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Synthèse

Cette thèse s'intéresse à deux études distinctes de techniques de détection de rupture. Ces techniques permettent de déterminer si, pour un phénomène aléatoire dont la loi sous-jacente initiale est connue, un changement se produit ou non lors de son observation.

Le manuscrit comporte une introduction et trois chapitres rédigés en anglais. Les motivations, ainsi que les résultats des deux problèmes traités, sont présentés et discutés dans l'introduction. Les préliminaires du Chapitre 1 introduisent de manière détaillée les concepts et théorèmes sur lesquels les travaux s'appuient. Le Chapitre 2 traite de l'estimation séquentielle du paramètre de la distribution après le changement dans le cadre d'une séquence de variables aléatoires suivant une loi de Poisson. Des applications détaillées sont données, en particulier pour l'étude de la mortalité française. Le Chapitre 3 introduit un test d'hypothèse alternatif qui vise à détecter un changement dans la première composante d'un mélange fini de lois paramétriques. Le résultat principal est un théorème limite fonctionnel qui donne la loi limite de la statistique du test alternatif sous forme de transformation d'un mouvement brownien multidimensionnel. Ce nouveau test est comparé numériquement à un test standard basé sur un ratio de vraisemblance (cf. e.g. [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF]). Une application à des données réelles en assurance IARD est donnée à but d'illustration du test alternatif.

Les techniques de détection de rupture sont aujourd'hui utilisées pour de multiples applications. Dans le cas discret, leur but est d'étudier la séquence de variables aléatoires indépendantes (X n ) n≥1 associée à une distribution initiale P θ , où θ est dans un ensemble de paramètres éligibles Θ. Les procédures de détection cherchent à dire si et quand cette distribution change. Chaque variable aléatoire X n suit une distribution P θ n , où θ n ∈ Θ. Le temps de rupture est dénoté par ν : l'échantillon est de même loi avant ν, i.e. θ = θ 1 = • • • = θ ν ; et change de loi ensuite, i.e. θ n = θ pour n > ν. Il existe différentes familles de techniques : nous nous intéressons seulement aux procédures de détection en ligne dites optimales au sens du délai de détection (Chapitre 2) et aux tests d'hypothèse qui testent l'existence d'un changement dans un échantillon fermé (Chapitre 3).

Premier problème : Estimation séquentielle du paramètre de la distribution après le changement pour une séquence de variables aléatoires suivant une loi de Poisson

Parmi les procédures de détection en ligne, les procédures du CUSUM et de Shiryaev-Roberts sont aujourd'hui les plus utilisées en raison de nombreux résultats qui montrent leur optimalité au sens du délai de détection [START_REF] Page | Continuous inspection schemes[END_REF], [START_REF] Shiryaev | The problem of quickest detection of a violation of stationary behavior[END_REF], [START_REF] Roberts | A comparison of some control chart procedures[END_REF]). Dans le cas discret et pour un temps de rupture déterministe, [START_REF] Moustakides | Optimal stopping times for detecting changes in distributions[END_REF] a montré que la procédure du CUSUM est optimale pour minimiser le 'pire pire délai de détection' de Lorden (1971). Pour le cas Bayésien, c'est-à-dire quand le temps de rupture est aléatoire, [START_REF] Pollak | Optimality properties of the Shiryaev-Roberts procedure[END_REF] ont montré que la pro-cédure de Shiryaev-Roberts est optimale pour minimiser le délai de détection moyen. D'autres résultats existent pour le cadre continu (cf. Section 1.3 et les références qui y figurent). Ces deux procédures du CUSUM et de Shiryaev-Roberts font l'hypothèse que les paramètres définissant les distributions avant et après le changement sont connus. En pratique, s'il semble raisonnable de connaître la distribution avant le changement, il est moins vraisemblable de connaître à l'avance le paramètre après changement. Quelques références dans la littérature s'intéressent à l'estimation du paramètre après changement : [START_REF] Wu | Inference for change-point and post-change means after a CUSUM test[END_REF] donne une forme explicite d'un estimateur du maximum de vraisemblance de la moyenne après le changement dans le cas d'une procédure du CUSUM. D'autres approches par maximum de vraisemblance étudient les propriétés asymptotiques d'estimateurs de la loi post-changement (cf. Section 2.1 et les références qui y figurent).

Dans le Chapitre 2, nous introduisons un estimateur alternatif pour le paramètre de la distribution après changement en réutilisant les propriétés de la statistique de détection de la procédure de Shiryaev-Roberts. Nous considérons une séquence indépendante de variables aléatoires (X n ) n≥1 qui suit une loi de Poisson. La séquence est identiquement distribuée de paramètre λ avant le temps de changement ν, et identiquement distribuée de paramètre λρ après le temps de changement. Le paramètre λ > 0 est connu et déterministe, alors que les paramètres ρ > 0 et ν ∈ N ∪ {∞} sont déterministes mais inconnus. Ici, ρ représente le ratio des intensités des lois de Poisson après et avant le changement. On dénote par f ρ la fonction de densité d'une variable aléatoire qui suit une loi de Poisson d'intensité λρ, définie pour tout ρ > 0 : f ρ (x) = e -λρ (λρ) x /x!, x ∈ N.

La procédure de Shiryaev-Roberts permet de détecter un changement sous l'hypothèse que les paramètres avant et après changement sont connus. Elle est définie par la statistique séquentielle S n (ρ) telle que S 0 := 0 et

S n (ρ) := n i=1 n k=i f ρ (X k ) f 1 (X k ) = (1 + S n-1 (ρ)) f ρ (X n ) f 1 (X n ) , n ≥ 1.
Elle est définie de sorte à rester proche de 0 avant le changement et à augmenter fortement après le changement. Nous proposons d'utiliser cette statistique pour estimer le paramètre post-changement. Pour n ≥ 0 fixé, nous définissons l'estimateur ρS (n) du paramètre de changement d'intensité ρ, par ρS (n) := arg max ρ>0 S n (ρ).

A notre connaissance, l'idée de réutiliser la statistique de détection pour l'inférence du paramètre post-changement ne semble pas présente dans la littérature. Nous montrons le résultat suivant.

Théorème 1. Pour un temps de rupture 0 ≤ ν < ∞ fixé mais inconnu, l'estimateur ρS (n) défini par (1) est convergent.

La comparaison avec d'autres estimateurs classiques du maximum de vraisemblance ou de minimisation d'erreur quadratique montre que :

Comparé à un panel d'estimateurs usuels, l'estimateur ρS (n) converge significativement plus vite vers le vrai paramètre après changement,

Synthèse

Sa variance est bien plus faible que les estimateurs usuels après le changement, avec une variance asymptotique proche.

Nous pouvons utiliser l'estimateur ρS (n) pour appliquer la procédure de Shiryaev-Roberts qui a maintenant S n (ρ S (n)) pour statistique séquentielle. Cela définit une procédure de détection d'un changement de niveau pour une séquence de variables aléatoires qui suivent une loi de Poisson d'intensité constante, où il n'est pas nécessaire de connaître le paramètre post-changement.

L'estimateur ρS (n) est défini pour maximiser la réponse de la statistique de détection. Cela peut être un point de départ pour traiter la question ouverte de l'optimalité de la procédure pour le cas où il n'est pas nécessaire de connaître le paramètre postchangement.

Un des avantages des procédures comme le CUSUM ou celle de Shiryaev-Roberts est d'être re-calculables sans effort pour chaque nouvelle observation qui arrive, c'est-à-dire sans re-parcourir tout l'échantillon. Par définition de ρS (n), notre procédure nécessite ce re-calcul. Avec le fait que ρS (n) converge rapidement vers le vrai paramètre, elle est bien adaptée à des applications pour lesquelles la taille n de l'échantillon ne croît pas trop vite : par exemple, pour l'étude de la mortalité annuelle, ou d'autres applications actuarielles où les nouvelles observations arrivent à un rythme hebdomadaire, mensuel, annuel.

Nous explorons également un autre type de séquence aléatoire où l'intensité de la loi de Poisson croît/décroît à une vitesse constante. Dans ce deuxième modèle, la séquence (X n ) suit une loi de Poisson de paramètre λ n où λ n := αλ n-1 avant le changement et λ n := α λ n-1 après le changement, avec α = α . Les paramètres λ 0 et α sont déterministes et connus. Les paramètres ν et α sont déterministes mais inconnus. Ici, nous ne proposons pas d'estimateur pour le paramètre après changement mais considérons plutôt l'estimateur du maximum de vraisemblance qui, numériquement, semble être un candidat raisonnable. La procédure de Shiryaev-Roberts, dans ce cadre, permet de détecter un changement de tendance pour une séquence de variables aléatoires qui suivent une loi de Poisson d'intensité linéairement croissante ou décroissante.

La loi de Poisson est un cadre couramment utilisé pour la modélisation de la mortalité. A l'aide de techniques de normalisation des données, nous appliquons les deux procédures de détection de niveau et de tendance à la mortalité nationale française sur plusieurs évènements marquants de l'histoire : la grippe espagnole de 1918 [START_REF] Caselli | Age-specific mortality trends in france and italy since 1900: period and cohort effects[END_REF], [START_REF] Spreeuwenberg | Reassessing the Global Mortality Burden of the 1918 Influenza Pandemic[END_REF]) ; la baisse de la mortalité dans les années 1960 liée à la révolution cardiovasculaire [START_REF] Vallin | Espérance de vie : peut-on gagner trois mois par an indéfiniment[END_REF]) ; et la canicule de 2003 [START_REF] Robine | Death toll exceeded 70,000 in europe during the summer of 2003[END_REF]). Nous étudions également la mortalité d'un portefeuille de 15 000 rentiers entre 2003 et 2014. Les résultats principaux nous permettent d'identifier des changements dans la mortalité, de quantifier l'amplitude de ces changements ainsi qu'un délai de détection. La procédure pour détecter un changement de niveau détecte correctement des changements persistants, même minimes. La procédure qui détecte un changement de tendance apparaît sensible à une séquence (même courte) d'observations croissantes/décroissantes.

Second problème : Test de ratio de vraisemblance pondérée détectant un changement dans une composante d'un mélange de lois paramétriques

Les modèles basés sur des mélanges de lois sont devenus assez populaires dans la littérature de statistiques ces dernières décennies car ils permettent de décrire un phénomène contenant plusieurs sous-populations statistiques. L'estimation des paramètres d'un mélange de loi est un problème qui intéresse à la fois les statisticiens théoriques à travers, par exemple, des questions d'identifiabilité mais aussi les praticiens via des questions algorithmiques (cf. Section 1.1 et les références qui y figurent).

Nous considérons un échantillon de n variables aléatoires indépendantes (X i ) 1≤i≤n à valeurs dans un espace vectoriel réel X . Chaque variable X i suit un mélange fini de lois paramétriques avec 2 < m < ∞ composantes si, sous certaines conditions de régularité, pour f 1 , . . . , f m des fonctions de densité sur X fixées, la distribution P θ de X i admet la densité

f (x, θ) := m k=1 p k f k (x, λ k ), x ∈ X
où le paramètre θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) est dans l'ensemble des paramètres possibles Θ = Θ 0 × m k=1 Θ k , sous-ensemble d'un espace Euclidien de dimension d, et p m := 1 -m-1 k=1 p k . Le nombre de composantes m est connu et déterministe. Chaque paramètre λ k est dans un ensemble Θ k et le vecteur des poids (p 1 , . . . , p m-1 ) est dans l'ensemble ouvert Θ 0 := {(p 1 , . . . , p m-1 ) ∈ (0, 1) m-1 , m-1 k=1 p k < 1}. Nous faisons l'hypothèse que le mélange est identifiable : il est possible de distinguer les composantes du mélange les unes des autres et de les ordonner [START_REF] Mclachlan | Finite mixture models[END_REF]).

Le but du chapitre est de détecter un changement dans la première composante du mélange lorsqu'il y a au plus un changement dans l'échantillon (modèle AMOC : at most one change). La détection de rupture pour des mélanges de lois est courante car elle fait partie des techniques générales de détection de rupture [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Or, peu de travaux lient spécifiquement les deux sujets [START_REF] Andrews | Optimal tests when a nuisance parameter is present only under the alternative[END_REF], [START_REF] Hansen | Inference when a nuisance parameter is not identified under the null hypothesis[END_REF], [START_REF] Pons | Estimation et tests dans les modèles de mélanges de lois et de ruptures[END_REF], [START_REF] Zou | Ovarian cancer screening based on mixture change-point model[END_REF]). Le test d'hypothèse standard basé sur un ratio de vraisemblance, exposé dans [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], peut être adapté pour construire un test d'hypothèse dit benchmark, dédié à la détection de rupture dans la première composante du mélange. Toutefois, d'un point de vue pratique, deux problèmes émergent lors des applications. Tout d'abord, la statistique de test contient un problème d'optimisation sans solution explicite et pour lequel il n'existe pas d'algorithme dédié. Ensuite, la résolution directe du problème d'optimisation avec un algorithme standard est gloutonne en temps de calcul jusqu'à être déraisonnable pour des échantillons de grande taille, tout en convergeant vers une solution peu acceptable. C'est pourquoi nous cherchons à construire un test qui s'écrit comme une fonction simple d'estimateurs standards pour lesquels un algorithme d'estimation dédié peu se trouver aisément (par exemple l'algorithme EM de Dempster et al. (1977) ou ses dérivés).

Dans le Chapitre 3, nous introduisons un test d'hypothèse qui répond à cet objectif. Supposons que l'échantillon (X i ) 1≤i≤n suive un mélange fini de lois paramétriques de sorte que, si un changement se produit, il est unique et inconnu. Contrairement au premier travail, nous nous intéressons ici à de grands échantillons, et sommes donc amenés à étudier le comportement limite. Nous supposerons donc que l'expérience se passe dans un intervalle de temps [0, 1] et chaque variable X i est observée au temps i/n, 1 ≤ i ≤ n. Nous imposons que, si un changement survient, le temps de rupture est contenu dans l'intervalle [s, 1 -s] ⊂ (0, 1), où 0 < s < 1/2 est connu et déterministe : le changement ne peut se produire trop près de 0 ni de 1. Nous définissons le test d'hypothèse par :

1. L'hypothèse nulle H 0 où il n'y a pas de rupture : le mélange est défini par le vrai paramètre θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) ∈ Θ. 2. L'hypothèse alternative H 1 : un changement survient au temps s, s ∈ [s, 1 -s]. Dans la suite, nous nous placerons toujours sous l'hypothèse nulle. Nous imposons également que l'estimateur du maximum de vraisemblance du paramètre θ qui définit le mélange est fortement convergent.

Considérons la fonction de poids au point x ∈ X pour θ ∈ Θ, définie par w(x, θ) := p 1 f 1 (x, λ 1 ) f (x, θ) , et introduisons le log-ratio de vraisemblance pondéré Λ s,n défini pour s ∈ [s, 1 -s] et n ≥ 1 par Λ s,n := log   sn i=1 f 1 (X i , λ0,s,1 ) w(X i , θ0,s ) n j= sn +1 f 1 (X j , λs,1,1 ) w(X j , θs,1 )

n i=1 f 1 (X i , λ1 ) w(X i , θ)   ,
où θ = (p 1 , . . . , pm-1 , λ1 , . . . , λm ) est l'estimateur du maximum de vraisemblance pour θ sur l'échantillon tout entier, et, pour s ∈ [s, 1 -s], θ0,s et θs,1 sont respectivement les estimateurs du maximum de vraisemblance pour θ sur les sous-échantillons (X i ) 1≤i≤ sn et (X i ) sn +1≤i≤n . Les fonctions de poids w(., .) dans Λ s,n permettent de zoomer sur les observations qui ont le plus de chance d'appartenir à la première composante. La statistique de test est définie par 1-s] Λ s,n .

S n := sup s∈[s,
Nous dénotons ce test de ratio de vraisemblance pondérée par WLT (Weighted Likelihood Test). Le test ainsi défini est une fonction simple d'estimateurs standards du maximum de vraisemblance pour lesquels des algorithmes dédiés existent [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF]). Son application à des données ne présente donc pas de difficulté de mise en oeuvre.

La distribution limite de la statistique de test S n est obtenue par une méthode similaire à celle de [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF]. Nous commençons par établir certaines propriétés asymptotiques des estimateurs θ0,s et θs,1 sous l'hypothèse nulle à l'aide d'arguments classiques de l'étude des estimateurs du maximum de vraisemblance [START_REF] Lehmann | Theory of point estimation[END_REF]). Ces résultats liminaires nous permettent d'établir un théorème limite fonctionnel pour le processus càd-làg (Λ s,n ) s∈[s, 1-s] à l'aide d'applications multiples du Continuous Mapping Theorem et d'une delta-méthode fonctionnelle adaptée pour l'espace métrique de Skorokhod 1 [START_REF] Billingsley | Convergence of probability measures[END_REF], [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). La distribution limite de la statistique S n est obtenue ci-dessous comme une conséquence du résultat fonctionnel.

Théorème 2. Sous l'hypothèse nulle et certaines conditions de régularité détaillées dans la Section 3.2.1, si l'estimateur θ est fortement convergent, alors 1-s] q(W s -sW 1 ) s(1 -s) où (W s ) s∈ [0,1] est un mouvement Brownien standard de dimension 2d+d 2 et l'application q est une forme quadratique définie dans la Section 3.3.2 par l'équation (3.33).

S n D ---→ n→∞ sup s∈[s,
Ainsi le processus limite est une forme quadratique du pont Brownien. Ce type de limite est similaire à celles obtenues par exemple dans [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] ou [START_REF] Dehling | Change point testing for the drift parameters of a periodic mean reversion process[END_REF].

La loi de la variable aléatoire limite sup s∈[s, 1-s] q(Ws-sW 1 ) s (1-s) reste une question ouverte. Toutefois, la complexité de la fonction q ne présage pas de solution simple à ce problème et des simulations numériques sont suffisantes pour calibrer un seuil de détection pour le test WL. Suite à de premières applications numériques simulées, nous suggérons une extension du test pour améliorer ses performances, notamment en réduisant l'erreur de type II. Pour cela, nous introduisons une version ajustée Λ * n := (Λ * s,n ) s∈[s, 1-s] du processus sous-jacent où

Λ * s,n := c 1,n c s,n   sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) + n i= sn +1
w(X i , θs,1 ) log f 1 (X i , λs,1,1 )

  - n i=1
w(X i , θ) log f 1 (X i , λ1 ) et où, pour s fixé dans [s, 1], c s,n := sn i=1 w(X i , θ0,s )+ n i= sn +1 w(X i , θs,1 ) représente la contribution de l'échantillon aux deux premières sommes de Λ s,n , et c 1,n la contribution à la dernière. Nous montrons que la contribution c s,n converge p.s. vers le paramètre de poids p 1 de la première composante, uniformément en s ∈ [s, 1]. La statistique de ce test, dénoté par EWLT, devient S * n := sup s∈[s,1-s] Λ * s,n . Cet ajustement n'est pas sans impact car cela ajoute un aléa supplémentaire. La distribution limite de S * n reste un supremum d'une forme quadratique d'un mouvement brownien mais maintenant de dimension 3d + d 2 . Théorème 3. Sous l'hypothèse nulle et certaines conditions de régularité détaillées dans la Section 3.2.1, si l'estimateur θ est fortement convergent, alors 1-s] q * (W s -sW 1 )

S * n D ---→ n→∞ sup s∈[s,
s(1 -s) où (W s ) s∈ [0,1] est un mouvement Brownien standard de dimension 3d+d 2 et l'application q * est une forme quadratique définie dans la Section 3.4 par l'équation (3.39).

Si l'échantillon (X i ) 1≤i≤n suit un mélange Gaussien unidimensionnel, alors le mélange est défini par un paramètre θ de la forme suivante : θ = (p 1 , . . . , p m-1 , µ 1 , σ 1 , . . . , µ m , σ m ) tel que, pour chaque k-ème composante, µ k ∈ R est le paramètre de moyenne et σ 2 k ∈ R * + le paramètre de variance. Nous imposons que les moyennes soient strictement croissantes et, comme dans [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF], que les variances soient bornées : min {σ j /σ k , 1 ≤ j, k ≤ m} > b, où 0 < b ≤ 1 est une borne de dispersion supposée connue. Par [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF], l'estimateur θ est alors fortement convergent et nous pouvons montrer que les conditions de validité des Théorèmes 2 et 3 ci-dessus sont vérifiées.

Nous présentons deux applications pour le cas Gaussien où nous nous intéressons à des échantillons de grande taille (plus de 10 000 observations). Une première application, basée sur des simulations d'un mélange à 3 composantes, permet de montrer que les tests WL et EWL ont une erreur de type II bien plus faible que celle du test benchmark. Les mauvaises performances de ce dernier s'expliquent essentiellement par le fait qu'il n'existe pas d'algorithme dédié pour résoudre le problème d'optimisation qu'il contient, alors que les deux tests WL et EWL reposent sur des algorithmes standards. De plus, le temps nécessaire au calcul du test benchmark augmente considérablement avec la taille de l'échantillon. Lorsque nous étudions le comportements des tests pour un changement dans une autre composante que la première, nous constatons que le test EWL reste le meilleur candidat car la fréquence de détection dans ce cas est la plus faible. Toutefois, dans certains cas, les trois tests détectent à tort un changement : corriger cet effet pourrait donner lieu à une extension de nos travaux. De plus, le test benchmark semble avoir de meilleures propriétés lorsque le problème d'optimisation qu'il contient est correctement résolu. Ainsi, il serait intéressant d'améliorer ce test en élaborant un algorithme dédié à son problème d'optimisation via, par exemple, une adaptation de l'algorithme EM. La seconde application est consacrée à un cas concret pour la détection d'un changement dans la distribution de la variation de la charge de sinistres corporels en assurance non-vie. Cette variation de charge peut se modéliser par un mélange Gaussien à 12 composantes et l'entreprise d'où émerge le problème s'intéresse à vérifier qu'un changement se produit dans la 5ème composante. L'application des tests WL et EWL confirme la détection du changement, ce qui a permis à l'entreprise de poursuivre la recherche des causes sous-jacentes.

Les applications montrent que les deux tests WL et EWL sont performants (faible erreur de type II). De plus, les résultats obtenus sous l'hypothèse nulle dans les Théorèmes 2 et 3 permettent de calibrer aisément des seuils de détection via une simulation de mouvements browniens (temps de calcul marginal divisé par 10 000). Audelà de ces deux constats prometteurs, les travaux réalisés montrent des possibilités d'extensions, notamment via une amélioration des algorithmes permettant l'application du test benchmark.

Introduction

This thesis concerns two distinct studies of change-point detection techniques. Such techniques consider the question of deciding whether a change happens or not, when observing over time a random phenomenon with known initial properties.

Likewise this introduction, the manuscript is divided into three chapters. The key notions and theorems that we rely on in this thesis are introduced and put into perspective in Chapter 1. Chapter 2 corresponds to the article A. et al. (2018). It deals with the sequential estimation of the post-change distribution when observing an online sequence of Poisson random variables. Detailed applications to the study of French mortality are provided. Chapter 3 introduces an alternative hypothesis test that aims to detect a change-point in the first component of a finite parametric mixture, for a closed sample where at most one change occurs. The main result consists in a functional limit theorem for the distribution of the test statistic. A short application to Property and Casualty insurance data is provided.

The purposes of this introduction are to explain the context of this work, to present the main results of the two distinct topics detailed in Chapters 2 and 3, and to discuss unaddressed problems and remaining open questions.

Context

The concept of change detection originated in the field of quality control [START_REF] Girshick | A Bayes approach to a quality control model[END_REF], [START_REF] Page | Continuous inspection schemes[END_REF]) in the 1950's and is used today in many applied fields such as epidemiology, insurance, server protection or finance2 . In the discrete case, the common goal of these applications is to study the random sequence (X n ) n≥1 associated with a known initial distribution P θ for some θ in some set of eligible parameters Θ. Detection procedures aim to determine if and when this initial distribution changes. Each random variable X n follows a distribution P θ n , where θ n ∈ Θ. The time of the change ν is called change-point: the sample is identically distributed before ν, i.e. θ = θ 1 = • • • = θ ν ; and, after the change-point, θ n = θ for n > ν (possibly but not necessarily i.i.d.). One can divide change-point detection techniques into three families:

Off-line hypothesis tests that state whether or not there are one or more changepoints in a closed observed sample (x i ) 1≤i≤n , for n fixed. The work of Chapter 3 falls into this category where: the underlying distribution P θ , θ ∈ Θ, is assumed to be a finite parametric mixture and the test aims to detect the presence of at most one change.

Inference methods for the parameters of a model that assumes that a closed sample contains one or more change-points.

On-line detection schemes that aim to detect a change-point when observing the sequence of outcomes (x n ) n≥1 as they arrive. In this category, Chapter 2 introduces a sequential estimator for the post-change distribution of a sequence of Poisson random variables.

Since they cover two distinct topics, we introduce separately the motivations and the results of Chapters 2 and 3 in the following two sections.

Discrete Poisson case: a sequential estimator of the post-change parameter

This section introduces Chapter 2.

Motivation

Among the on-line detection schemes for discrete sequences, a quickest change-point detection scheme is a sequential procedure that aims to detect a change in the distribution of the phenomenon as quickly as possible without raising too many false alarms, i.e. when the procedure detects a change while none occurred [START_REF] Poor | Quickest detection[END_REF], [START_REF] Tartakovsky | Sequential analysis[END_REF]).

We consider an experiment where we observe a sequence (X n ) n≥1 of independent random variables, with values in a real vector space. The time of change or change-point is denoted by ν and is unknown: random (Bayesian framework) or deterministic. We assume that the sequence (X n ) 1≤n≤ν is identically distributed with parametric distribution P θ and density function f θ , and the sequence (X n ) n≥ν+1 is identically distributed with distribution P θ and density function f θ . The parameters θ and θ are in some set Θ of possible parameters and, in general, the distribution of the sequence is denoted by P ν . A change-point detection scheme is a procedure defined by a detection sequence S n and a threshold s * . An alarm is triggered as soon as S n > s * , defining a stopping time n * := inf{n ≥ 1, S n > s * }. The threshold s * is usually chosen with respect to a false alarm constraint. For example, one can consider a constraint for the average delay of detection when no change occurs: E {ν=∞} [n * ] ≥ η, where η > 1 is defined by the user.

Today, there are two well-known quickest change-point detection schemes. [START_REF] Page | Continuous inspection schemes[END_REF] introduced the CUSUM detection scheme. [START_REF] Moustakides | Optimal stopping times for detecting changes in distributions[END_REF] proved that, for a deterministic change-point, this scheme is optimal in minimizing the 'worst worst' detection delay sup ν≥0 ess sup E ν [(n * -ν) + |X 1 , . . . , X ν ]. This delay criterion was introduced by Lorden (1971)3 who first showed its asymptotic optimality, i.e. when the constraint η for the average delay of detection tends to infinity. The optimality of this scheme has been proved for a continuous-time setup for different types of processes: for example [START_REF] Beibel | A note on Ritov's Bayes approach to the minimax property of the cusum procedure[END_REF] and [START_REF] Shiryaev | Minimax optimality of the method of cumulative sums (CUSUM) in the continuous time case[END_REF] in a Brownian motion context, [START_REF] Moustakides | Optimality of the CUSUM procedure in continuous time[END_REF] for statistics of Itô processes or El [START_REF] El Karoui | Minimax optimality in robust detection of a disorder time in doubly-stochastic Poisson processes[END_REF] for an inhomogeneous Poisson process. After early attempts by [START_REF] Girshick | A Bayes approach to a quality control model[END_REF], another common procedure has been proposed independently by [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF]) (also in Shiryaev (1961)) for the continuous-time case and [START_REF] Roberts | A comparison of some control chart procedures[END_REF] for the discrete case. The Shiryaev-Roberts detection scheme is a change-point detection scheme where the detection sequence is given by S 0 := 0 and

S n (θ, θ ) := (1 + S n-1 (θ, θ )) f θ (X n ) f θ (X n ) , n ≥ 1. (2) 
Note that the detection statistic S n (θ, θ ) is defined such that it stays close to 0 before the change and increases strongly after the change. [START_REF] Pollak | Optimality properties of the Shiryaev-Roberts procedure[END_REF] showed that, for a fixed η > 1, if the change-point ν is a generalized random variable with a uniform improper prior distribution, then, among all change-point detection procedures satisfying E {ν=∞} [n * ] ≥ η, the Shiryaev-Roberts detection scheme is optimal in minimizing the average detection delay given by

∞ k=0 E {ν=k} [(n * -k) + ] /E {ν=∞} [n * ].
Optimality is still valid for the case where ν has a geometric distribution [START_REF] Shiryayev | Optimal stopping rules[END_REF]). The same result has been obtained for a continuous-time setup for different types of processes: for example [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF] and [START_REF] Feinberg | Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings[END_REF] in the context of Brownian motions.

Since their introduction in the 1950's, the CUSUM and the Shiryaev-Roberts schemes are used in many applied fields (see [START_REF] Chatterjee | Detection of change points: a survey of methodologies[END_REF] and the references therein). A few other procedures are also used for change-point detection. For example [START_REF] Roberts | Control chart tests based on geometric moving averages[END_REF] suggests a procedure based on EWMA (exponentially weighted moving averages).

The Shiryaev-Roberts procedure assumes that the parameters θ and θ are known. In practice, it is reasonable to assume that the distribution before the change, defined by the parameter θ, is known because in most situations the practitioner can use the first observations to infer θ. However, in most cases, the post-change distribution is unknown without any practical way to infer θ .

For exponential families, [START_REF] Foster | Estimation up to a change-point[END_REF] suggest some estimators for the mean before the change. [START_REF] Wu | Inference for change-point and post-change means after a CUSUM test[END_REF] provides an explicit form of the Maximum Likelihood Estimator (MLE) of the post-change mean in the case of the CUSUM scheme, and its asymptotic properties. More recently, [START_REF] Fotopoulos | Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences[END_REF] studied the asymptotic distributions of the MLE under the Gaussian framework. More MLE designed for specific frameworks are provided e.g. in Wu (2016a), [START_REF] Wu | Inference for post-change parameters after sequential CUSUM test under AR(1) model[END_REF] and [START_REF] Frick | Multiscale change point inference[END_REF].

Our contribution

Our contribution consists in the introduction of an alternative estimator for the postchange parameter in the case of an i.i.d. discrete sample with Poisson distribution. This estimator is based on the detection statistic of the Shiryaev-Roberts procedure. We show that it is a consistent estimator for the post-change parameter. Numerical simulations indicate that, compared to the usual Maximum Likelihood Estimator, it has a significantly reduced bias and variance just after the change with identical asymptotic properties.

Detection of a change of level

With the previous notations, consider the sequence of independent random variables (X n ) n≥1 such that X n follows a Poisson distribution with parameter λ for 1 ≤ n ≤ ν, and with parameter λρ for n ≥ ν + 1. The parameter λ > 0 is deterministic and supposed to be known, while ρ > 0 and ν ∈ N ∪ {∞} are deterministic but unknown. The time of the change is denoted by ν and ρ is the ratio of the intensities after and before the change. Here we use the term density function with respect to the counting measure on N. We denote by f ρ the density function of a Poisson random variable with intensity λρ defined for any ρ > 0 by f ρ (x) = e -λρ (λρ) x /x!, x ∈ N.

The Shiryaev-Roberts sequence aims to detect a change, knowing the parameters before and after the change. We suggest to use its optimality property in order to infer the intensity shift parameter ρ. For given λ > 0, n ≥ 0 known, and ν ≥ 0 deterministic but unknown, we define the estimator ρS (n) by

ρS (n) := arg max ρ>0 S n (ρ), (3) 
where S n (ρ) = S n (λ, λρ) is the Shiryaev-Roberts sequence, as defined in (2). To our knowledge, using the detection statistic for the inference of ρ does not appear in the literature. One first property of the estimator ρS (n) is that it does not depend on the change-point ν. Therefore, we do not need to know when the change occurs in order to infer the post change intensity. Using again the statistic in ( 2), we define a new detection procedure by the detection sequence S n (λ, λρ S (n)). In this procedure, only the parameter before the change needs to be known.

We show that ρS (n) is a consistent estimator for ρ. For that purpose we consider the following sub-problem based on the likelihood ratio

R i,n (ρ) := n k=i f ρ (X k ) f 1 (X k ) ,
where we remark that S n (ρ) is the sum of the variables

R i,n (ρ) for 1 ≤ i ≤ n. If we set ρi,n := λ -1 n k=i X k n -i + 1 ,
we can show that ρi,n = arg max ρ>0 R i,n (ρ). In addition, the sequence (X k ) k≥1 differs from an independent identically distributed sequence only through a finite number of terms. Thus the law of large numbers holds: for all i ≥ 1, ρi,n converges P-almost surely to ρ. Unfortunately, we can also show that the convergence cannot be uniform in i ≥ 1.

In a first Lemma below, we show that ρS (n) is somehow related to the ρi,n , 1 ≤ i ≤ n.

Lemma 1. For any

n ≥ 1, ρS (n) ∈ [min 1≤i≤n ρi,n , max 1≤i≤n ρi,n ].
From this Lemma, we obtain the following result.

Theorem 2. For any deterministic 0 ≤ ν < ∞, the estimator ρS (n) defined in (3) is consistent.

For the case when ν = 0, the proof uses the three following results, given for some fixed > 0, and, as n → ∞, some large n 0 and L n 0 :

For any i ≥ 1, ρi,n converges P-almost surely to ρ. We show that, for all i ≤ n-n 0 and all ρ < ρ -, with probability close to one, R i,n (ρ -/2) ≥ R i,n (ρ).

For any ρ > 0 and any i ≥ 1, R i,n (ρ) tends P-almost surely to ∞. We show that, with probability close to one,

n i=n-n 0 +1 R i,n (ρ) ≤ L n 0 . The difference R i,n ρ -2 -R i,n (ρ -) tends P-almost surely to ∞. Then, with probability close to one, R 1,n ρ -2 ≥ 2L n 0 + R 1,n (ρ -).
We recall that S n (ρ) = n i=1 R i,n (ρ). We can combine the three results above. With some reorganization, we show that, for n large enough and all ρ < ρ -,

S n ρ -2 = R 1,n ρ -2 + n-n 0 i=2 R i,n ρ -2 + n i=n-n 0 +1 R i,n ρ -2 ≥ S n (ρ).
By a symmetric argument, S n (ρ + /2) ≥ S n (ρ) for all ρ > ρ + , and the result follows by definition of ρS (n). We extend this result to any deterministic 0 ≤ ν < ∞ by using the fact that there is only a finite number of X i with intensity λ, and a growing number of X i with intensity λρ.

In Figures 1 and2 we numerically compare the estimator ρS (n) to usual estimators (maximum likelihood estimator, least square error estimator). It appears that:

The average bias of ρS (n) decreases faster than in the case of the usual estimators;

The variance of ρS (n) is always lower, also all variances are asymptotically close;

As expected, ρS (n) is numerically close to one in average before the change.

These properties, numerical and theoretical, make this estimator a first choice compared to the usual estimators considered in the investigation for the inference of the post change parameter, especially just after the change. 

Detection of a change of trend

We also explored another setup for the change-point detection procedure where the intensity of the Poisson random variables sequence is increasing/decreasing at a steady pace. We look for a change in the trend and suggest a way for the inference of the post-change parameters. For that purpose, consider an independent random sequence (X n ) n≥1 such that X n follows a Poisson distribution with parameter λ n where λ n := αλ n-1 before the change and λ n := α λ n-1 after the change. We assume that α and α cannot be equal. In this context, λ 0 and α are deterministic and known. The parameters ν and α are deterministic but unknown. We provide an adaptive procedure that uses estimates for both ν and α . For fixed n ≥ 1, the associated sequence ξ = (ξ i,n ) 1≤i≤n is given for i ∈ {1, . . . , n} by

ξ i,n := i k=1 i j=k f j θn f j θ 0 (X j ).
Here θn := (α ξ (n), νξ (n)) is an estimator of the couple (α , ν). We denote by (f i θn ) 1≤i≤n the sequence of density functions, with respect to the counting measure on N, of independent Poisson random variables with intensity λ i := αλ i-1 before the estimated change-point νξ (n) and with intensity λ i := α ξ (n)λ i-1 after the estimated change-point νξ (n). In practice, we used the maximum likelihood estimator (MLE) for θn . Numerical simulations seem to indicate that, in this case, the MLE is among the best options we have for the estimations of α and ν.

Applications

A Poisson framework is commonly used for the mortality [START_REF] Rhodes | Advanced statistical analysis of mortality[END_REF] and [START_REF] Tomas | Prospective mortality tables: taking heterogeneity into account[END_REF]). After data normalization as described in [START_REF] Zucchini | Hidden Markov models for time series[END_REF] and [START_REF] Mei | Early detection of a change in Poisson rate after accounting for population size effects[END_REF], we studied the French national mortality through the following events:

The 2003 French heatwave,

The 1918 Spanish flu,

The decrease of the mortality rate in the 60's as a consequence of the revolution in cardiovascular care.

During the summer 2003, the death toll of the heat wave exceeded 70 000 in Europe [START_REF] Robine | Death toll exceeded 70,000 in europe during the summer of 2003[END_REF]). In France, it impacted significantly the mortality of elderly people. We studied the age group 85-90 years old. No change of level is detected when the 2003 peak occurs. However, the decrease of the mortality that follows (from 12.3% in 2000 to 9.9% in 2006) is detected in 2005 (ρ S (2005) = 0.89). As expected, a persistent change of level is detected but not a sudden variation. With the procedure for detecting a change of trend, surprisingly, the two years 2002 and 2003 are sufficient to raise an alarm for the observed increase (relative increase of +3.5% per year) since the observations are aligned enough. This is a clear example of a peak/compensation phenomenon. Once we identified the peak and the compensation period through multiple applications of the procedure, we can test whether the regularly decreasing period has the same trend as the initial period. The death toll of the 1918 Spanish flu is evaluated at 17.4 million worldwide [START_REF] Spreeuwenberg | Reassessing the Global Mortality Burden of the 1918 Influenza Pandemic[END_REF]). We studied the case of French women [START_REF] Caselli | Age-specific mortality trends in france and italy since 1900: period and cohort effects[END_REF]). Observations suggest that the mortality is stable before the event. A strong peak is visible in 1918. The change of level is detected in 1918, the same year it happens, with ρS (1918) = 1.5. As a consequence of the revolution in cardiovascular care, the French mortality rate decreased in the 60's [START_REF] Vallin | Espérance de vie : peut-on gagner trois mois par an indéfiniment[END_REF], [START_REF] Cutler | Changes in the age distribution of mortality over the 20th century[END_REF]). We studied the case of women between 55 and 75 years old. [START_REF] Didou | Amélioration de la mortalité : tendances passées et projections en france, en espagne, au royaume-uni et aux etats-unis[END_REF] noticed that the female mortality rates are slightly decreasing at a steady peace just before 1960 and the decrease accelerates in the 60's. The trend changes around 1976/1978 and the procedure rises an alarm in 1986. The estimated decrease of mortality in 1960 is about 1.5% per year and becomes 3.2% after the change, i.e. starting from 1978.

We also studied a portfolio of life annuitants from a real insurance portfolio. The dataset contains about 15 000 life annuities. Because of the low size of the portfolio, we assume that the expected mortality is given by the French regulatory tables. The procedure for a change of level does not raise any alarm: no persistent change of level seems to occur for the whole portfolio. A close analysis of the observations might suggest that there is a deviance between the observed and predicted deaths from 2011. With the procedure for detecting a change of trend, an alarm is raised at mid-year 2013. The initial decreasing trend of 0.6% changes to an annual increase of the mortality of 0.7% from the last quarter of 2005. A re-run from the second half of 2013 in order to detect a late change does not raise any alarm. We conclude that the studied portfolio of life annuitants does not diverge significantly from its reference mortality table .   In summary, the use of the procedure for detecting a change of level is assessed to be efficient for detecting small persistent deviations. The procedure for the detection of a change of trend is quite sensitive and detects small persistent changes of trend, even over a short period of time.

Discussion

We recall that the usual detection schemes assume that the post-change distribution is known and our contribution consisted in introducing a consistent sequential estimator for the post-change parameter in the case of an independent Poisson sequence. We numerically found out that this estimator seems to converge faster to the true parameter, with lower variance. We used this estimator in a Shiryaev-Roberts scheme.

Such schemes are built to be updated very rapidly as a new observation arrives. Our estimator is defined such that, for each new observation, its computation requires to re-run many times the scheme from the first observation. Therefore it is rather dedicated to applications where the frequency of arrival of new observations is low enough. For many actuarial applications, and especially the study of mortality as shown in the applications, this is not really a problem because the dataset remains small enough (or at least can be seen as a small sample). For other applications where the frequency of arrival of new observations overcomes the computational capacities, one can consider different aggregation techniques (e.g. using a moving average or subsamples) in order to allow our approach to be computed.

The Shiryaev-Roberts detection scheme is optimal in minimizing the average detection delay when:

The change-point is a generalized random variable with a uniform improper prior distribution,

The parameters before and after the change are known,

The average delay of false alarm is below some fixed constant.

In our framework, we assume that we do not know the post-change parameter. Then, is the procedure still optimal? By definition, for each new observation, the highest possible value of the Shiryaev-Roberts statistic is attained with our estimator. Since the false alarm detection delay is also impacted, this does not ensure that our statistic gives the quickest response. Still, with an appropriate threshold that depends on n, one can control accurately the false alarms and still expect a quick answer from the procedure and benefit from the estimation properties of our estimator.

Weighted likelihood test for a change in one component of a parametric mixture

This section introduces Chapter 3.

Motivation

We consider an experiment where we observe a sample of n independent continuous random variables (X i ) 1≤i≤n with values in a real vector space X . For a parameter θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) in a set of eligible parameters Θ, the variable X 1 follows a finite parametric mixture with m components if it has a density of the form

f (x, θ) := m k=1 p k f k (x, λ k ), x ∈ X ,
where f 1 , . . . , f m are some fixed density functions on X and p m := 1 -m-1 k=1 p k .

The concept of mixture distributions arises in many fields and has been popular in the literature for the last decades, as it allows to describe experiments with different sub-populations [START_REF] Pearson | Contributions to the Mathematical Theory of Evolution[END_REF]). The earliest books on finite mixtures [START_REF] Everitt | Finite mixture distributions[END_REF], [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF]) already include a few recurring topics that emerge when studying mixtures: the identifiability of the mixture model; the estimation of the mixture parameters (e.g. with the EM algorithm by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], the Bayesian framework, the likelihood approach or the method of moments); and the question of determining the number of components in the mixture. Later books, as in [START_REF] Mclachlan | Finite mixture models[END_REF], [START_REF] Frühwirth-Schnatter | Finite mixture and Markov switching models[END_REF], [START_REF] Pons | Estimation et tests dans les modèles de mélanges de lois et de ruptures[END_REF] or Lachos [START_REF] Dávila | Finite mixture of skewed distributions[END_REF], provide an extensive overview of the literature with the solutions of the above mentioned questions and some innovations: Hidden Markov Models, further investigations in the early topics, speed of convergence of algorithms, multivariate mixtures, and other specific topics. Recently, Frühwirth-Schnatter et al. ( 2019) gathers most of the recent work on the topic in both theoretical and applied fields: newest versions of the EM algorithm, Bayesian inference and the role of Monte-Carlo Markov Chains, non-parametric mixtures, the use of clustering for modeling mixtures, the case of heavy tails and skewness, and various applications in image analysis, genomics, astronomy or finance.

In this work, we assume that:

The set of eligible parameters Θ = Θ 0 × m k=1 Θ k is a subset of a d-dimensional Euclidean space and each parameter λ k belongs to a set Θ k .

The number of components 2 < m < ∞ is deterministic and known.

The vector of weight parameters (p 1 , . . . , p m-1 ) belongs to the open set Θ 0 := {(p 1 , . . . , p m-1 ) ∈ (0, 1) m-1 , m-1 k=1 p k < 1}. The mixture is identifiable in the sense that different values of θ lead to different laws P θ .

The last assumption means that, in particular, we can order and distinguish the components of the mixture [START_REF] Redner | Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions[END_REF], [START_REF] Feng | Using bootstrap likelihood ratios in finite mixture models[END_REF], [START_REF] Mclachlan | Finite mixture models[END_REF]).

Considering the closed sample (X i ) 1≤i≤n , we are interested in detecting a change in the parameters of the distribution that describes the first component of the mixture for the case when there is at most one change (AMOC model). This is motivated by examples from applications. Here is one possible example: consider a study where the initial purpose is to model a population but, during initial phases (gathering the data, first data visualization, etc.), the modeler understands that the population of interest is actually one part of a wider group and they cannot be distinguished. The initial interest does not fade and the model is now constrained to consider the larger group. More generally, detecting a change in only one component makes sense as soon as, when studying a phenomenon, each component plays a specific role with specific implications in practice.

The detection of a change-point in a closed sample is a standard problem for which techniques already exist, such as the ones in the book of [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] 4 . Dedicated techniques for mixtures are not so common because such models raise already so many difficulties when it comes to the inference of the parameters (including the number of components). To our knowledge, very few references seem to specifically detect change-points in mixtures with likelihood ratio-based techniques5 [START_REF] Andrews | Optimal tests when a nuisance parameter is present only under the alternative[END_REF], [START_REF] Hansen | Inference when a nuisance parameter is not identified under the null hypothesis[END_REF], [START_REF] Pons | Estimation et tests dans les modèles de mélanges de lois et de ruptures[END_REF], [START_REF] Zou | Ovarian cancer screening based on mixture change-point model[END_REF]). It turns out that standard change-point detection techniques can be adapted for finite parametric mixtures [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], [START_REF] Pons | Estimations and tests in change-point models[END_REF]).

For AMOC models, the standard general approach based on a likelihood ratio is, for example, exposed in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF]. For that purpose, consider that each parameter θ = (a, b) ∈ Θ is defined by two sub-parameters a and b. The null hypothesis H 0 of the test assumes that no change happens, i.e. θ 1 = • • • = θ n . The alternative hypothesis H 1 assumes that, for some k, a change occurs between the k-th and the k + 1-th observation for the sub-parameter a, i.e.

a 1 = • • • = a k = a k+1 = • • • = a n and b 1 = • • • = b n .
Here b is called a nuisance parameter. The log-likelihood ratio associated with the test is defined by

Λ BM k,n := log     sup (a,b),(a ,b)∈Θ k i=1 f (X i , (a, b)) n i=k+1 f (X i , (a , b)) sup (a,b)∈Θ n i=1 f (X i , (a, b))     . ( 4 
)
The test statistic is defined as max 1≤k≤n 2Λ BM k,n . By considering that the sub-parameter a represents the parameters (p 1 , λ 1 ) of the first component of a finite mixture, this general test, referred in the following as the benchmark test (BM), can be used to answer the problem (see Section 3.6.1 for a detailed construction). Note that the separation between the parameters of interest a and the nuisance parameters b allows the test to focus on a change in the first component. The optimization problem in the denominator is a Maximum Likelihood Estimation problem. It can be treated with known algorithms such as the EM algorithm introduced by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] and pre-implemented in calculation softwares such as R (algorithm based on [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF]). However, for the supremum in the numerator of Λ BM k,n , when it comes to numerical applications, many computational difficulties arise: This optimization problem does not have an explicit solution,

No dedicated algorithm exists to numerically solve it, With standard optimization algorithms, the numerical solutions are not satisfactory when working on real data or large samples,

The run time increases so much for large sample that the statistic cannot be computed with a reasonable run time.

Note that these difficulties mainly come from the role played by the parameters a, a and b. In order to circumvent them, we suggest in this thesis a different approach to focus on the first component. In particular, we propose using a weighted likelihood ratio that will increase the contribution of the X i that are more likely to belong to the first component. Moreover we will build the weighted log-likelihood ratio so that is can be computed with standard estimation algorithms.

Our contribution

Our contribution consists in the introduction of two alternative hypothesis tests that are based on weighted likelihood ratios which require only known inference algorithms to be computed. The first version uses weights to help the likelihood ratio to zoom on (2010), [START_REF] Wilson | A mixture of delta-rules approximation to Bayesian inference in change-point problems[END_REF], [START_REF] Li | A Bayesian finite mixture change-point model for assessing the risk of novice teenage drivers[END_REF] or [START_REF] Ganji | Bayes and non-Bayes estimation of change point in nonstandard mixture inverse Weibull distribution[END_REF].

the first component. In the second extended version, we added an adjustment that helps improve the type II error. With a technique from [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], we derive the limit distribution of their statistics under the null hypothesis in the form of quadratic forms of multidimensional Brownian motions, with the help of a dedicated functional limit theorem. We show that the validity conditions of the main result hold for univariate finite Gaussian mixtures within the framework of [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF]. Numerical applications on simulated data illustrate the advantage of the alternative tests compared to the benchmark test defined by (4). An application with Property and Casualty insurance real data is provided for the alternative tests.

Definition of the Weighted Likelihood Test (WLT)

With the notations above, we still consider that the elements of the sample (X i ) 1≤i≤n are defined by a finite parametric mixture distribution where there is at most one change (AMOC), deterministic but unknown, or none. Since we are interested in the limit behavior of the sample of variables when their number tends to infinity, we suppose that the experience takes place in the time interval [0, 1] and each variable X i occurs at time i/n, 1 ≤ i ≤ n. We impose that, if there is a change-point, it happens at some time in the interval [s, 1 -s] ⊂ (0, 1), where 0 < s < 1/2 is deterministic and known. This means that the change does not occur too close to 0 nor 1. Changes close to those values are difficult to be detected and would be of less significance, since their impact on the full sequence is small. The hypothesis test becomes:

1. The null hypothesis H 0 defines the case when there is no change-point: the mixture is defined by the true parameter θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) ∈ Θ.

2. The alternative hypothesis H 1 : a change-point occurs at some time s, s ∈ [s, 1-s], i.e. the parameters which describe the distribution of the first component are different before and after s while the other parameters of the mixture remain the same.

We will establish a central limit theorem under the assumption that H 0 holds. This is necessary to be able to determine the rejection domain while controlling the type I error.

Under some regularity conditions detailed in Section 3.2.1, the usual limit theorems for Maximum Likelihood Estimators (MLE) ensure that there exist sequences of solutions of the likelihood equations that are consistent [START_REF] Mäkeläinen | On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples[END_REF] for Gaussian mixtures, [START_REF] Mclachlan | Finite mixture models[END_REF] for mixtures in general, Section 6.5 in [START_REF] Lehmann | Theory of point estimation[END_REF] for the general case). Let us consider one of these consistent sequences of solutions as an estimator for the unknown θ and denote it θ = (p 1 , . . . , pm-1 , λ1 , . . . , λm ). For s ∈ [s, 1 -s], by the same logic, we consider the estimators of θ over the subsamples (X i ) 1≤i≤ sn and (X i ) sn +1≤i≤n , respectively denoted by θ0,s and θs,1 . We assume that θ is strongly consistent, which, for example, holds for the Gaussian case under some conditions [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF]). For other cases, classical results in the literature cover a wide range of situations for providing reasonable sufficient conditions (see e.g. [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF], [START_REF] Feng | Using bootstrap likelihood ratios in finite mixture models[END_REF], [START_REF] Mclachlan | Finite mixture models[END_REF] and the references therein). Strong consistency remains an important restriction compared to the general case because usual regularity conditions only ensure consistency.

With the weight function at point x ∈ X for θ ∈ Θ, defined by

w(x, θ) := p 1 f 1 (x, λ 1 ) f (x, θ) ,
we introduce the weighted log-likelihood ratio denoted by Λ s,n and defined for s ∈ [s, 1 -s] and n ≥ 1 by

Λ s,n := log   sn i=1 f 1 (X i , λ0,s,1 ) w(X i , θ0,s ) n j= sn +1 f 1 (X j , λs,1,1 ) w(X j , θs,1 ) n i=1 f 1 (X i , λ1 ) w(X i , θ)   . ( 5 
)
Note that, for an observation X i with distribution parameter θ, the weight w(X i , θ) = p 1 f 1 (X i , λ 1 )/f (X i , θ) is the probability that X i comes from the first component. Conditionally to this fact, the log-likelihood of X i is given by log f 1 (X i , λ 1 ). We can extend this logic to all the components of the mixture such that the vector

p 1 f 1 (X i , λ 1 ) f (X i , θ) log f 1 (X i , λ 1 ), . . . , p m f m (X i , λ m ) f (X i , θ) log f m (X i , λ m )
can somehow be interpreted as the contributions of the m components to the loglikelihood of X i . Thus the expression w(X i , θ) log f 1 (X i , λ 1 ) in Λ s,n reflects the contribution of the first component. As a consequence, the response of the statistic is magnified when a change occurs in the first component. The test statistic is then defined by

S n := sup s∈[s,1-s] Λ s,n .
We refer to this test as the WLT (Weighted Likelihood Test). As expected, it can be computed with the help of the usual MLE algorithm such as the EM algorithm [START_REF] Mclachlan | Finite mixture models[END_REF], [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF]). Our main result consists in deriving the limit distribution of the test statistic under the null hypothesis (Theorem 4) with the help of a dedicated functional limit theorem (Theorem 3).

Main result

With a similar approach as in the work of [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], the càd-làg real-valued process

Λ n := (Λ s,n ) [s,1-s] can be decomposed as Λ s,n = Q 1 s,n + Q 2 s,n -Q 1 1,n , for s ∈ [s, 1 -s], where Q 1 s,n := sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 sn i=1 D θ (log f )(X i , θ), s ∈ [s, 1], Q 2 s,n := n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 n i= sn +1 D θ (log f )(X i , θ), s ∈ [s, 1 -s].
Here D θ denotes the gradient operator in θ ∈ R d and I the Fisher information matrix under the null hypothesis. Further note that the finite constant 1-s] have a similar structure that differs only by the sub-sample considered. Therefore, in order to obtain a limit distribution for the process Λ n , we study 1] and extend the result to Λ n .

u := E H 0 [D θ (w log f 1 )(X 1 , θ)] ∈ R d is non null in general. The random processes (Q 1 s,n ) s∈[s,1-s] and (Q 2 s,n ) s∈[s,
Q 1 n := (Q 1 s,n ) s∈[s,
We first show the following functional limit result. Theorem 3. Under the null hypothesis and some regularity conditions detailed in Section 3.2.1, in the Skorokhod metric space of càd-làg real-valued functions on [s, 1], the process

Q 1 n D ---→ n→∞ 1 s q(W s ) s∈[s,1]
,

where W := (W s ) s∈ [0,1] is a standard 2d + d 2 -dimensional Brownian motion and q is a quadratic form that we shall define in Section 3.3.2 by Equation (3.33).

In order to prove this result, we start by showing that, by a Taylor-Lagrange development of θ0,s around θ, Q 1 s,n can be expressed as a function of: the difference θ0,sθ, an average û0,s of i.i.d. R d valued random vectors, and a random variable depending on s and n that converges a.s. and uniformly in s ∈ [s, 1] to some constant.

The difference θ0,sθ can itself be expressed as a function of: an average ι0,s of i.i.d. R d valued random vectors, an average Î0,s of i.i.d. d × d random matrices, and a random variable depending on s and n that converges a.s. and uniformly in s ∈ [s, 1] to some constant.

An important ingredient of this decomposition is, as in [START_REF] Lehmann | Theory of point estimation[END_REF], a d × d-matrix Â-1 0,s which converges to the inverse of the Fisher information matrix I -1 (uniformly in s). It follows that Q 1 s,n can be expressed as a function of: the triple ξ0,s = (ι 0,s , û0,su, Î0,s ), and some random variable depending on s and n that converges a.s. and uniformly in s ∈ [s, 1] to some constant.

As an application of Donsker's Theorem in the Skorokhod metric space [START_REF] Billingsley | Convergence of probability measures[END_REF]), we can show that the random process ( ξ0,s ) s∈ [s,1] converges weakly to the process ( 1 s ΣW s ) s∈ [s,1] , where Σ 2 is the covariance matrix under H 0 of the i.i.d. terms in the average ξ0,s . This weak convergence is extended to the process Q 1 n with arguments based on a extended functional version of Slutsky's Theorem 1.13, the Continuous Mapping Theorem 1.11 and a Functional Delta Method (Corollary 1.16) inspired from van der Vaart (1998) and adapted for the metric Skorokhod space. In particular, the process Q 1 n is a function of ( Â-1 0,s ) s∈ [s,1] . In order to handle the inversion of the matrix Â0,s , the functional delta method is applied to a map defined for a càd-làg process (x s , y s , M s ) s∈[s,1] , with x s and y s d-dimensional vectors and M s a d × d matrix, by s,1] . To this end, we extend the derivative of the application that inverts a matrix [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF], [START_REF] Dudley | Concrete functional calculus[END_REF]).

(x s , y s , M s ) s∈[s,1] → (x s , y s , M -1 s ) s∈[
With similar arguments, we can extend to Λ n the result obtained for Q 1 n . For that purpose, we remark that the process (Q 1-s] can be seen as a function of the process ξ0,s , n n -sn ξ0,1 -sn n -sn ξ0,s , ξ0,1

1 s,n , Q 2 s,n , -Q 1 1,n ) s∈[s,
s∈[s,1-s]
.

After deriving the limit distribution of (Q 1-s] with similar arguments as for Q 1 n , the following main result is obtained by a last application of the Continuous Mapping Theorem. Theorem 4. Under the null hypothesis H 0 and some regularity conditions detailed in Section 3.2.1, if θ is strongly consistent, then

1 s,n , Q 2 s,n , -Q 1 1 ) s∈[s,
S n D ---→ n→∞ sup s∈[s,1-s] q(W s -sW 1 )
s (1 -s) ,

where

W := (W s ) s∈[0,1] is a standard 2d + d 2 -dimensional
Brownian motion and q is a quadratic form that we shall define in Section 3.3.2 by Equation (3.33).

It follows that the limit process is a quadratic form of a Brownian bridge, which is quite standard in other frameworks. For the benchmark test (BM) defined by ( 4), [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] show that max 1≤k≤n 2Λ BM k,n converges weakly to the supremum of the sum of d a squared Brownian bridges, where d a is the dimension of the a parameter. See [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] for an example with d a = 1. A similar result is also given in the alternative work of [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], or later applications as in [START_REF] Dehling | Change point testing for the drift parameters of a periodic mean reversion process[END_REF].

We already pointed out that the WL test can be computed with the help of the usual MLE algorithm such as the EM algorithm [START_REF] Mclachlan | Finite mixture models[END_REF], [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF]). From a practical point of view, this is an improvement compared to the benchmark test. However, the introduction of the weights increases significantly the dimension of the Brownian bridge. For the WLT, it is 2d + d 2 , where d is the dimension of the parameter θ, while, in the benchmark test, it is d a , the dimension of the subparameter a in ( 4) (e.g. d = 3m and d a = 4 for an univariate Gaussian mixture with m components).

Extension: scaling the contributions in the likelihood ratio (EWLT)

Early numerical applications showed that the test defined by ( 5) can be improved by multiplying Λ s,n by an adjustment factor. To this end, we start by defining for a fixed s ∈ [s, 1] the contribution c s,n as follows:

c s,n := sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ). Remark that the log-ratio Λ s,n is the difference of (Q 1 s,n + Q 2 s,n ) and Q 1 1,n . Then, c s,n is the contribution of the sample to the term (Q 1 s,n + Q 2 s,n ), and c 1,n = n i=1 w(X i , θ) is the contribution of the sample to the term Q 1 1,n .
Under the null hypothesis, we can show that the random variable c s,n /n converges a.s. to the parameter p 1 , uniformly in s ∈ [s, 1]. It follows that the contributions c s,n /n and c 1,n /n tend to be the same as n → ∞. However, when a change occurs, they differ in some cases, which leads to an increase of the type II error (false negative) as a side effect. Therefore, we suggest to scale the total contributions. We define a new log-ratio process Λ

* n := (Λ * s,n ) s∈[s,1-s] by Λ * s,n := c 1,n c s,n   sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) + n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 )   - n i=1 w(X i , θ) log f 1 (X i , λ1 ) (6) 
that can be reorganized as follows

Λ * s,n = c 1,n c s,n Λ s,n - 1 n n i=1 w(X i , θ) log f 1 (X i , λ1 ) 1 n c s,n   sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ) - n i=1 w(X i , θ)   .
The ratio

c 1,n /c s,n converges a.s. to 1 uniformly in s ∈ [s, 1]. Moreover the factor (1/n n i=1 w(X i , θ) log f 1 (X i , λ1 ))/(c s,n /n) converges a.s. to some finite constant, uni- formly in s ∈ [s, 1]. Note also that the sum sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ) - n i=1 w(X i , θ)
has the same form as Λ s,n , but without the factor log f 1 (X i , λ.,.,1 ). It follows that, defining the test statistic by S * n := sup s∈[s,1-s] Λ * s,n , its limit distribution is obtained with similar arguments as for Theorem 4. We refer to this test as the EWLT (Extended Weighted Likelihood Test).

Theorem 5. Under the null hypothesis H 0 and some regularity conditions detailed in Section 3.2.1, if θ is strongly consistent, then

S * n D ---→ n→∞ sup s∈[s,1-s] q * (W s -sW 1 ) s(1 -s) ,
where

W := (W s ) s∈[0,1] is a standard 3d + d 2 -dimensional
Brownian motion and q * is a quadratic form that we shall define in Section 3.4 by Equation (3.39).

such that, for each k-th component, µ k ∈ R is the mean parameter and σ k ∈ R * + is the standard deviation parameter. We impose that the means are strictly increasing:

µ 1 < µ 2 < • • • < µ m ,
and, as in [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF], that the variances are bounded:

min σ j σ k , 1 ≤ j, k ≤ m > b,
where 0 < b ≤ 1 is a dispersion boundary. We suppose that the true parameter θ satisfies these two conditions. By [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF] the MLE θ is strongly consistent, and we can show that the conditions of Theorems 4 and 5 hold in this situation.

Applications

We provide two distinct applications for the case of an univariate finite Gaussian mixture. We are interested in detecting a change that is not visible to the naked eye (small) but also not too close to 0 (no impact in practice), for large samples (over 10 000 observations).

First, with numerical simulations of a Gaussian mixture with 3 components where we know the parameters before and after the change in the first component, we compare our two tests, the WL test defined as Λ n in ( 5) and the EWL test defined as Λ * n in [START_REF]Mouyopa Djitta (2015) and suggested in Tomas and Planchet[END_REF], to the benchmark test (BM) defined as Λ BM n in (4). The results are obtained by multiple re-simulations of samples (see Section 3.6.2 for a detailed setup):

When a change occurs in the first component, we look at the type II error (proportion of false negative) to evaluate the test quality (Figure 3). For large samples, the benchmark test performs poorly with a significantly longer run time essentially due to the fact that it is computed with standard algorithms that are not solving properly the supremum in the numerator of Λ BM n . Since their estimation algorithms are more robust, our two tests have both very low type II errors for small changes in the parameters on a sample of 10k observation and, in most cases, the EWLT performs notably better than the WLT.

For large samples of more than 10k observations, regardless of algorithmic issues, the three tests have similar type II errors. For samples with 1k observations, the EWLT and the benchmark test are comparable but the WLT seems less effective.

As a nice-to-have, we also studied the detection frequency of each test when a change occurs in the second or third component where the quality of the test is characterized by a low detection frequency. The main observation is that the EWLT shows the best results and, for large samples of 10k observations, the WLT is better than the benchmark test (the benchmark test still behaves poorly for large samples). However, we remark that the three tests show systematic patterns of high detection frequency for a change in the mean and the standard deviation: there is still some room for improvement regarding this criterion.

We conclude that the EWLT has the best numerical properties out of the three tests. The second application is an illustration of the WL and the EWL tests to real data from the insurance industry, in particular the bodily injuries from the motor claims. We denote by C t the real-valued random variable that represents the amount that, at time t, the insurer expects to pay eventually (t = 0 being the declaration date of the claim). This amount varies over time when the claim is reviewed, until it is settled.

In this application, we know that a change of the revision process happened at some point in the past. The question is then to determine whether or not this change impacted significantly the observed variations of claim amount over time. With sgn(.) the function that gives the sign of a real number taking respectively the values -1, 0 and 1 when this number is negative, null or positive, we consider the random variable

Z = sgn(C 1 -C 0.5 ) log(1 + |C 1 -C 0.5 |)
that gives the variation of the claim amount between the 6th and the 12th month in log-scale. Past data shows that Z can be modeled by a finite parametric mixture with 12 components. For internal reasons, the insurance company is interested in the 5th component of the mixture, i.e. slight decreases of claim amounts. The change detection is performed on a sample of over 15k observations and a significant change is detected with both tests. The analysis of the results indicates that it seems to occur from the time 1.07. This conclusion allowed the insurance company to investigate further the quantification of the change.

Discussion

In this last section, we briefly discuss a few issues that we encountered while writing this second part of the thesis. We also suggest possible extensions to improve or extend the results obtained.

We start with a discussion on the choice of the log-likelihood ratio used to detect a change in the first component of the mixture. The log-likelihood ratios of the benchmark and the WL tests have a similar general structure: a ratio of two cases where the numerator splits the sample in two and the denominator considers the whole sample. However, they differ in their way to isolate the effects of the first component, and in the choice of the likelihood function.

The benchmark test defined in ( 4) distinguishes the parameter of interest a (first component) from the nuisance parameter b (other components). The log-likelihood retained is the one from the whole model: log

f (X i , (a, b)), with θ = (a, b).
In the WL test and its log-likelihood ratio Λ s,n defined in ( 5), we chose to isolate the first component with the weight functions w(X i , θ). This weight is the probability of the observation X i to belong to the first component, knowing that it has distribution parameter θ. In the log-ratio, we remark that log f 1 (X i , λ 1 ) is the log-likelihood of the observation X i , knowing that X i belongs to the first component. Intuitively, it follows that w(X i , θ) log f 1 (X i , λ 1 ) can be seen as the contribution of the first component in the likelihood of X i .

During the first stages of my thesis, we studied the properties of the following loglikelihood ratio, an early version of the test,

Λ v0 s,n := log     sup λ 1 sn i=1 f 1 (X i , λ 1 ) w(X i , θ0,s ) sup λ 1 n j= sn +1 f 1 (X j , λ 1 ) w(X j , θs,1 )
sup

λ 1 n i=1 f 1 (X i , λ 1 ) w(X i , θ)     .
In this early version, the logic in the same as in the WL test except that we consider problems of the form sup θ.) in the WL test, where θ. denotes the estimators θ0,s , θs,1 and θ of each problem. For the Gaussian case, we showed that the optimization problem of the form arg max

λ 1 i f 1 (X i , λ 1 ) w(X i , θ.) instead of i f 1 (X i , λ1 ) w(X i ,
λ 1 i f 1 (X i , λ 1 ) w(X i , θ.
) can be solved with an explicit solution denoted by λ * . . We also showed that the solutions λ *

. are consistent estimators of the true parameter λ. In other words, the early version considers elements of the form θ.) . The difference from the WL test lies only in the difference between λ *

i f 1 (X i , λ * . ) w(X i ,
. and λ. . While working on the weak limit theorem, we noticed that the estimator λ *

. brings additional complexity that did not seem useful. Thus we retained the version given in the WL test which is easier to implement from the practitioner's point of view. In the end, numerical applications show that the WL and EWL tests perform better than the benchmark test for large samples.

The WLT allows us to detect a change in the first component of a finite parametric mixture. We remark that the detection of a change in other components can be obtained by simply switching the labels in the definition of the mixture. Among its interesting properties, we highlight the run time, especially when one wants to run a test over more than one components of the mixture. It is reasonable to assume that we could be interested in detecting a change in a limited number of components.

It is however important not to detect on too many components at the same time. Under the assumption that the components are independent, the probability to detect a change for at least one of them tends to one, under the null hypothesis and as the number of components tends to infinity. For a fixed number of components m, it makes sense to adapt the detection threshold in order to control the probability of false alarm, which means that a change is detected for at least one component under H 0 .

Given the complexity of the function q defined in (3.33), we did not address directly the question of the distribution of the limit variable sup s∈[s, 1-s] q(Ws-sW 1 )

s (1-s) . This is a reasonable choice since numerical simulations are sufficient to compute a detection threshold.

In this work, we focused on the detection of a change in the first component of a finite parametric mixture. The benchmark test would also be a valid candidate if the optimization problem given by the numerator of the log-ratio Λ BM k,n defined in ( 4) could be solved numerically by an adequate algorithm. With this idea, one could consider a customized EM algorithm. It could be designed as follows:

1. Initialization; 2. Perform one iteration of an EM algorithm that optimizes all the components except the first one over the whole sample, while considering the rest of the model fixed;

3. Perform one iteration of an EM algorithm that optimizes the first component over the left part of the sample, while considering the rest of the model fixed;

4. Perform one iteration of an EM algorithm that optimizes the first component over the right part of the sample, while considering the rest of the model fixed;

5. If convergence is not reached, go back to step 2.

In this rough sketch, each step ensures to increase the likelihood. The remaining question is to make sure that steps 2 to 4 can be formally expressed as in an EM algorithm.

In the early developments of my thesis, we considered similar variants of the EM algorithm in order to estimate the parameters and the change-point for a finite parametric mixture that contains at most one change. The key is to ensure that each steps guarantees an increase of the likelihood.

From the numerical applications, the WL and EWL tests are valid candidates when looking for a change in one component of a finite parametric mixture. In addition, the results obtained under the null hypothesis in Theorems 4 and 5 allow us to reduce significantly the calibration run time of the detection thresholds: the marginal run time of one simulation is divided by 10 000. Beyond these promising results, the topics discussed in this last section open possibilities for other techniques which are worth being explored.

Chapter 1

Preliminary

In this Chapter, we introduce the key notions and theorems that we rely on in Chapters 2 and 3. Most of the proofs are omitted but exact references are provided.

Maximum Likelihood Estimation

We start with classical concepts and results on Maximum Likelihood Estimation, mainly based on [START_REF] Lehmann | Theory of point estimation[END_REF].

Asymptotic existence and consistency of the MLE

We consider an experiment where we observe a sample of n independent continuous random variables X = (X i ) 1≤i≤n , defined on some probability space (Ω, F, P), with values in some set X , subset of an Euclidean space, endowed with Lebesgue's measure. Each X i , 1 ≤ i ≤ n, follows a finite parametric distribution P θ i , where θ i belongs to a set of eligible parameters Θ that we can identify with a subset of R d , d ≥ 1.

The parameters θ i = (θ i 1 , . . . , θ i d ) fully define the distribution. We start by giving some regularity conditions on the distribution and the set Θ.

Conditions 1.1 [START_REF] Cramér | Mathematical Methods of Statistics[END_REF], [START_REF] Lehmann | Theory of point estimation[END_REF]). We assume that:

(a) For 1 ≤ i ≤ n, the parametric distribution P θ i admits a parametric density function f (., θ i ) with respect to the Lebesgue measure.

(b) The distributions (P θ i ) 1≤i≤n have common support. In other words, the set {x ∈ X , f (x, θ) > 0} does not depend on θ.

(c) Identifiability: the distributions P θ are distinct1 .

The set of possible parameters Θ is usually defined so that regularity conditions are valid. Under conditions 1.1, we can define the likelihood of the sample X.

Definition 1.1. For a given θ ∈ Θ, the likelihood of a sample X is the random variable defined by f (X, θ) = n i=1 f (X i , θ) and the log-likelihood L(X, θ) is defined by L(X, θ) := log f (X, θ) = n i=1 log f (X i , θ).
With conditions 1.1, the log-likelihood L(X, θ) is well defined on the common support of the densities f (., θ): the X i (ω), ω ∈ Ω and 1 ≤ i ≤ n, can only take values in the set {x ∈ X , f (x, θ) > 0} that does not depend on θ.

Let us assume that the sample X is independent identically distributed, i.e. the X i have the same distribution with θ := θ 1 = • • • = θ n . Then we define the Maximum Likelihood Estimator as follows [START_REF] Norden | A survey of maximum likelihood estimation[END_REF], [START_REF] Kotz | Encyclopedia of statistical sciences[END_REF]).

Definition 1.2. For the sample X, the Maximum Likelihood Estimator (MLE)

θ of the true parameter θ is defined by

θ := arg max θ∈Θ L(X, θ)
if it exists and is unique.

The existence and uniqueness of the MLE are not obvious [START_REF] Mäkeläinen | On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples[END_REF], [START_REF] Lehmann | Theory of point estimation[END_REF]). Since this is an optimization problem, in practice, one might look at a candidate among the roots of the equations given by the partial derivatives of the log-likelihood. These equations are called the likelihood equations and exist only if L(X, θ) is continuously differentiable in θ. More generally, with the conditions 1.1 and conditions 1.2 that we give below, we can ensure that, even if the MLE does not exist and/or is not unique, we can find some consistent sequence of roots.

Definition 1.3. A sequence of estimators of θ is said to be consistent if, as n → ∞, it converges in probability to θ. It is said to be strongly consistent if it converges almost surely to θ.

Consistency can be understood as the asymptotic unbiasedness. Some additional conditions involve the Fisher information matrix defined as follows.

Definition 1.4. The Fisher information matrix

I(θ) is defined for 1 ≤ j, k ≤ d and θ = (θ 1 , . . . , θ d ) ∈ Θ by I jk (θ) := Cov ∂ ∂θ j log f (X 1 , θ), ∂ ∂θ k log f (X 1 , θ) .
We impose some regularity conditions on the first and second derivatives of the loglikelihood.

Conditions 1.2 [START_REF] Lehmann | Theory of point estimation[END_REF]). We assume that:

(a) There exists an open subset Θ of Θ such that θ ∈ Θ and, for almost all x ∈ X , the function θ → f (x, θ) is three times continuously differentiable for all θ ∈ Θ .

(b) For all θ ∈ Θ , the Fisher information matrix I(θ) is positive definite and, for

1 ≤ j, k ≤ d, |I jk (θ)| < ∞.
(c) The density function f verifies, for 1 ≤ j, k ≤ d and for all θ ∈ Θ ,

E θ ∂ ∂θ j log f (X 1 , θ) = 0
and the Fisher information matrix I(θ) verifies

I jk (θ) = E θ ∂ ∂θ j log f (X 1 , θ) ∂ ∂θ k log f (X 1 , θ) = E θ - ∂ 2 ∂θ j ∂θ k log f (X 1 , θ) . 36 1.1. Maximum Likelihood Estimation (d) For all 1 ≤ j, k, l ≤ d,
we can find some function M that does not depend on θ such that, for all θ ∈ Θ and all x ∈ X ,

∂ 3 ∂θ j ∂θ k ∂θ l log f (x, θ) ≤ M (x) with E θ [M (X 1 )] < ∞.
Under these conditions, the following theorem provides an asymptotic result for likelihood based estimators.

Theorem 1.5 (Theorem 5.1 in Lehmann and Casella (1998), Section 6.5). Under conditions 1.1 and 1.2, consider an independent identically distributed sample X with true parameter θ ∈ Θ . Then, with probability tending to one as n → ∞, there exists at least one consistent sequence θn of solutions of the likelihood equations such that √ n( θnθ) is asymptotically normal with mean 0 and covariance matrix I(θ) -1 .

In Chapter 3, the Fisher information matrix I(θ) under the null hypothesis is denoted by I.

In the next section, we provide additional results on consistency and strong consistency of MLE in the case of finite parametric mixtures.

Finite parametric mixtures

The concept of mixture distributions arises in many fields and has been popular in the literature for the last decades, as it allows to describe experiments with different sub-populations [START_REF] Frühwirth-Schnatter | Handbook of mixture analysis[END_REF] and the references therein).

Let us consider an experiment where we observe a sample of n independent continuous random variables X = (X i ) 1≤i≤n . Fix 2 < m < ∞, deterministic and known.

Definition 1.6. We say that X 1 follows a finite parametric mixture with distribution P θ with m components if conditions 1.1, 1.2(a)-1.2(c) are valid and, for f 1 , . . . , f m some fixed density functions on X , the distribution P θ , admits the density

f (x, θ) := m k=1 p k f k (x, λ k ), x ∈ X ,
where (p 1 , . . . , p m-1 ) belongs to the open set

Θ 0 := (p 1 , . . . , p m-1 ) ∈ (0, 1) m-1 , m-1 k=1 p k < 1 , with p m := 1 -m-1 k=1 p k and θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) belongs to the set of eligible parameters Θ = Θ 0 × m k=1 Θ k .
Remark that the identifiability of the mixture (see conditions 1.1(c)) is not obvious in general. For example, the mixtures with two components and respective parameters (p 1 , p 2 , λ 1 , λ 2 ) and (p 2 , p 1 , λ 2 , λ 1 ) have same distribution [START_REF] Mclachlan | Finite mixture models[END_REF]).

For finite samples of Gaussian mixtures, the Maximum Likelihood Estimator does not exist since its likelihood is unbounded [START_REF] Day | Estimating the components of a mixture of normal distributions[END_REF]). However the conditions of Theorem 1.5 still hold2 , allowing to find a consistent sequence of roots of the likelihood equations. We finish this section by a result from [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF] that provides the strong consistency of the MLE for an univariate Gaussian mixture under some conditions on the parameter set. We consider X an independent identically distributed closed sample of n real-valued random variables with a Gaussian mixture distribution with m components of true parameter θ = (p 1 , . . . ,

p m-1 , µ 1 , σ 1 , . . . , µ m , σ m ) in the set of possible parameters Θ ⊂ Θ 0 × (R × R * + ) m .
We assume that Θ is defined such that the mixture is identifiable. For b ∈ (0, 1], define the subset Θ b ⊂ Θ by

Θ b := θ ∈ Θ, min 1≤k,k ≤m σ k σ k ≥ b .
Theorem 1.7 (Theorem 3.3 in Hathaway (1985)). Let b ∈ (0, 1] such that the true parameter θ belongs to Θ b . Then the MLE θn that maximizes the log-likelihood of the sample X over Θ b exists and is strongly consistent.

Weak convergence of càd-làg random functions on [0, 1]

This section is mainly based on [START_REF] Billingsley | Convergence of probability measures[END_REF] and [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. We give some results on the weak convergence of sequences of càd-làg processes. For that purpose we introduce briefly the topologies of the metric spaces C and D before stating standard limit theorems.

The spaces C and D of random functions

We start by a general definition of a random element in a metric space S. We denote by S the Borel σ-algebra of S.

Definition 1.8. A random element on (S, S) is a map from some probability space (Ω, F, P) to S, which is (S, F)-measurable. If S is a metric space of functions, then X is called a random function, random process or stochastic process.

We consider two particular metric spaces of functions. First we denote by C(E, F ) the space of real-valued continuous functions on E ⊆ [0, 1] with values in a normed Euclidean space F , with its associated Borel σ-field and the uniform norm

. C(E,F ) defined for a function f in C(E, F ) by f C(E,F ) := sup t∈E f (t) F , (1.1)
where . F is the norm on F . In C(E, F ), we say that a sequence of functions f n converges to a function

f if f n -f C(E,F ) → 0 as n → ∞.
Among well-known random functions with values in C([0, 1], R) we can already introduce the standard Brownian motion or Wiener process3 , denoted by (W t ) t∈ [0,1] and satisfying that W 0 = 0 and the following three properties:

For any finite k ≥ 2 and any 0

≤ t 0 < • • • < t k ≤ 1, the random variables W t 0 , W t 1 -W t 0 , . . . , W t k -W t k-1 are independent;
For any 0 ≤ t < s ≤ 1 the distribution of the random variable W s -W t is Gaussian with mean zero and variance s -t;

The application t → W t is continuous with probability 1.

The space of càd-làg functions, defined on E with values in F , is denoted by D(E, F ) and referred as the Skorokhod metric space with the Skorokhod metric d D(E,F ) (., .) defined for f 1 and f 2 in D(E, F ) by

d D(E,F ) (f 1 , f 2 ) := inf τ ∈Γ E max sup t∈E |τ (t) -t|, sup t∈E f 1 (t) -f 2 • τ (t) F .
Here Γ E is the set of continuous and strictly increasing bijections from E to itself. In

D(E, F ), a sequence of functions f n converges to a function f if d D(E,F ) (f n , f ) → 0 or, equivalently, if we can find some sequence τ n ∈ Γ E such that sup t∈E |τ n (t) -t| → 0 and sup t∈E f (t) -f n • τ n (t) F → 0.
C(E, F ) is a subspace of D(E, F ) and the Skorokhod metric coincides with the uniform norm on C(E, F ). We refer to [START_REF] Billingsley | Convergence of probability measures[END_REF] for a detailed construction of the topologies of the spaces C(E, F ) and D(E, F ).

Definition 1.9. A sequence X n of random functions with values in C(E, F ), resp. D(E, F ), is said to converge in distribution or weakly to X if E[ϕ(X n )] converges to E[ϕ(X)] for every bounded continuous function ϕ from C(E, F ), resp. D(E, F ), to R. We write X n D ---→ n→∞ X. X n is said to converge in probability to X in C(E, F ), resp. D(E, F ), if, for any > 0, P[ X n -X C(E,F ) > ] → 0, resp. P[d D(E,F ) (X n , X) > ] → 0. We write X n P ---→ n→∞ X. X n is said to converge almost surely to X if, for almost every ω ∈ Ω, X n (ω) converges to X(ω) in the sense of the convergence in C(E, F ), resp. D(E, F ).
The convergence in distribution is often associated to the Portmanteau Theorem4 which gives equivalent definitions.

Limit theorems

In this section, we provide some limit theorems that we encounter in Chapter 3, mainly for proving the weak convergence of càd-làg processes. We start with Donsker's theorem in the Skorokhod metric space D([0, 1], R).

Theorem 1.10 (Donsker's Theorem in D([0, 1], R), Theorem 14.1 in [START_REF] Billingsley | Convergence of probability measures[END_REF]). If X 1 , X 2 , . . . , X n are independent identically distributed random variables with mean zero and variance σ 2 > 0, then, the random functions t ∈

[0, 1] → Y n t := 1 σ √ n nt i=1 X i defined in the Skorokhod space D([0, 1], R) are such that the process (Y n t ) t∈[0,1]
converges weakly to a standard Brownian motion as n → ∞.

Further we introduce below the Continuous Mapping Theorem for random elements in metric spaces.

We assume in the following that the metric space S is separable, which is the case for the spaces C(E, F ) and D(E, F ) with the topologies defined above [START_REF] Billingsley | Convergence of probability measures[END_REF]). Moreover we denote by S × S the separable product space with metric

d S×S : (X, Y ) → max{d S (X), d S (Y )}.
For more details on the construction of the product space, we refer to Section 2 in [START_REF] Billingsley | Convergence of probability measures[END_REF].

Theorem 1.11 (Continuous Mapping Theorem, Theorem 18.11 in van der Vaart (1998)). Consider a sequence X n of random elements with values in subsets S n of a separable metric space S and a random element X with values in S 0 . Consider also a sequence of maps f n from S n to another metric space F such that, for every sequence x n ∈ S n for which we can find a convergent subsequence x n with limit x ∈ S 0 , f n (x n ) converges to f (x). It holds that:

If X n D ---→ n→∞ X, then f n (X n ) D ---→ n→∞ f (X), If X n P ---→ n→∞ X, then f n (X n ) P ---→ n→∞ f (X), If X n a.s. ---→ n→∞ X, then f n (X n ) a.s. ---→ n→∞ f (X).
Based on the Continuous Mapping Theorem, Slutsky's Theorem is a standard result for the convergence of random variables since it allows to conclude on the convergence of sums and products of random variables when one variable converges in distribution and the other one in probability [START_REF] Slutsky | Uber stochastische asymptoten und grenzwerte[END_REF]). We give here its version for random elements.

Theorem 1.12 (Theorem 3.1 in [START_REF] Billingsley | Convergence of probability measures[END_REF]). Assume that S is a separable metric space with metric d S and (X n , Y n ) n≥1 is a sequence of random elements of S × S. If X n converges weakly to X and d S (X n , Y n ) converges in probability to zero, then Y n converges weakly to X.

In addition to this result, van der Vaart (1998) provides a panel of convergence properties. We give one of them in the result below as an extended functional version of Slutsky's Theorem. Theorem 1.13 (Extended Slutsky's Theorem, Theorem 18.10 in van der Vaart (1998)). Let X n and Y n be two sequences of random elements, and X and Y two random elements, all with values in the separable metric space S with metric d S . Then, if X n converges weakly to X and Y n converges in probability to a constant c in S, then (X n , Y n ) converges weakly to (X, c).

Together with the Continuous Mapping Theorem, this result provides a functional Slutsky's Theorem. For example, let us consider two sequences (X n t ) and (Y n t ) of continuous real-valued random functions of t such that, as n → ∞, the sequence (X n t ) converges weakly to the random function (X t ) and (Y n t ) converges in probability to a constant function (c), c ∈ R. Since the application ((x t ), (y t )) → (x t y t ) is continuous in the sense of the conditions of the Continuous Mapping Theorem, it follows that (X n t Y n t ) converges weakly to (cX t ).

The applications based on the Continuous Mapping Theorem are numerous. Among them, we introduce the functional Delta Method, a technique that approximates asymptotically the distribution of Φ(X) where X is a random function in a normed space [START_REF] Doob | The limiting distributions of certain statistics[END_REF], van der Vaart (1998)). For that purpose we introduce the notion of Hadamard differentiability for maps between two normed spaces. converges weakly to some random map X, then the sequence a n (Φ(X n )-Φ(θ)) converges weakly to the random map Φ θ (X).

Proof. The proof is a direct application of the Continuous Mapping Theorem with

f n (ζ) := a n (Φ(θ + a -1 n ζ) -Φ(θ))
where the maps f n are defined on

S n := {ζ : θ + a -1 n ζ ∈ D Φ }.
The Hadamard differentiability ensures that the conditions of the Continuous Mapping Theorem hold.

The space C([0, 1], R d ) is a linear normed space with the norm . C([0,1],R d ) defined in (1.1) and therefore falls in the scope of Theorem 1.15. However the Skorokhod metric space D([0, 1], R d ) is not a normed space. We give here a Corollary of the result from van der Vaart (1998) for càd-làg processes.

Corollary 1.16 (Functional Delta Method in the Skorokhod metric space).

For 0 < d 1 , d 2 < ∞, consider a map Φ : D Φ ⊆ D([0, 1], R d 1 ) → D([0, 1], R d 2 )
. Consider also a sequence of random maps X n with values in D Φ and a sequence of numbers a n which tends to infinity as n → ∞. If, as n → ∞, the sequence a n (X n -θ) converges weakly to some random map X, we can find some linear map Φ θ (.

) from D([0, 1], R d 1 ) to D([0, 1], R d 2 ) such that for every sequence ζ n ∈ {z : θ + a -1 n z ∈ D Φ } for which we can find a subsequence ζ n that converges in D([0, 1], R d 1 ) to ζ, the sequence a n (Φ(θ + a -1 n ζ n ) -Φ(θ)) converges in D([0, 1], R d 2 ) to Φ θ (ζ),
then the sequence a n (Φ(X n ) -Φ(θ)) converges weakly to the random map Φ θ (X).

Proof. As for Theorem 1.15, the proof is an application of the Continuous Mapping Theorem where the Hadamard differentiability is replaced by the second condition.

In Chapter 3, this result is applied to a sequence of random d-by-d square matrices and a map that inverts the matrices (t by t). For that purpose, we introduce the following result that provides the differential of the application that inverts a square matrix.

For 0 < d < ∞ fixed, let us consider the space gl d (R) of real-valued d-by-d square matrices. We consider the entrywise 2-norm . 2 , also called the Frobenius norm, that is defined for A = (a ij ) 1≤i,j≤d ∈ gl d (R) by

A 2 2 = 1≤i,j≤d a 2 ij .
With the identity matrix and the entrywise 2-norm, the normed space (gl

d (R), . 2 ) is an unital Banach algebra. The open sub-space of invertible matrices in gl d (R) is denoted by GL d (R).
Theorem 1.17 (Lemma 2.5.5 in [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF]). The application from

GL d (R) to GL d (R) is infinitely differentiable and its first differential at point A ∈ GL d (R) is the application defined for H ∈ gl d (R) by H → -A -1 HA -1 .
This result is obtained from an expansion of the inverse of a matrix as a Neumann series, as given in the following theorem.

Theorem 1.18 (Theorem 4.16 in [START_REF] Dudley | Concrete functional calculus[END_REF]). Consider some in-

vertible matrix A ∈ GL d (R). If H ∈ gl d (R) is such that H 2 < 1/ A -1 2 , then A + H is invertible and (A + H) -1 = ∞ k=0 (-1) k (A -1 H) k A -1 .
This closes the topic on weak convergence of càd-làg processes in the Skorokhod metric space.

Change-point detection techniques

We consider a sequence (X n ) n≥1 of independent real-valued random variables. Each random variable X n follows a distribution P θ n , where θ n belongs to the set Θ of eligible parameters. The sequence is associated with a known initial distribution P θ and a change occurs at time ν, called change-point. It means that the sample is identically distributed before ν, i.e. θ = θ 1 = • • • = θ ν ; and, after the change-point, θ n = θ for n > ν (possibly but not necessarily i.i.d.). In this section, for θ ∈ Θ, the distribution P θ is assumed to admit a density function f θ with respect to some measure (often the Lebesgue measure for the continuous case, and the counting measure on N for the discrete case).

Detection procedures aim to determine if and when the initial distribution changes. In this section, we start by introducing a standard on-line detection scheme called the Shiryaev-Roberts procedure. Then, we provide a standard off-line test for the detection of at most one change in a closed sample.

The Shiryaev-Roberts detection scheme

With the notations above, consider an experiment where we observe, as they arrive, outcomes of the random sequence (X n ) n≥1 . We assume that only one change occurs and the distribution after the change-point ν is denoted by P θ . Definition 1.19. A change-point detection scheme is a procedure defined by a random sequence S n called the detection sequence, and a threshold s * . The procedure states that an alarm is raised as soon as S n > s * , defining a stopping time

n * := inf{n ≥ 1, S n > s * }.
Given a delay criterion, quickest change-point detection schemes aim to detect a change in the distribution as quickly as possible, without raising too many false alarms (detection when no change occurred). Definition 1.20 [START_REF] Shiryaev | The problem of quickest detection of a violation of stationary behavior[END_REF], [START_REF] Roberts | A comparison of some control chart procedures[END_REF]). The Shiryaev-Roberts procedure is a change-point detection scheme with a detection sequence given by

S 0 := 0, S n (θ, θ ) := n i=1 n k=i f θ (X k ) f θ (X k ) = (1 + S n-1 (θ, θ )) f θ (X n ) f θ (X n ) , n ≥ 1.
Remark that, as long as n ≤ ν, the statistic S n (θ, θ ) is close to 0. After the change, it quickly takes very high values. One advantage of this procedure is the recursive form of the statistic S n (θ, θ ). It can be easily computed with its previous value S n-1 (θ, θ ) and the new outcome x n . Another advantage is its optimality in minimizing the average detection delay, as given in the following result.

Theorem 1.21 [START_REF] Pollak | Optimality properties of the Shiryaev-Roberts procedure[END_REF]). Fix η > 1. If the change-point ν is a random variable with a uniform improper prior distribution, then, among all changepoint detection procedures such that E {ν=∞} [n * ] ≥ η, the Shiryaev-Roberts detection scheme is optimal in minimizing the average detection delay

∞ k=0 E {ν=k}[ (n * -k) + ] E {ν=∞} [n * ]
.

Optimality is also valid for other frameworks (see e.g. [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF], [START_REF] Feinberg | Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings[END_REF], [START_REF] Polunchenko | On optimality of the Shiryaev-Roberts procedure for detecting a change in distribution[END_REF]).

A standard hypothesis test for the detection of at most one change in a closed sample

Let us consider an experiment where we observe the outcomes of a closed sample (X i ) 1≤i≤n of independent real-valued random variables that contains at most one change (AMOC). Let us assume that each parameter θ = (a, b) ∈ Θ is defined by two subparameters a and b. We introduce a standard likelihood-based hypothesis test that aims to detect if a change occurs in the first sub-parameter a (see e.g. Section 1.1 in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF]). Here b is called a nuisance parameter. We test the null hypothesis where no change happens, i.e.

θ 1 = • • • = θ n ,
against the alternative hypothesis where at most one change occurs, i.e. there exists some 1

< k ≤ n such that a 1 = • • • = a k = a k+1 = • • • = a n and b 1 = • • • = b n .
For that purpose, we consider the log-likelihood ratio associated with the test and defined by

Λ k,n := log     sup (a,b),(a ,b)∈Θ k i=1 f (X i , (a, b)) n i=k+1 f (X i , (a , b)) sup (a,b)∈Θ n i=1 f (X i , (a, b))     .
The test statistic is defined by max 1≤k≤n 2Λ k,n . Under the null hypothesis, its limit distribution takes the shape of a supremum over a function of a Brownian motion: see e.g. Corollary 1.1.1, Theorems 1.3.1. and 1.3.2 in Csörgő and Horváth (1997). Such a result can be found in other similar work for different frameworks such as in [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF] or [START_REF] Dehling | Change point testing for the drift parameters of a periodic mean reversion process[END_REF].

This ends the introduction of the tools we encounter in this thesis.

Introduction and general framework 2.1.1 Introduction

Within the usual techniques to monitor mortality and longevity risks 5 , statistical sequential tools have been used only recently in the actuarial field 6 even if applications of the change-point theory appeared a little bit earlier for other topics 7 . In this chapter, we focus on the sequential procedure developed by [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF] and [START_REF] Roberts | A comparison of some control chart procedures[END_REF] within the discrete time framework of [START_REF] Polunchenko | On optimality of the Shiryaev-Roberts procedure for detecting a change in distribution[END_REF] and provide two adaptive procedures.

We start by the introduction of the mathematical framework with a specific Poisson model, designed here for the study of the mortality with a similar approach as in [START_REF] Rhodes | Advanced statistical analysis of mortality[END_REF] and [START_REF] Tomas | Prospective mortality tables: taking heterogeneity into account[END_REF]. In Sections 2.2 and 2.3, we provide two adaptive procedures. For both procedures, the time of change is assumed to be deterministic but unknown; and the mortality is given by independent Poisson random variables. Distributions before the change are assumed to be known. In the first procedure, we assume that the mortality is given by a sequence of observations from independent identically distributed Poisson random variables with constant intensity λ before the change. After the change-point ν, the intensity is the only parameter that changes and this change is assumed to be unknown but deterministic. This means that we look for a sudden but persistent change of level. Because the original tool requires to know the post-change distribution, we suggest a consistent estimator designed for the specific case of the Shiryaev-Roberts detection procedure. A detailed proof of its consistency is provided and simulations assess that it has lower bias and lower variance just after the change-point. In the second procedure, the mortality is assumed to decrease at a steady pace: the intensity of the Poisson random variables is decreasing with a constant rate. After the change, the rate is different, deterministic but unknown. This means that, for an application to mortality, we look for a change in the trend of the log mortality rate. Here, the change-point and the trend coefficient are estimated by usual MLE. Eventually we show that these innovative approaches are practical tools in order to explore mortality data, especially when nothing is known about the postchange distributions.

An important part of this work is devoted in Section 2.4 to the application of our methodology on real data, in a context where the change is obvious, using specific methodologies to adjust the data as in [START_REF] Mei | Early detection of a change in Poisson rate after accounting for population size effects[END_REF]. For the mortality risk, we focus on the 2003 French heatwave and the 1918 Spanish Flu. For the longevity risk, i.e. with the second procedure, we look at the 2003 heatwave from a different perspective; and we study the French female mortality in the 1960's where a clear change of trend is identifiable 8 . In addition, for both risks, we analyze a real insurance portfolio where no specific information might help us to understand the change, and where the change itself does not seem perceptible (level and trend analysis). The main results allow us to identify the change-points of the mortality when they happen and to quantify the minimum lag before clear identification of the phenomena. These examples illustrate the main properties of the model in the case of actuarial applications.

Variants of the suggested approaches are also widely expressed in Section 2.5 and the suggested estimators are compared to benchmark methodologies in Appendix 2.7.1.

Mathematical framework

Let (Ω, F, P) be a probability space and x = (x n ) n≥1 a sequence of outcomes of a sequence of independent random variables X = (X n ) n≥1 such that

X n ∼ Poisson(λ), 1 ≤ n ≤ ν, ∼ Poisson(λρ), ν + 1 ≤ n,
where λ > 0 deterministic and known, and ρ > 0 and ν ∈ N ∪ {∞} are deterministic but unknown. We denote by ν the time step of the change and by ρ the ratio of the intensities after and before the change. The Shiryaev-Roberts random sequence S(ρ) = (S n (ρ)) n≥1 is introduced by both Shiryaev (1963) and [START_REF] Roberts | A comparison of some control chart procedures[END_REF]. Using the sequential framework of [START_REF] Polunchenko | On optimality of the Shiryaev-Roberts procedure for detecting a change in distribution[END_REF] it is defined for all n ≥ 1 by

S n (ρ) = n i=1 n k=i f ρ (X k ) f 1 (X k ) = (1 + S n-1 (ρ)) f ρ (X n ) f 1 (X n )
with S 0 (ρ) := 0 and f ρ the density function of a Poisson random variable with intensity λρ, for any ρ > 0:

f ρ (x) = e -λρ (λρ) x x! , x ∈ N. (2.1)
Here we use the term density function with respect to the counting measure on N.

In the original work of [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF] and [START_REF] Roberts | A comparison of some control chart procedures[END_REF], both parameters λ and ρ are known. The Shiryaev-Roberts procedure states that S n (ρ) is computed as long as it does not exceed some threshold s * n . The detection time step T * (s * n ) is the time step of the first observation that triggers the detection, and is defined by

T * (s * n ) = inf{n ≥ 1, S n (ρ) > s * n } with inf Ø = ∞. The threshold sequence s *
n is usually chosen with respect to a false alarm constraint. This constraint can be determined by the probability of false alarm α and its corresponding threshold s * n by

P max 1≤i≤n S i (ρ) ≥ s * n = α. (2.2)
where (S i (ρ)) 1≤i≤n is the Shiryaev-Roberts sequence when no change occurs (i.e. the procedure applied to some sequence X for which no change occurs). Here α is a parameter that needs to be defined by the user of the procedure.

This procedure is an accurate tool for measuring the deviation from the initial intensity, as shown by its optimality properties already known in the field of change-point detection. For example, [START_REF] Pollak | Optimality properties of the Shiryaev-Roberts procedure[END_REF] proves its optimality for minimizing the cumulative average delay to detection

9 ∞ k=0 E k [(T * (s * ) -k) + ]/E ∞ [T * (s * )]
for sequential observations, where the change-point ν is unknown and where the threshold sequence is reduced to a fixed constant s * . However, it requires to know the postchange distribution. In practice, the shift parameter ρ is unknown and we would like to know simultaneously if there is a change and what would be the shift associated with this change. In this case the application of detection procedures requires the use of adaptive procedures. [START_REF] Wu | Estimation of change-point and post-change means by adaptive cusum procedures[END_REF] gives an overview of existing methods for different detection procedures and [START_REF] Pollak | The shiryaev-roberts changepoint detection procedure in retrospect-theory and practice[END_REF] provides a common adaptive procedure for the Shiryaev-Roberts approach.

More generally, for exponential families, [START_REF] Foster | Estimation up to a change-point[END_REF] suggest estimators for the mean before the change, and [START_REF] Wu | Inference for change-point and post-change means after a CUSUM test[END_REF] provides estimators for the post-change mean in the case of the CUSUM chart. More recently, [START_REF] Fotopoulos | Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences[END_REF] studied the asymptotic distributions of the MLE under the Gaussian framework, and estimators designed for specific frameworks are provided e.g. in Wu (2016a), [START_REF] Wu | Inference for post-change parameters after sequential CUSUM test under AR(1) model[END_REF] and [START_REF] Frick | Multiscale change point inference[END_REF]. Extensive asymptotic results for the change-point detection can be found in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF].

In this work, we provide two adaptive procedures. In the first one, we assume that the current intensity is stable and we look for a sudden but persistent change of level. In the second model, the intensity evolves at a steady pace, and we look for a change of the intensity constant increase/decrease rate. 9. Where E k is the expectancy when ν = k.

Adaptive procedure for detecting a change of level

Under the general framework given in Section 2.1, for given λ > 0, n ≥ 0 known, and ν ≥ 0 deterministic but unknown, we suggest the estimator ρS (n) for the intensity shift parameter ρ, defined as ρS (n

) := arg max ρ>0 S n (ρ),
where (S n (ρ)) is the Shiryaev-Roberts sequence:

S n (ρ) := n i=1 n k=i f ρ (X k ) f 1 (X k ) (2.3)
and f ρ the density function of a Poisson random variable with intensity λρ from (2.1).

Remark that, as for the Shiryaev-Roberts sequence, the estimator ρS (n) does not depend on the change-point ν. Therefore, we do not need to know when the change occurs in order to infer the post change intensity. The corresponding adaptive procedure uses the detection sequence Sn = ( Si,n ) 1≤i≤n defined by

Si,n = i k=1 i j=k f ρS (n) (X j ) f 1 (X j ) . (2.4)
Si,n is computed as long as Si,n ≤ s * n , where the threshold s * n is computed as in Equation (2.2). This implies that for each new observation (i.e. n increasing), the sequence Sn is re-evaluated. Thus, as soon as the alarm is raised, the procedure provides an estimate of the post change intensity.

In the two following paragraphs, we show that ρS (n) is consistent. We also assess in Appendix 2.7.1 that for the studied cases the average bias of ρS (n) decreases faster than the one of the usual MLE, the variance of ρS (n) is always lower than the one of the MLE and both variances are asymptotically similar.

Steps of the adaptive procedure for detecting a change of level

In summary, the adaptive procedure is given in the following 8 steps: 

Consistency of the sequence ρS (n)

Definition 2.1. An estimator ρ(n) of ρ is said to be consistent iif ρ(n) P ---→ n→∞ ρ. For all 1 ≤ i ≤ n, we set ρi,n := 1 λ(n -i + 1) n k=i X k
and introduce the likelihood ratio for the sequence

X i , X i+1 , . . . , X n R i,n (ρ) := n k=i fρ(X k ) f 1 (X k ) = e -λ(n-i+1)(ρ-1)+log(ρ) n k=i X k = e λ(n-i+1)(ρ i,n log(ρ)-ρ+1) . Remark that, for any i ≥ 1, arg max ρ>0 R i,n (ρ) = arg max ρ>0 log (R i,n (ρ)). Since d dρ log (R i,n (ρ)) = 0 for ρ = 1 λ(n-i+1) n k=i X k , it follows that the maximum of ρ → R i,n (ρ) is attained at ρi,n .
Remark also that the sequence (X k ) k≥1 differs from an i.i.d sequence only through a finite number of items. Thus the law of large numbers holds: for all i ≥ 1, P-a.s., lim n→∞ ρi,n = ρ.

(2.5)

Remark 2.2. The sequence (ρ i,n ) n≥1 does not converges uniformly in i ≥ 1.

Proof. The sequence (ρ i,n ) n≥1 converges uniformly in i ≥ 1 iif there exists p > 0 such that: For any , η > 0 there exists N ≥ 1 such that, for all n ≥ N , P sup 1≤i≤n ρi,n -p > < η. Notice first that for all fixed n ≥ 1, sup 1≤i≤n ρi,n ≥ ρn,n := X n . Since (X n ) n≥1 are independent of same law with unbounded support, X n can take any positive integer value with strictly positive probability. Fix p > 0 and consider any > 0. Then define A n := {X n > p + } for any n ≥ 1. Since P[A n ] is strictly positive and independent from n, we can find η > 0 independent from n such that P[A n ] > η. On A n , we have |X n -p| > and also sup 1≤i≤n ρi,n -p > . This is valid for any n ≥ 1: For any p > 0, we can find , η > 0 such that for all N ≥ 1, there exists at least one n ≥ N such that P sup 1≤i≤n ρi,n -p > > η. The result follows.

Let us now consider the sum of the ratios R i,n (ρ) > 0 such that, from (2.3),

S n (ρ) = n i=1 R i,n (ρ).
We recall that the suggested estimator of the parameter ρ is

ρS (n) = arg max ρ>0 S n (ρ).
In a first Lemma 2.3, we establish some basic bounds for ρS (n).

Lemma 2.3. For any

n ≥ 1, ρS (n) ∈ min 1≤i≤n ρi,n , max 1≤i≤n ρi,n .
Proof. Since, for all 1 ≤ i ≤ n, arg max ρ>0 R i,n (ρ) = ρi,n , the map ρ → R i,n (ρ) is strictly increasing when ρ < ρi,n and strictly decreasing when ρ > ρi,n . It follows that the function ρ → S n (ρ) is also strictly increasing when ρ < min {ρ i,n , 1 ≤ i ≤ n} and strictly decreasing when ρ > max {ρ i,n , 1 ≤ i ≤ n}. The lemma follows.

We need the next Lemma to get a more precise localization of ρS (n).

Lemma 2.4. For any > 0 and i ≥ 1,

lim n→∞ R i,n ρ -2 -R i,n (ρ -) = +∞ a.s. (2.6)
and

lim n→∞ R i,n ρ + 2 -R i,n (ρ + ) = +∞ a.s.. (2.7)
Proof. We show only (2.6), since (2.7) is obtained by symmetric arguments. Moreover, we can chose i = 1, because the other cases are similar.

Let us consider ω ∈ Ω for which (2.5) is satisfied. In the proof, we omit the notation ω. We fix > 0 and define

x n := λn (ρ 1,n log(ρ 1 ) -ρ 1 + 1) , y n := λn (ρ 1,n log(ρ 2 ) -ρ 2 + 1) ,
where

ρ 1 := ρ -2 and ρ 2 := ρ -. Then R 1,n ρ -2 -R 1,n (ρ -) = e xn -e yn .
Since e xn -e yn ≥ x n -y n when x n -y n ≥ 0, the Lemma is proven, as soon we have shown that

x n -y n ---→ n→∞ +∞.

(2.8)

We use the convergence ρ1,n ---→ n→∞ ρ to find N ≥ 1 large enough such that, for all n > N , ρ1,n > ρ 1 + 4 . For these large n, we get

x n -y n = λn (ρ 2 -ρ 1 + ρ1,n (log ρ 1 -log ρ 2 )) > λn ρ 2 -ρ 1 + ρ 1 (log ρ 1 -log ρ 2 ) + 4 (log ρ 1 -log ρ 2 ) = λn (ρ 2 -ρ 1 log ρ 2 ) -(ρ 1 -ρ 1 log ρ 1 ) + 4 (log ρ 1 -log ρ 2 )
where

(ρ 2 -ρ 1 log ρ 2 ) -(ρ 1 -ρ 1 log ρ 1 ) > 0, because ρ → ρ -ρ log ρ is decreasing for 0 < ρ ≤ ρ , and log ρ 1 -log ρ 2 > 0. Hence (ρ 2 -ρ 1 log ρ 2 ) -(ρ 1 -ρ 1 log ρ 1 ) + 4 (log ρ 1 -log ρ 2 ) > 0
and (2.8) follows.

Remark 2.5. Making vary > 0 in (2.6) and (2.7), we get as a by-product of this lemma that, for all ρ > 0 and all i ≥ 1, lim n→∞ R i,n (ρ) = +∞ P-a.s..

We first show the convergence of (ρ S (n)) n≥1 to ρ for ν = 0. In this case (X n ) n≥1 is an i.i.d. sequence with common Poisson law of parameter λρ.

Proposition 2.6. For ν = 0, ρS (n)

P ---→ n→∞ ρ.
Proof. Fix , η > 0. The result is established as soon as we have shown that there exists N ≥ 1 large enough such that, for all n ≥ N ,

P[|ρ S (n) -ρ| ≤ ] ≥ 1 -2η.
1) We start again from the law of large numbers: Set Xn = 1 n n k=1 X k , n ≥ 1. By the P-a.s. convergence of ( Xn ) n≥1 to λρ, we can find some n 0 > 1 such that

P ∀n > n 0 , 1 λ Xn -ρ ≤ 2 ≥ 1 - η 3
(see, for instance, Lemma 5.6 in Karr (1993)). In particular, for fixed n ≥ n 0 , it holds that

P ∀i s.t. n -i ≥ n 0 , 1 λ Xn-i+1 -ρ ≤ 2 ≥ 1 - η 3 .
(2.9)

Now remark that the vectors 1 λ X1 , . . . , 1 λ Xn and (ρ n,n , ρn-1,n , . . . , ρ1,n ) have same law. This implies that, if we set

A 1 n = ∀i ≤ n -n 0 , |ρ i,n -ρ| ≤ 2 , (2.10) relation (2.9) is equivalent to P[A 1 n ] ≥ 1 - η 3 . 
2) For n 0 defined in the previous step, let L > 0 such that

P ∀i ≤ n 0 , R i,n 0 (ρ i,n 0 ) ≤ L n 0 ≥ 1 - η 3 .
(2.11)

Since, for all i ≥ 1, the map ρ → R i,n 0 (ρ) attains its maximum at ρi,n 0 , relation (2.11) implies that

P ∀ρ > 0, n 0 i=1 R i,n 0 (ρ) ≤ L ≥ 1 - η 3 .
Finally, for all n ≥ n 0 , the vectors (R 1,n 0 , . . . , R n 0 ,n 0 ) and (R n-n 0 +1,n , . . . , R n,n ) have same law, and we deduce that, for all n ≥ n 0 ,

P A 2 n ≥ 1 - η 3 , for A 2 n :=    ∀ρ > 0, n i=n-n 0 +1 R i,n (ρ) ≤ L    .
(2.12)

3) By Lemma 2.4, for L defined in step 2), we can find n 1 ≥ 1 such that, for all n ≥ n 1 ,

P A 3 n ≥ 1 - η 3 , with A 3 n := R 1,n ρ -2 -R 1,n (ρ -) ≥ 2L, .
(2.13) 4) Combining now 1) -3), we get, for all n ≥ max{n 0 , n 1 },

P[A n ] ≥ 1 -η for A n := A 1 n ∩ A 2 n ∩ A 3 n ⊂ Ω.
Since ρ → R i,n (ρ) is increasing for all ρ < ρi,n , on A n , for all ρ < ρand for all i ≤ n -n 0 , relation (2.10) implies that

R i,n ρ -2 ≥ R i,n (ρ)
and (2.13) implies that

R 1,n ρ -2 ≥ R 1,n (ρ) + 2L. Thus n-n 0 i=1 R i,n ρ -2 ≥ n-n 0 i=1 R i,n (ρ) + 2L.
Combined with (2.12), it follows that .14) This means that on A n , for all ρ < ρ -,

n i=1 R i,n ρ -2 ≥ n i=1 R i,n (ρ) + 2L +   n i=n-n 0 +1 R i,n ρ -2 - n i=n-n 0 +1 R i,n (ρ)   ≥ n i=1 R i,n (ρ) + L. ( 2 
S n ρ -2 > S n (ρ).
We conclude that, for all n ≥ max{n 0 , n 1 },

P[ρ S (n) ≥ ρ -] ≥ 1 -η.
By symmetric arguments, we prove that, for n big enough, P[ρ S (n) ≤ ρ + ] ≥ 1 -η. And combining both, the result follows.

The convergence of the estimator for any deterministic finite ν ≥ 1 is a slightly wider case of Proposition 2.6.

Proposition 2.7. For any deterministic finite ν ≥ 1, ρS (n)

P ---→ n→∞ ρ.
Proof. With the same notations as above, for n > ν, the Shiryaev-Roberts sequence can be written as

S n (ρ) = n i=1 R i,n (ρ) = R ν+1,n (ρ) ν i=1 R i,ν (ρ) + n i=ν+1 R i,n (ρ). (2.15) Set again ρi,n = arg max ρ>0 R i,n (ρ) = 1 λ(n-i+1) n k=i X k .
1) Since the law of large numbers is still valid, for any , η > 0, we can find n 0 ≥ 1 such that, for all n ≥ n 0 , 

P Ã1 n ≥ 1 - η 4 , for Ã1 n := ∀i ≤ n -n 0 , |ρ i,n -ρ| ≤ 2 . ( 2 
P Ã2 n ≥ 1 - η 4 , for Ã2 n :=    ∀ρ < ρ -, n i=ν+1 R i,n ρ -2 ≥ n i=ν+1 R i,n (ρ) + L    .
(2.17)

3) Now, for n ≥ n 0 , let ρ - n such that P [ρ - n ≤ min 1≤i≤n ρi,n ] ≥ 1 -η 8 and 0 < k < K such that P [∀ρ ∈ [ρ - n , ρ -), k < ν i=1 R i,ν (ρ) < K] ≥ 1 -η 8 . Then P Ã3 n ≥ 1- η 4 , for Ã3 n := ρ - n ≤ min 1≤i≤n ρi,n and, ∀ρ ∈ [ρ - n , ρ -), k < ν i=1 R i,ν (ρ) < K .
(2.18) 4) From Lemma 2.4 and Remark 2.5, we can find n 2 ≥ 1 such that, for all n ≥ n 2 ,

P Ã4 n ≥ 1 - η 4 , with Ã4 n :=    R ν+1,n ρ -2 R ν+1,n (ρ -) ≥ K k    .
(2.19) (2.19) and because ρ → R i,n (ρ) is increasing for all ρ < ρi,n , it follows that, on Ãn , for all ρ < ρ -,

5) Combining 1) -4), for n ≥ max{n 0 , n 1 , n 2 }, we define Ãn := Ã1 n ∩ Ã2 n ∩ Ã3 n ∩ Ã4 n ⊂ Ω. Then P[ Ãn ] ≥ 1 -η. From (2.16),
R ν+1,n ρ -2 ≥ K k R ν+1,n (ρ).
Combined with (2.18), this gives, for all ρ

∈ [ρ - n , ρ -), R ν+1,n ρ -2 ν i=1 R i,ν ρ -2 ≥R ν+1,n (ρ) K k ν i=1 R i,ν (ρ -2 ) ν i=1 R i,ν (ρ) ν i=1 R i,ν (ρ) ≥R ν+1,n (ρ) ν i=1 R i,ν (ρ).
This relation together with (2.17) and (2.15) gives, for all ρ ∈ [ρ - n , ρ -),

S n ρ -2 > S n (ρ).
Thus, on Ãn , ρS (n) ∈ [ρ - n , ρ -). From the choice of ρ - n , it follows that, still on Ãn , ρS (n) ≥ ρ -.

We conclude in the same way as for Proposition 2.6.

Adaptive procedure for detecting a change of trend

In this section, we explore a new set up for the change-point detection procedure where the intensity of the Poisson random variables sequence is increasing/decreasing at a steady pace. We look for a change in the trend and suggest a way for the inference of the post-change parameters.

Let (Ω, F, P) be a probability space and X = (X n ) n≥1 an independent random sequence such that X n ∼ Poisson(λ n ), n ≥ 1 where λ n := αλ n-1 for 1 ≤ n ≤ ν and λ n := α λ n-1 for ν + 1 ≤ n, with 1 ≤ ν < n, λ 0 > 0, α > 0, 0 < α := αρ, ρ > 0 and α = α . In this context, λ 0 and α are deterministic and known. ν and α are deterministic but unknown.

The useful property of the Shiryaev-Roberts sequence to get rid of the change-point does not apply10 . Therefore, we provide an adaptive procedure that uses estimates for both ν and ρ. For fixed n ≥ 1, the associated sequence ξ = (ξ i,n ) 1≤i≤n is given for i ∈ {1, . . . , n} by

ξ i,n := i k=1 i j=k f j θn f j θ 0 (X j ).
(2.20)

Here (f i θn ) 1≤i≤n denotes a sequence of density functions of independent Poisson random variables with intensity λ i := αλ i-1 , 1 ≤ i ≤ νξ (n) and λ i := αρ ξ (n)λ i-1 , νξ (n) + 1 ≤ i ≤ n, and θn := (ρ ξ (n), νξ (n)) an estimator of the couple (ρ, ν). In practice, θn can be the maximum likelihood estimator. In some cases however, it can be useful to minimize instead the quadratic error, especially when the change of trend occurs for strongly decreasing intensities11 . The procedure states that ξ i,n is computed as long as ξ i,n ≤ x * n , where x * n is a threshold sequence defined as in Equation (2.2).

In practice, ρξ (n) and νξ (n) are estimated for each new observation using parallel computing as in [START_REF] Knaus | Easier parallel computing in R with snowfall and sfCluster[END_REF]. In fact, [START_REF] Pollak | The shiryaev-roberts changepoint detection procedure in retrospect-theory and practice[END_REF] pointed out that when the Shiryaev-Roberts sequence grows, the computational time explodes. For example, when computing the original Shiryaev-Roberts procedure, a sample with 100 observations requires 11 times more than a benchmark sample with 10 observations. Because of the estimation of ρ, the adaptive procedure for detecting a change of level with 10 observations requires 27 times more computing time than the benchmark sample and 260 times more with 100 observations. The adaptive procedure for detecting a change of trend is consuming even more computations due to the fact that, for each new observation, we need to re-compute the whole sequence. Compared to the benchmark sample, its computing time is 40 times higher with 10 observations and 1020 times higher with 100 observations. These figures were estimated using the same computing method, i.e. without parallelization. Therefore, when the flow of analyzed data increases significantly, reducing the computing time becomes a major point of attention.

Steps of the adaptive procedure for detecting a change of the trend

In summary, the adaptive procedure is given in the following 7 steps:

1 

Study cases

In this section, we provide a few applications for the adaptive procedures. A Poisson framework is used for the mortality since it is a common assumption in the actuarial literature 12 . We also adjust the data with a proportional rescaling in order to align it to the chosen Poisson distribution: (i) As suggested in [START_REF] Zucchini | Hidden Markov models for time series[END_REF], Section 1.2.1, or [START_REF] Mei | Early detection of a change in Poisson rate after accounting for population size effects[END_REF], Section 4, the data is first normalized by the population size in order to eliminate exposure effects. (ii) Secondly, we multiply the observed number of deaths by the coefficient that allows the empirical mean to be equal to the empirical standard deviation 13 .

Two kind of study cases are provided. First, the adaptive procedure for detecting a change of level is applied to national and annual data from HMD 14 . It shows that, as expected, persistent changes of level occurred in the past and are correctly identified by the procedure. Therefore, we suggest that the procedure may be used as a risk management tool: in practice, raising an alarm is only a start and a detailed analysis of the causes of the alarm should follow.

We also studied some peculiar events that are obviously not persistent changes of level: when the population is homogeneous over time, at national scale, catastrophic events are easily associated to a clear cause (e.g. the Spanish flu). When they occur, an alarm is raised if they are far enough on the distribution tail. We illustrate that most of strong but not extreme variations that happen only one time are not detected, unlike slight but persistent changes that trigger the alarm. Therefore, the use of this tool makes sense when it is used along other controls such as confidence intervals (for the detection of strong variations).

In a second part, we focus on the change of the trend: here, we are interested in situations when the mortality decreases faster than expected. We notice first that the adaptive procedure given in Section 2.3 is sensitive to changes: a few regularly aligned divergent observations can raise an alarm when the data is historically stable. Then we recommend a cautious calibration of the procedure (here through the probability of false alarm). We also illustrate the case of specific events called peak/compensation phenomena and defined as (i) a sequence of regular decrease of the mortality followed by (ii) a one-time increase called the peak, (iii) a very short period of lower mortality that is the compensation period and (iv) a regular decrease of the mortality. For this kind of events, the aim of the procedure is to check whether the trend of the period (i)

12. See e.g. [START_REF] Rhodes | Advanced statistical analysis of mortality[END_REF] and [START_REF] Tomas | Prospective mortality tables: taking heterogeneity into account[END_REF]. 13. This rescaling restores the right quantile for the application of a Poisson model. Notice that in the case of actuarial applications for insurer portfolios, data quality and full understanding are required to assess the use of such a methodology.

14. Human Mortality Database, http://www.mortality.org/.

is identical to the one of the period (iv). An example is provided for the 2003 French heatwave.

Threshold calibration

In the following, we apply the threshold calibration from (2.2) where we set α = 0.01%. The threshold is estimated through simulations of the procedure in the case when the no change occurs.

Detecting a change of the level

Regarding the theoretical requirements, the adaptive procedure for detecting a change of level should be used in the context of a stable mortality over time. In addition, the intensity after the change should also be stable and persistent. These two constraints are strong but common requirements for the study of mortality at national scale. The first example illustrates the case when the intensity decreases during the years that followed a noticeable event. We study in a second phase the 1918 Spanish flu: in case of such extreme events, an alarm is raised anyway. In the third example, we look at the mortality of the portfolio from an insurance company, when nothing is known about the reasons of the observed variations and no change seems to occur. These chosen applications highlight the main properties and limits of the procedure. 2.1b, ρS (2005) = 0.89). As expected, a persistent change of level is detected but not a sudden variation.

If we look at the probability of the events under the Poisson framework, the mortality rate observed in 2003 is a quantile with probability 92% while the low rate observed in 2005 is a quantile with probability 0.05%. In particular, we can calculate that the false alarm probability should be higher than 22% in order to raise an alarm. Therefore, persistent changes are detected rather than one-time reasonable events. The 1918 Spanish flu is an extreme event observed here for French women between 1900 and 1920 (non military, between 30 and 50 years old 15 ). During this time period, the slight mortality improvements mainly come from the development of public health national programs and of specific procedures for the treatment of sick people. In Figure 2.2, observations suggest that the mortality is stable enough for this age group, except for the peak in 1918 that we want to challenge.

The level before the change is set using a 10 years window of observations, i.e. between 1900 and 1909, where the mortality rate is about 0.90%, and the probability of false alarm is set to 0.1%. The change is detected in 1918 16 , the same year it happens, with ρS (1918) = 1.5. Usual statistical tools also provide strong results in this situation, as expected: under the Poisson framework, the upper bound of the confidence interval with probability 0.1% is a mortality rate of 1.02%. For the year 1918, the Standard Mortality Ratio, defined as the ratio between the observed number of deaths and the expected number of deaths, is very close to the estimation of ρ (here SM R(1918) = 150%) while it is never over 100% before the peak since the mortality is slightly decreasing.

The low variance of the data before the detection increases the chance to raise an alarm when a strong variation is observed. This example shows that extreme events such as this one are detected as soon as they are observed 17 .

15. See [START_REF] Caselli | Age-specific mortality trends in france and italy since 1900: period and cohort effects[END_REF], page 44. 16. In order to focus on this event, the procedure is set to raise an alarm only in the case of an increased mortality level.

17. The same study on civilian men show that the mortality tripled from 1914 to 1918 before coming back to the same level as during the beginning of the century. The detection results are similar as for women: the alarm is raised in 1914 due to the war. Therefore, even if the change is persistent, it is detected the first year it occurs. In the third example we study a portfolio of real life annuitants that contains about 15 000 life annuities with 50% of men and an average age of 77 years. Data is available from 2003 to 2014 by quarter. Most of the annuitants are between 60 and 90 years old. Because of the low size of the portfolio, we assume that the expected mortality is given by the French regulatory tables TGH-TGF-05 that are extended to recent generations. The purpose of our analysis is to assess whether the regulatory table is suited for the portfolio. A first analysis shows that, for the whole sample (men and women together), the quarterly number of predicted deaths is a reasonable average assumption since the observed number of deaths is close enough, with expected variations due to the size of the portfolio (see Figure 2.3). The procedure does not raise any alarm: no persistent change of level seems to occur for the whole portfolio.

A close analysis of the observations might suggest that there is a deviance between the observed and predicted deaths from 2011. In the following paragraph, we focus on detecting a change of trend and, for the life annuitant portfolio, we bring more information about the change of mortality over the studied period.

Detecting a change of the trend

We focus on three events: the decrease of the mortality in the 60's for women between 60 and 65 years old, the decrease of the mortality trend that followed the French heatwave of 2003, and the analysis of the insurance portfolio of life annuitants. In these examples, we show that the suggested procedure is sensitive to any sequence of observations that are diverging from the expected trend in the same direction: the calibration of the threshold becomes crucial in the detection process. Thus, persistent trends are detected quickly. We also illustrate the peak/compensation phenomenon defined in Section 2. Using the adaptive procedure of Section 2.3, we look at national French data from HMD between 1960 and nowadays. [START_REF] Didou | Amélioration de la mortalité : tendances passées et projections en france, en espagne, au royaume-uni et aux etats-unis[END_REF] noticed that the female mortality rates are slightly decreasing at a steady peace just before 196018 and the decrease accelerates in the 60's. Therefore, we chose to illustrate the procedure with the observed deaths of women between 55 and 75 years old. The In practice, the procedure is very sensitive to any change of trend: the choice for the probability of false alarm becomes a lever to distinguish long or short term changes. In this case, we look for long term changes of the trend. That is why we deliberately set the probability of false alarm to a low value (0.01%). In Section 2.4.1, we noticed that the peak of mortality in 2003 was not detected with the procedure for detecting a change of level. Surprisingly, the two years 2002 and 2003 are sufficient to raise an alarm for the observed increase (relative increase of +3.5% per year) since the observations are aligned enough. This is a clear example of a peak/compensation phenomenon, as defined in Section 2.4, page 55. Once we identified the peak (ii) and the compensation period (iii) through multiple applications of the procedure, we can test whether the regularly decreasing period (iv) has the same trend as the initial period (i). The procedure stops actually in 2008 and sates that the change of trend occurred in 2004 with an annual decrease of 2.3% (see Figure 2.6).

French Heatwave

Life annuitants insurance portfolio

In Section 2.4.1, page 58, the procedure for detecting a change of level did not raise any alarm for the life annuitants portfolio. With the adaptive procedure for the trend, an alarm is raised in 2013 Q2 19 . The initial decreasing trend of 0.6% changes to an annual increase of the mortality of 0.7% from 2005 Q3. A re-run from 2013 Q2 in order to detect a late change does not raise any alarm.

We want to highlight here the fact that the calibration of the initial trend impacts the result and its interpretation. Due to the very limited dataset at our disposal, we chose to keep 10 observations to estimate the initial trend. The observed data is also adjusted from the expected mortality in order to take into account the exposure of the underlying risk by age. With this limit, we conclude that a slight change of trend (from decreasing to increasing) happens in 2005 Q3. Further analysis have to be conducted by the insurer in order to monitor carefully this change.

In summary, the studied portfolio of life annuitants does not diverge significantly from its reference mortality table. More broadly, the use of the trend procedure is assessed to be efficient for detecting small changes of deviation from the initial trend, especially when the data is unstable or when one-time events happen. Indeed, alarms can bee raised very fast (e.g. for the 2003 heatwave). Or, as seen in the case of the 60's mortality, 19. Q1 is the first quarter of the year, Q2 the second quarter of the year, etc.. when the trend is stable, alarms are not raised too often and we can observe a long delay before detection.

Extension: weighted likelihood ratio

We put forward two possible extensions for the detection of change (level and trend). First, we suggest using Hidden Markov Models to take into account over-dispersion of the data. No application is provided in this chapter since a large enough amount of data is required to calibrate the distributions before and after the change. We also suggest the possibility of weighting the likelihood ratios by the exposure to the risk in the same way than [START_REF] Mei | Early detection of a change in Poisson rate after accounting for population size effects[END_REF], Section 4.

Intuitively, when we observe data from an insurance portfolio, it appears that there are some fluctuations in the number of insured over time. In this case, actuarial methods suggest the use of weights that will take into account the exposure (i.e. the size of the portfolio) in the likelihood ratio. Let n ≥ 1. With the same notations as in (2.4), we define an alternative sequence (W L i,n ) 1≤i≤n for the level procedure by

W L i,n := i k=1 i j=k f ρS (n) (X j ) f 1 (X j ) l j
where l j , j ≥ 1, is the size of the portfolio for each time step. Identically, with the same notations as in (2.20), we define an alternative sequence (W T i,n ) 1≤i≤n for the trend procedure by

W T i,n := i k=1 i j=k   f j θn f j θ 0 (X j )   l j .
The results of the application of these procedures are provided in Appendix 2.7.2, page 67.

Conclusion

In this chapter, we provided two adaptive procedure for the detection of a change of level and a change of trend within a discrete time Poisson framework. The sequential procedures are derived from the one developed by [START_REF] Shiryaev | Optimal methods in quickest detection problems[END_REF] and [START_REF] Roberts | A comparison of some control chart procedures[END_REF].

For both procedures, the time of change is assumed to be deterministic but unknown. The mortality is given by independent Poisson random variables.and the distribution before the change is assumed to be known. In the first approach, we suggest an estimator for the intensity after the change designed for the specific case of the Shiryaev-Roberts detection procedure. We establish that it is a consistent estimator. In the second approach, the change-point and the trend coefficient are estimated by usual MLE. In fine, we show that these approaches are practical tools for the mortality data exploration, especially when nothing is known about the post-change distribution.

Actuarial applications are provided in both cases. First, the adaptive procedure for detecting a change of level is applied to national and annual data in order to illustrate its main characteristics. We conclude that a change of level might occur for insurer portfolios when the underlying population is modified over time (persistent data disruptions, even small ones). In this case, the procedure becomes a tool of risk management for actuaries and any raised alarm should initiate a complete analysis of its source. We show also that, as expected, most of strong variations that happen only one time are not detected except when they are extreme enough. Therefore, we recommend the use of this tool, combined with usual controls such as confidence intervals.

Then we focus on the change of trend for the longevity risk, i.e. we are interested in situations when the mortality decreases faster than expected. The adaptive procedure given in Section 2.3 is quite sensitive to changes. The probability of false alarm, set for the control of false detection, can be used as a lever to focus on short or long term changes. In addition, restarting the procedure allows a systematic analysis of specific events such as the peak/compensation phenomena (e.g. the 2003 French heatwave).

In Section 2.5, we suggest some extensions to our work: the question of the sequential estimation of the post change distribution is still wide and is worth to be explored.

Appendices

Benchmarking

Change of level

The first intuition about the usefulness of an estimator that maximizes the Shiryaev-Roberts sequence is well illustrated in this paragraph. From simulations, the estimator converges faster to the true parameter (Figure 2.7a) with lower variance (Figure 2.7b). So far, for all the studied cases, we always observed this property despite the fact that it is not mathematically proven yet. In both Figures, the suggested estimator (ArgMaxSR) is compared to the Maximum Likelihood Estimator of the change-point model (MLE) and the ordinary least square estimator (LSE). This property is illustrated for parameters value from the 2003 French heatwave phenomenon. Figure 2.8a illustrates one observation of the random sequence, where no change is perceptible: the detection procedure is the only way to identify a persistent change. Here the estimator converges slowly toward a stable value since the change is very small.

Notice that Figure 2.7a would not be sufficient to identify a change in the context of stable data because we illustrated here average sequential estimates for the change coefficient: a single simulation of the sequential estimation is still quite volatile in practice. With 10 000 simulations of a sequence of Poisson random variables with a change at the time step ν = 10 and ρ = 1.1, we also observed that, in addition to a faster and more stable convergence to the true parameter, for a given sample size, the last value of the Shiryaev-Roberts sequence of the suggested estimator is always greater than the one from the MLE. This seems natural since the suggested estimator maximizes this value.

In addition, because we control the probability of false detection for each time step through the calibration of the threshold, with consideration of the methodology, the choice of estimator does not affect the probability of false detection. Figure 2.8b shows that not knowing the post change parameter affects strongly the delay before detection, especially the variance of the alarm time. It also shows that our estimator is still the best among the pool of three candidates. Since we measure here the average delay of detection, the CUSUM procedure is optimal as expected (or close to it since El Karoui et al. ( 2017) proved it for the continuous time case). Therefore, the best strategy (in terms of what we studied, not in general) would be to use our estimator and then to detect the change with the CUSUM procedure, for minimizing the average delay before detection.

Change of trend

In this paragraph, we show that estimating the change of trend with the MLE for both the time of change and the change coefficient is more adequate than using the methodology applied for the level. In order to illustrate this point, we chose to replicate the case of the application of the methodology for the clear change of trend in the 60's given in Section 2.4.2, page 58. Then we set ν = 50, α = 98.47%, α = 98.27% and thus ρ = 99.79%.

Figure 2.9a illustrates two simulations of the setup. Here again, the change is not noticeable and the detection procedure is required to identify it. Figure 2.9b and Figure 2.9c) show that the best estimator is the MLE (and no longer the one that maximizes the Shiryaev-Roberts sequence). In fact, in the level context, our estimator did not involve any estimation of the time of change ν while the MLE did it. Consequently, the variance was much lowered. Here, both methods have to estimate ν. Therefore maximizing the Shiryaev-Roberts sequence does not bring any improvement and the MLE is the best estimator to use. We also compared it to the Least Square Estimator (LSE) that minimizes the quadratic error and the Norm1 estimator that minimizes the absolute error.

Hence we recommend the use of the MLE for this framework. 

Application of the weighted likelihood ratio procedures

The extensions suggested in Section 2.5, page 61, are illustrated in Table 2.1 for the level procedure and in Table 2.2 for the trend procedure.

It appears that, in our examples, taking into account the population weights did not impact significantly the results. However, results provided in [START_REF] Mei | Early detection of a change in Poisson rate after accounting for population size effects[END_REF] show that when the population size varies (at a steady pace in the examples provided by the authors), the detection lag can be significantly different. Therefore, we expect those weighting to be crucial in the context of low and/or unstable data.

with [START_REF] Andrews | Optimal tests when a nuisance parameter is present only under the alternative[END_REF], [START_REF] Hansen | Inference when a nuisance parameter is not identified under the null hypothesis[END_REF], [START_REF] Pons | Estimation et tests dans les modèles de mélanges de lois et de ruptures[END_REF], [START_REF] Zou | Ovarian cancer screening based on mixture change-point model[END_REF]). General and standard techniques, as exposed in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], can be adapted for finite parametric mixtures. However, when it comes to numerical applications, we observed that the standard approach raises many computational difficulties.

In this chapter, we consider a sample of n independent random variables that follow a finite mixture distribution with parametric components. The sample might contain at most one change (AMOC) in the parameters of the first component. If there is a change, the r.v. are identically distributed before and after the change-point: the parameters which describe the distribution of the first component are different before and after the break-point while the other parameters of the mixture remain the same. For example, a shift occurs in the mean or in the standard deviation of the first component in the case of a Gaussian mixture. We want to test whether there is a change or not.

In order to circumvent the problems raised by the standard technique, we suggest a different approach that takes the form of a weighted likelihood test (WLT) 3 . In particular, the WL test can be computed using standard estimation algorithms. With a technique from [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], we derive the limit distribution of its statistic under the null hypothesis in the form of a quadratic form of a multidimensional Brownian motion.

We start in Section 3.2 by the introduction of the model and the validity conditions required for our main result. In particular, we impose that the change-point cannot occur too close to the first nor the last observation of the closed sample. In addition, the Maximum Likelihood Estimator (MLE) for the parameters of the mixture has to be strongly consistent. As in [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF] and [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], the test is based on a likelihood ratio. The main difference from the standard approach lies in the presence of weight functions that allow to focus on the first component of the mixture. In Section 3.3, under the null hypothesis, we first obtain asymptotic properties of the MLE [START_REF] Lehmann | Theory of point estimation[END_REF]) before deriving a functional limit result for one term of the log-likelihood ratio in Theorem 3.16. This result is based on multiple applications of the Continuous Mapping Theorem and a Functional Delta Method in the Skorokhod metric space of càd-làg functions [START_REF] Billingsley | Convergence of probability measures[END_REF], van der Vaart (1998)). In Theorem 3.17, the limit distribution of the test statistic is obtained as a consequence. In Section 3.4, we suggest an extension of the test (EWLT) where we scale the contribution of the sample to the weighted likelihood ratio. This improves significantly the detection frequency of the test in the case of a change (lower type II error). In Section 3.5, we show that validity conditions hold for univariate finite Gaussian mixtures within the framework of [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF].

Applications in Section 3.6 consist in two parts. First, with numerical simulations, we illustrate the properties of the WL and EWL tests and compare them to a benchmark test (BM) obtained from an application of the standard test (e.g. exposed in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF]). Both WL and EWL tests have notably lower type II errors, especially for large samples of over 10 000 observations. Overall, the EWLT performs significantly better than the other candidates. The second application is an illustration of the WL and EWL tests on Property and Casualty insurance real data. The tests are applied for the detection of a change in the variation over six months of the claim amount. In insurance problems, this application indicates that the proposed tests can be used for the monitoring of changes, when they are unexpected, and also to assess their significativity when they are known or suspected.

In Section 3.7, we give an overview of the conclusions and perspectives of this work.

Description of the model, assumptions and notations

Model and assumptions

We consider an experiment where we observe a sample of n independent continuous random variables X = (X i ) 1≤i≤n , defined on some probability space (Ω, F, P), with values in some set X , subset of an Euclidean space, endowed with Lebesgue's measure. Each X i , 1 ≤ i ≤ n, follows a finite mixture distribution with 2 < m < ∞ parametric components P θ i , where θ i belongs to a convex set of eligible parameters Θ. More precisely, for m a fixed, deterministic and known integer, the elements of Θ are of following type: Θ θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ), with (p 1 , . . . , p m-1 ) in the open set

Θ 0 := (p 1 , . . . , p m-1 ) ∈ (0, 1) m-1 , m-1 k=1 p k < 1 and, for each k ∈ {1, . . . , m}, λ k ∈ Θ k , with Θ k an open convex subset of some R d k , with d k ≥ 1. Set d := m-1+ m k=1 d k : then Θ = Θ 0 × m k=1 Θ k is an open convex subset of R d .
Finally, given f 1 , . . . , f m some fixed density functions on X , the distribution P θ , θ ∈ Θ, admits the density

f (x, θ) := m k=1 p k f k (x, λ k ), x ∈ X ,
with p m := 1 -m-1 k=1 p k . We first assume that the distributions {P θ , θ ∈ Θ} are all distinct. This means in particular that the mixture should be identifiable4 . We also add some usual assumptions on the regularity of the components of the mixture:

The distributions defined by {f (., θ), θ ∈ Θ} have common support, i.e. the set {x ∈ X , f (x, θ) > 0} does not depend on θ;

For almost all x ∈ X , the function θ → f (x, θ) is twice continuously differentiable in θ ∈ Θ with partial derivatives bounded by a non-negative integrable function of x that does not depend on θ.

In this experiment, the sample is identically distributed before and after the changepoint. There is at most one change (AMOC), deterministic but unknown, or none. Since we are interested in the limit behavior of the sample of variables when their number tends to infinity, we suppose that the experience takes place in the time interval [0, 1] and each variable X i occurs at time i/n, 1 ≤ i ≤ n. With this approach, if there is a change-point, it occurs at a time denoted by s ∈ (0, 1) such that the parameters which describe the distribution of the first component are different before and after the break-point while the other parameters of the mixture remain the same. We write θ :

= θ 1 = • • • = θ sn = θ sn +1 = • • • = θ n ,
where, for any x ∈ [0, 1], x denotes the integer part of x. If there is no change-point, then X is an i.i.d. sample with

θ = θ 1 = • • • = θ n .
For the sake of simplicity, we impose that there is at most one change. A setting with more than one change-point can be extended with the same logic.

In the sequel we suppose that the following holds for the change-point s: Assumption 3.1. If there is a change, the change-point s is contained in [s, 1 -s] where 0 < s < 1/2 is deterministic and known, i.e. the change does not occur too close to 0 nor 1.

Let us construct the following hypothesis test:

1. The null hypothesis H 0 defines the case when there is no change-point; This setting implies that the number of components does not change. Our work provides results when H 0 holds; so they do not depend on what happens after the change. However, the test statistic we shall define is designed to amplify the change in one of the components of the mixture. Hence it makes sense to assume that the distribution after the change is a well defined mixture (identifiable) with the same number of components.

After defining a statistic, we will establish a central limit theorem under the assumption that H 0 holds. This is necessary to be able to determine the rejection domain while controlling the type I error (proportion of false positives). Therefore, in the following, we assume that H 0 holds, i.e. X is independent identically distributed with distribution P θ . We also consider that the following assumptions hold: Assumption 3.2. For almost all x ∈ X ,

Regularity: the density f (x, θ) is three times differentiable in θ = (θ 1 , . . . , θ d ) ∈ Θ.
Integrability:

for 1 ≤ j ≤ d, E H 0 ∂ ∂θ j log f (X 1 , θ) = 0.
Continuity: for any 1 ≤ j, k, l ≤ d, the applications

θ → ∂ 3 ∂θ j ∂θ k ∂θ l log f (x, θ)
are continuous on Θ.

Dominance: we can find some function κ 1 (x), x ∈ X , that does not depend on θ and is such that, for all 1 ≤ j, k, l ≤ d and all θ in Θ,

∂ 3 ∂θ j ∂θ k ∂θ l log f (x, θ) ≤ κ 1 (x) with E H 0 [κ 1 (X 1 )] < ∞.
Let I be the Fisher information matrix defined by

I j,k := Cov ∂ ∂θ j log f (X 1 , θ), ∂ ∂θ k log f (X 1 , θ) , 1 ≤ j, k ≤ d. (3.1)
The assumptions we state on I are the following:

Assumption 3.3. The matrix I is positive definite with finite elements and

I j,k = E H 0 ∂ ∂θ j log f (X 1 , θ) ∂ ∂θ k log f (X 1 , θ) = -E H 0 ∂ 2 ∂θ j ∂θ k log f (X 1 , θ) .
We define the log-likelihood of the sample X as a function of the d-dimensional vector θ ∈ Θ by

θ → L(X, θ) := n i=1 log f (X i , θ).
It is well defined since, by assumption, the X i (ω), ω ∈ Ω and 1 ≤ i ≤ n, can only take values in the set {x ∈ X , f (x, θ) > 0}.

With Assumptions 3.2 and 3.3, from the usual Limit Theorems 5 for Maximum Likelihood Estimators (MLE), there exist sequences of solutions of the likelihood equations ∂ ∂θ j L(X, θ) = 0, 1 ≤ j ≤ d, that exist with probability tending to one as n → ∞ and are consistent. Let us select one of these consistent sequences of solutions as an estimator for the unknown θ and denote it θ = (p 1 , . . . , pm-1 , λ1 , . . . , λm ).

Remark 3.1. If the solution exists and is unique, then it is a Maximum Likelihood Estimator (MLE). However the existence and unicity of θ for finite samples of mixtures are not obvious: for example, the MLE of a Gaussian mixture might not even exist for a finite sample since the likelihood can be unbounded 6 . For numerical applications, it is clear that the search of all roots of the likelihood equations would require unreasonable time. Thus the question of uniqueness is not really the problem. For the computation, one might use the EM algorithm 7 or some other approach 8 . Algorithms, when they converge, ensure to provide some local maximum but there is no guarantee to find the global maximum. We will see in Section 3.5 that, for univariate Gaussian mixtures, one can find some Θ that ensures the existence of the estimator θ for finite samples.

In addition to the usual regularity conditions given in Assumptions 3.2 and 3.3, we assume that:

Assumption 3.4. When H 0 holds, the estimator θ converges almost surely to θ as n → ∞, i.e. it is strongly consistent.

This is an important restriction compared to the general case because Assumptions 3.2 and 3.3 only ensure the convergence in probability [START_REF] Lehmann | Theory of point estimation[END_REF]). For the applications in this chapter, we will consider the Gaussian case and discuss it in Section 3.5, using the result from [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF]. For other cases, one might use the classical results in the literature that cover a wide range of reasonable sufficient conditions. One of the first results has been given by Theorem 2 in [START_REF] Wald | Note on the consistency of the maximum likelihood estimate[END_REF] when Θ is compact. Theorem 4 in Redner (1981) weakens Wald's conditions for Θ a compact subset of the quotient topological space of all possible parameters, with a dedicated result for finite mixtures in Theorem 5. [START_REF] Feng | Using bootstrap likelihood ratios in finite mixture models[END_REF] proves it for Θ a compact subset of the Euclidean space of possible parameters, i.e. showing that the question of identifiability does not impact the convergence properties of maximum likelihood estimators. Other approaches have been proposed by [START_REF] Kiefer | Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters[END_REF] or [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF]. For a wider discussion on mixtures, refer to Section 2.5 in [START_REF] Mclachlan | Finite mixture models[END_REF].

Remark 3.2. Since we study asymptotic properties, the main point in Assumption 3.2 is the integrability of the function κ 1 . With the continuity condition and the convergence of θ from Assumption 3.4, almost surely, the boundedness itself follows for n large enough.

5. See e.g. Theorem 1.5. 6. For the existence of MLE of Gaussian mixtures, see e.g. Example 6.10 in Lehmann and Casella (1998), Section 6.6. For a discussion on uniqueness of MLE in general, see [START_REF] Mäkeläinen | On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples[END_REF]. Chapter 2 in McLachlan and Peel (2000) gives an overview of these questions for mixtures.

7. See e.g. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF], [START_REF] Hathaway | Constrained maximum likelihood estimation for a mixture of m univariate normal distributions[END_REF], [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF], [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF] and the references therein.

8. For an overview, see e.g. Section 1.13 in McLachlan and Peel (2000), [START_REF] Tanaka | Strong consistency of the maximum likelihood estimator for finite mixtures of location-scale distributions when penalty is imposed on the ratios of the scale parameters[END_REF], Chen (2017) and the references therein.

For s ∈ [s, 1 -s], by the same logic as for the estimator θ, we consider the estimators of θ over the subsamples (X i ) 1≤i≤ sn and (X i ) sn +1≤i≤n , respectively denoted by θ0,s and θs,1 . For a fixed s ∈ (0, 1), they have the same properties as θ when n → ∞.

To focus our study on only one component of the mixture (the first component), we design a specific weight function that, in the detection statistic, allows to overweight the density of an observation x when the density of the first component is dominant compared to others. For that purpose we define the weight function at point x ∈ X for θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) ∈ Θ by

w(x, θ) := p 1 f 1 (x, λ 1 ) f (x, θ) . (3.2)
The function w is well defined since, by assumption, the random variables X i , 1 ≤ i ≤ n, can only take values in the set {x ∈ X , f (x, θ) > 0} . In addition, by definition, for any x ∈ X and any θ ∈ Θ,

0 ≤ w(x, θ) ≤ 1. (3.3)
As a consequence of Assumption 3.2, the application

w log f 1 : (x, θ) → w(x, θ) log f 1 (x, λ 1 ) (3.4)
is twice differentiable in θ ∈ Θ, and, for all 1 ≤ j, k ≤ d and almost all x ∈ X , the application

θ ∈ Θ → ∂ 2 ∂θ j ∂θ k (w log f 1 )(x, θ) is continuous in θ.
Here is an assumption concerning the application w:

Assumption 3.5. (Dominance)

There exist some convex subset Θ ⊂ Θ such that θ is in the interior of Θ , and an application κ 2 from X to R that does not depend on θ, such that, for all 1 ≤ j, k ≤ d, θ in Θ and for almost all x ∈ X ,

∂ 2 ∂θ j ∂θ k (w log f 1 )(x, θ) ≤ κ 2 (x) with E H 0 [κ 2 (X 1 )] < ∞.
For the same reasons as for Assumption 3.2, the essential point here is the integrability of the dominating function κ 2 .

Definition of the Weighted Likelihood Test (WLT)

We now define the test statistic. First we introduce Λ n := (Λ s,n ) s∈[s, 1-s] , the underlying càd-làg stochastic process of the detection statistic:

Λ s,n := log   sn i=1 f 1 (X i , λ0,s,1 ) w(X i , θ0,s ) n j= sn +1 f 1 (X j , λs,1,1 ) w(X j , θs,1 ) n i=1 f 1 (X i , λ1 ) w(X i , θ)   (3.5) = sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) + n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 ) - n i=1 w(X i , θ) log f 1 (X i , λ1 ).
Note that, for an observation X i with distribution parameter θ, the weight w(X i , θ) is the probability that X i comes from the first component. Conditionally to this fact, the log-likelihood of X i is given by log f 1 (X i , λ 1 ). Thus the expression w(X i , θ) log f 1 (X i , λ 1 ) in Λ s,n somehow reflects the contribution of the first component in the likelihood of X i . As a consequence, the response of the statistic is magnified when a change occurs in the first component.

In addition, the process Λ n is defined on [s, 1 -s] in order to ensure that, for n large enough, an asymptotic behavior can be obtained for each sum. The test statistic is then defined by

S n := sup s∈[s,1-s] Λ s,n . (3.6)
We refer to this test as the WLT (Weighted Likelihood Test). The test procedure states that there is no change-point for the first component (i.e. we accept H 0 ) when S n is smaller than some threshold L α chosen with respect to a false alarm constraint. This false alarm can be obtained from the probability of false alarm α ∈ (0, 1) such that L α is the α-percentile of the limit distribution of S n when H 0 holds.

The main purpose of this chapter is to derive the limit distribution of S n when H 0 holds. We follow the work of [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF] and look at Λ s,n as a stochastic process. In the next section, we start by a focus on the properties of the estimators θ0,s and θs,1 .

Then we derive the limit distribution of the detection statistic S n in Theorem 3.17.

Notations

We denote by D θ (.), D 2 θ (.) and D 3 θ (.) respectively the vector, matrix and hypermatrix differential operators in θ ∈ R d . For θ, θ ∈ R d , we denote by [θ, θ] the segment [θ, θ] For a given matrix M , its i-th line is denoted by M i,. and its j-th column is denoted by M .,j . The same logic is used for hypermatrices: for a given J ∈ R d×d×d and 1 ≤ i ≤ d, we denote by J i,.,. := (J i,j,k, ) 1≤j,k≤d the d × d-matrix obtained from J. For a given matrix M , we denote (M -1 )

:= {λθ + (1 -λ) θ, λ ∈ [0, 1]}.
T by M -1 T .

For d 1 , d 2 > 0, we endow the space

F = R d 1 × gl d 2 (R) with the norm . 2 defined for the pair x = (y, Z) ∈ R d 1 × gl d 2 (R) by x 2 2 := d 1 i=1 y 2 i + 1≤i,j≤d 2 Z 2 i,j .
The norm used for y in R d 1 is the Euclidean norm. The norm used for Z ∈ gl d 2 (R) is the entrywise 2-norm, also known as the Frobenius norm.

The space of càd-làg functions, defined on some interval E ⊆ [0, 1] with values in F , is denoted by D(E, F ) and referred as the Skorokhod metric space with the Skorokhod metric d D(E,F ) (., .) defined for ζ 1 and ζ 2 in D(E, F ) by

d D(E,F ) (ζ 1 , ζ 2 ) := inf τ ∈Γ E max sup s∈E |τ (s) -s|, sup s∈E ζ 1 (s) -ζ 2 • τ (s) 2 (3.7)
with Γ E the set of continuous and strictly increasing bijections from E to itself. For some arguments, we also consider the norm .

2 on D(E, F ) defined for ζ ∈ D(E, F ) by ζ 2 := sup s∈E ζ(s) 2 .
Refer to Section 12 in [START_REF] Billingsley | Convergence of probability measures[END_REF] for a detailed construction of the Skorokhod topology and the space D(E, F ).

If Σ 2 is a covariance matrix, then it is positive semi-definite, and Σ will denote the unique positive semi-definite square root of Σ 2 .

A glossary of notations is given in Appendix 3.9.

Limit distribution of the test statistic

In this section we shall determine the limit distribution of the process Λ n as n tends to infinity. Let us consider the constant

u := E H 0 [D θ (w log f 1 )(X 1 , θ)] ∈ R d , ( 3.8) 
where the application w log f 1 is defined in (3.4). By Assumption 3.5, u is finite. We indicate that u is not null in general: we numerically established that u is strictly positive for some examples of Gaussian mixtures 9 . The càd-làg real-valued process Λ n defined on [s, 1 -s] can be decomposed as follows:

Λ s,n = Q 1 s,n + Q 2 s,n -Q 1 1,n , s ∈ [s, 1 -s], (3.9) 
9. Using the Strong Law of Large Numbers, a simple numerical simulation for a Gaussian mixture with 3 components shows that, in general, the constant u is not null. See Appendix 3.8.1 for an illustration.

where 1-s] are càd-làg real-valued processes defined by

Q 1 n = (Q 1 s,n ) s∈[s,1] and Q 2 n = (Q 2 s,n ) s∈[s,
Q 1 s,n := sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 sn i=1 D θ (log f )(X i , θ), s ∈ [s, 1], Q 2 s,n := n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 n i= sn +1 D θ (log f )(X i , θ), s ∈ [s, 1 -s]. (3.10) 
The process Q 1 n is defined on [s, 1] in order to include the last term of Λ s,n in (3.9) while Q 2 n needs only to be defined on [s, 1 -s]. In addition, we remark that the random processes (Q 1 s,n ) s∈[s, 1-s] and Q 2 n have a similar structure that differs only by the sub-sample considered. Therefore, in the following, we study the limit of Q 1 n and simply extends the arguments to obtain the limit of Λ n . However, before that, we need to establish some basic properties for the estimators θ, θ0,s and θs,1 defined in Section 3.2.

The estimators θ0,s and θs,1

Before proving the main result, we start with some preliminaries concerning the estimators θ0,s and θs,1 .

From Assumption 3.4, we already know that the estimator θ converges almost surely to θ when n → ∞. With the following result inspired from Proposition 3.3 in Dehling et al. (2014), we can extend this convergence property to θ0,s , s ∈ [s, 1], and to θs,1 , 1], thus, for any n ≥ N , ns ≥ N and, by the choice of N , u sn -u ≤ . The result follows.

s ∈ [s, 1 -s]. Lemma 3.3. If a sequence (u n ) n≥1 ⊂ R d converges to some finite limit u, then the sequence u sn converges to u, uniformly in s ∈ [s, 1]. Proof. Fix > 0. Let N such that for all n ≥ N , |u n -u| ≤ and set N := N s + 1. Then, for any n ≥ N , [s, 1] ⊂ [ N n ,
Corollary 3.4. If a sequence (u n ) n≥1 ⊂ R d converges to some finite limit u, then the sequence u sn converges to u, uniformly in s ∈ [s, 1 -s].
Reasoning ω by ω, this result implies directly that the almost sure convergence of θ0,s and θs,1 is ω-wise uniform in s. This will represent a key property for the main result. Proposition 3.5. Under H 0 and Assumptions 3. 1-3.4, the estimator θ0,s (resp. θs,1 ) converges almost surely to θ, uniformly in s ∈

[s, 1] (resp. in s ∈ [s, 1 -s]).
For n large enough, it is possible to obtain an explicit form for θ0,s . Indeed, the estimator θ is a sequence of solutions of the likelihood equations D θ L(X, θ) = 0. Therefore, we can follow the ideas from the proof of the usual limit theorems for maximum likelihood estimators (see e.g. Theorem 1.5).

Corollary 3.6. Under H 0 and Assumptions 3. 1-3.4, almost surely, the estimator θ exists for n large enough. Moreover, for almost all ω ∈ Ω, we can find some N (ω) ≥ 1 that does not depend on s ∈ [s, 1 -s] such that, for all n ≥ N (ω), the three estimators θ, θ0,s and θs,1 are respectively the unique solutions of the likelihood equations

D θ L(X, θ) = 0, D θ L((X 1 , . . . , X sn ), θ) = 0, and D θ L((X sn +1 , . . . , X n ), θ) = 0. (3.11)
Proof. The existence of θ follows from the almost sure convergence. Indeed, by assumption, Θ is an open convex subset of R d in which θ 0 belongs. Then, we obtain that, for n large enough, θ also belongs to this open convex set. The proof for the three estimators is a direct application of Proposition 3.5.

Remark 3.7. It is clear that the number N in Corollary 3.6 depends on ω. However, since, in this subsection, we always work ω by ω on the set of full probability where the three estimators converge, this will not pose any problem.

In the sequel, the expression "for n large enough" will always implicitly imply that θ belongs to Θ and solves (3.11). In particular, due to the regularity Assumption 3.2, the following Taylor expansion is well defined as soon as θ belongs to Θ: for 1

≤ j ≤ d, D θ L(X, θ) j =D θ L(X, θ) j + d k=1 D 2 θ L(X, θ) j,k θk -θ k + 1 2 d k=1 d l=1 θl -θ l D 3 θ L(X, θ ) j,k,l θk -θ k (3.12)
for some θ on the segment [ θ, θ] ⊂ R d .

Set

 := - 1 n n i=1 D 2 θ (log f )(X i , θ) + 1 2 d l=1 θl -θ l D 3 θ (log f )(X i , θ ) l,.,. . (3.13) 
Because of (3.11), the left hand side of (3.12) vanishes. Thus, replacing L(., θ) by its explicit expression, we get the equality between the two vectors

 θ -θ = 1 n n i=1 D θ (log f )(X i , θ).
The limit of Â, when n tends to infinity, is given by the next Proposition. We follow the standard proof of the usual limit theorems for maximum likelihood estimators (e.g. Theorem 1.5) and extend it to the almost sure convergence. Proof. Assumption 3.2 ensures that, for all 1 ≤ j, k, l ≤ d and almost all x ∈ X , |D 3 θ L(x, θ) j,k,l | is bounded by κ 1 (x), uniformly in θ ∈ Θ. Thus, from the Strong Law of Large Numbers, for any θ ∈ Θ and all 1 ≤ j, k, l ≤ d,

1 n n i=1 D 3 θ (log f )(X i , θ) j,k,l ≤ 1 n n i=1 κ 1 (X i ) a.s. ---→ n→∞ E H 0 [κ 1 (X 1 )] < ∞.
Since, by Assumption 3.4, θ a.s.

---→ n→∞ θ, it follows that

1 2n n i=1 d l=1 θl -θ l D 3 θ (log f )(X i , θ ) l,.,.
a.s.

---→ n→∞ 0.

Applying once more the Strong Law of Large Numbers and using Assumption 3.3, we get, for all 1 ≤ j, k ≤ d,

1 n n i=1 D 2 θ (log f )(X i , θ) j,k a.s. ---→ n→∞ E H 0 D 2 θ (log f )(X 1 , θ) = -I j,k .
In conclusion, with (3.13), Â a.s.

---→ n→∞ I. Corollary 3.9. Almost surely, the inverse matrix Â-1 exists for large n, and converges to the inverse Fisher Information Matrix I -1 as n → ∞.

Proof. It follows from Proposition 3.8 that det( Â) a.s.

---→ n→∞ det(I). Now recall that, by Assumption 3.3, I is definite positive and, in particular det(I) > 0. It follows that, for n large enough, det( Â) = 0 and Â-1 exists. The result follows.

In the same way as above, for any s ∈ [s, 1], there exists some point θ 0,s on the segment θ0,s , θ , such that the matrix

Â0,s := - 1 sn sn i=1 D 2 θ (log f )(X i , θ) + 1 2 d l=1 θ0,s;l -θ l D 3 θ (log f )(X i , θ 0,s ) l,.,. (3.14) satisfies Â0,s ( θ0,s -θ) = 1 sn sn i=1 D θ (log f )(X i , θ). (3.15)
And, for any s ∈ [s, 1 -s], there exists some point θ s,1 on the segment θs,1 , θ , such that the matrix

Âs,1 := - 1 n -sn n i= sn +1 D 2 θ (log f )(X i , θ) + 1 2 d l=1 θs,1;l -θ l D 3 θ (log f )(X i , θ s,1 ) l,.,. satisfies Âs,1 ( θs,1 -θ) = 1 n -sn n i= sn +1 D θ (log f )(X i , θ).
To sum up, the following proposition provides an explicit expression for θ0,s and θs,1 and the convergence of Â0,s and Âs,1 . Proposition 3.10. Under H 0 and Assumptions 3. 1-3.4, almost surely, for n large enough, for all s ∈ [s, 1], the matrix Â0,s is invertible and (3.16)

θ0,s -θ = Â-1 0,s 1 sn sn i=1 D θ (log f )(X i , θ),
with E H 0 [D θ (log f )(X 1 , θ)] = 0
, and where Â-1 0,s converges almost surely to

I -1 , uniformly in s ∈ [s, 1],
for all s ∈ [s, 1 -s] the matrix Âs,1 is invertible and andwhere Â-1 s,1 converges almost surely to

θs,1 -θ = Â-1 s,1 1 n -sn n i= sn +1 D θ (log f )(X i , θ) with E H 0 [D θ (log f )(X 1 , θ)] = 0,
I -1 , uniformly in s ∈ [s, 1 -s].
Proof. For n large enough, Â-1 0,s is well defined and Equation (3.16) follows directly from (3.15). Assumption 3.2 guarantees that the expectation

E H 0 [D θ (log f )(X 1 , θ)] vanishes.
Finally we use Corollary 3.9 and Lemma 3.3 to obtain the almost sure convergence of Â-1 0,s to I -1 , uniformly in s ∈ [s, 1]. The proof of the analogue result for θs,1 and Âs,1 is the same.

The explicit expression obtained for θ0,s -θ and θs,1 -θ already points out the direction of the next steps: since Â-1 0,s and Â-1 s,1 converge almost surely to I -1 , uniformly in s, and with E H 0 [D θ (log f )(X 1 , θ)] = 0, we will be able to establish Donsker-type result for θ0,sθ and θs,1 -θ. This can be used to derive a Donsker-type result for Q 1 s,n and Q 2 s,n .

We will need the following variant of Glivenko-Cantelli's Theorem that exploits the almost sure convergence of θ0,s and θs,1 to θ. 2. we can find some application X x → κ 3 (x), such that, for all

Lemma 3.11. Consider an application

h : (x, θ) ∈ X × Θ → h(x, θ) ∈ R and a convex subset O of Θ, such that θ is in the interior of O and 1. for almost all x ∈ X , the application θ → h(x, θ) is continuous on O,
θ in O, |h(x, θ)| ≤ κ 3 (x) and E H 0 [|κ 3 (X 1 )|] < ∞.
Then, under H 0 and Assumptions 3. 1-3.4, one has 

E H 0 [|h(X 1 , θ)|] < ∞ and for θ 0,s ∈ [ θ0,s , θ], 1 sn sn i=1 h(X i , θ 0,s ) a.s. ---→ n→∞ E H 0 [h(X 1 , θ)], uniformly in s ∈ [s, 1], for θ s,1 ∈ [ θs,1 , θ], 1 n-sn n i= sn +1 h(X i , θ s,1 ) a.s. ---→ n→∞ E H 0 [h(X 1 , θ)], uniformly in s ∈ [s, 1 -s].
Proof. We only show the case θ

0,s ∈ [ θ0,s , θ], s ∈ [s, 1]. By the second condition of the lemma, θ ∈ O implies that |h(x, θ)| ≤ κ 3 (x) for all x ∈ X , thus E H 0 [|h(X 1 , θ)|] ≤ E H 0 [|κ 3 (X 1 )|] < ∞.
Let us fix some > 0 small enough so that, with B(θ, ) the closed ball centered in θ with radius , B(θ, ) ∩ Θ is strictly contained in the subset O. This is possible since, from the first condition of the lemma, O is a convex subset of Θ such that θ is in the interior of O. From Proposition 3.5, θ0,s a.s.

---→ n→∞ θ, uniformly in s ∈ [s, 1]. Therefore, almost surely, we can find some N ≥ 1 such that for all n ≥ N and for all s ∈ [s, 1], θ0,s ∈ B(θ, ) ∩ Θ. Since θ 0,s is a point on the segment [ θ0,s , θ], it also belongs to B(θ, ) ∩ Θ. It follows that

1 sn sn i=1 h(X i , θ 0,s ) -E H 0 [h(X 1 , θ)] ≤ sup θ∈B(θ, )∩Θ 1 sn sn i=1 h(X i , θ) -E H 0 [h(X 1 , θ)] + E H 0 h(X 1 , θ 0,s ) -E H 0 [h(X 1 , θ)] .
(3.17) With conditions 1. and 2., thanks to the dominated convergence theorem, the appli- 1] and, for all n ≥ 1, θ 0,s ∈ [ θ0,s , θ], we have also θ 0,s a.s.

cation θ → E H 0 [h(X 1 , θ)] is continuous on O. Since θ ∈ O, θ0,s a.s. ---→ n→∞ θ, uniformly in s ∈ [s,
---→ n→∞ θ. Therefore the second term of the right hand side of (3.17) converges almost surely to 0, uniformly in s ∈ [s, 1], when n → ∞.

To conclude the proof, we show that the first term also converges almost surely to 0, uniformly in s ∈ [s, 1], when n → ∞. For all fixed θ ∈ B(θ, ) ∩ Θ, the following convergence is an application of the Strong Law of Large Numbers:

Y n (θ) := 1 n n i=1 h(X i , θ) -E H 0 [h(X 1 , θ)] a.s.
---→ n→∞ 0.

We deduce from assumptions 1. and 2. that θ → Y n (θ) is continuous. Since B(θ, ) ∩ Θ is compact, we get the convergence of the supremum:

sup θ∈B(θ, )∩Θ |Y n (θ)| a.s.
---→ n→∞ 0.

And finally we can conclude by Lemma 3.3. This Lemma concludes the collection of properties that are required for the estimators θ0,s and θs,1 . In the following section, we focus on the process Q 1 n and its limit distribution.

Limit distribution of Q 1 n

The process Q 1 n is the first of the three terms defining the process Λ n in (3.9). Let us recall here its expression: for s ∈ [s, 1],

Q 1 s,n := sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 sn i=1 D θ (log f )(X i , θ), with u := E H 0 [D θ (w log f 1 )(X 1 , θ)].
We want to derive its limit distribution with a Donsker-type result. In the following, our purpose is to reorganize the terms so that the process Q 1 s,n is somehow the product of a matrix that converges almost surely uniformly in s ∈ [s, 1] to some constant and of a vector that converges weakly to some random process. With the help of the Extended Slutsky's Theorem 1.13, one can target to derive the limit process of Q 1 s,n . The difficulty here is that the random variable Q 1 s,n is not a sum of independent terms, because of the presence of the estimator θ0,s , which depends itself on the whole sub-sample (X 1 , X 2 , . . . , X sn ). Therefore, with Proposition 3.10, it seems logical to develop

θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ) → w(x, θ) log f 1 (x, λ 1 )
around θ = (p 1 , . . . , p m-1 , λ 1 , . . . , λ m ). This is possible by Assumption 3.5 and because, by Proposition 3.5, θ0,s converges almost surely to θ, uniformly in s ∈ [s, 1], as n → ∞.

It follows that, with a Taylor-Lagrange decomposition10 , almost surely, we can find some N ≥ 1 (depending on ω) and some θ 0,s ∈ [ θ0,s , θ] (depending on ω, n and s), such that, for n ≥ N and for s ∈ [s, 1],

sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) = sn i=1 D θ (w log f 1 )(X i , θ) T ( θ0,s -θ) + ( θ0,s -θ) T D 2 θ (w log f 1 )(X i , θ 0,s )( θ0,s -θ) .
So far, we can rewrite Q 1 s,n as follows

Q 1 s,n =   sn i=1 D θ (w log f 1 )(X i , θ) T   ( θ0,s -θ) + ( θ0,s -θ) T   sn i=1 D 2 θ (w log f 1 )(X i , θ 0,s )   ( θ0,s -θ) -u T I -1 sn i=1 D θ (log f )(X i , θ).
From Assumption 3.5, we know that

E H 0 [|D θ (w log f 1 )(X 1 , θ)|] < ∞.
Thus we can center the right side sum of the first term by u:

Q 1 s,n =   sn i=1 D θ (w log f 1 )(X i , θ) T -u T   ( θ0,s -θ) + ( θ0,s -θ) T   sn i=1 D 2 θ (w log f 1 )(X i , θ 0,s )   ( θ0,s -θ) + sn u T ( θ0,s -θ) -u T I -1 sn i=1 D θ (log f )(X i , θ).
Choosing n large enough, Proposition 3.10 provides us an explicit expression of θ0,s -θ, which permits us to rewrite Q 1 s,n as follows:

Q 1 s,n =   1 sn sn i=1 D θ (w log f 1 )(X i , θ) T -u T   sn Â-1 0,s   1 sn sn i=1 D θ (log f )(X i , θ)   +   1 sn sn i=1 D θ (log f )(X i , θ) T   sn Â-1 0,s T   1 sn sn i=1 D 2 θ (w log f 1 )(X i , θ 0,s )   Â-1 0,s   1 sn sn i=1 D θ (log f )(X i , θ)   + u T Â-1 0,s -I -1 sn   1 sn sn i=1 D θ (log f )(X i , θ)   . (3.18)
Remark that, in this reformulation of Q 1 s,n , we can recognize several sums of centered i.i.d random variables which, multiplied by √ n, can be treated by Donsker's Theorem and produce at the limit a multi-dimensional Brownian motion. Further, there are the variables Â-1 0,s , which, by Proposition 3.10, converge a.s. to the inverse Fischer information I -1 . The last line of (3.18), decomposing sn into √ n sn n √ n, makes appear the term √ n Â-1 0,s -I -1 . Its limit, when n tends to ∞ and the link with the other components of Q 1 s,n have to be analyzed separately, before we combine all these terms to compute the limit of the process (Q 1 s,n ) s∈ [s,1] in terms of a transformation of a Brownian motion.

Firstly, for all s ∈ [s, 1], we define the triple ξ0,s := (ι 0,s , û0,su, Î0,s )

∈ (R d ) 2 × gl d (R) by ι0,s := 1 sn sn i=1 D θ (log f )(X i , θ) (3.19) û0,s := 1 sn sn i=1 D θ (w log f 1 )(X i , θ) Î0,s := - 1 sn sn i=1 D 2 θ (log f )(X i , θ) which allows us to rewrite Q 1 s,n as Q 1 s,n = sn n √ n(û 0,s -u) T Â-1 0,s √ nι 0,s + sn n √ nι T 0,s Â-1 0,s T   1 sn sn i=1 D 2 θ (w log f 1 )(X i , θ 0,s )   Â-1 0,s √ nι 0,s + sn n u T √ n Â-1 0,s -I -1 √ nι 0,s . (3.20)
Another crucial ingredient of our following discussion is the covariance matrix Σ 2 ∈ gl 2d+d 2 (R) under H 0 of the triple

D θ (log f )(X 1 , θ), D θ (w log f 1 )(X 1 , θ) -u, -D 2 θ (log f )(X 1 , θ) -I
reorganized in a 2d + d 2 -dimensional real vector. As a covariance matrix, Σ 2 is positive semi-definite. Then Σ will denote the unique positive semi-definite square root of Σ 2 .

Lemma 3.12. Set ξ := (0, 0, converges weakly in the Skorokhod metric space of càd-làg paths

I) ∈ (R d ) 2 × GL d (R). (3.21) Under H 0 , for all s ∈ [s, 1], E H 0 [ ξ0,s ] = ξ,
D [s,1] := D([s, 1], (R d ) 2 × gl d (R)), as follows √ n ξ0,s -ξ s∈[s,1] D ---→ n→∞ 1 s ΣW s s∈[s,1]
,

where

W := (W s ) s∈[0,1] is a standard 2d + d 2 -dimensional Brownian motion and ΣW s is reorganized as a triple in (R d ) 2 × gl d (R).
Proof. Under H 0 , the random vector ξ0,s is the sum of independent identically distributed random variables. In addition, we already know that from Assumptions 3.2 and 3.3,

E H 0 [D θ (log f )(X 1 , θ)] = 0 and E H 0 [-D 2 θ (log f )(X 1 , θ)] = I, by the expression for u in (3.8), E H 0 [D θ (w log f 1 )(X 1 , θ)] = u.
Therefore E H 0 [ ξ0,s ] = ξ, and the uniform a.s. convergence of the random variables ξ0,s to ξ is a direct consequence of Lemma 3.11. The second part of the lemma follows then from Donsker's Theorem 1.10 and the Extended Slutsky's Theorem 1.13.

The next Lemma will help us to handle the term ( Â-1 0,s -I -1 ) which appears in the last line of the expression (3.20) of Q 1 0,s .

To this aim we introduce the hypermatrix

J := E H 0 D 3 θ (log f )(X 1 , θ) ∈ R d×d×d . (3.22)
Lemma 3.13. Almost surely, for large n (depending on ω), the variable Â0,s can be written as Â0,s = Î0,s -1 2

d l=1 ιT 0,s Â-1 0,s T .,l ( Ĵ0,s ) .,.,l , (3.23) 
for all s ∈ [s, 1], where Ĵ0,s is the hypermatrix defined by

Ĵ0,s := 1 sn sn i=1 D 3 θ (log f )(X i , θ 0,s ).
In addition, under H 0 , almost surely, Ĵ0,s converges to the hypermatrix J , uniformly in s ∈ [s, 1].

Proof. Recall that the explicit expression of Â0,s in (3.14) depends itself on θ0,sθ, which, by Proposition 3.10, almost surely, can once more be replaced by

Â-1 0,s 1 sn sn i=1 D θ (log f )(X i , θ)
for n large enough. This gives:

Â0,s =   - 1 sn sn i=1 D 2 θ (log f )(X i , θ)   - 1 2 d l=1     1 sn sn i=1 D θ (log f )(X i , θ) T   Â-1 0,s T .,l     1 sn sn i=1 D 3 θ (log f )(X i , θ 0,s ) l,.,.   .
The result given in (3.23) follows. With Assumption 3.2, the convergence of Ĵ0,s is a direct application of Lemma 3.11, taking the parameter set Θ as O.

Set now, for all s ∈ [s, 1] and all n ≥ 1, ξ 0,s := (ι 0,s , û0,su, Â-1 0,s ). (3.24) It is easy to see with Proposition 3.10 that, when n tends to infinity, ξ 0,s converges a.s. to ξ := (0, 0, I -1 ).

The aim of the next theorem is to establish a Donsker-type result for the process ( ξ 0,s ) s∈ [s,1] .

Theorem 3.14. Under H 0 , the process √ n( ξ 0,s -ξ ) s∈ [s,1] converges weakly to the process ( 1s g(ΣW s )) s∈ [s,1] in D [s,1] , where g is the linear map defined for (ι, u, I)

∈ (R d ) 2 × gl d (R) by g(ι, u, I) := ι, u, -I -1 I - 1 2 d l=1 ι T I -1 T .,l J .,.,l I -1 , (3.25)
and ΣW s is reorganized as a triple in (R d ) 2 × gl d (R).

Proof. (i) Recall that, by Lemma 3.12, √ n ξ0,sξ s∈ [s,1] converges weakly to ( 

, I -1 , J ) s∈[s,1] in D([s, 1], (R d ) 2 × gl d (R) × GL d (R) × R d×d×d ).
(ii) Using Lemma 3.13, almost surely for n large enough (i.e. n depends on ω but not on s), we can write ξ 0,s = ϕ • g( ξ0,s ; Â-1 0,s , Ĵ0,s ), s ∈ [s, 1], where, for all (ι, u, I; A, J) Remark that g(0, u, I; A, J) = (0, u, I) for all (u, I; A, J) ∈ R d × (gl d (R)) 2 × R d×d×d . In particular, ξ = g(ξ; Â-1 0,s , Ĵ0,s ) because ξ = (0, 0, I) by definition in (3.21). Since g(ι, u, I; A, J) is linear in (ι, u, I), then the following equality holds for each s ∈ [s, 1]:

∈ (R d ) 2 × (gl d (R)) 2 × R d×d×d
√ n(g( ξ0,s ; Â-1 0,s , Ĵ0,s ) -ξ) = g( √ n( ξ0,sξ), Â-1 0,s , Ĵ0,s ).

By (i) and the Continuous Mapping Theorem 1.11, the process √ n(g( ξ0,s ; Â-1 0,s , Ĵ0,s ) -ξ) s∈ [s,1] converges weakly to g( 1 s ΣW s ; I -1 , J ) s∈ [s,1] .

(iii) By Lemma 3.12, the sequence of random variables ξ0,s converges a.s. to ξ, uniformly in s ∈ [s, 1]. With (i), the triple ( ξ0,s , Â-1 0,s , Ĵ0,s ) also converges a.s. to (ξ, I -1 , J ), uniformly in s ∈ [s, 1]. Then, again by Theorem 1.11, g( ξ0,s ; Â-1 0,s , Ĵ0,s ) converges a.s. to ξ, uniformly in s ∈ [s, 1].

(iv) Remark that, from Proposition 3.10 and Lemma 3.13, g( ξ0,s ; Â-1 0,s , Ĵ0,s ) is well defined when Â0,s is invertible. That is the case almost surely for n large enough, uniformly in s ∈ [s, 1]: i.e. n depends on ω but not on s.

From Assumption 3.3, I is positive definite with finite components. So I -1 is also positive definite and 0 < I -1 -1 2 < ∞. Fix some 0 < r < I -1 -1 2 such that the closed ball B(ξ, r) centered in ξ with radius r is included in (R d ) Then, almost surely, √ n( ξ 0,s -g( ξ0,s ; Â-1 0,s , Ĵ0,s )) is equal to 0 for n large enough, uniformly in s ∈ [s, 1]. We denote by ξ • the constant process such that ξ s = ξ for all s ∈ [s, 1]. Therefore, by the conclusion from (ii) and Theorems 1.13 and 1.11,

√ n( ξ 0,. -ξ • ) = √ n(g( ξ0,s ; Â-1 0,s , Ĵ0,s ) s∈[s,1] -ξ • ) + √ n( ξ 0,. -g( ξ0,s ; Â-1 0,s , Ĵ0,s ) s∈[s,1] )
converges weakly to g( 

(3.29) = √ n(Φ( ξ 0,. ) -Φ(ξ • )) + √ n(Φ(g( ξ0,s ; Â-1 0,s , Ĵ0,s ) s∈[s,1] ) -Φ( ξ 0,. )).
With (iii) and (iv), almost surely, √ n(ϕ(g( ξ0,s ; Â-1 0,s , Ĵ0,s )) -ϕ( ξ 0,s )) is equal to 0 for n large enough, uniformly in s ∈ [s, 1]. Once more, by Theorems 1.13 and 1.11, both processes √ n( ξ 0,s -ξ ) s∈ [s,1] and √ n(Φ( ξ 0,. ) -Φ(ξ • )) have the same limit distribution.

The remainder of the proof is based on Corollary 1.16, a functional delta method in the Skorokhod metric space. This result, applied to the map Φ, would conclude the proof and provide the limit distribution of √ n(Φ( ξ 0,. ) -Φ(ξ • )).

The first condition of Corollary 1.16 holds by (iv) since √ n( ξ 0,. -ξ • ) converges weakly to g( 1s ΣW s ; I -1 , J ) s∈ [s,1] .

To conclude the proof, it now sufficient to show that the second condition of Corollary 1.16 also holds. For that purpose, we start by noticing that, by (iv), for all n ≥ 1, the

process √ n( ξ 0,. -ξ • ) is in the closed ball B(0, r √ n) := {ζ ∈ D [s,1] , ζ 2 ≤ r √ n},
where 0 is the null function on [s, 1]. Let us consider the sequence of applications γ n defined for

ζ n in B(0, r √ n) ⊂ D [s,1] by γ n (ζ n ) := √ n Φ ξ • + 1 √ n ζ n -Φ(ξ • ) .
Further denote the differential of Φ at ξ • by DΦ. The differential is a function from

D [s,1] onto itself, defined for ζ = (ζ 1 , ζ 2 , ζ 3 ) in D [s,1] by 11 DΦ(ζ) s := (ζ 1 (s), ζ 2 (s), -I -1 ζ 3 (s)I -1 ), s ∈ [s, 1].
It is then sufficient to show that the convergence of every sequence

ζ n ∈ B(0, r √ n) to ζ ∈ D [s,1] implies the convergence of γ n (ζ n ) to DΦ(ζ).
Let us consider some sequence

ζ n = (ζ 1,n , ζ 2,n , ζ 3,n ) ∈ B(0, r √ n) and some path ζ = (ζ 1 , ζ 2 , ζ 3 ) ∈ D [s,1] such that d D [s,1] (ζ n , ζ) → 0 as n → ∞.
From the definition of the Skorokhod metric in (3.7), this means 12 that there exists some sequence of strictly increasing bijections τ * n from [s, 1] onto itself such that, as n → ∞,

sup s∈[s,1] |τ * n (s) -s| → 0 and sup s∈[s,1] ζ n (τ * n (s)) -ζ(s) 2 → 0. (3.30)
To conclude the proof, we need only to show that sup s γ n (ζ n (τ * n (.)) s ) -DΦ(ζ) s 2 → 0. First, we remark that

γ n (ζ n (τ * n (s)) s∈[s,1] ) = ζ 1,n (τ * n (s)), ζ 2,n (τ * n (s)), √ n I + ζ 3,n (τ * n (s)) √ n -1 -I -1 s∈[s,1]
and s,1] . By (3.30) and the definition of . 2 in Section 3.2.3, it is sufficient to show that sup

DΦ(ζ) = (ζ 1 (s), ζ 2 (s), -I -1 ζ 3 (s)I -1 ) s∈[
s ζ 3,n (τ * n (s)) -ζ 3 (s) 2 → 0 implies sup s √ n   I + ζ 3,n (τ * n (s)) √ n -1 -I -1   + I -1 ζ 3 (s)I -1 2 → 0. Because τ * n is a bijection from [s, 1] onto itself and ζ n = (ζ 1,n , ζ 2,n , ζ 3,n ) is in B(0, r √ n), we obtain that, for all s ∈ [s, 1] and n ≥ 1, the random variable ζ 3,n (τ * n (s)) √ n
is in the closed ball B(0, r). In addition, we chose r such that I -1 2 < 1/r. Because the Frobenius norm is submultiplicative 13 , it follows that

-I -1 ζ 3,n (τ * n (s)) √ n 2 < 1.
11. We extend here the well known differential of the inversion of matrices given in Theorem 1.17. 12. See Section 12 in [START_REF] Billingsley | Convergence of probability measures[END_REF] for more details on the Skorokhod topology. 13. This property is a consequence of the Cauchy-Schwarz inequality. See e.g. [START_REF] Trefethen | Numerical linear algebra[END_REF], p.23.

Therefore, using Theorem 1.18, we can expand the term

I + ζ 3,n (τ * n (s)) √ n -1
as a Neumann series. We obtain

I + ζ 3,n (τ * n (s)) √ n -1 = Id d + I -1 ζ 3,n (τ * n (s)) √ n -1 I -1 =   k≥0 (-1) k I -k ζ 3,n (τ * n (s)) √ n k   I -1 .
For all s ∈ [s, 1] and n ≥ 1,

√ n I + ζ 3,n (τ * n (s)) √ n -1 -I -1 + I -1 ζ 3 (s)I -1 = √ n   k≥2 (-1) k I -k ζ 3,n (τ * n (s)) √ n k   I -1 -I -1 ζ 3,n (τ * n (s)) -ζ 3 (s) I -1 .
The result follows from the fact that sup .31) We already know that the constant I -1 2 is finite. From Lemma 12.1 in [START_REF] Billingsley | Convergence of probability measures[END_REF],

s ζ 3,n (τ * n (s)) -ζ 3 (s) 2 → 0 and sup s √ n   k≥2 (-1) k I -k ζ 3,n (τ * n (s)) √ n k   I -1 2 ≤ 1 √ n I -1 3 2 sup s ζ 3,n (τ * n (s)) 2 2 k≥0 I -1 2 √ n sup s ζ 3,n (τ * n (s)) 2 k . ( 3 
ζ 3 2 is a finite constant since ζ is a càd-làg process with finite values in D [s,1] . It follows that sup s ζ 3,n (τ * n (s)) 2 ≤ ζ 3 2 + sup s ζ 3,n (τ * n (s)) -ζ 3 (s) 2 converges to ζ 3 2
and, for n large enough, the series above can be dominated by a convergent geometric series. Then (3.31) converges to 0 and the result follows.

The main theorem states that the process Q 1 n converges to a quadratic form of the Brownian motion W introduced in Theorem 3.14. For (ι, u, I; A, J) ∈ (R d ) 2 ×(gl d (R)) 3 , we set first: q(ι, u, I; A, J) := u T Aι + ι T A T JAι + u T Iι ∈ R, (3.32) where we recall the vector u = E H 0 [D θ (w log f 1 )(X 1 , θ)] defined in (3.8). We also consider the application q defined as follows:

q(z) := q(g(Σz); (3.33) where g is defined by (3.25), Σz is reorganized as a triple in (R d ) 2 × gl d (R). Further U is the matrix defined by

I -1 , U ), z ∈ R 2d+d 2 ,
U := E H 0 D 2 θ (w log f 1 )(X 1 , θ) . (3.34) Remark 3.15. The map z ∈ R 2d+d 2 → q(z) is a quadratic form.
Proof. Remark that, for any A and J, the map (ι, u, I) → q(ι, u, I; A, J) is a quadratic form but not a norm. Its unique associated symmetric bilinear form 14 is given by (ι, u, I), (ι , u , I ) → 1 2 q(ι + ι , u + u , I + I ; A, J) -q(ι, u, I; A, J) -q(ι, u, I; A, J) . From Theorem 3.14, we already know that the map g is linear. It follows that the map (z, z ) → 1 2 (q(z + z ) -q(z) -q(z )) = 1 2 q(g(Σ(z + z )); I -1 , U ) -q(g(Σz); I -1 , U ) -q(g(Σz ); I -1 , U ) is symmetric bilinear. The result follows.

14. See for instance Section 41 in O'Meara (2000).

We can now state our main result for Q 1 n . Theorem 3.16. Under H 0 , the process Q 1 n converges weakly as n → ∞ to the process ( 1 s q(W s )) s∈ [s,1] in D([s, 1], R). Proof. For all s ∈ [s, 1] and n large enough, from (3.20), we can reorganize the variable Q 1 s,n as follows

Q 1 s,n = sn n √ n(û 0,s -u) T Â-1 0,s √ nι 0,s + √ nι T 0,s A -1 0,s T Û0,s Â-1 0,s √ nι 0,s + u T √ n Â-1 -I -1 √ nι 0,s = sn n q( √ n( ξ 0,s -ξ ); Â-1 0,s , Û0,s ), (3.35) with Û0,s := 1 sn sn i=1 D 2 θ (w log f 1 )(X i , θ 0,s )
and ξ 0,s = (ι 0,s , û0,su, Â-1 0,s ) from its definition in (3.24). We know from Theorem 3.14 that the process ( √ n( ξ 0,s -ξ )) s∈ [s,1] converges weakly to the process ( 1s g(ΣW s )) s∈ [s,1] . Recall that, by Proposition 3.10, Â-1 0,s converges a.s. to I -1 , uniformly in s ∈ [s, 1]. Further, by Assumption 3.5,Lemma 3.11 converges weakly to the process ( 1 s g(ΣW s ), I -1 , U ) s∈ [s,1] . The map q being continuous, the result follows by the Continuous Mapping Theorem 1.11.

Limit distribution of the test statistic

The limit distribution of Λ n is obtain as an extension of the result in Theorem 3.16 for Q 1 n . In the following Theorem we derive the limit distribution of the test statistic S n . Theorem 3.17. Under H 0 and Assumptions 3. 1-3.5, the test statistic

S n D ---→ n→∞ sup s∈[s,1-s] q(W s -sW 1 )
s (1 -s) where (W s ) s∈ [0,1] is a standard 2d+d 2 -dimensional Brownian motion and the application q is defined in (3.33).

Proof. Recall that from (3.29) and (3.35), for s ∈ [s, 1], Q 1 s,n can be written as follows for s ∈ [s, 1]:

Q 1 s,n = sn n q √ n Φ(g( ξ0,t ; Â-1 0,t , Ĵ0,t ) t∈[s,1] ) -Φ(ξ • ) s ; Â-1 0,s , Û0,s .
We remark from (3.9) that Q 1 s,n and Q 2 s,n have a similar structure and differ only from the fact that Q 1 s,n depends from the sample (X 1 , . . . , X sn ) and the estimator θ0,s , while Q 2 s,n depends from the sample (X sn +1 , . . . , X n ) and the estimator θ1,s . With the definition of ξ0,s in (3.19), we can write Q 2 s,n for s ∈ [s, 1 -s] as follows:

Q 2 s,n = n -sn n q √ n Φ g n n -tn ξ0,1 - tn n -tn ξ0,t; Â-1 t,1 , Ĵt,1 t∈[s,1-s] -Φ((ξ) s∈[s,1-s] ) s ; Â-1 s,1 , Ûs,1
where Φ is the map from the set of càd-làg paths D([s,

1 -s], (R d ) 2 × GL d (R)) onto itself that coincide with Φ on [s, 1 -s], i.e. for s ∈ [s, 1 -s] and x ∈ D([s, 1 -s], (R d ) 2 × GL d (R)), Φ(x) s := ϕ(x s ).
In addition, the random variable Q 1 1,n can be written as:

Q 1 1,n =q √ n ϕ(g( ξ0,1 ; Â-1 , Ĵ0,1 )) -ϕ(ξ) ; Â-1 , Û0,1 .
From the three equations above, the process (Q 1-s] can be seen as a function of the triple process ξ0,s , n n -sn ξ0,1 -sn n -sn ξ0,s , ξ0,1 .36) Recall that, by Lemma 3.12, the process √ n ξ0,sξ s∈ [s,1] converges weakly to (

1 s,n , Q 2 s,n , -Q 1 1,n ) s∈[s,
s∈[s,1-s] . ( 3 
1 s ΣW s ) s∈[s,1] in D [s,1]
. Then a similar central limit result holds for the triple defined in (3.36) and, by a succession of composition of the applications g, Φ and q along with arguments based on the Extended Slutsky's Theorem 1.13 and the Continuous Mapping Theorem 1.11, the result obtained for

Q 1 n is extended to the process (Q 1 s,n , Q 2 s,n , -Q 1 1,n ) s∈[s,1-s] .
To show this, we reuse the arguments of Theorem 3.14. The functional delta method on the Skorokhod metric space is still applicable and the process 1-s] converges weakly to the process

  √ n(Φ(g( ξ0,t ; Â-1 0,t , Ĵ0,t ) t∈[s,1] ) -Φ(ξ • )) s , √ n   Φ   g n n -tn ξ0,1 - tn n -tn ξ0,t ; Â-1 t,1 , Ĵt,1 t∈[s,1-s]   -Φ((ξ) t∈[s,1-s] )   s √ n(ϕ(g( ξ0,1 ; Â-1 , Ĵ0,1 )) -ϕ(ξ))   s∈[s,
g 1 s ΣW s , g 1 1 -s Σ (W 1 -W s ) , g(ΣW 1 )
s∈[s, 1-s] in the Skorokhod metric space of càd-làg functions on [s, 1

-s] with values in (R d ) 2 × GL d (R).
Then, with a simple extension of the arguments of Theorem 3.16, the triple 1-s] converges as follows:

Q 1 s,n , Q 2 s,n , -Q 1 1,n s∈[s,
Q 1 s,n , Q 2 s,n , -Q 1 1,n s∈[s,1-s] D ---→ n→∞ 1 s q (W s ) , 1 1 -s q (W 1 -W s ) , -q(W 1 )
s∈ [s,1-s] .

From Remark 3.15, q is a quadratic form and, from Lemma 3.22,

1 s q (W s ) + 1 1 -s q (W 1 -W s ) -q(W 1 ) = q(W s -sW 1 ) s(1 -s) , s ∈ [s, 1 -s].
The result follows from a last application of Theorem 1.11 to the application that sums the elements of the triple above and takes the supremum over [s, 1 -s].

The limit distribution obtained is somehow similar to the one given by [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF], Corollary 1.1.1, for the i.i.d. case of an unconstrained log-likelihood ratio test. Since q is a quadratic form, q(W s -sW 1 ) s∈[s, 1-s] is also a quadratic form of a Brownian bridge. The introduction of the weights impacts here the dimension of the Brownian bridge that is here 2d + d 2 , while, in the standard case, the Brownian bridge is of dimension d.

Test procedure

In practice, we observe a realization X(ω) for some ω ∈ Ω of the random sample X with n observations. We propose the following test procedure:

1. Compute the estimators θ, ( θ0,s ) s∈[s, 1-s] and ( θs,1 ) s∈[s, 1-s] where s is known from Assumption 3.1. The three estimators are defined in Section 3.2. 2. Compute the process (Λ s,n ) s∈[s, 1-s] and the test statistic S n using their definitions in Equations (3.5) and (3.6). 3. Compute the constants I -1 defined in (3.1), U defined in (3.34), J defined in (3.22) and the covariance matrix Σ defined for Lemma 3.12. This requires additional developments: theoretical computation or numerical approximation. 4. Compute the distribution of sup s∈[s, 1-s] q(Ws-sW 1 )

s (1-s) where W is a standard Brownian motion and q is defined in (3.33). This requires additional development: theoretical computation or numerical approximation. 5. Compute the threshold L α chosen with respect to a false alarm constraint. It can be obtained from the probability of false alarm α ∈ (0, 1) such that L α is the α-percentile of the distribution of sup s∈[s, 1-s] q(Ws-sW 1 )

s (1-s) . We conclude that no change-point occurs if the statistic S n is smaller than the threshold: we should reject H 0 . Since, by definition, the estimators θ0,s , θs,1 and the process Λ s,n are constant piecewise, it is sufficient to estimate them on a finite set of s ∈ [s, 1 -s].

This test focuses on the first component of the mixture. Obviously, by definition of the mixture and of the test itself, this can be applied to any other component. Therefore, in practice, it might be relevant to run a test on each component. Alongside a standard Likelihood Ratio Test that does not focus on a specific component, the set of tests constitutes a useful detection tool for the industry.

In the next section, we suggest an extended version of this test. Numerical applications showed that such an extension increases the detection frequency when a change occurs.

Extension: scaling the contributions in the likelihood ratio (EWLT)

In this section, we introduce an extended version of the test defined in Section 3. w(X i , θs,1 ). (3.37) Remark that, from its definition in (3.5), the log-ratio Λ s,n is the difference of (Q 1 s,n + Q 2 s,n ) and Q 1 1,n . Then, c s,n is the contribution of the sample to the term (Q 1 s,n + Q 2 s,n ), and c 1,n = n i=1 w(X i , θ) is the contribution of the sample to the term Q 1 1,n . Under the null hypothesis, by Lemma 3.11 and the definition of w(., .) in (3.2), we see that

c s,n n a.s. ---→ n→∞ E H 0 [w(X 1 , θ)] = X p 1 f 1 (x, λ 1 ) f (x, θ) f (x, θ)dx = p 1 ,
uniformly in s ∈ [s, 1]. It follows that, for a given s ∈ [s, 1-s], the average contributions c s,n /n and c 1,n /n have the same limit under the null hypothesis. Under the alternative hypothesis, we observed in numerical applications that these average contributions can play a significant role in the detection performance. Therefore, we suggest to scale our statistic with the total contributions. We define a new log-ratio process Λ

* n := (Λ * s,n ) s∈[s,1-s] by Λ * s,n := c 1,n c s,n   sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) + n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 )   - n i=1 w(X i , θ) log f 1 (X i , λ1 ). (3.38)
The test statistic is then defined by S * n := sup s∈[s,1-s] Λ * s,n . We refer to this test as the EWLT (Extended Weighted Likelihood Test).

In order to obtain a limit distribution for S * n , we start by noticing that

Λ * s,n = c 1,n c s,n Λ s,n + c 1,n c s,n -1 n i=1 w(X i , θ) log f 1 (X i , λ1 ) = c 1,n c s,n Λ s,n - 1 n n i=1 w(X i , θ) log f 1 (X i , λ1 ) 1 n c s,n   sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ) - n i=1 w(X i , θ)   .
By Lemma 3.11, we have that the ratio c 1,n /c s,n converges a.s. to 1 uniformly in s ∈ [s, 1], and also that

1 n n i=1 w(X i , θ) log f 1 (X i , λ1 ) 1 n c s,n a.s. ---→ n→∞ E H 0 [log f 1 (Y, λ 1 )] =: β, uniformly in s ∈ [s, 1]
, with Y a random variable with density f 1 (., λ 1 ). We can show numerically that, in general, β is not null. Remark that the sum

sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ) - n i=1 w(X i , θ)
has the same form as Λ s,n in (3.5), but without the factor log f 1 (X i , λ.,.,1 ). Then, we already see that the limit distribution of S * n is obtained with similar arguments that gave us the limit distribution of S n in Theorem 3.17. As in Section 3.3, we start by rewriting Λ * s,n as follows 1-s] are càd-làg real-valued processes defined by

Λ * s,n = c 1,n c s,n Λ s,n - 1 n n i=1 w(X i , θ) log f 1 (X i , λ1 ) 1 n c s,n (Q 1 * s,n + Q 2 * s,n -Q 1 * 1,n ) where, Q 1 * n = (Q 1 * s,n ) s∈[s,1] and Q 2 * n = (Q 2 * s,n ) s∈[s,
Q 1 * s,n := sn i=1 w(X i , θ0,s ) -w(X i , θ) -v T I -1 sn i=1 D θ (log f )(X i , θ), s ∈ [s, 1], Q 2 * s,n := n i= sn +1 w(X i , θs,1 ) -w(X i , θ) -v T I -1 n i= sn +1 D θ (log f )(X i , θ), s ∈ [s, 1 -s],
and It follows that Λ * s,n can be expressed as a function of the quadruple ξ * 0,s := (ι 0,s , û0,su, v0,sv, Î0,s ) and a random variable that depends on s and n and converges a.s. uniformly in s to some finite constant.

v := E H 0 [D θ w(X 1 , θ)] ∈ R d .
We denote by Σ * the unique positive semi-definite square root of the covariance matrix under the null hypothesis of the quadruple

D θ (log f )(X 1 , θ), D θ (w log f 1 )(X 1 , θ) -u, D θ w(X 1 , θ) -v, -D 2 θ (log f )(X 1 , θ) -I
reorganized in a 3d + d 2 -dimensional real vector. Still under the null hypothesis, the result of Lemma 3.12 can be extended to the process ( ξ * 0,s ) s∈ [s,1] with an application of Donsker's Theorem 1.10. With ξ * := (0, 0, 0, I), the process √ n( ξ * 0,s -ξ * ) s∈ [s,1] converges weakly in the Skorokhod metric space as follows

√ n ξ * 0,s -ξ * s∈[s,1] D ---→ n→∞ 1 s Σ * W s s∈[s,1]
,

where

W := (W s ) s∈[0,1] is a standard 3d + d 2 -dimensional Brownian motion and Σ * W s is reorganized as a quadruple in (R d ) 3 × gl d (R).
As for the limit distribution of S n in Theorem 3.17, the convergence of S * n is obtained by a functional delta method (Corollary 1.16) and multiple applications of the Extended Slutsky's Theorem 1.13 and the Continuous Mapping Theorem 1.11. To this end, we start by adapting the function g defined in (3.25), for Theorem 3.14. We define the map g * for a quadruple (ι, u, v, I) 

in (R d ) 3 × gl d (R) by g * (ι, u, v, I) := ι, u, v, -I -1 I - 1 2 d l=1 ι T I -1 T .,l J .,.,l I -1 .
Remark that, for a fixed s, g * (Σ * W s ) is a quadruple in (R d ) 3 × gl d (R). Remark also that, when we applied the delta method in the proof of Theorem 3.14, the vector u did not play a significant role. Here, this is also the case for the vector v. The result is then extended to the quadruple process √ n( ξ * 0,s -ξ * ) s∈ [s,1] without additional arguments. Then, similarly to the function q defined in (3.32), we introduce the map q * , defined for (ι, u, v, I; A, J, J

* ) ∈ (R d ) 3 × (gl d (R)) 4 by q * (ι, u, v, I; A, J, J * ) = u T Aι -βv T Aι + ι T A T (J -βJ * )Aι + (u T -βv T )Iι ∈ R. Last, we set q * (z) := q * (g * (Σ * z); I -1 , U , V ), z ∈ R 3d+d 2 , (3.39)
where Σ * z is reorganized as a quadruple in (R d ) 3 × gl d (R) and with V the matrix defined by V := E H 0 D 2 θ w(X 1 , θ) and U defined in (3.34). With the same arguments as in Remark 3.15, q * is also a quadratic form. The following theorem states the limit distribution obtained for S * n .

Theorem 3.18. Under H 0 and Assumptions 3.1-3.5, the test statistic

S * n D ---→ n→∞ sup s∈[s,1-s] q * (W s -sW 1 ) s(1 -s)
where (W s ) s∈[0,1] is a standard 3d+d 2 -dimensional Brownian motion and the application q * is defined in (3.39).

Proof. The proof follows the same logic as the proof of Theorem 3.17. The arguments are based on a functional delta method (Corollary 1.16) and multiple applications of the Extended Slutsky's Theorem 1.13 and the Continuous Mapping Theorem 1.11.

The test procedure follows the same steps as described in Section 3.3.4. We will see in Section 3.6.2 that this extension improves significantly the detection quality. In particular the type II error is smaller compared to the one of the WL test.

Remark 3.19. In Theorems 3.17 and 3.18, and in the results on which they rely, the dimension of the limit Brownian motion W can be reduced by recognizing that the matrix Î0,s defined in (3.19) is symmetric: it contains d(d+1)/2 distinct elements. This does not seem to have an impact on the numerical properties of the tests.

In the following section we explicit the test in the case of an univariate Gaussian finite mixture.

Example: the univariate finite Gaussian mixture

In this section, we assume that the sample X = (X i ) 1≤i≤n follows an univariate Gaussian mixture with m components. In addition to the weight parameters p 1 , . . . , p m-1 , the mixture is defined by the means µ 1 , . . . , µ m ∈ R and the standard deviations σ 1 , . . . , σ m ∈ R + * of the m components. We assume that the set of eligible parameters Θ that contains θ is the subset of Θ 0 × (R × R + * ) m defined by the parameters θ = (p 1 , . . . , p m-1 , µ 1 , σ 1 , . . . , µ m , σ m ) such that:

1. The means are strictly increasing:

µ 1 < µ 2 < • • • < µ m .
2. There exists some dispersion boundary 0 < b ≤ 1, deterministic and known, such that the variances are positive and bounded: for all i ∈ {1, . . . , m}, σ i > 0 and min

σ j σ k , 1 ≤ j, k ≤ m > b.
Note that Θ is an open convex 15 subset of R 3m-1 .

Remark 3.20. We impose that the means of the components cannot be equal in order to ensure that the mixture is identifiable and that Θ is an open subset of R 3m-1 . If, under H 0 , two means are equal, it is sufficient to define a model that uses one less parameter, i.e. using the same parameter for both means but with different variances.

The second assumption is a constraint from [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF] that ensures the strong consistency of the estimator θ (Theorem 1.7). We obtain the following result.

Proposition 3.21. Under Assumption 3.1 and with the parameter set Θ defined above, the validity conditions of Theorems 3.17 and 3.18 hold for a finite Gaussian mixture.

Proof. The result is obtained as soon as we show that Assumptions 3.2-3.5 are valid. First of all, the conditions of the model introduced in Section 3.2.1 and Assumptions 3.2 and 3.3 are standard prerequisites for limit results of likelihood based estimators [START_REF] Mclachlan | Finite mixture models[END_REF]). In particular, from Example 6.10 in [START_REF] Lehmann | Theory of point estimation[END_REF], one sees that the assumptions of Theorem 1.5 hold for identifiable Gaussian mixtures. With condition 1. above, it follows that Assumptions 3.2 and 3.3 hold. With condition 2. above, Theorem 1.7 from [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF] ensures that Assumption 3.4 is valid, i.e. the estimator θ is strongly consistent. Since the parameter set Θ is a convex open subset of R d that contains the true parameter θ, it is possible to find a bounded convex set Θ ⊂ Θ such that θ is in the interior of Θ . We show that Assumption 3.5 is valid for this set Θ . First we recall that,

E H 0 [|X 1 | k ] is finite for all k ≥ 0.
Thus it is sufficient to show that we can find some function θ → κ(θ) with positive values, not depending on x and continuous on Θ , such that, for all 1 ≤ i, j ≤ d, θ in Θ and x ∈ R, .40) On the one hand, since x ∈ R → f 1 (x, (µ 1 , σ 1 )) is the density function of a Gaussian random variable, log f 1 (x, (µ 1 , σ 1 )) can be written as a second-order polynomial of x.

D 2 θ (w log f 1 )(x, θ) i,j ≤ 6 k=0 κ(θ)|x| k . ( 3 
Its coefficients are infinitely differentiable functions of (µ 1 , σ 1 ) on R×R + * . It follows that the absolute values of the first and second order partial derivatives of f 1 (x, (µ 1 , σ 1 )) can 15. In particular, for any t ∈ [0, 1], for any θ and θ in Θ, and for any 1 ≤ j, k ≤ m, it holds that

tσj +(1-t)σ j tσ k +(1-t)σ k > tbσ k +(1-t)bσ k tσ k +(1-t)σ k
be bounded by a second-order polynomial as on the left side of (3.40). On the other hand, by (3.3), the weight function w(x, θ) takes its values in [0, 1] for all x and all θ.

In order to conclude the proof, we need only to bound the absolute value of the first and second partial derivatives of w(x, θ).

From the definition of w in (3.2), its first order partial derivatives can be written as

∂ ∂θ i w(x, θ) = ∂ ∂θ i f1 (x, θ) f (x, θ) -w(x, θ) m k=1 ∂ ∂θ i fk (x, θ) f (x, θ) , 1 ≤ i ≤ d where fk : (x, θ) → p k f k (x, λ k ). We can show that ∂ ∂θ i fk (x, θ) f (x, θ) = p k f k (x, λ k ) f (x, θ) κ i,k (x, θ),
where κ i,k (x, θ) is a second-order polynomial of x with coefficients that are infinitely differentiable functions of θ on Θ. Moreover we recognize that p k f k (x, λ k )/f (x, θ) is another weight function that takes its values in [0, 1] for all x and all θ. Thus | ∂ ∂θ i w(x, θ)| can be bounded by a second-order polynomial as on the left side of (3.40). With similar arguments, the absolute value of the second partial derivatives of w(x, θ) can be bounded by a polynomial of degree four as in the left side of (3.40). The result follows.

Remark that Assumption 3.1 does not concern the choice of distribution and therefore remains a preliminary condition to be discussed when applying the WL and EWL tests. In the following section, we give a few applications for the Gaussian case: we start with numerical illustrations of the test, compared to some standard test available in the literature. Then we show how this test can help detect if a change occurs or not in a dataset from the non-life insurance industry.

Applications

We provide two distinct applications for the case of an univariate finite Gaussian mixture. First, with numerical simulations, we illustrate the properties of the three following tests: the WL test, defined by the statistic S n in (3.6) and for which Theorem 3.17 provides a limit distribution; the EWL test, defined by the statistic S * n in Section 3.4 and for which Theorem 3.18 provides a limit distribution; a standard benchmark test that we shall define in the following section.

In this numerical application, our main interest lies in the detection of changes in the first component that are not visible to the naked eye (small) but also not too close to 0 (no impact in practice), for large samples (over 10k observations). The second application is an illustration of the WL and EWL tests on a Property and Casualty insurance large dataset (15k observations).

We start by introducing the benchmark test (BM).

The benchmark test

The book of [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] gathers standard likelihood-based approaches for the detection of change-points in many different frameworks. For the simple at most one change (AMOC) case, one can consider that each parameter θ = (a, b) ∈ Θ is defined by two sub-parameters a and b. We give below a standard likelihood-based hypothesis test that aims to detect if a change occurs in the first sub-parameter a (see e.g. Section 1.1 in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF]). Here b is called a nuisance parameter. We test:

the null hypothesis where no change happens, i.e. θ 1 = • • • = θ n , against the alternative hypothesis where at most one change occurs, i.e. there exists some 1

≤ k ≤ n such that a 1 = • • • = a k = a k+1 = • • • = a n and b 1 = • • • = b n .
The test is defined with the help of the log-likelihood ratio

Λ cs k,n := log     sup (a,b),(a ,b)∈Θ k i=1 f (X i , (a, b)) n i=k+1 f (X i , (a , b)) sup θ∈Θ n i=1 f (X i , θ)    
and the test statistic max 1≤k≤n 2Λ cs k,n . Csörgő and Horváth (1997) provide its limit distribution 16 .

For the detection of a change in the first component for a finite parametric mixture with m components, we set a := (p 1 , λ 1 ) and b := (p 2 , . . . , p m-1 , λ 2 , . . . , λ m ). In other words, the separation between the parameters of interest a and the nuisance parameters b allows the test to focus on a change in the first component. In the WL and EWL tests, this role is played by the weight functions. This setting for a and b also means that we allow the weight parameter of the first component to change (p 1 = p 1 ). Looking at the numerator of Λ BM k,n , for both couples (a, b) and (a , b), the sum of the m -1 weight parameters has to be strictly below one. We impose first that m-1 k=1 p k < 1. Then, we assume that the relative weight of two components for 2 ≤ i, j ≤ m is the same before and after k. The log-likelihood ratio becomes:

Λ BM k,n := log     sup a,a ,b k i=1 f (X i , (a, b)) n i=k+1 f (X i , (a , b )) sup θ∈Θ n i=1 f (X i , θ)     (3.41) with b := 1 -p 1 1 -p 1 p 2 , . . . , 1 -p 1 1 -p 1 p m-1 , λ 2 , . . . , λ m .
Thus the sum of the m -1 weight parameters of the couple (a , b ) is also below one. We refer to the test defined by the test statistic max 1≤k≤n 2Λ BM k,n as the benchmark test.

Numerical properties

Setup

While establishing Theorem 3.17, we assumed that the null hypothesis holds in order to control the type I error (proportion of false positives). In this numerical application, 16. See Corollary 1.1.1, Theorems 1.3.1. and 1.3.2 in Csörgő and Horváth (1997).

we aim to visualize some properties of the WL and EWL tests:

Compare the type II error (proportion of false negative) of the three tests (WL, EWL and benchmark),

Understand the computational difficulties raised by each test (available algorithms, run time, inadequate convergence, etc.),

As a nice-to-have, visualize the detection frequency of the tests when a change occurs in any other component.

We illustrate our analysis with simulations of a Gaussian mixture with 3 components such that:

The sample size is large: n = 1k or 10k observations (obs.) as we are interested in applications to large datasets (see the application on real data in Section 3.6.3).

Under the null hypothesis, the mixture used for the illustrations has equal weight parameters (1/3), equal standard deviations (0.25) and respective means -1, 0 and 1. It follows that, with a relatively small sample, the empirical density of the mixture shows clearly the three components.

The change occurs in middle of the sample (s = 0.5) 17 .

The detection threshold is the 90% percentile of test statistic under the null hypothesis (type I error).

The results are obtained with standard algorithms from the R software. For the benchmark test, the optimization problem of the numerator of Λ BM k,n is not standard and a dedicated algorithm does not exist. We solve this problem with the generic optim function [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF]). For the denominator of Λ BM k,n and the estimators in the WL and EWL tests, we apply the standard EM algorithm from the mixtools package [START_REF] Benaglia | mixtools: An r package for analyzing finite mixture models[END_REF]). We distinguish two settings for the initialization of the algorithms:

A standard initialization assuming that we do not know the parameters, A theoretical initialization with the true parameters. This is possible because we are simulating the data.

The comparison of both types of initialization illustrate the capacity of the algorithms to converge to the optimal parameters. Results are obtained by multiple simulations of the random sample.

In this setup, the results obtained under the null hypothesis in Theorems 3.17 and 3.18 allow us to reduce significantly the calibration run time of the detection thresholds: the marginal run time of one simulation is divided by 10 000. For 10 6 simulations of the limit distribution, due to the approximation of the constants of the maps q and q * defined in (3.33) and (3.39), the run time of the WLT and EWLT is divided by 8 000.

Results: detection quality under the alternate hypothesis

The alternate hypothesis is defined in Section 3.2.1 as the case when the sample contains one change in the first component: the parameters which describe the distribution 17. The simulations for the numerical comparison given in this section require an important run time. In order to reduce significantly this run time, we computed the illustrations for s = 0.5 (statistic and threshold) and not over the whole process. We made sure that this does not effect the conclusions. The application on the real data in Section 3.6.3 is based on a computation of the whole process.

In addition to these performance results under the alternative hypothesis, Figure 3.1 shows that, as the sample size increases, the run time needed to compute the benchmark test increases considerably faster compared to the WLT. It follows that one major advantage of the WLT is that it can be computed quickly with standard algorithms, making it especially convenient for large datasets. We conclude that the WLT is a valid candidate for the detection of a change in the first component of a Gaussian mixture. The EWLT is an improved version that significantly reduces the type II error.

Results: when a change occurs in the second or the third component

As a nice-to-have, we also studied the detection frequency of each test when a change occurs in the second or third component. We used the same shift ranges as the ones used for a change in the first component. In this context, a high-performance test is characterized by a low detection frequency. The results are given in Table 3.2 with detailed graphs in Figures 3.6,3.7,3.8 and 3.9 in Appendix 3.8.3. The main observation is that the EWLT shows the best results and, for large samples of 10k observations, the WLT is better than the benchmark test. The WL and EWL tests tend to detect a change when there is a change in the standard deviation of the second or third component. This explained by the role of the weight functions in their detection statistic that zoom on some range of values around the mean of the first component: there are significantly more (or less) points that enter this range, increasing the detection frequency. We still observe that the benchmark test behaves poorly for large samples. One could expect that a high-performance test would have a detection frequency that stays close to the type I error (10%). This is the case for the WL and EWL tests when a change occurs in the weight parameter (Figures 3.7f and 3.9f). However, from Figures 3.7 and 3.9, we remark that the three tests show systematic patterns for a wide range of possible deviations for a change in the mean and the standard deviation. It follows that there is still some room for improvement regarding this criterion.

In the next section, we study briefly an illustration to a Property and Casualty insurance large dataset (15k observations).

Illustration of the WL and EWL tests on P&C insurance data

We recall that:

the WLT is defined by the statistic S n in (3.6) and Theorem 3.17 provides its limit distribution;

the EWLT is defined by the statistic S * n in Section 3.4 and Theorem 3.18 provides its limit distribution.

In this section, we give an example of application of these two tests to a problem from the insurance industry, in particular the bodily injuries from the motor claims. Each claim is known by the insurer from its declaration date that is the starting point of observation: we set t = 0, t being expressed in years. We denote by C t the real-valued random variable that represents the amount that, at time t, the insurer expects to pay eventually. This amount varies over time when the claim is reviewed, until it is settled. The evolution of the amount C t depends on structural factors (e.g. the type of injury), internal factors (e.g. a change in the revision policy) and external factors (e.g. new elements are known by the insurer, a court decision sets the final amount, etc.). For bodily injuries, the claims takes time to resolve (over 2 years in average). After the settlement, we assume that C t is fixed and possibly null or negative.

In this application, we know that a change of the revision process happened at some point in the past. The question is then to determine whether or not this change impacted significantly the observed variations of claim amount over time. For that purpose, we consider the random variable Z = sgn(C 1 -C 0.5 ) log(1 + |C 1 -C 0.5 |) that gives the variation of the claim amount between the 6th and the 12th month in log-scale, where sgn(.) is the function that gives the sign of a real number taking respectively the values -1, 0 and 1 when this number is negative, null or positive. From a first analysis of the data, a Kolmogorov-Smirnov hypothesis test does not reject the assumption that observed realizations of Z before the change follow a finite parametric mixture with 12 components (Figure 3.2a). For internal reasons, the insurance company is particularly interested in the 5th component of the mixture, highlighted in Figure 3.2a by a red arrow. This component represents slight decreases of claim amounts. We applied the WL and EWL tests to a sample of 15k claims where the first third of the sample is known to contain claims that are not impacted by the change of process. Under the null hypothesis that no change occurs in the 5th component of the mixture, both tests reject this hypothesis with a p-value below 10 -4 . Figure 3.2b illustrates the underlying processes Λ n and Λ * n and their respective thresholds: the change is significant and, according to both tests, it seems to occur from the time 1.07. This conclusion allowed the insurance company to investigate further the quantification of the change.

This application shows that the WL and EWL tests can be used in the industry for the monitoring of changes, when they are unexpected but also to assess their significativity when they are known or suspected. For other topics that tackle change-point problems in non-life insurance, we refer for example to [START_REF] Dhaene | Managing uncertainty: Financial, actuarial and statistical modeling[END_REF], [START_REF] Andersen | Handbook of financial time series[END_REF], [START_REF] Kwon | Consideration of a structural-change point in the chain-ladder method[END_REF], [START_REF] Peštová | Change point estimation in panel data without boundary issue[END_REF] or [START_REF] Maciak | Changepoint in dependent and nonstationary panels[END_REF]. 

Conclusion

In this chapter, we consider a closed sample of independent random variables that follow a finite mixture distribution with parametric components. The sample might contain at most one change in the parameters of the first component. If there is a change, the r.v. are identically distributed before and after the change-point: the parameters which describe the distribution of the first component are different before and after the break-point while the other parameters of the mixture remain the same. To test whether there is a change or not, we proposed two alternative tests (WLT and EWLT). Each test statistic is built upon a càd-làg process obtained from a likelihood ratio (see (3.5) and (3.38)). The specificity of these tests is that they can be computed using known inference algorithms. The first version uses weight functions to help the likelihood ratio to zoom on the first component. In the second extended version, we added an adjustment that helps improve the type II error, as explained in Section 3.6.2.

With a technique from [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], we derived in Theorems 3.17 and 3.18 the limit distribution of the test statistics under the null hypothesis in the form of a quadratic form of a multidimensional Brownian motion, with the help of a dedicated functional limit theorem. In particular, the proof is based on a functional delta method (Corollary 1.16) and multiple applications of the Extended Slutsky's Theorem 1.13 and the Continuous Mapping Theorem 1.11. We showed in Section 3.5 that validity conditions of the main result hold for univariate finite Gaussian mixtures within the framework of [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF].

Numerical applications on simulated data for the Gaussian case showed that second version of the test outperforms significantly a benchmark test exposed in [START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] and defined by (3.41): the type II error is considerably reduced (when a change occurs in the first component) and the detection frequency remains low in most cases when a change occurs in another component. Two issues of the benchmark test are that usual optimization algorithms have an unrealistic convergence run time for large samples, and that they fail to compute properly its statistic. However, in the case of simulated data, we assess that, without this computational issue, the benchmark test would have a lower type II error than our tests. Therefore the extended version of our tests remains so far the best candidate even if a dedicated algorithm for computing more robustly the statistic of the benchmark test would be an improvement. In addition, in some cases, the three tests still detect a change when a change occurs in another component (i.e. not the first one). Extensions of our work could consider adding a penalization term to the likelihood ratio in order to improve this aspect.

We end the applications by a brief illustration of the proposed tests on variations of claim amounts for bodily injuries motor claims (real data), in the context of a change of process in the claims handling department of an insurance company. A change is detected in the fifth component of the Gaussian mixture with 12 components: the insurance company could therefore assess the change and investigate further its causes.

From the numerical applications, the WL and EWL tests are valid candidates when looking for a change in one component of a finite parametric mixture. In addition, the results obtained under the null hypothesis in Theorems 3.17 and 3.18 allow us to reduce significantly the calibration run time of the detection thresholds: the marginal run time of one simulation is divided by 10 000. Beyond these promising results, the possibilities for other techniques still exist and are worth to be explored.

Appendices

The constant u

The constant u = E H 0 [D θ (w log f 1 )(X 1 , θ)], defined in (3.8), plays a central role in the proof of Theorems 3.17 and 3.18 since most of the technical difficulties in Section 3.3 emerge only when u = 0. This is the case in general, as illustrated in the following numerical example. With the notations of Section 3.5, we consider a numerical simulation for an univariate Gaussian mixture with 3 components defined by θ := (1/3, 1/3), (-1.00, 0.25), (0.00, 0.25), (1.00, 0.25) .

For 10 5 simulations, the Monte-Carlo approximation of E H 0 ∂ ∂µ 2 (w log f 1 )(X 1 , θ) converges to a non null limit (Figure 3.3). This illustrates that u is not null in general. 

Additional result

This appendix contains an additional result for quadratic forms. Lemma 3.22. Fix d ≥ 1. If x ∈ R d → q(x) is a quadratic form, then, for any x, y ∈ R d and any real s = 0, the following equality holds: 1 s q (x) + 1 1 -s q (y -x) -q(y) = q(x -sy) s(1 -s) .

Proof. The unique symmetric bilinear form 18 associated to q is the application (x, y) ∈ R d × R d → b q (x, y) = 1 2 q(x + y) -q(x) -q(y) .

By definition of b q , we have that q(x) = b q (x, x) and q(x + y) = q(x) + q(y) + 2 b q (x, y). Further, for any real s and any x ∈ R d , q(sx) = s 2 q(x). It follows that 1 s q (x) + 1 1 -s q (y -x) -q(y) = (1 -s)q(x) + s(q(x) + q(y) -2 b q (x, y)) -s(1 -s)q(y) s(1 -s) = q(x) -2s b q (x, y) + s 2 q(y) s(1 -s) = q(x) + 2 b q (x, -sy) + q(-sy) s (1 -s) .

The result follows.

18. See for instance Section 41 in O'Meara (2000). (., ., .; ., .) map defined in (3.32) by (ι, u, I; A, J) → u T Aι + ι T A T JAι + u T Iι. q(.) map defined in (3.33) by z ∈ R 2d+d 2 → q(g(Σz); I -1 , U ). q * (.) map defined in (3.39) for z ∈ R 3d+d 2 by z → q * (g * (Σ * z); s,1] defined in (3.10). Q 1 s,n = sn i=1 w(X i , θ0,s ) log f 1 (X i , λ0,s,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 sn i=1 D θ (log f )(X i , θ) defined in (3.10). 1-s] defined in (3.10). Q 2 s,n = n i= sn +1 w(X i , θs,1 ) log f 1 (X i , λs,1,1 ) -w(X i , θ) log f 1 (X i , λ 1 ) -u T I -1 n i= sn +1 D θ (log f )(X i , θ) defined in (3.10). s ∈ (0, 0.5). We assume that the change-point is in [s, 1 -s] = (p 1 f 1 (x, λ 1 ))/(f (x, θ)) defined in (3.2). w log f 1 application defined in (3.4) by (x, θ) → w(x, θ) log f 1 (x, λ 1 ). ξ0,s = (ι 0,s , û0,su, Î0,s ), defined in (3.19). ξ = (0, 0, I) defined in (3.21). ξ • constant process s.t. ξ s = ξ for all s ∈ [s, 1], see proof of Theorem 3.14. ξ 0,s = (ι 0,s , û0,su, Â-1 0,s ) defined in (3.24). ξ = (0, 0, I -1 ), see Theorem 3.14. ξ 0,.

Glossary of notations

I -1 , U , V ). Q 1 n = (Q 1 s,n ) s∈[
Q 2 n = (Q 2 s,n ) s∈[s,
= ( ξ 0,s ) s∈ [s,1] , see proof of Theorem 3.14. ξ In the second study, we introduce two alternative hypothesis tests that aim to detect a change-point in the first component of a finite parametric mixture, for a closed sample where at most one change occurs. They are based on weighted likelihood ratios that can be computed with standard inference algorithms. With a technique from [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF], we derive the limit distribution of their statistics under the null hypothesis in the form of quadratic forms of multidimensional Brownian motions, with the help of a dedicated functional limit theorem. We show that validity conditions of the main result hold for univariate finite Gaussian mixtures within the framework of [START_REF] Hathaway | A constrained formulation of maximum-likelihood estimation for normal mixture distributions[END_REF]. Numerical applications on simulated data illustrate the advantage of the alternative tests compared to a standard benchmark test. An application to Property and Casualty insurance real data is provided for the alternative tests.
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 1 Figure 1 -Average sequential estimation of ρ. Centered on the time of change.
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 2 Figure 2 -Empirical sequential variance of estimators of ρ. Centered on the time of change.

  (a) Change in the mean (10k obs.) (b) Change in the standard deviation (10k obs.) (c) Change in the weight parameter (10k obs.) (d) Run time of the WL, EWL and benchmark tests for an increasing sample size.

Figure 3 -

 3 Figure 3 -Type II error and run time for a change in the first component.
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 21 Figure 2.1 -Mortality rate of French civilians (85-90 years old) between 2000 and 2005.
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 22 Figure 2.2 -Mortality rate of civilian French women (30-50 years old) between 1910 and 1919 (Human Mortality Database).
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 23 Figure 2.3 -Expected (filled) and observed (dotted) number of deaths between 2003 and 2014, data from a French insurance portfolio of life annuitants.
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 24 Figure 2.4 -Detection of the change of mortality trend for French women between 55 and 75 years old, from 1960

Figure 2 .

 2 4 shows that the trend changes around 1976/1978 and the procedure rises the alarm in 1986 (see Figure 2.5). The estimated decrease of mortality in 1960 is about 1.5% per year and becomes 3.2% after the change, i.e. starting from 1978.
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 25 Figure 2.5 -Shiryaev-Roberts Process (filled) and threshold (dotted) for French women between 55 and 75 years old between 1960 and 1986.
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 26 Figure 2.6 -Detection of the change of mortality trend for French population between 85 and 90 years old

  (a) Average sequential estimation of ρ by number of available observations, with ν = 10, ρ = 1.1, and 10 000 simulations. Centered on the time of change. (b) Empirical sequential variance of estimators of ρ by number of available observations, with ν = 10, ρ = 1.1, and 10 000 simulations. Centered on the time of change.
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 27 Figure 2.7 -Benchmarking of the level procedure (1/2)
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 28 Figure 2.8 -Benchmarking of the level procedure (2/2)

  (a) Illustration of a realisation of the random experiment in the case of a change of trend: ν = 50, ρ = 99.79%. Actual (filled) and Expected initially (dotted) intensities. Centered on the time of change. (b) Average sequential estimation of ρ by time step: ν = 50, ρ = 99.79% and 1 000 simulations. Centered on the time of change. (c) Empirical sequential variance of estimators of ρ by time step: ν = 50, ρ = 99.79% and 1 000 simulations. Centered on the time of change.
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 2 Figure 2.9 -Benchmarking of the trend procedure

2 .

 2 The composite alternative hypothesis H 1 : a change-point occurs at time s, s ∈ [s, 1-s], i.e. the parameters which describe the distribution of the first component are different before and after s while the other parameters of the mixture remain the same.

  gl d (R) denotes the set of matrices of size d × d with real coefficients and GL d (R) the set of invertible d × d-matrices with real coefficients.

Proposition 3 . 8 .

 38 Under H 0 and, the matrix  converges almost surely to the Fisher Information Matrix I.

  , we define g(ι, u, I; A, J) := ι, u, I -A T ) .,l J .,.,l ,(3.26) and, for (ι, u, I)∈ (R d ) 2 × GL d (R),ϕ(ι, u, I) := (ι, u, I -1 ).

  2.2. For a fixed s ∈ [s, 1], we define the contribution c s,n by c s,n := sn i=1 w(X i , θ0,s ) + n i= sn +1
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 31 Figure 3.1 -Run time of the benchmark and the WL and EWL tests for an increasing sample size.

  (a) Empirical density of the variation in claims amount between the 6th and the 12th development months, before the change of process (7k obs). (b) Log-ratio processes Λ n and Λ * n of the WL and EWL tests for the detection of a change in the 5th component of the mixture (15k obs).
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 32 Figure 3.2 -Application of the WL and EWL tests to a change in the variation of incurred claims amount (Motor bodily injuries claims).
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 3 Figure 3.3 -Convergence of the Monte-Carlo approximation of E H 0 ∂ ∂µ 2 (w log f 1 )(X 1 , θ) .
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 353637 Figure 3.5 -Type II error for a change in the first component, standard initialization.

  , Ĵ0,s ) if(3.27) holds, ξ otherwise. See proof of Theorem 3.14. ξ * 0,s = (ι 0,s , û0,su, v0,sv, Î0,s ), seeSection 3.4. ξ * = (0, 0, 0, I), see Section 3.4.Titre : Études de détection de rupture : procédure en ligne pour des modèles discrets de Poisson et test hors ligne pour des mélanges paramétriques. Application à des problèmes issus de l'assurance.Mots-clés : Détection de rupture, mélange paramétrique, théorèmes limites faibles de séquences dépendantes, test de ratio de vraisemblance pondérée, estimateur séquentiel convergent, procédure de Shiryaev-Roberts, mortalité nationale française, application à des données d'assurance. Résumé : Cette thèse traite de deux études distinctes de techniques de détection de rupture. Le premier problème concerne l'estimation séquentielle du paramètre post-changement dans le cas d'une séquence discrète de variables aléatoires de Poisson. Nous introduisons un estimateur alternatif qui est basé sur la statistique de la procédure de Shiryaev-Roberts. Nous montrons qu'il s'agit d'un estimateur convergent. Les applications numériques indiquent que, juste après le changement, il a un biais et une variance significativement plus faibles que ceux de l'estimateur du maximum de vraisemblance, avec des propriétés asymptotiques similaires. Des applications à des données réelles d'assurance sont présentées, pour des cas où le changement est évident ou non. Dans la seconde étude, nous introduisons deux tests d'hypothèse qui permettent de détecter une rupture dans la première composante d'un mélange fini de lois paramétriques, pour un échantillon où au plus un changement se produit. Chaque test repose sur un ratio de vraisemblance pondérée qui est calculable à l'aide d'algorithmes d'estimation standards. Avec une technique issue de Davis et al. (1995), nous obtenons sous l'hypothèse nulle les lois limites des statistiques de test comme des formes quadratiques d'un mouvement Brownien, à l'aide d'un théorème limite fonctionnel dédié. Nous montrons que les conditions de validité du résultat limite sont valides pour le cas Gaussien dans le cadre donné par Hathaway (1985). Des applications numériques sur des données simulées illustrent les avantages des tests alternatifs comparés à un test standard de référence. Une application illustrative sur des données réelles d'assurance non-vie est donnée pour les tests alternatifs. Title: Studies of change-point detection: on-line scheme for discrete Poisson models and off-line test for parametric mixtures. Application to insurance problems. Keywords: Change-point detection, parametric mixture, weak limit theorems for dependent sequences, weighted likelihood quotient test, consistent sequential estimator, Shiryaev-Roberts scheme, French mortality, applications to insurance data. Abstract: This thesis concerns two distinct studies of change-point detection techniques. The first problem deals with the sequential estimation of the post-change distribution when observing an on-line sequence of Poisson random variables. We introduce an alternative estimator based on the detection statistic of the Shiryaev-Roberts procedure. We show that it is a consistent estimator for the true post-change parameter. Numerical simulations indicate that, compared to the usual Maximum Likelihood Estimator, it has significantly reduced bias and variance just after the change, with identical asymptotic properties. Applications on real data from the insurance industry are provided, in a context where the change is obvious or not.
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  Definition 1.14. For D and E two normed spaces, a map Φ from D Φ ⊆ D to E is Hadamard differentiable in θ ∈ D Φ if we can find a continuous linear map Φ θ from D to E such that, as t → 0, for any application t → ζ t such that ζ t → ζ and that, for all small t, θ + tζ t belongs to D Φ . The map Φ θ (.) is the differential of Φ at θ.

	Φ(θ + tζ t ) -Φ(θ) t	-Φ θ (ζ)
	Theorem 1.15 (Functional Delta Method in normed spaces, Theorem 20.8 in van der
	Vaart (1998)	

E

→ 0 ). For D and E two normed linear spaces, consider a map Φ from a subset D Φ of D to E, that is Hadamard differentiable at θ ∈ D Φ with differential denoted by Φ θ (.). Consider also a sequence of random maps X n with values in D Φ and a sequence of numbers a n which tends to infinity as n → ∞. If, as n → ∞, the sequence a n (X n -θ)

  If the Shiryaev-Roberts sequence overcomes the threshold, raise an alarm. Otherwise, increment the time step n; 6. Estimate the coefficient of change ρS (n); 7. Compute the Shiryaev-Roberts sequence Si,n (ρ S (n)) Go back to step 4; ρ estimation is provided by ρS (n) when stopping. For practical considerations on the threshold computation, see Sections 2.1.2 and 2.4. 

	1. Set the time step to n = 1;		
	2. Estimate the coefficient of change ρS (1);		
	3. Compute the Shiryaev-Roberts sequence Si,1 (ρ S (1)) 4. Compute the threshold s * 1 ;	i=1	;
	5.		

1≤i≤n

; 8.

  .16)2) Further, since (X n ) n≥ν+1 is i.i.d. with Poisson law of parameter λρ, (2.14) from proof of Proposition 2.6 ensures that we can find some n 1 > ν and L > 0 such that, for all n ≥ n 1 ,

  If the sequence (ξ i,n ) 1≤i≤n overcomes the threshold, raise an alarm and stop the procedure. Otherwise, increment the time step n; 6. Estimate ρξ (n) and νξ (n), and compute the sequence (ξ i,n ) 1≤i≤n ; 7. Go back to step 4; Estimations of ρ and ν are provided by ρξ (n) and νξ (n) when stopping. For practical considerations on the threshold computation, see Sections 2.1.2 and 2.4. 

	. Set the time step to n = 1;
	2. Estimate ρξ (1) and νξ (1);
	3. Compute the Shiryaev-Roberts sequence (ξ i,1 ) i=1 ;
	4. Compute a threshold x * 1 ;
	5.

Table 2 .

 2 1 -Results of the level procedure with exposure weights.

	exposure weights without exposure weights

Table 2 .

 2 2 -Results of the trend procedure with exposure weights.

	Chapter 3

Weighted likelihood test for a change in one component of a parametric mixture 3.1 Introduction Finite

  parametric mixtures of distributions play a central role in applied statistics, as they allow to describe experiments with different sub-populations 1 . The detection of at most one change-point in a closed sample is a standard problem in statistics but, to our knowledge, very few references specifically address this topic for mixtures with likelihood ratio-based techniques 2

  1 s ΣW s ) s∈[s,1] in D[s,1] , while, by Proposition 3.10 and Lemma 3.13, the couple ( Â-1 0,s , Ĵ0,s ) converges a.s. to (I -1 , J ) uniformly in s ∈ [s, 1]. It follows by the Extended Slutsky's Theorem 1.13 that the random process (

	√	n( ξ0,s -ξ), Â-1 0,s , Ĵ0,s ) s∈[s,1] converges weakly to
	( 1 s ΣW s	

  2 × GL d (R). With (iii), we see that, almost surely, the following holds for n large enough, uniformly in

	s ∈ [s, 1]:			
		Â0,s is invertible and g( ξ0,s ; Â-1 0,s , Ĵ0,s ) -ξ	2	< r.	(3.27)
	Let ξ 0,. denote the process on [s, 1] defined for all ω ∈ Ω, all n ≥ 1 and all s ∈ [s, 1] as
	follows:	ξ 0,s (ω) :=	g( ξ0,s ; Â-1 0,s , Ĵ0,s )(ω) if (3.27) holds, ξ otherwise.

  can be applied to h(x, θ) = D 2 θ (w log f 1 )(x, θ), taking the set Θ as O. Therefore Û0,s converges a.s. to U , uniformly in s ∈ [s, 1]. It follows by the Extended Slutsky's Theorem 1.13, that the

	process	√	n( ξ 0,s -ξ ), Â-1 0,s , Û0,s	s∈[s,1]

Table 3 .

 3 2 -Detection frequency (in %) for a change in the second and third components (500 re-simulations). Results are given respectively for the WLT, the EWLT and the benchmark test (BM).

	in %	Theoretical init.		Standard init.	
		n=1k obs.	n=10k obs.	n=1k obs.	n=10k obs.
		WL EWL BM WL EWL BM WL EWL BM	WL EWL BM
	Change in the second component					
	Mean +0.1	12 13 20	18	7 73	13 11 25	16	8 59
	Mean -0.1	14 8 25	21	7 91	15 10 29	23	6 41
	Std dev +0.1	49 22 27	99 63 91	44 20 28	99	61 43
	Std dev -0.1	76 67 40	100 100 99	62 44 40	100	100 80
	Weight +0.1	12 13 14	11 11 30	7 9 27	14	13 61
	Weight -0.1	14 13 13	12 12 31	15 16 13	16	14 24
	Change in the third component					
	Mean +0.1	15 12 10	17 15 13	13 14 10	15	13 28
	Mean -0.1	14 11 10	16 13 14	15 16 13	15	14 65
	Std dev +0.1	14 14 11	86 64 9	11 11 10	90	68 18
	Std dev -0.1	9 9 10	3 4 13	6 6 12	7	6 33
	Weight +0.1	9 12 16	13 14 28	13 12 15	11	10 29
	Weight -0.1	10 10 15	8 11 21	8 9 28	12	12 66

  D 3 θ (log f )(X i , θ ) l,.,. defined in(3.13). Â0,s or Âs,1 Âs 1 ,s 2 = -,s 2 ;l -θ l )D 3 θ (log f )(X i , θ s 1 ,s 2 ) l,.,. defined in(3.14).β = E H 0 [log f 1 (Y, λ 1 )],with Y a r.v. with density f 1 (., λ 1 ). See Section 3.4. c s,n = sn i=1 w(X i , θ0,s ) + n i= sn +1 w(X i , θs,1 ), defined in(3.37). d dimension of the parameter set Θ, see Section 3.2.1.D [s,1] = D([s, 1], (R d ) 2 × gl d (R)). Skorokhod metric space of càd-làg paths, see Lemma 3.12.f k (., λ k )density function of the k-th component, see Section 3.2.1. g(., ., .; ., .) map defined in(3.26) for (ι, u, I; A, J)∈ (R d ) 2 × (gl d (R)) 2 × R d×d×d by (ι, u, I; A, J) → ι, u, I -1 2 d l=1 (ι T (A T) .,l )J .,.,l . g(., ., .) linear map defined in(3.25) for (ι, u, I) ∈ (R d ) 2 × gl , θ) log f 1 (X i , λ1 ) defined in(3.38). m number of components in the mixture, see Section 3.2.1. p k weight of the k-th component in the mixture, see Section 3.2.1. Φ(.) map defined in (3.28) by (x s ) s∈[s,1] → (ϕ(x s )) s∈[s,1] . q

	Â	= -1 n	n i=1 D 2 θ (log f )(X i , θ) + 1 2 l=1 θl -θ l 1 d s 2 n -s 1 n s 2 n i= s 1 n +1 D 2 θ (log f )(X i , θ)
	+ 1 2 l=1 ( θs 1 ι0,s d = 1 sn sn i=1 D Î0,s = -1 sn sn i=1 D 2
	Ĵ0,s	= 1 sn	sn i=1 D 3
	λ k	density function parameter of the k-th component, see Section 3.2.1.
	λ1	see θ.		
	λ0,s,1 or λs,1,1	see θ0,s or θs,1 .
	Λ n	= (Λ s,n ) s∈[s,1-s] . Detection process of the WL test, defined in (3.5).
	Λ s,n	= Q 1 s,n + Q 2 s,n -Q 1 1,n defined in (3.5) (see also (3.9)).
	Λ * n	= (Λ * s,n ) s∈[s,1-s] . Detection process of the EWL test, defined in (3.38).
	Λ * s,n	=	c 1,n cs,n Λ s,n +	c 1,n cs,n -1	n i=1 w(X

d (R) by (ι, u, I) → ι, u, -I -1 (I -1 2 d l=1 (ι T ( I -1 T ) .,l )J .,.,l )I -1 . θ (log f )(X i , θ), defined in (3.19). θ (log f )(X i , θ), defined in (3.19). I = -E H 0 D 2 θ (log f )(X 1 , θ) . Fisher information matrix defined in (3.1). θ (log f )(X i , θ 0,s ) defined in Lemma 3.13. J = E H 0 D 3 θ (log f )(X 1 , θ) defined in

(3.22)

. i

  if it exists (Assumption 3.1).S n= sup s∈[s,1-s] Λ s,n defined in(3.6). Detection statistic of the WL test. S * n = sup s∈[s,1-s] Λ * s,n defined in Section 3.4. Detection statistic of the EWL test. Σ unique positive semi-definite square root of the covariance matrix of the i.i.d. terms in the average ξ0,1 , see Lemma 3.12. θ = (p 1 , . . . , pm-1 , λ1 , . . . , λm ). One consistent sequence of solutions of the likelihood equations over the sample X 1 , . . . , X n , see Section 3.2.1. θ0,s or θs,1 θs 1 ,s 2 = (p s 1 ,s 2 ,1 , . . . , ps 1 ,s 2 ,m-1 , λs 1 ,s 2 ,1 , . . . , λs 1 ,s 2 ,m ). One consistent sequence of solutions of the likelihood equations over the sample X s 1 n +1 , . . . , X s 2 n , see Section 3.2.1. θ true parameter under the null hypothesis, see Section 3.2.1. θ point on the segment [ θ, θ], see (3.12). θ 0,s or θ s,1 θ s 1 ,s 2 is a point on the segment [ θs 1 ,s 2 , θ], see (3.14). Θ 0 parameter set for the weights of the mixture components, see Section 3.2.1. (w log f 1 )(X i , θ), defined in (3.19). u = E H 0 [D θ (w log f 1 )(X 1 , θ)] defined in (3.8). (w log f 1 )(X i , θ 0,s ), see proof of Theorem 3.16. U = E H 0 D 2 θ (w log f 1 )(X 1 , θ) defined in (3.34). w(X i , θ), see Section 3.4. v = E H 0 [D θ w(X 1 , θ)], see Section 3.4. V = E H 0 D 2 θ w(X 1 , θ) , see Section 3.4. w(x, θ)

	Θ	convex subset of Θ for which Assumption 3.5 holds.
	û0,s i=1 D θ Û0,s = 1 sn sn = 1 sn sn i=1 D 2 θ v0,s = 1 sn sn i=1 D

θ

For more details, see e.g.[START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF],[START_REF] Brodsky | Nonparametric methods in changepoint problems[END_REF],[START_REF] Csörgő | Limit theorems in change-point analysis[END_REF],[START_REF] Chatterjee | Detection of change points: a survey of methodologies[END_REF],[START_REF] Pons | Estimations and tests in change-point models[END_REF][START_REF] Frühwirth-Schnatter | Handbook of mixture analysis[END_REF][START_REF] Truong | Selective review of offline change point detection methods[END_REF] and the references therein.

Known as the Lorden's criterion. Other criteria can be found in the literature: e.g.[START_REF] Pollak | Optimal detection of a change in distribution[END_REF],[START_REF] Tartakovsky | Sequential analysis[END_REF] and the references therein.

For a review of techniques, see also[START_REF] Barber | Bayesian time series models[END_REF],[START_REF] Chen | Parametric statistical change point analysis[END_REF],[START_REF] Killick | changepoint: An R package for changepoint analysis[END_REF] and the references therein.

Some of the existing work is dedicated to a Bayesian framework and therefore not in the scope of this Chapter. See e.g.[START_REF] Giordani | Efficient Bayesian inference for multiple changepoint and mixture innovation models[END_REF],[START_REF] Pandya | Bayes estimation of change point in non-standard mixture distribution of inverse Weibull with unknown proportions[END_REF],Pandya and Jadav 

This application shows that the WL and EWL tests can be used in the industry for the monitoring of changes, when they are unexpected but also to assess their significativity when they are known or suspected.

This ensures that the parameter θ can be estimated consistently. See e.g.[START_REF] Csörgő | Limit theorems in change-point analysis[END_REF] or[START_REF] Lehmann | Theory of point estimation[END_REF].

See e.g. Example 6.10 in[START_REF] Lehmann | Theory of point estimation[END_REF].

See e.g. Section 8.1 in[START_REF] Durrett | of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF].

See e.g. Lemma 18.9 in van der Vaart (1998).

In the detection procedure for the level, our approach does not require to know the time of the change for the estimation of the change coefficient ρ, see Section 2.2, page 48.

As a matter of fact, MLE algorithms might converge towards a local optimum and looking for improvements on the first observations of the sample. In general, we recommend a careful implementation of the estimation algorithms and a specific study of their convergence. In addition, when the computing time is reasonable, we recommend scanning all possible time changes and estimating ρ alone; this might improve considerably the likelihood.

This is a consequence of the revolution in cardiovascular care, see Figure1from[START_REF] Vallin | Espérance de vie : peut-on gagner trois mois par an indéfiniment[END_REF]. It is also noticeable in other countries, as developed in[START_REF] Cutler | Changes in the age distribution of mortality over the 20th century[END_REF].

See for example[START_REF] Redner | Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions[END_REF],[START_REF] Feng | Using bootstrap likelihood ratios in finite mixture models[END_REF], and Section 1.14 in[START_REF] Mclachlan | Finite mixture models[END_REF] for discussion on the identifiability of mixtures.

See e.g.Theorem 5.3 in Coleman (2012).
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of the first component are different before and after the change-point while the other parameters of the mixture remain the same. In this application, we illustrate the potential properties of the WL and EWL tests through three kind of changes in the parameters of the first component: a shift between -1 and +1 of the mean, a shift between -0.2 and +0.5 of the standard deviation and a shift between -0.25 and +0.25 of the weight parameter. The type II error (proportion of false negative) of each test is obtained from multiple re-simulations of samples that contain a change in the first component (Table 3.1). A high-performance test is characterized by a low type II error. Detailed graphs are also given in Figures 3.4 and 3.5 First, we recall that our main interest lies in the detection of changes in the first component that are not visible to the naked eye (small) but also not too close to 0 (no impact in practice), for large samples (over 10k observations). In that sense, Table 3.1 and Figure 3.5 show that the WLT performs significantly better than the benchmark test for large samples. In addition, the EWLT improves the performance of the WLT. Regardless of algorithmic issues, i.e. with a theoretical initialization, the EWLT corrects side effects due to unnormalized contributions (see Section 3.4 for details on the contribution). In particular, Figures 3.4a and 3.4b illustrate the correction for a significant increase of the mean. Remark that this has a relative interest since such increase of the mean is visible to the naked eye. More generally, the three tests have a similar detection quality for large samples of 10k observations, even if the benchmark test seems better for a sample of 1k observations (Figures 3.4).

Results obtained with the standard initialization correspond to what one could expect when applying these tests to real data. In that case, the benchmark test fails to detect properly the change, especially with large samples. To our understanding, this is mainly due to the optimization problem in the numerator of Λ BM k,n that the algorithm often fails to solve. Since their estimation algorithms are more robust, the WL and EWL tests have both very low type II errors for small changes in the parameters on a sample of 10k observation (Table 3.1 and Figure 3.5). We also see that there is still room for improvement for large changes in the weight and the standard deviation, even if large changes do not have a strong importance since they are visible to the naked eye.

Additional illustrations

In this appendix, we provide additional illustrations of the numerical simulations exposed in Section 3.6.2.