify in presence of dynasore or dyngo-4 to inhibit DNM2 

or RAP to inhibit LRP-1 (Figure 5). In the absence of gefitinib, DNM2 inhibitors had no little 

impact on cell evasion, but were able to restore efficient cell evasion in gefitinib-treated GBM 

cells (Figures 5A, C and E). On the other hand, LRP-1 inhibition increased the number of 

evading cells upon gefitinib treatment in U87 and LN443 cells by 1.8 fold and 1.5 fold, 

respectively (Figure 5B and 5F).  However, the effect of RAP was not significant in T98 cells 

(Figure 5D), even though it seems to have a tendency to increase the number of evading cells 

compared to gefitinib treatment alone. To confirm the protective role of DNM2 or LRP-1 

inhibition, prior to spheroid formation, we transfected U87 cells with siRNA targeting either 

DMN2 or LRP-1. Figure 6A depicted fluorescent microscopy images of DAPI-labelled cells 

that escaped from a spheroid 24h after seeding on a collagen coated substratum. It can be 

observed that neither siRNA-DNM2 nor siRNA-LRP-1 had noticeable impact on the capability 

of the cell to escape from the spheroid (Figure 6A), which was confirmed by the quantification 

of the number of evading cells (Figure 6B).  Gefitinib inhibited by 82% the number of evading 

cells that were transfected with siRNA-control. Importantly, both silencing of DNM2 and LRP-

1 significantly increased by more than two-fold the cell evasion of gefitinib-treated spheroids. 

In conclusion, we identified two endocytosis proteins involved in GME whose expression level 

and function participated to GBM cell response to TKI treatment. 
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Figure 5 - GME inhibition decreases gefitinib efficacy on cell evasion. (A) U87 two-days old spheroids were plated onto 
collagen-I-coated (10 μg.mL-1) plastic dishes. Spheroids were treated with DNM2 GTPase activity inhibitors (10 µM of dyngo-
4a or 12 µM of dynasore) and/or 20µM of gefitinib.  After DAPI staining, the number of evading cells were quantified by 
automated counting of nuclei using an ImageJ homemade plugin. Data is represented in column histograms. (B) U87 two-days 
old spheroids were plated as described above and treated with LRP-1 antagonist RAP (500nM) and/or 20µM of gefitinib.  (C-

D) Cell evasion assays from 3D tumor spheroids using dynasore or dyngo-4a (C) or RAP (D) were performed with T98 
gefitinib-treated cells. (E-F) Cell evasion assays from 3D tumor spheroids using dynasore or dyngo-4a (E) or RAP (F) were 
performed with LN443 gefitinib-treated cells. *p < 0.5, **p < 0.05 ***p < 0.001, ****p < 0.0001.  
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Figure 6 - DNM2 and LRP-1 silencing decreases gefitinib efficacy on cell evasion.  (A) U87 transfected with siRNA-control 
or siRNA targeting DNM2 or LRP-1 two-days old spheroids were plated onto collagen-I-coated (10 μg.mL-1) plastic dishes.  
After 24h of gefitinib treatment, spheroids were fixed, and nucleus were labelled by DAPI staining. Fluorescent microscopy 
image of representative spheroid after 24 hours of migration were taken. Scale bar: 100 µm (B) After DAPI staining, the number 
of evading cells were quantified by automated counting of nuclei using a previously validated ImageJ homemade plugin. Data 
is represented in column histograms. ***p < 0.001, ****p < 0.0001.  
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Discussion 

We recently showed that in various GBM cells, gefitinib and other TKI targeting EGFR induce 

its endocytosis and its massive accumulation in early-endosomes (Blandin et al., 2020). In the 

present in vitro study based on 3 different GBM cells, we have identified 3 endocytosis proteins, 

DNM2, Rab5 and LRP-1 as key regulators of gefitinib-mediated EGFR internalization (Figure 

7). Using pharmacological and siRNA-mediated approach, we showed that DNM2 inhibition 

or downregulation efficiently counteracted gefitinib-mediated EGFR endocytosis. We 

expressed a dominant-negative mutant form of Rab5 to demonstrate that GME is dependent of 

the small GTPase function. Confocal images revealed that EGFR is localized in LRP-1-rich 

endosomes upon gefitinib treatment. Functional inhibition and silencing showed that LRP-1 

was not involved in conventional EGFR endocytosis but played an important role in gefitinib-

mediated EGFR endocytosis. Several studies have shown that change in level of expression of 

proteins regulating EGFR trafficking affect cancer cell sensitivity to targeted therapies (Al-

Akhrass et al., 2017; Kondapalli et al., 2015; Wang et al., 2019). Using cell dissemination from 

spheroids, we showed that inhibition of DNM2 or LRP-1 confers greater resistance to gefitinib 

(Figure 7). Our results reveal that endocytosis plays an unexpected role in gefitinib action and 

that expression level of endocytosis proteins such as DNM2, LRP-1 or Rab5 could be relevant 

biomarkers to predict TKI efficiency in limiting invasion of GBM cells. 

DNM2, a large GTPase protein in charge of the endocytic fusion of clathrin coated pits, has 

been shown to play a significant role in EGFR endocytosis (Sousa et al., 2012). Here, using 

pharmacological inhibitors dynasore and dyngo-4A and by siRNA-mediated silencing, we 

showed that DNM2 plays a significant role in GME of EGFR and that its inhibition increased 

the invasive potential of gefitinib-treated GBM cells. The role of DNM2 in cancer cell 

migration and invasion is matter of debate. Some reports indicate that DNM2 stimulates 

migration and invasion of cancer cell, including glioma (Eppinga et al., 2012; Feng et al., 2012). 

DNM2 has been shown to activate RAC1 and lamellipodia formation (Razidlo et al., 2013), to 

stabilize F-actin and filopodia (Yamada et al., 2016), and to promote invadopodia invasive 

function (Destaing et al., 2013). Others have shown that DNM2 downregulation promotes 

EGFR signalling and cancer cell motility (Gong et al., 2015; Khan et al., 2019). In our 

experimental setup, DNM2 inhibition or repression had no impact in evasion of controlled cells 

indicating that DNM2 may not play an important function in the capacity of GBM cells to 

detach from tumor spheroids and to migrate.  These results also suggest that dynasore and 
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dyngo-4A or siRNA increased the evasion of gefitinib-treated cells, most likely by blocking 

GME rather than by stimulating cell migration.  

The contribution of Rab5 in GME of EGFR was highlighted by the inhibition of EGFR 

recruitment to early endosomes in DN-Rab5 gefitinib-treated cells. Moreover, gefitinib 

treatment phenocopy Rab5-Q79L expression characterized by a massive distribution of EGFR 

into fused early-endosomes (Dinneen and Ceresa, 2004). The role of Rab5 in glioma 

progression and resistance to anti-EGFR therapy is still a matter of debate. Indeed, a recent 

study reported that in human, Rab5 is overexpressed in glioma tissue compared to normal brain 

and that overexpression of Rab5 lead to enhanced proliferation and migration, which can be 

reversed by knockout of Rab5 (Jian et al., 2020). By contrast, it has been shown that Rab5 

inhibition sustains aberrant oncogenic EGFR signalling. For instance, Golgi phosphoprotein 3 

(GOLPH3), a protein implicated in multiple cellular functions, was reported to promote glioma 

progression by inhibiting Rab5-dependent EGFR endocytosis (Zhou et al., 2017). Conversely, 

the tumor suppressors CMTM3 and CMTM7 (chemokine-like factor-like MARVEL 

transmembrane domain-containing 3 and 7) inhibit EGFR-mediated tumorigenicity and EGFR-

dependent cell migration by stimulating Rab5 activity, in gastric and lung carcinomas, 

respectively (Liu et al., 2015; Yuan et al., 2017). Further studies are therefore required to 

delineate the role of Rab5 in glioma progression. An intriguing possibility to explain our results 

is that gefitinib activates Rab5 to increase EGFR endocytosis. Although we did not test this 

hypothesis, this would mean that in line with results obtained on DNM2 or LRP-1, Rab5 

inhibition would hamper gefitinib anti-invasive function. This possibility was indirectly 

investigated in 2 recent studies which reported conflicting results. GOLPH3 has been reported 

to enhance the anti-tumoral activity of gefitinib in GBM cell lines (Wang et al., 2019), 

suggesting that Rab5 inhibition would sensitize cells to gefitinib. By contrast, compared to 

monotherapies co-delivery of siRNA targeting GOLPH3 and gefitinib in brain tumors reduces 

cancer progression and improves mice survival (Ye et al., 2019). The molecular mechanism by 

which gefitinib would activate Rab5 has not be investigated, yet. An attractive hypothesis 

would be that like cisplatin, UV radiation or anisomycin, gefitinib may accelerate ligand-

independent EGFR endocytosis by stimulating the stress-activated p38-MAPK (MAPK14) 

(Cavalli et al., 2001; Macé et al., 2005; Peng et al., 2016; Tomas et al., 2015, 2017; 

Vergarajauregui et al., 2006; Zwang and Yarden, 2006). Several mechanisms have been 

proposed, stress-activated p38 can directly phosphorylate EGFR on Ser1015 in lung cancer 

cells (Tanaka et al., 2018). Alternatively, p38 has been shown to be a major regulator of Rab5 
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activity. P38 can either phosphorylate EEA1 and rabenosin, two effectors of Rab5 (Macé et al., 

2005) or phosphorylate the GDP dissociation factor, which releases inactive Rab5-GDP from 

the endosomal membrane and allows the maintenance of Rab5 in the cytoplasm for its 

subsequent activation (Cavalli et al., 2001). P38 was shown to promote EGFR endocytosis, and 

its pharmacological inhibition lead to sustained EGFR expression in glioma stem cells (Soeda 

et al., 2017). We thus speculate once more that targeting endocytosis by p38 inhibition would 

reduce Rab5-mediated EGFR endocytosis and increase glioma cell resistance to gefitinib as it 

has been found in the case of cisplatin treatment of U87 cells (Baldwin et al., 2006). 

Membrane trafficking is often deregulated in cancer and contributes significantly to the 

antitumor activity of gefitinib. Therefore, therapeutic manipulation of endocytosis may 

represent an interesting strategy to increase the potency of EGFR TKI. The present work and 

other studies (Al-Akhrass et al., 2017; Kondapalli et al., 2015; Llongueras et al., 2014; Wang 

et al., 2019) have shown that intensive endocytosis is associated with increased sensitivity of 

glioma cells to TKI treatment. Predictably, in vivo targeting of proteins inhibiting endocytosis 

such as GOLPH3 or the Na+/H+ exchanger NHE9 represent an attractive therapeutic strategy 

to limit EGFR oncogenic activity and to increase cancer cell responsiveness to TKI (Kondapalli 

et al., 2015; Ye et al., 2019). A milestone was achieved by Simpson group’s who recently 

revealed that tumors can be classified based on EGF endocytosis profile from an ex vivo EGF 

endocytosis assay to predict antibody-based anti-EGFR therapy efficacy (Chew et al., 2020; 

Joseph et al., 2019). In the end, the analysis of protein expression levels alone does not always 

provide sufficient information to predict the clinical benefits of a targeted therapy or to stratify 

patients for personalized medicine. Thus, the molecular characterization of tumors must enter 

a new era including functional studies of proteins such as endocytosis and membrane 

trafficking.        
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Figure 7 – Schematic of DNM2 and LRP-1 invovelment in GME and gefitinib-cell evasion inhibition.  (Left panel) In 
GBM cells expressing DNM2 and LRP-1, treatment with a EGFR-tyrosine kinase inhibitor (TKI) provokes a massive EGFR 
internalization into enlarged and abundant early endosomes that we called gefitinib-mediated endocytosis (GME). Moreover, 
TKI treatment was also able to internalized EGFR in LRP-1 positive endosomes. Furthermore, the fate of these receptors 
remains unknown. Possible recycling or degradation can occur.  (Right panel) The absence of DNM2 and LRP-1 reduces 
GME and increased cell evasion from a 3D tumor spheroid compared to condition represented in the left panel. GME can thus 
be important for gefitinib efficiency in inhibiting GBM cell evasion. 

   

 

Figure S1 – Protein expression profile of the 3 GBM cell lines studied. Protein expression of EGFR, LRP-1, DNM2 and 
Rab5 in U87, LN443 and T98 GBM cells was studied by immunoblot. GAPDH was used as loading control. 
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General conclusions of Articles 1 and 2  
 

Ø Gefitinib provoked stress-induced receptor endocytosis in fused endosomes. 

Ø Gefitinib promoted EGFR and α5β1 integrin co-endocytosis 

Ø We have identified 3 endocytosis proteins, DNM2, Rab5 and LRP-1 as key regulators 

of gefitinib-mediated EGFR internalization  

Ø Modulation of endocytosis changes glioma cell response to gefitinib treatment. 

 

 

In the first article, we described in four different glioma cell lines that gefitinib and other TKIs 

mediated a stress-induced, ligand-independent endocytosis of EGFR. We also described that 

GME is not restrictive to EGFR, as we showed a co-localization of EGFR with integrin α5β1 

in early endosomes upon gefitinib treatment. Gefitinib increased integrin/EGFR co-localization 

in perinuclear vesicles compared to untreated condition. Using super-resolution PALM-

STORM microscopy, we verified the close proximity between EGFR and integrin β1, 

suggesting a potential functional interaction. To explore integrin involvement in GME, integrin 

α5 was depleted on U87 cells using shRNA technology. Integrin α5β1 depletion reduced GME 

and limited EGFR accumulation in early endosomes during shot-term treatment. We next assess 

if GME impacts on glioma cell response to treatment. Since GBM is a highly invasive tumor, 

we decided to evaluate the role of trafficking dysregulation in cell evasion from 3D tumor 

spheroids. Gefitinib treatment decreased the number of evaded cells from U87α5- spheroids in 

a dose dependent way. However, no significant gefitinib impact occurred in cell evasion of 

integrin α5 positive cells. 

In the second article, we tried to better elucidate the molecular mechanisms inherent to GME. 

First, we studied the role of 2 proteins normally associated to ligand-induced EGFR 

endocytosis, DNM2 and Rab5. Using pharmacological inhibitors and siRNA-mediated 

depletion we showed that GME was DNM2-dependent. We also showed that GME required 

Rab5 activity. Constitutively active mutant of Rab5 produced enlarged early endosomes similar 

to GME. Also, dominant-negative of Rab5 mutant reduces EGFR localization in EEA1-positive 
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early endosomes upon gefitinib treatment. We next examined the potential role of LRP-1, an 

endocytosis receptor. GME on U87 cells induced EGFR re-localization in LRP-1-positive 

endosomes. Next, LRP-1 role in GME was studied using siRNA-depletion methodology and 

pharmacological inhibition by receptor-associated receptor (RAP).  Interrestingly, we found 

that LRP-1 is not involved in ligand-induced EGFR endocytosis but contribute significantly to 

gefitinib-mediated EGFR endocytosis. GME inhibition by blocking DNM2 and LRP-1 

significantly increased the cell dissemination of gefitinib-treated cells, protecting cells from 

TKI treatment. 

In summary, we showed that in glioma cells, TKI elicited a complex EGFR endocytosis 

mechanism. Moreover, we demonstrated for the first time a link functional between LRP-1 and 

EGFR endocytosis and a novel role of TKIs in EGFR and α5β1 integrin endocytosis. We 

determined that expression level and function of proteins involved in GME may modulate GBM 

cell responses to TKI treatment. However, future challenges will be to evaluate TKIs impact on 

integrin function and if its cooperation with EGFR during membrane trafficking change GBM 

cell evasion. Finally, this work has highlighted the need to better understand the mechanisms 

of drugs, and not just their presumed properties. This could lead to the identification of 

appropriate biomarkers predicting drug efficacy and thus improve the accuracy of drug 

therapies.  
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Introduction to Article 3 and to recent results 

Several membrane receptors, like EGFR are overexpressed in GBM to promote glioma cell 

survival, growth and migration (An et al., 2018). The team ‘Integrins and cancers’ from UMR 

7021 demonstrated the potential of integrin α5β1 as therapeutic target on GBM (Janouskova et 

al., 2012). Its natural ligand is fibronectin, an extracellular matrix protein overexpressed in 

GBM tumor microenvironment (Lal et al., 1999). Biomarkers like integrin α5β1, have great 

potential in clinics in the future as diagnosis (elevated expression in high grade glioma 

compared to low grade and normal tissue), prognosis (high expression associated with lower 

patient survival), and predictive (high expression associated with resistance to TMZ) markers. 

EGFR/ β1 integrin interaction in patient tissues was demonstrated using proximity ligation 

assay (Petrás et al., 2013). In GBM patient tumors, a strong inter and intra heterogeneity is 

observed (Eskilsson et al., 2018; Janouskova et al., 2012; Szerlip et al., 2012). Another 

interesting therapeutic target in GBM is c-MET and its ligand, the hepatocyte growth factor 

(HGF). C-MET/HGF signaling pathway is dysregulated in GBM and involved in glioma cell 

proliferation, survival, invasion, angiogenesis, stem cell profile, therapeutic resistance and 

GBM recurrence (Cheng and Guo, 2019).  C-MET expression was associated with an 

unfavorable prognostic in GBM patients (Petterson et al., 2015). A study of 

immunohistochemistry of GBM tissue samples showed c-MET localization in tumor cells, 

blood vessels, and peri-necrotic areas (Petterson et al., 2015).  Interestingly, EGFR and c-Met 

were found co-localized in GBM cell and tissue samples, suggesting a crosstalk between both 

receptors (Velpula et al., 2012). A dual-inhibition of EGFR and c-MET overcome TMZ 

resistance in GBM cells and reduced tumor growth in in vivo GBM models (Meng et al., 2020).  

This highly aggressive and resistance tumor has been studied in more than 1519 clinical trials, 

in which 259 are targeted-therapies. The majority of them do not improve patient progression-

free survival and overall survival. The GBM heterogeneity is one of the main reasons for 

therapy resistance and tumor recurrence. Knowing the expression status of different biomarkers 

might be used to stratify patients in clinical trials to better select patients and/or adjust treatment 

plan. Therefore, the possibility of simultaneously staining different proteins on the same GBM 

tissue would facilitate therapeutic decisions. 
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Ligands of these therapeutic targets may therefore be interesting tools. They need to be accurate 

and of rapid use to better evaluate the membrane receptor expression, at the protein level, in 

GBM tumor sections.  Usual immunohistochemistry (IHC) protocol uses indirect method with 

a first incubation of tissues with an unconjugated primary antibody specific to the biomarker of 

interest, followed by a second incubation with a conjugated antibody able to identify first 

antibody species. This indirect method of detection increases the sensibility since secondary 

antibodies can bind to two antigenic sites of the primary antibody. The drawback of this method 

of detection is due to non-specific binding of secondary antibodies. A direct detection allows a 

fast protocol since only one incubation time is needed. Direct detection methodologies are 

probably more reliable for multiplexing since there is no risk of cross-species reaction (by using 

dye directly conjugated antibodies) (Odell and Cook, 2013). But, direct labelling of antibodies 

is complex. To covalently couple a fluorophore to a recombinant protein, such as an antibody 

or antibody fragment, the procedure most commonly used consists of substituting an identified 

amino acid with a cysteine and coupling the fluorophore to its thiol group. This method requires 

the production and purification of large quantities of recombinant proteins. In addition, this 

method is relatively complicated. Indeed, mutations and/or couplings might (i) decrease the 

protein expression level, (ii) decrease or inhibit the binding, (iii) cause a loss of stability or the 

aggregation of the protein, or (iv) induce an absence of fluorescence signal. The fluorophore 

occasionally may even be coupled to the lysine side chains.  

Antibody homogeneity from batch to batch might be low, representing a huge disadvantage in 

reproducibility (Zhou and Rossi, 2017). For multiplex immune-detection, several antibodies of 

different specificities, coupled to different reporter molecules are needed, which enhance these 

difficulties. These problems might be solved by the use of other molecules, chemically 

synthesized, in large quantities, and more stable, such as peptides, small chemical compounds, 

or aptamers (Hori et al., 2018; Musumeci et al., 2017). 

In oncology, aptamers, the so-called chemical antibodies, are emerging tools as potential 

diagnostic and therapeutic (direct binding to their targets or for drug vectorization) tools. 

Aptamers are single-stranded DNA or RNA molecules that bind to their target with high affinity 

and specificity, such as antibodies. Aptamers have advantages over antibodies: their smaller 

size, thermal stability, lack of immunogenicity and toxicity, and chemical synthesis (Mercier et 

al., 2017; Zhou and Rossi, 2017). Moreover, aptamers penetrate deeper in tissues compared to 

antibodies due to their smaller size (Xiang et al., 2015). The selection of aptamers is made 
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through an in vitro process called SELEX (selective evolution of ligands by exponential 

enrichment) (Ellington and Szostak, 1990; Tuerk and Gold, 1990). Aptamers might be used as 

diagnostic and/or therapeutic tools against identified therapeutic targets like membrane 

receptors, interesting targets because of their accessibility at the cell surface.  

During my thesis, we used aptamers targeting EGFR, integrin α5 and c-MET in GBM cell lines 

and patient tissue samples. EGFR aptamers (E07 and anti-EGFR janellia 646 conjugate) and c-

MET (SL1) were already described in literature (Kratschmer and Levy, 2018; Li et al., 2011; 

Ray et al., 2012; Zhang et al., 2018), and integrin α5 aptamer H02 was identified and 

characterized in the laboratory (Article 3). 
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Article 3 

Identification and characterization of aptamer H02 targeting integrin α5β1 

 

An original selection process, combining cell- and protein SELEX, was performed in the 

laboratory to identify aptamer as new ligands able to bind to GBM cells and tissues expressing 

integrin α5β1. The selection, identification and characterization of the aptamer, named H02, are 

described in the manuscript (Fechter, Cruz da Silva et al., 2019).  

Ø The sequence of the aptamer H02 has been patented (EP18306664.6 ‘Aptamer and use 

thereof’). Integrin α5β1 was validated as the target of H02 aptamer using surface 

plasmon resonance, in which human integrin αvβ3 was used as a negative control.  

Ø The equilibrium affinity (KD) of the interaction between aptamer H02 and U87 cells 

overexpressing α5 was determined using flow cytometry. Binding events between the 

aptamer and cells were quantified by a fluorescent signal associated to the aptamer-

fluorophore conjugate tested at different concentrations. A KD of 277.8 ± 51.8 nM was 

determined.  

Ø Furthermore, α5β1 integrin aptamer H02 were able to identify different GBM cell lines 

according to their integrin α5β1 expression level. 

Ø A 4°C, aptamer H02 was able to detect integrin α5β1 present at the plasma membrane 

and at cell-cell junctions. At 37°C, the H02 aptamer was internalized after binding to 

integrin α5β1 and found in EEA1-positive early endosomes. 
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Recent results on aptamers targeting different cell-

surface receptors, biomarkers of GBM 

During the last year of my Ph.D., I focused, not only on aptamer H02, but also on three other 

aptamers targeting two other membrane receptors. Recent data were acquired by using 

aptamers: 

- E07 and the Janellia 646 conjugate targeting EGFR 

- SL1 targeting c-MET 

Sequences of aptamers are presented in Table 9 in section Material and Methods.  

A. Cell-binding assays 

A1. Flow cytometry assays 

Flow cytometry experiments were performed with aptamers E07 and Janellia on GBM cells 

with different levels of EGFR expression (Figure 1). We first characterized the EGFR protein 

expression levels by Western blot (Figure 1), in different cell lines: GBM (U87 EGFR WT and 

LN319), breast cancer (MCF-7 and MDA-MB-231) and skin cancer (A-431 and MDA-MB-

435). EGFR is expressed U87 EGFR WT and MDA-MB-231 but absent in the other cell lines.    

 

Figure 1 – Immunoblot of protein expression profiles on different cell lines. Protein expression of EGFR and integrin α5β1 
in U87 EGFR WT, A-431, MCF-7, MDA-MB-231, MDA-MB-435, LN319 cells was studied by immunoblot. GAPDH was 
used as loading control. 

EGFR expression was controlled by flow cytometry in cell lines U87 EGFR WT and LN319 

using an anti-EGFR antibody (cetuximab) conjugated to Cy5 (Figure 2A). A shift can be 
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observed to the left with LN319, compared to U87 EGFR WT, confirming different expression 

levels of EGFR on these two cell lines.  

Aptamers E07 (Figure 2B-C) and Janellia (Figure 2E-F) were tested on U87 EGFR WT and 

LN319 cells by flow cytometry. The shift observed with cetuximab on the two cell lines was 

also observed with aptamer E07 (Figure 2B) and with Aptamer-conjugated to Janellia 646 

(Figure 2E). The equilibrium affinity parameter KD of the interaction between EGFR-targeting 

aptamers and EGFR-overexpressing cells was determined by flow cytometry at 4°C by 

incubation of labelled aptamers with different concentrations of aptamers for 1 h. A KD of 

208.7± 45.57 nM was determined by plotting the mean fluorescence of U87 EGFR WT cells 

against the concentration of aptamer E07 (Figure 2D), and a KD of 370 ± 162.9 nM for Janellia 

646 conjugate aptamer (Figure 2G).  

Concerning aptamer SL1, the affinity for multiple myeloma cells was determined by Zhang et 

al., (2018) using flow cytometry. SL1 has a KD of 135.6 nM towards MM.1S cells and 237.1 

nM towards ARP-1 cells (Zhang et al., 2018). 

KDs determined for the interaction of aptamers targeting integrin α5β1, EGFR and c-MET are 

summarized in Table 1. 

A2. Confocal imaging 

EGFR-aptamers bind to EGFR-positive GBM cell lines 

For confocal aptacytochemical assays, confluent adherent cells were stained with the Cy5-

labeled aptamer E07 and Janellia 646 conjugate aptamer at 37°C for 30 min. After cell fixation, 

cells were immunolabeled with an anti-EGFR primary antibody and a secondary antibody 

labelled with Alexa 568. At 37°C, aptamers E07 and Janellia presented plasma membrane 

labelling and punctuated intracellular labelling of U87 EGFR WT. In LN319 cells, almost no 

unspecific labelling of EGFR-aptamers is detected (Figure 3). Aptamer E07 was also tested on 

other cell lines (A-431, MCF-7, MDA-MB-231 and MDA-MB-435). Figure 4 shows that, 

among these cell lines, only the EGFR-positive MDA-MB-231 cell line was labelled with 

aptamer E07. 
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Figure 2: EGFR-aptamers binding profiles by flow cytometry. (A) Positive control of EGFR-expression by binding of 
EGFR-antibody Cetuximab-conjugated to Cy5 on U87 EGFR WT (fill black) and LN319 cells (black line). (B) Comparison of 
the binding profiles of aptamer E07 conjugated to Cy5 at 1 µM on U87 EGFR WT cells (fill green) and LN319 cells (green 
line) at 4°C. (C) Different concentrations of E07 aptamer (0.001, 0.01, 0.1, 0.25, 0.5, 1, 2, 4 and 5 µM) were incubated on ice 
with a constant amount of U87 EGFR WT cells and analysed by flow cytometry. (D) Titration of aptamer E07 resulted in 
determination of the equilibrium affinity parameter KD for the interaction between U87 EGFR WT cells and aptamer E07. A 
KD of 208.7 ± 45.57 nM was determined. (E) Comparison of the binding profiles of aptamer conjugated to Janellia 646 at 1 
µM on U87 EGFR WT cells (fill purple) and LN319 cells (purple line) at 4°C. (F) Different concentrations of Janellia aptamer 
(0.03, 0.06, 0.12, 0.25, 0.5, 1, 2 and 5 µM) cells were incubated on ice with a constant amount of U87 EGFR WT cells and 
analysed by flow cytometry. (G) Titration of aptamer Janellia resulted in determination of the equilibrium affinity parameter 
KD for the interaction between U87 EGFR WT cells and aptamer Janellia (370 ± 162.9 nM).  
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Table 1: Equlibirum affinity of the interaction between aptamers and cells  

Aptamer Cell line KD 

H02 
U87MG overexpressing α5 

integrin 
277.8 ± 51.8 nM 

E07 

U87 EGFR WT 

208.7 ± 45.57 nM 

Janellia 646 conjugate 
aptamer 

370 ± 162.9 nM 

SL1 
MM.1S 135.6 nM 

ARP-1 237.1 nM 

 

Experiments of the same type were realized in the literature with aptamer SL1: aptamer SL1 

was able to identify multiple myeloma cells positives to c-MET, and no binding to c-MET 

negative B cells was detected (Zhang et al., 2018). 

EGFR aptamers are internalized in U87 EGFR WT cells 

Aptamers targeting cell surface receptors tend to be internalized upon binding to receptors. We 

wonder if EGFR-targeting aptamers were also internalized at 37°C. To verify the internalization 

of EGFR-targeting aptamers, we used aptamers E07 coupled to cyanine 5 or aptamer conjugated 

to Janellia 646 and a primary antibody targeting EEA1 and a secondary antibody labelled with 

Alexa 488.  

Figures 5 and 6 show co-localization of EGFR-targeting aptamer E07 and Janellia, respectively, 

with the anti-EEA1 antibody in the cytoplasm of GBM cells, suggesting aptamer endocytosis 

upon receptor binding.  We also demonstrated an increased EGFR internalization induced by 

treatment with EGFR-TKI (gefitinib). In this study, aptamer E07 was found in EEAl positive 

endosomes in control and upon TKI treatment (Figure 5A). Aptamer conjugated to Janellia was 

less internalized in control cells but aptamer internalization increased as well upon TKI 

treatment (Figure 6A). Aptamer labelling intensity was quantified in individualized cells 

(Figure 5B and 6B). Aptamer signal was doubled upon TKI treatment for both aptamers in U87 

EGFR WT.  
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Figure 3: Confocal imaging on U87 EGFR WT and LN 319 cell lines. GBM cells were seeded in coverslips and incubated 
with 100 nM of aptamer E07-Cy5 (A) or Aptamer conjugated Janellia 646 (B) for 30 minutes. Aptamer labelling is represented 
in white. Incubation of antibody anti-EGFR was followed by incubation with a secondary antibody labelled with Alexa 568 
(red). Nuclei are stained with DAPI (blue).  

 

Figure 4: Confocal imaging on cell lines A-431, MCF-7, MDA-MB-231 and MDA-MB-435. Cells were seeded in coverslips 
and incubated with 100 nM of aptamer E07 for 30 minutes. The aptamer is labeled with Cy5 (white). Incubation of antibody 
anti-EGFR was followed by incubation with a secondary antibody labelled with Alexa 568 (red). Nuclei are stained with DAPI 
(blue).  
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We showed that EGFR-aptamers are co-localized with EEA1. We believe that aptamers are 

internalized via internalization of their respective receptors. Very interestingly, aptamer 

internalization was increased upon gefitinib treatment, which might open roads for 

combination strategies, using aptamers for drug vectorization in cancer treatment. However, 

further studies are needed to determine aptamer trafficking and aptamer cytosolic release, in 

order to better exploit aptamers as vectors for therapeutic use.  

Figure 5: Confocal imaging of E07 aptamer internalization in U87 EGFR WT and LN319 cells. (A) GBM cells were 
seeded in coverslips and incubated with 100 nM of aptamer E07 and treated with DMSO (TKI minus) or 20 µM of gefitinib 
(TKI plus) for 30 minutes at 37°C. The aptamer, labeled with Cy5, is shown in white. Incubation of the anti-EEA1 antibody 
was followed by incubation with a secondary antibody labelled with Alexa 488 (represented in green). Incubation of antibody 
anti-EGFR was followed by incubation with a secondary antibody labelled with Alexa 568 (represented in red).  Nuclei are 
stained with DAPI (blue). (B) Integrated density of aptamer signal in individualized cells was quantified (3-4 cells / image and 
30 images analysed) and is represented in the histogram. ****p < 0.0001  
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Figure 6: Confocal imaging of the internalization of the Janellia 646 aptamer in U87 EGFR WT and LN319 cells. The 
legend is the same than in Figure 5, except that aptamer Janellia 646 was used instead of Aptamer E07. 

 

B. Tissue-binding assays 

Routine diagnostics usually uses histological tissues for anatomopathological visualization. The 

most common reporting process in histological routine diagnostics is chemical, using HRP for 

example. Chromogenic signal is resistant to photobleaching and lasts long. However, it is 

difficult to distinguish mixed colors, determine co-localization, and perform multiplexing. 

Fluorescent detection allows easier multiplexing due to larger color choices and better co-

localization analysis. However, fluorescent signal can be decreased and even lost by 
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photobleaching. Moreover, fluorescent detection in diagnostic routine needs a fluorescent 

microscope (Odell and Cook, 2013). 

In order to perform multiplexing we used fluorescent fluorophores conjugated to aptamers, and 

performed a type of detection called aptahistochemistry, AHC (Bukari et al., 2017). Several 

studies already reported the use of aptamers as diagnostics tools for cancer cell detection and 

aptahistochemistry (Gupta et al., 2011; Pu et al., 2015; Zamay et al., 2017; Zeng et al., 2010).  

In our study (Fechter, Cruz da Silva et al., 2019, Article 3), we demonstrated that aptamer H02 

was able to detect a human GBM xenograft tissue positive for integrin α5β1 expression. We 

wonder whether aptamer H02 might detect integrin α5β1 in human GBM tissues and not only 

in xenografts, since mouse component can induce off target bindings. The objective of these 

studies were also to test different aptamers labelled with different fluorophores on the same 

GBM patient tissue. In this perspective, were assayed, separately and then together, aptamers 

H02, E07 and SL1, targeting integrin α5β1, EGFR and c-MET, respectively. 

We used the slides reader Nanozoomer (Hamamatsu) that allows fast acquisition from 

histological slides in bright field and in fluorescence. Nanozoomer allows increased 

magnification until 40x without losing resolution properties. 

Data presented below are still preliminary results which will be completed and which need in-

depth image analysis. 

1. Haematoxylin-eosin versus aptahistochemistry (for integrin α5β1 detection) 

Haematoxylin-eosin (H&E) labelling was performed to distinguish between normal and 

tumoral tissues areas on tissues from four patients (Figure 7 left panel).  

AHC was performed on the same GBM patient tissues. The tumor tissue sections, embedded in 

paraffin, were first deparaffinised and subjected to an antigen unmasking protocol. Figure 7 

right panel shows AHC with aptamer H02.  

Interestingly, in some tissue areas, like for example the area on tissue section 16T0042 

highlighted with an arrow, a more intensed color seem to show areas positive for α5β1 integrin. 

We will need the hand of an anathomopathologist and deeper image analysis to understand if 

such tumor areas are tumoral or necrotic zones.  
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Figure 7: Haematoxylin-Eosin staining and aptahistochemistry of α5 integrin on GBM Tissues. H&E (left panel) and 
AHC (right panel) of GBM patient tissues For AHC, detection of α5 (in white) was performed with the Cy5-labeled aptamer 
H02. DAPI staining is shown in blue. AHC images were captured at the same setting in Nanozoomer.  
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2. Aptamers versus Antibody (for integrin α5β1 detection)  

For immunohistochemistry (IHC), the indirect method that we used, consisted of the incubation 

of the anti-α5 integrin AB 1928 antibody and secondary antibody anti-Rabbit conjugated to 

Alexa 647. AHC was performed with the Cy5-labeled aptamers H02 (Figure 8) at 1µM. 

Aptamer H02 and the anti-α5 antibody allowed to differentiate two different areas, but the 

contrast between these two areas is higher with less background in AHC compared to IHC. We 

still need to determine whether these two areas correspond to tumor versus normal tissues or to 

two tumor areas with different α5β1 expression levels. In that last option, it would mean that 

aptamer H02 is able to detect intra-tumoral heterogeneity. Moreover, it would be interesting to 

determine α5 integrin mRNA expression levels in order to exclude any off target bindings. 

Figure 8: Comparison between apta- and immuno- histochemistry. For AHC, detection of α5 (in white) was performed 

with the Cy5-labeled aptamer H02 at 1 µM. For IHC, detection of α5 (white) was performed with antibody AB 1928 at 1/200, 
followed by a secondary antibody coupled to Alexa 647. DAPI staining is shown in blue. Images were captured at the same 
settings to allow direct comparison of staining patterns on Nanozoomer. Images shows different magnificence (10x on left 
panel and 20x on right panel). 

3. Multiplexing 

We also wished to perform multiplexing on GBM tissue samples by using on the same GBM 

tissue section, aptamers H02 (targeting integrin α5β1), E07 (targeting EGFR) and SL1 

(targeting c-MET), labeled with fluorophores Cy5, Alexa 488 and Alexa 568, respectively. 

First, a double-AHC labelling was performed on three tumor sections, using aptamer H02 and 

E07 (Figure 9). We can clearly observe areas positive for integrin α5β1 or for EGFR or for both 

receptors.  
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To detect c-MET (in addition to integrin α5β1 and EGFR), from now, we just realized AHC 

using the SL1 aptamer coupled to Alexa-Fluor 568 (Figure 10). The SL1 aptamer seems to 

highlight heterogeneous c-MET expression levels, and might label invading cells and tumor 

blood vessels. Aptamer SL1 might therefore be of interest in AHC. 

In a future series of experiments, we will perform triple multiplexing using aptamers targeting 

α5 integrin, EGFR and c-MET. We wish to know whether GBM tumor inter- and intra-

heterogeneity can by highlighted thanks to aptamers targeting cell-surface receptors and 

whether aptahistochemistry might be useful for tumor characterization.  

 

Figure 9: Apta-labelling of integrin α5 and EGFR on GBM tissues from three patients (14T0218, 14T0763 and 16T0042). 
For AHC, detection of α5 (in white) and EGFR (in green) were performed with the Cy5-labeled aptamer H02 at 1 µM and the 
Alexa-Fluor 488-labeled aptamer E07 at 500 nM, respectively. Images were captured at the same settings to allow direct 
comparison of staining patterns in Nanozoomer. Images from the top to the bottom show different magnificence (1x, 10x and 
20x) 
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Figure 10: c-MET aptafluorescence on one GBM tissue. For AHC, detection of c-MET (in pink) was performed with the 
Alexa-Fluo 568-labeled aptamer SL1. DAPI staining is shown in blue. Images were captured at the same setting to allow direct 
comparison of staining patterns in Nanozoomer. Full arrows show c-MET negative zones. Discontinuous arrows might show 
c-MET labelling of tumor blood vessels. The white squares might show c-MET positive cells invading c-MET negative zones. 
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General conclusions  
 

Ø Aptamer H02 identified α5β1 integrin in glioma cells and human tissues samples. 

Ø EGFR-aptamers identified EGFR expression in cells and human tissue samples. 

Ø Gefitinib increased EGFR-aptamers internalization. 

Ø Aptahistochemistry using simultaneously aptamer H02 and an EGFR-aptamer may 

highlight GBM heterogeneity. 

 

In the first article, we described a new aptamer, H02, targeting α5β1 integrin. H02 was able to 

recognize α5-positive GBM cells and tumor xenografts. H02 was internalized in EEA1-positive 

early endosomes at 37°C.  

In the second part, we characterized EGFR-targeting aptamers in cell-based assays. EGFR-

aptamers were able to recognize EGFR-positive GBM cells. The aptamers were internalized at 

37°C, and this internalization was enhanced upon treatment with gefitinib. 

Next, we start characterizing aptahistochemistry using aptamers targeting α5 integrin, EGFR 

and c-MET receptors.  

Aptamer targeting α5 integrin provided integrin detection with less background compared to 

antibody labelling. Interestinguinly, dual detection of integrin α5 and EGFR using aptamers 

might be of interest to demonstrate GBM intra-tumoral heterogeneity. On going studies will 

provide evidence with a triple labelling of GBM tissues using aptamers against three membrane 

receptors. 

Finally, this work highlighted the potential use of aptamers as cancer detection tools. Further 

work is necessary to really access their interest as vectorization tools by exploiting the fact that 

aptamers are internalized at 37°C. 
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Conclusion 
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Figure 17: Perspectives of the present work. 
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Perspectives for fundamental research 

Certain studies showed the impact of gefitinib treatment in membrane trafficking. Studies 

showed that gefitinib suppresses ligand-induced EGFR endocytosis in in vitro sensitive cells 

(Nishimura et al., 2007) and in in vivo tumor xenografts (Pinilla-Macua et al., 2017). However, 

another study was in agreement with our results since gefitinib increased radiolabeled human 

EGF uptake in HNSCC, NSCLC and colon carcinoma cells (He and Li, 2013). In this work we 

demonstrated that in glioma cells, EGFR-TKI gefitinib increase EGFR endocytosis in a process 

we called gefitinib-mediated endocytosis (GME). A better understanding of GME molecular 

mechanisms is needed in order to correctly explore this gefitinib activity for therapeutic 

purposes. In our study, we described the endocytosis proteins DNM2, Rab5, integrin α5β1 and 

LRP-1 as molecular regulators of GME since their blockage reduces EGFR endocytosis and/or 

EGFR localization in EEA1-positive early endosomes.  

How gefitinib may promote endocytosis is an intriguing question emerging from our results. A 

recent study highlighted a frequent off-target cytotoxicity of targeted therapies (Lin et al., 

2019). Using CRISPR-Cas9, authors studied targeted-therapies present in clinical trials. 

Contrarily to RNA interference and small-molecule inhibitors, CRISPR-Cas9 deletion of the 

target gene demonstrated that drugs still have anti-proliferative effects. This study demonstrated 

that in most targeted-therapies studied, effect is mainly off-target derived. Thus, it would be 

interesting to verify the importance of EGFR and its TK domain necessity to GME mechanism. 

Several lines of evidence are in favor of off-target effect of gefitinib. Previous evidences 

showed that gefitinib can trigger stress-induced alterations of membrane trafficking (Tomas et 

al., 2014). Furthermore, using in vitro kinome studies, gefitinib and the other TKIs we used 

were shown to inhibit numerous others tyrosine kinases (Table 10) (Kitagawa et al., 2013; 

Verma et al., 2016). Lysotrophism of gefitinib has been evoked as potential mechanism to 

perturb overall membrane trafficking (Li et al., 2018). Finally, GME may be related to a kinase-

independent function of EGFR as it has been shown in the initiation of autophagy by serum 

starvation (Tan et al., 2015). We never observed neither endosomal enlargement/fusion in GBM 

in cells treated with EGFR siRNA. Similarly, serum-starvation did not provoke EGFR 

endocytosis and allow efficient GME (data not shown). It will be thus important to determine 

if GME is dependent or not of EGFR. One way will be to study integrin and LRP-1 endocytosis 

in EGFR-null cells (depletion of EGFR by siRNA or CRISPR-Cas9 or using the LN319 cell 

line).  
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Table 10: Target affinity of EGFR-TKIs. Adapted from HMS LINCS Database Kinome SCAN small molecules 

 

Molecular mechanisms of GME are not yet totally clear. Further studies are needed to better 

understand how gefitinib can dysregulate membrane trafficking. We demonstrated that EGFR 

localization in EEA1-positive early endosomes upon gefitinib treatment is reduced with a 

dominant negative of Rab5. However, we still need to determine if gefitinib is able to activate 

Rab5 and how it happens. First, Rab5-GTP pull-down assays in control and gefitinib-treated 

cells would show if gefitinib activates this GTPase. Next, we might study the impact of gefitinib 

in RAb5 interaction with guanine nucleotide-exchange factors (GEFs). For example, SPIN90, 

an adaptor protein, was shown to affect Rab5 interaction with one GEF, promoting its activation 

(Kim et al., 2019). It will also be interesting to study other molecules described to participate 

in EGFR trafficking dysregulation, for example, p-38-MAPK that is involved in almost all 

mechanisms of stress-induced EGFR internalization (Cavalli et al., 2001; Tomas et al., 2017; 

Zwang and Yarden, 2006), and described to activate Rab5 (Cavalli et al., 2001).  

Data on the invasive properties of glioma cells suggest that reduced endocytosis, for example 

by inhibition of DNM2, turned glioma cells to a more resistant phenotype. In line with our 

results, gefitinib-resistant tumor cells present dysregulated trafficking (Al-Akhrass et al., 2017; 

Kondapalli et al., 2015; Wang et al., 2019c). Impairment of EGFR internalization and 

entrapment of internalized EGFR in early endosomes with sorting nexin 1, leads to uncontrolled 

signaling in gefitinib resistant cells (Nishimura and Itoh, 2019; Nishimura et al., 2008). Also, 

hypophosphorylation of Y1045 in EGFRvIII leads to defective Cbl recruitment, receptor 

ubiquitination and degradation in geftinib-resistant cells (Han et al., 2006). Co-treatment with 

TKIs and 1,3,4-O-Bu3ManNAc showed efficient synergy in pancreatic cells. 1,3,4-O-

Target affinity Gefitinib Erlotinib Lapatinib Afatinib Dacomitinib 

KD <100 nM 
EGFR, GAK, 

IRAK1 

ABL1, EGFR, 

ERBB3, GAK, 

MAP2K5, 

MAP3K19, SLK, 

STK10 

EGFR, ERBB2, 

ERBB4, Tuba1a 

EGFR, ERBB2, 

ERBB4, GAK 

EGFR, ERBB2, 

ERBB4 

 

100 nM ≤ KD <1 

µM 

ERBB2, ERBB3, 

ERBB4, plus other 

20 

ERBB2, ERBB4, 

plus other 30 

PI4KB, PIK3C2B, 

RAF1 

ABL1, BLK, 

DYRK1A, EPHA6, 

HIPK4, IRAK1, 

LCK, PHKG2 

No data available 

1µM ≤ KD <10 µM More than 20 More than 20 More than 20 More than 20 No data avalibale 
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Bu3ManNAc increased EGFR internalization via non-clathrin mediated endocytosis that favors 

receptor degradation and impairs EGFR endosomal signaling (Mathew et al., 2016). However, 

a different study in NSCLC cells showed the opposite since gefitinib-resistant cells presented 

an increased EGFR endocytosis and degradation (Yamaoka et al., 2004).  

Moreover, it is well established that cancer cell migration is mediated by cellular trafficking. 

Rab5 influences cell migration through its control of integrin endocytosis, for instance. Rab5 

interacts with focal adhesion proteins, promotes integrin endocytosis and cell migration 

(Mendoza et al., 2013). Moreover, overexpression of Rab5 increased glioma cell migration and 

invasion (Jian et al., 2020). DNM2 also facilitates cell migration and invasion. DNM2 interacts 

with FAK at focal adhesions. DNM2 blockage inhibits focal adhesion disassembly and reduced 

cell migration (Ezratty et al., 2005).  In lung cancer cells, DNM2 stabilizes F-actin bundles in 

filopodia, promoting cell migration and thus tumor progression (Yamada et al., 2016). 

Additionally, DNM2 promotes actin polymerization at cell edges allowing actomyosin-

mediated force transmission to ECM and 3D cell migration (Lees et al., 2015). Interestingly, 

our results showed that DNM2 inhibition significantly increased cell evasion of gefitinib-

treated spheroids but had no impact on the number of cells evading from the spheroid in control 

condition. At this step, we still don’t know how endocytosis inhibition can promote cell 

invasion in gefitinib-treated cells. We can imagine that EGFR interactions with other receptors 

at the plasma membrane can stimulate cell migration even though EGFR-kinase domain are 

blocked by gefitinib. EGFR-kinase independent interactions at the plasma membrane facilitate 

cancer cell survival (Hanabata et al., 2012; Weihua et al., 2008).  

One evident partner of EGFR function and trafficking is the a5b1 integrin. Our study showed 

that as an endocytosis protein, a5b1 integrin contributed to GME. However, compared with 

classical endocytosis proteins, inhibition of integrin expression leads to decrease in cell 

resistance to TKI. This can be explained by the direct influence of integrin in cell evasion 

(Blandin et al., 2016) and cell migration (Paul et al., 2015). In this context, endosomal signalling 

of b1 integrins contributes to cancer cell anchorage-independent growth and invasion via FAK 

activation (Alanko et al., 2015), recruitment and activation of mTOR to late endosomes 

(Rainero et al., 2015) or co-signalling with c-MET (Barrow-McGee et al., 2016). Furthermore, 

several reports demonstrated the importance of integrin and EGFR recycling for cancer 

progression and invasion (Caswell et al., 2008; Lakoduk et al., 2019; Muller et al., 2009). Thus, 

in gefitinib-treated cells, a5b1 integrin may promote cell evasion, by endosomal signalling or 
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regulation of EGFR recycling. It will be interesting to compare integrin and EGFR interactome 

and signalling either at the plasma membrane level or in the endosomes, in function of gefitinib 

treatment. Another point of interest would be to examine in detail the impact of gefitinib in 

EGFR and a5b1 integrin journey inside the cell. We know that integrin trafficking depends on 

their conformational status (Arjonen et al., 2012). In article 1, to detect a5b1 integrin we used 

a monoclonal antibody (clone IIA1) that selectively recognizes the inactive bent form of the 

receptor.  However, during my thesis, I wondered whether gefitinib would also impact on active 

form of integrin. To this end, I performed preliminary experiments using anti-a5 monoclonal 

antibody (clone SNAKA51, Millipore) which binds to an epitope only accessible in ligand-

bound and active a5b1 integrin (Figures 18 and 19). First, we can observe that gefitinib also 

induced endosomal accumulation of ligand-bound active a5b1, and that EGFR and active 

integrin co-labelled the same endosome. This is an important information as it suggests that 

during GME, a5b1 integrin might remain competent for endosomal co-signalling with EGFR. 

However, upon gefitinib treatment the kinetics of active and inactive a5b1 integrin trafficking 

were clearly different, suggesting that as in physiological endocytosis and trafficking, they may 

take different routes in GME. Obviously, more studies are needed to determine the respective 

endosomal compartments where each of these conformations are and their fate.  

We assume that GME relies on general perturbation of membrane trafficking and we need to 

take into account the complexity of the cellular context to better understand the potential 

therapeutic significance of GME.  
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Figure 18: GME effect on inactive integrin trafficking. U87 were treated with 20µM of gefitinib for different period of time 
(1, 2, 4, 6 and 8 hours). Cells were fixed, inactive α5 integrin and EGFR were immunolabelled. Scale-bar: 20µm 
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Figure 19: GME effect on active integrin trafficking. U87 cells were treated with 20µM of gefitinib for different period of 
time (1, 2, 4, 6 and 8 hours). Cells were fixed, active α5 integrin and EGFR were immunolabelled. Scale-bar: 20µm 
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Perspectives for clinical applications 

A. GME as a new therapeutic rationale 

An exciting avenue, is that GME might be used in a new therapeutic scheme in order to increase 

internalization of therapeutic agents or vectors.  

During my thesis, I challenged the proof of concept of this hypothesis. Using GBM cellular 

models, we demonstrated that gefitinib treatment is able to increase EGFR targeting aptamers 

(recent results section) and antibodies (Figure 20) endocytosis.  

Figure 20: Gefitinib effect on cetuximab (CTX) internalization. U87 cells were pre-incubated with CTX-Cy3 at 4°C, then 
placed at 37°C in the presence of DMSO or gefitinib (20µM). After fixation, CTX-Cy3 localization was analysed and quantified 
by confocal microscopy. (A) Confocal images of U87 cells showing an increase of CTX-Cy3 internalization after 6h of 
gefitinib. Upon 24h of incubation, this signal decreased. (B) Quantification of fluorescence associated to internalized CTX-
Cy3 demonstrated clear differences in treatment kinetics between control cells (DMSO-black) and gefitinib-treated cells (GEF-
red). Results represented by mean ± s.d. of 30 cells of 3 independent experiences. 

 

Increased anti-EGFR antibody endocytosis should boost the cytotoxic activity of anti-EGFR 

ADC. To test this hypothesis, we selected depatuzumab-mafatodin (ABT-414), an ADC 

developed by AbbVie and tested in clinical trials for the treatment of GBM (Van Den Bent et 

al., 2020). ABT-414 is an ADC composed of an EGFR targeting-monoclonal antibody whose 

cysteine residues are conjugated to a microtubule inhibitor, monomethyl auristatin F (MMAF), 

via a stable maleimidocaproyl linker. Auristatin targets the vinca alkaloid site of microtubules 

(Chen et al., 2017). To improve its cytotoxic effect, auristatin gave origin to monomethyl 

auristatin-E (MMAE) and MMAF. Both are stable in the plasma and in the lysosome. There is 

an advantage of MMAF for bioconjugation with non-cleavable linkers, since it retains potency 
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when linked to a simple alkyl chain while MMAE is potent in native form (Doronina et al., 

2006).  

After endocytosis of EGFR, the lysosomal degradation of the antibody allows the release of 

Cys-mcMMAF that can cross alone the endosome membrane to reach cytosol and its target. 

Drug will be released attached to the linker that carries an amino acid from the antibody. The 

majority of these structures attach the linker-drug directly to a cysteine group of the antibody, 

through a reaction between maleimide group and sulfhydryl groups. This reaction in pH 

between 6.5 and 7.5 results in a non-reversible link (Jain et al., 2015). 

Preliminary pharmacological studies on U87 cells demonstrated that association of gefitinib 

with ABT-414 decreased by 10 000 fold the cytotoxic concentration of ABT-414 compared to 

ADC alone (Figure 21).  

Figure 21: Gefitinib increases ABT-414 efficiency. U87 cells were cultured during 3 days in the presence of gefitinib at a 
low cytotoxic concentration (10µg.ml-1) and variable concentrations of the ADC. Number of cells is quantified by crystal violet 
staining after fixation (n=3, 6 wells/condition). Black line represents cell treatment with different concentrations of ABT-414. 
Red line represents co-treatment with 10µg.ml-1 of gefitinib with different concentrations of ABT-414.  

These promising results need to be validated in other GBM models and with the other controls 

(for example the separated use of antibody and cytotoxic drug), before moving into mice 

models. In order to establish a correlation between antibody/ADC internalization with the 

effectiveness of the therapeutic combination we could decrease GME by blocking DNM2 and 

determine the impact of therapeutic synergy. It will be interesting to evaluate the intracellular 

localization of the antibody to verify if gefitinib can promote its localization in lysosomal 

compartments, using immunolabelling of LAMP1 for example. We could also quantify through 

cell fractionation followed by mass spectrometry analysis if gefitinib can increase the cytosolic 

concentration of cys-mcMMAF. 
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This work might create new opportunities to improve GBM therapeutic approaches, either by 

facilitating tumor characterization using aptamers targeting cell surface receptors for studying 

receptor expression and trafficking, or by proposing a new purpose for EGFR-TKIs as an 

enhancer of therapeutic agents’ entry in cancer cells.  

 

B. Aptamers targeting cell surface protein biomarkers: towards diagnostic and targeted 

delivery tools  

 

My experience with aptamers targeting integrin α5β1, EGFR (and to a lesser extent c-MET) is 

motivated by a desire to understand the mechanism of action of aptamers targeting cellular 

receptors, so that in the future, they can find clinical applications, particularly in diagnostics 

and towards targeted therapies (Figure 22). 

 

Figure 22: Illustration of clinical applications of aptamers targeting GBM cell-surface biomarkers. In clinical 
perspectives, an aptamer targeting a cell-surface GBM biomarker might be coupled with different molecules such as (a) a 
fluorophore or a radioactive element for imaging/diagnostic purposes; (b) a cytotoxic agent (AptDC) or (c) a siRNA (aptamer-
siRNA conjugate, AsiC) in therapeutic targeting. The coupling could be direct (b, c) or via a nanoparticle (d). 

 

Our studies highlighted the potential use of aptamers as detection tools.  

Integrin α5 and EGFR aptamers were able to identify GBM cells and tissues expressing their 

respective targets. We still have to complete the studies initiated during my PhD, notably by a 

multiplexing approach on GBM tissues with aptamers targeting integrin α5β1, EGFR and c-

MET (as already mentioned in the Result section). 
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Moreover, aptamers can be used to study cell surface receptor endocytosis features in ex vivo 

tumor samples. An interesting study demonstrated a correlation between dysregulated EGFR 

endocytosis and anti-EGFR monoclonal antibody therapy outcomes (Joseph et al., 2019). 

Aptamers can play a role in studying receptor endocytosis in ex vivo samples and consequently 

in patient stratification and predictive outcome. 

Another perspective will be to use aptamers as a non-invasive molecular imaging tools to 

visualise brain tumours expressing cell-surface biomarkers of interest and to monitor tumour 

progression in mouse xenograft models. EGFR aptamers coupled with radio isotope were 

already used for in in vivo imaging of GBM tumor cells in mouse xenografts (Wu et al., 2014). 

It will be thus interesting to image aptamers targeting other cell-surface biomarkers (such as 

integrin α5β1 and c-MET). The evolution of tumour progression of GBM xenografts will be 

followed longitudinally, in vivo, in Positron Emission Tomography (PET) imaging. The Cyrcé 

platform's TR24 cyclotron will be used for the production of Fluor-18. Radiolabelling will be 

carried out using click chemistry between the modified aptamer and a Fluor-18 labelled 

prosthetic group (Hassanzadeh et al., 2018).  

Our studies also highlighted the potential use of aptamers as targeted delivery tools.  

Aptamers might have an advantage over antibodies for vectorization, as they are produced 

chemically and thus are easy to be modified, allowing a more controlled and precise 

bioconjugation. For AptDC, only one cytotoxic payload can be conjugated to one aptamer, 

whereas antibody-bioconjugation can occur on different and multiple residues. It is therefore 

difficult to obtain a homogeneous and batch-reproducible drug-antibody ratio (DAR). Even 

though aptamer used as vectorization it is still in its infancy compared to studies with antibodies, 

promising results were obtained with two prostate-specific membrane antigen targeting 2′-F-

Py-RNA aptamers (A9 and A10) used to deliver siRNA, nanoparticles, quantum dots and toxins 

to prostate cancer cells (Cerchia and de Franciscis, 2010).  

Interestingly, our study demonstrated that aptamers were internalized at 37°C upon binding to 

cell surface receptors. This property might be exploited to follow cell surface receptor 

internalization in cells. Better knowledge on aptamer cytosolic release might improve 

efficiency of aptamer application in vectorization approaches. Aptamers entry in cells is well 

known, however, few knowledge about aptamers intracellular trafficking and cytosolic release 

exists. Aptamer endosomal escape rate is lower than 0.01% (Tawiah et al., 2017), even though 
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this is an essential step for therapy efficiency. For aptamer-siRNA conjugates (AsiC, Figure 

23), for example, it would be interesting to improve aptamer cytosolic release.  

 

 

Figure 23: Illustration of the putative intracellular trafficking, by RME ('receptor mediated endocytosis'), of aptamers 
targeting cellular receptors and conjugated to siRNAs. After binding to the cell-surface biomarker, the AsiC might be 
internalised in early endosomes. Then its intracellular traffic is rather unknown. It might follow the same intracellular traffic 
routes as the receptor, through different compartments. Indeed, it might be found in the late endosomes and then in the recycling 
endosomes, or in the lysosomes. The aptamer might also dissociate from the receptor. However, its endosomal escape from the 
intracellular compartments to access the cytosol is unknown (symbolised by red crosses).  

In order to better assess this issue, we first need to establish techniques to determine and 

quantify cytosolic release events. Studies on aptamer intracellular trafficking will give insights 

about the subcellular localization of aptamers. Intracellular trafficking of aptamers will be 

monitored by microscopy techniques such as confocal microscopy, TIRF and two-photon laser 

scanning. The aptamers will be coupled with pH sensitive fluorophores (1 fluorophore/aptamer) 

(Li et al., 2015b). Thanks to its ratiometric properties and its pKa (6.2), it will emit at a different 

wavelength when the aptamers are in the cytosol (pH 7.4) compared to the acid compartments 

(early endosomes: pH 5.9-6.0; late endosomes: pH 5-6; lysosomes: pH 4-5; recycling 

endosomes: pH 6.4-6.5). Using fluorescence microscopy, aptamers conjugated to fluorophores 

can be spotted in different endolysosomal compartments identified by specific markers (Rab5 

and EEA1 for early endosomes, Rab11 and Rab4 for recycling endosomes, Rab7 and CD63 for 

late endosomes, and finally LAMP1 and Lysotracker® for lysosomes). Quantitative evaluation 

of aptamer cytosolic release might be performed by cytosol recovery through cell fractioning 

(separation of cytosol/nucleus/other sub-cellular compartments) followed by aptamer 
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quantification by Real-time Quantitative Polymerase Chain Reaction (qPCR). qPCR is known 

for detecting very small amounts of DNA. Using a standard curve, we might be able to calculate 

the initial quantity of target DNA (Santos et al., 2019). It would also be interesting to perform 

a cell internalization-SELEX to collect only internalized aptamers (Mercier et al., 2017; Thiel 

et al., 2012; Wan et al., 2019). In that case, steps of cytosol recovery could be added to the 

SELEX cycles in order to specifically select aptamers able to be released in the cytosol.  

If the sub-cellular escape of aptamers were optimised, aptamers could be very efficient vehicles 

for drug delivery. It might be possible to perturb membrane trafficking to increase the time 

spent by aptamers in endosomal compartments in order to favour their release (Dowdy, 2017; 

Tawiah et al., 2017). For example, BafilomycinA that blocks endosome acidification. Another 

possibility would be to induce endosomal disruption via a proton-sponge effect using cationic 

polymer polyethylenimine (PEI) (Liang and Lam, 2012), for example. And, definitely, the 

studies of gefitinib on aptamer internalization will be further exploited. Before applying GME 

for pharmacological purposes, we need to determine if gefitinib induces cell surface receptors 

internalization in in vivo models. Intravital multiphoton imaging allowed to follow endogenous 

EGFR tagged with fluorophore and injected fluorescent-EGF internalization in mouse 

xenografts models (Pinilla-Macua et al., 2017). It would be interesting to use aptamers to follow 

EGFR upon gefitinib treatment in vivo.  

 

My Ph.D. project proposes an open door towards the application of aptamers in in vivo 

molecular imaging. It establishes the basis for the use of aptamers for the detection of tumors 

and could open up prospects for the study of tumor growth and for the use of aptamer-

conjugates in therapy. It might promote the development of targeted drug delivery systems, 

probably in combination with molecules favoring sub-cellular escape. 
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Vectorization tools are aimed to deliver highly toxic chemotherapeutics or therapeutic siRNA 

selectively to tumor cells with low toxic effects on non-tumoral cells. Vectors can be antibodies 

conjugated with drugs (ADC, antibody-drug conjugate) or with gold nano-particules that 

enhanced chemo- and radio-therapy potency (Groysbeck et al., 2019) (annex 3). Aptamers 

constitute another class of promising vectorization agents to deliver either drugs (aptamer-

drug conjugate, AptDC) or siRNA (aptamer-siRNA chimera, AsiC) (Cerchia et al., 2011). 

Besides the challenge of bioconjugation of vector to therapeutic agents, another challenge is 

the complex internalization and intracellular trafficking. Association of these vectors with 

gefitinib or other TKI might be beneficial to patient by increasing vector endocytosis. 

  



178 

 

 

References 



179 

 

Aaldering, L.J., Tayeb, H., Krishnan, S., Fletcher, S., Wilton, S.D., and Veedu, R.N. (2015). 
Smart functional nucleic acid chimeras: enabling tissue specific RNA targeting therapy. RNA 
Biol. 12, 412–425. 

Ababneh, N., Alshaer, W., Allozi, O., Mahafzah, A., El-Khateeb, M., Hillaireau, H., Noiray, 
M., Fattal, E., and Ismail, S. (2013). In vitro selection of modified RNA aptamers against CD44 
cancer stem cell marker. Nucleic Acid Ther. 23, 401–407. 

Agarwala, S.S., and Kirkwood, J.M. (2000). Temozolomide, a novel alkylating agent with 
activity in the central nervous system, may improve the treatment of advanced metastatic 
melanoma. The Oncologist 5, 144–151. 

Al-Akhrass, H., Naves, T., Vincent, F., Magnaudeix, A., Durand, K., Bertin, F., Melloni, B., 
Jauberteau, M.-O., and Lalloué, F. (2017). Sortilin limits EGFR signaling by promoting its 
internalization in lung cancer. Nat. Commun. 8. 

Alanko, J., Mai, A., Jacquemet, G., Schauer, K., Kaukonen, R., Saari, M., Goud, B., and Ivaska, 
J. (2015). Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17, 1412–1421. 

Alibolandi, M., Taghdisi, S.M., Ramezani, P., Hosseini Shamili, F., Farzad, S.A., Abnous, K., 
and Ramezani, M. (2017). Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer 
for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. 
Pharm. 519, 352–364. 

Allaire, P.D., Seyed Sadr, M., Chaineau, M., Seyed Sadr, E., Konefal, S., Fotouhi, M., Maret, 
D., Ritter, B., Del Maestro, R.F., and McPherson, P.S. (2013). Interplay between Rab35 and 
Arf6 controls cargo recycling to coordinate cell adhesion and migration. J. Cell Sci. 126, 722–
731. 

Almeida, K.H., and Sobol, R.W. (2007). A unified view of base excision repair: lesion-
dependent protein complexes regulated by post-translational modification. DNA Repair 6, 695–
711. 

Alves, T.R., Lima, F.R.S., Kahn, S.A., Lobo, D., Dubois, L.G.F., Soletti, R., Borges, H., and 
Neto, V.M. (2011). Glioblastoma cells: a heterogeneous and fatal tumor interacting with the 
parenchyma. Life Sci. 89, 532–539. 

An, Z., Aksoy, O., Zheng, T., Fan, Q.-W., and Weiss, W.A. (2018). Epidermal growth factor 
receptor (EGFR) and EGFRvIII in glioblastoma (GBM): signaling pathways and targeted 
therapies. Oncogene 37, 1561–1575. 

Anderson, N.G., Ahmad, T., Chan, K., Dobson, R., and Bundred, N.J. (2001). ZD1839 (Iressa), 
a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the 
growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int. J. Cancer 
94, 774–782. 

Aoudjit, F., and Vuori, K. (2001). Integrin signaling inhibits paclitaxel-induced apoptosis in 
breast cancer cells. Oncogene 20, 4995–5004. 

Arjonen, A., Alanko, J., Veltel, S., and Ivaska, J. (2012). Distinct Recycling of Active and 
Inactive β1 Integrins. Traffic Cph. Den. 13, 610–625. 



180 

 

Arscott, W.T., Tandle, A.T., Zhao, S., Shabason, J.E., Gordon, I.K., Schlaff, C.D., Zhang, G., 
Tofilon, P.J., and Camphausen, K.A. (2013). Ionizing Radiation and Glioblastoma Exosomes: 
Implications in Tumor Biology and Cell Migration. Transl. Oncol. 6, 638–648. 

Arteaga, C.L., and Johnson, D.H. (2001). Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr. 
Opin. Oncol. 13, 491–498. 

Askari, J.A., Buckley, P.A., Mould, A.P., and Humphries, M.J. (2009). Linking integrin 
conformation to function. J. Cell Sci. 122, 165–170. 

Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in angiogenesis and 
lymphangiogenesis. Nat. Rev. Cancer 8, 604–617. 

Baarlink, C., Wang, H., and Grosse, R. (2013). Nuclear actin network assembly by formins 
regulates the SRF coactivator MAL. Science 340, 864–867. 

Badiga, A.V., Chetty, C., Kesanakurti, D., Are, D., Gujrati, M., Klopfenstein, J.D., Dinh, D.H., 
and Rao, J.S. (2011). MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. 
PloS One 6, e20614. 

Barazzuol, L., Jena, R., Burnet, N.G., Meira, L.B., Jeynes, J.C.G., Kirkby, K.J., and Kirkby, 
N.F. (2013). Evaluation of poly (ADP-ribose) polymerase inhibitor ABT-888 combined with 
radiotherapy and temozolomide in glioblastoma. Radiat. Oncol. Lond. Engl. 8, 65. 

Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell Tissue Res. 339, 269–280. 

Barrow-McGee, R., Kishi, N., Joffre, C., Ménard, L., Hervieu, A., Bakhouche, B.A., Noval, 
A.J., Mai, A., Guzmán, C., Robbez-Masson, L., et al. (2016). Beta 1-integrin–c-Met 
cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat. 
Commun. 7, 11942. 

Bates, P.J., Laber, D.A., Miller, D.M., Thomas, S.D., and Trent, J.O. (2009). Discovery and 
development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. 
Pathol. 86, 151–164. 

Bates, P.J., Reyes-Reyes, E.M., Malik, M.T., Murphy, E.M., O’Toole, M.G., and Trent, J.O. 
(2017). G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and 
mechanisms. Biochim. Biophys. Acta Gen. Subj. 1861, 1414–1428. 

Batzer, A.G., Rotin, D., Ureña, J.M., Skolnik, E.Y., and Schlessinger, J. (1994). Hierarchy of 
binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol. 14, 
5192–5201. 

Behin, A., Hoang-Xuan, K., Carpentier, A.F., and Delattre, J.-Y. (2003). Primary brain tumours 
in adults. The Lancet 361, 323–331. 

Bell, A.W., Ward, M.A., Blackstock, W.P., Freeman, H.N., Choudhary, J.S., Lewis, A.P., 
Chotai, D., Fazel, A., Gushue, J.N., Paiement, J., et al. (2001). Proteomics characterization of 
abundant Golgi membrane proteins. J. Biol. Chem. 276, 5152–5165. 

Bell-McGuinn, K.M., Matthews, C.M., Ho, S.N., Barve, M., Gilbert, L., Penson, R.T., Lengyel, 
E., Palaparthy, R., Gilder, K., Vassos, A., et al. (2011). A phase II, single-arm study of the anti-



181 

 

α5β1 integrin antibody volociximab as monotherapy in patients with platinum-resistant 
advanced epithelial ovarian or primary peritoneal cancer. Gynecol. Oncol. 121, 273–279. 

Bello, L., Francolini, M., Marthyn, P., Zhang, J., Carroll, R.S., Nikas, D.C., Strasser, J.F., 
Villani, R., Cheresh, D.A., and Black, P.M. (2001). Alpha(v)beta3 and alpha(v)beta5 integrin 
expression in glioma periphery. Neurosurgery 49, 380–389; discussion 390. 

Berasain, C., and Avila, M.A. (2014). The EGFR signalling system in the liver: from 
hepatoprotection to hepatocarcinogenesis. J. Gastroenterol. 49, 9–23. 

van Bergen en Henegouwen, P.M. (2009). Eps15: a multifunctional adaptor protein regulating 
intracellular trafficking. Cell Commun. Signal. CCS 7, 24. 

Besse, B., Tsao, L.C., Chao, D.T., Fang, Y., Soria, J.-C., Almokadem, S., and Belani, C.P. 
(2013). Phase Ib safety and pharmacokinetic study of volociximab, an anti-α5β1 integrin 
antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung 
cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 24, 90–96. 

Bhalla, N., Jolly, P., Formisano, N., and Estrela, P. (2016). Introduction to biosensors. Essays 
Biochem. 60, 1. 

Bhat, K.P.L., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., 
Hollingsworth, F., Wani, K., Heathcock, L., James, J.D., Goodman, L.D., et al. (2013). 
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in 
glioblastoma. Cancer Cell 24, 331–346. 

Birgisdottir, Å.B., and Johansen, T. (2020). Autophagy and endocytosis – interconnections and 
interdependencies. J. Cell Sci. 133. 

Blakeley, J.O., Grossman, S.A., Mikkelsen, T., Rosenfeld, M.R., Peereboom, D., Nabors, L.B., 
Chi, A.S., Emmons, G., Ribas, I.G., Supko, J.G., et al. (2015). Phase I study of iniparib 
concurrent with monthly or continuous temozolomide dosing schedules in patients with newly 
diagnosed malignant gliomas. J. Neurooncol. 125, 123–131. 

Blandin, A.-F., Renner, G., Lehmann, M., Lelong-Rebel, I., Martin, S., and Dontenwill, M. 
(2015). β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front. Pharmacol. 
6. 

Blandin, A.-F., Noulet, F., Renner, G., Mercier, M.-C., Choulier, L., Vauchelles, R., Ronde, P., 
Carreiras, F., Etienne-Selloum, N., Vereb, G., et al. (2016). Glioma cell dispersion is driven by 
α5 integrin-mediated cell–matrix and cell–cell interactions. Cancer Lett. 376, 328–338. 

Blank, M., Weinschenk, T., Priemer, M., and Schluesener, H. (2001). Systematic evolution of 
a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial 
regulatory protein pigpen. J. Biol. Chem. 276, 16464–16468. 

Bonavia, R., Inda, M.-M., Cavenee, W.K., and Furnari, F.B. (2011). Heterogeneity 
maintenance in glioblastoma: a social network. Cancer Res. 71, 4055–4060. 

Bonavia, R., Inda, M.M., Vandenberg, S., Cheng, S.-Y., Nagane, M., Hadwiger, P., Tan, P., 
Sah, D.W.Y., Cavenee, W.K., and Furnari, F.B. (2012). EGFRvIII promotes glioma 
angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene 31, 4054–4066. 



182 

 

Bondy, M.L., Scheurer, M.E., Malmer, B., Barnholtz-Sloan, J.S., Davis, F.G., Il’yasova, D., 

Kruchko, C., McCarthy, B.J., Rajaraman, P., Schwartzbaum, J.A., et al. (2008). Brain Tumor 
Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC). Cancer 
113, 1953–1968. 

Breuers, S., Bryant, L.L., Legen, T., and Mayer, G. (2019). Robotic assisted generation of 2′-
deoxy-2′-fluoro-modifed RNA aptamers – High performance enabling strategies in aptamer 
selection. Methods 161, 3–9. 

Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., and 
Cheresh, D.A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing 
apoptosis of angiogenic blood vessels. Cell 79, 1157–1164. 

Bruno, J.G., Phillips, T., Carrillo, M.P., and Crowell, R. (2009). Plastic-adherent DNA aptamer-
magnetic bead and quantum dot sandwich assay for Campylobacter detection. J. Fluoresc. 19, 
427–435. 

Bruno, J.G., Carrillo, M.P., Phillips, T., and Andrews, C.J. (2010). A novel screening method 
for competitive FRET-aptamers applied to E. coli assay development. J. Fluoresc. 20, 1211–
1223. 

Bukari, B.A., Citartan, M., Ch’ng, E.S., Bilibana, M.P., Rozhdestvensky, T., and Tang, T.-H. 
(2017). Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. 
Histochem. Cell Biol. 147, 545–553. 

Burke, D.H., Hoffman, D.C., Brown, A., Hansen, M., Pardi, A., and Gold, L. (1997). RNA 
aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem. Biol. 4, 833–843. 

Buruiană, A., Florian,  Ștefan I., Florian, A.I., Timiș, T.-L., Mihu, C.M., Miclăuș, M., Oșan, S., 
Hrapșa, I., Cataniciu, R.C., Farcaș, M., et al. (2020). The Roles of miRNA in Glioblastoma 
Tumor Cell Communication: Diplomatic and Aggressive Negotiations. Int. J. Mol. Sci. 21. 

Calderwood, D.A., Fujioka, Y., de Pereda, J.M., García-Alvarez, B., Nakamoto, T., Margolis, 
B., McGlade, C.J., Liddington, R.C., and Ginsberg, M.H. (2003). Integrin beta cytoplasmic 
domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity 
in integrin signaling. Proc. Natl. Acad. Sci. U. S. A. 100, 2272–2277. 

Caldieri, G., Malabarba, M.G., Di Fiore, P.P., and Sigismund, S. (2018). EGFR Trafficking in 
Physiology and Cancer. Prog. Mol. Subcell. Biol. 57, 235–272. 

Camorani, S., Crescenzi, E., Colecchia, D., Carpentieri, A., Amoresano, A., Fedele, M., 
Chiariello, M., and Cerchia, L. (2015). Aptamer targeting EGFRvIII mutant hampers its 
constitutive autophosphorylation and affects migration, invasion and proliferation of 
glioblastoma cells. Oncotarget 6, 37570–37587. 

Camorani, S., Hill, B.S., Collina, F., Gargiulo, S., Napolitano, M., Cantile, M., Di Bonito, M., 
Botti, G., Fedele, M., Zannetti, A., et al. (2018). Targeted imaging and inhibition of triple-
negative breast cancer metastases by a PDGFRβ aptamer. Theranostics 8, 5178–5199. 



183 

 

Camorani, S., Granata, I., Collina, F., Leonetti, F., Cantile, M., Botti, G., Fedele, M., 
Guarracino, M.R., and Cerchia, L. (2020). Novel Aptamers Selected on Living Cells for 
Specific Recognition of Triple-Negative Breast Cancer. IScience 23. 

Campbell, I.D., and Humphries, M.J. (2011). Integrin Structure, Activation, and Interactions. 
Cold Spring Harb. Perspect. Biol. 3. 

Campbell, R.M., Anderson, B.D., Brooks, N.A., Brooks, H.B., Chan, E.M., De Dios, A., 
Gilmour, R., Graff, J.R., Jambrina, E., Mader, M., et al. (2014). Characterization of LY2228820 
dimesylate, a potent and selective inhibitor of p38 MAPK with antitumor activity. Mol. Cancer 
Ther. 13, 364–374. 

Cao, X., Zhu, H., Ali-Osman, F., and Lo, H.-W. (2011). EGFR and EGFRvIII undergo stress- 
and EGFR kinase inhibitor-induced mitochondrial translocalization: A potential mechanism of 
EGFR-driven antagonism of apoptosis. Mol. Cancer 10, 26. 

Carpenter, C.L., Duckworth, B.C., Auger, K.R., Cohen, B., Schaffhausen, B.S., and Cantley, 
L.C. (1990). Purification and characterization of phosphoinositide 3-kinase from rat liver. J. 
Biol. Chem. 265, 19704–19711. 

Caswell, P.T., Spence, H.J., Parsons, M., White, D.P., Clark, K., Cheng, K.W., Mills, G.B., 
Humphries, M.J., Messent, A.J., Anderson, K.I., et al. (2007). Rab25 associates with 
alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 
496–510. 

Caswell, P.T., Chan, M., Lindsay, A.J., McCaffrey, M.W., Boettiger, D., and Norman, J.C. 
(2008). Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to 
promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155. 

Cavalli, V., Vilbois, F., Corti, M., Marcote, M.J., Tamura, K., Karin, M., Arkinstall, S., and 
Gruenberg, J. (2001). The stress-induced MAP kinase p38 regulates endocytic trafficking via 
the GDI:Rab5 complex. Mol. Cell 7, 421–432. 

Ceccarelli, M., Barthel, F.P., Malta, T.M., Sabedot, T.S., Salama, S.R., Murray, B.A., 
Morozova, O., Newton, Y., Radenbaugh, A., Pagnotta, S.M., et al. (2016). Molecular Profiling 
Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 
164, 550–563. 

Cerchia, L. (2018). Aptamers: Promising Tools for Cancer Diagnosis and Therapy. Cancers 10. 

Cerchia, L., and de Franciscis, V. (2010). Targeting cancer cells with nucleic acid aptamers. 
Trends Biotechnol. 28, 517–525. 

Cerchia, L., Esposito, C.L., Camorani, S., Catuogno, S., and de Franciscis, V. (2011). Coupling 
Aptamers to Short Interfering RNAs as Therapeutics. Pharmaceuticals 4, 1434–1449. 

Ceresa, B.P., and Bahr, S.J. (2006). rab7 activity affects epidermal growth factor:epidermal 
growth factor receptor degradation by regulating endocytic trafficking from the late endosome. 
J. Biol. Chem. 281, 1099–1106. 

Cersosimo, R.J. (2004). Gefitinib: a new antineoplastic for advanced non-small-cell lung 
cancer. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 61, 889–898. 



184 

 

Cha, J., Kang, S.-G., and Kim, P. (2016). Strategies of Mesenchymal Invasion of Patient-
derived Brain Tumors: Microenvironmental Adaptation. Sci. Rep. 6, 24912. 

Chagoya, G., Kwatra, S.G., Nanni, C.W., Roberts, C.M., Phillips, S.M., Nullmeyergh, S., 
Gilmore, S.P., Spasojevic, I., Corcoran, D.L., Young, C.C., et al. (2020). Efficacy of osimertinib 
against EGFRvIII+ glioblastoma. Oncotarget 11, 2074–2082. 

Chakravarti, A., Noll, E., Black, P.M., Finkelstein, D.F., Finkelstein, D.M., Dyson, N.J., and 
Loeffler, J.S. (2002). Quantitatively Determined Survivin Expression Levels Are of Prognostic 
Value in Human Gliomas. J. Clin. Oncol. 20, 1063–1068. 

Chang, C.-Y., Kuan, Y.-H., Ou, Y.-C., Li, J.-R., Wu, C.-C., Pan, P.-H., Chen, W.-Y., Huang, 
H.-Y., and Chen, C.-J. (2014). Autophagy contributes to gefitinib-induced glioma cell growth 
inhibition. Exp. Cell Res. 327, 102–112. 

Chang, Y.S., Choi, C.-M., and Lee, J.C. (2016). Mechanisms of Epidermal Growth Factor 
Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung 
Adenocarcinoma. Tuberc. Respir. Dis. 79, 248–256. 

Chauveau, F., Aissouni, Y., Hamm, J., Boutin, H., Libri, D., Ducongé, F., and Tavitian, B. 
(2007). Binding of an aptamer to the N-terminal fragment of VCAM-1. Bioorg. Med. Chem. 
Lett. 17, 6119–6122. 

Chen, Z., and Xu, X. (2016). Roles of nucleolin. Saudi Med. J. 37, 1312–1318. 

Chen, C.B., Dellamaggiore, K.R., Ouellette, C.P., Sedano, C.D., Lizadjohry, M., Chernis, G.A., 
Gonzales, M., Baltasar, F.E., Fan, A.L., Myerowitz, R., et al. (2008). Aptamer-based 
endocytosis of a lysosomal enzyme. Proc. Natl. Acad. Sci. U. S. A. 105, 15908–15913. 

Chen, F., Zhou, J., Luo, F., Mohammed, A.-B., and Zhang, X.-L. (2007). Aptamer from whole-
bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. 
Biochem. Biophys. Res. Commun. 357, 743–748. 

Chen, H., Lin, Z., Arnst, K.E., Miller, D.D., and Li, W. (2017). Tubulin Inhibitor-Based 
Antibody-Drug Conjugates for Cancer Therapy. Mol. J. Synth. Chem. Nat. Prod. Chem. 22. 

Chen, L., He, W., Jiang, H., Wu, L., Xiong, W., Li, B., Zhou, Z., and Qian, Y. (2019). In vivo 
SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int. J. 
Nanomedicine 14, 149–159. 

Chen, M., Yu, Y., Jiang, F., Zhou, J., Li, Y., Liang, C., Dang, L., Lu, A., and Zhang, G. (2016a). 
Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and 
Therapy. Int. J. Mol. Sci. 17. 

Chen, W., Xia, T., Wang, D., Huang, B., Zhao, P., Wang, J., Qu, X., and Li, X. (2016b). Human 
astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of 
cytomembrane MMP14. Oncotarget 7, 62425–62438. 

Cheng, F., and Guo, D. (2019). MET in glioma: signaling pathways and targeted therapies. J. 
Exp. Clin. Cancer Res. 38, 270. 



185 

 

Cheng, C., Chen, Y.H., Lennox, K.A., Behlke, M.A., and Davidson, B.L. (2013). In vivo 
SELEX for Identification of Brain-penetrating Aptamers. Mol. Ther. Nucleic Acids 2, e67. 

Chew, H.Y., De Lima, P.O., Gonzalez Cruz, J.L., Banushi, B., Echejoh, G., Hu, L., Joseph, 
S.R., Lum, B., Rae, J., O’Donnell, J.S., et al. (2020). Endocytosis Inhibition in Humans to 
Improve Responses to ADCC-Mediating Antibodies. Cell 180, 895-914.e27. 

Chi, S., Cao, H., Wang, Y., and McNiven, M.A. (2011). Recycling of the Epidermal Growth 
Factor Receptor Is Mediated by a Novel Form of the Clathrin Adaptor Protein Eps15. J. Biol. 
Chem. 286, 35196–35208. 

Cho, Y., Lee, Y.B., Lee, J.-H., Lee, D.H., Cho, E.J., Yu, S.J., Kim, Y.J., Kim, J.I., Im, J.H., 
Lee, J.H., et al. (2016). Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by 
Up-Regulating Galectin-14. PloS One 11, e0160822. 

Christoforides, C., Rainero, E., Brown, K.K., Norman, J.C., and Toker, A. (2012). PKD 
Controls αvβ3 Integrin Recycling and Tumor Cell Invasive Migration through Its Substrate 
Rabaptin-5. Dev. Cell 23, 560–572. 

Cianfrocca, M.E., Kimmel, K.A., Gallo, J., Cardoso, T., Brown, M.M., Hudes, G., Lewis, N., 
Weiner, L., Lam, G.N., Brown, S.C., et al. (2006). Phase 1 trial of the antiangiogenic peptide 
ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br. J. 
Cancer 94, 1621–1626. 

Clare, C.E., Brassington, A.H., Kwong, W.Y., and Sinclair, K.D. (2019). One-Carbon 
Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term 
Development. Annu. Rev. Anim. Biosci. 7, 263–287. 

Clark, P.A., Iida, M., Treisman, D.M., Kalluri, H., Ezhilan, S., Zorniak, M., Wheeler, D.L., and 
Kuo, J.S. (2012). Activation of multiple ERBB family receptors mediates glioblastoma cancer 
stem-like cell resistance to EGFR-targeted inhibition. Neoplasia N. Y. N 14, 420–428. 

Cohen, A., Holmen, S., and Colman, H. (2013). IDH1 and IDH2 Mutations in Gliomas. Curr. 
Neurol. Neurosci. Rep. 13, 345. 

Cohen, A.S., Geng, L., Zhao, P., Fu, A., Schulte, M.L., Graves-Deal, R., Washington, M.K., 
Berlin, J., Coffey, R.J., and Manning, H.C. (2020). Combined blockade of EGFR and glutamine 
metabolism in preclinical models of colorectal cancer. Transl. Oncol. 13. 

Cohen, S., Carpenter, G., and King, L. (1980). Epidermal growth factor-receptor-protein kinase 
interactions. Co-purification of receptor and epidermal growth factor-enhanced 
phosphorylation activity. J. Biol. Chem. 255, 4834–4842. 

Combs, S.E., Schulz-Ertner, D., Hartmann, C., Welzel, T., Timke, C., Herfarth, K., von 
Deimling, A., Edler, L., Platten, M., Wick, W., et al. (2008). Phase I/II study of cetuximab plus 
temozolomide as radiochemotherapy for primary glioblastoma (GERT)—Eudract number 
2005–003911–63; NCT00311857. J. Clin. Oncol. 26, 2077–2077. 

Cormier, A., Campbell, M.G., Ito, S., Wu, S., Lou, J., Marks, J., Baron, J., Nishimura, S.L., and 
Cheng, Y. (2018). Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing 
integrin extension. Nat. Struct. Mol. Biol. 25, 698–704. 



186 

 

Cosset, É., Ilmjärv, S., Dutoit, V., Elliott, K., von Schalscha, T., Camargo, M.F., Reiss, A., 
Moroishi, T., Seguin, L., Gomez, G., et al. (2017). Glut3 Addiction Is a Druggable Vulnerability 
for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell 32, 856-868.e5. 

Cox, T.R., Bird, D., Baker, A.-M., Barker, H.E., Ho, M.W.-Y., Lang, G., and Erler, J.T. (2013). 
LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer 
Res. 73, 1721–1732. 

Cruz da Silva, E., Dontenwill, M., Choulier, L., and Lehmann, M. (2019). Role of Integrins in 
Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers 11, 692. 

Cui, G., Cui, M., Li, Y., Liang, Y., Li, W., Guo, H., and Zhao, S. (2015). Galectin-3 knockdown 
increases gefitinib sensitivity to the inhibition of EGFR endocytosis in gefitinib-insensitive 
esophageal squamous cancer cells. Med. Oncol. Northwood Lond. Engl. 32, 124. 

Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., 
Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Cancer-associated IDH1 mutations produce 2-
hydroxyglutarate. Nature 462, 739. 

Day, E.K., Sosale, N.G., Xiao, A., Zhong, Q., Purow, B., and Lazzara, M.J. (2020). 
Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of 
FGFR-SPRY2 Bypass Signaling. Cell Rep. 30, 3383-3396.e7. 

De Franceschi, N., Arjonen, A., Elkhatib, N., Denessiouk, K., Wrobel, A.G., Wilson, T.A., 
Pouwels, J., Montagnac, G., Owen, D.J., and Ivaska, J. (2016). Selective integrin endocytosis 
is driven by interactions between the integrin α-chain and AP2. Nat. Struct. Mol. Biol. 23, 172–

179. 

DeAngelis, L.M. (2001). Brain Tumors. N. Engl. J. Med. 344, 114–123. 

Delač, M., Motaln, H., Ulrich, H., and Lah, T.T. (2015). Aptamer for imaging and therapeutic 
targeting of brain tumor glioblastoma. Cytom. Part J. Int. Soc. Anal. Cytol. 87, 806–816. 

DeLay, M., Jahangiri, A., Carbonell, W.S., Hu, Y.-L., Tsao, S., Tom, M.W., Paquette, J., 
Tokuyasu, T.A., and Aghi, M.K. (2012). Microarray analysis verifies two distinct phenotypes 
of glioblastomas resistant to antiangiogenic therapy. Clin. Cancer Res. Off. J. Am. Assoc. 
Cancer Res. 18, 2930–2942. 

Deluche, E., Bessette, B., Durand, S., Caire, F., Rigau, V., Robert, S., Chaunavel, A., Forestier, 
L., Labrousse, F., Jauberteau, M.-O., et al. (2019). CHI3L1, NTRK2, 1p/19q and IDH Status 
Predicts Prognosis in Glioma. Cancers 11. 

Deng, Q.-F., Su, B.O., Zhao, Y.-M., Tang, L., Zhang, J., and Zhou, C.-C. (2016). Integrin β1-
mediated acquired gefitinib resistance in non-small cell lung cancer cells occurs via the 
phosphoinositide 3-kinase-dependent pathway. Oncol. Lett. 11, 535–542. 

Deryugina, E.I., and Quigley, J.P. (2012). Cell Surface Remodeling by Plasmin: A New 
Function for an Old Enzyme. J. Biomed. Biotechnol. 2012. 

Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological implications and 
therapeutic opportunities. Nat. Rev. Cancer 10, 9–22. 



187 

 

Dhiman, A., Kalra, P., Bansal, V., Bruno, J.G., and Sharma, T.K. (2017). Aptamer-based point-
of-care diagnostic platforms. Sens. Actuators B Chem. 246, 535–553. 

Diggins, N.L., Kang, H., Weaver, A., and Webb, D.J. (2018). α5β1 integrin trafficking and Rac 
activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J. Cell 
Sci. 131. 

Dinneen, J.L., and Ceresa, B.P. (2004). Continual expression of Rab5(Q79L) causes a ligand-
independent EGFR internalization and diminishes EGFR activity. Traffic Cph. Den. 5, 606–
615. 

Dippold, H.C., Ng, M.M., Farber-Katz, S.E., Lee, S.-K., Kerr, M.L., Peterman, M.C., Sim, R., 
Wiharto, P.A., Galbraith, K.A., Madhavarapu, S., et al. (2009). GOLPH3 Bridges 
Phosphatidylinositol-4- Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote 
Budding. Cell 139, 337–351. 

Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Raju, U., Milas, L., Chen, D.J., 
Kehlbach, R., and Rodemann, H.P. (2005). Radiation-induced Epidermal Growth Factor 
Receptor Nuclear Import Is Linked to Activation of DNA-dependent Protein Kinase. J. Biol. 
Chem. 280, 31182–31189. 

Dong, J., Opresko, L.K., Chrisler, W., Orr, G., Quesenberry, R.D., Lauffenburger, D.A., and 
Wiley, H.S. (2005). The Membrane-anchoring Domain of Epidermal Growth Factor Receptor 
Ligands Dictates Their Ability to Operate in Juxtacrine Mode. Mol. Biol. Cell 16, 2984–2998. 

Doronina, S.O., Mendelsohn, B.A., Bovee, T.D., Cerveny, C.G., Alley, S.C., Meyer, D.L., 
Oflazoglu, E., Toki, B.E., Sanderson, R.J., Zabinski, R.F., et al. (2006). Enhanced activity of 
monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on 
efficacy and toxicity. Bioconjug. Chem. 17, 114–124. 

Dou, X.-Q., Wang, H., Zhang, J., Wang, F., Xu, G.-L., Xu, C.-C., Xu, H.-H., Xiang, S.-S., Fu, 
J., and Song, H.-F. (2018). Aptamer-drug conjugate: targeted delivery of doxorubicin in a 
HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int. J. 
Nanomedicine 13, 763–776. 

Dowdy, S.F. (2017). Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 
222–229. 

Dozynkiewicz, M.A., Jamieson, N.B., Macpherson, I., Grindlay, J., van den Berghe, P.V.E., 
von Thun, A., Morton, J.P., Gourley, C., Timpson, P., Nixon, C., et al. (2012). Rab25 and 
CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive 
cancer progression. Dev. Cell 22, 131–145. 

Drolet, D.W., Green, L.S., Gold, L., and Janjic, N. (2016). Fit for the Eye: Aptamers in Ocular 
Disorders. Nucleic Acid Ther. 26, 127–146. 

Du, X.-J., Li, X.-M., Cai, L.-B., Sun, J.-C., Wang, S.-Y., Wang, X.-C., Pang, X.-L., Deng, M.-
L., Chen, F.-F., Wang, Z.-Q., et al. (2019). Efficacy and safety of nimotuzumab in addition to 
radiotherapy and temozolomide for cerebral glioblastoma: a phase II multicenter clinical trial. 
J. Cancer 10, 3214–3223. 



188 

 

Dudvarski Stanković, N., Bicker, F., Keller, S., Jones, D.T., Harter, P.N., Kienzle, A., 

Gillmann, C., Arnold, P., Golebiewska, A., Keunen, O., et al. (2018). EGFL7 enhances surface 
expression of integrin α5β1 to promote angiogenesis in malignant brain tumors. EMBO Mol. 
Med. 10. 

Duleh, S.N., and Welch, M.D. (2010). WASH and the Arp2/3 complex regulate endosome 
shape and trafficking. Cytoskelet. Hoboken NJ 67, 193–206. 

Dunty, J.M., Gabarra-Niecko, V., King, M.L., Ceccarelli, D.F.J., Eck, M.J., and Schaller, M.D. 
(2004). FERM Domain Interaction Promotes FAK Signaling. Mol. Cell. Biol. 24, 5353–5368. 

Durrant, T.N., van den Bosch, M.T., and Hers, I. (2017). Integrin αIIbβ3 outside-in signaling. 
Blood 130, 1607–1619. 

Eke, I., Storch, K., Krause, M., and Cordes, N. (2013). Cetuximab attenuates its cytotoxic and 
radiosensitizing potential by inducing fibronectin biosynthesis. Cancer Res. 73, 5869–5879. 

Eke, I., Zscheppang, K., Dickreuter, E., Hickmann, L., Mazzeo, E., Unger, K., Krause, M., and 
Cordes, N. (2015). Simultaneous β1 integrin-EGFR targeting and radiosensitization of human 
head and neck cancer. J. Natl. Cancer Inst. 107. 

Eller, J.L., Longo, S.L., Kyle, M.M., Bassano, D., Hicklin, D.J., and Canute, G.W. (2005). Anti-
epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in 
glioblastoma multiforme in vitro and in vivo. Neurosurgery 56, 155–162; discussion 162. 

Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind 
specific ligands. Nature 346, 818–822. 

El-Sayed, A., and Harashima, H. (2013). Endocytosis of gene delivery vectors: from clathrin-
dependent to lipid raft-mediated endocytosis. Mol. Ther. J. Am. Soc. Gene Ther. 21, 1118–
1130. 

Eskilsson, E., Røsland, G.V., Solecki, G., Wang, Q., Harter, P.N., Graziani, G., Verhaak, 
R.G.W., Winkler, F., Bjerkvig, R., and Miletic, H. (2018). EGFR heterogeneity and 
implications for therapeutic intervention in glioblastoma. Neuro-Oncol. 20, 743–752. 

Esnault, C., Stewart, A., Gualdrini, F., East, P., Horswell, S., Matthews, N., and Treisman, R. 
(2014). Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional 
response to serum in fibroblasts. Genes Dev. 28, 943–958. 

Eulberg, D., Buchner, K., Maasch, C., and Klussmann, S. (2005). Development of an automated 
in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance 
P antagonist. Nucleic Acids Res. 33, e45. 

Ezratty, E.J., Partridge, M.A., and Gundersen, G.G. (2005). Microtubule-induced focal 
adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat. Cell Biol. 7, 
581–590. 

Fan, Q., Aksoy, O., Wong, R.A., Ilkhanizadeh, S., Novotny, C.J., Gustafson, W.C., Truong, 
A.Y.-Q., Cayanan, G., Simonds, E.F., Haas-Kogan, D., et al. (2017). A Kinase Inhibitor 
Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 31, 424–435. 



189 

 

Fan, Q.-W., Cheng, C.K., Gustafson, W.C., Charron, E., Zipper, P., Wong, R.A., Chen, J., Lau, 
J., Knobbe-Thomsen, C., Weller, M., et al. (2013). EGFR phosphorylates tumor-derived 
EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24, 438–449. 

Fang, X., and Tan, W. (2010). Aptamers generated from cell-SELEX for molecular medicine: 
a chemical biology approach. Acc. Chem. Res. 43, 48–57. 

Färber, K., Synowitz, M., Zahn, G., Vossmeyer, D., Stragies, R., van Rooijen, N., and 
Kettenmann, H. (2008). An alpha5beta1 integrin inhibitor attenuates glioma growth. Mol. Cell. 
Neurosci. 39, 579–585. 

Fechter, P., Silva, E.C.D., Mercier, M.-C., Noulet, F., Etienne-Seloum, N., Guenot, D., 
Lehmann, M., Vauchelles, R., Martin, S., Lelong-Rebel, I., et al. (2019). RNA Aptamers 
Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. Mol. Ther. 
- Nucleic Acids 17, 63–77. 

Ferguson, S.M., and De Camilli, P. (2012). Dynamin, a membrane remodelling GTPase. Nat. 
Rev. Mol. Cell Biol. 13, 75–88. 

Fernández, G., Moraga, A., Cuartero, M.I., García-Culebras, A., Peña-Martínez, C., Pradillo, 
J.M., Hernández-Jiménez, M., Sacristán, S., Ayuso, M.I., Gonzalo-Gobernado, R., et al. (2018). 
TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal 
Models. Mol. Ther. J. Am. Soc. Gene Ther. 26, 2047–2059. 

Ferraro, N., Barbarite, E., Albert, T.R., Berchmans, E., Shah, A.H., Bregy, A., Ivan, M.E., 
Brown, T., and Komotar, R.J. (2016). The role of 5-aminolevulinic acid in brain tumor surgery: 
a systematic review. Neurosurg. Rev. 39, 545–555. 

Frankel, E.B., and Audhya, A. (2018). ESCRT-dependent cargo sorting at multivesicular 
endosomes. Semin. Cell Dev. Biol. 74, 4–10. 

Frederick, L., Wang, X.Y., Eley, G., and James, C.D. (2000). Diversity and frequency of 
epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60, 1383–
1387. 

Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 
(1995). Definition of two angiogenic pathways by distinct alpha v integrins. Science 270, 1500–
1502. 

Friess, H., Langrehr, J.M., Oettle, H., Raedle, J., Niedergethmann, M., Dittrich, C., Hossfeld, 
D.K., Stöger, H., Neyns, B., Herzog, P., et al. (2006). A randomized multi-center phase II trial 
of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with 
gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer 6, 285. 

Ganson, N.J., Povsic, T.J., Sullenger, B.A., Alexander, J.H., Zelenkofske, S.L., Sailstad, J.M., 
Rusconi, C.P., and Hershfield, M.S. (2016). Pre-existing anti-polyethylene glycol antibody 
linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. 
Allergy Clin. Immunol. 137, 1610-1613.e7. 



190 

 

Gao, A.E., Sullivan, K.E., and Black, L.D. (2016). Lysyl oxidase expression in cardiac 
fibroblasts is regulated by α2β1 integrin interactions with the cellular microenvironment. 
Biochem. Biophys. Res. Commun. 475, 70–75. 

Gao, X., Sanderson, S.M., Dai, Z., Reid, M.A., Cooper, D.E., Lu, M., Richie, J.P., Ciccarella, 
A., Calcagnotto, A., Mikhael, P.G., et al. (2019). Dietary methionine influences therapy in 
mouse cancer models and alters human metabolism. Nature 572, 397–401. 

Garrido, G., Tikhomirov, I.A., Rabasa, A., Yang, E., Gracia, E., Iznaga, N., Fernández, L.E., 
Crombet, T., Kerbel, R.S., and Pérez, R. (2011). Bivalent binding by intermediate affinity of 
nimotuzumab: a contribution to explain antibody clinical profile. Cancer Biol. Ther. 11, 373–
382. 

Giese, A., and Westphal, M. (1996). Glioma invasion in the central nervous system. 
Neurosurgery 39, 235–250; discussion 250-252. 

Gingras, M.C., Roussel, E., Bruner, J.M., Branch, C.D., and Moser, R.P. (1995). Comparison 
of cell adhesion molecule expression between glioblastoma multiforme and autologous normal 
brain tissue. J. Neuroimmunol. 57, 143–153. 

Gladson, C.L. (1996). Expression of Integrin αvβ3 in Small Blood Vessels of Glioblastoma 
Tumors. J. Neuropathol. Exp. Neurol. 55, 1143–1149. 

Glushonkov, O., Réal, E., Boutant, E., Mély, Y., and Didier, P. (2018). Optimized protocol for 
combined PALM-dSTORM imaging. Sci. Rep. 8, 8749. 

Goetz, J.G., Minguet, S., Navarro-Lérida, I., Lazcano, J.J., Samaniego, R., Calvo, E., Tello, M., 
Osteso-Ibáñez, T., Pellinen, T., Echarri, A., et al. (2011). Biomechanical Remodeling of the 
Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis. Cell 146, 
148–163. 

Gomez Zubieta, D.M., Hamood, M.A., Beydoun, R., Pall, A.E., and Kondapalli, K.C. (2017). 
MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells. 
Cell Commun. Signal. CCS 15, 55. 

Goodwin, C.R., Rath, P., Oyinlade, O., Lopez, H., Mughal, S., Xia, S., Li, Y., Kaur, H., Zhou, 
X., Ahmed, A.K., et al. (2018). Crizotinib and erlotinib inhibits growth of c-Met+/EGFRvIII+ 
primary human glioblastoma xenografts. Clin. Neurol. Neurosurg. 171, 26–33. 

Graff, J.R., McNulty, A.M., Hanna, K.R., Konicek, B.W., Lynch, R.L., Bailey, S.N., Banks, 
C., Capen, A., Goode, R., Lewis, J.E., et al. (2005). The protein kinase Cbeta-selective inhibitor, 
Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces 
apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer 
Res. 65, 7462–7469. 

Grandal, M.V., Zandi, R., Pedersen, M.W., Willumsen, B.M., van Deurs, B., and Poulsen, H.S. 
(2007). EGFRvIII escapes down-regulation due to impaired internalization and sorting to 
lysosomes. Carcinogenesis 28, 1408–1417. 



191 

 

Grasset, E.M., Bertero, T., Bozec, A., Friard, J., Bourget, I., Pisano, S., Lecacheur, M., Maiel, 
M., Bailleux, C., Emelyanov, A., et al. (2018). Matrix Stiffening and EGFR Cooperate to 
Promote the Collective Invasion of Cancer Cells. Cancer Res. 78, 5229–5242. 

Griffero, F., Daga, A., Marubbi, D., Capra, M.C., Melotti, A., Pattarozzi, A., Gatti, M., Bajetto, 
A., Porcile, C., Barbieri, F., et al. (2009). Different response of human glioma tumor-initiating 
cells to epidermal growth factor receptor kinase inhibitors. J. Biol. Chem. 284, 7138–7148. 

Groysbeck, N., Stoessel, A., Donzeau, M., da Silva, E.C., Lehmann, M., Strub, J.-M., 
Cianferani, S., Dembélé, K., and Zuber, G. (2019). Synthesis and biological evaluation of 2.4 
nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma 
cancer cells via the EGFR. Nanotechnology 30, 184005. 

Guerrero, P.A., Tchaicha, J.H., Chen, Z., Morales, J.E., McCarty, N., Wang, Q., Sulman, E.P., 
Fuller, G., Lang, F.F., Rao, G., et al. (2017). Glioblastoma stem cells exploit the αvβ8 integrin-
TGFβ1 signaling axis to drive tumor initiation and progression. Oncogene 36, 6568–6580. 

Gujar, A.D., Le, S., Mao, D.D., Dadey, D.Y.A., Turski, A., Sasaki, Y., Aum, D., Luo, J., 
Dahiya, S., Yuan, L., et al. (2016). An NAD+-dependent transcriptional program governs self-
renewal and radiation resistance in glioblastoma. Proc. Natl. Acad. Sci. U. S. A. 113, E8247–
E8256. 

Gupta, S., Thirstrup, D., Jarvis, T.C., Schneider, D.J., Wilcox, S.K., Carter, J., Zhang, C., 
Gelinas, A., Weiss, A., Janjic, N., et al. (2011). Rapid histochemistry using slow off-rate 
modified aptamers with anionic competition. Appl. Immunohistochem. Mol. Morphol. AIMM 
19, 273–278. 

Haas, T.L., Sciuto, M.R., Brunetto, L., Valvo, C., Signore, M., Fiori, M.E., di Martino, S., 
Giannetti, S., Morgante, L., Boe, A., et al. (2017). Integrin α7 Is a Functional Marker and 
Potential Therapeutic Target in Glioblastoma. Cell Stem Cell 21, 35-50.e9. 

Haeger, A., Alexander, S., Vullings, M., Kaiser, F.M.P., Veelken, C., Flucke, U., Koehl, G.E., 
Hirschberg, M., Flentje, M., Hoffman, R.M., et al. (2020). Collective cancer invasion forms an 
integrin-dependent radioresistant niche. J. Exp. Med. 217. 

Hagemann, C., Anacker, J., Ernestus, R.-I., and Vince, G.H. (2012). A complete compilation 
of matrix metalloproteinase expression in human malignant gliomas. World J. Clin. Oncol. 3, 
67–79. 

Hamblett, K.J., Kozlosky, C.J., Siu, S., Chang, W.S., Liu, H., Foltz, I.N., Trueblood, E.S., 
Meininger, D., Arora, T., Twomey, B., et al. (2015). AMG 595, an Anti-EGFRvIII Antibody-
Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing 
Glioblastoma. Mol. Cancer Ther. 14, 1614–1624. 

Han, W., Zhang, T., Yu, H., Foulke, J.G., and Tang, C.K. (2006). Hypophosphorylation of 
residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol. Ther. 5, 1361–
1368. 

Hanabata, Y., Nakajima, Y., Morita, K., Kayamori, K., and Omura, K. (2012). Coexpression of 
SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. 
Odontology 100, 156–163. 



192 

 

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 
646–674. 

Hanif, F., Muzaffar, K., Perveen, K., Malhi, S.M., and Simjee, S.U. (2017). Glioblastoma 
Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and 
Treatment. Asian Pac. J. Cancer Prev. APJCP 18, 3–9. 

Harari, P.M. (2004). Epidermal growth factor receptor inhibition strategies in oncology. 
Endocr. Relat. Cancer 11, 689–708. 

Harburger, D.S., and Calderwood, D.A. (2009). Integrin signalling at a glance. J. Cell Sci. 122, 
159–163. 

Hartmann, T.N., Burger, J.A., Glodek, A., Fujii, N., and Burger, M. (2005). CXCR4 chemokine 
receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small 
cell lung cancer (SCLC) cells. Oncogene 24, 4462–4471. 

Hasegawa, H., Savory, N., Abe, K., and Ikebukuro, K. (2016). Methods for Improving Aptamer 
Binding Affinity. Molecules 21. 

Hassanzadeh, L., Chen, S., and Veedu, R.N. (2018). Radiolabeling of Nucleic Acid Aptamers 
for Highly Sensitive Disease-Specific Molecular Imaging. Pharmaceuticals 11. 

Hasselbalch, B., Lassen, U., Hansen, S., Holmberg, M., Sørensen, M., Kosteljanetz, M., 
Broholm, H., Stockhausen, M.-T., and Poulsen, H.S. (2010). Cetuximab, bevacizumab, and 
irinotecan for patients with primary glioblastoma and progression after radiation therapy and 
temozolomide: a phase II trial. Neuro-Oncol. 12, 508–516. 

Hatanpaa, K.J., Burma, S., Zhao, D., and Habib, A.A. (2010). Epidermal Growth Factor 
Receptor in Glioma: Signal Transduction, Neuropathology, Imaging, and Radioresistance. 
Neoplasia 12, 675–684. 

He, P., and Li, G. (2013). Significant increase in hEGF uptake is correlated with formation of 
EGFR dimers induced by the EGFR tyrosine kinase inhibitor gefitinib. Cancer Chemother. 
Pharmacol. 72, 341–348. 

He, X., Zhang, S., Chen, J., and Li, D. (2019). Increased LGALS3 expression independently 
predicts shorter overall survival in patients with the proneural subtype of glioblastoma. Cancer 
Med. 8, 2031–2040. 

Healy, J.M., Lewis, S.D., Kurz, M., Boomer, R.M., Thompson, K.M., Wilson, C., and 
McCauley, T.G. (2004). Pharmacokinetics and biodistribution of novel aptamer compositions. 
Pharm. Res. 21, 2234–2246. 

Heckmann, D., Meyer, A., Laufer, B., Zahn, G., Stragies, R., and Kessler, H. (2008). Rational 
Design of Highly Active and Selective Ligands for the α5β1 Integrin Receptor. ChemBioChem 
9, 1397–1407. 

Heimberger, A.B., Crotty, L.E., Archer, G.E., Hess, K.R., Wikstrand, C.J., Friedman, A.H., 
Friedman, H.S., Bigner, D.D., and Sampson, J.H. (2003). Epidermal growth factor receptor VIII 
peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 
Off. J. Am. Assoc. Cancer Res. 9, 4247–4254. 



193 

 

Henriksen, L., Grandal, M.V., Knudsen, S.L.J., van Deurs, B., and Grøvdal, L.M. (2013). 
Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with 
Different Ligands. PLoS ONE 8. 

Heppner, D.E., Hristova, M., Dustin, C.M., Danyal, K., Habibovic, A., and Vliet, A. van der 
(2016). The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of 
Epidermal Growth Factor Receptor Signaling. J. Biol. Chem. 291, 23282–23293. 

Hernandez, L.I., Flenker, K.S., Hernandez, F.J., Klingelhutz, A.J., II, J.O.M., and Giangrande, 
P.H. (2013). Methods for Evaluating Cell-Specific, Cell-Internalizing RNA Aptamers. 
Pharmaceuticals 6, 295–319. 

Herrmann, A., Lahtz, C., Song, J., Aftabizadeh, M., Cherryholmes, G.A., Xin, H., Adamus, T., 
Lee, H., Grunert, D., Armstrong, B., et al. (2020). Integrin α6 signaling induces STAT3-TET3-
mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene 
39, 2156–2169. 

Hirata, E., Yukinaga, H., Kamioka, Y., Arakawa, Y., Miyamoto, S., Okada, T., Sahai, E., and 
Matsuda, M. (2012). In vivo fluorescence resonance energy transfer imaging reveals 
differential activation of Rho-family GTPases in glioblastoma cell invasion. J. Cell Sci. 125, 
858–868. 

Holland, E.C. (2000). Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. U. S. 
A. 97, 6242–6244. 

Hori, S.-I., Herrera, A., Rossi, J.J., and Zhou, J. (2018). Current Advances in Aptamers for 
Cancer Diagnosis and Therapy. Cancers 10. 

Horton, E.R., Byron, A., Askari, J.A., Ng, D.H.J., Millon-Frémillon, A., Robertson, J., Koper, 
E.J., Paul, N.R., Warwood, S., Knight, D., et al. (2015). Definition of a consensus integrin 
adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 
17, 1577–1587. 

Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., 
Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., et al. (2015). Tumour exosome integrins 
determine organotropic metastasis. Nature 527, 329–335. 

Hovanessian, A.G., Soundaramourty, C., Khoury, D.E., Nondier, I., Svab, J., and Krust, B. 
(2010). Surface Expressed Nucleolin Is Constantly Induced in Tumor Cells to Mediate 
Calcium-Dependent Ligand Internalization. PLoS ONE 5. 

Howe, E.N., Burnette, M.D., Justice, M.E., Schnepp, P.M., Hedrick, V., Clancy, J.W., Guldner, 
I.H., Lamere, A.T., Li, J., Aryal, U.K., et al. (2020). Rab11b-mediated integrin recycling 
promotes brain metastatic adaptation and outgrowth. Nat. Commun. 11, 3017. 

Huang, H.W., Chen, F.-Y., and Lee, M.-T. (2004). Molecular mechanism of Peptide-induced 
pores in membranes. Phys. Rev. Lett. 92, 198304. 

Huang, J., DeWees, T., Campian, J.L., Chheda, M.G., Ansstas, G., Tsien, C., Zipfel, G.J., Dunn, 
G.P., Ippolito, J.E., Cairncross, J.G., et al. (2019a). A TITE-CRM phase I/II study of disulfiram 



194 

 

and copper with concurrent radiation therapy and temozolomide for newly diagnosed 
glioblastoma. J. Clin. Oncol. 37, 2033–2033. 

Huang, J., Li, X., Shi, X., Zhu, M., Wang, J., Huang, S., Huang, X., Wang, H., Li, L., Deng, 
H., et al. (2019b). Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic 
targeting. J. Hematol. Oncol.J Hematol Oncol 12. 

Huang, P.H., Xu, A.M., and White, F.M. (2009). Oncogenic EGFR signaling networks in 
glioma. Sci. Signal. 2, re6. 

Hünniger, T., Wessels, H., Fischer, C., Paschke-Kratzin, A., and Fischer, M. (2014). Just in 
time-selection: A rapid semiautomated SELEX of DNA aptamers using magnetic separation 
and BEAMing. Anal. Chem. 86, 10940–10947. 

Hwang, S.-Y., Sun, H.-Y., Lee, K.-H., Oh, B.-H., Cha, Y.J., Kim, B.H., and Yoo, J.-Y. (2012). 
5’-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced 
antiviral activity. Nucleic Acids Res. 40, 2724–2733. 

Iida, M., Brand, T.M., Starr, M.M., Huppert, E.J., Luthar, N., Bahrar, H., Coan, J.P., Pearson, 
H.E., Salgia, R., and Wheeler, D.L. (2014). Overcoming acquired resistance to cetuximab by 
dual targeting HER family receptors with antibody-based therapy. Mol. Cancer 13, 242. 

Ilda, M., Brand, T., Starr, M., Li, C., Huppert Ej, Luthar N, Pedersen Mw, Horak Id, Kragh M, 
and Wheeler Dl (2013). Sym004, a novel EGFR antibody mixture, can overcome acquired 
resistance to cetuximab. Neoplasia N. Y. N 15, 1196–1206. 

Inda, M.-M., Bonavia, R., Mukasa, A., Narita, Y., Sah, D.W.Y., Vandenberg, S., Brennan, C., 
Johns, T.G., Bachoo, R., Hadwiger, P., et al. (2010). Tumor heterogeneity is an active process 
maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24, 1731–
1745. 

Ito, K., and Hataji, O. (2018). Osimertinib therapy as first-line treatment before acquiring 
T790M mutation: from AURA1 trial. J. Thorac. Dis. 10, S3071–S3077. 

Ivaska, J. (2011). Cooperation Between Integrins and Growth Factor Receptors in Signaling 
and Endocytosis. Annu. Rev. Cell Dev. Biol. 27, 291–320. 

Iwagawa, T., Ohuchi, S.P., Watanabe, S., and Nakamura, Y. (2012). Selection of RNA aptamers 
against mouse embryonic stem cells. Biochimie 94, 250–257. 

Jahangiri, A., Aghi, M.K., and Carbonell, W.S. (2014). β1 integrin: Critical path to 
antiangiogenic therapy resistance and beyond. Cancer Res. 74, 3–7. 

Jahangiri, A., Nguyen, A., Chandra, A., Sidorov, M.K., Yagnik, G., Rick, J., Han, S.W., Chen, 
W., Flanigan, P.M., Schneidman-Duhovny, D., et al. (2017). Cross-activating c-Met/β1 integrin 
complex drives metastasis and invasive resistance in cancer. Proc. Natl. Acad. Sci. U. S. A. 
114, E8685–E8694. 

Jain, N., Smith, S.W., Ghone, S., and Tomczuk, B. (2015). Current ADC Linker Chemistry. 
Pharm. Res. 32, 3526–3540. 



195 

 

JAMA Onc (2017). Association Between Telomere Length and Risk of Cancer and Non-
Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol. 3, 636–651. 

Jang, I., and Beningo, K.A. (2019). Integrins, CAFs and Mechanical Forces in the Progression 
of Cancer. Cancers 11. 

Janouskova, H., Maglott, A., Leger, D.Y., Bossert, C., Noulet, F., Guerin, E., Guenot, D., Pinel, 
S., Chastagner, P., Plenat, F., et al. (2012). Integrin α5β1 Plays a Critical Role in Resistance to 
Temozolomide by Interfering with the p53 Pathway in High-Grade Glioma. Cancer Res. 72, 
3463–3470. 

Jayasena, S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in 
diagnostics. Clin. Chem. 45, 1628–1650. 

Jian, Z., Zhang, L., Jin, L., Lan, W., Zhang, W., and Gao, G. (2020). Rab5 regulates the 
proliferation, migration and invasion of glioma cells via cyclin E. Oncol. Lett. 20, 1055–1062. 

Jo, M.-Y., Kim, Y.G., Kim, Y., Lee, S.J., Kim, M.H., Joo, K.M., Kim, H.H., and Nam, D.-H. 
(2012). Combined therapy of temozolomide and ZD6474 (vandetanib) effectively             reduces 
glioblastoma tumor volume through anti-angiogenic and anti-proliferative             mechanisms. 
Mol. Med. Rep. 6, 88–92. 

Jones, S., and Rappoport, J.Z. (2014). Interdependent epidermal growth factor receptor 
signalling and trafficking. Int. J. Biochem. Cell Biol. 51, 23–28. 

Jorissen, R.N., Walker, F., Pouliot, N., Garrett, T.P.J., Ward, C.W., and Burgess, A.W. (2003). 
Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 
31–53. 

Joseph, S.R., Gaffney, D., Barry, R., Hu, L., Banushi, B., Wells, J.W., Lambie, D., Strutton, G., 
Porceddu, S.V., Burmeister, B., et al. (2019). An Ex Vivo Human Tumor Assay Shows 
Distinct Patterns of EGFR Trafficking in Squamous Cell Carcinoma Correlating to Therapeutic 
Outcomes. J. Invest. Dermatol. 139, 213–223. 

Jovic, M., Sharma, M., Rahajeng, J., and Caplan, S. (2010). The early endosome: a busy sorting 
station for proteins at the crossroads. Histol. Histopathol. 25, 99–112. 

Ju, L., Zhou, C., Li, W., and Yan, L. (2010). Integrin beta1 over-expression associates with 
resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. J. Cell. Biochem. 
111, 1565–1574. 

Kaminska, B., Czapski, B., Guzik, R., Król, S.K., and Gielniewski, B. (2019). Consequences 
of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH 
Proteins. Molecules 24. 

Kanda, R., Kawahara, A., Watari, K., Murakami, Y., Sonoda, K., Maeda, M., Fujita, H., Kage, 
M., Uramoto, H., Costa, C., et al. (2013). Erlotinib resistance in lung cancer cells mediated by 
integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 73, 6243–6253. 

Kazandjian, D., Blumenthal, G.M., Yuan, W., He, K., Keegan, P., and Pazdur, R. (2016). FDA 
Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation-Positive 



196 

 

Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 22, 1307–

1312. 

Keefe, A.D., Pai, S., and Ellington, A. (2010). Aptamers as therapeutics. Nat. Rev. Drug 
Discov. 9, 537–550. 

Kesanakurti, D., Chetty, C., Rajasekhar Maddirela, D., Gujrati, M., and Rao, J.S. (2012). 
Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of 
anoikis resistance, migration and invasion in glioma. Cell Death Dis. 3, e445. 

Kesanakurti, D., Chetty, C., Dinh, D.H., Gujrati, M., and Rao, J.S. (2013). Role of MMP-2 in 
the regulation of IL-6/Stat3 survival signaling via interaction with α5β1 integrin in glioma. 
Oncogene 32, 327–340. 

Khan, Z., and Marshall, J.F. (2016). The role of integrins in TGFβ activation in the tumour 
stroma. Cell Tissue Res. 365, 657–673. 

Kiema, T., Lad, Y., Jiang, P., Oxley, C.L., Baldassarre, M., Wegener, K.L., Campbell, I.D., 
Ylänne, J., and Calderwood, D.A. (2006). The molecular basis of filamin binding to integrins 
and competition with talin. Mol. Cell 21, 337–347. 

Kim, L.A., and D’Amore, P.A. (2012). A Brief History of Anti-VEGF for the Treatment of 
Ocular Angiogenesis. Am. J. Pathol. 181, 376–379. 

Kim, B., Yang, J., Hwang, M., Choi, J., Kim, H.-O., Jang, E., Lee, J.H., Ryu, S.-H., Suh, J.-S., 
Huh, Y.-M., et al. (2013). Aptamer-modified magnetic nanoprobe for molecular MR imaging 
of VEGFR2 on angiogenic vasculature. Nanoscale Res. Lett. 8, 399. 

Kim, H., Oh, H., Oh, Y.S., Bae, J., Hong, N.H., Park, S.J., Ahn, S., Lee, M., Rhee, S., Lee, 
S.H., et al. (2019). SPIN90, an adaptor protein, alters the proximity between Rab5 and Gapex5 
and facilitates Rab5 activation during EGF endocytosis. Exp. Mol. Med. 51, 85. 

Kim, J., Zhang, Y., Skalski, M., Hayes, J., Kefas, B., Schiff, D., Purow, B., Parsons, S., Lawler, 
S., and Abounader, R. (2014). microRNA-148a is a prognostic oncomiR that targets MIG6 and 
BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 74, 1541–1553. 

Kim, J., Lee, I.-H., Cho, H.J., Park, C.-K., Jung, Y.-S., Kim, Y., Nam, S.H., Kim, B.S., Johnson, 
M.D., Kong, D.-S., et al. (2015). Spatiotemporal Evolution of the Primary Glioblastoma 
Genome. Cancer Cell 28, 318–328. 

Kim, K.B., Prieto, V., Joseph, R.W., Diwan, A.H., Gallick, G.E., Papadopoulos, N.E., 
Bedikian, A.Y., Camacho, L.H., Hwu, P., Ng, C.S., et al. (2012). A randomized phase II study 
of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res. 22, 294–
301. 

Kim, M.-Y., Cho, W.-D., Hong, K.P., Choi, D.B., Hong, J.W., Kim, S., Moon, Y.R., Son, S.-
M., Lee, O.-J., Lee, H.-C., et al. (2016). Novel monoclonal antibody against beta 1 integrin 
enhances cisplatin efficacy in human lung adenocarcinoma cells. J. Biomed. Res. 30, 217–224. 

Kim, S., Bell, K., Mousa, S.A., and Varner, J.A. (2000). Regulation of angiogenesis in vivo by 
ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am. J. 
Pathol. 156, 1345–1362. 



197 

 

Kim, Y.-J., Kim, Y.S., Niazi, J.H., and Gu, M.B. (2010). Electrochemical aptasensor for 
tetracycline detection. Bioprocess Biosyst. Eng. 33, 31–37. 

Kim, Y.-J., Jung, K., Baek, D.-S., Hong, S.-S., and Kim, Y.-S. (2017). Co-targeting of EGF 
receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma 
with integrin β1-driven Src-Akt bypass signaling. Oncogene 36, 2543–2552. 

Kimura, H., Sakai, K., Arao, T., Shimoyama, T., Tamura, T., and Nishio, K. (2007). Antibody-
dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant 
epidermal growth factor receptor. Cancer Sci. 98, 1275–1280. 

Kinnersley, B., Houlston, R.S., and Bondy, M.L. (2018). Genome-wide association studies in 
glioma. Cancer Epidemiol. Prev. Biomark. 

Kitagawa, D., Yokota, K., Gouda, M., Narumi, Y., Ohmoto, H., Nishiwaki, E., Akita, K., and 
Kirii, Y. (2013). Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes 
Cells 18, 110–122. 

Knight, Z.A., Gonzalez, B., Feldman, M.E., Zunder, E.R., Goldenberg, D.D., Williams, O., 
Loewith, R., Stokoe, D., Balla, A., Toth, B., et al. (2006). A Pharmacological Map of the PI3-
K Family Defines a Role for p110α in Insulin Signaling. Cell 125, 733–747. 

Komada, M., and Soriano, P. (1999). Hrs, a FYVE finger protein localized to early endosomes, 
is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 
13, 1475–1485. 

Kondapalli, K.C., Hack, A., Schushan, M., Landau, M., Ben-Tal, N., and Rao, R. (2013). 
Functional evaluation of autism-associated mutations in NHE9. Nat. Commun. 4, 2510. 

Kondapalli, K.C., Prasad, H., and Rao, R. (2014). An inside job: how endosomal Na+/H+ 
exchangers link to autism and neurological disease. Front. Cell. Neurosci. 8. 

Kondapalli, K.C., Llongueras, J.P., Capilla-González, V., Prasad, H., Hack, A., Smith, C., 
Guerrero-Cázares, H., Quiñones-Hinojosa, A., and Rao, R. (2015). A leak pathway for luminal 
protons in endosomes drives oncogenic signalling in glioblastoma. Nat. Commun. 6, 6289. 

Korolchuk, V.I., Schütz, M.M., Gómez-Llorente, C., Rocha, J., Lansu, N.R., Collins, S.M., 
Wairkar, Y.P., Robinson, I.M., and O’Kane, C.J. (2007). Drosophila Vps35 function is 
necessary for normal endocytic trafficking and actin cytoskeleton organisation. J. Cell Sci. 120, 
4367–4376. 

Kotula, J.W., Pratico, E.D., Ming, X., Nakagawa, O., Juliano, R.L., and Sullenger, B.A. (2012). 
Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. 
Nucleic Acid Ther. 22, 187–195. 

Kratschmer, C., and Levy, M. (2018). Targeted Delivery of Auristatin-Modified Toxins to 
Pancreatic Cancer Using Aptamers. Mol. Ther. Nucleic Acids 10, 227–236. 

Kryukov, G.V., Wilson, F.H., Ruth, J.R., Paulk, J., Tsherniak, A., Marlow, S.E., Vazquez, F., 
Weir, B.A., Fitzgerald, M.E., Tanaka, M., et al. (2016). MTAP deletion confers enhanced 
dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218. 



198 

 

Kurata, T., Rajendran, V., Fan, S., Ohta, T., Numata, M., and Fushida, S. (2019). NHE5 
regulates growth factor signaling, integrin trafficking, and degradation in glioma cells. Clin. 
Exp. Metastasis. 

Kwan, B.H., Zhu, E.F., Tzeng, A., Sugito, H.R., Eltahir, A.A., Ma, B., Delaney, M.K., Murphy, 
P.A., Kauke, M.J., Angelini, A., et al. (2017). Integrin-targeted cancer immunotherapy elicits 
protective adaptive immune responses. J. Exp. Med. 214, 1679–1690. 

Lakhin, A.V., Tarantul, V.Z., and Gening, L.V. (2013). Aptamers: Problems, Solutions and 
Prospects. Acta Naturae 5, 34–43. 

Lakoduk, A.M., Roudot, P., Mettlen, M., Grossman, H.M., Schmid, S.L., and Chen, P.-H. 
(2019). Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates 
recycling and migration. J. Cell Biol. 218, 1928–1942. 

Lal, A., Lash, A.E., Altschul, S.F., Velculescu, V., Zhang, L., McLendon, R.E., Marra, M.A., 
Prange, C., Morin, P.J., Polyak, K., et al. (1999). A Public Database for Gene Expression in 
Human Cancers. Cancer Res. 59, 5403–5407. 

Lal, A., Glazer, C.A., Martinson, H.M., Friedman, H.S., Archer, G.E., Sampson, J.H., and 
Riggins, G.J. (2002). Mutant Epidermal Growth Factor Receptor Up-Regulates Molecular 
Effectors of Tumor Invasion. Cancer Res. 62, 3335–3339. 

Lathia, J.D., Li, M., Sinyuk, M., Alvarado, A.G., Flavahan, W.A., Stoltz, K., Rosager, A.M., 
Hale, J., Hitomi, M., Gallagher, J., et al. (2014). High-throughput flow cytometry screening 
reveals a role for junctional adhesion molecule a as a cancer stem cell maintenance factor. Cell 
Rep. 6, 117–129. 

Lavacchi, D., Mazzoni, F., and Giaccone, G. (2019). Clinical evaluation of dacomitinib for the 
treatment of metastatic non-small cell lung cancer (NSCLC): current perspectives. Drug Des. 
Devel. Ther. 13, 3187–3198. 

Le, D.M., Besson, A., Fogg, D.K., Choi, K.-S., Waisman, D.M., Goodyer, C.G., Rewcastle, B., 
and Yong, V.W. (2003). Exploitation of Astrocytes by Glioma Cells to Facilitate Invasiveness: 
A Mechanism Involving Matrix Metalloproteinase-2 and the Urokinase-Type Plasminogen 
Activator–Plasmin Cascade. J. Neurosci. 23, 4034–4043. 

Lecocq, S., Spinella, K., Dubois, B., Lista, S., Hampel, H., and Penner, G. (2018). Aptamers as 
biomarkers for neurological disorders. Proof of concept in transgenic mice. PloS One 13, 
e0190212. 

Lees, J.G., Gorgani, N.N., Ammit, A.J., McCluskey, A., Robinson, P.J., and O’Neill, G.M. 
(2015). Role of dynamin in elongated cell migration in a 3D matrix. Biochim. Biophys. Acta 
BBA - Mol. Cell Res. 1853, 611–618. 

Lefranc, F., Le Rhun, E., Kiss, R., and Weller, M. (2018). Glioblastoma quo vadis: Will 
migration and invasiveness reemerge as therapeutic targets? Cancer Treat. Rev. 68, 145–154. 

Leitinger, M., Varosanec, M.V., Pikija, S., Wass, R.E., Bandke, D., Weis, S., Studnicka, M., 
Grinzinger, S., McCoy, M.R., Hauer, L., et al. (2018). Fatal Necrotizing Encephalopathy after 



199 

 

Treatment with Nivolumab for Squamous Non-Small Cell Lung Cancer: Case Report and 
Review of the Literature. Front. Immunol. 9, 108. 

Lemée, J.-M., Clavreul, A., and Menei, P. (2015). Intratumoral heterogeneity in glioblastoma: 
don’t forget the peritumoral brain zone. Neuro-Oncol. 17, 1322–1332. 

Lherbette, M., Redlingshöfer, L., Brodsky, F.M., Schaap, I.A.T., and Dannhauser, P.N. (2019). 
The AP2 adaptor enhances clathrin coat stiffness. FEBS J. 286, 4074–4085. 

Li, L., Welser-Alves, J., van der Flier, A., Boroujerdi, A., Hynes, R.O., and Milner, R. (2012). 
An angiogenic role for the α5β1 integrin in promoting endothelial cell proliferation during 
cerebral hypoxia. Exp. Neurol. 237, 46–54. 

Li, N., Nguyen, H.H., Byrom, M., and Ellington, A.D. (2011). Inhibition of Cell Proliferation 
by an Anti-EGFR Aptamer. PLOS ONE 6, e20299. 

Li, W., Wang, H., Yang, Y., Zhao, T., Zhang, Z., Tian, Y., Shi, Z., Peng, X., Li, F., Feng, Y., 
et al. (2018). Integrative Analysis of Proteome and Ubiquitylome Reveals Unique Features of 
Lysosomal and Endocytic Pathways in Gefitinib-Resistant Non-Small Cell Lung Cancer Cells. 
Proteomics 18, e1700388. 

Li, X., An, Y., Jin, J., Zhu, Z., Hao, L., Liu, L., Shi, Y., Fan, D., Ji, T., and Yang, C.J. (2015a). 
Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of 
ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal. Chem. 
87, 4941–4948. 

Li, Y., Wang, Y., Yang, S., Zhao, Y., Yuan, L., Zheng, J., and Yang, R. (2015b). Hemicyanine-
based High Resolution Ratiometric near-Infrared Fluorescent Probe for Monitoring pH 
Changes in Vivo. Anal. Chem. 87, 2495–2503. 

Liang, W., and Lam, J.K.W. (2012). Endosomal Escape Pathways for Non-Viral Nucleic Acid 
Delivery Systems. Mol. Regul. Endocytosis. 

Liang, C., Guo, B., Wu, H., Shao, N., Li, D., Liu, J., Dang, L., Wang, C., Li, H., Li, S., et al. 
(2015). Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA 
interference-based bone anabolic strategy. Nat. Med. 21, 288–294. 

Liao, J., Gallas, M., Pegram, M., and Slingerland, J. (2010). Lapatinib: new opportunities for 
management of breast cancer. Breast Cancer Targets Ther. 2, 79–91. 

Lièvre, A., Bachet, J.-B., Corre, D.L., Boige, V., Landi, B., Emile, J.-F., Côté, J.-F., Tomasic, 
G., Penna, C., Ducreux, M., et al. (2006). KRAS Mutation Status Is Predictive of Response to 
Cetuximab Therapy in Colorectal Cancer. Cancer Res. 66, 3992–3995. 

Lim, E.-J., Kim, S., Oh, Y., Suh, Y., Kaushik, N., Lee, J.-H., Lee, H.-J., Kim, M.-J., Park, M.-
J., Kim, R.-K., et al. (2020). Crosstalk between GBM cells and mesenchymal stem-like cells 
promotes the invasiveness of GBM through the C5a/p38/ZEB1 axis. Neuro-Oncol. 

Lin, J.H., and Lu, A.Y. (2001). Interindividual variability in inhibition and induction of 
cytochrome P450 enzymes. Annu. Rev. Pharmacol. Toxicol. 41, 535–567. 



200 

 

Lin, A., Giuliano, C.J., Palladino, A., John, K.M., Abramowicz, C., Yuan, M.L., Sausville, E.L., 
Lukow, D.A., Liu, L., Chait, A.R., et al. (2019). Off-target toxicity is a common mechanism of 
action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11. 

Lincoff, A.M., Mehran, R., Povsic, T.J., Zelenkofske, S.L., Huang, Z., Armstrong, P.W., Steg, 
P.G., Bode, C., Cohen, M.G., Buller, C., et al. (2016). Effect of the REG1 anticoagulation 
system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-
PCI): a randomised clinical trial. Lancet Lond. Engl. 387, 349–356. 

Lissitzky, J.C., Luis, J., Munzer, J.S., Benjannet, S., Parat, F., Chrétien, M., Marvaldi, J., and 
Seidah, N.G. (2000). Endoproteolytic processing of integrin pro-alpha subunits involves the 
redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid 
converting enzyme (PACE) 4, PC5B or PC7. Biochem. J. 346 Pt 1, 133–138. 

Little, S.E., Popov, S., Jury, A., Bax, D.A., Doey, L., Al-Sarraj, S., Jurgensmeier, J.M., and 
Jones, C. (2012). Receptor Tyrosine Kinase Genes Amplified in Glioblastoma Exhibit a Mutual 
Exclusivity in Variable Proportions Reflective of Individual Tumor Heterogeneity. Cancer Res. 
72, 1614–1620. 

Liu, W., Hsu, D.K., Chen, H.-Y., Yang, R.-Y., Carraway, K.L., Isseroff, R.R., and Liu, F.-T. 
(2012). Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes 
keratinocyte migration. J. Invest. Dermatol. 132, 2828–2837. 

Liu, X., Lin, P., Perrett, I., Lin, J., Liao, Y.-P., Chang, C.H., Jiang, J., Wu, N., Donahue, T., 
Wainberg, Z., et al. (2017). Tumor-penetrating peptide enhances transcytosis of silicasome-
based chemotherapy for pancreatic cancer. J. Clin. Invest. 127, 2007–2018. 

Liu, Y., Kuan, C.-T., Mi, J., Zhang, X., Clary, B.M., Bigner, D.D., and Sullenger, B.A. (2009). 
Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered 
intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol. Chem. 390, 137–
144. 

Liu, Y., Yang, L., Liao, F., Wang, W., and Wang, Z.-F. (2020). MiR-450a-5p strengthens the 
drug sensitivity of gefitinib in glioma chemotherapy via regulating autophagy by targeting 
EGFR. Oncogene. 

Ljubimova, J.Y., Fujita, M., Khazenzon, N.M., Ljubimov, A.V., and Black, K.L. (2006). 
CHANGES IN LAMININ ISOFORMS ASSOCIATED WITH BRAIN TUMOR INVASION 
AND ANGIOGENESIS. Front. Biosci. J. Virtual Libr. 11, 81–88. 

Longva, K.E., Blystad, F.D., Stang, E., Larsen, A.M., Johannessen, L.E., and Madshus, I.H. 
(2002). Ubiquitination and proteasomal activity is required for transport of the EGF receptor to 
inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854. 

Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, 
B.W., and Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central 
Nervous System. Acta Neuropathol. (Berl.) 114, 97–109. 

Louis, D.N., Perry, A., Reifenberger, G., Deimling, A. von, Figarella-Branger, D., Cavenee, 
W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W. (2016). The 2016 World 



201 

 

Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta 
Neuropathol. (Berl.) 131, 803–820. 

Lowell, C.A., and Mayadas, T.N. (2012). Overview-studying integrins in vivo. Methods Mol. 
Biol. Clifton NJ 757, 369–397. 

Lu, H., Lu, Y., Xie, Y., Qiu, S., Li, X., and Fan, Z. (2019). Rational combination with PDK1 
inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma. JCI 
Insight 4. 

Lu, J., Zheng, X., Li, F., Yu, Y., Chen, Z., Liu, Z., Wang, Z., Xu, H., and Yang, W. (2017). 
Tunneling nanotubes promote intercellular mitochondria transfer followed by increased 
invasiveness in bladder cancer cells. Oncotarget 8, 15539–15552. 

Lugano, R., Vemuri, K., Yu, D., Bergqvist, M., Smits, A., Essand, M., Johansson, S., Dejana, 
E., and Dimberg, A. (2018). CD93 promotes β1 integrin activation and fibronectin 
fibrillogenesis during tumor angiogenesis. J. Clin. Invest. 128, 3280–3297. 

Ma, S., Li, X., Wang, X., Cheng, L., Li, Z., Zhang, C., Ye, Z., and Qian, Q. (2019). Current 
Progress in CAR-T Cell Therapy for Solid Tumors. Int. J. Biol. Sci. 15, 2548–2560. 

Madala, H.R., Punganuru, S.R., Arutla, V., Misra, S., Thomas, T.J., and Srivenugopal, K.S. 
(2018). Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current 
and Future Therapeutic Strategies. Cancers 10. 

Madshus, I.H., and Stang, E. (2009). Internalization and intracellular sorting of the EGF 
receptor: a model for understanding the mechanisms of receptor trafficking. J. Cell Sci. 122, 
3433–3439. 

Mahabeleshwar, G.H., Chen, J., Feng, W., Somanath, P.R., Razorenova, O.V., and Byzova, 
T.V. (2008). Integrin affinity modulation in angiogenesis. Cell Cycle Georget. Tex 7, 335–347. 

Mai, A., Muharram, G., Barrow-McGee, R., Baghirov, H., Rantala, J., Kermorgant, S., and 
Ivaska, J. (2014). Distinct c-Met activation mechanisms induce cell rounding or invasion 
through pathways involving integrins, RhoA and HIP1. J. Cell Sci. 127, 1938–1952. 

Maier, A.-K.B., Kociok, N., Zahn, G., Vossmeyer, D., Stragies, R., Muether, P.S., and Joussen, 
A.M. (2007). Modulation of hypoxia-induced neovascularization by JSM6427, an integrin 
alpha5beta1 inhibiting molecule. Curr. Eye Res. 32, 801–812. 

Majem, M., and Remon, J. (2013). Tumor heterogeneity: evolution through space and time in 
EGFR mutant non small cell lung cancer patients. Transl. Lung Cancer Res. 2, 226–237. 

Mallawaaratchy, D.M., Buckland, M.E., McDonald, K.L., Li, C.C.Y., Ly, L., Sykes, E.K., 
Christopherson, R.I., and Kaufman, K.L. (2015). Membrane Proteome Analysis of 
Glioblastoma Cell Invasion. J. Neuropathol. Exp. Neurol. 74, 425–441. 

Malric, L., Monferran, S., Gilhodes, J., Boyrie, S., Dahan, P., Skuli, N., Sesen, J., Filleron, T., 
Kowalski-Chauvel, A., Cohen-Jonathan Moyal, E., et al. (2017). Interest of integrins targeting 
in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. 
Oncotarget 8, 86947–86968. 



202 

 

Malric, L., Monferran, S., Delmas, C., Arnauduc, F., Dahan, P., Boyrie, S., Deshors, P., 
Lubrano, V., Da Mota, D.F., Gilhodes, J., et al. (2019). Inhibiting Integrin β8 to Differentiate 
and Radiosensitize Glioblastoma-Initiating Cells. Mol. Cancer Res. MCR 17, 384–397. 

Mamidi, A., Prawiro, C., Seymour, P.A., de Lichtenberg, K.H., Jackson, A., Serup, P., and 
Semb, H. (2018). Mechanosignalling via integrins directs fate decisions of pancreatic 
progenitors. Nature 564, 114–118. 

Mammoto, T., Jiang, A., Jiang, E., Panigrahy, D., Kieran, M.W., and Mammoto, A. (2013). 
Role of Collagen Matrix in Tumor Angiogenesis and Glioblastoma Multiforme Progression. 
Am. J. Pathol. 183, 1293–1305. 

Marcusson, E.G., Horazdovsky, B.F., Cereghino, J.L., Gharakhanian, E., and Emr, S.D. (1994). 
The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 
77, 579–586. 

Martinkova, E., Maglott, A., Leger, D.Y., Bonnet, D., Stiborova, M., Takeda, K., Martin, S., 
and Dontenwill, M. (2010). alpha5beta1 integrin antagonists reduce chemotherapy-induced 
premature senescence and facilitate apoptosis in human glioblastoma cells. Int. J. Cancer 127, 
1240–1248. 

Mas-Moruno, C., Rechenmacher, F., and Kessler, H. (2010). Cilengitide: The First Anti-
Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation. 
Anticancer Agents Med. Chem. 10, 753–768. 

Mathew, M.P., Tan, E., Saeui, C.T., Bovonratwet, P., Sklar, S., Bhattacharya, R., and Yarema, 
K.J. (2016). Metabolic flux-driven sialylation alters internalization, recycling, and drug 
sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. 
Oncotarget 7, 66491–66511. 

Mayer, G., Ahmed, M.-S.L., Dolf, A., Endl, E., Knolle, P.A., and Famulok, M. (2010). 
Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 
1993–2004. 

Mazor, G., Levin, L., Picard, D., Ahmadov, U., Carén, H., Borkhardt, A., Reifenberger, G., 
Leprivier, G., Remke, M., and Rotblat, B. (2019). The lncRNA TP73-AS1 is linked to 
aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer 
stem cells. Cell Death Dis. 10, 1–14. 

McBrayer, S.K., Mayers, J.R., DiNatale, G.J., Shi, D.D., Khanal, J., Chakraborty, A.A., 
Sarosiek, K.A., Briggs, K.J., Robbins, A.K., Sewastianik, T., et al. (2018). Transaminase 
Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in 
Glioma. Cell 175, 101-116.e25. 

McCaffrey, M.W., Bielli, A., Cantalupo, G., Mora, S., Roberti, V., Santillo, M., Drummond, 
F., and Bucci, C. (2001). Rab4 affects both recycling and degradative endosomal trafficking. 
FEBS Lett. 495, 21–30. 

McCoy, M.G., Nyanyo, D., Hung, C.K., Goerger, J.P., R Zipfel, W., Williams, R.M., 
Nishimura, N., and Fischbach, C. (2019). Endothelial cells promote 3D invasion of GBM by 
IL-8-dependent induction of cancer stem cell properties. Sci. Rep. 9, 9069. 



203 

 

McGranahan, T., Therkelsen, K.E., Ahmad, S., and Nagpal, S. (2019). Current State of 
Immunotherapy for Treatment of Glioblastoma. Curr. Treat. Options Oncol. 20, 24. 

Mendoza, P., Ortiz, R., Díaz, J., Quest, A.F.G., Leyton, L., Stupack, D., and Torres, V.A. 
(2013). Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in 
tumor cells. J. Cell Sci. 126, 3835–3847. 

Meng, X., Zhao, Y., Han, B., Zha, C., Zhang, Y., Li, Z., Wu, P., Qi, T., Jiang, C., Liu, Y., et al. 
(2020). Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant 
glioma via attenuating EGFR and MET signaling pathways. Nat. Commun. 11, 594. 

Mercier, M.-C., Dontenwill, M., and Choulier, L. (2017). Selection of Nucleic Acid Aptamers 
Targeting Tumor Cell-Surface Protein Biomarkers. Cancers 9. 

Mi, J., Liu, Y., Rabbani, Z.N., Yang, Z., Urban, J.H., Sullenger, B.A., and Clary, B.M. (2010). 
In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22–24. 

Mikkelsen, T., Brodie, C., Finniss, S., Berens, M.E., Rennert, J.L., Nelson, K., Lemke, N., 
Brown, S.L., Hahn, D., Neuteboom, B., et al. (2009). Radiation sensitization of glioblastoma 
by cilengitide has unanticipated schedule-dependency. Int. J. Cancer 124, 2719–2727. 

Miliotou, A.N., and Papadopoulou, L.C. (2018). CAR T-cell Therapy: A New Era in Cancer 
Immunotherapy. Curr. Pharm. Biotechnol. 19, 5–18. 

Miranda-Filho, A., Piñeros, M., Soerjomataram, I., Deltour, I., and Bray, F. (2017). Cancers of 
the brain and CNS: global patterns and trends in incidence. Neuro-Oncol. 19, 270–280. 

Mirimanoff, R.-O., Gorlia, T., Mason, W., Van den Bent, M.J., Kortmann, R.-D., Fisher, B., 
Reni, M., Brandes, A.A., Curschmann, J., Villa, S., et al. (2006). Radiotherapy and 
Temozolomide for Newly Diagnosed Glioblastoma: Recursive Partitioning Analysis of the 
EORTC 26981/22981-NCIC CE3 Phase III Randomized Trial. J. Clin. Oncol. 24, 2563–2569. 

Mitra, A.K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., and Lengyel, E. (2011). Ligand-
independent activation of c-Met by fibronectin and α(5)β(1)-integrin regulates ovarian cancer 
invasion and metastasis. Oncogene 30, 1566–1576. 

Miyazaki, N., Iwasaki, K., and Takagi, J. (2018). A systematic survey of conformational states 
in β1 and β4 integrins using negative-stain electron microscopy. J. Cell Sci. 131. 

Mohanam, S., Jasti, S.L., Kondraganti, S.R., Chandrasekar, N., Lakka, S.S., Kin, Y., Fuller, 
G.N., Yung, A.W., Kyritsis, A.P., Dinh, D.H., et al. (2001). Down-regulation of cathepsin B 
expression impairs the invasive and tumorigenic potential of human glioblastoma cells. 
Oncogene 20, 3665–3673. 

Momcilovic, M., Bailey, S.T., Lee, J.T., Fishbein, M.C., Magyar, C., Braas, D., Graeber, T., 
Jackson, N.J., Czernin, J., Emberley, E., et al. (2017). Targeted inhibition of EGFR and 
glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18, 601–610. 

Monferran, S., Skuli, N., Delmas, C., Favre, G., Bonnet, J., Cohen-Jonathan-Moyal, E., and 
Toulas, C. (2008). Alphavbeta3 and alphavbeta5 integrins control glioma cell response to 
ionising radiation through ILK and RhoB. Int. J. Cancer 123, 357–364. 



204 

 

Morello, V., Cabodi, S., Sigismund, S., Camacho-Leal, M.P., Repetto, D., Volante, M., Papotti, 
M., Turco, E., and Defilippi, P. (2011). β1 integrin controls EGFR signaling and tumorigenic 
properties of lung cancer cells. Oncogene 30, 4087–4096. 

Moreno-Layseca, P., Icha, J., Hamidi, H., and Ivaska, J. (2019). Integrin trafficking in cells and 
tissues. Nat. Cell Biol. 21, 122–132. 

Morgan, M.R., Hamidi, H., Bass, M.D., Warwood, S., Ballestrem, C., and Humphries, M.J. 
(2013). Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling. Dev. Cell 24, 
472–485. 

Morozevich, G.E., Kozlova, N.I., Ushakova, N.A., Preobrazhenskaya, M.E., and Berman, A.E. 
(2012). Integrin α5β1 simultaneously controls EGFR-dependent proliferation and Akt-
dependent pro-survival signaling in epidermoid carcinoma cells. Aging 4, 368–374. 

Mosing, R.K., and Bowser, M.T. (2007). Microfluidic selection and applications of aptamers. 
J. Sep. Sci. 30, 1420–1426. 

Mosing, R.K., Mendonsa, S.D., and Bowser, M.T. (2005). Capillary electrophoresis-SELEX 
selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107–6112. 

Mufhandu, H.T., Gray, E.S., Madiga, M.C., Tumba, N., Alexandre, K.B., Khoza, T., Wibmer, 
C.K., Moore, P.L., Morris, L., and Khati, M. (2012). UCLA1, a synthetic derivative of a gp120 
RNA aptamer, inhibits entry of human immunodeficiency virus type 1 subtype C. J. Virol. 86, 
4989–4999. 

Muller, P. a. J., Trinidad, A.G., Timpson, P., Morton, J.P., Zanivan, S., van den Berghe, P.V.E., 
Nixon, C., Karim, S.A., Caswell, P.T., Noll, J.E., et al. (2013). Mutant p53 enhances MET 
trafficking and signalling to drive cell scattering and invasion. Oncogene 32, 1252–1265. 

Muller, P.A.J., Caswell, P.T., Doyle, B., Iwanicki, M.P., Tan, E.H., Karim, S., Lukashchuk, N., 
Gillespie, D.A., Ludwig, R.L., Gosselin, P., et al. (2009). Mutant p53 drives invasion by 
promoting integrin recycling. Cell 139, 1327–1341. 

Munksgaard Thorén, M., Chmielarska Masoumi, K., Krona, C., Huang, X., Kundu, S., Schmidt, 
L., Forsberg-Nilsson, K., Floyd Keep, M., Englund, E., Nelander, S., et al. (2019). Integrin α10, 
a Novel Therapeutic Target in Glioblastoma, Regulates Cell Migration, Proliferation, and 
Survival. Cancers 11. 

Musumeci, D., Platella, C., Riccardi, C., Moccia, F., and Montesarchio, D. (2017). 
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. 
Cancers 9. 

Nabors, L.B., Fink, K.L., Mikkelsen, T., Grujicic, D., Tarnawski, R., Nam, D.H., 
Mazurkiewicz, M., Salacz, M., Ashby, L., Zagonel, V., et al. (2015). Two cilengitide regimens 
in combination with standard treatment for patients with newly diagnosed glioblastoma and 
unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase 
II CORE study. Neuro-Oncol. 17, 708–717. 

Narita, Y., Muragaki, Y., Maruyama, T., Kagawa, N., Asai, K., Kuroda, J., Kurozumi, K., 
Nagane, M., Matsuda, M., Ueki, K., et al. (2019). Phase I/II study of depatuxizumab mafodotin 



205 

 

(ABT-414) monotherapy or combination with temozolomide in Japanese patients with/without 
EGFR-amplified recurrent glioblastoma. J. Clin. Oncol. 37, 2065–2065. 

Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R., 
Silverbush, D., Shaw, M.L., Hebert, C.M., et al. (2019). An Integrative Model of Cellular 
States, Plasticity, and Genetics for Glioblastoma. Cell 178, 835-849.e21. 

Newlands, E.S., Blackledge, G.R., Slack, J.A., Rustin, G.J., Smith, D.B., Stuart, N.S., 
Quarterman, C.P., Hoffman, R., Stevens, M.F., and Brampton, M.H. (1992). Phase I trial of 
temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br. J. Cancer 65, 287–291. 

Newlands, E.S., Stevens, M.F., Wedge, S.R., Wheelhouse, R.T., and Brock, C. (1997). 
Temozolomide: a review of its discovery, chemical properties, pre-clinical development and 
clinical trials. Cancer Treat. Rev. 23, 35–61. 

Newton, H. (2006). Innovative Approaches to Chemotherapy Delivery. In Handbook of Brain 
Tumor Chemotherapy, (California: Academic Press), p. 

Ng, E.W.M., Shima, D.T., Calias, P., Cunningham, E.T., Guyer, D.R., and Adamis, A.P. 
(2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug 
Discov. 5, 123–132. 

Ni, S., Yao, H., Wang, L., Lu, J., Jiang, F., Lu, A., and Zhang, G. (2017). Chemical 
Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int. J. Mol. Sci. 18. 

van Nifterik, K.A., van den Berg, J., Stalpers, L.J.A., Lafleur, M.V.M., Leenstra, S., Slotman, 
B.J., Hulsebos, T.J.M., and Sminia, P. (2007). Differential radiosensitizing potential of 
temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int. J. 
Radiat. Oncol. Biol. Phys. 69, 1246–1253. 

Nimjee, S.M., White, R.R., Becker, R.C., and Sullenger, B.A. (2017). Aptamers as 
Therapeutics. Annu. Rev. Pharmacol. Toxicol. 57, 61–79. 

Nishikawa, F., Kakiuchi, N., Funaji, K., Fukuda, K., Sekiya, S., and Nishikawa, S. (2003). 
Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res. 31, 1935–1943. 

Nishimura, Y., and Itoh, K. (2019). Involvement of SNX1 in regulating EGFR endocytosis in 
a gefitinib-resistant NSCLC cell lines. Cancer Drug Resist. 2, 539–549. 

Nishimura, Y., Bereczky, B., and Ono, M. (2007). The EGFR inhibitor gefitinib suppresses 
ligand-stimulated endocytosis of EGFR via the early/late endocytic pathway in non-small cell 
lung cancer cell lines. Histochem. Cell Biol. 127, 541–553. 

Nishimura, Y., Yoshioka, K., Bereczky, B., and Itoh, K. (2008). Evidence for efficient 
phosphorylation of EGFR and rapid endocytosis of phosphorylated EGFR via the early/late 
endocytic pathway in a gefitinib-sensitive non-small cell lung cancer cell line. Mol. Cancer 7, 
42. 

Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M.R., Carotenuto, 
A., De Feo, G., Caponigro, F., and Salomon, D.S. (2006). Epidermal growth factor receptor 
(EGFR) signaling in cancer. Gene 366, 2–16. 



206 

 

Noushmehr, H., Weisenberger, D.J., Diefes, K., Phillips, H.S., Pujara, K., Berman, B.P., Pan, 
F., Pelloski, C.E., Sulman, E.P., Bhat, K.P., et al. (2010). Identification of a CpG island 
methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522. 

Odell, I.D., and Cook, D. (2013). Immunofluorescence Techniques. J. Invest. Dermatol. 133, 
1–4. 

O’Donnell, P.H., Undevia, S.D., Stadler, W.M., Karrison, T.M., Nicholas, M.K., Janisch, L., 
and Ratain, M.J. (2012). A phase I study of continuous infusion cilengitide in patients with 
solid tumors. Invest. New Drugs 30, 604–610. 

Okada, Y., Hurwitz, E.E., Esposito, J.M., Brower, M.A., Nutt, C.L., and Louis, D.N. (2003). 
Selection pressures of TP53 mutation and microenvironmental location influence epidermal 
growth factor receptor gene amplification in human glioblastomas. Cancer Res. 63, 413–416. 

Oksvold, M.P., Huitfeldt, H.S., Østvold, A.C., and Skarpen, E. (2002). UV induces tyrosine 
kinase-independent internalisation and endosome arrest of the EGF receptor. J. Cell Sci. 115, 
793–803. 

Oksvold, M.P., Thien, C.B.F., Widerberg, J., Chantry, A., Huitfeldt, H.S., and Langdon, W.Y. 
(2004). UV-radiation-induced internalization of the epidermal growth factor receptor requires 
distinct serine and tyrosine residues in the cytoplasmic carboxy-terminal domain. Radiat. Res. 
161, 685–691. 

Olayioye, M.A., Neve, R.M., Lane, H.A., and Hynes, N.E. (2000). The ErbB signaling network: 
receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167. 

OncoSynergy (2019). FDA Acceptance of IND Application for Phase I Trial of OS2966 in 
Patients with Recurrent Glioblastoma. 

Oroudjev, E., Lopus, M., Wilson, L., Audette, C., Provenzano, C., Erickson, H., Kovtun, Y., 
Chari, R., and Jordan, M.A. (2010). Maytansinoid-Antibody Conjugates Induce Mitotic Arrest 
by Suppressing Microtubule Dynamic Instability. Mol. Cancer Ther. 9, 2700–2713. 

Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J., Weil, S., 
Horstmann, H., Wiestler, B., Syed, M., et al. (2015). Brain tumour cells interconnect to a 
functional and resistant network. Nature 528, 93–98. 

Ou, J., Luan, W., Deng, J., Sa, R., and Liang, H. (2012). αV Integrin Induces Multicellular 

Radioresistance in Human Nasopharyngeal Carcinoma via Activating SAPK/JNK Pathway. 
PLOS ONE 7, e38737. 

Ozawa, T., Riester, M., Cheng, Y.-K., Huse, J.T., Squatrito, M., Helmy, K., Charles, N., 
Michor, F., and Holland, E.C. (2014). Most human non-GCIMP glioblastoma subtypes evolve 
from a common proneural-like precursor glioma. Cancer Cell 26, 288–300. 

Palmieri, D., Bouadis, A., Ronchetti, R., Merino, M.J., and Steeg, P.S. (2005). The protein 
trafficking Rab-GTPase, Rab11a, modulates EGFR recycling and motility in MCF10A human 
breast epithelial cells. Cancer Res. 65, 54–54. 

Paolillo, M., and Schinelli, S. (2019). Extracellular Matrix Alterations in Metastatic Processes. 
Int. J. Mol. Sci. 20. 



207 

 

Parachoniak, C.A., and Park, M. (2009). Distinct Recruitment of Eps15 via Its Coiled-coil 
Domain Is Required For  Efficient Down-regulation of the Met Receptor Tyrosine  Kinase. J. 
Biol. Chem. 284, 8382–8394. 

Parisi, S., Corsa, P., Raguso, A., Perrone, A., Cossa, S., Munafò, T., Sanpaolo, G., Donno, E., 
Clemente, M.A., Piombino, M., et al. (2015). Temozolomide and Radiotherapy versus 
Radiotherapy Alone in High Grade Gliomas: A Very Long Term Comparative Study and 
Literature Review. BioMed Res. Int. 2015. 

Parker, J.J., Dionne, K.R., Massarwa, R., Klaassen, M., Foreman, N.K., Niswander, L., Canoll, 
P., Kleinschmidt-DeMasters, B.K., and Waziri, A. (2013). Gefitinib selectively inhibits tumor 
cell migration in EGFR-amplified human glioblastoma. Neuro-Oncol. 15, 1048–1057. 

Parker, N.R., Khong, P., Parkinson, J.F., Howell, V.M., and Wheeler, H.R. (2015). Molecular 
heterogeneity in glioblastoma: potential clinical implications. Front. Oncol. 5, 55. 

Passariello, M., Camorani, S., Vetrei, C., Cerchia, L., and De Lorenzo, C. (2019). Novel Human 
Bispecific Aptamer-Antibody Conjugates for Efficient Cancer Cell Killing. Cancers 11. 

Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, 
D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights 
intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401. 

Patel, A.P., Fisher, J.L., Nichols, E., Abd-Allah, F., Abdela, J., Abdelalim, A., Abraha, H.N., 
Agius, D., Alahdab, F., Alam, T., et al. (2019). Global, regional, and national burden of brain 
and other CNS cancer, 1990–2016: a systematic analysis for the Global Burden of Disease 
Study 2016. Lancet Neurol. 18, 376–393. 

Patil, S.S., Railkar, R., Swain, M., Atreya, H.S., Dighe, R.R., and Kondaiah, P. (2015). Novel 
anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J. 
Neurooncol. 123, 225–235. 

Paul, N.R., Jacquemet, G., and Caswell, P.T. (2015). Endocytic Trafficking of Integrins in Cell 
Migration. Curr. Biol. CB 25, R1092-1105. 

Peereboom, D., Nabors, L.B., Kumthekar, P., Badruddoja, M., Fink, K., Lieberman, F., 
Phuphanich, S., Dunbar, E., Walbert, T., Schiff, D., et al. (2018). ATIM-06. PHASE 2 TRIAL 
OF SL-701 + BEVACIZUMAB IN PATIENTS WITH PREVIOUSLY TREATED 
GLIOBLASTOMA (GBM) MEETS PRIMARY ENDPOINT OF OS-12, WITH 
PRELIMINARY CORRELATION BETWEEN LONG-TERM SURVIVAL AND TARGET-
SPECIFIC CD8+ T CELL IMMUNE RESPONSE. Neuro-Oncol. 20, vi2–vi2. 

Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., Nicoletti, I., 
Grignani, F., Pawson, T., and Pelicci, P.G. (1992). A novel transforming protein (SHC) with 
an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93–104. 

Peng, K., Dai, Q., Wei, J., Shao, G., Sun, A., Yang, W., and Lin, Q. (2016). Stress-induced 
endocytosis and degradation of epidermal growth factor receptor are two independent 
processes. Cancer Cell Int. 16, 25. 



208 

 

Perrot, G., Langlois, B., Devy, J., Jeanne, A., Verzeaux, L., Almagro, S., Sartelet, H., Hachet, 
C., Schneider, C., Sick, E., et al. (2012). LRP-1--CD44, a new cell surface complex regulating 
tumor cell adhesion. Mol. Cell. Biol. 32, 3293–3307. 

Petrás, M., Lajtos, T., Friedländer, E., Klekner, A., Pintye, E., Feuerstein, B.G., Szöllosi, J., and 
Vereb, G. (2013). Molecular interactions of ErbB1 (EGFR) and integrin-β1 in astrocytoma 
frozen sections predict clinical outcome and correlate with Akt-mediated in vitro 
radioresistance. Neuro-Oncol. 15, 1027–1040. 

Petterson, S.A., Dahlrot, R.H., Hermansen, S.K., K A Munthe, S., Gundesen, M.T., Wohlleben, 
H., Rasmussen, T., Beier, C.P., Hansen, S., and Kristensen, B.W. (2015). High levels of c-Met 
is associated with poor prognosis in glioblastoma. J. Neurooncol. 122, 517–527. 

Phillips, A.C., Boghaert, E.R., Vaidya, K.S., Mitten, M.J., Norvell, S., Falls, H.D., DeVries, 
P.J., Cheng, D., Meulbroek, J.A., Buchanan, F.G., et al. (2016). ABT-414, an Antibody-Drug 
Conjugate Targeting a Tumor-Selective EGFR Epitope. Mol. Cancer Ther. 15, 661–669. 

Piao, Y., Lu, L., and de Groot, J. (2009). AMPA receptors promote perivascular glioma 
invasion via β1 integrin–dependent adhesion to the extracellular matrix. Neuro-Oncol. 11, 260–
273. 

Piccirillo, S.G., Spiteri, I., Sottoriva, A., Touloumis, A., Ber, S., Price, S.J., Heywood, R., 
Francis, N.-J., Howarth, K.D., Collins, V.P., et al. (2015). Contributions to drug resistance in 
glioblastoma derived from malignant cells in the sub-ependymal zone. Cancer Res. 75, 194–
202. 

Pinilla-Macua, I., Grassart, A., Duvvuri, U., Watkins, S.C., and Sorkin, A. (2017). EGF receptor 
signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. ELife 6, e31993. 

Platten, M., Schilling, D., Bunse, L., Wick, A., Bunse, T., Riehl, D., Green, E., Sanghvi, K., 
Karapanagiotou-Schenkel, I., Harting, I., et al. (2018). ATIM-33. NOA-16: A FIRST-IN-MAN 
MULTICENTER PHASE I CLINICAL TRIAL OF THE GERMAN NEUROONCOLOGY 
WORKING GROUP EVALUATING A MUTATION-SPECIFIC PEPTIDE VACCINE 
TARGETING IDH1R132H IN PATIENTS WITH NEWLY DIAGNOSED MALIGNANT 
ASTROCYTOMAS. Neuro-Oncol. 20, vi8–vi9. 

Pointer, K.B., Clark, P.A., Schroeder, A.B., Salamat, M.S., Eliceiri, K.W., and Kuo, J.S. (2017). 
Association of collagen architecture with glioblastoma patient survival. J. Neurosurg. 126, 
1812–1821. 

Polakis, P. (2016). Antibody Drug Conjugates for Cancer Therapy. Pharmacol. Rev. 68, 3–19. 

Poltavets, V., Kochetkova, M., Pitson, S.M., and Samuel, M.S. (2018). The Role of the 
Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Front. 
Oncol. 8. 

Poschau, M., Dickreuter, E., Singh-Müller, J., Zscheppang, K., Eke, I., Liersch, T., and Cordes, 
N. (2015). EGFR and β1-integrin targeting differentially affect colorectal carcinoma cell 
radiosensitivity and invasion. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 116, 510–
516. 



209 

 

Powell Gray, B., Kelly, L., Ahrens, D.P., Barry, A.P., Kratschmer, C., Levy, M., and Sullenger, 
B.A. (2018). Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. 
Proc. Natl. Acad. Sci. U. S. A. 115, 4761–4766. 

Prager-Khoutorsky, M., Lichtenstein, A., Krishnan, R., Rajendran, K., Mayo, A., Kam, Z., 
Geiger, B., and Bershadsky, A.D. (2011). Fibroblast polarization is a matrix-rigidity-dependent 
process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13, 1457–1465. 

Pu, Y., Liu, Z., Lu, Y., Yuan, P., Liu, J., Yu, B., Wang, G., Yang, C.J., Liu, H., and Tan, W. 
(2015). Using DNA Aptamer Probe for Immunostaining of Cancer Frozen Tissues. Anal. 
Chem. 87, 1919–1924. 

Raab-Westphal, S., Marshall, J., and Goodman, S. (2017). Integrins as Therapeutic Targets: 
Successes and Cancers. Cancers 9, 110. 

Rahman, M., Deleyrolle, L., Vedam-Mai, V., Azari, H., Abd-El-Barr, M., and Reynolds, B.A. 
(2011). The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 68, 531–545; 
discussion 545. 

Rainero, E., Howe, J.D., Caswell, P.T., Jamieson, N.B., Anderson, K., Critchley, D.R., 
Machesky, L., and Norman, J.C. (2015). Ligand-Occupied Integrin Internalization Links 
Nutrient Signaling to Invasive Migration. Cell Rep. 10, 398–413. 

Ramakrishnan, M.S., Eswaraiah, A., Crombet, T., Piedra, P., Saurez, G., Iyer, H., and Arvind, 
A. (2009). Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of 
epithelial origin. MAbs 1, 41–48. 

Rangel, A.E., Chen, Z., Ayele, T.M., and Heemstra, J.M. (2018). In vitro selection of an XNA 
aptamer capable of small-molecule recognition. Nucleic Acids Res. 46, 8057–8068. 

Rape, A., Ananthanarayanan, B., and Kumar, S. (2014). Engineering strategies to mimic the 
glioblastoma microenvironment. Adv. Drug Deliv. Rev. 79–80, 172–183. 

Ray, A.-M., Schaffner, F., Janouskova, H., Noulet, F., Rognan, D., Lelong-Rebel, I., Choulier, 
L., Blandin, A.-F., Lehmann, M., Martin, S., et al. (2014). Single cell tracking assay reveals an 
opposite effect of selective small non-peptidic α5β1 or αvβ3/β5 integrin antagonists in U87MG 
glioma cells. Biochim. Biophys. Acta 1840, 2978–2987. 

Ray, P., Cheek, M.A., Sharaf, M.L., Li, N., Ellington, A.D., Sullenger, B.A., Shaw, B.R., and 
White, R.R. (2012). Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. 
Nucleic Acid Ther. 22, 295–305. 

Reardon, D.A., Desjardins, A., Vredenburgh, J.J., O’Rourke, D.M., Tran, D.D., Fink, K.L., 
Nabors, L.B., Li, G., Bota, D.A., Lukas, R.V., et al. (2020). Rindopepimut with Bevacizumab 
for Patients with Relapsed EGFRvIII-Expressing Glioblastoma (ReACT): Results of a Double-
Blind Randomized Phase II Trial. Clin. Cancer Res. 26, 1586–1594. 

Rechenmacher, F., Neubauer, S., Polleux, J., Mas‐Moruno, C., De Simone, M., Cavalcanti‐
Adam, E.A., Spatz, J.P., Fässler, R., and Kessler, H. (2013). Functionalizing αvβ3- or α5β1-
Selective Integrin Antagonists for Surface Coating: A Method To Discriminate Integrin 
Subtypes In Vitro. Angew. Chem. Int. Ed. 52, 1572–1575. 



210 

 

Renner, G., Janouskova, H., Noulet, F., Koenig, V., Guerin, E., Bär, S., Nuesch, J., 
Rechenmacher, F., Neubauer, S., Kessler, H., et al. (2016a). Integrin α5β1 and p53 convergent 
pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma. 
Cell Death Differ. 23, 640–653. 

Renner, G., Noulet, F., Mercier, M.-C., Choulier, L., Etienne-Selloum, N., Gies, J.-P., 
Lehmann, M., Lelong-Rebel, I., Martin, S., and Dontenwill, M. (2016b). Expression/activation 
of α5β1 integrin is linked to the β-catenin signaling pathway to drive migration in glioma cells. 
Oncotarget 7, 62194–62207. 

Reyes, S.B., Narayanan, A.S., Lee, H.S., Tchaicha, J.H., Aldape, K.D., Lang, F.F., Tolias, K.F., 
and McCarty, J.H. (2013). αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 
activation and drive glioblastoma cell invasion. Mol. Biol. Cell 24, 474–482. 

Reyes-Reyes, E.M., Teng, Y., and Bates, P.J. (2010). A new paradigm for aptamer therapeutic 
AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent 
mechanism. Cancer Res. 70, 8617–8629. 

Reynolds, A.R., Hart, I.R., Watson, A.R., Welti, J.C., Silva, R.G., Robinson, S.D., Da Violante, 
G., Gourlaouen, M., Salih, M., Jones, M.C., et al. (2009). Stimulation of tumor growth and 
angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 15, 392–
400. 

Reynolds, L.E., Wyder, L., Lively, J.C., Taverna, D., Robinson, S.D., Huang, X., Sheppard, D., 
Hynes, R.O., and Hodivala-Dilke, K.M. (2002). Enhanced pathological angiogenesis in mice 
lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med. 8, 27–34. 

Ricciuti, B., Baglivo, S., De Giglio, A., and Chiari, R. (2018). Afatinib in the first-line treatment 
of patients with non-small cell lung cancer: clinical evidence and experience. Ther. Adv. Respir. 
Dis. 12. 

Robertson, D.L., and Joyce, G.F. (1990). Selection in vitro of an RNA enzyme that specifically 
cleaves single-stranded DNA. Nature 344, 467–468. 

Robertson, J., Humphries, J.D., Paul, N.R., Warwood, S., Knight, D., Byron, A., and 
Humphries, M.J. (2017). Characterization of the Phospho-Adhesome by Mass Spectrometry-
Based Proteomics. Methods Mol. Biol. Clifton NJ 1636, 235–251. 

Rocha-Lima, C.M., and Raez, L.E. (2009). Erlotinib (Tarceva) for the Treatment of Non–Small-
Cell Lung Cancer and Pancreatic Cancer. Pharm. Ther. 34, 554–564. 

Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., Tsoi, J., 
Clark, O., Oldrini, B., Komisopoulou, E., et al. (2013). An inhibitor of mutant IDH1 delays 
growth and promotes differentiation of glioma cells. Science 340, 626–630. 

Roskoski, R. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. 
Res. 79, 34–74. 

Roxrud, I., Raiborg, C., Pedersen, N.M., Stang, E., and Stenmark, H. (2008). An endosomally 
localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor 
receptor. J. Cell Biol. 180, 1205–1218. 



211 

 

Rozakis-Adcock, M., McGlade, J., Mbamalu, G., Pelicci, G., Daly, R., Li, W., Batzer, A., 
Thomas, S., Brugge, J., Pelicci, P.G., et al. (1992). Association of the Shc and Grb2/Sem5 SH2-
containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 
360, 689–692. 

Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-
Welsh, L., and Janjić, N. (1998). 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino 
acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and 
VEGF-induced vascular permeability through interactions requiring the exon 7-encoded 
domain. J. Biol. Chem. 273, 20556–20567. 

Ruscito, A., and DeRosa, M.C. (2016). Small-Molecule Binding Aptamers: Selection 
Strategies, Characterization, and Applications. Front. Chem. 4. 

Russo, A.L., Kwon, H.-C., Burgan, W.E., Carter, D., Beam, K., Weizheng, X., Zhang, J., 
Slusher, B.S., Chakravarti, A., Tofilon, P.J., et al. (2009). In vitro and In vivo Radiosensitization 
of Glioblastoma Cells by the Poly (ADP-Ribose) Polymerase Inhibitor E7016. Clin. Cancer 
Res. Off. J. Am. Assoc. Cancer Res. 15, 607–612. 

Ryman, J.T., and Meibohm, B. (2017). Pharmacokinetics of Monoclonal Antibodies. CPT 
Pharmacomet. Syst. Pharmacol. 6, 576–588. 

Safaeian, M., Rajaraman, P., Hartge, P., Yeager, M., Linet, M., Butler, M.A., Ruder, A.M., 
Purdue, M.P., Hsing, A., Beane-Freeman, L., et al. (2013). Joint effects between five identified 
risk variants, allergy, and autoimmune conditions on glioma risk. Cancer Causes Control CCC 
24, 1885–1891. 

Samarelli, A.V., Ziegler, T., Meves, A., Fässler, R., and Böttcher, R.T. (2020). Rabgap1 
promotes recycling of active β1 integrins to support effective cell migration. J. Cell Sci. 

Sampath, D., Zabka, T.S., Misner, D.L., O’Brien, T., and Dragovich, P.S. (2015). Inhibition of 
nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. 
Pharmacol. Ther. 151, 16–31. 

Sangpairoj, K., Vivithanaporn, P., Apisawetakan, S., Chongthammakun, S., Sobhon, P., and 
Chaithirayanon, K. (2016). RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 
MAPK Pathway in Human Glioblastoma. Cell. Mol. Neurobiol. 

Santos, V.C.F. dos, Almeida, N.B.F., Sousa, T.A.S.L. de, Araujo, E.N.D., Andrade, A.S.R. de, 
and Plentz, F. (2019). Real-time PCR for direct aptamer quantification on functionalized 
graphene surfaces. Sci. Rep. 9, 1–8. 

Schaffner, F., Ray, A.M., and Dontenwill, M. (2013). Integrin α5β1, the Fibronectin Receptor, 
as a Pertinent Therapeutic Target in Solid Tumors. Cancers 5, 27–47. 

Schittenhelm, J., Schwab, E.I., Sperveslage, J., Tatagiba, M., Meyermann, R., Fend, F., 
Goodman, S.L., and Sipos, B. (2013). Longitudinal expression analysis of αv integrins in 
human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J. 
Neuropathol. Exp. Neurol. 72, 194–210. 



212 

 

Schlaepfer, D.D., Broome, M.A., and Hunter, T. (1997). Fibronectin-stimulated signaling from 
a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor 
proteins. Mol. Cell. Biol. 17, 1702–1713. 

Schmidt, M.H.H., Furnari, F.B., Cavenee, W.K., and Bögler, O. (2003). Epidermal growth 
factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, 
and internalization. Proc. Natl. Acad. Sci. 100, 6505–6510. 

Schnell, O., Krebs, B., Wagner, E., Romagna, A., Beer, A.J., Grau, S.J., Thon, N., Goetz, C., 
Kretzschmar, H.A., Tonn, J.-C., et al. (2008). Expression of integrin alphavbeta3 in gliomas 
correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol. Zurich 
Switz. 18, 378–386. 

Sebastian, S., Settleman, J., Reshkin, S.J., Azzariti, A., Bellizzi, A., and Paradiso, A. (2006). 
The complexity of targeting EGFR signalling in cancer: From expression to turnover. Biochim. 
Biophys. Acta BBA - Rev. Cancer 1766, 120–139. 

Sechi, S., Frappaolo, A., Belloni, G., Colotti, G., and Giansanti, M.G. (2015). The multiple 
cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6, 3493–3506. 

Seymour, T., Nowak, A., and Kakulas, F. (2015). Targeting Aggressive Cancer Stem Cells in 
Glioblastoma. Front. Oncol. 5. 

Sheng, Q., and Liu, J. (2011). The therapeutic potential of targeting the EGFR family in 
epithelial ovarian cancer. Br. J. Cancer 104, 1241–1245. 

Shu, D., Li, H., Shu, Y., Xiong, G., Carson, W.E., Haque, F., Xu, R., and Guo, P. (2015). 
Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing 
RNA Nanotechnology. ACS Nano 9, 9731–9740. 

Shui, B., Tao, D., Cheng, J., Mei, Y., Jaffrezic-Renault, N., and Guo, Z. (2018). A novel 
electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum. 
Analyst 143, 3549–3554. 

Sigismund, S., Woelk, T., Puri, C., Maspero, E., Tacchetti, C., Transidico, P., Di Fiore, P.P., 
and Polo, S. (2005). Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. 
Acad. Sci. U. S. A. 102, 2760–2765. 

Sigismund, S., Argenzio, E., Tosoni, D., Cavallaro, E., Polo, S., and Di Fiore, P.P. (2008). 
Clathrin-Mediated Internalization Is Essential for Sustained EGFR Signaling but Dispensable 
for Degradation. Dev. Cell 15, 209–219. 

Simmons, M.L., Lamborn, K.R., Takahashi, M., Chen, P., Israel, M.A., Berger, M.S., Godfrey, 
T., Nigro, J., Prados, M., Chang, S., et al. (2001). Analysis of complex relationships between 
age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res. 
61, 1122–1128. 

Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., 
Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. 
Nature 432, 396–401. 



213 

 

Siwak, D.R., Carey, M., Hennessy, B.T., Nguyen, C.T., McGahren Murray, M.J., Nolden, L., 
and Mills, G.B. (2010). Targeting the Epidermal Growth Factor Receptor in Epithelial Ovarian 
Cancer: Current Knowledge and Future Challenges. J. Oncol. 2010. 

Smolková, K., and Ježek, P. (2012). The Role of Mitochondrial NADPH-Dependent Isocitrate 
Dehydrogenase in Cancer Cells. Int. J. Cell Biol. 2012. 

Snuderl, M., Fazlollahi, L., Le, L.P., Nitta, M., Zhelyazkova, B.H., Davidson, C.J., 
Akhavanfard, S., Cahill, D.P., Aldape, K.D., Betensky, R.A., et al. (2011). Mosaic 
Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma. Cancer Cell 20, 
810–817. 

Solomón, M.T., Selva, J.C., Figueredo, J., Vaquer, J., Toledo, C., Quintanal, N., Salva, S., 
Domíngez, R., Alert, J., Marinello, J.J., et al. (2013). Radiotherapy plus nimotuzumab or 
placebo in the treatment of high grade glioma patients: results from a randomized, double blind 
trial. BMC Cancer 13, 299. 

Soria, J.-C., Felip, E., Cobo, M., Lu, S., Syrigos, K., Lee, K.H., Göker, E., Georgoulias, V., Li, 
W., Isla, D., et al. (2015). Afatinib versus erlotinib as second-line treatment of patients with 
advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised 
controlled phase 3 trial. Lancet Oncol. 16, 897–907. 

Sorkin, A., and Goh, L.K. (2008). Endocytosis and intracellular trafficking of ErbBs. Exp. Cell 
Res. 314, 3093–3106. 

Sottoriva, A., Spiteri, I., Piccirillo, S.G.M., Touloumis, A., Collins, V.P., Marioni, J.C., Curtis, 
C., Watts, C., and Tavaré, S. (2013). Intratumor heterogeneity in human glioblastoma reflects 
cancer evolutionary dynamics. Proc. Natl. Acad. Sci. U. S. A. 110, 4009–4014. 

Sousa, L.P., Lax, I., Shen, H., Ferguson, S.M., De Camilli, P., and Schlessinger, J. (2012). 
Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs 
primarily at the plasma membrane. Proc. Natl. Acad. Sci. U. S. A. 109, 4419–4424. 

Souza, A.G., Marangoni, K., Fujimura, P.T., Alves, P.T., Silva, M.J., Bastos, V.A.F., Goulart, 
L.R., and Goulart, V.A. (2016). 3D Cell-SELEX: Development of RNA aptamers as molecular 
probes for PC-3 tumor cell line. Exp. Cell Res. 341, 147–156. 

Stevens, L.E., Cheung, W.K.C., Adua, S.J., Arnal-Estapé, A., Zhao, M., Liu, Z., Brewer, K., 
Herbst, R.S., and Nguyen, D.X. (2017). Extracellular Matrix Receptor Expression in Subtypes 
of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Res. 77, 1905–
1917. 

Stupack, D.G., and Cheresh, D.A. (2003). Apoptotic cues from the extracellular matrix: 
regulators of angiogenesis. Oncogene 22, 9022–9029. 

Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., 
Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus 
Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 352, 987–996. 

Stupp, R., Hegi, M.E., Neyns, B., Goldbrunner, R., Schlegel, U., Clement, P.M.J., Grabenbauer, 
G.G., Ochsenbein, A.F., Simon, M., Dietrich, P.-Y., et al. (2010). Phase I/IIa study of 



214 

 

cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and 
temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. 
Oncol. Off. J. Am. Soc. Clin. Oncol. 28, 2712–2718. 

Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y.-K., Aldape, K.D., Lhermitte, 
B., Pietsch, T., Grujicic, D., et al. (2014). Cilengitide combined with standard treatment for 
patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC 
EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet 
Oncol. 15, 1100–1108. 

Sun, H., Tan, W., and Zu, Y. (2016). Aptamers: versatile molecular recognition probes for 
cancer detection. The Analyst 141, 403–415. 

Sun, J., Wang, X.-Y., Lv, P.-C., and Zhu, H.-L. (2015). Discovery of a series of novel 
phenylpiperazine derivatives as EGFR TK inhibitors. Sci. Rep. 5. 

Sun, L., Xu, X., Chen, Y., Zhou, Y., Tan, R., Qiu, H., Jin, L., Zhang, W., Fan, R., Hong, W., et 
al. (2018). Rab34 regulates adhesion, migration, and invasion of breast cancer cells. Oncogene 
37, 3698–3714. 

Sun, Z., Costell, M., and Fässler, R. (2019). Integrin activation by talin, kindlin and mechanical 
forces. Nat. Cell Biol. 21, 25–31. 

Sundborger, A.C., and Hinshaw, J.E. (2014). Regulating dynamin dynamics during 
endocytosis. F1000Prime Rep. 6. 

Szerlip, N.J., Pedraza, A., Chakravarty, D., Azim, M., McGuire, J., Fang, Y., Ozawa, T., 
Holland, E.C., Huse, J.T., Jhanwar, S., et al. (2012). Intratumoral heterogeneity of receptor 
tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations 
with distinct growth factor response. Proc. Natl. Acad. Sci. 109, 3041–3046. 

Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome Biol. 8, 215. 

Takenaka, M., Okumura, Y., Amino, T., Miyachi, Y., Ogino, C., and Kondo, A. (2017). DNA-
duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg. Med. 
Chem. Lett. 27, 954–957. 

Tamimi, A.F., and Juweid, M. (2017). Epidemiology and Outcome of Glioblastoma. In 
Glioblastoma, S. De Vleeschouwer, ed. (Brisbane (AU): Codon Publications), p. 

Tan, W., and Fang, X. (2015). Aptamers Selected by Cell-SELEX for Theranostics (Springer). 

Tan, X., Thapa, N., Sun, Y., and Anderson, R.A. (2015). A Kinase-Independent Role for EGF 
Receptor in Autophagy Initiation. Cell 160, 145–160. 

Tan, X., Lambert, P.F., Rapraeger, A.C., and Anderson, R.A. (2016). Stress-Induced EGFR 
Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol. 26, 352–
366. 

Tarone, G., Hirsch, E., Brancaccio, M., De Acetis, M., Barberis, L., Balzac, F., Retta, S.F., 
Botta, C., Altruda, F., Silengo, L., et al. (2000). Integrin function and regulation in development. 
Int. J. Dev. Biol. 44, 725–731. 



215 

 

Tawiah, K.D., Porciani, D., and Burke, D.H. (2017). Toward the Selection of Cell Targeting 
Aptamers with Extended Biological Functionalities to Facilitate Endosomal Escape of Cargoes. 
Biomedicines 5. 

Taylor, T.E., Furnari, F.B., and Cavenee, W.K. (2012). Targeting EGFR for treatment of 
glioblastoma: molecular basis to overcome resistance. Curr. Cancer Drug Targets 12, 197–209. 

Thakkar, J.P., Dolecek, T.A., Horbinski, C., Ostrom, Q.T., Lightner, D.D., Barnholtz-Sloan, 
J.S., and Villano, J.L. (2014). Epidemiologic and Molecular Prognostic Review of 
Glioblastoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored 
Am. Soc. Prev. Oncol. 23, 1985–1996. 

Theret, L., Jeanne, A., Langlois, B., Hachet, C., David, M., Khrestchatisky, M., Devy, J., Hervé, 
E., Almagro, S., and Dedieu, S. (2017). Identification of LRP-1 as an endocytosis and recycling 
receptor for β1-integrin in thyroid cancer cells. Oncotarget 8, 78614–78632. 

Thiel, K.W., Hernandez, L.I., Dassie, J.P., Thiel, W.H., Liu, X., Stockdale, K.R., Rothman, 
A.M., Hernandez, F.J., McNamara, J.O., and Giangrande, P.H. (2012). Delivery of chemo-
sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 40, 
6319–6337. 

Thompson, D.M., and Gill, G.N. (1985). The EGF receptor: structure, regulation and potential 
role in malignancy. Cancer Surv. 4, 767–788. 

Thuault, S., Hayashi, S., Lagirand-Cantaloube, J., Plutoni, C., Comunale, F., Delattre, O., 
Relaix, F., and Gauthier-Rouvière, C. (2013). P-cadherin is a direct PAX3-FOXO1A target 
involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 32, 1876–1887. 

Tomas, A., Futter, C.E., and Eden, E.R. (2014). EGF receptor trafficking: consequences for 
signaling and cancer. Trends Cell Biol. 24, 26–34. 

Tomas, A., Vaughan, S.O., Burgoyne, T., Sorkin, A., Hartley, J.A., Hochhauser, D., and Futter, 
C.E. (2015). WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from 
the canonical endocytic pathway. Nat. Commun. 6, 7324. 

Tomas, A., Jones, S., Vaughan, S.O., Hochhauser, D., and Futter, C.E. (2017). Stress-specific 
p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation. 
J. Cell Sci. 130, 2481–2490. 

Tong, X., Yang, P., Wang, K., Liu, Y., Liu, X., Shan, X., Huang, R., Zhang, K., and Wang, J. 
(2019). Survivin is a prognostic indicator in glioblastoma and may be a target of microRNA-
218. Oncol. Lett. 18, 359–367. 

Totaro, A., Panciera, T., and Piccolo, S. (2018). YAP/TAZ upstream signals and downstream 
responses. Nat. Cell Biol. 20, 888–899. 

Tubbesing, K., Ward, J., Abini-Agbomson, R., Malhotra, A., Rudkouskaya, A., Warren, J., 
Lamar, J., Martino, N., Adam, A.P., and Barroso, M. (2020). Complex Rab4-Mediated 
Regulation of Endosomal Size and EGFR Activation. Mol. Cancer Res. 18, 757–773. 

Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: 
RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510. 



216 

 

Umehara, T., Fukuda, K., Nishikawa, F., Sekiya, S., Kohara, M., Hasegawa, T., and Nishikawa, 
S. (2004). Designing and analysis of a potent bi-functional aptamers that inhibit protease and 
helicase activities of HCV NS3. Nucleic Acids Symp. Ser. 2004 195–196. 

Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., 
Stetler-Stevenson, W.G., and Albini, A. (1998). TIMP-2 over-expression reduces invasion and 
angiogenesis and protects B16F10 melanoma cells from apoptosis. Int. J. Cancer 75, 246–253. 

Van Den Bent, M., Eoli, M., Sepulveda, J.M., Smits, M., Walenkamp, A., Frenel, J.-S., 
Franceschi, E., Clement, P.M., Chinot, O., De Vos, F., et al. (2020). INTELLANCE 2/EORTC 
1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide 
or lomustine in recurrent EGFR amplified glioblastoma. Neuro-Oncol. 22, 684–693. 

Vanhaesebroeck, B., Stephens, L., and Hawkins, P. (2012). PI3K signalling: the path to 
discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203. 

Vanlandingham, P.A., and Ceresa, B.P. (2009). Rab7 regulates late endocytic trafficking 
downstream of multivesicular body biogenesis and cargo sequestration. J. Biol. Chem. 284, 
12110–12124. 

Varkouhi, A.K., Scholte, M., Storm, G., and Haisma, H.J. (2011). Endosomal escape pathways 
for delivery of biologicals. J. Control. Release Off. J. Control. Release Soc. 151, 220–228. 

Vater, A., and Klussmann, S. (2015). Turning mirror-image oligonucleotides into drugs: the 
evolution of Spiegelmer(®) therapeutics. Drug Discov. Today 20, 147–155. 

Vehlow, A., and Cordes, N. (2013). Invasion as target for therapy of glioblastoma multiforme. 
Biochim. Biophys. Acta 1836, 236–244. 

Velpula, K.K., Dasari, V.R., Asuthkar, S., Gorantla, B., and Tsung, A.J. (2012). EGFR and c-
Met Cross Talk in Glioblastoma and Its Regulation by Human Cord Blood Stem Cells. Transl. 
Oncol. 5, 379-IN18. 

Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., 
Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies clinically 
relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, 
and NF1. Cancer Cell 17, 98–110. 

Verma, N., Rai, A.K., Kaushik, V., Brünnert, D., Chahar, K.R., Pandey, J., and Goyal, P. 
(2016). Identification of gefitinib off-targets using a structure-based systems biology approach; 
their validation with reverse docking and retrospective data mining. Sci. Rep. 6, 33949. 

Wakeling, A.E., Guy, S.P., Woodburn, J.R., Ashton, S.E., Curry, B.J., Barker, A.J., and Gibson, 
K.H. (2002). ZD1839 (Iressa): An Orally Active Inhibitor of Epidermal Growth Factor 
Signaling with Potential for Cancer Therapy. Cancer Res. 62, 5749–5754. 

Wallukat, G., Müller, J., Haberland, A., Berg, S., Schulz, A., Freyse, E.-J., Vetter, R., 
Salzsieder, E., Kreutz, R., and Schimke, I. (2016). Aptamer BC007 for neutralization of 
pathogenic autoantibodies directed against G-protein coupled receptors: A vision of future 
treatment of patients with cardiomyopathies and positivity for those autoantibodies. 
Atherosclerosis 244, 44–47. 



217 

 

Walsh, A.M., and Lazzara, M.J. (2013). Regulation of EGFR trafficking and cell signaling by 
Sprouty2 and MIG6 in lung cancer cells. J. Cell Sci. 126, 4339–4348. 

Walsh, A.M., Kapoor, G.S., Buonato, J.M., Mathew, L.K., Bi, Y., Davuluri, R.V., Martinez-
Lage, M., Simon, M.C., O’Rourke, D.M., and Lazzara, M.J. (2015). Sprouty2 Drives Drug 
Resistance and Proliferation in Glioblastoma. Mol. Cancer Res. MCR 13, 1227–1237. 

Wan, L.-Y., Yuan, W.-F., Ai, W.-B., Ai, Y.-W., Wang, J.-J., Chu, L.-Y., Zhang, Y.-Q., and 
Wu, J.-F. (2019). An exploration of aptamer internalization mechanisms and their applications 
in drug delivery. Expert Opin. Drug Deliv. 16, 207–218. 

Wang, X., and Gerdes, H.-H. (2015). Transfer of mitochondria via tunneling nanotubes rescues 
apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191. 

Wang, H., Wang, H., Zhang, W., Huang, H.J., Liao, W.S.L., and Fuller, G.N. (2004a). Analysis 
of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab. Investig. 
J. Tech. Methods Pathol. 84, 941–951. 

Wang, H., Song, X., Huang, Q., Xu, T., Yun, D., Wang, Y., Hu, L., Yan, Y., Chen, H., Lu, D., 
et al. (2019a). LGALS3 Promotes Treatment Resistance in Glioblastoma and Is Associated with 
Tumor Risk and Prognosis. Cancer Epidemiol. Prev. Biomark. 28, 760–769. 

Wang, J., Zhou, P., Wang, X., Yu, Y., Zhu, G., Zheng, L., Xu, Z., Li, F., You, Q., Yang, Q., et 
al. (2019b). Rab25 promotes erlotinib resistance by activating the β1 integrin/AKT/β-catenin 
pathway in NSCLC. Cell Prolif. e12592. 

Wang, Q., Hu, B., Hu, X., Kim, H., Squatrito, M., Scarpace, L., deCarvalho, A.C., Lyu, S., Li, 
P., Li, Y., et al. (2017a). Tumor evolution of glioma intrinsic gene expression subtype associates 
with immunological changes in the microenvironment. Cancer Cell 32, 42-56.e6. 

Wang, S., Cang, S., and Liu, D. (2016). Third-generation inhibitors targeting EGFR T790M 
mutation in advanced non-small cell lung cancer. J. Hematol. Oncol.J Hematol Oncol 9. 

Wang, X., Wang, Z., Zhang, Y., Wang, Y., Zhang, H., Xie, S., Xie, P., Yu, R., and Zhou, X. 
(2019c). Golgi phosphoprotein 3 sensitizes the tumour suppression effect of gefitinib on 
gliomas. Cell Prolif. 52, e12636. 

Wang, Y., Pennock, S., Chen, X., and Wang, Z. (2002). Endosomal Signaling of Epidermal 
Growth Factor Receptor Stimulates Signal Transduction Pathways Leading to Cell Survival. 
Mol. Cell. Biol. 22, 7279–7290. 

Wang, Y., Fei, D., Vanderlaan, M., and Song, A. (2004b). Biological activity of bevacizumab, 
a humanized anti-VEGF antibody in vitro. Angiogenesis 7, 335–345. 

Wang, Y., Arjonen, A., Pouwels, J., Ta, H., Pausch, P., Bange, G., Engel, U., Pan, X., Fackler, 
O.T., Ivaska, J., et al. (2015). Formin-like 2 Promotes β1-Integrin Trafficking and Invasive 
Motility Downstream of PKCα. Dev. Cell 34, 475–483. 

Wang, Y., Chen, X., Tian, B., Liu, J., Yang, L., Zeng, L., Chen, T., Hong, A., and Wang, X. 
(2017b). Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics 
Delivery to Breast Cancer. Theranostics 7, 1360–1372. 



218 

 

Weihua, Z., Tsan, R., Huang, W.-C., Wu, Q., Chiu, C.-H., Fidler, I.J., and Hung, M.-C. (2008). 
Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 
13, 385–393. 

Weil, S., Osswald, M., Solecki, G., Grosch, J., Jung, E., Lemke, D., Ratliff, M., Hänggi, D., 
Wick, W., and Winkler, F. (2017). Tumor microtubes convey resistance to surgical lesions and 
chemotherapy in gliomas. Neuro-Oncol. 19, 1316–1326. 

Weller, M., Nabors, L.B., Gorlia, T., Leske, H., Rushing, E., Bady, P., Hicking, C., Perry, J., 
Hong, Y.-K., Roth, P., et al. (2016). Cilengitide in newly diagnosed glioblastoma: biomarker 
expression and outcome. Oncotarget 7, 15018–15032. 

Weller, M., Butowski, N., Tran, D.D., Recht, L.D., Lim, M., Hirte, H., Ashby, L., Mechtler, L., 
Goldlust, S.A., Iwamoto, F., et al. (2017). Rindopepimut with temozolomide for patients with 
newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, 
international phase 3 trial. Lancet Oncol. 18, 1373–1385. 

Westphal, M., Heese, O., Steinbach, J.P., Schnell, O., Schackert, G., Mehdorn, M., Schulz, D., 
Simon, M., Schlegel, U., Senft, C., et al. (2015). A randomised, open label phase III trial with 
nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment 
of newly diagnosed adult glioblastoma. Eur. J. Cancer Oxf. Engl. 1990 51, 522–532. 

Wheeler, D.B., Zoncu, R., Root, D.E., Sabatini, D.M., and Sawyers, C.L. (2015). Identification 
of an oncogenic RAB protein. Science 350, 211–217. 

Whitman, M., Downes, C.P., Keeler, M., Keller, T., and Cantley, L. (1988). Type I 
phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-
phosphate. Nature 332, 644–646. 

Wick, W., Platten, M., and Weller, M. (2009). New (alternative) temozolomide regimens for 
the treatment of glioma. Neuro-Oncol. 11, 69–79. 

Wick, W., Puduvalli, V.K., Chamberlain, M.C., van den Bent, M.J., Carpentier, A.F., Cher, 
L.M., Mason, W., Weller, M., Hong, S., Musib, L., et al. (2010). Phase III study of enzastaurin 
compared with lomustine in the treatment of recurrent intracranial glioblastoma. J. Clin. Oncol. 
Off. J. Am. Soc. Clin. Oncol. 28, 1168–1174. 

Wieduwilt, M.J., and Moasser, M.M. (2008). The epidermal growth factor receptor family: 
Biology driving targeted therapeutics. Cell. Mol. Life Sci. 65, 1566–1584. 

Williams, K.C., and Coppolino, M.G. (2014). SNARE-dependent interaction of Src, EGFR and 
β1 integrin regulates invadopodia formation and tumor cell invasion. J. Cell Sci. 127, 1712–
1725. 

Williams, R.L., and Urbé, S. (2007). The emerging shape of the ESCRT machinery. Nat. Rev. 
Mol. Cell Biol. 8, 355–368. 

Winograd-Katz, S.E., and Levitzki, A. (2006). Cisplatin induces PKB/Akt activation and p38 
MAPK phosphorylation of the EGF receptor. Oncogene 25, 7381–7390. 

Winograd-Katz, S.E., Fässler, R., Geiger, B., and Legate, K.R. (2014). The integrin adhesome: 
from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15, 273–288. 



219 

 

Wu, X., Liang, H., Tan, Y., Yuan, C., Li, S., Li, X., Li, G., Shi, Y., and Zhang, X. (2014). Cell-
SELEX Aptamer for Highly Specific Radionuclide Molecular Imaging of Glioblastoma In 
Vivo. PLoS ONE 9. 

Wu, X., Zhao, Z., Bai, H., Fu, T., Yang, C., Hu, X., Liu, Q., Champanhac, C., Teng, I.-T., Ye, 
M., et al. (2015). DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for in 
vivo Imaging and Clinical Tissue Recognition. Theranostics 5, 985–994. 

Xiang, D., Zheng, C., Zhou, S.-F., Qiao, S., Tran, P.H.-L., Pu, C., Li, Y., Kong, L., Kouzani, 
A.Z., Lin, J., et al. (2015). Superior Performance of Aptamer in Tumor Penetration over 
Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors. Theranostics 5, 1083–
1097. 

Xiao, T., Takagi, J., Coller, B.S., Wang, J.-H., and Springer, T.A. (2004). Structural basis for 
allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67. 

Xiong, J., Zhou, L., Yang, M., Lim, Y., Zhu, Y., Fu, D., Li, Z., Zhong, J., Xiao, Z., and Zhou, 
X.-F. (2013). ProBDNF and its receptors are upregulated in glioma and inhibit the growth of 
glioma cells in vitro. Neuro-Oncol. 15, 990–1007. 

Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., 
Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of 
integrin alpha Vbeta3. Science 294, 339–345. 

Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, 
M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex 
with an Arg-Gly-Asp ligand. Science 296, 151–155. 

Xu, H., Zong, H., Ma, C., Ming, X., Shang, M., Li, K., He, X., Du, H., and Cao, L. (2017a). 
Epidermal growth factor receptor in glioblastoma. Oncol. Lett. 14, 512–516. 

Xu, M.J., Johnson, D.E., and Grandis, J.R. (2017b). EGFR-targeted therapies in the post-
genomic era. Cancer Metastasis Rev. 36, 463–473. 

Yamada, H., Takeda, T., Michiue, H., Abe, T., and Takei, K. (2016). Actin bundling by 
dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-
small cell lung carcinoma cells. Int. J. Oncol. 49, 877–886. 

Yamada, S., Bu, X.-Y., Khankaldyyan, V., Gonzales-Gomez, I., McComb, J.G., and Laug, 
W.E. (2006). Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma 
growth in nude mice. Neurosurgery 59, 1304–1312; discussion 1312. 

Yamaoka, T., Ohmori, T., Inoue, F., Kadofuku, T., Ando, K., Ishida, H., Hosaka, T., Shirai, T., 
Matsuda, M., Noda, M., et al. (2004). Enhancement of Epidermal Growth Factor Receptor-
degradation Pathway in Acquired Gefitinib-resistant Human Non-small Cell Lung Cancer Cell 
Lines. Showa Univ. J. Med. Sci. 16, 147–159. 

Yang, R., Li, X., Wu, Y., Zhang, G., Liu, X., Li, Y., Bao, Y., Yang, W., and Cui, H. (2020). 
EGFR activates GDH1 transcription to promote glutamine metabolism through 
MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39, 2975–2986. 



220 

 

Yang, W., Wu, P., Ma, J., Liao, M., Wang, X., Xu, L., Xu, M., and Yi, L. (2019). Sortilin 
promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist 
pathway. Cell Death Dis. 10. 

Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., and Xu, Y. (2015). Selectively assaying CEA 
based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. 
Biosens. Bioelectron. 64, 345–351. 

Yang, Y., Guo, Q., Chen, X., Zhang, J., Guo, H., Qian, W., Hou, S., Dai, J., Li, B., Guo, Y., et 
al. (2016). Preclinical studies of a Pro-antibody-drug conjugate designed to selectively target 
EGFR-overexpressing tumors with improved therapeutic efficacy. MAbs 8, 405–413. 

Yang, Y., Yang, X., Zou, X., Wu, S., Wan, D., Cao, A., Liao, L., Yuan, Q., and Duan, X. (2017). 
Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible 
Biosensors. Adv. Funct. Mater. 27, 1604096. 

Ye, B., Duan, B., Deng, W., Wang, Y., Chen, Y., Cui, J., Sun, S., Zhang, Y., Du, J., Gu, L., et 
al. (2018). EGF Stimulates Rab35 Activation and Gastric Cancer Cell Migration by Regulating 
DENND1A-Grb2 Complex Formation. Front. Pharmacol. 9. 

Ye, C., Pan, B., Xu, H., Zhao, Z., Shen, J., Lu, J., Yu, R., and Liu, H. (2019). Co-delivery of 
GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted 
therapy for glioma. J. Mol. Med. Berl. Ger. 

Ye, X., Shi, H., He, X., Wang, K., He, D., Yan, L., Xu, F., Lei, Y., Tang, J., and Yu, Y. (2015). 
Iodide-Responsive Cu–Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive 
Detection of Target Cancer Cells. Anal. Chem. 87, 7141–7147. 

Yeh, Y.-C., Ling, J.-Y., Chen, W.-C., Lin, H.-H., and Tang, M.-J. (2017). Mechanotransduction 
of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of 
caveolin-1 and β1 integrin. Sci. Rep. 7, 1–14. 

Ying, H., Zheng, H., Scott, K., Wiedemeyer, R., Yan, H., Lim, C., Huang, J., Dhakal, S., 
Ivanova, E., Xiao, Y., et al. (2010). Mig-6 controls EGFR trafficking and suppresses 
gliomagenesis. Proc. Natl. Acad. Sci. U. S. A. 107, 6912–6917. 

Yu, W., Zhang, L., Wei, Q., and Shao, A. (2020). O6-Methylguanine-DNA Methyltransferase 
(MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol. 9. 

Zahonero, C., Aguilera, P., Ramírez-Castillejo, C., Pajares, M., Bolós, M.V., Cantero, D., 
Perez-Nuñez, A., Hernández-Laín, A., Sánchez-Gómez, P., and Sepúlveda, J.M. (2015). 
Preclinical Test of Dacomitinib, an Irreversible EGFR Inhibitor, Confirms Its Effectiveness for 
Glioblastoma. Mol. Cancer Ther. 14, 1548–1558. 

Zaidel-Bar, R., and Geiger, B. (2010). The switchable integrin adhesome. J. Cell Sci. 123, 
1385–1388. 

Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., and Geiger, B. (2007). Functional atlas 
of the integrin adhesome. Nat. Cell Biol. 9, 858–867. 

Zamay, G.S., Ivanchenko, T.I., Zamay, T.N., Grigorieva, V.L., Glazyrin, Y.E., Kolovskaya, 
O.S., Garanzha, I.V., Barinov, A.A., Krat, A.V., Mironov, G.G., et al. (2017). DNA Aptamers 



221 

 

for the Characterization of Histological Structure of Lung Adenocarcinoma. Mol. Ther. Nucleic 
Acids 6, 150–162. 

Zamay, T.N., Kolovskaya, O.S., Glazyrin, Y.E., Zamay, G.S., Kuznetsova, S.A., Spivak, E.A., 
Wehbe, M., Savitskaya, A.G., Zubkova, O.A., Kadkina, A., et al. (2014). DNA-aptamer 
targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther. 24, 160–170. 

Zeng, Z., Zhang, P., Zhao, N., Sheehan, A.M., Tung, C.-H., Chang, C.-C., and Zu, Y. (2010). 
Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-
embedded tissues. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc 23, 1553–1558. 

Zhang, K., and Chen, J. (2012). The regulation of integrin function by divalent cations. Cell 
Adhes. Migr. 6, 20–29. 

Zhang, F., Li, S., Cao, K., Wang, P., Su, Y., Zhu, X., and Wan, Y. (2015a). A Microfluidic 
Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe. Sensors 
15, 13839–13850. 

Zhang, H., Zhou, Y., Cui, B., Liu, Z., and Shen, H. (2020a). Novel insights into astrocyte-
mediated signaling of proliferation, invasion and tumor immune microenvironment in 
glioblastoma. Biomed. Pharmacother. 126, 110086. 

Zhang, J.G., Eguchi, J., Kruse, C.A., Gomez, G.G., Fakhrai, H., Schroter, S., Ma, W., Hoa, N., 
Minev, B., Delgado, C., et al. (2007a). Antigenic profiling of glioma cells to generate allogeneic 
vaccines or dendritic cell-based therapeutics. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 
13, 566–575. 

Zhang, L., Xie, B., Qiu, Y., Jing, D., Zhang, J., Duan, Y., Li, Z., Fan, M., He, J., Qiu, Y., et al. 
(2020b). Rab25-Mediated EGFR Recycling Causes Tumor Acquired Radioresistance. IScience 
23. 

Zhang, X., Ding, Z., Mo, J., Sang, B., Shi, Q., Hu, J., Xie, S., Zhan, W., Lu, D., Yang, M., et 
al. (2015b). GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 
pathway in vitro. Mol. Carcinog. 54, 1252–1263. 

Zhang, Y., Gao, H., Zhou, W., Sun, S., Zeng, Y., Zhang, H., Liang, L., Xiao, X., Song, J., Ye, 
M., et al. (2018). Targeting c‐met receptor tyrosine kinase by the DNA aptamer SL1 as a 
potential novel therapeutic option for myeloma. J. Cell. Mol. Med. 22, 5978–5990. 

Zhang, Y., Lai, B.S., and Juhas, M. (2019). Recent Advances in Aptamer Discovery and 
Applications. Mol. Basel Switz. 24. 

Zhang, Y.-W., Staal, B., Su, Y., Swiatek, P., Zhao, P., Cao, B., Resau, J., Sigler, R., Bronson, 
R., and Vande Woude, G.F. (2007b). Evidence that MIG-6 is a tumor-suppressor gene. 
Oncogene 26, 269–276. 

Zhao, B., Wu, P., Zhang, H., and Cai, C. (2015). Designing activatable aptamer probes for 
simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens. 
Bioelectron. 68, 763–770. 

Zheng, J., Duan, B., Sun, S., Cui, J., Du, J., and Zhang, Y. (2017). Folliculin Interacts with 
Rab35 to Regulate EGF-Induced EGFR Degradation. Front. Pharmacol. 8. 



222 

 

Zhou, J., and Rossi, J. (2017). Aptamers as targeted therapeutics: current potential and 
challenges. Nat. Rev. Drug Discov. 16, 181–202. 

Zhou, W., and Wahl, D.R. (2019). Metabolic Abnormalities in Glioblastoma and Metabolic 
Strategies to Overcome Treatment Resistance. Cancers 11. 

Zhou, X., Xie, S., Wu, S., Qi, Y., Wang, Z., Zhang, H., Lu, D., Wang, X., Dong, Y., Liu, G., et 
al. (2017). Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated 
endocytosis and degradation of epidermal growth factor receptor. Neuro-Oncol. 19, 1628–
1639. 

Zhu, Z. (2007). Targeted cancer therapies based on antibodies directed against epidermal 
growth factor receptor: status and perspectives. Acta Pharmacol. Sin. 28, 1476–1493. 

Zhu, G., and Chen, X. (2018). Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 
65–78. 

Zhu, G., Niu, G., and Chen, X. (2015a). Aptamer-Drug Conjugates. Bioconjug. Chem. 26, 
2186–2197. 

Zhu, Q., Liu, G., and Kai, M. (2015b). DNA Aptamers in the Diagnosis and Treatment of 
Human Diseases. Molecules 20, 20979–20997. 

Zhu, W., Zhou, L., Qian, J.-Q., Qiu, T.-Z., Shu, Y.-Q., and Liu, P. (2014). Temozolomide for 
treatment of brain metastases: A review of 21 clinical trials. World J. Clin. Oncol. 5, 19–27. 

Zhu, Y., Xu, Z., Gao, J., Ji, W., and Zhang, J. (2020). An antibody-aptamer sandwich cathodic 
photoelectrochemical biosensor for the detection of progesterone. Biosens. Bioelectron. 160, 
112210. 

Zscheppang, K., Kurth, I., Wachtel, N., Dubrovska, A., Kunz-Schughart, L.A., and Cordes, N. 
(2016). Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and 
Neck Cancer Cells. J. Cancer 7, 736–745. 

Zwang, Y., and Yarden, Y. (2006). p38 MAP kinase mediates stress-induced internalization of 
EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195–4206. 

 

  



223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Résume 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 

 

Synopsis 

Ce manuscrit de thèse, intitulé "Stratégies de l'endocytose non physiologique de l’EGFR et de 

vectorisation par des aptamères", est présenté ainsi : 

Introduction : 

Les caractéristiques des glioblastomes (GBM) et ses principaux challenges thérapeutiques sont 

présentés, puis deux cibles thérapeutiques des GBM sont décrites : l’EGFR (Epidermal Growth 

Factor Receptor) et l’intégrine α5β1. Enfin, les aptamères, petites molécules d'acides 

nucléiques, également appelés anticorps chimiques, sont décrits en tant qu’alternative aux 

anticorps comme outils de vectorisation et de détection. 

Matériel et Méthodes : 

Une partie méthodologie montre les expériences réalisées durant mon doctorat. 

Résultats : 

Les résultats sont présentés sous la forme de trois articles scientifiques, 2 publiés et 1 soumis et 

d’une section de résultats non publiés. Les deux objectifs principaux de mon doctorat sont : 

(1) la description de l'effet des inhibiteurs de l’activité tyrosine kinase (TKI) de l'EGFR, utilisés 

en clinique, sur l'endocytose de deux cibles thérapeutiques dans des modèles cellulaires de 

GBM. Nous avons d'abord décrit que les TKI de l'EGFR déclenchent une endocytose non-

physiologique de l'EGFR et de l'intégrine α5β1, qui peut moduler l'invasion des cellules de 

gliome sous traitement thérapeutique (Blandin, Cruz da Silva et al., 2020). Afin de mieux 

comprendre le mécanisme moléculaire, nous avons identifié plusieurs protéines impliquées 

dans cette endocytose non physiologique (Cruz da Silva et al, soumis à FASEB J). 

(2) la validation d’aptamères ciblant l'intégrine α5β1 ou l’EGFR pour le diagnostic et la 

délivrance intracellulaire d'agents cytotoxiques. Nous avons d'abord décrit et caractérisé 

l'aptamère H02, un nouvel aptamère ciblant l'intégrine α5. Son affinité et sa spécificité vis-à-

vis des cellules GBM et des tissus tumoraux exprimant l'intégrine α5 ont été déterminées 

(Fechter, Cruz Da Silva et al, 2019). Les aptamères ciblant l'EGFR sont décrits et étudiés dans 

la 4e section. Les aptamères ciblant l’intégrine α5 ou l'EGFR ont été utilisés en aptafluorescence 

sur cellules et tissus de GBM (Cruz da Silva, en cours de rédaction). 
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Discussion 

Enfin, une discussion critique sur les principaux résultats expérimentaux de ma thèse est 

présentée. Quelques résultats préliminaires et perspectives d'avenir sont également avancés. 

Annexes 

L'annexe 1 présente un projet de revue sur les thérapies moléculaires ciblées pour le 

glioblastome en phases II, III, IV (Cruz da Silva et al., en cours de rédaction). 

L'annexe 2 présente une revue sur le rôle des intégrines dans la résistance aux thérapies ciblées 

sur les récepteurs de tyrosine kinase dans le cancer (Cruz da Silva et al., 2019). 

L'annexe 3 présente un article scientifique caractérisant la conjugaison des particules d'or au 

cétuximab, un anticorps anti-EGFR. Ce travail est le résultat d'une collaboration avec l'équipe 

du Dr Guy Zuber (UMR 7242). 
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Introduction 

1. Glioblastome 

Definition 

Le glioblastome (GBM) est la tumeur cérébrale la plus fréquente et la plus agressive. Le GBM 

représente 60% de tous les cas de cancer du cerveau chez les adultes. Cette tumeur se caractérise 

par sa forte résistance à la radiothérapie et à la chimiothérapie, ainsi qu’aux thérapies ciblées 

(Thakkar et al., 2014). La survie médiane est de 15 mois. Le traitement standard des GBM 

repose sur une résection chirurgicale suivie d’une radiothérapie et d’une chimiothérapie 

concomitante pendant 6 semaines. La chimiothérapie est ensuite poursuivie seule toutes les 

quatre semaines (Stupp et al., 2005). La chimiothérapie utilisée est le temozolomide (TMZ), un 

agent alkylant qui provoque des dommages à l’ADN, un arrêt du cycle cellulaire et l’apoptose 

des cellules (Agarwala and Kirkwood, 2000).  

 

Caractérisation moléculaire des GBM 

La classification de l’Organisation Mondiale de la Santé (OMS) datant de 2007 décrit 3 grands 

groupes de tumeurs cérébrales non-neuronales : l'astrocytome (grade I à IV), 

l'oligodendrogliome (grade II à III) et l'oligoastrocytome (grade II à III). Les tumeurs cérébrales 

ont été classées en fonction de leurs caractéristiques anatomopathologiques (Louis et al., 2007). 

En 2016, une nouvelle classification est proposée, basée sur un diagnostic intégré avec des 

caractéristiques phénotypiques et génotypiques (Louis et al., 2016).  Les GBM sont maintenant 

classées comme des tumeurs astrocytaires et oligodendrocytaires diffuses de grade IV. Ces 

tumeurs font l'objet d'une ségrégation supplémentaire en fonction du statut du gène isocitrate 

déshydrogénase (IDH). 90 % des GBM expriment un gène IDH de type sauvage et les 10 % 

restants expriment des formes mutantes (Cohen et al., 2013). 

La classification moléculaire actuelle de l’OMS ne représente pas l’hétérogénéité moléculaire 

des GBM. 

Le groupe de Verhaak a réalisé des analyses transcriptomiques de 200 biopsies de GBM 

humains, démontre pour la première fois une hétérogénéité moléculaire inter-tumorale. Cette 

classification divise les GBM en 4 groupes en fonction de leur profil moléculaire : classique, 

mésenchymateux, proneural et neural (Verhaak et al., 2010). Le GBM classique se caractérise 
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par des niveaux élevés du gène erbB1 (codant pour l’EGFR) et est plus sensible au traitement. 

Les tumeurs de type mésenchymateux présentent une forte expression des gènes de remodelage 

de la matrice extracellulaire (CHI3L1, c-MET et CD44). Le sous-type proneural est caractérisé 

par des altérations dans le PDGFRA, des mutations ponctuelles des gènes  IDH1 et TP53, et est 

corrélé avec un pronostic de survie plus défavorable. Enfin, le sous-type neuronal est caractérisé 

par l'expression de marqueurs neuronaux tels que NEFL, GABRA1, SYT1 et SLC12A5 

(Verhaak et al., 2010). Plus récemment, ce sous-groupe a été identifié comme pouvant être des 

cellules neuronales normales (Wang et al., 2017a). 

L’hétérogénéité intra-tumorale des GBM a été démontré en utilisant la technique d'hybridation 

in-situ par fluorescence (FISH). Snuderl et al. ont décrit une amplification en mosaïque des 

différentes récepteurs tyrosine kinase (Epidermal Growth Factor Receptor (EGFR), c-MET, 

PDGFRA) dans des cellules de GBM (Snuderl et al., 2011). De plus, le séquençage du génome 

au niveau de la cellule unique de 28 tumeurs a montré que les GBM présentent une 

hétérogénéité intra-tumorale complexe et dynamique. Quatre sous-types de cellules de GBM 

ont été ainsi identifiés, chacun étant caractérisé par des altérations génétiques spécifiques 

(CDK4, EGFR, PDGFRA, NF1). Les génotype des cellules de GBM est fortement influencé 

par le microenvironnement de la tumeur, et présentent une plasticité forte puisqu'une seule 

cellule peut générer les quatres sous-types avec de multiples transitions possibles  (Neftel et al., 

2019).   
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2. Epidermal Growth Factor Receptor 

EGFR comme cible thérapeutique dans le GBM 

Dans le GBM, erbB, le gène codant pour l’EGFR est amplifié dans 40 à 60 % des cas suite à 

un réarrangement des gènes et/ou à l'amplification focale. Cette amplification est souvent 

associée à des mutations (Frederick et al., 2000). La mutation de l'EGFR la plus courante, 

EGFRvIII (représente plus de 50 % des mutations) correspond à une perte des exons 2-7 

aboutissant à une délétion de 801 paires de bases (Huang et al., 2009). Les acides aminés 6 à 

273 sont remplacés par un résidu glycine. La glycoprotéine qui en résulte est plus courte (145 

kDa au lieu de 175 kDa), et est activée de manière constitutive indépendamment du ligand. 

L'activation constitutive est potentialisée par l'interaction réduite avec la E3-ligase Cbl, ce qui 

entraîne une dégradation réduite du récepteur (Normanno et al., 2006).  

Des études histologiques ont montré une distribution hétérogène de l'EGFR dans les tissus de 

GBM. L'expression de l'EGFR est diffuse dans la masse de la tumeur (Hatanpaa et al., 2010), 

ou plus focalisée aux limites de la tumeur (Okada et al., 2003), étant associée à l'invasion 

tumorale.  

 

Activité oncogénique de l’EGFR dans le GBM 

La liaison d’un de ces ligands, comme l’EGF, sur le récepteur, provoque la dimérisation de 

l’EGFR et l’activation de son activité tyrosine kinase intrinsèque. Il s’en suit une 

transphosphorylation de résidus de tyrosine, qui servent de site de recrutement de protéine de 

signalisation. La surexpression de l'EGFR  active  des voies de signalisation stimulant la 

prolifération, la migration et l'invasion des cellules de GBM (An et al., 2018). La voie de 

signalisation PI3K est amplifiée par la surexpression de l'EGFR mais aussi par la perte de son 

régulateur négatif PTEN observé dans 45 % des GBM. De plus, des mutations activatrices de  

PI3K ont été trouvées dans le domaine de régulation (Wang et al., 2004a). En outre, le ciblage 

de la voie de signalisation PI3K par l'inhibition de mTOR provoque une régression tumorale 

(Fan et al., 2017; Zhang et al., 2015b). Cependant, l'efficacité clinique de la rapamycine 

(inhibiteur de mTOR) et de ses analogues n’a eu que peu de bénéfices cliniques (Xu et al., 

2017a).. L'inhibition de la voie PKC/PI3K/AKT par l'enzastaurine provoque l'apoptose des 

cellules de gliome, supprime la prolifération dans la lignée cellulaire U87 MG, et réduit la 

croissance tumorale et l'angiogenèse dans des xénogreffes de souris (Graff et al., 2005). 
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L'enzastaurine a été évaluée dans un essai clinique de phase III sur le GBM en monothérapie 

(Wick et al., 2010). Même si l'enzastaurine est bien tolérée et est moins toxique que la 

chimiothérapie avec la lomustine, elle n'a pas démontré de bénéfice pour les patients (Wick et 

al., 2010). Une autre voie de signalisation suractivée par l’EGFR dans le GBM est la voie des 

MAPK, elle est impliquée dans l'invasion tumorale et dans la néo-angiogenèse (Sangpairoj et 

al., 2016). L'inhibition de cette voie diminue la croissance des tumeurs dans des xénogreffes de 

gliome (Campbell et al., 2014). Enfin, l'EGFR activé peut recruter STAT3 et favoriser sa 

dimérisation. STAT3 est transporté dans le noyau où il agit comme un facteur de transcription 

pour réguler la prolifération, la différenciation, la survie et l'apoptose cellulaire (Jorissen et al., 

2003). Dans le GBM, l'EGFR peut phosphoryler l'EGFRvIII, favorisant sa translocation 

nucléaire où il peut interagir avec STAT3, augmentant ainsi l’agressivité de la tumeur (Fan et 

al., 2013).  

Thérapies ciblant l’EGFR 

Différentes thérapies ciblant l’EGFR sont déjà utilisées en clinique comme l’utilisation 

d’anticorps monoclonaux antagonistes (mAbs) ou d’inhibiteurs de l’activité tyrosine kinase 

(TKI). L’utilisation de mAbs ou de TKI a pour objectif l’inhibition des cascades de signalisation 

induites par l’EGFR et ainsi un ralentissement de la prolifération cellulaire et une induction de 

l’apoptose des cellules cancéreuses ) (Xu et al., 2017b). 

Les mAbs antagonistes de l’EGFR développés se lient au domaine extracellulaire du récepteur, 

empêchent la fixation du ligand et provoquent ainsi l’inactivation de la cascade de signalisation. 

De plus, la région Fc des mAbs permet l’activation d’une cytotoxicité cellulaire dépendante de 

l’anticorps (ADCC) (Kimura et al., 2007). 

Les TKI sont de petites molécules structurellement analogues de l’ATP qui entrent en 

compétition avec l’ATP au niveau du domaine catalytique de la tyrosine kinase, conduisant à 

une  inhibition de l’activation de la tyrosine kinase, l’autophosphorylation de l’EGFR et 

l’interruption de la cascade de signalisation (Sun et al., 2015). Le géfitinib est un TKI de 

première génération qui prévient la liaison de l'ATP au domaine catalytique et bloque la 

transphosphorylation du récepteur.  
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Résistance aux thérapies ciblant l’EGFR 

Malgré de nombreux essais, les thérapies ciblant l’EGFR ont malheureusement échouées en 

clinique (Taylor et al., 2012). De nombreuses études ont exploré les différents mécanismes 

moléculaires possibles favorisant la résistance à ce traitement. Dans le cadre de cette thèse, je 

développerais deux mécanismes de résistance innovant potentiellement intéressants. 

Dérégulation du trafic membranaire de l’EGFR dans le GBM 

Différentes études ont montré que le trafic membranaire de l'EGFR est fréquemment altéré dans 

les tumeurs, y compris dans le GBM, ce qui contribue ainsi à la progression tumorale. NHE9 

est un canal NA+/H+, identifié pour la première fois dans l'autisme où il induit une 

hyperacidification des endosomes et par conséquent des défauts dans le trafic vésiculaire 

(Kondapalli et al., 2013).  NHE9 est fortement exprimé dans les tissus cérébraux (Kondapalli 

et al., 2014). Dans le GBM, la surexpression de NHE9 favorise l'invasion tumorale en stimulant 

le recyclage à la membrane plasmique de l’EGFR, potentialisant ainsi sa signalisation. La 

présence plus élevée de l'EGFR au niveau de la membrane plasmique, favorisée par la 

surexpression de NHE9, rend le GBM plus résistant aux traitements aux TKIs (Kondapalli et 

al., 2015). D’autre part, le trafic membranaire de l'EGFR WT et de l'EGFRvIII n'est pas le 

même. L'EGFRvIII est peu internalisé et plus fréquemment recyclé que dégradé. La présence 

prolongée de l'EGFRvIII à la membrane plasmique maintient une voie de signalisation 

différente de celle de l'EGFR WT. Cette dégradation déficiente est le résultat d'une 

ubiquitination insuffisante du récepteur par le Cbl (Grandal et al., 2007 ; Han et al., 2006 ; 

Schmidt et al., 2003). L’importance de l’endocytose de l’EGFR dans la réponse thérapeutique 

a été souligné par deux récentes études montrant que l'endocytose de l’EGFR peut être utilisée 

comme biomarqueur moléculaire prédictif et aussi comme un outil thérapeutique in vivo et en 

clinique (Chew et al., 2020 ; Joseph et al., 2019 ; Ye et al., 2019).  

Certains traitements ont également été décrits comme des déclencheurs d'une endocytose 

induite par le stress. Des études réalisées sur des cellules HeLa et sur des cellules cancéreuses 

de la tête et du cou ont démontré que des stimuli de stress tels que les rayonnements (UVB et 

UVC) ou la chimiothérapie peuvent affecter le trafic de l'EGFR et jouer un rôle dans la 

progression tumorale indépendamment des lésions sur l'ADN (Tomas et al., 2017). La cisplatine  

induit l'internalisation de l'EGFR d’une façon dépendante de la p38 MAPK et provoque aussi 

une résistance à la thérapie dans les cellules cancéreuses du sein (Winograd-Katz and Levitzki, 
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2006). Le p38-MAPK peut activer Rab5 en phosphorylant ses effecteurs EEA1 et GDI, 

favorisant ainsi l'internalisation de l'EGFR et la fusion des endosomes (Cavalli, 2001). Après 

un stress, l'EGFR est activé suite son internalisation et sa rétention dans les endosomes (Tomas 

et al., 2015). La signalisation de l'EGFR à partir de ces compartiments péri nucléaires retarde 

l'apoptose induite par les UVC ou la cisplatine, mais la mort cellulaire se produit, peut-être en 

raison de la signalisation prolongée de la p38-MAPK  (Tomas et al., 2017).  

Interaction avec des autres récepteurs membranaires 

De nombreux études décrivent une étroite coopération entre les récepteurs à tyrosine kinase, 

comme l’EGFR, avec les intégrines. Cette coopération amplifie l’activité oncogénique de 

l’EGFR et est à l’origine de mécanismes de résistance aux thérapies ciblées (Cruz da Silva et 

al., 2019 ; Ivaska, 2011). Ces résultats sont décrits en détail dans la revue ajoutée à l'annexe 2 

de la thèse (Cruz da Silva et al., 2019), Par exemple, la résistance aux TKI ciblant l'EGFR dans 

les cellules de poumon a été corrélée avec une augmentation de l'expression de l'intégrine β1 

(Deng et al., 2016 ; Ju et al., 2010 ; Kanda et al., 2013).  De plus, l'inhibition de l'intégrine β1 

sensibilise ces cellules aux traitements avec les TKI in vitro et in vivo (Deng et al., 2016 ; Kanda 

et al., 2013 ; Morello et al., 2011). 
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3. Intégrines 

Famille des intégrines 

A l’instar de l’EGFR et des autres récepteurs à activité tyrosine kinase, la surexpression des 

intégrines, des récepteurs de la matrice extracellulaire, joue un rôle majeur dans la progression 

tumorale. Les intégrines sont une famille de glycoprotéines hétérodimériques 

transmembranaires, composées de deux sous-unités, α et β. On dénombre chez les mammifères 

24 intégrines, représentées par 18 sous-unités α et 8 sous-unités β. Dans le GBM, la 

surexpression des intégrines conduit à l’activation de l’invasion tumorale et à des mécanismes 

de résistance aux thérapies (Janouskova et al., 2012; Martinkova et al., 2010) et est clairement 

associée à un mauvais pronostic.  

 

Intégrine α5β1 dans le GBM 

Notre équipe et d’autres ont démontré que l’une d’entre elle, l’intégrine α5β1, récepteur de la 

fibronectine est une cible d’intérêt thérapeutique dans le GBM.  

L'intégrine α5β1, présente des niveaux d'expression plus élevés dans le GBM par rapport aux 

parenchyme cérébrale sain (Gingras et al., 1995; Janouskova et al., 2012). Cette surexpression 

est associée à un mauvais pronostic pour les patients (Janouskova et al., 2012; Lathia et al., 

2014). Des données précliniques ont démontré le rôle de l'intégrine α5β1 dans la croissance et 

la survie des cellules de gliome (Färber et al., 2008; Kesanakurti et al., 2013), la motilité 

cellulaire (Blandin et al., 2016; Mallawaaratchy et al., 2015; Patil et al., 2015) et la résistance 

à la chimiothérapie (Janouskova et al., 2012; Martinkova et al., 2010; Renner et al., 2016a). 

L'inhibition de l'intégrine α5β1 réduit la prolifération cellulaire in vitro et la taille des tumeurs 

in vivo (Färber et al., 2008). L'intégrine α5β1 active la voie de la β-caténine pour stimuler la 

migration des cellules de GBM (Ray et al., 2014; Renner et al., 2016b). L'inhibition de 

l'intégrine α5β1 favorise l'activation de p53 et sensibilise les cellules de GBM au TMZ 

(Janouskova et al., 2012; Renner et al., 2016a). De plus, l'intégrine α5β1 inhibe l'apoptose 

induite par le TMZ et stimule la sénescence des cellules, induisant une résistance à la 

chimiothérapie (Martinkova et al., 2010). L'inhibition des complexes intégrine β1/EGFR 

sensibilise les cellules cancéreuses à la radiothérapie (Eke et al., 2013, 2015). De plus, 

l'intégrine α5β1 est impliquée dans l'angiogenèse tumorale (Dudvarski Stanković et al., 2018; 

Li et al., 2012; Lugano et al., 2018). L’intégrine α5β1 favorise la prolifération des cellules 
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endothéliales du cerveau en réponse à l'hypoxie, ce qui démontre l'intérêt de cibler cette 

intégrine comme thérapie anti-angiogénique (Li et al., 2012). L'expression de l'intégrine α5β1 

sur les cellules endothéliales stimule la vascularisation des GBM dans des modèles in vivo. La 

fibrillogenèse de la fibronectine médiée par l'intégrine β1 dans les cellules endothéliales 

favorise la vascularisation in vivo des tumeurs de GBM (Li et al., 2012). 

Plusieurs inhibiteurs de l'intégrine α5β1 ont été testés dans d'autres tumeurs solides ou maladies 

angiogéniques. En ce qui concerne le GBM, seules des études cliniques de phase I et II ont été 

réalisées. D'autres études sont nécessaires pour mieux évaluer l'efficacité de ces thérapies 

ciblées.  
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4. Aptamères comme alternative aux anticorps 

Les aptamères sont des oligonucléotides ADN simple brin ou ARN capables de se lier avec 

une grande affinité et spécificité à leur cible.  

Les aptamères présentent plusieurs avantages par rapport aux anticorps. Les aptamères sont 

plus petits que les anticorps (5-25 kDa versus 150 kDa) et sont thermostables. Comme les 

aptamères sont synthétisés chimiquement, ils peuvent être facilement modifiés, et présentent 

moins de variabilité entre batch que des protéines. De plus, les aptamères semblent non 

immunogènes et peu toxiques. Cependant, les aptamères présentent également des 

désavantages. Ils sont soumis à l'action des nucléases et sont plus facilement éliminés par les 

reins, ce qui diminue leur demi-vie. Pour rendre les aptamères plus résistants à l’action des 

nucléases, plusieurs chimies peuvent être envisagées, telles que la modification du groupement 

2’OH des riboses des chaînes d’ARN par un groupement 2’Fluoro. Le couplage des aptamères 

à des groupements polyéthylène glycol (PEG) augmente leur poids et diminue leur élimination 

rénale.  

SELEX 

Les aptamères sont sélectionnés par un processus de sélection in vitro appelé SELEX (Selective 

evolution of ligands by exponential enrichment) (Ellington and Szostak, 1990; Tuerk and Gold, 

1990). 

Applications des aptamères 

Une fois sélectionnés et caractérisés, les aptamères peuvent être utilisés dans de nombreuses 

applications, notamment diagnostiques et thérapeutiques.                                            

Applications thérapeutiques des aptamères 

Les aptamères pourraient avoir des applications thérapeutiques intéressantes. Ils peuvent 

entrainer une modification de fonction des récepteurs lors de la liaison. Ils peuvent également 

entrer en compétition avec des molécules et/ou des ligands pour inhiber l'activation de la cible, 

ou ils peuvent être utilisés comme vecteurs pour l'administration d'agents thérapeutiques.  

Des aptamères ciblant différents facteurs de croissance et leurs récepteurs membranaires 

respectifs ainsi que le microenvironnement tumoral ont été décrits. Un aptamère à base d’ADN, 
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appelé NAS-24, cible la vimentine, une protéine de la matrice extracellulaire présente dans le 

microenvironnement tumoral. Cet aptamère induit l'apoptose in vitro et in vivo des cellules 

d'adénocarcinome (Zamay et al., 2014). Une nouvelle stratégie thérapeutique antitumorale des 

aptamères consiste à utiliser des conjugués anticorps-aptamères bispécifiques. Passariello et al 

ont conjugué un aptamère anti-EGFR avec un anticorps immunomodulateur anti-PD-L1. Ce 

complexe permet de diminuer la survie des cellules cancéreuses et de renforcer l'activation des 

cellules T. Dans une co-culture de cellules cancéreuses avec des lymphocytes, le complexe a 

permis d’augmenter les niveaux d'IL-2 et d'IFN-γ dans les surnageants cellulaires (Passariello 

et al., 2019).  

Applications diagnostiques des aptamères 

Les aptamères peuvent être aussi utilisés comme outils de diagnostic pour la détection des 

cellules, la coloration des échantillons de tissus ex vivo et comme des sondes d'imagerie non 

invasives in vivo pour suivre la progression tumorale (Cerchia, 2018; Sun et al., 2016). 

L’utilisation des aptamères en clinique est prometteuse, mais n’en est encore qu’à ses prémices. 
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Objectifs de mon doctorat 

Le GBM est la tumeur cérébrale primaire la plus fréquente et la plus agressive. Le GBM est 

extrêmement résistant à la radiothérapie et à la chimiothérapie, ainsi qu’aux thérapies ciblées. 

L’agressivité du GBM s’explique en partie par la surexpression de protéines pro-tumorales qui 

dynamisent la croissance et l’invasion tumorale. Ainsi, le gène erbB1, codant pour l’EGFR est 

amplifié dans plus de 50 % des tumeurs. Un autre récepteur de surface cellulaire surexprimé 

dans GBM est l'intégrine α5β1, un membre de la famille des récepteurs de la matrice 

extracellulaire. La surexpression des intégrines est associée à un mauvais pronostic. Les 

intégrines peuvent coopérer avec les récepteurs aux facteurs de croissance, comme l’EGFR, et 

ainsi amplifier leur potentiel oncogénique. Ces deux récepteurs sont régulés par leur endocytose 

et leur trafic membranaire. L’expression des protéines impliquées dans l’endocytose est souvent 

modifiée dans les cellules de GBM, ce qui contribue au potentiel oncogénique de l’EGFR et 

favorise la progression tumorale et la résistance aux thérapies ciblées. Malheureusement, le 

ciblage de l’EGFR et des intégrines a échoué dans les essais cliniques sur des patients atteints 

de GBM.  

Mon doctorat porte principalement sur ces deux récepteurs de surface cellulaire, et a deux 

objectifs principaux :  

1) La première partie de mon doctorat porte sur l’étude de l’impact des thérapies ciblées, 

plus concrètement des inhibiteurs de la tyrosine kinase de l'EGFR, comme le géfitinib, 

dans le trafic membranaire de l’EGFR dans les cellules de GBM. Nous avons montré 

que le géfitinib induit une endocytose de l'EGFR et de l'intégrine α5β1, indépendante 

du ligand, et nous avons identifié trois protéines d'endocytose qui contribuent à cet effet. 

De plus, nous avons découvert que la répression de l'endocytose protège les cellules de 

GBM de l'inhibition induite par le géfitinib. Articles 1 et 2 (Blandin, Cruz da Silva et 

al, CMLS, 2020 ; Cruz da Silva et al, en cours de rédaction).  

2) La deuxième partie porte sur la caractérisation d’aptamères (molécules également 

nommées anticorps chimiques) ciblant l’intégrine α5β1 et l’EGFR dans l’objectif de 

développer des stratégies de détection des récepteurs dans les cellules de gliome et dans 

les échantillons de tissus humains. Nous avons également analysé l'effet du traitement 

au géfitinib sur l'internalisation des aptamères dans les cellules de gliome, en explorant 

de nouvelles possibilités pour les aptamères comme agents alternatifs de vectorisation 
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(de siRNA par exemple) (articles 3 (Fechter, Cruz da Silva et al., 2019) et résultats 

récents. 

En parallèle, j'ai également participé à la rédaction de deux revues bibliographiques : l’une est 

en cours de rédaction (annexe 1) et l'autre (annexe 2) est publiée (Cruz da Silva et al., 2019). 

La première est une revue systématique des essais cliniques sur les GBM utilisant des thérapies 

ciblées. La deuxième porte sur le rôle de l'intégrine dans la résistance aux thérapies ciblées sur 

les récepteurs des facteurs de croissance. De plus, j'ai collaboré à la caractérisation de particules 

d'or conjuguées à l'anticorps ciblant l’EGFR, cétuximab, qui peuvent améliorer la radiothérapie 

ciblée (Groysbeck et al., 2019), présent dans l'annexe 3.  
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Résultats 

Introduction aux Articles 1 et 2 

La caractérisation moléculaire des GBM démontre l'importance de l’EGFR sur la progression 

tumorale. La signalisation de ce récepteur tyrosine kinase augmente la croissance, la survie, 

l'invasion et la résistance aux traitements du GBM (An et al., 2018). Plusieurs essais cliniques 

utilisent des thérapies ciblant l'EGFR, efficaces dans d'autres tumeurs solides, mais aucune 

amélioration thérapeutique n'a été obtenue dans le cas des GBM (Taylor et al., 2012). Plusieurs 

mécanismes ont été explorés pour justifier cette résistance mais aucun résultat n’est jusqu’alors 

cliniquement pertinent. L'EGFR et les intégrines sont partenaires lors de la progression 

tumorale et la résistance à des thérapies (Silva, 2019).  En particulier, il a été démontré que le 

récepteur de la fibronectine, l’intégrine α5β1, régule l'activité de l'EGFR pour favoriser 

l'invasion des cellules cancéreuses. Cette intégrine, d’un intérêt clinique particulier, a été décrite 

par notre équipe et d'autres comme une cible thérapeutique prometteuse dans le GBM 

(Schaffner et al., 2013). 

L'endocytose et le trafic membranaire sont désormais considérés comme des régulateurs 

fondamentaux de la signalisation tumorale des récepteurs de surface cellulaire. Au cours de la 

dernière décennie, la dérégulation du trafic membranaire de l'EGFR dans le GBM est décrite 

comme un facteur clé pour la progression tumorale et la résistance aux thérapies (Al-Akhrass 

et al., 2017 ; Kondapalli et al., 2015 ; Kurata et al., 2019 ; Walsh et al., 2015 ; Wang et al., 

2019c ; Ying et al., 2010). Par ailleurs, plusieurs études ont montré que les agents 

thérapeutiques déclenchent une endocytose de l'EGFR induite par le stress dans les cellules 

cancéreuses (Cao et al., 2011 ; Dittmann et al., 2005 ; Tan et al., 2016).  

En ce qui concerne le géfitinib, les études sont contradictoires. Le géfitinib peut supprimer 

l'endocytose de l'EGFR induite par son ligand dans les cellules cancéreuses du poumon 

(Nishimura et al., 2007) et dans les cellules de carcinome épidermoïde (Pinilla-Macua et al., 

2017). Cependant, une autre étude a montré une augmentation de l'absorption d'EGF humain 

marqué avec un radio-isotope dans des cellules de carcinome du côlon, de NSCLC et de 

HNSCC (He et Li, 2013), ce qui suggère une augmentation de l'endocytose. Il a été également 

démontré que le géfitinib initie l'autophagie de manière dépendante de l'EGFR dans les cellules 

de carcinome mammaire (Tan et al., 2015) ou les cellules de gliome (Chang et al., 2014 ; Liu 

et al., 2020). Une accumulation de l’EGFR, indépendante de leur activité tyrosine kinase, dans 

les compartiments autophagiques lors du traitement au géfitinib a également été observée dans 



239 

 

les cellules cancéreuses (Tan et al., 2015). Il convient de noter que l'autophagie et l'endocytose 

sont moléculairement liées (Birgisdottir et Johansen, 2020). Enfin, la dérégulation de 

l’endocytose est souvent observée dans les cellules cancéreuses résistantes au géfitinib (Cui et 

al., 2015 ; Nishimura et al., 2008).  

Nous avons exploré en détail l'impact du géfitinib sur le trafic de l'EGFR et des intégrines 

dans les cellules de GBM, dans l'espoir de trouver de nouvelles pistes pour améliorer les 

thérapies ciblant l’EGFR dans le traitement du GBM.  

En utilisant des lignées cellulaires de GBM, nous avons montré que le géfitinib induit une 

endocytose massive de l’EGFR, indépendante de la liaison du ligand. L’endocytose a été 

évaluée par des tests d'absorption de l'EGF fluorescent, des tests d'endocytose de l'EGFR après 

marquage de surface par la biotine et par immunomarquage de l'EGFR et des endosomes 

précoces et analyse en microscopie confocale. Nous avons appelé ce phénomène "endocytose 

médiée par le géfitinib" (GME). De manière dose-dépendante, le géfitinib provoque 

l'internalisation de l'EGF et la co-localisation de l'EGFR dans les endosomes précoces. La GME 

conduit à l'accumulation prolongée de l’EGF fluorescent, alors que dans les cellules non traitées 

une diminution de l'EGF fluorescent intracellulaire se produit au fil du temps, suggérant une 

dégradation du récepteur. La GME augmente d'environ 25 % l’internalisation de l’EGFR. La 

GME a été observée dans 4 lignées cellulaires de GBM différentes, toutes exprimant l'EGFR 

(article 1). L'endocytose de l'EGFR induite par le traitement au géfitinib est dépendante des 

protéines DNM2 et Rab5 (article 2) et favorise le transport de l'EGFR dans des endosomes 

positifs pour l'intégrine α5β1 (article 1) et un autre récepteur de surface cellulaire, LRP-1 

(article 2). La proximité entre ces récepteurs a été établie par imagerie et suggère un lien 

fonctionnel. Des études fonctionnelles ont confirmé que l'expression de l'intégrine et de LRP-1 

est également impliquée dans la GME (article 1 et 2, respectivement). Enfin, nous avons évalué 

l'importance de l'endocytose dans l'activité anti-tumorale du géfitinib, au travers de tests 

d'évasion cellulaire des sphéroïdes 3D.  L’inhibition de la GME protège les cellules contre le 

traitement au géfitinib (article 2). Cependant, la déplétion de l'intégrine α5 sensibilise les 

cellules au traitement par le géfitinib (article 1).  

Brièvement, ces travaux révèlent que l'endocytose de l'EGFR et des intégrines joue un rôle 

inattendu dans l'action du géfitinib et que le niveau d'expression des protéines de l'endocytose 

telles que la DNM2, le LRP-1 ou le Rab5 pourraient être des biomarqueurs pertinents pour 

prédire l'efficacité des TKI à limiter l'invasion des cellules GBM. 
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Conclusions générales des articles 1 et 2  

 

Ø Le géfitinib provoque une endocytose des récepteurs dans des endosomes. 

Ø Le géfitinib favorise la co-endocytose de l'EGFR et de l'intégrine α5β1. 

Ø Nous avons identifié 3 protéines impliquées dans l'endocytose, DNM2, Rab5 et LRP-1, 

comme régulateurs clés de l'internalisation de l'EGFR induite par le géfitinib. 

Ø La modulation de l'endocytose modifie la réponse des cellules de gliome au traitement 

par le géfitinib.  

 

Dans le premier article, nous avons décrit, dans quatre lignées cellulaires différentes de GBM, 

que le géfitinib et d'autres TKI sont des inducteurs d'une endocytose de l'EGFR en réponse au 

stress et indépendamment du ligand. Nous avons également décrit que le GME ne se limite pas 

à l’l'EGFR. Nous avons montré une co-localisation de l'EGFR avec l'intégrine α5β1 dans les 

endosomes précoces lors du traitement au géfitinib. Le géfitinib augmente la co-localisation 

intégrine/EGFR dans les vésicules périnucléaires par rapport à des cellules non traitées. En 

utilisant une technique de microscopie à super-résolution PALM-STORM, nous avons vérifié 

la proximité physique entre l'EGFR et l'intégrine β1, suggérant une interaction fonctionnelle 

potentielle. Pour explorer l'implication de l'intégrine dans la GME, l'intégrine α5 a été délectée 

dans des cellules de GBM U87 en utilisant la technique de l'ARNsh. La délétion de l'intégrine 

α5β1 limite l'accumulation de l'EGFR dans les endosomes précoces après un traitement court 

de géfitinib. Nous avons également évalué quel est l’impact de cette endocytose dans la réponse 

des cellules de gliome au traitement par le géfitinib. Comme le GBM est une tumeur très 

invasive, nous avons décidé d'évaluer le rôle de la dérégulation du trafic dans l'évasion des 

cellules des sphéroïdes tumorales 3D. Le traitement au géfitinib réduit le nombre de cellules 

qui s’échappent des sphéroïdes U87 α5- (qui sous-expriment l’intégrine α5) en fonction de la 

dose. Cependant, le géfitinib n'a pas d'impact significatif sur l'évasion cellulaire des cellules 

U87 α5+ (qui sur-expriment l’intégrine α5). 

Dans le deuxième article, nous avons essayé de mieux comprendre les mécanismes 

moléculaires de la GME. Tout d'abord, nous avons étudié le rôle de deux protéines 

habituellement associées à l'endocytose de l'EGFR induite par un ligand, la DNM2 et le Rab5. 

En utilisant des inhibiteurs pharmacologiques et la déplétion médiée par un siRNA, nous avons 

montré que la GME était dépendante de la DNM2. Nous avons également montré que la GME 
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nécessitait l’activation de Rab5. Un mutant constitutivement actif de Rab5 produit de grands 

endosomes précoces similaires à ceux induits par la GME. De plus, le mutant dominant-négatif 

de Rab5 réduit la co-localisation de l'EGFR dans les endosomes précoces lors du traitement au 

géfitinib. Nous avons ensuite examiné le rôle potentiel du LRP-1, un récepteur d'endocytose. 

La GME sur les cellules U87 induit la relocalisation de l'EGFR dans les endosomes positifs au 

LRP-1. Ensuite, le rôle de LRP-1 dans la GME a été étudié en utilisant des techniques similaires 

à celles utilisées pour la protéine Rab5.  Nous avons montré que LRP-1 n'est pas impliqué dans 

l'endocytose de l’EGF induite par un ligand, mais qu'il contribue de manière significative à 

l'endocytose de l’EGF médiée par le géfitinib. L'inhibition de la GME par le blocage de DNM2 

et de LRP-1 augmente de manière significative la dissémination des cellules traitées au 

géfitinib. 

En résumé, nous avons montré que dans les cellules de gliome, les différentes TKI (gefitinib, 

mais aussi d’autres TKI) ciblant l’EGFR déclenchent un mécanisme complexe d'endocytose du 

récepteur. En outre, nous avons démontré pour la première fois un lien fonctionnel entre le 

LRP-1 et l'endocytose de l'EGFR. Nous avons déterminé que le niveau d'expression et la 

fonction des protéines impliquées dans la GME peuvent moduler les réponses des cellules de 

GBM au traitement aux TKIs.  

Les défis futurs consisteront à évaluer l'impact des TKIs sur la fonction des intégrines et à 

déterminer si leur coopération avec l'EGFR pendant le trafic membranaire modifie l'évasion des 

cellules de GBM. Enfin, ces travaux ont mis en évidence la nécessité de mieux comprendre les 

mécanismes d’action des agents thérapeutiques, et pas seulement leurs propriétés présumées. 

Cela pourrait conduire à l'identification de biomarqueurs appropriés pour améliorer la 

prédiction de leur efficacité. 
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Introduction à l'article 3  

L'équipe "Intégrines et cancers" de l'UMR 7021 a démontré le potentiel de l'intégrine α5β1 

comme cible thérapeutique sur le GBM (Janouskova et al., 2012). Son ligand naturel est la 

fibronectine, une protéine de la matrice extracellulaire surexprimée dans le 

microenvironnement tumoral du GBM (Lal et al., 1999). Les biomarqueurs, comme l'intégrine 

α5β1, ont un grand potentiel clinique en tant que marqueurs de diagnostic (expression élevée 

dans les gliomes de haut grade par rapport aux tissus normaux et tumoraux de bas grade), de 

pronostic (expression élevée associée à une survie diminuée des patients), et de prédiction 

(expression élevée associée à la résistance au TMZ). 

En oncologie, les aptamères, appelés aussi anticorps chimiques, sont des outils émergents de 

diagnostic et de thérapie (liaison directe avec leurs cibles ou pour la vectorisation d’agents 

thérapeutiques). Les aptamères sont des molécules d'ADN simple brin ou d'ARN qui se lient à 

leur cible avec une grande affinité et spécificité, comme les anticorps. Les aptamères présentent 

des avantages par rapport aux anticorps : leur taille réduite, leur stabilité thermique, leur absence 

d'immunogénicité et de toxicité, et leur synthèse chimique (Mercier et al., 2017 ; Zhou et Rossi, 

2017). De plus, les aptamères pénètrent plus profondément les tissus que les anticorps en raison 

de leur taille plus petite (Xiang et al., 2015). La sélection des aptamères se fait par un processus 

in vitro appelé SELEX (Ellington et Szostak, 1990 ; Tuerk et Gold, 1990). Les aptamères 

peuvent être utilisés comme outils diagnostiques et/ou thérapeutiques contre des cibles 

thérapeutiques identifiées comme les récepteurs membranaires, qui sont des cibles intéressantes 

en raison de leur accessibilité à la surface des cellules.  

Un processus de sélection original, combinant cell- et protein- SELEX, a été réalisé dans le 

laboratoire pour identifier les aptamères capables de se lier aux cellules et tissus de GBM 

exprimant l'intégrine α5β1. La sélection, l'identification et la caractérisation d’un aptamère, 

appelé H02, sont décrites dans l’article 3 (Fechter, Cruz da Silva et al., 2019).  
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Ø L'intégrine α5β1 a été validée comme la cible de l'aptamère H02 en utilisant la 

résonance plasmonique de surface, dans laquelle l'intégrine humaine αvβ3 a été utilisée 

comme témoin négatif.  

Ø L'affinité à l'équilibre (KD) de l'interaction entre l'aptamère H02 et les cellules U87 

surexprimant α5 a été déterminée par cytométrie de flux. La liaison entre l'aptamère et 

les cellules a été quantifié au travers du signal fluorescent associé au conjugué 

aptamère-fluorophore testé à différentes concentrations. Un KD de 277,8 ± 51,8 nM a 

été déterminé.  

Ø En outre, l'aptamère H02 permet d’identifier différentes lignées cellulaires de GBM en 

fonction de leur niveau d'expression de l'intégrine α5β1. 

Ø A 4°C, l'aptamère H02 permet de détecter l'intégrine α5β1 présente à la membrane 

plasmique et dans les jonctions cellules-cellules. À 37°C, l'aptamère H02 est internalisé 

après sa liaison à l'intégrine α5β1 et est localisé dans les endosomes précoces positifs à 

l'EEA1 (early endosome antigen 1). 

Ø La séquence de l'aptamère H02 a été brevetée (EP18306664.6 "Aptamer and use 

thereof"). 
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Introduction aux résultats récents sur aptafluorescence 

Plusieurs récepteurs membranaires, comme l'EGFR, sont surexprimés dans les cellules de GBM 

pour favoriser la survie, la croissance et la migration des cellules de gliome (An et al., 2018). 

Le GBM présente une forte hétérogénéité inter- et intra- tumorale (Eskilsson et al., 2018 ; 

Janouskova et al., 2012 ; Szerlip et al., 2012). Une autre cible thérapeutique intéressante dans 

le GBM est le c-MET et son ligand, le facteur de croissance des hépatocytes (HGF). La voie de 

signalisation c-MET/HGF est dérégulée dans le GBM et est impliquée dans la prolifération, la 

survie, l'invasion des cellules de gliome, l’angiogenèse, la résistance aux thérapies et la récidive 

(Cheng et Guo, 2019).  L'expression de c-MET a été associée à un pronostic défavorable chez 

les patients atteints de GBM (Petterson et al., 2015). Une étude d'immunohistochimie 

d'échantillons de tissus de GBM a montré une localisation de c-MET dans les cellules 

tumorales, les vaisseaux sanguins et les zones péri-nécrotiques (Petterson et al., 2015).  Il est 

intéressant de noter que l'EGFR et le c-Met ont été trouvés co-localisés dans des échantillons 

de cellules et de tissus de GBM, ce qui suggère une coopération entre les deux récepteurs 

(Velpula et al., 2012). Une double inhibition de l'EGFR et du c-MET permet de surmonter la 

résistance au TMZ dans les cellules de GBM et de réduire la croissance des tumeurs dans les 

modèles in vivo (Meng et al., 2020).  

Cette tumeur très agressive et résistante a fait l’objet de plus de 1519 essais cliniques, dont 259 

utilisant des thérapies ciblées (Annexe 1). La majorité des essais ne permet pas d’améliorer la 

survie globale des patients. L'hétérogénéité du GBM est l'un des principaux facteurs de 

résistance aux thérapies et de récidive tumorale. La connaissance du statut d'expression des 

différents biomarqueurs pourrait être utilisée pour stratifier les patients dans les essais cliniques 

afin de mieux sélectionner les patients et/ou d'ajuster la stratégie thérapeutique. Par conséquent, 

la possibilité d’identifier simultanément différentes protéines sur un même tissu de GBM 

faciliterait les décisions thérapeutiques. 

Les ligands de ces cibles thérapeutiques peuvent donc être des outils diagnostiques et/ou 

thérapeutiques intéressants. Ils doivent être précis et rapides pour évaluer l'expression protéique 

des récepteurs membranaires dans les tissus tumoraux de GBM.  Le protocole de routine 

d'immunohistochimie (IHC) utilise une méthode indirecte de marquage avec une première 

incubation avec un anticorps primaire spécifique au biomarqueur d'intérêt non conjugué, suivie 

d'une seconde incubation avec un anticorps conjugué capable d'identifier l’espèce du premier 
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anticorps. Cette méthode de détection indirecte augmente la sensibilité puisque les anticorps 

secondaires peuvent se lier à plusieurs sites antigéniques de l'anticorps primaire. Une détection 

directe est plus rapide puisqu'un seul temps d'incubation est nécessaire. Les méthodes de 

détection directe sont probablement plus fiables pour le multi marquage puisqu'il n'y a pas de 

risque de réaction inter-espèces (Odell et Cook, 2013). Mais le marquage direct des anticorps 

est complexe. Pour coupler par covalence un fluorochrome à une protéine recombinante, 

comme un anticorps ou un fragment d'anticorps, la procédure la plus couramment utilisée 

consiste à remplacer un acide aminé identifié par une cystéine et à coupler le fluorochrome à 

son groupe thiol. Cette méthode nécessite la production et la purification de grandes quantités 

de protéines recombinantes. En outre, cette méthode est relativement compliquée. En effet, les 

mutations et/ou les couplages peuvent (i) diminuer le niveau d'expression de la protéine, (ii) 

diminuer ou inhiber la liaison, (iii) provoquer une perte de stabilité ou l'agrégation de la 

protéine, ou (iv) induire une absence de signal de fluorescence. Le fluorochrome peut même 

parfois être couplé aux chaînes latérales de la lysine.  

L'homogénéité des lots d’anticorps peut être faible, ce qui représente un énorme désavantage 

en termes de reproductibilité (Zhou et Rossi, 2017). Pour un multi marquage, il faut plusieurs 

anticorps de différentes spécificités, couplés à différents fluorochromes, ce qui accentue ces 

difficultés. Ces problèmes pourraient être résolus par l'utilisation d'autres molécules, 

synthétisées chimiquement, en grandes quantités et plus stables, telles que des peptides, de 

petits composés chimiques ou des aptamères (Hori et al., 2018 ; Musumeci et al., 2017). 

Au cours de ma thèse, nous avons utilisé des aptamères ciblant l'EGFR, l'intégrine α5 et le c-

MET dans des lignées cellulaires de GBM et des tissus de patients. Les aptamères EGFR (E07 

et conjugué anti-EGFR janellia 646) et c-MET (SL1) étaient déjà décrits dans la littérature 

(Kratschmer et Levy, 2018 ; Li et al., 2011 ; Ray et al., 2012 ; Zhang et al., 2018). Quant à 

l’aptamère H02 ciblant l'intégrine α5, il a été identifié et caractérisé au laboratoire (article 3). 
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Conclusions générales de l’article 3 et des résultats récents 

 

Ø L’aptamère H02 se lie à l'intégrine α5β1 dans des cellules et tissus humains de GBM. 

Ø Les aptamères ciblant l’EGFR que nous avons utilisé permettent de détecter 

l'expression de l'EGFR dans des cellules et tissus humains. 

Ø Le traitement au géfitinib augmente l'internalisation des aptamères ciblant l’EGFR. 

Ø L'aptahistochimie en utilisant simultanément l'aptamère H02 et d’autres aptamères 

ciblant les récepteurs EGFR et c-Met pourraient être intéressant pour mettre en 

évidence l'hétérogénéité tumorale des GBM. 

Dans l’article 3, nous avons décrit l’identification d’un nouvel aptamère, H02, ciblant l'intégrine 

α5β1. H02 est capable de reconnaître les cellules de GBM et les xénogreffes de tumeurs 

positives pour l’intégrine α5. H02 est internalisé dans les endosomes précoces positifs à 37°C.  

Dans la partie ‘résultats récents’, nous avons caractérisé deux aptamères ciblant l'EGFR. Ces 

aptamères sont capables de reconnaître les cellules de GBM positives pour l’EGFR. Ces 

aptamères sont internalisés à 37°C, et cette internalisation est augmentée lors du traitement au 

géfitinib. 

Ensuite, nous avons réalisé des expériences pour détecter des biomarqueurs de GBM par 

aptahistochimie en utilisant des aptamères fluorescents ciblant les récepteurs intégrine α5, 

EGFR et c-MET.  

L’aptamère ciblant l'intégrine α5 a permis de détecter les intégrines avec moins de bruit de fond 

que le marquage avec des anticorps. Il est intéressant de noter que la double détection de 

l'intégrine α5 et de l'EGFR avec des aptamères pourrait être intéressante pour démontrer 

l'hétérogénéité intra-tumorale des GBM. Des études en cours sont réalisées avec un triple 

marquage des tissus de GBM en utilisant simultanément des aptamères contre les trois 

récepteurs membranaires. 

Mes travaux de thèse sur les aptamères ciblant des récepteurs de surface cellulaire ouvrent la 

voie à l'utilisation potentielle des aptamères comme outils diagnostics, mais aussi comme outils 

de vectorisation en exploitant le fait que les aptamères sont internalisés à 37°C. 
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Conclusion 

 

 

Les outils de vectorisation visent à délivrer des chimiothérapies hautement toxiques ou des 

siRNA thérapeutiques de manière sélective aux cellules tumorales avec de faibles effets 

toxiques sur les cellules non tumorales. Les vecteurs peuvent être des anticorps conjugués à des 

médicaments (ADC, antibody-drug conjugate) ou à des nano-particules d'or qui augmentent la 

puissance de la chimiothérapie et de la radiothérapie (Groysbeck et al., 2019) (annexe 3). Les 

aptamères constituent une autre classe d'agents de vectorisation prometteurs pour 

l'administration de médicaments (aptamer-drug conjugate, AptDC) ou de siRNA (aptamer-

siRNA chimera, AsiC) (Cerchia et al., 2011). Au-delà du défi de la bioconjugaison du vecteur 

aux agents thérapeutiques, un autre défi est l'internalisation du complexe et leur trafic 

intracellulaire. L'association de ces vecteurs avec le géfitinib pourrait être bénéfique en 

augmentant l'endocytose du vecteur. 
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ABSTRACT  

Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated by the 
Stupp protocol, which combines surgery, radiotherapy and chemotherapy. Despite this heavy 
treatment, the mean survival of patients is under 18 months. Many clinical studies are 
underway. This systematic review lists targeted therapies in phases II-IV of 259 clinical trials 
on adults with newly diagnosed or recurrent GBMs. It does not involve targeted 
immunotherapies and therapies targeting tumor cell metabolism, that are well documented in 
other reviews. It focuses on drugs targeting the potential for unlimited replication, the growth 
autonomy and migration, the escape to cell death and angiogenesis.  
 
KEYWORDS Clinical trials, Gliobastoma, targeted therapies, biomarkers 
 
 
 
 

The review and respective tables can be acess in their totality in two files shared in 

(https://seafile.unistra.fr/d/a6a6133ad0ad4f52b8f3/). Any problem found to open these files 

please contact the corresponding author.   



IV 

 

Annexe 2 Review: Role of Integrins in Resistance to Therapies 

Targeting Growth Factor Receptors in Cancer 

 

 

  



V 

 

 



VI 

 

 

 



VII 

 

  



VIII 

 

 



IX 

 

 
 

 
 



X 

 

  



XI 

 

 
  
  



XII 

 

  



XIII 

 

 



XIV 

 

  



XV 

 

  



XVI 

 

  



XVII 

 

  



XVIII 

 

 



XIX 

 

 



XX 

 

  



XXI 

 

 



XXII 

 

  



XXIII 

 

  



XXIV 

 

  



XXV 

 

  



XXVI 

 

  



XXVII 

 

  



XXVIII 

 

  



XXIX 

 

 
 

  



XXX 

 

 



XXXI 

 

 



XXXII 

 

Annexe 3 Publication in collaboration with Dr. Guy Zuber team 

  



XXXIII 

 

 

 



XXXIV 

 

 



XXXV 

 

 
  



XXXVI 

 

 

 



XXXVII 

 

 
  



XXXVIII 

 

 

 



XXXIX 

 

 
  



XL 

 

 

 



XLI 

 

 
  



XLII 

 

 

 



XLIII 

 

 
  



XLIV 

 

 
  



XLV 

 

 



XLVI 

 

 

Elisabete CRUZ DA SILVA 

Strategy of non-physiological EGFR 
endocytosis and aptamer-vectorization  

 

Résumé 

La progression du glioblastome (GBM), tumeur cérébrale la plus fréquente, est associée à la surexpression du récepteur 

du facteur de croissance épidermique (EGFR) et de l'intégrine α5β1. Par des études in vitro, nous proposons de 

nouvelles pistes pour améliorer les thérapies ciblant ces récepteurs et de nouveaux outils diagnostiques. 1) Nous avons 

montré que des médicaments, inhibiteurs de la tyrosine kinase de l’EGFR, comme le géfitinib, augmentent 

l'endocytose de l'EGFR et des intégrines et que l’inhibition de l'endocytose confère aux cellules une résistance contre 

le géfitinib. 2) Nous avons identifié et caractérisé un nouvel aptamère sélectif de l'intégrine α5β1 et aspirons à valider 

l’utilisation des aptamères ciblant α5β1 et l'EGFR comme outils de diagnostic pertinents dans le GBM. 3) Enfin, nous 

avons observé que le géfitinib augmente l'endocytose d’anticorps et d'aptamères anti-EGFR. Nos travaux positionnent 

i) le trafic endomembranaire en tant que cible thérapeutique, ii) les aptamères en tant que possibles outils 

diagnostiques et thérapeutiques, iii) le géfitinib en tant que co-traitement potentiel pour accroitre la délivrance 

d’agents (cyto-toxiques ou siRNA) à l’aide de vecteurs à base d’aptamères ou d’anticorps anti-EGFR. 

Mots- clés : glioblastoma, traffic endomembranaire, récepteurs membranaires, aptamères 

 

 

Abstract 

The progression of glioblastoma (GBM), the most common brain tumor, is associated with overexpression of the 

epidermal growth factor receptor (EGFR) and the α5β1 integrin. Through in vitro studies, we are proposing new 

approaches to improve therapies targeting these receptors and new diagnostic tools. 1) We have shown that drugs 

inhibiting EGFR tyrosine kinase, such as gefitinib, increase EGFR and integrin endocytosis and that inhibition of 

endocytosis confers resistance to gefitinib. 2) We identified and characterized a novel selective α5β1 integrin aptamer 

and aim to validate the use of aptamers targeting α5β1 integrin and EGFR as relevant diagnostic tools in GBM. 3) 

Finally, we observed that gefitinib increases the endocytosis of anti-EGFR antibodies and aptamers. Our work 

highlights i) endomembrane trafficking as a therapeutic target, ii) aptamers as potential diagnostic and therapeutic 

tools, iii) gefitinib as a potential co-treatment to increase the delivery of drugs (toxic agents or siRNA) using vectors 

based on aptamers or anti-EGFR antibodies. 

Keywords: glioblastoma, membrane trafficking, cell surface receptors, aptamers 


