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Staphylococcus aureus : Caractérisation moléculaire des isolats Afghans

et étude du transfert conjugatif de la résistance au linézolide

Résumé
1. Caractérisation moléculaire des isolats de S. aureus en provenance d’Afghanistan

Staphylococcus aureus (SA) est une cause majeure d'infections chez 'Homme et de nombreux
animaux. L'un des principaux objectifs de cette theése a été d'étudier les caractéristiques
moléculaires et le profil de résistance aux antibiotiques des souches d'infection et de colonisation
de SA/SA résistant a la méticilline (SARM) chez 'Homme et le bétail a Kaboul. Les souches ont
¢été identifiées par des méthodes phénotypiques conventionnelles, et 1’antibiogramme réalisé par
diffusion. Les souches de SARM ont ensuite été caractérisées a l'aide de puces a ADN. Parmi les
isolats de SA provenant d'infections humaines dans 2 hopitaux de Kaboul entre Janvier et Juin
2017, la prévalence des SARM ¢était élevée (66,3 %). Les 98 isolats de SASM et SARM
appartenaient a 12 complexes clonaux et 27 clones distincts. La prévalence du portage nasal de SA
et du SARM dans la communauté, plus précisément chez des étudiants (hors médecine) de
I’Universit¢ de Kaboul, était respectivement de 33,3% et 12,7%. Les 19 isolats de SARM
appartenaient a 4 clones. Enfin, les études réalisées chez 1’animal ont montré qu’environ 11,8%
des souches de SA responsables de mammite bovine a Kaboul étaient résistantes a la
méticilline (2/17) et que la prévalence du portage nasal de SA chez les moutons était trés faible
(1,1 %). Globalement, la caractérisation moléculaire des isolats a mis en évidence une grande
diversité génétique et la présence de multiples génes de virulence et de résistance parmi les souches

de SA/SARM circulant dans les établissements de soins, la communauté et le bétail a Kaboul.

2. Transfert conjugatif du géne de résistance au linézolide cfr
Le linézolide est un antibiotique de recours pour le traitement des infections 8 SARM. L'objectif
de ce travail a éte d'étudier, 1) le risque de transfert conjugatif de la résistance au linézolide médiée
par le géne plasmidique cfr, de souches de S. epidermidis (SE) vers des souches de SA de divers
fonds génétiques, et ii) le colit de ce transfert pour les souches receveuses et la stabilité des
plasmides. Cinq souches de SE portant 4 plasmides différents (pSA4737, p12-02300, p-cfr-PBR-A,
p-cfr-PBR-B) portant le geéne cfr, et des souches sensibles appartenant a 9 clones majeurs de SA
circulant en France ont été respectivement utilisées comme souches donneuses et receveuses. Les

réusltats obtenus montrent que certains clones, comme le clone ST8-MRSA-IV USA300,
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présentaient un risque plus important d’acquisition des plamides proteur de géne cfr. La souche SE
STS5 avait une plus grande capacité a transférer le plasmide p-cfr-PBR-B a différentes souches
receveuses que la souche ST2 portant ce méme plasmide. Certains plasmides, comme pSA737 et
pl12-02300, étaient transférables a la plupart des souches receveuses testées. Les colts de
I’acqusition des plasmides portant le géne cfr étaient variables pour une méme souche et entre les
plasmides eux-mémes. Enfin, il apparait que les plasmides cfi+ étaient systématiquement plus
stables dans les SE que dans les SA apres des subcultures itératives sans pression de sélection. Au
final, nos résultats ont montré que la résistance au linézolide, médiée par cfr, peut étre transférée
efficacement par conjugaison de SE aux clones pathogénes majeurs de SA circulant en France mais
que le transfert est trés variable en fonction des souches donneuses et receveusess ainsi que des
plamides considérés.

Mots-clés

Staphylococcus aureus, SARM, caractérisation moléculaire, Kaboul, Afghanistan, linézolide, cfr,

transfert conjugatif, fitness.
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Staphylococcus aureus: Molecular characterization of Afghan isolates
and study of conjugative transfer of linezolid resistance
Summary
1. Molecular characterization of S. aureus isolates from Afghanistan

Staphylococcus aureus (SA) is a major cause of infections in human and animals. One of the main
objectives of this thesis was to investigate the molecular features and the antimicrobial resistance
profile of SA and methicillin-resistant SA (MRSA) strains isolated from infection and colonization
among humans and livestock in Kabul. All strains were identified by conventional phenotypic
methods and antimicrobial susceptibility testing performed by disk diffusion. MRSA strains were
then extensively characterized using DNA microarray. Among SA isolated from human infections
in 2 hospitals of Kabul, from January to June 2017, MRSA prevalence was high at 66.3%. The 98
isolates (65 MRSA and 33 MSSA) were grouped into 12 clonal complexes and 27 distinct clones.
The prevalence of nasal carriage of SA and MRSA among healthy population (i.e., among non-
medical university students) in Kabul was 33.3% and 12.7% respectively. Four CCs and 7 clones
were 1dentified in the 19 MRSA 1isolates. Regarding animal strains, 11.8% (2/17) of SA strains
causing bovine mastitis were MRSA, belonging to 2 distinct clones, and a very low prevalence
(1.1%) of SA nasal carriage was found in sheep in Kabul. Overall, molecular characterization of
the isolates indicated a large genetic diversity and the presence of multiple virulence and antibiotic
resistance genes among SA/MRSA strains circulating in the health-care facilities, community and

livestock in Kabul.

2. Conjugative transfer of cfr linezolid resistance gene
Linezolid is one of the last resort antibiotics for the treatment of MRSA infections. The objective
of this work was to investigate, 1) the risk of conjugative transfer of linezolid resistance from
S. epidermidis (SE) strains to various SA clones, and ii) to assess the fitness cost and stability of
plasmids in recipient strains. Five SE strains harboring different cfr-carrying plasmids (pSA737,
p12-02300, p-cfr-PBR-A, p-cfr-PBR-B), and 9 major clones of SA circulating in France were used
as donors and recipients, respectively. The results showed that certain clones such as ST8-MRSA-
IV USA300 was more at risk of acquisition of cfr-carrying plasmids. The SE ST5 strain was more
able to transfer the plasmid p-cfr-PBR-B to different recipients, compared to SE ST2 harboring the
same plasmid. The plasmids pSA737 and p12-02300 were transferred to most of the recipients

tested. The fitness costs of cfr-positive plasmids were variable for the same strain and between
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plasmids. Finally, the studied cfr-positive plasmids were systematically more stable in SE than in
SA after consecutive sub-cultures without selection pressure. Finally, these results show that cfr-
mediated linezolid resistance can be efficiently transferred to major pathogenic clones of SA
circulating in France, but the transmission is variable according to donor and recipient strains as
well as the relevant plasmids.

Keywords

Staphylococcus aureus, MRSA, molecular characterization, Kabul, Afghanistan, linezolid, cfr,

conjugative transfer, fitness cost.
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INTRODUCTION

Staphylococcus aureus (S. aureus) is a major cause of hospital and community-acquired infections.
It is most often responsible for skin and soft tissues infections (SSTIs), but can cause more severe
diseases such as bacteremia, pneumonia, and serious deep-seated infections such as endocarditis
and osteomyelitis. It can also cause infections related to medical instrumentation, such as central-
line associated bloodstream infections. Since the 1960s, methicillin-resistant S. aureus (MRSA)
was a truly global challenge. In the 2000s, in addition to the long-known healthcare-associated
clones, novel strains have also emerged outside the hospital settings, in the community as well as
in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin
(PVL), toxic shock syndrome toxin-1 (TSST-1) and other superantigens, is an additional cause for
concern. MRSA epidermiology is variable in the world with some strains predominating in
geographically restricted settings while others have achieved pandemic spread.

Firstly, the severity and outcome of a S. aureus infection in an individual depend in part on the
virulence (toxinic arsenal) of the bacterial clone responsible. Thus, epidemiological studies are
interesting for public-health officials and infectious disease experts to analyze the geographic
distribution of the virulent and multi-drug resistant (MDR) S. aureus clones that cause invasive
infections, because this information should help them to understand how these pathogens spread
and to better control them. Clones of S. aureus can be distinguished by “molecular typing”
techniques based on the determination of clone-specific nucleotidic sequences in variable regions
of the bacterial genome. Although molecular typing data for S. aureus/MRSA are abundantly
available for Western Europe, North America or Australia only, few studies have been conducting
to describe the epidemiology in the rest of the world, including Central Asia. Until now, no
molecular typing study on S. aureus/MRSA clinical and community strains as well as animal
strains, has been conducted in Afghanistan.

Secondly, in regard to the treatment of MDR gram-positive pathogens, glycopeptides have
traditionally been the antibiotics of choice; but there may be difficulties with their use, including
the emergence of glycopeptide-resistant or intermediate strains, a moderate tissue penetration, and
the need to achieve and monitor adequate serum levels. Newer antibiotics such as linezolid, a
synthetic oxazolidinone, are now available for the treatment of infections due to resistant gram-
positive bacteria. Linezolid is effective in the treatment of infections caused by various gram-

positive pathogens, including MRS A and enterococci. It has also been shown to be a cost-effective
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treatment option in several studies, with its high oral bioavailability allowing an early change from
intravenous to oral formulations with consequent of earlier patient discharge and lower inpatient
costs.

Nevertheless, overuse of linezolid in the hospitals is a relevant factor for the emergence of linezolid
resistant microorganisms. Mechanisms of resistance consist in 1) ribosomal mutations which can
not be transferred horizontally ii) horizontally transferable resistance genes which could be
prevented by knowing their mechanism of spread and setting up preventive measures. According
to some recent studies, the main reservoir for the transferable linezolid resistance genes (mainly
cfr) are coagulase negative staphylococci (CoNS), especially Staphylococcus epidermidis (S.
epidermidis), which may horizontally transfer the linezolid resistance genes to more pathogenic
gram-positive cocci such as S. aureus, resulting severe infections difficult to treat. Understanding
the mechanisms of transmission and the transfer capacity of the different cfr-carrying plasmids, as
well as the propensity of S. aureus strains to acquire this kind of resistance or ability of S.
epidermidis strains to transfer it, would help to take preventive measures in order to reduce the
emergence and spread of new linezolid-resistant strains.

In this context, the first objective of this work was to investigate the molecular features and
antibiotic resistance profile of S. aureus/MRSA clinical, community and livestock strains isolated
in Kabul Afghanistan. Secondly, this work aimed to investigate the risk of conjugative transfer of
cfr-carrying plasmids from linezolid-resistant S. epidermidis (LRSE) strains already isolated from
the patients in various French hospitals, to varioius pathogenic clones of S. aureus currently
circulating in France.

In the first part of this thesis, we present a literature review about S. aureus resistance genes,
virulence determinants, and circulating clones in the regions around Afghanistan; then we explored
the mechanisms of resistance to linezolid and horizontal gene transfer (HGT); finally we evaluated
the fitness costs of the acquired plasmid on bacterial host. This part is concluded with relevant
findings of literature review and working hypothesis. In second part, the experimental work is
presented and results are discussed in light of previous literature. In the last chapter, the main
findings are summarized and conclusions are followed by the perspectives for the continuation of

this work.
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PART 1: LITERATURE REVIEW

1. Characteristics of S. aureus

1.1. Generalities about S. aureus

The genus Staphylococcus was first identified by the Scottish surgeon Sir Alexander Ogston in
1880 in Aberdeen, United Kingdom. He discovered the microbe after noticing groups of bacteria
in pus from a knee joint abscess during a procedure he was performing. Then, in 1884, the German
scientist Friedrich Julius Rosenbach identified S. aureus, discriminating and separating it
from Staphylococcus albus, a related bacterium (1). These designations remained until 1939, when,
based on coagulase testing, Cowan differentiated S. epidermidis as a separate species (2).
According to bacterial classification, S. aureus belongs to the kingdom of bacteria, phylum
Firmicutes, class of Bacilli, order of Bacillales and family of Staphylococcaceae (Table 1).

S. aureus 1s a facultative anaerobic, gram-positive spherical bacterium of approximately lpm in
diameter forming grape-like clusters and has large, round, golden-yellow colonies, often
with hemolysis, when grown on blood agar plates (Fig. 1). It is nonmotile and does not form spores
(1). S. aureus reproduces by binary fission. Complete separation of the daughter cells is mediated
by S. aureus autolysin, and in its absence or targeted inhibition, the daughter cells remain attached
to one another and appear as clusters (3). The catalase enzyme produced by S. aureus transforms
hydrogen peroxide (H»0;) to oxygen and water. Catalase-activity is used to distinguish
staphylococci from streptococci and enterococci. Among staphylococci, the coagulase test can be
used to distinguish coagulase-positive staphylococci (mainly S. aureus, but also S. hyicus,

S. intermedius, S. pseudintermedius) from coagulase-negative species such as S. epidermidis (4,5).
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Table 1. Taxonomic classification of S. aureus. Retrieved on 18. Jan. 2021 from the Integrated
Taxonomic Information System online-database (www.itis.gov)

Kingdom Bacteria Cavalier- Smith,2002
Subkingdom Posibacteria Cavalier- Smith,2002
Phylum Fermicutes Gibbons and Murray, 1976
Class Bacilli Ludwig et al., 2010
Order Bacilliales Prévot, 1953
Family Staphylococcaceae Schleifer and Bell, 2010
Genus Staphylococcus Rosenbach, 1884
Species Staphylococcus aureus Rosenbach, 1884
Direct Children:
Subspecies Staphylococcus aureus anaerobius De La Fuente et al., 1985
Subspecies Staphylococcus aureus aureus Rosenbach, 1884

Fig 1. Morphology of S. aureus. The image is captured under a scanning electron microscope and
10,000x magnification (CDC public health image gallery).

S. aureus is part of human flora, and is primarily found in the nose and skin of approximately 25
to 30% of the general population without causing any harm (nasal carriage), but it is also a
pathogenic bacterium that can cause various infections in humans (6). Higher carrier rates are seen
in injection drug users, persons with insulin dependent diabetes, patients with dermatological
conditions, and inpatients with long-term indwelling intravascular catheters. The carrier state is of

clinical importance because any surgical intervention or exudative skin condition predispose the
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carrier to a higher rate of infection compared with non-carriers, the infection usually being caused
by the patient colonizing strain (7). The main reservoir sites are the nasal vestibule (35%) and the
perineal region (20%), as well as the umbilical, axillary and interdigital regions (5-10%), from
which dissemination can occur, causing disease and allowing transmission to other individuals (6).
S. aureus is one of the first described pathogens in history of medicine. This is not surprising,
however, as it was and is still one of the most common causes of infections in humans. It is of
significant importance due to its ability to cause a plethora of infections as well as its capacity to
adapt to diverse environmental conditions. S. aureus is one of the major causes of healthcare-
associated (HA) and community-acquired (CA) infections. It is most often responsible for SSTTIs,
but can cause more severe diseases such as bacteremia, pneumonia, and serious deep-seated
infections such as endocarditis and osteomyelitis. It can also cause infections related to medical
instrumentation, such as central-line associated bloodstream infections (8). Infections are due to
both methicillin-susceptible S. aureus (MSSA) and MRSA strains. Currently, there is little
understanding of S. aureus mechanism of pathogenesis and the nature of protective immunity
against infection. In recent decades, due to the evolution of bacteria and the abuse of antibiotics,
the drug resistance of S. aureus and infection rate of MRSA has gradually increased in many
countries (9—11).

S. aureus pathogenicity is mediated by numerous virulence factors and toxins, leading to either
suppurative infections or toxin-mediated diseases, including toxic shock syndrome, staphylococcal
food-borne diseases, and scalded skin syndrome (SSSS) (9). These virulence factors and toxins
also allow S. aureus to address challenges presented by the human immune system. Because it has
such elaborated tools, one might think that humankind would be highly vulnerable to severe
infections by S. aureus. Interestingly, however, S. aureus maintains a fine control of its virulence
factors and, in most cases, rarely causes severe life-threatening infections in healthy individuals.
S. aureus is naturally susceptible to most of the antibiotics that have been developed, however is
able to acquire a whole range of resistance to antimicrobials. Resistance is acquired either by
horizontal transfer of genes from outside sources, or by chromosomal mutations. The natural
susceptibility of S. aureus led Alexander Fleming to discover the penicillin in 1928, and it was
truly a miracle drug allowing to cure infections that were previously fatal. Yet, in the mid-1940s,
only a few years after its introduction into clinical practice, penicillin resistance was encountered
in hospitals and within a decade it had become a significant problem in the community (12).

Emergence of antibiotic resistance by S. aureus can be visualized as a series of waves (Fig. 2).
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Fig 2. Emergence of antibiotic resistance by S. aureus over time illustrated by a timeline of the
four waves of antibiotic resistance in S. aureus. Wave 1 began shortly after the introduction of
penicillin into clinical practice in the 1940s. The first pandemic antibiotic resistant strains, from
lineage named phage type 80/81 (®80/81), were penicillin resistant and produced PVL. Wave 2
began almost immediately after the introduction of methicillin into clinical practice with isolation
of the first MRSA (Archaic clone), which contained type I Staphylococcal cassette chromosome
mec (SCCmec) (MRSA-I) and continued into the 1970s as the Iberian clone. Wave 3 began in the
mid-to-late 1970s with emergence of new MRSA strains, which contained novel SCCmec types, 11
and III (MRSA-II and III), marking the on-going worldwide pandemic of MRSA in hospitals and
healthcare facilities. The increase in vancomycin usage for treatment of MRSA infections
eventually led to emergence of vancomycin intermediate S. aureus (VISA) strains. Wave 4, which
began in the mid-to-late 1990s, marks the emergence of MRSA strains in the community. CA-
MRSA strains are generally susceptible to most antibiotics other than beta-lactams, and contain a
smaller SCCmec element, type IV (MRSA-1V), and a variety of virulence factors, including PVL.
Vancomycin-resistant S. aureus (VRSA) strains, of which approximately 10 have been isolated,
exclusively in healthcare settings, were first identified in 2002 (10).

The first wave began in the mid-1940s with the emergence of penicillin-resistant S. aureus strains
in hospitals.

The introduction of methicillin marked the beginning of the second wave of resistance. The first
reports of MRSA was published in 1961 (13). However, the specific gene, mecA, which encodes
the low affinity penicillin binding protein 2a (PBP2a) responsible for the phenotypic resistance to
methicillin, was not identified until over 20 years later. Unlike penicillinase-mediated resistance,

which is narrow in its spectrum, methicillin resistance confers resistance to almost all of the beta-
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lactam antibiotic class (penicillins, cephalosporins, and carbapenems). Among the earliest MRSA
clinical isolates, is the archetypal strain COL, a member of the “archaic” clone of MRSA and
perhaps the most studied MRSA strain, which was isolated from a patient in Colindale, United
Kingdom in 1960 (12). COL is a member of the most successful of all MRSA lineages (e.g., the
Iberian and Rome clones), which includes both HA- and CA-strains. This archaic clone of MRSA
strains circulated in hospitals throughout Europe until the 1970s (14). Its isolates also reported from
hospitals in the United States (15,16), but the rest of the world was largely spared and these early
MRSA clones never gained a foothold in the community. By the 1980s, for unclear reasons, archaic
MRSA strains had largely disappeared from European hospitals, marking the end of the second
and the beginning of the third wave of antibiotic resistance. Descendants of the archaic MRSA
clone (e.g., the Iberian and Rome clones) and other highly successful MRSA lineages emerged
(15). These strains disseminated worldwide, leading to the global MRSA pandemic in hospitals
that continues to the present.

Although the global spread, MRSA were still confined mainly to hospitals and other healthcare
facilities. Due to increased burden of MRSA infections in hospitals the use of vancomycin as part
of anti-MRSA treatment intensified, and under this selective pressure, vancomycin intermediate
S. aureus (VISA, which are not inhibited in vitro at vancomycin concentrations below 4 to 8
pg/mL) and vancomycin-resistant S. aureus (VRSA, showing high-level resistance to vancomycin
and harbouring the vanA gene from vancomycin-resistant enterococci, VRE) strains emerged (17).
In the 2000s, linezolid was commercialized and appeared as one of the last resort antibiotic for the
treatment of severe infections due to MDR-MRSA strains (18), which will be explained in a
separate chapter of this thesis.

The invasion of the community by MRSA constitutes the fourth and latest wave of antibiotic
resistance described for S. aureus. Some of the first cases of CA-MRSA infections occurred in
indigenous populations in Western Australia, United States and Canada in the early 1990s,
suggesting that they were either descendants of hospital strains or community strains that had
acquired mecA from hospital strains by HGT (12). Outbreaks and epidemics of CA-MRSA now
occur worldwide, although the specific clones that have emerged vary with geographical location.
CA-MRSA strains are generally susceptible to most antibiotics other than beta-lactams, and contain
a smaller SCCmec element, type IV, and a variety of virulence factors, including PVL. Their
genotypes indicate that they are not related to endemic hospital clones and these community strains

are susceptible to numerous antibiotics to which hospital strains are routinely resistant.
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1.2. Virulence determinants of S. aureus

S. aureus is able to produce many virulence factors, such as hemolysins, leukocidins, proteases,
enterotoxins, exfoliative toxins, and immune-modulatory or immune-evasion factors. The
expression of these factors is tightly regulated during growth. The accessory gene regulator (agr)
system, known as the quorum-sensing system of S. aureus, is a crucial regulatory component
involved in the control of bacterial virulence factor expression. A number of in vivo experiments
showed that many factors, including cellular immune factors and nutrient conditions, affect the
expression of virulence factors, suggesting that the mechanisms of regulation of virulence factors
in vivo are complex and not only dependent on agr (19).

For the most of diseases caused by S. aureus, pathogenesis is multifactorial. However, there are
correlations between some clinical features and expression of specific virulence determinants,
which suggests their role in a particular disease e.g., PVL and tissue necrosis. The application of
molecular biology has led to advances in unraveling the pathogenesis of staphylococcal diseases.
Genes encoding potential virulence factors have been cloned and sequenced, and many protein
toxins have been purified. With some staphylococcal toxins (e.g., Enterotoxins A-G, TSST-1),
symptoms of human disease can be reproduced in animals with the purified protein toxins, lending
an understanding of their mechanism of action (20).

The broad range of infections caused by S. aureus is related to a number of virulence factors that
allow it to adhere to surface, invade and/or avoid the immune system, and cause harmful toxic

effects to the host (Fig. 3).
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Fig 3. Virulence determinants of S. aureus (18).
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The important virulence factors of S. aureus which exist in all strains, because encoded in the core
genome, are: (1) surface proteins that promote colonization of host tissues that are called adhesins;
typical members of the family of adhesins called microbial surface components recognizing
adhesive matrix molecules (MSCRAMM) are staphylococcal protein A (Spa), fibronectin-binding
proteins A and B (FnbpA and FnbpB), collagen-binding protein, and clumping factor (CIf) A and
B; (2) invasins that promote bacterial spread in tissues (kinases, hyaluronidase); (3) surface factors
that inhibit phagocytosis (capsule, protein A); (4) biochemical components that enhance bacterial
survival in phagocytes (carotenoids, catalase); (5) immune evasion (protein A, coagulase); (6)
membrane-damaging toxins that lyse eukaryotic cell membranes (hemolysins, leukocidins).

The most important virulence factors encoded by mobile genetic elements (MGEs) and horizontally
transmissible to other S. aureus strains are: PVL, staphylococcal enterotoxins A-G, TSST-1, which

are described later in more detail.

The agr quorum-sensing system

S. aureus has evolved a complex regulatory network to control its virulence. One of the main
functions of this interconnected network is to sense various environmental cues and respond by
altering the production of virulence factors necessary for survival in the host, including cell surface
adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the
best studied is the agr system (21). This system allows S. aureus to sense its own population density
and translate this information into a specific gene expression pattern. Besides agr, this pathogen
uses other two-component systems to sense specific cues, and coordinates responses with
cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent
regulatory systems integrate the various environmental and host-derived signals into a network that
assures optimal pathogen response to the changing conditions.

The agr system is a crucial regulatory component in S. aureus, conserved throughout the species.
It is a 3 kb locus showing highly conserved and hypervariable regions (22) (Fig. 4). The sequence
of this hypervariable segment is the target of PCR amplification for defining agr types 1 to 4 (23).
agr is the gene cluster that encodes the peptide quorum-sensing system that senses the local
concentration of a cyclic peptide signalling molecule (Fig. 5). The signal sensed by the agr system
is an autoinducing peptide (AIP), which can be 7-9 amino acids in length and contains a 5-
membered thiolactone ring between the C-terminal end and a conserved cysteine residue. The AIP
signal accumulates in the extracellular environment, and once it reaches a critical concentration,
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usually at a “quorum” cells in the population, the system is activated. S. aureus uses the agr system
to adapt to changing environmental conditions during growth and to regulate virulence. The agr
system consists of two adjacent transcripts, called RNAII and RNAIII, whose expression are driven
by the P2 and P3 promoter, respectively. The RNAII transcript is an operon of four genes,
agrBDCA, that encode the machinery of the quorum-sensing system, and the RNAIII transcript is
the major effector and regulates the expression of most agr-dependent target genes. As shown in
Fig. 5, AgrD is the ribosomal peptide precursor of AIP and is proteolytically processed by AgrB,
an integral membrane-bound peptidase. AgrB mediated cleavage of AgrD results in the formation
of an enzyme-bound thiolactone intermediate, and through an unclear mechanism this structure is
transported across the membrane. The type I signal peptidase SspB performs the final processing
step to release the mature AIP into the extracellular environment. Once outside the cell, AIP is then
sensed by AgrC, the membrane-bound histidine sensor kinase of the AgrCA two-component
system. The binding of AIP to the AgrC receptor leads to histidine autophosphorylation, and this
signal is relayed to the aspartate receiver on the response regulator AgrA. The phosphorylated
AgrA can then bind to the P2 and P3 promoters to drive expression of RNAII and RNAIII,
respectively. Expression of RNAII, which encodes for all components of the agr system,
effectively leads to a positive feedback loop. This autocatalytic regulation is a hallmark of quorum-
sensing systems and enables S. aureus to readily produce exoproteins, even though growth is
slowed down (21).

One-third of the N-terminal region of the AgrB product and nearly half of the C-terminal region of
the AgrC product are highly conserved. The intervening sequences, which include two-thirds of
the C-terminal region of the AgrB product, the whole of AgrD, and about half of the N-terminal
region of the AgrC product, are highly divergent and constitute the hypervariable region. It is the
variations among these hypervariable regions that divide S. aureus into 4 agr specificity groups (I
to IV) (22). There is evidence that specific agr biotypes are associated with specific clinical
features. For example, most menstrual toxic shock syndrome (TSST-1) strains belong to agr group
III (24), whereas those belonging to agr group IV have been found to be associated with the

production of exfoliatins and to be involved in bullous impetigo (23).
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Fig 4. Schematic representation of the S. aureus agr locus that contains variable and conserved regions.
Numbers indicate oligonucleotide positions based on the 5’ to 3’ sequence. All primers and probes were
selected in the first half of the AgrC gene, in a region containing enough sequence divergence between the
four agr groups to allow specificity of the PCR. The exact length of amplicon obtained for each agr type
and the percentage of homology observed in the PCR-targeted region are also indicated. NA, not applicable
(23).
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Fig 5. A schematic representation of the molecular organization, signal biosynthesis and
transduction cascade of the agr quorum-sensing system. The autoinducing peptide (AIP) signal is
encoded within the AgrD peptide. AgrD is processed and transported into the environment by AgrB,
with the aid of signal peptidase SpsB. When the extracellular AIP concentration reaches a critical
level, the signal is sensed by the histidine kinase AgrC, which undergoes auto-phosphorylation.
Then the phosphate is relayed to AgrA, which in turn can bind the P2 and P3 promoters, driving
expression of the RNAII and RNAIII transcripts, respectively. The RNAII transcript harbors the
agrBDCA operon, encoding the primary machinery for AIP biosynthesis and detection. RNAIII is
the main effector molecule of the agr system and drives expression of downstream target genes.
Phosphorylated AgrA also binds the promoters for the phenol-soluble modulins (PSMs) genes,

AgrD

leading to their expression (21).
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1.2.2. Clinically important horizontally transmissible virulence factors

S. aureus strains can acquire several virulence factors directly associated with specific clinical

presentations, which are described below in more detail:

1.2.2.1. Panton Valentine Leukocidin (PVL)

PVL is a toxin composed of two components, LukS-PV and LukF-PV strongly associated with
skin and soft-tissue infections and are comparatively rare in invasive diseases (25). These two
components encoded with a single operon, are secreted before they assemble into a pore-forming
heptamer on neutrophil membranes, leading to neutrophil lysis (25) (Fig. 6). PVL, encoded by two
contiguous and cotranscribed genes lukF-PV and lukS-PV, is involved in chronic furunculosis and
necrotizing pneumonia (26,27). The toxin has been linked to community-onset MRSA infections
worldwide (28), but some CA-MRSA strains do not carry the PVL genes (29,30). Sequencing data
suggest that circulating CA-MRSA strains might be directly derived from a historical PVL-
producing penicillin-resistant clone phage type 80/81 that circulated in the 1950s and 1960s and
was highly virulent. Additionally, PVL has well established leukocidal properties, and causes
dermonecrosis when injected into rabbits (25).

The PVL genes are found on several different phages, i.e., ®PVL, ®108PVL, ®SLT, ®Sa2958,
OSa2MW and ®Sa2USA (31). There is 20% to 27% sequence homology between the two PVL
protein compounds LukS-PV and LukF-PV. In vitro, PVL induces the lysis of several cell types
involved in host defense such as neutrophils, monocytes, and macrophages. However, PVL is not
hemolytic (32,33). High concentration (200 nM) of PVL induces polymorphonuclear cell (PMN)
necrosis by activation of calcium channels and osmotic leakage from the cytosol. Conversely low
concentration (10 nM) of PVL induces the formation of pores in the mitochondrial membrane, and
thereby cell apoptosis (34). Expression of LukS-PV and LukF-PV could be positively controlled
by SarA, agr and SaeRS systems, while negatively regulated by Rot. SarA and Rot are essential

regulators for the inducing effect of beta-lactams on PVL production (35).
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Fig 6. Model of the contribution of PVL to tissue necrosis. The two PVL components, LukS-PV
and LukF-PV, are secreted from S. aureus before they assemble into a pore-forming heptamer on
PMN membranes. High PVL concentrations cause PMN lysis whereas low concentrations mediate
PMN apoptosis by directly binding to mitochondrial membranes. Tissue necrosis could result from
release of reactive oxygen species (ROS) from lysed PMNs. Alternately, release of granule contents
from lysed PMNs could set in motion an inflammatory response, eventually resulting in tissue
necrosis. It is unlikely that PVL has a direct necrotic effect on epithelial cells (33).

1.2.2.2 TSST-1 and enterotoxins

Staphylococcal toxic shock syndrome (TSS) is a toxin-mediated acute life-threatening illness,
mediated by a complex interaction of superantigens with the host resulting in extensive immune
dysregulation, characterized by high fever, rash, hypotension, multi organ failure (involving at least
3 or more organ systems), and shock (9,36). This syndrome can also include severe myalgia,
vomiting, diarrhea, headache, and nonfocal neurologic abnormalities (37). The syndrome is
attributed in particular to TSST-1. TSST-1 has been associated with almost all menstrual TSS
(mTSS) and half of nonmenstrual TSS (nmTSS) cases, while staphylococcal enterotoxins A, B,
and C (sea, seb, and sec) are involved in the remaining nmTSS cases (38). TSST-1 and
staphylococcal enterotoxins (SEs) are the paradigm of a large family of pyrogenic exotoxins called
superantigens. Superantigens are proteins that generate a powerful immune response by binding to
Major Histocompatibility Complex (MHC) class II molecules on antigen-presenting cells and T
cell receptors on T cells, and can cause food poisoning or systemic shock (39). S. aureus can
produce a large number of superantigens. Aside from TSST-1, it can produce at least 17 different
enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, sej, sek, sel, sem, sen, seo, seq, ser, seu) (40).

31|Page



Most genes coding for enterotoxins are located on MGEs such as plasmids, bacteriophages or
pathogenicity islands (41). Thus, horizontal transfer between strains is not rare. These bacterial
proteins are known to be pyrogenic and are connected to significant human diseases that include
food poisoning characterized by nausea, vomiting, abdominal cramping, diarrhea; and toxic shock
syndrome (42). These toxins induce mononuclear cells to produce the cytokines tumor necrosis
factor-alpha, interleukin-1beta and interleukin-6, which mediate fever, shock, and tissue injury

(40).
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2. The clonal distribution and diversity of S. aureus
isolates in the regions around Afghanistan

Given its epidemiology changing with time and place, timely updated information on S. aureus
strains carrying clinically important virulence factors and circulating in the geographical area is
essential for the prevention and control of this pathogen. This information is also important for
clinicians dealing with staphylococcal infections.

In recent years, MRSA have become a truly global challenge (43). In addition to the long-known
healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in
the community as well as in livestock. The emergence and spread of virulent clones expressing
PVL, TSST-1 and other superantigens is an additional cause for concern (44).

For decades after the identification of the first MRSA isolate in the 1960s, MRSA was regarded as
a typical HA pathogen. The epidemiology of HA-MRSA is commonly described by geographical
location and temporal dynamics in the distribution of particular clones; however, it is established
that CC1, CC5, CC8, CC22, CC30, and CC45 are predominant around the world (45). The main
changes in the global epidemiology of MRSA during the last decades are associated with the
emergence of distinct genetic lineages of CA-MRSA 1n the 1990s (46), and of livestock associated
MRSA (LA-MRSA) in the 2000s (43).

The epidemiology of MRSA varies considerably worldwide, and the spread of several CA-MRSA
clones and their dissemination into hospitals have made it more difficult to understand the
epidemiology (47). CA-MRSA lineages are genotypically and phenotypically unrelated to MDR
HA-MRSA, and have recently started to replace the formerly pandemic HA-MRSA clones (CCS5,
CCs8, CC22, CC36, and CC45) in healthcare facilities (48). CA-MRSA infections are dominated
by five lineages: sequence type (ST) STI-MRSA-IV (USA400), ST8-MRSA-IV (USA300), ST30-
MRSA-IV (Pacific/Oceania; South West Pacific clone), ST59-MRSA-IV/V (USA1000, Taiwan),
and ST80-MRSA-IV (European CA-MRSA), each being geographically restricted (49). However,
these originally continent-specific clones have spread to other parts of the world; ST1-MRSA-IV
(USA400) clone, for example, has been detected in Europe and Asia. Some of PVL-positive clones,
such as STI-MRSA-IV and ST30-MRSA-IV, are pandemic, having been detected in America,
Europe, and Asia (50). ST80 -MRSA-IV, known as the European clone but originated in Africa,
has also been reported in Libya, Jordan, and Lebanon (51,52).

In general, there are less data regarding the circulating clones of S. aureus/MRSA 1in livestock in

comparison to human. Based on literature review, the most detected clones are ST398-MRSA,
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ST130-MRSA causing bovine infections (53). Reports also show that various S. aureus clonal
complexes including: CC1, CC9, CC22, CC30, CC97, and CC705 isolated from livestock
infections worldwide (43,54-56). There are also various reports of LA-MRSA transmission to
human worldwide including Asia, especially the pandemic ST398-MRSA strain (43,53,55,57).

Indeed, Asia the most densely populated continent, has one of the highest prevalence rates of HA-
MRSA and CA-MRSA in the world (58—60). In central Asia, including Afghanistan, studies have
mainly focused on the prevalence of MRSA, but few data are available about their molecular
characteristics and the circulating clones. Below, we present the updated information obtained from
literature review about the circulating S. aureus/MRSA clones in Afghanistan’s neighboring

countries and the surrounding region.

2.1. Pakistan

In Pakistan, a multicentric study in four hospitals showed a MRSA rate of 41.9% among infected
strains in 2006-2008 (61). ST239-MRSA-III was the dominant genotype among HA-MRSA
isolates in Pakistan in this period (102). Another study focused on molecular characterization of S.
aureus isolates causing community- and hospital-acquired SSTIs among patients in a tertiary care
hospital in the Malakand district of the Khyber Pakhtunkhwa Province of Pakistan: forty-five S.
aureus isolates were characterized by microarray hybridization. Twenty isolates (44 %) were
MRSA, whereas 22 (49 %) were PVL-positive (62). Fourteen MRSA isolates harboured PVL
genes. The dominant clones were CC121-MSSA (n= 15, 33 %) and the PVL-positive “Bengal Bay
Clone” (ST772-MRSA-V;n=13, 29 %). The PVL-positive CC8-MRSA-IV strain “USA300” was
found once (62). In a joint study related to epidemiological typing of MRSA isolates from patients
in Pakistan and India, a total of 60 non-duplicate MRSA isolates were collected from three tertiary
care hospitals in Pakistan and one in India. CC8 was the dominant clonal complex (57/60) and was
present in both Pakistan and India. Thirty-four of the 57 isolates carried SCCmec type I1I/I1la and
the remainder carried SCCmec type IV (63). In another study, 44 MRSA isolates were collected
from two tertiary care hospitals of the Rawalpindi district of Pakistan (64). Six CCs and 19 clones
were identified. The most frequently identified strains belonged to the PVL-positive CC772-
MRSA-V Bengal Bay Clone (10 isolates; 22.3%), ST239-MRSA [III + ccrC] (5 isolates); and CC8-
MRSA-IV strain, as well as CC6-MRSA-IV (both with 4 isolates; 9.1% each). As expected, several
of the strains detected indicated epidemiological links to the Middle Eastern/Arabian Gulf region.
In a research in Agha Khan University Hospital in Karachi between June 2006 and July 2007, 126
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clinically significant MRSA isolates were studied (65). Among the HA-MRSA isolates, variants
of SCCmec type III were prevalent, whilst SCCmec type IV or variants were predominant in the
CA-MRSA isolates. The prevalent genotypes circulating in Pakistan at the time of study were ST§-
MRSA-IV and ST239-MRSA-III in the community and hospital settings, respectively. A set of
hospital acquired isolates collected in 1997 were characterized for comparison and the results
suggest that an increase in genetic diversity occurred over the period 1997-2007 as a result of either
microevolution or likely the importation of strains from surrounding areas.

Concerning epidemiology of MRSA among livestock in Pakistan, a recent study conducted in
Rawalpindi-Islamabad in slaughterhouses and meat shops showed a high prevalence of MRSA in
chicken (77%), beef (63%) and mutton (50%) (66). In another study in public and private farms of
Faisalabad, the prevalence of MRSA in bovine milk was 34%, and cattle 38% (67), but there is no

information about their molecular characteristics.

2.2. India

In India, two multicentric studies described comparable MRSA rates of 41% and 45% among
S. aureus isolates in 2008—-2009 and 2011, respectively (68,69). A single-institute study, including
50 MRSA isolates causing SSTIs in southern India in 2011, showed that ST239-MRSA-III strains
accounted for 32% of all isolates, and were multiresistant to mupirocin, amikacin, cotrimoxazole,
erythromycin, rifampin and tetracycline with high frequencies (58). In 2002 and 2005, four isolates
with vancomycin MICs of 16 to 64 mg/L were identified in northern India by screening 783 clinical
S. aureus isolates with the agar dilution method (70). None of these vancomycin-resistant isolates
carried vanA or vanB. Another clinical VRSA isolate (vancomycin MIC 64 mg/L), identified in
Kolkata in 2005, harboured vanA (71). As most of the reported VISA and VRSA isolates were
clinical isolates, it was noteworthy that two nasal VRSA isolates carrying vanA were identified
during a routine nasal carriage survey of VISA/VRSA strains in an intensive-care unit in northern
India (72). Between 2006 and 2009, 412 MRSA isolates from a mixed hospital- and community-
associated patient population from Mumbai were evaluated, and it was found that 34% of the
isolates carried SCCmec IV and 41% carried SCCmec V. Multilocus sequence typing (MLST) of
29 SCCmec type IV isolates and 13 SCCmec type V isolates identified ST22-MRSA-IV and
ST772-MRSA-V clones (73). Furthermore, a study of MRSA in healthy and diseased individuals
in India in 2010 showed the predominance of ST22-MRSA-IV harbouring PVL and TSST-1 genes
(74). Variable resistance markers were detected in ST22-MRSA-IV PVL-positive isolates: blaZ,
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ermC, aacA-aphD, aadD, dfrA and Q6GDS50 (fusC, SCC-borne fusidic acid resistance). Another
study aimed to determine the antibiotic susceptibility pattern of S. aureus and the circulating clones
in Bangalore, India in a tertiary-care hospital. Out of the 92 collected strains, 52.2% were MRSA,
isolated from community-acquired and hospital-acquired infections in 60.4% and 39.6% of cases,
respectively. S. aureus isolates were also highly resistant to erythromycin (54.3%) and
ciprofloxacin (70.6%). MRSA were found to be significantly more resistant to gentamicin,
cotrimoxazole and ciprofloxacin, than MSSA, but no significant difference was observed between
CA- and HA- S. aureus. ST217-MRSA-IV PVL-positive appeared as a new emerging and
prevalent clone, but ST772-MRSA-V PVL-positive Bengal Bay clone remained the predominant
clone (75). In a study, S. aureus strains were collected from in and around Bangalore and three
other cities of India from HA- and CA-infections or nasal carriage in order to determine their
lineage. The isolates belonged to 15 STs. The dominant MRSA clones were ST22-MRSA-IV and
ST772-MRSA-V among healthy carriers and patients. In this study authors reported three novel
clones, two MSSA isolates belonging to ST291-MSSA (related to ST398-MSSA which is
livestock-associated), and two MRSA clones, ST1208-MRSA-V, and ST672-MRSA-IV as
emerging clones for the first time. Sixty-nine percents of isolates carried PVL genes along with
many other toxins. There was more diversity of STs among MSSA than MRSA (76).

In regard to the LA-MRSA, a study was carried out to evaluate the prevalence of S. aureus CC-
398 in chicken and mutton marketed in retail outlets of Chennai, India (77). Of the 40 chicken
isolates and 40 mutton isolates, 28 and 21 isolates belonged to CC398 (70% and 52.5%),
respectively. In a study in west Bengal of India, the prevalence of MRSA in bovine mastitis was

9.6%, and spa-typing showed that isolates belonged to t304 and t6297 (78).

2.3. Iran

In Iran, a systematic review reported a MRSA rate of 43.0% in human infections between 2000
and 2016 (79). In another study at the Arak University of Medical Sciences campus, nasal swabs
were collected from students without infection over a 3-month period in 2012 (80). One hundred
fifty-four (22%) S. aureus strains were isolated from the anterior nares of 700 healthy students.
Seven (4.5%) of isolates were confirmed as MRSA. MRSA isolates belonged to SCCmec types IV
(n=6) and V (n = 1). The predominant ST was ST22-MRSA-IV in 3 isolates, and the 4 other STs
were ST25-MRSA-IV, ST859-MRSA-1IV, ST14-MRSA-V, and STI5-MRSA-IV. Another study

conducted in southwest of Iran (Kerman) among clinical isolates of S. aureus (81) reported 56.8%
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of MRSA. All MRSA isolates were susceptible to vancomycin and linezolid. The most frequent
SCCmec types were type III (48.31%) followed by type V (19.1%), type I (16.85%), and type IV
(3.37%). The PVL genes were detected in 3.1% of isolates (2 MRSA and 3 MSSA isolates). REP-
PCR typing divided the 92 MRSA isolates into 10 distinct clusters. In a latest study conducted in
Iran in burn patients, 15.1% of MRSA isolates harbored PVL genes and the majority of MRSA
strains carried SCCmec type 11l (71.7%). ST239-MRSA-III (34%) was the most common genotype
followed by ST239-MRSA-III (24.5%), ST15-MRSA-IV (15.1%), ST22-MRSA-IV (13.2%), and
ST239-MRSA-III (13.2%). Resistance to mupirocin was confirmed in 19.8% of MRSA strains
belonged to ST15-MRSA-IV (40%), ST22-MRSA-IV (23.3%), ST239-MRSA-III (20%), and
ST239-MRSA-III (16.7%) clones. (82). In a systemic review and meta-analysis concerning
epidemiology of PVL-harboring S. aureus in cutaneous infections in Iran, the pooled prevalence
of PVL in cutaneous infections was estimated at 27.9%, with a range from 7.4% to 55.6% (83). In
another study among hospital staff nasal carriers in Babol, the rate of S. aureus nasal carriage was
found to be 33.3% and 70% of those strains were identified as MRSA with a frequency of PVL
genes of 5%. Based on multiplex PCR assays, four different SCCmec types were detected as 35.7%
of the MRSA isolates belonged to SCCmec type I, 14.2% to SCCmec type III, 7.1% to SCCmec
type Il and 3.5% to SCCmec type IV (84). In a study about clonal dissemination pattern of PVL-
producing S. aureus strains isolated from hospitalized patients in Tehran, the prevalence of PVL
in S. aureus strains from clinical specimens was 29.2%. All the PVL-positive S. aureus strains
were confirmed as MRSA. Five CCs and nine different clones were detected in this study. The
most frequent CC was ST22-MRSA-IV (42.8%) followed by ST30-MRSA-IV (21.5%), ST8-
MRSA-IV (17.2%), ST772-MRSA-V (11.4%), and ST80-MRSA-1V) (7.1%) (85). In a cross-
sectional study in Motahari teaching hospital in Tehran, pus/wound swabs from SSTIs were
collected in burn patients between January-August 2013 showed that MRSA isolates belonged to
two major CCs; CC8 (ST239, ST585, ST2732, ST1294) and CC30 (ST30, ST36, ST1163) and four
singletons. Subsequent analysis of MRSA isolates revealed that the most prevalent SCCmec type
was type III (55.8%) followed by type IV (34.9%) and type II (2.3%). The prevalence of PVL-
positive MRSA strains was high (20%). In a study among healthy students residing in dormitories
of universities in Urmia, nasal screening identified 19.6% S. aureus and 2.6% MRSA carriers
respectively (86). SCCmec typing showed that most MRSA strains belonged to SCCmec type IV
(n=14; 77.8%). Only 1 (5.6%) MRSA isolate carried the PVL genes. In a recent study, S. aureus

clinical isolates were collected from two Tehran hospitals between February 2014 and March 2015.
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Of 116 isolates, 13 (11.2%) harboured the PVL genes, 5 isolates (38.4%) were MRSA with agr
group [ and SCCmec type II1. High diversity was found among PVL-positive strains by pulsed field
gel electrophoresis (PFGE). The TSST-1 gene was found only in MSSA (87). In a cross-sectional
study in four hospitals affiliated to Shahid Beheshti University of Medical Sciences in Tehran, a
total of 1,161 non-duplicated clinical S. aureus isolates were obtained from different clinical
specimens from August 2013 to July 2018 (88). A total of 14 STs, 26 spa-types, 3 agr types (no
agr1V), and 9 CCs were identified. Nine (9.1%) of the isolates were MRSA and distributed in nine
CCs, whereas the MSSA isolates were less diverse, which mainly belonged to CC22 (7.95%) and
CC30 (7.95%).

In regard to livestock strains, a study on referred clinical and subclinical bovine mastitis milk
samples in Ahvaz province of Iran, showed a low prevalence of MRSA (1.3) (89); while in another
study on referred subclinical mastitis milk in Kurdistan province, the prevalence of MRSA was
high (11.6%) (90). In a nasal carriage study, the proportion of S. aureus -positive nasal swabs from
cattle, sheep and goats were 5.06%, 4.1% and 25%, respectively, only one (1/11; 9.1%) strain of
MRSA was detected in sheep nasal swabs (91).

2.4. China

A nationwide study, including 18 hospitals in 14 cities in 2005-2006 in China, showed that 77.1%
of the MRSA clinical isolates belonged to the ST239-MRSA-III lineage, and that 15.5% belonged
to the STS-MRSA-II lineage (92). Most of the ST239 strains were resistant to tetracycline,
erythromycin, clindamycin, gentamicin, tobramycin, and ciprofloxacin (92). Between January
2005 and January 2006, 18 (14.9%) of 121 MRSA isolates were positive for PVL genes in a
teaching hospital in Wenzhou, China (93). Six STs (ST88-MRSA-III, ST239-MRSA-III, ST398-
MRSA-III, ST25-MRSA-III, ST30-MRSA-IV and ST59-MRSA-I) were found among these 18
PVL-positive MRSA isolates. In a study from four maternity and children’s’ hospitals in
Guangzhou (94), a total of 131 S. aureus clinical isolates were obtained between 2015 and 2018.
The prevalence of MRSA was 48.9%. In total 12 STs and 5 CCs were detected in MRSA isolates,
while 22 STs and 10 CCs were detected in MSSA isolates. Among MRSA isolates the top three
STs were ST59-MRSA-IV, ST338-MRSA-III, and ST45-MRSA-IV represented 78.1%, and
among MSSA isolates, STI88-MSSA, ST1-MSSA, and ST398-MSSA, representing 35.8% of
isolates. In another epidemiologic investigation, a total of 3695 S. aureus isolates was recovered
from 2008 to 2017 in a teaching hospital in Shanghai, China; the prevalence of predominant HA-
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MRSA clone, ST239-MRSA-III significantly decreased over the study period (from 20.3% to 1%)
and replaced by the continually growing ST5-MRSA-II clone (from 0% to 17.3%) (95). In a major
study in order to better understand the national molecular epidemiology and resistance profiles of
HA-MRSA in China, a laboratory-based multicenter surveillance study was conducted (96).
ST239-MRSA-III, and STS-MRSA-II weree the predominant HA-MRSA.

In a study exploring the molecular evolution of MRSA at Peking Union Medical College Hospital,
a total of 466 nonduplicate S. aureus isolates, including 302 MRSA and 164 MSSA isolates
recovered from 1994 to 2008 were characterized (97). The 302 MRSA isolates were classified into
9 STs. From 1994 to 2000, the most predominant MRSA clone was ST239-MRSA-III. Another
clone, STS-MRSA-II emerged in 2002 and persisted at a low prevalence rate. The 164 MSSA
isolates were classified into 40 STs. ST398-MSSA was the most common MLST type for MSSA,
followed by ST59-MSSA, ST7-MSSA, ST15-MSSA, and ST1-MSSA.

In regard to livestock MRSA strains, a study reported a MRSA prevalence of 2.7% in bovine
mastitis with isolates belonging to distinct clones: ST97-MRSA-IV, ST965-MRSA-IV, STé6-
MRSA-IV and ST9-MRSA-SCCmec-not typeable (98). In another study, two LA-MRSA isolates
(ST398-MRSA-V) recovered from bulk tanks of cow milk samples in two geographically distant
farms in China. Whole-genome analysis strongly suggested that these strains were closely related

to the HA- ST398-MRSA-V and CA- ST398-MRSA-V strains in China (99).

2.5. Russia

In the literature review, information about S. aureus and MRSA circulating clones in Russia is very
scarce. In a prospective study, S. aureus isolates were collected from paediatric and adult in-
patients and out-patients in Vladivostok from August 2006 to April 2007 (100). Among the 63
S. aureus isolates, 48% were MRSA. HA- strains accounted for 93% of all MRSA isolates. The
major MRSA clone was the ST-239-MRSA-III PVL-negative, representing 90% of MRSA. This
clone was MDR, including 41% of isolates resistant to rifampicin. CA-MRSA isolates (n = 2) were
assigned to ST30-MRSA-IV PVL-positive, and ST8-MRSA-IV PVL-negative. In another study in
Saint Petersburg of Russia, S. aureus isolates recovered from hospital patients (n=716), and healthy
carriers (n=2053) between 2011-2014. The detection rates of MRSA among hospital strains and
healthy carrires were 67% and 0.6%, respectively. HA-MRSA demonstrated high resistance to
ciprofloxacin, gentamicin, and chloramphenicol, and elevated MIC (2 pg/mL) for vancomycin in

26% of 1solates. The predominant clones among HA-MRSA were ST8-MRSA-IV and ST239-
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MRSA-III, constituted 83.1% of the isolates; other HA-MRSA isolates belonged to CC5, CC22,
CC97 and CC398 (101). Among healthy carriers the ST22-MRSA-IV clone accounted for 84.6%
of the MRSA isolates; other isolates belonged to CCS5.

In regard to S. aureus animal strains, no information about MRSA is available. The only study
about S. aureus among animals was conducted in West of Russia; it did not detect any MRSA on
milk samples obtained from cow farms. The whole genome sequencing identified ST97-MSSA as

the most common type in this region (102).

2.6. Middle East

MRSA has emerged as an important pathogen in HA- and CA- infections in many countries in the
Middle East, over the last decade (103). With the global transmission of MRSA, the local
epidemiology within countries in the Middle East is changing, owing to the introduction of new
strains, with the intercontinental exchange of several clones. ST80-MRSA-IV is one common clone
detected in different countries within the region (103). A study in the Eastern Province of Saudi
Arabia revealed high clonal diversity among the isolates of nasal colonization among healthy
carriers, HCWs and medical students, with 19 different spa types, 12 CCs, and 7 STs detected
(104). S. aureus isolates were present in the nares of 37% of the healthy carriers and 26% of the
medical students and HCWs. Sixteen percent of the all isolates were MRSA. The most common
strains were CC15-MSSA, ST80-MRSA-IV, ST22-MRSA-IV, and ST5-MRSA-IV. In a review
article related to the genotype distribution of MRSA infections in the hospitals in the Kingdom of
Saudi Arabia, showed that the pandemic Vienna/Hungarian/Brazilian clone (CC8/ST239-MRSA-
IIT) was the most frequent in Saudi regions (Riyadh and Damamm) (105). Several other clones
such as Barnim/UK-EMRSA-15 (CC22-MRSAIV), Southwest Pacific clone (ST30-MRSA-IV)
and European community-associated-MRSA clone (CC80-MRSA-IV) have been detected in
Riyadh region. In another study including 1,327 MRSA isolates obtained from clinical samples in
13 Kuwait hospitals from 1 January to 31 December 2016, 261 spa types were identified with spa
types t688, t304, t860, t127, t044, t311, t002, t223, t267, t019, t3841, t005, t084, t852, and t657
constituting 51.0% of the isolates. A total of 102 MRSA strains indentified as novel variants in this
study were investigated further. They belonged to 14 clonal complexes with CC361 (32; 32.3%),
CC30 (15; 14.7%), CC22 (13; 12.7%) and CC1 (11, 10.7%) as the dominant CCs. Forty-six
(45.1%) of these isolates were positive for PVL and 89 (87.2%) were resistant to fusidic acid
mediated by fusC (106). A study conducted throughout the Gaza strip by Biber ef al. (107) found
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that around 13% of healthy children and their parents were MRSA carriers with the predominance
of ST22-MRSA-IV (75%). Interestingly, of all MRSA isolates, 8.5% were PVL-positive and
belonged to ST80-MRSA-IV. Khalil er al. (51) performed molecular characterization of 103 S.
aureus (41 MRSA and 62 MSSA) recovered from stool and nose specimens collected from children
admitted to the Jordan university hospital between August and October 2008. Genotyping revealed
17 different MRSA spa types, and 31 different MSSA spa types. Fourty-one percent of the isolates
were MRSA. The clustering revealed that ST80-MRSA-IV was the dominant type. Among the
MRSA isolates, 34% were PVL-positive, while it was 1.6% for MSSA. A more recent study was
conducted on 132 S. aureus clinical isolates recovered in a period of 6 months in Beirut (52). The
proportion of MRSA collected in this study was 30%, with PVL being detected in 54% of MRSA
and 12% of MSSA isolates. Clustering of SCCmec types with MLST identified seven MRSA and
20 MSSA clones, and confirmed that the ST80-MRSA-IV PVL-positive was the dominant clone
in Lebanon, followed by ST30-MSSA PVL-positive.

In regard to the livestock S. aureus strains, a study was conducted in Saudi Arabia to determine the
presence and genetic characteristics of S. aureus isolated from raw retail meat sold in Riyadh, Saudi
Arabia from March-December 2014. The Camel meat had 20.8% rate of MRSA contamination,
lamb 16.7%, beef 12%, while poultry meat had 3.5%. The MRSA isolates were grouped into 4 CCs
namely CC1-MRSA-IV, CC15-MRSA-V, CC80-MRSA-IV PVL-positive, and CC88-MRSA-IV
PVL-positive (108). A recent study conducted on 1010 goats (235 milk samples and 775 nasal
samples) from 25 flocks in eastern province of Saudi Arabia to study the prevalenc of MRSA in
goat farms. The prevalence of MRSA in mastitic milk was 9.2%, in normal milk 0.6% , and in

nasal swabs 2.6% (109).

2.”7. Afghanistan

In Afghanistan, the prevalence of MDR bacteria including MRSA has been reported high and it
can be linked to the over prescription of antibiotics in healthcare facilities (110,111). Unfortunately,
no molecular studies have been conducted until now on S. aureus strains that infect or colonize
humans and animals in Afghanistan, to characterize the circulating clones including their virulence
and antibiotic resistance determinants, as well as their epidemiological links. A recent study
concerning S. aureus infections diagnosed in Kabul hospitals highlighted a high rate of methicillin
resistance (56.2%), and MDR-MRSA (MRSA resistant to > 3 different classes of antibiotics)

(91.4%) compared to the neighboring countries (112). In parallel, an overuse of antimicrobials was
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described during the last decade in primary healthcare clinics of five major provinces of
Afghanistan, including Kabul (113).

A recent study conducted in 3 public hospitals of Kabul to analyze the rate of prescription of
antibiotics from July to August 2017, showed that 66% of the prescriptions contained at least 1-3
antibiotics, with an average of 1.5 antibiotics per prescription (114). Such widespread use of
antimicrobial therapies is a major public health concern and have likely contributed to the increase
of MDR microorganisms including MRSA in Afghanistan.

In regard to the prevalence and molecular characteristics of S. aureus strains in livestock, no study

has been conducted in Afghanistan yet.
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3. Genetics of antimicrobial resistance in S. aureus

The species S. aureus and in particular MRSA is among the "high priority" list of World health
organization (WHO), for which there is an urgent need to control the emergence of resistance (115).
One of the challenges confronting the treatment of S. aureus infection is resistance to many
commonly used antimicrobial drugs. S. aureus strains that are resistant to multiple antimicrobial
compounds, including most available classes of antibiotics and some antiseptics, are a major threat
to patient care. It is now evident that the evolution of multi-resistance is driven, either by the
acquisition of antimicrobial resistance genes via HGT transfer, or chromosomal mutation (116).
However, the successive discoveries of HGT and extra-chromosomal DNA elements quickly
confined gene mutation to a secondary role in the evolution of antibiotic-resistant bacteria. It is
now clear that in most instances, resistance to multiple antimicrobial agents in the staphylococci is
driven by the acquisition of MGEs such as plasmids, transposable genetic elements (insertion
sequences and transposons) and genomic islands (117).

Here we describe the main mechanisms of S. aureus resistance to different classes of antibiotics.

3.1. Resistance to beta-lactams

Penicillins and other antibiotics in the beta-lactam family kills bacteria by inhibition of the last step
in peptidoglycan synthesis through binding of the beta-lactam ring to bacterial transpeptidase
involved in cross-linking peptides and preventing new cell wall formation. The target of the action
of beta-lactam antibiotics are known as penicillin-binding proteins (PBPs) that are involved in the
synthesis of peptidoglycan (118).

Two mechanisms confer penicillin resistance in staphylococci. The most important is production
of beta-lactamase, which inactivates penicillin by hydrolysis of its beta-lactam ring. The second
mechanism confers resistance to methicillin due to a penicillin-binding protein, PBP2a, encoded
by mecA or its homologue the mecC gene (119). Methicillin resistance is associated with the
acquisition of a particular resistance island called staphylococcal cassette chromosome mec
(SCCmec), an exogenous piece of DNA, which is discussed later.

blaZ-encoded penicillin resistance has been thoroughly investigated. The resistance is coded by an
operon clustered together the structural gene blaZ, its repressor gene blal, and a signal transducer-
sensor protein gene blaR1 (120). Four types of blaZ product (A, B, C, D) have been distinguished
by serotyping and differences in hydrolysis of selected B-lactam substrates. Types A, C and D are
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usually located on plasmids, whereas type B typically resides in the chromosome (121). blaZ has
also been identified as the cause of penicillin resistance among CoNS (122,123). Transfer of blaZ
and several other resistance genes between CoNS and S. aureus has been reported indicating that

CoNS may act as a resistance gene reservoir for S. aureus (120,124-127).

3.1.1. Methicillin-resistant Staphylococcus aureus (MRSA)

MRSA was first described in the 1960s in Europe, about two years after the methicillin began to
be used to treat S. aureus infections. MRSA can be responsible for difficult-to-treat nosocomial
infections in humans. MRSA are also called MDR-S. aureus or oxacillin-resistant S. aureus
(ORSA) (128). MRSA are resistant to most of beta-lactams including oxacillin, penicillin,
amoxicillin, cephalosporins and carbapenems (129). The widespread use of antibiotics has also
accelerated the emergence of HA-MRSA strains by acquiring multiple resistance genes, to become
resistant to aminoglycosides, macrolides, sulfonamides, tetracyclines and fluoroquinolones (130).
MRSA were initially associated with healthcare settings, including hospitals and other healthcare
environments. However, it has now also emerged as a major cause of community-associated
infections and has created reservoirs in both settings. Hence, MRSA is no longer only a nosocomial
pathogen. The frequency of CA-MRSA infections have increased since they were first described
in the 1980s (8).

The resistance to methicillin is due to a PBP2a encoded by mecA or mecC gene found in SCCmec
which is inserted inside chromosomal DNA of S. aureus. The rapid emergence of MRSA raised
the hypothesis that mecA was already present in the staphylococcal gene pool prior to the
introduction of methicillin. In fact, a ubiquitous homologue named mecAl, with 80% nucleotide
identity to mecA has been identified in the primitive coagulase-negative Staphylococcus sciuri
(131). Several lines of evidence suggest that mecAl is the precursor of mecA. While mecAl does
not confer resistance to B-lactams in S. sciuri, there are reports of B-lactam-resistant strains that
have alterations in the promoter region of this gene (132). When introduced experimentally into a
S. aureus strain, mecAl was able to confer B-lactam resistance and produce a protein with
properties similar to PBP2a (133,134). Additional mecA homologues have been identified in
related species, including a mecA homologue (mecA2) with 90% nucleotide identity with mecA in
Staphylococcus vitulinus (135). Furthermore, mecA along with its regulators, mecl and mecRI, has

been identified in a small number of Staphylococcus fleurettii isolates (136). Despite the

44 |Page



importance of mecA in the epidemiology of antibiotic resistant staphylococci, the evolutionary
history of this gene has remained unclear (137).

mecC was first identified in May 2007, in southwest England: an epidemiological survey of bovine
mastitis led to the isolation of S. aureus LGA251 strain from a bulk milk sample in a farm tank
(138). In this study, the authors found the isolate resistant to methicillin but mecA-negative. By
sequencing its whole-genome, they found a homologue of mecA on SCCmec element of the isolate,
which was called mecC. Further studies identified 65 isolates positive for mecC not only from dairy
cattle but also from humans. This included an isolate obtained in 1975 from Danish human blood,
suggesting that although mecC gene-has been recently identified, it has probably caused infections
for over 40 years (138). A third group of mec gene homologues (mecB and mecD) has been reported
to occur both chromosomally and on a plasmid of Macrococcus caseolyticus, a close genetic
relative of Staphylococcus (8). In a recent study at the University Hospital of Miinster, Germany,
during routine MRSA screening, they recovered a S. aureus isolate UKM4229 from a combined
nasal-throat swab of an inpatient to carry a mecB gene previously described for Macrococcus

caseolyticus but not for staphylococcal species (139).

3.1.2. Staphylococcal Cassette Chromosome mec

Methicillin resistance is associated with the acquisition of particular resistance island called
staphylococcal cassette chromosome mec (SCCmec), an exogenous piece of DNA, variable in size,
that is absent from the methicillin-susceptible strains. It was discovered that the emergence of
methicillin-resistant staphylococcal lineages was due to the acquisition and insertion of the
SCCmec element into the chromosome of susceptible strains. This mobile 21- to 60 kb genetic
element is the defining feature of MRSA strains and is responsible for conferring the broad-
spectrum beta-lactam resistance (8). SCCmec may also contain other genetic structures, such as
Tn554, pT181, and pUBI110, which are responsible for conferring resistance to other non-beta-
lactam drugs (117). The high diversity in the structural organization and the genetic content of
these elements has resulted in their classification into types and subtypes. To summarize, there are
three basic structural/genetic elements in SCCmec: the mec gene complex, containing the mec gene
(mecA, mecB, mecC, and/or mecD) and its regulatory elements that control its expression (mecR1,
encoding a signal transducer protein, and mecl, encoding a repressor protein); the ccr gene
complex, encoding the site-specific recombinases, i.e., cassette chromosome recombinase (ccr)

genes (ccrAB and/or ccrC); and regions other than mec and ccr within the SCCmec element that
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are designated as "joining regions" (J-regions) and are classified into three subgroups, J1-3 (Fig.
7). These cassette components are nonessential and may contain determinants for additional
antimicrobial resistance (140). The J1 region is the region located between the right chromosomal
junction and the ccr gene, upstream of the ccr gene. The J2 region is the region between the ccr
gene complex and the mec gene complex. Similarly, the J3 region is located between the mec gene
complex and the left chromosomal junction, i.e., downstream of the mec gene complex.

Based on the location of the regulatory genes upstream or downstream of mec gene and/or
disparities in the insertion sequences, the mec gene complex has been categorized into various
classes. In addition, various combinations of ccr gene allotypes have given rise to different types
of ccr gene complex. The chromosomal excision and integration of types I to IV SCCmec are
catalyzed by the site-specific recombinases ccrA and ccrB, and ccrC for type V (141). It is the
combination of these classes of the mec gene complex and the type of ccr gene complex that results
in the classification of SCCmec elements into types. These elements are further divided into
subtypes centered on the variations in the J regions within the same combination of mec-ccr
complex. To date there are a total of 13 types of SCCmec identified in MRSA strains (SCCmec
type I to SCCmec type XIII) (8).
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Fig 7. The structure of SCCmec (140). SCCmec is composed of two essential gene complexes. One
is mec-gene complex, encoding methicillin resistance (mecA gene) and its regulators (mecl and
mecR1), and the other is ccr-gene complex that encodes the movement (integration to and precise
excision form the chromosome) of the entire SCC element. IR, inverted repeat; DR, direct repeat.
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3.2. Resistance to macrolides, lincosamides & streptogramins
(MLS)

Macrolide antibiotics such as erythromycin and azithromycin, lincosamides such as lincomycin
and clindamycin, and streptogramins such as virginiamycin and pristinamycin, arrest protein
synthesis by binding the 50S ribosomal subunit and causing dissociation of the peptidyl-tRNA
during elongation (142). Three mechanisms are mainly responsible for acquiring resistance to MLS
antibiotics in staphylococci: (1) target site modifications by methylation or mutation; (2) active
efflux of antibiotics; or (3) inactivation of antibiotics. The first mechanism includes target site
modifications by a methylase encoded by one or more of the erm genes (ermA, ermB, ermC, ermT),
methylating 23S rRNA and thereby altering binding sites for MLS antibiotics
(143). Phenotypically, this resistance appears either inducible (resistant to 14- and 15-membered
macrolides and susceptible to 16-membered macrolides, lincosamides and streptogramin B) or
constitutive (resistant to all forms of these antibiotics) (144). The second mechanism involves a
macrolide efflux pump encoded by msrA and/or msrB genes. This pump protein belongs to the
ABC transporter family and exports 14-membered macrolides and streptogramin B antibiotics from
bacterial cells, while lincosamide and streptogramin A antibiotics remain unaffected (145). The
third mechanism encompasses several enzymes. A lincosamide nucleotidyltransferase encoded by
the [nuA gene confers resistance only to lincosamides. vgaA/B genes have been characterized as a
determinant of streptogramin A resistance. Finally, the macrolide phosphotransferase C encoded

by the mphC gene inactivates some macrolide antibiotics (146).

3.3. Resistance to aminoglycosides

Aminoglycosides inhibit protein synthesis by binding to the A site on the 16S ribosomal RNA of
the 30S ribosomal subunit and promoting mistranslation by inducing codon misreading on delivery
of aminoacyl transfer RNA. This results in error prone protein synthesis, allowing for incorrect
amino acids to assemble into a polypeptide that is subsequently released to cause damage to the
cell membrane and elsewhere (147). Mechanisms of bacterial resistance to aminoglycosides are
diverse. The most common mechanism is inactivation of aminoglycosides, by a family of enzymes
named aminoglycoside-modifying enzymes that are encoded by MGEs (148). In staphylococci
resistance to gentamicin, kanamycin, and tobramycin is mediated by a bifunctional
acetyltransferase-phosphotransferase gene (aacA-aphD) (149). This gene is carried by the IS256-
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flanked composite transposon Tn4001, found on large staphylococcal multiresistance plasmids
such as pSK1 and pSK41, or on the chromosome (150). A number of plasmids have been reported
that mediate resistance to neomycin/kanamycin, and tobramycin via adenyltransferase activity
encoded by aadD specified by plasmid pUB110. Resistance to neomycin/kanamycin is mediated
by aminoglycoside 3’-phosphotransferase activity encoded by aphA3, and resistance to
streptomycin is mediated by aminoglycoside 6’ adenyltransferase activity encoded by aadE, carried
by Tn5404.The plasmid is integrated within the SCCmecll cassette that occurs in some MRSA
strains (151-153).

3.4. Resistance to tetracyclines

Tetracyclines inhibit protein synthesis by binding the 30S ribosomal subunit and preventing
association of aminoacyl-tRNA with its acceptor site (154). Most tetracycline-resistant bacteria
including S. aureus have acquired tetracycline resistance genes (tef). Two main mechanisms of
resistance to tetracycline have been described in S. aureus: active efflux, resulting from the
acquisition of the plasmid-located fetK and fetL genes and ribosomal protection by elongation
factor-like proteins that are encoded by chromosomal or transposonal tetM or tetO determinants
(155). Resistance to tetracycline can also be mediated by mutations that cause increased expression
of various chromosomally encoded efflux pumps, such as Tet38 (156). Studies have shown that
tetracycline-resistant MRSA isolates commonly contain either tetM, tetK or both determinants

(155,157).

3.5. Resistance to phenicols

Phenicols, mainly chloramphenicol, cause a bacteriostatic effect by binding the 50S ribosomal
subunit and inhibiting the transpeptidation step during protein synthesis (158). Resistance to
chloramphenicol in S. aureus is most frequently due to the activity of an inducible detoxification
enzyme, chloramphenicol acetyltransferase (CAT) (159). Genes for CAT in S. aureus are
exclusively carried by plasmids within the size range of 2.9 to 5.1 kb. All S. aureus CAT enzymes
are of the classical A type, with subtypes A-7, -8 and -9 carried on the plasmids pC221, pC223 and
pC194, respectively (160).The four characterized chloramphenicol resistance plasmids pC221,
pUBI12, pC223 and pCI194 have distinct replication regions, suggesting diverse evolutionary
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histories for each plasmid (161). The binding site for linezolid closely overlaps that of
chloramphenicol and presumably compounds with related structures (162). Chloramphenicol is
only used topically to treat conjunctivitis, but a fluorinated derivative of thiamphenicol called
florfenicol is used in veterinary medicine (163). Presumably, florfenicol has the same mechanism
of action as chloramphenicol by interfering with the aminoacyl end of aa-tRNA and inhibiting
peptidyltransferase. Another florfenicol-chloramphenicol resistance gene, designated fexA,
encoding a transmembrane efflux protein in staphylococci (164). The fexA protein differs from all

previously known proteins involved in the efflux of chloramphenicol and florfenicol.

3.6. Resistance to glycopeptides

The glycopeptides are a group antimicrobial agents that show antibacterial activity against gram-
positive organisms through inhibition of cell-wall synthesis, through binding to the d-alanyl-d-
alanine terminus of the lipid II bacterial cell-wall precursor, preventing cross-linking of the
peptidoglycan layer (165).

Vancomycin is a glycopeptide antibiotic that is widely used to treat serious infections caused by
MRSA strains. It binds to the dipeptide D-Ala4-D-Ala5 of lipid II and prevents transglycosylation
and transpeptidation catalysed by PBP2 and PBP2a, and antagonises peptidoglycan remodeling
(165). The main mechanism of resistance to vancomycin is owing to the presence of enzymes that
produce lower-affinity binding precursors in which the carboxy-terminal d-alanine residue is
replaced by either d-lactate or d-serin (165). Following the emergence of vancomycin resistance in
Enterococcus, rapid resistance developed in S. aureus (VRSA) as a result of HGT of vanA operon
from resistant enterococci (166,167).The resistance mediated by vanA gene located on MGEs, is
the most common mechanism of resistance in enterococci and is the only one detected in VRSA
(MIC > 16 pg/mL) to date (168,169). VISA strains (MIC= 2-16 pg/mL) do not harbor foreign
MGEs; rather, the reistance happens due to mutations during treatment of the invading pathogen

(165).
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3.7. Resistance to antibiotics by miscellaneous genes

The trimethoprim resistance gene from plasmids pSK I, designated dfrA; and plasmid pKKS2187
designated dfrk, encodes the production of a trimethoprim-resistant dihydrofolate reductase
(170,171).

Resistance to fusidic acid (a bacteriostatic antibiotic that blocks bacterial protein synthesis by
locking elongation factor G (EF-G) to the ribosome) is encoded by fusB and fusC genes which
could be carried by plasmids such as by the 21 kb plasmid pUBI0I; however, it can also be
chromosomal. The fusB protein has been shown to bind EF-G and protect the staphylococcal
translation apparatus from the inhibitory effects of fusidic acid (172).

Mupirocin, a protein synthesis inhibitor, is widely used as a topical agent to reduce nasal carriage
of MRSA in hospital patients and staff and also indicated as a topical agent to treat skin infections.
Resistance to mupirocin exists in two forms: low-level resistance (MIC 8-256 mg/mL) due to
mutations in the native isoleucyl-tRNA synthetase gene and high-level resistance (MIC 256
mg/mL) mediated by the plasmid-associated mupR gene which encodes an extra isoleucyl-tRNA
synthetase (173).

The cfr gene act for combined resistance to phenicols, lincosamides, oxazolidinones,
pleuromutilins, and streptogramin (174), which is discussed in detail in the next chapter.
Fosfomycin is a broad-spectrum bactericidal antibiotic that interferes with cell wall synthesis in
both gram-positive and gram-negative bacteria by inhibiting the synthesis of peptidoglycan by
blocking the formation of N-acetylmuramic acid. fosB, a Mn**-dependent fosfomycin-inactivating
enzyme found in S. aureus, is one of three related enzymes (encoded by fosA, fosB, and fosX) that
confer resistance to fosfomycin resulting in a modified compound with no bactericidal properties
(175).

A specific focus is made on linezolid in the next chapter of this literature review, since resistance

to linezolid in staphylococci is one of the two main objectives of this work.
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4. Linezolid and mechanisms of resistance of
staphylococci

Linezolid is an oxazolidinone drug that was approved in 2000 for difficult-to-treat nosocomial
infections caused by MRSA (176). The chemical structure of linezolid is shown in Fig. 8. The
activity of the compound is increased by the morpholino group in the first ring (from the left) and
the fluoride atom in the second ring (177). Linezolid is available in intravenous and oral
formulations, which has provided this agent as an attractive alternative for treating numerous
infection types, including hospital-acquired pneumonia caused by S. aureus, infections caused by
vancomycin-resistant Enterococcus faecium, complicated skin and skin structure infections
(SSSIs), uncomplicated SSSIs caused by MSSA or Streptococcus pyogenes, and community-
acquired pneumonia caused by Streptococcus pneumoniae and infected intensive care unit (ICU)
patients (18,178).

The compound is a synthetic antibiotic that acts as a protein synthesis inhibitor by binding to the
ribosomal peptidyl transferase center (PTC) on the bacterial 23S ribosomal RNA (Fig. 9A), thereby
inhibiting transition of the aminoacyl-tRNA to the A site and stopping the growth of bacteria by
preventing formation of the fMet-tRNA-30S ribosome-mRNA initiation complex (179).
Unfortunately linezolid does not escape the rule of bacterial resistance and its increasing use has
been accompanied by the emergence of resistance in human, the first linezolid-resistant
Staphylococcus (LRS) was reported in a patient with peritonitis undergoing oral linezolid treatment
during peritoneal dialysis in 2001 (180). Since then, the occurrence of linezolid-resistant strains
has been reported worldwide (181,182). Resistance to linezolid in clinical isolates is still rare (178),
and this antibiotic remains active against >98% of staphylococci, with resistance identified in
0.05% of S. aureus and 1.4% of CoNS (183). Among CoNS, S. epidermidis have been largely
considered as a genetic reservoir of linezolid resistance genes (especially cfr) for other pathogenic

bacteria including S. aureus (184).

51| Page


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014438/figure/f1-dddt-12-1759/

Fig 8. Chemical structure of linezolid. The empirical formula of the compound is C16H20FN304
(molecular weight: 337.35 g/mol) (18).

4.1. Chromosomal resistance to linezolid

Analysis of high-resolution structures of linezolid showed that it binds to a deep cleft of 50S
ribosomal subunit that is surrounded by 23S rRNA nucleotides (185). Linezolid-resistant CoONS
and S. aureus most commonly have chromosomal mutations in 23S rRNA binding site and / or
mutations in genes encoding the 50S ribosomal proteins .3, L4 and L.22 of the peptide translocation
centre of the ribosome (186,187). Mutations in the rrl gene encoding 23S rRNA result in a
ribosome conformational change and a loss of affinity for linezolid for its target (179) (Fig. 9A).
The most common mutation in clinical isolates is the G2576T mutation (the substitution of thymine
for guanine at position 2576) (188). The accumulation of this mutation in the different copies of
the rrl gene that staphylococci possess (5 to 6 copies) leads to an increase of linezolid MIC but also
confers cross resistance to lincomycin (189). The mutations of the genes encoding the L3, L4, and
L22 ribosomal proteins (rp/C, rplD, and rplV genes) modify the accessibility of the binding site of
linezolid on 23S rRNA (Fig. 9B). These two proteins interact closely with the PTC site of the 23S

rRNA (190). These types of resistances are chromosomal, and are not horizontally transferable.
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Fig 9. Schematic representation of the mechanism of action of linezolid, and linezolid-resistance
mechanisms. A, Linezolid interferes with the positioning of aminoacyl transfer RNA (tRNA) by interactions
with the peptidyl transferase center. Ribosomal proteins L3 and L4, associated with resistance, are shown.
B, Representation of domain V of 23S ribosomal RNA (rRNA) showing mutations associated with linezolid
resistance. Position A2503, the target of cfr (chloramphenicol-florfenicol resistance) methylation, is
highlighted. mRNA, messenger RNA (187).

4.2. Plasmid-encoded resistance to linezolid

Plasmids conferring multi-drug resistant are usually conjugative, capable of initiating not only their
own transfer but also that of other plasmids, and possess mechanisms to control their copy-number
in the cell and/or replication ability (191). Unfortunately, the transferable modification of 23S
rRNA can cause resistance to linezolid. Until now, three transferable resistance genes to linizeolid
have been identified. These are the cfr (chloramphenicol-florfenicol resistance), optrA
(oxazolidinone-phenicol transferable resistance), and poxtA (phenicol-oxazolidinone-tetracycline
resistance) genes (192).

The cfr gene was identified in 2000 in a strain of S. sciuri obtained from nasal swab of a calf

suffering from a respiratory tract infection in Germany (193). Originally, c¢fr was restricted to
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staphylococci of animal origin where it was probably selected for, by usage of florfenicol in
veterinary medicine (152). The cfr gene encodes a methyltransferase (cfr protein) that methylates
adenine nucleotide of the 23S rRNA at position 2503 (A2503) (Fig. 9B). This base is in close
proximity to the overlapping binding sites causing reduced or abolished binding of many antibiotics
that bind to the PTC of the bacterial ribosome (194). Methylation of A2503 results in a phenotype
commonly referred to as PALOPSA, and confers resistance to at least five antimicrobial classes
(phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A antibiotics) (195).
The cfr gene doesn’t confer cross-resistance to tedizolid, which differs from other oxazolidinones
by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus and has an
optimized C- and D-ring system that improves potency through additional binding site interactions
(196). Importantly, tedizolid can be used against certain linezolid-resistant bacterial strains
carrying the cfr gene, in the absence of certain ribosomal mutations conferring reduced
oxazolidinone susceptibility (196).

Dissemination of the cfr gene among staphylococci is of great concern, since evidence of
transferability of the gene has been provided both in vitro and in vivo (197,198). The cfr-positive
CoNS are increasingly isolated in hospitals probably due to high consumption of linezolid. This
emerging resistance to linezolid in CoNS is of concern because their ubiquity in commensal
mucocutaneous flora makes them potential reservoirs of resistance, some of which are transferable
to the more virulent S. aureus strains and Enterococcus spp (184). Until now, the cfr gene has
mainly been identified in strains belonging to Staphylococcus but it has also been found in
Enterococcus, Bacillus, Proteus vulgaris, Escherichia coli, Macrococcus caseolyticus,
Jeotgalicoccus pinnipedialis, and Streptococcus suis (194). The cfr gene has been associated with
different plasmid vehicles detected in different countries, and the ability of cfr-carrying plasmids
to be transmitted between strains and species is of global concern.

Resistance to linezolid is also mediated by the optrA determinant. This is widely encountered in
enterococci from human and animal sources in China (199). It is also found in CoNS (S. sciuri)
(200), but has not yet been reported in S. aureus,; although this is likely to only be a matter of time.
It codes for a protein belonging to the ABC-F subfamily of ATP-binding cassette proteins Vga,
Lsa, and Mcr (ABC transporters). optrA confers resistance to phenicols, linezolid but also to
tedizolid, unlike the cfr gene which does not cause cross-resistance to tedizolid. The resistance
mechanism of optrA relies almost certainly on ribosomal protection (201). Like cfr, optrA was

likely selected due to extensive usage of florfenicol in intensive animal farming in China.

54| Page



Recently a new linezolid resistance gene has been described in a clinical MRSA strain in Italy
(202). This is the poxtA gene which encodes a protein that is 32% identical to optrA and exhibits
structural features typical of the F lineage of the ATP-binding cassette (ABC transporters) protein
superfamily that cause antibiotic resistance by ribosomal protection. It confers resistance to
phenicols, all oxazolidinones and tetracycline.

As one of the axis of our work focus on conjugative transfer of cfr-carrying plasmids from S.
epidermidis strains to S. aureus major clones, we described below the characteristics of cfr-carrying

plasmids known until now.

4.3. cfr-carrying plasmids

The cfr gene is often found on plasmids, and if chromosomal it seems always associated with
insertion elements. By conducting a literature review to date, more than 40 different cfr-carrying
plasmids have been reported, differing in size ranging from 7.1 to 97 kb. Three plasmids also harbor
another resistance gene to oxazolidinones (optrA). Bases on sequence analysis, a number of these
cfr-harbouring plasmids show similarity or identity in size and/or in immediate cfr downstream
and uppstream regions (Table 2). In addition, most of studied plasmids also carryied other antibiotic
resistance genes in cfr upstream or downstream region such as: florfenicol-chloramphenicol
exporter gene (fexA), resistance to aminoglycosides (aacA-aphD, aadD, aadE, aphA3), resistance
to tetracylines (tetK, tetL), resistance to MLS antibiotics (ermA, ermB, ermC, ermT, msrA, [nuA,
IsaB), resistance to trimethoprim (dfrk), and resistance to penicillin (blaZ) (Table 2). Moreover,
cfr-carrying plasmids are not limited to staphylococci, but are rather distributed across
staphylococci and enterococci. Additionaly, plasmids of the same subtypes, e.g., pSCFS3 and
derivatives, have been isolated from different animal hosts and staphylococcal species (Table 2).
Some of the plasmids have been fully or partially sequenced, and in most of them, the immediate
genetic environment of cfr has been analysed and shown to encode transposases and mobilization
proteins. Only a small number of these plasmids have been characterized as conjugative plasmids
(127,203,204), however co-mobilization of certain plasmids facilitated by helper plasmids cannot
be excluded (186). The identification of vectors such as pSCFS3-like plasmids in the United States
(205), the pSPO1, and pSCFS7-like plasmids in European countries (127,206-208), or pLRSA417
and pSS-01-like plasmids in China (209,210) may indicate a geographically distribution of the cfr-
vectors. The cfr gene has been identified in close proximity to different insertion sequences, which

most probably also play an important role in its dissemination (209).
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Table 2. Summary of the characteristics of the various cfr-carrying plasmids described in literature.

# Name of cfr- Plasmid | LRG | Coexistence Origin of Authors
carrying size of other plasmids
plasmids resistance
genes
1 | pLRSA417 39.5kb cfr aacA-aphD MRSA and CoNS | Jia Chang Cai ef al. 2015
2 | pERGB 50 kb cfr tetL, ant(4’)la, | MRSA Enrique Ruiz de
dfrk Gopegui et al. 2012
3 pSCFS6 43 kb cfr fexA, IsaB S. warneri and S. | Corinna Kehrenberg et al.
simulans 2006
4 | pSCES7 45 kb cfr fexA S. aureus, MRSA-
Anna C Shore et al. 2010
USA300
5 | pSCSFI 16.5 kb cfr ermC S. sciuri Stefan Schwarz et al
2000
6 | pSCFS3; pSCFS4; | 41 kb cfr fexA Staphylococci  of
Corinna Kehrenberg,
pSCFS5; pSCFS?2 animal and human
Stefan Schwarz. 2006
origin
7 | p426-3147L 75 kb cfr - S. epidermidis Rodrigo E Mendes et al.
8 | p004-737X 55 kb cfr - S. aureus 2008
9 | pSEI243 39.3 kb cfr fexA S. epidermidis
10 | pSA737 39.3 kb cfr fexA S. aureus Rodrigo E Mendes. 2013
11 | pSAI900 7.9 kb cfr S. aureus
12 | p12-00322, pl2- | 36.7 kb cfr IsaB S. epidermidis
02178, p12-02179 Jennifer Bender et al
13 | p12-02300, pi2- | 38.9kb cfr fexA S. epidermidis 2015
01787, p12-01631
14 | pSRO1 39.5kb cfr aacA-aphD MRSA
15 | pSRO2 28 kb cfr aacA-aphD, MRSA
Dandan Wu et al. 2020
aadD, tetK
16 | pSRO3 24.6 kb cfr blaZ MRSA
17 | p603-50427X 97 kb cfr - Enterococcus
Lorena Diaz et al. 2012
faecalis
18 | pFSIS1608820 28 kb optrA, | fexA,  ermA, | Enterococcus Gregory H Tyson et al.
cfr ermB, aphA3, | faecium 2018
19 | pWo28-3 60.5 kb optrA, | fexA, aadD, | S. sciuri
cfr aacA-aphD, Dexi LI ez al. 2016
ble
20 | p-c¢fr-PBR-A 38.7 kb cfr fexA CoNS Laurent Dortet et al. 2018
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21 | p-cfr-PBR-B 40.2 kb cfr blaZ, msrA, | S. epidermidis
aadD
22 | pSPOI 76.9 kb cfr blaZ, msrA, | S. epidermidis
aadD Andrea Brenciani et al.
23 | pSPO1.1 49 kb cfr blaZ, msrA, | S. epidermidis 2015
aadD
24 | pLRSA417  like | 49 kb cfr aacA-aphD CoNS Le Thuy Thi Nguyena et
vector al. 2020
25 | pSEM13-0451 85.6 kb cfr IsaB, ermT MRSE
26 | pEF12-0805 72.9 kb cfr, nuB, InuE, | VRE Alexandros Lazaris et al.
optrA | ermA, ermbB, 2017
aphA3, aadE
27 | pSAM12-0145 41.6 kb cfr fexA MRSA
Anna C. Shore et al. 2016
28 | pSAM13-0401 27.5kb cfr IsaB MRSA
29 | pSS-01 40 kb cfr accA-aphD, S. cohnii and S.
fexA saprophyticus
30 | pSS-02 35.4 kb cfr - S.  saprophyticus
and S. sciuri
31 | pSS-03 7.1 kb cfr ermC S.  arlettae, S.
cohnii, S. | Yang Wang et al. 2017
saprophyticus,
and S. sciuri
32 | pBS-01 16.4 kb cfr ermB S.  cohnii, S.
saprophyticus,
and S. sciuri
33 | pSS-02 like | 35.4 kb cfr fexA S.  haemolyticus | Lanqing Cui et al. 2013
plasmid and S. cohnii
34 | p2823634, pSA737 cfr - MRSA
2823586, and | Tike Jeffrey B. Locke et al
p2823605 plasmids 2014
35 | pMSAI6 7.5 kb cfr JfexA, ermA bovine MRSA Xiu-Mei Wang et al. 2012
36 | pHKOI, pRMOI, | pSCFS3 cfr fexA S. cohnii
PRAOI and pSS-01
like Hongbin Chen et al. 2013
plasmids

LRG: linezolid resistance gene
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Following is a schematic representative of a cfr-carrying, conjugative multi-resistance plasmid

(pSPO1,76.9 kb) (Fig. 10), isolated from a clinical isolate of S. epidermidis in Italy (211).

Fig 10. Schematic representation of the cfr-carrying plasmid pSPOI from S. epidermidis ST23. The
73 ORFs of the plasmid, represented as arrows pointing in the direction of transcription, are
indicated with their number (orfl to orf73) or with a more explanatory designation where
appropriate. The ORFs of the two backbone regions are represented as black arrows. Those of the
four cargo regions (crl to cr4) are represented as white arrows, spotted in case of antibiotic
resistance genes, striped in case of genes involved in heavy metal resistance, and chequered in case
of ISs. Thin arrows inside the circular ORF map indicate the primer pairs used for the stability tests
of each cargo region (211).
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The above-mentioned plasmid is transferable to S. aureus by conjugation and transformation, and
displays a distinctive mosaic structure, with four cargo regions (here designated crl to cr4)
interpolated into a backbone which shows high-level identity (95%) and complete synteny to that
of S. aureus plasmid pPR9 (Pérez-Roth et al. 2010). Whereas cr/ lacks drug resistance genes, cr2,
cr3, and cr4 carry a variety of such genes; cr2 is formed by the bla complex genes blaZ, blaR1,
and blal; cr3 is the genetic context of the cfr gene and also contains the clindamycin exporter gene
IsaB; and cr4 contains msrA (macrolide efflux), aadD (aminoglycoside N6'-acetyltransferase), and
a gene cluster for heavy metal resistance. The number and importance of these additional resistance
genes make pSPOI unique among the cfr plasmids reported to date. Remarkably, of the four cargo
regions of pSPOI, two contain insertion sequences (ISs): cr3 shows a single IS element (1521-558)
formed by two partially overlapping ORFs, istAS and istBS (Kehrenberg et al. 2007) (orf32 and
orf33 in pSPOI); and cr4 is bracketed between two identical IS257 elements. Transpositionally
active forms of the IS21-558 element are involved in the mobility of the multiresistance gene cfr

(174).

59| Page



5. Horizontal gene transfer mechanisms in
Staphylococci

5.1. Conjugation and mobilization

Conjugation is a highly evolved and efficient mechanism facilitating DNA transfer in bacteria. A
bacterial cell that has received genetic material (such as plasmid) from another bacterium by
conjugation is called transconjugant. A distinction is made between conjugative plasmids (which
have the genes allowing their transfer from one bacterium to another by conjugation), mobilizable
plasmids (which require the presence of a conjugative plasmid in order to be able to be transferred),
and non-mobilizable plasmids (which can only be transferred by transformation).

In staphylococci, it is estimated that a small number of plasmids carry conjugation-gene clusters
required for autonomous conjugative transfer, however new mechanisms of conjugative
mobilization have recently been described, which may resolve the paradoxical underestimation of
conjugative plasmid transfer in staphylococci (212). Plasmids code for genes involved in many
aspects of microbial biology, including detoxication, virulence, ecological interactions, and
antibiotic resistance. Autonomously-transferring conjugative plasmids carry both mating-pore
genes and genes for DNA processing, single-stranded DNA (ssDNA) replication and recruitment
of ssDNA to the mating pore. DNA is recruited to the mating pore by the relaxase protein, which
binds, cleaves and covalently attaches to a recognition sequence called the origin-of-transfer (oriT),
forming (often with accessory proteins) a nucleoprotein complex referred to as the relaxasome
(212). The relaxasome is recruited to the mating-pore through interactions with a mating-pore
component called the VirD4 coupling protein, after which it is transferred to recipient cells through
a type-IV secretion system (Fig.11). Relaxases can additionally be involved in rolling-circle-like
plasmid replication in the donor bacterium and recircularization and replication of plasmid DNA
in the recipient. Plasmid conjugation systems can therefore be considered an evolutionary amalgam
of type IV protein secretion systems that have evolved to transfer protein-tied DNA, with rolling
circle replicases (or recombinases) that have evolved an association with the type IV secretion

system through relaxase-coupling-protein interactions (212).
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Fig 11. Mechanisms of conjugative mobilization in staphylococci. The conjugative plasmid encodes
all genes required for formation of the mating pore, as well as the coupling protein, DNA relaxase
and an oriT. Mobilizable plasmids can exploit the conjugative-plasmid mating pore by either: (A)
encoding a mimic sequence of the conjugative-plasmid oriT, (B) encoding a distinct relaxase (Mob)
compatible with the conjugative plasmids coupling protein and its own oriT, or (C) carrying a
replicative relaxase (Rep) compatible with the conjugative-plasmid coupling protein (212).

Staphylococcal isolates are frequent hosts for diverse antimicrobial-resistance plasmids. Closely
related members of the pSK41/pGO1 plasmid family were first documented by several groups in
the early 1980s as the basis of emergent gentamicin resistance (213-216). In addition to
aminoglycoside resistance, these plasmids have been found to variously confer resistance to
penicillins, trimethoprim, bleomycin, tetracycline, antiseptics and disinfectants, mupirocin, and
macrolides, lincosamides and streptogramin B (212). The resistance genes responsible for these
phenotypes are usually encoded by small plasmids co-integrated between copies of 1S257/1S431
within the pSK41/pGO1 plasmid. Notably, plasmids of this type have subsequently been associated
with linezolid and high-level vancomycin resistance (186,217).

More recently a second distinct family of staphylococcal conjugative plasmids was characterized.
pWBG749 was found in a strain from a remote indigenous Australian community in 1995
(218,219). pWBG749-family conjugative plasmids carrying penicillin, aminoglycoside and
vancomycin-resistance genes have since been identified (220,221).

A third distinct family of conjugative plasmids, which was designated the pWBG4 family, were
first identified as a third unique type of conjugative plasmid in 1985 by Townsend et al. (222). The
first of these, pWBGI4, confers aminoglycoside, macrolide, lincosamide, and spectinomycin

resistance and was identified in a strain originally isolated from Royal Perth Hospital in 1968.
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Conjugative transfer of related plasmids pWBG4 and pWBG25 was subsequently demonstrated
(223,224). A pWBGH4-family plasmid conferring trimethoprim resistance, pWBG707, was
identified in a Malaysian isolate in 1992 (225). The putative pWBG#4 conjugation gene cluster
(detA-detV) is clearly distinct from that of pSK41 and pWBG749. The detA-detV region was
additionally identified on several contemporary staphylococcal plasmids associated with the
dissemination of cfr-gene-encoded linezolid resistance in both human and animal-isolated
staphylococci (212). The pWBG4-family plasmid pSA737 was found in the first American example
of cfr-mediated linezolid resistance in a human S. aureus isolate (205), and was subsequently
identified in 19 isolates from 2 Ohio hospitals (226). The cfr-carrying plasmid pSA737 was isolated
in France from patients in the Nantes University Hospital between 2015 and 2017 from 13 MRSE
and 3 S. aureus strains (data not published). pWBG4-family cfr-carrying plasmids have now been
identified in China (pHKOI) (227), Germany (pI2- 02300) (186), and Ireland (pSAM12-0145)
(205). Despite the wide distribution of pWBG4-like plasmids, the clinical importance of linezolid
and the prominence of the detA-detV conjugation gene cluster, only one of these studies reported
laboratory conjugation experiments confirming that the cfr-carrying pWBG4-like plasmid was
conjugative (205).

Mobilizable plasmids are those which carry DNA-transfer genes required for formation of all or
part of the relaxasome, but lack genes required for mating pore formation. Mobilizable plasmids
have an ability to exploit conjugative plasmids for horizontal dissemination, but are non-mobile in
cells that lack mobile elements carrying compatible mating-pore genes. The vast majority of
documented mobilizable plasmids exploit conjugative element mating-pores by encoding their own
relaxase (Mob) that acts on the plasmid’s cognate oriT (228).

In summary, to date no accurate data exist to estimate the proportion of conjugative, mobilizable,
or nontransmissible plasmids in staphylococci (228). On the other hand, it is clear that there are at
least 3 distinct families of conjugative plasmids (based on their distinct conjugation-gene clusters
of relaxase and OriT sequences) in staphylococci namely: pSK41, pWBG749 and pWBG4. Data
suggest that these 3 families of conjugative plasmids, alongside the mobilizable plasmids, currently
contributing to the horizontal spread of resistance mechanisms against last-resort antimicrobials

such as vancomycin and linezolid (212).
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5.2. Transduction

Transduction is a process by which DNA is transferred from one bacterium to another via bacterial
viruses known as bacteriophages (Fig. 12). The life cycle of bacteriophage uses the bacterial cell
replicational, transcriptional, and translation machinery to make new virions. This process is a
relatively low fidelity event during which pieces of bacterial chromosome (or a plasmid) can
accidentally be packaged into the bacteriophage capsid. The bacteriophage then undergoes a lytic
cycle, which creates a bloom of new particles upon lysis of the host cell (229). Following a second
round of lytic infection, the bacteriophages infect recipient bacteria and inject the foreign DNA
(viral and bacterial) into the cells. In this transduction event, the transferred bacterial DNA can
integrate into the recipient bacterium’s genome through homologous recombination or
recircularize into a replicating plasmid (229). The final result is the movement of bacterial genetic
information from one strain to another. In nature, transduction is a part of HGT mechanis through
which antibiotic-resistance genes are exchanged between bacteria (230). In addition,
bacteriophages are also responsible for the mobilization of S. aureus pathogenicity islands (SaPls),
which encode major toxin genes, such as those of TSST-1 and other superantigens (230). The vast
majority of S. aureus phages known so far are double-stranded DNA phages belonging to the
Siphoviridae family of the Caudovirales order (231).

In S. aureus, phage transduction is thought to play a major role in HGT, since most of the S. aureus
isolates are lysogenized. The DNA size that can be packed in this transducing phage (siphoviruses)
is up to 3943 kb (232). Horizontal gene transfer between S. aureus is due to generalized
transduction via bacteriophage, and all clinical isolates have prophages in their genomes (233).
Generalized transduction occurs when induced phage particles package host chromosomal or
plasmid DNA instead of replicating phage DNA, and on cell lysis these particles deliver host DNA
to new recipient S. aureus (234). Transfer of phage DNA (transduction of phage followed by
lysogeny) between colonizing S. aureus populations has been reported in patients with cystic
fibrosis (235).

In a recent study, the potential spreading of the cfr gene by transduction was tested by using
staphylococcal transducing phage MR83a (184). Phage was amplified by infecting the strain N315-
45 (containing pSCFS7-like plasmids), and its ability to transduce the cfr gene was tested in the
recipient strains N315, COL and Mu50 (both strains were able of acquiring cfr by filter-mating
methodology from N315-45). All recipient strains were able to obtain cfr by transduction,
generating the cfr-positive T-N315-45, T-COL-45 and T-Mu50-45 strains. These results showed
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that bacteriophage-mediated transmission of the c¢fr gene could occur between MRSA strains. In
the case of Enterococcus spp., no cfr in vitro transmission was observed by transduction for any
strain tested (184).

Recently, phage-mediated HGT of SaPIs between major staphylococci pathogens has been
reported (236). Surprisingly, the S. aureus ST395 lineage-specific phage ®187 was capable of
transferring SaPIs between ST395 isolates and many CoNS because of shared properties in the cell
wall teichoic acid (WTA) as surface receptors for the above phage (236). Genomic and biochemical
analyses of the ST395 WTA biosynthesis pathway have further suggested the occurrence of
previous HGT events between ST395 isolates and CoNS, most likely via ®187-related phages
(237). Because most pathogenic CoNS, such as S. epidermidis, have a glycerol-phosphate WTA
backbone resembling that of ST395 isolates, @187 might be a suitable tool to transfer plasmid
DNA to CoNS strains that are otherwise difficult to transform.

Donor Recipient

Fig 12. A schematic representation of phage-mediated DNA transfer in S. aureus by generalized
transduction. (1) transducing phages (red) infect susceptible donor bacteria, (2) and upon lysis new
phages are produced as well as rare transducing particles (green) containing bacterial DNA, (3)
upon a new round of infection, the DNA of the transducing particle is delivered and established in
a recipient bacterium (238).
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5.3. Transformation

Transformation allows naturally competent bacteria to take up DNA from the environment and
integrate the DNA into the chromosome by recombination. In S. aureus, expression of competence
gene is regulated by an alternative sigma factor, SigH located in its genome; however despite these
discoveries there is still very few evidence that transformation is a commonly occurring event in
staphylococci (238).

For bacterial species that are not known to be naturally competent, such as S. aureus and
S. epidermidis, electroporation is an efficient method in the laboratory for introducing genetic
material into the cell. The technique uses electrical pulses to transiently permeabilize bacterial cell
membranes, which allows the passage of plasmid DNA across the membranes (239). In this
technique, an applied electric pulse produces an electric field across the cell membrane that alters
the transmembrane potential of the cell in a side-specific manner. Due to the directional flow of
current, the membrane becomes hyperpolarized on the side facing the anode of the electroporator,
and depolarized on the side facing the cathode (Fig. 13). When the field strength is high enough,
the areas of the membrane directly facing the electrodes become electropermeabilized due to the
transmembrane potential difference reaching a critical value (240). Although many models
attribute electropermeabilization to pore formation, the alternative theory is that the membrane
simply becomes destabilized by the increase in potential difference, leading to formation of
transient permeable domains but not necessarily defined pores (240). Either wayi, it is clear that the
electric field increases membrane permeability in localized areas to allow for the transport of small
molecules across the membrane. Negatively charged DNA is directed to the part of the cell
membrane facing the cathode by electrophoresis from the applied electric field (241). There, the
DNA interacts with the electropermeabilized membrane and forms aggregates (242). The
subsequent steps, which include membrane recovery and DNA migration into the cytoplasm, are
still not well understood and require further characterization (240). Most available techniques used
for genetic manipulation (e.g., electroporation of shuttle plasmids) often fail, most likely because
of strong genetic barrier mechanisms, such as restriction-modification (R-M) systems or clustered
regularly interspaced short palindromic repeats (CRISPR), previously shown to impede HGT
events between bacteria (243,244).

Until now, there are very few studies about the transfer of c¢fr gene by electroporation. In a study
in China, two different cfr-carrying plasmids (50 kb and 7.1 kb) from MRSA isolates were
successfully transferred to a recipient strain (S. aureus RN4220) by electroporation (245).
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In another study by Dexi Li et al., electrotransformation of the multiresistant plasmid pWo28-3

(60.5 kb), carrying cfr and optrA genes isolated from S. sciuri, was successful from S. sciuri into

S. aureus RN4220 (200).

A @ @ c ‘ P 3 :, P4
£ X A
. e PRRRRRRERIRRRER
O SULLLLLALLLLLLY
2 ¢
. .. ... : D o / 7
%
7 e ‘?‘???‘?‘?/< o gttt
Positive Negative 866666 { °% 660000
pole pole

B
u

Threshold
Voltage ’

Fig 13. The principle of electroporation. A, a lively cell is exposed in the external pulse electric
field. BC, when the strength of external electric field exceeds the threshold voltage. D, the transient
pore is formed in the cell membrane and the exogenous nucleic acids are delivered into the cell. E,
then, the cell membrane resealing happens over a range of minutes after the strength of external

field dropping down to the threshold voltage (246).
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6. Fitness and metabolic effects of the acquired plasmid
on the bacterial host

HGT mediated by the spread of plasmids fuels evolution in bacteria. Plasmids carry genes
necessary for plasmid replication and transmission, and the so-called accessory genes that under
specific environmental conditions provide beneficial traits, such as antibiotic resistance, tolerance
to heavy metals, or virulence (247). An important example of the ability of plasmids to catalyze
bacterial adaptation and evolution is their instrumental role in the global spread of antibiotic
resistance, which constitutes a major threat to public health (248). Although plasmids provide
bacteria with new adaptive genes, they also produce physiological alterations that often translate
into a reduction in bacterial fitness, manifesting as a reduced growth rate and weakened
competitiveness of plasmid-bearing strains under conditions that do not select for plasmid-encoded
genes (249). However this fitness reduction can be alleviated over time through compensatory
mutations in the plasmid and/or the host chromosome (250). In-depth studies carried out in bacteria
have shown that adaptive evolution in conditions selecting for plasmid carriage can increase
plasmid stability by reducing the fitness cost of an initially costly plasmid-host association. Thus,
periods of selection may provide sufficient time for plasmid-host adaptations to occur, enhancing
plasmid persistence once selection is removed (251). However, the parameters governing plasmid
fitness cost remain largely unexplored, and thus, it is not possible to predict the evolution of the
same plasmid in different bacterial clones and the fitness effects of different plasmids in the same
clone (250). For example, the lab of J. Lindsay showed that differences in fitness between two
prevalent MRSA clones were unrelated to the presence of large antibiotic resistance plasmids
(252). On the other hand, a recent study investigating the coevolution over the last 32 years of the
pSKI plasmid family in the Australian S. aureus ST239-MRSA-III lineage revealed that pSK/
plasmid maintenance is linked to multiple structural variations caused by the insertion sequences
IS256 and IS257 (253).

The fitness effects of plasmids therefore have a crucial influence on their ability to associate with
new bacterial hosts and consequently on the evolution of plasmid-mediated antibiotic resistance.
However, the molecular mechanisms underlying plasmid fitness cost remain poorly understood
(228). The fitness cost imposed by plasmids, coupled with the potential plasmid loss during
bacterial cell division, can hinder the survival of plasmids in bacterial communities (248).
Generally chromosomal resistance mutations carry a larger cost than acquiring resistance via a

plasmid; this may explain why resistance often evolves by plasmid acquisition. Furthermore the
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cost of plasmid acquisition increases with the range of encoded resistance. This suggests a potential
limit on the evolution of extensive multi-drug resistance via plasmids (250). There are multiple
sources of fitness costs related to HGT, such as the inhibition of bacterial replication or expression
machinery, the biosynthetic cost associated with the new plasmid DNA and proteins, and
deleterious interactions between the newly acquired genes and bacterial regulatory networks (249).
To better understand the fitness cost mechanims, we dissect below the cost produced by plasmids

during the different phases of their biology in the host bacterium (Fig. 14).

6.1. Plasmid reception

The first step of plasmid acquisition by a new host is the physical arrival of the plasmid in the cell
by HGT mechanisms. Conjugation is considered the most important mechanism of plasmid
transmission among bacteria (248). During conjugation, the plasmid enters the new cell as single-
stranded DNA, leading to the induction of a transient activation of the SOS response (254-257).
The SOS response is a bacterial stress response triggered by an increase in single-stranded DNA
in the cell, which leads to a rise in mutation and recombination rates. The activation of SOS also
leads to inhibition of cell division, which may be translated into a reduction into bacterial fitness

in the short term (248).

6.2. Plasmid integration

Following successful transfer to a recipient cell, certain plasmids can integrate into the
chromosome of the host (258). Although the integration of a plasmid carrying adaptive genes in
the chromosome may be potentially advantageous for the host, this nonspecific integration can
disrupt protein coding or regulatory regions or can interfere in the expression of genes flanking the

integration site, entailing fitness costs in the recipient bacterium (259).

6.3. Plasmid replication
There is evidence that plasmid replication carries a fitness cost for the bacterial host. A particularly

interesting observation regarding replication-related fitness costs is that plasmid DNA is
significantly richer in AT than the host chromosome (260). Rocha and Danchin proposed that this
difference might reflect the higher energy cost of G and C and the lower availability of these
nucleotides in the host cell compared with A and T/U (261).
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Plasmids usually encode their own replication-initiation (Rep) proteins, enabling auto control of
plasmid copy number (262). These proteins subsequently recruit several other DNA polymerases
and helicases from the bacterial host to proceed with plasmid replication (248). Multicopy plasmids
probably require a high level of Rep protein expression to maintain their high copy number, which
could increase the fitness cost (248). M. Alex Smith and Michael J. Bidochka, reported significant
impacts of plasmid size and copy number of pBluescript-derived plasmids encoding ampicillin
resistance, on bacterial host fitness in starvation media with and without the presence of antibiotics
(263). Bacterial growth rate was reduced when maintaining larger plasmids. They hypothesized
that metablic stress of maintaining plasmids in nonselective environments may be alleviated
through appearance of instability in plasmid segregation and/or reduction in the plasmid copy
number. In a recent study, T. LaBreck, and D. Scott Merrell demonstrated a fitness cost associated
with carriage of the large pC02 conjugative plasmid found in S. aureus. This MDR plasmid also
carries genes known to be associated with antiseptic resistance (i.e., chlorhexidine and triclosan).
However, subinhibitory concentrations of either chlorhexidine or triclosan suppressed this fitness

cost (264).

6.4. Conjugation

The fitness cost associated with conjugation comes primarily from the high ATP demand for
mating-channel formation and plasmid DNA translocation (248). To minimize this cost, plasmids
tightly control the expression of conjugative systems. The result is a general repression of
conjugation genes, with only a few cells in the population expressing the conjugative machinery
(248). Conjugation can, however, be depressed, either through chemical signaling or through
transcriptional overshooting of conjugative genes in new recipient cells (265). Experimental
analysis showed that transcriptional overshooting allows a transient activation of plasmid functions
immediately after plasmids invade a new host, suggesting an adaptive strategy for plasmids to be

highly infective without damaging their hosts (266).

6.5. Expression of plasmid-encoded genes

The main biosynthetic burden associated with plasmid carriage is likely the expression of plasmid-
encoded genes (248). The costs associated with gene expression can arise from gene transcription,

translation, or subsequent interactions between plasmid-encoded proteins and cellular networks or

69| Page


https://pubmed.ncbi.nlm.nih.gov/?term=LaBreck+PT&cauthor_id=32053737
https://pubmed.ncbi.nlm.nih.gov/?term=Merrell+DS&cauthor_id=32053737

cytotoxic effects. Transcription is not considered a major cost (267), and the cost of plasmid gene
expression appears to be predominantly linked to the translation of protein encoding plasmid genes
(268). The cost of translation is determined by the difference between plasmid mRNA abundance
and the balance of cellular tRNAs, amino acids, and ribosome (269), leading to reduced translation
efficiency in the cell (254). The effect of this cost is the reduction of vertical plasmid transmission;
however, the transient overexpression of conjugative genes helps the plasmid to rapidly spread
horizontally in a bacterial population with available recipient cells. Another possible deleterious
effect of plasmid gene translation is the depletion of the host cell amino acid pool (270). Amino

acid starvation reduces bacterial growth rate and impacts bacterial physiology and fitness.

6.6. Effects of plasmid-encoded proteins on bacterial physiology

Plasmids bring new proteins to the host bacteria, and the potential effects of these proteins on
bacterial physiology are impossible to predict. Plasmid-encoded proteins can cause fitness costs
due to unwanted interactions with cellular networks or cytotoxic effects (248). In most cases, the
deleterious interactions involve the plasmid Rep protein. Rep proteins connect extensively with
host protein networks because they need to recruit many cellular enzymes, such as DNA
polymerases and helicases, in order for plasmid replication to proceed (271). These interactions
can result in the sequestration of the cellular replication machinery, altering the replication network

and activating stress responses (256).

6.7. Mechanisms for minimizing plasmid cost

Once the plasmids are successfully established inside the host bacterium, it needs to adopt
strategies to cope with the presence of such plasmids. One of the key factors for minimizing
plasmids costs is transcriptional regulation by the host proteins such as transcriptional repressors
that silence the expression of acquired genes (264). Plasmids also use specific regulators to control
the transcription of their own genes, especially those related to plasmid main functions (248). In
contrast, the transcription of plasmid-encoded accessory genes (generally related to antibiotic
resistace) is not always beneficial. These accessory genes are frequently encoded in MGEs genetic
such as integrons with high expression levels imposing a potential fitness cost to bacterial host

(272).
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Fig 14. Fitness costs produced by plasmids. Potential fitness effects produced by the plasmids
during their life cycle in the bacterial host (248).
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7. Conclusion of the literature review section and
working hypothesis

7.1. Epidemiology and molecular characteristics of .
aureus/MRSA 1in the regions surrounding Afghanistan

This literature review shows that the epidemiology of MRS A varies considerably on a global basis.
Studies conducted in Afghanistan’s three neighboring countries with large migratory movements,
especially Pakistan, Iran and India show a high prevalence of MDR and virulent MRSA strains
(46%-56%) and very diverse molecular characterstics, with predominance of ST772-MRSA-V
(Bengal Bay clone), ST239-MRSA-III, ST22-MRSA-IV, CC8-MRSA-IV carrying PVL, TSST-1
and various resistance genes. Other predominant circulating clones of MRSA in the regions
surrounding Afghanistan are various MDR-MRSA strains including ST25, ST859, ST14, ST398,
ST59, ST30, ST8, USA900, CC15, ST30, CC1, ST80, ST88, ST25, CC30, CC239, CCI, CC5,
CC1920, and CC59.

Existing data shows that prevalence of MRSA in the livestock in the region varies from 2.7% to
63% which is alarming. Various clones of MRSA circulating in livestock including, ST398, ST98,
ST965, ST6, CC80, CC88 harboring various virulence genes. The predominant LA-MRSA in the
region was ST398-MRSA-V with reports of transmission to human or causing zoonotic infections.
Based on the available data, we can conclude that Afghanistan and its surrounding countries in
west Asia, central Asia, south Asia, and east Asia is among the regions with the highest prevalence
of MDR-MRSA strains harboring various virulence genes (PVL, TSST-1, enterotoxins) both in
humans and animals. Given the changing epidemiology, timely updated information on epidemic
of S. aureus strains in local and neighboring countries is essential for the prevention and control of
this pathogen.Until now, in Afghanistan no information exist about molecular characteristics and
circulating clones of S. aureus, especially MRSA strains which infect or colonize human and

livestock.
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7.2. Conjugative transfer of linezolid resistance

Based on the literature review, since 2000 linezolid has been widely used in the treatment of
clinically-important gram-positive bacteria, including MDR-MRSA. Acquired resistance to
linezolid emerged shortly after introduction of the drug in clinical practice. Initially, the reported
resistance mechanisms were confined to ribosomal alterations, by mutations involving either the
23S rRNA or ribosomal proteins L3, L4 and L22. Subsequently, transferable resistance
determinants to linezolid have also emerged, including the cfr gene and, most recently, the optrA
and poxtA genes.

Numerous studies in several countries reported that cfr is the most frequently detected resistance
gene to linezolid in staphylococci and the cfr-positive CoNS are increasingly isolated in hospitals
worldwide due to high consumption of linezolid (186,208,273-277). Until now, more than 40
different cfr-carrying plasmids have been reported. The resistance to linezolid in clinical isolates
is still rare and it remains active against >98% of staphylococci. Resistance to linezolid identified
in 0.05% of S. aureus and 1.4% of CoNS. Among CoNS, S. epidermidis has been largely
considered to act as a genetic reservoir of cfr gene for other pathogenic bacteria. The potential for
dissemination is underscored by the frequent location of ¢fr on MGEs, typically plasmids, which
are important vehicles for its spread to the more virulent and MDR S. aureus/MRSA strains that
has become a global concern. In the recent years, there have been some outbreaks of cfr-carrying
S. aureus/MRSA infections in the hospitals, including the pandemic ST22-MRSA-IV clone
(180,205,278) that may have acquired the resistance gene from CoNS through HGT. Knowing the
mechanism of linezolid resistance transfer to S. aureus clinical isolates, the genetic backgrounds
of recipients that are more at risk of acquisition, or donors more capable to transfer the cfr-carrying
plasmids, persistence of these plasmids within bacterial population in non-selective conditions, as
well as conjugative transfer of each cfr-carrying plasmids to S. aureus strains, will help health care
professionals to establish effective preventive measures against the spread of linezolid resistance
to more pathogens.

To date, the information about conjugative transfer of cfr-carrying plasmids from CoNS to
S. aureus strains is very scarce. No data exist about the role of genetic background of S. epidermidis
and S. aureus strains in the plasmid transfer or acquisition, respectively. It is also important to
know which plasmids are more transmissible to S. aureus clinical isolates via conjugation. Finally,

information are lacking about the persistence of these plasmids within staphylococci population in
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non-selective conditions, and the fitness cost imposed by these plasmids to S. aureus clinical

i1solates.
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PART 2: EXPERIMENTAL STUDIES

The experimental studies are divided into two axes:

A. Molecular characterization of S. aureus isolates from Afghanistan: The main objective
of this study was to determine the epidemiology and molecular characteristics of S. aureus
strains isolated from human and livestock infection and colonization in Kabul.

The main sub-objectives were:
» To determine the molecular features and antibiotic susceptibility patterns of
S. aureus strains isolated from clinical samples in the health facilities of Kabul.
» To determine the molecular features and antibiotic susceptibility patterns of
S. aureus strains isolated from human nasal carriers in Kabul.
» To determine the molecular features and antibiotic resistance profile of S. aureus
strains isolated from livestock (bovine mastitis/and nasal carriage in sheep) in

Kabul.

B. Conjugative transfer of linezolid resistance: The main objective of the study was to study
the conjugative transfer of linezolid resistance from cfr-postive LRSE to various clones of
S. aureus circulating in France.

The main sub-objectives were:

» To study the role of genetic background of donors or recipients in the transfer or acquisition
of various cfr-carrying plasmids, respectively.

» To study the transmission capability of different cfr-carrying plasmids.

» To study the plasmid fitness cost in transconjugants.

» To study the plasmid stability in transconjugants, under non-selective conditions.
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1. First publication: "Antibiotic resistance profile and molecular
characterization of Staphylococcus aureus strains isolated in
hospitals in Kabul, Afghanistan”

Haji Mohammad Naimi, Camille André, Michele Bes, Anne Tristan, Claude-Alexandre

Gustave, Francois Vandenesch, Qand Agha Nazari, Frédéric Laurent, Céline Dupieux.
European Journal of Clinical Microbiology & Infectious Disease. 2021; 40(5):1029-1038.

Overuse of antibiotics and taking antibiotics without prescription is very common in Afghanistan
(113). This widespread use of antibiotics could have contributed to selection and spread of MDR
organisms including MRSA. Recent studies in Afghanistan and neighboring countries have shown
a high prevalence of MRSA in healthcare settings and in the community (58,61,112,279).
Knowledge of epidemic S. aureus/MRSA clones can help in the development of effective strategies
to aid in controlling spread, and optimizing treatment.

In Afghanistan, no data are available about circulating clones of S. aureus. Molecular
characterization and determination of virulence and resistance genes of the major S. aureus
circulating clones in Afghanistan is an important step to treat and establish preventive measures to
contain the spread of these pathogens in the community and healthcare facilities. Thus, this study
was conducted to determine the molecular features and antibiotic resistance patterns of S. aureus
strains isolated from clinical samples in two main hospitals of Kabul (Maiwand and Ibn-Sina).
These two health facilities were selected because they have standard microbiology labs and
perform most of the bacteriological analyses in Kabul. Standard microbiological procedures were
conducted on clinical samples with minimum delay for culture; confirmatory tests and antibiotic
susceptibility testing (AST) were performed in Kabul. The conserved strains were then brought to
France for molecular analysis including detection of mecA/mecC genes, agr typing and DNA
microarray for identification of clones.

The result showed various resistance genes to different classes of antibiotics among isolated strains,
of which 66.3% were MRSA and all harboured mecA gene. After molecular typing of the isolates,
a wide clonal diversity was observed with 12 different clonal complexes (CCs), 13 distinct clones
of MRSA and 14 distinct clones of MSSA. Three MRSA clones predominated: the Southwest
Pacific Clone (CC30-MRSA-IV PVL-positive), the Bengal Bay Clone (ST772-MRSA-V PVL-
positive), and the CC22-MRSA-IV TSST1+ clone.
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Our findings indicate that prevalence of MRSA isolates obtained from patients in Kabul hospitals
was quite high when compared to the neighboring countries. Most of S. aureus isolates, especially
MRSA, were MDR and harbored different virulence genes. This diversity and the clones identified
reflect epidemiological links, including travels, migrations, commerce, and international military
actions, with South West Pacific, Indian and Middle Eastern/Arabian Gulf regions, as well as
Western Europe, USA and Africa. Major efforts have to be made to monitor and reduce the spread
of these MDR pathogens in Kabul healthcare facilities and establish surveillance and infection

control departments in major hospitals of Kabul and other provinces of Afghanistan.
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Abstract

The aim of this study was to investigate the molecular features and the antibiotic resistance profile of 98 clinical Staphylococcus
aureus isolates collected during 6 months in two hospitals of Kabul, Afghanistan. For all isolates, antimicrobial resistance
patterns were determined by the disc diffusion method (including methicillin resistance which was detected using cefoxitin).
The presence of the mecA/mecC genes was detected by PCR. Strains were then extensively characterized using microarray
analysis. Of the 98 S. aureus isolates, methicillin-resistant S. aureus (MRSA) prevalence was high at 66.3%. Antibiotic suscep-
tibility testing also revealed a high resistance rate to penicillin (100%), erythromycin (66.3%), ciprofloxacin (55.1%), and
cotrimoxazole (40.8%). Resistance to tobramycin was detected in 25.5%, to gentamicin in 16.3%, to chloramphenicol in
34.7%, and to doxycycline in 23.5% of the isolates. All the MRSA isolates were mecA-positive and none of them harbored
mecC. Isolates were grouped into twelve clonal complexes and twenty-seven distinct clones. The most frequently detected clones
were the Southwest Pacific clone (CC30-MRSA-IV PVL+) (21/65 MRSA, 32.3%), the CC22-MRSA-IV TSST-1+ clone (11/65
MRSA, 16.9%), and the Bengal Bay clone (ST772-MRSA-V PVL+) (11/65 MRSA, 16.9%). The PVL genes were found in
59.2% (46/65 MRSA and 12/33 methicillin-susceptible S. aureus, MSSA) and st/ gene in 16.3% of isolates. This molecular
study highlights the high prevalence of MRSA and the large genetic diversity of the S. aureus isolates circulating and detected in
two hospitals of Kabul, with the presence of multiple virulence and antibiotic resistance genes.

Keywords Staphylococus aureus - MRSA - Antibiotic resistance - Molecular typing - Kabul - Afghanistan

Introduction

Staphylococcus aureus is a major human pathogen responsi-
ble for serious infections in both community and hospital set-
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tings [1]. S. aureus can cause a wide range of infections, from
minor skin infections, such as carbuncles, folliculitis, and im-
petigo, to deep-seated (abscesses or cellulitis) or life-
threatening infections such as pneumonia, osteomyelitis, bac-
teremia, toxic shock syndrome, or endocarditis. The global
emergence and spread of methicillin-resistant S. aureus
(MRSA) in hospitals since the 1960s are a public health con-
cern and limit the therapeutic arsenal for severe staphylococ-
cal infections. Indeed, healthcare-associated (HA-) MRSA are
usually resistant to most antimicrobial agents. In the case of
severe infections due to these multi-resistant strains, glyco-
peptides are often the drugs of last resort; however, isolates
with reduced susceptibility to vancomycin are frequently re-
ported [2], and some vancomycin-resistant S. aureus (VRSA)
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strains harboring the vanA gene from enterococci have also
been described but are very rare [3]. On the other hand, the
emergence and spread of community-acquired (CA-) MRSA
clones expressing the Panton-Valentine leukocidin (PVL) in
the last two decades are an additional cause for concern and
have changed the epidemiology of MRSA [4, 5]. These strains
are generally associated with recurrent skin and soft tissue
infections (SSTIs) but can also cause necrotizing pneumonia
or destructive bone and joint infection [6]. Interestingly, some
CA-MRSA clones predominate in geographically restricted
areas while others have achieved a pandemic level.

In central Asia, including Afghanistan, studies about
MRSA have mainly focused on the prevalence of MRSA,
but few data are available about the circulating clones. In this
part of the world, S. aureus infections in healthcare settings
show a high prevalence of MRSA [7]. For example, in
Pakistan, a multicentric study in four hospitals showed a
MRSA rate of 41.9% in 2006-2008 [8]. In India, two
multicentric studies described comparable MRSA rates of
41% and 45% in 2008-2009 and 2011, respectively [9, 10].
In Iran, a systematic review reported a mean MRSA rate of
43.0% between 2000 and 2016 [11] and several VRSA iso-
lates were described [12]. More specifically, in Afghanistan, a
recent study concerning S. aureus infections diagnosed in
Kabul hospitals highlighted a high rate of methicillin resis-
tance (56.2%) and an increase in the prevalence of
multidrug-resistant (MDR)-MRSA compared to the neighbor-
ing countries [13]. In parallel, an overuse of antimicrobials
was described during the last decade in primary healthcare
clinics of five major provinces of Afghanistan, including
Kabul [14] and, in 2014, some authors raised the question of
over prescription of antibiotics in a district hospital in Kabul
where more than 50% of out-patients were prescribed at least
one antibiotic [15]. This widespread use of antimicrobial ther-
apies could have contributed to the increase of MRSA preva-
lence in Afghanistan and the selection of MDR clones.

Nevertheless, although molecular typing data for S. aureus
and MRSA are abundantly available for Western Europe,
North America, or Australia, few studies have been
conducting to describe S. aureus epidemiology in the rest of
the world, including Central Asia and more specifically,
Afghanistan. In this context, the aim of this work was to in-
vestigate the molecular features of S. aureus strains isolated
from clinical samples in two hospitals of Kabul, as well as
their antibiotic resistance profile.

Materials and methods
Strains collection

From January to June 2017, all S. aureus isolates cultured from
in- and out-patient samples in two hospitals located in the center
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of Kabul (Maiwand and Ibn-Sina hospitals) were collected.
During the 6-month study period, a total of 98 isolates of
S. aureus obtained from 98 individual patients were character-
ized. The strains were isolated from various types of clinical
samples: pus (skin and soft tissue infections; 65.3%), ear pus
(18.4%), blood (7.1%), urine (3.1%), vaginal swab (3.1%), tra-
cheal aspirations (2%), and semen (1%). Out of the 98 patients,
33 (33.7%) were women and 65 (66.3%) were men. The mean

age was 19 years ([1-75] years, median 12 years).
Phenotypic assays

Standard microbiological procedures were conducted on clini-
cal samples with minimum delay for culture, confirmatory tests,
and antibiotic susceptibility testing (AST). Presumptive
S. aureus isolates were subcultured for 18-24 h at 37 °C onto
blood agar base medium (Oxoid, Basingstoke, UK) supple-
mented with 5% sheep blood. Confirmatory tests were carried
out for the identification of §. aureus isolates, by performing
Pastorex Staph Plus (Bio-Rad, Marnes-la-Coquette, France)
and coagulase assay. AST was performed on Mueller-Hinton
agar (Oxoid) by Kirby Bauer disc diffusion method according
to the 2017 guidelines of the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) [16]. The fol-
lowing panel of antibiotics was tested: penicillin G, cefoxitin
(used to detect methicillin/oxacillin resistance), tobramycin,
gentamicin, erythromycin, clindamycin, ciprofloxacin, chlor-
amphenicol, doxycycline, rifampicin, and cotrimoxazole.

Detection of mecA/mecC genes and agr typing by
multiplex PCR

Cellular DNA was obtained from S. aureus colonies grown
overnight on blood agar plates using DNA Extraction Kit
(Promega, USA) in accordance with the manufacturer’s in-
structions. Detection of the mecA and mecC genes and agr
typing were performed by multiplex PCR using primers al-
ready published [17-19].

Molecular characterization of strains by DNA
microarray

DNA was extracted and purified using commercial extraction
kits (DNeasy kit and Promega instrument; Qiagen, Hilden,
Germany), according to the manufacturer’s protocol. The
DNA microarray Identibac S. aureus genotyping® (Alere
Technologies, Jena, Germany) was used as previously de-
scribed [20]. This microarray allows the detection of 336 dif-
ferent target sequences corresponding to 185 genes and their
allelic variants. The assignation of isolates to clonal com-
plexes (CCs) was determined by comparison of the hybridi-
zation profiles to previously typed multi-locus sequence typ-
ing reference strains [20].
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Statistical analysis

Statistical analysis was done using SPSS 21 (IBM Inc.,
Chicago). Binary logistic regression was used to determine
the association between MRSA or MSSA status, gender, and
age. Chi-square test was used to compare the resistance pro-
files and the presence of virulence genes between MRSA and
MSSA (methicillin-susceptible S. aureus). A p value less than
0.05 was considered statistically significant.

Results
Antibiotic susceptibility testing

Out of the 98 S. aureus isolates, all were resistant to penicillin
and 65 (66.3%) were methicillin-resistant (Table 1). Twenty-
five (25.5%) were resistant to tobramycin, 16 (16.3%) to gen-
tamicin, 65 (66.3%) to erythromycin, 11 (11.2%) to
clindamycin, 54 (55.1%) to ciprofloxacin, 34 (34.7%) to
chloramphenicol, 23 (23.5%) to doxycycline, 3 (3.1%) to ri-
fampicin, and 40 (40.8%) to cotrimoxazole. MRSA isolates
were statistically more frequently resistant to gentamicin (p =
0.002), erythromycin (p <0.001), ciprofloxacin (p < 0.001),
and cotrimoxazole (p =0.017) than MSSA (Table 1). The dif-
ference of MRSA distribution was not statistically significant
according to gender (p =0.39) and age (p =0.25).

Molecular characterization of S. aureus isolates

Various resistance genes were detected in the 98 collected iso-
lates: blaZ in almost all isolates (97/98, 99%), msrA and mphC
in 43/98 (43.9%), ermC in 16/98 (16.3%), aphA3 in 44/98
(44.9%), aadD in 22/98 (22.4%), aacA-aphD in 16/98

Table 1 Antibiotic resistance of the 98 S. aureus isolates collected
during 6 months, from January to June 2017, in two hospitals in Kabul
(MSSA, n=33, and MRSA, n=65)

Antibiotic All isolates MRSA MSSA p value
n (%) n (%) n (%)
Penicillin G 98 (100) 65 (100) 33 (100) -
Tobramycin 25(25.5) 19(29.2) 6(18.2) 0.236
Gentamicin 16 (16.3) 16 (24.6) 0(0) 0.002
Erythromycin 65 (66.3) 51(785) 14(424) <0.001
Clindamycin 11(11.2) 9(13.8) 2(6.1) 0.249
Ciprofloxacin 54 (55.1) 45(69.2) 9(27.3) < 0.001
Chloramphenicol 34 (34.7) 24 (36.9) 10(30.3) 0515
Doxycycline 23(23.5) 16 (24.6) 7(21.2) 0.707
Rifampicin 3.1 2.1 1(3.0) 0.99
Cotrimoxazole 40 (40.8) 32(49.2) 8 (24.2) 0.017

Significant p values are shown in italic
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(16.3%), and tetK in 39/98 isolates (39.8%) (Table 2). No strain
harbored the resistance genes vanA, gacA, gacC, fusB, mupR,
and ¢fi-. The presence of msrA, mphC, aacA-aphD, aphA3, sat,
and dfrA was higher in MRSA than in MSSA whereas the
presence of nuA, tef, and fefEfflux was higher in MSSA.
Out of the 65 isolates phenotypically resistant to methicillin,
all harbored the mecA gene and no isolate was positive for
mecC. Concerning the staphylococcal chromosome cassette
mec (SCCmec) element of these MRSA isolates, 47 (72.3%)
harbored SCCmiec type [V, 17 (26.2%) harbored SCCmec type
V, and one (1.5%) harbored SCCmec type 111

Regarding the molecular typing of the isolates by microar-
ray, a wide clonal diversity was observed. The 98 isolates
belonged to twelve different clonal complexes (CCs) and were
assigned to 27 distinct clones (Tables 3 and 4). Three CCs
(CC1, CC22, and CC30) dominated and accounted for
65.3% of the isolates; four other CCs (CC8, CC15, CCI121,
and CC398) accounted for 24.5%.

The most frequent detected clone was the Southwest
Pacific clone (CC30-MRSA-IV PVL+), which accounted for
21.4% (21/98) of all isolates and 32.3% (21/65) of MRSA. It
was mostly isolated from skin and soft tissue infections.
Isolates of this clone were resistant to multiple antibiotics,
particularly oxacillin (100%), erythromycin (95.2%), cipro-
floxacin (95.2%), and cotrimoxazole (57.1%). Various resis-
tance genes were detected in these isolates: blaZ operon,
msrA, mphC, fosB and tetEfflux in all isolates; aphA3 and
sat in 19/21 (90.5%) isolates; aadD and tefK in 1/21 (4.8%).
The enteroxin gene cluster egc (seg, sei, sem, sen, seo, and
seu) was detected in all these isolates.

The second most frequent detected clone was the Bengal
Bay clone (ST772-MRSA-V PVL+), which accounted for
11.2% (11/98) of all isolates and 16.9% (11/65) of MRSA.
Isolates of this clone were also resistant to multiple antibiotics,
particularly oxacillin (100%), tobramycin (63.6%), gentami-
cin (54.6%), erythromycin (100%), ciprofloxacin (100%),
chloramphenicol (63.6%), and doxycycline (63.6%).
Various resistance genes were detected in these isolates:
blaZ operon, msrA, mphC, fosB, and tefEfflux in all isolates;
tefK in 6/11 (54.6%); and aacA-aphD in 5/11 (45.5%). Nine
enterotoxin genes (sea, sec, sel, and the egc) were detected in
almost all of these isolates (Table 3). Another clone, the
CC22-MRSA-IV TSST1+ (toxic shock syndrome toxin-1)
clone, accounted for 11/98 (11.2%) of all isolates and 11/65
(16.9%) of MRSA isolates. Isolates of this clone were less
resistant to antibiotics: oxacillin (100%), erythromycin
(27.3%), doxycycline (27.3%), rifampicin (18.2%), and
cotrimoxazole (36.4%). Various resistance genes were detect-
ed in these isolates: blaZ operon in 10/11 (90.9%), ermC in 2/
11 (18.2%), dfrA in 11/11 (100%), and terK in 3/11 (27.3%).
The egc cluster was detected in all of these isolates. All other
clones of MRSA were detected in 6 or less isolates (< 7%) and
presented a high diversity (Table 3).
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Table 2 Presence of resistance
genes in 98 S. aureus isolates
collected during 6 months, from

January to June 2017, in two
hospitals in Kabul (MSSA, n=
33, and MRSA, n=65).

Gene All isolates MRSA MSSA p value
n (%) n (%) n (%)
Beta-lactam resistance blaZ 97 (99.0) 64 (98.5) 33 (100) 0.47
mecA 65 (66.3) 65 (100) - -
mecC 00 0(0) - -
Macrolide/lincosamide resistance ermA 1(1.0) 1(1.5) 0 (0) 047
ermB 1 (1.0) 0 (0) 1 (3.0) 0.16
ermC 16 (16.3) 16 (246)  5(15.2) 0.82
InuA 7(7.1) 0(0) 7(21.2) < 0.001
msrA 43 (43.9) 38(58.5)  5(15.2) < 0.001
mphC 43 (43.9) 38 (58.9) 5(15.2) < 0.001
Aminoglycoside resistance aacA-aphD 16 (16.3) 16 (24.6) 0(0) 0.002
aadD 22(224) 13 (20.0) 9(27.3) 0.42
aphA3 44 (44.9) 41(63.1) 309.1) < 0.001
sat 44 (44.9) 41 (63.1) 3.0 < 0.001
Cotrimoxazole resistance dfrA 16 (16.3) 16 (24.6) 0 (0) 0.002
Fusidic acid resistance fusB 0(0) 0 (0) 0(0) -
Tetracycline resistance tetK 39 (39.8) 21(32.3) 18 (54.8) 0.03
tetM 22.0) 1(1.5) 1(3.0) 0.62
tetEfflux 80 (81.6) 48(73.8)  32(97.0)  0.005
Choramphenicol resistance cat 1(1.0) 0 (0.0) 13.0) 0.16
cf 0 (0) 0 (0) 0 (0) y
JexA 0(0) 0(0) 0(0)
Mupirocin resistance mupR 0 (0) 0(0) 0(0) -
Fosfomyecin resistance fosB 65 (66.3) 46 (70.8) 19 (57.6) 0.19
Vancomycin resistance vanA 0 (0) 0(0) 0(0) -
Significant p values are shown in italic
Discussion

Out of the 33 MSSA isolates, 6 (18.2%) belonged to
the CC15 and did not harbor genes for PVL, TSST-1,
and enterotoxins. Five MSSA isolates (15.2%) belonged
to the CC121-MSSA PVL+ clone and harbored the re-
sistance genes blaZ, fosB, tetK, and tetEfflux, and vir-
ulence genes encoding PVL and enterotoxins (seb, and
ege). Five MSSA isolates (15.2%) belonged to the
ST291/813 and four (12.1%) belonged to the CC30-
MSSA PVL+ clone. All other clones of MSSA were
detected in three or less isolates (4% of all strains)
but showed high diversity (Table 4).

The overall rate of PVL-positive isolates was 59.2% (58/
98), these isolates belonging to 8 MRSA and 5 MSSA
clones. The prevalence of PVL genes was higher in
MRSA than in MSSA (70.8% vs 36.4%, p=0.001). The
arginine catabolic mobile element (ACME) locus was pres-
ent in only one strain of MRSA belonging to the USA300
clone (ST8-MRSA-IV PVL+), isolated from an ear pus.
Contrary to PVL, few isolates harbored the TSST-1 (16/
98, 16.3%). Table 5 shows the prevalence data for virulence
genes in the S. aureus isolates collected.
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This epidemiological study investigated the antibiotic resis-
tance profile and performed the molecular characterization
of MRSA and MSSA clinical isolates at two main health fa-
cilities in Kabul. The overall prevalence of MRSA was high at
66.3% (65/98). A very high genetic diversity was detected
using microarray analysis, with 27 distinct clones among the
98 isolates collected during a 6-month period.

This study is the first molecular study of S. aureus
clinical isolates in Afghanistan and reports the various
clones circulating in its capital. The prevalence of
MRSA in this study was higher compared to findings
of similar studies conducted in neighboring countries
such as Pakistan [21], Iran [22], Saudi Arabia [23],
and Turkey [24]. In this study, a wide clonal diversity
was detected with twelve different clonal complexes,
along with 13 distinct MRSA and 14 MSSA clones.
The typing results revealed a predominance of three
MRSA clones, representing 44% of the isolates:
Southwest Pacific (CC30-MRSA-IV PVL+), Bengal
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Table 5 Presence of virulence
genes in 98 S. aureus isolates
collected during 6 months

(January—June 2017) in two
hospitals in Kabul (MSSA, n =
33, and MRSA, n =653)

Group Gene Allisolates MRSA MSSA p value
n (%) n (%) n (%)

Toxic shock syndrome toxin gene tst] 16 (16.3) 13(20.0) 3(9.1) 0.167

Enterotoxin genes sea 17 (17.3) 14(21.5) 3(9.1) 0.124
sep 2 (2.0) 1(1.5) 1(3.0) 0.622
seb 9(9.2) 4(6.2) 5(15.2) 0.145
sec 16(163)  11(169) 5(152)  0.823
seg 70(71.4)  54(83.1) 16(485) 0.00!
seh 5(5.1) 1(1.5) 4(12.1) 0.024
sei 72 (73.5) 55(84.6) 17(51.5) <0.001
sek 9(9.2) 7 (10.8) 2(6.1) 0.446
sel 16 (16.3) 11(16.9) 5(15.2) 0.823
sem 73 (74.5) 56(86.2) 17(51.5) <0.001
sen 71(72.4) 54(83.1) 17(51.5) 0.001
seo 72 (73.5) 55(84.6) 17(51.5) <0.00]
seq 9(9.2) 7 (10.8) 2(6.1) 0.446
seu 72(73.5)  55(84.6) 17(51.5) <0.00!

Panton-Valentine leukocidin lkFPVL-lukSPVL 58 (59.2) 46 (70.8) 12(364) 0.001

Exfoliative toxins etd 5(5.1) 0(0.0) 5(15.2) 0.001

Miscellaneous virulence genes orloci  ACME 1(1.0) 1(1.5) 0(0.0) 0474
sak 79 (80.6) 53 (81.5) 26(78.8) 0.745
chp 73 (745  46(70.8) 27(81.8) 0236
sen 97 (99.0) 64 (98.5) 33(100) 0474

Significant p values are shown in italic

Bay (ST772-MRSA-V PVL+), and CC22-MRSA-IV
TSST-1+ clones. The 24 other clones were present in
one to 6 isolates.

The main limitation of this study is that only S. aureus
isolates collected in two hospitals of Kabul were included.
Therefore, even if these hospitals perform most of the bacte-
riological analyses in Kabul, the results do not reflect the
global epidemiology in Afghanistan and are only representa-
tive of S. aureus epidemiology for infections diagnosed in
hospitals. Nevertheless, the huge diversity of strains highlight-
ed by the typing results illustrates the position of Kabul as a
center of intense international exchanges.

Three different MRSA and two different MSSA clones were
identified within CC30. The Southwest Pacific clone (CC30-
MRSA-IV PVL+, USA1100) was the most prevalent clone,
detected in 32.3% of MRSA isolates. This MDR and PVL+
clone is widely distributed in the Pacific islands and was first
identified in New Zealand among the Samoan immigrant pop-
ulation [25]. It is a widespread CA-MRSA clone in Australia
and has been found in several European countries as well as in
Hong Kong, Taiwan, the USA, Saudi Arabia, the United Arab
Emirates, and Iran [25-27]. The major occurrence of this clone
in Afghanistan could possibly be linked to the large migratory
movements of Afghans to Australia, Saudi Arabia, Iran,
European countries, and some of the southwest Pacific
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countries, especially Indonesia, and Malaysia. The WA
MRSA-124 clone (CC30-MRSA-V/VT PVL+), detected in
9.2% of MRSA isolates, 1s another virulent and MDR clone
and was isolated mainly from SSTIs. The same lineage has
already been described in Egypt [28] and in a patient living in
the German/Polish border region and presenting a SSTI [4].
Two MSSA and two MRSA clones were identified within the
CC1. Within this clonal complex, the Bengal Bay clone (ST772-
MRSA-V PVL+), detected in 19.6% of MRSA isolates, is now-
adays the dominant clone in India [29, 30]. As the Southwest
Pacific clone, this one is also PVL+ and MDR. Studies from
Pakistan, Nepal, and Australia also reported the predominance
of this clone [31-33] which has become endemic in these re-
gions. The presence of this clone in Kabul may illustrate an
epidemiological link between Afghanistan and the neighboring
countries, especially India and Pakistan where many Afghan
families travel for medical treatment, and many young students
go to pursue their higher education. This clone appears to be an
increasing public health threat in several countries in the region,
as it can be encountered in hospital as well as in community
settings [31]. One PVL+ isolate, collected in Kabul from a
SSTI, belonged to the USA400 pulsotype, one of the first-
described PVL+ CA-MRSA. This one was reported to cause
fatal infections in healthy children in the late 1990s in the USA
[34] and then sporadically described in Australia, Germany, and
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the UK. Prior to this study, USA400 had not been reported in the
neighboring countries such as Pakistan and Iran.

Two MRSA and one MSSA clones were identified within
the CC22. This is a common and widespread clonal complex,
and different MRSA lineages have emerged from this genetic
background. The CC22-MRSA-IV TSST-1+ clone, detected
in 19.6% of all MRSA isolates, has been mostly reported in
Saudi Arabia and the Middle East region [25]. Its presence in
Afghanistan could be related to the large movements of
Afghans to Saudi Arabia for pilgrimage each year. Seven
MRSA isolates were assigned to the CC22-MRSA-IV PVL+
. This clone has been described in Germany, Australia,
England, Ireland, Hong Kong, and the United Arab Emirates
[4, 35]. Both clones were reported in hospital-acquired infec-
tions from Pakistan as well [31].

Four different MRSA clones were identified within the
CC8. Among them, the USAS500 clone (CC8-MRSA-IV
PVL-) was predominant. This clone has been identified in
the USA, Australia, the UK, and Ireland, and sporadically in
Germany [4, 36]. Interestingly, only one isolate was identified
as the well-known USA300 (CC8-MRSA-IV PVL+) clone.
This clone of CA-MRSA, mainly reported in the USA, was
also reported in numerous countries in Europe or Asia such as
Saudi Arabia, Qatar, and Pakistan [4, 25, 32, 37]. One isolate
was also identified as belonging to the Vienna/Hungarian/
Brazilian clone (ST239-MRSA-III). This HA-MRSA lineage
is probably the oldest pandemic MRSA strain and has been
reported in many European countries [4, 38], as well as in Asia
including Saudi Arabia [25], Iran [27], and Pakistan [32].

The overall prevalence of PVL among S. aureus isolates
collected in Kabul was 59.2%, these isolates belonging to 8
MRSA and 5 MSSA clones, with a higher prevalence in
MRSA. This high prevalence and the diversity of PVL+ iso-
lates must be highlighted and could be linked to the import of
different strains via international exchanges. Contrary to other
countries, we did not observe the predominance of one single
CA-MRSA clone such as the USA300 in North America. In
studies in neighboring countries, the prevalence of PVL was
generally lower: from 0 to 12.7% in Turkey [39], from 7.4 to
55.6% in Iran according to the studies [40], and around 9% of
S. aureus isolates responsible for community-acquired infec-
tions in West Bengal of India [41].

In conclusion, the prevalence of MRSA in S. aureus iso-
lates circulating in Kabul was quite high (66.3%) when com-
pared with the prevalence rates obtained from other similar
studies conducted in neighboring countries. Most of
S. aureus isolates, especially MRSA, were multidrug-
resistant (generally resistant to beta-lactams, macrolides, quin-
olones, and cotrimoxazole and less often to aminoglycosides,
chloramphenicol, and tetracyclines). This may be related to
the overuse or the inappropriate use of antimicrobials which
was recently reported in Afghanistan [14, 15]. A great diver-
sity of S. aureus clones was brought to light using microarray
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analysis, with a predominance of the Southwest Pacific, the
CC22-MRSA-IV TSST-1, and the Bengal Bay clones. This
diversity and the clones identified reflect epidemiological
links, including travels, migrations, commerce, and interna-
tional military actions, with South West Pacific, Indian, and
Middle Eastern/Arabian Gulf regions, as well as Western
Europe, the USA, and Africa. In the future, major efforts have
to be made on the monitoring, distribution, and spread of
multidrug-resistant bacteria to control their diffusion and re-
duce the prevalence of MRSA in Afghanistan.
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2. Second publication (Short note in preparation): “Molecular
characterization and antimicrobial resistance of nasal
Staphylococcus aureus in the community of Kabul

Introduction

S. aureus, particularly methicillin-resistant S. aureus (MRSA), is a major pathogen in both hospital-
and community-associated infections. The nasal mucosa is the main S. aureus reservoir associated
with transmission to other body sites and auto-infections, as well as transmission to other people
(280). It has been reported that nasal carriers of S. aureus have an increased risk of being infected
by this pathogen (281). About 20 to 30% of healthy individuals are persistent carriers of S. aureus
for periods ranging from a few weeks to many years, and mostly in the anterior nares (282). MRSA
nasal carriers among the university students who are in close contact with each other may spread
MRSA to hospitalized patients, but also to their family members and to the community.

Recent study concerning S. aureus infections diagnosed in Kabul hospitals, highlighted a high rate
of methicillin resistance (66.3 %) and presence of multiple virulence and antibiotic resistance genes
in S. aureus isolates, but no study had been carried out in Afghan community on nasal carriage
rate, antibiotic susceptibility patterns, and molecular characteristics of circulating S. aureus strains.
The present study aimed to assess the nasal carriage rate, antibiotic susceptibility patterns, and
associated risk factors of S. aureus/MRSA among university students, excluding medical faculties
who are an active part of the community.

For this study, we chosed Kabul university students, because it is a large university and students
come from different parts of Kabul area and other provinces and they can quite well represent the
community of Afghanistan. On the other hand, it was easier to obtain nasal swabs from them after
signing the consent form. Samples were taken randomly from the students of different non-medical
faculties with no history of antibiotic consumption, hospitalization, admission to a nursing home,
or surgery during the last 2 months. Standard microbiological procedures were conducted on nasal
samples with minimum delay for culture; confirmatory tests and antibiotic susceptibility testing
(AST) were performed in Kabul. The conserved strains were then brought to France for molecular
analysis including detection of mecA/mecC genes, agr typing and DNA microarray for
identification of clones.

Our finding showed that the nasal carriage rate of S. aureus in Kabul students was 33.3% (50/150),
and 38% (19/50) of S. aureus isolates were identified as MRS A, which highlights a high prevalence
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of MRSA nasal carriage compared to similar studies in the region. Various resistance genes were
detected in the MRSA isolates including blaZ, ermC, msrA, mphC, aacA-aphD, aadD, aphA3, sat,
dfrA, tetK, tetEfflux, and fosB. Regarding the molecular typing of the MRSA isolates, a wide clonal
diversity was observed. CC22-MRSA-IV TSST-1-positive dominated and accounted for 63.2%
(12/19) of the isolates. Isolates of this clone were resistant to multiple antibiotics, particularly
penicillin, erythromycin, clindamycin, cotrimoxazole, and norfloxacin. This clone also represented
16.9% of HA-MRSA from clinical samples in recent study in Kabul. Out of the 7 MRSA clones
isolated in this study, 5 clones accounted for 89.5% of MRSA, were also detected in HA-MRSA
in Kabul.

In conclusion we found a high frequency of MRSA nasal carriage in students, and high rates of
MRSA transmission between healthcare settings and community in Kabul. Individuals who are
harboring these isolates can act as reservoirs and a risk factor for outbreak of MRSA infection.
Supporting policies are needed to prevent the spread of MRSA clones between hospitals and

community.
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Abstract

Objectives: This study aimed to investigate the prevalence of methicillin-resistant Staphylococcus
aureus (MRSA) nasal carriage in the community among students at Kabul University and their
molecular characteristics.

Methods: Nasal swabs were collected from anterior nares of 150 healthy non-medical students in
Kabul. MRSA isolates were then confirmed by mecA/mecC PCR and characterized using DNA
microarray.

Results: A total of 50 S. aureus strains were isolated from the anterior nares of the 150 participants.
The prevalence of S. aureus and MRSA nasal carriage among Kabul students was 33.3% and 12.7%
respectively. Thirty-seven (36.8%) of MRSA isolates and 25.8% of methicillin-susceptible
Staphylococcus aureus (MSSA) isolates were resistant to at least 3 different antimicrobials tested.
All MRSA isolates were susceptible to linezolid, rifampicin and fusidic acid. Four clonal

complexes (CCs) along with 7 clones were identified. The most commonly identified clone was
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CC22-MRSA-IV TSST-1-positive, which accounted for 63.2% (12/19) of MRSA isolates. The
SCCmec typing showed that most MRSA strains harbored SCCmec type IV (94.7%). Sixty-eight
(68.4%) of MRSA isolates carried the TSST-1 and 26.3% the PVL genes.

Conclusion: Our findings revealed the relatively high prevalence of MRSA nasal carriers in the
community in Kabul, with the predominance of the CC22-MRSA-IV TSST-1-positive clone, and

the presence of multidrug resistance (MDR) among these isolates.

1. Introduction

Since methicillin-resistant Staphylococcus aureus (MRSA) was first identified in 1961, it has been
associated with higher mortality rates and increased lengths of hospital stays as well as associated
health care costs [1]. MRSA infections are a serious risk for patients in healthcare settings and a
challenge for public health, whereas infections due to community-acquired MRSA (CA-MRSA)
seem to be increasing among people in different areas of the world [2]. The most frequent carriage
site is anterior nares, which serves as a reservoir for the spread of the pathogen. Nasal carriage has
been shown to play a key role in the pathogenesis of S. aureus infections in patients undergoing
surgery, dialysis, and intensive care unit (ICU) patients [3]. Nasal carriage of S. aureus also
constitutes a risk factor for the development of skin and soft tissue infections in non-hospitalized
and non-diseased subjects [4]. MRSA strains that reside in the anterior nares serve as a reservoir
for future infection [5]. In a systematic review, patients colonized with MRSA were four times
more likely to develop invasive infection than patients colonized with MSSA [6]. Determination
of the prevalence of S. aureus nasal carriage, as well as antimicrobial resistance profiles and
molecular typing for nasal MRSA isolates in healthy population is beneficial for understanding the
epidemiology of community-acquired infections, and supporting infection control measures.

In central Asia, including Afghanistan, studies of MRSA have mainly focused on the prevalence
of MRSA, but few data are available about the circulating clones. A recent study concerning S.
aureus infections diagnosed in Kabul hospitals highlighted a high rate of methicillin resistance
(66.3 %) and the presence of multiple virulence and antibiotic resistance genes in S. aureus isolates
with a predominance of CC22-MRSA-IV TSST-1-positive and ST772-MRSA-V PVL-positive
clones [7]. However, no data are available about the prevalence of MRSA carriage and the clones

circulating in the community.
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The present study aimed to investigate the prevalence of S. aureus/MRSA nasal carriage, and the
molecular characteristics of MRSA isolates in the community of Kabul through S. aureus nasal

screening in non-medical students at Kaubul University.

2. Materials and Methods

2.1. Study population

A total of 150 healthy student volunteers from non-medical faculties of Kabul University were
randomly enrolled in this study from March to July 2018. Informed consent was obtained from all
individual participants included, according to Afghanistan ethical rules. Every student with a
history of antibiotic consumption, hospitalization, admission to a nursing home, or surgery during

the last 2 months were excluded.

2.2. Identification of S. aureus isolates and antimicrobial susceptibility testing

Samples were collected from both anterior nares of volunteers with sterile moistened swabs.
Standard microbiological procedures were conducted on nasal swabs with minimum delay for
culture. Samples were cultured for 18—24 hours at 37 °C onto blood agar base medium (Oxoid,
Basingstoke, United Kingdom) supplemented with 5% sheep blood. Then presumptive S. aureus
isolates were identified by carrying out confirmatory tests, consisting of Pastorex Staph Plus latex
agglutination test (Bio-Rad, Marnes-la-Coquette, France) and coagulase assay.

Antimicrobial susceptibility testing (AST) was performed on Mueller Hinton agar (Oxoid) by
Kirby Bauer disc diffusion method according to the 2019 guidelines of the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) [8]. The following antimicrobial agents were
tested: penicillin G, cefoxitin (used to detect methicillin resistance), erythromycin, clindamycin,
norfloxacin, kanamycin, tobramycin, gentamicin, cotrimoxazole, linezolid, fusidic acid,

chloramphenicol, fosfomycin, and rifampicin.

2.3. Detection of mecA/mecC genes and agr typing by multiplex PCR

Cellular DNA was obtained from S. aureus colonies grown overnight on blood agar plates using
DNA  Extraction Kit (Promega, USA) in accordance with  manufacturer’s
instructions. The detection of the mecA and mecC genes and agr typing were performed by

multiplex PCR using primers already published [9-11].
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2.4. Molecular characterization of strains by DNA microarray

The DNA microarray Identibac S. aureus genotyping® (Alere Technologies, Jena, Germany) was used as
previously described [12]. This microarray allows the detection of 336 different target sequences
corresponding to 185 genes and their allelic variants. The assignation of isolates to clonal complexes (CCs)
was determined automatically with the Identibac software by comparison of the hybridization profiles to

previously typed multi-locus sequence typing reference strains [12].

2.5. Statistical analysis

Statistical analysis was done using SPSS 21 (IBM Inc. Chicago). Chi-square test was used to
compare the significance resistance profile between MRSA and MSSA. Binary logistic regression
was used to determine the association between MRSA nasal carriage, gender and age. A P-value

less than 0.05 was considered as statistically significant.

3. Results

During the study period, a total of 50 S. aureus isolates, of which 19 (38%) MRSA, were isolated
from the anterior nares of the 150 volunteers included in the study. The nasal carriage rate of S.
aureus was thus 33.3%. Out of the 50 S. aureus isolates, 36 (72.0%) were obtained from men and
14 (28.0%) from women. The mean age of carriers was 22 years ([19-38] y, median 22 vy).
Interestingly, 38% of S. aureus isolates (19/50) were identified as MRS A. Therefore the prevalence
of nasal MRSA carriage among Kabul University students was 12.7% (19/150). The difference of
S. aureus/MRSA distribution was not statistically significant according to gender (p=0.84) and age
(p=0.18).

The antimicrobial resistance rates of MRSA, MSSA, and S. aureus isolates are presented in
Table 1. The majority of S. aureus isolates were resistant to penicillin (96%). The rates of resistance
for other antibiotics were 32% for erythromycin, 8% for clindamycin, 18% for norfloxacin, 30%
for kanamycin, 22% for tobramycin, 6% for gentamicin, 18% for cotrimoxazole, 4% for fusidic
acid, 2% for chloramphenicol, and 8% for fosfomycin. The resistance rates of MRSA isolates to
common antimicrobials were not statistically significant than those of MSSA isolates (Table 1).
Interestingly 36.8% (7/19) of MRSA isolates and 25.8% (8/31) of MSSA isolates were resistant to
at least 3 classes of antibiotics. All MRSA isolates were susceptible to linezolid, rifampicin and

fusidic acid.
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Various resistance genes were detected in the 19 MRSA isolates. blaZ, dfrA and tetK were the most
frequently detected genes in 89.5%, 52.6% and 47.4% of MRSA isolates, respectively. No strain
harbored the resistance genes to fusidic acid (fusB), to chloramphenicol (cat, fexA), to linezolid
(cfr), to mupirocin (mupR), and to vancomycin (vanA). Out of the 19 isolates phenotypically
resistant to methicillin, all harbored the mecA gene and no isolate was positive for mecC (Table 2).
Concerning the staphylococcal chromosomic cassette mec (SCCmec) element of these MRSA
isolates, 18 (94.7%) harbored SCCmec type 1V, and one (5.3%) harbored SCCmec type V.
Regarding the molecular typing of the MRSA isolates, a wide clonal diversity was observed. The
19 MRSA isolates belonged to four different clonal complexes (CCs) and were assigned to seven
distinct clones. One CC (CC22) dominated and accounted for 79% of the isolates, and three other
CCs (CC5, CC30, and CC88) accounted for 21% (Table 3). The most frequent detected clone was
the CC22-MRSA-IV carrying the toxic shock syndrome toxin (TSST-1) gene, which accounted for
63.2% (12/19) of MRSA isolates. Three resistance genes were detected in these isolates: blaZ
operon in 10/12 (83.3%), dfrA in 8/12 (66.7%), and tetK in 6/12 (50%). The egc cluster
(enterotoxins seg, sei, sem, sen, seo, and seu) was detected in all these isolates. The second most
frequent clone was the C22-MRSA-IV positive for the Panton-Valentine leukocidin genes, which
accounted for 10.5% (2/19) of MRSA isolates. The 2 isolates of this clone were resistant to multiple
antibiotics, particularly penicillin, kanamycin, tobramycin, gentamicin, and erythromycin and
harbored various resistance genes: blaZ operon, ermC, aacA-aphD, and dfrA in all isolates, aadD
in 1/2. The egc cluster was also detected in these 2 isolates (Table 3). Only single isolates of 5 other
MRSA clones completed this list, which represented 26.5% of all MRSA i1solates and comprised
well-known clones such as the CC5-MRSA-IV TSST-1-positive Paediatric clone, the CC30-
MRSA-IV PVL-positive Southwest Pacific clone and the CC22-MRSA-IV UK-EMRSA-15
Barnim clone (Table 3). Overall, 5/19 MRSA isolates (26.4%) were PVL-positive and 13/19
(68.4%) TSST-1-positive.

4. Discussion

This original study is the first molecular characterization of MRSA community isolates in
Afghanistan and reports the various clones circulating among healthy individuals. In this study, a
wide clonal diversity of MRSA was detected with 4 different clonal complexes, along with 7
distinct clones. Molecular analyses showed a predominance of one MRSA clone, representing

63.2% of the isolates: the CC22-MRSA-IV TSST-1-positive. The 6 other clones detected were
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present only in 1 or 2 isolates. The results of the present study are consistent with our previous
study about clinical isolates of MRSA in Kabul hospitals. Out of the 7 MRSA clones in this study,
5 clones that accounted for 89.5% of the isolates, were also reported in Kabul hospitals [7]. This
suggests direct relation between community and hospital MRSA clones in Kabul.

The main limitation of this study is that only MRSA isolates collected from nasal carriers among
Kabul university students were included. Therefore, the results do not reflect the global
epidemiology of MRSA nasal carriage in Afghanistan. Nevertheless, students are a population
without risk factors and the population in our study came from different parts of Afghanistan,
therefore represent quite well the Afghan community. In addition, the diversity of strains
highlighted by the typing results illustrates the position of Kabul as a center of intense international
exchanges, as already described [7].

The prevalence of nasal colonization with S. aureus in our study was 33.3%, a higher prevalence
than that observed (19.6%) among healthy students of medical and non-medical universities in
Urmia, Iran [13]. However, the prevalence of nasal carriage of MRSA in our study (12.7%) was
similar to this study (13.1%). Another study in China among medical students showed a S. aureus
nasal colonization rate of 15.4% and a prevalence of MRSA carriage of 3% [14], which is lower
than our findings. In our study, the frequency of MRSA nasal carriage was not significantly
different between male and female students (p=0.84), which shows that gender may not be a risk
factor for MRSA nasal colonization, while in a study in Iran, [13] authors reported that male was
a risk factor for MRSA nasal colonization and argued that it may be related to personal hygiene
especially by the female sex. As previousl reported, these data indicate that MRSA colonization
varies significantly, from country to country. Put together, these results demonstrate that
international data are needed to guide national public health demands.

In this study, three different MRSA clones were identified within CC22. This is a common and
widespread clonal complex and different MRSA lineages have emerged from this genetic
background. The CC22-MRSA-IV (TSST-1-positive) was the most prevalent clone, detected in
63.2% of all MRSA isolates. In a previous study about MRSA prevalence in clinical samples in
Kabul health facilities, this clone accounted for 16.9% of MRSA isolates [7]. This strain is mostly
reported in Saudi Arabia and the Middle East region [15]. Its presence in Afghanistan could be
related to the large movement of Afghans to Saudi Arabia for pilgrimage each year. The CC22-
MRSA-IV PVL-positive clone was detected in 2 MRSA isolates. In our previous study in Kabul,

this clone accounted for 7.7% of MRSA clinical isolates [7]. This clone has also been described in
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clinical samples from Germany, Australia, England, Ireland, Hong Kong and the United Arab
Emirates [16]. One isolate (5.3%) belonged to the CC22-MRSA-IV UK-EMRSA-15 Barnim clone;
this is a common and pandemic strain of MRSA that has been found mainly in Western Europe,
but also in other parts of the world including some Gulf countries [17]. Two MRSA clones were
identified within CC30: the CC30-MRSA-IV PVL-positive Southwest Pacific clone, and the
CC30-MRSA-V/VT PVL-positive clone. These lineages were also reported from Iran, United Arab
Emirates, Saudi Arabia, Taiwan, Egypt and Europe, both from the community and hospitals
[15,16].

One MRSA clone was identified within CC5, the CC5-MRSA-IV TSST-1-positive Paediatric
clone. This MDR clone which also harbored the epidermal cell differentiation inhibitor gene
(edinA) was first reported in hospitals in neonatal patients in Portugal [18], neonates and adults in
Brazil [19] and Turkey [20].

One clone was identified within CC88, the CC88-MRSA-IV PVL-positive, which harbored
enterotoxin genes and resistance genes only to penicillins and tetracyclines. This clone was
reported in healthcare-associated infections in Afghanistan [7], Saudi Arabia [15] and Kuwait [21].
In this study, PVL genes were found in 26.3% of MRSA isolates (n=5), which is similar to another
study among healthy adults in Iran [22]. The transmission of such virulent strains in the universities
and other crowded places where people are often in close physical contact with each other can

contribute to the transmission and the spread of these strains among people.

S. Conclusions

The relatively high frequency of MRSA nasal carriage, especially the virulent TSST-1 and PVL
positive clones, among healthy population in Kabul is a reason for concern, since individuals who
harbor these isolates can act as reservoirs for outbreak of MRSA infection. Supporting policies for
preventing the hospital-community spread of MRSA, and reducing nasal carriage with continued

efforts to enhance hygiene among students are necessary.
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Table 1. Antimicrobial resistance rates of S. aureus, MRSA and MSSA nasal isolates among students in

Kabul, Afghanistan, between March-July 2018 (n=50).

S. aureus MRSA MSSA

Antibiotic (n=50) (n=19) (n=31) Pvalue
Penicillin G 96 100 93.5 0.26
Erythromycin 32 36.8 29 0.57
Clindamycin 8 10.5 6.5 0.61
Norfloxacin 18 26.3 12.9 0.23
Gentamicin 6 10.5 32 0.29
Kanamycin 30 26.3 323 0.66
Tobramycin 22 10.5 29 0.13
Cotrimoxazole 18 15.8 194 0.75
Linezolid 0 0 0 -
Fusidic acid 4 0 6.5 0.26
Chloramphenicol 2 53 0 0.2
Fosfomycin 8 53 9.7 0.58
Rifampicin 0 0 0 -
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Table 2. Antimicrobial resistance genes identified in MRSA isolates from nasal carriers among students in

Kabul, Afghanistan, between March-July 2018 (n=19).

ATB Group Gene All isolates
n (%)
Beta-lactam resistance bldZ. 17 89.5)
mecA 19 (100)
mecC 0 (0)
Macrolide/lincosamide ermA 00)
resistance B 00
ermC 2(10.5)
InuA 0 (0)
msrA 3(15.8)
mphC 3(15.8)

Aminoglycoside resistance aacA-aphD 2(10.5)

aadD 1(5.3)
aphA3 3 (15.8)
Sat 3 (15.8)
Cotrimoxazole resistance dfrA 10 (52.6)
Fusidic acid resistance fusB 0(0)
Tetracycline resistance tetK 9 (21.1)
tetM 0 (0)
tetEfflux 4 (81.6)
Chloramphenicol resistance ~ Cat 0(0)
Cfr 0 (0)
fexA 0(0)
Mupirocin resistance mupR 0(0)
Fosfomycin resistance fosB 3(15.8)
Vancomycin resistance vanA 0(0)
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Table 3. Distribution and characteristics of the 19 MRSA isolates collected from anterior nares of Kabul University students between March-July

2018 (n=19).
CC
(number of Clone assignment (Alere)” n j% of agr PVL TSST Enterotoxin genes Antibiotic resistance genes Antibiotic resistance’
isolates) isolates type
CC5 (1) CC5-MRSA-1V TSST-1+¢, 1 5.3 2 Neg Pos sec, seg, sei, sel, sem, blaZ, msrA, mphC, aphA3, sat, Pen, Fox, Kan, Ery
Paediatric clone sen, seo, seu fosB, tetEfflux
CC22 (15) CC22-MRSA-IV (FNBB+)4, 1 53 1 Neg Neg seg, sei,sem, sen, seo, blaZ, tetK Pen, Fox, Nor
UK-EMRSA-15/Barnim seu
EMRSA-like MRSA
CC22-MRSA-IV PVL+® 2 10.5 1 Pos Neg seg, sei,sem, sen, seo, blaZ, ermC, aacA-aphD, Pen, Fox, Kan, Tob, Gen, Ery,
seu aadD(1/2), dfrA Nor (1/2), Fos (1/2)
CC22-MRSA-IV TSST-1+ 12 632 1 Neg Pos seg, sei,sem, sen, seo, blaZ(10/12), dfrA(8/12), Pen, Fox, Ery (2/12), Cli
seu tetK(6/12) (1/12), Nor (1/12), Cot (2/12),
CC30 (2) CC30-MRSA-1V PVL+, 1 5.3 3 Pos Neg seg, sei,sem, sen, seo, blaz, msrA, mphC, aphA3, sat, Pen, Fox, Kan, Ery, Clin, Nor,
Southwest Pacific Clone seu fosB, tetEfflux Chl
CC30-MRSA-V/VT PVL+, WA 1 53 3 Pos Neg seg, sei,sem, sen, seo, blaZ, msrA, mphC, aphA3, sat, Pen, Fox, Kan, Ery, Nor, Cot
MRSA-124 seu tetK, fosB, tetEfflux
CC88 (1) CC88-MRSA-1V PVL+ 1 53 3 Pos Neg sep, sek, seq blaZ, tetK, tetEfflux Pen, Fox
Total 19  100.0

@ MLST and clone assignments correspond to the comparison of the hybridization profiles on the DNA microarray to previously typed MLST reference strains °.

b Pen, penicillin; Fox, cefoxitin; Kan, kanamycin; Ery, erythromycin; Nor, norfloxacin; Tob, tobramycin; Gen, gentamicin; Fos, fosfomycin; Cli, clindamycin; Cot,

cotrimoxazole; Chl, chloramphenicol.

¢ Toxic shock syndrome toxin 1; ¢ Fibronectin-binding protein B; ¢ Panton-Valentine Leukocidin
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3. Third publication (Mansuscript 1in preparation):
“Characterization and antimicrobial resistance patterns of
Staphylococcus aureus strains isolated from livestock in Kabul”

Introduction

S. aureus causes various infections in economically important livestock animals. One of these
infections is intramammary infection of dairy cows, which leads to mastitis a major economic
burden on the global dairy industry (283). In addition subclinical mastitis or S. aureus
colonizing the udder is of major concern, because the enterotoxin-producing S. aureus strains
are associated with food poisoning in humans (284). Many studies showed that the great
majority of the livestock isolates of S. aureus including MRSA belong to small number of
animal-associated clones and may be transmitted to humans and cause human infection or
colonisation (43,57,138,285).

As mentioned in the first and second publications, the human infection and colonization with
MRSA in Kabul was significant with prevalence of 66.3% and 12.7% respectively. The
presence of multiple virulence and antibiotic resistance genes was also prominent in these
isolates. More importantly, both studies evidenced a high rate of MRSA transmission between
hospitals and community in Kabul.

Up to now, no study has been conducted in regard to S. aureus strains of animal origin in
Afghanistan.The main purpose of the present study was to investigate the prevalence, molecular
characteristics and antibiotic resistance profiles of S. aureus isolates from bovine mastitis, as
well as sheep nasal carriage in Kabul.

For conducting this study, we chosed the Kabul veterinary clinic, which is a main center for
diagnosis and treatment of animals in Kabul, and three big livestock markets that sell sheep to
the custormers. Seventeen S. aureus strains isolated from bovine mastitis during five months in
the veterinary clinic of Kabul, and 189 nasal samples taken randomly from sheep in three
different livestock markets in Kabul were collected for this study. Standard microbiological
procedures were conducted for primary identification of the strains, followed by confirmatory
tests and antibiotic susceptibility testing (AST) in Kabul. The conserved strains were then
brought to France for molecular analysis including detection of mecA/mecC genes, agr typing,

spa typing, and DNA microarray for identification of their gentoypes.
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Our result showed that the percentage of MRS A among S. aureus clinical isolates obtained from
bovine mastitis was 11.8% (2/17). One MRSA isolate was resistant to various antibiotics
including penicillin, cefoxitin, cefovecin, kanamycin, tetracycline, erythromycin and
enrofloxacin. Thirty five percent (6/17) of the S. aureus isolates from bovine mastitis were
multi-drug resistant with a high rate of resistance to tetracycline. The presence of PVL, TSST-
1, and enterotoxin genes in S. aureus isolates obtained from boving mastitis were 35% (6/17),
6% (1/17), and 53% (9/17) respectively. The predominant spa type was t021, CC30 (35%;
6/17). The prevalence of S. aures in sheep nasal carriage was low 1.1% (2/189), and both
S. aureus isolates were MSSA. They belonged to spa type t5428 and harbored TSST-1, LukM,
and two enterotoxin genes.

In conclusion we found the presence of MRSA and enterotoxigenic S. aureus strains among the
isolates from bovine mastitis and evidence the sharing of MRSA clones in human and livestock.
This highlights the importance of setting up efective preventive measures to control the spread
of MDR and virulent strains between human and animals and also proper control of dairy

products.
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Highlights
e S. aureus isolates from bovine mastitis exhibited high resistance to tetracycline

e MRSA and a considerable number of enterotoxigenic S. aureus were present

e There was evidence of spread of MRSA strains between human and livestock

ABSTRACT
Objectives: The aim of this study was to investigate the epidemiology of Staphylococcus

aureus in livestock in Kabul by determining the prevalence of methicillin-resistant S. aureus
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(MRSA) in bovine mastitis and nasal carriage in sheep, and characterizing the S. aureus strains
isolated in these animals.

Methods: A total of 17 S. aureus isolates from bovine mastitis obtained from the clinical
specimens in veterinary clinic of Kabul and 2 S. aureus isolates from nasal carriage in sheep,
obtained from livestock markets in Kabul were included in this study. All strains were subjected
to antimicrobial susceptibility testing by disc diffusion and molecular typing by mecA/mecC
PCR, multiplex PCR targeting toxin genes and spa typing.

Results: The 17 bovine mastitis isolates belonged to 9 spa-types, among which 2 of them were
MRSA. Fifty-three percent (9/17) of the isolates harbored one or more enterotoxin genes.
Interestingly six isolates were PVL-positive and three isolates were TSST-1-positive. The
prevalence of S. aureus nasal carriage in sheep was low 1.1% (2 /189, both harboring TSST-1).
Conclusion: The genetic diversity of the isolates and many strains carrying enterotoxin genes
is of great concern from public health point of view, because such toxins are associated with

human infection or food poisoning cases.

Keywords: Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), bovine mastitis,

spa typing, Kabul

1. Background

In addition to being a notorious human pathogen, S. aureus causes an array of infections in
economically important livestock animals including cows, sheep, goats, poultry and rabbits.
For example, intramammary infection of dairy cows leading to mastitis is a major economic
burden on the global dairy industry [1]. In addition, subclinical mastitis or S. aureus colonizing
the udder are also worrisom, because the enterotoxin-producing S. aureus strains are associated
with food poisoning due to production in foodstuffs of the enterotoxins that are heat-stable, and
resistant to proteases and environmental conditions [2]. Many studies have shown that the vast
majority of S. aureus isolates from livestock belong to only small number of animal-associated
clones and can be sporadically transmitted to humans [3]. In the recent years, MRSA has been
reported with increased frequency from a wide variety of domestic animals including cows,
pigs and chickens (4). The potential for animals to act as a source of S. aureus zoonotic
infections for humans is illustrated by recent descriptions of human infections caused by LA-
MRSA [5,6]. In addition, recent evidence implies that some other livestock-associated S. aureus
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strains may have the capacity to colonise humans [7], and conversely, humans represent a
source of new pathogenic strains affecting livestock [8,9]. The most common clonal complex
(CC) in bovine mastitis across herds and countries are CC97, CC126, CC133, CC151, CC479
and CC771 [10]. A small proportion of bovine isolates, however, can be grouped with human
clones, e.g., CC8, CC20 and CC25, demonstrating that host-association is not absolute [10].

As most livestock in Afghanistan are reared in backyard systems with more direct contact with
human than the intensive farming, the possibility and opportunity of cross-transmission cannot
be ruled out. The supply of unpasteurized milk directly from farmers into the food chain also
increases the occurrence of milk-borne staphylococcal infections or intoxications. The purpose
of the present study was to investigate the molecular characteristics of S. aureus isolates from
bovine mastitis, as well as their antimicrobial resistance profiles, and to determine the frequency

of nasal carriage of S. aureus among healthy sheep in Kabul livestock markets.

2. Material and Methods

A total of 17 clinical S. aureus isolates from bovine mastitis isolated between March and July
2018 in Kabul veterinary clinic. In addition, S. aureus nasal screening were performed by

obtaining 189 nasal swabs from sheep in 3 different livestock markets in Kabul.

2.1. Isolation and identification of S. aureus
Sheep nasal swabs were inoculated in Tryptic soy broth (TSB) (Merck, Germany) at 4°C prior
to laboratory analysis. The next day swabs were inoculated onto mannitol salt agar (Oxoid,
England) and blood agar plates (blood agar base medium supplemented with 5% sheep blood;
Oxoi1d) and incubated at 35°C for 18-24 hours. Presumptive S. aureus isolates were sub-cultured
for 18-24 hours at 37°C onto blood agar, and identification confirmation was carried out by
performing Pastorex Staph Plus (Bio-Rad, Marnes-la-Coquette, France) in Kabul Afghanistan,

and subsequently by Maldi-Tof in Lyon France.

2.2. Antibiotic susceptibility testing (AST)
AST was performed on Mueller Hinton agar (Oxoid) by Kirby Bauer disc diffusion method
according to the 2020 veterinary guidelines of the EUCAST subcommittee on Antimicrobial
Susceptibility Testing (VetCAST) [11]. The following antimicrobial agents were tested:

penicillin G, cefoxitin and cefovecin (used to detect methicillin resistance), kanamycin,
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tobramycin, gentamicin, chloramphenicol, florfenicol, tetracycline, tigecycline, erythromycin,

spiramycin, lincomycin, fusidic acid, enrofloxacin, and linezolid.

2.3. PCR based detection of mecA/mecC and spa types
Detection of the mecA and mecC genes was performed by multiplex PCR using primers already
published [12—14]. spa typing was performed by the amplification of the x region of the spa
gene by PCR, and spa-types were assigned by Ridom  SpaServer
(http://spaserver.ridom.de/staphtype/spa_sequencing.shtml). Detection of toxins was
performed by PCR using primers as already described [15,16].
The two MRSA isolates were further characterized by the DNA microarray Identibac S. aureus

genotyping® (Alere Technologies, Jena, Germany) as previously described [17].

3. Results

The percentage of MRS A obtained from bovine mastitis was 11.8% (2/17). Both MRSA carried
mecA gene. The first MRSA strain was resistant to various antibiotics including beta-lactams,
kanamycin, tetracycline, erythromycin and enrofloxacin; while the second was only resistant to
beta-lactams. Out of the 15 MSSA strains isolated from bovine mastitis, 9 (60.0%) were
resistant to penicillin, 1 (6.7%) to kanamycin, 1 (6.7%) to tobramycin, 5 (33.3%) to tetracycline,
2 (13.3%) to erythromycin, 1 (6.7 %) to lincomycin, and 2 (13.3%) to enrofloxacin. Four
isolates (26.7%) were considered as multi-drug resistant. One MRSA isolate carried enterotoxin
gene cluster (egc) (seg, sei, sem, sen, seo and seu), while the other carried only one enterotoxin
gene (sep). One MRSA isolate was PVL-positive. In MSSA isolates the PVL gene was present
in 33.3% (5/15), TSST-1 gene in 6.7% (1/15), and enterotoxin genes in 46.7% (7/15). Five
MSSA isolates carried egc (sem, seu), and two MSSA isolates carried egc (sed, sem, seo, ser)
(Table 1). The 2 MRSA isolates from bovine mastitis belonged to CC30-MRSA-V/VT and
CC88-MRSA-IV PVL-positive clones and of two different spa types t021, t6769, respectively.
The 15 MSSA isolates belonged to 7 different spa types, of which the spa type t021 was the
most prevalent (5/15; 33.3%), followed by t267 (3/15; 20.0%). Five other spa types (t084, t131,
t254, t701, and t3750) accounted for 33.3%, and two (13.3%) of them were non-spa-typeable.

Out of the 189 nasal swabs from sheep, only 2 S. aureus isolates were identified (carriage 1.1%).
Both isolates were MSSA and susceptible to all of the antibiotics tested in this study. They
belonged to spa type t5428 and harbored TSST-1, LukM, and egc cluster (sec, sel).
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4. Discussion

Despite a small collection of S. aureus isolates from bovine mastitis and sheep nasal swabs
tested in our study, which may not represent the global population of S. aureus circulating in
dairy herds of Afghanistan, this report provides for the first-time information on the existence
of multidrug resistant and virulent clones in livestock in Afghanistan. The percentage of MRSA
among S. aureus isolates from bovine mastitis was 11.8%, which was slightly higher than in
similar studies in Afghanistan’s neighboring countries such as China: 7.1% [18], and Iran: 5%
[19]; however due to low number of S. aureus isolates included in this study, it should be
confirmed by further studies, and by including a high number of S. aureus isolates from bovine
mastitis in Kabul. In the present study a high frequency of resistance was observed among
S. aureus isolates from bovine mastitis especially for tetracycline; this is likely related to the
widespread use of tetracyclines in animal husbandry in Afghanistan, which likely select and
promote the dissemination of resistant strains in animals, and humans in contact with animals.
The two MRSA clones identified (C88-MRSA-IV PVL-positive, spa type t6769; CC30-
MRSA-V/VT, spa type t021) had been already identified in human HA-infection and
colonization in our previous studies in Kabul. Close contact between human and livestock
(especially dairy cattle) likely explain the transmission of MRSA between human and animals
and may explain why this MRSA clone was detected both in humans and animals.

We identified a very low nasal carriage (1.1%) rate of S. aureus in sheep in Kabul. No data
about S. aureus carriage in sheep in Afghanistan was available before the present study, neither
at the local nor at the national scale. In a report from Iran, a higher rate (14.1%) of S. aureus
sheep nasal carriage was reported and all of them were MSSA [21]. The sheep studied herein
mostly belonged to nomads, who sell their livestock in animal markets in Kabul and other
Afghanistan’s provinces. Their livestock graze in the mountains and deserts, and have less
contact with other animals and humans. This could explain why the nasal carriage rate of
S. aureus among sheep in our study was very low. However, these data should be confirmed by

further studies in livestock farms and such studies in other provinces of Afghanistan.

5. Conclusions
These data show that MRSA and enterotoxigenic S. aureus strains are present among the
isolates responsible for bovine mastitis in Kabul. In order to protect consumers’ health, the

multiresistance and the virulence profiles in MRSA but also in some MSSA highlights the
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importance of proper control of dairy products. Efforts have to be made in the responsible use
of antimicrobials, surveillance, prevention and control of the spread of antibiotic-resistant or

virulent bacteria from animals to humans.
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Table 1. Distribution and characteristics of 19 S. aureus isolates obtained from bovine mastitis and sheep nasal carriage in Kabul.

Clonal
complex
associated Number
Animal with spa- of % of Enterotoxin
source  Sample spa type  type isolates  isolates mecA LukM PVL TSST-1 genes Antibiotic resistance*
Cow Milk 1021 CC30 1 5.3 Pos Neg Neg Neg seg, sei,sem, sen, Pen, Fox, Cef, Kan,
seo, seu Tet, Ery, Enr
Cow Milk t6769 CC88 1 53 Pos Neg Pos Neg Sep Pen, Fox, Cef
Cow Milk t021 CC30 5 26.3 Neg Neg Pos Neg sem, seo None
Cow Milk t084 CC15 1 53 Neg Neg Neg Neg Neg Pen, Tet
Cow Milk t131 CC97 1 5.3 Neg Neg Neg Neg Neg Pen, Tet
Cow Milk 1254 CCl15 1 5.3 Neg Neg Neg Neg Neg Pen, Kan, Tob, Tet,
Lin
Cow Milk t267 CC97 3 15.8 Neg Neg Neg Neg Neg Pen (2/3), Tet (2/3)
Cow Milk t3750 Unknown 1 53 Neg Neg Neg Neg Neg Pen
Cow Milk t701 CCo6 1 53 Neg Neg Neg Pos Neg Pen
Cow Milk Unknown Unknown 2 10.5 Neg Neg Neg Neg sed, sem, seo, ser  Pen, Ery, Enr
Sheep nasal swab  t5428 Unknown 2 10.5 Neg Pos Neg Pos sec, sel None

* Pen: penicillin; Fox: cefoxitin; Cef: cefovecin; Kan: kanamycin; Tob: tobramycin; Tet: tetracycline; Ery: erythromycin; Enr: enrofloxacin; Lin: lincomycin.

PVL: Panton valentine leukocidin; TSST-1: Toxic shock syndrome toxin-1
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4. Conjugative transfer of cfr-carrying plasmids from CoNS
to S. aureus strains

4.1. Introduction

Antibiotic resistance is one of the biggest public health challenges of our time. In this regard,
the World Health Organization (WHO) has recently published a list of "high priority" bacteria,
including bacteria belonging to the species S. aureus and in particular MRSA, for which new
antibiotics are needed and there is an urgent need to control the emergence and spread of
resistance (286). Most S. aureus strains contain different types of MGEs, including plasmids,
transposons, insertion sequences, lysogenic bacteriophages, and pathogenicity islands, that
facilitate the acquisition of genes encoding mechanisms of resistance against antimicrobials,
biocides, and heavy metals (287).

Oxazolidinones, as the most recent family of anti-staphylococcal antibiotics, are one of the last
resorts for the treatment of MRSA infections; linezolid is the most widely used antibiotic in this
family. It acts as a protein synthesis inhibitor by binding to the ribosomal PTC on the bacterial
23S ribosomal RNA (rRNA), thereby inhibiting transition of the aminoacyl-tRNA to the A site
and protein synthesis by preventing formation of the fMet-tRNA-30S ribosome-mRNA
initiation complex (179). Unfortunately, its use is currently on the rise, especially since generic
forms are available, and has been accompanied by the emergence of resistances (18,288).
Resistance in S. aureus as well as CoNS is most often caused by a G-to-T substitution at position
2576 of the 23S rRNA (289). Other mutations in the 23S rRNA (G2447T, T2500A, and
C2534T) have been identified in clinical and laboratory-derived staphylococcal isolates
(290,291), as well as mutations in the L3, L4, and L22 ribosomal proteins (292,293). Another
important mechanism involves the acquisition of the plasmidic c¢fr gene
(chloramphenicol/florfenicol resistance), which encodes an adenine methyltransferase that
modifies adenosine at position 2503 in the 23S rRNA (294). Its ability to be transmitted between
different strains or species represents a global concern. At the moment the emergence of
resistance is worrisome. Linezolid remains active against >98% of staphylococcal isolates, with
resistance identified in 0.05% of S. aureus and 1.4% of CoNS (183).

The cfr-positive CoNS are increasingly isolated in hospitals probably due to high consumption
of linezolid followed by spread and dissemination. The cfr gene has been detected in clinical
staphylococcal isolates related to hospital outbreaks in different countries of Europe and in the
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USA (186,189,208,292). Linezolid resistance mediated by the cfr gene represents a global
concern due to its dissemination among multi-resistant nosocomial pathogens such as MRSA
and Enterococcus. CoNS, in particular S. epidermidis, have been largely considered to act as a
genetic reservoir for other pathogenic bacteria (184). Recently there have been several reports
of the acquisition of plasmids that encode the cfr resistance in MRSA, including the pandemic
ST22-MRSA-IV clone (295). cfr-positive plasmids acquisition may most often happens by
conjugation, which is a highly evolved and efficient mechanism facilitating DNA transfer in
bacteria (212). At the moment, it is pivotal to determine the risk of conjugative dissemination
of ¢fr among clinical isolates to understand and prevent the spread of this resistance. Until now,
only few in vitro studies have determined the frequency of cfr transmission to staphylococci
based on conjugative transfer by filter mating which are describe below.

Cafini et al., evaluated the conjugative transmission of cfr-positive pSCFS7-like plasmids (40
kb) from two S. epidermidis ST2 strains (SE45 and SE50) isolated in Spanish hospitals, to
clinical MRSA and Enterococcus spp. (184). They showed that the SE45 strain was able to
transfer the cfr gene to all strains tested with a mean frequency of 8.57x 10~ transconjugants
per recipient cell, while transmission from SE50 was observed only to a few strains and with
less efficacy. Of note, no transmission was observed to Enterococcus spp. isolates.

In a study by Dexi Li ef al., the authors isolated a multi resistant plasmid pWo28-3 (60.6 kb) in
S. sciuri harboring cfr and optrA genes. The conjugative transfer of this plasmid from S. sciuri
as the donor to S. aureus RN4220 and E. faecalis JH2-2 as the recipients failed (200).

In an epidemiological study, Laurent Dortet et al., during long term outbreak of LR-CoNS in a
tertiary care hospital in France, found 7% (9/130) of S. epidermidis isolates harboring cfr-
positive plasmids namely p-cfr-PBR-A (38.8 kb) and p-cfr-PBR-B (40.2 kb). They showed that
conjugative transfer of both plasmids from S. aureus ST2 and STS as donors to a wild type of
S. capitis (S. capitis DAM)) as recipient, were successful (208).

In Italy Andrea Brenciani et al., evaluated the transferability of two cfr-positive plasmids
namely: pSPOI (76.9 kb), and pSPOI.1 (49 kb) based on filter-mating experiments; both
plasmids were successfully transferred from two strains of S. epidermidis donors to a S. aureus
strain with a conjugation frequency, 2.8x107%, and 4.5 x 107 respectively, but not to E. faecalis
JH2-2 (127).

Similarly, the transfer capabilities of plasmid p12-00322 (38.9 kb) was assessed by filter-mating

with a S. epidermidis strain as a donor, to two clinical strains of S. epidermidis and Enterococcus

116 |Page



faecalis OGIRF as recipients; the transfer of cfr gene was successful with a frequency of 2.8 x
107 and 6.4 x 10”7 transconjugants per donor cell, respectively (186).

Lastly, a preliminary work conducted in the team “Pathogénie des staphylocoques” Centre
International de Recherche en Infectiologie, Lyon France (unpublished data), focused on
conjugative transfer of the same pSA737 (39.3 kb) plasmid carrying cfr gene from S. aureus of
three different genetic backgrounds (CC8-MSSA, ST8-MRSA-IV Lyon Clone, ST72-MSSA)
and one S. epidermidis ST2 strain (isolated from University hospital of Nantes) to 9 most
prevalent clones of linezolid-susceptible S. aureus circulating in France. The objective of this
study was to determine wether certain clones were more capable to transfer the plasmid or
wether certain recipient clones were more competent to acquire this plasmid. The results
showed that all 4 donor strains transferred successfully the cfr-carrying plasmid to ST8-MRSA-
IV USA300 and CC398-MRSA-X (Table 3). Conversely, for the recipient strains ST72-MSSA,
CC398-MSSA, CC30-MSSA and CC80-MRSA-IV, no transmission was observed, regardless
of the donor strains. Finally, some recipient strains accepted transfer of the cfr-carrying plasmid
only from certain donor strains and not from others. The plasmid transfer rate was largely
variable from 107 to 10”. Finally, the recipient strain ST8-MRSA-IV USA300 showed the

highest conjugation frequency (around 107) with all donor strains.

Table 3. Conjugative plasmid transfer rate from the 3 S. aureus and 1 S. epidermidis strains resistant
to linezolid (c¢fr-positive) isolated from patients in the University hospital of Nantes as donors, and 9
circulating S. aureus clones in France as recipients.

Souches donneuses cfr + Clones souches receveuses
CC8-MRSA-
ST8-MRSA- CC398- CcC22- CCs- CC80-
‘ ST72 SASM ~C30-MSSA ~C398-MSS
Souche donneuse Espece S SAS IV USA300 MRSA-X I\i MRSA-IV MRSA-IV CC30-MSS MRSA-IV [CC398-MSSA|

Lyon Clone

ST20162102 CC8 MSSA 0 63107 19107 27107 3,110 8107 0 0 0
ST8-MRSA-IV
& 5 7

ST20161992 Lyon Clone 0 510 2510 0 1210 0 0 0 0
ST20151386 ST72 MSSA 0 35107 5610°° 12107 9,1107 0 0 0 0
ST20161991 | S.epidermidis ST2 0 1107 7310°° 13107 0 410°° 0 0 0
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This part of our work was the continuation of the above study and aimed to determine the risk
of linezolid resistance spreading mediated by the cfr gene in French isolates. We investigated
(1) the capability of S. epidermidis strains to transfer different cfr-carrying plasmids to S. aureus
strains with different genetic backgrounds, (ii) the comparative ability of S. aureus clones to
receive the cfr-carrying plasmids, (iii) the transmission capability of each plasmid via
conjugation, and (iv) the stability and fitness cost of these plasmids in bacterial host. The
objective is to know if certain S. epidermidis clones or strains circulating in France, acting as
c¢fr-carrying plasmid reservoir, are more able to transfer the linezolid resistance or certain
recipient clones of S. aureus circulating in France are more at risk to acquire this resistance
from S. epidermidis; if certain cfr-carrying plasmid are more transmissible. Finally, we planned
to evaluate the fitness cost imposed by these plasmids in various S. aureus clones circulating in
France, and the stability of these plasmids in various S. epidermids and S. aureus genetic

backgrounds.
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4.2. Materials and and method

4.2.1. Conjugative transfer of cfr-carrying plasmids from S. epidermidis strains
to various clones of S. aureus circulating in France

Selection of strains

Five LRSE clinical isolates carrying different cfr-positive plasmids were selected for this study:
(1) A S. epidermidis isolate (ST2014-0255) belonging to ST2 and carrying p12-02300 plasmid
isolated in the university hospital of Strasbourg in 2014

(2) A S. epidermidis isolate (ST2016-1991) belonging to ST2 and carrying pSA737 plasmid
isolated in the university hospital of Nantes in 2015

(3) A S. epidermidis isolate (ST2018-0691) belonging to STS and carrying p-cfr-PBR-B
plasmid isolated in a tertiary care university teaching hospital in southern suburb of Paris in
2010

(4) A S. epidermidis isolate (ST2018-0678) belonging to ST2 and carrying p-cfr-PBR-B
plasmid); isolated in tertiary care university teaching hospital in Paris in 2010

(5) A S. epidermidis isolate (ST2018-0680) belonging to ST2 and carrying p-cfr-PBR-A
plasmid isolated in tertiary care university teaching hospital in Paris in 2010

The recipient strains selected, belonged to nine clones of S. aureus with various genetic
backgrounds circulating in France: ST8-MRSA-IV USA300 (ST2018-0363), CC5-MRSA-IV
(ST2017-1473), CC398-MRSA-X (ST2011-2959), CC80-MRSA-IV (ST2011-0372), CC8-
MRSA-IV Lyon clone (ST2017-0975), CC22-MRSA-IV (ST2018-0136), ST72-MSSA
(ST2018-0281), CC398-MSSA (ST2017-0060), and CC30-MSSA (ST2017-0008).

In order to separate the donor and recipient cells from transconjugants during the conjugation
experiments, their susceptibility and resistance profile were used as a choice criterion to be able
to select it with selective media containing antibiotics (please see below). All the donor strains
were cfr-positive and so resistant to linezolid/chloramphenicol (cross-resistance) but
susceptible to tetracycline or erythromycin. Conversely all recipient strains were suceptible to

linezolid/chloramphenicol but resistant to tetracycline or erythromycin.
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4.2.2. Study of the transmission capability of different cfr-carrying plasmids
Selection of strains

In order to evaluate the transmission rate of each cfr-carrying plasmid, all the plasmids studied
have been transferred to the same S. epidermidis strain (ST2020-0560) to obtain transconjugant
derivatives in the same genetic background, but harboring a panel of cfr-positive plasmids. For
conducting this experiment, all five strains of S. epidermidis carrying cfr plasmids already
mentioned in the section 4.2.1, were selected as donors. The unique recipient strain selected
was a linezolid susceptible S. epidermidis (LSSE) belonging to ST?2 isolated from a cutaneous
abscess in a patient in the university hospital of Lyon in 2020.

In the first step, all ¢fr-carrying plasmids were successfully transferred to the recipient strain by
filter mating experiments; thus, five transconjugant derivatives of this same recipient strain
were obtained (TCs 1-5). In the second step, in order to study the transmission capability of
each plasmid, independently of the genetic background, all five transconjugants of this same
strain were then used as donor to the six S. aureus strains belonging to various genetic
background: ST8-MRSA-IV USA300 (ST2018-0363), CC5-MRSA-IV (ST2017-1473),
CC398-MRSA-X (ST2011-2959), CC80-MRSA-IV (ST2011-0372), CC22-MRSA-IV
(ST2018-0136), and ST72-MSSA (ST2018-0281). The donor strain harboring the 4 different
cfr-positive plasmids was resistant to linezolid/chloramphenicol but susceptible to tetracycline;
while all the six recipient strains were susceptible to linezolid/chloramphenicol but resistant to

tetracycline.

4.2.3. Preparation of selective media

In order to separate the transconjugants from donor and recipient strains, selective media were
prepared. The Tryptic Soy Agar (TSA) medium (Difco, USA) containing chloramphenicol (32
mg/L) supplemented with tetracycline (8 mg/L) or erythromycin (32 mg/L) was used to select
cfr-positive staphylococci resistant to linezolid (with cross-resistance to chloramphenicol)

obtained by conjugation (184).

Preparation of TSA
Suspend 20 g of TSA in 500 mL distilled water. Heat to boiling to dissolve the

medium completely. Sterilize by autoclaving at 121°C for 15 minutes.
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Preparation of stock solutions of antibiotic

Tetracycline: 25 mg/mL
Erythromycin: 50 mg/mL
Chloramphenicol: 50 mg/mL

YV V. V V V

around 55 °C.
» Pour 19 mL per petri plate.

Heat the TSA in water bath until it is completely melted.
Add the antibiotic to the TSA (Table 4) when the temperature of the TSA is reached

Table 4. Volume of initial antibiotic solution to be added in TSA medium.

ATB Concentration of | Initial ATB in | Final volume of | Final volume of
ATB in the medium | ImL (mg/L) ATB in 500mL | ATB in 250mL
(mg/L) (uL) (uL)

Tetracycline 8 25000 160 80

Erythromycin 32 50000 320 160

Chloramphenicol | 32 50000 320 160

ATB, antibiotic

4.2.4. Conjugative plasmid transfer by filter mating

Bacterial conjugation is a natural process that allows horizontal transmission of DNA from one
bacterium to another. While gram-negative bacilli are able to transfer the plasmids in liquid
suspensions, conjugative plasmid transfer requires intimate cell-to-cell contacts between the
donor and the recipient through filter mating for staphylococci. Here we describe the protocol
of conjugative plasmid transfer by filter mating that we performed (Fig. 15). To ensure the
accuracy and reproducibility, three independent conjugation experiments were performed for

each donor and recipient strains.

Day 1

- Grow the donor and recipient strains onto Columbia Agar plate with 5% sheep blood

(COYS) and incubate at 37°C for 18-24 hours.
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Inoculate each donor and recipient strains in TSB medium and incubate at 37°C for 18-

24 hours.

Adjust the optical density (ODeoo) of the overnight cultures to 1 (+/- 0.1) by using fresh
TSB medium. Add 1 mL of phosphate-buffered saline (PBS) in Eppendorf tubes of 2
mL and mix with 0.5 mL of the donor and 0.5 mL of the recipient culture.

Transfer the mixture of bacteria onto a 0.45 um filter membrane using a vacuum pump
system.

Put the filter membrane on a Columbia agar plate with 5% sheep blood agar. Incubate

at 37 °C for 18-24 hours.

Take out the filter membrane from the plate and suspend in 10 mL PBS. Vortex for one
minute to collect all the bacteria attached on the filter membrane.

Make a serial 10-fold dilution of the bacterial suspension by using fresh TSB. Plate 100
uL of the undiluted and 107 diluted samples on TSA plates supplemented with 32 mg/L
chloramphenicol and 8 mg/L tetracycline or 32 mg/L erythromycin for the selection of
transconjugants. Plate 100 pL of the diluted suspension (10~) onto TSA plates with 8
mg/L tetracycline or 32 mg/L erythromycin to count the total number of recipients.
Plating is done with automatic spiral plater (Interscience, Puycapel France). Incubate

the plates at 37 °C for 24-48 hours

Count the total number of recipients on the TSA plates supplemented with 8 mg/L

tetracycline or 32 mg/L erythromycin.

Count the total number of transconjugants on the TSA plates supplemented with 32
mg/L chloramphenicol and 8 mg/mL tetracycline or 32 mg/mL erythromycin.
Calculate transfer rates (conjugation frequency): number of transconjugants/number of

recipient cells x dilution factor.
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(
donor

0.5 mL of each suspension
- J +1 mL PBS & vortex
Culture on Columbia agar + Suspension of OD= 1 - | ’ l

5 % sheep blood plate (COS) Growth in liquid ~ 10°CFU/mL
media overnight J
(TSB-T)

recipient

i Filter mating Filtration of the
Plating on TSA + :
Transfer rate = . o . ] wingh
number of chloramphenicol 32 mg/L  Suspension of bacteria in incubation at 37°C )

suspensions
TCs/numbre of RCs  * tetracycline 8 mg/L 10 mL phosphate buffer for 18-24h on COS B )

diliiticiTsetsi or erythromycin 32 mg/L saline PBS (vortex 1 min)

Fig 15. Protocol of conjugative plasmid transfer by filter mating.

- Determine the antimicrobial susceptibility profile of the transconjugants by disk
diffusion method (296). The susceptibility profile of the transconjugants must be
identical to the recipient, except for linezolid/chloramphenicol and other compounds
affected by the cfr gene.

- Conserve each transconjugant at -80°C in cryotube for future works.

Note: A Pastorex Staph Plus® (Biorad) test (rapid latex particle agglutination test for the identification
of S. aureus strains from colonies) was performed on the S. aureus transconjugants. In order to check

the acquisition of the cfr gene, a PCR targeting this gene was carried out.

4.2.5. Confirmation of cfr gene acquisition by PCR

In order to confirm the transfer of cfr gene to all transconjugants, 2-3 colonies of each
transconjugant were picked from agar plates and suspended in 100 uLL Quick Extract TM DNA
(Epicentre, réf: QE 09050). These bacterial suspensions were then placed in a thermocycler for
the DNA extraction program (30 min at 65 °C, then 20 min at 98 °C). DNA extracts were then
stored at 4 °C or -20 °C for long storage or later use. Then 1 puL of the DNA extract was used
as a template in the PCR that was carried out with two cfr-specific primers, TGA AGT ATA
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AAG CAG GT and ACC ATA TAA TTG ACC A, under the following conditions: 2 min at
94°C; 30 cycles of 94°C for 30 s, 45°C for 30 s, and 72°C for 45 s; and a final extension at
72°C for 1 min.

Both positive control (cfr-positive S. aureus) and negative control (cfr-negative S. aureus) are

used in PCR experiment.

4.2.6. Determination of linezolid MIC of the transconjugants

In order to verify the functionality of cfr gene in all transconjugants and the role of plasmids or
strains in linezolid MIC variations, the MIC determination assays using E-test (bioMerieux,
Marcy-I’Etoile, France) were conducted. The MIC values were interpreted according to the
2020 guidelines of the European Committee on Antimicrobial Susceptibility Testing

(EUCAST) (296).

4.2.77. Determination of plasmid fitness effects

In order to determine whether the acquisition of plasmids have a fitness cost for
transconjugants, the initial recipient strains and their transconjugants were grown in TSB in 96-
well microplate at 37°C for 20 hours. The microplates were then placed in the microplate reader
(TECAN, Switzerland) that measures the optical density (OD) at the wavelength of 600 nm
every 15 minutes, and orbital shaking on 3mm dimension for 15 seconds. To ensure the
accuracy and reproducibility, three independent experiments for each initial recipient and their
transconjugant derivatives, performed in triplicate. By measuring the OD curves, the average
of generation time (doubling time) of each recipient and its transconjugant derivatives have
been calculated and compared. Statistical analysis was carried out using the Mann-Whitney U

test, and a p value of less than 0.05 was considered statistically as significant.

Day 1
- Grow the strains onto Columbia Agar plate with 5% sheep blood (COS) and incubate at
37°C for 18-24h

Day 2
- Inoculate 4-5 colonies from Columbia Agar plate with 5% sheep blood (COS) into a
tube containing TSB and incubate at 37°C for 18-24h
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Day 3 (Plating)

- Inoculate a new TSB from the TSB prepared on Day 2 by adjusting the OD to 0.03 -
0.05.

- In order to maintain sufficient humidity in the microplate, fill the surrounding wells of
the plate with 100uL of sterile water,

- Add 100pL of sterile broth in several wells as negative control (at least 3 wells)

- Add 100uL of bacterial suspension of each strain in at least 3 wells for each

To calculate the generation time for each replicate:

- Subtract the OD values of negative controls (without inoculated bacteria)

- Plot the OD curve as function of time

- Measure the slope p of the exponential growth phase (by dividing the difference of the
y-coordiantes of 2 points of the curve line by the difference of the x-coordinates of those
same two points)

- Calculate the doubling time = In(2)/u

4.2.8. Determination of plasmid stability under non-selective condition

Plasmid persistence in the absence of positive selection was determined by various factors
including plasmid stability. To evaluate the plasmid stability in the transconjugants under non-
selective condition over time, we selected all transconjugant derivatives of two initial strains
ST8-MRSA-IV USA300 (ST 2018-0363) and S. epidermidis ST2 (ST 2020-0560) having
received different plasmids. In order to conduct the experiment, the following protocol (plasmid
loss assay) was used:

- Culture the transconjugants from cryotubes onto Columbia Agar plate with 5% sheep
blood (COS), or selective medium (TSA) supplemented with chloramphenicol 32 mg/L
at 37°C overnight.

- Inoculate 5-6 colonies of each plasmid containing strain in TSB and incubate at 37 °C
overnight.

- Sub-culture every 18-24 h by diluting a 9 ul aliquot into 9 mL (1:1000) of TSB.
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- After every 5 passages, make an aliquot of 1 mL of the subculture in a sterile Eppendorf
tube, then transfer 100 uL into 900 pL of TSB to be serially diluted from 10! to 107
and conserve the remaining 900 uL of the aliquot at -80°C for future tests.

- Plate 50 puL of 10~ dilution onto Columbia Agar plate with 5% sheep blood (COS) and
spread the sample over the surface of COS using sterile spreader to obtain a clear
indication of colony numbers, and incubate at 37°C for 1-2 days.

- Replicate this plate onto the TSA without antibiotic (control) and then TSA with
antibiotic (chloramphenicol 32 mg/L) with the aid of colony stamp already sterilized by
autoclave and incubate at 37°C for 2 days.

- The next day, compare the colonies which grew on non-selective media but did not grow
on selective media (sign of cfr-positive plasmid loss), and calculate the percentage of
plasmid loss rate by dividing the total number of colonies on selective media to the total
number of colonies on non-selective media multiplied by 100.

- Check the cfr-positive plasmid loss by antibiotic susceptibility testing and PCR

Note: We verified that the use of chloramphenicol (32mg/L) in selective media has no impact on the

growth and CFU reduction for linezolid resistant strains.
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4.3. Results

4.3.1. Conjugative transfer of various cfr-carrying plasmids from S. epidermidis
strains to linezolid-susceptible S. aureus clones by filter-mating experiments

The outcome of filter-mating experiments and the frequency of plasmid transfer between 5
donor S. epidermidis and 9 recipient S. aureus strains are shown in Table 5. Plasmid transer
was not observed between all couples. When observed the rate of plasmid transfer were highly
variable depending to the donor-recipient couples: 10 to 10” transconjugants per recipient
cells. The results of this experiment showed that transfer of c¢fr-positive plasmids occurred from
all 5 donor strains to the recipient strain ST8-MRSA-IV USA300; conversely some recipient
strains accepted transfer of the cfr-positive plasmid only from certain donor strains and not from
the others. Of note, no detectable transfer to CC5-MRSA-IV, CC80-MRSA-1IV, and CC398-
MSSA was observed whatever the donor strains. The S. epidermidis ST2 strain (ST2014-0255)
presented a higher efficacy to transfer the plasmid p/2-02300 to S. aureus strains with different
genetic backgrounds. Interestingly, S. epidermidis STS strain (ST2018-0691) carrying the
plasmid p-cfr-PBR-B was more able to transfer the plasmid to different genetic backgrounds of
S. aureus, compared to the S. epidermidis ST2 strain (ST2018-0678) carrying the same plasmid.
For this latter strain, we observed the transmission of the p-cfr-PBR-B plasmid in only one of

the experiments and at a very low rate (6.9 x 107).
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Table 5. Conjugative plasmid transfer rates from five donor strains of S. epidermidis resistant to linezolid (cfr-positive) to nine S. aureus strains

with different genetic backgrounds circulating in France, by three independent experiments.

Donor strains cfr-positive

Recipient strains cfr-negative

[] ! > ! [] @ <
b2 < < , < = <
52 | 2% | 2 2 | s |2 | 2% | & | ¢
Species/clone o r-post‘lve g E = 2 2 % = E- & 2 == = § E z'
plasmid -1 O & N = & s % & X =
& O o = o~ l; b = ) O — %) O
AR o n [ o Q> < o
&) T & = &
ST 2018 0680 1 0 9.7107 | 2.710% | 2.410% | 2210° 0 / / /
(SE ST2) p-cfr-PBR-A | 2 0 2510° | 5910° | 2410® | 9510° 0 / / /
3 0 56107 | 7.110° | 9210° | 4.610° 0 / / /
ST 2018 0678 1 0 0 0 0 0 0 0 0 0
(SE ST2) p-cfr-PBR-B | 2 0 0 0 0 6.9 107 0 0 0 0
3 0 0 0 0 0 0 0 0 0
1 0 0 1.310% | 4510° | 8910% 0 1.210° 0 0
(SSTEZQ%’;)“” p-cfr-PBR-B | 2 0 0 5110% | 9510° | 8110 | 0 | 8010° | o0 0
3 0 0 2.110% | 7310° | 9.810% 0 2.1107 0 0
ST 2014 0255 1 0 5410 | 3210®% | 7.810% | 6.010° 0 5.6 10° 0 1.3107
(SE ST2) p12-02300 |2 0 6.010° | 89109 | 7.310% | 8.210° 0 1.410* 0 0
3 0 80107 | 8510° | 4410% | 5310° 0 6.9 107 0 3.4 107
ST2016 1991 1 0 3.710° 0 0 1.210° 0 7.310° 0 0
(SE ST2) PSA737 |2 0 5.2107 0 0 4.410° 0 5.110° 0 0
3 0 1.3 103 0 0 1.3 10% 0 52104 0 0

0, No plasmid transmission detected between donor and recipient couples; SE, S. epidermidis; ST, sequence type
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4.3.2. Study of the transmission capability of different cfr-carrying plasmids

The transmission capability of 4 different cfr-carrying plasmids (in case of p-cfr-PBR-B plasmid, one
carried by S. epidermidis ST2 and another by S. epidermidis ST5) from the same donor strain of S.
epidermidis (transconjugants 1-5) to six S. aureus strains with different genetic backgrounds, is
presented in Table 6. The plasmids pSA737 and p12-02300 were transmitted to all six recipients at a
relatively higher transfer rates (around 10#) for ST8-MRSA-IV USA300 strain; at moderate transfer
rates for CC22-MRSA-1V, ST72-MSSA, and CC398-MRSA-X strains (ranged between 10* to 107);
and at lower transfer rates for CC80-MRSA-IV and CC5-MRSA-IV strains (ranged between 107 to
10). The plasmid p-cfr-PBR-A was also transmitted to all six recipients, but at a very low transfer
rate to strains belonging to CC5-MRSA-IV and CC80-MRSA-IV (10”in one round of the experiments
and no transfer in the others). The transfer rate of this plasmid was relatively moderate (10”) for ST8-
MRSA-IV USA300 and CC398-MRSA-X, and low (10 to 10®) for ST72-MSSA and CC22-MRSA-
IV strains. Out of six recipients, the plasmid p-cfr-PBR-B transmitted only to three recipient strains,
namely ST8-MRSA-IV USA300, CC22-MRSA-1V, and ST72-MSSA, with a transfer rate of 107 to
107,
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Table 6. Plasmid transmission capability from the same donor strain (S. epidermidis ST2, ST2020-0560) to six different S. aureus strains
circulating in France, by three independent conjugation experiments.

Donor strain (cfr-positive) Recipient strains (cfr-negative)
2| 5 |2 | = « | & | <
5| 2 | & < 2 | 22| &
- & = | S2 = 2% | S
Z 3 = % & N S| 2
=low |8 3 = | 2”2 | 8
Transconjugants cfr-positive plasmids = 8 ) o s ; o
fr-PBR-A 1 0 2.610° [ 1.310°]2.010°] 6.810° 0
p-cjr- - _ _ . )
ST 2020 0560-TC1 | . ' “GF ST 2018 0680 2 0 |1910°[8910%]|44107|2610°| O
3 3.010°[3.010° [ 2.110%]1.910°|7.2107 | 3.110°
y 1 0 0 0 0 0 0
p-C r-PBR-B 7 8 -7
ST 2020 0560-TC2 from SE ST 2018 0678 2 0 0 24107 11.410°]6.510 0
3 0 0 1.910% [ 1.6 10® | 2.5 107 0
fr-PBR-B 1 0 0 3.010% 0 9.010% 0
. p-qr- - -8 -8 7
ST 2020 0560-TC3 from SE ST 2018 0691 2 0 0 2.110°12510° [4.710 0
3 0 0 2310%]11.910%]|24107 0
1 1.910° [4.710° [ 27107 | 1.810° | 1.1 10* | 3.5 10°
ST 2020 0560-TC4 p12-02300 2 7.910°7.110°]1.8107 | 2.9107 | 1.3 10* 0
from SE ST 2014 0255 : : : : :
3 2.610%[6.010°(3.7107]1.310°|1.610*[3.3107
SA737 1 2.710% [1.510*[1.410°]1.810° [5.110%*[2.1 1038
- P < -4 -6 -6 -4 9
ST 2020 0560-TC5 from SE ST 2016 1991 2 30107 {1.3107]12310°[2.610°]3.3107 [9.910
3 2310%[5610°(3.1107]1.210°|3.110*|3.3107

0, No plasmid transmission detected between donor and recipient couples; SE, S. epidermidis,; ST, sequence type; TC, transconjugant
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4.3.3. Determination of effect of plasmid acquisition on bacterial fitness

The fitness cost was assessed by comparing the doubling time prior and after conjugation for
original recipients and their transconjugants. Eight original recipient strains and their 27
transconjugant derivatives were tested. The mean doubling time of recipients varied from 28.6
minutes (ST72-MSSA) to 38.7 minutes (CC30-MSSA). The fitness cost observed after
transconjugation was highly variable, depending to plasmids and S. aureus recipient strains
(Fig.16). More than half of the transconjugants (17/27) did not show any significant fitness cost
compared to the recipient before acquisition, while 10/27 of transconjugants showed
statistically significant fitness cost (i.e., they showed a significant increase in doubling time
ranging from 1 to 6 min). None of the plasmid demonstrated a systematic fitness cost in all
genetic backgrounds. In the same way, the highest fitness costs, when existing in a recipient,
were not related to the acquistion of the same plasmid (e.g, p/2-02300 in CC22-MRSA-IV
strain, p-cfr-PBR-A in CC398-MRSA-X strains, pSA737 in ST72-MSSA strains.

A significant fitness cost was observed in all transconjugants of ST72-MSSA strain, two
transconjugants of CC22-MRSA-IV, one transconjugant of CC398-MRSA-X, one
transconjugant of CC80-MRSA-IV, and one transconjugant of CC30-MSSA. Conversely, the
transconjugants related to the clones ST8-MRSA-IV USA300, CC5-MRSA-1V, and CCS8-

MRSA-IV Lyon clone did not show any significant fitness cost after acquisition of different

plasmids.
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Fig 16. Evaluation of fitness cost of ¢fr-carrying plasmids by comparison of the doubling time
in the transconjugants versus the recipient strains (3 independent experiments for each
triplicates). Statistical analysis was carried out using Mann-Whitney U test. *, P<0.05; **, P<
0.001; ***, P< 0.0001; ns, no significant difference ; SA, S. aureus ; TC, transconjugant
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4.3.4. Confirmation of cfr gene acquisition by PCR

One transconjugant derivative of each donor-recipient couple obtained in this study, were
screened for the presence of cfr gene by PCR. All of them were found to be positive, and the
PCR test confirmed that cfr-carrying plasmids were successfully transferred to the recipients

tested.

4.3.5. Determination of linezolid MIC conferred by acquisition of cfr-carrying
plasmids

In the present study, the linezolid MIC of the 8 clinical susceptible S. aureus strains used as
recipients ranged from 1-2 mg/L. The linezolid MIC of the transconjugant derivatives of these
8 strains after acquisition of various cfr-carrying plasmids were determined and ranged from 8
to 48 mg/L, i.e., 4- to 48-fold higher comparing to the original susceptible strains (Table 7).
The increases in MICs are highly variable. Thus, the increase in linezolid MICs for p-cfr-PBR-
A transconjugants ranged from 8 to 48 pg/mL, from 12 to 16 pg/mL for p-cfr-PBR-B-ST2
transconjugants, from 12 to 32 pg/mL for p-c¢fr-PBR-B-STS transconjugants, from 8 to
48ug/mL for p12-02300 transconjugants, and from 8 to 32 ug/mL for pSA737 transconjugants.
In addition, the increase in linezolid MICs conferred by the plasmids was also variable
according to the genetic background of transconjugants. The lowest MIC (8 pg/mL) was seen
for all three CC398-MRSA-X transconjugants whatever the plasmid acquired, and higher MICs
were observed with the same transconjugated plasmids in all other transconjugants belonging
to the other CC tested. The transfer of the same 3 plasmids impacted differently the linezolid
MICs in ST72-MSSA (12, 16, 24 and 32 pg/mL) or in CC5-MRSA-1IV (16, 48 and 48 pg/mL).
Intriguingly, we also noticed that the transconjugation of p-cfr-PBR-B/ST2 in the CC22-MRSA-
IV, ST72-MSSA, ST8-MRSA-IV USA300 presented linezolid MICs of 12, 16 and 12 pg/mL
respectively, whereas the same strains when acquired p-cfr-PBR-B/STS (the same plasmid but
transferred from a different donor strain) presented respectively linezolid MICs of 32, 12 and

16 pg/mL.
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Table 7. Determination of linezolid MIC of transconjugants according to the acquired cfr-carrying
plasmids or genetic background of original recipients (ug/mL).

S. aureus various genetic backgrounds
e > >
E. <:1 D < a. D Z. ) <
7% & v A Llwune|l L
g S| | 2 22 g|g3° =
S| 2| = &|5z = =5 &
bl 2 ]| BE|#° &3 O
S| 9 9| »# | oY O
cfr-carrying plasmids O < <
Original strain without ¢fr-plasmid | 1.5 | 1.5 1.5 2 2 2 2 1
p-cfr-PBR-A 48 8 8 24 16 16 - -
p-cfr-PBR-B/ST2 - - 12 16 12 - - -
p-cfr-PBR-B/STS5 - - 32 12 16 - 24 -
p12-02300 48 8 12 12 16 12 16 16
pSA737 16 8 32 32 16 16 - -

-, No transconjugants obtained

4.3.6. cfr-carrying plasmids stability under non-selective conditions

The protocol of plasmid loss assay describe above (section 4.2.8) was applied for all
transconjugants of the two different recipient strains namely S. epidermidis ST2020-0560 (ST2)
and S. aureus ST2018-0363 (USA300). Plasmid loss rate in the transconjugants, after ten
passages in TSB non-selective medium at 37°C overnight was confirmed by PCR. The results
showed that plasmid stability in the transconjugants in non-selective condition was highly
variable (Fig. 17). Except S. epidermidis ST2 which could maintain efficiently the plasmid p72-
02300, all other transconjugants lost the cfr-carrying plasmid but at various rates. The plasmid
loss rate in the ST8-MRSA-IV USA300 strain was 84.7% for the plasmid p-cfr-PBR-B/ST2,
60% for the plasmid p12-02300, 100% for the plasmid p-cfr-PBR-B/ST, 90.5% for the plasmid
p-cfr-PBR-A, and 91.6% for the plasmid pSA737. While in the S. epidermidis ST2, the loss rate
was 86.1% for the plasmid p-cfr-PBR-B/STS5, no loss (0%) for the plasmid p/2-02300, 82.3%
for the plasmid p-cfr-PBR-B/ST5, 35.2% for the plasmid p-cfr-PBR-A, and 42.9% for the
plasmid pSA737.
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Fig 17. Plasmid loss rates for two strains having acquired different cfr-carrying plasmids, after
ten passages in non-selective medium (TSB).
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4. Discussion

This work was divided into two axes. In the first part, we investigated the molecular features
and antibiotic resistance profile of S. aureus/MRSA strains isolated from clinical samples, from
nasal colonization, as well as from animal infection and colonization in Kabul. In the second
part, we explored the conjugative transferability and receptivity of cfr-carrying plasmids from
S. epidermidis strains to S. aureus strains by filter-mating method, as well as plasmid fitness

cost and stability.

5.1. Epidemiology, molecular characterization, and resistance profile

of MRSA isolates from Afghanistan

5.1.1. Antibiotic resistance profile and molecular characterization of S. aureus
strains isolated in hospitals in Kabul, Afghanistan

This study examined the prevalence and molecular characteristics of 98 S. aureus (33 MSSA
and 65 MRSA) isolates from patients obtained during six months in two main hospitals of
Kabul. This work was the first molecular study of clinical isolates of S. aureus in Afghanistan,
and revealed that various MDR and virulent MRSA clones circulate in Kabul. Our results
showed that the rate of MRSA among S. aureus clinical isolates was high (66.3%) when
compared with the prevalence rates obtained from other similar studies conducted in our
neighboring countries and in the region, such as Pakistan (297), Iran (298), Saudi Arabia (299),
and Turkey (300). Our study showed a great diversity in S. aureus clones (13 distinct MRSA
and 14 MSSA clones). The genotyping results revealed a predominance of three MRSA clones,
comprising 44% of the isolates: Southwest Pacific clone (CC30-MRSA-IV PVL-positive),
CC22-MRSA-IV TSST-1-positive clone, and the Bengal Bay clone (ST772-MRSA-V PVL-
positive). The overall prevalence of PVL among MRSA and MSSA isolates was 70.8% and
36.4% respectively. This high prevalence and the diversity of PVL-positive isolates could be
linked to the import of different strains via international exchanges. In the studies in
neighboring countries the prevalence of PVL was generally lower: from O to 12.7% in Turkey
(301), from 7.4 to 55.6% in Iran (83), and around 9% in West Bengal India (302). Most of S.
aureus, especially MRSA, were MDR (generally resistant to beta-lactams, macrolides,
quinolones, cotrimoxazole, and less often to aminoglycosides, chloramphenicol, and

tetracyclines). This may be linked to the overuse or inappropriate use of antimicrobials which
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was recently reported in Afghanistan (110,113). The diversity in the clinical S. aureus strains
in Kabul reflect epidemiological links including travel, migration, commerce, and international
military missions with Southwest pacific, India, Middle Eastern/Arabian Gulf region, as well
as Europe and USA. Most of these MRSA clones were also found in the healthy people in the
community in Kabul. As in all countries, major efforts have to be made toward infection control
and the prevention of futher spread of MDR bacteria, as well as prudent use of antimicrobials

agents in Afghanistan.

5.1.2. Nasal carriage of methicillin-resistant Staphylococcus aureus among
students at Kabul University: Prevalence, phenotypic and molecular
characterization

This work examined the prevalence and molecular characteristics of MRSA sampled from 150
healthy students in Kabul University; reports various clones circulating among healthy
individuals in Kabul.
From 150 nasal swabs, we had a 33.3% (50/150) and 12.7% (19/150) recovery of S. aureus and
MRSA, respectively, a higher prevalence of S. aureus/MRSA compared to similar studies
among students conducet in Iran (303), and China (304). In our study, the frequency of MRSA
nasal carriage was not significantly different between male and female, which may indicate that
gender is not a risk factor for MRS A nasal colonization.
Of 19 MRSA, 7 distinct clones with predominance of CC22-MRSA-IV TSST-1-positive were
detected, which showed that like clinical strains, there is a wide clonal diversity among MRSA
community strains isolated from healthy people in Kabul. The results of the this study showed
that almost all of the identified MRSA clones, have also been reported from clinical samples in
our first study in Kabul (305). This indicates the widespread dissemination of MRSA strains
between healthcare settings and the community, and obviously it is a matter of great concern.

One of the main limitation of this study is the low number of samples and MRSA strains

collected from nasal carriers among Kabul university students. Therefore, the results do not

likely reflect the global epidemiology of MRSA nasal carriage in Kabul or Afghanistan.

However, the students are a population without risk factors and therefore represent well the

healthy community. Moreover, as colonization is classically depends on the students comes

from different regions of Afghanistan, this population is likely representative in a certain way
of the Afghan diverse S. aureus clones. On the other hand, the diversity of strains highlighted

by the genotyping results, also illustrates the position of Afghanistan as a center of intense
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international exchanges, as in the previous study (305). The genetic diversity of the identified
MRSA clones in our study showed an epidemiologic link to other countries close to Afghanistan
or far from it such as: Iran, China, Gulf countries, Turkey, Western Europe, USA, Australia,
and Egypt. These epidemiological links could be related to the large movement of Afghans to
Saudi Arabia for pilgrimage each year, commerce with China, and the large migratory
movements of Afghans to Iran, Gulf region, Europe, USA, and Australia.

The relatively high frequency of MRSA nasal carriage among university students in Kabul,
harboring various multiresistant genes and virulence markers (such as PVL and TSST-1) is
becoming critical and requires more attention. The existence of such MDR and virulent strains
among healthy population in the universities and other crowded places where people are more
often in close physical contact with each other can directly facilitate the spread of these strains
to the community, and can act as reservoirs for outbreak of MRSA infections. Supporting
policies for reducing nasal carriage and continued efforts to enhance hygiene among students

are necessary to slow down the transmission of MRSA in the community.

5.1.3. Characterization and antimicrobial resistance patterns of S. aureus strains
isolated from livestock in Kabul

A total of 17 S. aureus including 2 MRSA isolates from bovine mastitis in Kabul veterinary
clinic during five months, while only 2 MSSA isolates out of 189 sheep nasal swabs, have been
studied. However, this small collection of S. aureus isolates tested in our study may not
represent the entire population of S. aureus circulating in dairy herds of Afghanistan. Anyway,
this report provides for the first time reliable information about the existence of multidrug
resistant and virulent clones in livestock in Kabul. In this study the percentage of MRSA among
S. aureus isolates from bovine mastitis was 11.8%, which was higher than similar studies in the
neighboring countries such as China (306) and Iran (307). In the current study a high frequency
of resistance was observed among S. aureus isolates from bovine mastitis against tetracycline,
and could be explained by widespread use of tetracycline compounds in veterinary care and
animal husbandry in Afghanistan. This high selective pressure could further select and spread
such strains between human and animals. The two MRSA clones (CC30 and CC88) identified
in this study, had already been identified in human infections and colonization in our previous

study in Kabul. The close contact between human and livestock in Afghanistan may create the
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potential for transmission of microorganisms between human and animals. Of note, 52.9% of
the isolates harbored one or more enterotoxin genes, which is also a point of concern.

We found a very low nasal carriage (1.1%) rate of S. aureus in sheep in Kabul, but we couldn’t
compare our results to other similar studies at the local or national level, due to the lack of such
data in Afghanistan. While in a similar report from Iran, a higher rate (14.1%) of S. aureus
sheep nasal carriage was reported and all of them were MSSA (91). The sheep studied in our
report mostly belonged to nomads, who sell their livestock in animal markets in Afghanistan.
Their livestock are grazing on the mountains and deserts, having less contact with other animals
and human. This may explain why the nasal carriage rate of S. aureus among sheep in our study
was very low. However, this hypothesis should be confirmed by further studies in animal farms
and also other provinces of Afghanistan.

Finally, among all three studies conducted about resistance profile and genotypes of S. aureus
strains isolated from human infection and colonization and bovine mastitis in Kabul, we found
a high rate of MRSA in human infection and colonization. The diversity of the clones in human
infection and colonization as well as in diary cattle infection, the presence of virulence
determinants and various resistance genes among these isolates, and the connection of certain
clones between health facilities and the community as well as livestock in Kabul, is a matter of

concern.

5.2. Conjugative transfer of cfr-carrying plasmids from CoNS to

S. aureus strains

Even if the number of donor and recipient strains tested as well as the diversity of plasmids
harboring cfr gene are limited and would deserve to be extended, our work on conjugative
transfer of cfr gene highlighted interesting data about the efficiency of cfr-carrying plasmids
transfer from donors (S. epidermidis strains) to recipients (S. aureus strains) as well as the
impact on linezolid MICs in recipient.

Based on the strains tested in the present study, our results suggest that certain clones, e.g., ST8-
MRSA-IV USA300, could be more at risk for acquisition of cfr-carrying plasmids from
S. epidermidis, while others, e.g., CC398-MSSA, did not accept any of cfr-carrying plasmids.
Finally, other clones (CC5-MRSA-IV and CC80-MRSA-1V, see table 5 and 6) acquired cfr-
plasmids only from a few donors with a lower conjugation frequency. It has been already

showed that the non-transfer condition or low transfer rate of plasmids in gram-positive bacteria
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is due either to a restriction modification system or similar mechanisms (which acts like an
immunity system in prokaryotes that induce an alteration of foreign DNAs (243,244)) or the
plasmid fitness cost (248). On the other hand, despite they harboured the same plasmid (p-cfr-
PBR-B), the S. epidermidis ST2018-0691 strain belonging to ST5 was more capable to transfer
the plasmid p-cfr-PBR-B to the various S. aureus genetic backgrounds tested in comparison to
S. epidermidis ST 2018-0678 belonging to ST2. In a similar study, conducted by Cafini et al.,
the transfer of cfr-positive pSCFS7-like plasmid was successful from S. epidermidis ST2 to all
MRSA strains with a mean transfer rate of 8.6 x1 0 transconjugants per recipient cells, while
the other S. epidermidis ST2 strain was able to transfer the plasmid to only few recipients and
with less efficacy (184). In the same way, Brenciani et al. showed that the transfer of cfr gene
from two S. epidermidis strains to one S. aureus strain was successful but with different
frequencies (127). Our results extended the data already published and confirmed that the
genetic background of donors plays a key role in the transfer rate of a given cfr-positive plasmid.
This difference in the transfer efficacy of cfr-positive plasmid from S. epidermidis strains
belonging to different MLST group to various genotypes of S. aureus may be due to different
genetic background of donor/recipient and a higher copy number of plasmids (308,309).

In order to assess the transmission capability of each plasmid independently to the donor strain,
we were able to transfer all the plasmids studied to the same ST2 genetic background by using
S. epidermidis ST2020-0560 as unique recipient. Then, we have been able to evaluate the
transfer rate from the various transconjugants carrying these 4 different plasmids in a unique
and fixed genetic background (a single clinical strain) to six different clones of S. aureus
through conjugative plasmid transfer by filter mating. Our results indicated that all plasmids are
transferable but the number of recipient strains for which transconjugates were obtained, and
the rate of transfer are highly variable independently to the donor strain. This data highlights,
this time, the role of genetic background of recipient in the conjugative plasmid transfer efficacy
as well. Interestingly, we did not observe any transfer of p-cfr-PBR-A plasmid from
S. epidermidis ST2 (ST 2018-0680) to CC5-MRSA-IV and CC80-MRSA-IV genetic
backgrounds, while the S. epidermidis ST2020-0560 strain, that belongs also to ST2, was able
to transfer the p-cfr-PBR-A plasmid to the two MRSA clones mentioned above (even if the
transfer rate is low). This result suggests that the ability to transfer plasmid varied within ST. It
advocates a larger number of strains to be tested to be able to draw definitive conclusions.

In addition, our experiments demonstrate that some ST2 S. epidermidis strains (such as

ST2020-0560) mobilize and transfer more easily the plasmid p-cfr-PBR-A/B at a higher rate
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than other S. epidermidis (such as ST2018-0680, ST 2018-0678 or ST2018-0691). The
conclusion is the same for plasmid p/2-02300 transfer from the ST2020-0560 used as donor
strains compared to the “natural” clinical strains harboring the two plasmids, i.e., ST2016-1991
and ST 2014-0255 respectively. Moreover, we observed identical conjugative transfer of p-cfr-
PBR-B plasmid from the S. epidermidis transconjugant strains (ST2020-0560) to three S. aureus
strains with different genetic background wether the plasmid was originated from ST2018-0678
or ST2018-0691. Based on literature review, plasmids play a role in their own
transfer/transferability as they usually encode their own replication-initiation (Rep) proteins,
and increased plasmid copy number; this would be an important factor in the evolving
conjugation frequency which is regulated by the plasmids itself (262,309).

Altogether, the results obtained suggests that the interspecies plasmid transfer within
staphylococci could be affected by different parameters such as: plasmid type, genetic
background of donors and recipients. Other parameters have been proposed in the literature
including plasmid copy number, genetic relatedness, plasmid fitness cost, and restriction
modification system. These data suggest that, when a new cfr-positive S. epidermidis 1is
emerging, it is of interest to evaluate its capacity to transfer cfr-positive plasmid in the MSSA
/MRSA clones that are circulating in the same hospital, at the regional or national scale. Such
risk assessment could be helpful to guide or drive the public health actions/decisions/measures.
We also explored the impact of the acquisition of different cfr-positive plasmids on the level of
linezolid resistance. Based on our data, the transfer of cfr-carrying plasmids has been associated
with a 4- to 48- fold increase in the linezolid MIC in transconjugants, supporting the notion that
cfr is an important contributor to the resistance in cfr-positive strains. The data of the
experiments performed in the present study highlighted variations in the linezolid MIC value
according both to plasmid types and genetic background of the strains. According to LaMarre
et al., the association of c¢fr with multicopy plasmid, and the efficient cfr transcription due to
plasmid-derived promoters in the surrounding environment of cfr gene and its idiosyncratic
transcription pattern, are the main factors contributing to increased activity of cfr
methyltransferase. They suggested that linezolid MIC variation could be attributed to the
genetic background of the host, and different copy number of cfr-positive plasmids. In addition
they hypothesized that linezolid efflux or enzymatic modification may affect the MIC variations
(317).

Finally, we have evaluated the fitness cost of the acquisition of cfr-positive plasmids in all 27

in vitro transconjugant derivatives obtained in the present study in comparison to their original
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recipient strains without plasmids. This cost appears to be highly transconjugant dependant.
After acquisition of the cfr-carrying plasmids, around 37% (10/27) of transconjugants showed
a significant increase in their generation time, while the remaining 63% (17/27) didn’t show
any significant change. For one strain (ST72-MSSA genetic background) we found a significant
fitness cost after acquisition of any of the five plasmids; on the contrary, for the other strains,
the fitness cost was neither plasmid-specific nor strain-specific. These results are in agreement
with Vogwill and Maclean, for whom it is not possible to predict the evolution of the same
plasmid in different bacterial clones and the fitness costs of different plasmids in the same strain
(264). Some studies suggest that, for minimizing plasmid fitness costs on bacterial host, in most
cases, transcriptional regulation by the host protein, or specific regulators on the plasmids to
control the transcription of their own genes are activated (264,311). This hypothesis is in
agreement with the fact that the same plasmid does not impact the linezolid MICs at the same
level which could be related to a differential expression of the plasmidic cfr gene from one
strain to another. Conversely, if the transconjugants are less fit (such as all transconjugant
derivatives of ST72-MSSA in this study), they will not resist the fitness effects, will grow more
slowly under non-selective conditions (i.e in the absence of antibiotic), and finally will
gradually lose their plasmids which may allow them to outgrow the resistant strains. In addition,
in order to evaluate the stability of plasmids in the transconjugants, we select all transconjugant
derivatives of two clinical strains, namely S. aureus ST 2018-0363 (ST8-MRSA-IV USA300)
and S. epidermidis ST2 (ST2020-0560). The two strains were chosen because transconjugants
were obtained for all cfr-positive plasmids. Data provided demonstrate that persistence and
stability of the four plasmids tested was variable according to the plasmids and the strains.
Based on literature, the plasmid persistence in the population depends on plasmid stability. For
instance, plasmid replication control mechanisms are important determinants of plasmid
stability as they ensure the presence of sufficient plasmid copies in the cell prior to cell division
(312). Conversely, the formation of plasmid multimers can lead to a decrease in the number of
heritable plasmid units during cell division, hence reducing the chance of successful segregation
and consequently reducing the plasmid persistence over time (313,314). In our study the
plasmid loss rate was lower in S. epidermidis ST2 strain than ST8-MRSA-IV USA300. The
limited number of strains tested is a clear limitation of the data. Nevertheless, according to
Reyes-Lamoth ef al. and Simson et al., the segregation of low-copy plasmids during cell
division typically relies on partition systems that actively distribute plasmid copies into the

daughter cells, which have been found both in gram-negative and gram-positive bacteria
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including staphylococci (315,316). In the absence of a partition system, successful plasmid
segregation depends on the multi-copy state and the physical distribution of the plasmids inside
the cell. So, the better stability of plasmids in transconjugant derivatives from S. epidermidis
versus S. aureus observed in the present study, may be associated with a more efficient partition
system in the distribution of plasmid copies into the daughter cells, in S. epidermidis. This
higher stability in S. epidermidis could also be one of the reasons why S. epidermidis strains
seems to be a major reservoir of cfr-carrying plasmids in the hospital environment compared to
S. aureus by assuring the maintenance of plasmid in presence or absence of selective pressure.
In our experiment, one transconjugant derivative of S. epidermidis harboured the plasmid p12-
02300, did not lose this plasmid at any rate after ten passages in non-selective medium; while
in S. aureus even if this plasmid was lost in a certain rate, it appeared as more stable than other
plasmids. Conversely, the most unstable plasmid was p-cfr-PBR-B both in S. epidermidis and
S. aureus transconjugants tested. Both data suggest that the stability is also plasmid dependant.
According to literature review, the higher stability of the plasmid p/2-02300 may be associated
to better control of its encoded genes on the production of sufficient copy numbers of the
plasmid and its physical distribution inside the cell (262,315). In addition a lower stability, such
as for p-cfr-PBR-B, may be due to its relatively larger size (40.2 kb) and/or possibly to low
copy numbers of this plasmid within the host cell, but more importantly the co-existence of
various other resistance genes that may have significant fitness cost (262,312,315). These
hypotheses would deserve to be confirmed by further experiments using our complete set of
strains and transconjugants. It would be of interest to extend our experiments to the complete
set of isolates and transconjugants by evaluating the impact of the copy numbers of each cfr-
positive plasmid and their size on the plasmid transfer rate and the plasmid lost rate.

Finally, it’s worth mentioning that, with the expanded use of linezolid, especially since the
availability of cheap generic forms, more exposure of pathogens to this agent will occur, which
may lead to the selection of cfr-positive strains and emergence of clinical isolates with
resistance or decreased susceptibility to linezolid.

However, all of these findings should be confirmed by including greater number of S. aureus

and S. epidermidis strains in such studies in the future.
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6. Conclusion and perspectives

Several important results were obtained in this work, which are summarised below and based

on these findings, further studies are proposed on both axes.

6.1. Epidemiology, molecular characterization, and resistance profile

of S. aureus/MRSA isolates from Afghanistan

This work was the first deep molecular study of clinical isolates of S. aureus in Afghanistan,
integrating data both from hospital, community and veterinary settings. The epidemiological
data obtained, demonstrate for the first time the high clonal diversity among S. aureus/MRSA
1solates from human infection and colonization, as well as animal infection in Kabul. Some
MDR and virulent clones are found to be spreading between health-care settings, community
as well as livestok. This raises major public health concerns, and highlighting the need for more
systematic surveillance. The diversity of the clones identified likely reflect epidemiological
links, including travels, migrations, commerce, and the stay of international military forces,
with/from Indian and Middle Eastern/Arabian Gulf regions, South West Pacific, as well as
Western Europe, USA and Africa.

The prevalence of MRSA and virulent clones in clinical samples and healthy carriers obtained
in Kabul was quite high in comparison to the neighboring countries. Despite great diversity,
three clones were predominant namely: the Southwest Pacific clone (CC30-MRSA-IV PVL+),
the CC22-MRSA-IV TSST-1 and the Bengal Bay (ST772-MRSA-IV PVL+) clones.

In regard to the animal strains in Kabul, the rate of MRS A and enterotoxigenic S. aureus strains
isolated from bovine mastitis in our study was higher in comparison to the published literature.
The presence of some MDR and virulent strains in cattle, and dissemination of such strains
between animals and human in Kabul are of great public health concern.

The results of this thesis limited to Kabul, suggest major efforts have to be made on the prudent
use of antibiotics and the prevention of the spread of MDR and virulent strains between health
facilties, community and animals in Afghanistan. It would be also very important to screen
patients for MRS A nasal carriage upon admission to the hospitals in Kabul and other provinces
of Afghanistan, in order to isolate and decolonise the positive cases, enhance hygiene and taking

other precautionary measures are necessary to help prevent the MRSA auto-infections and cross
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infections. Supporting policies for reducing nasal carriage and continued efforts to enhance
hygiene among students are necessary to slow down the transmission of MRSA in the
community.

Finally, further expanded studies covering an extensive S. aureus/MRSA population from
human infection and colonization as well as animals that are in close contact with human,
collected in Kabul and other major cities of Afghanistan are recommended. These studies will
give more comprehensive information about the genetic lineages, virulence and MDR profiles
of colonizing and infecting strains and their dissemination and depth of the problem from public

health point of view.

6.2. Conjugative transfer of cfr-carrying plasmids from CoNS to

S. aureus

Our study showed the important role of LRSE as a reservoir of cfr gene and the efficient
conjugative transfer of cfr-carrying plasmids from S. epidermidis to S. aureus with different
genetic backgrounds. In our study the conjugative plasmid transfer seems to be influenced by
different parameters: the genetic background of donors and recipients, and the nature of
plasmid. Among recipients, the ST8-MRSA-IV USA300 genetic background seems to be more
at risk of acquisition of c¢fr-carrying plasmids from LRSE. The plasmids pSA737 and p12-02300
appears more transmissible than p-cfr-PBR-A and p-cfr-PBR-B. In our study, the plasmid fitness
cost and stability were highly variable in the transconjugants and not related neither to plasmid
types nor to the genetic background of recipients. Some plasmids were more stable in non-
selective conditions than other plasmids which may give them a higher epidemic potential.
Interestingly the studied cfr-carrying plasmids were more stable in S. epidermidis than S. aureus
in non-selective conditions which may confer S. epidermidis a potential to act as a reservoir of
linezolid resistance. It’s worth mentioning that resistance to linezolid and other oxazolidinones
among S. aureus is still rare, and studies show a direct relation between linezolid overuse and
emergence of linezolid resistance strains. Responsible use of linezolid, efficient surveillance of
plasmid encoded resistance, and determination of plasmid transfer rate and stability will permit
to evaluate the dissemination of such plasmid, the risk of their spread from environmental or
microbiotal reservoir to pathogenic bacteria.

Based on the various important findings in this thesis, it would be interesting now to further

expand this study and include other major clones of S. aureus and cfr-postive LRSE. In order
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to expand further our knowledge about the risk of horizontal transfer of cfr-carrying plasmids,
it would be also important to investigate the conjugative transfer capacity of cfr-carrying
plasmids in the presence of subinhibitory concentrations of linezolid and inside biofilm, two
environmental conditions that may promote their selection and dissemination. For further
assessment of plasmids’ stability and fitness cost in bacterial host, it is mandatory to extend the
number of strains belonging both to S. epidermids and S. aureus and even to other
staphylococcus species. It would be also of interest to study the genomic sequences of good-
recipients, low- and non-recipients, in order to explore the mechanisms (such as restriction
modification system), by which some strains prevent acquisition of the cfr-carrying plasmids,
or acquired them at very low conjugation frequency. It would be also important to quantify the
copy numbers of plasmids in the cfr-positive strains by quantitative PCR (qPCR) to investigate
the relation between plasmid copy number and transfer efficiency, MIC value, fitness cost, and
plasmid stability. Finally, it would be crucial to map the genetic environment of c¢fr genes on
plasmids, and investigate their relation for MIC variations, stability, and transmission

capability.
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Abstract

Background: Staphylococcus aureus (5. aureus) is a major pathogen implicated in skin and soft tissue infections,
abscess in deep organs, toxin mediated diseases, respiratory tract infections, urinary tract infections, post-surgical
wound infections, meningitis and many other diseases. Irresponsible and over use of antibiotics has led to an increased
presence of multidrug resistant organisms and espedially methicillin resistant Staphylococcus aureus (MRSA) as a major
public health concern in Afghanistan. As a result, there are many infections with many of them undiagnosed or
improperly diagnosed. We aimed to establish a baseline of knowledge regarding the prevalence of MRSA in
Kabul, Afghanistan, as well as 5. qureus antimicrobial susceptibility to current available antimicrobials, while also
determining those most effective to treat 5. gureus infections.

Methods: Samples were collected from patients at two main Health facilities in Kabul between September 2016
and February 2017. Antibiotic susceptibility profiles were determined by the disc diffusion method and studied
using standard CLSI protocols.

Results: Out of 105 strains of 5 aureus isolated from pus, urine, tracheal secretions, and blood, almost half (46; 43.8%)
were methicillinsensitive Staphylococcus aureus (MSSA) while 59 (56.2%) were Methicillin-resistant Staphylococcus aureus
(MRSA). All strains were susceptible to vancomycin. In total, 100 (95.29%) strains were susceptible to rifampicin, 596 (91 4%)
susceptible to clindamycin, 94 (89.5%) susceptible to imipenem, 83 (79.0%) susceptible to gentamicin, 81(77.1%)
susceptible to doxycycling, 77 (77.1%) susceptible to amaxicillin + clavulanic acid, 78 (74.3%) susceptible to cefazolin, 71
(67.6%) susceptible to tobramycin, 68 (64.8%) susceptible to chloramphenicol, 60 (57.1%) were susceptible to
trimethoprim-sulfamethoxazole, 47 (44.8%) susceptible to ciprofloxacin, 38 (36.2%) susceptible to azithromycin
and erythromycin, 37 (35.2%) susceptible to ceftriaxone and 11 (10.5%) were susceptible to cefixim. Almost all
{104; 92.05%) were resistant to penicillin G and only 1 (0.95%) was intermediate to penicillin G. Interestingly,
74.6% of MRSA strains were azithromycin resistant with 8.5% of them clindamydin resistant. Ninety-six (91.4%)
of the isolates were multi-drug resistant.

(Continuad on next page)
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Conclusions: There was a high rate of Methicillin resistance (56.2%) among 5. gureus strains in the samples
collected and most (91.4%) were multidrug resistant. The most effective antibiotics to treat Staph infections
were vancomycin, rifampicin, imipenem, clindamycin, amoxicillin-clavulanic acid, cefazolin, gentamicin and
doxycycline. The least effective were azithromydin, ceftriaxone, cefixim and penicillin. We recommend that,
where possible, in every case of 5 aureus infection in Kabul, Afghanistan, Antibiotic susceptibility testing (AST)
should be performed and responsible use of antibiotics should be considered.

Keywords: MRSA, Kabul health facilities, Antimicrobial susceptibility

Background

Staphylococcus aureus is a major pathogen implicated in
skin and soft tissue infections [1]. Multidrug resistance
in Staphylococci is an increasing problem in clinical
practice especially methicillin-resistant S. aurens (MRSA)
strains. These strains are resistant to most of the anti-
microbial agents, and isolates with reduced susceptibility
and resistance to vancomycin, which is the last drug for
the treatment of MRSA infections [2]. These multidrug
resistant strains may cause severe infections with a high
rate of mortality. In vitro susceptibilities of MRSA strains,
especially those from community-acquired infections, to
clindamycin, macrolides, quinolones, tetracyclines, and
trimethoprim-sulfamethoxazole have frequently been re-
ported [3, 4]. Strains of MRSA, which had been largely
confined to hospitals and long-term care facilities, are
emerging elsewhere in the community. The changing epi-
demiology of MRSA bears striking similarity to the emer-
gence of penicillinase-mediated resistance in §. aureus
decades ago [5]. One of the best choices of treatment of
MRSA is to treat with clindamycin and fluoroquinolones
such as ciprofloxacin, but recent studies showed that sus-
ceptibility of this microorganism is also decreasing to clin-
damycin and fluoroquinolones [6, 7].

In a study in southern districts of Tamilnadu, India [8],
the prevalence of MRSA strains isolated from clinical and
carrier samples were 37.9%. Almost all clinical MRSA
strains (99.6%) were resistant to penicillin, 93.6% to ampi-
cillin, and 632% towards gentamicin, co-trimoxazole,
cephalexin, erythromycin, and cefotaxime. All MRSA
strains (100%) of carrier screening samples had resistance
to penicillin and 71.8% and 35.9% respectively were resist-
ant to ampicillin and co-trimoxazole. However, all strains
of clinical and carrier subjects were sensitive to vanco-
mycin. In this study, it was concluded that the determin-
ation of prevalence and antibiotic susceptibility patterns of
MRSA would help the treating clinicians for first line
treatment in referral hospitals.

A study in a hospital in Turkey aimed to determine the
susceptibility pattems of Staphylococcus aureus strains to
various antimicrobials, 50.2% were resistant to methicillin.
All strains were susceptible to vancomycin, teicoplanin,
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quinupristin/dalfopristin, and linezolid. It was found that
534% MRSA strains were erythromycin resistant, and
39.6% showed constitutive clindamycin resistance. In this
study they identified the high rate of methicillin resistance
among § aureus strains in their hospital [9].

In Afghanistan the widespread use of antibiotics has
led to increase in the number of multidrug resistant
organisms including MRSA [10, 11]. A study in Afghanistan,
showed that there is a significant amount of overuse and
abuse of antimicrobials in primary health care clinics that
may lead to problem of antimicrobial resistance [12].
Another study at a US military hospital in Bagram Airbase
in Afghanistan, found that Afghan patients often carry
multidrug-resistant (MDR) bacteria compared to US
citizens treated in this hospital. Their findings sug-
gested the need for effective infection control measures
at deployed hospitals where both soldiers and local patients
are treated [13].

Indeed, some strains have become resistant to practically
all of the commonly available antibiotics in Afghanistan.
That is why the physicians mostly prescribe new antibiotics
in order to get positive results without knowing the suscep-
tibility patterns of causative bacterial agents [11]. There is
no study regarding the prevalence of MRSA which is a
multidrug resistant bacteria and its susceptibility patterns
to most common antibiotics in Afghanistan, which causes
severe infections with a higher mortality rate both commu-
nity and hospital acquired infections. The aim of this study
is to assess the prevalence of MRSA, as well as determining
antimicrobial susceptibility patterns of § awureus strains to
common antibiotics available in Kabul, Afghanistan. The
results of this study would help physicians in Kabul to
know the prevalence of MRSA and to help them change
their treatment protocols, and to know the importance of
bacteriological culture and antibiotic susceptibility testing
(AST). It would also be helpful for the Ministry of Health
of Afghanistan to pay more attention to diagnostic labs and
the role of bacteriological culture and AST to provide bet-
ter treatment outcomes and responsible use of antibiotics.
The findings would also emphasize the importance of local
surveillance in generating relevant local resistance data that
can guide empiric therapy.
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Methods

This longitudinal study was conducted in the Microbiology
Laboratory of the Faculty of Pharmacy of Kabul University
between September 2106 and February 2017. Presumptive
isolates from various clinical samples were brought from
two main health facilities of Kabul, to the microbiology lab
of the Faculty of Pharmacy. All of the isolates were col-
lected from clinical specimens obtained from hospitalized
patients. The standard microbiological procedures were
conducted with minimum delay for culture, confirmatory
tests and AST. We selected two main health facilities in
Kabul, because they have standard microbiology labs and
perform most of the bacteriological cultures and identifica-
tion in Kabul Confirmatory tests were carried out for diag-
nosis of S awreus strains, by inoculating presumptive
isolates onto Blood agar base medium (Oxoid, England) to
which 5% sheep blood was added. All cultured media were
incubated at 37 °C for 18-24 h under aerobic condition.
The suspected isolated colonies were subjected to Gram’s
staining, Catalase test, Coagulase test, and Mannitol
fermentation on Mannitol Salt agar (Oxoid, England)
[14]. Confirmed S. awreus isolates were subjected to
AST by Kirby Bauer disc diffusion method as per Clinical
Laboratory Standards Institute (CLSI) guidelines [15] on
Muller Hinton agar (Oxoid, England) for 20 antimicrobials
such as: penicillin G (P, 1unit), amoxdcillin-clavulanic acid
(AMC, 30ug), oxacillin (OX, 1lpg), azithromycin (ATH,
15pg), erythromycin (E, 15pg), cefazolin (CZ, 30pg), cef-
tazidime (CAZ, 30ug), cefoxitin (FOX, 30pg), cefixim
(CFM, 5pg), ceftriaxone (CRO, 30pg), ciprofloxacin (CIP,
Sug), trimethoprim-sulfamethoxazole (SXT, 1,25/23,75ug),
gentamicin (CN, 10pg), tobramycin (TOB, 10pg), doxy-
cycline (DO, 30pg), imipenem (IMI, 10pg), clindamycin
(CD, 2ug), vancomycin (VA, 30pg), chloramphenicol (C,
10pg) and rifampicin (RP, 5pg).

The growth suspension for AST was prepared in 5 ml
Normal saline solution and the turbidity was adjusted to
match that of 0.5 McFardand standards to obtain approxi-
mately the organism number of 1x 10° colony forming
units (CFU) per ml. Antibiotic discs were placed after
15 min of inoculation to Muller Hinton agar seeded with
each isolate and were incubated for 18-24 h at 35-37 °C.
The diameter of the zone of inhibition around the disc
was measured using sliding metal caliper. For accuracy,
during the antibiotic screens, three independent replicates
were performed. The susceptibility of all isolates were de-
termined against different classes of antibiotics as follows:

For detection of MRSA we applied two definitions: [1]
inhibition zone less than or equal to 23 mm on Mueller
Hinton Agar (MHA) with 30 pg cefoxitin disc seeded
with growth suspension of S. aureus isolates adjusted to
0.5 McFarland standards at 37 *C for 18-24 h [16]; [2]
inhibition zone on MHA containing 2% NaCl with lpg
oxacillin disc less than or equal to 10 mm seeded with
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growth suspension of S. aureus isolates adjusted to 0.5
McFarland standards at 30 “C for 18-24 h [17].

For detection of Multi Drug Resistance, we used the
definition of Magiorakos et al. [18] as non-susceptibility to

at least one agent in three or more antimicrobial categores.

Statistical analysis and quality assurance

The reliability of the study findings was guaranteed by
implementing quality control measures throughout the
whole processes of laboratory work. We used two strains
of §. aureus as control. S. aureus ATCC 29213 a mecA
negative strain, and §. aurens ATCC 43300 a mecA posi-
tive strain; both confirmed with standard PCR as refer-
ence methicillin-sensitive S, aurens (MSSA) and MRSA
strains respectively using the DNA amplification instru-
ment Mastercycler gradient (Eppendorf, Germany).

The statistical analysis was done using SPSS version
19. Binary logistic regression was used to determine the
association between S aureus infection, gender and age.
Multivariate logistic regressions were used to control
confounding factors. A P-value less than 0.05 was con-
sidered as statistically significant.

Results

Of 105 strains of S. aureus isolated from various types of
pus, urine, tracheal secretions and blood, 46 (43.8%)
were MSSA while 59 (56.2%) were MRSA. All strains
(105; 100%) were susceptible to vancomycin. Almost all
(104; 99.05%) were resistant to penicillin G and only 1
(0.95%) was intermediate to penicillin, for further infor-
mation please refer to Table 1.

We did not find any strain of MSSA to be resistant to
clindamycin and only 6.5% were intermediate to clinda-
mycin, while 8.5% of MRSA strains were resistant to clin-
damycin. Susceptibility to azithromycin was low in both
MSSA (52.2%) and MRSA (23.7%). MSSA vs MRSA iso-
lates showed a higher susceptibility to amoxicillin + cla-
vulanic acid, 2nd and 3rd generation of cephalosporins,
aminoglycosides, imipenem, ciprofloxacin, rifampicin,
and co-trimoxazole, for further information please refer
to Table 2.

The difference of MRSA infection was not statistically
significant according to gender (p =0.42). Of 59 MRSA
strains isolated, 44 (74.6%) were from males while 15
(25.4%) from females. According to category of age, the
prevalence of MRSA was 39.0% in ages between 1 and
17 years, 39.3% in ages between 18 and 40 years and
66.7% in ages between 41 and 75 years old. The difference
of MRSA distribution was not statistically significant ac-
cording to age (p = 0.50), and health facility (p = 0.95).

Specimen-wise distribution showed that MSSA vs MRSA
in blood was (44% vs 56%), in ear pus (50% vs 50%), in pus
from other sites of the body (44% vs 56%), in urine (33% vs
67%), and in tracheal secretions (50% vs 50%). The specimen



Naimi et al. BMC Infectious Diseases (2017) 17:737 Page 4 of 7
Table 1 Antimicrobial susceptibility patterns of 5 aureus strains to different antimicrobial agents
Classes of ATB Antibiotics Sensitive N (36) Intermadiate N (%) Resistant N (36)
Penicillines Penicillin G 1(1.0) 104 (990)
Amaoxidilin+ Cavulanic acid 81 (77.1) 24 (229)
Cxacillin 49 [467) 56 (533)
Macrolides Erythrormycin 38 (36.2) 4(38) 63 (60.0)
Azithromycin 38 (362) 4(38) 63 (60.0)
2nd and 3rd generation of Cephalosporins Cefazolin 78 (743) 10 (9.5) 17 (16.2)
Cefixim 11 (105) 5 (48) 89 (84.8)
Cefoxitin 49 [46.7) 56(533)
Ceftriaxone 37 (352) 39 (37.1) 20(276)
Ceftazidime 6 15.7) 12(114) 87 (829)
Quinolones Ciprofloxacin 47 (448) 5 (48) 53 (505)
Sulfonamides Cotri-moxazole 60 (57.1) 9 (88) 36 (343)
Aminoglycosides Gentamicin 83 (790) 5 (4.8) 17 (16.2)
Tobramycin 71 1676) 3 (324)
Tetragycline Doxycycline 81 (77.1) 10 (8.5) 14 (133)
Carbapenems Imipenem 94 (895) 1(1.0) 10 (9.5)
Lincosamides Clindamycin 96 (914) 4 (38) 5 (48)
Polypeptides Vancomycin 105 (100:0)
Chivers Rifampicin 100 (95.2) 5 (4.8)
Chloramphenicol 68 (64.8) 30 (286) 7 (A7)
Table 2 Comparative susceptibility of MRSA and MSSA strains to different antimicrobial agents
Classes of ATB Antibiotics MSSA (36) MRSA (%) P-value
Penicillines Penicillin G 0 0
Amexicillin + Clavulanic acid 97.8 &1 0.0001
Macrolides Erythromydn 522 237 0.002
Azithromydn 522 237 0.002
Znd and 3rd generation of Cephalosporins Cefazolin 97.8 55.9 0.0001
Cefixim 19.6 34 0.001
Ceftriaxone nz 68 0.0001
Ceftazidime 87 34 0.005
Quinolones Ciprofloxacin 60.9 322 0.0001
Sulfonamides Cotri-moxazole 69.5 475 0.004
Aminoglycosides Gentarnidn 951 667 0.001
Tobrarmycin 826 55.9 0.004
Tetragyclines Doxyoycline 7.7 814 0.478
Carbapenems Imipenam 100 814 0.008
Lincosamides Clindarrmycin 93.5 £89.8 0.063
Polypeptides Vancomydn 100 100
Divers Rifzrmpicin 100 01.5 0.043
Chloramphenicol 63 66.1 0.933

A pvalue less than 0.05 was considered statistically significant and are in boldface
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wise distribution of MSSA and MRSA was not significantly
different (p = 0.96).

In males the percentage of MSSA was 31 (41.3%) versus
MRSA 44 (58.7%), and in females, MSSA 15 (50%) versus
MRSA 15 (50%). The difference of MRSA distribution was
not significant according to gender (p = 0.52).

Multi-drug resistance (MDR) pattern of 5. aureus
Eighty-eight (83.8%) of the isolates were multi-drug re-
sistant. Multi-drug resistant strains ranged from resist-
ance to three classes of antibiotics (11, 10.48%) to 9
classes of antibiotics (1, 0.95%). The highest rate of
MDR were observed for 4-5 classes of antibiotics (28,
26.67%). Details of resistance to different antibiotics are
described in Table 3.

Discussion

In our study, methicillin resistant §. aureus was found
to be 56.2%. There is no previous information regard-
ing prevalence of MRSA in Afghanistan. In West Asia,
MRSA prevalence ranges from 12% to 49.4% in six dif-
ferent hospitals of Saudi Arabia [19]. In European
countries, MRSA rates varied from 0.6% in Sweden to
40.2-45% in Belgium, Greece, Ireland, Italy, and the
United Kingdom [20, 21], because the use of antibi-
otics are much more controlled in these countries. In
Turkey, the proportion of MRSA were reported to be
50.2% [9] which is similar to European countries. In a
study performed in 17 different regions of Russia,
methicillin resistance among S. awureus strains was
between 0% and 89.5% [22] which is very diverse. In a
systemic review in Iran, the prevalence of MRSA was
determined to be approximately 56.5% (ranged be-
tween 50 and 60%) [23], which is similar to our find-
ings and the similarity would be due to irresponsible
use of antibiotics in both countries.

We found that the prevalence of MRSA among patients
in our study to be 56.2% which is higher compared to find-
ings of a similar study conducted in Peshawar Pakistan,
which is very close to Afghanistan. In that, study the re-
searchers examined 280 isolates of S aureus recovered
from hospitalized patients, and indicated that 36.1% of
Staphylococci were detected as MRSA [24]. There was also
a significant difference between gender and MRSA infec-
tions. In our study, 74% of MRSA isolates were from males.
As compared to the study from Pakistan, 34% of MRSA in-
fections were from males. According to age in both studies
the prevalence of MRSA infections were higher among
elderly in Pakistan and Afghanistan 60.71% and 66.7%
respectively, which is a known risk factor for MRSA
infections, however in both studies it was not statisti-
cally significant. The prevalence of MRSA infection in
the present study did not vary significantly by gender
(p=042), age group (p = 0.50), specimen (p = 0.96) and
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health facility (p=0.95). This is in agreement with
earlier reports by Geyid et al. [25] indicating that gen-
der and age are not risk factors for the acquisition or
colonization of MRSA.

In our study, despite the high prevalence of MRSA,
there was no isolate with reduced susceptibility to vanco-
mycin, however we could not include other new antibiotics
like teicoplanin, linezolid and quinupristin/dalfopristin in
our study to assess their efficacy as well, because these anti-
biotics are not included in the licensed and official medicine
list of Afghanistan and therefore are not available in
Afghanistan [26].

In this study, it was observed that 8.5% of the
MRSA strains were resistant to rifampicin and clinda-
mycin and 16.9% were resistant to imipenem; this is
probably because these antibiotics are not widely used
in the treatment of Staph and other bacterial infec-
tions in clinics in Afghanistan and are mostly effect-
ive in the treatment of sensitive G+ and G- bacteria.
Most of the MRSA isolates were resistant to multiple
other antimicrobial agents like cefixim (96.6%), ceftaz-
idime (93.2%).

Interestingly, ceftriaxone, which is widely used in
Kabul and other provinces of Afghanistan, we found
that 44.1% of MRSA strains were resistant to this anti-
biotic and 49.2% intermediate and only 6.8% were sus-
ceptible. This is an alarming sign, which highlights
widespread use of this antibiotic and other similar
broad spectrum antibiotics in clinical settings and in-
creased resistance toward third generation cephalospo-
rins. In general, elevated rates of multidrug resistance
may emerge from diverse isolates of S. awreus under
antimicrobial pressure or as a result of widespread per-
son to person transmission of multidrug resistant iso-
lates [27]. In our study, although imipenem resistance
was detected in 81.4% MRSA strains, no resistance was
detected in MSSA strains. In this study, cefazolin, gen-
tamicin and ciprofloxacin were found to be more effect-
ive on MSSA than MRSA strains.

Interestingly 8.5% of MRSA strains were resistant to
clindamycin, while there was no resistant strain of
MSSA to clindamycin. We found that 65% of MSSA
strains to be intermediate to clindamycin. Our find-
ings support the previous study conducted by Frank,
et al. [28] that clindamycin is effective for the treat-
ment of infections caused by Staphylococci, or for pa-
tients allergic to beta-lactam agents [18, 29]. It is a
good alternative to the treatment of both MSSA and
MRSA infections.

Conclusions

The prevalence of MRSA strains obtained in this study
was high (56.2%) when compared with the prevalence
rates obtained from other similar studies conducted
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Table 3 Percentage of resistance patterns of 5. aureus isolates

to different number of antibiotics
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Table 3 Percentage of resistance patterns of 5. aureus isolates
to different number of antibiotics (Continued)

Antibiotic Resistant strains Antibiotic Resistant strains
Noof % Noof %
S. aureus S aureus
p 2 191 P.CIPOXFOX CFMCZ EATHAMC 1
PCIP 1 667 PSKT,CIPCAZOX FOX CFME ATH 3
PCAZ 3 P.SXT,TOB,CAZ,OX, FOX CFMEATH 1
PCFM 2 PSXT.CIPCROCAZ CFMEATH AMC 1
PTOB 1 PSXT.TOBCCIP,CAZOX FOX,CFM 1
P, CAZ, (FM 7 1048 PSKTRPCAZ OX FOXCFMEATH 1
P, CAZ, QP 1 P.OOCIP CAZ O X FOX CFMEATH 1
PEATH 1 PSKT.CROCAZ OX FOXCFMEATH 3
PLCCFM 1 PEATHCFMFOX OX,CAZCIPGTOB 1 191
PCAZ SXT 1 PAMCEATHCEM FOXOXCAZ CIP,DO 1
P.CAZ CFMDO 1 476 PEATHAMCCFMOXFOXCAZ CIPGTOB 1 47
P.CAZEATH 1 PEATHCFMOX FOX CAZ CIPDOG SKT 1
P.TOBEATH 1 PAMCCZ CFMFOX OX CAZCROCIPSXTTOR 1
PCIPEATH 1 PEATHCFMFOX,0X,CIPCDCSXTTOR 1
P.CIPCAZCFIM 1 P.EATH,CZ,CFM,FOX0X,CAZ CROCIPTOB 1
PTOBCFMEATH 1 1238 PEATHAMCCIMFOXOXCAZ CROG,TOBSKT 1 191
P.DOCCAZCFM 2 PAMCCZ CFMFOX OX CAZCROCIP.GRP,TOB 1
PCAZ CFMEATH 2 PAMCEATHCFM FOXOXCAZ CROCIP,DORPSKT 1 191
P.SXT.DOCAZCFM 2 PAMCEATH.CZ CRMFOX OX CAZ CROCIP GTOB 1
P.CAZ O FOX CFM 2 PEATHCFMFOX, OX CAZ CROCIPCD,DO GTOBSXT 1 0%
PCIPCAZ E ATH 1 PAMCEATHCZCFM PO OX,CAZ CROCIP GIMTOBSXT 5 571
P.CAZ 0K FOX AMC 1 PAMCEATHCZCFMFOK OX CAZ CROCIP RPIMTOBSXT 1
PTOBOXFOXAMC 1 PAMCE ATH.CZCFMFOX OX CAZ CROCIP DOGIMTOBSXT 1 28
P.DOUCFM EATH 1 PAMCEATHCZCFMPOX OX,CAZ CROCIP.COGIMTOBSKT - 2
P.CIPCAZ CFMEATH 3 857  PAMCEATHCZCFMFOXOXCAZCROCP COCGIMTOBSKT 1 0%
P.CRO,CAZOXFOX,CFM 2 Totl 105 1000
PTOBCAZCFMEATH 1 P Penicillin G, CIP Ciprofloxacin, AMC Amoxicillin-Clavulanic acid, C
paCROCHEAT 1 e e e el e
PSXTDOCIPCAZ CFM 1 Clindamycin, CFM Cefixim, CZ Cefazolin, OX Oxadillin, CAZ Ceftazidime,
- i CRO Ceftriaxone, IM Imipenem, TOB Tobramycin, RP Rifampicin,
PCIPCAZ 0K FOXCFM 1 DO Doxycycline
P.CRO,CAZOXFOX CFMAMC 2 762
PSXTTOBCAZCFMEATH 1
PTORDO CAZCENLEATH ] else?\rhere. Most ‘uf s auateus strains especially MIT.SA
S strains were multidrug-resistant and fortunately no iso-
FIRRIRQEATEEMEATH 1 late was resistant to vancomycin, the drug of choice for
PSXTCAZCFMCZEATH y treating multidrug resistant MRSA infections. Isolates
PSXTTOBGCIP.CAZCFM ! showed a higher susceptibility to vancomycin, clinda-
P.CAZ OX FOXCFM EATH 1 mycin, rifampicin, imipenem, amoxicillin + clavulanic
P.CIP.CAZ OX FOXCFMEATH 8 1333 acid, cefazolin, gentamicin, and doxycycline. The least
PSXTCAZOX FOX.CAMEAT 2 effective were azithromycin, ceftriaxone, cefixim and
PRP.CCAZOXFOX CFMCZ 1 penicillin.
B.CAZ OX FOX CFM EATHAMC . Goc‘:ud ‘lf'leCﬁ‘()['f control pra‘CtiCES such as ‘strir:t hand
P.SXTTOBCIPCAZ OX FOXCFM 1 washing. iemiying a,nd, frenin g MR curcnrs, s el
as prudent use of antimicrobial agents is recommended.
FraARTEE SR E CRECHCE 1 Further, genotypic studies are needed to characterize re-
P.CIPCROCAZOX FOX,CAMEATH 2 1333 gistant strains of S. gureus.
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Abstract

Background: Staphylococcus aureus is a common bacterium found in the nose and throat of healthy individuals,
and presents risk factors for infection and death. We investigated environmental contamination of fitness facilities
with S. aureus in order to determine molecular types and antibiotic susceptibility profiles of contaminates that may
be transmitted to facility patrons.

Methods: Environmental swabs (n = 288) were obtained from several fitness fadilities (n = 16) across Northeast Ohio
including cross-fit type facilities (n = 4), traditional iron gyms (n = 4), community center-based facilities (n =5), and
hospital-associated facilities (n = 3). Samples were taken from 18 different surfaces at each facility and were
processed within 24 h using typical bacteriological methods. Positive isolates were subjected to antibiotic
susceptibility testing and molecular characterization (PVL and mecA PCR, and spa typing).

Results: The overall prevalence of 5 gureus on environmental surfaces in the fitness facilities was 38.2% (110/288).
The most commonly colonized surfaces were the weight ball (62.5%), cable driven curl bar, and CrossFit box (62.
5%), as well as the weight plates (56.3%) and treadmill handle (50%). Interestingly, the bathroom levers and door
handles were the least contaminated surfaces in both male and female restroom facilities (18.8%). Community
gyms (40.0%) had the highest contamination prevalence among sampled surfaces with CrossFit (38.9%), traditional
gyms (38.9%), and hospital associated (33.3%) contaminated less frequently, though the differences were not
significant (p =0.875). The top spa types found overall were t008 (12.7%), 1267 (10.0%), 1160, t282, t338 (all at 5.5%),
1012 and t442 (4.5%), and t002 (36%). t008 and t002 was found in all fitness facility types accept Crossfit, with t267
(25%), t548, 1377, 1189 (all 10.7%) the top spa types found within crossfit, All samples were resistant to
benzylpenicillin, with community centers having significantly more strains resistant to oxacillin (52.8%), erythromycin
{47%), clindamycin (36%), and ciprofloxacin (19%). Overall, 36.3% of isolates were multidrug resistant.

Conclusions: Our pilot study indicates that all facility types were contaminated by 5 aureus and MRSA, and that
additional studies are needed to characterize the microbiome structure of surfaces at different fitness facility types
and the patrons at these facilities.

Keywords: Athletic fitness facilities, 5. aureus, MRSA, Multi-drug resistant, Northeast Ohig, CrossFit, Gym
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Background

Staphylococcus aureus is an opportunistic pathogen that
colonizes asymptomatically the skin and nares of
approximately 1 in 3 people worldwide [1, 2]. S. aureus
is found in hospital settings, and with the emergence of
antibiotic resistance, can cause life threatening infec-
tions. Recent studies have suggested that, in the United
States, over 80,000 invasive infections and 11,000 yearly
deaths are attributed to methicillin-resistant S awureus
(MRSA) [3]. While the number of invasive MRSA infec-
tions has declined slowly over the past decade, our
group has identified reservoirs of MSSA (methicillin-
susceptible S. aureus) and MRSA in humans, animals,
and the environment [4-11]. Although colonization with
8. awureus is usually asymptomatic, it is a risk factor for
active infection [12] and enhances the ability of an indi-
vidual to transmit S. gureus to fomite surfaces [13].

One location that has been associated with an increased
risk of both infection and colonization with S. aureus is
the athletic fitness facility [14, 15]. Over 50 million indi-
viduals in the United States support approximately 30,000
fitness facilities, and the number continues to rise [14].
MRSA infections have been linked to contamination of
athletic facilities due to shared exercise equipment [15]
and towels [16]. Facility-associated MRSA infections have
also been documented in both professional and collegiate
athletic teams [17-19], and even in high school athletes
[20, 21]. The link between fitness facilities and contami-
nated surfaces is unclear [22], but Marlley and colleagues
[15] found that approximately 10% of gym surfaces were
contaminated with S. awureus and these contaminated
fomites may serve to spread S. auwreus. However, not all
fitness facility types and surfaces may warrant the same
scrutiny.

In the present study, we assessed the prevalence of §.
aureus and MRSA across several fitness facility types to
characterize the microbial environment and potential for
S. aureus transmission, to identify potential risks associ-
ated with certain areas, environmental conditions, or
types of exercise equipment, and to provide a more in-
clusive study addressing exercise facility type as a facili-
tator of 8. aureus transmission.

Methods

Facility sampling

We performed point prevalence microbiological surveys
at 16 fitness facilities in Northeast Ohio. The facilities
were convenience-sampled with the surfaces selected as
the most commonly hand-touched areas in the building.
Environmental swabs were obtained from CrossFit type
facilities (n =4), traditional free weight gyms (n=4),
community center facilities (n = 5), and hospital —associ-
ated facilities (# =3) with the written permission of the
owners. Traditional free weight gyms only have weights
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for lifting and do not offer any other services such as a
pool or daycare. Community center facilities were usu-
ally larger facilities with a wide range of services from
yoga, gyms for basketball or volleyball, swimming pools,
daycare services, rock climbing walls, and food prepar-
ation. Hospital-associated facilities were linked to a
hospital or clinic and had weights, swimming pool, and
guided care for rehabilitation purposes, in addition to
providing membership access to the general public.
CrossFit facilities involved highly intensive, varied move-
ment exercises covering several sports movements, and
were required to self-identify as a CrossFit facility for
inclusion purposes.

The sampling technique of surfaces was as previously
described [7]. Briefly, a sterile Swiffer® cloth was used to
wipe down a 9 square inch environmental surface for 10
s using a new set of gloves for each surface as to reduce
cross contamination. Samples were then placed in a
labeled, individual sterile Whirl-Pak™ bag (Nasco, Fort
Atkinson, WI) and stored on ice until returning to the
lab for processing within 3 h of acquisition.

Bacterial culture and identification

Samples were processed as previously described [23].
Samples were reconstituted in 50 mL of sterile 0.1%
peptone broth and massaged for 25 s to enhance bacter-
ial recovery. Subsequently, this peptone solution was
transferred to a 50 mL aliquot of sterile, 2X Baird Parker
Broth (BPB) solution with tellurite enrichment (Sigma
products-Sigma Aldrich, St. Louis, MO) and allowed to
incubate at 37 °C for 24 h. After incubation, 1 pL inocu-
lums were streaked onto Baird Parker Agar (BPA) with
EY tellurite enrichment and selective MRSA agar plates
(BBL CHROMagar MRSA, Becton, Dickinson and Com-
pany), and allowed to incubate for 48 h at 37 °C. Poten-
tial S. awureus colonies (black colonies) and presumptive
MRSA colonies (mauve colonies on CHROMagar) were
then plated on Columbia colistin- nalidixic acid agar
with 5% sheep’s blood (CNA; Ramel). Plated CNA were
allowed to grow at 37°C for 24h Colonies were
confirmed using a series of biochemical assays including:
catalase, coagulase, and §. aureus latex agglutination (Pas-
torex Staph-Plus, Bio-Rad, Hercules, CA). Confirmed §.
aureus isolates were stored at — 80°C with a single colony
used for antibiotic susceptibility testing (AST) and subse-
guent molecular analyses.

Molecular characterization

Positive S. awreus isolate genomic DNA was isolated
using Wizard Genomic DNA preparation kit (Promega,
Madison, WI). Polymerase chain reaction (PCR) was
used to amplify the presence of methicillin resistance
gene (mecA) and PVL genes ({ukS, ukF) [24, 25]. Fur-
thermore, Staphylococcus protein A (spa; FOR 5-GAAC
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and REV 5-CAGC

was used for molecular

AA-CGTAACGGCTTCATCC-3"
AGTAGTGCCGTTTGCCT)
typing [26-28]. Ridom StaphType software was used to
assign spa types (v22.1; Ridom GmbH, Wurzburg,
Germany). The Based upon Repeat Pattern (BURP)
algorithm was used to group spa types based on their
genetic proximity [29], as well as Bionumerics software
(version 7.6.2). Only spa typing was conducted, since
previous studies have found high congruence and dis-
criminatory power compared to MLST sequence data
[28, 30, 31]. A positive (USA300) and negative control
were used for all biochemical and molecular assays.

Antimicrobial susceptibility testing (AST)

All S aureus isolates were subjected to AST by VITEK 2
system (bioMerieux, Durham, NC; Version R06.01)
using AST-GP71 cards according to manufacturer’s and
Clinical Laboratory Standards Institute Standards (CLSI,
2012). A (0.5-0.63 OD) bacterial suspension in 0.45%
saline was prepared for each sample tested. AST-GP71
cards test for: benzylpenicillin, oxacillin, tetracycline,
erythromycin, ciprofloxacin, moxifloxacin, minocycline,
clindamycin, trimethoprim-sulfamethoxazole, quinupris-
tin/ dalfopristin, gentamicin, levofloxacin, linezolid,

daptomycin, vancomycin, rifampin, tigecycline, and
nitrofurantoin. Resistance to =3 class of antibiotics was

considered as multi-drug resistant (MDR) [32].

Environmental factors

Temperature and relative humidity measurements were
collected at all locations at a central point away from
any external door or HVAC vent. Temperature and rela-
tive humidity measurements were collected at the end of
sampling (~45-60min) to ensure that the temperature
and relative humidity were indicative of the gym facility,
and not a carryover from transport or previous location.
Total patron membership numbers and cleaning regimens
were also collected via a self-reported questionnaire.
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Statistical analysis

Association of variables was tested by Pearson’s Chi-
square test in addition to Fisher's exact test for outcome.
For all analyses, P was set at 0.05 with all tests carried
out using SAS software (Ver. 9.3, SAS Institute Inc.,
Cary, NC). Minimum spanning tree was conducted
using Bionumerics software (7.6.2).

Results
Prevalence of S. aureus
A total of 288 environmental samples (fitness facility
surface samples) were collected from 16 fitness facilities
in Northeast Ohio. A total of 110 sites were identified as
S. aureus-positive. The overall prevalence of S. awureus for
all locations was 38.2% (110/288) with a prevalence of
26.7% (77/ 288; + 1.65% SE) and 11.5% (33/ 288; + 3.95%
SE) for MSSA and MRSA respectively (Table 1). There
was an average of 27.5 + 3.69 (Mean + SE) positive isolates
per site type. Table 1 shows the distribution of S. aureus
across multiple fitness facility types sampled. We found
similar 5. aureus contamination across fitness facilities
buildings (community: 40.0%, 36/90; traditional: 38.9%,
28/72; CrossFit: 389%, 28/72; and hospital-associated:
33.3%, 18/54). The prevalence of MSSA was significantly
higher compared to MRSA (p =0.024), while the total
number of contaminated surfaces was not significantly
different across fitness facility types (Table 1; p = 0.875).
The highest prevalence of S. aureus was observed on the
weight ball (625%, 10/16) and cable-driven curl bar/
CrossFit box (62.5%, 10/16), followed by weight plates
(56.3%, 9/16), treadmill handle/free rope (50.0%, 8/16),
and water fountain (50.0%, 8/16) (Fig. 1). Interestingly,
based on mecA presence, MRSA contamination was
higher in community-associated fitness facilities (52.8%,
19/36) compared to hospital-associated (5.56%, 1/18),
CrossFit (14.3%, 4/28), and traditional fitness facilities
(32.1%, 9/28) (Table 1; p = 0.001).

MRSA = Methicillin resistant S. aureus. MSSA = Methi-
cillin susceptible S. aureus.

Table 1 Prevalence of 5. aureus (MRSA and M554) by fitness facility type

Traditional Community Hospital Crossfit
Total positive isolates n=28 Total positive isolates n=36 Total positive isolates n=18 Total positive isclates n=28
4 Facilities sampled 5 Facilities sampled 3 Facilities sampled 4 Facilities sampled
Facility [ Mrsa ()] mssa () [Facitity] mesa (n) [ wssan) Beacility[mrsa ()] mssatn) Jracility [mrsaim]  missa (n)
A 0 10 E 4 6 i 0 7 M 1 7
B 5 3 F 7 2 K 0 & M 3 4
C 1 4 G 1 [ L 1 4 (8} ] 7
] 3 2 H 5 0 P 0 6
I 2 3
9(32.1%)  19(67.9%) 19 (52.8%) 17 (41.2%) 1(5.60%) 17 (94.4%) 4(14.3%) 24 (85.7%)
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Under facility type (Traditional, Community, Hospital,
and Crossfit), each facility (A through P) had 18 samples
taken and only positive MRSA or MSSA are reported here.

Facilities A through P represent unique facility addresses.

Molecular characterization of 5. aureus isolates
Molecular typing of the spa gene was performed on all
confirmed S. aureus isolates, in addition to examination
of presence of the mecA and PVL genes. A total of 38
unique spa types were identified among 110 isolates with
the most common 14 spa types present in at least three
or more surfaces. The most common spa type present
was t008 (12.7%; 14/110), followed by 267 (10.0%; 11/
110), t160, t282, t338 (all at 5.45%; 6/110), t012, t442
(both at 4.55%; 5/110), t002, t026, t334 (all at 3.64%; 4/
110), t148, t189, t377, and t548 (all at 2.73%; 3/110)
(Table 2; Fig. 2). Of 33 MRSA isolates, 33.3% were t008.
The most common spa types found in each fitness type
were t267 (25.0%; 7/28; CrossFit), t012 (22.2%; 4/18;
hospital- associated), t008 (22.2%; 8/36; community cen-
ter), and t008 and t016 were tied for the most common
in the traditional free-weight gym (17.9%; 5/28).

The prevalence of the mecA gene among S. aureus
isolates was 30.0% (33/110). MRSA was isolated from

14.3% (4/28) of isolates in CrossFit facilitates, 5.6% (1/
18) of hospital-associated facilities, 52.8% (19/36) of
community facilities, and 32.1% (9/28) of traditional gym
facilities (Table 2). There was a significant difference ob-
served between fitness facility types (p = 0.001). There were
only three isolates (2.7%; 3/110) that were PVL-positive and
were correspondingly found only in community facilities.

Antibiotic susceptibility profile

All S, aureus isolates were subjected to antibiotic suscepti-
bility testing. Cumulatively, 37 isolates (33.6%) were resist-
ant to erythromycin, 33 (30.0%) were resistant to oxacillin,
29 (26.4%) were resistant to clindamycin, 9 (8.2%) were
resistant to tetracycline, 11 (10.0%) were resistant to cipro-
floxacin, 11 (10.0%) were resistant to levofloxacin, and 4
(3.6%) were resistant to minocycline (Fig. 3). Forty isolates
(36.3%) were MDR- S. aureus. The 4 isolates that demon-
strated intermediate resistance to vancomycin were found
within community (1), CrossFit (2), and hospital (1) -asso-
ciated facilities. Community-associated facilities had signifi-
cantly more oxacillin (52.8%; 19/36; p = 0.001), levofloxacin
(22.2%; 8/36; p =0.021), clindamycin (36.1%; 13/36; p =
0.025), erythromycin (47.2%; 17/36; p = 0.054), and cipro-
floxacin (19.4%; 7/36; p = 0.056) resistant strains compared
to hospital, crossfit, and traditional facility types.
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Table 2 5. gureus spa typing by fitness fadility location
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Crossfit Hospital- Community Traditional
Gym Associated Associated Gym
% | n | type % | n | type % | n | type % | n | type
25% 7 267 22% 4 1012 22% 8 t0os 18% 5 008
11% 3 1548 11% 2 1002 11% 4 t282 18% 5 t160
11% 3 377 11% 2 1026 11% 4 t267 11% 3 t442
11% 3 t189 11% 2 1148 6% 2 t338 7% 2 t026
7% 2 1084 11% 2 1338 6% 2 t442 T 2 t062
7% 2 1282 6% 1 1008 6% 2 1922 T4 2 2726
7% 2 t334 6% 1 1073 3% 1 002 4% 1 002
7% 2 t4371 6% 1 1160 3% 1 t012 4% 1 t003
A% 1 1338 6% 1 1216 3% 1 t051 4% 1 t164
4% 1 t346 6% 1 t334 3% 1 t1154 4% 1 t179
4% 1 t360 6% 1 1688 3% 1 1148 4% 1 11954
4% 1 1688 18 3% 1 t179 4% 1 t216
28 3% 1 t2414 4% 1 t276
3% 1 t242 4% 1 t334
3% 1 t334 4% 1 t346
3% 1 t345 28
3% 1 t7540
3% 1 t774
3% 1 t7954
3% 1 8504
36

Environmental factors

Temperature and relative humidity measurements were
collected at all locations, as were patron membership
numbers. The mean facility temperature across all facil-
ities was 21.5°C (70.7°F+£24) with a range of 18.3 to
23.3°C (Data not shown; p =0.156). The average relative
humidity was 47.6% #3.8 with no significant difference
between facilities (Data not shown; p =0.708). Patron
membership was highest in community centers (7496 +
4327), with hospital associated facilities at 2400 £ 1053,
traditional gyms at 1350 + 724, and CrossFit at 103 + 27
(Mean + SE). However, the patronage difference was not
statistically significant across facilities sampled (Data not
shown; p =0.22). All facilities provided access to hand
sanitizer stations except for 2 CrossFit facilities (50%)
and 1 community center (20%).

Discussion

This study examined the prevalence and molecular
characteristics of S. aureus and MRSA sampled from
288 gym surfaces collected from 16 gyms across four
different types of gym facilities in Northeast Ohio. From
288 samples, 110 were positive S. aureus isolates and we

had a 26.7% (77/288) and 11.5% (33/288) recovery of §.
aureus and MRSA, respectively. We found similar S
aureus prevalence across community, traditional, Cross-
Fit, and hospital-associated fitness facilities (40.0% vs
38.9% vs 38.9% wvs 33.3%, respectively) (Table 1). How-
ever, our prevalence rates were higher than those identi-
fied previously [15-21]. The prevalence rate difference
may be attributed to fitness facility and/or patron type.
As athletes and athletic personnel generally have a
significantly higher incidence of both infections and over
a ten-fold higher number of antibiotic prescriptions per
year compared to the general public, many infections
may remain unmonitored or unrecognized [18, 33, 34].
Despite their continual occurrence, there has been little
effort to identify and monitor contaminated surfaces and
the role they may play in transmission, until recently
[35-39]. Though our study found similar rates of
contamination across all fitness facilities that mirror
common human carriage rates, the incidence of both §.
aureys and MRSA is higher in our environmental
contamination study than what has been observed in the
literature, such as in school settings, playgrounds, and
beaches [4-8, 15, 22, 40]. Despite other environmental
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contamination studies, studies of fitness facilities have
received attention only recently.

For example, Ryan and colleagues [22] found zero
presence of S. aureus in gym facility surfaces suggesting
that all transmission was entirely via-person to person
contact or at least ruling out that gyms were reservoirs
of S aureus. Markley and colleagues [15] sampled 16
different surface types at one large community center
and found that 10% (10/99) of samples were contaminated
with MSSA only. Due to the significantly limited size and
scope of the study (one facility type was examined), their
reported incidence may be underestimated. Prior to these
studies, 5 players (9%) on the 2003 St. Louis Rams football
team were found to have MRSA infections [18]. Interest-
ingly, they found zero nasal carriers and/or environmental
reservoirs of MRSA, but did grow MSSA from whirlpool
water and a gel-applicator stick used for taping ankles,
suggesting that fomite surfaces have the potential to har-
bor and transmit S. aureus. Although Ryan and colleagues
[22] surveyed three facilities (college, high school, and pri-
vate gyms) before and after cleaning regiments, they found
zero presence of MSSA and MRSA from their 240
samples. Their results may be attributed to differences in
bacterial isolation and cultivation. Almost 40% of the
population are carriers of S. aureus [41], thus, it is surpris-
ing that these studies found very few contaminated
surfaces, while contamination in a hospital setting is suffi-
ciently ubiquitous to sound alarm [42-46]. For example, a
hospital study found that 76% of skin and soft tissue infec-
tions were of S. aureus etiology and 59% of those were at-
tributable to MRSA [47]. Of those presenting MRSA, 99%
of isolates were community-associated (CA-MRSA),
pointing to acquisition of MRSA strains from outside of
the hospital setting, such as a gym facility. Likewise, hos-
pital ward high touch surfaces areas were highly contami-
nated with S. aureus concentration increasing by almost
80% over a 4-h period despite the use of hypochlorite. The
addition of Quaternary Ammonium Compound surfac-
tants (QAC) did drastically decontaminate surfaces to al-
most 10% of their original bacterial load count, pointing
to potential bacterial decontamination strategies to reduce
transmission [46]. Additionally, through the use of se-
guencing techniques, small amounts of biomass collected
from gym facilities were sufficient to identify community
bacteria, as well as staphylococcal species present on
athletic surfaces in the gym, with the composition modu-
lated by interacting with human skin [48]. Though our
study did not track personnel or patron S. aureus carniage
or microbiome composition, provenance of contamination
will be key for future studies addressing the movement,
transmission, and potential antibiotic-resistant reservoirs
of fitness facilities.

The increased prevalence of S. aureus on fitness facil-
ity surfaces may also be a result of environmental
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co-evolution. As S. aureus can tolerate high osmolarity
stress (high saline environments), the production of
sweat at gym facilities can even be extrapolated to other
high intensity situations such as war and combat, which
may select for Staphylococeal species in the environment
or individual [49]. With ease of horizontal gene transfer,
the acquisition of antibiotic resistance may be enhanced
as a result. The incidence of MRSA in athletes is almost
triple what is observed in the general population. Thus,
it is not surprising that we observed higher contamin-
ation rates on gym surfaces than other surfaces [50].

We found a total of 38 unique spa types with t008
(14; 12.7%) and t267 (11; 10.0%) being the most common
(Table 2; Fig. 2). Interestingly, some loosely identified
livestock associated strains such as t548 and t338 were
found in Crossfit, community, and hospital-associated
strains but not in strains isolated from traditional gyms
(Fig. 2). t548 is associated to upper Midwestern and
northwestern regions of the US, including Ohio. Since it
was found in hospital associated gyms, the line between
the original provenance of S. aureus strains and their site
of contamination is becoming increasingly fluid. Approxi-
mately 82% (9/110) of strains were categorized as
livestock-associated. A total of 6 isolates were 338 and
were found in hospital, Crossfit, and community fitness
facilities. Three isolates (2.7%) were t548 and found solely
within Crossfit facilities. Additionally, t012 was the most
common strain type found in hospital-associated facilities
(4; 22.0%) and community fitness centers (1; 3.0%), but
not traditional or Crossfit facilities. t012 is known to be
less prevalent as the age of the individual increases [51,
52]. However, its increased incidence in hospital- associ-
ated facilities may be a result of rehabilitation of both
older and younger patients. Conversely, t002 was found in
hospital-associated (2; 11.0%), community (1; 3.0%), and
traditional facilities (1; 4.0%). t002 is often found in
nursing homes and in older patients [53]. As such, the
hospital-associated facilities also had strains associated
with older patients. These results suggest that age demo-
graphics may play a significant role in strain isolates found
in various fitness facilities. We found t002 on the weight
ball and weight bench bars in hospital, traditional, and
community facilities. As it has the possibility to be present
in cases of bacteremia [52, 54], it is important to be
careful in regards to lifting weights with any cuts present,
which could contaminate gym equipment.

Looking across gym facilities, Crossfit had the most di-
verse range of spa types (Table 2; Fig. 2). Of the 10 spa types
found in Crossfit facilities, 6 were community-associated
(t267, t377, t084, t282, t334, and t4371), two have been
found in livestock (t548 and t338), and two have been
associated in hospital settings (t189 and t346). Though
other facilities sampled had some similar variations of
these associations, none were as diverse as Crossfit
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types. This may be a result of the comparative lack of
lifting machine structure in Crossfit gyms and/ or the
wide range of people that attend them [55, 56]. Further-
more, if common cleaning regimens are not followed,
high hand-touch surfaces may harbor and easily
disseminate pathogenic, antibiotic resistant bacteria to
other people via hand contact, as hands are recognized
as a primary mode of transmission of many diseases
(Fig. 3), [38, 45, 57].

To the best of our knowledge, this is the first study to
evaluate systematically different gym facility types for
contamination and molecular typing of S. aureus. The
strength of our study resides within our large sample
size both across fitness facility types, as well as across
fitness surfaces sampled. In addition, we also carried out
molecular genotyping of S. awreus isolates, further
strengthening our epidemiological study of S. awreus
contamination on athletic gym surfaces. However, there
are limitations to our study that included convenience
sampling in Northeast Ohio fitness facilities only. In
addition, we only sampled surfaces at one point in time,
we did not sample surfaces after a cleaning regimen, and
we did not sample and type isolates found on patrons
and facility employees. Future studies should evaluate
the patron microbiome, as well as the collective micro-
biota impact on fomite contamination and transmission.
Our results indicate not only the presence of putatively
dangerous isolates of S. awreus, but also that increased
cleaning regimens and enhanced hygiene practices
should be followed in fitness facilities as is practiced in
the hospital or work place.

Conclusions

Of 288 surfaces swabbed from 16 different facilities (trad-
itional gyms, community centers, hospital-associated facil-
ities, and CrossFit facilities), 38.2% (110/288) of surfaces
were positive for S awreus. 30.0% of al isolates were
mecA-positive with community-associated fitness facilities
containing the most mecA (17.3%) compared to trad-
itional, CrossFit, and hospital-associated fitness centers
(8.20, 3.64 and 0.91%, respectively). t008 was the most
common spa type present across all gym facility types. All
fitness locations were contaminated with both S. aureus
and MRSA, and 36.4% of all positive isolates were
multidrug-resistant.
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Abstract

Background: Human immunodeficiency virus (HIV), hepatitis B (HEV) and C (HOV) viruses infect millions of people around the
waorld. People who wse drmogs (PAUD) are at high risk of such viral diseases and could be the source of these infections to other
people. Shared needle, unsafe extra-marital sexual contact, skin popping and other risky behaviors are well-known risk factors for
the prevalence of these infections among PWUD worldwide. There is no valid information regarding the danger and rate of the
above-mentioned viral infections and associated risk factors among PAUD referred to healthcare facilities in Kabul, Afghanistan for
the treatment and support.

Objectives: The main objective of this study was to determine the prevalence and risk factors of HEW, HOV, and HIV among PAUD in
Kabul, healthcare facilities.

Methods: This study was conducted in 7 public and private healthcare facilities at the primary care level in Kabul, which provides
social support and medical care to PWUD. All patients who referred to the healthcare facilities from May 2006 to October 2006 and
signed the consent were included in this study.

Resulis: Qut of 410 PWULD, 15 (2.7%) were positive for the HBY surface antigen (HBsAg], 45 (11X were positive for HOV antibody, and
one [(0.2%) was positive for HIV antibody. Among the risk factor variables studied, the administration of drugs by injection was
considerad the mast important for HOY (OR= 1.80, P< 0.01) and viral infections among PWUD (OR= 5.40, P< 0.01).

Conclusions: This study draws attention to the high prevalence and spread of viral hepatitis among PWUL in Kabul, Afghanistan.
The prevalence of HCW and HBY was higher among PWUD compared to general populations, and drog use via injection was an im-
portant risk factor for fransmitting viral infections. Based on our results, active preventive programs focusing on educational cam-
paigns targeted at the youth populations should be undertaken in Afghanistan. Further studies, espedially among PWUD living
without shelter in Kabul and other major cities of Afghanistan, are recommended in order to better analyze the dangers among
drug addicts in Afghanistan.

Keywords: Hepatitis B, Hepatitis C, HIV, People Whao Use Drugs (PWUD), Kabul

1. Background

Hepartitis Bvirus (HBV), hepartitis Cvirus (HCV), and hu-
man immunodeficiency virus (HIV) infections constiture
serious healthcare problems and infect millions of people
arpound the world. HEV and HCV infections can result in
chronicliver diseases, including cirrhosis and heparocel [u-

ro appraximarely 3 million since 2001 because of reruming
refugees (3, 4). External displacement is significant, par-
ricularly in refugee popularions moving to neighboring
countries, including Iran and Pakistan. Both countries har-
bor higher drug user populations and higher prevalence of
HBvV, HCV, and HIV among people who use drugs (FwUD),
especially peoplewho inject drugs { PWIDY) (57, As a result,

lar carcinoma, while HIV infection can result in severe op-
portunistic diseases (1).

Hlegal drug use has become an increasingly major
problem in Afghanistan due o widespread armed conflict
resulting in extensive internal and external displacement
and social and economic upheavals since 2001 (2). The pop-
ularion of Kabul, the capital of afghanistan, has increased

when the populations remurn to Afghanistan, they spread
illegal drug use o others.

Estimares say thar abourt Le million Afghans are PWUD,
fostered by readily available opium and heroin and most
of them are men. The Afghan government has space for
only abour 2,300 of them in its drug wreatment facilities

Copyrighe & 2019, Ambors). This i an open-amess article discribuced under the terms of the Creacve Commeess Aoribucon- NoeCommercial 4.0 Inemnational License
{bazpg|creacivecommeons.orglicenses by no/4.0/) which permics copy amd rediscribune che marerial just in moncommercial usages, provided the original work s properly
cicerd.
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around the country and Kabul harbors a large number of
PWUD.Atthese treatment facilities, in addition to stopping
drug abuse, the goal of the treatment is to return people
to productive lives in their family, workplace, and commu-
nity. During their 3 - 6-month treatment, the patients re-
ceive medication therapy, counselling, and psychotherapy
(8).

Most of the PWUD in Kabul live collectively in open ar-
eas without any shelters. This lifestyle increases their risky
behaviors such as poor hygiene, close contact, shared nee-
dles, skin popping, and unsafe extra-marital sexual con-
tact,and not only exposes them to transmissible infections
such as HBV, HCV, and HIV, but also makes them the main
source of transmission of such viral infections to other
people. These observations raised concerns that PWUD
and accompanying high-risk behaviors are increasing in
Afghanistan and the risk of HBV, HCV, and HIV epidemic
would have the potential to be high in the future (9,10). Ad-
ditionally, a study carried out on chronic intranasal users
of the drug in the USA showed that it has implications for
potential transmission of HCV via contact with contami-
nated nasal secretions (11), which is also common among
PWUD in Kabul. The PWUD are a potential source of infec-
tion and may represent a serious threat to the community.
Therefore, it is extremely important to identify and track
infected persons in order to prevent further transmission
of these infections by preventive measures and appropri-
ate controls. There are no major differences between in-
treatment and out of treatment PWUD in terms of risky
behaviors and sociodemographic characteristics in Kabul.
However, out of treatment PWUD may differ in terms of
continuous contact with infected persons and the preva-
lence of viral infections (10).

A recent survey conducted by Afghanistan National
AIDS Control Program (NACP) in 2012 revealed 12,541 PWUD
were living in Kabul. Unsafe injection drug use, including
shared needles and other injecting equipment, is consid-
ered the key route of HIV, HBV and HCV transmission in
Afghanistan. Based on available data, the HIV epidemic in
Afghanistan seems to be low and HIV affects mainly PWUD,
and are among a key population at higher risk of contract-
ing HIV (12). In a study from 2005 to 2010 covering 1,696
PWUD from some provinces of Afghanistan such as Kabul
showed arange of 36.0% - 36.6% seroprevalence of HCVand
5.8% - 6.5% hepatitis B surface antigen (HBsAg) positive (13,
14).

2. Objectives

Little data are available on hepatitis B, hepatitis C,
and HIV prevalence, and associated risk behaviors among
PWUD who use different methods or a combination of

drug use methods in Afghanistan, especially in Kabul. The
primary objective of this study was to determine the preva-
lence of HIV, HBV, and HCV infections among PWUD treated
at health facilities of Kabul and to identify the associated
risk factors and behaviors that make them exposed to these
infections. The impact of this study will be to inform poli-
cymakers and program managers at the Ministry of Public
Health of Afghanistan and related stakeholders about HBV,
HCV, and HIV infection rates among PWUD and the associ-
ated risky behaviors in Kabul. In addition, this study might
prove useful for developing proper treatment and preven-
tion guidelines and future educational programs.

3. Methods

3.. Subjects

The current cross-sectional study was conducted in
7 main public and private healthcare facilities treat-
ing PWUD from May 2016 to October 2016 in Kabul,
Afghanistan. These centers provide social support and
medical care for PWUD. Four hundred and ten male users
of drug treated at these healthcare facilities were included
in this study. Users of drugs are almost male in Kabul and
Afghanistan and no female users were referred to these
health facilities during the time of the study. The eligible
participants were all the PWUDs admitted to these health
facilities, with no previous vaccination against HBV (while
there is no effective vaccine against HCV and HIV) and were
able to provide informed consent. Before data collection,
this study was approved by the Research Committee of
Kabul University and the Academic Council of the Ministry
of Higher Education of Afghanistan, as well as the Ministry
of Public Health of Afghanistan. The participants were in-
terviewed, using a questionnaire that included sociodemo-
graphic, travel or displacement histories, the past and cur-
rent drug use, method of drug use, history of blood trans-
fusion, and unsafe extra-marital sexual behaviors.

3.2. Serological Analysis

Five mL of the blood sample was collected from each
participant and was centrifuged at 5000 RPM for five min-
utes at the microbiology laboratory of the Faculty of Phar-
macy of Kabul University in order to isolate plasma for
serological tests.

First rapid immunochromatographic tests (ICT) for
HBsAg (Standard Diagnostics Inc. Korea), anti-HCV (SD, Ko-
rea), and anti-HIV-1/HIV-2 (SD, Korea) were performed with
100% sensitivity and 99.5% specificity as mentioned by the
manufacturer. For diagnostic accuracy, all samples identi-
fied positive by ICT were confirmed by ELISA Kits (General
Biologicals Corporation, Kaohsiung, Taiwan). The patients

Hepat Mon. 2019;19(7):e84298.
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who were diagnosed seropositive for HBV, HCV, or HIV were
referred for further investigation and treatment.

3.3. Statistical Analysis

The overall prevalence of viral infections among PWUD
was calculated with a 95% confidence interval (CI) with de-
scriptive analysis, reported in numbers and percentages.
The chi-square test was used to evaluate the prevalence of
viral infections (HIV, HBV,and HCV) among those of various
ages, marital status, and economic status, and duration,
method of drug use, previous prison residence, and unsafe
extra-marital sexual contact. The crude odds ratios (OR)
were estimated by univariate analysis to observe the associ-
ation of each variable with viral infection. The adjusted OR
was generated to determine the independent contribution
of risk factors toviral infection, using multivariate logistic
regression models. All statistical tests were two-tailed and
a level of P< 0.05 was considered statistically significant.
Statistical analyses were performed using SPSS version 19
(SPSS Inc, Chicago, IL, USA) software.

4. Results

All 410 PWUD were male aged between 18 - 65 years
(mean 315, median 30.0); 212 (51.7%) aged between 18 - 30,
144 (35.1%) aged between 31 - 40, and 54 (13.2%) aged be-
tween 41- 65 years old. Among them, 55 (13.4%) were PWID
and 355 (86.6%) were non-injection users of drugs (smok-
ing, eating, sniffing, and chewing). Their past history of
addiction ranged from 73 days to 30 years (mean 7.2 years,
median 6 years), and 277 of them (67.6%) were in a lower
economic status (income less than 200 USD per month to
feed themselves and their family). Among them, 156 (38%)
were single, 252 (61.5%) married, and 2 (0.5%)were divorced.
Also, 219 (53.4%) of them were illiterate, 154 (37.6%) had pri-
mary level education, and 25 (6.1%) had secondary educa-
tion, and 12 (2.9%) had higher education. Among them,
303 (73.9%) were jobless before consuming drugs and after
drug addiction, all of them had lost their job. Moreover,
352 of the participants (85.9%) were using heroin, 31 (7.6%)
were using methamphetamine crystals, 26 (6.3%) were us-
ing opium, and 1(0.2%) was using marihuana. In addition,
236 (57.6%) of them have started drug use in Afghanistan,
159 (38.8%) of them have started drug use in Iran, and 15
(3.7%) of them have started drug use in other countries
such as; Pakistan, countries to the North of Afghanistan
and even Europe. Further sociodemographic details and
other information about study participants are described
in Table 1.

Fifteen PWUD(3.7%, 95% CI1.8-5.5) were HBsAg positive,
forty-five (11.0%, 95% CI17.9-14.0)were anti-HCV positive and

Hepat Mon. 2019;19(7):e84298.
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Table 1. Sociodemographic and Other Characteristics of Study Population

Variable Values, No. (%)
Age

18-30 212(5L7)

31-40 144(351)

40-65 54(13.2)
Marital status

Single 156 (38.0)

Married 252(615)

Divorced 2(0.5)
Education

Nlliterate 219 (53.4)

Primary 154 (37.6)

High school 25(6.1)

Higher education 12(2.9)
Duration of drug use, year

<1 43(10.5)

1-5 141(34.4)

>5 226(55.1)
Drug

Heroin 352(85.9)

Crystal methamphetamine 31(7.6)

Opium 26(6.3)
Method of use

Injection 25(6.1)

Smoke 350(85.4)

Other methods 5(1.2)

Injection + other methods 30(73)
Transfusion

Yes 12(2.9)

No 308 (97.1)
Reason of using drug

Friendship 360 (90)

Social problems 4(1)

Medical problems 77(9)
Country of starting drug use

Afghanistan 236(57.6)

Iran 159 (38.8)

Other countries 15(3.7)

one anti-HIV positive (0.2%, 95% CI-0.2-0.7); one person was
co-infected with HIV and HCV (0.2%, 95% CI-0.2 - 0.7) and
two persons were co-infected with HCV and HBV (0.5%, 95%
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CI-0.2-1.2). Further details are summarized in Table 2.

In univariate and multivariate analysis of HIV and HBV,
we did not find any significant association between differ-
ent variables and HIV, HBV infection among infected and
uninfected persons. Owing to that the number of HCV in-
fected persons was higher, we performed a multivariate
analysis and adjusted for other variables. We found that
shared needles and the use of drugs by injection indepen-
dently associated with HCV infection (OR = 5.40, CI: 2.60 -
11.23). Due to the small number of HIV and HBV infections,
we could not separately calculate risk factors for these in-
fections.

Finally, we analyzed the associated risk factors for vi-
ral infection (HIV, HBV, and HCV infection). By univariate
analysis, the use of drugs by injection, history of unsafe
extra-marital sexual contact, the history of prison was sig-
nificantly associated with viral infection, but in multivari-
ate analysis, the use of drugs by injection remained signif
icantly associated with viral infection, which is mostly re-
lated to HCV infection (OR=3.57, CI:1.76 - 7.24). Further de-
tails are summarized in Table 3.

As injection drug use is already a known risk factor for
HIV, HBV, and HCV infections, we analyzed some factors
that may predict injection drug use as well. In the uni-
variate analysis, joblessness, location of starting drug use
in Iran and other countries, previous prison and starting
drug use with a duration of two years or more were sig-
nificantly associated with injection drug use. After multi-
variate analysis, joblessness, location of starting drug use
in other countries, and previous prison remained signifi-
cantly associated with injection drug use. Further details
are summarized in Table 4.

5. Discussion

In this study, among PWUD in Kabul, 189 (42.4%) of
them have started drug use outside Afghanistan, espe-
cially Iran (38.8%). This highlights the role of external
displacement and as a result bringing this habit back to
Afghanistan. The remaining 236 (57.6%) have started drug
use in Afghanistan, which shows a great danger of becom-
ing a drug addict in the country nowadays. All subjects of
the study population were male because almost drug ad-
dicts are male in Afghanistan and it was not possible to
compare females with males in this regard.

There was just one case of HIV infection by detection
of anti-HIV antibody, but this finding is not representative
of PWUD living in Kabul without shelter. Other vulnera-
ble population groups and those having risky healthy be-
haviors were also not included in this study and may har-
bor higher prevalence of HIV than the study group; how-
ever, this is consistent with the World Health Organiza-
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tion's latest report on HIV (15). It can be concluded that
Afghanistan is in the early stage of an HIV epidemic and the
main route of transmission remains shared needle among
PWID. On the other hand, this study was conducted on
drug user populations referred to hospitals by their fam-
ilies or by themselves. While the prevalence of risk factors,
especially shared needles among PWID living on the streets
orunder bridges crossing Kabul River, in very bad hygienic
conditions, is higher and the prevalence of viral infections
among them could be higher too, which is not reflected in
this study.

In the current study, 3.7% were HBsAg and all of them
were using drugs by smoking. This finding may indicate
the role of otherrisk factors other than PWID; however, ow-
ing to asmall number of positive HBV cases in our study, we
could not conclude smoking as a specific risk factor. More-
over, 11% were anti-HCV positive and this was seen both
among PWID and non-injecting drug users, this finding po-
tentially anticipates that HCV transmission and incidence
among PWUD may increase in the near future and also
could be the main source of HCVtransmission to other peo-
ple. In a review article concerning the prevalence of HBV
and HCV among all available Afghanistan populations (2),
the prevalence of HBV was 1.9% and HCV was 1.1%. Our find-
ings suggest that the prevalence of HBV and especially HCV
is ten times higher among PWUDs than the general popu-
lation.

Among risk factors, injection drug use was related to
viral infection and mostly for HQV infection, which is a
known risk factor for HCV transmission (16). This finding
is similar to a study conducted in Kashan, Iran (17). The re-
sults of this study showed no association of HBV and HCV
infection with age, economical condition, unsafe extra-
marital sexual contact, previous prison, and the duration
of drug use; however, shared needles were significantly as-
sociated with HCV infection.

In our study, the associated factors for injection drug
use that promoted viral transmission and infection in-
cluded; joblessness, previous prison, and the location of
starting drug use in other countries, remained significant.
This study is worthwhile for the Ministry of Public Health
of Afghanistan and related stakeholders. This study has
some strengths and limitations. This was the first study
among PWUD admitted in different Kabul health facilities,
with the purpose to interview and collect blood samples
from a considerable number of the PWUD that can repre-
sent all PWUD under treatment and social support. One of
the limitations of this study was the lack of information
about the history of injection use or shared syringe among
PWUDs; also we could not interview and collect blood sam-
ples from drug user living without shelters on streets and
under bridges in very bad hygienic conditions.

Hepat Mon. 2019;19(7):e84298.



Rasekh H et al.

Table 2. Prevalence of HIV, HBV, and HCV Among PWUD by Method of Drug Use

Drug User Category, No. (%)

Virus Situation Total, No. (%)
Smoke Injection Other
HOV Positive 26/(57.80) 19(42.20) 0(0.00) 45 (100.00)
HBV Positive 15(100) 0(0.00) 0(0.00) 15 (100.00)
HIV Positive 0(0.00) 1{100.00) 0(0.00) 1(100.00)
Viral infection (Either HIV, HBV or HCV) positive 38(67.85) 18(32.15)) 0(0.00) 56 (100.00)
Co-infection
HIV + HCV Positive 0(0.00) 1{100.00) 0(0.00) 1(100.00)
HCV + HBV Positive 2(100.00) 0(0.00) 0(0.00) 2(100.00)

Table 3. Univariate and Multivariate Analysis of Risk Factors for HOV, HBV, and HIV by Binary Logistic Regression

Variable Univariate OR, CI(95%) PValue Multivariate OR, CI({95%) PValue
Age
18-30 1.0
31-40 1.64 (0.89-3.01) 0.10
> 40 116 (0.47- 2.57) 073
Marital status
Single L0
Married 0.84(0.47-150) 0.56
Divorced 5.78(0.35-95.75) 022
Economic status
Lower® 10 oa
Middle® 0.59 (0.30-1.13)
Duration of use 1.022(0.97-1.07) 038
Method of use
Smoke L0
Injection 3.99 (2.07-7.69) < 0.01 3.57(1.76-7.24) < 0.01
Other methods 0.00 0.99
Previous prison
No 1.0
Yes 1.84 (L0O- 3.39) 0.05
Unsafe extra-marital sexual contact
No Lo
Yes 2.03(115-3.60) < 0.01 178 0.06

*Income between 200- 500 USD per month.

"Income less than 200 USD per month.

5.1. Conclusions

Our study showed that the prevalence of HCV and HBV
are higher among PWUD in Kabul than the normal popu-
lation and the rate of HIV infection is lower among them.
The use of drugs by injection was significantly associated
with HCV infection among PWUD. While further studies,

Hepat Mon. 2019;19(7):e84298.
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especially among PWUD living without shelter in Kabul
and other major cities of Afghanistan, are recommended
to better analyze the dangers among drug addicts. Based
on our results and given the fact that adequate programs
against drug use are scarce in Afghanistan, active preven-
tive drug abuse programs focusing on educational cam-
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Table 4. Univariate and Multivariate Analysis of Associated Factors for Drug Injection Use by Binary Logistic Regression

Variable Univariate OR, C1(95%) PValue Multivariate OR, CI{95%) PValue
Occupation

Employed 1.0

Jobless 227 (1.04- 4.98) 0.04 2.92(1.20-7.1) 0.02
Place of starting drug use

Afghanistan L0

Iran 2.21(119 - 4.10) 0.01 1.27(0.63- 2.56) 0.50

Other* 12.34(4.06-37.57) < 0.01 7.46(1.99-28.03) < 0.01
Previous prison

No L0

Yes 4.79(2.65 - 8.67) < 0.01 1.57 (1.85- 6.86) < 0.01
Duration of drug use,y

<2 L0

2-10 453(136-15.11) 0.01

=10 4.67(1.29-16.92) 0.02

*Pakistan, countries to the north of Afghanistan, and even Europe.

paigns and targeted at young people should be under-
taken. It is a fact that intravenous injection of drugs, es-
pecially among drug addicts who are jobless and impris-
oned, as well as sharing of injection equipment are associ-
ated with dangerous viral infections and should be high-
lighted in future public educational and informational
campaigns.
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Staphylococcus aureus : Caractérisation moléculaire des isolats Afghans et étude du transfert
conjugatif de la résistance au linézolide

1. Caractérisation moléculaire des isolats de S. aureus en provenance d’Afghanistan
Staphylococcus aureus (SA) est une cause majeure d'infections chez 'Homme et de nombreux animaux. L'un des
principaux objectifs de cette these a été d'étudier les caractéristiques moléculaires et le profil de résistance aux
antibiotiques des souches d'infection et de colonisation de SA/SA résistant a la méticilline (SARM) chez I'Homme
et le bétail a Kaboul. Les souches ont été identifiées par des méthodes phénotypiques conventionnelles, et
’antibiogramme réalisé par diffusion. Les souches de SARM ont ensuite été caractérisées a 1'aide de puces a ADN.
Parmi les isolats de SA provenant d'infections humaines dans 2 hdpitaux de Kaboul entre Janvier et Juin 2017, la
prévalence des SARM était élevée (66,3 %). Les 98 isolats de SASM et SARM appartenaient a 12 complexes
clonaux et 27 clones distincts. La prévalence du portage nasal de SA et du SARM dans la communauté, plus
précisément chez des étudiants (hors médecine) de I’Université de Kaboul, était respectivement de 33,3% et 12,7%.
Les 19 isolats de SARM appartenaient a 4 clones. Enfin, les études réalisées chez 1’animal ont montré qu’environ
11,8% des souches de SA responsables de mammite bovine a Kaboul étaient résistantes a la méticilline (2/17) et
que la prévalence du portage nasal de SA chez les moutons était tres faible (1,1 %). Globalement, la caractérisation
moléculaire des isolats a mis en évidence une grande diversité génétique et la présence de multiples genes de
virulence et de résistance parmi les souches de SA/SARM circulant dans les établissements de soins, la communauté
et le bétail a Kaboul.
2. Transfert conjugatif du gene de résistance au linézolide cfr

Le linézolide est un antibiotique de recours pour le traitement des infections a SARM. L'objectif de ce travail a éte
d'étudier, 1) le risque de transfert conjugatif de la résistance au linézolide médiée par le géne plasmidique cfr, de
souches de S. epidermidis (SE) vers des souches de SA de divers fonds génétiques, et ii) le colit de ce transfert pour
les souches receveuses et la stabilité des plasmides. Cinq souches de SE portant 4 plasmides différents (pSA737,
p12-02300, p-cfr-PBR-A, p-cfr-PBR-B) portant le geéne cfr, et des souches sensibles appartenant a 9 clones majeurs
de SA circulant en France ont été respectivement utilisées comme souches donneuses et receveuses. Les réusltats
obtenus montrent que certains clones, comme le clone ST8-MRSA-IV USA300, présentaient un risque plus
important d’acquisition des plamides proteur de geéne cfr. La souche SE ST5 avait une plus grande capacité a
transférer le plasmide p-cfr-PBR-B a différentes souches receveuses que la souche ST2 portant ce méme plasmide.
Certains plasmides, comme pSA737 et p12-02300, étaient transférables a la plupart des souches receveuses testées.
Les cofits de I’acqusition des plasmides portant le géne cfr étaient variables pour une méme souche et entre les
plasmides eux-mémes. Enfin, il apparait que les plasmides cfr+ étaient systématiquement plus stables dans les SE
que dans les SA apres des subcultures itératives sans pression de sélection. Au final, nos résultats ont montré que la
résistance au linézolide, médiée par cfr, peut étre transférée efficacement par conjugaison de SE aux clones
pathogenes majeurs de SA circulant en France mais que le transfert est trés variable en fonction des souches
donneuses et receveusess ainsi que des plamides considérés.

MOTS-CLES

Staphylococcus aureus, SARM, caractérisation moléculaire, Afghanistan, linézolide, cfr, transfert plasmidique, fitness.

LABORATOIRE DE RATTACHEMENT

Equipe Pathogénie des Staphylocoques - Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMRS5308,
Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon) - Faculté de Médecine Lyon-Est, 7 rue Guillaume Paradin, 69372
LYON Cedex 08

JURY Pr Jean-Winoc DECOUSSER  (Rapporteur)
Dr Olivier BARRAUD (Rapporteur)
Pr Sophie JARRAUD
Dr Marion GRARE
Pr Frédéric LAURENT
Dr Céline DUPIEUX-CHABERT

DATE DE SOUTENANCE
Mardi 28 septembre 2021

197 |Page




