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Abstract

The numerical simulation of electromagnetic problems in complex physical settings is a trending topic which
conveys many scientific and industrial applications, such as the design of optical metamaterials, or the study of
cold plasmas. The mathematical and numerical analysis of Maxwell problems is well-known in simple physical
contexts, when the material parameters are isotropic. Some results in anisotropic media exist, but they generally
tend to focus on the case where the material tensors are real symmetric (or complex Hermitian) definite positive.
However, problems in more complex media are not covered by the standard theory. Therefore, new mathematical
tools need to be developed to analyse these problems.

This thesis aims at analysing time-harmonic electromagnetic problems for a general class of complex anisotropic
material tensors. These are called elliptic materials. We derive an extended functional framework well-suited for
these anisotropic problems, generalizing well-known results. We study the well-posedness of Maxwell boundary
value problems for Dirichlet, Neumann, and Robin boundary conditions. For the Robin case, the characterization
of appropriate function spaces for Robin traces is addressed. The regularity of the solution and its curl is studied,
and elements of numerical analysis for edge finite elements are provided. In the perspective of the use of Domain
Decomposition Methods (DDM) for accelerated numerical computing, various decomposed formulations are proposed
and studied, focusing on their right meaning in terms of function spaces and equivalence with the global problem.
These results are complemented with some numerical DDM experimentations in anisotropic media.

Keywords: Maxwell equations, anisotropic media, electromagnetic waves, finite elements, regularity analysis,
domain decomposition

Résumé

La simulation numérique de problèmes électromagnétiques dans des configurations physiques complexes est largement
utilisée pour de nombreuses applications scientifiques et industrielles, telles que la conception de métamatériaux
optiques ou l’étude des plasmas froids. L’analyse mathématique et numérique des problèmes de Maxwell est bien
connue dans des contextes physiques simples, où les paramètres du milieu sont isotropes. Des résultats en milieux
anistropes existent, mais se limitent généralement au cas des tenseurs réels symétriques (ou complexes hermitiens)
définis positifs. Cependant, pour certains milieux plus complexes, les problèmes ne sont pas couverts par la théorie
standard. De nouveaux outils mathématiques doivent donc être développés pour analyser ces problèmes.

Dans cette thèse, nous analysons des problèmes électromagnétiques harmoniques en temps pour une classe
générale de tenseurs matériels anistropes, appelés elliptiques. Nous développons un cadre fonctionnel étendu
adapté à ces problèmes anisotropes, en généralisant les résultats connus. Nous étudions le caractère bien posé
de problèmes avec conditions limites de Dirichlet, Neumann ou Robin. Dans le cas Robin, un intérêt particulier
est porté à la caractérisation des espaces fonctionnels pour les traces de Robin. Nous étudions la régularité de la
solution et de son rotationnel, et donnons des éléments d’analyse numérique. Dans la perspective de l’utilisation
de méthodes de décomposition de domaine (DDM) pour une résolution accélérée, nous proposons et étudions
différentes formulations décomposées, en nous focalisant sur leurs espaces fonctionnels et leur équivalence avec le
problème global. Quelques expérimentations numériques sur la DDM complètent ce travail.

Mots-clés : équations de Maxwell, milieux anisotropes, ondes électromagnétiques, éléments finis, étude de
régularité, décomposition de domaine
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Chapter 1

Introduction

1.1 Context and motivations

Electromagnetics is a field encompassing many scientific and industrial applications, which involve configurations
and materials of increasing complexity. Among them are the famous metamaterials: they consist in small structures
whose assembly can have global properties that greatly differ from those of standard objects. For example,
metamaterials could be designed to create materials with negative optical index, or invisibility cloacks (see e.g.
[93, 57]). Another popular application field is plasma physics. Plasmas consist in charged gases and are involved in
various technological challenges, such as the control of fusion reactions in tokamaks (see e.g. [104, 75, 66]). In these
applicative contexts where real experimentations are at best sensitive, costly and potentially harmful, numerical
simulations offer a good alternative. This requires simulation methods that are at the same time sufficiently accurate
to represent the physical solution, sufficiently efficient to get this representation in a reasonable time, with a
reasonable amount of computational resources, and sufficiently robust to deal properly with complex configurations.

In this context, Finite Element Methods (FEM) have shown their accuracy, efficiency and robustness through
a wide range of geometries and physical problems. They rely on the mathematical principle of variational
formulations, and edge finite elements are particularly well-suited for electromagnetic problems. In isotropic media,
their robustness is granted by mathematical arguments: one can prove that the considered problems are well-posed,
and estimate the error commited when solving numerically the problem. Besides, when the number of degrees of
freedom becomes huge (which is sometimes necessary to get a sufficiently accurate solution), Domain Decomposition
Methods (DDM) can be used to reduce computational costs. This is done by splitting a large problem into coupled
smaller subproblems, thus allowing parallel resolution or parallel preconditioning.

Unfortunately, the mathematical foundations for the study of anisotropic problems are not as developped as for
isotropic ones. Several categories can be distinguished. The best documented class is when the material coefficients
are real-valued symmetric (or complex-valued Hermitian) definite positive tensor fields. However, let us point
out that neither cloaking metamaterials, nor plasma enter this category. Beyond this class, only limited results
are available. In fact, only a few works have addressed other types of anisotropic media. Therefore, the existing
mathematical tools for the analysis of Maxwell problems cannot deal with these new materials. New tools are
required to analyse mathematically the physical problem and the numerical methods in such configurations.

1.2 Scope and goals

In this work, we aim at developing the mathematical framework for a new, more general class of materials that
includes cold plasma, see e.g. [104, 8], and cloaking metamaterials such as in [58, 57]. These materials will be
called elliptic. This class will be defined in the beginning of Chapter 3. Here, we develop the technical tools that
allow us to conduct the analysis of anisotropic Maxwell problems for materials with such coefficients. We focus on
three aspects:

• The well-posedness of the problem.
This encompasses the existence of the solution, its uniqueness, as well as its continuous dependence on data,
which characterizes the solution’s sensitivity to small variations. This is done classically by studying a
variational formulation of the problem. However, the mathematical tools allowing this study must be adapted
to anisotropic problems.

1



2 Chapter 1. Introduction

• The regularity of the solution.
This affects the convergence rate of the numerical edge finite elements method. That is why it is helpful to
get a priori regularity results on the solution. It also has implications for decomposed problems.

• The analysis of the decomposed problem.
This encompasses several aspects. The first one is the justification and the study of decomposed formulations
that are equivalent to the global problem. The second one is a proof of convergence for classical iterative
domain decomposition schemes.

In addition, we aim at exploring some more practical questions related to the numerical discretization by standard
edge finite elements, as well as to the parallel procedures with standard DDMs.

1.3 Outline

The manuscript is organised as follows. In Chapter 2 we introduce the model equations, and the mathematical
framework around it. Function spaces and traces are introduced. The main functional analysis results for Maxwell
equations are presented and illustrated on a simple standard problem.

Chapter 3 describes a generalized functional framework designed to deal with anisotropic problems. It extends
the tools introduced in Chapter 2 to the broader class of elliptic tensors.

Chapter 4 is an interlude which focuses on surface regularity matters for Robin traces. Several embeddings
for traces spaces are shown, and the regularity of Robin traces in various cases is addressed. These results are
necessary for the proper analysis of the Robin boundary value problem.

In Chapter 5, we address the well-posedness of Maxwell boundary value problems in anisotropic contexts. We
do so for the three main types of boundary conditions: Dirichlet, Neumann, and Robin.

In Chapter 6, the regularity of the solution as well as the solution’s curl is addressed. This is done, again, for
the three types of problems. We also provide elements of numerical analysis for edge finite elements discretization,
which are supported by some numerical experiments with FreeFem++.

Chapter 7 presents different aspects related to domain decomposition in anisotropic contexts. Decomposed
problems are written, and their equivalence with the global problem is studied. The convergence of a standard
iterative algorithm is investigated. Numerical experimentations with FreeFem++/PETSc are presented in order to
investigate the behaviour of standard DDMs for anisotropic complex media.

In the last chapter, general conclusions and perspectives are drawn.

1.4 Main contributions

Below, we draw a list of what we believe are our main original contributions:

• The extension of the functional analysis framework for Maxwell equations to elliptic tensor-valued coefficients
(Chapter 3);

• The studies on Robin traces function spaces: the trace spaces embeddings of Section 4.1, and extensions to
the cases of heterogeneous scalar coefficient (Sections 4.2.2 and 4.2.3) and tensor-valued coefficient (Section
4.3);

• The well-posedness analysis of Maxwell problems with Dirichlet, Neumann or Robin boundary conditions for
broad classes of anisotropic materials (Chapter 5);

• The regularity analysis for the solutions of the same problems (Chapter 6);

• The study of several decomposed formulations for anisotropic problems (Section 7.3);
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• Investigations on the theoretical convergence of a classical domain decomposition algorithm for anisotropic
problems (Section 7.4);

• Numerical investigations on the behaviour of standard domain decomposition methods for anisotropic problems
(Section 7.5).

Some parts of this work have been published in a peer-reviewed journal:

[23] D. Chicaud, P. Ciarlet Jr, and A. Modave. Analysis of variational formulations and low-regularity solutions
for time-harmonic electromagnetic problems in complex anisotropic media. SIAM Journal on Mathematical Analysis,
53(3):2691–2717, 2021.

Some parts of this work have appeared in a conference proceeding:

[22] D. Chicaud, P. Ciarlet Jr, and A. Modave. Perturbed edge finite element method for the simulation of
electromagnetic waves in magnetised plasmas. In Proceedings of the 14th International Conference on Mathematical
and Numerical Aspects of wave Propagation Phenomena (Vienna, Austria), pages 434–435, 2019.

This work has been funded by DGA/AID (Direction Générale de l’Armement / Agence de l’Innovation de
Défense), scientific field Ondes acoustiques et radioélectriques, and by ENSTA Paris. An extension has been granted
by LMH (Labex Mathématiques Hadamard).





Chapter 2

Model and mathematical tools for the
analysis of Maxwell equations

In this chapter, we present the most important elements of mathematical analysis that are classically required for
the study of Maxwell problems. We recall only the main definitions and results. For details, we refer the reader to
the monographs of Monk [86], Kirsch and Hettlich [78], and Assous, Ciarlet and Labrunie [7]. We also provide
some other references along the way when necessary. Section 2.1 introduces the physical model, equations and
boundary conditions. In Section 2.2 we introduce the mathematical framework, function spaces and operators. In
Section 2.3 we focus on potentials and fields decompositions. In Section 2.4 we present useful results of functional
analysis. We conclude in Section 2.5 by recalling the results that allow to state the well-posedness of a variational
formulation and apply them to a classical Maxwell problem.

2.1 The model

In this section, we present the most important aspects of electromagnetics that are necessary to our work. As most
of problems arising from physics, electromagnetics are described by a set of PDE (Maxwell equations) posed in the
three-dimensional space (or a subspace of it). They are completed with constitutive laws and boundary conditions.
From now on, we denote scalar fields by standard fonts; vector fields by bold letters; and tensor fields by underlined
bold letters.

2.1.1 Maxwell equations

To begin with, let us recall the four main differential operators that will be useful through this work. All of them
are expressed in Cartesian coordinates.

The gradient, a vector-valued operator acting on scalar fields: ∇v =

∂xv∂yv
∂zv

 (sometimes denoted grad v).

The divergence, a scalar-valued operator acting on vector fields: div v = ∂xvx + ∂yvy + ∂zvz (also denoted ∇ ·v).

The curl, a vector-valued operator acting on vector fields: curl v =

∂yvz − ∂zvy∂zvx − ∂xvz
∂xvy − ∂yvx

 (also denoted ∇× v).

The Laplacian, a second-order scalar operator: ∆v = div(∇v) = ∂2
xxv + ∂2

yyv + ∂2
zzv.

With these operators at hand, we are able to write the well-known four Maxwell equations which govern the

5



6 Chapter 2. Model and mathematical tools for the analysis of Maxwell equations

behaviour of electromagnetic fields:

div D = ρ (Gauss law) (2.1)
div B = 0 (Gauss law for magnetism) (2.2)

∂B
∂t

+ curl E = 0 (Faraday law) (2.3)

∂D
∂t
− curl H = −J (Ampere law) (2.4)

where D is the electric displacement, E the electric field, B the magnetic induction, and H the magnetic field. ρ is
the charge density and J the current density. Moreover, J and ρ are related through the charge conservation law:

∂ρ

∂t
+ div J = 0. (2.5)

In the context of our work, J and ρ, the sources, are known data. The unknowns are the electromagnetic fields D,
E, B and H.

2.1.2 Constitutive laws and material parameters

The Maxwell’s equations are completed with constitutive laws

D = εE (2.6)
B = µH (2.7)

where ε and µ are material tensors, characteristic of the material, and called respectively the dielectric tensor and
the tensor of magnetic permeability. These relations allow us to reduce to two the number of unknown fields in
Maxwell equations, eliminating usually D and B (or, more occasionally, D and H).

The medium is said isotropic when ε = εI, µ = µI, where ε and µ are scalar fields. From a physical point of
view, this means that the constitutive laws do not depend on the orientation of the medium, which is the case of
most usual media. The medium is moreover said homogeneous when ε and µ are constant. This means that the
behaviour of the medium is not dependent on space. In isotropic homogeneous media, and without sources, the
Maxwell equations induce a wave equation:

∂2
ttE− (εµ)−1∆E = 0, (2.8)

of propagation speed c := 1/√εµ. The main example of isotropic homogeneous medium is vacuum, in which case
ε = ε0 and µ = µ0 are fundamental physical constants. The associated propagation speed is nothing but the light
velocity, c0 = 1/√ε0µ0.

In more complex configurations, ε and µ can be tensor-valued. This expresses anisotropy of the medium, i.e.
the fact that the medium interactions with the electromagnetic fields do depend on orientation. As an example,
one can point metamaterials, small structures made of several materials that follow a regular pattern. Another
example of anisotropic medium is plasma. In the domain of numerical applications, PML can also be regarded as
anisotropic media.

2.1.3 Time-harmonic formulation

In the context of time-harmonic problems, we assume that the time dependence of the electromagnetic fields, as
well as the sources, is known and periodic, of a given pulsation ω > 0: A(x, t) = <(A(x)e−iωt). On the other
hand, we assume that the material tensors ε and µ do not vary with time. Under such assumptions, the Maxwell
equations rewrite

div εE = ρ (2.9)
divµH = 0 (2.10)

−iωµH + curl E = 0 (2.11)
iωεE + curl H = J, (2.12)
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and the charge conservation law
− iωρ+ div J = 0. (2.13)

One can notice that, in this context, equations (2.9) and (2.10) can be deduced from (2.11) and (2.12), taking the
divergence and using relation (2.13). Moreover, one can eliminate unknown H in the two remaining equations, to
get the second-order time-harmonic Maxwell equation for the electric field:

curlµ−1 curl E− ω2εE = iωJ (2.14)

which will be our main subject of study through this work. We will generally denote f the right-hand side of (2.14),
f = iωJ. Likewise, note that one could write the second-order equation for the magnetic field by eliminating E, to
get

curl ε−1 curl H− ω2µH = curl ε−1J. (2.15)

Both problems have similar forms.

2.1.4 Boundary conditions

Like any physical problem, equation (2.14) must be completed with appropriate boundary conditions, as soon as
the domain of interest is a strict subset of R3. Let us review the three main ones that will be studied in this work.

Dirichlet conditions

One expects that, along any surface Σ, the tangential components of the electric field are continuous, that is
[E× n]Σ = 0, where [ · ]Σ denotes the jump across Σ, and n is a unit normal vector field to Σ. If, for example, the
domain neighbours a perfectly conducting medium (in which E = 0), there will hold on its boundary Γ

E× n = 0, (2.16)

which is called a perfectly conducting condition. Note that, however, one does not control the normal component of
E at the interface. In particular, even though all the components of E vanish in a perfect conductor, there does
not hold E · n = 0 on Γ.

More generally, one could impose the value of the electric field’s tangential components on Γ:

E× n = Ed × n, or E× n = g, (2.17)

where Ed is a given electric field outside of Ω, or g is a given tangential field on Γ. In our work, this type of
boundary condition will be referred to as Dirichlet condition.

Neumann conditions

On the other hand, along any surface Σ, there also holds [H× n]Σ = jΣ, where jΣ is the surface current density on
Σ. Therefore, one can impose a given surface current at the boundary: H× n = j̃ on Γ, which also rewrites, in
time-harmonic context,

µ−1 curl E× n = j, (2.18)

with j = iωj̃. This condition is sometimes used to represent effects induced by an antenna, see e.g. [8]. In our work,
this type of boundary condition will be referred to as Neumann condition.

Impedance or Robin conditions

The last type of boudary condition we will consider in this work has to do with radiation and absorption matters.
In an isotropic homogeneous medium, one can write the Silver-Müller condition

(E− cB× n)× n = 0, (2.19)
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which is an outgoing condition. It models the fact that no wave is incoming from outside the domain of study (cf.
[87, 103]). A plane wave which propagates normally to a plane boundary with such a condition would continue
its way without being reflected. That is why it is also called a transparent condition. However, it is exact only
for a plane boundary and for a plane wave with normal incidence. In the other cases, (2.19) is only (but still) an
approximate absorbing boundary condition (ABC). It is the lowest-order ABC for Maxwell equations. Refinements
are possible, which are not in the scope of this thesis; we refer e.g. to [50]. On the other hand, an inhomogeneous
condition is also possible, which then models that a wave is incoming from outside the domain:

(E− cB× n)× n = g. (2.20)

The condition can also be written in (E,H) variables, which gives(
E−

√
µ

ε
H× n

)
× n = g, (2.21)

and, because Z :=
√
µ/ε is physically speaking an impedance, it is also called an impedance condition. In the

time-harmonic regime, one can eliminate H thanks to Faraday law (2.11), and get

−
(
µ−1 curl E× n

)
× n + iω

Z
(E× n) = iω

Z
g. (2.22)

In the case of non-isotropic media, the proper meaning to give to absorbing or transparent conditions becomes
unclear. In this work, we shall consider conditions of the type

n×
(
µ−1 curl E× n

)
+α (E× n) = g (2.23)

where α can be any chosen tensor. We will refer to them either as impedance conditions, or, because they involve
linear combinations of the Dirichlet and Neumann traces, as Robin conditions.

2.2 Function spaces and operators

In this section, we introduce the functional framework that allows us to study mathematically the Maxwell equations.
In the following of our work, Ω shall be a bounded, connected, open subset of R3, and s.t. at each point x of
its boundary, there exists a Lipschitz-continuous mapping whose graph locally represents the boundary of Ω in a
neighbourhood of x, and Ω is locally on one side only of its boundary (the two latter points meaning that Ω is of
Lipschitz boundary). Such a subset will be called from now on a Lipschitz domain of R3. Moreover, the boundary
of Ω will generally be denoted Γ, and n will denote the unit outward normal to Ω.

We denote by standard fonts the scalar fields and their function spaces, and by bold letters the vector fields
and their function spaces; e.g. H1(Ω) :=

(
H1(Ω)

)3; v ∈ H1(Ω); v ∈ H1(Ω). The tensor fields and their function
spaces will be denoted by underlined bold letters, e.g. ξ ∈ L∞(Ω). An index of notations is provided at the end of
the manuscript.

2.2.1 Volume function spaces

Distributions spaces

We denote by D(Ω) (resp. D(Ω) = (D(Ω))3) the space of scalar (resp. vector), complex-valued, infinitely
differentiable functions of compact support included in Ω.

A linear form T on D(Ω) is said continuous if, for all compact set K ⊂ Ω, there exists CK > 0, mK ∈ N s.t.

|T (g)| ≤ CK sup
|α|≤mK

sup
x∈K
|∂αg(x)|, ∀g ∈ D(Ω) s.t. supp(g) ⊂ K. (2.24)

The set of linear continuous forms on D(Ω), i.e. the dual space of D(Ω), is denoted D′(Ω). Similarly, the dual space
of D(Ω) is denoted D′(Ω). They are called distributions spaces. The duality product is denoted 〈·, ·〉 in either
scalar or vector case.
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One can differentiate objects of D′(Ω) in the following sense. Let T ∈ D′(Ω), the j-th partial derivative of T is
given by the relation

〈 ∂T
∂xj

, g〉 = −〈T, ∂g
∂xj
〉, ∀g ∈ D(Ω). (2.25)

The mapping ∂j defines a linear, continuous operator from D′(Ω) to D′(Ω). This is called differentiation in the
sense of distributions. This way, one can also define operators ∇, div, curl, ∆ in the sense of distributions.

Lebesgue spaces

For 1 ≤ p <∞, we introduce the Lebesgue spaces

Lp(Ω) :=
{
v s.t.

∫
Ω
|v|p dx <∞

}
, (2.26)

which is a Banach space endowed with the norm ‖v‖Lp :=
(∫

Ω |v|
p dx

)1/p. We also introduce L∞(Ω), the space of
essentially bounded functions on Ω, which is also a Banach space endowed with the norm ‖v‖L∞ := esssupx∈Ω|v(x)|.
For the sake of shortness, we shall omit the subscript (Ω) in the norms when it is clear that the corresponding
domain is Ω.

Among these, a particular space that will play a leading role in the following is L2(Ω), the space of square
integrable functions on Ω, which is a Hilbert space endowed with the inner product (u|v) :=

∫
Ω uv̄ dx. All those

spaces also have their vector-valued counterparts, and, in the special case p = 2, (·|·) will denote either the inner
product of L2(Ω) or L2(Ω).

Standard Sobolev spaces

A notable property of elements of Lp(Ω), for any p ∈ [1,∞], is that they can be considered as distributions, that is,
elements of D′(Ω). Therefore, differentiating these functions becomes possible in the sense of distributions. This
motivates the definition of Sobolev spaces: for m ∈ N,

Wm,p(Ω) :=
{
v ∈ Lp(Ω),∀α ∈ N3 s.t. |α| ≤ m, ∂αv ∈ Lp(Ω)

}
, (2.27)

where α is a derivative multi-index; that is, all derivatives of v up to orderm belong to Lp(Ω). Such spaces are Banach

spaces, endowed with the norm ‖v‖Wm,p :=
(∑

|α|≤m ‖∂αv‖
p
Lp

)1/p
if p <∞, and ‖v‖Wm,∞ := max|α|≤m ‖∂αv‖L∞ .

Once again, the case p = 2 plays a special role, as spaces Hm(Ω) := Wm,2(Ω) are Hilbert spaces, endowed with
the inner product

(u, v)Hm =
∑
|α|≤m

∫
Ω
∂αu ∂αv dx. (2.28)

It is possible to define Sobolev spaces Hs(Ω) of fractional order. Let s = m + σ, with m ∈ N and σ ∈]0, 1[.
Introduce

|v|Hσ :=

 ∑
|α|=m

∫
Ω

∫
Ω

|∂αv(x)− ∂αv(y)|2

|x− y|3+2σ dxdy

1/2

. (2.29)

Then Hs(Ω) := {v ∈ Hm(Ω) s.t. |v|Hσ <∞}, and it is a Hilbert space, endowed with the norm ‖v‖Hs :=(
‖v‖2Hm + |v|2Hσ

)1/2 and the associated scalar product. Other (equivalent) definitions are possible, see e.g. [82].

Then, one also introduces the subspace Hs
0(Ω), for s ≥ 0, as the closure of D(Ω) in Hs(Ω). Sobolev spaces of

negative order are defined by duality: for s > 0, H−s(Ω) is the dual space of Hs
0(Ω), i.e. the space of antilinear

continuous forms on Hs
0(Ω), with L2(Ω) taken as the pivot space. They are also Hilbert spaces, endowed with the

norm ‖v‖H−s := sup
w∈Hs0 (Ω)\{0}

〈v, w〉Hs0
‖w‖Hs

(and the associated scalar product). Once again, all those spaces also have

their vector-valued counterparts. To conclude, we denote by the susbcript zmv the subspace of fields of Hs(Ω) with
zero mean value, for s ≤ 0,

Hs
zmv(Ω) := {v ∈ Hs(Ω), (v|1) = 0}. (2.30)
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Divergence and curl Sobolev spaces

To finish this section, let us introduce two more Sobolev spaces, which will be of primal interest for the study of
electromagnetic fields. These are the spaces related to operators div and curl,

H(div,Ω) := {v ∈ L2(Ω),div v ∈ L2(Ω)}, (2.31)
H(curl,Ω) := {v ∈ L2(Ω), curl v ∈ L2(Ω)}, (2.32)

which are also Hilbert spaces, endowed with their respective inner products (u,v)H(div) := (u|v) + (div u|div v)
and (u,v)H(curl) := (u|v) + (curl u| curl v). Note that, while one clearly has

H1(Ω) ⊂ H(div,Ω), H1(Ω) ⊂ H(curl,Ω),

the converse embeddings are false. Indeed, one simply requires that some linear combination of the derivatives
belong to L2(Ω), not the derivatives themselves. In fact, one can even state that, a priori,

H(div,Ω) ∩H(curl,Ω) 6⊂ H1(Ω),

which has strong implications that will be detailed later.

Finally, as for standard Sobolev spaces, we denote with subscript 0 the closure of D(Ω) in H(div,Ω) and
H(curl,Ω), that is resp. H0(div,Ω) and H0(curl,Ω).

2.2.2 Traces and surface operators

Traces

It is possible to give a meaning to the boundary value of volume fields. This is done thanks to operators called
traces. We first introduce them for fields of C∞(Ω) (resp. C∞(Ω)). Their extension to Sobolev spaces will be
discussed in the next subsection. Recalling that Γ denotes the boundary of Ω and n the unit outward normal to Ω,
let us introduce:

The trace of scalar fields, γ : f 7→ f|Γ (simply called trace when there is no amibiguity).

The normal trace, γn : f 7→ f · n|Γ.

The tangential trace, γT : f 7→ f × n|Γ.

The tangential components trace, πT : f 7→ n× (f × n)|Γ.

Surface operators

Let us also introduce some surface operators, defined for surface fields on Γ. Therefore, they are related to tangential
traces. For the sake of clarity, let us also give an explicit expression of these operators in Cartesian coordinates,
with the convention Γ = {z = 0} and n is towards z > 0. For the case of a smooth boundary, we refer, e.g., to [105,
pp. 61-75].

The surface gradient: ∇Γ(v|Γ) := πT (∇v) =
(
∂xv
∂yv

)
.

The surface vector curl: curlΓ(v|Γ) := γT (∇v) =
(
∂yv
−∂xv

)
.

The surface divergence, the dual operator of −∇Γ: divΓ v|Γ = ∂xvx + ∂yvy.

The surface scalar curl, the dual operator of curlΓ: curlΓ v|Γ = ∂xvy − ∂yvx.

The Laplace-Beltrami operator : ∆Γ v := divΓ∇Γ v = − curlΓ curlΓ v = ∂2
xxv + ∂2

yyv.

Note that curlΓ acts on a scalar field and returns a vector one, while curlΓ acts on a vector field and returns a
scalar one. Also, although the definitions above involve volume fields, all these operators can be understood as



2.2. Function spaces and operators 11

purely surface operators. Let us also recall that

divΓ curlΓ = 0 and curlΓ∇Γ = 0. (2.33)

Moreover, if ξ is a surface scalar field, one has

divΓ(ξ∇Γ ·) = − curlΓ(ξ curlΓ ·). (2.34)

2.2.3 Function spaces for traces

In this subsection, we extend the notion of traces to less regular fields, more precisely, elements of particular Sobolev
spaces. This is not straightforward. Indeed, elements of Sobolev spaces are defined, as Lebesgue spaces, almost
everywhere. As a consequence, they do not have a pointwise definition, contrarily to fields of C∞(Ω). However,
when the fields are sufficiently regular, it is possible to extend (in a weaker sense) traces of the field (or of some of
its components) to the boundary of the domain.

To that aim, we introduce the Sobolev spaces Hs(Γ) as well as their vector-valued counterparts, defined on Γ
for |s| ≤ 1. This is done in a similar way than for volume spaces. In particular, for 0 < s < 1,

‖v‖Hs(Γ) :=
(
‖v‖2L2(Γ) +

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|2+2s dxdy
)1/2

, (2.35)

and ‖v‖H−s(Γ) := sup
w∈Hs(Γ)\{0}

〈v, w〉Hs(Γ)

‖w‖Hs(Γ)
. Again, other equivalent definitions are possible, cf. [82].

Trace of scalar fields

The first important and classical result is that it is actually possible to give a meaning to γ(v) when v belongs to
H1(Ω).

Theorem 2.2.1. The mapping γ has a unique continuous, surjective extension from H1(Ω) to H1/2(Γ).
Moreover, H1

0 (Ω) = {v ∈ H1(Ω), v|Γ = 0}.

When it comes to vector valued fields, if v ∈ H1(Ω), one can take the scalar trace of each component. However,
this is not possible a priori for less regular fields of H(div,Ω) or H(curl,Ω). In the following we will see that
one can in fact define the normal trace of elements of H(div,Ω), and, likewise, the tangential trace of elements of
H(curl,Ω).

Normal trace

The normal trace can be extended in a weak sense to elements of H(div,Ω).

Theorem 2.2.2. The mapping γn has a unique continuous extension from H(div,Ω) to H−1/2(Γ), which is
surjective. Moreover, H0(div,Ω) = {v ∈ H(div,Ω),v · n|Γ = 0}.

This comes with the following integration by parts formula.

Theorem 2.2.3. ∀(u, v) ∈ H(div,Ω)×H1(Ω),

(u|∇v) + (div u|v) = 〈u · n, v〉H1/2(Γ). (2.36)

Moreover, a side-product is that, for fields v ∈ H1(Ω) s.t. ∆v ∈ L2(Ω), there holds ∇v ∈ H(div,Ω); so, it is
possible to define their normal derivative trace, ∇v · n|Γ ∈ H−1/2(Γ). The normal derivative is sometimes denoted
∂v
∂n or ∂nv. To finish with that matter, let us introduce a particular type of domain:
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Definition 2.2.4. A domain Ω is said of the A-type if, for any x ∈ Ω, there exists a neighbourhood V of x in
R3, and a C2 diffeomorphism that transforms Ω ∩ V into one of the following types, where (x1, x2, x3) denote the
Cartesian coordinates and (ρ, ω) ∈ R× S2 the spherical coordinates in R3:

1. [x1 > 0], i.e. x is a regular point;
2. [x1 > 0, x2 > 0], i.e. x is a point on a salient (outward) edge;
3. R3\[x1 ≥ 0, x2 ≥ 0], i.e. x is a point on a reentrant (inward) edge;
4. [ρ > 0, ω ∈ Ω̃], where Ω̃ is a topologically trivial domain. In particular, if ∂Ω̃ is smooth, x is a conical vertex;

if ∂Ω̃ is a made of arcs of great circles, x is a polyhedral vertex.

In [35], such domains are referred to as (Lipschitz) corner domains.

In a domain of the A-type, one can match normal traces of H1(Ω) vector fields with normal derivative of H2(Ω)
scalar fields [7, Lemma 3.6.4]:

Proposition 2.2.5. Let Ω be a domain of the A-type. For any w ∈ H1(Ω), there exists q ∈ H2(Ω) s.t.

∂q

∂n = w · n|Γ on Γ, (2.37)

with ‖q‖H2 ≤ C‖w‖H1 , where C > 0 is a constant independent on w.

Tangential and tangential components traces

For elements of H(curl,Ω), it is possible to define in a weak sense the tangential trace, as well as the tangential
components trace.

Theorem 2.2.6. The mappings γT and πT have a unique continuous extension from H(curl,Ω) to H−1/2(Γ).
Moreover, H0(curl,Ω) = {v ∈ H(curl,Ω), γTv = 0} = {v ∈ H(curl,Ω), πTv = 0}.

However, this result does not provide surjectivity, contrarily to the previous Theorems 2.2.1 and 2.2.2. A
better understanding of the function spaces related to tangential traces has been provided by Buffa and Ciarlet for
piecwise smooth domains [18, 19], and by Buffa, Costabel and Sheen for general domains with Lipschitz boundary
[21]. Hereafter we recall their most important results. In the rest of the section we assume that Γ is piecewise
smooth. First of all, let us introduce the space of tangential fields of L2(Γ),

L2
t (Γ) := {v ∈ L2(Γ),v · n = 0}. (2.38)

The inner space of L2
t (Γ) will generally be denoted (·, ·)Γ. More generally, for s > 0,

Hs
t (Γ) := Hs(Γ) ∩ L2

t (Γ). (2.39)

We also introduce

H1/2
⊥ (Γ) := γT

(
H1(Ω)

)
, (2.40)

H1/2
‖ (Γ) := πT

(
H1(Ω)

)
. (2.41)

These spaces are defined in an inner yet equivalent manner in [18]. Their duals are denoted, respectively, H−1/2
⊥ (Γ)

and H−1/2
‖ (Γ), where L2

t (Γ) is taken as the pivot space.

Remark 2.2.7. When Γ is smooth, both spaces H1/2
⊥ (Γ) and H1/2

‖ (Γ) coincide. In fact, there holds

H1/2
⊥ (Γ) = H1/2

‖ (Γ) = H1/2
t (Γ),

where H1/2
t (Γ) := H1/2(Γ) ∩ L2

t (Γ). However, when Γ is only piecewise smooth, there simply holds

H1/2
t (Γ) ⊂ H1/2

⊥ (Γ), H1/2
t (Γ) ⊂ H1/2

‖ (Γ).
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Then, let us introduce

H−1/2
‖ (divΓ,Γ) := {v ∈ H−1/2

‖ (Γ),divΓ v ∈ H−1/2(Γ)}; (2.42)

H−1/2
⊥ (curlΓ,Γ) := {v ∈ H−1/2

⊥ (Γ), curlΓ v ∈ H−1/2(Γ)}. (2.43)

For short, the natural norm of the space H−1/2
‖ (divΓ,Γ) is denoted ‖ · ‖γ : ‖v‖2γ := ‖v‖2

H−1/2
‖ (Γ)

+ ‖divΓ v‖2
H−1/2(Γ).

The norm of the space H−1/2
⊥ (curlΓ,Γ) is denoted ‖ · ‖π. Then, one has the next fundamental results.

Theorem 2.2.8. The mapping γT is continuous and surjective from H(curl,Ω) to H−1/2
‖ (divΓ,Γ).

The mapping πT is continuous and surjective from H(curl,Ω) to H−1/2
⊥ (curlΓ,Γ).

Moreover, one has a duality result and an integration by parts formula.

Theorem 2.2.9. H−1/2
‖ (divΓ,Γ) and H−1/2

⊥ (curlΓ,Γ) are dual spaces. Their duality product is denoted
γ〈·, ·〉π. Moreover, one has the following integration by parts formula: ∀(u,v) ∈ H(curl,Ω)×H(curl,Ω),

(u| curl v)− (curl u|v) = γ〈γTu, πTv〉π
= −π〈πTu, γTv〉γ .

(2.44)

To finish with, let us note the following identities.

Proposition 2.2.10. Let q ∈ H1(Ω), there holds, in H−1/2
⊥ (Γ),

∇Γ q|Γ = πT (∇q). (2.45)

Proposition 2.2.11. Let v ∈ H(curl,Ω), there holds, in H−1/2(Γ),

divΓ(v× n)|Γ = (curl v) · n|Γ. (2.46)

2.3 Extractions of potentials and fields decompositions

The study of electromagnetic fields requires some useful elements of vector analysis that are commonly acknowledged.
For example, the fact that one can write a curl-free field as the gradient of a scalar potential; that a divergence-free
field can be written as the curl of a vector potential; and more generally, that a vector field u can be written as

u = curl A +∇φ, (2.47)

with curl A being the “divergence-free part” of u and ∇φ its “curl-free part”. The main goal of this section is to
recall the mathematical foundations of such assertions.

2.3.1 Topological matters

Before all, it will be useful to make more precise some assumptions on the domain Ω. Indeed, the domain topology
will play an important role in the matter of the following subsections. First, the domain may be of connected
boundary or not. If not, we denote (Γk)0≤k≤K the (maximal) connected components of Γ. Second, the domain
may be topologically trivial or not (see [63] for further details):

Definition 2.3.1. A domain Ω is said topologically trivial when one can extract a single-valued potential from
curl-free smooth fields, that is:

∀v ∈ C1(Ω) s.t. curl v = 0 in Ω, there exists p ∈ C0(Ω) s.t. v = ∇p in Ω.
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If not, we assume that the domain satisfies the following condition:

Definition 2.3.2. A domain Ω is said of genus I if I is the minimal number s.t. there exists I non-intersecting
manifolds (Σi)1≤i≤I , called cuts, s.t., letting Ω̇ := Ω\

⋃I
i=1 Σi,

∀v ∈ C1(Ω) s.t. curl v = 0 in Ω, there exists ṗ ∈ C0(Ω̇) s.t. v = ∇ṗ in Ω̇,

Topologically trivial domains are of genus 0. More generally, I is the first Betti number of Ω. For more details on
these aspects, we refer to [63].

The following integration by parts formula from [6] will be useful in such domains.

Proposition 2.3.3. In a domain Ω of genus I > 0, and using the notations of the definition above, there
holds the following integration by parts formula:
∀v ∈ H0(div,Ω), ∀q̇ ∈ H1(Ω̇),

(v|∇q̇)Ω̇ + (div v|q̇)Ω̇ =
I∑
i=1
〈v · n, [q̇]Σi〉H1/2(Σi), (2.48)

where n is a unit normal vector field to Σi, and [q̇]Σi denotes the jump of q̇ across Σi (with sign convention
taken according to n).

The notion can be extended to manifolds of R3. In particular, Γ can be topologically trivial or not, cf. [16].

2.3.2 Extraction of potentials

Here, we recall the main mathematical results concerning extraction of scalar and vector potentials. This subject is
widely addressed in the monograph of Girault and Raviart [59], and we recall only the most useful results for our
concerns. To begin with, one has the next scalar potential result [59, Th. 2.9].

Theorem 2.3.4 (Scalar potential). Let Ω be a topologically trivial domain. For v in L2(Ω), there holds

curl v = 0 (2.49)

if, and only if,
∃p ∈ H1

zmv(Ω) s.t. v = ∇p. (2.50)

The scalar potential p is unique, and there exists a constant C > 0, independent of v, s.t. ‖p‖H1 ≤ C‖v‖L2 .

One has also at hand a vector potential extraction result [59, Th. 3.4].

Theorem 2.3.5 (Vector potential). Let Ω be a domain, and (Γk)0≤k≤K the connected components of its
boundary Γ. For v in L2(Ω), there holds{

div v = 0,
〈v · n, 1〉H1/2(Γk) = 0, ∀ 0 ≤ k ≤ K,

(2.51)

if, and only if,
∃w ∈ H1(Ω) s.t. v = curl w, (2.52)

with moreover div w = 0, and there exists a constant C > 0, independent of v, s.t. ‖w‖H1 ≤ C‖v‖L2 .

To finish this subsection, let us also mention an alternate vector potential theorem proved in [7, Th. 3.5.1].
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Theorem 2.3.6 (Second vector potential). Let Ω be a domain of genus I ≥ 0. For v in L2(Ω), there holds
div v = 0 in Ω,
v · n = 0 on Γ,
〈v · n, 1〉H1/2(Σi) = 0, ∀ 1 ≤ i ≤ I,

(2.53)

if, and only if,
∃w ∈ H0(curl,Ω) s.t. v = curl w, (2.54)

with, additionally, div w = 0, and, ∀ 0 ≤ k ≤ K, 〈w · n, 1〉H1/2(Γk) = 0. Moreover, w is unique, and there
exists a constant C > 0, independent of v, s.t. ‖w‖H(curl) ≤ C‖v‖L2 .

2.3.3 Null spaces of operators

In this subsection, we develop some aspects of the relations underlying the different operators ∇, div, curl, and
their related spaces. Let us introduce the spaces of vanishing divergence or curl,

H(div 0,Ω) := {v ∈ H(div,Ω), div v = 0}, (2.55)
H(curl 0,Ω) := {v ∈ H(curl,Ω), curl v = 0}, (2.56)

as well as

H0(div 0,Ω) := H0(div,Ω) ∩H(div 0,Ω), (2.57)
H0(curl 0,Ω) := H0(curl,Ω) ∩H(curl 0,Ω). (2.58)

A famous way to represent the relations between all the different operators ∇, div, curl, and their related
spaces, is the de Rham complex:

H1(Ω) ∇−→ H(curl,Ω) curl−→ H(div,Ω) div−→ L2(Ω), (2.59)

H1
0 (Ω) ∇−→ H0(curl,Ω) curl−→ H0(div,Ω) div−→ L2(Ω). (2.60)

The diagram can be understood as follows: the range of each arrow is contained in the kernel of the following. For
example, ∇(H1

0 (Ω)) ⊂ H0(curl 0,Ω). This is sometimes referred to as exact sequence, although, from an algebraic
point of view, the sequence is in general not exact: ∇(H1

0 (Ω)) 6= H0(curl 0,Ω), due to topological concerns. In
fact, there holds

H0(curl 0,Ω) = ∇H1
0 (Ω)

⊥
⊕ ZN (Ω), (2.61)

with ZN (Ω) := H0(curl 0,Ω) ∩H(div 0,Ω). Likewise, H0(div 0,Ω) 6= curl H0(curl,Ω) in general, but

H0(div 0,Ω) = curl H0(curl,Ω)
⊥
⊕ ZT (Ω), (2.62)

with ZT (Ω) := H(curl 0,Ω) ∩H0(div 0,Ω).

One can go further in the characterization of the vanishing curl and divergence spaces ZN (Ω) and ZT (Ω), cf.
[6]. They are finite dimensional, and their dimensions depend on the topology of Ω. In fact, there holds

ZN (Ω) = ∇QN (Ω), (2.63)

ZT (Ω) = ˜∇QT (Ω̇), (2.64)

where

QN (Ω) :=
{
q ∈ H1(Ω) | ∆ q = 0, q|Γ0 = 0, and, for 1 ≤ k ≤ K, q|Γk constant

}
, (2.65)

QT (Ω̇) :=
{
q̇ ∈ H1

zmv(Ω̇) | div ∇̃q̇ = 0 in Ω, ∇̃q̇ · n = 0 on Γ, and, for 1 ≤ i ≤ I, [q̇]Σi constant
}
, (2.66)

and ·̃ denotes the continuation to Ω. Hence, dim ZN (Ω) = K, while dim ZN (Ω) = I.

Then, in general, considering a field with vanishing curl and divergence, even with vanishing normal or tangential
trace, does not mean the whole field vanishes. This is true only when ZN (Ω) and ZT (Ω) reduce to zero, that is, if
Ω is topologically trivial and of connected boundary.
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2.3.4 Helmholtz decompositions

We are now in position to address the mathematical meaning behind (2.47). This is done thanks to the so-called
Helmholtz decompositions. To begin with, let us introduce a few more function spaces:

XN (Ω) := H0(curl,Ω) ∩H(div,Ω), (2.67)
XT (Ω) := H(curl,Ω) ∩H0(div,Ω); (2.68)

and the corresponding spaces with vanishing divergence

KN (Ω) := H0(curl,Ω) ∩H(div 0,Ω), (2.69)
KT (Ω) := H(curl,Ω) ∩H0(div 0,Ω). (2.70)

In these spaces, the subscript N denotes fields with non-zero normal trace, while the subscript T denotes fields with
non-zero tangential trace. All those spaces are endowed with the norm (‖ · ‖L2 + ‖ curl ·‖L2 + ‖div ·‖L2)1/2, which
reduces to the H(curl,Ω)-norm for spaces with vanishing divergence.

Then, one can write a number of decompositions. The first one involves H0(curl,Ω), and will be of particular
interest for the study of Dirichlet problems. Likewise, the second one is a decomposition of H(curl,Ω), that will
be useful when dealing with Neumann problems.

Theorem 2.3.7 (First Helmholtz decomposition). The following decompositions hold:

L2(Ω) = ∇H1
0 (Ω)

⊥
⊕H(div 0,Ω); (2.71)

H0(curl,Ω) = ∇H1
0 (Ω)

⊥
⊕KN (Ω); (2.72)

where orthogonality is taken, respectively, in the sense of L2(Ω) and H(curl,Ω).

Theorem 2.3.8 (Second Helmholtz decomposition). The following decompositions hold:

L2(Ω) = ∇H1
zmv(Ω)

⊥
⊕H0(div 0,Ω); (2.73)

H(curl,Ω) = ∇H1
zmv(Ω)

⊥
⊕KT (Ω); (2.74)

where orthogonality is taken, respectively, in the sense of L2(Ω) and H(curl,Ω).

Moreover, one can go further, introducing decompositions of vanishing divergence spaces. In fact, there holds

H(div 0,Ω) = ∇QN (Ω)
⊥
⊕ curl H1(Ω); (2.75)

H0(div 0,Ω) = ˜∇QT (Ω̇)
⊥
⊕ curl H0(curl,Ω), (2.76)

where orthogonality is taken in the sense of H(div,Ω). Because all fields have vanishing divergence, this amounts
to L2(Ω)-orthogonality. Therefore, the following three-terms decompositions hold:

L2(Ω) = ∇H1
0 (Ω)

⊥
⊕∇QN (Ω)

⊥
⊕ curl H1(Ω); (2.77)

L2(Ω) = ∇H1
zmv(Ω)

⊥
⊕ ˜∇QT (Ω̇)

⊥
⊕ curl H0(curl,Ω), (2.78)

where, in the first decomposition, ∇H1
0 (Ω)

⊥
⊕∇QN (Ω) is the vanishing curl part, and ∇QN (Ω)

⊥
⊕ curl H1(Ω) is the

vanishing divergence part; the same holds for the second one.

Let us introduce a third Helmholtz decomposition, which appears for instance in [86]. It will be useful for the
study of the problem with Robin condition. We introduce the space

H+(curl,Ω) := {v ∈ H(curl,Ω), γTv ∈ L2
t (Γ)} (2.79)
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which is sometimes denoted Himp(curl,Ω) in the literature. It is a Hilbert space, endowed with the inner product
(u,v)H+(curl) = (u,v)H(curl) + (γTu, γTv)L2

t (Γ). Let us also introduce

WN (Ω) := H+(curl,Ω) ∩H(div 0,Ω). (2.80)

Then, one has the following Helmholtz decomposition of H+(curl,Ω).

Theorem 2.3.9 (Third Helmholtz decomposition). The following Helmholtz decomposition holds:

H+(curl,Ω) = ∇H1
0 (Ω)

⊥
⊕WN (Ω), (2.81)

where orthogonality is taken in the sense of H+(curl,Ω).

We finish the subsection by mentioning two surface Helmholtz decompositions (also called Hodge decompositions),
proved in [19, 21]. Let us assume first that Γ is topologically trivial. Introduce

H(Γ) :=
{
v ∈ H1

zmv(Γ), ∆Γ v ∈ H−1/2(Γ)
}
. (2.82)

Theorem 2.3.10. If Γ is topologically trivial, the following decompositions hold:

H−1/2
‖ (divΓ,Γ) = curlΓ(H1/2(Γ))⊕∇Γ(H(Γ)); (2.83)

H−1/2
⊥ (curlΓ,Γ) = ∇Γ(H1/2(Γ))⊕ curlΓ(H(Γ)). (2.84)

In the more general case of a non-topologically trivial boundary [16], one has to introduce a third space in the
decompositions,

H :=
{
u ∈ L2

t (Γ), curlΓ u = 0, divΓ u = 0
}
, (2.85)

which is finite-dimensional. Then, one has the next three-terms decompositions [16, Theorem 3].

Theorem 2.3.11. More generally, one has the following decompositions:

H−1/2
‖ (divΓ,Γ) = curlΓ(H1/2(Γ))⊕H⊕∇Γ(H(Γ)); (2.86)

H−1/2
⊥ (curlΓ,Γ) = ∇Γ(H1/2(Γ))⊕H⊕ curlΓ(H(Γ)). (2.87)

2.4 Inequalities and embeddings

In this section, we present important functional analysis results for some of the function spaces introduced above.
The first ones are Poincaré inequalities, that state a norm equivalence in some subspaces of H1(Ω). The next
ones are Weber inequalities and compact embeddings that concern the spaces XN (Ω), XT (Ω) and WN (Ω). These
results will be helpful for the study of the well-posedness of Maxwell problems.

2.4.1 Poincaré inequalities

To begin with, let us mention a couple of properties of subspaces of H1(Ω) that will be useful throughout this
work. The first one concerns a norm equivalence in H1

0 (Ω). It is referred to as Poincaré inequality.

Theorem 2.4.1 (Poincaré inequality). There exists a constant CP > 0, dependent only on Ω, s.t.

∀v ∈ H1
0 (Ω), ‖v‖L2 ≤ CP ‖∇v‖L2 . (2.88)
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Hence, the mapping v 7→ ‖∇v‖L2 defines a norm on H1
0 (Ω), equivalent to the norm ‖ · ‖H1 , and denoted ‖ · ‖H1

0
.

By extension, the terminology Poincaré inequalities denotes also a class of properties which are similar to
Theorem 2.4.1. In particular, it is also valid for fields whose trace vanishes only on a part on the boundary. Let Γ0
a non-negligible subset of Γ, and the space

H1
0,Γ0

(Ω) :=
{
v ∈ H1(Ω), v|Γ0 = 0

}
. (2.89)

In this space, there holds a Poincaré inequality.

Theorem 2.4.2. There exists a constant C > 0, dependent only on Ω and Γ0, s.t.

∀v ∈ H1
0,Γ0

(Ω), ‖v‖L2 ≤ C‖∇v‖L2 . (2.90)

Hence, the mapping v 7→ ‖∇v‖L2 defines a norm on H1
0,Γ0

(Ω), equivalent to the norm ‖ · ‖H1 .

One also has a counterpart to Poincaré inequality for fields with zero mean value, which is generally called
Poincaré-Wirtinger inequality.

Theorem 2.4.3 (Poincaré-Wirtinger inequality). There exists a constant C ′P > 0, dependent only on Ω, s.t.

∀v ∈ H1
zmv(Ω), ‖v‖L2 ≤ C ′P ‖∇v‖L2 . (2.91)

Hence, the mapping v 7→ ‖∇v‖L2 defines a norm on H1
zmv(Ω), equivalent to the norm ‖ · ‖H1 , and denoted

‖ · ‖H1
zmv

.

Remark 2.4.4. All those results rely importantly on the assumption that Ω is bounded, and are false, in general, if
Ω is unbounded.

2.4.2 Weber inequalities

In the following, we mention useful results that concern the spaces XN (Ω) and XT (Ω). Those results are of two
types. The first ones are Weber inequalities (sometimes referred to as Friedrich or Gaffney inequalities), which,
somehow as Poincaré inequalities, can be understood as norm equivalence results. The second ones are compact
embeddings. All those results are due to Weber [114].

In XN (Ω), it is possible to control the L2(Ω)-norm of the fields, somehow in the spirit of Poincaré inequalities.

Theorem 2.4.5 (First Weber inequality). There exists a constant CW > 0 s.t., for all v in XN (Ω),

‖v‖L2 ≤ CW

(
‖ curl v‖L2 + ‖ div v‖L2 +

K∑
k=1
|〈v · n, 1〉H1/2(Γk)|

)
. (2.92)

One has a similar result for elements of XT (Ω).

Theorem 2.4.6 (Second Weber inequality). Let Ω be a domain of genus I ≥ 0. There exists a constant
C ′W > 0 s.t., for all v in XT (Ω),

‖v‖L2 ≤ C ′W

(
‖ curl v‖L2 + ‖div v‖L2 +

I∑
i=1
|〈v · n, 1〉H1/2(Σi)|

)
. (2.93)

2.4.3 Compact embeddings

Let us note some compact embedding results. The first one concern the classical Sobolev spaces. It is generally
referred to as compact Sobolev embeddings and also as Rellich-Kondrachov or Rellich theorem.
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Theorem 2.4.7. Let s′ > s > 0. Then the embedding of Hs′(Ω) into Hs(Ω) is compact.

One also has the next compact embedding results, that are related to Weber inequalities and were also proven
by Weber [114].

Theorem 2.4.8. The embedding of XN (Ω) into L2(Ω) is compact.

Theorem 2.4.9. The embedding of XT (Ω) into L2(Ω) is compact.

Finally, one also has such a result for WN (Ω) (see [86]).

Theorem 2.4.10. The embedding of WN (Ω) into L2(Ω) is compact.

Remark 2.4.11. Again, all these results rely on the assumption that Ω is bounded, and are false in general when Ω
is unbounded.

2.5 Analysis of classical Maxwell problems

To carry out the analysis of PDE problems, one generally rewrites the problem into an equivalent variational
formulation. To conclude the chapter, we present the tools that allow us to study the well-posedness of variational
formulations, and, in a pedagogical view, we apply them to a classical Maxwell example.

We recall that a bilinear form on a Hilbert space V is said coercive on V iff ∃C > 0, ∀v ∈ V, |a(v, v)| ≥ C‖v‖2V .
The first result that guarantees the well-posedness of such problems is the famous Lax-Milgram lemma.

Theorem 2.5.1 (Lax-Milgram lemma). Let V a Hilbert space, and consider the problem∣∣∣∣∣Find u ∈ V s.t., ∀v ∈ V,
a(u, v) = 〈f, v〉.

(2.94)

If a(·, ·) is a coercive, continuous sesquilinear form on V , then the problem (2.94) is well-posed: for all f ∈ V ′,
there exists a unique u ∈ V solution to (2.94), which depends continuously on f : ∃C > 0, independent of u
and f , s.t. ‖u‖V ≤ C‖f‖V ′ .

However, in many time-harmonic problems, Lax-Milgram lemma does not apply, because the form is not coercive.
In this case, one relies rather on Fredholm alternative.

Theorem 2.5.2 (Fredholm alternative). Given two Hilbert spaces V and H with V ⊂ H, a(·, ·) a continuous
sesquilinear form on V × V , and b(·, ·) a continuous sesquilinear form on H × V , consider the problem∣∣∣∣∣ Find u ∈ V s.t., ∀v ∈ V,

a(u, v) + b(u, v) = 〈f, v〉.
(2.95)

If a(·, ·) is coercive on V and the embedding of V into H is compact, then,

• either, for all f in V ′, the problem (2.95) admits a unique solution u ∈ V , which depends continuously
on f ;

• or, the problem (2.95) has solutions if, and only if, f satisfies a finite number nb of orthogonality conditions;
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in this case, the space of solutions is an affine space of dimension nb. Additionally, the component of the
solution which is orthogonal to the corresponding linear vector space, depends continuously on f .

When a formulation can be split with a coercive part and a compact part, as in (2.95), we sometimes say that it
enters the “coercive + compact” framework. For such problems, the Fredholm alternative applies.

Another consequence of Fredholm alternative is that “existence and uniqueness are equivalent”. Thus, if one is
able to prove that the solution is unique (using, for example, a unique continuation principle, see [113], [90]), then
the problem is well-posed.

A classical Maxwell problem

Let us take as an example the time-harmonic Maxwell equation expressed for the electric field in a homogeneous
isotropic medium, completed with a homogeneous Dirichlet condition:{

curl curl E− ω2E = f in Ω,
E× n = 0 on Γ,

(2.96)

where we assume f ∈ L2(Ω), and, for simplicity, ε = µ = I. We will naturally look for the solution in H(curl,Ω).
More specifically, because of the boundary condition, one actually has E ∈ H0(curl,Ω).

The variational formulation of this problem is obtained by multiplying the volume equation of (2.96) by
F ∈ H0(curl,Ω), then integrating by parts using formula (2.44). Thus, one gets∣∣∣∣∣Find E ∈ H0(curl,Ω) s.t., ∀F ∈ H0(curl,Ω),

(curl E| curl F)− ω2 (E|F) = (f |F) .
(2.97)

Using the Helmholtz decomposition of Theorem 2.3.7, we split E into two parts: E = ∇p+ Ẽ, with p ∈ H1
0 (Ω)

and Ẽ ∈ KN (Ω). Moreover, we can write the two variational formulations satisfied by p and Ẽ:∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),
−ω2 (∇p|∇q) = (f |∇q)

(2.98)

and ∣∣∣∣∣Find Ẽ ∈ KN (Ω) s.t., ∀F̃ ∈ KN (Ω),(
curl Ẽ| curl F̃

)
− ω2 (Ẽ|F̃) = (f |F̃).

(2.99)

They are obtained by writing E = ∇p+ Ẽ and taking as test functions ∇q, q ∈ H1
0 (Ω) or F̃ ∈ KN (Ω), respectively.

Conversely, one sums formulations (2.98) and (2.99). Taking advantage of the Helmholtz decomposition (2.72),
and posing E = ∇p+ Ẽ, one gets that (2.97) holds for all F = ∇q + F̃, therefore for all F ∈ H0(curl,Ω). Hence,
the couple of formulations (2.98)-(2.99) is well equivalent to (2.97).

Then, the formulation (2.98) enters the scope of Lax-Milgram lemma (Theorem 2.5.1). Indeed, the corresponding
bilinear form is continuous and coercive on H1

0 (Ω), thanks to Poincaré inequality (Theorem 2.4.1). Therefore, this
formulation is well-posed.

Concerning the formulation (2.99), it enters the scope of Fredholm alternative. Indeed, one can split the bilinear
form into two parts:

a(u,v) := (curl u| curl v) + (u|v) , (2.100)
which is continuous and coercive on KN (Ω) (KN (Ω) and H(curl,Ω) share the same norm), and

b(u,v) := (−ω2 − 1) (u|v) , (2.101)

which is continuous on L2(Ω)×KN (Ω). As the embedding of KN (Ω) into L2(Ω) is compact (Theorem 2.4.8), one
can conclude by Fredholm alternative.

One could proceed similarly with the Neumann or Robin problems. Each boundary condition will lead to a
variational formulation posed in a different subspace of H(curl,Ω), leading to use slightly different tools adapted to
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this formulation. Hence, for the Neumann problem, the variational space is the whole space H(curl,Ω). This leads
to use the second Helmholtz decomposition of Theorem 2.3.8, the Poincaré-Wirtinger inequality (Theorem 2.4.3)
for the first problem and the compact embedding of Theorem 2.4.9 for the second one. For the Robin problem, the
variational space would rather be H+(curl,Ω) (one has to check, however, that the boundary condition indeed
holds in L2

t (Γ); this point is discussed in Chapter 4). This leads to use the third Helmholtz decomposition of
Theorem 2.3.9 and the compact embedding of Theorem 2.4.10.

Conclusion

We have presented the main tools that are classically used for the study of time-harmonic Maxwell problems.
We introduced the necessary function spaces, traces and operators. With this, we are able to write variational
formulations for Maxwell problems. We also provided an overview on decompositions, inequalities and compact
embeddings that hold for these different spaces. Using these tools, combined with Lax-Milgram lemma and
Fredholm alternative, we are able to state the well-posedness of classical Maxwell problems in isotropic media.
However, these tools are not sufficient to deal with more complex Maxwell problems, in particular when the material
coefficients ε, µ are anisotropic. It is then necessary to extend the classical tools presented in this chapter to more
complex cases. This is the point of the next chapter.





Chapter 3

Extended tools for the study of
anisotropic problems

In this chapter, we generalise to the anisotropic case the tools of the previous chapter that classically arise in the
study of Maxwell problems: Helmholtz decompositions, Weber inequalities, and compact embedding results. We
extend these results to the more general case of elliptic (possibly non-Hermitian) tensors. Throughout this chapter,
we assume that Ω is a Lipschitz domain as introduced in Section 2.2. In Section 3.1 we introduce the ellipticity
condition and derive some basic properties. Section 3.2 is devoted to the extension of Helmholtz decompositions,
and Section 3.3 to the extension of Weber inequalities and compact embedding results.

3.1 Ellipticity condition

Definition 3.1.1. We say that a tensor field ξ is elliptic iff ξ ∈ L∞(Ω) and

∃θξ ∈ R, ∃ξ− > 0, a.e. in Ω, ∀z ∈ C3, ξ−|z|2 ≤ <[eiθξ · z∗ξz]. (3.1)

Additionally, we will use the notation ξ+ := ‖ξ‖L∞ .

The condition can be understood as follows: there exists a “coercivity direction” for ξ in the complex plane, given
by θξ, while ξ− gives the “magnitude” of the coercivity. Note that the constants θξ and ξ− are fixed in the sense
that they do not depend on x, but they are not unique. In particular, we denote Θξ the range of admissible
directions θξ.
Remark 3.1.2. When the tensor ξ is isotropic, i.e. ξ(x) = ξ(x)I, the ellipticity condition reduces to

∃θξ ∈ R, ∃ξ− > 0, a.e. in Ω, ξ− ≤ <[eiθξ ξ]. (3.2)

Therefore, we shall also use this terminology for scalar fields: a scalar field ξ that satisfies (3.2) is said elliptic. A
scalar field ξ is elliptic iff ξI is an elliptic tensor field. In the literature, scalar fields that satisfy (3.2) are also
frequently said to be bounded by below. Again, θξ is in general not unique, and the range of admissible values for θξ
is denoted Θξ.
Remark 3.1.3. Ellipticity can be interpreted in terms of tensor eigenvalues: the condition (3.1) implies that, almost
everywhere in Ω, the eigenvalues of ξ(x) are contained in a fixed open half-plane of C. However, the converse

implication is false in general. For example, in 2D, consider the matrix M =
(

1 −4
0 2

)
. Its eigenvalues are strictly

positive, but it is not elliptic: taking v = (1, 0)T and w = (1, 1)T , one has v∗Mv = 1, but w∗Mw = −1. In fact, it
seems that both conditions are equivalent for normal tensors only.

Because ξ can be non-Hermitian, the mapping (v,w) 7→ (ξv|w) is, in general, not a scalar product in L2(Ω);
orthogonality properties are lateralized, in the sense that (ξv|w) = 0 is not equivalent to (ξw|v) = 0.

Let us compare the condition (3.1) to what is usually done in the literature. Most of the results of this chapter
are known for Hermitian definite positive tensors (see e.g. [7]). In this case, one has a notion of orthogonality: the
mapping (ξ · |·) defines a scalar product, which is helpful in many proof techniques. This property makes this case
relatively close to the isotropic case. Looking at the eigenvalues of ξ, they are all real and strictly positive.

23
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Figure 3.1: Representation of tensors eigenvalues

To the best of our knowledge, few authors address these questions in the case of non-Hermitian tensors. In a
recent paper [115], tensors with elliptic real part are considered, i.e.

∃ξ− > 0,∀z ∈ C3, ξ−|z|2 ≤ <[z∗ξz] a.e. in Ω. (3.3)

This condition is equivalent to the one of [2], where tensors of definite positive Hermitian part are considered. As
we noticed, relaxing the Hermitian assumption on ξ goes with a loss of orthogonality. With the condition (3.3), the
eigenvalues of ξ are all contained in the half-plane of C of positive real part; the imaginary part can be non-zero,
contrarily to the Hermitian case. For example, in [4], a model with conductivity is considered. The tensors there
are symmetric and definite positive, but complex-valued (therefore not Hermitian). This case is encompassed by
the condition (3.3). In these works, authors focus on the Dirichlet problem. In particular, the compact embedding
of XN (ξ; Ω) into L2(Ω) is proven.

Our condition is similar to (3.3), allowing also its rotations in the complex plane (see Fig. 3.1). It is, therefore,
more general. As we shall see, it is actually not necessary to assume specifically that the real part is elliptic. In [8],
a model from plasma theory is analysed. The authors show that the real part of the eigenvalues do not have a
constant sign, so, it does not enter the scope of [115]. However, the imaginary part is elliptic (the authors also
show that the tensor is normal). Therefore, this case is covered by our condition, with θξ = π/2. This example
has motivated us to design the condition (3.1), independently of the work of [115]. Let us also point out that,
contrarily to most authors, we treat the three main types of boundary conditions: Dirichlet, Neumann, and Robin.

From now on, ξ denotes a tensor that satisfies assumption (3.1). Next, let us state some simple properties that
follow from (3.1). First of all, an elliptic tensor has an inverse which is also elliptic.

Proposition 3.1.4. If ξ is elliptic, then ξ−1 is well-defined in L∞(Ω), and is elliptic as well, with θξ−1 = −θξ,
ξinv
+ ≤ξ−1

− and ξinv
− = ξ−ξ

−2
+ .

Proof. Let x in Ω s.t. ξ(x) is well-defined. One can first notice that under assumption (3.1), ξ(x)z = 0 only if
z = 0. Then ξ(x) is injective and we can define ξ−1(x).

Let z ∈ C3, we pose y = ξ−1(x)z. One has ξ−|y|2 ≤ |y∗ξ(x)y| ≤ |y‖ξ(x)y|, then ξ−|y| ≤ |ξy|. We thus have
that

|ξ−1z| ≤ ξ−1
− |z| a.e. in Ω,

hence ξ−1 ∈ L∞(Ω).
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Moreover, it holds that |ξy| ≤ ξ+|y| a.e. in Ω, so ξ−1
+ |z| ≤ |ξ

−1z|. Then, ξ−|y|2 ≤ <[eiθξ · y∗ξy] yields

ξ−|ξ−1z|2 ≤ <[eiθξ · z∗(ξ−1)∗z]
ξ−|ξ−1z|2 ≤ <[e−iθξ · z∗ξ−1z]

ξ−
ξ2
+
|z|2 ≤ <[e−iθξ · z∗ξ−1z].

To sum up, ξ−1 satisfies an ellipticity condition, with: θξ−1 = −θξ, and upper and lower bounds given by ξinv
+ ≤ξ−1

−
and ξinv

− := ξ−ξ
−2
+ .

We can also note the following property.

Proposition 3.1.5. For any v ∈ L2(Ω), one has the following inequalities:

ξ−‖v‖2L2 ≤ <
[
eiθξ

(
ξv|v

)]
≤
∣∣(ξv|v)∣∣ ≤ ξ+‖v‖2L2 . (3.4)

A simple consequence of this is the well-posedness of the associated scalar problems.

Theorem 3.1.6. The Dirichlet problem∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),(
ξ∇p|∇q

)
= `(q),

(3.5)

that is equivalent to

Find p ∈ H1(Ω) s.t. {
−div ξ∇p = ` in Ω,

p = 0 on Γ,
(3.6)

is well-posed for all ` in
(
H1

0 (Ω)
)′ = H−1(Ω), i.e.

∃C > 0, ∀` ∈
(
H1

0 (Ω)
)′
,∃! p solution to (3.5), with ‖p‖H1

0
≤ C‖`‖(H1

0 )′ .

Theorem 3.1.7. The Neumann problem∣∣∣∣∣Find p ∈ H
1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),(
ξ∇p|∇q

)
= `(q),

(3.7)

that is equivalent, if ` ∈ L2(Ω), to

Find p ∈ H1
zmv(Ω) s.t. {

−div ξ∇p = ` in Ω,
ξ∇p · n = 0 on Γ,

(3.8)

is well-posed for all ` in
(
H1

zmv(Ω)
)′, that is

∃C > 0, ∀` ∈
(
H1

zmv(Ω)
)′
,∃! p solution to (3.7), with ‖p‖H1

zmv
≤ C‖`‖(H1

zmv)′ .

Proof. It follows from Lax-Milgram lemma, relations (3.4) and Poincaré (resp. Poincaré-Wirtinger) inequality.
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3.2 Helmholtz decompositions

To begin this section, let us introduce some more function spaces, related to the operator div ξ· instead of just div:

H(div ξ,Ω) := {v ∈ L2(Ω), ξv ∈ H(div,Ω)}, (3.9)
H0(div ξ,Ω) := {v ∈ L2(Ω), ξv ∈ H0(div,Ω)}, (3.10)
H(div ξ0,Ω) := {v ∈ H(div ξ,Ω), div ξv = 0}, (3.11)

H0(div ξ0,Ω) := H0(div ξ,Ω) ∩H(div ξ0,Ω), (3.12)

which are Hilbert spaces endowed with the norm ‖ · ‖H(div ξ) :=
(
‖ · ‖2L2 + ‖ div ξ · ‖2L2

)1/2. We also introduce

XN (ξ; Ω) := H0(curl,Ω) ∩H(div ξ,Ω), (3.13)
XT (ξ; Ω) := H(curl,Ω) ∩H0(div ξ,Ω), (3.14)
KN (ξ; Ω) := H0(curl,Ω) ∩H(div ξ0,Ω), (3.15)
KT (ξ; Ω) := H(curl,Ω) ∩H0(div ξ0,Ω), (3.16)

WN (ξ; Ω) := H+(curl,Ω) ∩H(div ξ0,Ω). (3.17)

The spaces XN (ξ; Ω) and XT (ξ; Ω) are respectively equipped with the norms ‖·‖XN (ξ) and ‖·‖XT (ξ), which are both

defined as
(
‖ · ‖2L2 + ‖ curl ·‖2L2 + ‖ div ξ · ‖2L2

)1/2. In KN (ξ; Ω) and KT (ξ; Ω), this reduces to the ‖ · ‖H(curl)-norm.
Likewise, the space WN (ξ; Ω) is equipped with the ‖ · ‖H+(curl)-norm.

These are natural spaces that arise in the study of anisotropic Maxwell problems. They generalize the standard
function spaces H(div,Ω), XN (Ω), etc. introduced in Chapter 2. In the following, we extend to these spaces some
useful properties of the standard spaces. As a first noticeable consequence of (3.1), one can extend the Helmholtz
decompositions 2.3.7 and 2.3.8 into the following results.

Theorem 3.2.1. One has the following first-kind Helmholtz decompositions, whose associated projectors are
continuous:

L2(Ω) = ∇H1
0 (Ω)⊕H(div ξ0,Ω); (3.18)

H0(curl,Ω) = ∇H1
0 (Ω)⊕KN (ξ; Ω). (3.19)

Proof. Let v ∈ L2(Ω). The Dirichlet problem∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),(
ξ∇p|∇q

)
=
(
ξv|∇q

)
is well-posed by Theorem 3.1.6, and there holds ‖p‖H1

0
. ‖v‖L2 1. We pose vT = v − ∇p ∈ L2(Ω). Then

〈div ξvT |q〉H1
0

=
(
ξvT |∇q

)
= 0, i.e. div ξvT = 0 in H−1(Ω), and vT ∈ H(div ξ0,Ω). Moreover, by triangle

inequality, one has ‖vT ‖H(div ξ) = ‖vT ‖L2 ≤ ‖v‖L2 + ‖∇p‖L2 . ‖v‖L2 .

Additionally, the sum is direct: indeed, let v ∈ ∇H1
0 (Ω) ∩H(div ξ0,Ω), then v = ∇p for a certain p ∈ H1

0 (Ω),
and div ξ∇p = 0. But the Dirichlet problem is well-posed, so p = 0.

The second proof is similar, with bounds in H(curl,Ω)-norm.

Remark 3.2.2. Contrarily to Theorem 2.3.7, the notion of orthogonality no longer applies, as (ξ · |·) is not a scalar
product if ξ is not Hermitian. Indeed, for v ∈ H(div ξ0,Ω), q ∈ H1

0 (Ω), it always holds
(
ξv|∇q

)
= 0 by integration

by parts; however,
(
ξ∇q|v

)
=
(
∇q|ξ∗v

)
may not vanish. The same remark also apply to the following lemmas and

theorems.

1 Here and in all the following proofs of the chapter, the notation a . b denotes that there exists a constant C > 0, independent of a
and b, s.t. a ≤ Cb. The constant C depends only on ξ and the geometry.
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Theorem 3.2.3. One has the following second-kind Helmholtz decompositions, which are continuous:

L2(Ω) = ∇H1
zmv(Ω)⊕H0(div ξ0,Ω); (3.20)

H(curl,Ω) = ∇H1
zmv(Ω)⊕KT (ξ; Ω). (3.21)

Proof. Let v ∈ L2(Ω). The Neumann problem∣∣∣∣∣Find p ∈ H
1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),(
ξ∇p|∇q

)
=
(
ξv|∇q

)
is well-posed by Theorem 3.1.7, and there holds ‖p‖H1

zmv
. ‖v‖L2 . We pose vT = v−∇p ∈ L2(Ω). Noting that the

formulation is still valid ∀q ∈ H1(Ω), and taking q ∈ H1
0 (Ω), there holds 〈div ξvT , q〉H1

0
= −

(
ξvT |∇q

)
= 0. Hence

div ξvT = 0 and vT ∈ H(div ξ0,Ω). Moreover, ∀q ∈ H1(Ω), 〈ξvT · n, q〉H1/2(Γ) =
(
ξvT |∇q

)
+
(
div ξvT |q

)
= 0.

Hence vT ∈ H0(div ξ0,Ω). By triangle inequality, ‖vT ‖L2 . ‖v‖L2 .

Additionally, the sum is direct: indeed, let v ∈ ∇H1
zmv(Ω) ∩ H0(div ξ0,Ω), then v = ∇p for a certain

p ∈ H1
zmv(Ω), and fulfills div ξ∇p = 0 and ξ∇p · n|Γ = 0. As the Neumann problem is well-posed, p = 0.

The second proof is similar.

Then, one has a third Helmholtz decomposition for the space H+(curl,Ω), in the spirit of Theorem 2.3.9.

Theorem 3.2.4. The following Helmholtz decomposition holds:

H+(curl,Ω) = ∇H1
0 (Ω)⊕WN (ξ; Ω). (3.22)

Proof. Let v ∈ H+(curl,Ω), and p ∈ H1
0 (Ω) the unique solution to∣∣∣∣∣Find p ∈ H

1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),(
ξ∇p|∇q

)
=
(
ξv|∇q

)
.

Then vT := v − ∇p ∈ H(curl,Ω), with div ξvT = 0 and γTvT = γTv ∈ L2
t (Γ). Moreover, the sum is direct,

because the Dirichlet problem is well-posed.

One can go further by introducing splittings of spaces H(div ξ,Ω) and H0(div ξ,Ω), in the spirit of relations
(2.75) and (2.76). They will be useful for the proofs of the next section. These results are dependent of the topology
of the domain. We refer to subsection 2.3.1 for the corresponding definitions and notations. For the first one,
introduce

QN (ξ; Ω) :=
{
q ∈ H1(Ω) | div ξ∇q = 0, q|Γ0 = 0, and, for 1 ≤ k ≤ K, q|Γk constant

}
. (3.23)

Proposition 3.2.5. The space QN (ξ; Ω) is finite dimensional, of dimension K.

Proof. For 1 ≤ k ≤ K, let us introduce the solution qk ∈ QN (ξ; Ω) to div ξ∇qk = 0, qk|Γ0 = 0, and, ∀l, qk|Γl = δkl.
As the Dirichlet problem is well-posed, qk exists and is unique. Moreover, the (qk)k form a basis of QN (ξ; Ω):
clearly the family is linearly independent, and, for all q ∈ QN (ξ; Ω), there holds q =

∑K
k=1 q|Γkqk. As a consequence,

maxk | ·|Γk | defines a norm on QN (ξ; Ω).

The next result is the counterpart of decomposition (2.75).
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Lemma 3.2.6. One has the following decomposition, which is continuous:

H(div ξ0,Ω) = ∇QN (ξ,Ω)⊕ ξ−1 curl H1(Ω). (3.24)

Proof. Let v ∈ H(div ξ0,Ω), consider the problem∣∣∣∣∣Find q
Γ ∈ QN (ξ; Ω) s.t., ∀q ∈ QN (ξ; Ω),(

ξ∇qΓ|∇q
)

=
(
ξv|∇q

)
.

(3.25)

The problem is well-posed: it is a consequence of Lax-Milgram lemma, along with Poincaré inequality set in
H1

0,Γ0
(Ω) and relations (3.4). So, the problem admits a unique solution qΓ ∈ QN (ξ; Ω), with ‖∇qΓ‖L2 . ‖v‖L2 .

Introducing z = v −∇qΓ ∈ H(div ξ0,Ω), there holds 〈ξz · n, 1〉H1/2(Γk) = 0. Indeed, one has, by integration by
parts,

〈ξz · n, 1〉H1/2(Γk) = 〈ξz · n, qk〉H1/2(Γ)

=
(
ξz|∇qk

)
+
(
div ξz|qk

)
=
(
ξv|∇qk

)
−
(
ξ∇qΓ|∇qk

)
= 0,

the latter by definition of qΓ. Then, one can apply the Vector Potential Theorem 2.3.5. There exists w ∈ H1(Ω)
s.t. ξz = curl w, with ‖w‖H1 . ‖ξz‖L2 . ‖z‖L2 . So, v = ∇qΓ + z = ∇qΓ + ξ−1 curl w, with ‖w‖H1 . ‖v‖L2 by
triangle inequality.

Moreover, the sum is direct. Indeed, let v ∈ ∇QN (ξ,Ω) ∩ ξ−1 curl H1(Ω). Then v = ∇qΓ = ξ−1 curl w for
some qΓ ∈ QN (ξ; Ω),w ∈ H1(Ω). Thus, for all q ∈ QN (ξ; Ω), there holds(

ξ∇qΓ|∇q
)

= (curl w|∇q)
= γ〈γTw, πT∇q〉π

by integration by parts. However, note that q ∈ QN (ξ; Ω), so q|Γk is constant for all k, and πT∇q = 0. So, for all
q ∈ QN (ξ; Ω),

(
ξ∇qΓ|∇q

)
= 0. As the problem (3.25) is well-posed, qΓ = 0 and then v = 0.

For the splitting of H0(div ξ0,Ω), we introduce

QT (ξ; Ω̇) :=
{
q̇ ∈ H1

zmv(Ω̇) | div ξ∇̃q̇ = 0 in Ω, ξ∇̃q̇ · n = 0 on Γ, and, for 1 ≤ i ≤ I, [q̇]Σi constant
}
, (3.26)

where ∇̃q̇ denotes the extension of ∇q̇ to Ω and [q̇]Σi denotes the jump of q̇ across Σi.

Proposition 3.2.7. The space QT (ξ; Ω̇) is finite dimensional, of dimension I.

Proof. For 1 ≤ i ≤ I, one can introduce q̇i the unique element of QT (ξ; Ω̇) s.t. [q̇i]Σj = δij for 1 ≤ j ≤ I. Then, the
(q̇i)i form a basis of QT (ξ; Ω̇), as clearly they are linearly independent, and, for all q̇ ∈ QT (ξ; Ω̇), q̇ =

∑I
i=1[q̇]Σi q̇i.

Furthermore, maxi |[·]|Σi | defines a norm on QT (ξ; Ω).

Then, one obtains a decomposition similar to (2.76).

Lemma 3.2.8. One has the following decomposition, which is continuous:

H0(div ξ0,Ω) = ˜∇QT (ξ, Ω̇)⊕ ξ−1 curl H0(curl,Ω). (3.27)
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Proof. Let v ∈ H0(div ξ0,Ω), consider the problem∣∣∣∣∣Find q̇
Σ ∈ QT (ξ; Ω̇) s.t., ∀q̇ ∈ QT (ξ; Ω̇),(

ξ∇q̇Σ|∇q̇
)

Ω̇ =
(
ξv|∇q̇

)
Ω̇ .

(3.28)

The problem is well-posed, as a consequence of relations (3.4) and Poincaré-Wirtinger inequality. So, it admits
a unique solution q̇Σ ∈ QT (ξ; Ω̇), with ‖∇q̇‖L2 . ‖v‖L2 . Introducing z = v − ∇̃q̇ ∈ H0(div ξ0,Ω), there holds
〈ξz · n, 1〉H1/2(Σi) = 0 for 1 ≤ i ≤ I. Indeed, according to the integration by parts formula (2.48),

〈ξz · n, 1〉H1/2(Σi) =
I∑
j=1
〈ξz · n, [q̇i]Σj 〉H1/2(Σj)

=
(
ξz|∇q̇i

)
Ω̇

=
(
ξv|∇q̇i

)
Ω̇ −

(
ξ∇q̇Σ|∇q̇i

)
Ω̇

= 0,

the latter by definition of q̇Σ. Then, one can invoke the Second Vector Potential Theorem 2.3.6. There exists
w ∈ H0(curl,Ω) s.t. ξz = curl w, with ‖w‖H(curl) . ‖z‖L2 . Thus, v = ∇̃q̇Σ + ξ−1 curl w, with ‖w‖H(curl) . ‖v‖
by triangle inequality.

Moreover, the sum is direct. Indeed, let v ∈ ˜∇QT (ξ, Ω̇) ∩ ξ−1 curl H0(curl,Ω). Then v = ∇̃q̇Σ = ξ−1 curl w
for some q̇Σ ∈ QT (ξ; Ω̇),w ∈ H0(curl,Ω). Hence, ∀q̇ ∈ QT (ξ; Ω̇),(

ξ∇q̇Σ|∇q̇
)

Ω̇ = (curl w|∇q̇)Ω̇ = 0,

because w ∈ H0(curl,Ω) and ∇̃q̇ ∈ H(curl,Ω). As the problem (3.28) is well-posed, q̇Σ = 0, and v = 0.

3.3 Weber inequalities and compact embeddings

The next subsections are dedicated to extending Weber inequalities and compact embedding results for the spaces
XN (ξ; Ω), XT (ξ; Ω) and WN (ξ; Ω). These results will be useful to ensure that the variational formulations of the
Maxwell problems enter the setting of Fredholm alternative. They depend on the topology of the domain, and we
use the notations introduced in subsection 2.3.1.

3.3.1 The space XN(ξ; Ω)

Let us begin with an extension of the first Weber inequality 2.4.5.

Theorem 3.3.1. Let Ω, be a domain of boundary Γ, and (Γk)0≤k≤K the maximal connected components of
Γ. There exists a constant CW > 0 s.t., for all y in XN (ξ; Ω),

‖y‖L2 ≤ CW

(
‖ curl y‖L2 + ‖ div ξy‖L2 +

K∑
k=1
|〈ξy · n, 1〉H1/2(Γk)|

)
. (3.29)

Proof. We proceed by contradiction. Let us assume there exists (ym) a sequence of XN (ξ; Ω) s.t., ∀m, ‖ym‖L2 = 1,
and

‖ curl ym‖L2 + ‖ div ξym‖L2 +
K∑
k=1
|〈ξym · n, 1〉H1/2(Γk)| ≤

1
m+ 1 .

The proof makes use of the Helmholtz decomposition (3.19) as well as the decomposition (3.24), so that we split
ym into three terms.



30 Chapter 3. Extended tools for the study of anisotropic problems

First, consider the solution to the Dirichlet problem∣∣∣∣∣Find q
0
m ∈ H1

0 (Ω) s.t., ∀q ∈ H1
0 (Ω),(

ξ∇q0
m|∇q

)
=
(
ξym|∇q

)
.

(3.30)

By Theorem 3.1.6, this problem is well-posed. Moreover, taking q = q0
m, one gets by integration by parts∣∣(ξ∇q0

m|∇q0
m

)∣∣ =
∣∣(−div ξym|q0

m

)∣∣ ≤ ‖div ξym‖L2‖q0
m‖L2 .

Using the relation (3.4) on the left-hand side and Poincaré inequality on the right-hand side, one gets

‖∇q0
m‖2L2 . ‖ div ξym‖L2‖∇q0

m‖L2 ,

so
‖∇q0

m‖L2 . ‖ div ξym‖L2 . (3.31)

Hence ‖∇q0
m‖L2 −→ 0.

As a second step, let xm := ym−∇q0
m ∈ KN (ξ,Ω) (this is the Helmholtz decomposition (3.19) of ym). Consider

the problem ∣∣∣∣∣Find q
Γ
m ∈ QN (ξ; Ω) s.t., ∀q ∈ QN (ξ; Ω),(

ξ∇qΓ
m|∇q

)
=
(
ξxm|∇q

)
,

(3.32)

with the space QN (ξ; Ω) defined in (3.23). This problem is also well-posed, following the proof of Lemma 3.2.6.
Taking q = qΓ

m and integrating by parts, one has∣∣(ξ∇qΓ
m|∇qΓ

m

)∣∣ =
∣∣〈ξxm · n, qΓ

m〉H1/2(Γ)
∣∣

=

∣∣∣∣∣
K∑
k=1
〈ξxm · n, qΓ

m〉H1/2(Γk)

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

qΓ
m|Γk〈ξxm · n, 1〉H1/2(Γk)

∣∣∣∣∣ .
As QN (ξ; Ω) is a finite-dimensional vector space, all the norms are equivalent, and among them, ‖∇ · ‖L2 and
maxk | ·|Γk | (the latter denoted ‖ · ‖QN (ξ)). Then, using additionally relation (3.4), there holds

‖qΓ
m‖2QN (ξ) .

(
‖qΓ
m‖QN (ξ)

K∑
k=1

∣∣〈ξxm · n, 1〉H1/2(Γk)
∣∣) .

Besides, 〈ξxm · n, 1〉H1/2(Γk) = 〈ξym · n, 1〉H1/2(Γk) − 〈ξ∇q0
m · n, 1〉H1/2(Γk). Moreover, using the continuity of the

normal trace and recalling that div ξ∇q0
m = div ξym as well as relation (3.31), there holds∣∣〈ξ∇q0
m · n, 1〉H1/2(Γk)

∣∣ . ‖ξ∇q0
m · n‖H−1/2(Γk)

. ‖∇q0
m‖H(div ξ)

. ‖div ξym‖L2 .

Therefore,

‖qΓ
m‖QN (ξ) .

(
K∑
k=1

∣∣〈ξym · n, 1〉H1/2(Γk)
∣∣+ ‖ div ξym‖L2

)
, (3.33)

and ‖∇qΓ
m‖L2 −→ 0.

Thirdly, let zm := xm −∇qΓ
m = ym −∇q0

m −∇qΓ
m. It belongs to XN (ξ,Ω): in fact, ∇qΓ

m ∈ H0(curl,Ω), as
πT (∇qΓ

m) = ∇Γ(qΓ
m|Γ) = 0. There holds curl zm = curl ym, div ξzm = 0, and, moreover, 〈ξzm · n, 1〉H1/2(Γk) = 0.

Indeed, one has by integration by parts

〈ξzm · n, 1〉H1/2(Γk) = 〈ξzm · n, qk〉H1/2(Γ)

=
(
ξzm|∇qk

)
+
(
div ξzm|qk

)
.
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However,
(
ξzm|∇qk

)
=
(
ξxm|∇qk

)
−
(
ξ∇qΓ

m|∇qk
)

= 0 by definition of qΓ
m; and div ξzm = 0. Hence 〈ξzm ·

n, 1〉H1/2(Γk) = 0. This allows us to invoke the vector potential Theorem 2.3.5: there exists wm ∈ H1(Ω) s.t.
ξzm = curl wm, and ‖wm‖H1 . ‖ξzm‖L2 . ‖zm‖L2 (this is the splitting (3.24) of xm). Furthermore, we have by
integration by parts (

zm|ξzm
)

= (zm| curl wm) = (curl zm|wm) = (curl ym|wm) .

Using again relation (3.4), there holds

‖zm‖2L2 . ‖ curl ym‖L2‖wm‖L2

. ‖ curl ym‖L2‖zm‖L2 ,

and so
‖zm‖L2 . ‖ curl ym‖L2 . (3.34)

Hence ‖zm‖L2 −→ 0.

Finally, as ym = zm +∇q0
m +∇qΓ

m, we have ‖ym‖L2 −→ 0, which contradicts ‖ym‖L2 = 1.

Furthermore, one can also extend the compact embedding result of Theorem 2.4.8. A similar result has been
proven by Alonso and Valli [4].

Theorem 3.3.2. The embedding of XN (ξ; Ω) into L2(Ω) is compact.

Proof. Let (ym) be a bounded sequence of XN (ξ; Ω). As in the previous proof, we split ym into three terms.
Introduce q0

m ∈ H1
0 (Ω), qΓ

m ∈ QN (ξ; Ω), and wm ∈ H1(Ω) s.t.

ym = ∇q0
m +∇qΓ

m + ξ−1 curl wm.

Additionally, there holds from the previous proof

‖∇q0
m‖L2 . ‖ div ξym‖L2 ;

‖∇qΓ
m‖L2 .

(
‖ div ξym‖L2 +

K∑
k=1

∣∣〈ξym · n, 1〉H1/2(Γk)
∣∣) ;

‖wm‖H1 . ‖zm‖L2 . ‖ curl ym‖L2 .

Let us begin with (qΓ
m): it is a bounded sequence of the finite-dimensional vector space QN (ξ; Ω), so it admits a

subsequence which converges (in particular in H1-norm). Besides, (q0
m) and (wm) are bounded sequences of H1(Ω)

(resp. H1(Ω)). Then, by Rellich Theorem, they admit susbsequences (still denoted with the same indices) which
converge in L2(Ω) (resp. L2(Ω)). It remains to prove that the subsequences (∇q0

m) and (curl wm) converge in
L2(Ω).

By definition of q0
m (see (3.30)), for any q in H1

0 (Ω), there holds by integration by parts(
ξ∇q0

m|∇q
)

=
(
ξym|∇q

)
= −

(
div ξym|q

)
.

Using the notation vmn := vm − vn, one has
(
ξ∇q0

mn|∇q
)

=
(
ξymn|∇q

)
= −

(
div ξymn|q

)
. Then, taking q = q0

mn,∣∣(ξ∇q0
mn|∇q0

mn

)∣∣ ≤ ‖div ξymn‖L2‖q0
mn‖L2 .

Thanks to relation (3.4),
ξ−‖∇q0

mn‖2L2 ≤ 2 sup
m

(
‖ div ξym‖L2

)
‖q0
mn‖L2 .

Thus (∇q0
m) is a Cauchy sequence of L2(Ω), hence converges in this Hilbert space.

We recall that zm = ξ−1 curl wm ∈ XN (Ω) and curl zm = curl ym (cf. previous proof). Then, still with the
same notations, and by integration by parts,(

ξ−1 curl wmn| curl wmn

)
= (zmn| curl wmn) = (curl zmn|wmn) = (curl ymn|wmn) .
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As ξ−1 also satisfies an ellipticity condition (Prop. 3.1.4), we get

ξinv
− ‖ curl wmn‖2L2 ≤ ‖ curl ymn‖L2‖wmn‖L2 ≤ 2 sup

m
(‖ curl ym‖L2) ‖wmn‖L2 ,

which proves that (curl wm) is a Cauchy, hence converging, sequence of L2(Ω). As ym = ξ−1 curl wm+∇q0
m+∇qΓ

m,
we conclude that the subsequence (ym) converges in L2(Ω).

3.3.2 The space XT (ξ; Ω)

In a similar way, one can extend the properties of the space XT (Ω) to XT (ξ; Ω): namely, the second Weber
inequality 2.4.6 and the compact embedding 2.4.9.

Theorem 3.3.3. Let Ω be a domain of genus I ≥ 0, and (Σi)1≤i≤I cuts of Ω. There exists a constant C ′W > 0
s.t., for all y in XT (ξ; Ω),

‖y‖L2 ≤ C ′W

(
‖ curl y‖L2 + ‖ div ξy‖L2 +

I∑
i=1
|〈ξy · n, 1〉H1/2(Σi)|

)
. (3.35)

Proof. The proof follows a similar structure as in Theorem 3.3.1. By contradiction, we assume there exists (ym) a
sequence of XT (ξ; Ω) s.t., ∀m, ‖ym‖L2 = 1, and

‖ curl ym‖L2 + ‖ div ξym‖L2 +
I∑
i=1
|〈ξym · n, 1〉H1/2(Σi)| ≤

1
m+ 1 .

We split ym into three terms, making use of decompositions (3.21) and (3.27) (recall that KT (ξ; Ω) ⊂ H0(div ξ0,Ω)).

Consider first the solution to the Neumann problem∣∣∣∣∣Find q
0
m ∈ H1

zmv(Ω) s.t., ∀q ∈ H1
zmv(Ω),(

ξ∇q0
m|∇q

)
=
(
ξym|∇q

)
.

(3.36)

The problem is well-posed by Theorem 3.1.7. Taking q = q0
m and integrating by parts, one gets, as ym ∈ H0(div ξ,Ω):∣∣(ξ∇q0

m|∇q0
m

)∣∣ =
∣∣(−div ξym|q0

m

)∣∣ ≤ ‖div ξym‖L2‖q0
m‖L2 .

Using the relation (3.4) on the left-hand side, as well as the Poincaré-Wirtinger inequality on the right-hand side,
leads to

‖∇q0
m‖L2 . ‖ div ξym‖L2 . (3.37)

Hence ‖∇q0
m‖L2 −→ 0.

Secondly, note that ∇q0
m ∈ H0(div ξ,Ω) (see proof of Th. 3.2.3), and introduce xm := ym −∇q0

m ∈ KT (ξ,Ω),
with the help of the second-kind Helmholtz decomposition (3.21). Consider the problem∣∣∣∣∣Find q̇

Σ
m ∈ QT (ξ; Ω̇) s.t., ∀q̇ ∈ QT (ξ; Ω̇),(

ξ∇q̇Σ
m|∇q̇

)
Ω̇ =

(
ξxm|∇q̇

)
Ω̇ ,

(3.38)

with the space QT (ξ; Ω̇) defined in (3.26). This problem is also well-posed, adapting the proof of Theorem 3.1.7
using Poincaré-Wirtinger inequality in H1

zmv(Ω̇). Taking q̇ = q̇Σ
m and using the integration by parts formula (2.48),

one has, as div ξxm = 0,

(
ξ∇q̇Σ

m|∇q̇Σ
m

)
Ω̇ =

I∑
i=1

〈
ξxm · n,

[
q̇Σ
m

]
Σi

〉
H1/2(Σi)

=
I∑
i=1

[q̇Σ
m]Σi

〈
ξxm · n, 1

〉
H1/2(Σi)

.
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As QT (ξ; Ω̇) is a finite-dimensional vector space, all the norms are equivalent, and among them, ‖∇ · ‖L2(Ω̇) and
maxi |[·]Σi |. Then, using additionally relation (3.4), there holds

‖q̇Σ
m‖2QT (ξ;Ω̇) .

(
‖q̇Σ
m‖QT (ξ;Ω̇)

I∑
i=1

∣∣〈ξxm · n, 1〉H1/2(Σi)
∣∣) .

Besides, 〈ξxm · n, 1〉H1/2(Σi) = 〈ξym · n, 1〉H1/2(Σi) − 〈ξ∇q
0
m · n, 1〉H1/2(Σi). Then, there holds, because ∇q0

m ∈
H(div ξ,Ω) and formula (2.48),

∣∣〈ξ∇q0
m · n, 1〉H1/2(Σi)

∣∣ =

∣∣∣∣∣∣
I∑
j=1
〈ξ∇q0

m · n, [q̇i]Σj 〉H1/2(Σj)

∣∣∣∣∣∣
=
∣∣∣(ξ∇q0

m|∇q̇i
)

Ω̇ +
(
div ξ∇q0

m|q̇i
)

Ω̇

∣∣∣
. ‖∇q0

m‖L2(Ω̇)‖∇q̇i‖L2(Ω̇) + ‖div ξ∇q0
m‖L2(Ω̇)‖q̇i‖L2(Ω̇)

. ‖∇q0
m‖H(div ξ,Ω)

. ‖ div ξym‖L2 ,

the latter because of (3.37) and div ξ∇q0
m = div ξym. Hence,

‖q̇Σ
m‖QT (ξ;Ω̇) .

(
I∑
i=1

∣∣〈ξym · n, 1〉H1/2(Σi)
∣∣+ ‖ div ξym‖L2

)
, (3.39)

and ‖∇̃q̇Σ
m‖L2 = ‖q̇Σ

m‖QT (ξ;Ω̇) −→ 0.

Thirdly, let zm := xm − ∇̃q̇Σ
m = ym −∇q0

m − ∇̃q̇Σ
m ∈ KT (ξ,Ω). There holds curl zm = curl ym, div ξzm = 0,

and additionally 〈ξzm · n, 1〉H1/2(Σi) = 0. Indeed, one has, by integration by parts,

〈ξzm · n, 1〉H1/2(Σi) =
I∑
j=1
〈ξzm · n, [q̇i]Σj 〉H1/2(Σj)

=
(
ξzm|∇q̇i

)
Ω̇ +

(
div ξzm|q̇i

)
Ω̇ ,

with
(
ξzm|∇q̇i

)
Ω̇ =

(
ξxm|∇q̇i

)
Ω̇ −

(
ξ∇q̇Σ

m|∇q̇i
)

Ω̇ = 0 by definition (3.38) of q̇Σ
m; and div ξzm = 0. Hence,

〈ξzm · n, 1〉H1/2(Σi) = 0. One can then invoke the Theorem of vector potential 2.3.6: there exists wm ∈ XN (Ω) s.t.
ξzm = curl wm, div wm = 0, and ‖wm‖XN

. ‖ξzm‖L2 . ‖zm‖L2 . This is the splitting (3.27) of xm. Furthermore,
we have by integration by parts(

zm|ξzm
)

= (zm| curl wm) = (curl zm|wm) = (curl ym|wm) .

Using again relation (3.4), there holds

‖zm‖2L2 . ‖ curl ym‖L2‖wm‖L2 . ‖ curl ym‖L2‖zm‖L2

and
‖zm‖L2 . ‖ curl ym‖L2 . (3.40)

Hence ‖zm‖L2 −→ 0.

Finally, as ym = zm +∇q0
m + ∇̃q̇Σ

m, we have ‖ym‖L2 −→ 0, which contradicts ‖ym‖L2 = 1.

We conclude this subsection with the extension of the compact embedding Theorem 2.4.9.

Theorem 3.3.4. The embedding of XT (ξ; Ω) into L2(Ω) is compact.
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Proof. Let (ym) be a bounded sequence of XT (ξ; Ω). As in the previous proof, we split ym into three terms,
introducing q0

m ∈ H1
zmv(Ω), q̇Σ

m ∈ QT (ξ; Ω̇), and wm ∈ XN (Ω) s.t.

ym = ∇q0
m + ∇̃q̇Σ

m + ξ−1 curl wm.

Additionally, there holds (see previous proof):

‖∇q0
m‖L2 . ‖ div ξym‖L2 ;

‖∇̃q̇Σ
m‖L2 .

(
‖ div ξym‖L2 +

∑
i

∣∣〈ξym · n, 1〉H1/2(Σi)
∣∣) ;

‖wm‖XN
. ‖zm‖L2 . ‖ curl ym‖L2 .

Let us begin with (q̇Σ
m): it is a bounded sequence of the finite-dimensional vector space QT (ξ; Ω̇), so it admits

a converging subsequence (in particular in H1-norm). Besides, (q0
m) is a bounded sequence of H1(Ω). Then, by

Rellich Theorem, it admits a converging susbsequence (still denoted with the same index) in L2(Ω). Similarly, wm

is a bounded sequence of XN (Ω), so by Theorem 2.4.8 it admits a converging subsequence in L2(Ω). It remains to
prove that the subsequences (∇q0

m) and (curl wm) converge in L2(Ω).

Using the notation vmn := vm − vn, there holds by integration by parts, for any q in H1
zmv(Ω),(

ξ∇q0
mn|∇q

)
=
(
ξymn|∇q

)
= −

(
div ξymn|q

)
,

by definition of q0
m and because ym ∈ XT (ξ; Ω). Taking q = q0

mn, one gets by relation (3.4)

ξ−‖∇q0
mn‖2L2 ≤ ‖div ξymn‖L2‖q0

mn‖L2 ≤ 2 sup
m

(
‖ div ξym‖L2

)
‖q0
mn‖L2 .

Thus (∇q0
m) is a Cauchy sequence of L2(Ω), hence converges in this space.

Furthermore, recalling that(
ξ−1 curl wmn| curl wmn

)
= (zmn| curl wmn) = (curl zmn|wmn) = (curl ymn|wmn)

and that ξ−1 also satisfies an ellipticity condition (Prop. 3.1.4), we get

ξinv
− ‖ curl wmn‖2L2 ≤ ‖ curl ymn‖L2‖wmn‖L2 ≤ 2 sup

m
(‖ curl ym‖L2) ‖wmn‖L2 ,

which proves that (curl wm) is a Cauchy (hence converging) sequence of L2(Ω). As ym = ξ−1 curl wm+∇q0
m+∇̃q̇Σ

m,
the subsequence (ym) converges in L2(Ω).

3.3.3 The space WN(ξ; Ω)

To conclude, let us prove the compact embedding of the space WN (ξ; Ω) into L2(Ω), extending the result of
Theorem 2.4.10. A similar result may be found in [100] (in the connected boundary case).

Theorem 3.3.5. The embedding of WN (ξ; Ω) into L2(Ω) is compact.

Proof. The proof is similar to the one of Theorem 8.1.3 in [7]. Let (ym) a bounded sequence of WN (ξ; Ω). We
make use of decompositions (3.22) and (3.24) (recalling that WN (ξ; Ω) ⊂ H(div ξ0,Ω)) to split ym into three
terms: ym = zm +∇q0

m +∇qΓ
m, where q0

m is the unique solution to∣∣∣∣∣Find q
0
m ∈ H1

0 (Ω) s.t., ∀q ∈ H1
0 (Ω),(

ξ∇q0
m|∇q

)
=
(
ξym|∇q

)
;
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qΓ
m the unique solution to ∣∣∣∣∣Find q

Γ
m ∈ QN (ξ; Ω) s.t., ∀q ∈ QN (ξ; Ω),(
ξ∇qΓ

m|∇q
)

=
(
ξ(ym −∇q0

m)|∇q
)

;

and zm := ym −∇q0
m −∇qΓ

m. Because those problems are well-posed, the sequences (∇q0
m) and (∇qΓ

m), and so
(zm), are bounded in L2(Ω). The space QN (ξ; Ω) is of finite dimension, so one can extract a subsequence (denoted
with the same index) that converges, in particular in H1(Ω)-norm. Concerning the sequence (q0

m) of H1
0 (Ω), one

can extract a subsequence (still denoted with the same index) which converges in L2(Ω), by Rellich theorem.
Additionally, using the notation vmn = vm − vn, one has(

ξ∇q0
mn|∇q0

mn

)
=
(
div ξymn|q0

mn

)
hence

‖∇q0
mn‖2L2 . ‖ div ξymn‖L2‖q0

mn‖L2 . sup
m
‖ div ξym‖L2‖q0

mn‖L2 ,

and (∇q0
mn) is a Cauchy sequence of L2(Ω), hence converges in this space.

Besides, zm = ym − ∇q0
m − ∇qΓ

m ∈ H+(curl,Ω), with curl zm = curl ym, γT zm = γTym, div ξzm = 0
and 〈ξzm · n, 1〉H1/2(Γk) = 0 ∀k (for the last item, this is similar to the proof of Theorem 3.3.1). Then, by the
vector potential Theorem 2.3.5, there exists wm ∈ H1(Ω) s.t. ξzm = curl wm, and ‖wm‖H1 . ‖zm‖L2 . This
is decomposition (3.24). Furthermore, given σ ∈] 1

2 , 1[, thanks to the compact embedding of H1(Ω) into Hσ(Ω)
(see Theorem 2.4.7), one can extract a subsequence of (wm) (still denoted with the same index) which converges
in Hσ(Ω). Therefore, (wm) converges in L2(Ω), and (wm|Γ) converges in L2(Γ), because the trace mapping is
continuous from Hσ(Ω) to L2(Γ) (see [7, Th. 2.1.62]). Then,

(zmn|ξzmn) = (zmn| curl wmn)
= (curl zmn|wmn) +

(
γT zmn, πTwmn

)
Γ

= (curl ymn|wmn) +
(
γTymn, πTwmn

)
Γ

and
‖zmn‖2L2 . sup

m
‖ym‖WN (ξ)

(
‖wmn‖L2 + ‖wmn|Γ‖L2(Γ)

)
,

which proves that (zm) is a Cauchy, hence converging, sequence of L2(Ω). Finally, the whole subsequence (ym)
converges in L2(Ω).

Conclusion

We have extended the classical tools for the Maxwell equations, presented in Chapter 2. We do so for a very general
class of tensors, that is elliptic tensors, without assuming Hermitian properties. These results will be necessary to
carry out the analysis of the variational formulations that arise from Maxwell problems, which is the subject of
Chapter 5.

The main results of this chapter are of two kinds. The first ones are the Helmholtz decompositions of Theorems
3.2.1, 3.2.3, and 3.2.4. The second ones are the compact embeddings of Theorems 3.3.2, 3.3.4, and 3.3.5. The
reason why we need to derive several different Helmholtz decompositions and compact embeddings lies in boundary
conditions. Indeed, different boundary conditions in the Maxwell problem (Dirichlet, Neumann, or Robin) will lead
to variational formulations posed in different spaces (H0(curl,Ω), H(curl,Ω), or H+(curl,Ω)). This is why we
have derived the tools appropriate to each of these three different spaces.





Chapter 4

Characterization of function spaces for
Robin traces

In this chapter, we shall consider a generalised Robin (or impedance) boundary condition that reads

πTC +αγTE = g on Γ, (4.1)

where α is a C2×2-valued tensor field. This condition is an extension of what is classically referred to as impedance
or Robin condition,

πTC + αγTE = g on Γ, (4.2)

where α is a scalar (and generally constant) coefficient. It is inherited from the (truncated) classical Silver-Müller
boundary condition [87, 103]. Let us briefly recall why this is so. Assume that, in a neighbourhood of Γ, ε = εI
and µ = µI with ε, µ > 0. Then the (truncated) Silver-Müller condition writes (see e.g. [7, p. 57])

γTE +
√
µ

ε
πTH = g on Γ, (4.3)

which is an absorbing condition, and, because of Faraday law in the time-harmonic regime, leads to (4.1) with
α = iω

√
ε/µI and C = µ−1 curl E = (iω)−1H. When ε and µ are anisotropic, however, the equivalent to (4.3)

becomes less clear. This is why we shall also consider more general conditions in the form of (4.1). The coefficient
α or α will be called the impedance coefficient (which is a language abuse; in the Silver-Müller case, α has more to
do with the inverse of an impedance).

Our aim is to clarify the mathematical framework in which the condition (4.1) may hold, for some general classes
of coefficients. Indeed, mathematically speaking, one has E, C ∈ H(curl,Ω), but the traces γTE and πTC belong
to different trace spaces: γTE ∈ H−1/2

‖ (divΓ,Γ), whereas πTC ∈ H−1/2
⊥ (curlΓ,Γ). Therefore, the function space in

which (4.1) may hold is unclear. In the literature, it is generally assumed or stated without proper justification (see,
e.g., [43, 100, 70, 56]), that the condition (4.2) holds in L2

t (Γ); and, in particular, that one should look for the solution
of the associated time-harmonic Maxwell problem in the space H+(curl,Ω) = {v ∈ H(curl,Ω), γTv ∈ L2

t (Γ)}. If
one assumes that g belongs to H−1/2

‖ (divΓ,Γ) ∩H−1/2
⊥ (curlΓ,Γ), then both traces γTE and πTC also belong to

this function space. Thus, to determine whether the condition (4.2) holds in L2
t (Γ) reduces to determine whether

H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) ⊂ L2
t (Γ), (4.4)

which is a general assertion of functional analysis, independent of the boundary condition. However, this assumption
is not always justified. It has been proven in the case of smooth domains by Barucq and Hanouzet [10]. For
piecewise smooth domains, however, the result does not always hold. We refer to Theorem 8 of [20], Proposition
4.11 of [17], and sections 5.1.2.1 and 5.1.2.2 in [7]. Some of these results also deal with the case of mixed boundary
conditions. To the best of our knowledge, only the case of scalar constant coefficients has been addressed in the
literature. Then, the main goal of this chapter is to check whether, under appropriate assumptions on Γ and α,
that will be made more precise later, the boundary condition of (4.1) holds in L2

t (Γ).

Throughout this chapter, we assume that Γ is either a smooth boundary C2, or piecewise C2. When it is
piecewise C2, we assume for simplicity that Ω is a Lipschitz polyhedron, i.e. that the faces of Γ are plane and the
edges are straight lines. For more general geometries, we refer to [40]. The chapter is organized as follows. In
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Section 4.1 we provide several functional analysis results; in particular, the assertion (4.4) is discussed. In Section
4.2 we address the condition with scalar coefficient, focusing on the smooth or piecewise constant cases. In Section
4.3 we provide a result on the condition with a tensor-valued coefficient.

4.1 General embedding results on surface function spaces

In this section, we find necessary and sufficient conditions for the assertion (4.4) to hold. In fact, we prove a
functional analysis result (Theorem 4.1.4) which is actually more precise than statement (4.4). To that aim, we
follow the path proposed in sections 5.1.2.1 and 5.1.2.2 of [7]. As a consequence, we are able to state whether the
condition (4.2) with a constant coefficient holds in L2

t (Γ).

Preliminary discussion

We assume for simplicity that Γ is topologically trivial (this assumption, however, is not restrictive; see Remark
4.1.6 below). Let u ∈ H−1/2

‖ (divΓ,Γ) ∩H−1/2
⊥ (curlΓ,Γ), we write the surface Helmholtz decompositions of u, first

considered as an element of H−1/2
‖ (divΓ,Γ), and then as an element of H−1/2

⊥ (curlΓ,Γ) (cf (2.83)-(2.84)):

u = curlΓ φ− +∇Γ ψ
+, (4.5)

where φ− ∈ H1/2
zmv(Γ), ψ+ ∈ H(Γ), and

u = ∇Γ ψ
− + curlΓ φ+, (4.6)

where ψ− ∈ H1/2
zmv(Γ), φ+ ∈ H(Γ). We recall that

H(Γ) = {v ∈ H1
zmv(Γ), ∆Γ v ∈ H−1/2(Γ)}. (4.7)

If either φ− ∈ H1(Γ) or ψ− ∈ H1(Γ), then it follows that u ∈ L2
t (Γ), and so the claim (4.4) is proven. Therefore,

we investigate whether φ− or ψ− are actually more regular than H1/2(Γ). Subtracting the two decompositions of
u, one has

curlΓ
(
φ− − φ+)+∇Γ

(
−ψ− + ψ+) = 0 on Γ. (4.8)

We introduce φsing := φ− − φ+ ∈ H1/2
zmv(Γ) and ψsing := −ψ− + ψ+ ∈ H1/2

zmv(Γ). Taking respectively the curlΓ and
the divΓ of equation (4.8), and recalling that ∆Γ = − curlΓ curlΓ = divΓ∇Γ, one gets that φsing, ψsing are governed
by

Find φsing, ψsing ∈ H1/2
zmv(Γ) s.t.

{
∆Γ φ

sing = 0
∆Γ ψ

sing = 0
on Γ. (4.9)

Thus the question is actually to determine whether the homogeneous Laplace-Beltrami problem admits singular
solutions, i.e. solutions in H1/2(Γ) \H1(Γ). If not, one would have φsing ∈ H1

zmv(Γ), hence, because the Laplace-
Beltrami problem is well-posed in H1

zmv(Γ), φsing = 0.

Study of Laplace-Beltrami problems

Figure 4.1: Example of pathological vertex

The existence of singular solutions for the Laplace-Beltrami problems (4.9) will depend on the regularity of the
surface Γ. To that aim, we introduce the notion of (semi-)pathological vertices of Γ.



4.1. General embedding results on surface function spaces 39

Definition 4.1.1. Let v be a vertex of Γ, that stands at the intersection of K smooth faces denoted Γk. Locally,
each face Γk can be described by polar coordinates (r, θ), with θ ∈]θk, θk+1[, θ0 = 0 and θK = θv, where θv is the
sum of all faces angles at the vertex v. If θv > 4π, the vertex v is said to be pathological. In this case, we define
Iv := max{q ∈ N | θv > 4πq} ≥ 1. In the limit case θv = 4π, the vertex v is said to be semi-pathological.

Lemma 4.1.2. The solutions to the problem

Find φsing ∈ H1/2
zmv(Γ) s.t. ∆Γ φ

sing = 0 on Γ (4.10)

are characterized as follows:

• If Γ has no pathological vertex, then φsing = 0.

• If Γ has P pathological vertices (vp)p=1,P , then φsing ∈ S, where S is a vector space of dimension
2
∑P
p=1 Ivp , and is called the space of singularities.

Proof. When Γ is smooth, no solution is in H1/2(Γ) \H1(Γ). In this case, the result is a consequence of elliptic
regularity. It is obtained by localization (via a finite covering of Γ), and then going back to the parametric plane
locally via a smooth mapping, and finally using the standard theory of singularities, see for instance [61, Chapter 2].
In the more general case of a piecewise smooth boundary, one also studies the solution locally. Clearly one can
define a finite covering of Γ where all open subsets ΓA are of one of the three following types: ΓA is included in one
face, ΓA contains one edge, or ΓA contains one vertex and the adjacent edges. The proof makes intensive use of
results from Grisvard [62].

1. When ΓA is included in one face. We conclude that φsing
|ΓA ∈ H1(ΓA) as above.

2. When ΓA contains an edge eij , at the intersection of two plane faces Γi and Γj . We denote τ ij the unit
vector tangent to eij , and, for k = i, j, τ k the unit vector s.t. (τ ij , τ k) defines a local base on Γk. One has
φk := φsing

|Γk ∈ L2(Γk) with ∆Γ φk = 0 on Γk. Then, according to Theorem 1.5.2 in [62], both traces of φi, φj
belong to (H̃1/2(eij))′, and both normal derivatives belong to (H̃3/2(eij))′, where H̃s(eij) denotes fields whose
continuation by 0 on ∂ΓA belong to Hs(∂ΓA). Moreover, as φsing

|ΓA ∈ H1/2(ΓA) and ∆Γ(φsing
|ΓA) ∈ L2(ΓA),

traces on eij match, so there holds φi|eij = φj|eij , as well as ∂τ iφi = ∂τ jφj on eij .
Then, one maps ΓA locally around eij into a subset Γ?A of the parametric plane. This is done by a piecewise
affine, bijective mapping T : ΓA → Γ?A. Introducing φ?k := φk ◦ T−1 on each Γ?k := T (Γk), and finally
φ? ∈ L2(Γ?A) defined by φ?|Γ?

k
= φ?k for k = i, j, one gets that φ? ∈ H1/2(Γ?A) with ∆Γ φ

? = 0 on Γ?A, thanks
to the trace matchings. Therefore, using the result of 1., φ? ∈ H1(Γ?A). Coming back to φsing

|ΓA = T ◦ φ?, it
also belongs to H1(ΓA).

3. When ΓA contains a vertex v, at the intersection of K smooth faces denoted Γk. We denote ek,k+1 the edge
between Γk and Γk+1, and use the same notations as above. As before, the φk satisfy φk ∈ L2(Γk) with
∆Γ φk = 0 on Γk, and trace matchings: φk = φk+1 as well as ∂τkφk = ∂τk+1φk+1 on ek,k+1 in a weak sense.
Thus, outside any neighbourhood of the vertex v, we conclude thanks to points 1. and 2. that φsing is of
H1-regularity.
In a neighbourhood Γv of the vertex, we follow Kondratiev’s theory [79, 39]. Using polar coordinates (r, θ)
in each Γk, one finds (see [62, §2.3]) that the solution to the problem locally belongs to spanλ∈Λ(rλϕλ(θ)),
where (ϕλ)λ are eigenfunctions of the operator ϕ 7→ −ϕ′′ on [0, θv], i.e. ϕλ(θ) = exp(±iλθ); moreover, the
admissible values of λ are constrained by periodic boundary conditions (trace matchings on eK,1). Thus, a
basis of solutions is locally given by

φ±λ (r, θ) = rλe±iλθ, λ ∈ Λ := 2π
θv

Z, (4.11)

where the value of λ is prescribed by the periodicity condition.
The regularity of each φ±λ is given by Theorem 1.2.18 in [62]: one has that, for s ∈]0, 1[,

φ±λ ∈ H
s ⇐⇒ λ > s− 1; (4.12)
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in particular, φ±λ ∈ H1/2 ⇐⇒ λ > − 1
2 . On the other hand, φ±λ ∈ H1 ⇐⇒ λ ≥ 0 (λ = 0 gives the constant

solution). So, (nonzero) local singular solutions exist if, and only if, there exists λ ∈ Λ s.t. − 1
2 < λ < 0. That

is when − 1
2 < −

2π
θv
, i.e. θv > 4π; in other words, when v is pathological.

To reconstruct a global solution of (4.10) starting from φ±λ , we introduce a cut-off function χ ∈ C∞(Γ) whose
value is 1 in Γv and 0 on ∂ΓA, and s.t. ∆Γ(χφ±λ ) ∈ H−1(Γ). Then, one solves the (well-posed) problem

Find w±λ ∈ H
1
zmv(Γ) s.t. ∆Γ w

±
λ = ∆Γ(χφ±λ ) in Γ. (4.13)

Introducing s±v,λ := w±λ − χφ
±
λ ∈ H1/2(Γ), we have found 2Iv independent singular solutions that do not

vanish at the neighbourhood of the vertex v. We proceed similarly with the other vertices. Outside the
neighbourhood of the vertices, there are no singular solutions because of points 1. and 2. (we also refer to
Lemma 2.3.4 in [62]).

One concludes that there exist singular solutions of (4.10) as soon as Γ has at least one pathological vertex.
More precisely, there exist a basis of 2

∑P
p=1 Ivp (independent) singular solutions s±v,λ ∈ H1/2(Γ) \H1(Γ) arising

from the different pathological vertices vp. On the other hand, in the absence of pathological vertices, we conclude
that there are no singular solutions in H1/2(Γ) \H1(Γ). Thus, we have obtained and characterized all the singular
solutions to the homogenous Laplace-Beltrami problem, by spanning all singular solutions for each pathological
vertex of Γ.

In what follows, we need to introduce surface Sobolev spaces for more regular exponents than |s| ≤ 1. When Ω
is a polyhedron, we define (cf. [7]), for 0 < s < 1

2 ,

H1+s(Γ) :=
{
v ∈ H1(Γ), ∇Γ v ∈ Hs

t (Γi), ∀i
}
, (4.14)

where the (Γi) are the faces of Γ.

Lemma 4.1.3. There exists smax ∈]0, 1
2 ] s.t., ∀s ∈ [0, smax[,

H(Γ) ⊂ H1+s
zmv(Γ). (4.15)

This embedding is continuous, and the value of smax depends only on geometry:

• If Γ has pathological vertices, then smax = min
p=1,P

(
2π
θvp

)
<

1
2 ;

• If Γ has no pathological vertex, then smax = 1
2 ;

• If, in addition, Γ has no semi-pathological vertex, then (4.15) also holds for s = 1
2 .

Proof. Let ϕ ∈ H(Γ): there holds ϕ ∈ H1
zmv(Γ), and g := ∆Γ ϕ ∈ H−1/2(Γ). Therefore, ϕ can be interpreted as

the (regular) solution of a Laplace-Beltrami problem with data in H−1/2(Γ). The extra H1+s-regularity of ϕ is
then limited to s ∈ [0, 1

2 ], the value 1
2 coming from the Shift Theorem for the Laplace-Beltrami operator with data

in H−1/2 (see eg. [88], §5.4.1). However, this extra-regularity is also driven by the regularity at the vertices v of Γ
(if any). As before, the solutions are locally given at a vertex v by

φ±λ (r, θ) = rλe±iλθ, λ ∈ Λ := 2π
θv

Z, (4.16)

with now λ ≥ 0 because ϕ ∈ H1(Γ); and even λ > 0, because λ = 0 stands for the constant solution. So, the
minimal exponent of local regularity at a vertex v is s = 2π

θv
. Hence, if there are pathological vertices, (4.15) holds

with smax = minp=1,P

(
2π
θvp

)
< 1

2 . While, if there is no pathological vertex, the regularity is now limited to 1
2

because of the Shift Theorem: we conclude that, if moreover there is no semi-pathological vertex, the embedding
(4.15) holds for s = 1

2 . In the limit case of semi-pathological vertices, one concludes that (4.15) holds for all s < 1
2 .

Finally, in all of the above, one has continuous dependence of the embeddings, because the shift theorem also
ensures that ‖ϕ‖H1+s(Γ) . ‖g‖H−1/2(Γ) . ‖ϕ‖H(Γ). 1

1Here and in the rest of the chapter, the notation a . b denotes that there exists a constant C > 0, independent of a and b, s.t.
a ≤ Cb. The constant C depends only on the geometry, and on α when this is meaningful.



4.1. General embedding results on surface function spaces 41

Main result

With this, one can derive the embedding results below, that generalize the result of [7, Remark 5.1.5].

Theorem 4.1.4. If Γ has pathological vertices, then, ∃smax ∈]0, 1
2 [, ∀s ∈ [0, smax[,

H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) ⊂ Hs
t (Γ)⊕∇Γ S, (4.17)

H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) ⊂ Hs
t (Γ)⊕ curlΓ S, (4.18)

where S is the finite dimensional vector subspace of singularities.
If Γ has no pathological vertex, then, ∀s ∈ [0, 1

2 [,

H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) ⊂ Hs
t (Γ). (4.19)

If, in addition, Γ has no semi-pathological vertex, then (4.19) also holds for s = 1
2 .

Moreover, all those embeddings are continuous.

Proof. As in the beginning of the section, let us consider u ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ), with the surface
Helmholtz decompositions of u,

u = curlΓ φ− +∇Γ ψ
+, (4.20)

u = ∇Γ ψ
− + curlΓ φ+. (4.21)

Taking the curlΓ of (4.20) and the divΓ of (4.21), one gets that φ−, ψ− ∈ H1/2
zmv(Γ) are governed by

∆Γ φ
− = − curlΓ u, (4.22)

∆Γ ψ
− = divΓ u. (4.23)

Likewise, φ+, ψ+ ∈ H1
zmv(Γ) are governed by

∆Γ φ
+ =− curlΓ u, (4.24)

∆Γ ψ
+ = divΓ u. (4.25)

Moreover, φ+, ψ+ are actually the unique solutions to the problems (4.24) and (4.25), because the Laplace-Beltrami
problem is well-posed in H1

zmv(Γ).

The regularity of φ+, ψ+ enters the scope of Lemma 4.1.3.

• If Γ has pathological vertices (vp)p=1,P , we find that φ+, ψ+ ∈ H1+s(Γ) for all s < smax with smax :=

min
p=1,P

(
2π
θvp

)
∈ ]0, 1

2 [.

• If Γ has no pathological vertex, we find that φ+, ψ+ ∈ H1+s(Γ) for all s < 1
2 .

• If in addition Γ has no semi-pathological vertex, φ+, ψ+ ∈ H3/2(Γ).

Moreover, for admissible s, one also has that ‖φ+‖H1+s(Γ) . ‖ curlΓ u‖H−1/2(Γ), and ‖ψ+‖H1+s(Γ) . ‖ divΓ u‖H−1/2(Γ).

To analyse the regularity of φ− and ψ−, we recall that φsing = φ− − φ+ and ψsing = ψ− − ψ+ are solutions of
the problem (4.9). These solutions are characterized by Lemma 4.1.2.

• If Γ has pathological vertices, then φ− = φsing − φ+, where φsing is a singular solution which belongs to S
(Lemma 4.1.2). Besides, φ+, ψ+ ∈ H1+s(Γ) for s < smax because of Lemma 4.1.3. So, thanks to decomposition
(4.20), we conclude that, for all s ∈ [0, smax[, u belongs to Hs

t (Γ) + curlΓ S. This is embedding (4.18).
Similarly, there also holds ψ− = ψsing + ψ+ with ψsing ∈ S and φ+, ψ+ ∈ H1+s(Γ) for s < smax. Using now
decomposition (4.21), we conclude that for all s ∈ [0, smax[, u belongs to Hs

t (Γ) +∇Γ S. This is embedding
(4.17).
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• If Γ has no pathological vertex, then φsing = 0, ψsing = 0, because of Lemma 4.1.2. Therefore, φ− = φ+,
ψ− = ψ+. Moreover, according to Lemma 4.1.3, both fields φ+, ψ+ ∈ H1+s(Γ) for all s < 1/2. Hence we
conclude from (4.5) that u belongs to Hs

t (Γ) for all s < 1/2. This is embedding (4.19).

• If moreover Γ has no semi-pathological vertex, then (4.19) also holds for s = 1
2 .

Moreover, all results come with stability estimates on φ+ and ψ+. Indeed, ‖ curlΓ φ+ + ∇Γ ψ
+‖Hs

t (Γ) .
‖divΓ u‖H−1/2(Γ) + ‖ curlΓ u‖H−1/2(Γ). So, if u ∈ Hs

t (Γ),

‖u‖Hs
t (Γ) . ‖u‖γ + ‖u‖π (4.26)

which proves that embedding (4.19) is continuous. If u has a singular part, one writes u = ∇Γ ψ
sing +∇Γ ψ

+ +
curlΓ φ+ so, by triangle inequality, there holds ‖∇Γ ψ

sing‖H−1/2(Γ) . ‖u‖γ + ‖u‖π. Because S is finite dimensional,
all norms are equivalent (in particular, ‖ · ‖H1/2(Γ) and ‖∇Γ ·‖H−1/2(Γ)), and we have obtained a stability estimate
for the singular part. Hence embedding (4.17) is continuous. One can do the same for embedding (4.18).

Remark 4.1.5. In fact, there holds
Hs
t (Γ)⊕∇Γ S = Hs

t (Γ)⊕ curlΓ S. (4.27)
Indeed, looking at the singularities φ±λ (r, θ) = rλe±iλθ, at a vertex v, one can observe that the curlΓ of one is the
∇Γ of the other.

The result obtained in Theorem 4.1.4 is stronger than the conjecture (4.4), provided that Γ is without pathological
vertices. As a matter of fact, a by-product of the result (4.19) is that the embedding in L2

t (Γ) holds, and moreover
that it is compact. On the other hand, the embedding (4.4) does not hold if Γ has pathological vertices. However,
the singularities that appear in (4.17)-(4.18) belong to a finite-dimensional vector space and, once they are taken
into account, the remaining “regular” function space Hs

t (Γ) (for some s > 0) still embeds compactly in L2
t (Γ).

Remark 4.1.6. The proof can be adapted to non-topologically trivial boundaries. In this case [16], one has
extra-terms in the decompositions (4.6) and (4.5):

u = curlΓ φ− +∇Γ ψ
+ + h1, (4.28)

u = ∇Γ ψ
− + curlΓ φ+ + h2, (4.29)

where h1, h2 belong to the space

H :=
{
u ∈ L2

t (Γ), curlΓ u = 0,divΓ u = 0
}

(4.30)

(see Proposition 2.3.11). However, these terms vanish when taking the curlΓ or the divΓ of the decompositions. So,
this has no impact on the above lines about the regularity of φ−, ψ−, nor φ+, ψ+. Moreover, H ⊂ L2

t (Γ), so the
embedding

H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) ⊂ L2
t (Γ)

occurs under the same conditions than in Theorem 4.1.4. Finally, as H is finite-dimensional (see [16]), it also
embeds compactly into L2

t (Γ).

4.2 Regularity of Robin traces with scalar impedance coefficient

In this section, we consider the case of scalar, but heterogeneous impedance coefficient. The coefficient will be
assumed either regular or piecewise constant. Our aim is to determine whether, in these cases, the Robin boundary
condition may hold in L2

t (Γ).

4.2.1 Constant coefficient

To begin, let us give the result for the classical impendance condition with scalar constant coefficient

πTC + αγTE = g on Γ, (4.31)

with α ∈ C \ {0}, and g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ).
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Theorem 4.2.1. If Γ has pathological vertices, ∃smax ∈]0, 1
2 [ s.t., ∀s ∈ [0, smax[,

γTE ∈ Hs
t (Γ)⊕ curlΓ S; (4.32)

πTC ∈ Hs
t (Γ)⊕∇Γ S, (4.33)

(the same also holding for Hs
t (Γ)⊕ curlΓ S). If Γ has no pathological vertex, then, ∀s ∈ [0, 1

2 [,

γTE ∈ Hs
t (Γ); (4.34)

πTC ∈ Hs
t (Γ). (4.35)

If additionally Γ has no semi-pathological vertex, then (4.34)-(4.35) also hold for s = 1
2 .

Proof. Because γTE ∈ H−1/2
‖ (divΓ,Γ), πTC ∈ H−1/2

⊥ (curlΓ,Γ) and g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ), and α
is constant, one has in fact that each term of (4.31) belongs to H−1/2

‖ (divΓ,Γ) ∩H−1/2
⊥ (curlΓ,Γ). Then, the result

is a consequence of Theorem 4.1.4.

4.2.2 Smooth coefficient

At present, let us consider some more general classes of coefficients. In this subsection, we consider

πTC + αγTE = g on Γ, (4.36)

with g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ) and α ∈W 2,∞(Γ) a smooth, elliptic impedance coefficient. We recall
that α is elliptic iff

∃θα ∈ R, ∃α− > 0, a.e. in Γ, α− ≤ <[eiθαα]. (4.37)

Contrarily to the previous subsection, one cannot straightforwardly apply Theorem 4.1.4. In fact, because α is
now heterogeneous, one cannot simply write that γTE, πTC ∈ H−1/2

‖ (divΓ,Γ) ∩H−1/2
⊥ (curlΓ,Γ). However, one

gets the same result.

Theorem 4.2.2. Assume α ∈W 2,∞(Γ) and is elliptic.
If Γ has pathological vertices, ∃smax ∈]0, 1

2 [, ∀s ∈ [0, smax[,

γTE ∈ Hs
t (Γ)⊕ curlΓ S; (4.38)

πTC ∈ Hs
t (Γ)⊕∇Γ S, (4.39)

where S is the finite dimensional space of singularities introduced in Lemma 4.1.2, and smax is the regularity
exponent defined in Lemma 4.1.3.
If Γ has no pathological vertex, then, ∀s ∈ [0, 1

2 [,

γTE ∈ Hs
t (Γ) and πTC ∈ Hs

t (Γ), (4.40)

with moreover

‖γTE‖Hs
t (Γ) . ‖g‖π + ‖πTC‖π + ‖γTE‖γ ; (4.41)

‖πTC‖Hs
t (Γ) . ‖g‖γ + ‖πTC‖π + ‖γTE‖γ . (4.42)

If additionally Γ has no semi-pathological vertex, then (4.40) and (4.41)-(4.42) also hold for s = 1
2 .

Proof. We recall that γTE ∈ H−1/2
‖ (divΓ,Γ) and πT (µ−1 curl E) ∈ H−1/2

⊥ (curlΓ,Γ). Let us write the surface
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Helmholtz decompositions in these spaces (cf (2.83)-(2.84)):

γTE = curlΓ φ− +∇Γ ψ
+, φ− ∈ H1/2

zmv(Γ), ψ+ ∈ H(Γ); (4.43)
πTC = ∇Γ ψ

− + curlΓ φ+, ψ− ∈ H1/2
zmv(Γ), φ+ ∈ H(Γ). (4.44)

Just as in the beginning of Section 4.1, our goal is to determine whether φ−, ψ− actually belong to H1(Γ), so that
one has indeed γTE ∈ L2

t (Γ) and πT
(
µ−1 curl E

)
∈ L2

t (Γ). To that aim, we will investigate the scalar problems
governing φ− and ψ−.

Let us begin with φ−. We note that curlΓ g and curlΓ πTC both belong to H−1/2(Γ). Taking the curlΓ of
(4.36), and using the decompositions (4.43) and (4.44), one gets the problem governing φ−:

curlΓ
(
α curlΓ φ−

)
= curlΓ g + ∆Γ φ

+ − curlΓ
(
α ∇Γ ψ

+) . (4.45)

As α is a scalar field, we take advantage of the Leibniz formula

− curlΓ(α curlΓ v) = α∆Γ v + curlΓ α · curlΓ v. (4.46)

Combining it with the above formula, there holds

∆Γ φ
− = −α−1 (curlΓ g + ∆Γ φ

+ − curlΓ
(
α∇Γ ψ

+)+ curlΓ α · curlΓ φ−
)
, (4.47)

whose right-hand side belongs to (H1
zmv(Γ))′. Thanks to the Leibniz formula, we are now in a situation that involves

only the operator ∆Γ in the left-hand side, as in the proof of Theorem 4.1.4. Then, we split φ− into a regular part
φreg and a singular part φsing. φreg ∈ H1

zmv(Γ) is the unique solution to

∆Γ φ
reg = −α−1 (curlΓ g + ∆Γ φ

+ − curlΓ
(
α∇Γ ψ

+)+ curlΓ α · curlΓ φ−
)
, (4.48)

while φsing ∈ H1/2
zmv(Γ) is governed by

∆Γ φ
sing = 0. (4.49)

The singular part is characterized by Lemma 4.1.2. If Γ has pathological vertices, φsing is a singular solution that
belongs to the finite-dimensional space S. Otherwise, φsing = 0.

The extra-regularity of φreg is driven, as in the proof of Lemma 4.1.3, by the regularity of the right-hand side
and by the regularity at the vertices. For the right-hand side, one has curlΓ g ∈ H−1/2(Γ), as well as ∆Γ φ

+; and the
extra-term ∇Γ α · ∇Γ φ

− ∈ H−1/2(Γ), because ∇Γ α ∈W1,∞(Γ) and ∇Γ φ
− ∈ H−1/2(Γ); finally, α−1 ∈ W 1,∞(Γ)

(because α ∈W 1,∞(Γ) and is elliptic). The last term to study is curlΓ (α∇Γ ψ
+).

• If Γ has pathological vertices, there holds, because of Lemma 4.1.3, φ+, ψ+ ∈ H1+s(Γ) for s < smax <
1
2 .

Then, the right-hand side in (4.48) belongs to Hs−1(Γ) for all s < smax. So, following the arguments in the
proof of Lemma 4.1.3, one has also φreg ∈ H1+s(Γ) for all s < smax (smax is the upper bound that comes
both from the regularity at vertices, and from the regularity of the right-hand side, because of ψ+). Finally,
φ− = φreg + φsing ∈ H1+s(Γ)⊕ S.

• On the other hand, if Γ has no pathological vertex, then, from Lemma 4.1.3, we know that φ+, ψ+ ∈ H1+s(Γ),
for all s ∈]0, 1

2 [. Therefore, as moreover α ∈W 1,∞(Γ), the whole right-hand side in (4.48) belongs to Hs−1(Γ).
Again because of the arguments of Lemma 4.1.3, we find that φreg ∈ H1+s(Γ). Hence, γTE ∈ Hs

t (Γ).

• If additionally Γ has no semi-pathological vertex, the above argument also holds for s = 1
2 .

Moreover, one has ∆Γ φ
+ = curlΓ πTC, so ‖φ+‖H1+s(Γ) . ‖πTC‖π. Similarly, ‖ψ+‖H1+s(Γ) . ‖γTE‖γ . Then,

‖φreg‖H1+s(Γ) . ‖g‖π + ‖πTC‖π + ‖γTE‖γ . Thus, in the absence of singular part, one finds

‖γTE‖Hs
t (Γ) . ‖g‖π + ‖πTC‖π + ‖γTE‖γ . (4.50)

This gives the result for γTE.

To deal with ψ−, we multiply (4.36) by α−1 ∈ W 1,∞(Γ) (because α ∈ W 1,∞(Γ) and is elliptic) and take the
divΓ, which gives

divΓ(α−1∇Γ ψ
−) = divΓ(α−1g)− divΓ

(
α−1 curlΓ φ+)−∆Γ ψ

+. (4.51)
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Using once again the Leibniz formula, one gets

∆Γ ψ
− = α

(
divΓ(α−1g)− divΓ

(
α−1 curlΓ φ+)−∆Γ ψ

+ −∇Γ α
−1 · ∇Γ ψ

−) , (4.52)

with ∇Γ α
−1 = α−2∇Γ α ∈W1,∞(Γ).

Then, we proceed as above. We split ψ− into a regular part and a singular part, ψ− = ψreg + ψsing, where
ψreg ∈ H1

zmv(Γ) is the unique regular solution of (4.52), and ψsing ∈ H1/2
zmv(Γ) satisfies ∆Γ ψ

sing = 0.

• If Γ has pathological vertices, ψsing is a singularity that belongs to S. Moreover, there holds φ+, ψ+ ∈ H1+s(Γ)
for s < smax, and ψreg ∈ H1+s(Γ) (same proof as above). We conclude that ψ− ∈ H1+s(Γ)⊕S, for s < smax.

• If Γ has no pathological vertex, ψsing = 0. Moreover, the whole right-hand side of (4.51) now belongs to
Hs−1(Γ) for all s ∈]0, 1

2 [. Using once again the same arguments as above, we conclude that ψ− ∈ H1+s(Γ),
and that πTC ∈ Hs

t (Γ).

• If additionally Γ has no semi-pathological vertex, the above argument also holds for s = 1
2 .

Moreover, one also has an estimate for ψreg: ‖ψreg‖H1+s(Γ) . ‖g‖γ + ‖πTC‖π + ‖γTE‖γ . Therefore, in the absence
of singular part, one gets

‖πTC‖Hs
t (Γ) . ‖g‖γ + ‖πTC‖π + ‖γTE‖γ (4.53)

which gives the result for πTC.

Remark 4.2.3. Even when there is a singular part, we have shown that the regular part depends continuously on
‖g‖γ + ‖g‖π, ‖πTC‖π, and ‖γTE‖γ .
Remark 4.2.4. An alternate and simpler proof is possible if one assumes that α admits a smooth lifting α̃ ∈W 1,∞(Ω).
In this case, Ẽ := α̃E ∈ H(curl,Ω), and there holds αγTE = γT (α̃E). So, the Robin condition (4.36) rewrites

πTC + γT Ẽ = g on Γ, (4.54)

and the regularity for πTC and γT Ẽ is obtained by Theorem 4.1.4. Then, one recovers the regularity of γTE =
α−1γT Ẽ, because α ∈W 1,∞(Γ) and is elliptic.
Remark 4.2.5. As we saw above, when α is not constant, one has to study two different problems: the one governing
φ−, that gives the regularity of γTE, and the one governing ψ−, that gives the regularity of πTC. Both problems
are not symmetric: it is more natural to begin with φ−, which is governed by (4.45). Then, one always has two
alternate manners to deal with the second problem.

The first way is to take the divΓ of (4.36) directly, to get

∆Γ ψ
− = divΓ g− divΓ(α curlΓ φ−)− divΓ(α∇Γ ψ

+), (4.55)

where we can now take advantange of the known regularity of φ−. Also, note that this problem is in some sense
simpler than the one on φ−, because it simply involves the standard Laplace-Beltrami operator instead of operator
curlΓ(α curlΓ ·). So, one can deal with it using directly the results of Section 4.1. However, doing so may be
uncomfortable when φ− has a singular part, because then a singular part arises in the right-hand side of (4.55).

The second way is to multiply (4.36) by α−1 (which is legitimate because α is elliptic), and consider the alternate
condition

α−1πTC + γTE = α−1g on Γ, (4.56)
as we did in the proof. With this condition, the situation is reversed compared to (4.36). The first natural problem
to deal with becomes the one governing ψ−, which is obtained taking the divΓ of (4.56):

divΓ(α−1∇Γ ψ
−) = divΓ(α−1g)− divΓ

(
α−1 curlΓ φ+)−∆Γ ψ

+. (4.57)

In this case, one has to study the singularities of operator divΓ(α−1∇Γ ·). This is the way we have proceeded in
the proof of Theorem 4.2.2. If one wants to pursue the reasoning in the paradigm of the alternate condition (4.56),
one can take the curlΓ and get the second problem

∆Γ φ
− = − curlΓ(α−1g) + curlΓ(α−1∇Γ ψ

−) + curlΓ(α−1 curlΓ φ+), (4.58)

which is the problem governing φ−, in which we can plug the now known regularity of ψ−, and which involves
simply operator ∆Γ.
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4.2.3 Piecewise constant coefficient

In this subsection, we assume that α is an elliptic piecewise constant field on Γ. Then, one has to deal with the
singularities arising from the discontinuity lines and vertices of the coefficient. This is done in the spirit of Lemma
4.1.2. The (plane) regions where α is constant are denoted Γk and called coefficient faces. They will play the same
role as the faces of Γ in Lemma 4.1.2. They are naturally plane, because included in faces of Γ. Similarly, one will
have to deal with coefficient edges (lines where two coefficient faces meet), and with coefficient vertices (points
where three or more coefficient faces meet). Again for simplicity, we assume that the coefficient edges are straight
lines.

As before, the condition reads
πTC + αγTE = g on Γ. (4.59)

As in the previous subsection, we write the surface Helmholtz decompositions (2.83)-(2.84) of γTE and πTC, to get(
∇Γ ψ

− + curlΓ φ+)+ α
(
curlΓ φ− +∇Γ ψ

+) = g (4.60)

where φ−, ψ− ∈ H1/2
zmv(Γ), and φ+, ψ+ ∈ H(Γ). Then, taking the curlΓ of (4.60), φ− ∈ H1/2

zmv(Γ) is governed by

curlΓ
(
α curlΓ φ−

)
= curlΓ g + ∆Γ φ

+ − curlΓ
(
α ∇Γ ψ

+) . (4.61)

So, one has to study the singular solutions of the problem

Find φsing ∈ H1/2
zmv(Γ) s.t. curlΓ

(
α curlΓ φsing) = 0. (4.62)

This is done, as in Lemma 4.1.2, by localizing in a face, on an edge, or around a coefficient vertex v.

Lemma 4.2.6. Assume α is elliptic. Let v a coefficient vertex, and the eigenproblem∣∣∣∣∣∣∣
Find (λ, ϕ) ∈ C×H1

per([0, θv]) s.t. ,∀ψ ∈ H1
per([0, θv]),∫ θv

0
αϕ′ψ̄′dθ − λ2

∫ θv

0
αϕψ̄dθ = 0,

(4.63)

where the subscript per stands for the periodic fields. The solution to the problem

Find φsing ∈ H1/2
zmv(Γ) s.t. curlΓ

(
α curlΓ φsing) = 0 on Γ (4.64)

is 0 if, for all coefficient vertices, there is no λ solution to (4.63) s.t. <(λ) ∈ ]− 1
2 , 0[; otherwise, it belongs to a

finite dimensional space of singularities S1.

Proof. As in Lemma 4.1.2, we study the regularity locally in a neighbourhood, denoted ΓA, of each point of Γ, and
this domain can be of two types: ΓA is included in one coefficient face; or ΓA contains either one coefficient edge,
or one coefficient vertex and the adjacent coefficient edges. Indeed, the edge type can be seen as a special case of
the vertex type by picking an arbitrary point v on the edge: it corresponds to a vertex type with two faces, each of
them with a face angle equal to π (so θv = 2π).

1. It is included in a coefficient face Γi. In this case, α is constant in ΓA, and there holds φsing ∈ H1(ΓA) as in
Lemma 4.1.2.

2. It contains a coefficient vertex at the intersection of K coefficient faces Γk, possibly with K = 2 and both
face angles equal to π to cover also the coefficient edge as a particular case. We follow again Kondratiev
theory, and look for non-constant solutions that write locally φλ(r, θ) = rλϕλ(θ), where ϕλ|Γk(θ) = cke

±iλθ

for some λ ∈ C and a coefficient ck ∈ C. The explicit form of ϕλ|Γk is a consequence of the fact that α
depends only on the angular coordinate θ, and that α is constant on each Γk. Then, one can notice that
φλ satisfies 2K linear compatibility conditions corresponding to the (weak) continuity of the Dirichlet and
Neumann traces at each coefficient edge. The existence of a non-trivial solution to this set of 2K equations
(this is with at least one non-zero coefficient) leads to a dispersion equation governing λ. For the particular
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case of a coefficient edge, one finds by direct computations on the 4 equations that λ ∈ Z, and in addition
λ > 0 because ϕλ ∈ H1/2(ΓA). Hence φsing

|ΓA ∈ H1(ΓA).
For the case of an actual coefficient vertex, going back to the condition curlΓ(α curlΓ φsing) = 0 leads to the
eigenproblem governing ϕ ∈ H1

per([0, θv]):

∀ψ ∈ H1
per([0, θv]),

∫ θv

0
αϕ′ψ̄′dθ − λ2

∫ θv

0
αϕψ̄dθ = 0. (4.65)

We recall that the regularity of φλ is determined only by λ (cf. again Th. 1.2.18 in [62]): for 0 < s < 1,

φλ ∈ Hs(ΓA)⇐⇒ <(λ) > s− 1.

Moreover, one can note that λ = 0 leads to the constant (thus not singular) solution; and that λ ∈ iR \ {0}
is not an eigenvalue (in this case, the sesquilinear form in problem (4.63) is coercive, because α is elliptic).
Therefore, the problem (4.64) admits singular solutions if, and only if, there are solutions to (4.63) s.t.
<(λ) ∈ ]− 1

2 , 0[ (As in Lemma 4.1.2, a local singularity φλ can be continued on Γ by the means of a cut-off
function).

There remain to prove that the singular solutions belong to a finite dimensional vector space. First, even if
there are eigenvalues leading to singular solutions, one can always state that they are isolated. Indeed, introducing
the operator the operator Lλ defined on H1

per([0, θv]) by:

∀ϕ,ψ ∈ H1
per([0, θv]), (Lλϕ,ψ)H1

per([0,θv]) :=
∫ θv

0
αϕ′ψ̄′dθ − λ2

∫ θv

0
αϕψ̄dθ, (4.66)

it is clear that Lλ −Lµ is a compact operator ∀λ, µ, thanks to Rellich theorem, and that Lµ is an isomorphism for
all µ ∈ iR \ {0}. Hence, Lλ = Li + (Lλ − Li) is a Fredholm operator. As moreover the family of operators (Lλ)
is analytic w.r.t. λ, one can apply the analytic Fredholm Theorem (see, e.g., [80, Th. 1.1.1]): the spectrum of L
consists only of isolated eigenvalues, which are of finite multiplicities, and do not have accumulation points.

Let us show that there is a finite number of λ in the strip
{
λ ∈ C, <(λ) ∈ ]− 1

2 , 0[
}
. Let λ = a+ ib, one has

Lλ(ϕ,ϕ) =
∫ θv

0

[
α|ϕ′|2 +

(
α(b2 − a2)− 2αiab

)
|ϕ|2

]
dθ.

On one hand, there holds

<

[
eiθα

∫ θv

0
α(b2 − a2)|ϕ|2

]
≥ α−(b2 − a2)‖ϕ‖2L2

as soon as |b| > |a|. On the other hand,∣∣∣∣∣−2iab
∫ θv

0
α|ϕ|2dθ

∣∣∣∣∣ ≤ 2|a||b|α+‖ϕ‖2L2 .

We conclude that Lλ is coercive as soon as

|=(λ)| > |<(λ)| and α−|=(λ)|2 ≥ 2|<(λ)||=(λ)|α+ + α−|<(λ)|2, (4.67)

where the second condition is simply a polynomial of second order on |=(λ)| (as a function of |<(λ)|). So, clearly,
for imaginary parts large enough, Lλ is an isomorphism. Therefore, the conditions <(λ) ∈ ]− 1

2 , 0[ and the negation
of (4.67) define a bounded region of C. We conclude thanks to the analytic Fredholm theorem that there is a finite
number of eigenvalues inside this region. Out of it, in the strip <(λ) ∈ ] − 1

2 , 0[, there are no eigenvalues. We
conclude that the space of singular solutions, i.e. solutions of (4.64) in H1/2(Γ) \H1(Γ), is finite dimensional.

Remark 4.2.7. Alternatively, it is possible to estimate the regularity exponent in a given configuration by solving
numerically the eigenproblems (4.63) at each coefficient vertex, see e.g. [15].

Having studied the singularities of operator curlΓ(α curlΓ ·), we are now in position to state our result.
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Theorem 4.2.8. Assume that Γ has no pathological vertex.
If α is elliptic and s.t., for all its coefficient vertices, the eigenproblem (4.63) is s.t. there is no λ s.t.
<(λ) ∈ ]− 1

2 , 0[, then, there exists smax ∈]0, 1
2 [ s.t., ∀s ∈ [0, smax[,

γTE ∈ Hs
t (Γ) and πTC ∈ Hs

t (Γ), (4.68)

with moreover

‖γTE‖Hs
t (Γ) . ‖g‖π + ‖πTC‖π + ‖γTE‖γ ; (4.69)

‖πTC‖Hs
t (Γ) . ‖g‖γ + ‖πTC‖π + ‖γTE‖γ . (4.70)

Else, there exists smax ∈]0, 1
2 [ s.t., ∀s ∈ [0, smax[,

γTE ∈ Hs
t (Γ)⊕ curlΓ S1; (4.71)

πTC ∈ Hs
t (Γ)⊕∇Γ S2, (4.72)

where S1,S2 are finite dimensional spaces of sigularities.

Proof. Let us assume first that the hypotheses of the theorem are satisfied. If, for all coefficient vertices, there is
no λ of real part in ]− 1

2 , 0[, then there is no singular solution to (4.64), and there holds φ− ∈ H1(Γ). Moreover,
one has actually extra-regularity for φ−. This extra-regularity is driven, on one hand, by the regularity of the
right-hand side in (4.61). As ψ+ ∈ H3/2(Γ) (because of Lemma 4.1.3), and α is piecewise constant, there holds
α∇Γ ψ

+ ∈ Hs(Γ) for all s < 1
2 , (with ‖α∇Γ ψ

+‖Hs(Γ) . ‖ψ+‖H1+s(Γ)); thus the right-hand side of (4.61) belongs
to Hs−1. On the other hand, it is also driven by the lowest (strictly) positive eigenvalue of (4.63) (since λ /∈ iR,
see the proof of Lemma 4.2.6). Therefore, there holds φ− ∈ H1+s(Γ) for s < smax, with smax = min( 1

2 ,min<(λ)).
Thus, γTE ∈ Hs

t (Γ). The estimates are obtained as in Theorem 4.2.2.

To get the result for πTC, we follow the first way described in Remark 4.2.5. Taking the divΓ of (4.59),
ψ− ∈ H1/2

zmv(Γ) is governed by

∆Γ ψ
− = divΓ g− divΓ

(
α curlΓ φ−

)
− divΓ

(
α ∇Γ ψ

+) . (4.73)

This problem involves simply the standard Laplace-Beltrami operator, so, since Γ has no pathological vertex, there
are no singular solutions (Lemma 4.1.2). Besides, the right-hand side of (4.73) is meaningful in Hs−1(Γ), because
ψ+ ∈ H3/2(Γ) and φ− ∈ H1+s(Γ). We conclude that ψ− ∈ H1+s(Γ), and πTC ∈ Hs

t (Γ), with estimates obtained
as in Theorem 4.2.2.

On the other hand, if there are singular solutions to (4.64), then φ− ∈ H1(Γ)⊕ S1, where S1 is the space of
solutions of (4.64) inH1/2(Γ)\H1(Γ). Moreover, this corresponds also to the space of solutions inH1/2(Γ)\H1+s(Γ),
for s > 0 smaller than the lowest strictly positive value of <(λ). Therefore, φ− ∈ H1+s(Γ)⊕ S1, where S1 is the
finite-dimensional subspace of singularities. To deal with ψ−, we proceed as in the second way of Remark 4.2.5.
We multiply (4.59) by α−1 (α is elliptic) and take its divΓ, which gives

divΓ(α−1∇ψ−) = divΓ(α−1g)− divΓ
(
α−1 curlΓ φ+)−∆Γ ψ

+. (4.74)

One has then to study the singularities of operator divΓ(α−1∇Γ ·). This is done in the same manner as for
operator curlΓ(α curlΓ ·). One concludes that ψ− ∈ H1+s(Γ)⊕S2, where S2 is the finite-dimensional of singularities
associated to operator divΓ(α−1∇Γ ·).

Remark 4.2.9. The proof can be adapted to more complex geometries. In particular, in the case where Γ has
pathological vertices, one has to take in consideration both types of singularities: those arising from the geometry
at pathological vertices (Lemma 4.1.2); and those arising from the coefficient vertices (Lemma 4.2.6).

4.3 Investigation on Robin traces with a tensor-valued coefficient

In this section, we consider the more general boundary condition

πTC +αγTE = g on Γ, (4.75)
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where the impedance coefficient is tensor-valued. In the following, we assume that α ∈ PW2,∞(Γ) (the set of
piecewise W2,∞ fields), and is elliptic, i.e.:

∃θα ∈ R, ∃α− > 0, a.e. in Γ, ∀z ∈ C2, α−|z|2 ≤ <[eiθα · z∗αz]. (4.76)

Similarly to the previous sections, our goal is to determine whether this boundary condition may be meaningful
in L2

t (Γ), assuming as before that g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ).

Proposition 4.3.1. Assume α ∈ PW2,∞(Γ) and is elliptic. If Γ has no pathological vertices, and if α is s.t.
the problem

Find φsing ∈ H1/2
zmv(Γ) s.t. curlΓ(α curlΓ φ) = 0 on Γ

has no singular solution in H1/2(Γ) \H1(Γ), then

γTE ∈ L2
t (Γ) and πTC ∈ L2

t (Γ).

Proof. We recall that γTE ∈ H−1/2
‖ (divΓ,Γ) and πTC ∈ H−1/2

⊥ (curlΓ,Γ). As before, we write their surface
Helmholtz decompositions to get(

∇Γ ψ
− + curlΓ φ+)+α

(
curlΓ φ− +∇Γ ψ

+) = g, (4.77)

where φ−, ψ− ∈ H1/2
zmv(Γ), and φ+, ψ+ ∈ H(Γ). Just as in the previous sections, our goal is to determine whether

φ−, ψ− actually belong to H1(Γ), so that one has indeed γTE ∈ L2
t (Γ) and πT

(
µ−1 curl E

)
∈ L2

t (Γ). To that aim,
we investigate the scalar problems governing φ− and ψ−.

Let us begin with φ−. Indeed, we note that curlΓ g and curlΓ πTC ∈ H−1/2(Γ). Thus, one can take the curlΓ
of (4.77). One gets the problem governing φ−:

curlΓ
(
α curlΓ φ−

)
= curlΓ g + ∆Γ φ

+ − curlΓ
(
α ∇Γ ψ

+) . (4.78)

Hence, let us split φ− into a regular and a singular part. Indeed, because α is elliptic and the right-hand side belongs
to (H1

zmv(Γ))′, the problem (4.78) is well-posed in H1
zmv(Γ), so it admits a unique regular solution in H1

zmv(Γ),
denoted φreg. On the other hand, φsing := φ− − φreg is a singular solution to the corresponding homogeneous
problem

Find φsing ∈ H1/2
zmv(Γ) s.t. curlΓ(α curlΓ φsing) = 0 on Γ. (4.79)

By assumption, there exist no singular solutions to this problem. So, one can conclude that φ− = φreg ∈ H1(Γ).
This shows that γTE ∈ L2

t (Γ).

In a second step, we study ψ−, following the first way described in Remark 4.2.5. Indeed, we now know that
divΓ(αγTE) ∈ H−1(Γ), so we can take the divΓ of (4.77) to write the problem governing ψ−:

∆Γ ψ
− = divΓ g− divΓ

(
α curlΓ φ−

)
− divΓ

(
α ∇Γ ψ

+) , (4.80)

where we now benefit of the extra-regularity result of φ−. As before, let us split ψ− into two parts: ψreg ∈ H1
zmv(Γ)

is the only regular solution to (4.80) (the problem is well-posed in H1
zmv(Γ)). On the other hand, ψsing := ψ−−ψreg

is solution to
Find ψsing ∈ H1/2

zmv(Γ) s.t. ∆Γ ψ
sing = 0 on Γ. (4.81)

Here, we recover a standard Laplace-Beltrami problem, which does not involve α, contrarily to (4.78). Therefore,
one can apply directly the results of the first section, in particular the first item of Lemma 4.1.2. As, by assumption,
Γ has no pathological vertices, we conclude that ψsing = 0 and ψ− ∈ H1(Γ). This shows that πTC ∈ L2

t (Γ).
Moreover, as Γ has no pathological vertices, g also belongs to L2

t (Γ) by Theorem 4.1.4. So, finally, the whole
boundary condition holds in L2

t (Γ).

Remark 4.3.2. As in the previous section, one could also study the extra-regularity of φ− and ψ−, to determine
whether γTE, πTC belong to Hs

t (Γ) for a certain s > 0. This extra-regularity will be driven by the eigenvalues of
operator curlΓ(α curlΓ ·) in addition to the ones of operator ∆Γ.
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Remark 4.3.3. One could also consider the alternate Robin condition

βπTC + γTE = g̃ on Γ. (4.82)

This yields the same results, except the two steps of the proof are inverted. Indeed, in this case, it is meaningful
to take first the divΓ of (4.82). This leads to consider first the problem governing ψ−; this time, it involves the
operator divΓ(β∇Γ · ). If this problem has no singular solution, one concludes that πTC ∈ L2

t (Γ). It is then
meaningful to take the curlΓ of (4.82). This gives the problem governing φ−, which involves only the standard
Laplace-Beltrami operator. From that we conclude that γTE ∈ L2

t (Γ) (see also Remark 4.2.5).
It is therefore transparent to multiply the boundary condition by α−1 (so that β = α−1, with a right-hand side
g̃ = α−1g). In the tensor-valued case, note that there holds divΓ

(
(detα) α−1∇Γ v

)
= − curlΓ(α curlΓ v).

Conclusion

The results of this chapter allow us to state whether the Robin boundary condition may hold in L2
t (Γ), so that

both Dirichlet and Neumann traces belong to this space. This depends both on the impedance coefficient α or α
and on the geometry of Γ.

When the coefficient is scalar and constant, the proposition depends only on the geometry. In fact, we have
proven a far stronger result than simply stating whether the boundary condition holds in L2

t (Γ) or not. This is
summarized in the imbeddings of Theorem 4.1.4. These are purely functional analysis results: they state the
relation between the space H−1/2

‖ (divΓ,Γ) ∩H−1/2
⊥ (curlΓ,Γ) and spaces of Sobolev regularity. A consequence

of this result is that, when the imbedding (4.19) holds, the Robin condition with constant coefficient holds in
Hs(Γ) for a s > 0 (hence, it also holds in L2

t (Γ)). This result is strongly related to the study of solutions to the
Laplace-Beltrami problem.

Then, we have also considered the case of a Robin condition with heterogeneous coefficient α or α. This leads
to deal to the operator curlΓ(α curlΓ ·), instead of ∆Γ. However, when the coefficient is scalar and smooth enough,
one can come back to ∆Γ thanks to the Leibniz formula. Thus, one obtains similar results as in the constant
case. In particular, the singularities space is the same. When α is piecewise constant, one really has to study the
singularities of curlΓ(α curlΓ ·). We are able to prove that the singularities space is again finite-dimensional, and
that there holds extra-regularity for the regular part. More precise results can be obtained for given configurations;
we refer e.g. to [15]. When α is tensor-valued, we provide only a merely abstract result. Once again, one would
have to study the singularities of operator curlΓ(α curlΓ ·) in a given configuration to get a more precise result.



Chapter 5

Variational formulations and
well-posedness of Maxwell boundary

value problems

In this chapter, we derive H(curl,Ω)-conforming variational formulations for the time-harmonic Maxwell equation
completed with Dirichlet, Neumann, or Robin boundary condition, and study their well-posedness. Throughout
this chapter, Ω is a Lipschitz domain, as defined in the beginning of Section 2.2. The angular frequency ω > 0 is
fixed. We consider a general class of material tensors: we assume µ, ε ∈ L∞(Ω) and satisfy an ellipticity condition
as defined in (3.1). The corresponding ellipticity directions may be different: θε 6= θµ in general.

In the isotropic case (that is, when ε and µ are scalars), the study of such problems is well-known. We refer,
among others, to the monographs of Monk [86] and Assous, Ciarlet and Labrunie [7]. Let us note that variational
formulations other than H(curl,Ω)-conforming can be considered. The formulation can be augmented by adding a
divergence term, see e.g. [36, 24]; these are also called regularized formulations. Mixed formulations, augmented
or not, can also be considered, see e.g. [8, 49]. When it comes to anisotropic media, the most documented cases
are when the tensors are Hermitian definite positive, see e.g. [69, 14, 25]. Up to our knowledge, only a few works
address the case of non-Hermitian material tensors. A case with complex-valued symmetric tensors have been
studied in [4]. The authors show that the problem enters Fredholm alternative and prove the uniqueness of the
solution. In [66], various variational formulations have been derived for particular tensors coming from plasma
theory. The authors show that in this case, the associated form is coercive. Very recently [115], tensors with
elliptic real part have been considered, as perturbations of Hermitian tensors, It is proven that the problem enters
Fredholm alternative. Moreover, all these works generally focus on the Dirichlet problem.

Here, we provide a well-posedness analysis for elliptic tensors: this class of materials is more general than the
materials considered in the previously cited works. Moreover, we address the three types of boundary conditions,
which is generally not the case in the previous works. In our work, well-posedness is to be understood in Fredholm
sense. Indeed, coerciveness does not hold in general, so one has to rely on Fredholm Alternative. This study is
achieved thanks to the extended tools for anisotropic tensors developed in Chapter 3: Helmholtz decompositions
and compact embeddings.

We derive the variational formulations and study their well-posedness successively for the three types of problems:
Dirichlet is addressed in Section 5.1, Neumann in Section 5.2 and finally Robin in Section 5.3. We point out that
for the latter one, results from Chapter 4 are also required.

5.1 The Dirichlet problem

In this section, we consider the time-harmonic Maxwell problem completed with a non-homogeneous Dirichlet
boundary condition on Γ: {

curl(µ−1 curl E)− ω2εE = f in Ω,
E× n = g on Γ,

(5.1)

where we assume f ∈ L2(Ω), and g ∈ H−1/2
‖ (divΓ,Γ). We shall seek E in H(curl,Ω).

51
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Before deriving the variational formulation of problem (5.1), let us reduce the problem to a homogeneous form,
as it is usual when one deals with inhomogeneous Dirichlet problems. To that aim, we introduce a lifting of the
boundary data, Ed ∈ H(curl,Ω), s.t. g = Ed×n on Γ. The new unknown E0 := E−Ed satisfies the homogeneous
problem {

curl(µ−1 curl E0)− ω2εE0 = f − curl(µ−1 curl Ed) + ω2εEd in Ω,
E0 × n = 0 on Γ.

(5.2)

Therefore, we shall seek E0 in H0(curl,Ω). Then, one can write the variational formulation of this problem.

Theorem 5.1.1. The problem (5.2) is equivalent to the variational formulation

∣∣∣∣∣Find E0 ∈ H0(curl,Ω) s.t., ∀F ∈ H0(curl,Ω),(
µ−1 curl E0| curl F

)
− ω2 (εE0|F) =

(
f + ω2εEd|F

)
−
(
µ−1 curl Ed| curl F

)
.

(5.3)

Proof. The variational formulation is obtained by standard techniques. We multiply the first line of (5.2) by
F ∈ H0(curl,Ω) and integrate by parts. Conversely, one takes F ∈ D(Ω) and differentiates in D′(Ω), to conclude
that E0 ∈ H0(curl,Ω) satisfies the volume equation of (5.2) in the sense of distributions.

Remark 5.1.2. With E0 governed by (5.3), the total field E = E0 + Ed satisfies both the volume equation and
boundary condition of (5.1). Alternatively, E is governed by the variational formulation∣∣∣∣∣∣∣

Find E ∈ H(curl,Ω) s.t.
∀F ∈ H0(curl,Ω),

(
µ−1 curl E| curl F

)
− ω2 (εE|F) = `D(F),

E× n = g on Γ,
(5.4)

where `D : F 7→ (f |F) belongs to (H0(curl,Ω))′. However, this formulation cannot be used directly to study the
well-posedness of the problem, as the unknown E and the test function F do not belong to the same function space.
So, for the analysis, one relies rather on the formulation (5.3). On the other hand, when it comes to the numerical
resolution, one would rather use the formulation (5.4) to solve the non-homogeneous Dirichlet problem numerically.

In the following, we denote `D,0 the antilinear continuous form on H0(curl,Ω) defined by the right-hand side of
(5.3), depending on the data f and Ed:

`D,0 : F 7→
(
f + ω2εEd|F

)
−
(
µ−1 curl Ed| curl F

)
. (5.5)

In addition, we observe that
‖`D,0‖(H0(curl))′ . ‖f‖L2 + ‖Ed‖H(curl).

1 (5.6)

Well-posedness

The well-posedness analysis of the formulation (5.3) is done in two steps. First, we shall rewrite it into two
equivalent problems, by the means of the (first-kind) Helmholtz decomposition derived in Theorem 3.2.1. Then, we
shall see that both of these problems are well-posed.

Lemma 5.1.3. The formulation (5.3) is equivalent to set E0 = ∇p+ Ẽ, with p ∈ H1
0 (Ω) and Ẽ ∈ KN (ε; Ω),

respectively governed by

∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),
−ω2 (ε∇p|∇q) = `D,0(∇q)

(5.7)

1Here and in the rest of the chapter, the notation a . b denotes that there exists a constant C > 0, independent of a and b, s.t.
a ≤ Cb. The constant C depends only on the geometry, the frequency ω, and the coefficients µ, ε (and α).
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and ∣∣∣∣∣Find Ẽ ∈ KN (ε; Ω) s.t., ∀F̃ ∈ KN (ε; Ω),(
µ−1 curl Ẽ| curl F̃

)
− ω2 (εẼ|F̃) = ω2 (ε∇p|F̃)+ `D,0(F̃).

(5.8)

Proof. Direct. Let us introduce the (first-kind) Helmholtz decomposition (3.19) of E0: E0 = ∇p + Ẽ, with
p ∈ H1

0 (Ω) and Ẽ ∈ KN (ε; Ω). Taking F = ∇q for any q ∈ H1
0 (Ω) in (5.3), we get

−ω2 (ε(∇p+ Ẽ)|∇q
)

= `D,0(∇q)

and, since Ẽ ∈ KN (ε; Ω), it holds that, ∀q ∈ H1
0 (Ω),

(
εẼ|∇q

)
= 0, so

−ω2 (ε∇p|∇q) = `D,0(∇q).

On the other hand, for Ẽ = E0 −∇p ∈ KN (ε; Ω), one has(
µ−1 curl Ẽ| curl F

)
− ω2 (εẼ|F) = ω2 (ε∇p|F) + `D,0(F)

for any F ∈ H0(curl,Ω), hence in particular for any F̃ ∈ KN (ε; Ω).

Reverse. By summation of (5.7) and (5.8), one has, ∀q ∈ H1
0 (Ω),∀F̃ ∈ KN (ε; Ω):(

µ−1 curl Ẽ| curl F̃
)
− ω2 (εẼ|F̃)− ω2 (ε∇p|∇q) = ω2 (ε∇p|F̃)+ `D,0(F̃) + `D,0(∇q).

One can add the null terms
(
µ−1 curl∇p| curl F̃

)
,
(
µ−1 curl(Ẽ +∇p)| curl∇q

)
and −ω2 (εẼ|∇q), and pose

E0 := Ẽ +∇p ∈ H0(curl,Ω) to get, after simple rearrangements:(
µ−1 curl E0| curl(F̃ +∇q)

)
− ω2 (εE0|F̃ +∇q

)
= `D,0(F̃ +∇q).

Finally, as F̃ and q span respectively KN (ε; Ω) and H1
0 (Ω), the sum F̃ +∇q spans the whole space H0(curl,Ω),

thanks to the (first-kind) Helmholtz decomposition (3.19).

Remark 5.1.4. The term ω2 (ε∇p|F̃) in formulation (5.8) vanishes automatically only if ε is a Hermitian tensor
field.

Now, let us study the well-posedness of variational formulations (5.7) and (5.8). For the first one, the result is
quite straightforward.

Lemma 5.1.5. The formulation (5.7) is well-posed, and there holds ‖p‖H1
0
. ‖f‖L2 + ‖Ed‖L2 .

Proof. It is an immediate consequence of Theorem 3.1.6. Since `D,0 ∈ (H0(curl,Ω))′, and ∇ is a continuous
mapping from H1

0 (Ω) to H0(curl,Ω), one has `D,0 ◦ ∇ ∈ H−1(Ω), with `D,0(∇q) =
(
f + ω2εEd|∇q

)
.

To study formulation (5.8), we use the compact embedding of KN (ε; Ω) into L2(Ω) (Theorem 3.3.2). The
formulation then enters Fredholm alternative (see Theorem 2.5.2).

Lemma 5.1.6. The formulation (5.8) enters Fredholm alternative, and there holds the following:

• either the problem admits a unique solution Ẽ in KN (ε; Ω), which depends continuously on the data f
and Ed:

‖Ẽ‖H(curl) . ‖f‖L2 + ‖Ed‖H(curl);

• or, the problem has solutions if, and only if, f and Ed satisfies a finite number of compatibility conditions;
in this case, the space of solutions is an affine space of finite dimension. Additionally, the component of
the solution which is orthogonal (in the sense of the H0(curl,Ω) inner product) to the corresponding
linear vector space, depends continuously on the data f and Ed.
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Proof. Let us split the left-hand side of (5.8) in two terms. We introduce two sesquilinear forms defined on
H0(curl,Ω), namely

a : (u,v) 7→
(
µ−1 curl u| curl v

)
+ eiθµ (u|v)

and
b : (u,v) 7→ −ω2 (εu|v)− eiθµ (u|v) ,

where we recall that µ−1 satisfies assumption (3.1), and use the notations of Proposition 3.1.4.

We recall that KN (ε; Ω) is equipped with the same norm as H(curl,Ω). The form a is clearly continuous on
KN (ε; Ω): |a(u,v)| . ‖u‖H(curl)‖v‖H(curl). It is also coercive on KN (ε; Ω), indeed:

|a(v,v)| = |
(
µ−1 curl v| curl v

)
+ eiθµ (v|v) |

≥ <
[
e−iθµ

(
µ−1 curl v| curl v

)
+ (v|v)

]
≥ µinv

− ‖ curl v‖2L2 + ‖v‖2L2

≥ min(µinv
− , 1) ‖v‖2H(curl).

Besides, b(u,v) . ‖u‖L2‖v‖L2 . ‖u‖L2‖v‖KN (ε), so the form b is continuous on L2(Ω)×KN (ε; Ω). Finally, the
embedding of KN (ε; Ω) into L2(Ω) is compact by Theorem 3.3.2. Hence the formulation (5.8) enters the coercive +
compact framework, and the Fredholm alternative (Theorem 2.5.2) holds. The bound proceeds from the bounds on
`D,0 (5.6) and on p (Lemma 5.1.5).

Grouping the previous results, we are able to conclude on the well-posedness of problem (5.3), then of problem
(5.1).

Theorem 5.1.7. The problem (5.3) with unknown E0 enters Fredholm alternative:

• either the problem admits a unique solution E0 in H0(curl,Ω), which depends continuously on the data
f and Ed: KN (ε; Ω), which depends continuously on the data f and Ed:

‖E0‖H(curl) . ‖f‖L2 + ‖Ed‖H(curl); (5.9)

• or, the problem has solutions if, and only if, f and Ed satisfy a finite number of compatibility conditions;
in this case, the space of solutions is an affine space of finite dimension. Additionally, the component of
the solution which is orthogonal (in the sense of the H0(curl,Ω) inner product) to the corresponding
linear vector space, depends continuously on the data f and Ed.

Moreover, each alternative occurs simultaneously for formulation (5.8) and formulation (5.3).

Corollary 5.1.8. If the problem (5.3) is well-posed, then the problem (5.1) is well-posed as well, and

‖E‖H(curl) . ‖f‖L2 + ‖g‖γ . (5.10)

Proof. The problems (5.3) and (5.1) are equivalent. In particular, the solution E reconstructed from problem (5.3)
is independent of the choice of the lifting Ed. Indeed, let E1

d,E2
d ∈ H(curl,Ω) two liftings of g. Then, we introduce

E1
0 and E2

0 ∈ H0(curl,Ω) the corresponding solutions to problem (5.3), and define E1 := E1
0 + E1

d, E2 := E2
0 + E2

d.
Then, E1 and E2 satisfy the same boundary value problem (5.1). In particular, E1 −E2 ∈ H0(curl,Ω) is solution
to the homogeneous Dirichlet problem with null data. As this problem is well-posed, E1 = E2.

The bound is obtained taking the infimum on the liftings Ed:

‖E‖H(curl) . ‖f‖L2 + inf
Ed
‖Ed‖H(curl) . ‖f‖L2 + ‖g‖γ ,

where we recall that ‖ · ‖γ denotes the norm of H−1/2
‖ (divΓ,Γ). This grants the continuous dependence of E w.r.t.

data f and g.
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In what preceeds, we have simply assumed that the coefficients ε and µ are elliptic, independently from each
other: in particular, their ellipticity directions can be independent. It is possible to go further if one assumes
moreover interplay between the coefficients ε and µ. To that aim, we introduce the notion of simultaneous ellipticity:
we say that µ−1 and −ε are simultaneously elliptic iff Θµ−1 ∩Θ−ε 6= ∅: that is, there exists θ ∈ R, µinv

−,θ, ε−,θ > 0
s.t.

<[eiθ(v∗µ−1v)] ≥ µinv
−,θ|v|2 and <[eiθ(−v∗εv)] ≥ ε−,θ|v|2, (5.11)

simultaneously. This means that µ−1 and −ε share a common ellipticity direction. Note that µinv
−,θ, ε−,θ can be

different from µinv
− , ε−: it depends on the relative positions of θ, θµ and θε.

In this case, the bilinear form associated to the problem is coercive. Indeed, there holds

<
[
eiθ
((
µ−1 curl v| curl v

)
− ω2 (εv|v)

)]
≥ µinv

−,θ‖ curl v‖2 + ω2ε−,θ‖v‖2

≥ min(µinv
−,θ, ω

2ε−,θ)‖v‖2H(curl).

Theorem 5.1.9. If µ−1 and −ε are simultaneously elliptic, then the Dirichlet problem is well-posed: there
exists a unique solution E ∈ H(curl,Ω) to (5.1), with moreover

‖E‖H(curl) . ‖f‖L2 + ‖g‖γ . (5.12)

5.2 The Neumann problem

In this section, the problem is completed with a Neumann boundary condition:{
curl(µ−1 curl E)− ω2εE = f in Ω,

µ−1 curl E× n = j on Γ,
(5.13)

where j is a boundary data which can be interpreted as a surface current. We assume that f ∈ L2(Ω), and
j ∈ H−1/2

‖ (divΓ,Γ). The natural space to look for E is H(curl,Ω).

Using standard techniques, we write the variational formulation of the Neumann problem (5.13).

Theorem 5.2.1. The problem (5.13) is equivalent to the variational formulation∣∣∣∣∣Find E ∈ H(curl,Ω) s.t., ∀F ∈ H(curl,Ω),(
µ−1 curl E| curl F

)
− ω2 (εE|F) = (f |F) + γ〈j, πTF〉π.

(5.14)

Proof. We multiply the volume equation of (5.13) by a test function F ∈ H(curl,Ω) and integrate by parts using
formula (2.44), to get(

µ−1 curl E| curl F
)
− ω2 (εE|F)− γ〈γT (µ−1 curl E), πTF〉π = (f |F) . (5.15)

Then, using the boundary condition of (5.13) gives the variational formulation (5.14).

Conversely, one takes F ∈ D(Ω) in (5.14) and differentiates in D′(Ω) to conclude that the volume Maxwell
equation

curl(µ−1 curl E)− ω2εE = f

holds in D′(Ω), and in L2(Ω). Multipliying anew this equation by F ∈ H(curl,Ω) and integrating by parts, one
recovers equation (5.15). Substrating this to (5.14), one concludes that γ〈γT (µ−1 curl E), πTF〉π = γ〈j, πTF〉π, for
all F ∈ H(curl,Ω); i.e. that µ−1 curl E × n = j holds in H−1/2

‖ (divΓ,Γ), because the mapping πT is surjective

from H(curl,Ω) to H−1/2
⊥ (curlΓ,Γ) =

(
H−1/2
‖ (divΓ,Γ)

)′
.
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In the following, we denote `N the antilinear continuous form on H(curl,Ω) defined by the right-hand side,
depending on the data f and j:

`N : F 7→ (f |F) + γ〈j, πTF〉π, (5.16)

and we note that
‖`N‖(H(curl))′ . ‖f‖L2 + ‖j‖γ . (5.17)

Well-posedness

Here, the variational formulation is posed in the space H(curl,Ω). The analysis follows the same steps as for
the Dirichlet problem, using the appropriate tools related to the space H(curl,Ω). In particular, we recast the
formulation (5.14) using the second-kind Helmholtz decomposition (Theorem 3.2.3).

Lemma 5.2.2. The formulation (5.14) is equivalent to set E = ∇p+ Ẽ, with p ∈ H1
zmv(Ω) and Ẽ ∈ KT (ε; Ω),

respectively governed by

∣∣∣∣∣Find p ∈ H
1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),
−ω2 (ε∇p|∇q) = `N(∇q)

(5.18)

and ∣∣∣∣∣Find Ẽ ∈ KT (ε; Ω) s.t., ∀F̃ ∈ KT (ε; Ω),(
µ−1 curl Ẽ| curl F̃

)
− ω2 (εẼ|F̃) = ω2 (ε∇p|F̃)+ `N(F̃).

(5.19)

Proof. Direct. Let us introduce the (second-kind Helmholtz) decomposition (3.21) of E: E = ∇p + Ẽ, with
p ∈ H1

zmv(Ω) and Ẽ ∈ KT (ε; Ω). Taking F = ∇q for any q ∈ H1
zmv(Ω) yields

−ω2 (ε(Ẽ +∇p)|∇q
)

= `N(∇q),

which gives (5.18), as Ẽ ∈ H0(div ε0). On the other hand, there holds(
µ−1 curl Ẽ| curl F

)
− ω2 (εẼ|F) = ω2 (ε∇p|F) + `N(F)

for any F ∈ H(curl,Ω), hence for any F̃ ∈ KT (ε; Ω).

Reverse. We sum equations (5.18) and (5.19) and introduce E := Ẽ + ∇p ∈ H(curl,Ω). Adding the
complementary vanishing terms, one gets, after rearrangements:(

µ−1 curl E| curl(F̃ +∇q)
)
− ω2 (εE|(F̃ +∇q)

)
= `N(F̃ +∇q).

As q and F̃ span respectively H1
zmv(Ω) and KT (ε; Ω), we conclude by the (second-kind) Helmholtz decomposition

(3.21) that the sum F̃ +∇q spans the whole space H(curl,Ω); hence the result.

Then, the analysis proceeds as for the Dirichlet problem. For that reason, we present directly the final result.
The study of the problem (5.18) is quite easy. For the problem (5.19), we rely on the compact embedding of
KT (ε; Ω) into L2(Ω) (Theorem 3.3.4) to show that it enters Fredholm alternative.

Theorem 5.2.3. The formulation (5.14) enters Fredholm alternative, and the following conclusions hold:

• either the problem admits a unique solution E in H(curl,Ω), which depends continuously on the data f
and j:

‖E‖H(curl) . ‖f‖L2 + ‖j‖γ ; (5.20)

• or, the problem has solutions if, and only if, f and j satisfy a finite number of compatibility conditions;
in this case, the space of solutions is an affine space of finite dimension. Additionally, the component of
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the solution which is orthogonal (in the sense of the H(curl,Ω) inner product) to the corresponding
linear vector space, depends continuously on the data f and j.

Proof. Let us study sucessively the problems (5.18) and (5.19).

1. The formulation (5.18) is well-posed by Theorem 3.1.7. In fact, the form `N is continuous on H(curl,Ω) and
the mapping ∇ is continuous from H1

zmv(Ω) to H(curl,Ω). Moreover, ‖p‖H1
zmv

. ‖f‖L2 + ‖j‖γ .

2. Besides, the formulation (5.19) fits the coercive + compact framework. Indeed, as in the proof of Lemma
5.1.6, one can split the left-hand side in two parts. The term

a(u,v) :=
(
µ−1 curl u| curl v

)
+ eiθµ (u|v)

is continuous, and coercive, on H(curl,Ω). Indeed, for the latter, there holds

|a(v,v)| ≥ <
[
e−iθµ

(
µ−1 curl v| curl v

)
+ (v|v)

]
≥ min(µinv

− , 1)‖v‖2H(curl).

Therefore, it also continuous and coercive on KT (ε; Ω), because this space is equipped with the same norm
as H(curl,Ω). The remaining term

b(u,v) := −ω2 (εu|v)− eiθµ (u|v)

is continuous on L2(Ω)×KT (ε; Ω), and the embedding of KT (ε; Ω) into L2(Ω) is compact by Theorem 3.3.4.
Hence the conclusions of Fredholm alternative apply to formulation (5.19), with the bound ‖Ẽ‖H(curl) .
‖f‖L2 + ‖j‖γ + ‖p‖H1

zmv
.

Finally, the same holds for formulation (5.14), with the bound ‖E‖H(curl) . ‖f‖L2 + ‖j‖γ obtained by triangle
inequality.

As in the Dirichlet problem, one can get a stronger result assuming that the coefficients µ−1 and −ε are
simultaneously elliptic. Indeed, in this case, the problem is actually coercive.

Theorem 5.2.4. If µ−1 and −ε are simultaneously elliptic, then there exists a unique solution E ∈ H(curl,Ω)
to (5.13), with moreover

‖E‖H(curl) . ‖f‖L2 + ‖j‖γ . (5.21)

5.3 The Robin problem

In this section, we consider the Maxwell problem completed with a generalised impedance (Robin) boundary
condition: {

curl(µ−1 curl E)− ω2εE = f in Ω,
πT (µ−1 curl E) + αγTE = g on Γ,

(5.22)

where we assume f ∈ L2(Ω), and g ∈ L2
t (Γ). Here, we look for E a priori in the space H(curl,Ω). However, in the

literature, the variational space for this kind of problem is frequently set to H+(curl,Ω) = {v ∈ H(curl,Ω), γTv ∈
L2
t (Γ)}, assuming that the boundary condition holds in L2

t (Γ).

As we saw in Chapter 4, this assumption is in fact not trivial, because both traces γTE and πT (µ−1 curl E)
belong a priori to different trace spaces: γTE ∈ H−1/2

‖ (divΓ,Γ), whereas πT (µ−1 curl E) ∈ H−1/2
⊥ (curlΓ,Γ).

To ensure that one can legitimately look for E in H+(curl,Ω), we make some additional assumptions: g ∈
H−1/2
‖ (divΓ,Γ)∩H−1/2

⊥ (curlΓ,Γ), the boundary Γ of the domain has no pathological vertices (see Definition 4.1.1),
and α ∈ L∞(Γ) is an elliptic scalar field (cf. (4.76)) s.t. operator curlΓ(α curlΓ ·) has no singular solution. This is
the case, for example, if α ∈W 2,∞(Γ). In this case, the conclusions of Theorem 4.2.2 apply, and each term of the
boundary condition of (5.22) holds (at least) in L2

t (Γ). Other configurations are possible, see e.g. Theorem 4.2.8.
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With these assumptions at hand, we ensure that a solution E ∈ H(curl,Ω) to (5.22) indeed belongs to the space
H+(curl,Ω) = {v ∈ H(curl,Ω), γTv ∈ L2

t (Γ)}. In the following, we derive an equivalent variational formulation
to (5.22) that is set in H+(curl,Ω). In fact, it seems that H+(curl,Ω) is the appropriate variational space to
deal with the problem (5.22), just as H0(curl,Ω) is for the Dirichlet problem or H(curl,Ω) is for the Neumann
problem.

Besides, we also assume that α ∈ L∞(Γ) is elliptic, and, furthermore, that Θµ−1 ∩Θ−α 6= ∅, i.e. that µ−1 and
−α are simultaneously elliptic. In other words, there exists θ ∈ R, µinv

−,θ, α−,θ > 0 s.t.

<[eiθ(v∗µ−1v)] ≥ µinv
−,θ|v|2 and <[eiθ(−v∗αv)] ≥ α−,θ|v|2

simultaneously (µ−1 and −α share a common ellipticity direction). Note that µinv
−,θ, α−,θ can be different from

µinv
− , α−.

We recall that H+(curl,Ω) is a Hilbert space when equipped with the graph norm, and we denote (·, ·)Γ the
scalar product in L2

t (Γ). Then, let us derive the variational formulation of (5.22).

Theorem 5.3.1. The problem (5.22) is equivalent to the variational formulation∣∣∣∣∣Find E ∈ H+(curl,Ω) s.t., ∀F ∈ H+(curl,Ω),(
µ−1 curl E| curl F

)
− ω2 (εE|F)−

(
αγTE, γTF

)
Γ = (f |F)−

(
g, γTF

)
Γ .

(5.23)

Proof. Direct. Let us multiply the volume equation of (5.22) by a test function F ∈ H+(curl,Ω) and integrate by
parts: (

µ−1 curl E| curl F
)
− ω2 (εE|F) + π〈πT (µ−1 curl E), γTF〉γ = (f |F) (5.24)

Using the boundary condition, and the fact that it holds in L2
t (Γ), one gets that

π〈πT (µ−1 curl E), γTF〉γ = π〈g− αγTE, γTF〉γ
=
(
g− αγTE, γTF

)
Γ

and then (5.23) holds.

Reverse. Taking F ∈ D(Ω) in (5.23) and differentiating in D′(Ω), we find curl(µ−1 curl E) − ω2εE = f in
D′(Ω), hence in L2(Ω). Once again, we multiply by a test function F ∈ H+(curl,Ω) and integrate by parts to
recover (5.24). Subtracting it to (5.23), we get

π〈πT (µ−1 curl E), γTF〉γ −
(
g, γTF

)
Γ = −

(
αγTE, γTF

)
Γ ,

and, because g ∈ H−1/2
⊥ (curlΓ,Γ),

π〈πT (µ−1 curl E), γTF〉γ − π〈g, γTF〉γ = −
(
αγTE, γTF

)
Γ .

Moreover, this holds for all F ∈ C∞(Ω) ⊂ H+(curl,Ω). As C∞(Ω) is dense in H(curl,Ω), and γT is surjective
from H(curl,Ω) to H−1/2

‖ (divΓ,Γ), we have that γT (C∞(Ω)) is dense in H−1/2
‖ (divΓ,Γ). Therefore, we conclude

by density that
πT (µ−1 curl E)− g = −αγTE

holds in H−1/2
⊥ (curlΓ,Γ) = (H−1/2

‖ (divΓ,Γ))′.

In the following, we introduce `R the antilinear continuous form on H+(curl,Ω) defined by the right-hand side,

`R : F 7→ (f |F)−
(
g, γTF

)
Γ , (5.25)

with
‖`R‖(H+(curl))′ . ‖f‖L2 + ‖g‖L2

t (Γ). (5.26)
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Well-posedness

The rest of the analysis follows the same steps as in the previous sections. First, we rely on the Helmholtz
decomposition of H+(curl,Ω) (Theorem 3.2.4) to recast the variational formulation (5.23).

Lemma 5.3.2. The formulation (5.23) can be equivalently recast as: set E = ∇p+ Ẽ, with p ∈ H1
0 (Ω) and

Ẽ ∈WN (ε; Ω), respectively governed by

∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),
−ω2 (ε∇p|∇q) = (f |∇q)

(5.27)

and ∣∣∣∣∣Find Ẽ ∈WN (ε; Ω) s.t., ∀F̃ ∈WN (ε; Ω),(
µ−1 curl Ẽ| curl F̃

)
− ω2 (εẼ|F̃)− (αγT Ẽ, γT F̃

)
Γ =

(
f |F̃
)
−
(
g, γT F̃

)
Γ + ω2 (ε∇p|F̃) . (5.28)

Proof. Direct. Taking F = ∇q for any q ∈ H1
0 (Ω) in (5.23) yields −ω2 (ε(∇p+ Ẽ)|∇q

)
= (f |∇q). Because

div εẼ = 0, one gets (5.27). Then, for Ẽ = E−∇p ∈WN (ε,Ω), there holds(
µ−1 curl Ẽ| curl F

)
− ω2 (ε(∇p+ Ẽ)|F

)
−
(
αγT Ẽ, γTF

)
Γ = (f |F)−

(
g, γTF

)
Γ

for any F ∈ H+(curl,Ω), hence in particular for any F̃ ∈WN (ε; Ω).

Reverse. We sum (5.27) and (5.28), pose E = ∇p+Ẽ ∈ H+(curl,Ω). Adding the null terms
(
µ−1 curl∇p| curl F̃

)
,(

µ−1 curl E| curl∇q
)
, −ω2 (εẼ|∇q), − (αγT∇p, γT F̃

)
Γ, −

(
αγTE, γT∇q

)
Γ, and

(
g, γT∇q

)
Γ, one gets(

µ−1 curl E| curl(∇q + F̃)
)
− ω2 (εE|∇q + F̃

)
−
(
αγTE, γT (∇q + F̃)

)
Γ =

(
f |∇q + F̃

)
−
(
g, γT (∇q + F̃)

)
Γ .

As q and F̃ span respectively H1
0 (Ω) and WN (ε; Ω), the sum ∇q+ F̃ spans the whole space H+(curl,Ω), according

to Theorem 3.2.4. Hence (5.23) holds.

Then, the analysis proceeds as in the previous sections. Here, we rely on the compact embedding of WN (ε; Ω)
into L2(Ω) (Theorem 3.3.5). One more difference is that one needs an additional assumption on µ and α to
conclude.

Theorem 5.3.3. If µ−1 and −α are simultaneously elliptic, then the problem (5.23) enters Fredholm
alternative, and

• either the problem admits a unique solution E in H(curl,Ω), which depends continuously on the data f
and g:

‖E‖H+(curl) . ‖f‖L2 + ‖g‖L2
t (Γ); (5.29)

• or, the problem has solutions if, and only if, f and g satisfy a finite number of compatibility conditions;
in this case, the space of solutions is an affine space of finite dimension. Additionally, the component of
the solution which is orthogonal (in the sense of the H+(curl,Ω) inner product) to the corresponding
linear vector space, depends continuously on the data f and g.

Proof. We study successively the formulations (5.27) and (5.28).

1. The formulation (5.27) is clearly well-posed by Lax-Milgram lemma.

2. For the formulation (5.28),
by assumption, we have, for θ ∈ Θµ−1 ∩Θ−α,

<[eiθ(v∗µ−1v)] ≥ µinv
−,θ|v|2 and <[eiθ(−v∗αv)] ≥ α−,θ|v|2
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simultaneously. Then, let us introduce the sesquilinear form on WN (ε; Ω)

a(u,v) :=
(
µ−1 curl u| curl v

)
+ e−iθ (u|v)−

(
αγTu, γTv

)
Γ .

It is continuous and coercive on WN (ε; Ω): indeed, one checks that |a(u,v)| . ‖u‖H+(curl,Ω)‖v‖H+(curl,Ω),
and that

|a(v,v)| ≥ <[eiθa(v,v)]
≥ µinv

−,θ‖ curl v‖2L2 + ‖v‖2L2 + α−,θ‖γTv‖2L2
t (Γ),

≥ min(µinv
−,θ, 1, α−,θ) ‖v‖2H+(curl,Ω),

with WN (ε; Ω) and H+(curl,Ω) sharing the same norm. Introducing the complementary form

b(u,v) := −ω2(εu|v) + e−iθ(u|v), (5.30)

it is continuous on L2(Ω) ×WN (ε; Ω). Moreover, the embedding of WN (ε; Ω) into L2(Ω) is compact by
Theorem 3.3.5. Hence the formulation (5.28) enters the coercive + compact framework, and the conclusions
of Fredholm alternative apply to problem (5.28).

Grouping both results, one has the result for problem (5.23).

Remark 5.3.4. Note that one needs “compatibility” in some sense between µ and α (simultaneous ellipticity), but,
on the other hand, no condition on ε is required.
Remark 5.3.5. One can proceed similarly if α is a tensor-valued coefficient, provided it allows the boundary
condition to hold in L2

t (Γ). If µ−1 and −α are simultaneously elliptic, then the problem (5.23) enters Fredholm
alternative. The proof is the same.

In what preceeds, we have assumed interplay only between µ and α, in order to get the Fredholm character of
the problem. Again, one can go further if one assumes interplay between all three coefficients ε, µ and α. If µ−1,
−ε and −α are simultaneously elliptic, i.e. if Θµ−1 ∩Θ−ε ∩Θ−α 6= ∅, then there exists θ ∈ R, µinv

−,θ, ε−,θ, α−,θ > 0
s.t.

<[eiθ(v∗µ−1v)] ≥ µinv
−,θ|v|2, <[eiθ(−v∗εv)] ≥ ε−,θ|v|2, <[eiθ(−v∗αv)] ≥ α−,θ|v|2, (5.31)

simultaneously. As a consequence, the bilinear form associated to the Robin problem is coercive. Indeed,

<
[
eiθ
((
µ−1 curl v| curl v

)
− ω2 (εv|v)−

(
αγTE, γTF

)
Γ

)]
≥ µinv

−,θ‖ curl v‖2 + ω2ε−,θ‖v‖2 + α−,θ‖γTv‖2L2
t (Γ)

≥ min(µinv
−,θ, ω

2ε−,θ, α−,θ)‖v‖2H+(curl).

Again, this is also valid for a tensor-valued α.

Theorem 5.3.6. If µ−1, −ε and −α (or −α) are simultaneously elliptic, i.e. Θµ−1 ∩Θ−ε ∩Θ−α 6= ∅, then
there exists a unique solution E ∈ H+(curl,Ω) to the Robin problem (5.22), with moreover

‖E‖H(curl) . ‖f‖L2 + ‖g‖L2
t (Γ). (5.32)

The magnetic problem

Alternatively, one could choose to solve the second-order time-harmonic magnetic problem, eliminating E instead
of H. The equation reads (see (2.15))

curl ε−1 curl H− ω2µH = f̃ , (5.33)

with f̃ = curl ε−1J. In other words, the roles of ε and µ are permuted compared to the electric problem. Moreover,
the Dirichlet and Neumann conditions are also permuted: a Neumann condition for the electric field is a Dirichlet
condition for the magnetic field, and vice-versa. Therefore, the Dirichlet and Neumann magnetic problems are
well-posed under the same conditions than the electric ones.
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Considering the Robin condition, expressing it in terms of the magnetic field, one gets

πT (ε−1 curl H)− α−1ω2γTH = g̃, (5.34)

where g̃ = πT (ε−1J) + iωα−1(g× n).
Remark 5.3.7. Here, we specifically assume that the impedance coefficient is scalar-valued. When it is tensor-valued,
the computations are a bit more complex.

The variational formulation of the problem (5.33)-(5.34) reads:∣∣∣∣∣Find H ∈ H+(curl,Ω) s.t., ∀F ∈ H+(curl,Ω),(
ε−1 curl H| curl F

)
− ω2 (µH|F

)
+
(
ω2α−1γTH, γTF

)
Γ =

(
f̃ |F
)
−
(
g̃, γTF

)
Γ .

(5.35)

Then, one can notice a curious thing. To get the Fredholm character of problem (5.35), one needs apparently a
different condition than for the electric problem (5.23), although both problems are supposed to be equivalent. In
particular, the coefficients involved are not the same: here, one requires simultaneous ellipticity between ε−1 and
α−1, independently of µ, while for the electric problem we required simultaneous ellipticity between µ−1 and −α,
independently of ε.

Besides, in order to get the coercivity of the magnetic problem (5.35), one has to assume interplay between
all three coefficients: namely, that ε−1, −µ and α−1 are simultaneously elliptic (i.e. Θε−1 ∩ Θ−µ ∩ Θα−1 6= ∅).
Compare to the electric problem: to go from the electric to the magnetic problem boils down to change the triplet of
coefficients (µ−1,−ε,−α) into (ε−1,−µ, α−1), that is, all coefficients are changed by the transformation ξ 7→ −ξ−1.
Thus, note that both conditions Θµ−1 ∩Θ−ε ∩Θ−α 6= ∅ and Θε−1 ∩Θ−µ ∩Θα−1 6= ∅ are equivalent. Therefore,
both electric and magnetic problems are coercive under the same conditions.

Conclusion

We have studied time-harmonic Maxwell problems for a wide class of material tensors: we only assume that ε and
µ are elliptic (Definition 3.1.1). In this context, we have derived and studied H(curl,Ω)-conforming variational
formulations for the time-harmonic Maxwell problem with the three main types of boundary conditions: Dirichlet
(Theorem 5.1.7), Neumann (Theorem 5.2.3), and Robin (Theorem 5.3.3).

We prove that well-posedness in Fredholm sense holds in very general contexts. However, we do not provide
explicit compatibility conditions to ensure that the problems have unique solutions. To conclude, one should
establish the uniqueness of the solution. This is usually done thanks to a unique continuation principle. However,
up to our knowledge, it seems that the unique continuation principle has been established only when ε,µ are
real symmetric [113, 90]. We also refer to [9]. Alternatively, one can go further and prove the coercivity of the
formulations assuming moreover the simultaneous ellipticity of the coefficients. This is the case in some physical
contexts such as plasma, see for example [8]. In this case, the problem is truly well-posed.

One could also consider the case of mixed boundary conditions, for example Dirichlet on one part of the
boundary and Neumann on the other. We refer to the work of Fernandes and Gilardi [55] who treated it in the
case of real symmetric material tensors.





Chapter 6

Analysis of the regularity of
electromagnetic fields

In this chapter, we study the regularity of the solutions of the problems presented in the previous chapter, i.e. the
time-harmonic Maxwell equation completed with Dirichlet, Neumann, or Robin boundary condition. We focus
on the regularity in the Sobolev scale, in the cases where the data are more regular than assumed in Chapter
5. We are interested in the regularity of both the solution itself and of its curl. This is motivated by numerical
analysis considerations: indeed, when discretizing the variational formulations with H(curl,Ω)-conforming edge
finite elements, the order of convergence of the method is driven by both the regularity of the solution itself and of
its curl. We specifically assume throughout this chapter that Γ is of class C2. As in the previous chapter, ε, µ shall
be elliptic tensors, with ellipticity directions that may be different. Additional assumptions on the regularity of ε
and µ will be made in the different sections.

The study of the regularity of electromagnetic fields originates in the work of Birman and Solomyak [12]. The
regularity of electromagnetic fields has been studied in [37] for piecewise constant isotropic media, in [77], [14] and
[25] for piecewise smooth symmetric definite positive tensors. A few works address the case of non-Hermitian tensors.
For tensors with elliptic real part, H1(Ω)-regularity [2] and Hölder regularity [1] results have been established. Very
recently, similar results have been obtained in [112] for real elliptic tensors. All these works focus on the Dirichlet
problem.

The analysis relies mainly on two elements: decompositions into regular and singular parts, and regularity
results from the theory of elliptic problems. For the Robin problem, it also relies on the considerations of Chapter
4. We treat successively the three boundary conditions: the Dirichlet problem is addressed in Section 6.1, Neumann
in Section 6.2 and Robin in Section 6.3. In Section 6.4, we provide elements of numerical analysis and a numerical
illustration.

6.1 Regularity in the Dirichlet problem

Let us recall that the Dirichlet problem reads:

{
curl(µ−1 curl E)− ω2εE = f in Ω,

E× n = g on Γ,
(6.1)

where we assume, as in Section 5.1, that f ∈ L2(Ω) and g ∈ H−1/2
‖ (divΓ,Γ). Therefore, g admits a lifting

Ed ∈ H(curl,Ω) s.t. g = Ed×n on Γ, and one can rewrite the problem with unknown E0 := E−Ed ∈ H0(curl,Ω).

Let us make here some further assumptions. In this section, we specifically assume that ε,µ ∈ C1(Ω).
Concerning the data, we assume that Ed ∈ Hr(Ω) and curl Ed ∈ Hr′(Ω), and that div f ∈ Hs−1(Ω), for given
r, r′, s in [0, 1] \ { 1

2}. The lowest-regular case, r = r′ = s = 0, corresponds to the hypotheses of Section 5.1.
The highest-regular case corresponds to Ed, curl Ed ∈ H1(Ω), and f ∈ H(div,Ω). Then, we investigate the
extra-regularity of E and curl E, depending on r, r′ and s.

63
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6.1.1 Extra-regularity of the solution

We focus first on the regularity of the solution itself. Let us recall a theorem of continuous splitting fields of
H0(curl,Ω) into a regular and a singular part [69, Lemma 2.4] (see also [7, Th. 3.6.7]):

Theorem 6.1.1. Let u ∈ H0(curl,Ω). There exists ureg ∈ H1(Ω) and φ ∈ H1
0 (Ω), s.t.

u = ureg +∇φ in Ω; (6.2)

additionally, there exists a constant C > 0, independent of u, s.t.

‖ureg‖H1 + ‖φ‖H1
0
≤ C‖u‖H(curl). (6.3)

Remark 6.1.2. In fact, one can show that ureg ∈ H1
0(Ω).

Remark 6.1.3. The result holds for any domain of Lipschitz boundary.

With Theorem 6.1.1 at hand, let us introduce the splitting of E0:

E0 = Ereg +∇φE (6.4)

where Ereg ∈ H1(Ω), φE ∈ H1
0 (Ω), and

‖Ereg‖H1 + ‖φE‖H1
0
. ‖E0‖H(curl).

1 (6.5)

Therefore, the regularity of E is driven by the regularity of its singular part, ∇φE . In the following, our aim
is thus to study the extra-regularity of the field φE . We recall that E0 satisfies (taking F = ∇q in (5.3)),
∀q ∈ H1

0 (Ω), −ω2 (εE0|∇q) =
(
f + ω2εEd|∇q

)
. Then, φE is governed by the following Dirichlet problem:∣∣∣∣∣Find φE ∈ H

1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),
ω2 (ε∇φE |∇q) =

(
div f + ω2 div εEd + ω2 div εEreg|q

)
.

(6.6)

The regularity of the solutions of elliptic problems has been widely studied. Here, we rely on the result of [38,
Th. 3.4.5] for Dirichlet problems, recalled hereafter. For problems set in a domain with a smooth boundary, with a
smooth coefficient, one generally has a shift of 2 from the regularity of the data to the regularity solution; that is
why they are sometimes referred to as (regularity) shift results.

Theorem 6.1.4 (Shift Theorem). Let Ω be a bounded domain of boundary Γ, ` in
(
H1

0 (Ω)
)′, and p governed

by ∣∣∣∣∣Find p ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),(
ξ∇p|∇q

)
= `(q).

(6.7)

If the tensor coefficient ξ is elliptic, then the problem (6.7) is well-posed; if additionally ξ ∈ C1(Ω) and Γ is of
class C2, then, ∀σ ∈ [1, 2] \ { 3

2},
` ∈

(
H2−σ

0 (Ω)
)′ =⇒ p ∈ Hσ(Ω); (6.8)

additionally, there exists Cσ > 0 s.t., ∀` ∈
(
H2−σ

0 (Ω)
)′,

‖p‖Hσ ≤ Cσ‖`‖(H2−σ
0 )′ . (6.9)

Consequently, one can derive the following regularity result for the field E.

1As in the previous chapter, the notation a . b denotes that there exists a constant C > 0, independent of a and b, s.t. a ≤ Cb.
The constant C depends only on the geometry, the frequency ω, and the coefficients µ, ε (and α).
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Theorem 6.1.5. Let E governed by (6.1), split as E = E0 + Ed with E0 ∈ H0(curl,Ω). If Γ is of class C2,
ε ∈ C1(Ω), f ∈ L2(Ω), div f ∈ Hs−1(Ω), and Ed ∈ Hr(Ω), with r, s in [0, 1] \ { 1

2}, then

E ∈ Hmin(s,r)(Ω), (6.10)

with, moreover,
‖E‖Hmin(s,r) . ‖E0‖H(curl) + ‖div f‖Hs−1 + ‖Ed‖Hr . (6.11)

Remark 6.1.6. No regularity assumption on µ is required here.

Proof. We split E0 as in (6.4). Let us apply Theorem 6.1.4 to the problem (6.6) governing φE . We introduce the
form ` defined by the right-hand side,

` : q 7→
(
div f + ω2 div εEd + ω2 div εEreg|q

)
.

Consider each term: one has div f ∈ Hs−1(Ω) =
(
H1−s

0 (Ω)
)′; as ε ∈W1,∞(Ω), there holds εEreg ∈ H1(Ω) and

div εEreg ∈ L2(Ω); similarly, εEd ∈ Hr(Ω), so div εEd ∈ Hr−1(Ω) =
(
H1−r

0 (Ω)
)′, because r 6= 1

2 . It follows that `

defines a continuous form on Hmax(1−s,1−r)
0 (Ω). In other words, ` ∈ Hmin(s−1,r−1)(Ω) =

(
H

max(1−s,1−r)
0 (Ω)

)′
. In

addition, one has the bound

‖`‖Hmin(s,r)−1 . ‖div f‖Hs−1 + ‖ div εEd‖Hr−1 + ‖div εEreg‖L2

. ‖div f‖Hs−1 + ‖Ed‖Hr + ‖Ereg‖H1

. ‖ div f‖Hs−1 + ‖Ed‖Hr + ‖E0‖H(curl),

the latter because of (6.5). We conclude by the Shift Theorem 6.1.4 that φE ∈ Hmin(s,r)+1(Ω), with

‖φE‖Hmin(s,r)+1 . ‖ div f‖Hs−1 + ‖Ed‖Hr + ‖E0‖H(curl).

Hence E = Ereg +∇φE + Ed ∈ Hmin(s,r)(Ω), with the bound

‖E‖Hmin(s,r) . ‖Ereg‖H1 + ‖∇φE‖Hmin(s,r) + ‖Ed‖Hr

. ‖E0‖H(curl) + ‖ div f‖Hs−1 + ‖Ed‖Hr ,

where we used (6.5) and the bound on ‖φE‖Hmin(s,r)+1 to conclude.

Assuming further that the Dirichlet problem is well-posed, one finds that E in its extra-regularity norm depends
continuously on the data in their appropriate regularity norms only.

Corollary 6.1.7. If additionally the problem (5.3) is well-posed, then

‖E‖Hmin(s,r) . ‖f‖L2 + ‖ div f‖Hs−1 + ‖Ed‖Hr + ‖ curl Ed‖L2 . (6.12)

Proof. It results of combining Theorem 6.1.5 with the bound of Theorem 5.1.7.

6.1.2 Extra-regularity of the solution’s curl

To study the regularity of the solution’s curl, we rather focus on the field C := µ−1 curl E ∈ L2(Ω). One can note
that, from a physical point of view, this field is very much related to the magnetic field. Indeed, in the time-harmonic
regime, one has µ−1 curl E = iωH, where H is the magnetic field. Moreover, one has curl C = f + ω2εE ∈ L2(Ω),
hence C ∈ H(curl,Ω) with the bound

‖C‖H(curl) . ‖E‖H(curl) + ‖f‖L2 , (6.13)

because µ is elliptic.

The ingredients introduced in the previous subsection will have their counterparts in this one. First, one has a
theorem analogous to Theorem 6.1.1, of continuous splitting into a regular part and a singular part, for fields of
H(curl,Ω) [7, Th. 3.6.7] (for a similar result, see also [69, Lemma 2.4]):
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Theorem 6.1.8. Let Ω be a domain of the A-type (see Definition 2.2.4), and u in H(curl,Ω). There exists
ureg in H1(Ω) and φ in H1

zmv(Ω), s.t.
u = ureg +∇φ in Ω, (6.14)

with additionally ureg · n = 0 on Γ, and there exists a constant C > 0, independent of u, s.t.

‖ureg‖H1 + ‖φ‖H1
zmv
≤ C‖u‖H(curl). (6.15)

Remark 6.1.9. As Ω is a domain with boundary of class C2, it is automatically of the A-type.

Then, let us introduce the splitting of C by Theorem 6.1.8:

C = Creg +∇φC , (6.16)

where Creg ∈ H1(Ω), φC ∈ H1
zmv(Ω), µCreg · n = 0 and

‖Creg‖H1 + ‖φC‖H1
zmv

. ‖C‖H(curl). (6.17)

Observing that E = E0 + Ed with E0 ∈ H0(curl,Ω), there holds, for all q in H1
zmv(Ω),

(
µC|∇q

)
= (curl E|∇q) =

(curl Ed|∇q). Thus, φC is governed by the following Neumann problem:∣∣∣∣∣Find φC ∈ H
1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),(
µ∇φC |∇q

)
=
(
curl Ed − µCreg|∇q

)
.

(6.18)

Once again, one may determine the regularity of φC by the means of the shift regularity results for elliptic
problems in smooth domains with smooth coefficient, here in the Neumann case. We rely on the result of [38, Th.
3.4.5], recalled hereafter:

Theorem 6.1.10 (Shift Theorem). Let Ω be a bounded domain of boundary Γ, ` in
(
H1

zmv(Ω)
)′, and p

governed by

∣∣∣∣∣Find p ∈ H
1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),(
ξ∇p|∇q

)
= `(q).

(6.19)

If the tensor coefficient ξ is elliptic, then the problem (6.19) is well-posed; if additionally ξ ∈ C1(Ω) and Γ is
of class C2, then,

(i) ∀σ ∈ [1, 3
2 [,

` ∈
(
H2−σ

zmv (Ω)
)′ =⇒ p ∈ Hσ(Ω), (6.20)

and there exists Cσ > 0 s.t., ∀` ∈
(
H2−σ

zmv (Ω)
)′,

‖p‖Hσ ≤ Cσ‖`‖(H2−σ
zmv )′ . (6.21)

(ii) If there exists σ ∈ ] 3
2 , 2] s.t. ` writes `(q) = (f |q) + 〈g, q〉H1/2(Γ), with f ∈ L2(Ω) and g ∈ Hσ−3/2(Γ),

then
p ∈ Hσ(Ω) (6.22)

and there exists Cσ > 0, independent of f and g, s.t.

‖p‖Hσ ≤ Cσ
(
‖f‖L2 + ‖g‖Hσ−3/2(Γ)

)
. (6.23)

Remark 6.1.11. This theorem is slightly more subtle than its equivalent for the Dirichlet problem, Theorem 6.1.4.
Indeed, in the case (i), the theorem can be understood in a variational manner, just as in Theorem 6.1.4. In fact,
one can note that Hσ−1(Ω) identifies with Hσ−1

0 (Ω). However, because of this, the normal derivative ∇p · n|Γ will
be meaningless in general. So, the boundary value problem solved by p is unclear.
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On the other hand, in the case (ii), the normal derivative ∇p · n|Γ is meaningful in Hσ−3/2(Γ) (because
∇p ∈ Hσ−1(Ω) and σ − 1 > 1/2). Then, p solves the boundary value problem{

−div ξ∇p = f in Ω,
∇p · n = g on Γ.

(6.24)

In this case, the proof of the result relies on local analysis arguments; see [38] for details. Moreover, the result (ii)
also holds if one only assumes f ∈ Hσ−2(Ω).

Applying this result to problem (6.18), one gets the regularity of φC , then deduces the regularity of C and
curl E.

Theorem 6.1.12. Let E governed by (6.1), split as E = E0 + Ed with E0 ∈ H0(curl,Ω). If Γ is of class C2,
µ ∈ C1(Ω), and curl Ed ∈ Hr′(Ω) with r′ in [0, 1] \ { 1

2}, then

curl E ∈ Hr′(Ω), (6.25)

with
‖ curl E‖Hr′ . ‖E‖H(curl) + ‖f‖L2 + ‖ curl Ed‖Hr′ . (6.26)

Remark 6.1.13. No regularity assumption on ε (other than ε ∈ L∞(Ω)) is required here.

Proof. We want to apply Theorem 6.1.10 to the problem (6.18) governing φC . Let us introduce the antilinear
continuous form on H1

zmv(Ω) defined by the right-hand side,

` : q 7→
(
curl Ed − µCreg|∇q

)
.

To determine the regularity of φC , one wants to determine whether the form ` belongs to
(
H2−σ

zmv (Ω)
)′ for σ ∈ [1, 3

2 [
as large as possible, in order to apply Theorem 6.1.10 (i).

If r′ < 1
2 , then Hr′(Ω) identifies with Hr′

0 (Ω), the dual space of H−r′(Ω). Hence the product (curl Ed|∇q) is
meaningful as soon as q ∈ H1−r′

zmv (Ω), because ∇q ∈ H−r′(Ω); the same holds for the term
(
µCreg|∇q

)
. This means

that ` belongs to
(
H1−r′

zmv (Ω)
)′
, and the Shift Theorem 6.1.10 (i), with σ = 1 + r′, ensures that φC ∈ H1+r′(Ω),

with the bound
‖φC‖H1+r′ . ‖ curl Ed‖Hr′ + ‖µCreg‖H1 . ‖ curl Ed‖Hr′ + ‖Creg‖H1 .

On the other hand, if r′ > 1
2 , then Hr′

0 (Ω) does not identify with Hr′(Ω), and, as soon as curl Ed · n|Γ 6= 0, the
product (curl Ed|∇q) can be meaningless if one has only q ∈ H1−r′

zmv (Ω) (see Remark 6.1.11). However, curl Ed ·n|Γ
now makes sense in Hr′−1/2(Γ), and, as µCreg · n = 0, ` rewrites by integrations by parts

`(q) =
(
divµCreg|q

)
+ 〈curl Ed · n, q〉H1/2(Γ).

Here, the limiting regularity is not the volume one, as divµCreg ∈ L2(Ω), but the one of the boundary data:
curl Ed · n|Γ ∈ Hr′−1/2(Γ). Hence, ` satisfies the assumptions of the Shift Theorem 6.1.10 (ii) with σ = r′ + 1, and
we conclude that φC ∈ H1+r′(Ω), with the bound

‖φC‖H1+r′ . ‖ curl Ed · n‖Hr′−1/2(Γ) + ‖ divµCreg‖L2

. ‖ curl Ed‖Hr′−1/2(Γ) + ‖ divµCreg‖L2

. ‖ curl Ed‖Hr′ + ‖Creg‖H1 .

Finally, φC ∈ H1+r′(Ω) in all the considered cases (and with the same upper bound), so that C = Creg +∇φC ∈
Hr′(Ω), with the bound

‖C‖Hr′ . ‖Creg‖H1 + ‖∇φC‖Hr′

. ‖Creg‖H1 + ‖ curl Ed‖Hr′

. ‖C‖H(curl) + ‖ curl Ed‖Hr′ ,
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the latter because of (6.17). As curl E = µC and µ ∈W1,∞(Ω), one has also curl E ∈ Hr′(Ω), with moreover
‖ curl E‖Hr′ . ‖C‖Hr′ . With the help of (6.13), one finally gets that

‖ curl E‖Hr′ . ‖C‖Hr′

. ‖C‖H(curl) + ‖ curl Ed‖Hr′

. ‖E‖H(curl) + ‖f‖L2 + ‖ curl Ed‖Hr′

which concludes the proof.

Just as in the first subsection, one can go further if the Dirichlet problem is additionally well-posed. It ensures
the continuous dependence of the regularity of curl E w.r.t. the regularity of the data.

Corollary 6.1.14. If additionally the problem (5.3) is well-posed, then

‖ curl E‖Hr′ . ‖f‖L2 + ‖Ed‖L2 + ‖ curl Ed‖Hr′ . (6.27)

Proof. In the bound of Theorem 6.1.12, one recalls that ‖E‖H(curl) . ‖E0‖H(curl) + ‖Ed‖H(curl), then concludes
using the bound of Theorem 5.1.7.

Summary

The last theorem sums up the regularity results of this section.

Theorem 6.1.15. Let E governed by (6.1), split as E = E0 + Ed with E0 ∈ H0(curl,Ω). If Γ is of class C2,
ε,µ ∈ C1(Ω), f ∈ L2(Ω) and div f ∈ Hs−1(Ω), Ed ∈ Hr(Ω), and curl Ed ∈ Hr′(Ω) with r, r′, s in [0, 1] \ { 1

2},
then

E ∈ Hmin(s,r)(Ω) and curl E ∈ Hr′(Ω). (6.28)

Additionally, if the problem is well-posed,

‖E‖Hmin(s,r) . ‖f‖L2 + ‖ div f‖Hs−1 + ‖Ed‖Hr + ‖ curl Ed‖L2 ; (6.29)
‖ curl E‖Hr′ . ‖f‖L2 + ‖Ed‖L2 + ‖ curl Ed‖Hr′ . (6.30)

In the lower regularity case, one recovers the stability estimate (5.9). In the higher regularity case, one finds
that E, curl E ∈ H1(Ω), with continuous dependence w.r.t. f ∈ H(div,Ω), Ed ∈ H1(Ω) and curl Ed ∈ H1(Ω).

6.2 Regularity in the Neumann problem

Let us recall the Neumann problem:{
curl(µ−1 curl E)− ω2εE = f in Ω,

µ−1 curl E× n = j on Γ,
(6.31)

where we assume, as in Section 5.2, f ∈ L2(Ω) and j ∈ H−1/2
‖ (divΓ,Γ). Then, j is the tangential trace of a field

Cd ∈ H(curl,Ω), i.e. j = Cd × n on Γ, with ‖j‖γ . ‖Cd‖H(curl).

Let us make some further assumptions. In this section, we assume that ε ∈W1,∞ and µ ∈ C1(Ω). For the data,
we assume that f ∈ H(curl,Ω) ∩Hs(Ω) for a given s ∈ [0, 1], and that Cd ∈ Hr′(Ω) and is s.t. curl Cd ∈ Hr(Ω)
for given r′, r ∈ [0, 1] \ { 1

2}. The tools introduced in the previous sections will be reused. For presentation purposes,
we begin here with the regularity of the curl, which relies on the same arguments as in Section 6.1.1.
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6.2.1 Extra-regularity of the solution’s curl

Rather than working directly with curl E, let us introduce C := µ−1 curl E ∈ L2(Ω). There holds curl C =
f + ω2εE ∈ L2(Ω), hence C ∈ H(curl,Ω), with the bound

‖C‖H(curl) . ‖E‖H(curl) + ‖f‖L2 . (6.32)

Moreover, C× n = Cd × n. Letting C0 := C−Cd ∈ H0(curl,Ω), we introduce the splitting of C0 by Theorem
6.1.1:

C0 = Creg +∇φC , (6.33)
where Creg ∈ H1(Ω), φC ∈ H1

0 (Ω), and

‖Creg‖H1 + ‖φC‖H1
0
. ‖C0‖H(curl). (6.34)

As divµC = 0, φC is governed by the Dirichlet problem∣∣∣∣∣Find φC ∈ H
1
0 (Ω) s.t., ∀q ∈ H1

0 (Ω),(
µ∇φC |∇q

)
=
(
divµCd + divµCreg|q

)
.

(6.35)

As in section 6.1.1, one can apply the Shift Theorem 6.1.4 for the Dirichlet problem to get the regularity of φC ,
then of C and finally of curl E.

Theorem 6.2.1. Let E governed by (6.31). If Γ is of class C2, µ ∈ C1(Ω), and Cd ∈ Hr′(Ω) with r′ ∈ [0, 1]\{ 1
2},

then
curl E ∈ Hr′(Ω), (6.36)

and
‖ curl E‖Hr′ . ‖E‖H(curl) + ‖Cd‖Hr′ + ‖ curl Cd‖L2 + ‖f‖L2 . (6.37)

Remark 6.2.2. No regularity assumption on ε (other than ε ∈ L∞(Ω)) is required here.

Proof. The proof is as in Theorem 6.1.5: we apply the Shift Theorem 6.1.4 to the Dirichlet problem (6.35) governing
φC . Let us introduce ` the right-hand side of (6.35),

` : q 7→
(
divµCd + divµCreg|q

)
.

As µ ∈ W1,∞(Ω), there holds divµCreg ∈ L2(Ω) and divµCd ∈ Hr′−1(Ω) =
(
H1−r′

0 (Ω)
)′
, the latter because

r′ 6= 1
2 . Then ` ∈

(
H1−r′

0 (Ω)
)′
. Hence, by the Shift Theorem 6.1.4, we conclude that φC ∈ H1+r′(Ω), with

‖φC‖H1+r′ . ‖ divµCd‖Hr′−1 + ‖ divµCreg‖L2

. ‖Cd‖Hr′ + ‖Creg‖H1 .

Therefore, C = Creg +∇φC + Cd ∈ Hr′(Ω), with

‖C‖Hr′ . ‖Cd‖Hr′ + ‖Creg‖H1 + ‖φC‖H1+r′

. ‖Cd‖Hr′ + ‖Creg‖H1 .

Finally, as µ ∈W1,∞(Ω), one also has curl E = µC ∈ Hr′(Ω), with

‖ curl E‖Hr′ . ‖C‖Hr′

. ‖Cd‖Hr′ + ‖Creg‖H1

. ‖Cd‖Hr′ + ‖C0‖H(curl)

. ‖Cd‖Hr′ + ‖ curl Cd‖L2 + ‖C‖H(curl)

. ‖Cd‖Hr′ + ‖ curl Cd‖L2 + ‖E‖H(curl) + ‖f‖L2 ,

using sucessively the bound (6.34) on Creg, the triangle inequality on C0, and the bound (6.32) on C to conclude.
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Corollary 6.2.3. If additionally the problem is well-posed, then

‖ curl E‖Hr′ . ‖f‖L2 + ‖ curl Cd‖L2 + ‖Cd‖Hr′ . (6.38)

Proof. It results from combining the bounds of Theorem 6.2.1 and Theorem 5.2.3.

6.2.2 Extra-regularity of the solution

To estimate the regularity of the solution itself, we follow the same approach as in section 6.1.2. However, rather than
working with E directly, let us introduce G := curl C = f + ω2εE ∈ L2(Ω). As ε ∈W1,∞(Ω) and f ∈ H(curl,Ω),
one has curl G = curl f + ω2 curl εE ∈ L2(Ω), hence G ∈ H(curl,Ω), with the bound

‖G‖H(curl) . ‖E‖H(curl) + ‖f‖H(curl). (6.39)

By Theorem 6.1.8, one can introduce the splitting of G:

G = Greg +∇φG, (6.40)

where Greg ∈ H1(Ω) with Greg · n = 0, φG ∈ H1
zmv(Ω), and

‖Greg‖H1 + ‖φG‖H1
zmv

. ‖G‖H(curl). (6.41)

Additionally, there holds, ∀q ∈ H1
zmv(Ω), (G|∇q) = (curl C|∇q) = (curl Cd|∇q), as C0 ∈ H0(curl,Ω). Then φG

is governed by the Neumann problem∣∣∣∣∣Find φG ∈ H1
zmv(Ω) s.t., ∀q ∈ H1

zmv(Ω),
(∇φG|∇q) = (curl Cd −Greg|∇q) .

(6.42)

As in section 6.1.2, the regularity of φG is given by the Shift Theorem 6.1.10 for the Neumann problem. Then,
one can conclude on the regularity of G and E.

Theorem 6.2.4. Let E governed by (6.31). If Γ is of class C2, ε ∈W1,∞(Ω), f ∈ H(curl,Ω) ∩Hs(Ω) with
s ∈ [0, 1], and curl Cd ∈ Hr(Ω) with r ∈ [0, 1] \ { 1

2}, then

E ∈ Hmin(r,s)(Ω), (6.43)

and
‖E‖Hmin(r,s) . ‖E‖H(curl) + ‖ curl Cd‖Hr + ‖f‖H(curl) + ‖f‖Hs . (6.44)

Remark 6.2.5. No regularity assumption on µ is required here.

Proof. The proof is as in Theorem 6.1.12: we want to apply the Shift Theorem 6.1.10 to the problem (6.42)
governing φG. Let us introduce the antilinear continuous form on H1

zmv(Ω),

` : q 7→ (curl Cd −Greg|∇q) .

To determine the regularity of φG, one wants to determine whether the form ` belongs to
(
H2−σ

zmv (Ω)
)′ for σ ∈ [1, 3

2 [
as large as possible.

If r < 1
2 , then Hr(Ω) identifies with Hr

0(Ω), the dual space of H−r(Ω). Hence the product (curl Cd −Greg|∇q)
is meaningful as soon as q ∈ H1−r

zmv (Ω). This means that ` ∈
(
H1−r

zmv (Ω)
)′, and the Shift Theorem 6.1.10 (i) ensures

that φG ∈ H1+r(Ω), with
‖φG‖H1+r . ‖ curl Cd‖Hr + ‖Greg‖H1 .

On the other hand, if r > 1
2 , the previous argument is not valid, as Hr

0(Ω) does not identify with Hr(Ω) (see
Remark 6.1.11). However, curl Cd · n makes sense in Hr−1/2(Γ), and, as Greg · n = 0, ` rewrites by integrations by
parts

`(q) = (div Greg|q) + 〈curl Cd · n, q〉H1/2(Γ).



6.3. Regularity in the Robin problem 71

As div Greg ∈ L2(Ω), ` satisfies the assumptions of the Shift Theorem 6.1.10 (ii), with σ = 1 + r, and we conclude
that φG ∈ H1+r(Ω), with the same bound as above.

Finally, φG ∈ H1+r(Ω) in all the considered cases, and G = Greg +∇φG ∈ Hr(Ω), with

‖G‖Hr . ‖Greg‖H1 + ‖φG‖H1+r

. ‖Greg‖H1 + ‖ curl Cd‖Hr

. ‖G‖H(curl) + ‖ curl Cd‖Hr

using the bound (6.41) on Greg. In addition, we note that ε−1 ∈W1,∞(Ω), because ε−1 ∈ L∞(Ω) (Proposition 3.1.4)
and ε ∈W1,∞(Ω). Recalling that E = ω−2ε−1(G− f), with f ∈ Hs(Ω), there holds E ∈ Hmin(r,s)(Ω), with the
bound

‖E‖Hmin(r,s) . ‖f‖Hs + ‖G‖Hr

. ‖f‖Hs + ‖G‖H(curl) + ‖ curl Cd‖Hr

. ‖f‖Hs + ‖E‖H(curl) + ‖f‖H(curl) + ‖ curl Cd‖Hr

coming from triangle inequality and the bound (6.39) on G.

Corollary 6.2.6. If additionally the problem is well-posed, then

‖E‖Hmin(r,s) . ‖ curl f‖L2 + ‖f‖Hs + ‖Cd‖L2 + ‖ curl Cd‖Hr . (6.45)

Proof. It results from combining the bounds of Theorem 6.2.4 and Theorem 5.2.3.

Summary

To conclude, we sum up the regularity results of this section.

Theorem 6.2.7. Let E governed by (6.31). If Γ is of class C2, µ ∈ C1(Ω), ε ∈W1,∞(Ω), f ∈ H(curl,Ω) ∩
Hs(Ω) with s in [0, 1], Cd ∈ Hr′(Ω), and curl Cd ∈ Hr(Ω) with r′, r in [0, 1] \ 1

2 , then

E ∈ Hmin(r,s)(Ω) and curl E ∈ Hr′(Ω), (6.46)

with additionally, if the problem is well-posed,

‖E‖Hmin(r,s) . ‖ curl f‖L2 + ‖f‖Hs + ‖Cd‖L2 + ‖ curl Cd‖Hr ; (6.47)
‖ curl E‖Hr′ . ‖f‖L2 + ‖ curl Cd‖L2 + ‖Cd‖Hr′ . (6.48)

In the lower regularity case, one recovers something similar to the stability estimate (5.20), but with unnecessary
extra-term ‖ curl f‖L2 . In the higher regularity case, one finds that E, curl E ∈ H1(Ω), with continuous dependence
w.r.t. f , Cd and curl Cd ∈ H1(Ω).

6.3 Regularity in the Robin problem

The Robin problem reads: {
curl(µ−1 curl E)− ω2εE = f in Ω,
πT (µ−1 curl E) + αγTE = g on Γ,

(6.49)

As in Section 5.3, we assume that α is elliptic, that f ∈ L2(Ω) and g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ).

Here, we assume furthermore that ε,µ ∈ C1(Ω), and div f ∈ Hs−1(Ω) for a given s in [0, 1] \ { 1
2}. We assume

moreover that α is s.t. γTE, πT (µ−1 curl E) ∈ Hr(Γ) for some r > 0 (see the results of Chapter 4). Because Γ is
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of class C2, clearly it has no (semi-)pathological vertex; moreover, no extra-assumption on g is necessary, because
the regularity of g is entirely driven by the geometry of Γ: by Theorem 4.1.4, g ∈ H1/2

t (Γ). The extra-regularity of
E and curl E is obtained by reusing the results established in the previous sections.

Theorem 6.3.1. Let E governed by (6.49). If Γ is of class C2, ε,µ ∈ C1(Ω), f ∈ L2(Ω) s.t. div f ∈ Hs−1(Ω)
with s in [0, 1] \ { 1

2}, g ∈ H−1/2
‖ (divΓ,Γ) ∩ H−1/2

⊥ (curlΓ,Γ), and if α is elliptic and s.t. ∃r ∈]0, 1
2 ], γTE,

πT (µ−1 curl E) ∈ Hr
t (Γ), then, one has

E ∈ Hmin(r+1/2,s)(Ω) and curl E ∈ Hr+1/2(Ω) (6.50)

with the bounds

‖E‖Hmin(r+1/2,s) . ‖ div f‖Hs−1 + ‖E‖H(curl) + ‖γTE‖Hr
t (Γ) (6.51)

‖ curl E‖Hr+1/2 . ‖f‖L2 + ‖E‖H(curl) + ‖πT (µ−1 curl E)‖Hr
t (Γ). (6.52)

Proof. By assumption, there holds γTE, πT (µ−1 curl E) ∈ Hr
t (Γ) for r > 0. Therefore, γTE admits a lifting

Ed ∈ Hr+1/2(Ω), s.t. γTE = γTEd on Γ, and ‖Ed‖Hr+1/2 . ‖γTE‖Hr
t (Γ). Then, E is governed by the Dirichlet

problem {
curl(µ−1 curl E)− ω2εE = f in Ω,

γTE = γTEd on Γ.

We use the regularity result of Theorem 6.1.5 to conclude that E ∈ Hmin(s,r+1/2)(Ω). Moreover, there holds

‖E‖Hmin(s,r+1/2) . ‖E−Ed‖H(curl) + ‖ div f‖Hs−1 + ‖Ed‖Hr+1/2

. ‖E‖H(curl) + ‖ div f‖Hs−1 + ‖Ed‖Hr+1/2 + ‖Ed‖H(curl)

. ‖E‖H(curl) + ‖ div f‖Hs−1 + ‖γTE‖Hr
t (Γ) + ‖γTE‖γ

. ‖E‖H(curl) + ‖ div f‖Hs−1 + ‖γTE‖Hr
t (Γ).

We proceed similarly for the curl of the solution. Because πT (µ−1 curl E) ∈ Hr
t (Γ), it admits a lifting

Cd ∈ Hr+1/2(Ω) s.t. πT (µ−1 curl E) = πTCd on Γ, with ‖Cd‖Hr+1/2 . ‖πT (µ−1 curl E)‖Hr
t (Γ). Then, E is also

governed by the Neumann problem{
curl(µ−1 curl E)− ω2εE = f in Ω,

πT (µ−1 curl E) = πTCd on Γ.

Using here the regularity result of Theorem 6.2.1, we conclude that curl E ∈ Hr+1/2(Ω), with moreover

‖ curl E‖Hr+1/2 . ‖E‖H(curl) + ‖f‖L2 + ‖Cd‖Hr+1/2 + ‖Cd‖H(curl)

. ‖E‖H(curl) + ‖f‖L2 + ‖πT (µ−1 curl E)‖Hr
t (Γ) + ‖πT (µ−1 curl E)‖π

. ‖E‖H(curl) + ‖f‖L2 + ‖πT (µ−1 curl E)‖Hr
t (Γ) + ‖µ−1 curl E‖H(curl)

. ‖E‖H(curl) + ‖f‖L2 + ‖πT (µ−1 curl E)‖Hr
t (Γ),

the latter because curl(µ−1 curl E) = ω2εE + f .

Remark 6.3.2. The result also holds for a tensor-valued coefficient α that allows the boundary condition to hold in
Hr
t (Γ); the proof is the same.

To get a result with continuous dependence w.r.t. the data only, one needs to make some additional hypotheses.

Corollary 6.3.3. Let all the assumptions of Theorem 6.3.1 be satisfied, and assume moreover that the
problem (6.49) is well-posed. If α is a piecewise constant coefficient s.t. there are no singularities at coefficient
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vertices, then ∃r ∈]0, 1
2 ],

‖E‖Hmin(r+1/2,s) . ‖f‖L2 + ‖ div f‖Hs−1 + ‖g‖π + ‖g‖γ ; (6.53)
‖ curl E‖Hr+1/2 . ‖f‖L2 + ‖g‖γ + ‖g‖π. (6.54)

If α ∈W 2,∞(Γ), then (6.53)-(6.54) also hold for r = 1
2 .

Proof. One takes advantage of stability estimates for the Dirichlet and Neumann traces obtained in Chapter 4. If
α is piecewise constant with no singularities at coefficient vertices, one has the bounds

‖γTE‖Hr
t (Γ) . ‖g‖π + ‖πT (µ−1 curl E)‖π + ‖γTE‖γ ; (6.55)

‖πT (µ−1 curl E)‖Hr
t (Γ) . ‖g‖γ + ‖πT (µ−1 curl E)‖π + ‖γTE‖γ , (6.56)

that follow from Theorem 4.2.8, ∀r < smax with smax defined in Theorem 4.2.8. If α is smooth, (6.55)-(6.56) also
hold for r = 1

2 by Theorem 4.2.2 (there are no singularities, because Γ is of class C2). The result is then obtained
by combining the bounds (6.55) and (6.56) with the ones of Theorem 6.3.1. One concludes using the fact that
‖E‖H(curl) . ‖f‖L2 + ‖g‖L2

t (Γ) (Theorem 5.3.3) and that ‖g‖L2
t (Γ) . ‖g‖γ + ‖g‖π (Theorem 4.1.4).

Alternative approach

Alternatively, one can obtain regularity and continuous dependence w.r.t. the data only up to exponent 1/2 if ε,µ
are isotropic in a neighbourhood of Γ, i.e. ε = εI, µ = µI. This result is weaker than the previous one, but it calls
arguments of a different kind, so we present it in pedagogical views.
Remark 6.3.4. The isotropy assumption is reasonable: in many applications, impedance conditions are imposed on
artificial boundaries to truncate the computational domain, and the artificial boundary can, most of the time, be
placed in an isotropic media (air or vacuum for example).

Proposition 6.3.5. Let all the assumptions of Theorem 6.3.1 be satisfied. If moreover ε,µ are isotropic in a
neighbourhood of Γ, and if the problem (6.49) is well-posed, then one has the bound

‖E‖Hmin(s,1/2) . ‖f‖L2 + ‖div f‖Hs−1 + ‖g‖L2
t (Γ). (6.57)

Proof. We proceed by localization. Let ΩB a neighbourhood of Γ in Ω s.t. ε,µ are isotropic in ΩB . We introduce
a cut-off function χ ∈ C∞(Ω) whose value is 1 in a (smaller) neighbourhood of Γ, and support is included in ΩB.
Therefore, there holds E = χE + (1− χ)E. Let us consider each term separately.

We note that (1− χ)E satisfies a homogeneous Dirichlet problem, as (1− χ)E = 0 in a neighbourhood of Γ.
Thus, because of Theorem 6.1.5, one has (1− χ)E ∈ Hs(Ω), with

‖(1− χ)E‖Hs . ‖E‖H(curl) + ‖ div f‖Hs−1 .

For χE ∈ H+(curl,Ω), we use the Helmholtz decomposition of Theorem 3.2.4: χE = ∇p+Ẽ, where p ∈ H1
0 (ΩB)

and Ẽ ∈WN (ε; ΩB). The potential p is governed by∣∣∣∣∣Find p ∈ H
1
0 (ΩB) s.t., ∀q ∈ H1

0 (ΩB),
−ω2 (ε∇p|∇q) = (f |∇q).

Using Shift Theorem 6.1.4, there holds p ∈ H1+s(ΩB), with ‖p‖H1+s(ΩB) . ‖ div f‖Hs−1(Ω). For the field Ẽ, one
has Ẽ ∈ H+(curl,ΩB), and, moreover, div εẼ = 0. Because ε is scalar in ΩB , there holds ∇ε · Ẽ + εdiv Ẽ = 0, so
div Ẽ ∈ L2(ΩB), with (because ε ∈W 1,∞(Ω) and is elliptic)

‖div Ẽ‖L2(ΩB) . ‖Ẽ‖L2(ΩB).
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Then, using a result due to Costabel [34], there holds Ẽ ∈ H1/2(ΩB), with

‖Ẽ‖H1/2(ΩB) . ‖Ẽ‖H+(curl,ΩB) + ‖div Ẽ‖L2(ΩB)

. ‖Ẽ‖H+(curl,ΩB)

. ‖E‖H+(curl,ΩB) + ‖p‖H1
0 (ΩB).

So, χE ∈ Hmin(s,1/2)(ΩB), with

‖χE‖Hmin(s,1/2)(ΩB) . ‖E‖H+(curl,ΩB) + ‖div f‖Hs−1(Ω).

Finally, and assuming moreover that the problem (6.49) is well-posed, there holds

‖E‖Hmin(s,1/2) . ‖χE‖Hmin(s,1/2)(ΩB) + ‖(1− χ)E‖Hs(Ω)

. ‖f‖L2 + ‖div f‖Hs−1 + ‖g‖L2
t (Γ).

One can proceed similarly with the curl of the solution.

Remark 6.3.6. Moreover, one can also use the localization technique to deal separately with different boundary
conditions on different connected components of the boundary. This is the case, for example, when one considers
the scattering of an object surrounded by vacuum. On the object boundary, one may have Dirichlet or Neumann
conditions; on the exterior (artificial) boundary, one imposes an impedance condition. More generally, if one has
mixed boundary conditions, but each type of boundary condition corresponds to a distinct connected component of
the boundary, then all results of this chapter apply.

6.4 H(curl, Ω)-conforming finite element discretization

Edge finite element methods are natural candidates for the numerical solution of electromagnetic problems. Since
these methods lead to H(curl)-conforming approximations, some features of the numerical solutions can be rather
easily studied by leveraging the results obtained for the exact problems. While the comprehensive numerical
analysis of the approximate problems is out of the scope of this work, this section aims at giving a few numerical
illustrations for the considered problems. After introducing a standard edge finite element discretization and basic
results, we derive an a priori error estimate, which is obtained by using the regularity estimates. Elementary
numerical results are then proposed to illustrate the expected convergence rate of the method.

6.4.1 Discretization and a priori error estimate

We consider a shape regular familly of meshes (Th)h for the domain Ω. For the sake of simplicity, we assume that
the domain Ω is a Lipschitz polyhedron. Each mesh Th is made up of closed non-overlapping tetrahedra, generically
denoted by K, and is indexed by h := maxK hK , where hK is the diameter of K. Denoting by ρK the diameter of
the largest ball inscribed in K, we assume that there exists a shape regularity parameter ς > 0 such that for all h,
for all K ∈ Th, it holds hK ≤ ςρK .

Finite dimensional subspaces (Vh)h of H(curl,Ω) are defined by using the so-called Nédélec’s first family of
edge finite elements. Elements of degree 1 are considered. One has

Vh := {vh ∈ H(curl,Ω),vh|K ∈ R1(K), ∀K ∈ Th}, (6.58)

where R1(K) is the six-dimensional vector space of polynomials on K

R1(K) := {v ∈ P 1(K) : v(x) = a+ b× x, a, b ∈ R3}. (6.59)

In this space, the fields are approximated by piecewise order 1 polynomials. Their curl is approximated by piecewise
constant functions. The subspaces verify the approximability property (see e.g. [86, Lemma 7.10])

lim
h→0

(
inf

vh∈Vh

‖v− vh‖H(curl,Ω)

)
= 0, ∀v ∈ H(curl,Ω). (6.60)
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We also introduce the closed subspaces (V0
h)h with V0

h := Vh ∩H0(curl,Ω), which also verify the approximability
property in H0(curl,Ω).

Using the standard Galerkin approach, the variational formulation of the approximate problem is obtained
by seeking the solution in Vh with test functions in V0

h or Vh for the Dirichlet and Neumann cases, respectively.
Therefore, the discrete Dirichlet problem reads∣∣∣∣∣∣∣

Find Eh ∈ Vh s.t.
∀Fh ∈ V0

h, a(Eh,Fh) = `D(Fh),
Eh × n = gh on Γ,

(6.61)

and the discrete Neumann problem reads∣∣∣∣∣ Find Eh ∈ Vh s.t., ∀Fh ∈ Vh,

a(Eh,Fh) = `N(Fh),
(6.62)

with the sesquilinear form
a : (u,v) 7→ (µ−1 curl u| curl v)− ω2(εu|v) (6.63)

defined on H(curl,Ω). The linear forms `D and `N are defined in sections 5.1 and 5.2, respectively. The right-
hand-side term gh is the projection of g onto γTVh. For simplicity, in the remaining, we assume that the integrals
are computed exactly.

As a first result, we derive a sharp error estimate for the interpolation of the solutions of both problems onto
the finite element space. Let πh denote the classical interpolation operator from H0(curl,Ω) onto V0

h, resp. from
H(curl,Ω) onto Vh. One has the following interpolation error estimate, cf. [11].

Theorem 6.4.1. Let σ ∈ ]1/2, 1] and σ′ ∈ ]0, 1]. For all v ∈
{
v ∈ Hσ(Ω), curl v ∈ Hσ′(Ω)

}
, it holds that

‖v− πhv‖H(curl,Ω) . hmin(σ,σ′) (‖v‖Hσ + ‖ curl v‖Hσ′ ) . (6.64)

In this result, σ > 1/2 is assumed for simplicity. A similar result can be obtained for σ ∈]0, 1] with the help of the
combined interpolation operator (see Section 4.2 in [25]), but this result is more involved. Indeed, the norm of the
gradient part of the decomposition of v (given in Theorems 6.1.1 or 6.1.8) then appears in the right-hand side of
(6.64), in addition to both terms already there. Nevertheless, since the gradient part is bounded by the norm of
the data (see again Theorems 6.1.1 or 6.1.8), the same conclusion stands in this general case. Then, observe that
one can replace the field v with E in equation (6.64). Using Theorems 6.1.15 and 6.2.7, the norms ‖E‖Hσ and
‖ curl E‖Hσ′ are bounded by the norms on the data, and the exponents become σ = min(s, r) and σ′ = r′, where
s, r, r′ are the extra-regularity exponents for the data. Injecting the regularity estimates in equation (6.64) then
gives

‖E− πhE‖H(curl,Ωh) . hmin(s,r,r′), (6.65)

where the bounds on the exponents are defined in Theorems 6.1.15 and 6.2.7 for the Dirichlet and Neumann cases,
respectively.

In order to derive an a priori error estimate for both problems, one has to bound the error between the numerical
solution and the exact solution with the interpolation error. For a problem with a coercive sesquilinear form, it
is known that an a priori error estimate for the numerical solution is obtained thanks to Céa’s lemma (see e.g.
[53]).

Lemma 6.4.2 (Céa). When the sesquilinear form a(·, ·) is coercive, it holds that

∃C > 0, ∀h, ‖E−Eh‖H(curl,Ω) ≤ C inf
wh∈Vh

‖E−wh‖H(curl,Ω) . (6.66)

Using wh = πhE and the estimates (6.65) and (6.66), one has the final result.
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Theorem 6.4.3. When the problem is coercive, there holds

‖E−Eh‖H(curl,Ω) . hmin(s,r,r′), (6.67)

where the exponents depend only on the regularity of the data.

Let us highlight that the regularity results have been obtained for a boundary of class C2, while the interpolation
error estimates are for Lipschitz polyhedral domains. The error resulting from this geometric approximation can
be studied thanks to the framework introduced by Dello Russo and Alonso [41]. Following Section 8 there, one
obtains additional terms in the right-hand side of (6.66), which are asymptotically all in the order of O(h).

On the other hand, to obtain a similar estimate for a problem with a non-coercive sesquilinear form, one has to
prove a uniform discrete inf-sup condition and to combine it with a generalised Céa’s lemma. In our case, when
a(·, ·) is not coercive, deriving a uniform discrete inf-sup condition requires tedious developments. We refer for
instance to [64] and [26] for analyses in slightly different contexts. Provided that such a result is available, the
estimate (6.67) holds.

For the Robin problem, we refer to the monograph of Monk [86]. By Lemma 7.10 there, Vh also satisfy the
approximability property in H+(curl,Ω). Moreover, following Lemma 5.53 in the same reference, one gets that

‖E− πhE‖H+(curl,Ωh) . hs−1/2 (6.68)

if E, curl E ∈ Hs(Ω). Combined with Céa’s Lemma, this gives

‖E−Eh‖H(curl,Ω) ≤ ‖E−Eh‖H+(curl,Ω) . hs−1/2. (6.69)

The author points that this result is probably not optimal, as there is a loss of 1/2 order in the convergence rate.

6.4.2 Numerical illustration

To illustrate the expected convergence rate with a numerical case, we consider a simple benchmark with a
manufactured solution. Let a spherical domain of unit radius centred at the origin, Ω = {x ∈ R3, ‖x‖ < 1}, the
angular frequency ω = 1 and the material tensors

ε =

1 + ηi
1 + ηi

−2 + ηi

 , µ−1 = I, (6.70)

where η ∈ R is a chosen parameter. Let us note that both tensors are elliptic, but ε is not Hermitian due to its
imaginary part. Moreover, one can notice that the eigenvalues of µ−1 and −ε are contained in the same open
complex half-plane; hence, this problem is coercive (see also Lemma 2.3 of [102]). Different values of η will be
tested. When η goes to zero, the (best) ceorcivity constant deteriorates. In fact, when η = 0, the material becomes
hyperbolic, and the problem is most likely ill-posed. We consider a manufactured reference solution which is a
plane wave,

Eref = [−1, 1, 1]T exp(iπk · x), with k = 1√
14

[3, 2, 1]T . (6.71)

The volume source term is chosen accordingly, i.e. f = curl curl Eref−ω2εEref, as well as the right-hand-side term
of the boundary conditions.

Numerical simulations are performed with FreeFem++ [68] using unstructured meshes made of tetrahedra and
first-degree edge finite elements. The mesh sizes and number of degrees of freedom are summarized on Table 6.1.
The problem is discretized using Nédélec first family of edge finite elements described above. The linear system is
then solved by a direct solver. Because the boundary of the meshes (which are polyhedral) does not exactly match
the curved border of the spherical domain, the boundary data used in the numerical simulation are evaluated
on the sphere and then projected on the surface mesh. It has been proven that this geometric approximation
introduces a geometric error of the order O(h) [41].
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Mesh size 0.1 0.08 0.06 0.05 0.04 0.03 0.025
Degrees of freedom 3372 6543 14604 24589 46544 107537 181298

Table 6.1: Parameters of the different meshes

The relative numerical error in H(curl)-norm is plotted as a function of the mesh size h on Fig. 6.1 for Dirichlet,
Neumann and Robin cases (with α = iπ for the Robin case). As a reference, the relative error corresponding to the
projection of the reference solution on the discrete solution space, which corresponds to the best approximation
error according to Céa’s lemma, is plotted as well. As the solution Eref is smooth, it belongs to H1(Ω) as well
as its curl. Therefore, one expects the error to evolve linearly with the mesh size h, at least for Dirichlet and
Neumann problems. The results reported on Fig. 6.1 show that the convergence behaves effectively like O(h) for
both problems. The same convergence rate is observed for the Robin problem. This tends to confirm that the
estimate (6.69) coming from [86] is indeed suboptimal.

(a) Dirichlet (b) Neumann

(c) Robin

Figure 6.1: Convergence of edge finite elements (order 1)

We also observe how the material tensors affect the convergence of the method. We have tested three different
values for η: 10−1, 10−2 and 10−3. As the reference solution and the meshes are the same through those three cases,
the relative error corresponding to the projection of the reference solution on the discrete solution space, which
corresponds to the best approximation error according to Céa lemma, is the same. Ideally, the numerical error
would be close to this theoretical error. However, we observe that this is not the case. In fact, when η decreases,
the error becomes well larger. The rate of convergence is quite well preserved for η = 10−2, but, for η = 10−3,
there is an impact on the convergence too: the error is no more monotone. This seems to indicate that we are
maybe still in a pre-asymptotic regime. There is a large component of the error that is not the theoretical FE error.
This can be related to the fact that the coercivity constant of the problem decreases with η, causing the constant
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C in Céa’s Lemma 6.4.2 to become huge.

Conclusion

We have studied the regularity of the solutions to the Dirichlet, Neumann, or Robin time-harmonic Maxwell
problems, as well as of their curl. This regularity depends on the geometry of the domain, on the smoothness of
the parameters, and on the regularity of the data.

In the most optimistic case, that is, when div f ∈ L2(Ω) (or f ∈ H1(Ω) for the Neumann case), and when the
traces have liftings that belong to H1(Ω) as well as their curl, one finds that

E ∈ H1(Ω) and curl E ∈ H1(Ω). (6.72)

In less optimistic cases, one may have regularity exponents in ]0, 1[ for the solution and its curl. These regularity
exponents determine the order of convergence of the edge finite elements methods if one wants to solve the problem
numerically.

Moreover, for the Dirichlet and Neumann problems, we have also proven the continuous dependence of the
solution and its curl in these norms w.r.t. the data. For the Robin problem, the regularity of the solution as well
the continuous dependence is a bit more subtle, and appears to be closely related to the regularity of traces, which
has been studied in Chapter 4.

With respect to the geometry, we have assumed that Γ is of class C2. However, this assumption could be relaxed.
In fact, shift theorems also exist for other types of domains, e.g. convex domains. In non-convex domains, an
extra-treatment of reentrant edges and corners is necessary; we refer to [35] for regularity studies in polyhedral
domains. For shift theorems in settings with non-smooth domains and Hermitian tensors, we refer e.g. to [65]. In a
similar manner, one could also consider settings with piecewise smooth coefficients as in [27].

Our work also allows to consider problems in which different boundary conditions hold on different connected
components of the boundary, such as e.g. scattering problems with impedance condition. In such cases, the
results of this chapter may be extended by localization techniques (see Remark 6.3.6). For truly mixed boundary
conditions, i.e. when different boundary conditions hold on different parts of the boundary that are connected, one
has to find appropriate shift theorems; we refer to the work of Jochmann [76, 77].

The regularity of the solution and its curl drive the convergence order of edge finite element discretization, for
Dirichlet and Neumann problems. This is done by standard numerical analysis arguments when the form is coercive.
This is illustrated by some simple numerical experiments: we recover the expected convergence rate for the edge
finite element method. We also observe the impact of the material parameters on the accuracy of the results. It
deteriorates when the coervity constant of the problem decreases. For the Robin problem, our result gives a gap of
1/2 between the regularity exponents and the convergence order of the method; this gap is not observed in the
numerical experiments. This call to further developments; in fact, we believe that the theoretical result could be
enhanced. For non-coercive problems, a uniform discrete inf-sup condition has to be proven; we refer to [64].



Chapter 7

Analysis of Domain Decomposition for
anisotropic Maxwell problems

Generally speaking, Domain Decomposition Methods (DDM) refer to methods that consist in solving a global
problem making use of smaller problems associated to subdomains of the original domain. They are designed to
allow parallel solving procedures and parallel preconditioning, in order to reduce the computational cost of the
solution. These methods rely on the bet that it is less costly to solve several times small problems than to solve
once one huge problem. In the case of parallel solvers, the PDE problem is reformulated as coupled PDE local
problems.

In this chapter, we focus on DDM for electromagnetic problems in anisotropic media. To the best of our
knowledge, only a few contributions have already tackled this topic. Here, we explore this topic in three different
directions, focusing mainly on considerations that are related to PDEs analysis. We study various decomposed
formulations which may be used in DDMs, and analyse their equivalence to the global problem. We investigate the
convergence of a classical iterative procedure designed at the continuous level. Finally, we explore the influence of
impedance condition for anisotropic problems on numerical experiments.

Section 7.1 is devoted to the introduction of general concepts. Section 7.2 presents the state of the art. In
Section 7.3, we study several decomposed formulations for anisotropic Maxwell problems, focusing on functional
analysis aspects and equivalence with the global problem. In Section 7.4, we investigate the convergence of an
iterative DD procedure. Section 7.5 is devoted to numerical experiments.

7.1 Domain partition and general notions

To begin with, let us introduce the geometric concepts and notations that arise from the domain partitioning.

Partitioning classes

We shall consider a decomposition of the domain Ω into subdomains (Ωi), s.t. Ω =
⋃Nd
i=1 Ωi. This decomposition

can be overlapping or not. If the decomposition is overlapping, there exists regions where two (or more) subdomains
intersect, then called overlaps. In the following, we shall mainly focus on non-overlapping decompositions. In this
case, the subdomains (Ωi) form a true partition of the original domain Ω, s.t. Ωi ∩ Ωj = ∅, ∀i 6= j. A global field
can be defined by simply putting together all fields defined on each subdomain. The boundary of each subdomain
Ωi can be made of several parts. One part may (or may not) coincide with the actual boundary of the global domain
Ω. In this case, we denote it Γi := Γ ∩ ∂Ωi, and call it the exterior boundary of Ωi. On the other hand, the other
parts of the boundary of Ωi are artificial borders caused by the domain partition. We call them the interfaces. For
i 6= j, we denote Σij := int(∂Ωi ∩ ∂Ωj) the interface between Ωi and Ωj if its Hausdorff dimension is 2. Otherwise,
we use the convention Σij = ∅. The reunion of all interfaces is called the skeleton of the decomposition, and denoted
Σ :=

⋃
i,j 6=i Σij .

The partition of the domain can be realized in different manners, allowing cross edges/points or not. Let us
distinguish two types of them: boundary cross edges/points, where an interface intersects the exterior boundary,
and interior cross edges/points, where two interfaces intersect each other. Extra-difficulties can arise from these
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geometries. We regroup them in three categories of growing size:

1. The decomposition is s.t. none of the interfaces intersect each other, nor intersect the exterior boundary (for
example, if the subdomains are like the layers of an onion).

2. The decomposition is s.t. none of the interfaces intersect each other, but intersections between interfaces and
the exterior boundary are allowed (for example, if the subdomains are like the slices of a cake). This is a
decomposition with boundary cross edges/points, but without interior cross edges/points.

3. The most general case, in which interfaces can intersect each other and intersect the exterior border as well.
This is a decomposition with both boundary and interior cross edges/points.

Some methods are designed only for decompositions of type 1 or types 1 and 2. In our work, we allow all three
types of decompositions.

PDE and algebraic considerations

The problem decomposition can be done at the continuous level or at the discrete level. In a large amount of
contributions, the splitting is done at the discrete level. In this case, the global problem is a huge algebraic system
to solve, leading to considerations that are more related to numerical linear algebra. The linear system has a block
structure, each block corresponding to a subdomain: the system is mainly block-diagonal, with extra-diagonal parts
corresponding to the coupling between subdomains at the interfaces or overlapping regions. The main question is
then how to solve efficiently this huge system, preferably in a parallel manner. This is generally done through an
iterative procedure. In a solver approach, one designs directly an iterative DDM procedure that will converge to
the solution of the global problem. In a preconditioning approach, one preconditions the system taking advantage
of the decomposition. The preconditioned system can then be solved using standard iterative solvers (block Jacobi,
GMRES, ...). However, this discrete point of view is not the one in the core of our work.

In this work, we introduce the splitting at the PDE level, and focus on considerations that are more related to
PDEs analysis. This allows us to take advantage of the inner properties of the problem. Introducing a splitting
leaves you with local problems that are a priori incomplete, because of the extra-boundaries introduced between
subdomains (the interfaces) with no corresponding boundary conditions. From an analytic point of view, the
boundary conditions to be set on the interfaces (then called interface or transmission conditions) play a critical role
to ensure that the decomposed problem is equivalent to the global problem, i.e., that it is possible to reconstruct
the global solution from the solutions of local problems. In DDMs, the decomposed problem is used to define
parallel solving procedures or parallel preconditioners. In the first case, one solves a sequence of local problems,
whose solutions are expected to converge to the global solution. This is for example the case of the original Schwarz
algorithm. Then, one has to ensure that each local problem is well-posed, and that the sequence of solutions given
by the iterative procedure will indeed converge to the global solution. In the preconditioning case, one simply has
to ensure that each of the local problems is well-posed.

7.2 State of the art of Domain Decomposition for Maxwell problems

As domain decomposition involves a lot of different aspects (PDE problems, numeric linear algebra, etc...), one
can find a broad range of approaches in the literature. For a general overview, we refer to the monographs of
Quarteroni and Valli [97], Toselli and Widlund [110], Mathew [85] and Dolean, Jolivet and Nataf [47]. In these
works, the reference study case is the Laplace equation. However, dealing with other types of problems often
bring extra-difficulties. Therefore, let us review the main works that have been done in domain decomposition for
Maxwell equations.

For definite (or static) Maxwell problems, that are of type

curl η2 curl u + η1u = f , (7.1)

with η1, η2 > 0, various domain decomposition methods have been studied by Toselli and collaborators. For such
problems, the PhD thesis of Toselli [106] is a good starting point. Overlapping Schwarz preconditioning methods



7.2. State of the art of Domain Decomposition for Maxwell problems 81

have been proposed in [71, 107], for scalar constant coefficients only. Convergence and conditioning results are
provided. Some improvements were provided by [92]. There, the standard Schwarz method is used, with Dirichlet
conditions at the boundaries of subdomains: only the values of the field on the interfaces are exchanged between
subdomains. On the other hand, substructuring methods (that are algorithms with different levels of acceleration,
such as Schur methods) have also been proposed, first in 2D by [109, 111, 98] and later by [44]. 3D problems have
been considered in [73] with scalar coefficients, and with symmetric definite positive coefficients in [108]. In all
these works, the splitting is done at the discrete level, and the focus is set on numeric linear algebra considerations.
In [72], a preconditioner for static Maxwell problems that makes use of decomposition into regular and singular
part has been proposed.

When it comes to time-harmonic problems, the Maxwell problem becomes indefinite (the variational formulation
is no longer coercive), which poses extra-difficulty. An additive Schwarz preconditioner has been proposed in [60].
In [13], a two-level preconditioner is proposed, and dependance with respect to the wavenumber is discussed. Most
of the time, convergence analysis is provided only in the case of two subdomains with plane interface. However,
ordinary Schwarz methods have trouble converging in this case, as was explained by Ernst and Gander [54], even
for (scalar) Helmholtz problems. For that reason, when dealing with time-harmonic problems, it is necessary to
design more elaborate methods than classical iterative methods by improving the coupling between subdomains,
for example using more elaborate transmission conditions than just Dirichlet.

The first use of transmission conditions for time-harmonic Maxwell problems is attributed to Després, Joly and
Roberts [42, 43]. There, a method with impedance transmission conditions, exchanging Robin traces instead of just
Dirichlet, is proposed. This choice of transmission condition is related to the Silver-Müller condition, which is the
zeroth-order absorbing boundary condition for electromagnetic waves. An iterative procedure is proposed that
makes use of impedance transmission conditions linking the solution at one iteration to the next. The convergence
at the continuous level is proven whatever the number of subdomains. Discretization using mixed finite elements is
also discussed. Offsprings of the Schwarz method that make use of this type of transmission condition (or more
elaborate ones) are generally called optimized Schwarz methods.

A significant step for the understanding of domain decomposition for time-harmonic Maxwell problems at the
PDE level has also been made by Alonso and Valli [3]. In that work, only the low-frequency case with absorption is
considered, s.t. the variational formulation of the problem is coercive. Yet, a decomposed problem is written at the
continuous level, and equivalence with the global problem is proven. Moreover, an iterative procedure is proposed
both at the continuous level and at the discrete level, and a proof of convergence (for 2 domains) is provided.

Later, a number of variations of impedance conditions have been proposed, most of them inspired by non-
reflecting boundary conditions techniques. Collino et al. proposed an integral transmission operator and studied
several of its approximations [32, 33]. A variety of second-order conditions have been studied by Alonso and
Gerardo [5], with comparable works in [45] and [96]. A more general second-order condition was then proposed
by Peng, Rawat and Lee [99]. Edge and corner treatment has further been proposed in [94, 95]. The overlapping
counterpart was proposed in [46]. More elaborate transmission conditions using Padé approximations were used in
[52, 84]. PML-based transmission conditions were introduced in [101].

Let us also note that some authors have studied the first-order Maxwell system, discretized by discontinuous
Galerkin methods. Optimized Schwarz techniques, using absorbing boundary conditions of order 0 [48] or 2 [45, 51],
have been proposed. Similar results have been obtained with hybridizable discontinuous Galerkin discretizations in
[81, 67].

Alternatively, some methods specifically enforce continuity condition at the interfaces. Saddle-points formulations
have been proposed, first for static Maxwell problems [74]. For time-harmonic problems, it has been proposed in
the context of plasma physics in [8].

It is worth noting that most of these works focus on isotropic (and often homogeneous) problems. Up to our
knowledge, only a very few authors addressed domain decomposition for anisotropic Maxwell problems. This is the
case of Toselli [108] for coercive problems with real symmetric tensors; and of Back et al. [8] for a plasma problem,
which is also coercive – but not Hermitian.
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7.3 Decomposed formulations for anistropic problems

Let us consider the time-harmonic Maxwell equation in the domain Ω, completed (for simplicity) with a Robin
boundary condition on Γ. The global problem reads{

curl(µ−1 curl E)− ω2εE = f in Ω,
πT (µ−1 curl E) + αγTE = g on Γ.

(7.2)

where we assume that Γ has no pathological vertices, f ∈ L2(Ω), g ∈ H−1/2
‖ (divΓ,Γ) ∩H−1/2

⊥ (curlΓ,Γ), ε, µ are
elliptic, and the parameter α is elliptic and s.t. the boundary condition holds in L2

t (Γ). Under these hypotheses,
the boundary condition of (7.2) holds in L2

t (Γ), and one can derive an equivalent variational formulation to the
global problem (7.2) in H+(curl,Ω). This has been done in Section 5.3. The variational formulation reads:∣∣∣∣∣Find E ∈ H+(curl,Ω) s.t., ∀F ∈ H+(curl,Ω),(

µ−1 curl E| curl F
)
− ω2 (εE|F)−

(
αγTE, γTF

)
Γ = (f |F)−

(
g, γTF

)
Γ .

(7.3)

Remark 7.3.1. In this work, we focus on the problem with impedance boundary condition, because our aim is to
derive a DDM based on impedance transmission conditions. Thus, having the same type of exterior boundary
condition makes the analysis easier. However, one could consider other types of exterior boundary conditions; in
this case, note that if the DDM is not onion-like, the local problems involve mixed boundary conditions, which
require a special attention.

7.3.1 First decomposed formulations

Let us introduce a non-overlapping decomposition (Ωi)i of Ω, as defined before. For a given field v defined on Ω,
we use the index i to denote its restriction on the subdomain Ωi:

vi := v|Ωi . (7.4)

We also denote ni the outward unit normal vector to the domain Ωi. Thus, on the interface Σij , note that there
holds ni = −nj . Because of this, we also have to make the difference between the traces γTi and γTj coming from
one side or another, which then have opposite sign: γTi = −γTj . On the contrary, πTi = πTj , because of the double
cross product.

A priori, we shall look for E solution to the decomposed problem in the space

PHRob(curl,Ω) :=
{
v ∈ L2(Ω), ∀i, vi ∈ H(curl,Ωi), γTi vi ∈ L2

t (Γi)
}
, (7.5)

which is the subset of piecewise H(curl) fields that is well-suited to the exterior boundary condition of (7.2). Then,
at the most elementary level, the decomposed problem reads as follows:

Find E ∈ PHRob(curl,Ω) s.t., ∀i, j,
curl(µ−1 curl Ei)− ω2εEi = fi in Ωi,
πTi (µ−1 curl Ei) + αγTi Ei = gi on Γi,

γTi (Ei −Ej) = 0 on Σij ,
πTi (µ−1 curl(Ei −Ej)) = 0 on Σij ,

(7.6)

where fi := f|Ωi and gi := g|Γi .
Remark 7.3.2. Similarly, the natural spaces for the Dirichlet or Neumann decomposed problems would be

PHDir(curl,Ω) :=
{
v ∈ L2(Ω), ∀i, vi ∈ H(curl,Ωi), γTi vi = 0 on Γi

}
; (7.7)

PHNeu(curl,Ω) :=
{
v ∈ L2(Ω), ∀i, vi ∈ H(curl,Ωi)

}
. (7.8)

The decomposed formulation (7.6) can be adapted to other boundary conditions straightforwardly.
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Lemma 7.3.3. Let E solution to the global problem (7.2). Then E satisfies (7.6).

Proof. First of all, E ∈ H+(curl,Ω), so clearly for all i, Ei ∈ H(curl,Ωi), and γTi Ei ∈ L2
t (Γi). Therefore,

E ∈ PHRob(curl,Ω). As E is solution to the global problem (7.2), it satisfies the volume equation on each
subdomain. Similarly, it satisfies the boundary condition on each part of the exterior border. Moreover, E has
also to satisfy continuity conditions at the interfaces. Indeed, because E ∈ H(curl,Ω) globally, the Dirichlet
trace γTE is continuous over all interfaces. Similarly, because of the volume equation of (7.2), there holds
µ−1 curl E ∈ H(curl,Ω) globally. Hence, the Neumann trace πT (µ−1 curl E) is also continuous over any interface.
To conclude, E satisfies (7.6).

The system (7.6) can be understood as follows. First of all, the equation must be satisfied on each subdomain;
similarly, the boundary condition must be satisfied on each part of the exterior boundary. Moreover, the continuity
of the Dirichlet traces (i.e. γTE) and Neumann traces (i.e. πT (µ−1 curl E)) is enforced. The continuity of the
Dirichlet trace ensures that the global solution belongs to the right function space, that is H(curl,Ω). It can be
understood as an essential condition. The continuity of the Neumann trace, on the other hand, is more like a
natural condition: it ensures that the equation will be satisfied globally (in the sense of distributions) on Ω, not
just on each subdomain.

In the following, we shall want to take advantage of the regularity of the global solution. Therefore, we assume
in the remaining of this work that the following hypothesis holds:

H.0 The problem (7.2) is s.t. ∃ s > 1
2 , E, µ−1 curl E ∈ Hs(Ω).

This grants that the traces γTE, πT (µ−1 curl E) belong to L2
t (Σij) for any interface. This will be useful in the

following of our work: in particular, it grants that one can split surface duality products on the different parts of
the subdomains boundaries.

The validity of hypothesis H.0 can be discussed with the help of results in the spirit of Chapter 6, especially
Theorem 6.3.1 which holds for domains of C2 boundary. If the domain is not C2, regularity results in the same spirit
may also be obtained, e.g. if the domain is convex. More precisely, if the Shift Theorem 6.1.4 for Dirichlet problems
holds in Ω, then Theorems 6.1.5, 6.2.1 and finally 6.3.1 also hold. If the domain is not convex, the regularity of the
solution is also driven by behaviour at re-entrant edges and corners, see e.g. [35].

Then, let us introduce the space

PH+(curl,Ω) :=
{
v ∈ L2(Ω), ∀i, vi ∈ H+(curl,Ωi)

}
, (7.9)

equipped with the norm ‖v‖PH+(curl,Ω) =
∑Nd
i=1 ‖vi‖H+(curl,Ωi). We emphasize that, compared to PHRob(curl,Ω),

we impose not only that γTi v|Γi ∈ L2
t (Γi) on the exterior borders, but that γTi vi ∈ L2

t (∂Ωi) on all subdomain
boundaries; in particular, one has L2

t -regularity also on the interfaces. Then, one can also write a decomposed
problem in the space PH+(curl,Ω):

Find E ∈ PH+(curl,Ω) s.t., ∀i, j,
curl(µ−1 curl Ei)− ω2εEi = fi in Ωi,
πTi (µ−1 curl Ei) + αγTi Ei = gi on Γi,

γTi (Ei −Ej) = 0 on Σij ,
πTi (µ−1 curl(Ei −Ej)) = 0 on Σij .

(7.10)

Lemma 7.3.4. Let E solution to the global problem (7.2) s.t. hypothesis H.0 is fulfilled. Then E satisfies
(7.10).

Proof. First of all, E ∈ H(curl,Ω), so clearly Ei ∈ H(curl,Ωi) for all i. Moreover, thanks to hypothesis H.0, there
holds E ∈ Hs(Ω) for some s > 1

2 . Since Hs−1/2
t (Σij) ⊂ L2

t (Σij), this implies that the Dirichlet (and Neumann)
traces satisfy

γTi Ei, π
T
i (µ−1 curl Ei) ∈ L2

t (Σij), ∀i, j. (7.11)
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Because E ∈ H+(curl,Ω), the same holds for exterior borders. Therefore, one has indeed E ∈ PH+(curl,Ω). The
rest of the proof is as in Lemma 7.3.3.

7.3.2 A decomposed formulation with impedance conditions

Another way to write the decomposed problem is to combine both interface conditions into new ones, now involving
linear combinations of both traces. To that aim, we extend α from Γ to Γ∪Σ in such a manner that α ∈ L∞(Γ∪Σ)
and is elliptic on Γ ∪ Σ. Then, it is possible to write a new decomposed problem, with impedance transmission
conditions:

Find E ∈ PH+(curl,Ω) s.t., ∀i, j,
curl(µ−1 curl Ei)− ω2εEi = fi in Ωi,
πTi (µ−1 curl Ei) + αγTi Ei = gi on Γi,
πTi (µ−1 curl Ei) + αγTi Ei = πTi (µ−1 curl Ej) + αγTi Ej on Σij .

(7.12)

Remark 7.3.5. The key argument here is that the last line of (7.12) in fact hides two interface conditions. Indeed,
permuting i and j, one gets, because of the normal convention, the additional condition

πTi (µ−1 curl Ei)− αγTi Ei = πTi (µ−1 curl Ej)− αγTi Ej on Σij . (7.13)

Therefore, we have indeed changed the two interface conditions of (7.10) into two other (independent) ones. As a
result, both systems are equivalent.

Lemma 7.3.6. The systems (7.10) and (7.12) are equivalent: E ∈ PH+(curl,Ω) is solution of (7.10) iff it is
solution of (7.12).

Proof. Let E solution of (7.10). Both interface conditions hold, in particular, in L2
t (Σij). Thus, one can make

linear combinations of them (α ∈ L∞(Σij)), which leads to the last line of (7.12) holding in L2
t (Σij).

Conversely, assume E is solution of (7.12), with interface conditions holding in L2
t (Σij). Recall that one has in

fact two conditions on Σij : {
πTi (µ−1 curl Ei) + αγTi Ei = πTi (µ−1 curl Ej) + αγTi Ej ,

πTi (µ−1 curl Ei)− αγTi Ei = πTi (µ−1 curl Ej)− αγTi Ej ,
(7.14)

both holding in L2
t (Σij). Thus, one can take the sum or the difference, to recover the interface conditions of

(7.10).

One can then write a variational formulation of this decomposed problem.

Lemma 7.3.7. The decomposed problem (7.12) is equivalent to the following variational formulation:∣∣∣∣∣∣∣∣∣∣∣

Find E ∈ PH+(curl,Ω) s.t., ∀F ∈ PH+(curl,Ω),∑
i

(
µ−1 curl Ei| curl Fi

)
Ωi
− ω2 (εEi|Fi)Ωi −

(
αγTi Ei, γ

T
i Fi

)
Γi

+
∑
i

∑
j 6=i

(
πTi (µ−1 curl Ej) + αγTi Ej − αγTi Ei, γ

T
i Fi

)
Σij

=
∑
i

(fi|Fi)Ωi −
(
gi, γTi Fi

)
Γi
.

(7.15)

Proof. The proof is similar to the one of Theorem 5.3.1 repeated on each subdomain. Note that, by assumption, both
traces πTi (µ−1 curl Ei) + αγTi Ei and πTi (µ−1 curl Ej) + αγTi Ej belong to L2

t (Σij). Therefore, on each subdomain,
let us introduce

g̃i ∈ L2
t (∂Ωi) s.t.

{
g̃i = gi on Γi;
g̃i = πTi (µ−1 curl Ej) + αγTi Ej on Σij .
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Hence, multiplying by a test function Fi ∈ H+(curl,Ωi) and integrating by parts on each subdomain, one has
successively (

µ−1 curl Ei| curl Fi
)

Ωi
− ω2 (εEi|Fi)Ωi + π〈πTi (µ−1 curl Ei), γTi Fi〉γ = (fi|Fi)Ωi(

µ−1 curl Ei| curl Fi
)

Ωi
− ω2 (εEi|Fi)Ωi + π〈g̃i − αγTi Ei, γ

T
i Fi〉γ = (fi|Fi)Ωi(

µ−1 curl Ei| curl Fi
)

Ωi
− ω2 (εEi|Fi)Ωi +

(
g̃i − αγTi Ei, γ

T
i Fi

)
∂Ωi

= (fi|Fi)Ωi

This is legitimate because g̃i, γTi Ei ∈ L2
t (∂Ωi). Therefore, one can split the inner product on the different parts of

∂Ωi, and, using the interface conditions of (7.12):(
µ−1 curl Ei| curl Fi

)
Ωi
− ω2 (εEi|Fi)Ωi +

(
gi − αγTi Ei, γ

T
i Fi

)
Γi

+∑
j 6=i

(
πTi (µ−1 curl Ej) + αγTi Ej − αγTi Ei, γ

T
i Fi

)
Σij

= (fi|Fi)Ωi .

Summing over the subdomains gives formulation (7.15).

Conversely, one can also proceed by subdomain. Taking Fi ∈ D(Ωi) in (7.15) and differentiating in D′(Ωi), one
recovers the volume equation

curl(µ−1 curl Ei)− ω2εEi = fi in Ωi.

In the following, letting Γ′ an open subset of Γ, we recall the spaces (cf. [7])

H̃−1/2
⊥ (curlΓ,Γ′) := πTΓ′ (H(curl,Ω)) , (7.16)

H−1/2
‖,0 (divΓ,Γ′) := γTΓ′

(
H0,Γ\Γ′(curl,Ω)

)
, (7.17)

where πTΓ′ , γTΓ′ denote the restrictions of traces on Γ′. Both spaces are in duality, and the duality product is denoted
for short Γ′,π〈·, ·〉γ,0.

First, we take Γ′ = Γi. We choose test functions Fi ∈ {v ∈ C∞(Ωi), that vanish in a neighbourhood of ∂Ωi \Γi },
and get that Γi,π〈πTi (µ−1 curl Ei) + αγTi Ei, γ

T
i Fi〉γ,0 = Γi,π〈gi, γTi Fi〉γ,0. Because the space of test functions is

dense in H0,∂Ωi\Γi(curl,Ω) (see [7, Def. 2.2.27]), and γTi is surjective from the latter to H−1/2
‖,0 (divΓ,Γi), by density

arguments, one gets that
πTi (µ−1 curl Ei) + αγTi Ei = gi

holds in H̃−1/2
⊥ (curlΓ,Γi) =

(
H−1/2
‖,0 (divΓ,Γi)

)′
. Because gi, γTi Ei, π

T
i (µ−1 curl Ei) ∈ L2

t (Γi), the result also
holds in L2

t (Γi).

We proceed similarly on the interfaces. Taking Γ′ = Σij , and choosing test functions Fi ∈ C∞(Ωi) that vanish
in a neighbourhood of ∂Ωi \ Σij , one has Σij ,π〈πTi (µ−1 curl Ei) + αγTi Ei, γ

T
i Fi〉γ,0 = Σij ,π〈πTi (µ−1 curl Ej) +

αγTi Ej , γ
T
i Fi〉γ,0. By density,

πTi (µ−1 curl Ei) + αγTi Ei = πTi (µ−1 curl Ej) + αγTi Ej

holds in H̃−1/2
⊥ (curlΓ,Σij), and in L2

t (Σij) under hypothesis H.0.

Lemma 7.3.8. The solution to the variational formulation (7.15) satisfies the global variational formulation
(7.3).

Proof. Let E ∈ PH+(curl,Ω) solution to the the variational formulation (7.15). First of all, let us note that E
satisfies the interface conditions of (7.12), then of (7.10). In particular, the Dirichlet trace is continuous over all the
interfaces, so one has in fact E ∈ H+(curl,Ω). Let us take F ∈ H+(curl,Ω) in (7.15), and look at the interface
terms. For each interface Σij , there are two contributions, coming from the terms associated to the subproblems in
Ωi and Ωj . Grouping both terms yields(

πTi (µ−1 curl Ej) + αγTi Ej − αγTi Ei, γ
T
i Fi

)
Σij

+
(
πTj (µ−1 curl Ei) + αγTj Ei − αγTj Ej , γ

T
j Fj

)
Σij

.
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Note that, since F ∈ H+(curl,Ω), one has γTi Fi = −γTj Fj (because of the normal convention). Therefore, the
previous line becomes(

πTi (µ−1 curl Ej) + αγTi Ej − αγTi Ei, γ
T
i Fi

)
Σij
−
(
πTj (µ−1 curl Ei) + αγTj Ei − αγTj Ej , γ

T
i Fi

)
Σij

and, because of the normal convention,(
πTi (µ−1 curl Ej) + αγTi Ej − αγTi Ei, γ

T
i Fi

)
Σij
−
(
πTi (µ−1 curl Ei)− αγTi Ei + αγTi Ej , γ

T
i Fi

)
Σij

,

which reduces to (
πTi (µ−1 curl(Ej −Ei)), γTi Fi

)
Σij

.

We recall that E satisfies the interface conditions of (7.10), and now use the fact that the Neumann trace is
continuous over the interface. Hence, the above term is null. Therefore, all interface terms in (7.15) vanish, and
the variational formulation (7.15) reduces to∑

i

((
µ−1 curl Ei| curl Fi

)
Ωi
− ω2 (εEi|Fi)Ωi +

(
gi − αγTi Ei, γ

T
i Fi

)
Γi

)
=
∑
i

(fi|Fi)Ωi .

Grouping altogether the scalar products on all Ωi, resp. Γi, one recovers the variational formulation (7.3) of the
global problem.

Theorem 7.3.9. Under hypothesis H.0, the global problem (7.2), the global variational formulation (7.3), the
decomposed problems (7.10) and (7.12) and the associated variational formulation (7.15) are all equivalent.

Proof. We have shown that the global problem (7.2) and its variational formulation (7.3) are equivalent (Theorem
5.3.1); that the solution of the global problem (7.2) satisfies the decomposed problem (7.10) (Lemma 7.3.4); that
the decomposed problems (7.10) and (7.12) are equivalent (Lemma 7.3.6); and that the problem (7.12) is equivalent
to the variational formulation (7.15) (Lemma 7.3.7); and that the solution to the variational formulation (7.15) also
satisfies the global variational formulation (7.3) (Lemma 7.3.8). Therefore, all these problems are equivalent.

Remark 7.3.10. In principle, the results of this section could be extended even if hypothesis H.0 does not hold, i.e.
if one has less than L2

t -regularity on the interfaces. However, the proofs become more tedious. Indeed, one can
no longer split the surface duality products into the various parts of the boundaries, and Γ′,π〈·, ·〉γ,0-type duality
products have to be considered all along the way.

7.3.3 A comment on a formulation with Lagrange multiplier

In this section, we make some remarks on a domain decomposition method proposed by Back et al. [8] for a plasma
physics problem. They consider the homogeneous Dirichlet problem{

curl(µ−1 curl E)− ω2εE = f in Ω,
γTE = 0 on Γ,

(7.18)

where the material tensors µ and ε are elliptic, the angular frequency ω > 0, and the source term f ∈ L2(Ω).
Similarly to Section 7.3.1, the starting point is to consider the decomposed problem

curl(µ−1 curl Ei)− ω2εEi = fi in Ωi,
γTi Ei = 0 on Γi,

γTi (Ei −Ej) = 0 on Σij ,
πTi (µ−1 curl(Ei −Ej)) = 0 on Σij ,

(7.19)

where the last two equations enforce the continuity of the Dirichlet and Neumann traces on the interface Σij . The
continuity of the Neumann trace can be considered as a natural condition, whereas the continuity of the Dirichlet
trace can be considered as an essential condition (usually enforced in the variational space).
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As before, the idea is to set the variational formulation not in H0(curl,Ω), but in the appropriate piecewise
H(curl) space,

V :=
{
v ∈ L2(Ω),vi ∈ H0,Γi(curl,Ωi) on each Ωi

}
(7.20)

(that corresponds to the space PHDir(curl,Ω) defined in (7.7)). With this choice of function space, [8] relaxes
the “essential” Dirichlet continuity condition. Instead, the continuity of the Dirichlet trace is seen as a constraint,
which is taken in account by a saddle-point approach. One dualizes the constraint by introducing a Lagrange
multiplier, which leads to a mixed formulation. For each Σij , one introduces the jump across Σij , denoted
[v × n]Σij := vi × ni + vj × nj . The collection of jumps is denoted [v × n]Σ. One also introduces the space of
jumps of fields of V,

S := {[v× n]Σ,v ∈ V}. (7.21)
The space of Lagrange multipliers is chosen as Λ = S′, the dual space of S. The saddle-point formulation reads∣∣∣∣∣∣∣∣∣

Find (E,λ) ∈ V× S′ s.t., ∀(F,µ) ∈ V× S′,∑
i

(
(µ−1 curl Ei| curl Fi)Ωi − ω2 (εEi|Fi)Ωi

)
+ 〈λ, [F× n]Σ〉S =

∑
i

(f |Fi)Ωi ,

〈µ, [E× n]Σ〉S = 0.

(7.22)

In [8], the authors propose a proof for the well-posedness of (7.22) and for its equivalence with the global problem
(7.18). In their proof, they decompose the S/S′-duality product in the following way:

〈λ, [v× n]Σ〉S =
∑
i,j 6=i

〈
λij , [v× n]Σij

〉
=
∑
i

〈λ,vi × ni〉H−1/2
‖ (divΓ,∂Ωi)

, (7.23)

the duality in the second term being “between the suitable spaces” (not defined in [8]). However, we believe that it
is unlikely that the relation (7.23) can be meaningful in general. To us, it is unclear whether S is a Banach, or
Hilbert space, and how the S/S′-duality is defined. Moreover, given an element of S, we do not really understand
what is the correct space for each interface term [v× n]Σij , and we wonder how one can justify the splitting of the
S/S′- duality product into duality products on each interface in (7.23).
Remark 7.3.11. Alternatively, a possible framework to address this difficulty would be the multi-trace framework
developed by Claeys and Hiptmair, cf. [30, 29].

Clarifications on the function space S

On each Σij , there are two well-known traces spaces (cf. [7]):

H̃−1/2
‖ (divΓ,Σij) := γTΣij (H(curl,Ωi)) , (7.24)

H−1/2
‖,0 (divΓ,Σij) := γTΣij

(
H0,∂Ωi\Σij (curl,Ωi)

)
, (7.25)

which are both Hilbert spaces. For a better understanding of the space S, we have the next result.

Proposition 7.3.12. ⊕
H−1/2
‖,0 (divΓ,Σij) ⊂ S ⊂

⊕
H̃−1/2
‖ (divΓ,Σij). (7.26)

Proof. The first embedding is proven in [8, Lemma 5.3]. Let ϕ ∈ H−1/2
‖,0 (divΓ,Σij). There exists vi in

H0,∂Ωi\Σij (curl,Ωi) such that ϕ = vi × n|Σij . Letting v = vi in Ωi and v = 0 in Ω\Ωi, one has v ∈ V,
with [v× n]Σij = ϕ, and all other jumps being null. The second embedding is straightforward: for all v ∈ V, each
jump [v× n]Σij belongs to H̃−1/2

‖ (divΓ,Σij).

We believe that none of the inclusions above is surjective in general. According to [8], “in addition, they have to
satisfy some compatibility conditions”, which are however not explicited. Nevertheless, one can be more precise in
some specific cases:
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• If the decomposition has no (interior nor boundary) cross edges/points (e.g. onion-like decomposition), there
holds H−1/2

‖,0 (divΓ,Σij) = H̃−1/2
‖ (divΓ,Σij) ∀i, j.

• If the decomposition has no interior cross edges/points (e.g. slice-like decomposition), and a homogeneous
Dirichlet condition is prescribed (i.e. E × n = 0 on Γ), there holds S =

⊕
H−1/2
‖,0 (divΓ,Σij) (in this case,

boundary cross points are allowed). Indeed, each jump belongs to H−1/2
‖,0 (divΓ,Σij).

In these cases, S is indeed a Hilbert space, and its duality is the one of
⊕

H−1/2
‖,0 (divΓ,Σij), so that the saddle-point

formulation (7.22) has a clear meaning. However, in other instances (if, for example, the decomposition has interior
cross edges/points), this remains quite unclear.

In the light of our work, a more precise meaning could be given to the duality brackets in (7.23), depending
on the regularity of traces on the interfaces, which is driven by the regularity of the field itself. Indeed, under
hypothesis H.0, there holds [E× n]Σij ∈ Hs−1/2

t (Σij) ⊂ L2
t (Σij) for all i, j. In this case, one can choose

Λ =
⊕

L2
t (Σij), (7.27)

and the duality is given by the L2
t -inner product, s.t. the constraint in (7.22) is realized by

∀µ ∈ Λ, (µ, [E× n]Σ)L2
t (Σ) = 0. (7.28)

It is then legitimate to split the duality products (which are integrals) on each interface, and the relation (7.23)
holds with L2

t -inner products. One can further note that, in [8], the authors showed that the solution, as well as its
curl, belong to H1(Ω) (this was initially done to justify the use of Lagrange finite elements). Hence, hypothesis H.0
is fulfilled, and the reasoning above applies, which justifies the use of (7.23) in [8].
Remark 7.3.13. Alternatively, it would be possible to consider a formulation with L2

t jumps, whatever the solution’s
regularity. Indeed, even if hypothesis H.0 is not fulfilled, one has that the jumps in (7.19) vanish, so that one can
consider them in particular in L2

t (Σij). Then, it is possible to set the variational problem in the space{
v ∈ V s.t. [v× n]Σij ∈ L2

t (Σij)
}
, (7.29)

s.t., once again, one can choose the space Λ =
⊕

L2
t (Σij) for the saddle-point formulation. This path has been

proposed by Ciarlet, Jamelot and Kpadonou for diffusion problems [28].

7.4 Convergence of iterative procedure

We are now interested in an iterative procedure to solve the decomposed problem, where the subproblems are solved
in parallel at each iteration. This generates a sequence of local solutions that is expected to converge to the global
solution. This was proposed first by Lions [83] as an improvement of Schwarz algorithm (for Laplace equation).
For time-harmonic Maxwell problems, the seminal work is the algorithm proposed by Després et al. [42, 43]. For
analysis purposes, we focus on this well-known procedure in our work (although more elaborate methods have later
been proposed).

One chooses an initial guess E0 ∈ PH+(curl,Ω) s.t. γTi Ei, π
T
i (µ−1 curl E0

i ) ∈ L2
t (∂Ωi) ∀i. Then one solves,

∀n ≥ 0,∀i, j, 
curl(µ−1 curl En+1

i )− ω2εEn+1
i = fi in Ωi,

πTi (µ−1 curl En+1
i ) + αγTi En+1

i = gi on Γi,
πTi (µ−1 curl En+1

i ) + αγTi En+1
i = πTj (µ−1 curl En

j )− αγTj En
j on Σij .

(7.30)

This algorithm was first proposed for isotropic and constant tensors ε and µ, and a scalar and constant impedance
coefficient α = iω [43]. The authors proved that, in this case, the algorithm converges to the global solution. In
this section we propose an extension of their proof to the case of real symmetric definite positive tensors, still with
α = iω. Then, we investigate other cases with elliptic (non-Hermitian) tensors.

To that aim, we need some additional hypotheses:
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H.1 The assumptions of Proposition 4.3.1 are satisfied in each sudomain Ωi, i.e.

• the interfaces are defined s.t. there are no pathological vertices (which is easy to realise in practice);
• the parameter α is extended from Γ to Σ in a manner such that α is elliptic on Γ ∪ Σ, and, for all i, the

problem
Find φsing ∈ H1/2

zmv(∂Ωi) s.t. curlΓ(α curlΓ φ) = 0 on ∂Ωi (7.31)

has no singular solution.

This ensures that all Robin traces have L2
t -regularity on all subdomain boundaries, and in particular on all interfaces.

In particular, we are able to split the surface duality products (which are integrals) on the different parts of the
boundaries (exterior border and/or interfaces). In the following of the section, we generally focus on cases where
the parameter α is constant over the boundary and interfaces. In this case, both assumptions of H.1 are clearly
satisfied as soon as there are no pathological vertices on Σ ∪ Γ (cf. Theorem 4.2.1).
Remark 7.4.1. There are other, less obvious cases in which the hypothesis is fulfilled; for example, if α is smooth
all over the boundary and interfaces, or if there are no cross edges/points and α is constant by interfaces. If there
are cross edges/points and coefficient discontinuities, one has to check by hand that hypothesis H.1 is fulfilled,
following the proof techniques of e.g. Section 4.2.3.

7.4.1 The real symmetric definite positive case

In this subsection, we extend the original proof of [43] to problems with real-valued symmetric definite positive
tensor fields. As in the original proof we specifically assume that α = iω.

Proposition 7.4.2. Each of the local problems appearing in (7.30) is well-posed.

Proof. The proof is obtained recursively. Assume that at step n, all Dirichlet and Neumann traces belong to
L2
t (Σij) on any interface. Then the n + 1-th local problem in Ωi enters Fredholm alternative (Theorem 5.3.3).

Uniqueness is obtained thanks to a unique continuation principle [113]. Therefore, each local problem at step n+ 1
is well-posed. Moreover, because of Theorem 4.1.4 and assumption H.1, the boundary and interface conditions of
(7.30) ensure that

πTi (µ−1 curl En+1
i ), γTi En+1

i ∈ L2
t (∂Ωi) ∀i. (7.32)

Therefore, all boundary data at step n+ 1 also belong to L2
t (Σij) on all interfaces.

For the convergence study, let us introduce the error en = E−En ∈ PH+(curl,Ω), where E is the solution to
the global problem (7.2). It satisfies the sequence of problems

curl(µ−1 curl en+1
i )− ω2εen+1

i = 0 in Ωi,
πTi (µ−1 curl en+1

i ) + iωγTi en+1
i = 0 on Γi,

πTi (µ−1 curl en+1
i ) + iωγTi en+1

i = πTj (µ−1 curl enj )− iωγTj enj on Σij .
(7.33)

Let us introduce
Un :=

∑
i

∑
j 6=i

∥∥πTi (µ−1 curl eni ) + iωγTi eni
∥∥2

L2
t (Σij)

. (7.34)

The quantity Un can be understood as a kind of energy on the interfaces. To study the convergence of en, we will
investigate the variations of Un.

First, let us note the following property.

Proposition 7.4.3. Let O a domain, v ∈ H+(curl,O) s.t. curl(µ−1 curl v) − ω2εv = 0 in O and
πT (µ−1 curl v) ∈ L2

t (∂O). Then∥∥πT (µ−1 curl v) + iωγTv
∥∥2

L2
t

=
∥∥πT (µ−1 curl v)− iωγTv

∥∥2
L2
t

=
∥∥πT (µ−1 curl v)

∥∥2
L2
t

+ω2 ∥∥γTv
∥∥2

L2
t

. (7.35)
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Proof. In all generality, there holds∥∥πT (µ−1 curl v) + iωγTv
∥∥2

L2
t

=
∥∥πT (µ−1 curl v)

∥∥2
L2
t

+ ω2 ∥∥γTv
∥∥2

L2
t

+ 2<
(
πT (µ−1 curl v), iωγTv

)
∂O . (7.36)

Besides, one has (
πT (µ−1 curl v), iωγTv

)
∂O = −iω

(
πT (µ−1 curl v), γTv

)
∂O

= iω
[
(µ−1 curl v| curl v)− (curlµ−1 curl v|v)

]
= iω

[
(µ−1 curl v| curl v)− ω2(εv|v)

]
.

As ε and µ are Hermitian, the terms (µ−1 curl v| curl v) and (εv|v) are real. Thus <
(
πT (µ−1 curl v), iωγTv

)
∂O =

0, and hence the result.

Remark 7.4.4. It is a kind of orthogonality property. The result relies strongly on the Hermitian character of the
coefficients; in a more general case one only has (7.36).

The next lemma shows that the energy Un decreases over the iterations.

Lemma 7.4.5. One has the estimate

Un+1 − Un = −4ω2‖γTen‖2L2
t (Γ). (7.37)

Proof. One has
Un+1 =

∑
i

∑
j 6=i

∥∥πTi (µ−1 curl en+1
i ) + iωγTi en+1

i

∥∥2
L2
t (Σij)

.

Using the interface condition of (7.33),

Un+1 =
∑
j

∑
i 6=j

∥∥πTj (µ−1 curl enj )− iωγTj enj
∥∥2

L2
t (Σij)

=
∑
j

∥∥πTj (µ−1 curl enj )− iωγTj enj
∥∥2

L2
t (∂Ωj)

−
∑
j

∥∥πTj (µ−1 curl enj )− iωγTj enj
∥∥2

L2
t (Γj)

,

and, because of (7.35) for the first part, and of the exterior boundary condition for the second part,

Un+1 =
∑
j

∥∥πTj (µ−1 curl enj ) + iωγTj enj
∥∥2

L2
t (∂Ωj)

−
∑
j

∥∥−2iωγTj enj
∥∥2

L2
t (Γj)

= Un − 4ω2‖γTen‖2L2
t (Γ),

which concludes the proof.

Then, one can state the main result of this subsection.

Theorem 7.4.6. For all i, eni converges to 0 weakly in H(curl,Ωi).

Proof. The sequence Un is positive and decreasing, so it admits a limit Un −→ U , and Un+1−Un −→ 0. Therefore,
by Lemma 7.4.5,

‖γTen‖2L2
t (Γ) −→ 0. (7.38)

Besides, the sequence Un is bounded, and ‖en‖PH+(curl,Ω) . Un, because the problems (7.33) are well-posed
with continuous dependence w.r.t. boundary data in L2

t (Γ)-norm, cf. Theorem 5.3.3. So, ‖en‖PH+(curl,Ω) is also
bounded, and it admits a subsequence (still denoted en) that converges weakly to a certain e ∈ PH+(curl,Ω):
∀i, eni ⇀ ei in H+(curl,Ωi). We shall show that e = 0, and that the whole sequence en converges weakly to e.

The proof is obtained first on the subdomains neighbourhing the exterior boundary, then on the other subdomains
by recursion. Let us first consider a subdomain Ωi s.t. Γi 6= ∅. By continuity arguments, one has that

curl eni ⇀ curl ei in L2(Ωi), (7.39)
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and that
γTeni ⇀ γTei in L2

t (∂Ωi). (7.40)

Besides, ∀n, curlµ−1 curl eni − ω2εeni = 0 in D′(Ωi), so

curlµ−1 curl ei − ω2εei = 0 in D′(Ωi) (7.41)

and µ−1 curl ei ∈ H(curl,Ωi). Moreover, subtracting both relations and integrating by parts, one gets

π〈πT (µ−1 curl(eni −ei)), γTF〉γ =
(
µ−1 curl(eni − ei)| curl F

)
Ωi
−ω2 (ε(eni − ei)|F)Ωi −→ 0, ∀F ∈ H(curl,Ωi).

(7.42)
Taking test functions F ∈ C∞(Ωi) that vanish in a neighbourhood of ∂Ωi \ Γi, one then has (see the proof of
Lemma 7.3.7) that πT (µ−1 curl eni ) ⇀ πT (µ−1 curl ei) in H̃−1/2

⊥ (curlΓ,Γi). Furthermore, because of the boundary
condition of (7.33) and the uniqueness of the weak limit,

πTi (µ−1 curl ei) + iωγTi ei = 0 on Γi (7.43)

holds in H̃−1/2
⊥ (curlΓ,Γi). Moreover, γTei = 0 on Γi, because of (7.38). Hence, both traces vanish on Γi, and we

conclude by the unique continuation principle [113] that ei = 0.

Let us show that ei is the weak limit of the whole sequence (eni ). Indeed, for all v ∈ H+(curl,Ωi), the
sequence (eni ,v)H+(curl,Ωi) is bounded, and admits a unique accumulation point, which is 0. So, the whole sequence
(eni ,v)H+(curl,Ωi) converges to 0, ∀v ∈ H+(curl,Ωi). We conclude that the whole sequence eni converges weakly to
0: eni ⇀ 0 in H+(curl,Ωi). Moreover, because of (7.41), one has also µ−1 curl eni ⇀ 0 in H+(curl,Ωi), and both
traces γTeni , πT (µ−1 curl eni ) ⇀ 0 in L2

t (∂Ωi).

Finally, we proceed by recursion on the other subdomains. Let us consider a subdomain Ωj that neighbours a
subdomain Ωi in which ei = 0 has been proven. Because of what preceeds, γTeni , πT (µ−1 curl eni ) ⇀ 0 in L2

t (∂Ωi).
Besides, one has the two interface conditions on Σij

πTj (µ−1 curl en+1
j ) + iωγTj en+1

j = πTi (µ−1 curl eni )− iωγTi eni ,
πTj (µ−1 curl en+1

j )− iωγTj en+1
j = πTi (µ−1 curl en+2

i ) + iωγTi en+2
i .

Taking the sum or the difference, we find that

πTj (µ−1 curl ej), γTj ej −→ 0 in L2
t (Σij). (7.44)

Along with (7.41) in Ωj and the unique continuation principle, we conclude that ej = 0 in H+(curl,Ωj).

Remark 7.4.7. The proof would extend to complex-valued Hermitian tensors, provided that the unique continuation
principle holds. However, to the best of our knowledge, this result has been established only for real symmetric
tensors [113, 90].

A complement for problems with more regular solutions

Corollary 7.4.8. Assume moreover that there exists s > 0 and a constant C > 0 independent of eni s.t.
eni , curl eni ∈ Hs(Ωi), with

‖eni ‖Hs(Ωi) + ‖ curl eni ‖Hs(Ωi)≤ C ‖e
n
i ‖H+(curl,Ωi); a (7.45)

Then eni , curl eni converge to 0 strongly in Hσ(Ωi), for all σ ∈ [0, s[.
athe constant C may depend on the geometry of Ω, of the partition, the frequency ω, and the coefficients µ, ε and α.

Proof. By continuity, one has that

eni ⇀ 0 in Hs(Ωi); (7.46)
curl eni ⇀ 0 in Hs(Ωi). (7.47)
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Finally, by compact Sobolev embeddings, we conclude that

eni , curl eni −→ 0 in Hσ(Ωi), (7.48)

for all σ ∈ [0, s[.

Remark 7.4.9. The validity of the assumption in Corollary 7.4.8 depends on regularity results with continuous
dependence w.r.t. the H+(curl,Ωi)-norm, in the spirit of, e.g., Corollary 6.3.3 or Proposition 6.3.5 which, however,
are a priori valid only in domains of class C2. Nevertheless, counterparts to these results might exist in other types
of domains, e.g. in convex domains. When the domain is not convex, one has additionally to take into account
corners, cf. [36].

7.4.2 Investigations in the elliptic case

In this subsection, we discuss the generalisation of the results of previous section in the case of elliptic, possibly
non-Hermitian tensors. The impedance coefficient α is assumed to be scalar and constant, but its value can be
other than iω. We begin by revisiting energy estimates.

Energy estimates

For general non-Hermitian tensors ε, µ, Proposition 7.4.3 does not hold. Instead, one has the following more
general results.

Proposition 7.4.10. Let v ∈ H+(curl,O) s.t. curl(µ−1 curl v) − ω2εv = 0 in O and πT (µ−1 curl v) ∈
L2
t (∂O). Then∥∥πT (µ−1 curl v) + αγTv

∥∥2
L2
t

=
∥∥πT (µ−1 curl v)

∥∥2
L2
t

+
∥∥αγTv

∥∥2
L2
t

+ 2<
(
πT (µ−1 curl v), αγTv

)
∂O ; (7.49)∥∥πT (µ−1 curl v)− αγTv

∥∥2
L2
t

=
∥∥πT (µ−1 curl v)

∥∥2
L2
t

+
∥∥αγTv

∥∥2
L2
t

− 2<
(
πT (µ−1 curl v), αγTv

)
∂O , (7.50)

with, moreover, if α is constant, (α∗ denoting the compex conjugate of α),(
πT (µ−1 curl v), αγTv

)
∂O = α∗

[
(µ−1 curl v| curl v)− (εv|v)

]
. (7.51)

Proof. We refer to the proof of Proposition 7.4.3.

Remark 7.4.11. If one does not require α to be constant, the computations become more complex. In particular,
relation (7.51) does not hold, because one cannot a priori integrate by parts. Provided one can introduce a lifting
of α in O, the result could possibly be adapted to a scalar heterogeneous α.

As a consequence, instead of Lemma 7.4.5, one has in general the following result.

Lemma 7.4.12. One has the estimate

Un+1 − Un = −4<
[
α∗
((
µ−1 curl en| curl en

)
Ω − ω

2 (εen|en)Ω

)]
− 4‖αγTen‖2L2

t (Γ). (7.52)
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Proof. One has

Un+1 =
∑
i

∑
j 6=i

∥∥πTi (µ−1 curl en+1
i ) + αγTi en+1

i

∥∥2
L2
t (Σij)

=
∑
j

∑
i 6=j

∥∥πTj (µ−1 curl enj )− αγTj enj
∥∥2

L2
t (Σij)

=
∑
j

(∥∥πTj (µ−1 curl enj )− αγTj enj
∥∥2

L2
t (∂Ωj)

−
∥∥πTj (µ−1 curl enj )− αγTj enj

∥∥2
L2
t (Γj)

)
=
∑
j

(∥∥πTj (µ−1 curl enj ) + αγTj enj
∥∥2

L2
t (∂Ωj)

− 4<
(
πTj (µ−1 curl enj ), αγTj enj

)
∂Ωj
−
∥∥−2αγTj enj

∥∥2
L2
t (Γj)

)
.

So, using (7.51),

Un+1 − Un =
∑
j

(
−4<

[
α∗
(
πTj (µ−1 curl en), γTj en

)
∂Ωj

]
− 4

∥∥αγTj enj
∥∥2

L2
t (Γj)

)
=
∑
j

(
−4<

[
α∗
((
µ−1 curl enj | curl enj

)
Ωj
−
(
curlµ−1 curl enj |enj

)
Ωj

)]
− 4

∥∥αγTj enj
∥∥2

L2
t (Γj)

)
=
∑
j

(
−4<

[
α∗
((
µ−1 curl enj | curl enj

)
Ωj
− ω2 (εenj |enj )Ωj)]− 4

∥∥αγTj enj
∥∥2

L2
t (Γj)

)
,

hence the result.

Moreover, one can extend the study to other types of exterior boundary conditions, namely Dirichlet or Neumann.
Note that, in any case, the error satisfies an homogeneous exterior boundary condition. Hence, for the Dirichlet
problem, the error is governed by

curl(µ−1 curl en+1
i )− ω2εen+1

i = 0 in Ωi,
γTi en+1

i = 0 on Γi,
πTi (µ−1 curl en+1

i ) + iωγTi en+1
i = πTj (µ−1 curl enj )− iωγTj enj on Σij .

(7.53)

The energy Un, still defined as in (7.34), becomes

Un =
∑
i

∑
j 6=i

∥∥πTi (µ−1 curl eni ) + iωγTi eni
∥∥2

L2
t (Σij)

=
∑
i

∥∥πTi (µ−1 curl eni ) + iωγTi eni
∥∥2

L2
t (∂Ωi)

−
∑
i

∥∥πTi (µ−1 curl eni )
∥∥2

L2
t (Γi)

.
(7.54)

Then, one gets an estimate comparable to the one of Lemma 7.4.12.

Lemma 7.4.13. For the Dirichlet problem, one has the estimate

Un+1 − Un = −4<
[
α∗
((
µ−1 curl en| curl en

)
Ω − ω

2 (εen|en)Ω

)]
. (7.55)

Proof. One has

Un+1 =
∑
i

∑
j 6=i

∥∥πTi (µ−1 curl en+1
i ) + αγTi en+1

i

∥∥2
L2
t (Σij)

=
∑
j

∑
i 6=j

∥∥πTj (µ−1 curl enj )− αγTj enj
∥∥2

L2
t (Σij)

=
∑
j

(∥∥πTj (µ−1 curl enj )− αγTj enj
∥∥2

L2
t (∂Ωj)

−
∥∥πTj (µ−1 curl enj )− αγTj enj

∥∥2
L2
t (Γj)

)
=
∑
j

(∥∥πTj (µ−1 curl enj ) + αγTj enj
∥∥2

L2
t (∂Ωj)

− 4<
(
πTj (µ−1 curl enj ), αγTj enj

)
∂Ωj
−
∥∥πTj (µ−1 curl enj )

∥∥2
L2
t (Γj)

)
.
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Then,

Un+1 − Un = −4<
[
α∗
((
µ−1 curl en| curl en

)
Ω − ω

2 (εen|en)Ω

)]
.

One can proceed similarly for the Neumann problem. The error is governed by
curl(µ−1 curl en+1

i )− ω2εen+1
i = 0 in Ωi,

πTi (µ−1 curl en+1
i ) = 0 on Γi,

πTi (µ−1 curl en+1
i ) + iωγTi en+1

i = πTj (µ−1 curl enj )− iωγTj enj on Σij ,
(7.56)

and the energy becomes

Un =
∑
i

∑
j 6=i

∥∥πTi (µ−1 curl eni ) + iωγTi eni
∥∥2

L2
t (Σij)

=
∑
i

∥∥πTi (µ−1 curl eni ) + iωγTi eni
∥∥2

L2
t (∂Ωi)

−
∑
i

∥∥αγTi eni
∥∥2

L2
t (Γi)

.
(7.57)

Lemma 7.4.14. For the Neumann problem, one has the estimate

Un+1 − Un = −4<
[
α∗
((
µ−1 curl en| curl en

)
Ω − ω

2 (εen|en)Ω

)]
. (7.58)

Proof. The proof is as for the Dirichlet case.

Remark 7.4.15. For both Dirichet and Neumann cases, the result is similar to the one with Robin condition, but
without the exterior boundary term −4‖αγTen‖2L2

t (Γ).

Discussion

Because of the non-Hermitianity of the tensors, one now has an additional term in the increase rate of Un, making
its sign hard to determine. However, when the bilinear form is coercive, one can go further. For the Robin problem,
one has the next result.

Theorem 7.4.16. Assume that µ−1 and −ε are simultaneously elliptic, i.e. Θµ−1 ∩ Θ−ε 6= ∅, and that
arg(α∗) ∈ Θµ−1 ∩Θ−ε. Then eni −→ 0 strongly in H(curl,Ωi).

Proof. Let θ = arg(α∗), the condition means that ∃C > 0, ∀v ∈ H(curl,Ω),

<
[
eiθ
((
µ−1 curl v| curl v

)
Ω − ω

2 (εv|v)Ω

)]
≥ C‖v‖2H(curl).

Combining it with the result of Lemma 7.4.12, one gets

Un+1 − Un = −4<
[
|α|eiθ

((
µ−1 curl en| curl en

)
Ω − ω

2 (εen|en)Ω

)]
− 4‖αγTen‖2L2

t (Γ)

≤ −4|α|C ‖en‖2PH(curl) − 4‖αγTen‖2L2
t (Γ) < 0.

Therefore, (Un) is decreasing. It is also positive, so it admits a limit. Then, Un − Un+1 −→ 0, and, for all i,

‖eni ‖2L2(Ωi) −→ 0;
‖ curl eni ‖2L2(Ωi) −→ 0;

‖γTi eni ‖2L2
t (Γi)

−→ 0.

Hence, for all i, eni −→ 0 strongly in H(curl,Ωi).
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Remark 7.4.17. This result is stronger than the one obtained for Hermitian tensors, because one gets strong
convergence in H(curl,Ωi). This is thanks to the coercivity of the bilinear form, that makes the convergence easier
– a common phenomenon in domain decomposition.

We point out that this result requires an interplay condition between all three parameters µ, ε and α, which is
different from the condition ensuring the coercivity of the Robin problem (see Theorem 5.3.6). There, the condition
is simultaneous ellipticity between µ−1, −ε and −α, not α∗. However, one would like both conditions to be fulfilled,
in order to get the well-posedness of the local problems and the decrease of the error over iterations. At first sight,
it is unclear if both conditions can be fulfilled together.

We believe that one can do so in a simple manner. Indeed, one can multiply the variational formulation by
some eiθ. This will shift arguments of all three coefficients µ−1, −ε and −α from an angle θ, and will not affect
their simultaneous ellipticity. On the other hand, it will shift arg(α∗) from an angle −θ (α∗ turns “the other way
around” in the complex plane). So, one could choose θ such that α∗ encounters the region Θµ−1 ∩Θ−ε, and both
conditions are satisfied. This should tend to bring closer from one another α∗ and −α, that is, to bring α near the
imaginary axis.

For the Dirichlet or Neumann problem, one has the next result.

Theorem 7.4.18. Assume that µ−1 and −ε are simultaneously elliptic, i.e. Θµ−1 ∩Θ−ε 6= ∅, and choose α
s.t. arg(α∗) ∈ Θµ−1 ∩Θ−ε. Then Després algorithm for Dirichlet or Neumann exterior boundary conditions
converges, i.e. eni −→ 0 strongly in H(curl,Ωi).

Proof. It is the same proof as in Theorem 7.4.16.

Remark 7.4.19. This result for the Dirichlet and Neumann problems calls a number of comments.

1. As with the Robin problem, the coercivity of the problem makes convergence easier, as one gets strong
convergence in H(curl,Ωi), compared to the original result of Després et al.

2. Because one does not have a Robin exterior condition, the parameter α now has to be constant only on the
interfaces. So, it is independent of the global problem and, in principle, it could be tuned to fit the coercivity
of the problem accordingly.

3. The counterpart of the previous point is that one now has to deal with mixed problems in subdomains that
have an exterior border. The proofs of well-posedness have to be adapted. Moreover, to ensure that the
interface terms hold in L2

t , the assumption H.1 must be adapted and the results of Chapter 4 must be revisited
(if there are boundary cross points). This is partially done in [7, Section 5.1.2.2] for the Dirichlet case.

4. Coming back to the assumptions of subsection 7.4.1, i.e. ε, µ Hermitian tensors and α ∈ iR, one finds
surprisingly that the algorithm does not converge with Dirichlet or Neumann exterior boundary condition.
Indeed, in this case, there holds

Un+1 − Un = 0 (7.59)
because of Proposition 7.4.3. Then, Un remains constant over the iterations. Moreover, Un vanishes only if
all Neumann and Dirichlet traces match on all interfaces, that is, if En is the global solution. So, except if
the initial guess is the global solution itself, the algorithm does not converge.

7.5 Numerical experimentations

In this section, we investigate the influence of the impedance condition in DDMs for anisotropic Maxwell problems.
The standard Robin condition with α = iω is a natural choice for isotropic problems (that is related to the
low-order transparent condition). However, when it comes to anisotropic problems, the way to choose this coefficient
becomes less clear. In this section, we aim at exploring the behaviour of the ORAS method (that uses impedance
transmission conditions) on a simple manufactured benchmark, for different elliptic materials and transmission
coefficients. An illustration on a more applicative benchmark is also proposed. Due to code restrictions, ORAS
with overlapping DD (with an overlap of one mesh size) have been used. Nevertheless, we believe the results in this
section provide an interesting glimpse in the perspective of more advanced studies.
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7.5.1 Manufactured benchmark with several elliptic media

Reference solution

In this section, Ω is the unit cube, Ω =]0, 1[3. We consider the time-harmonic Maxwell equation

curlµ−1 curl E− ω2εE = f in Ω, (7.60)

with right-hand side f = (1, 1, 1)T , and completed with a boundary condition on Γ. Moreover, we assume that the
tensors ε,µ−1 are diagonal:

ε =

ε1
ε2

ε3

 , µ−1 =

m1
m2

m3

 .

For simplicity, we look for a solution with separate variables of the form:

E =

f1(y)g1(z)
f2(z)g2(x)
f3(x)g3(y)

 .

Plugging this into the Maxwell equation, one gets, for Ex, that

−m3f
′′
1 (y)g1(z)−m2f1(y)g′′1 (z)− ω2ε1f1(y)g1(z) = 1.

A particular solution is given by

Ex = −1
ω2ε1

+ exp
(√
−ω2ε1

2

(
y
√
m3

+ z
√
m2

))
,

where
√
· has to be understood as the complex square root (with cutoff on R−). We proceed similarly for the other

components. Then, a solution is given by

Eref =


−1
ω2ε1

+ exp
(√

−ω2ε1
2

(
y√
m3

+ z√
m2

))
−1
ω2ε2

+ exp
(√

−ω2ε2
2

(
z√
m1

+ x√
m3

))
−1
ω2ε3

+ exp
(√

−ω2ε3
2

(
x√
m2

+ y√
m1

))

 , (7.61)

The curl is given by

curl Eref =



√
−ω2ε3
2m1

exp
(√

−ω2ε3
2

(
x√
m2

+ y√
m1

))
−
√
−ω2ε2
2m1

exp
(√

−ω2ε2
2

(
z√
m1

+ x√
m3

))
√
−ω2ε1
2m2

exp
(√

−ω2ε1
2

(
y√
m3

+ z√
m2

))
−
√
−ω2ε3
2m2

exp
(√

−ω2ε3
2

(
x√
m2

+ y√
m1

))
√
−ω2ε2
2m3

exp
(√

−ω2ε2
2

(
z√
m1

+ x√
m3

))
−
√
−ω2ε1
2m3

exp
(√

−ω2ε1
2

(
y√
m3

+ z√
m2

))

 . (7.62)

One checks that this field is indeed a solution of (7.60). In our numerical experiments, we will impose Eref as the
Dirichlet boundary condition (the same could be done with Neumann or Robin). In the following, we set ω = π.

Material tensors

We will consider essentially three different materials in our numerical experiments. The first one is a standard
isotropic medium,

ε = µ−1 = I. (7.63)
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In this case, the bilinear form associated to the problem is not coercive. However, one has Hermitianity, and,
if ω2 is not an eigenvalue of the problem, the uniqueness of the solution can be established thanks to a unique
continuation principle.

For the second material, we choose

ε =

1 + ηi
1 + ηi

−2 + ηi

 , µ−1 =

1− i
2

2.5

 (7.64)

where η is a real parameter for which we consider two values: η = 1 (Material 2a) and η = 0.1 (Material 2b). Here,
the tensors are not Hermitian. They are elliptic, and diagonal, therefore normal: their ellipticity is entirely driven
by the position of their eigenvalues in the complex plane. Moreover, µ−1 and −ε are simultaneously elliptic (the
eigenvalues of µ−1 and −ε are contained in the same open half-plane). This is pictured on Figure 7.1 (a) and (b).
Therefore, the bilinear form of the problem is coercive. The range of admissible directions, Θµ−1 ∩Θ−ε, is mostly
constrained by the eigenvalues 2 and −1− ηi. For short, we denote it Θ. One finds that

Θ := Θµ−1 ∩Θ−ε =
]
arctan −1

η
; π2

[
. (7.65)

When η goes to 0, ε becomes “less elliptic”: ε− goes to 0. The whole problem also becomes “less coercive”, as
Θµ−1 ∩Θ−ε reduces to π/2 and the coercivity constant goes to 0. In the limit case η = 0, ε is no longer elliptic.
The material becomes a hyperbolic metamaterial, a configuration in which there are reasons to believe that the
problem is in fact ill-posed. To vary the ellipticity directions, we will also use sometimes the material whose tensor
coefficients are the opposite of material 2a. This will be simply denoted material -2a.

The third material is a variation of the second one. We choose

ε =

1 + ηi
1 + ηi

−2 + ηi

 , µ−1 =

1 + i
2

2.5

 (7.66)

Again, we consider two subcases depending on the value of η: η = 1 (Material 3a) and η = 0.1 (Material 3b).
Both tensors are still normal and elliptic, but not simultaneously elliptic. Unlike case 2, the relative position of
their eigenvalues does not allow coercivity. When η = 1, µ−1 and ε share a common eigenvalue, 1 + i. Then, all
eigenvalues are contained in the same closed (not open) half-complex plane, taking θ = −π/4 (see Figure 7.1 (c)).
This situation is similar to the one of isotropic media. When η = 0.1, the situation is worse: there is no half-plane
in C that contains all eigenvalues of µ−1 and ε (see Figure 7.1 (d)). Therefore, we are only able to state that the
problem enters Fredholm Alternative. In the following, we assume that this problem admits a unique solution.

Validation and preliminary discussion

The numerical simulations are performed with FreeFem++ and the library PETSc. This code provides two classical
overlapping, preconditioning methods. The method we are mostly interested in is ORAS (Optimized Restricted
Additive Schwarz), a preconditioner that takes advantage of transmission conditions; at each step, local problems are
solved with homogeneous Robin conditions on the interfaces. However, the impedance coefficient has to be tuned.
Before investigating that matter, we simply choose α = iω as a first naive approach. We also experiment ASM
(Additive Schwarz Method), which is a purely algebraic preconditioner (see e.g. [47]); at each step, local problems
are solved with homogeneous Dirichlet conditions, and there is no parameter to be tuned. As a preliminary study,
we first compare these two naive approaches, before investigating further the influence of impedance condition.

The problem is discretized by order 2 edge elements (where the solution is approximated by order 2 polynomials,
while the curl is approximated by order 1 polynomials). The number of degrees of freedom in the benchmark is
86508 (h = 0.075). The overlap between subdomains is set to its minimal value, i.e. one mesh size. At first, ORAS
is used with the classical impedance coefficient α = iω. The global system is solved by an iterative procedure
thanks to GMRES (without restart), and the numerical solution is compared to the reference solution Eref .

The results presented on Figure 7.2 show the convergence of both methods ASM and ORAS. This is confirmed
by the fact that we reach the same error (compared to the reference solution) than in the mono-domain case. For a
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Figure 7.1: Eigenvalues of the material tensors

standard isotropic material (material 1), ORAS converges clearly better than ASM. For more complex materials 2a
and 2b, the results are not as clear. We observe that with ASM, the residual decreases first quickly then more
slowly; for ORAS, the contrary is observed. As a result, both curves intersect: ASM takes fewer iterations if the
tolerance is relatively high, and ORAS becomes better for small tolerances. The H(curl) relative error behaves in
a similar way. Note that for material 2b, with ORAS, this error even increases at first before decreasing rapidly.
For materials 3a and 3b, we observe results (not presented here) that are similar to those obtained for materials 2a
and 2b, respectively. In the following of the results, the relative tolerance is set to 1e-5, for which the error between
the DDM solution and the reference solution is comparable to the error obtained in mono-domain.

The number of iterations obtained for the different preconditioners, materials, and number of subdomains are
summarized in Table 7.1. They do not allow us to adjucate firmly which method is the most efficient between ASM
and ORAS. We observe that ORAS generally provides better results than ASM, at least with 2 or 3 subdomains.
However, we note that when going from 3 to 4 subdomains, the number of iterations of ASM increases only slowly,
and even decreases in several cases, in particular 2b and 3b. We do not really understand this behaviour. As a
result, in these configurations, ASM converges in less iterations than ORAS.

These results mostly show the high sensitivity of both methods to the properties of the material tensors. The
convergence is worsened when the problems are not coercive (materials 3a and 3b), and, mostly, when the ellipticity
constant of one of the material tensors is small (materials 2b and 3b).
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(a) Material 1 (b) Material 1

(c) Material 2a (d) Material 2a

(e) Material 2b (f) Material 2b

Figure 7.2: Evolution of the residual and numerical solution norms across iterations (for 4 subdomains)

Influence of the impedance coefficient

In what follows, we investigate the influence of different impedance coefficients in the transmission condition
for ORAS method. In particular, instead of the standard coefficient α = iω, we test different arguments while
conserving a constant modulus: α = ωeiϕ, for different values of ϕ. Results are presented in Figure 7.3 for materials
2a, 2b and -2a (which all correspond to coercive problems). We observe that iω (i.e. ϕ = π/2) does not always
provide the smaller number of iterations. In the following, for each material, we denote ϕ? the argument providing
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Material Nd ASM ORAS

(1) ε = I, µ−1 = I
2 58 11
3 84 19
4 89 24

(2a) ε =

(1 + i
1 + i

−2 + i

)
, µ−1 =

(1 − i
2

2.5

) 2 40 8
3 65 30
4 62 60

(2b) ε =

(1 + 0.1i
1 + 0.1i

−2 + 0.1i

)
, µ−1 =

(1 − i
2

2.5

) 2 112 14
3 215 136
4 201 274

(-2a) ε = −

(1 + i
1 + i

−2 + i

)
, µ−1 = −

(1 − i
2

2.5

) 2 40 17
3 65 54
4 62 112

(3a) ε =

(1 + i
1 + i

−2 + i

)
, µ−1 =

(1 + i
2

2.5

) 2 50 9
3 76 29
4 77 62

(3b) ε =

(1 + 0.1i
1 + 0.1i

−2 + 0.1i

)
, µ−1 =

(1 + i
2

2.5

) 2 133 17
3 261 144
4 246 279

Table 7.1: Number of iterations with ASM or ORAS (α = iω) for Nd = 2, 3, 4 subdomains

the smallest number of iterations among those tested, and α? = ωeiϕ? . For material 2a, we find ϕ? = 2π/3; for
material -2a, the opposite is observed, ϕ? = −π/3.

On Figure 7.3, we have plotted in dark red the range Θ of simultaneous ellipticity directions of µ−1 and −ε.
For more convenience, we have also plotted in light red the opposite directions to Θ. These results suggest a link
between the choice of the coefficient argument and the tensors ellipticity directions. The convergence seems to
be best if α is chosen in opposition to the coercivity directions Θ (i.e. arg(−α) ∈ Θ); more precisely, if all three
coefficients µ−1, −ε and −α are simultaneously elliptic, which is the condition for the local problems to be coercive
(see Theorem 5.3.6). On the contrary, when −α is chosen opposed to Θ, the convergence worsens.

Although not presented extensively here, this have also been tested for materials 1, 3a and 3b. Table 7.2
summarizes the best impedance argument ϕ? obtained (among those tested) for all materials. For material 1, α? is
either iω or −iω. The problem is not coercive, but the tensors eigenvalues are all contained in a closed half-space
of C (either =z ≤ 0 or =z ≥ 0). Taking either α = iω or α = −iω preserves one of these. For materials 3a and 3b,
there is no simultaneous ellipticity. We observe that the best directions are respectively 2π/3 and π/2. However,
we do not have a real conjecture for these results.

A summary of the results with impedance coefficient α? is provided in Table 7.3. In most cases, choosing α?
instead of iω does not have a huge impact on convergence, because both of them are on the same side of the circle
according to the tensors ellipticity directions. However, material -2a is an interesting counterexample: in this case,
the choice α = iω does not match with the simultaneous ellipticity condition, so the convergence is degraded. On
the contrary, the choice α? = exp(−iπ/3)ω does, and provides a significantly better convergence.

The last experimentations concern a choice of coefficient that is more motivated by physical concerns. Indeed,
in isotropic media, the impedance coefficient is typically given by α = iω

√
εµ−1. For an anistropic medium, a

naive idea is to use an “equivalent impedance” that would correspond to the value of impedance in the direction
normal to the interface: αn = iω

√
n(εµ−1)n. Then, it takes a bit of the geometry into account, contrarily to our

previous choices where α were constant all over the interfaces. The results are presented in the last column of Table
7.3. This coefficient appears to be generally the one giving the best results among those we have experimented,
except for materials 2b and 3b. Moreover, it is easy to compute, independently of considerations on the tensors
ellipticity directions.
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Figure 7.3: Number of iterations of ORAS depending on the argument of impedance coefficient (for 2 subdomains).
The range of directions Θ of simultaneous ellipticity of µ−1 and −ε is plotted in dark red.

Material 1 2a 2b -2a 3a 3b
ϕ? ±π/2 2π/3 π/2 −π/3 2π/3 π/2

Table 7.2: Best observed argument for the impedance coefficient (for 2 subdomains)

7.5.2 An illustrative benchmark: cloaking of a sphere

In order to test the method on a more illustrative case, we conclude the section by considering the cloaking of a
sphere by an ideal optical metamaterial.

Ideal optical metamaterial

We consider the scattering of a plane wave Einc = [exp(ikz), 0, 0]T by a sphere of radius R0. In order to make it
invisible, we surround the sphere by a layer of an ideal optical metamaterial, in the region R0 < r < R1 where r
denotes the radial coordinate.

The (ideal) metamaterial layer is designed by using a geometric transformation that stretches all the electric
field of region r < R1 in the cloak region. It is given by the change of variables

r′ = R0 + R1 −R0

R1
r, (7.67)

where r is the radial coordinate, and r′ the “stretched” radial coordinate. Introduce r the radial unit vector field
and R = r⊗ r, and let s1 = R1

R1−R0
, and s2 = R1(r−R0)

r(R1−R0) . The Jacobian of this transformation is given by

J = s1R + s2(I−R), (7.68)

where the part s1R corresponds to the transformation of the radial coordinate, and the part s2(I−R) corresponds
to the transformation of the tangential coordinates (this part is non-zero because of the spherical system of
coordinates; the different coordinates are coupled).

With this at hand, it is possible to determine the values of the metamaterial tensors (see [93] for details, and
[89, 116] for examples in other contexts). Then ε and µ are given by

ε = µ = s2
2
s1

R + s1(I−R). (7.69)

Remark 7.5.1. It is to be noted that, while s1 is constant, s2 is a scalar field whose value goes to 0 when r goes to
R0. Therefore, the tensors are not strictly speaking elliptic (they are elliptic outside a neighbourhood of r = R0).
To deal with this problem, one can threshold the value of s2 in a neighbourhood of R0 to a small (strictly positive)
value. In practice, this lack of ellipticity does not affect the convergence of the method.
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Material Nd iω α? iω
√

n(εµ−1)n

(1) ε = I, µ−1 = I
2 11 11 11
3 19 19 19
4 24 24 24

(2a) ε =

(1 + i
1 + i

−2 + i

)
, µ−1 =

(1 − i
2

2.5

) 2 8 7 7
3 30 29 21
4 60 62 44

(2b) ε =

(1 + 0.1i
1 + 0.1i

−2 + 0.1i

)
, µ−1 =

(1 − i
2

2.5

) 2 14 14 14
3 136 136 163
4 274 274 293

(-2a) ε = −

(1 + i
1 + i

−2 + i

)
, µ−1 = −

(1 − i
2

2.5

) 2 17 7 17
3 54 29 50
4 112 62 84

(3a) ε =

(1 + i
1 + i

−2 + i

)
, µ−1 =

(1 + i
2

2.5

) 2 9 8 8
3 29 29 19
4 62 58 39

(3b) ε =

(1 + 0.1i
1 + 0.1i

−2 + 0.1i

)
, µ−1 =

(1 + i
2

2.5

) 2 17 17 18
3 144 144 153
4 279 279 278

Table 7.3: Number of iterations for ORAS preconditioner with various impedance coefficients

The same principle allows to compute the analytic expression of the solution in the metamaterial region. In the
metamaterial, there holds

Eexa = J[exp(iks2z), 0, 0]T . (7.70)
On the other hand, in the air, we have ε = µ = I, and Eexa = Einc. A visual of the reference solution is provided
in Fig. 7.4: in the external layer (air), the solution behaves like a plane wave (as if not scattered); in the internal
layer (metamaterial) the wave is distorted, such that the sphere appears invisible.

Figure 7.4: Reference solution (courtesy of A. Modave)

The problem to be solved is then the following:
curl(µ−1 curl E)− ω2εE = 0 in Ω,

µ−1 curl E× n = 0 on Γint,

πT (µ−1 curl E) + ikγTE = g on Γext.

(7.71)

The computational domain is Ω = B(R2)\B(R0), the sphere of radius R0 = 1 being surrounded by two layers: an
ideal optical metamaterial in the layer between R0 and R1 = 1.5, and air in the layer between R1 and R2 = 2. No
volume source is present, f = 0. On the interior boundary Γint, we impose a homogeneous Neumann condition. On
the other hand, on the exterior boundary Γext, we impose an inhomogeneous impedance condition corresponding to
the incident plane wave, g = πT (µ−1 curl Einc) + ikγTEinc, with a wavenumber k = π.
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(a) Error vs mesh size h (b) Error vs degrees of freedom

Figure 7.5: Convergence in mono-domain for cloaking benchmark

Nd ASM ORAS
2 191 16
3 284 51
4 353 99

Table 7.4: Number of iterations for cloaking benchmark
(with 49k dof)

Nd ASM ORAS
2 312 21
3 475 66
4 533 90

Table 7.5: Number of iterations for cloaking benchmark
(with 128k dof)

Validation of monodomain benchmark

The problem is discretized using order 1 and 2 edge finite elements (where the order refers to the polynomial order
of approximation of the solution itself), and solved thanks to the finite element library FreeFem++ [68]. We first
check the convergence of the mono-domain solver. As the solution is smooth enough, as well as its curl, we expect
the error ‖Eexa − Enum‖H(curl) to decrease in the order O(h) for low-order edge finite elements, and O(h2) for
high-order elements.

The convergence results presented on Fig. 7.5 (a) show that we get the expected convergence rate. Fig. 7.5 (b)
represents the same results in terms of degrees of freedom, showing the huge interest of using high-order elements.
Indeed, for comparable sizes of problems, high-order elements provide a much better precision; conversely, to get a
fixed precision, the computational cost is reduced by using high-order elements.

DDM experimentations

For the DDM experimentations, we use order 2 edge finite elements, and focus on two meshes: the ones with
meshsize h = 0.3 and h = 0.2, with 49064 and 128146 degrees of freedom, respectively. As before, the overlap is set
to 1 mesh size, and the relative tolerance in the GMRES to 1e-5.

With this benchmark, we observe that ORAS converges significantly better than ASM. Here, we used the
classical impedance coefficient α = iω. Using the “smarter” coefficient αn = iω

√
n(εµ−1)n has no impact, because

with the ideal optical metamaterial there holds εµ−1 = I.

Conclusion

In this chapter, we have investigated several aspects of DDMs for electromagnetic anisotropic problems. Indeed, in
the perspective of large-scale simulations, robust and efficient DDMs are required, but only a few contributions are
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available for what concerns anisotropic problems. In this work, three different directions have been explored:

• We have studied decomposed formulations for anisotropic problems. In particular, we have proven equivalence
between a formulation with impedance transmission conditions and the global problem (Theorem 7.3.9). This
was done under a regularity hypothesis (whose validity can be discussed as was done in Chapter 6 for domains
of class C2). In Section 7.3.3, we also shed a new light on the saddle-point decomposed formulation proposed
in [8], as these regularity matters help giving a more precise meaning to the space of Lagrange multipliers.

• We have also revisited the iterative procedure proposed by Després et al. [43]. We have extended the proof
of convergence to the case of real symmetric definite positive tensors (Theorem 7.4.6). First results have
also been obtained in other settings: for coercive anisotropic problems (Theorem 7.4.16), as well as for other
boundary conditions than Robin (Theorem 7.4.18).

• Finally, we have made various numerical experimentations on DDM, focusing on the influence of the impedance
condition on convergence. These results tend to illustrate a link between the coercivity direction of the
problem (when it is coercive) and the best choice of direction for the impedance coefficient. They also show
the potential interest of using an impedance coefficient that takes into account the anisotropy of the medium.
This certainly requires further experiments.

These investigations call to future work in both theoretical and practical directions. For the Neumann or
Dirichlet exterior boundary condition, we have obtained partial convergence results, but this analysis is not complete.
Indeed, one has to deal with mixed boundary conditions problems. The well-posedness study for these problems
must be adapted (see [55]). To ensure that the interface conditions hold in L2

t , one also has to adapt results of
Chapter 4 to the setting of mixed boundary conditions (see section 5.1.2.2 of [7]). For non-coercive problems,
further investigations are required, as this was not covered by our work. Moreover, we have mainly restricted our
analysis to the case of scalar constant impedance coefficients. This should be pushed further with heterogeneous
(and maybe tensor-valued) coefficients.

For more practical aspects, let us note that both tested methods were overlapping. A comparison with the
non-overlapping method that truly corresponds to the algorithm described in Section 7.4 would also be interesting.
Further explorations should be conducted on the choice of the impedance coefficient. In particular, heterogeneous
and/or tensor-valued coefficients could be tested. This also opens the road for more elaborate types of transmission
conditions. Indeed, ideally, α is a Dirichlet-to-Neumann operator. One could propose methods with second-order
or higher-order transmission conditions, such as in [99] and [52], among others. Non-local operators could even be
investigated, as was done by Claeys, Collino and Thierry [31], and more recently by Parolin [91].



Chapter 8

Conclusions and perspectives

8.1 Conclusion

In this work, we have conducted an analysis of anisotropic Maxwell problems for a general class of tensors: elliptic
tensors defined in (3.1). In Chapter 3, we have developed the mathematical framework allowing to do so. To that
aim, we have extended the results already known for the study of isotropic Maxwell problems: the main ones are
Helmholtz decompositions and compact embedding results.

In Chapter 4, we have obtained surface regularity results for Robin traces. We have proven that the regularity
of traces related by an impedance condition is governed only by the geometry of the boundary and the impedance
coefficient. This result was obtained for smooth or piecewise constant scalar coefficients. In principle, the techniques
presented would allow to cover the case of a coefficient with jumps, and to get more precise regularity exponent
estimates in given configurations. A first result for the case of a tensor-valued coefficient was also provided.

With these results, we have analysed the variational formulations of anisotropic Maxwell problems, and proven
their well-posedness in Fredholm sense. We have done so for the three main types of boundary conditions: Dirichlet,
Neumann and Robin. Among these, the Robin problem is apart for two reasons. The first one is that one has to
ensure that the traces belong to L2

t (Γ), in order to set the variational formulation in H+(curl,Ω). This was the
point of the studies of Chapter 4. The second one is that, contrarily to Dirichlet and Neumann cases, one needs
additionally to assume interplay between both coefficients µ and α in order to prove the Fredholm character.

Moreover, we have obtained regularity estimates for both the solution and its curl for all three types of problems.
This was done for smooth boundaries and coefficients and for low-regularity data. For Dirichlet and Neumann
problems, we recover the classical estimates of isotropic case. Following standard numerical analysis results then
gives the convergence rate of the edge finite elements method (for coercive problems). The Robin problem is again
apart in this matter. Contrarily to Dirichlet and Neumann cases, we do not obtain in general regularity estimates
with continuous dependence on the data only. Moreover, when we are able to do so, there is a gap between the
regularity estimates with or without continuous dependence on data.

With the help of the work above, we have explored domain decomposition, which was one of the main original
motivations for this work, in different directions. In particular, we have proven equivalence between a decomposed
formulation with impedance transmission conditions and the global problem. This was done assuming known
regularity of the global problem. Our work helps giving a new light to the choice of the Lagrange multiplier function
space for saddle-point formulations in the spirit of [8]. Moreover, we have extended the proof of convergence
of the iterative scheme proposed by Després et al. [43] to the case of real symmetric definite positive tensors.
Investigations of this convergence in other anisotropic contexts – with scalar, constant impedance coefficient – were
also conducted.

Although not the core of our work, some numerical investigations were conducted with FreeFem++ and PETSc
on classical domain decomposition methods. They mostly illustrate the difficulty for standard methods to deal
with complex anisotropic problems. Having studied several choices of impedance coefficient, the results we have
obtained tend to indicate a link between the best possible direction for the impedance coefficient and the coercivity
direction of the problem. They also show the potential interest of using an “equivalent impedance” coefficient that
takes into account anistropy. This needs to be confirmed by further studies.
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8.2 Perspectives

Among the numerous ways of future prospects are the treatment of mixed boundary condition problems. Indeed,
this would allow to analyse theoretically the impedance-based DD for exterior boundary conditions other than
Robin. This requires a new extension of our work. As the variational formulation will be posed in a different function
space, one needs to develop the corresponding Helmholtz decompositions and compact embeddings, following the
work of Fernandes and Gilardi [55] for real symmetric tensors. This would allow to study the well-posedness of
the problem. For regularity matters, an additional difficulty is that one has to come up with appropriate shift
regularity results. For this, we refer to the work of Jochmann [76, 77].

Let us also point out that our regularity results have been obtained for smooth boundaries and material tensors.
These results can be extended to less regular problems. In the case of piecewise smooth boundaries, one has to
take into account reentrant edges and corners, see e.g. [35]. In the case of coefficients with jumps, one can proceed
as in [27]. Both aspects involve the theory of singularities, somehow as the techniques used in Chapter 4 (but in a
volume setting). Concerning numerical analysis results, we have limited our results to the case of coercive problems.
For non-coercive problems, one has to prove a discrete uniform inf-sup condition. This can be achieved in the spirit
of [64].

An important prospect direction concerns impedance coefficients, especially in view of domain decomposition.
This encompasses both theoretical questions and applicative ones. Among the theoretical aspects, the results of
Chapter 4 could be pushed forward. For scalar coefficients, we have treated the smooth and piecewise constant
cases. These results can be extended to deal with piecewise smooth impedance coefficients. The techniques used can
be adapted to give more precise results for given configurations. For tensor-valued coefficients, we have proposed
a first result that can certainly be enhanced. Another aspect is the proof of convergence of the algorithm in
Section 7.4. In our work, the proofs are limited to the case of transmission conditions with constant coefficient,
and to particular classes of material tensors. The study still has to be done for more general cases. In practice,
heterogeneous coefficients seem more attractive than constant ones, so it would be useful to extend the proofs to
scalar heterogeneous coefficients, and maybe even to tensor-valued heterogeneous coefficients.

Our work also raises more practical questions. While our numerical results show that the choice of the coefficient
in the transmission condition clearly has an impact on the efficiency of the method, this is not clearly understood
yet. Many questions remain open: is there a physical meaning that could be given to the impedance coefficient
in anisotropic media? Is there an optimal way to choose the coefficient in the transmission condition to ensure
a better convergence of the method (and which one)? Could better results be obtained using a tensor-valued
coefficient, and, again, how to tune it? Finally, because this work is, we believe, among the first to address domain
decomposition for anisotropic Maxwell problems, it opens a broad range of perspectives in the wide wild world
of domain decomposition methods. Thus, more elaborate transmission conditions could be investigated, such as
higher-order ones (see, e.g., [52]), or even non-local transmission conditions as in [91]. The multi-trace theory could
provide a suitable setting for further developments.



Index of notations

Main operators

curl curl operator
curlΓ surface scalar curl operator
curlΓ surface vectorial curl operator

div divergence operator
divΓ surface divergence operator

∆ (scalar) Laplace operator
∆Γ Laplace-Beltrami operator
γ v 7→ v|Γ (trace of scalar fields)
γn v 7→ v · n|Γ (normal trace)
γT v 7→ v× n|Γ (tangential trace)
πT v 7→ n× (v× n)|Γ (tangential components trace)
∂α partial derivative
∇ gradient
∇Γ surface gradient
× cross product
·∗ complex conjugate or adjoint
· ′ dual space of given space
· |O restriction of given field to O
·̃ continuation by zero

[ · ]Σ jump of given quantity across surface Σ
(· | ·) inner product of L2(Ω) or L2(Ω)

(·, ·)Γ inner product of L2
t (Γ)

〈·, ·〉 duality product in the sense of distributions
〈·, ·〉V duality product between V ′ and V
γ〈·, ·〉π duality product between H−1/2

‖ (divΓ,Γ) and H−1/2
⊥ (curlΓ,Γ)

Γ′,π〈·, ·〉γ,0 duality product between H̃−1/2
⊥ (curlΓ,Γ′) and H−1/2

‖,0 (divΓ,Γ′)
‖ · ‖γ norm of H−1/2

‖ (divΓ,Γ)
‖ · ‖π norm of H−1/2

⊥ (curl,Γ)

Main function spaces

C(Ω) (set of) continuous fields of Ω
Ck(Ω) k-differentiable fields of Ω (k ∈ N)
C∞(Ω) infinitely differentiable fields of Ω
D(Ω) fields of C∞(Ω) with compact support in Ω
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D′(Ω) dual space of D(Ω) (distributions)
H(curl,Ω) =

{
v ∈ L2(Ω), curl v ∈ L2(Ω)

}
H(div,Ω) =

{
v ∈ L2(Ω), div v ∈ L2(Ω)

}
H(div 0,Ω) = {v ∈ H(div,Ω), div v = 0}
H(div ξ,Ω) =

{
v ∈ L2(Ω), div ξv ∈ L2(Ω)

}
H(div ξ0,Ω) =

{
v ∈ H(div ξ,Ω), div ξv = 0

}
H(Γ) =

{
v ∈ H1

zmv(Γ), ∆Γ v ∈ H−1/2(Γ)
}

H0(curl,Ω) =
{
v ∈ H(curl,Ω), γTv = 0

}
H0,Γ0(curl,Ω) =

{
v ∈ H(curl,Ω), γTv|Γ0 = 0

}
H0(div,Ω) = {v ∈ H(div,Ω), γnv = 0}

H0(div 0,Ω) = H0(div,Ω) ∩H(div 0,Ω)
H0(div ξ,Ω) =

{
v ∈ L2(Ω), ξv ∈ H0(div,Ω)

}
H0(div ξ0,Ω) = H0(div ξ,Ω) ∩H(div ξ0,Ω)

Hs(Ω) Sobolev spaces (s ∈ R)
Hs
t (Γ) = Hs(Γ) ∩ L2

t (Γ) (s > 0)
Hs

zmv(Ω) = Hs(Ω) ∩ L2
zmv(Ω) (s > 0)

H1
0 (Ω) =

{
v ∈ H1(Ω), γv = 0

}
H+(curl,Ω) = {v ∈ H(curl,Ω), γTv ∈ L2

t (Γ)}
H−1/2
‖ (divΓ,Γ) = γT (H(curl,Ω))

H−1/2
⊥ (curlΓ,Γ) = πT (H(curl,Ω))

H̃−1/2
‖ (divΓ,Γ′) = γTΓ′ (H(curl,Ω))

H̃−1/2
⊥ (curlΓ,Γ′) = πTΓ′ (H(curl,Ω))

H−1/2
‖,0 (divΓ,Γ′) = γTΓ′

(
H0,Γ\Γ′(curl,Ω)

)
H−1/2
⊥,0 (curlΓ,Γ′) = πTΓ′

(
H0,Γ\Γ′(curl,Ω)

)
KN (Ω) = H0(curl,Ω) ∩H(div 0,Ω)

KN (ξ; Ω) = H0(curl,Ω) ∩H(div ξ0,Ω)
KT (Ω) = H(curl,Ω) ∩H0(div 0,Ω)

KT (ξ; Ω) = H(curl,Ω) ∩H0(div ξ0,Ω)
L2(Ω) =

{
v s.t.

∫
Ω |v|

2 <∞
}

L2
t (Γ) =

{
v ∈ L2(Γ), v · n = 0

}
L2

zmv(Ω) =
{
v ∈ L2(Ω), (v|1) = 0

}
L∞(Ω) essentially bounded fields of Ω

W 1,∞(Ω) = {v ∈ L∞(Ω), ∀k, ∂kv ∈ L∞(Ω)}
WN (Ω) = H+(curl,Ω) ∩H(div 0,Ω)

WN (ξ; Ω) = H+(curl,Ω) ∩H(div ξ0,Ω)
XN (Ω) = H0(curl,Ω) ∩H(div,Ω)

XN (ξ; Ω) = H0(curl,Ω) ∩H(div ξ,Ω)
XT (Ω) = H(curl,Ω) ∩H0(div,Ω)

XT (ξ; Ω) = H(curl,Ω) ∩H0(div ξ,Ω)

Various symbols

I identity tensor (of R3×3)
n unit outward normal
Γ boundary of Ω
Ω domain of R3
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O closure of domain O
∂O boundary of domain O
. lesser up to a constant

Abbreviations

a.e. almost everywhere
cf. confer
e.g. exempli gratia
i.e. id est
iff if and only if
s.t. such that

w.r.t. with respect to

Acronyms

ASM Additive Schwarz Method
DDM Domain Decomposition Method
dofs Degrees of freedom
FEM Finite Element Method

ORAS Optimized Restrictive Additive Schwarz
PDE Partial Differential Equation
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Résumé: La simulation numérique de problèmes
électromagnétiques dans des configurations physiques
complexes est largement utilisée pour de nombreuses
applications scientifiques et industrielles, telles que la
conception de métamatériaux optiques ou l’étude des
plasmas froids. L’analyse mathématique et numérique
des problèmes de Maxwell est bien connue dans des
contextes physiques simples, où les paramètres du mi-
lieu sont isotropes. Des résultats en milieux anistropes
existent, mais se limitent généralement au cas des
tenseurs réels symétriques (ou complexes hermitiens)
définis positifs. Cependant, pour certains milieux plus
complexes, les problèmes ne sont pas couverts par
la théorie standard. De nouveaux outils mathéma-
tiques doivent donc être développés pour analyser ces
problèmes.
Dans cette thèse, nous analysons des problèmes élec-
tromagnétiques harmoniques en temps pour une classe

générale de tenseurs matériels anistropes, appelés ellip-
tiques. Nous développons un cadre fonctionnel étendu
adapté à ces problèmes anisotropes, en généralisant
les résultats connus. Nous étudions le caractère bien
posé de problèmes avec conditions limites de Dirichlet,
Neumann ou Robin. Dans le cas Robin, un intérêt
particulier est porté à la caractérisation des espaces
fonctionnels pour les traces de Robin. Nous étudions
la régularité de la solution et de son rotationnel, et
donnons des éléments d’analyse numérique. Dans la
perspective de l’utilisation de méthodes de décomposi-
tion de domaine (DDM) pour une résolution accélérée,
nous proposons et étudions différentes formulations
décomposées, en nous focalisant sur leurs espaces fonc-
tionnels et leur équivalence avec le problème global.
Quelques expérimentations numériques sur la DDM
complètent ce travail.

Title: Analysis of time-harmonic electromagnetic problems in elliptic anisotropic media

Keywords: Maxwell equations, anisotropic media, electromagnetic waves, finite elements, regularity analysis,
domain decomposition

Abstract: The numerical simulation of electromag-
netic problems in complex physical settings is a trend-
ing topic which conveys many scientific and industrial
applications, such as the design of optical metamate-
rials, or the study of cold plasmas. The mathematical
and numerical analysis of Maxwell problems is well-
known in simple physical contexts, when the material
parameters are isotropic. Some results in anisotropic
media exist, but they generally tend to focus on the
case where the material tensors are real symmetric
(or complex Hermitian) definite positive. However,
problems in more complex media are not covered by
the standard theory. Therefore, new mathematical
tools need to be developed to analyse these problems.
This thesis aims at analysing time-harmonic electro-
magnetic problems for a general class of complex
anisotropic material tensors. These are called el-

liptic materials. We derive an extended functional
framework well-suited for these anisotropic problems,
generalizing well-known results. We study the well-
posedness of Maxwell boundary value problems for
Dirichlet, Neumann, and Robin boundary conditions.
For the Robin case, the characterization of appropri-
ate function spaces for Robin traces is addressed. The
regularity of the solution and its curl is studied, and
elements of numerical analysis for edge finite elements
are provided. In the perspective of the use of Do-
main Decomposition Methods (DDM) for accelerated
numerical computing, various decomposed formula-
tions are proposed and studied, focusing on their right
meaning in terms of function spaces and equivalence
with the global problem. These results are comple-
mented with some numerical DDM experimentations
in anisotropic media.
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