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Synthèse

Cette thèse s’intéresse à deux études distinctes de techniques de détection de rupture.
Ces techniques permettent de déterminer si, pour un phénomène aléatoire dont la loi
sous-jacente initiale est connue, un changement se produit ou non lors de son observa-
tion.

Le manuscrit comporte une introduction et trois chapitres rédigés en anglais. Les mo-
tivations, ainsi que les résultats des deux problèmes traités, sont présentés et discutés
dans l’introduction. Les préliminaires du Chapitre 1 introduisent de manière détaillée
les concepts et théorèmes sur lesquels les travaux s’appuient. Le Chapitre 2 traite de
l’estimation séquentielle du paramètre de la distribution après le changement dans le
cadre d’une séquence de variables aléatoires suivant une loi de Poisson. Des applica-
tions détaillées sont données, en particulier pour l’étude de la mortalité française. Le
Chapitre 3 introduit un test d’hypothèse alternatif qui vise à détecter un changement
dans la première composante d’un mélange fini de lois paramétriques. Le résultat prin-
cipal est un théorème limite fonctionnel qui donne la loi limite de la statistique du test
alternatif sous forme de transformation d’un mouvement brownien multidimensionnel.
Ce nouveau test est comparé numériquement à un test standard basé sur un ratio de
vraisemblance (cf. e.g. Csörgő and Horváth (1997)). Une application à des données
réelles en assurance IARD est donnée à but d’illustration du test alternatif.

Les techniques de détection de rupture sont aujourd’hui utilisées pour de multiples
applications. Dans le cas discret, leur but est d’étudier la séquence de variables aléa-
toires indépendantes (Xn)n≥1 associée à une distribution initiale Pθ, où θ est dans un
ensemble de paramètres éligibles Θ. Les procédures de détection cherchent à dire si
et quand cette distribution change. Chaque variable aléatoire Xn suit une distribution
Pθn , où θn ∈ Θ. Le temps de rupture est dénoté par ν : l’échantillon est de même loi
avant ν, i.e. θ = θ1 = · · · = θν ; et change de loi ensuite, i.e. θn 6= θ pour n > ν. Il existe
différentes familles de techniques : nous nous intéressons seulement aux procédures de
détection en ligne dites optimales au sens du délai de détection (Chapitre 2) et aux
tests d’hypothèse qui testent l’existence d’un changement dans un échantillon fermé
(Chapitre 3).

Premier problème : Estimation séquentielle du paramètre de la distribution
après le changement pour une séquence de variables aléatoires suivant une
loi de Poisson

Parmi les procédures de détection en ligne, les procédures du CUSUM et de Shiryaev-
Roberts sont aujourd’hui les plus utilisées en raison de nombreux résultats qui montrent
leur optimalité au sens du délai de détection (Page (1954), Shiryaev (1961), Roberts
(1966)). Dans le cas discret et pour un temps de rupture déterministe, Moustakides
(1986) a montré que la procédure du CUSUM est optimale pour minimiser le ’pire
pire délai de détection’ de Lorden (1971). Pour le cas Bayésien, c’est-à-dire quand le
temps de rupture est aléatoire, Pollak and Tartakovsky (2009) ont montré que la pro-
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cédure de Shiryaev-Roberts est optimale pour minimiser le délai de détection moyen.
D’autres résultats existent pour le cadre continu (cf. Section 1.3 et les références qui y
figurent). Ces deux procédures du CUSUM et de Shiryaev-Roberts font l’hypothèse que
les paramètres définissant les distributions avant et après le changement sont connus.
En pratique, s’il semble raisonnable de connaître la distribution avant le changement,
il est moins vraisemblable de connaître à l’avance le paramètre après changement.
Quelques références dans la littérature s’intéressent à l’estimation du paramètre après
changement : Wu (2005) donne une forme explicite d’un estimateur du maximum de
vraisemblance de la moyenne après le changement dans le cas d’une procédure du
CUSUM. D’autres approches par maximum de vraisemblance étudient les propriétés
asymptotiques d’estimateurs de la loi post-changement (cf. Section 2.1 et les références
qui y figurent).

Dans le Chapitre 2, nous introduisons un estimateur alternatif pour le paramètre de la
distribution après changement en réutilisant les propriétés de la statistique de détection
de la procédure de Shiryaev-Roberts. Nous considérons une séquence indépendante de
variables aléatoires (Xn)n≥1 qui suit une loi de Poisson. La séquence est identiquement
distribuée de paramètre λ avant le temps de changement ν, et identiquement distri-
buée de paramètre λρ après le temps de changement. Le paramètre λ > 0 est connu et
déterministe, alors que les paramètres ρ > 0 et ν ∈ N ∪ {∞} sont déterministes mais
inconnus. Ici, ρ représente le ratio des intensités des lois de Poisson après et avant le
changement. On dénote par fρ la fonction de densité d’une variable aléatoire qui suit
une loi de Poisson d’intensité λρ, définie pour tout ρ > 0 : fρ(x) = e−λρ(λρ)x/x!, x ∈ N.

La procédure de Shiryaev-Roberts permet de détecter un changement sous l’hypothèse
que les paramètres avant et après changement sont connus. Elle est définie par la
statistique séquentielle Sn(ρ) telle que S0 := 0 et

Sn(ρ) :=
n∑
i=1

n∏
k=i

fρ(Xk)
f1(Xk)

= (1 + Sn−1(ρ)) fρ(Xn)
f1(Xn) , n ≥ 1.

Elle est définie de sorte à rester proche de 0 avant le changement et à augmenter
fortement après le changement. Nous proposons d’utiliser cette statistique pour estimer
le paramètre post-changement. Pour n ≥ 0 fixé, nous définissons l’estimateur ρ̂S(n) du
paramètre de changement d’intensité ρ, par

ρ̂S(n) := arg max
ρ>0

Sn(ρ). (1)

A notre connaissance, l’idée de réutiliser la statistique de détection pour l’inférence du
paramètre post-changement ne semble pas présente dans la littérature. Nous montrons
le résultat suivant.

Théorème 1. Pour un temps de rupture 0 ≤ ν < ∞ fixé mais inconnu, l’estimateur
ρ̂S(n) défini par (1) est convergent.

La comparaison avec d’autres estimateurs classiques du maximum de vraisemblance ou
de minimisation d’erreur quadratique montre que :
� Comparé à un panel d’estimateurs usuels, l’estimateur ρ̂S(n) converge significa-

tivement plus vite vers le vrai paramètre après changement,
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� Sa variance est bien plus faible que les estimateurs usuels après le changement,
avec une variance asymptotique proche.

Nous pouvons utiliser l’estimateur ρ̂S(n) pour appliquer la procédure de Shiryaev-
Roberts qui a maintenant Sn(ρ̂S(n)) pour statistique séquentielle. Cela définit une
procédure de détection d’un changement de niveau pour une séquence de variables
aléatoires qui suivent une loi de Poisson d’intensité constante, où il n’est pas nécessaire
de connaître le paramètre post-changement.

L’estimateur ρ̂S(n) est défini pour maximiser la réponse de la statistique de détection.
Cela peut être un point de départ pour traiter la question ouverte de l’optimalité de
la procédure pour le cas où il n’est pas nécessaire de connaître le paramètre post-
changement.

Un des avantages des procédures comme le CUSUM ou celle de Shiryaev-Roberts est
d’être re-calculables sans effort pour chaque nouvelle observation qui arrive, c’est-à-dire
sans re-parcourir tout l’échantillon. Par définition de ρ̂S(n), notre procédure nécessite
ce re-calcul. Avec le fait que ρ̂S(n) converge rapidement vers le vrai paramètre, elle est
bien adaptée à des applications pour lesquelles la taille n de l’échantillon ne croît pas
trop vite : par exemple, pour l’étude de la mortalité annuelle, ou d’autres applications
actuarielles où les nouvelles observations arrivent à un rythme hebdomadaire, mensuel,
annuel.

Nous explorons également un autre type de séquence aléatoire où l’intensité de la loi de
Poisson croît/décroît à une vitesse constante. Dans ce deuxième modèle, la séquence
(Xn) suit une loi de Poisson de paramètre λn où λn := αλn−1 avant le changement et
λn := α′λn−1 après le changement, avec α 6= α′. Les paramètres λ0 et α sont déter-
ministes et connus. Les paramètres ν et α′ sont déterministes mais inconnus. Ici, nous
ne proposons pas d’estimateur pour le paramètre après changement mais considérons
plutôt l’estimateur du maximum de vraisemblance qui, numériquement, semble être
un candidat raisonnable. La procédure de Shiryaev-Roberts, dans ce cadre, permet de
détecter un changement de tendance pour une séquence de variables aléatoires qui
suivent une loi de Poisson d’intensité linéairement croissante ou décroissante.

La loi de Poisson est un cadre couramment utilisé pour la modélisation de la morta-
lité. A l’aide de techniques de normalisation des données, nous appliquons les deux
procédures de détection de niveau et de tendance à la mortalité nationale française
sur plusieurs évènements marquants de l’histoire : la grippe espagnole de 1918 (Caselli
et al. (1987), Spreeuwenberg et al. (2018)) ; la baisse de la mortalité dans les années
1960 liée à la révolution cardiovasculaire (Vallin and Meslé (2010)) ; et la canicule de
2003 (Robine et al. (2008)). Nous étudions également la mortalité d’un portefeuille de
15 000 rentiers entre 2003 et 2014. Les résultats principaux nous permettent d’identi-
fier des changements dans la mortalité, de quantifier l’amplitude de ces changements
ainsi qu’un délai de détection. La procédure pour détecter un changement de niveau
détecte correctement des changements persistants, même minimes. La procédure qui
détecte un changement de tendance apparaît sensible à une séquence (même courte)
d’observations croissantes/décroissantes.
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Second problème : Test de ratio de vraisemblance pondérée détectant un
changement dans une composante d’un mélange de lois paramétriques

Les modèles basés sur des mélanges de lois sont devenus assez populaires dans la littéra-
ture de statistiques ces dernières décennies car ils permettent de décrire un phénomène
contenant plusieurs sous-populations statistiques. L’estimation des paramètres d’un
mélange de loi est un problème qui intéresse à la fois les statisticiens théoriques à
travers, par exemple, des questions d’identifiabilité mais aussi les praticiens via des
questions algorithmiques (cf. Section 1.1 et les références qui y figurent).

Nous considérons un échantillon de n variables aléatoires indépendantes (Xi)1≤i≤n à
valeurs dans un espace vectoriel réel X . Chaque variable Xi suit un mélange fini de lois
paramétriques avec 2 < m <∞ composantes si, sous certaines conditions de régularité,
pour f1, . . . , fm des fonctions de densité sur X fixées, la distribution Pθ de Xi admet
la densité

f(x, θ) :=
m∑
k=1

pkfk(x, λk), x ∈ X

où le paramètre θ = (p1, . . . , pm−1, λ1, . . . , λm) est dans l’ensemble des paramètres pos-
sibles Θ = Θ0 ×

∏m
k=1 Θk, sous-ensemble d’un espace Euclidien de dimension d, et

pm := 1 −∑m−1
k=1 pk. Le nombre de composantes m est connu et déterministe. Chaque

paramètre λk est dans un ensemble Θk et le vecteur des poids (p1, . . . , pm−1) est dans
l’ensemble ouvert Θ0 := {(p1, . . . , pm−1) ∈ (0, 1)m−1,

∑m−1
k=1 pk < 1}. Nous faisons l’hy-

pothèse que le mélange est identifiable : il est possible de distinguer les composantes
du mélange les unes des autres et de les ordonner (McLachlan and Peel (2000)).

Le but du chapitre est de détecter un changement dans la première composante du mé-
lange lorsqu’il y a au plus un changement dans l’échantillon (modèle AMOC : at most
one change). La détection de rupture pour des mélanges de lois est courante car elle fait
partie des techniques générales de détection de rupture (Csörgő and Horváth (1997),
van der Vaart (1998)). Or, peu de travaux lient spécifiquement les deux sujets (Andrews
and Ploberger (1994), Hansen (1996), Pons (2009), Zou et al. (2015)). Le test d’hypo-
thèse standard basé sur un ratio de vraisemblance, exposé dans Csörgő and Horváth
(1997), peut être adapté pour construire un test d’hypothèse dit benchmark, dédié
à la détection de rupture dans la première composante du mélange. Toutefois, d’un
point de vue pratique, deux problèmes émergent lors des applications. Tout d’abord, la
statistique de test contient un problème d’optimisation sans solution explicite et pour
lequel il n’existe pas d’algorithme dédié. Ensuite, la résolution directe du problème
d’optimisation avec un algorithme standard est gloutonne en temps de calcul jusqu’à
être déraisonnable pour des échantillons de grande taille, tout en convergeant vers une
solution peu acceptable. C’est pourquoi nous cherchons à construire un test qui s’écrit
comme une fonction simple d’estimateurs standards pour lesquels un algorithme d’es-
timation dédié peu se trouver aisément (par exemple l’algorithme EM de Dempster
et al. (1977) ou ses dérivés).

Dans le Chapitre 3, nous introduisons un test d’hypothèse qui répond à cet objectif.
Supposons que l’échantillon (Xi)1≤i≤n suive un mélange fini de lois paramétriques de
sorte que, si un changement se produit, il est unique et inconnu. Contrairement au
premier travail, nous nous intéressons ici à de grands échantillons, et sommes donc
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amenés à étudier le comportement limite. Nous supposerons donc que l’expérience se
passe dans un intervalle de temps [0, 1] et chaque variable Xi est observée au temps
i/n, 1 ≤ i ≤ n. Nous imposons que, si un changement survient, le temps de rupture est
contenu dans l’intervalle [s̄, 1− s̄] ⊂ (0, 1), où 0 < s̄ < 1/2 est connu et déterministe :
le changement ne peut se produire trop près de 0 ni de 1. Nous définissons le test
d’hypothèse par :

1. L’hypothèse nulle H0 où il n’y a pas de rupture : le mélange est défini par le vrai
paramètre θ = (p1, . . . ,pm−1,λ1, . . . ,λm) ∈ Θ.

2. L’hypothèse alternative H1 : un changement survient au temps s, s ∈ [s̄, 1− s̄].
Dans la suite, nous nous placerons toujours sous l’hypothèse nulle. Nous imposons éga-
lement que l’estimateur du maximum de vraisemblance du paramètre θ qui définit le
mélange est fortement convergent.

Considérons la fonction de poids au point x ∈ X pour θ ∈ Θ, définie par

w(x, θ) := p1f1(x, λ1)
f(x, θ) ,

et introduisons le log-ratio de vraisemblance pondéré Λs,n défini pour s ∈ [s̄, 1 − s̄] et
n ≥ 1 par

Λs,n := log
∏bsnci=1 f1(Xi, λ̂0,s,1)w(Xi,θ̂0,s)∏n

j=bsnc+1 f1(Xj, λ̂s,1,1)w(Xj ,θ̂s,1)∏n
i=1 f1(Xi, λ̂1)w(Xi,θ̂)

 ,
où θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m) est l’estimateur du maximum de vraisemblance pour
θ sur l’échantillon tout entier, et, pour s ∈ [s̄, 1− s̄], θ̂0,s et θ̂s,1 sont respectivement les
estimateurs du maximum de vraisemblance pour θ sur les sous-échantillons (Xi)1≤i≤bsnc
et (Xi)bsnc+1≤i≤n. Les fonctions de poids w(., .) dans Λs,n permettent de zoomer sur
les observations qui ont le plus de chance d’appartenir à la première composante. La
statistique de test est définie par

Sn := sup
s∈[s̄,1−s̄]

Λs,n.

Nous dénotons ce test de ratio de vraisemblance pondérée par WLT (Weighted Like-
lihood Test). Le test ainsi défini est une fonction simple d’estimateurs standards du
maximum de vraisemblance pour lesquels des algorithmes dédiés existent (Dempster
et al. (1977), Benaglia et al. (2009)). Son application à des données ne présente donc
pas de difficulté de mise en œuvre.

La distribution limite de la statistique de test Sn est obtenue par une méthode simi-
laire à celle de Davis et al. (1995). Nous commençons par établir certaines propriétés
asymptotiques des estimateurs θ̂0,s et θ̂s,1 sous l’hypothèse nulle à l’aide d’arguments
classiques de l’étude des estimateurs du maximum de vraisemblance (Lehmann and
Casella (1998)). Ces résultats liminaires nous permettent d’établir un théorème limite
fonctionnel pour le processus càd-làg (Λs,n)s∈[s̄,1−s̄] à l’aide d’applications multiples
du Continuous Mapping Theorem et d’une delta-méthode fonctionnelle adaptée pour
l’espace métrique de Skorokhod 1 (Billingsley (1999), van der Vaart (1998)). La distri-
bution limite de la statistique Sn est obtenue ci-dessous comme une conséquence du
résultat fonctionnel.

1. Il s’agit ici de l’espace des fonctions càd-làg sur [s̄, 1− s̄] à valeurs dans un espace Euclidien.
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Théorème 2. Sous l’hypothèse nulle et certaines conditions de régularité détaillées
dans la Section 3.2.1, si l’estimateur θ̂ est fortement convergent, alors

Sn
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q(Ws − sW1)
s(1− s)

où (Ws)s∈[0,1] est un mouvement Brownien standard de dimension 2d+d2 et l’application
q est une forme quadratique définie dans la Section 3.3.2 par l’équation (3.33).

Ainsi le processus limite est une forme quadratique du pont Brownien. Ce type de
limite est similaire à celles obtenues par exemple dans Davis et al. (1995), Csörgő and
Horváth (1997) ou Dehling et al. (2014).

La loi de la variable aléatoire limite sups∈[s̄,1−s̄]
q(Ws−sW1)
s(1−s) reste une question ouverte.

Toutefois, la complexité de la fonction q ne présage pas de solution simple à ce pro-
blème et des simulations numériques sont suffisantes pour calibrer un seuil de détection
pour le test WL.

Suite à de premières applications numériques simulées, nous suggérons une extension
du test pour améliorer ses performances, notamment en réduisant l’erreur de type
II. Pour cela, nous introduisons une version ajustée Λ∗n := (Λ∗s,n)s∈[s̄,1−s̄] du processus
sous-jacent où

Λ∗s,n := c1,n

cs,n

bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +
n∑

i=bsnc+1
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)


−

n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1)

et où, pour s fixé dans [s̄, 1], cs,n := ∑bsnc
i=1 w(Xi, θ̂0,s)+∑n

i=bsnc+1w(Xi, θ̂s,1) représente la
contribution de l’échantillon aux deux premières sommes de Λs,n, et c1,n la contribution
à la dernière. Nous montrons que la contribution cs,n converge p.s. vers le paramètre
de poids p1 de la première composante, uniformément en s ∈ [s̄, 1]. La statistique de
ce test, dénoté par EWLT, devient S∗n := sups∈[s̄,1−s̄] Λ∗s,n. Cet ajustement n’est pas
sans impact car cela ajoute un aléa supplémentaire. La distribution limite de S∗n reste
un supremum d’une forme quadratique d’un mouvement brownien mais maintenant de
dimension 3d+ d2.

Théorème 3. Sous l’hypothèse nulle et certaines conditions de régularité détaillées
dans la Section 3.2.1, si l’estimateur θ̂ est fortement convergent, alors

S∗n
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q∗(Ws − sW1)
s(1− s)

où (Ws)s∈[0,1] est un mouvement Brownien standard de dimension 3d+d2 et l’application
q∗ est une forme quadratique définie dans la Section 3.4 par l’équation (3.39).

Si l’échantillon (Xi)1≤i≤n suit un mélange Gaussien unidimensionnel, alors le mé-
lange est défini par un paramètre θ de la forme suivante :

θ = (p1, . . . , pm−1, µ1, σ1, . . . , µm, σm)

12
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tel que, pour chaque k-ème composante, µk ∈ R est le paramètre de moyenne et
σ2
k ∈ R∗+ le paramètre de variance. Nous imposons que les moyennes soient stricte-

ment croissantes et, comme dans Hathaway (1985), que les variances soient bornées :
min {σj/σk, 1 ≤ j, k ≤ m} > b, où 0 < b ≤ 1 est une borne de dispersion supposée
connue. Par Hathaway (1985), l’estimateur θ̂ est alors fortement convergent et nous
pouvons montrer que les conditions de validité des Théorèmes 2 et 3 ci-dessus sont
vérifiées.

Nous présentons deux applications pour le cas Gaussien où nous nous intéressons à des
échantillons de grande taille (plus de 10 000 observations).
Une première application, basée sur des simulations d’un mélange à 3 composantes,
permet de montrer que les tests WL et EWL ont une erreur de type II bien plus faible
que celle du test benchmark. Les mauvaises performances de ce dernier s’expliquent
essentiellement par le fait qu’il n’existe pas d’algorithme dédié pour résoudre le pro-
blème d’optimisation qu’il contient, alors que les deux tests WL et EWL reposent sur
des algorithmes standards. De plus, le temps nécessaire au calcul du test benchmark
augmente considérablement avec la taille de l’échantillon.
Lorsque nous étudions le comportements des tests pour un changement dans une autre
composante que la première, nous constatons que le test EWL reste le meilleur candidat
car la fréquence de détection dans ce cas est la plus faible. Toutefois, dans certains cas,
les trois tests détectent à tort un changement : corriger cet effet pourrait donner lieu
à une extension de nos travaux. De plus, le test benchmark semble avoir de meilleures
propriétés lorsque le problème d’optimisation qu’il contient est correctement résolu.
Ainsi, il serait intéressant d’améliorer ce test en élaborant un algorithme dédié à son
problème d’optimisation via, par exemple, une adaptation de l’algorithme EM.
La seconde application est consacrée à un cas concret pour la détection d’un change-
ment dans la distribution de la variation de la charge de sinistres corporels en assurance
non-vie. Cette variation de charge peut se modéliser par un mélange Gaussien à 12 com-
posantes et l’entreprise d’où émerge le problème s’intéresse à vérifier qu’un changement
se produit dans la 5ème composante. L’application des tests WL et EWL confirme la
détection du changement, ce qui a permis à l’entreprise de poursuivre la recherche des
causes sous-jacentes.

Les applications montrent que les deux tests WL et EWL sont performants (faible
erreur de type II). De plus, les résultats obtenus sous l’hypothèse nulle dans les Théo-
rèmes 2 et 3 permettent de calibrer aisément des seuils de détection via une simu-
lation de mouvements browniens (temps de calcul marginal divisé par 10 000). Au-
delà de ces deux constats prometteurs, les travaux réalisés montrent des possibilités
d’extensions, notamment via une amélioration des algorithmes permettant l’application
du test benchmark.
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Introduction

This thesis concerns two distinct studies of change-point detection techniques. Such
techniques consider the question of deciding whether a change happens or not, when
observing over time a random phenomenon with known initial properties.

Likewise this introduction, the manuscript is divided into three chapters. The key
notions and theorems that we rely on in this thesis are introduced and put into per-
spective in Chapter 1. Chapter 2 corresponds to the article A. et al. (2018). It deals
with the sequential estimation of the post-change distribution when observing an on-
line sequence of Poisson random variables. Detailed applications to the study of French
mortality are provided. Chapter 3 introduces an alternative hypothesis test that aims
to detect a change-point in the first component of a finite parametric mixture, for a
closed sample where at most one change occurs. The main result consists in a functional
limit theorem for the distribution of the test statistic. A short application to Property
and Casualty insurance data is provided.

The purposes of this introduction are to explain the context of this work, to present
the main results of the two distinct topics detailed in Chapters 2 and 3, and to discuss
unaddressed problems and remaining open questions.

1 Context

The concept of change detection originated in the field of quality control (Girshick
and Rubin (1952), Page (1954)) in the 1950’s and is used today in many applied fields
such as epidemiology, insurance, server protection or finance 2. In the discrete case, the
common goal of these applications is to study the random sequence (Xn)n≥1 associated
with a known initial distribution Pθ for some θ in some set of eligible parameters Θ.
Detection procedures aim to determine if and when this initial distribution changes.
Each random variable Xn follows a distribution Pθn , where θn ∈ Θ. The time of the
change ν is called change-point: the sample is identically distributed before ν, i.e.
θ = θ1 = · · · = θν ; and, after the change-point, θn 6= θ for n > ν (possibly but not
necessarily i.i.d.). One can divide change-point detection techniques into three families:
� Off-line hypothesis tests that state whether or not there are one or more change-

points in a closed observed sample (xi)1≤i≤n, for n fixed. The work of Chapter 3
falls into this category where: the underlying distribution Pθ, θ ∈ Θ, is assumed
to be a finite parametric mixture and the test aims to detect the presence of at
most one change.
� Inference methods for the parameters of a model that assumes that a closed

sample contains one or more change-points.
� On-line detection schemes that aim to detect a change-point when observing

the sequence of outcomes (xn)n≥1 as they arrive. In this category, Chapter 2

2. For more details, see e.g. Basseville and Nikiforov (1993), Brodsky and Darkhovsky (1993),
Csörgő and Horváth (1997), Chatterjee (2012), Pons (2018), Frühwirth-Schnatter et al. (2019), Truong
et al. (2020) and the references therein.
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introduces a sequential estimator for the post-change distribution of a sequence
of Poisson random variables.

Since they cover two distinct topics, we introduce separately the motivations and the
results of Chapters 2 and 3 in the following two sections.

2 Discrete Poisson case: a sequential estimator of the post-change param-
eter

This section introduces Chapter 2.

2.1 Motivation

Among the on-line detection schemes for discrete sequences, a quickest change-point
detection scheme is a sequential procedure that aims to detect a change in the distribu-
tion of the phenomenon as quickly as possible without raising too many false alarms,
i.e. when the procedure detects a change while none occurred (Poor and Hadjiliadis
(2009), Tartakovsky et al. (2015)).

We consider an experiment where we observe a sequence (Xn)n≥1 of independent ran-
dom variables, with values in a real vector space. The time of change or change-point
is denoted by ν and is unknown: random (Bayesian framework) or deterministic. We
assume that the sequence (Xn)1≤n≤ν is identically distributed with parametric distribu-
tion Pθ and density function fθ, and the sequence (Xn)n≥ν+1 is identically distributed
with distribution Pθ′ and density function fθ′ . The parameters θ and θ′ are in some set
Θ of possible parameters and, in general, the distribution of the sequence is denoted
by Pν . A change-point detection scheme is a procedure defined by a detection sequence
Sn and a threshold s∗. An alarm is triggered as soon as Sn > s∗, defining a stopping
time n∗ := inf{n ≥ 1, Sn > s∗}. The threshold s∗ is usually chosen with respect to a
false alarm constraint. For example, one can consider a constraint for the average delay
of detection when no change occurs: E{ν=∞} [n∗] ≥ η, where η > 1 is defined by the user.

Today, there are two well-known quickest change-point detection schemes. Page (1954)
introduced the CUSUM detection scheme. Moustakides (1986) proved that, for a deter-
ministic change-point, this scheme is optimal in minimizing the ’worst worst’ detection
delay supν≥0 ess supEν [(n∗ − ν)+|X1, . . . , Xν ]. This delay criterion was introduced by
Lorden (1971) 3 who first showed its asymptotic optimality, i.e. when the constraint η
for the average delay of detection tends to infinity. The optimality of this scheme has
been proved for a continuous-time setup for different types of processes: for example
Beibel (1996) and Shiryaev (1996) in a Brownian motion context, Moustakides (2004)
for statistics of Itô processes or El Karoui et al. (2017) for an inhomogeneous Poisson
process.
After early attempts by Girshick and Rubin (1952), another common procedure has
been proposed independently by Shiryaev (1963) (also in Shiryaev (1961)) for the
continuous-time case and Roberts (1966) for the discrete case. The Shiryaev-Roberts
detection scheme is a change-point detection scheme where the detection sequence is

3. Known as the Lorden’s criterion. Other criteria can be found in the literature: e.g. Pollak (1985),
Tartakovsky et al. (2015) and the references therein.
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given by S0 := 0 and

Sn(θ,θ′) := (1 + Sn−1(θ,θ′)) fθ
′(Xn)

fθ(Xn) , n ≥ 1. (2)

Note that the detection statistic Sn(θ,θ′) is defined such that it stays close to 0 before
the change and increases strongly after the change. Pollak and Tartakovsky (2009)
showed that, for a fixed η > 1, if the change-point ν is a generalized random variable
with a uniform improper prior distribution, then, among all change-point detection pro-
cedures satisfying E{ν=∞}[n∗] ≥ η, the Shiryaev-Roberts detection scheme is optimal in
minimizing the average detection delay given by ∑∞k=0 E{ν=k} [(n∗ − k)+] /E{ν=∞}[n∗].
Optimality is still valid for the case where ν has a geometric distribution (Shiryayev
(1978)). The same result has been obtained for a continuous-time setup for different
types of processes: for example Shiryaev (1963) and Feinberg and Shiryaev (2006) in
the context of Brownian motions.

Since their introduction in the 1950’s, the CUSUM and the Shiryaev-Roberts schemes
are used in many applied fields (see Chatterjee (2012) and the references therein). A
few other procedures are also used for change-point detection. For example Roberts
(1959) suggests a procedure based on EWMA (exponentially weighted moving aver-
ages).

The Shiryaev-Roberts procedure assumes that the parameters θ and θ′ are known. In
practice, it is reasonable to assume that the distribution before the change, defined
by the parameter θ, is known because in most situations the practitioner can use the
first observations to infer θ. However, in most cases, the post-change distribution is
unknown without any practical way to infer θ′.

For exponential families, Foster and George (1993) suggest some estimators for the
mean before the change. Wu (2005) provides an explicit form of the Maximum Likeli-
hood Estimator (MLE) of the post-change mean in the case of the CUSUM scheme, and
its asymptotic properties. More recently, Fotopoulos et al. (2010) studied the asymp-
totic distributions of the MLE under the Gaussian framework. More MLE designed for
specific frameworks are provided e.g. in Wu (2016a), Wu (2016b) and Frick et al. (2014).

2.2 Our contribution

Our contribution consists in the introduction of an alternative estimator for the post-
change parameter in the case of an i.i.d. discrete sample with Poisson distribution.
This estimator is based on the detection statistic of the Shiryaev-Roberts procedure. We
show that it is a consistent estimator for the post-change parameter. Numerical sim-
ulations indicate that, compared to the usual Maximum Likelihood Estimator, it has a
significantly reduced bias and variance just after the change with identical asymptotic
properties.
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2.2.1 Detection of a change of level

With the previous notations, consider the sequence of independent random variables
(Xn)n≥1 such that Xn follows a Poisson distribution with parameter λ for 1 ≤ n ≤ ν,
and with parameter λρ for n ≥ ν + 1. The parameter λ > 0 is deterministic and
supposed to be known, while ρ > 0 and ν ∈ N ∪ {∞} are deterministic but unknown.
The time of the change is denoted by ν and ρ is the ratio of the intensities after and
before the change. Here we use the term density function with respect to the counting
measure on N. We denote by fρ the density function of a Poisson random variable with
intensity λρ defined for any ρ > 0 by fρ(x) = e−λρ(λρ)x/x!, x ∈ N.

The Shiryaev-Roberts sequence aims to detect a change, knowing the parameters before
and after the change. We suggest to use its optimality property in order to infer the
intensity shift parameter ρ. For given λ > 0, n ≥ 0 known, and ν ≥ 0 deterministic
but unknown, we define the estimator ρ̂S(n) by

ρ̂S(n) := arg max
ρ>0

Sn(ρ), (3)

where Sn(ρ) = Sn(λ, λρ) is the Shiryaev-Roberts sequence, as defined in (2). To our
knowledge, using the detection statistic for the inference of ρ does not appear in the
literature. One first property of the estimator ρ̂S(n) is that it does not depend on the
change-point ν. Therefore, we do not need to know when the change occurs in order
to infer the post change intensity. Using again the statistic in (2), we define a new
detection procedure by the detection sequence Sn(λ, λρ̂S(n)). In this procedure, only
the parameter before the change needs to be known.

We show that ρ̂S(n) is a consistent estimator for ρ. For that purpose we consider the
following sub-problem based on the likelihood ratio

Ri,n(ρ) :=
n∏
k=i

fρ(Xk)
f1(Xk)

,

where we remark that Sn(ρ) is the sum of the variables Ri,n(ρ) for 1 ≤ i ≤ n. If we set

ρ̂i,n := λ−1
n∑
k=i

Xk

n− i+ 1 ,

we can show that ρ̂i,n = arg maxρ>0Ri,n(ρ). In addition, the sequence (Xk)k≥1 differs
from an independent identically distributed sequence only through a finite number of
terms. Thus the law of large numbers holds: for all i ≥ 1, ρ̂i,n converges P-almost surely
to ρ. Unfortunately, we can also show that the convergence cannot be uniform in i ≥ 1.
In a first Lemma below, we show that ρ̂S(n) is somehow related to the ρ̂i,n, 1 ≤ i ≤ n.

Lemma 1. For any n ≥ 1, ρ̂S(n) ∈ [min1≤i≤n ρ̂i,n,max1≤i≤n ρ̂i,n].

From this Lemma, we obtain the following result.

Theorem 2. For any deterministic 0 ≤ ν <∞, the estimator ρ̂S(n) defined in (3) is
consistent.

For the case when ν = 0, the proof uses the three following results, given for some fixed
ε > 0, and, as n→∞, some large n0 and Ln0 :
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� For any i ≥ 1, ρ̂i,n converges P-almost surely to ρ. We show that, for all i ≤ n−n0
and all ρ < ρ− ε, with probability close to one, Ri,n(ρ− ε/2) ≥ Ri,n(ρ).

� For any ρ > 0 and any i ≥ 1, Ri,n(ρ) tends P-almost surely to ∞. We show that,
with probability close to one, ∑n

i=n−n0+1Ri,n(ρ) ≤ Ln0 .

� The difference Ri,n

(
ρ− ε

2

)
−Ri,n(ρ− ε) tends P-almost surely to∞. Then, with

probability close to one, R1,n
(
ρ− ε

2

)
≥ 2Ln0 +R1,n(ρ− ε).

We recall that Sn(ρ) = ∑n
i=1Ri,n(ρ). We can combine the three results above. With

some reorganization, we show that, for n large enough and all ρ < ρ− ε,

Sn

(
ρ− ε

2

)
= R1,n

(
ρ− ε

2

)
+

n−n0∑
i=2

Ri,n

(
ρ− ε

2

)
+

n∑
i=n−n0+1

Ri,n

(
ρ− ε

2

)
≥ Sn(ρ).

By a symmetric argument, Sn(ρ+ ε/2) ≥ Sn(ρ) for all ρ > ρ+ ε, and the result follows
by definition of ρ̂S(n). We extend this result to any deterministic 0 ≤ ν <∞ by using
the fact that there is only a finite number of Xi with intensity λ, and a growing number
of Xi with intensity λρ.

In Figures 1 and 2 we numerically compare the estimator ρ̂S(n) to usual estimators
(maximum likelihood estimator, least square error estimator). It appears that:

� The average bias of ρ̂S(n) decreases faster than in the case of the usual estimators;

� The variance of ρ̂S(n) is always lower, also all variances are asymptotically close;

� As expected, ρ̂S(n) is numerically close to one in average before the change.

These properties, numerical and theoretical, make this estimator a first choice compared
to the usual estimators considered in the investigation for the inference of the post
change parameter, especially just after the change.

Figure 1 – Average sequential estimation of ρ. Centered on the time of change.
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Figure 2 – Empirical sequential variance of estimators of ρ. Centered on the time of
change.

2.2.2 Detection of a change of trend

We also explored another setup for the change-point detection procedure where the
intensity of the Poisson random variables sequence is increasing/decreasing at a steady
pace. We look for a change in the trend and suggest a way for the inference of the
post-change parameters. For that purpose, consider an independent random sequence
(Xn)n≥1 such that Xn follows a Poisson distribution with parameter λn where λn :=
αλn−1 before the change and λn := α′λn−1 after the change. We assume that α and α′
cannot be equal. In this context, λ0 and α are deterministic and known. The parameters
ν and α′ are deterministic but unknown. We provide an adaptive procedure that uses
estimates for both ν and α′. For fixed n ≥ 1, the associated sequence ξ = (ξi,n)1≤i≤n is
given for i ∈ {1, . . . , n} by

ξi,n :=
i∑

k=1

i∏
j=k

f j
θ̂n

f jθ0
(Xj).

Here θ̂n := (α̂′ξ(n), ν̂ξ(n)) is an estimator of the couple (α′, ν). We denote by (f i
θ̂n

)1≤i≤n
the sequence of density functions, with respect to the counting measure on N, of in-
dependent Poisson random variables with intensity λi := αλi−1 before the estimated
change-point ν̂ξ(n) and with intensity λi := α̂′ξ(n)λi−1 after the estimated change-point
ν̂ξ(n). In practice, we used the maximum likelihood estimator (MLE) for θ̂n. Numerical
simulations seem to indicate that, in this case, the MLE is among the best options we
have for the estimations of α′ and ν.

2.2.3 Applications

A Poisson framework is commonly used for the mortality (Rhodes and Freitas (2004)
and Tomas and Planchet (2015)). After data normalization as described in Zucchini
and MacDonald (2009) and Mei et al. (2011), we studied the French national mortality
through the following events:
� The 2003 French heatwave,
� The 1918 Spanish flu,
� The decrease of the mortality rate in the 60’s as a consequence of the revolution

in cardiovascular care.
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During the summer 2003, the death toll of the heat wave exceeded 70 000 in Europe
(Robine et al. (2008)). In France, it impacted significantly the mortality of elderly peo-
ple. We studied the age group 85-90 years old. No change of level is detected when
the 2003 peak occurs. However, the decrease of the mortality that follows (from 12.3%
in 2000 to 9.9% in 2006) is detected in 2005 (ρ̂S(2005) = 0.89). As expected, a per-
sistent change of level is detected but not a sudden variation. With the procedure for
detecting a change of trend, surprisingly, the two years 2002 and 2003 are sufficient to
raise an alarm for the observed increase (relative increase of +3.5% per year) since the
observations are aligned enough. This is a clear example of a peak/compensation phe-
nomenon. Once we identified the peak and the compensation period through multiple
applications of the procedure, we can test whether the regularly decreasing period has
the same trend as the initial period.
The death toll of the 1918 Spanish flu is evaluated at 17.4 million worldwide (Spreeuwen-
berg et al. (2018)). We studied the case of French women (Caselli et al. (1987)). Ob-
servations suggest that the mortality is stable before the event. A strong peak is vis-
ible in 1918. The change of level is detected in 1918, the same year it happens, with
ρ̂S(1918) = 1.5.
As a consequence of the revolution in cardiovascular care, the French mortality rate
decreased in the 60’s (Vallin and Meslé (2010), Cutler and Meara (2001)). We studied
the case of women between 55 and 75 years old. Didou (2011) noticed that the female
mortality rates are slightly decreasing at a steady peace just before 1960 and the de-
crease accelerates in the 60’s. The trend changes around 1976/1978 and the procedure
rises an alarm in 1986. The estimated decrease of mortality in 1960 is about 1.5% per
year and becomes 3.2% after the change, i.e. starting from 1978.

We also studied a portfolio of life annuitants from a real insurance portfolio. The dataset
contains about 15 000 life annuities. Because of the low size of the portfolio, we assume
that the expected mortality is given by the French regulatory tables. The procedure
for a change of level does not raise any alarm: no persistent change of level seems to
occur for the whole portfolio. A close analysis of the observations might suggest that
there is a deviance between the observed and predicted deaths from 2011. With the
procedure for detecting a change of trend, an alarm is raised at mid-year 2013. The
initial decreasing trend of 0.6% changes to an annual increase of the mortality of 0.7%
from the last quarter of 2005. A re-run from the second half of 2013 in order to detect
a late change does not raise any alarm. We conclude that the studied portfolio of life
annuitants does not diverge significantly from its reference mortality table.

In summary, the use of the procedure for detecting a change of level is assessed to be
efficient for detecting small persistent deviations. The procedure for the detection of a
change of trend is quite sensitive and detects small persistent changes of trend, even
over a short period of time.

2.3 Discussion

We recall that the usual detection schemes assume that the post-change distribution
is known and our contribution consisted in introducing a consistent sequential esti-
mator for the post-change parameter in the case of an independent Poisson sequence.
We numerically found out that this estimator seems to converge faster to the true
parameter, with lower variance. We used this estimator in a Shiryaev-Roberts scheme.
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Such schemes are built to be updated very rapidly as a new observation arrives. Our
estimator is defined such that, for each new observation, its computation requires to
re-run many times the scheme from the first observation. Therefore it is rather dedi-
cated to applications where the frequency of arrival of new observations is low enough.
For many actuarial applications, and especially the study of mortality as shown in the
applications, this is not really a problem because the dataset remains small enough (or
at least can be seen as a small sample). For other applications where the frequency of
arrival of new observations overcomes the computational capacities, one can consider
different aggregation techniques (e.g. using a moving average or subsamples) in order
to allow our approach to be computed.

The Shiryaev-Roberts detection scheme is optimal in minimizing the average detection
delay when:
� The change-point is a generalized random variable with a uniform improper prior

distribution,
� The parameters before and after the change are known,
� The average delay of false alarm is below some fixed constant.

In our framework, we assume that we do not know the post-change parameter. Then,
is the procedure still optimal? By definition, for each new observation, the highest
possible value of the Shiryaev-Roberts statistic is attained with our estimator. Since
the false alarm detection delay is also impacted, this does not ensure that our statistic
gives the quickest response. Still, with an appropriate threshold that depends on n,
one can control accurately the false alarms and still expect a quick answer from the
procedure and benefit from the estimation properties of our estimator.

3 Weighted likelihood test for a change in one component of a parametric
mixture

This section introduces Chapter 3.

3.1 Motivation

We consider an experiment where we observe a sample of n independent continuous
random variables (Xi)1≤i≤n with values in a real vector space X . For a parameter
θ = (p1, . . . , pm−1, λ1, . . . , λm) in a set of eligible parameters Θ, the variable X1 follows
a finite parametric mixture with m components if it has a density of the form

f(x, θ) :=
m∑
k=1

pkfk(x, λk), x ∈ X ,

where f1, . . . , fm are some fixed density functions on X and pm := 1−∑m−1
k=1 pk.

The concept of mixture distributions arises in many fields and has been popular in
the literature for the last decades, as it allows to describe experiments with different
sub-populations (Pearson (1894)). The earliest books on finite mixtures (Everitt and
Hand (1981), Titterington et al. (1985)) already include a few recurring topics that
emerge when studying mixtures: the identifiability of the mixture model; the estima-
tion of the mixture parameters (e.g. with the EM algorithm by Dempster et al. (1977),
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the Bayesian framework, the likelihood approach or the method of moments); and the
question of determining the number of components in the mixture. Later books, as in
McLachlan and Peel (2000), Frühwirth-Schnatter (2006), Pons (2009) or Lachos Dávila
et al. (2018), provide an extensive overview of the literature with the solutions of the
above mentioned questions and some innovations: Hidden Markov Models, further in-
vestigations in the early topics, speed of convergence of algorithms, multivariate mix-
tures, and other specific topics. Recently, Frühwirth-Schnatter et al. (2019) gathers
most of the recent work on the topic in both theoretical and applied fields: newest
versions of the EM algorithm, Bayesian inference and the role of Monte-Carlo Markov
Chains, non-parametric mixtures, the use of clustering for modeling mixtures, the case
of heavy tails and skewness, and various applications in image analysis, genomics, as-
tronomy or finance.

In this work, we assume that:
� The set of eligible parameters Θ = Θ0 ×

∏m
k=1 Θk is a subset of a d-dimensional

Euclidean space and each parameter λk belongs to a set Θk.
� The number of components 2 < m <∞ is deterministic and known.
� The vector of weight parameters (p1, . . . , pm−1) belongs to the open set Θ0 :=
{(p1, . . . , pm−1) ∈ (0, 1)m−1,

∑m−1
k=1 pk < 1}.

� The mixture is identifiable in the sense that different values of θ lead to different
laws Pθ.

The last assumption means that, in particular, we can order and distinguish the com-
ponents of the mixture (Redner (1981), Feng and McCulloch (1996), McLachlan and
Peel (2000)).

Considering the closed sample (Xi)1≤i≤n, we are interested in detecting a change in
the parameters of the distribution that describes the first component of the
mixture for the case when there is at most one change (AMOC model). This is mo-
tivated by examples from applications. Here is one possible example: consider a study
where the initial purpose is to model a population but, during initial phases (gathering
the data, first data visualization, etc.), the modeler understands that the population
of interest is actually one part of a wider group and they cannot be distinguished. The
initial interest does not fade and the model is now constrained to consider the larger
group. More generally, detecting a change in only one component makes sense as soon
as, when studying a phenomenon, each component plays a specific role with specific
implications in practice.

The detection of a change-point in a closed sample is a standard problem for which
techniques already exist, such as the ones in the book of Csörgő and Horváth (1997) 4.
Dedicated techniques for mixtures are not so common because such models raise al-
ready so many difficulties when it comes to the inference of the parameters (including
the number of components). To our knowledge, very few references seem to specifically
detect change-points in mixtures with likelihood ratio-based techniques 5 (Andrews and

4. For a review of techniques, see also Barber et al. (2011), Chen and Gupta (2012), Killick and
Eckley (2014) and the references therein.

5. Some of the existing work is dedicated to a Bayesian framework and therefore not in the scope
of this Chapter. See e.g. Giordani and Kohn (2008), Pandya and Jadav (2009), Pandya and Jadav
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Ploberger (1994), Hansen (1996), Pons (2009), Zou et al. (2015)). It turns out that stan-
dard change-point detection techniques can be adapted for finite parametric mixtures
(Csörgő and Horváth (1997), van der Vaart (1998), Pons (2018)).

For AMOC models, the standard general approach based on a likelihood ratio is, for
example, exposed in Csörgő and Horváth (1997). For that purpose, consider that each
parameter θ = (a, b) ∈ Θ is defined by two sub-parameters a and b. The null hypothesis
H0 of the test assumes that no change happens, i.e. θ1 = · · · = θn. The alternative
hypothesis H1 assumes that, for some k, a change occurs between the k-th and the
k + 1-th observation for the sub-parameter a, i.e. a1 = · · · = ak 6= ak+1 = · · · = an and
b1 = · · · = bn. Here b is called a nuisance parameter. The log-likelihood ratio associated
with the test is defined by

ΛBM
k,n := log


sup

(a,b),(a′,b)∈Θ

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a′, b))

sup
(a,b)∈Θ

∏n
i=1 f(Xi, (a, b))

 . (4)

The test statistic is defined as max1≤k≤n 2ΛBM
k,n . By considering that the sub-parameter

a represents the parameters (p1, λ1) of the first component of a finite mixture, this gen-
eral test, referred in the following as the benchmark test (BM), can be used to answer
the problem (see Section 3.6.1 for a detailed construction). Note that the separation
between the parameters of interest a and the nuisance parameters b allows the test to
focus on a change in the first component.
The optimization problem in the denominator is a Maximum Likelihood Estimation
problem. It can be treated with known algorithms such as the EM algorithm introduced
by Dempster et al. (1977) and pre-implemented in calculation softwares such as R (al-
gorithm based on Benaglia et al. (2009)). However, for the supremum in the numerator
of ΛBM

k,n , when it comes to numerical applications, many computational difficulties arise:
� This optimization problem does not have an explicit solution,
� No dedicated algorithm exists to numerically solve it,
� With standard optimization algorithms, the numerical solutions are not satisfac-

tory when working on real data or large samples,
� The run time increases so much for large sample that the statistic cannot be

computed with a reasonable run time.
Note that these difficulties mainly come from the role played by the parameters a, a′
and b. In order to circumvent them, we suggest in this thesis a different approach to
focus on the first component. In particular, we propose using a weighted likelihood
ratio that will increase the contribution of the Xi that are more likely to belong to the
first component. Moreover we will build the weighted log-likelihood ratio so that is can
be computed with standard estimation algorithms.

3.2 Our contribution

Our contribution consists in the introduction of two alternative hypothesis tests that
are based on weighted likelihood ratios which require only known inference algorithms
to be computed. The first version uses weights to help the likelihood ratio to zoom on

(2010), Wilson et al. (2013), Li et al. (2018) or Ganji and Mostafayi (2019).
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the first component. In the second extended version, we added an adjustment that helps
improve the type II error. With a technique from Davis et al. (1995), we derive the limit
distribution of their statistics under the null hypothesis in the form of quadratic forms
of multidimensional Brownian motions, with the help of a dedicated functional limit
theorem. We show that the validity conditions of the main result hold for univariate
finite Gaussian mixtures within the framework of Hathaway (1985). Numerical appli-
cations on simulated data illustrate the advantage of the alternative tests compared to
the benchmark test defined by (4). An application with Property and Casualty insurance
real data is provided for the alternative tests.

3.2.1 Definition of the Weighted Likelihood Test (WLT)

With the notations above, we still consider that the elements of the sample (Xi)1≤i≤n are
defined by a finite parametric mixture distribution where there is at most one change
(AMOC), deterministic but unknown, or none. Since we are interested in the limit
behavior of the sample of variables when their number tends to infinity, we suppose
that the experience takes place in the time interval [0, 1] and each variable Xi occurs
at time i/n, 1 ≤ i ≤ n. We impose that, if there is a change-point, it happens at some
time in the interval [s̄, 1 − s̄] ⊂ (0, 1), where 0 < s̄ < 1/2 is deterministic and known.
This means that the change does not occur too close to 0 nor 1. Changes close to those
values are difficult to be detected and would be of less significance, since their impact
on the full sequence is small. The hypothesis test becomes:

1. The null hypothesis H0 defines the case when there is no change-point: the mixture
is defined by the true parameter θ = (p1, . . . ,pm−1,λ1, . . . ,λm) ∈ Θ.

2. The alternative hypothesis H1 : a change-point occurs at some time s, s ∈ [s̄, 1−s̄],
i.e. the parameters which describe the distribution of the first component are
different before and after s while the other parameters of the mixture remain the
same.

We will establish a central limit theorem under the assumption that H0 holds. This is
necessary to be able to determine the rejection domain while controlling the type I error.

Under some regularity conditions detailed in Section 3.2.1, the usual limit theorems
for Maximum Likelihood Estimators (MLE) ensure that there exist sequences of so-
lutions of the likelihood equations that are consistent (Mäkeläinen et al. (1981) for
Gaussian mixtures, McLachlan and Peel (2000) for mixtures in general, Section 6.5
in Lehmann and Casella (1998) for the general case). Let us consider one of these
consistent sequences of solutions as an estimator for the unknown θ and denote it
θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m). For s ∈ [s̄, 1− s̄], by the same logic, we consider the es-
timators of θ over the subsamples (Xi)1≤i≤bsnc and (Xi)bsnc+1≤i≤n, respectively denoted
by θ̂0,s and θ̂s,1. We assume that θ̂ is strongly consistent, which, for example, holds for
the Gaussian case under some conditions (Hathaway (1985)). For other cases, classi-
cal results in the literature cover a wide range of situations for providing reasonable
sufficient conditions (see e.g. Redner and Walker (1984), Feng and McCulloch (1996),
McLachlan and Peel (2000) and the references therein). Strong consistency remains an
important restriction compared to the general case because usual regularity conditions
only ensure consistency.
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With the weight function at point x ∈ X for θ ∈ Θ, defined by

w(x, θ) := p1f1(x, λ1)
f(x, θ) ,

we introduce the weighted log-likelihood ratio denoted by Λs,n and defined for s ∈
[s̄, 1− s̄] and n ≥ 1 by

Λs,n := log
∏bsnci=1 f1(Xi, λ̂0,s,1)w(Xi,θ̂0,s)∏n

j=bsnc+1 f1(Xj, λ̂s,1,1)w(Xj ,θ̂s,1)∏n
i=1 f1(Xi, λ̂1)w(Xi,θ̂)

 . (5)

Note that, for an observation Xi with distribution parameter θ, the weight w(Xi, θ) =
p1f1(Xi, λ1)/f(Xi, θ) is the probability that Xi comes from the first component. Con-
ditionally to this fact, the log-likelihood of Xi is given by log f1(Xi, λ1). We can extend
this logic to all the components of the mixture such that the vector(

p1f1(Xi, λ1)
f(Xi, θ)

log f1(Xi, λ1), . . . , pmfm(Xi, λm)
f(Xi, θ)

log fm(Xi, λm)
)

can somehow be interpreted as the contributions of the m components to the log-
likelihood of Xi. Thus the expression w(Xi, θ) log f1(Xi, λ1) in Λs,n reflects the con-
tribution of the first component. As a consequence, the response of the statistic is
magnified when a change occurs in the first component.
The test statistic is then defined by

Sn := sup
s∈[s̄,1−s̄]

Λs,n.

We refer to this test as the WLT (Weighted Likelihood Test). As expected, it can
be computed with the help of the usual MLE algorithm such as the EM algorithm
(McLachlan and Peel (2000), Benaglia et al. (2009)). Our main result consists in de-
riving the limit distribution of the test statistic under the null hypothesis (Theorem 4)
with the help of a dedicated functional limit theorem (Theorem 3).

3.2.2 Main result

With a similar approach as in the work of Davis et al. (1995), the càd-làg real-valued
process Λn := (Λs,n)[s̄,1−s̄] can be decomposed as Λs,n = Q1

s,n + Q2
s,n − Q1

1,n, for s ∈
[s̄, 1− s̄], where

Q1
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)

− uTI−1
bsnc∑
i=1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1],

Q2
s,n :=

n∑
i=bsnc+1

(
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)− w(Xi,θ) log f1(Xi,λ1)

)

− uTI−1
n∑

i=bsnc+1
Dθ(log f)(Xi,θ), s ∈ [s̄, 1− s̄].
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Here Dθ denotes the gradient operator in θ ∈ Rd and I the Fisher information matrix
under the null hypothesis. Further note that the finite constant

u := EH0 [Dθ(w log f1)(X1,θ)] ∈ Rd

is non null in general. The random processes (Q1
s,n)s∈[s̄,1−s̄] and (Q2

s,n)s∈[s̄,1−s̄] have a
similar structure that differs only by the sub-sample considered. Therefore, in order to
obtain a limit distribution for the process Λn, we study Q1

n := (Q1
s,n)s∈[s̄,1] and extend

the result to Λn.

We first show the following functional limit result.

Theorem 3. Under the null hypothesis and some regularity conditions detailed in
Section 3.2.1, in the Skorokhod metric space of càd-làg real-valued functions on [s̄, 1],
the process

Q1
n

D−−−→
n→∞

(1
s
q(Ws)

)
s∈[s̄,1]

,

where W := (Ws)s∈[0,1] is a standard 2d+ d2-dimensional Brownian motion and q is a
quadratic form that we shall define in Section 3.3.2 by Equation (3.33).

In order to prove this result, we start by showing that, by a Taylor-Lagrange develop-
ment of θ̂0,s around θ, Q1

s,n can be expressed as a function of:
� the difference θ̂0,s − θ,
� an average û0,s of i.i.d. Rd valued random vectors,
� and a random variable depending on s and n that converges a.s. and uniformly

in s ∈ [s̄, 1] to some constant.
The difference θ̂0,s − θ can itself be expressed as a function of:
� an average ι̂0,s of i.i.d. Rd valued random vectors,
� an average Î0,s of i.i.d. d× d random matrices,
� and a random variable depending on s and n that converges a.s. and uniformly

in s ∈ [s̄, 1] to some constant.
An important ingredient of this decomposition is, as in Lehmann and Casella (1998), a
d× d-matrix Â−1

0,s which converges to the inverse of the Fisher information matrix I−1

(uniformly in s). It follows that Q1
s,n can be expressed as a function of:

� the triple ξ̂0,s = (ι̂0,s, û0,s − u, Î0,s),
� and some random variable depending on s and n that converges a.s. and uniformly

in s ∈ [s̄, 1] to some constant.
As an application of Donsker’s Theorem in the Skorokhod metric space (Billingsley
(1999)), we can show that the random process (ξ̂0,s)s∈[s̄,1] converges weakly to the pro-
cess (1

s
ΣWs)s∈[s̄,1], where Σ2 is the covariance matrix under H0 of the i.i.d. terms in the

average ξ̂0,s.
This weak convergence is extended to the process Q1

n with arguments based on a ex-
tended functional version of Slutsky’s Theorem 1.13, the Continuous Mapping Theorem
1.11 and a Functional Delta Method (Corollary 1.16) inspired from van der Vaart (1998)
and adapted for the metric Skorokhod space. In particular, the process Q1

n is a function
of (Â−1

0,s)s∈[s̄,1]. In order to handle the inversion of the matrix Â0,s, the functional delta
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method is applied to a map defined for a càd-làg process (xs, ys,Ms)s∈[s̄,1], with xs and
ys d-dimensional vectors and Ms a d× d matrix, by

(xs, ys,Ms)s∈[s̄,1] 7→ (xs, ys,M−1
s )s∈[s̄,1].

To this end, we extend the derivative of the application that inverts a matrix (Abraham
et al. (1988), Dudley and Norvaiša (2011)).

With similar arguments, we can extend to Λn the result obtained for Q1
n. For that

purpose, we remark that the process (Q1
s,n, Q

2
s,n,−Q1

1,n)s∈[s̄,1−s̄] can be seen as a function
of the process (

ξ̂0,s,
n

n− bsnc
ξ̂0,1 −

bsnc
n− bsnc

ξ̂0,s, ξ̂0,1

)
s∈[s̄,1−s̄]

.

After deriving the limit distribution of (Q1
s,n, Q

2
s,n,−Q1

1)s∈[s̄,1−s̄] with similar arguments
as for Q1

n, the following main result is obtained by a last application of the Continuous
Mapping Theorem.

Theorem 4. Under the null hypothesis H0 and some regularity conditions detailed in
Section 3.2.1, if θ̂ is strongly consistent, then

Sn
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q(Ws − sW1)
s(1− s) ,

where W := (Ws)s∈[0,1] is a standard 2d+ d2-dimensional Brownian motion and q is a
quadratic form that we shall define in Section 3.3.2 by Equation (3.33).

It follows that the limit process is a quadratic form of a Brownian bridge, which is quite
standard in other frameworks. For the benchmark test (BM) defined by (4), Csörgő and
Horváth (1997) show that max1≤k≤n 2ΛBM

k,n converges weakly to the supremum of the
sum of da squared Brownian bridges, where da is the dimension of the a parameter.
See Shorack and Wellner (1986) for an example with da = 1. A similar result is also
given in the alternative work of Davis et al. (1995), or later applications as in Dehling
et al. (2014).

We already pointed out that the WL test can be computed with the help of the usual
MLE algorithm such as the EM algorithm (McLachlan and Peel (2000), Benaglia et al.
(2009)). From a practical point of view, this is an improvement compared to the bench-
mark test. However, the introduction of the weights increases significantly the dimen-
sion of the Brownian bridge. For the WLT, it is 2d + d2, where d is the dimension
of the parameter θ, while, in the benchmark test, it is da, the dimension of the sub-
parameter a in (4) (e.g. d = 3m and da = 4 for an univariate Gaussian mixture with
m components).

3.2.3 Extension: scaling the contributions in the likelihood ratio (EWLT)

Early numerical applications showed that the test defined by (5) can be improved by
multiplying Λs,n by an adjustment factor. To this end, we start by defining for a fixed
s ∈ [s̄, 1] the contribution cs,n as follows:

cs,n :=
bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1).
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Remark that the log-ratio Λs,n is the difference of (Q1
s,n + Q2

s,n) and Q1
1,n. Then, cs,n

is the contribution of the sample to the term (Q1
s,n + Q2

s,n), and c1,n = ∑n
i=1w(Xi, θ̂)

is the contribution of the sample to the term Q1
1,n. Under the null hypothesis, we can

show that the random variable cs,n/n converges a.s. to the parameter p1, uniformly in
s ∈ [s̄, 1]. It follows that the contributions cs,n/n and c1,n/n tend to be the same as
n → ∞. However, when a change occurs, they differ in some cases, which leads to an
increase of the type II error (false negative) as a side effect. Therefore, we suggest to
scale the total contributions. We define a new log-ratio process Λ∗n := (Λ∗s,n)s∈[s̄,1−s̄] by

Λ∗s,n := c1,n

cs,n

bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +
n∑

i=bsnc+1
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)


−

n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1) (6)

that can be reorganized as follows

Λ∗s,n =c1,n
cs,n

Λs,n

−
1
n

∑n
i=1w(Xi, θ̂) log f1(Xi, λ̂1)

1
ncs,n

bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1)−

n∑
i=1

w(Xi, θ̂)

 .
The ratio c1,n/cs,n converges a.s. to 1 uniformly in s ∈ [s̄, 1]. Moreover the factor
(1/n ∑n

i=1w(Xi, θ̂) log f1(Xi, λ̂1))/(cs,n/n) converges a.s. to some finite constant, uni-
formly in s ∈ [s̄, 1]. Note also that the sum

bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1)−

n∑
i=1

w(Xi, θ̂)

has the same form as Λs,n, but without the factor log f1(Xi, λ̂.,.,1). It follows that,
defining the test statistic by S∗n := sups∈[s̄,1−s̄] Λ∗s,n, its limit distribution is obtained
with similar arguments as for Theorem 4. We refer to this test as the EWLT (Extended
Weighted Likelihood Test).

Theorem 5. Under the null hypothesis H0 and some regularity conditions detailed in
Section 3.2.1, if θ̂ is strongly consistent, then

S∗n
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q∗(Ws − sW1)
s(1− s) ,

where W := (Ws)s∈[0,1] is a standard 3d + d2-dimensional Brownian motion and q∗ is
a quadratic form that we shall define in Section 3.4 by Equation (3.39).

This extension improves significantly the detection quality. In particular the type II
error is small, compared to the first version of the test.

3.2.4 Example: the case of univariate finite Gaussian mixtures

If the sample (Xi)1≤i≤n follows an univariate finite Gaussian mixture, then each Xi is
defined by a parameter θi in the set of eligible parameters

Θ 3 θ = (p1, . . . , pm−1, µ1, σ1, . . . , µm, σm)
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such that, for each k-th component, µk ∈ R is the mean parameter and σk ∈ R∗+ is the
standard deviation parameter. We impose that the means are strictly increasing:

µ1 < µ2 < · · · < µm,

and, as in Hathaway (1985), that the variances are bounded:

min
{
σj
σk
, 1 ≤ j, k ≤ m

}
> b,

where 0 < b ≤ 1 is a dispersion boundary. We suppose that the true parameter θ
satisfies these two conditions. By Hathaway (1985) the MLE θ̂ is strongly consistent,
and we can show that the conditions of Theorems 4 and 5 hold in this situation.

3.2.5 Applications

We provide two distinct applications for the case of an univariate finite Gaussian mix-
ture. We are interested in detecting a change that is not visible to the naked eye (small)
but also not too close to 0 (no impact in practice), for large samples (over 10 000 ob-
servations).

First, with numerical simulations of a Gaussian mixture with 3 components where we
know the parameters before and after the change in the first component, we compare
our two tests, the WL test defined as Λn in (5) and the EWL test defined as Λ∗n in
(6), to the benchmark test (BM) defined as ΛBM

n in (4). The results are obtained by
multiple re-simulations of samples (see Section 3.6.2 for a detailed setup):

� When a change occurs in the first component, we look at the type II error (propor-
tion of false negative) to evaluate the test quality (Figure 3). For large samples,
the benchmark test performs poorly with a significantly longer run time essen-
tially due to the fact that it is computed with standard algorithms that are not
solving properly the supremum in the numerator of ΛBM

n . Since their estimation
algorithms are more robust, our two tests have both very low type II errors for
small changes in the parameters on a sample of 10k observation and, in most
cases, the EWLT performs notably better than the WLT.
� For large samples of more than 10k observations, regardless of algorithmic issues,

the three tests have similar type II errors. For samples with 1k observations, the
EWLT and the benchmark test are comparable but the WLT seems less effective.
� As a nice-to-have, we also studied the detection frequency of each test when a

change occurs in the second or third component where the quality of the test
is characterized by a low detection frequency. The main observation is that the
EWLT shows the best results and, for large samples of 10k observations, the WLT
is better than the benchmark test (the benchmark test still behaves poorly for
large samples). However, we remark that the three tests show systematic patterns
of high detection frequency for a change in the mean and the standard deviation:
there is still some room for improvement regarding this criterion.

We conclude that the EWLT has the best numerical properties out of the three tests.
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(a) Change in the mean (10k obs.) (b) Change in the standard deviation (10k obs.)

(c) Change in the weight parameter (10k obs.) (d) Run time of the WL, EWL and benchmark
tests for an increasing sample size.

Figure 3 – Type II error and run time for a change in the first component.

The second application is an illustration of the WL and the EWL tests to real data
from the insurance industry, in particular the bodily injuries from the motor claims.
We denote by Ct the real-valued random variable that represents the amount that, at
time t, the insurer expects to pay eventually (t = 0 being the declaration date of the
claim). This amount varies over time when the claim is reviewed, until it is settled.
In this application, we know that a change of the revision process happened at some
point in the past. The question is then to determine whether or not this change im-
pacted significantly the observed variations of claim amount over time. With sgn(.)
the function that gives the sign of a real number taking respectively the values -1, 0
and 1 when this number is negative, null or positive, we consider the random variable
Z = sgn(C1−C0.5) log(1 + |C1−C0.5|) that gives the variation of the claim amount be-
tween the 6th and the 12th month in log-scale. Past data shows that Z can be modeled
by a finite parametric mixture with 12 components. For internal reasons, the insurance
company is interested in the 5th component of the mixture, i.e. slight decreases of claim
amounts. The change detection is performed on a sample of over 15k observations and a
significant change is detected with both tests. The analysis of the results indicates that
it seems to occur from the time 1.07. This conclusion allowed the insurance company
to investigate further the quantification of the change.

This application shows that the WL and EWL tests can be used in the industry for the
monitoring of changes, when they are unexpected but also to assess their significativity
when they are known or suspected.
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3.3 Discussion

In this last section, we briefly discuss a few issues that we encountered while writing
this second part of the thesis. We also suggest possible extensions to improve or extend
the results obtained.

We start with a discussion on the choice of the log-likelihood ratio used to detect a
change in the first component of the mixture. The log-likelihood ratios of the bench-
mark and the WL tests have a similar general structure: a ratio of two cases where the
numerator splits the sample in two and the denominator considers the whole sample.
However, they differ in their way to isolate the effects of the first component, and in
the choice of the likelihood function.
The benchmark test defined in (4) distinguishes the parameter of interest a (first com-
ponent) from the nuisance parameter b (other components). The log-likelihood retained
is the one from the whole model: log f(Xi, (a, b)), with θ = (a, b).
In the WL test and its log-likelihood ratio Λs,n defined in (5), we chose to isolate the
first component with the weight functions w(Xi, θ). This weight is the probability of
the observation Xi to belong to the first component, knowing that it has distribution
parameter θ. In the log-ratio, we remark that log f1(Xi, λ1) is the log-likelihood of the
observation Xi, knowing that Xi belongs to the first component. Intuitively, it follows
that w(Xi, θ) log f1(Xi, λ1) can be seen as the contribution of the first component in
the likelihood of Xi.
During the first stages of my thesis, we studied the properties of the following log-
likelihood ratio, an early version of the test,

Λv0
s,n := log


sup
λ1

∏bsnc
i=1 f1(Xi, λ1)w(Xi,θ̂0,s) sup

λ1

∏n
j=bsnc+1 f1(Xj, λ1)w(Xj ,θ̂s,1)

sup
λ1

∏n
i=1 f1(Xi, λ1)w(Xi,θ̂)

 .
In this early version, the logic in the same as in the WL test except that we consider
problems of the form supλ1

∏
i f1(Xi, λ1)w(Xi,θ̂.) instead of ∏i f1(Xi, λ̂1)w(Xi,θ̂.) in the WL

test, where θ̂. denotes the estimators θ̂0,s, θ̂s,1 and θ̂ of each problem. For the Gaussian
case, we showed that the optimization problem of the form arg maxλ1

∏
i f1(Xi, λ1)w(Xi,θ̂.)

can be solved with an explicit solution denoted by λ̂∗. . We also showed that the solu-
tions λ̂∗. are consistent estimators of the true parameter λ. In other words, the early
version considers elements of the form ∏

i f1(Xi, λ̂
∗
. )w(Xi,θ̂.). The difference from the WL

test lies only in the difference between λ̂∗. and λ̂..
While working on the weak limit theorem, we noticed that the estimator λ̂∗. brings
additional complexity that did not seem useful. Thus we retained the version given in
the WL test which is easier to implement from the practitioner’s point of view. In the
end, numerical applications show that the WL and EWL tests perform better than the
benchmark test for large samples.

The WLT allows us to detect a change in the first component of a finite paramet-
ric mixture. We remark that the detection of a change in other components can be
obtained by simply switching the labels in the definition of the mixture. Among its
interesting properties, we highlight the run time, especially when one wants to run a
test over more than one components of the mixture. It is reasonable to assume
that we could be interested in detecting a change in a limited number of components.
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It is however important not to detect on too many components at the same time.
Under the assumption that the components are independent, the probability to de-
tect a change for at least one of them tends to one, under the null hypothesis and
as the number of components tends to infinity. For a fixed number of components m,
it makes sense to adapt the detection threshold in order to control the probability of
false alarm, which means that a change is detected for at least one component under H0.

Given the complexity of the function q defined in (3.33), we did not address directly the
question of the distribution of the limit variable sups∈[s̄,1−s̄]

q(Ws−sW1)
s(1−s) . This is a reason-

able choice since numerical simulations are sufficient to compute a detection threshold.

In this work, we focused on the detection of a change in the first component of a
finite parametric mixture. The benchmark test would also be a valid candidate if the
optimization problem given by the numerator of the log-ratio ΛBM

k,n defined in (4) could
be solved numerically by an adequate algorithm. With this idea, one could consider a
customized EM algorithm. It could be designed as follows:

1. Initialization;
2. Perform one iteration of an EM algorithm that optimizes all the components

except the first one over the whole sample, while considering the rest of the
model fixed;

3. Perform one iteration of an EM algorithm that optimizes the first component
over the left part of the sample, while considering the rest of the model fixed;

4. Perform one iteration of an EM algorithm that optimizes the first component
over the right part of the sample, while considering the rest of the model fixed;

5. If convergence is not reached, go back to step 2.
In this rough sketch, each step ensures to increase the likelihood. The remaining ques-
tion is to make sure that steps 2 to 4 can be formally expressed as in an EM algorithm.
In the early developments of my thesis, we considered similar variants of the EM algo-
rithm in order to estimate the parameters and the change-point for a finite parametric
mixture that contains at most one change. The key is to ensure that each steps guar-
antees an increase of the likelihood.

From the numerical applications, the WL and EWL tests are valid candidates when
looking for a change in one component of a finite parametric mixture. In addition, the
results obtained under the null hypothesis in Theorems 4 and 5 allow us to reduce
significantly the calibration run time of the detection thresholds: the marginal run
time of one simulation is divided by 10 000. Beyond these promising results, the topics
discussed in this last section open possibilities for other techniques which are worth
being explored.
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Chapter 1

Preliminary

In this Chapter, we introduce the key notions and theorems that we rely on in Chapters
2 and 3. Most of the proofs are omitted but exact references are provided.

1.1 Maximum Likelihood Estimation
We start with classical concepts and results on Maximum Likelihood Estimation,
mainly based on Lehmann and Casella (1998).

1.1.1 Asymptotic existence and consistency of the MLE
We consider an experiment where we observe a sample of n independent continuous
random variables X = (Xi)1≤i≤n, defined on some probability space (Ω,F ,P), with
values in some set X , subset of an Euclidean space, endowed with Lebesgue’s measure.
Each Xi, 1 ≤ i ≤ n, follows a finite parametric distribution Pθi , where θi belongs
to a set of eligible parameters Θ that we can identify with a subset of Rd, d ≥ 1.
The parameters θi = (θi1, . . . , θid) fully define the distribution. We start by giving some
regularity conditions on the distribution and the set Θ.

Conditions 1.1 (Cramér (1946), Lehmann and Casella (1998)). We assume that:
(a) For 1 ≤ i ≤ n, the parametric distribution Pθi admits a parametric density

function f(., θi) with respect to the Lebesgue measure.
(b) The distributions (Pθi)1≤i≤n have common support. In other words, the set {x ∈
X , f(x, θ) > 0} does not depend on θ.

(c) Identifiability: the distributions Pθ are distinct 1.

The set of possible parameters Θ is usually defined so that regularity conditions are
valid. Under conditions 1.1, we can define the likelihood of the sample X.

Definition 1.1. For a given θ ∈ Θ, the likelihood of a sample X is the random
variable defined by f(X, θ) = ∏n

i=1 f(Xi, θ) and the log-likelihood L(X, θ) is defined
by

L(X, θ) := log f(X, θ) =
n∑
i=1

log f(Xi, θ).

With conditions 1.1, the log-likelihood L(X, θ) is well defined on the common support
of the densities f(., θ): the Xi(ω), ω ∈ Ω and 1 ≤ i ≤ n, can only take values in the set
{x ∈ X , f(x, θ) > 0} that does not depend on θ.

1. This ensures that the parameter θ can be estimated consistently. See e.g. Csörgő and Horváth
(1997) or Lehmann and Casella (1998).
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Let us assume that the sample X is independent identically distributed, i.e. the Xi

have the same distribution with θ := θ1 = · · · = θn. Then we define the Maximum
Likelihood Estimator as follows (Norden (1973), Kotz et al. (1985)).

Definition 1.2. For the sample X, the Maximum Likelihood Estimator (MLE)
θ̂ of the true parameter θ is defined by

θ̂ := arg max
θ∈Θ

L(X, θ)

if it exists and is unique.

The existence and uniqueness of the MLE are not obvious (Mäkeläinen et al. (1981),
Lehmann and Casella (1998)). Since this is an optimization problem, in practice, one
might look at a candidate among the roots of the equations given by the partial deriva-
tives of the log-likelihood. These equations are called the likelihood equations and
exist only if L(X, θ) is continuously differentiable in θ. More generally, with the condi-
tions 1.1 and conditions 1.2 that we give below, we can ensure that, even if the MLE
does not exist and/or is not unique, we can find some consistent sequence of roots.

Definition 1.3. A sequence of estimators of θ is said to be consistent if, as n→∞,
it converges in probability to θ. It is said to be strongly consistent if it converges
almost surely to θ.

Consistency can be understood as the asymptotic unbiasedness. Some additional con-
ditions involve the Fisher information matrix defined as follows.

Definition 1.4. The Fisher information matrix I(θ) is defined for 1 ≤ j, k ≤ d
and θ = (θ1, . . . , θd) ∈ Θ by

Ijk(θ) := Cov
(
∂

∂θj
log f(X1, θ),

∂

∂θk
log f(X1, θ)

)
.

We impose some regularity conditions on the first and second derivatives of the log-
likelihood.

Conditions 1.2 (Lehmann and Casella (1998)). We assume that:
(a) There exists an open subset Θ′ of Θ such that θ ∈ Θ′ and, for almost all x ∈ X ,

the function θ 7→ f(x, θ) is three times continuously differentiable for all θ ∈ Θ′.
(b) For all θ ∈ Θ′, the Fisher information matrix I(θ) is positive definite and, for

1 ≤ j, k ≤ d, |Ijk(θ)| <∞.
(c) The density function f verifies, for 1 ≤ j, k ≤ d and for all θ ∈ Θ′,

Eθ
[
∂

∂θj
log f(X1, θ)

]
= 0

and the Fisher information matrix I(θ) verifies

Ijk(θ) = Eθ
[
∂

∂θj
log f(X1, θ)

∂

∂θk
log f(X1, θ)

]
= Eθ

[
− ∂2

∂θj∂θk
log f(X1, θ)

]
.
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(d) For all 1 ≤ j, k, l ≤ d, we can find some function M that does not depend on θ
such that, for all θ ∈ Θ′ and all x ∈ X ,∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(x, θ)

∣∣∣∣∣ ≤M(x)

with Eθ [M(X1)] <∞.

Under these conditions, the following theorem provides an asymptotic result for likeli-
hood based estimators.

Theorem 1.5 (Theorem 5.1 in Lehmann and Casella (1998), Section 6.5). Under
conditions 1.1 and 1.2, consider an independent identically distributed sample X with
true parameter θ ∈ Θ′. Then, with probability tending to one as n → ∞, there exists
at least one consistent sequence θ̂n of solutions of the likelihood equations such that√
n(θ̂n − θ) is asymptotically normal with mean 0 and covariance matrix I(θ)−1.

In Chapter 3, the Fisher information matrix I(θ) under the null hypothesis is denoted
by I.

In the next section, we provide additional results on consistency and strong consistency
of MLE in the case of finite parametric mixtures.

1.1.2 Finite parametric mixtures
The concept of mixture distributions arises in many fields and has been popular in
the literature for the last decades, as it allows to describe experiments with different
sub-populations (Frühwirth-Schnatter et al. (2019) and the references therein).

Let us consider an experiment where we observe a sample of n independent continuous
random variables X = (Xi)1≤i≤n. Fix 2 < m <∞, deterministic and known.

Definition 1.6. We say that X1 follows a finite parametric mixture with distribu-
tion Pθ with m components if conditions 1.1, 1.2(a)-1.2(c) are valid and, for f1, . . . , fm
some fixed density functions on X , the distribution Pθ, admits the density

f(x, θ) :=
m∑
k=1

pkfk(x, λk), x ∈ X ,

where (p1, . . . , pm−1) belongs to the open set

Θ0 :=
{

(p1, . . . , pm−1) ∈ (0, 1)m−1,
m−1∑
k=1

pk < 1
}
,

with pm := 1−∑m−1
k=1 pk and θ = (p1, . . . , pm−1, λ1, . . . , λm) belongs to the set of eligible

parameters Θ = Θ0 ×
∏m
k=1 Θk.

Remark that the identifiability of the mixture (see conditions 1.1(c)) is not obvious in
general. For example, the mixtures with two components and respective parameters
(p1, p2, λ1, λ2) and (p2, p1, λ2, λ1) have same distribution (McLachlan and Peel (2000)).
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For finite samples of Gaussian mixtures, the Maximum Likelihood Estimator does
not exist since its likelihood is unbounded (Day (1969)). However the conditions of
Theorem 1.5 still hold 2, allowing to find a consistent sequence of roots of the likelihood
equations. We finish this section by a result from Hathaway (1985) that provides the
strong consistency of the MLE for an univariate Gaussian mixture under some
conditions on the parameter set. We consider X an independent identically distributed
closed sample of n real-valued random variables with a Gaussian mixture distribution
with m components of true parameter θ = (p1, . . . ,pm−1,µ1,σ1, . . . ,µm,σm) in the
set of possible parameters Θ ⊂ Θ0 × (R × R∗+)m. We assume that Θ is defined such
that the mixture is identifiable. For b ∈ (0, 1], define the subset Θb ⊂ Θ by

Θb :=
{
θ ∈ Θ, min

1≤k,k′≤m

σk
σk′
≥ b

}
.

Theorem 1.7 (Theorem 3.3 in Hathaway (1985)). Let b ∈ (0, 1] such that the true
parameter θ belongs to Θb. Then the MLE θ̂n that maximizes the log-likelihood of the
sample X over Θb exists and is strongly consistent.

1.2 Weak convergence of càd-làg random functions
on [0, 1]

This section is mainly based on Billingsley (1999) and van der Vaart (1998). We give
some results on the weak convergence of sequences of càd-làg processes. For that pur-
pose we introduce briefly the topologies of the metric spaces C and D before stating
standard limit theorems.

1.2.1 The spaces C and D of random functions
We start by a general definition of a random element in a metric space S. We denote
by S the Borel σ-algebra of S.

Definition 1.8. A random element on (S,S) is a map from some probability space
(Ω,F ,P) to S, which is (S,F)-measurable. If S is a metric space of functions, then X
is called a random function, random process or stochastic process.

We consider two particular metric spaces of functions. First we denote by C(E,F ) the
space of real-valued continuous functions on E ⊆ [0, 1] with values in a normed
Euclidean space F , with its associated Borel σ-field and the uniform norm ‖.‖C(E,F )
defined for a function f in C(E,F ) by

‖f‖C(E,F ) := sup
t∈E
‖f(t)‖F , (1.1)

where ‖.‖F is the norm on F . In C(E,F ), we say that a sequence of functions fn con-
verges to a function f if ‖fn − f‖C(E,F ) → 0 as n→∞.

Among well-known random functions with values in C([0, 1],R) we can already intro-
duce the standard Brownian motion or Wiener process 3, denoted by (Wt)t∈[0,1] and
satisfying that W0 = 0 and the following three properties:

2. See e.g. Example 6.10 in Lehmann and Casella (1998).
3. See e.g. Section 8.1 in Durrett (2010).
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� For any finite k ≥ 2 and any 0 ≤ t0 < · · · < tk ≤ 1, the random variables
Wt0 ,Wt1 −Wt0 , . . . ,Wtk −Wtk−1 are independent;
� For any 0 ≤ t < s ≤ 1 the distribution of the random variable Ws − Wt is

Gaussian with mean zero and variance s− t;
� The application t 7→ Wt is continuous with probability 1.

The space of càd-làg functions, defined on E with values in F , is denoted by D(E,F )
and referred as the Skorokhod metric space with the Skorokhod metric dD(E,F )(., .)
defined for f1 and f2 in D(E,F ) by

dD(E,F )(f1, f2) := inf
τ∈ΓE

max
{

sup
t∈E
|τ(t)− t|, sup

t∈E
‖f1(t)− f2 ◦ τ(t)‖F

}
.

Here ΓE is the set of continuous and strictly increasing bijections from E to itself. In
D(E,F ), a sequence of functions fn converges to a function f if dD(E,F )(fn, f)→ 0 or,
equivalently, if we can find some sequence τn ∈ ΓE such that supt∈E |τn(t)− t| → 0 and
supt∈E ‖f(t)− fn ◦ τn(t)‖F → 0.

C(E,F ) is a subspace of D(E,F ) and the Skorokhod metric coincides with the uniform
norm on C(E,F ). We refer to Billingsley (1999) for a detailed construction of the
topologies of the spaces C(E,F ) and D(E,F ).

Definition 1.9. A sequence Xn of random functions with values in C(E,F ), resp.
D(E,F ), is said to converge in distribution or weakly to X if E[ϕ(Xn)] converges
to E[ϕ(X)] for every bounded continuous function ϕ from C(E,F ), resp. D(E,F ), to
R. We write Xn

D−−−→
n→∞

X.
Xn is said to converge in probability to X in C(E,F ), resp. D(E,F ), if, for any ε > 0,
P[‖Xn −X‖C(E,F ) > ε]→ 0, resp. P[dD(E,F )(Xn, X) > ε]→ 0. We write Xn

P−−−→
n→∞

X.
Xn is said to converge almost surely to X if, for almost every ω ∈ Ω, Xn(ω) converges
to X(ω) in the sense of the convergence in C(E,F ), resp. D(E,F ).

The convergence in distribution is often associated to the Portmanteau Theorem 4

which gives equivalent definitions.

1.2.2 Limit theorems
In this section, we provide some limit theorems that we encounter in Chapter 3, mainly
for proving the weak convergence of càd-làg processes. We start with Donsker’s the-
orem in the Skorokhod metric space D([0, 1],R).

Theorem 1.10 (Donsker’s Theorem in D([0, 1],R), Theorem 14.1 in Billingsley (1999)).
If X1, X2, . . . , Xn are independent identically distributed random variables with mean
zero and variance σ2 > 0, then, the random functions t ∈ [0, 1] 7→ Y n

t := 1
σ
√
n

∑bntc
i=1 Xi

defined in the Skorokhod space D([0, 1],R) are such that the process (Y n
t )t∈[0,1] converges

weakly to a standard Brownian motion as n→∞.

Further we introduce below the Continuous Mapping Theorem for random ele-
ments in metric spaces.

4. See e.g. Lemma 18.9 in van der Vaart (1998).
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We assume in the following that the metric space S is separable, which is the case for
the spaces C(E,F ) and D(E,F ) with the topologies defined above (Billingsley (1999)).
Moreover we denote by S× S the separable product space with metric

dS×S : (X, Y ) 7→ max{dS(X), dS(Y )}.

For more details on the construction of the product space, we refer to Section 2 in
Billingsley (1999).

Theorem 1.11 (Continuous Mapping Theorem, Theorem 18.11 in van der Vaart
(1998)). Consider a sequence Xn of random elements with values in subsets Sn of a
separable metric space S and a random element X with values in S0. Consider also a
sequence of maps fn from Sn to another metric space F such that, for every sequence
xn ∈ Sn for which we can find a convergent subsequence xn′ with limit x ∈ S0, fn′(xn′)
converges to f(x). It holds that:
� If Xn

D−−−→
n→∞

X, then fn(Xn) D−−−→
n→∞

f(X),

� If Xn
P−−−→

n→∞
X, then fn(Xn) P−−−→

n→∞
f(X),

� If Xn
a.s.−−−→
n→∞

X, then fn(Xn) a.s.−−−→
n→∞

f(X).

Based on the Continuous Mapping Theorem, Slutsky’s Theorem is a standard result
for the convergence of random variables since it allows to conclude on the convergence
of sums and products of random variables when one variable converges in distribution
and the other one in probability (Slutsky (1925)). We give here its version for random
elements.

Theorem 1.12 (Theorem 3.1 in Billingsley (1999)). Assume that S is a separable
metric space with metric dS and (Xn, Yn)n≥1 is a sequence of random elements of S×S.
If Xn converges weakly to X and dS(Xn, Yn) converges in probability to zero, then Yn
converges weakly to X.

In addition to this result, van der Vaart (1998) provides a panel of convergence prop-
erties. We give one of them in the result below as an extended functional version of
Slutsky’s Theorem.

Theorem 1.13 (Extended Slutsky’s Theorem, Theorem 18.10 in van der Vaart (1998)).
Let Xn and Yn be two sequences of random elements, and X and Y two random ele-
ments, all with values in the separable metric space S with metric dS. Then, if Xn con-
verges weakly to X and Yn converges in probability to a constant c in S, then (Xn, Yn)
converges weakly to (X, c).

Together with the Continuous Mapping Theorem, this result provides a functional Slut-
sky’s Theorem. For example, let us consider two sequences (Xn

t ) and (Y n
t ) of continuous

real-valued random functions of t such that, as n → ∞, the sequence (Xn
t ) converges

weakly to the random function (Xt) and (Y n
t ) converges in probability to a constant

function (c), c ∈ R. Since the application ((xt), (yt)) 7→ (xt yt) is continuous in the
sense of the conditions of the Continuous Mapping Theorem, it follows that (Xn

t Y
n
t )

converges weakly to (cXt).

The applications based on the Continuous Mapping Theorem are numerous. Among
them, we introduce the functional Delta Method, a technique that approximates

40
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asymptotically the distribution of Φ(X) where X is a random function in a normed
space (Doob (1935), van der Vaart (1998)). For that purpose we introduce the notion
of Hadamard differentiability for maps between two normed spaces.

Definition 1.14. For D and E two normed spaces, a map Φ from DΦ ⊆ D to E is
Hadamard differentiable in θ ∈ DΦ if we can find a continuous linear map Φ′θ from
D to E such that, as t→ 0,∥∥∥∥∥Φ(θ + tζt)− Φ(θ)

t
− Φ′θ(ζ)

∥∥∥∥∥
E

→ 0

for any application t 7→ ζt such that ζt → ζ and that, for all small t, θ + tζt belongs to
DΦ. The map Φ′θ(.) is the differential of Φ at θ.

Theorem 1.15 (Functional Delta Method in normed spaces, Theorem 20.8 in van der
Vaart (1998)). For D and E two normed linear spaces, consider a map Φ from a subset
DΦ of D to E, that is Hadamard differentiable at θ ∈ DΦ with differential denoted by
Φ′θ(.). Consider also a sequence of random maps Xn with values in DΦ and a sequence
of numbers an which tends to infinity as n→∞. If, as n→∞, the sequence an(Xn−θ)
converges weakly to some random map X, then the sequence an(Φ(Xn)−Φ(θ)) converges
weakly to the random map Φ′θ(X).

Proof. The proof is a direct application of the Continuous Mapping Theorem with
fn(ζ) := an(Φ(θ + a−1

n ζ)− Φ(θ)) where the maps fn are defined on

Sn := {ζ : θ + a−1
n ζ ∈ DΦ}.

The Hadamard differentiability ensures that the conditions of the Continuous Mapping
Theorem hold.

The space C([0, 1],Rd) is a linear normed space with the norm ‖.‖C([0,1],Rd) defined in
(1.1) and therefore falls in the scope of Theorem 1.15. However the Skorokhod metric
space D([0, 1],Rd) is not a normed space. We give here a Corollary of the result from
van der Vaart (1998) for càd-làg processes.

Corollary 1.16 (Functional Delta Method in the Skorokhod metric space). For 0 <
d1, d2 < ∞, consider a map Φ : DΦ ⊆ D([0, 1],Rd1) → D([0, 1],Rd2). Consider also a
sequence of random maps Xn with values in DΦ and a sequence of numbers an which
tends to infinity as n→∞. If, as n→∞,
� the sequence an(Xn − θ) converges weakly to some random map X,
� we can find some linear map Φ′θ(.) from D([0, 1],Rd1) to D([0, 1],Rd2) such that
for every sequence ζn ∈ {z : θ+ a−1

n z ∈ DΦ} for which we can find a subsequence
ζn′ that converges in D([0, 1],Rd1) to ζ, the sequence an′(Φ(θ + a−1

n′ ζn′) − Φ(θ))
converges in D([0, 1],Rd2) to Φ′θ(ζ),

then the sequence an(Φ(Xn)− Φ(θ)) converges weakly to the random map Φ′θ(X).

Proof. As for Theorem 1.15, the proof is an application of the Continuous Mapping
Theorem where the Hadamard differentiability is replaced by the second condition.
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In Chapter 3, this result is applied to a sequence of random d-by-d square matrices and
a map that inverts the matrices (t by t). For that purpose, we introduce the following
result that provides the differential of the application that inverts a square matrix.

For 0 < d < ∞ fixed, let us consider the space gld(R) of real-valued d-by-d square
matrices. We consider the entrywise 2-norm ‖.‖2, also called the Frobenius norm,
that is defined for A = (aij)1≤i,j≤d ∈ gld(R) by

‖A‖2
2 =

∑
1≤i,j≤d

a2
ij.

With the identity matrix and the entrywise 2-norm, the normed space (gld(R), ‖.‖2)
is an unital Banach algebra. The open sub-space of invertible matrices in gld(R) is
denoted by GLd(R).

Theorem 1.17 (Lemma 2.5.5 in Abraham et al. (1988)). The application from GLd(R)
to GLd(R) is infinitely differentiable and its first differential at point A ∈ GLd(R) is
the application defined for H ∈ gld(R) by H 7→ −A−1HA−1.

This result is obtained from an expansion of the inverse of a matrix as a Neumann
series, as given in the following theorem.

Theorem 1.18 (Theorem 4.16 in Dudley and Norvaiša (2011)). Consider some in-
vertible matrix A ∈ GLd(R). If H ∈ gld(R) is such that ‖H‖2 < 1/ ‖A−1‖2, then A+H
is invertible and

(A+H)−1 =
∞∑
k=0

(−1)k(A−1H)kA−1.

This closes the topic on weak convergence of càd-làg processes in the Skorokhod metric
space.

1.3 Change-point detection techniques
We consider a sequence (Xn)n≥1 of independent real-valued random variables. Each
random variable Xn follows a distribution Pθn , where θn belongs to the set Θ of eligi-
ble parameters. The sequence is associated with a known initial distribution Pθ and a
change occurs at time ν, called change-point. It means that the sample is identically
distributed before ν, i.e. θ = θ1 = · · · = θν ; and, after the change-point, θn 6= θ for
n > ν (possibly but not necessarily i.i.d.). In this section, for θ ∈ Θ, the distribution
Pθ is assumed to admit a density function fθ with respect to some measure (often
the Lebesgue measure for the continuous case, and the counting measure on N for the
discrete case).

Detection procedures aim to determine if and when the initial distribution changes.
In this section, we start by introducing a standard on-line detection scheme called the
Shiryaev-Roberts procedure. Then, we provide a standard off-line test for the detection
of at most one change in a closed sample.
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1.3.1 The Shiryaev-Roberts detection scheme
With the notations above, consider an experiment where we observe, as they arrive,
outcomes of the random sequence (Xn)n≥1. We assume that only one change occurs
and the distribution after the change-point ν is denoted by Pθ′ .

Definition 1.19. A change-point detection scheme is a procedure defined by a
random sequence Sn called the detection sequence, and a threshold s∗. The pro-
cedure states that an alarm is raised as soon as Sn > s∗, defining a stopping time
n∗ := inf{n ≥ 1, Sn > s∗}.

Given a delay criterion, quickest change-point detection schemes aim to detect a change
in the distribution as quickly as possible, without raising too many false alarms (detec-
tion when no change occurred).

Definition 1.20 (Shiryaev (1961), Roberts (1966)). The Shiryaev-Roberts proce-
dure is a change-point detection scheme with a detection sequence given by

S0 := 0,

Sn(θ,θ′) :=
n∑
i=1

n∏
k=i

fθ′(Xk)
fθ(Xk)

= (1 + Sn−1(θ,θ′)) fθ
′(Xn)

fθ(Xn) , n ≥ 1.

Remark that, as long as n ≤ ν, the statistic Sn(θ,θ′) is close to 0. After the change, it
quickly takes very high values. One advantage of this procedure is the recursive form of
the statistic Sn(θ,θ′). It can be easily computed with its previous value Sn−1(θ,θ′) and
the new outcome xn. Another advantage is its optimality in minimizing the average
detection delay, as given in the following result.

Theorem 1.21 (Pollak and Tartakovsky (2009)). Fix η > 1. If the change-point ν is
a random variable with a uniform improper prior distribution, then, among all change-
point detection procedures such that E{ν=∞}[n∗] ≥ η, the Shiryaev-Roberts detection
scheme is optimal in minimizing the average detection delay

∑∞
k=0 E{ν=k}[(n∗−k)+]

E{ν=∞}[n∗]
.

Optimality is also valid for other frameworks (see e.g. Shiryaev (1963), Feinberg and
Shiryaev (2006), Polunchenko and Tartakovsky (2010)).

1.3.2 A standard hypothesis test for the detection of at most
one change in a closed sample
Let us consider an experiment where we observe the outcomes of a closed sample
(Xi)1≤i≤n of independent real-valued random variables that contains at most one change
(AMOC). Let us assume that each parameter θ = (a, b) ∈ Θ is defined by two sub-
parameters a and b. We introduce a standard likelihood-based hypothesis test that
aims to detect if a change occurs in the first sub-parameter a (see e.g. Section 1.1 in
Csörgő and Horváth (1997)). Here b is called a nuisance parameter. We test
� the null hypothesis where no change happens, i.e. θ1 = · · · = θn,
� against the alternative hypothesis where at most one change occurs, i.e. there

exists some 1 < k ≤ n such that a1 = · · · = ak 6= ak+1 = · · · = an and
b1 = · · · = bn.

43



Chapter 1 – Preliminary

For that purpose, we consider the log-likelihood ratio associated with the test and
defined by

Λk,n := log


sup

(a,b),(a′,b)∈Θ

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a′, b))

sup
(a,b)∈Θ

∏n
i=1 f(Xi, (a, b))

 .
The test statistic is defined by max1≤k≤n 2Λk,n. Under the null hypothesis, its limit
distribution takes the shape of a supremum over a function of a Brownian motion: see
e.g. Corollary 1.1.1, Theorems 1.3.1. and 1.3.2 in Csörgő and Horváth (1997). Such a
result can be found in other similar work for different frameworks such as in Davis
et al. (1995) or Dehling et al. (2014).

This ends the introduction of the tools we encounter in this thesis.
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Chapter 2

Discrete Poisson case: a sequential
estimator of the post-change

parameter

Exploring the longevity risk using statistical tools derived from the
Shiryaev-Roberts procedure 1

European Actuarial Journal (2018),
https://doi.org/10.1007/s13385-018-0168-4

Joint work with Marine Habart 2, Catherine Rainer 3 and Aliou Sow 4

2.1 Introduction and general framework

2.1.1 Introduction
Within the usual techniques to monitor mortality and longevity risks 5, statistical se-
quential tools have been used only recently in the actuarial field 6 even if applications
of the change-point theory appeared a little bit earlier for other topics 7. In this chap-
ter, we focus on the sequential procedure developed by Shiryaev (1963) and Roberts
(1966) within the discrete time framework of Polunchenko and Tartakovsky (2010) and
provide two adaptive procedures.

We start by the introduction of the mathematical framework with a specific Poisson
model, designed here for the study of the mortality with a similar approach as in
Rhodes and Freitas (2004) and Tomas and Planchet (2015). In Sections 2.2 and 2.3, we
provide two adaptive procedures. For both procedures, the time of change is assumed
to be deterministic but unknown; and the mortality is given by independent Poisson
random variables. Distributions before the change are assumed to be known. In the first
procedure, we assume that the mortality is given by a sequence of observations from
independent identically distributed Poisson random variables with constant intensity
λ before the change. After the change-point ν, the intensity is the only parameter that

1. A. et al. (2018)
2. Actuary from Institut des Actuaires (Actuaire Agrégé), Ph.D, Telecom Bretagne & EURIA,

marine.habart@gmail.com.
3. Maître de conférences, Ph.D, Laboratoire de Mathématiques de Bretagne Atlantique, Université

de Bretagne Occidentale, catherine.rainer@univ-brest.fr.
4. Actuary from Institut des Actuaires (Actuaire Certifié), Telecom Bretagne & ISFA,

aliou_s@yahoo.fr.
5. See e.g. De Jong and Boyle (1983), Olivieri et al. (2002) or and Planchet and Tomas (2014),

Section 3.2..
6. See e.g. Gandy et al. (2005), El Karoui et al. (2017), Croix et al. (2015), Mouyopa Djitta (2015)

and suggested in Tomas and Planchet (2014) as a possible extension.
7. See e.g. Matthews et al. (1985), Servier (2010), Oueslati and Lopez (2013).
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changes and this change is assumed to be unknown but deterministic. This means that
we look for a sudden but persistent change of level. Because the original tool requires
to know the post-change distribution, we suggest a consistent estimator designed for
the specific case of the Shiryaev-Roberts detection procedure. A detailed proof of its
consistency is provided and simulations assess that it has lower bias and lower vari-
ance just after the change-point. In the second procedure, the mortality is assumed to
decrease at a steady pace: the intensity of the Poisson random variables is decreasing
with a constant rate. After the change, the rate is different, deterministic but unknown.
This means that, for an application to mortality, we look for a change in the trend of
the log mortality rate. Here, the change-point and the trend coefficient are estimated
by usual MLE. Eventually we show that these innovative approaches are practical tools
in order to explore mortality data, especially when nothing is known about the post-
change distributions.

An important part of this work is devoted in Section 2.4 to the application of our
methodology on real data, in a context where the change is obvious, using specific
methodologies to adjust the data as in Mei et al. (2011). For the mortality risk, we
focus on the 2003 French heatwave and the 1918 Spanish Flu. For the longevity risk, i.e.
with the second procedure, we look at the 2003 heatwave from a different perspective;
and we study the French female mortality in the 1960’s where a clear change of trend
is identifiable 8. In addition, for both risks, we analyze a real insurance portfolio where
no specific information might help us to understand the change, and where the change
itself does not seem perceptible (level and trend analysis). The main results allow us
to identify the change-points of the mortality when they happen and to quantify the
minimum lag before clear identification of the phenomena. These examples illustrate
the main properties of the model in the case of actuarial applications.

Variants of the suggested approaches are also widely expressed in Section 2.5 and the
suggested estimators are compared to benchmark methodologies in Appendix 2.7.1.

2.1.2 Mathematical framework
Let (Ω,F ,P) be a probability space and x = (xn)n≥1 a sequence of outcomes of a
sequence of independent random variables X = (Xn)n≥1 such that

Xn ∼ Poisson(λ), 1 ≤ n ≤ ν,
∼ Poisson(λρ), ν + 1 ≤ n,

where λ > 0 deterministic and known, and ρ > 0 and ν ∈ N ∪ {∞} are deterministic
but unknown. We denote by ν the time step of the change and by ρ the ratio of the
intensities after and before the change. The Shiryaev-Roberts random sequence
S(ρ) = (Sn(ρ))n≥1 is introduced by both Shiryaev (1963) and Roberts (1966). Using
the sequential framework of Polunchenko and Tartakovsky (2010) it is defined for all
n ≥ 1 by

Sn(ρ) =
n∑
i=1

n∏
k=i

fρ(Xk)
f1(Xk)

= (1 + Sn−1(ρ)) fρ(Xn)
f1(Xn)

8. This change is a consequence of the revolution in cardiovascular care, see Vallin and Meslé
(2010), Didou (2011) and Cutler and Meara (2001).
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with S0(ρ) := 0 and fρ the density function of a Poisson random variable with intensity
λρ, for any ρ > 0:

fρ(x) = e−λρ
(λρ)x
x! , x ∈ N. (2.1)

Here we use the term density function with respect to the counting measure on N.

In the original work of Shiryaev (1963) and Roberts (1966), both parameters λ and ρ
are known. The Shiryaev-Roberts procedure states that Sn(ρ) is computed as long as
it does not exceed some threshold s∗n. The detection time step T ∗(s∗n) is the time
step of the first observation that triggers the detection, and is defined by

T ∗(s∗n) = inf{n ≥ 1, Sn(ρ) > s∗n}

with inf Ø =∞. The threshold sequence s∗n is usually chosen with respect to a false
alarm constraint. This constraint can be determined by the probability of false
alarm α and its corresponding threshold s∗n by

P
[

max
1≤i≤n

Si(ρ) ≥ s∗n

]
= α. (2.2)

where (Si(ρ))1≤i≤n is the Shiryaev-Roberts sequence when no change occurs (i.e. the
procedure applied to some sequence X for which no change occurs). Here α is a pa-
rameter that needs to be defined by the user of the procedure.

This procedure is an accurate tool for measuring the deviation from the initial intensity,
as shown by its optimality properties already known in the field of change-point detec-
tion. For example, Pollak and Tartakovsky (2009) proves its optimality for minimizing
the cumulative average delay to detection 9 ∑∞

k=0Ek[(T ∗(s∗)− k)+]/E∞[T ∗(s∗)] for se-
quential observations, where the change-point ν is unknown and where the threshold
sequence is reduced to a fixed constant s∗. However, it requires to know the post-
change distribution. In practice, the shift parameter ρ is unknown and we would like
to know simultaneously if there is a change and what would be the shift associated
with this change. In this case the application of detection procedures requires the use
of adaptive procedures. Wu (2015) gives an overview of existing methods for different
detection procedures and Pollak (2009) provides a common adaptive procedure for the
Shiryaev-Roberts approach.

More generally, for exponential families, Foster and George (1993) suggest estimators
for the mean before the change, and Wu (2005) provides estimators for the post-change
mean in the case of the CUSUM chart. More recently, Fotopoulos et al. (2010) studied
the asymptotic distributions of the MLE under the Gaussian framework, and estima-
tors designed for specific frameworks are provided e.g. in Wu (2016a), Wu (2016b) and
Frick et al. (2014). Extensive asymptotic results for the change-point detection can be
found in Csörgő and Horváth (1997).

In this work, we provide two adaptive procedures. In the first one, we assume that the
current intensity is stable and we look for a sudden but persistent change of level. In
the second model, the intensity evolves at a steady pace, and we look for a change of
the intensity constant increase/decrease rate.

9. Where Ek is the expectancy when ν = k.
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2.2 Adaptive procedure for detecting a change of
level

Under the general framework given in Section 2.1, for given λ > 0, n ≥ 0 known, and
ν ≥ 0 deterministic but unknown, we suggest the estimator ρ̂S(n) for the intensity shift
parameter ρ, defined as

ρ̂S(n) := arg max
ρ>0

Sn(ρ),

where (Sn(ρ)) is the Shiryaev-Roberts sequence:

Sn(ρ) :=
n∑
i=1

n∏
k=i

fρ(Xk)
f1(Xk)

(2.3)

and fρ the density function of a Poisson random variable with intensity λρ from (2.1).

Remark that, as for the Shiryaev-Roberts sequence, the estimator ρ̂S(n) does not de-
pend on the change-point ν. Therefore, we do not need to know when the change occurs
in order to infer the post change intensity. The corresponding adaptive procedure uses
the detection sequence S̃n = (S̃i,n)1≤i≤n defined by

S̃i,n =
i∑

k=1

i∏
j=k

fρ̂S(n)(Xj)
f1(Xj)

. (2.4)

S̃i,n is computed as long as S̃i,n ≤ s̃∗n, where the threshold s̃∗n is computed as in Equation
(2.2). This implies that for each new observation (i.e. n increasing), the sequence S̃n is
re-evaluated. Thus, as soon as the alarm is raised, the procedure provides an estimate
of the post change intensity.

In the two following paragraphs, we show that ρ̂S(n) is consistent. We also assess in
Appendix 2.7.1 that for the studied cases the average bias of ρ̂S(n) decreases faster
than the one of the usual MLE, the variance of ρ̂S(n) is always lower than the one of
the MLE and both variances are asymptotically similar.

2.2.1 Steps of the adaptive procedure for detecting a change
of level

In summary, the adaptive procedure is given in the following 8 steps:
1. Set the time step to n = 1;
2. Estimate the coefficient of change ρ̂S(1);
3. Compute the Shiryaev-Roberts sequence

(
S̃i,1(ρ̂S(1))

)
i=1

;
4. Compute the threshold s̃∗1;
5. If the Shiryaev-Roberts sequence overcomes the threshold, raise an alarm. Oth-

erwise, increment the time step n;
6. Estimate the coefficient of change ρ̂S(n);
7. Compute the Shiryaev-Roberts sequence

(
S̃i,n(ρ̂S(n))

)
1≤i≤n

;
8. Go back to step 4;

ρ estimation is provided by ρ̂S(n) when stopping. For practical considerations on the
threshold computation, see Sections 2.1.2 and 2.4.
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2.2.2 Consistency of the sequence ρ̂S(n)

Definition 2.1. An estimator ρ̂(n) of ρ is said to be consistent iif ρ̂(n) P−−−→
n→∞

ρ.

For all 1 ≤ i ≤ n, we set
ρ̂i,n := 1

λ(n− i+ 1)

n∑
k=i

Xk

and introduce the likelihood ratio for the sequence Xi, Xi+1, . . . , Xn

Ri,n(ρ) := ∏n
k=i

fρ(Xk)
f1(Xk) = e−λ(n−i+1)(ρ−1)+log(ρ)

∑n

k=iXk

= eλ(n−i+1)(ρ̂i,n log(ρ)−ρ+1).

Remark that, for any i ≥ 1, arg maxρ>0Ri,n(ρ) = arg maxρ>0 log (Ri,n(ρ)).
Since d

dρ
log (Ri,n(ρ)) = 0 for ρ = 1

λ(n−i+1)
∑n
k=iXk, it follows that the maximum of

ρ 7→ Ri,n(ρ) is attained at ρ̂i,n.

Remark also that the sequence (Xk)k≥1 differs from an i.i.d sequence only through a
finite number of items. Thus the law of large numbers holds: for all i ≥ 1, P-a.s.,

lim
n→∞

ρ̂i,n = ρ. (2.5)

Remark 2.2. The sequence (ρ̂i,n)n≥1 does not converges uniformly in i ≥ 1.

Proof. The sequence (ρ̂i,n)n≥1 converges uniformly in i ≥ 1 iif there exists p > 0 such
that: For any ε, η > 0 there exists N ≥ 1 such that, for all n ≥ N ,

P
[∣∣∣sup1≤i≤n ρ̂i,n − p

∣∣∣ > ε
]
< η.

Notice first that for all fixed n ≥ 1, sup1≤i≤n ρ̂i,n ≥ ρ̂n,n := Xn. Since (Xn)n≥1 are
independent of same law with unbounded support, Xn can take any positive integer
value with strictly positive probability. Fix p > 0 and consider any ε > 0. Then define
An := {Xn > p + ε} for any n ≥ 1. Since P[An] is strictly positive and independent
from n, we can find η > 0 independent from n such that P[An] > η. On An, we have
|Xn − p| > ε and also

∣∣∣sup1≤i≤n ρ̂i,n − p
∣∣∣ > ε.

This is valid for any n ≥ 1: For any p > 0, we can find ε, η > 0 such that for all N ≥ 1,
there exists at least one n ≥ N such that P

[∣∣∣sup1≤i≤n ρ̂i,n − p
∣∣∣ > ε

]
> η. The result

follows.

Let us now consider the sum of the ratios Ri,n(ρ) > 0 such that, from (2.3),

Sn(ρ) =
n∑
i=1

Ri,n(ρ).

We recall that the suggested estimator of the parameter ρ is

ρ̂S(n) = arg max
ρ>0

Sn(ρ).

In a first Lemma 2.3, we establish some basic bounds for ρ̂S(n).

Lemma 2.3. For any n ≥ 1, ρ̂S(n) ∈
[

min
1≤i≤n

ρ̂i,n, max
1≤i≤n

ρ̂i,n

]
.
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Proof. Since, for all 1 ≤ i ≤ n, arg maxρ>0Ri,n(ρ) = ρ̂i,n, the map ρ 7→ Ri,n(ρ) is
strictly increasing when ρ < ρ̂i,n and strictly decreasing when ρ > ρ̂i,n. It follows that
the function ρ 7→ Sn(ρ) is also strictly increasing when ρ < min {ρ̂i,n, 1 ≤ i ≤ n} and
strictly decreasing when ρ > max {ρ̂i,n, 1 ≤ i ≤ n}. The lemma follows.

We need the next Lemma to get a more precise localization of ρ̂S(n).

Lemma 2.4. For any ε > 0 and i ≥ 1,

lim
n→∞

Ri,n

(
ρ− ε

2

)
−Ri,n(ρ− ε) = +∞ a.s. (2.6)

and
lim
n→∞

Ri,n

(
ρ+ ε

2

)
−Ri,n(ρ+ ε) = +∞ a.s.. (2.7)

Proof. We show only (2.6), since (2.7) is obtained by symmetric arguments. Moreover,
we can chose i = 1, because the other cases are similar.

Let us consider ω ∈ Ω for which (2.5) is satisfied. In the proof, we omit the notation
ω. We fix ε > 0 and define

xn := λn (ρ̂1,n log(ρ1)− ρ1 + 1) ,
yn := λn (ρ̂1,n log(ρ2)− ρ2 + 1) ,

where ρ1 := ρ− ε
2 and ρ2 := ρ− ε. Then R1,n

(
ρ− ε

2

)
−R1,n(ρ− ε) = exn − eyn . Since

exn − eyn ≥ xn − yn when xn − yn ≥ 0, the Lemma is proven, as soon we have shown
that

xn − yn −−−→
n→∞

+∞. (2.8)

We use the convergence ρ̂1,n −−−→
n→∞

ρ to find N ≥ 1 large enough such that, for all
n > N , ρ̂1,n > ρ1 + ε

4 . For these large n, we get

xn − yn = λn (ρ2 − ρ1 + ρ̂1,n(log ρ1 − log ρ2))

> λn
(
ρ2 − ρ1 + ρ1(log ρ1 − log ρ2) + ε

4(log ρ1 − log ρ2)
)

= λn
(

(ρ2 − ρ1 log ρ2)− (ρ1 − ρ1 log ρ1) + ε

4(log ρ1 − log ρ2)
)

where (ρ2 − ρ1 log ρ2)− (ρ1 − ρ1 log ρ1) > 0, because ρ 7→ ρ− ρ′ log ρ is decreasing for
0 < ρ ≤ ρ′, and log ρ1 − log ρ2 > 0. Hence

(ρ2 − ρ1 log ρ2)− (ρ1 − ρ1 log ρ1) + ε

4(log ρ1 − log ρ2) > 0

and (2.8) follows.

Remark 2.5. Making vary ε > 0 in (2.6) and (2.7), we get as a by-product of this
lemma that, for all ρ > 0 and all i ≥ 1,

lim
n→∞

Ri,n(ρ) = +∞ P-a.s..

We first show the convergence of (ρ̂S(n))n≥1 to ρ for ν = 0. In this case (Xn)n≥1 is an
i.i.d. sequence with common Poisson law of parameter λρ.

50



2.2. Adaptive procedure for detecting a change of level

Proposition 2.6. For ν = 0, ρ̂S(n) P−−−→
n→∞

ρ.

Proof. Fix ε, η > 0. The result is established as soon as we have shown that there exists
N ≥ 1 large enough such that, for all n ≥ N ,

P[|ρ̂S(n)− ρ| ≤ ε] ≥ 1− 2η.

1) We start again from the law of large numbers: Set X̄n = 1
n

∑n
k=1Xk, n ≥ 1. By the

P-a.s. convergence of (X̄n)n≥1 to λρ, we can find some n0 > 1 such that

P
[
∀n > n0,

∣∣∣∣1λX̄n − ρ
∣∣∣∣ ≤ ε

2

]
≥ 1− η

3
(see, for instance, Lemma 5.6 in Karr (1993)). In particular, for fixed n ≥ n0, it holds
that

P
[
∀i s.t. n− i ≥ n0,

∣∣∣∣1λX̄n−i+1 − ρ
∣∣∣∣ ≤ ε

2

]
≥ 1− η

3 . (2.9)

Now remark that the vectors
(

1
λ
X̄1, . . . ,

1
λ
X̄n

)
and (ρ̂n,n, ρ̂n−1,n, . . . , ρ̂1,n) have same

law. This implies that, if we set

A1
n =

{
∀i ≤ n− n0, |ρ̂i,n − ρ| ≤

ε

2

}
, (2.10)

relation (2.9) is equivalent to
P[A1

n] ≥ 1− η

3 .

2) For n0 defined in the previous step, let L > 0 such that

P
[
∀i ≤ n0, Ri,n0(ρ̂i,n0) ≤ L

n0

]
≥ 1− η

3 . (2.11)

Since, for all i ≥ 1, the map ρ 7→ Ri,n0(ρ) attains its maximum at ρ̂i,n0 , relation (2.11)
implies that

P
[
∀ρ > 0,

n0∑
i=1

Ri,n0(ρ) ≤ L

]
≥ 1− η

3 .

Finally, for all n ≥ n0, the vectors (R1,n0 , . . . , Rn0,n0) and (Rn−n0+1,n, . . . , Rn,n) have
same law, and we deduce that, for all n ≥ n0,

P
[
A2
n

]
≥ 1− η

3 , for A
2
n :=

∀ρ > 0,
n∑

i=n−n0+1
Ri,n(ρ) ≤ L

 . (2.12)

3) By Lemma 2.4, for L defined in step 2), we can find n1 ≥ 1 such that, for all n ≥ n1,

P
[
A3
n

]
≥ 1− η

3 , with A
3
n :=

{
R1,n

(
ρ− ε

2

)
−R1,n(ρ− ε) ≥ 2L,

}
. (2.13)

4) Combining now 1) - 3), we get, for all n ≥ max{n0, n1}, P[An] ≥ 1 − η for
An := A1

n ∩ A2
n ∩ A3

n ⊂ Ω.

Since ρ 7→ Ri,n(ρ) is increasing for all ρ < ρ̂i,n, on An, for all ρ < ρ − ε and for all
i ≤ n− n0, relation (2.10) implies that

Ri,n

(
ρ− ε

2

)
≥ Ri,n(ρ)
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and (2.13) implies that
R1,n

(
ρ− ε

2

)
≥ R1,n(ρ) + 2L.

Thus
n−n0∑
i=1

Ri,n

(
ρ− ε

2

)
≥

n−n0∑
i=1

Ri,n(ρ) + 2L.

Combined with (2.12), it follows that

n∑
i=1

Ri,n

(
ρ− ε

2

)
≥

n∑
i=1

Ri,n(ρ) + 2L+
 n∑
i=n−n0+1

Ri,n

(
ρ− ε

2

)
−

n∑
i=n−n0+1

Ri,n(ρ)


≥
n∑
i=1

Ri,n(ρ) + L. (2.14)

This means that on An, for all ρ < ρ− ε,

Sn

(
ρ− ε

2

)
> Sn(ρ).

We conclude that, for all n ≥ max{n0, n1}, P[ρ̂S(n) ≥ ρ − ε] ≥ 1 − η. By symmetric
arguments, we prove that, for n big enough, P[ρ̂S(n) ≤ ρ+ ε] ≥ 1− η. And combining
both, the result follows.

The convergence of the estimator for any deterministic finite ν ≥ 1 is a slightly wider
case of Proposition 2.6.

Proposition 2.7. For any deterministic finite ν ≥ 1, ρ̂S(n) P−−−→
n→∞

ρ.

Proof. With the same notations as above, for n > ν, the Shiryaev-Roberts sequence
can be written as

Sn(ρ) =
n∑
i=1

Ri,n(ρ) = Rν+1,n(ρ)
ν∑
i=1

Ri,ν(ρ) +
n∑

i=ν+1
Ri,n(ρ). (2.15)

Set again ρ̂i,n = arg maxρ>0Ri,n(ρ) = 1
λ(n−i+1)

∑n
k=iXk.

1) Since the law of large numbers is still valid, for any ε, η > 0, we can find n0 ≥ 1
such that, for all n ≥ n0,

P
[
Ã1
n

]
≥ 1− η

4 , for Ã
1
n :=

{
∀i ≤ n− n0, |ρ̂i,n − ρ| ≤

ε

2

}
. (2.16)

2) Further, since (Xn)n≥ν+1 is i.i.d. with Poisson law of parameter λρ, (2.14) from proof
of Proposition 2.6 ensures that we can find some n1 > ν and L > 0 such that, for all
n ≥ n1,

P
[
Ã2
n

]
≥ 1− η

4 , for Ã
2
n :=

∀ρ < ρ− ε,
n∑

i=ν+1
Ri,n

(
ρ− ε

2

)
≥

n∑
i=ν+1

Ri,n(ρ) + L

 .
(2.17)
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3) Now, for n ≥ n0, let ρ−n such that P [ρ−n ≤ min1≤i≤n ρ̂i,n] ≥ 1 − η
8 and 0 < k < K

such that P [∀ρ ∈ [ρ−n ,ρ− ε), k <
∑ν
i=1Ri,ν(ρ) < K] ≥ 1− η

8 . Then

P
[
Ã3
n

]
≥ 1−η4 , for Ã

3
n :=

{
ρ−n ≤ min

1≤i≤n
ρ̂i,n and, ∀ρ ∈ [ρ−n ,ρ− ε), k <

ν∑
i=1

Ri,ν(ρ) < K

}
.

(2.18)
4) From Lemma 2.4 and Remark 2.5, we can find n2 ≥ 1 such that, for all n ≥ n2,

P
[
Ã4
n

]
≥ 1− η

4 , with Ã
4
n :=

Rν+1,n
(
ρ− ε

2

)
Rν+1,n(ρ− ε) ≥

K

k

 . (2.19)

5) Combining 1) - 4), for n ≥ max{n0, n1, n2}, we define Ãn := Ã1
n∩ Ã2

n∩ Ã3
n∩ Ã4

n ⊂ Ω.
Then P[Ãn] ≥ 1− η. From (2.16), (2.19) and because ρ 7→ Ri,n(ρ) is increasing for all
ρ < ρ̂i,n, it follows that, on Ãn, for all ρ < ρ− ε,

Rν+1,n

(
ρ− ε

2

)
≥ K

k
Rν+1,n(ρ).

Combined with (2.18), this gives, for all ρ ∈ [ρ−n , ρ− ε),

Rν+1,n

(
ρ− ε

2

) ν∑
i=1

Ri,ν

(
ρ− ε

2

)
≥Rν+1,n(ρ)K

k

∑ν
i=1Ri,ν(ρ− ε

2)∑ν
i=1Ri,ν(ρ)

ν∑
i=1

Ri,ν(ρ)

≥Rν+1,n(ρ)
ν∑
i=1

Ri,ν(ρ).

This relation together with (2.17) and (2.15) gives, for all ρ ∈ [ρ−n ,ρ− ε),

Sn

(
ρ− ε

2

)
> Sn(ρ).

Thus, on Ãn, ρ̂S(n) 6∈ [ρ−n ,ρ − ε). From the choice of ρ−n , it follows that, still on Ãn,
ρ̂S(n) ≥ ρ− ε.

We conclude in the same way as for Proposition 2.6.

2.3 Adaptive procedure for detecting a change of
trend

In this section, we explore a new set up for the change-point detection procedure where
the intensity of the Poisson random variables sequence is increasing/decreasing at a
steady pace. We look for a change in the trend and suggest a way for the inference of
the post-change parameters.

Let (Ω,F ,P) be a probability space andX = (Xn)n≥1 an independent random sequence
such that Xn ∼ Poisson(λn), n ≥ 1 where λn := αλn−1 for 1 ≤ n ≤ ν and λn := α′λn−1
for ν + 1 ≤ n, with 1 ≤ ν < n, λ0 > 0, α > 0, 0 < α′ := αρ, ρ > 0 and α 6= α′. In this
context, λ0 and α are deterministic and known. ν and α′ are deterministic but unknown.
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The useful property of the Shiryaev-Roberts sequence to get rid of the change-point
does not apply 10. Therefore, we provide an adaptive procedure that uses estimates for
both ν and ρ. For fixed n ≥ 1, the associated sequence ξ = (ξi,n)1≤i≤n is given for
i ∈ {1, . . . , n} by

ξi,n :=
i∑

k=1

i∏
j=k

f j
θ̂n

f jθ0
(Xj). (2.20)

Here (f i
θ̂n

)1≤i≤n denotes a sequence of density functions of independent Poisson random
variables with intensity λi := αλi−1, 1 ≤ i ≤ ν̂ξ(n) and λi := αρ̂ξ(n)λi−1, ν̂ξ(n) + 1 ≤
i ≤ n, and θ̂n := (ρ̂ξ(n), ν̂ξ(n)) an estimator of the couple (ρ, ν). In practice, θ̂n can be
the maximum likelihood estimator. In some cases however, it can be useful to minimize
instead the quadratic error, especially when the change of trend occurs for strongly de-
creasing intensities 11.

The procedure states that ξi,n is computed as long as ξi,n ≤ x∗n, where x∗n is a threshold
sequence defined as in Equation (2.2).

In practice, ρ̂ξ(n) and ν̂ξ(n) are estimated for each new observation using parallel
computing as in Knaus et al. (2009). In fact, Pollak (2009) pointed out that when the
Shiryaev-Roberts sequence grows, the computational time explodes. For example, when
computing the original Shiryaev-Roberts procedure, a sample with 100 observations
requires 11 times more than a benchmark sample with 10 observations. Because of
the estimation of ρ, the adaptive procedure for detecting a change of level with 10
observations requires 27 times more computing time than the benchmark sample and
260 times more with 100 observations. The adaptive procedure for detecting a change
of trend is consuming even more computations due to the fact that, for each new
observation, we need to re-compute the whole sequence. Compared to the benchmark
sample, its computing time is 40 times higher with 10 observations and 1020 times
higher with 100 observations. These figures were estimated using the same computing
method, i.e. without parallelization. Therefore, when the flow of analyzed data increases
significantly, reducing the computing time becomes a major point of attention.

Steps of the adaptive procedure for detecting a change of the
trend
In summary, the adaptive procedure is given in the following 7 steps:

1. Set the time step to n = 1;
2. Estimate ρ̂ξ(1) and ν̂ξ(1);
3. Compute the Shiryaev-Roberts sequence (ξi,1)i=1;
4. Compute a threshold x̃∗1;
5. If the sequence (ξi,n)1≤i≤n overcomes the threshold, raise an alarm and stop the

procedure. Otherwise, increment the time step n;
10. In the detection procedure for the level, our approach does not require to know the time of the

change for the estimation of the change coefficient ρ, see Section 2.2, page 48.
11. As a matter of fact, MLE algorithms might converge towards a local optimum and looking for

improvements on the first observations of the sample. In general, we recommend a careful implemen-
tation of the estimation algorithms and a specific study of their convergence. In addition, when the
computing time is reasonable, we recommend scanning all possible time changes and estimating ρ
alone; this might improve considerably the likelihood.
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6. Estimate ρ̂ξ(n) and ν̂ξ(n), and compute the sequence (ξi,n)1≤i≤n;
7. Go back to step 4;

Estimations of ρ and ν are provided by ρ̂ξ(n) and ν̂ξ(n) when stopping. For practical
considerations on the threshold computation, see Sections 2.1.2 and 2.4.

2.4 Study cases
In this section, we provide a few applications for the adaptive procedures. A Poisson
framework is used for the mortality since it is a common assumption in the actuarial
literature 12. We also adjust the data with a proportional rescaling in order to align
it to the chosen Poisson distribution: (i) As suggested in Zucchini and MacDonald
(2009), Section 1.2.1, or Mei et al. (2011), Section 4, the data is first normalized by
the population size in order to eliminate exposure effects. (ii) Secondly, we multiply
the observed number of deaths by the coefficient that allows the empirical mean to be
equal to the empirical standard deviation 13.

Two kind of study cases are provided. First, the adaptive procedure for detecting a
change of level is applied to national and annual data from HMD 14. It shows that, as
expected, persistent changes of level occurred in the past and are correctly identified
by the procedure. Therefore, we suggest that the procedure may be used as a risk
management tool: in practice, raising an alarm is only a start and a detailed analysis
of the causes of the alarm should follow.

We also studied some peculiar events that are obviously not persistent changes of level:
when the population is homogeneous over time, at national scale, catastrophic events
are easily associated to a clear cause (e.g. the Spanish flu). When they occur, an alarm
is raised if they are far enough on the distribution tail. We illustrate that most of
strong but not extreme variations that happen only one time are not detected, unlike
slight but persistent changes that trigger the alarm. Therefore, the use of this tool
makes sense when it is used along other controls such as confidence intervals (for the
detection of strong variations).

In a second part, we focus on the change of the trend: here, we are interested in
situations when the mortality decreases faster than expected. We notice first that the
adaptive procedure given in Section 2.3 is sensitive to changes: a few regularly aligned
divergent observations can raise an alarm when the data is historically stable. Then
we recommend a cautious calibration of the procedure (here through the probability of
false alarm). We also illustrate the case of specific events called peak/compensation
phenomena and defined as (i) a sequence of regular decrease of the mortality followed
by (ii) a one-time increase called the peak, (iii) a very short period of lower mortality
that is the compensation period and (iv) a regular decrease of the mortality. For this
kind of events, the aim of the procedure is to check whether the trend of the period (i)

12. See e.g. Rhodes and Freitas (2004) and Tomas and Planchet (2015).
13. This rescaling restores the right quantile for the application of a Poisson model. Notice that

in the case of actuarial applications for insurer portfolios, data quality and full understanding are
required to assess the use of such a methodology.
14. Human Mortality Database, http://www.mortality.org/.
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is identical to the one of the period (iv). An example is provided for the 2003 French
heatwave.

Threshold calibration

In the following, we apply the threshold calibration from (2.2) where we set α = 0.01%.
The threshold is estimated through simulations of the procedure in the case when the
no change occurs.

2.4.1 Detecting a change of the level
Regarding the theoretical requirements, the adaptive procedure for detecting a change
of level should be used in the context of a stable mortality over time. In addition, the
intensity after the change should also be stable and persistent. These two constraints
are strong but common requirements for the study of mortality at national scale. The
first example illustrates the case when the intensity decreases during the years that
followed a noticeable event. We study in a second phase the 1918 Spanish flu: in case
of such extreme events, an alarm is raised anyway. In the third example, we look at the
mortality of the portfolio from an insurance company, when nothing is known about
the reasons of the observed variations and no change seems to occur. These chosen
applications highlight the main properties and limits of the procedure.

(a) Actual mortality rate (Human Mortal-
ity Database).

n ρ̂S(n) S̃i,n s̃∗n Detection
2000 1.00 1.00 1.001 No
2001 0.99 2.1 5.7 No
2002 1.00 3.0 6.7 No
2003 1.02 5.9 84.7 No
2004 0.89 179 9 481 No
2005 0.89 42 904 10 058 Yes

(b) Detection procedure results

Figure 2.1 – Mortality rate of French civilians (85-90 years old) between 2000 and 2005.

The 2003 French heatwave impacted significantly the mortality of elderly people:
the event is the most noticeable for the age group 85-90 years old (French national
mortality data, men and women), see Figure 2.1a. No change of level is detected when
the 2003 peak occurs (annual mortality rate: 12.9%, ρ̂S(2003) = 1.02). However, the
decrease of the mortality that follows (from 12.3% in 2000 to 9.9% in 2006) is detected
in 2005 (see Table 2.1b, ρ̂S(2005) = 0.89). As expected, a persistent change of level is
detected but not a sudden variation.

If we look at the probability of the events under the Poisson framework, the mortality
rate observed in 2003 is a quantile with probability 92% while the low rate observed in
2005 is a quantile with probability 0.05%. In particular, we can calculate that the false
alarm probability should be higher than 22% in order to raise an alarm. Therefore,
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persistent changes are detected rather than one-time reasonable events.

Figure 2.2 – Mortality rate of civilian French women (30-50 years old) between 1910
and 1919 (Human Mortality Database).

The 1918 Spanish flu is an extreme event observed here for French women between
1900 and 1920 (non military, between 30 and 50 years old 15). During this time period,
the slight mortality improvements mainly come from the development of public health
national programs and of specific procedures for the treatment of sick people. In Figure
2.2, observations suggest that the mortality is stable enough for this age group, except
for the peak in 1918 that we want to challenge.

The level before the change is set using a 10 years window of observations, i.e. between
1900 and 1909, where the mortality rate is about 0.90%, and the probability of false
alarm is set to 0.1%. The change is detected in 1918 16, the same year it happens, with
ρ̂S(1918) = 1.5. Usual statistical tools also provide strong results in this situation, as
expected: under the Poisson framework, the upper bound of the confidence interval with
probability 0.1% is a mortality rate of 1.02%. For the year 1918, the Standard Mortality
Ratio, defined as the ratio between the observed number of deaths and the expected
number of deaths, is very close to the estimation of ρ (here SMR(1918) = 150%) while
it is never over 100% before the peak since the mortality is slightly decreasing.

The low variance of the data before the detection increases the chance to raise an alarm
when a strong variation is observed. This example shows that extreme events such as
this one are detected as soon as they are observed 17.

15. See Caselli et al. (1987), page 44.
16. In order to focus on this event, the procedure is set to raise an alarm only in the case of an

increased mortality level.
17. The same study on civilian men show that the mortality tripled from 1914 to 1918 before coming

back to the same level as during the beginning of the century. The detection results are similar as for
women: the alarm is raised in 1914 due to the war. Therefore, even if the change is persistent, it is
detected the first year it occurs.
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Figure 2.3 – Expected (filled) and observed (dotted) number of deaths between 2003
and 2014, data from a French insurance portfolio of life annuitants.

In the third example we study a portfolio of real life annuitants that contains about
15 000 life annuities with 50% of men and an average age of 77 years. Data is available
from 2003 to 2014 by quarter. Most of the annuitants are between 60 and 90 years old.
Because of the low size of the portfolio, we assume that the expected mortality is given
by the French regulatory tables TGH-TGF-05 that are extended to recent generations.
The purpose of our analysis is to assess whether the regulatory table is suited for the
portfolio. A first analysis shows that, for the whole sample (men and women together),
the quarterly number of predicted deaths is a reasonable average assumption since the
observed number of deaths is close enough, with expected variations due to the size of
the portfolio (see Figure 2.3). The procedure does not raise any alarm: no persistent
change of level seems to occur for the whole portfolio.

A close analysis of the observations might suggest that there is a deviance between
the observed and predicted deaths from 2011. In the following paragraph, we focus
on detecting a change of trend and, for the life annuitant portfolio, we bring more
information about the change of mortality over the studied period.

2.4.2 Detecting a change of the trend

We focus on three events: the decrease of the mortality in the 60’s for women between 60
and 65 years old, the decrease of the mortality trend that followed the French heatwave
of 2003, and the analysis of the insurance portfolio of life annuitants. In these exam-
ples, we show that the suggested procedure is sensitive to any sequence of observations
that are diverging from the expected trend in the same direction: the calibration of the
threshold becomes crucial in the detection process. Thus, persistent trends are detected
quickly. We also illustrate the peak/compensation phenomenon defined in Section 2.4,
page 55.

Initial trends used to run the procedure are calibrated on the 10 years window before
the starting point. Post change trends and the time of change are provided by the
detection procedure itself.
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Decrease of the mortality rate in the 60’s

Figure 2.4 – Detection of the change of mortality trend for French women between 55
and 75 years old, from 1960

Using the adaptive procedure of Section 2.3, we look at national French data from
HMD between 1960 and nowadays. Didou (2011) noticed that the female mortality
rates are slightly decreasing at a steady peace just before 1960 18 and the decrease ac-
celerates in the 60’s. Therefore, we chose to illustrate the procedure with the observed
deaths of women between 55 and 75 years old. The Figure 2.4 shows that the trend
changes around 1976/1978 and the procedure rises the alarm in 1986 (see Figure 2.5).
The estimated decrease of mortality in 1960 is about 1.5% per year and becomes 3.2%
after the change, i.e. starting from 1978.

Figure 2.5 – Shiryaev-Roberts Process (filled) and threshold (dotted) for French women
between 55 and 75 years old between 1960 and 1986.

In practice, the procedure is very sensitive to any change of trend: the choice for the
probability of false alarm becomes a lever to distinguish long or short term changes. In
this case, we look for long term changes of the trend. That is why we deliberately set
the probability of false alarm to a low value (0.01%).

18. This is a consequence of the revolution in cardiovascular care, see Figure 1 from Vallin and Meslé
(2010). It is also noticeable in other countries, as developed in Cutler and Meara (2001).
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2003 French Heatwave

Figure 2.6 – Detection of the change of mortality trend for French population between
85 and 90 years old

In Section 2.4.1, we noticed that the peak of mortality in 2003 was not detected with
the procedure for detecting a change of level. Surprisingly, the two years 2002 and
2003 are sufficient to raise an alarm for the observed increase (relative increase of
+3.5% per year) since the observations are aligned enough. This is a clear example of a
peak/compensation phenomenon, as defined in Section 2.4, page 55. Once we identified
the peak (ii) and the compensation period (iii) through multiple applications of the
procedure, we can test whether the regularly decreasing period (iv) has the same trend
as the initial period (i). The procedure stops actually in 2008 and sates that the change
of trend occurred in 2004 with an annual decrease of 2.3% (see Figure 2.6).

Life annuitants insurance portfolio

In Section 2.4.1, page 58, the procedure for detecting a change of level did not raise
any alarm for the life annuitants portfolio. With the adaptive procedure for the trend,
an alarm is raised in 2013 Q2 19. The initial decreasing trend of 0.6% changes to an
annual increase of the mortality of 0.7% from 2005 Q3. A re-run from 2013 Q2 in order
to detect a late change does not raise any alarm.

We want to highlight here the fact that the calibration of the initial trend impacts
the result and its interpretation. Due to the very limited dataset at our disposal, we
chose to keep 10 observations to estimate the initial trend. The observed data is also
adjusted from the expected mortality in order to take into account the exposure of the
underlying risk by age. With this limit, we conclude that a slight change of trend (from
decreasing to increasing) happens in 2005 Q3. Further analysis have to be conducted
by the insurer in order to monitor carefully this change.

In summary, the studied portfolio of life annuitants does not diverge significantly from
its reference mortality table. More broadly, the use of the trend procedure is assessed
to be efficient for detecting small changes of deviation from the initial trend, especially
when the data is unstable or when one-time events happen. Indeed, alarms can bee
raised very fast (e.g. for the 2003 heatwave). Or, as seen in the case of the 60’s mortality,

19. Q1 is the first quarter of the year, Q2 the second quarter of the year, etc..
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when the trend is stable, alarms are not raised too often and we can observe a long
delay before detection.

2.5 Extension: weighted likelihood ratio
We put forward two possible extensions for the detection of change (level and trend).
First, we suggest using Hidden Markov Models to take into account over-dispersion
of the data. No application is provided in this chapter since a large enough amount
of data is required to calibrate the distributions before and after the change. We also
suggest the possibility of weighting the likelihood ratios by the exposure to the risk in
the same way than Mei et al. (2011), Section 4.

Intuitively, when we observe data from an insurance portfolio, it appears that there are
some fluctuations in the number of insured over time. In this case, actuarial methods
suggest the use of weights that will take into account the exposure (i.e. the size of the
portfolio) in the likelihood ratio. Let n ≥ 1. With the same notations as in (2.4), we
define an alternative sequence (WLi,n)1≤i≤n for the level procedure by

WLi,n :=
i∑

k=1

i∏
j=k

(
fρ̂S(n)(Xj)
f1(Xj)

)lj

where lj, j ≥ 1, is the size of the portfolio for each time step. Identically, with the same
notations as in (2.20), we define an alternative sequence (WT i,n)1≤i≤n for the trend
procedure by

WT i,n :=
i∑

k=1

i∏
j=k

f jθ̂n
f jθ0

(Xj)
lj .

The results of the application of these procedures are provided in Appendix 2.7.2, page
67.

2.6 Conclusion
In this chapter, we provided two adaptive procedure for the detection of a change of
level and a change of trend within a discrete time Poisson framework. The sequential
procedures are derived from the one developed by Shiryaev (1963) and Roberts (1966).

For both procedures, the time of change is assumed to be deterministic but unknown.
The mortality is given by independent Poisson random variables.and the distribution
before the change is assumed to be known. In the first approach, we suggest an estimator
for the intensity after the change designed for the specific case of the Shiryaev-Roberts
detection procedure. We establish that it is a consistent estimator. In the second ap-
proach, the change-point and the trend coefficient are estimated by usual MLE. In fine,
we show that these approaches are practical tools for the mortality data exploration,
especially when nothing is known about the post-change distribution.

Actuarial applications are provided in both cases. First, the adaptive procedure for de-
tecting a change of level is applied to national and annual data in order to illustrate its
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main characteristics. We conclude that a change of level might occur for insurer portfo-
lios when the underlying population is modified over time (persistent data disruptions,
even small ones). In this case, the procedure becomes a tool of risk management for
actuaries and any raised alarm should initiate a complete analysis of its source. We
show also that, as expected, most of strong variations that happen only one time are
not detected except when they are extreme enough. Therefore, we recommend the use
of this tool, combined with usual controls such as confidence intervals.

Then we focus on the change of trend for the longevity risk, i.e. we are interested in
situations when the mortality decreases faster than expected. The adaptive procedure
given in Section 2.3 is quite sensitive to changes. The probability of false alarm, set
for the control of false detection, can be used as a lever to focus on short or long term
changes. In addition, restarting the procedure allows a systematic analysis of specific
events such as the peak/compensation phenomena (e.g. the 2003 French heatwave).

In Section 2.5, we suggest some extensions to our work: the question of the sequential
estimation of the post change distribution is still wide and is worth to be explored.

2.7 Appendices

2.7.1 Benchmarking
2.7.1.1 Change of level

The first intuition about the usefulness of an estimator that maximizes the Shiryaev-
Roberts sequence is well illustrated in this paragraph. From simulations, the estimator
converges faster to the true parameter (Figure 2.7a) with lower variance (Figure 2.7b).
So far, for all the studied cases, we always observed this property despite the fact
that it is not mathematically proven yet. In both Figures, the suggested estimator
(ArgMaxSR) is compared to the Maximum Likelihood Estimator of the change-point
model (MLE) and the ordinary least square estimator (LSE). This property is illus-
trated for parameters value from the 2003 French heatwave phenomenon. Figure 2.8a
illustrates one observation of the random sequence, where no change is perceptible: the
detection procedure is the only way to identify a persistent change. Here the estimator
converges slowly toward a stable value since the change is very small.

Notice that Figure 2.7a would not be sufficient to identify a change in the context of
stable data because we illustrated here average sequential estimates for the change co-
efficient: a single simulation of the sequential estimation is still quite volatile in practice.
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(a) Average sequential estimation of ρ by number of available observations, with
ν = 10, ρ = 1.1, and 10 000 simulations. Centered on the time of change.

(b) Empirical sequential variance of estimators of ρ by number of available obser-
vations, with ν = 10, ρ = 1.1, and 10 000 simulations. Centered on the time of
change.

Figure 2.7 – Benchmarking of the level procedure (1/2)
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(a) Illustration of a realisation of the random experiment: ν = 10, ρ = 1.1. Centered
on the time of change.

(b) Distribution of the alarm time, with ν = 10, ρ = 1.1, and 10 000 simulations.
Legend: Point = mean. Box plots with 0.05, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.95
probabilities.
Each scenario indicates first the methodology for the calibration of the sequen-
tial estimator (IC = Confidence Interval i.e. without any estimation of the change
coefficient, MLE = Maximum of Likelihood Estimator, LSE = Least Square Es-
timator, SR = our estimator, Rho = case where the change coefficient is known)
and then the procedure applied for the detection (CUSUM or Shiryaev-Roberts)..

Figure 2.8 – Benchmarking of the level procedure (2/2)

With 10 000 simulations of a sequence of Poisson random variables with a change at
the time step ν = 10 and ρ = 1.1, we also observed that, in addition to a faster and
more stable convergence to the true parameter, for a given sample size, the last value
of the Shiryaev-Roberts sequence of the suggested estimator is always greater than the
one from the MLE. This seems natural since the suggested estimator maximizes this
value.

In addition, because we control the probability of false detection for each time step
through the calibration of the threshold, with consideration of the methodology, the
choice of estimator does not affect the probability of false detection. Figure 2.8b shows
that not knowing the post change parameter affects strongly the delay before detection,
especially the variance of the alarm time. It also shows that our estimator is still the
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best among the pool of three candidates. Since we measure here the average delay of
detection, the CUSUM procedure is optimal as expected (or close to it since El Karoui
et al. (2017) proved it for the continuous time case). Therefore, the best strategy (in
terms of what we studied, not in general) would be to use our estimator and then to
detect the change with the CUSUM procedure, for minimizing the average delay before
detection.

2.7.1.2 Change of trend

In this paragraph, we show that estimating the change of trend with the MLE for
both the time of change and the change coefficient is more adequate than using the
methodology applied for the level. In order to illustrate this point, we chose to replicate
the case of the application of the methodology for the clear change of trend in the 60’s
given in Section 2.4.2, page 58. Then we set ν = 50, α = 98.47%, α′ = 98.27% and
thus ρ = 99.79%.

Figure 2.9a illustrates two simulations of the setup. Here again, the change is not no-
ticeable and the detection procedure is required to identify it. Figure 2.9b and Figure
2.9c) show that the best estimator is the MLE (and no longer the one that maximizes
the Shiryaev-Roberts sequence). In fact, in the level context, our estimator did not
involve any estimation of the time of change ν while the MLE did it. Consequently,
the variance was much lowered. Here, both methods have to estimate ν. Therefore
maximizing the Shiryaev-Roberts sequence does not bring any improvement and the
MLE is the best estimator to use. We also compared it to the Least Square Estimator
(LSE) that minimizes the quadratic error and the Norm1 estimator that minimizes the
absolute error.

Hence we recommend the use of the MLE for this framework.

65



Chapter 2 – Discrete Poisson case: a sequential estimator of the post-change parameter

(a) Illustration of a realisation of the random experiment in the case of a change
of trend: ν = 50, ρ = 99.79%. Actual (filled) and Expected initially (dotted)
intensities. Centered on the time of change.

(b) Average sequential estimation of ρ by time step: ν = 50, ρ = 99.79% and 1
000 simulations. Centered on the time of change.

(c) Empirical sequential variance of estimators of ρ by time step: ν = 50, ρ =
99.79% and 1 000 simulations. Centered on the time of change.

Figure 2.9 – Benchmarking of the trend procedure
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2.7.2 Application of the weighted likelihood ratio procedures
The extensions suggested in Section 2.5, page 61, are illustrated in Table 2.1 for the
level procedure and in Table 2.2 for the trend procedure.

It appears that, in our examples, taking into account the population weights did not
impact significantly the results. However, results provided in Mei et al. (2011) show
that when the population size varies (at a steady pace in the examples provided by the
authors), the detection lag can be significantly different. Therefore, we expect those
weighting to be crucial in the context of low and/or unstable data.

with exposure weights without exposure weights
Study case λ 20 Alarm λρ̂ Alarm λρ̂

2003 heatwave 12.3% 2005 11.0% 2005 11.0%
Spanish flu 0.86% 1918 1.30% 1918 1.30%
Insurance portfolio 0.3% No detection N/A No detection N/A

Table 2.1 – Results of the level procedure with exposure weights.

with exposure weights without exposure weights
Study case α Alarm αρ̂ ν̂ Alarm αρ̂ ν̂

60’s mortality -3.23% 1986 -1.53% 1978 1986 -1.53% 1978
2003 heatwave -1.27% 2003 +3.46% 2001 2003 +3.46% 2001
Insurance portfolio -0.62% 2013 Q3 +0.74% 2005 Q4 2013 Q2 +0.66% 2005 Q3

Table 2.2 – Results of the trend procedure with exposure weights.
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Chapter 3

Weighted likelihood test for a
change in one component of a

parametric mixture

3.1 Introduction
Finite parametric mixtures of distributions play a central role in applied statistics, as
they allow to describe experiments with different sub-populations 1. The detection of
at most one change-point in a closed sample is a standard problem in statistics but, to
our knowledge, very few references specifically address this topic for mixtures with like-
lihood ratio-based techniques 2 (Andrews and Ploberger (1994), Hansen (1996), Pons
(2009), Zou et al. (2015)). General and standard techniques, as exposed in Csörgő
and Horváth (1997), can be adapted for finite parametric mixtures. However, when it
comes to numerical applications, we observed that the standard approach raises many
computational difficulties.

In this chapter, we consider a sample of n independent random variables that follow
a finite mixture distribution with parametric components. The sample might contain
at most one change (AMOC) in the parameters of the first component. If there is a
change, the r.v. are identically distributed before and after the change-point: the pa-
rameters which describe the distribution of the first component are different before and
after the break-point while the other parameters of the mixture remain the same. For
example, a shift occurs in the mean or in the standard deviation of the first component
in the case of a Gaussian mixture. We want to test whether there is a change or not.
In order to circumvent the problems raised by the standard technique, we suggest a
different approach that takes the form of a weighted likelihood test (WLT) 3. In par-
ticular, the WL test can be computed using standard estimation algorithms. With a
technique from Davis et al. (1995), we derive the limit distribution of its statistic under
the null hypothesis in the form of a quadratic form of a multidimensional Brownian
motion.

We start in Section 3.2 by the introduction of the model and the validity conditions

1. See e.g. Pearson (1894), Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Peel
(2000), Frühwirth-Schnatter (2006), Pons (2009) or Lachos Dávila et al. (2018), Frühwirth-Schnatter
et al. (2019).

2. Some of the existing work is dedicated to a Bayesian framework and therefore not in the scope
of this chapter. See e.g. Giordani and Kohn (2008), Pandya and Jadav (2009), Pandya and Jadav
(2010), Wilson et al. (2013), Li et al. (2018) or Ganji and Mostafayi (2019).

3. Weighted likelihood approaches are used in many contexts: see e.g. Dickey (1971), Hu and Zidek
(2002), Amisano and Giacomini (2007), Basu et al. (2011), Song et al. (2018) and the references
therein.
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required for our main result. In particular, we impose that the change-point cannot
occur too close to the first nor the last observation of the closed sample. In addition,
the Maximum Likelihood Estimator (MLE) for the parameters of the mixture has to
be strongly consistent. As in Davis et al. (1995) and Csörgő and Horváth (1997), the
test is based on a likelihood ratio. The main difference from the standard approach lies
in the presence of weight functions that allow to focus on the first component of the
mixture. In Section 3.3, under the null hypothesis, we first obtain asymptotic prop-
erties of the MLE (Lehmann and Casella (1998)) before deriving a functional limit
result for one term of the log-likelihood ratio in Theorem 3.16. This result is based
on multiple applications of the Continuous Mapping Theorem and a Functional Delta
Method in the Skorokhod metric space of càd-làg functions (Billingsley (1999), van der
Vaart (1998)). In Theorem 3.17, the limit distribution of the test statistic is obtained
as a consequence. In Section 3.4, we suggest an extension of the test (EWLT) where
we scale the contribution of the sample to the weighted likelihood ratio. This improves
significantly the detection frequency of the test in the case of a change (lower type II
error). In Section 3.5, we show that validity conditions hold for univariate finite Gaus-
sian mixtures within the framework of Hathaway (1985).

Applications in Section 3.6 consist in two parts. First, with numerical simulations, we
illustrate the properties of the WL and EWL tests and compare them to a benchmark
test (BM) obtained from an application of the standard test (e.g. exposed in Csörgő
and Horváth (1997)). Both WL and EWL tests have notably lower type II errors, es-
pecially for large samples of over 10 000 observations. Overall, the EWLT performs
significantly better than the other candidates. The second application is an illustration
of the WL and EWL tests on Property and Casualty insurance real data. The tests
are applied for the detection of a change in the variation over six months of the claim
amount. In insurance problems, this application indicates that the proposed tests can
be used for the monitoring of changes, when they are unexpected, and also to assess
their significativity when they are known or suspected.

In Section 3.7, we give an overview of the conclusions and perspectives of this work.

3.2 Description of the model, assumptions and no-
tations

3.2.1 Model and assumptions
We consider an experiment where we observe a sample of n independent continuous
random variables X = (Xi)1≤i≤n, defined on some probability space (Ω,F ,P), with
values in some set X , subset of an Euclidean space, endowed with Lebesgue’s mea-
sure. Each Xi, 1 ≤ i ≤ n, follows a finite mixture distribution with 2 < m < ∞
parametric components Pθi , where θi belongs to a convex set of eligible parameters Θ.
More precisely, for m a fixed, deterministic and known integer, the elements of Θ are
of following type: Θ 3 θ = (p1, . . . , pm−1, λ1, . . . , λm), with (p1, . . . , pm−1) in the open
set

Θ0 :=
{

(p1, . . . , pm−1) ∈ (0, 1)m−1,
m−1∑
k=1

pk < 1
}
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and, for each k ∈ {1, . . . ,m}, λk ∈ Θk, with Θk an open convex subset of some Rdk , with
dk ≥ 1. Set d := m−1+∑m

k=1 dk: then Θ = Θ0×
∏m
k=1 Θk is an open convex subset of Rd.

Finally, given f1, . . . , fm some fixed density functions on X , the distribution Pθ, θ ∈ Θ,
admits the density

f(x, θ) :=
m∑
k=1

pkfk(x, λk), x ∈ X ,

with pm := 1 − ∑m−1
k=1 pk. We first assume that the distributions {Pθ, θ ∈ Θ} are all

distinct. This means in particular that the mixture should be identifiable 4. We also
add some usual assumptions on the regularity of the components of the mixture:
� The distributions defined by {f(., θ), θ ∈ Θ} have common support, i.e. the set
{x ∈ X , f(x, θ) > 0} does not depend on θ;
� For almost all x ∈ X , the function θ 7→ f(x, θ) is twice continuously differentiable

in θ ∈ Θ with partial derivatives bounded by a non-negative integrable function
of x that does not depend on θ.

In this experiment, the sample is identically distributed before and after the change-
point. There is at most one change (AMOC), deterministic but unknown, or none. Since
we are interested in the limit behavior of the sample of variables when their number
tends to infinity, we suppose that the experience takes place in the time interval [0, 1]
and each variable Xi occurs at time i/n, 1 ≤ i ≤ n.
With this approach, if there is a change-point, it occurs at a time denoted by s ∈ (0, 1)
such that the parameters which describe the distribution of the first component are
different before and after the break-point while the other parameters of the mixture
remain the same. We write θ := θ1 = · · · = θbsnc 6= θbsnc+1 = · · · = θn, where, for any
x ∈ [0, 1], bxc denotes the integer part of x.
If there is no change-point, then X is an i.i.d. sample with θ = θ1 = · · · = θn.

For the sake of simplicity, we impose that there is at most one change. A setting with
more than one change-point can be extended with the same logic.

In the sequel we suppose that the following holds for the change-point s:

Assumption 3.1. If there is a change, the change-point s is contained in [s̄, 1 − s̄]
where 0 < s̄ < 1/2 is deterministic and known, i.e. the change does not occur too close
to 0 nor 1.

Let us construct the following hypothesis test:
1. The null hypothesis H0 defines the case when there is no change-point;
2. The composite alternative hypothesis H1: a change-point occurs at time s, s ∈

[s̄, 1−s̄], i.e. the parameters which describe the distribution of the first component
are different before and after s while the other parameters of the mixture remain
the same.

This setting implies that the number of components does not change. Our work pro-
vides results when H0 holds; so they do not depend on what happens after the change.
However, the test statistic we shall define is designed to amplify the change in one of the

4. See for example Redner (1981), Feng and McCulloch (1996), and Section 1.14 in McLachlan and
Peel (2000) for discussion on the identifiability of mixtures.
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components of the mixture. Hence it makes sense to assume that the distribution after
the change is a well defined mixture (identifiable) with the same number of components.

After defining a statistic, we will establish a central limit theorem under the assump-
tion that H0 holds. This is necessary to be able to determine the rejection domain while
controlling the type I error (proportion of false positives). Therefore, in the follow-
ing, we assume that H0 holds, i.e. X is independent identically distributed with
distribution Pθ. We also consider that the following assumptions hold:

Assumption 3.2. For almost all x ∈ X ,
� Regularity: the density f(x, θ) is three times differentiable in θ = (θ1, . . . , θd) ∈

Θ.
� Integrability: for 1 ≤ j ≤ d,

EH0

[
∂

∂θj
log f(X1,θ)

]
= 0.

� Continuity: for any 1 ≤ j, k, l ≤ d, the applications

θ 7→ ∂3

∂θj∂θk∂θl
log f(x, θ)

are continuous on Θ.
� Dominance: we can find some function κ1(x), x ∈ X , that does not depend on
θ and is such that, for all 1 ≤ j, k, l ≤ d and all θ in Θ,∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(x, θ)

∣∣∣∣∣ ≤ κ1(x)

with EH0 [κ1(X1)] <∞.

Let I be the Fisher information matrix defined by

Ij,k := Cov
(
∂

∂θj
log f(X1,θ), ∂

∂θk
log f(X1,θ)

)
, 1 ≤ j, k ≤ d. (3.1)

The assumptions we state on I are the following:

Assumption 3.3. The matrix I is positive definite with finite elements and

Ij,k = EH0

[
∂

∂θj
log f(X1,θ) ∂

∂θk
log f(X1,θ)

]
= −EH0

[
∂2

∂θj∂θk
log f(X1,θ)

]
.

We define the log-likelihood of the sample X as a function of the d-dimensional vector
θ ∈ Θ by

θ 7→ L(X, θ) :=
n∑
i=1

log f(Xi, θ).

It is well defined since, by assumption, the Xi(ω), ω ∈ Ω and 1 ≤ i ≤ n, can only take
values in the set {x ∈ X , f(x, θ) > 0}.

72



3.2. Description of the model, assumptions and notations

With Assumptions 3.2 and 3.3, from the usual Limit Theorems 5 for Maximum Likeli-
hood Estimators (MLE), there exist sequences of solutions of the likelihood equations
∂
∂θj
L(X, θ) = 0, 1 ≤ j ≤ d, that exist with probability tending to one as n → ∞

and are consistent. Let us select one of these consistent sequences of solutions as an
estimator for the unknown θ and denote it θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m).

Remark 3.1. If the solution exists and is unique, then it is a Maximum Likelihood
Estimator (MLE). However the existence and unicity of θ̂ for finite samples of mixtures
are not obvious: for example, the MLE of a Gaussian mixture might not even exist for
a finite sample since the likelihood can be unbounded 6. For numerical applications, it is
clear that the search of all roots of the likelihood equations would require unreasonable
time. Thus the question of uniqueness is not really the problem. For the computation,
one might use the EM algorithm 7 or some other approach 8. Algorithms, when they
converge, ensure to provide some local maximum but there is no guarantee to find the
global maximum. We will see in Section 3.5 that, for univariate Gaussian mixtures,
one can find some Θ that ensures the existence of the estimator θ̂ for finite samples.

In addition to the usual regularity conditions given in Assumptions 3.2 and 3.3, we
assume that:

Assumption 3.4. When H0 holds, the estimator θ̂ converges almost surely to θ as
n→∞, i.e. it is strongly consistent.

This is an important restriction compared to the general case because Assumptions 3.2
and 3.3 only ensure the convergence in probability (Lehmann and Casella (1998)). For
the applications in this chapter, we will consider the Gaussian case and discuss it in
Section 3.5, using the result from Hathaway (1985). For other cases, one might use the
classical results in the literature that cover a wide range of reasonable sufficient condi-
tions. One of the first results has been given by Theorem 2 in Wald (1949) when Θ is
compact. Theorem 4 in Redner (1981) weakens Wald’s conditions for Θ a compact sub-
set of the quotient topological space of all possible parameters, with a dedicated result
for finite mixtures in Theorem 5. Feng and McCulloch (1996) proves it for Θ a compact
subset of the Euclidean space of possible parameters, i.e. showing that the question
of identifiability does not impact the convergence properties of maximum likelihood
estimators. Other approaches have been proposed by Kiefer and Wolfowitz (1956) or
Redner and Walker (1984). For a wider discussion on mixtures, refer to Section 2.5 in
McLachlan and Peel (2000).

Remark 3.2. Since we study asymptotic properties, the main point in Assumption 3.2
is the integrability of the function κ1. With the continuity condition and the convergence
of θ̂ from Assumption 3.4, almost surely, the boundedness itself follows for n large
enough.

5. See e.g. Theorem 1.5.
6. For the existence of MLE of Gaussian mixtures, see e.g. Example 6.10 in Lehmann and Casella

(1998), Section 6.6. For a discussion on uniqueness of MLE in general, see Mäkeläinen et al. (1981).
Chapter 2 in McLachlan and Peel (2000) gives an overview of these questions for mixtures.

7. See e.g. Dempster et al. (1977), Wu (1983), Hathaway (1983), Redner and Walker (1984), Be-
naglia et al. (2009) and the references therein.

8. For an overview, see e.g. Section 1.13 in McLachlan and Peel (2000), Tanaka (2009), Chen (2017)
and the references therein.
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For s ∈ [s̄, 1− s̄], by the same logic as for the estimator θ̂, we consider the estimators
of θ over the subsamples (Xi)1≤i≤bsnc and (Xi)bsnc+1≤i≤n, respectively denoted by θ̂0,s

and θ̂s,1. For a fixed s ∈ (0, 1), they have the same properties as θ̂ when n→∞.

To focus our study on only one component of the mixture (the first component), we
design a specific weight function that, in the detection statistic, allows to overweight
the density of an observation x when the density of the first component is dominant
compared to others. For that purpose we define the weight function at point x ∈ X for
θ = (p1, . . . , pm−1, λ1, . . . , λm) ∈ Θ by

w(x, θ) := p1f1(x, λ1)
f(x, θ) . (3.2)

The function w is well defined since, by assumption, the random variablesXi, 1 ≤ i ≤ n,
can only take values in the set {x ∈ X , f(x, θ) > 0} . In addition, by definition, for any
x ∈ X and any θ ∈ Θ,

0 ≤ w(x, θ) ≤ 1. (3.3)

As a consequence of Assumption 3.2, the application

w log f1 : (x, θ) 7→ w(x, θ) log f1(x, λ1) (3.4)

is twice differentiable in θ ∈ Θ, and, for all 1 ≤ j, k ≤ d and almost all x ∈ X , the
application

θ ∈ Θ 7→ ∂2

∂θj∂θk
(w log f1)(x, θ)

is continuous in θ.

Here is an assumption concerning the application w:

Assumption 3.5. (Dominance) There exist some convex subset Θ′ ⊂ Θ such that
θ is in the interior of Θ′, and an application κ2 from X to R that does not depend on
θ, such that, for all 1 ≤ j, k ≤ d, θ in Θ′ and for almost all x ∈ X ,

∣∣∣∣∣ ∂2

∂θj∂θk
(w log f1)(x, θ)

∣∣∣∣∣ ≤ κ2(x)

with EH0 [κ2(X1)] <∞.

For the same reasons as for Assumption 3.2, the essential point here is the integrability
of the dominating function κ2.
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3.2.2 Definition of the Weighted Likelihood Test (WLT)
We now define the test statistic. First we introduce Λn := (Λs,n)s∈[s̄,1−s̄], the underlying
càd-làg stochastic process of the detection statistic:

Λs,n := log
∏bsnci=1 f1(Xi, λ̂0,s,1)w(Xi,θ̂0,s)∏n

j=bsnc+1 f1(Xj, λ̂s,1,1)w(Xj ,θ̂s,1)∏n
i=1 f1(Xi, λ̂1)w(Xi,θ̂)

 (3.5)

=
bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +
n∑

i=bsnc+1
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)

−
n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1).

Note that, for an observation Xi with distribution parameter θ, the weight w(Xi, θ) is
the probability that Xi comes from the first component. Conditionally to this fact, the
log-likelihood ofXi is given by log f1(Xi, λ1). Thus the expression w(Xi, θ) log f1(Xi, λ1)
in Λs,n somehow reflects the contribution of the first component in the likelihood of
Xi. As a consequence, the response of the statistic is magnified when a change occurs
in the first component.
In addition, the process Λn is defined on [s̄, 1 − s̄] in order to ensure that, for n large
enough, an asymptotic behavior can be obtained for each sum. The test statistic is
then defined by

Sn := sup
s∈[s̄,1−s̄]

Λs,n. (3.6)

We refer to this test as theWLT (Weighted Likelihood Test). The test procedure states
that there is no change-point for the first component (i.e. we accept H0) when Sn is
smaller than some threshold Lα chosen with respect to a false alarm constraint.
This false alarm can be obtained from the probability of false alarm α ∈ (0, 1) such
that Lα is the α-percentile of the limit distribution of Sn when H0 holds.

The main purpose of this chapter is to derive the limit distribution of Sn whenH0 holds.
We follow the work of Davis et al. (1995) and look at Λs,n as a stochastic process. In
the next section, we start by a focus on the properties of the estimators θ̂0,s and θ̂s,1.
Then we derive the limit distribution of the detection statistic Sn in Theorem 3.17.

3.2.3 Notations
We denote by Dθ(.), D2

θ(.) and D3
θ(.) respectively the vector, matrix and hypermatrix

differential operators in θ ∈ Rd.
For θ, θ̃ ∈ Rd, we denote by [θ, θ̃] the segment [θ, θ̃] := {λθ + (1− λ)θ̃, λ ∈ [0, 1]}.

gld(R) denotes the set of matrices of size d × d with real coefficients and GLd(R) the
set of invertible d× d-matrices with real coefficients.
For a given matrix M , its i-th line is denoted by Mi,. and its j-th column is denoted by
M.,j. The same logic is used for hypermatrices: for a given J ∈ Rd×d×d and 1 ≤ i ≤ d,
we denote by Ji,.,. := (Ji,j,k,)1≤j,k≤d the d× d-matrix obtained from J .
For a given matrix M , we denote (M−1)T by M−1 T .
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For d1, d2 > 0, we endow the space F = Rd1 × gld2(R) with the norm ‖.‖2 defined for
the pair x = (y, Z) ∈ Rd1 × gld2(R) by ‖x‖2

2 := ∑d1
i=1 y

2
i +∑

1≤i,j≤d2 Z
2
i,j. The norm used

for y in Rd1 is the Euclidean norm. The norm used for Z ∈ gld2(R) is the entrywise
2-norm, also known as the Frobenius norm.

The space of càd-làg functions, defined on some interval E ⊆ [0, 1] with values in F , is
denoted by D(E,F ) and referred as the Skorokhod metric space with the Skorokhod
metric dD(E,F )(., .) defined for ζ1 and ζ2 in D(E,F ) by

dD(E,F )(ζ1, ζ2) := inf
τ∈ΓE

max
{

sup
s∈E
|τ(s)− s|, sup

s∈E
‖ζ1(s)− ζ2 ◦ τ(s)‖2

}
(3.7)

with ΓE the set of continuous and strictly increasing bijections from E to itself. For
some arguments, we also consider the norm ‖.‖2 on D(E,F ) defined for ζ ∈ D(E,F )
by ‖ζ‖2 := sups∈E ‖ζ(s)‖2.
Refer to Section 12 in Billingsley (1999) for a detailed construction of the Skorokhod
topology and the space D(E,F ).

If Σ2 is a covariance matrix, then it is positive semi-definite, and Σ will denote the
unique positive semi-definite square root of Σ2.

A glossary of notations is given in Appendix 3.9.

3.3 Limit distribution of the test statistic

In this section we shall determine the limit distribution of the process Λn as n tends
to infinity.
Let us consider the constant

u := EH0 [Dθ(w log f1)(X1,θ)] ∈ Rd, (3.8)

where the application w log f1 is defined in (3.4). By Assumption 3.5, u is finite. We
indicate that u is not null in general: we numerically established that u is strictly
positive for some examples of Gaussian mixtures 9. The càd-làg real-valued process Λn

defined on [s̄, 1− s̄] can be decomposed as follows:

Λs,n = Q1
s,n +Q2

s,n −Q1
1,n, s ∈ [s̄, 1− s̄], (3.9)

9. Using the Strong Law of Large Numbers, a simple numerical simulation for a Gaussian mixture
with 3 components shows that, in general, the constant u is not null. See Appendix 3.8.1 for an
illustration.
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where Q1
n = (Q1

s,n)s∈[s̄,1] and Q2
n = (Q2

s,n)s∈[s̄,1−s̄] are càd-làg real-valued processes
defined by

Q1
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)

− uTI−1
bsnc∑
i=1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1],

Q2
s,n :=

n∑
i=bsnc+1

(
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)− w(Xi,θ) log f1(Xi,λ1)

)

− uTI−1
n∑

i=bsnc+1
Dθ(log f)(Xi,θ), s ∈ [s̄, 1− s̄]. (3.10)

The process Q1
n is defined on [s̄, 1] in order to include the last term of Λs,n in (3.9) while

Q2
n needs only to be defined on [s̄, 1− s̄]. In addition, we remark that the random pro-

cesses (Q1
s,n)s∈[s̄,1−s̄] and Q2

n have a similar structure that differs only by the sub-sample
considered. Therefore, in the following, we study the limit of Q1

n and simply extends
the arguments to obtain the limit of Λn. However, before that, we need to establish
some basic properties for the estimators θ̂, θ̂0,s and θ̂s,1 defined in Section 3.2.

3.3.1 The estimators θ̂0,s and θ̂s,1

Before proving the main result, we start with some preliminaries concerning the esti-
mators θ̂0,s and θ̂s,1.

From Assumption 3.4, we already know that the estimator θ̂ converges almost surely
to θ when n→∞. With the following result inspired from Proposition 3.3 in Dehling
et al. (2014), we can extend this convergence property to θ̂0,s, s ∈ [s̄, 1], and to θ̂s,1,
s ∈ [s̄, 1− s̄].
Lemma 3.3. If a sequence (un)n≥1 ⊂ Rd converges to some finite limit u, then the
sequence ubsnc converges to u, uniformly in s ∈ [s̄, 1].

Proof. Fix ε > 0. Let N such that for all n ≥ N , |un − u| ≤ ε and set N ′ :=
⌊
N
s̄

⌋
+ 1.

Then, for any n ≥ N ′, [s̄, 1] ⊂ [N
n
, 1], thus, for any n ≥ N ′, bnsc ≥ N and, by the

choice of N ,
∣∣∣ubsnc − u∣∣∣ ≤ ε. The result follows.

Corollary 3.4. If a sequence (un)n≥1 ⊂ Rd converges to some finite limit u, then the
sequence ubsnc converges to u, uniformly in s ∈ [s̄, 1− s̄].

Reasoning ω by ω, this result implies directly that the almost sure convergence of θ̂0,s

and θ̂s,1 is ω-wise uniform in s. This will represent a key property for the main result.

Proposition 3.5. Under H0 and Assumptions 3.1-3.4, the estimator θ̂0,s (resp. θ̂s,1)
converges almost surely to θ, uniformly in s ∈ [s̄, 1] (resp. in s ∈ [s̄, 1− s̄]).

For n large enough, it is possible to obtain an explicit form for θ̂0,s. Indeed, the estimator
θ̂ is a sequence of solutions of the likelihood equations DθL(X, θ) = 0. Therefore, we
can follow the ideas from the proof of the usual limit theorems for maximum likelihood
estimators (see e.g. Theorem 1.5).
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Corollary 3.6. Under H0 and Assumptions 3.1-3.4, almost surely, the estimator θ̂
exists for n large enough. Moreover, for almost all ω ∈ Ω, we can find some N(ω) ≥ 1
that does not depend on s ∈ [s̄, 1− s̄] such that, for all n ≥ N(ω), the three estimators
θ̂, θ̂0,s and θ̂s,1 are respectively the unique solutions of the likelihood equations

DθL(X, θ) = 0, DθL((X1, . . . , Xbsnc), θ) = 0, and DθL((Xbsnc+1, . . . , Xn), θ) = 0.
(3.11)

Proof. The existence of θ̂ follows from the almost sure convergence. Indeed, by assump-
tion, Θ is an open convex subset of Rd in which θ0 belongs. Then, we obtain that, for n
large enough, θ̂ also belongs to this open convex set. The proof for the three estimators
is a direct application of Proposition 3.5.

Remark 3.7. It is clear that the number N in Corollary 3.6 depends on ω. However,
since, in this subsection, we always work ω by ω on the set of full probability where the
three estimators converge, this will not pose any problem.

In the sequel, the expression “for n large enough” will always implicitly imply that θ̂
belongs to Θ and solves (3.11). In particular, due to the regularity Assumption 3.2, the
following Taylor expansion is well defined as soon as θ̂ belongs to Θ: for 1 ≤ j ≤ d,

DθL(X, θ̂)j =DθL(X,θ)j +
d∑

k=1
D2
θL(X,θ)j,k

(
θ̂k − θk

)

+ 1
2

d∑
k=1

d∑
l=1

(
θ̂l − θl

)
D3
θL(X, θ′)j,k,l

(
θ̂k − θk

)
(3.12)

for some θ′ on the segment [θ̂,θ] ⊂ Rd.

Set

Â := − 1
n

n∑
i=1

(
D2
θ(log f)(Xi,θ) + 1

2

d∑
l=1

(
θ̂l − θl

)
D3
θ(log f)(Xi, θ

′)l,.,.
)
. (3.13)

Because of (3.11), the left hand side of (3.12) vanishes. Thus, replacing L(.,θ) by its
explicit expression, we get the equality between the two vectors

Â
(
θ̂ − θ

)
= 1
n

n∑
i=1

Dθ(log f)(Xi,θ).

The limit of Â, when n tends to infinity, is given by the next Proposition. We follow
the standard proof of the usual limit theorems for maximum likelihood estimators (e.g.
Theorem 1.5) and extend it to the almost sure convergence.

Proposition 3.8. Under H0 and Assumptions 3.2-3.4, the matrix Â converges almost
surely to the Fisher Information Matrix I.

Proof. Assumption 3.2 ensures that, for all 1 ≤ j, k, l ≤ d and almost all x ∈ X ,
|D3

θL(x, θ)j,k,l| is bounded by κ1(x), uniformly in θ ∈ Θ. Thus, from the Strong Law of
Large Numbers, for any θ ∈ Θ and all 1 ≤ j, k, l ≤ d,∣∣∣∣∣ 1n

n∑
i=1

D3
θ(log f)(Xi, θ)j,k,l

∣∣∣∣∣ ≤ 1
n

n∑
i=1

κ1(Xi)
a.s.−−−→
n→∞

EH0 [κ1(X1)] <∞.
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Since, by Assumption 3.4, θ̂ a.s.−−−→
n→∞

θ, it follows that

1
2n

n∑
i=1

d∑
l=1

(
θ̂l − θl

)
D3
θ(log f)(Xi, θ

′)l,.,. a.s.−−−→
n→∞

0.

Applying once more the Strong Law of Large Numbers and using Assumption 3.3, we
get, for all 1 ≤ j, k ≤ d,

1
n

n∑
i=1

D2
θ(log f)(Xi,θ)j,k a.s.−−−→

n→∞
EH0

[
D2
θ(log f)(X1,θ)

]
= −Ij,k.

In conclusion, with (3.13), Â a.s.−−−→
n→∞

I.

Corollary 3.9. Almost surely, the inverse matrix Â−1 exists for large n, and converges
to the inverse Fisher Information Matrix I−1 as n→∞.

Proof. It follows from Proposition 3.8 that det(Â) a.s.−−−→
n→∞

det(I). Now recall that, by
Assumption 3.3, I is definite positive and, in particular det(I) > 0. It follows that, for
n large enough, det(Â) 6= 0 and Â−1 exists. The result follows.

In the same way as above, for any s ∈ [s̄, 1], there exists some point θ′0,s on the segment[
θ̂0,s,θ

]
, such that the matrix

Â0,s := − 1
bsnc

bsnc∑
i=1

(
D2
θ(log f)(Xi,θ) + 1

2

d∑
l=1

(
θ̂0,s;l − θl

)
D3
θ(log f)(Xi, θ

′
0,s)l,.,.

)
(3.14)

satisfies

Â0,s(θ̂0,s − θ) = 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ). (3.15)

And, for any s ∈ [s̄, 1 − s̄], there exists some point θ′s,1 on the segment
[
θ̂s,1,θ

]
, such

that the matrix

Âs,1 := − 1
n− bsnc

n∑
i=bsnc+1

(
D2
θ(log f)(Xi,θ) + 1

2

d∑
l=1

(
θ̂s,1;l − θl

)
D3
θ(log f)(Xi, θ

′
s,1)l,.,.

)

satisfies
Âs,1(θ̂s,1 − θ) = 1

n− bsnc

n∑
i=bsnc+1

Dθ(log f)(Xi,θ).

To sum up, the following proposition provides an explicit expression for θ̂0,s and θ̂s,1
and the convergence of Â0,s and Âs,1.

Proposition 3.10. Under H0 and Assumptions 3.1-3.4, almost surely, for n large
enough,
� for all s ∈ [s̄, 1], the matrix Â0,s is invertible and

θ̂0,s − θ = Â−1
0,s

1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ), (3.16)

with EH0 [Dθ(log f)(X1,θ)] = 0, and where Â−1
0,s converges almost surely to I−1,

uniformly in s ∈ [s̄, 1],
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� for all s ∈ [s̄, 1− s̄] the matrix Âs,1 is invertible and

θ̂s,1 − θ = Â−1
s,1

1
n− bsnc

n∑
i=bsnc+1

Dθ(log f)(Xi,θ)

with EH0 [Dθ(log f)(X1,θ)] = 0, and where Â−1
s,1 converges almost surely to I−1,

uniformly in s ∈ [s̄, 1− s̄].
Proof. For n large enough, Â−1

0,s is well defined and Equation (3.16) follows directly from
(3.15). Assumption 3.2 guarantees that the expectation EH0 [Dθ(log f)(X1,θ)] vanishes.
Finally we use Corollary 3.9 and Lemma 3.3 to obtain the almost sure convergence of
Â−1

0,s to I−1, uniformly in s ∈ [s̄, 1].
The proof of the analogue result for θ̂s,1 and Âs,1 is the same.

The explicit expression obtained for θ̂0,s−θ and θ̂s,1−θ already points out the direction
of the next steps: since Â−1

0,s and Â−1
s,1 converge almost surely to I−1, uniformly in s,

and with EH0 [Dθ(log f)(X1,θ)] = 0, we will be able to establish Donsker-type result
for θ̂0,s− θ and θ̂s,1− θ. This can be used to derive a Donsker-type result for Q1

s,n and
Q2
s,n.

We will need the following variant of Glivenko-Cantelli’s Theorem that exploits the
almost sure convergence of θ̂0,s and θ̂s,1 to θ.
Lemma 3.11. Consider an application h : (x, θ) ∈ X ×Θ 7→ h(x, θ) ∈ R and a convex
subset O of Θ, such that θ is in the interior of O and

1. for almost all x ∈ X , the application θ 7→ h(x, θ) is continuous on O,
2. we can find some application X 3 x 7→ κ3(x), such that, for all θ in O, |h(x, θ)| ≤

κ3(x) and EH0 [|κ3(X1)|] <∞.
Then, under H0 and Assumptions 3.1-3.4, one has EH0 [|h(X1,θ)|] <∞ and
� for θ′0,s ∈ [θ̂0,s,θ], 1

bsnc
∑bsnc
i=1 h(Xi, θ

′
0,s)

a.s.−−−→
n→∞

EH0 [h(X1,θ)], uniformly in s ∈
[s̄, 1],
� for θ′s,1 ∈ [θ̂s,1,θ], 1

n−bsnc
∑n
i=bsnc+1 h(Xi, θ

′
s,1) a.s.−−−→

n→∞
EH0 [h(X1,θ)], uniformly in

s ∈ [s̄, 1− s̄].
Proof. We only show the case θ′0,s ∈ [θ̂0,s,θ], s ∈ [s̄, 1]. By the second condition of the
lemma, θ ∈ O implies that |h(x,θ)| ≤ κ3(x) for all x ∈ X , thus EH0 [|h(X1,θ)|] ≤
EH0 [|κ3(X1)|] <∞. Let us fix some ε > 0 small enough so that, with B(θ, ε) the closed
ball centered in θ with radius ε, B(θ, ε)∩Θ is strictly contained in the subset O. This
is possible since, from the first condition of the lemma, O is a convex subset of Θ such
that θ is in the interior of O. From Proposition 3.5, θ̂0,s

a.s.−−−→
n→∞

θ, uniformly in s ∈ [s̄, 1].
Therefore, almost surely, we can find some N ≥ 1 such that for all n ≥ N and for all
s ∈ [s̄, 1], θ̂0,s ∈ B(θ, ε)∩Θ. Since θ′0,s is a point on the segment [θ̂0,s,θ], it also belongs
to B(θ, ε) ∩Θ. It follows that∣∣∣∣∣∣ 1
bsnc

bsnc∑
i=1

h(Xi, θ
′
0,s)− EH0 [h(X1,θ)]

∣∣∣∣∣∣
≤ sup

θ∈B(θ,ε)∩Θ

∣∣∣∣∣∣ 1
bsnc

bsnc∑
i=1

h(Xi, θ)− EH0 [h(X1, θ)]

∣∣∣∣∣∣+
∣∣∣EH0

[
h(X1, θ

′
0,s)
]
− EH0 [h(X1,θ)]

∣∣∣ .
(3.17)
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With conditions 1. and 2., thanks to the dominated convergence theorem, the appli-
cation θ 7→ EH0 [h(X1, θ)] is continuous on O. Since θ ∈ O, θ̂0,s

a.s.−−−→
n→∞

θ, uniformly in
s ∈ [s̄, 1] and, for all n ≥ 1, θ′0,s ∈ [θ̂0,s,θ], we have also θ′0,s

a.s.−−−→
n→∞

θ. Therefore the
second term of the right hand side of (3.17) converges almost surely to 0, uniformly in
s ∈ [s̄, 1], when n→∞.

To conclude the proof, we show that the first term also converges almost surely to
0, uniformly in s ∈ [s̄, 1], when n → ∞. For all fixed θ ∈ B(θ, ε) ∩ Θ, the following
convergence is an application of the Strong Law of Large Numbers:

Yn(θ) := 1
n

n∑
i=1

h(Xi, θ)− EH0 [h(X1, θ)] a.s.−−−→
n→∞

0.

We deduce from assumptions 1. and 2. that θ → Yn(θ) is continuous. Since B(θ, ε)∩Θ
is compact, we get the convergence of the supremum:

sup
θ∈B(θ,ε)∩Θ

|Yn(θ)| a.s.−−−→
n→∞

0.

And finally we can conclude by Lemma 3.3.

This Lemma concludes the collection of properties that are required for the estima-
tors θ̂0,s and θ̂s,1. In the following section, we focus on the process Q1

n and its limit
distribution.

3.3.2 Limit distribution of Q1
n

The process Q1
n is the first of the three terms defining the process Λn in (3.9). Let us

recall here its expression: for s ∈ [s̄, 1],

Q1
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)

− uTI−1
bsnc∑
i=1

Dθ(log f)(Xi,θ),

with u := EH0 [Dθ(w log f1)(X1,θ)].

We want to derive its limit distribution with a Donsker-type result. In the following,
our purpose is to reorganize the terms so that the process Q1

s,n is somehow the product
of a matrix that converges almost surely uniformly in s ∈ [s̄, 1] to some constant
and of a vector that converges weakly to some random process. With the help of
the Extended Slutsky’s Theorem 1.13, one can target to derive the limit process of
Q1
s,n. The difficulty here is that the random variable Q1

s,n is not a sum of independent
terms, because of the presence of the estimator θ̂0,s, which depends itself on the whole
sub-sample (X1, X2, . . . , Xbsnc). Therefore, with Proposition 3.10, it seems logical to
develop

θ = (p1, . . . , pm−1, λ1, . . . , λm) 7→ w(x, θ) log f1(x, λ1)
around θ = (p1, . . . ,pm−1,λ1, . . . ,λm). This is possible by Assumption 3.5 and because,
by Proposition 3.5, θ̂0,s converges almost surely to θ, uniformly in s ∈ [s̄, 1], as n→∞.
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It follows that, with a Taylor-Lagrange decomposition 10, almost surely, we can find
some N ≥ 1 (depending on ω) and some θ′0,s ∈ [θ̂0,s,θ] (depending on ω, n and s), such
that, for n ≥ N and for s ∈ [s̄, 1],

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)

=
bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T (θ̂0,s − θ) + (θ̂0,s − θ)TD2

θ(w log f1)(Xi, θ
′
0,s)(θ̂0,s − θ)

)
.

So far, we can rewrite Q1
s,n as follows

Q1
s,n =

bsnc∑
i=1

Dθ(w log f1)(Xi,θ)T
 (θ̂0,s − θ)

+ (θ̂0,s − θ)T
bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)
 (θ̂0,s − θ)

− uTI−1
bsnc∑
i=1

Dθ(log f)(Xi,θ).

From Assumption 3.5, we know that EH0 [|Dθ(w log f1)(X1,θ)|] < ∞. Thus we can
center the right side sum of the first term by u:

Q1
s,n =

bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T − uT

) (θ̂0,s − θ)

+ (θ̂0,s − θ)T
bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)
 (θ̂0,s − θ)

+ bsncuT (θ̂0,s − θ)− uTI−1
bsnc∑
i=1

Dθ(log f)(Xi,θ).

Choosing n large enough, Proposition 3.10 provides us an explicit expression of θ̂0,s−θ,
which permits us to rewrite Q1

s,n as follows:

Q1
s,n =

 1
bsnc

bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T − uT

) bsncÂ−1
0,s

 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)


+

 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)T
 bsnc Â−1

0,s
T

 1
bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)


Â−1

0,s

 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)


+ uT

(
Â−1

0,s − I
−1
)
bsnc

 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)

 . (3.18)

Remark that, in this reformulation of Q1
s,n, we can recognize several sums of centered

i.i.d random variables which, multiplied by
√
n, can be treated by Donsker’s Theorem

10. See e.g. Theorem 5.3 in Coleman (2012).
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and produce at the limit a multi-dimensional Brownian motion. Further, there are the
variables Â−1

0,s, which, by Proposition 3.10, converge a.s. to the inverse Fischer infor-
mation I−1. The last line of (3.18), decomposing bsnc into

√
n bsnc

n

√
n, makes appear

the term
√
n
(
Â−1

0,s − I−1
)
. Its limit, when n tends to ∞ and the link with the other

components of Q1
s,n have to be analyzed separately, before we combine all these terms

to compute the limit of the process (Q1
s,n)s∈[s̄,1] in terms of a transformation of a Brow-

nian motion.

Firstly, for all s ∈ [s̄, 1], we define the triple ξ̂0,s := (ι̂0,s, û0,s−u, Î0,s) ∈ (Rd)2× gld(R)
by

ι̂0,s := 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ) (3.19)

û0,s := 1
bsnc

bsnc∑
i=1

Dθ(w log f1)(Xi,θ)

Î0,s :=− 1
bsnc

bsnc∑
i=1

D2
θ(log f)(Xi,θ)

which allows us to rewrite Q1
s,n as

Q1
s,n = bsnc

n

√
n(û0,s − u)T Â−1

0,s
√
nι̂0,s

+ bsnc
n

√
nι̂T0,s Â

−1
0,s

T

 1
bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)
 Â−1

0,s
√
nι̂0,s

+ bsnc
n
uT
√
n
(
Â−1

0,s − I−1
) √

nι̂0,s. (3.20)

Another crucial ingredient of our following discussion is the covariance matrix Σ2 ∈
gl2d+d2(R) under H0 of the triple(

Dθ(log f)(X1,θ), Dθ(w log f1)(X1,θ)− u,−D2
θ(log f)(X1,θ)− I

)
reorganized in a 2d+ d2-dimensional real vector. As a covariance matrix, Σ2 is positive
semi-definite. Then Σ will denote the unique positive semi-definite square root of Σ2.

Lemma 3.12. Set
ξ := (0, 0, I) ∈ (Rd)2 ×GLd(R). (3.21)

Under H0, for all s ∈ [s̄, 1], EH0 [ξ̂0,s] = ξ, the sequence of random variables ξ̂0,s con-
verges a.s. to ξ, uniformly in s ∈ [s̄, 1], and the process

√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges
weakly in the Skorokhod metric space of càd-làg paths D[s̄,1] := D([s̄, 1], (Rd)2× gld(R)),
as follows

√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

D−−−→
n→∞

(1
s

ΣWs

)
s∈[s̄,1]

,

where W := (Ws)s∈[0,1] is a standard 2d + d2-dimensional Brownian motion and ΣWs

is reorganized as a triple in (Rd)2 × gld(R).
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Proof. Under H0, the random vector ξ̂0,s is the sum of independent identically dis-
tributed random variables. In addition, we already know that
� from Assumptions 3.2 and 3.3, EH0 [Dθ(log f)(X1,θ)] = 0

and EH0 [−D2
θ(log f)(X1,θ)] = I,

� by the expression for u in (3.8), EH0 [Dθ(w log f1)(X1,θ)] = u.
Therefore EH0 [ξ̂0,s] = ξ, and the uniform a.s. convergence of the random variables ξ̂0,s
to ξ is a direct consequence of Lemma 3.11. The second part of the lemma follows then
from Donsker’s Theorem 1.10 and the Extended Slutsky’s Theorem 1.13.

The next Lemma will help us to handle the term (Â−1
0,s − I−1) which appears in the

last line of the expression (3.20) of Q1
0,s.

To this aim we introduce the hypermatrix

J := EH0

[
D3
θ(log f)(X1,θ)

]
∈ Rd×d×d. (3.22)

Lemma 3.13. Almost surely, for large n (depending on ω), the variable Â0,s can be
written as

Â0,s = Î0,s −
1
2

d∑
l=1

(
ι̂T0,s

(
Â−1

0,s
T
)
.,l

)
(Ĵ0,s).,.,l, (3.23)

for all s ∈ [s̄, 1], where Ĵ0,s is the hypermatrix defined by

Ĵ0,s := 1
bsnc

bsnc∑
i=1

D3
θ(log f)(Xi, θ

′
0,s).

In addition, under H0, almost surely, Ĵ0,s converges to the hypermatrix J , uniformly
in s ∈ [s̄, 1].

Proof. Recall that the explicit expression of Â0,s in (3.14) depends itself on θ̂0,s − θ,
which, by Proposition 3.10, almost surely, can once more be replaced by

Â−1
0,s

1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)

for n large enough. This gives:

Â0,s =

− 1
bsnc

bsnc∑
i=1

D2
θ(log f)(Xi,θ)


− 1

2

d∑
l=1

 1
bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)T
(Â−1

0,s
T
)
.,l

 1
bsnc

bsnc∑
i=1

D3
θ(log f)(Xi, θ

′
0,s)l,.,.

 .
The result given in (3.23) follows. With Assumption 3.2, the convergence of Ĵ0,s is a
direct application of Lemma 3.11, taking the parameter set Θ as O.

Set now, for all s ∈ [s̄, 1] and all n ≥ 1,

ξ̂′0,s := (ι̂0,s, û0,s − u, Â−1
0,s). (3.24)
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3.3. Limit distribution of the test statistic

It is easy to see with Proposition 3.10 that, when n tends to infinity, ξ̂′0,s converges a.s.
to

ξ′ := (0, 0, I−1).
The aim of the next theorem is to establish a Donsker-type result for the process
(ξ̂′0,s)s∈[s̄,1].

Theorem 3.14. Under H0, the process
√
n(ξ̂′0,s − ξ′)s∈[s̄,1] converges weakly to the

process (1
s
g(ΣWs))s∈[s̄,1] in D[s̄,1], where g is the linear map defined for (ι, u, I) ∈ (Rd)2×

gld(R) by

g(ι, u, I) :=
(
ι, u,−I−1

(
I − 1

2

d∑
l=1

(
ιT
(
I−1 T

)
.,l

)
J.,.,l

)
I−1

)
, (3.25)

and ΣWs is reorganized as a triple in (Rd)2 × gld(R).

Proof. (i) Recall that, by Lemma 3.12,
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly to (1
s
ΣWs)s∈[s̄,1]

in D[s̄,1], while, by Proposition 3.10 and Lemma 3.13, the couple (Â−1
0,s, Ĵ0,s) converges

a.s. to (I−1,J) uniformly in s ∈ [s̄, 1]. It follows by the Extended Slutsky’s Theo-
rem 1.13 that the random process (

√
n(ξ̂0,s − ξ), Â−1

0,s, Ĵ0,s)s∈[s̄,1] converges weakly to
(1
s
ΣWs, I

−1,J)s∈[s̄,1] in D([s̄, 1], (Rd)2 × gld(R)×GLd(R)× Rd×d×d).

(ii) Using Lemma 3.13, almost surely for n large enough (i.e. n depends on ω but not
on s), we can write

ξ̂′0,s = ϕ ◦ g(ξ̂0,s; Â−1
0,s, Ĵ0,s), s ∈ [s̄, 1],

where, for all (ι, u, I;A, J) ∈ (Rd)2 × (gld(R))2 × Rd×d×d, we define

g(ι, u, I;A, J) :=
(
ι, u, I − 1

2

d∑
l=1

(
ιT (AT ).,l

)
J.,.,l

)
, (3.26)

and, for (ι, u, I) ∈ (Rd)2 ×GLd(R),

ϕ(ι, u, I) := (ι, u, I−1).

Remark that g(0, u, I;A, J) = (0, u, I) for all (u, I;A, J) ∈ Rd× (gld(R))2×Rd×d×d. In
particular,

ξ = g(ξ; Â−1
0,s, Ĵ0,s)

because ξ = (0, 0, I) by definition in (3.21). Since g(ι, u, I;A, J) is linear in (ι, u, I),
then the following equality holds for each s ∈ [s̄, 1]:

√
n(g(ξ̂0,s; Â−1

0,s, Ĵ0,s)− ξ) = g(
√
n(ξ̂0,s − ξ), Â−1

0,s, Ĵ0,s).

By (i) and the Continuous Mapping Theorem 1.11, the process
√
n(g(ξ̂0,s; Â−1

0,s, Ĵ0,s)− ξ)s∈[s̄,1]

converges weakly to g(1
s
ΣWs; I−1,J)s∈[s̄,1].

(iii) By Lemma 3.12, the sequence of random variables ξ̂0,s converges a.s. to ξ, uni-
formly in s ∈ [s̄, 1]. With (i), the triple (ξ̂0,s, Â

−1
0,s, Ĵ0,s) also converges a.s. to (ξ, I−1,J),
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Chapter 3 – Weighted likelihood test for a change in one component of a parametric mixture

uniformly in s ∈ [s̄, 1]. Then, again by Theorem 1.11, g(ξ̂0,s; Â−1
0,s, Ĵ0,s) converges a.s. to

ξ, uniformly in s ∈ [s̄, 1].

(iv) Remark that, from Proposition 3.10 and Lemma 3.13, g(ξ̂0,s; Â−1
0,s, Ĵ0,s) is well de-

fined when Â0,s is invertible. That is the case almost surely for n large enough, uniformly
in s ∈ [s̄, 1]: i.e. n depends on ω but not on s.

From Assumption 3.3, I is positive definite with finite components. So I−1 is also
positive definite and 0 < ‖I−1‖−1

2 < ∞. Fix some 0 < r < ‖I−1‖−1
2 such that the

closed ball B(ξ, r) centered in ξ with radius r is included in (Rd)2 × GLd(R). With
(iii), we see that, almost surely, the following holds for n large enough, uniformly in
s ∈ [s̄, 1]:

Â0,s is invertible and
∥∥∥g(ξ̂0,s; Â−1

0,s, Ĵ0,s)− ξ
∥∥∥

2
< r. (3.27)

Let ξ̂′′0,. denote the process on [s̄, 1] defined for all ω ∈ Ω, all n ≥ 1 and all s ∈ [s̄, 1] as
follows:

ξ̂′′0,s(ω) :=
{
g(ξ̂0,s; Â−1

0,s, Ĵ0,s)(ω) if (3.27) holds,
ξ otherwise.

Then, almost surely,
√
n(ξ̂′′0,s − g(ξ̂0,s; Â−1

0,s, Ĵ0,s)) is equal to 0 for n large enough, uni-
formly in s ∈ [s̄, 1]. We denote by ξ· the constant process such that ξs = ξ for all
s ∈ [s̄, 1]. Therefore, by the conclusion from (ii) and Theorems 1.13 and 1.11,
√
n(ξ̂′′0,. − ξ·) =

√
n(g(ξ̂0,s; Â−1

0,s, Ĵ0,s)s∈[s̄,1] − ξ·) +
√
n(ξ̂′′0,. − g(ξ̂0,s; Â−1

0,s, Ĵ0,s)s∈[s̄,1])

converges weakly to g(1
s
ΣWs; I−1,J)s∈[s̄,1].

(v) Let us denote by Φ the function from D([s̄, 1], (Rd)2 ×GLd(R)) ⊂ D[s̄,1] onto itself
defined by:

Φ(ζ)s := ϕ(ζs), s ∈ [s̄, 1]. (3.28)

It follows from the definition of ξ̂′0,s in (3.24) that
√
n(ξ̂′0,s − ξ′)s∈[s̄,1] (3.29)

=
√
n(Φ(ξ̂′′0,.)− Φ(ξ·)) +

√
n(Φ(g(ξ̂0,s; Â−1

0,s, Ĵ0,s)s∈[s̄,1])− Φ(ξ̂′′0,.)).

With (iii) and (iv), almost surely,
√
n(ϕ(g(ξ̂0,s; Â−1

0,s, Ĵ0,s)) − ϕ(ξ̂′′0,s)) is equal to 0 for
n large enough, uniformly in s ∈ [s̄, 1]. Once more, by Theorems 1.13 and 1.11, both
processes

√
n(ξ̂′0,s − ξ′)s∈[s̄,1] and

√
n(Φ(ξ̂′′0,.)− Φ(ξ·)) have the same limit distribution.

The remainder of the proof is based on Corollary 1.16, a functional delta method in
the Skorokhod metric space. This result, applied to the map Φ, would conclude the
proof and provide the limit distribution of

√
n(Φ(ξ̂′′0,.)− Φ(ξ·)).

The first condition of Corollary 1.16 holds by (iv) since
√
n(ξ̂′′0,.− ξ·) converges weakly

to g(1
s
ΣWs; I−1,J)s∈[s̄,1].

To conclude the proof, it now sufficient to show that the second condition of Corollary
1.16 also holds. For that purpose, we start by noticing that, by (iv), for all n ≥ 1, the
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3.3. Limit distribution of the test statistic

process
√
n(ξ̂′′0,. − ξ·) is in the closed ball

B(0, r
√
n) := {ζ ∈ D[s̄,1], ‖ζ‖2 ≤ r

√
n},

where 0 is the null function on [s̄, 1]. Let us consider the sequence of applications γn
defined for ζn in B(0, r

√
n) ⊂ D[s̄,1] by

γn(ζn) :=
√
n

(
Φ
(
ξ· +

1√
n
ζn

)
− Φ(ξ·)

)
.

Further denote the differential of Φ at ξ· by DΦ. The differential is a function from
D[s̄,1] onto itself, defined for ζ = (ζ1, ζ2, ζ3) in D[s̄,1] by 11

DΦ(ζ)s := (ζ1(s), ζ2(s),−I−1ζ3(s)I−1), s ∈ [s̄, 1].

It is then sufficient to show that the convergence of every sequence ζn ∈ B(0, r
√
n) to

ζ ∈ D[s̄,1] implies the convergence of γn(ζn) to DΦ(ζ).

Let us consider some sequence ζn = (ζ1,n, ζ2,n, ζ3,n) ∈ B(0, r
√
n) and some path ζ =

(ζ1, ζ2, ζ3) ∈ D[s̄,1] such that dD[s̄,1](ζn, ζ) → 0 as n → ∞. From the definition of the
Skorokhod metric in (3.7), this means 12 that there exists some sequence of strictly
increasing bijections τ ∗n from [s̄, 1] onto itself such that, as n→∞,

sup
s∈[s̄,1]

|τ ∗n(s)− s| → 0 and sup
s∈[s̄,1]

‖ζn(τ ∗n(s))− ζ(s)‖2 → 0. (3.30)

To conclude the proof, we need only to show that sups ‖γn(ζn(τ ∗n(.))s)−DΦ(ζ)s‖2 → 0.
First, we remark that

γn(ζn(τ∗n(s))s∈[s̄,1]) =
(
ζ1,n(τ∗n(s)), ζ2,n(τ∗n(s)),

√
n

((
I + ζ3,n(τ∗n(s))√

n

)−1
− I−1

))
s∈[s̄,1]

and DΦ(ζ) = (ζ1(s), ζ2(s),−I−1ζ3(s)I−1)s∈[s̄,1]. By (3.30) and the definition of ‖.‖2 in
Section 3.2.3, it is sufficient to show that sups ‖ζ3,n(τ ∗n(s))− ζ3(s)‖2 → 0 implies

sup
s

∥∥∥∥∥∥√n
(I + ζ3,n(τ ∗n(s))√

n

)−1

− I−1

+ I−1ζ3(s)I−1

∥∥∥∥∥∥
2

→ 0.

Because τ ∗n is a bijection from [s̄, 1] onto itself and ζn = (ζ1,n, ζ2,n, ζ3,n) is in B(0, r
√
n),

we obtain that, for all s ∈ [s̄, 1] and n ≥ 1, the random variable ζ3,n(τ∗n(s))√
n

is in the closed
ball B(0, r). In addition, we chose r such that ‖I−1‖2 < 1/r. Because the Frobenius
norm is submultiplicative 13, it follows that∥∥∥∥∥−I−1 ζ3,n(τ ∗n(s))√

n

∥∥∥∥∥
2
< 1.

11. We extend here the well known differential of the inversion of matrices given in Theorem 1.17.
12. See Section 12 in Billingsley (1999) for more details on the Skorokhod topology.
13. This property is a consequence of the Cauchy-Schwarz inequality. See e.g. Trefethen and Bau

(1997), p.23.
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Chapter 3 – Weighted likelihood test for a change in one component of a parametric mixture

Therefore, using Theorem 1.18, we can expand the term
(
I + ζ3,n(τ∗n(s))√

n

)−1
as a Neu-

mann series. We obtain(
I + ζ3,n(τ ∗n(s))√

n

)−1

=
(
Idd + I−1 ζ3,n(τ ∗n(s))√

n

)−1

I−1 =
∑
k≥0

(−1)kI−k
(
ζ3,n(τ ∗n(s))√

n

)k I−1.

For all s ∈ [s̄, 1] and n ≥ 1,
√
n

((
I + ζ3,n(τ∗n(s))√

n

)−1
− I−1

)
+ I−1ζ3(s)I−1

=
√
n

∑
k≥2

(−1)kI−k
(
ζ3,n(τ∗n(s))√

n

)k I−1 − I−1
(
ζ3,n(τ∗n(s))− ζ3(s)

)
I−1.

The result follows from the fact that sups ‖ζ3,n(τ ∗n(s))− ζ3(s)‖2 → 0 and

sup
s

∥∥∥∥∥∥√n
∑
k≥2

(−1)kI−k
(
ζ3,n(τ ∗n(s))√

n

)k I−1

∥∥∥∥∥∥
2

≤ 1√
n

∥∥∥I−1
∥∥∥3

2
sup
s
‖ζ3,n(τ ∗n(s))‖2

2

∑
k≥0

(
‖I−1‖2√

n
sup
s
‖ζ3,n(τ ∗n(s))‖2

)k
. (3.31)

We already know that the constant ‖I−1‖2 is finite. From Lemma 12.1 in Billingsley
(1999), ‖ζ3‖2 is a finite constant since ζ is a càd-làg process with finite values in D[s̄,1]. It
follows that sups ‖ζ3,n(τ ∗n(s))‖2 ≤ ‖ζ3‖2 + sups ‖ζ3,n(τ ∗n(s))− ζ3(s)‖2 converges to ‖ζ3‖2
and, for n large enough, the series above can be dominated by a convergent geometric
series. Then (3.31) converges to 0 and the result follows.

The main theorem states that the process Q1
n converges to a quadratic form of the

Brownian motionW introduced in Theorem 3.14. For (ι, u, I;A, J) ∈ (Rd)2×(gld(R))3,
we set first:

q(ι, u, I;A, J) := uTAι+ ιTATJAι+ uT Iι ∈ R, (3.32)
where we recall the vector u = EH0 [Dθ(w log f1)(X1,θ)] defined in (3.8). We also
consider the application q defined as follows:

q(z) := q(g(Σz); I−1,U), z ∈ R2d+d2
, (3.33)

where g is defined by (3.25), Σz is reorganized as a triple in (Rd)2× gld(R). Further U
is the matrix defined by

U := EH0

[
D2
θ(w log f1)(X1,θ)

]
. (3.34)

Remark 3.15. The map z ∈ R2d+d2 7→ q(z) is a quadratic form.
Proof. Remark that, for any A and J , the map (ι, u, I) 7→ q(ι, u, I;A, J) is a quadratic
form but not a norm. Its unique associated symmetric bilinear form 14 is given by(
(ι, u, I), (ι′, u′, I ′)

)
7→ 1

2

(
q(ι+ ι′, u+ u′, I + I ′;A, J)− q(ι, u, I;A, J)− q(ι, u, I;A, J)

)
.

From Theorem 3.14, we already know that the map g is linear. It follows that the map

(z, z′) 7→1
2 (q(z + z′)− q(z)− q(z′))

=1
2
(
q(g(Σ(z + z′)); I−1,U)− q(g(Σz); I−1,U)− q(g(Σz′); I−1,U)

)
is symmetric bilinear. The result follows.
14. See for instance Section 41 in O’Meara (2000).
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3.3. Limit distribution of the test statistic

We can now state our main result for Q1
n.

Theorem 3.16. Under H0, the process Q1
n converges weakly as n→∞ to the process

(1
s
q(Ws))s∈[s̄,1] in D([s̄, 1],R).

Proof. For all s ∈ [s̄, 1] and n large enough, from (3.20), we can reorganize the variable
Q1
s,n as follows

Q1
s,n =bsnc

n

(√
n(û0,s − u)T Â−1

0,s
√
nι̂0,s +

√
nι̂T0,s A

−1
0,s

T
Û0,sÂ

−1
0,s
√
nι̂0,s

+ uT
√
n
(
Â−1 − I−1

) √
nι̂0,s

)
=bsnc

n
q(
√
n(ξ̂′0,s − ξ′); Â−1

0,s, Û0,s), (3.35)

with

Û0,s := 1
bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

and ξ̂′0,s = (ι̂0,s, û0,s − u, Â−1
0,s) from its definition in (3.24).

We know from Theorem 3.14 that the process (
√
n(ξ̂′0,s − ξ′))s∈[s̄,1] converges weakly

to the process (1
s
g(ΣWs))s∈[s̄,1]. Recall that, by Proposition 3.10, Â−1

0,s converges a.s. to
I−1, uniformly in s ∈ [s̄, 1]. Further, by Assumption 3.5, Lemma 3.11 can be applied
to h(x, θ) = D2

θ(w log f1)(x, θ), taking the set Θ′ as O. Therefore Û0,s converges a.s. to
U , uniformly in s ∈ [s̄, 1]. It follows by the Extended Slutsky’s Theorem 1.13, that the
process (√

n(ξ̂′0,s − ξ′), Â−1
0,s, Û0,s

)
s∈[s̄,1]

converges weakly to the process (1
s
g(ΣWs), I−1,U)s∈[s̄,1]. The map q being continuous,

the result follows by the Continuous Mapping Theorem 1.11.

3.3.3 Limit distribution of the test statistic
The limit distribution of Λn is obtain as an extension of the result in Theorem 3.16 for
Q1
n. In the following Theorem we derive the limit distribution of the test statistic Sn.

Theorem 3.17. Under H0 and Assumptions 3.1-3.5, the test statistic

Sn
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q(Ws − sW1)
s(1− s)

where (Ws)s∈[0,1] is a standard 2d+d2-dimensional Brownian motion and the application
q is defined in (3.33).

Proof. Recall that from (3.29) and (3.35), for s ∈ [s̄, 1], Q1
s,n can be written as follows

for s ∈ [s̄, 1]:

Q1
s,n =bsnc

n
q
(√

n
(

Φ(g(ξ̂0,t; Â−1
0,t , Ĵ0,t)t∈[s̄,1])− Φ(ξ·)

)
s
; Â−1

0,s, Û0,s

)
.

We remark from (3.9) that Q1
s,n and Q2

s,n have a similar structure and differ only from
the fact that Q1

s,n depends from the sample (X1, . . . , Xbsnc) and the estimator θ̂0,s,
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while Q2
s,n depends from the sample (Xbsnc+1, . . . , Xn) and the estimator θ̂1,s. With the

definition of ξ̂0,s in (3.19), we can write Q2
s,n for s ∈ [s̄, 1− s̄] as follows:

Q2
s,n =n− bsnc

n
q

(
√
n

(
Φ̃

(
g

(
n

n− btnc ξ̂0,1 −
btnc

n− btnc ξ̂0,t; Â
−1
t,1 , Ĵt,1

)
t∈[s̄,1−s̄]

)
− Φ̃((ξ)s∈[s̄,1−s̄])

)
s

; Â−1
s,1, Ûs,1

)

where Φ̃ is the map from the set of càd-làg paths D([s̄, 1 − s̄], (Rd)2 × GLd(R)) onto
itself that coincide with Φ on [s̄, 1− s̄], i.e. for s ∈ [s̄, 1− s̄] and x ∈ D([s̄, 1− s̄], (Rd)2×
GLd(R)), Φ̃(x)s := ϕ(xs). In addition, the random variable Q1

1,n can be written as:

Q1
1,n =q

(√
n
(
ϕ(g(ξ̂0,1; Â−1, Ĵ0,1))− ϕ(ξ)

)
; Â−1, Û0,1

)
.

From the three equations above, the process (Q1
s,n, Q

2
s,n,−Q1

1,n)s∈[s̄,1−s̄] can be seen as
a function of the triple process(

ξ̂0,s,
n

n− bsnc
ξ̂0,1 −

bsnc
n− bsnc

ξ̂0,s, ξ̂0,1

)
s∈[s̄,1−s̄]

. (3.36)

Recall that, by Lemma 3.12, the process
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly to (1
s
ΣWs)s∈[s̄,1]

in D[s̄,1]. Then a similar central limit result holds for the triple defined in (3.36) and,
by a succession of composition of the applications g, Φ and q along with arguments
based on the Extended Slutsky’s Theorem 1.13 and the Continuous Mapping Theorem
1.11, the result obtained for Q1

n is extended to the process (Q1
s,n, Q

2
s,n,−Q1

1,n)s∈[s̄,1−s̄].
To show this, we reuse the arguments of Theorem 3.14. The functional delta method
on the Skorokhod metric space is still applicable and the process√n(Φ(g(ξ̂0,t; Â−1

0,t , Ĵ0,t)t∈[s̄,1])− Φ(ξ·))s,

√
n

Φ̃
g ( n

n− btnc
ξ̂0,1 −

btnc
n− btnc

ξ̂0,t; Â−1
t,1 , Ĵt,1

)
t∈[s̄,1−s̄]

− Φ̃((ξ)t∈[s̄,1−s̄])

s

√
n(ϕ(g(ξ̂0,1; Â−1, Ĵ0,1))− ϕ(ξ))


s∈[s̄,1−s̄]

converges weakly to the process(
g
(1
s

ΣWs

)
, g
( 1

1− sΣ (W1 −Ws)
)
, g(ΣW1)

)
s∈[s̄,1−s̄]

in the Skorokhod metric space of càd-làg functions on [s̄, 1− s̄] with values in (Rd)2 ×
GLd(R). Then, with a simple extension of the arguments of Theorem 3.16, the triple(
Q1
s,n, Q

2
s,n,−Q1

1,n

)
s∈[s̄,1−s̄]

converges as follows:
(
Q1
s,n, Q

2
s,n,−Q1

1,n

)
s∈[s̄,1−s̄]

D−−−→
n→∞

(1
s
q (Ws) ,

1
1− sq (W1 −Ws) ,−q(W1)

)
s∈[s̄,1−s̄]

.

From Remark 3.15, q is a quadratic form and, from Lemma 3.22,
1
s
q (Ws) + 1

1− sq (W1 −Ws)− q(W1) = q(Ws − sW1)
s(1− s) , s ∈ [s̄, 1− s̄].

The result follows from a last application of Theorem 1.11 to the application that sums
the elements of the triple above and takes the supremum over [s̄, 1− s̄].
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The limit distribution obtained is somehow similar to the one given by Csörgő and
Horváth (1997), Corollary 1.1.1, for the i.i.d. case of an unconstrained log-likelihood
ratio test. Since q is a quadratic form, q(Ws − sW1)s∈[s̄,1−s̄] is also a quadratic form of
a Brownian bridge. The introduction of the weights impacts here the dimension of the
Brownian bridge that is here 2d+ d2, while, in the standard case, the Brownian bridge
is of dimension d.

3.3.4 Test procedure
In practice, we observe a realization X(ω) for some ω ∈ Ω of the random sample X
with n observations. We propose the following test procedure:

1. Compute the estimators θ̂, (θ̂0,s)s∈[s̄,1−s̄] and (θ̂s,1)s∈[s̄,1−s̄] where s̄ is known from
Assumption 3.1. The three estimators are defined in Section 3.2.

2. Compute the process (Λs,n)s∈[s̄,1−s̄] and the test statistic Sn using their definitions
in Equations (3.5) and (3.6).

3. Compute the constants I−1 defined in (3.1), U defined in (3.34), J defined in
(3.22) and the covariance matrix Σ defined for Lemma 3.12. This requires addi-
tional developments: theoretical computation or numerical approximation.

4. Compute the distribution of sups∈[s̄,1−s̄]
q(Ws−sW1)
s(1−s) where W is a standard Brow-

nian motion and q is defined in (3.33). This requires additional development:
theoretical computation or numerical approximation.

5. Compute the threshold Lα chosen with respect to a false alarm constraint. It
can be obtained from the probability of false alarm α ∈ (0, 1) such that Lα is
the α-percentile of the distribution of sups∈[s̄,1−s̄]

q(Ws−sW1)
s(1−s) . We conclude that no

change-point occurs if the statistic Sn is smaller than the threshold: we should
reject H0.

Since, by definition, the estimators θ̂0,s, θ̂s,1 and the process Λs,n are constant piecewise,
it is sufficient to estimate them on a finite set of s ∈ [s̄, 1− s̄].

This test focuses on the first component of the mixture. Obviously, by definition of the
mixture and of the test itself, this can be applied to any other component. Therefore,
in practice, it might be relevant to run a test on each component. Alongside a standard
Likelihood Ratio Test that does not focus on a specific component, the set of tests
constitutes a useful detection tool for the industry.

In the next section, we suggest an extended version of this test. Numerical applications
showed that such an extension increases the detection frequency when a change occurs.

3.4 Extension: scaling the contributions in the like-
lihood ratio (EWLT)

In this section, we introduce an extended version of the test defined in Section 3.2.2.
For a fixed s ∈ [s̄, 1], we define the contribution cs,n by

cs,n :=
bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1). (3.37)
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Remark that, from its definition in (3.5), the log-ratio Λs,n is the difference of (Q1
s,n +

Q2
s,n) and Q1

1,n. Then, cs,n is the contribution of the sample to the term (Q1
s,n +Q2

s,n),
and c1,n = ∑n

i=1w(Xi, θ̂) is the contribution of the sample to the term Q1
1,n. Under the

null hypothesis, by Lemma 3.11 and the definition of w(., .) in (3.2), we see that

cs,n
n

a.s.−−−→
n→∞

EH0 [w(X1,θ)] =
∫
X

p1f1(x,λ1)
f(x,θ) f(x,θ)dx = p1,

uniformly in s ∈ [s̄, 1]. It follows that, for a given s ∈ [s̄, 1−s̄], the average contributions
cs,n/n and c1,n/n have the same limit under the null hypothesis. Under the alternative
hypothesis, we observed in numerical applications that these average contributions can
play a significant role in the detection performance. Therefore, we suggest to scale
our statistic with the total contributions. We define a new log-ratio process Λ∗n :=
(Λ∗s,n)s∈[s̄,1−s̄] by

Λ∗s,n := c1,n

cs,n

bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +
n∑

i=bsnc+1
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)


−

n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1). (3.38)

The test statistic is then defined by S∗n := sups∈[s̄,1−s̄] Λ∗s,n. We refer to this test as the
EWLT (Extended Weighted Likelihood Test).

In order to obtain a limit distribution for S∗n, we start by noticing that

Λ∗s,n = c1,n
cs,n

Λs,n +
(
c1,n
cs,n
− 1

)
n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1)

= c1,n
cs,n

Λs,n

−
1
n

∑n
i=1w(Xi, θ̂) log f1(Xi, λ̂1)

1
ncs,n

bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1)−

n∑
i=1

w(Xi, θ̂)

 .
By Lemma 3.11, we have that the ratio c1,n/cs,n converges a.s. to 1 uniformly in s ∈
[s̄, 1], and also that

1
n

∑n
i=1w(Xi, θ̂) log f1(Xi, λ̂1)

1
n
cs,n

a.s.−−−→
n→∞

EH0 [log f1(Y,λ1)] =: β,

uniformly in s ∈ [s̄, 1], with Y a random variable with density f1(.,λ1). We can show
numerically that, in general, β is not null.
Remark that the sum

bsnc∑
i=1

w(Xi, θ̂0,s) +
n∑

i=bsnc+1
w(Xi, θ̂s,1)−

n∑
i=1

w(Xi, θ̂)

has the same form as Λs,n in (3.5), but without the factor log f1(Xi, λ̂.,.,1). Then, we
already see that the limit distribution of S∗n is obtained with similar arguments that
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gave us the limit distribution of Sn in Theorem 3.17. As in Section 3.3, we start by
rewriting Λ∗s,n as follows

Λ∗s,n = c1,n

cs,n
Λs,n −

1
n

∑n
i=1w(Xi, θ̂) log f1(Xi, λ̂1)

1
n
cs,n

(Q1∗
s,n +Q2∗

s,n −Q1∗
1,n)

where, Q1∗
n = (Q1∗

s,n)s∈[s̄,1] and Q2∗
n = (Q2∗

s,n)s∈[s̄,1−s̄] are càd-làg real-valued processes
defined by

Q1∗
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s)− w(Xi,θ)

)
− vT I−1

bsnc∑
i=1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1],

Q2∗
s,n :=

n∑
i=bsnc+1

(
w(Xi, θ̂s,1)− w(Xi,θ)

)
− vT I−1

n∑
i=bsnc+1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1− s̄],

and v := EH0 [Dθw(X1,θ)] ∈ Rd. With similar arguments as in Section 3.3.2, Q1∗
s,n and

Q2∗
s,n can be expressed as functions of the triple (ι̂0,s, v̂0,s − v, Î0,s) with ι̂0,s and Î0,s

defined in (3.19), and

v̂0,s := 1
bsnc

bsnc∑
i=1

Dθw(Xi,θ).

It follows that Λ∗s,n can be expressed as a function of the quadruple

ξ̂∗0,s := (ι̂0,s, û0,s − u, v̂0,s − v, Î0,s)

and a random variable that depends on s and n and converges a.s. uniformly in s to
some finite constant.

We denote by Σ∗ the unique positive semi-definite square root of the covariance matrix
under the null hypothesis of the quadruple(
Dθ(log f)(X1,θ), Dθ(w log f1)(X1,θ)− u, Dθw(X1,θ)− v, −D2

θ(log f)(X1,θ)− I
)

reorganized in a 3d+ d2-dimensional real vector. Still under the null hypothesis, the
result of Lemma 3.12 can be extended to the process (ξ̂∗0,s)s∈[s̄,1] with an application of
Donsker’s Theorem 1.10. With ξ∗ := (0, 0, 0, I), the process

√
n(ξ̂∗0,s−ξ∗)s∈[s̄,1] converges

weakly in the Skorokhod metric space as follows
√
n
(
ξ̂∗0,s − ξ∗

)
s∈[s̄,1]

D−−−→
n→∞

(1
s

Σ∗Ws

)
s∈[s̄,1]

,

where W := (Ws)s∈[0,1] is a standard 3d+ d2-dimensional Brownian motion and Σ∗Ws

is reorganized as a quadruple in (Rd)3 × gld(R).

As for the limit distribution of Sn in Theorem 3.17, the convergence of S∗n is obtained by
a functional delta method (Corollary 1.16) and multiple applications of the Extended
Slutsky’s Theorem 1.13 and the Continuous Mapping Theorem 1.11.
To this end, we start by adapting the function g defined in (3.25), for Theorem 3.14.
We define the map g∗ for a quadruple (ι, u, v, I) in (Rd)3 × gld(R) by

g∗(ι, u, v, I) :=
(
ι, u, v,−I−1

(
I − 1

2

d∑
l=1

(
ιT
(
I−1 T

)
.,l

)
J.,.,l

)
I−1

)
.
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Chapter 3 – Weighted likelihood test for a change in one component of a parametric mixture

Remark that, for a fixed s, g∗(Σ∗Ws) is a quadruple in (Rd)3 × gld(R). Remark also
that, when we applied the delta method in the proof of Theorem 3.14, the vector u did
not play a significant role. Here, this is also the case for the vector v. The result is then
extended to the quadruple process

√
n(ξ̂∗0,s − ξ∗)s∈[s̄,1] without additional arguments.

Then, similarly to the function q defined in (3.32), we introduce the map q∗, defined
for (ι, u, v, I;A, J, J∗) ∈ (Rd)3 × (gld(R))4 by

q∗(ι, u, v, I;A, J, J∗)
= uTAι− βvTAι+ ιTAT (J − βJ∗)Aι+ (uT − βvT )Iι ∈ R.

Last, we set
q∗(z) := q∗(g∗(Σ∗z); I−1,U ,V ), z ∈ R3d+d2

, (3.39)
where Σ∗z is reorganized as a quadruple in (Rd)3 × gld(R) and with V the matrix
defined by

V := EH0

[
D2
θw(X1,θ)

]
and U defined in (3.34). With the same arguments as in Remark 3.15, q∗ is also a
quadratic form. The following theorem states the limit distribution obtained for S∗n.

Theorem 3.18. Under H0 and Assumptions 3.1-3.5, the test statistic

S∗n
D−−−→

n→∞
sup

s∈[s̄,1−s̄]

q∗(Ws − sW1)
s(1− s)

where (Ws)s∈[0,1] is a standard 3d+d2-dimensional Brownian motion and the application
q∗ is defined in (3.39).

Proof. The proof follows the same logic as the proof of Theorem 3.17. The arguments
are based on a functional delta method (Corollary 1.16) and multiple applications of
the Extended Slutsky’s Theorem 1.13 and the Continuous Mapping Theorem 1.11.

The test procedure follows the same steps as described in Section 3.3.4. We will see in
Section 3.6.2 that this extension improves significantly the detection quality. In partic-
ular the type II error is smaller compared to the one of the WL test.

Remark 3.19. In Theorems 3.17 and 3.18, and in the results on which they rely,
the dimension of the limit Brownian motion W can be reduced by recognizing that the
matrix Î0,s defined in (3.19) is symmetric: it contains d(d+1)/2 distinct elements. This
does not seem to have an impact on the numerical properties of the tests.

In the following section we explicit the test in the case of an univariate Gaussian finite
mixture.

3.5 Example: the univariate finite Gaussian mix-
ture

In this section, we assume that the sample X = (Xi)1≤i≤n follows an univariate Gaus-
sian mixture with m components. In addition to the weight parameters p1, . . . , pm−1,
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3.5. Example: the univariate finite Gaussian mixture

the mixture is defined by the means µ1, . . . , µm ∈ R and the standard deviations
σ1, . . . , σm ∈ R+

∗ of the m components. We assume that the set of eligible parameters
Θ that contains θ is the subset of Θ0 × (R× R+

∗ )m defined by the parameters
θ = (p1, . . . , pm−1, µ1, σ1, . . . , µm, σm)

such that:
1. The means are strictly increasing: µ1 < µ2 < · · · < µm.
2. There exists some dispersion boundary 0 < b ≤ 1, deterministic and known,

such that the variances are positive and bounded: for all i ∈ {1, . . . ,m}, σi > 0
and

min
{
σj
σk
, 1 ≤ j, k ≤ m

}
> b.

Note that Θ is an open convex 15 subset of R3m−1.

Remark 3.20. We impose that the means of the components cannot be equal in order
to ensure that the mixture is identifiable and that Θ is an open subset of R3m−1. If,
under H0, two means are equal, it is sufficient to define a model that uses one less
parameter, i.e. using the same parameter for both means but with different variances.

The second assumption is a constraint from Hathaway (1985) that ensures the strong
consistency of the estimator θ̂ (Theorem 1.7). We obtain the following result.

Proposition 3.21. Under Assumption 3.1 and with the parameter set Θ defined above,
the validity conditions of Theorems 3.17 and 3.18 hold for a finite Gaussian mixture.

Proof. The result is obtained as soon as we show that Assumptions 3.2-3.5 are valid.
First of all, the conditions of the model introduced in Section 3.2.1 and Assumptions
3.2 and 3.3 are standard prerequisites for limit results of likelihood based estimators
(McLachlan and Peel (2000)). In particular, from Example 6.10 in Lehmann and Casella
(1998), one sees that the assumptions of Theorem 1.5 hold for identifiable Gaussian
mixtures. With condition 1. above, it follows that Assumptions 3.2 and 3.3 hold.
With condition 2. above, Theorem 1.7 from Hathaway (1985) ensures that Assumption
3.4 is valid, i.e. the estimator θ̂ is strongly consistent.
Since the parameter set Θ is a convex open subset of Rd that contains the true pa-
rameter θ, it is possible to find a bounded convex set Θ′ ⊂ Θ such that θ is in the
interior of Θ′. We show that Assumption 3.5 is valid for this set Θ′. First we recall
that, EH0 [|X1|k] is finite for all k ≥ 0. Thus it is sufficient to show that we can find
some function θ 7→ κ(θ) with positive values, not depending on x and continuous on
Θ′, such that, for all 1 ≤ i, j ≤ d, θ in Θ′ and x ∈ R,

∣∣∣D2
θ(w log f1)(x, θ)i,j

∣∣∣ ≤ 6∑
k=0

κ(θ)|x|k. (3.40)

On the one hand, since x ∈ R 7→ f1(x, (µ1, σ1)) is the density function of a Gaussian
random variable, log f1(x, (µ1, σ1)) can be written as a second-order polynomial of x.
Its coefficients are infinitely differentiable functions of (µ1, σ1) on R×R+

∗ . It follows that
the absolute values of the first and second order partial derivatives of f1(x, (µ1, σ1)) can

15. In particular, for any t ∈ [0, 1], for any θ and θ′ in Θ, and for any 1 ≤ j, k ≤ m, it holds that
tσj+(1−t)σ′

j

tσk+(1−t)σ′
k
>

tbσk+(1−t)bσ′
k

tσk+(1−t)σ′
k

= b.
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be bounded by a second-order polynomial as on the left side of (3.40). On the other
hand, by (3.3), the weight function w(x, θ) takes its values in [0, 1] for all x and all θ.
In order to conclude the proof, we need only to bound the absolute value of the first
and second partial derivatives of w(x, θ).
From the definition of w in (3.2), its first order partial derivatives can be written as

∂

∂θi
w(x, θ) =

∂
∂θi
f̃1(x, θ)
f(x, θ) − w(x, θ)

m∑
k=1

∂
∂θi
f̃k(x, θ)
f(x, θ) , 1 ≤ i ≤ d

where f̃k : (x, θ) 7→ pkfk(x, λk). We can show that

∂
∂θi
f̃k(x, θ)
f(x, θ) = pkfk(x, λk)

f(x, θ) κi,k(x, θ),

where κi,k(x, θ) is a second-order polynomial of x with coefficients that are infinitely
differentiable functions of θ on Θ. Moreover we recognize that pkfk(x, λk)/f(x, θ) is
another weight function that takes its values in [0, 1] for all x and all θ. Thus | ∂

∂θi
w(x, θ)|

can be bounded by a second-order polynomial as on the left side of (3.40). With
similar arguments, the absolute value of the second partial derivatives of w(x, θ) can
be bounded by a polynomial of degree four as in the left side of (3.40). The result
follows.

Remark that Assumption 3.1 does not concern the choice of distribution and therefore
remains a preliminary condition to be discussed when applying the WL and EWL tests.
In the following section, we give a few applications for the Gaussian case: we start with
numerical illustrations of the test, compared to some standard test available in the
literature. Then we show how this test can help detect if a change occurs or not in a
dataset from the non-life insurance industry.

3.6 Applications
We provide two distinct applications for the case of an univariate finite Gaussian mix-
ture. First, with numerical simulations, we illustrate the properties of the three follow-
ing tests:
� the WL test, defined by the statistic Sn in (3.6) and for which Theorem 3.17

provides a limit distribution;
� the EWL test, defined by the statistic S∗n in Section 3.4 and for which Theorem

3.18 provides a limit distribution;
� a standard benchmark test that we shall define in the following section.

In this numerical application, our main interest lies in the detection of changes in the
first component that are not visible to the naked eye (small) but also not too close
to 0 (no impact in practice), for large samples (over 10k observations). The second
application is an illustration of the WL and EWL tests on a Property and Casualty
insurance large dataset (15k observations).

We start by introducing the benchmark test (BM).
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3.6.1 The benchmark test
The book of Csörgő and Horváth (1997) gathers standard likelihood-based approaches
for the detection of change-points in many different frameworks. For the simple at
most one change (AMOC) case, one can consider that each parameter θ = (a, b) ∈ Θ
is defined by two sub-parameters a and b. We give below a standard likelihood-based
hypothesis test that aims to detect if a change occurs in the first sub-parameter a (see
e.g. Section 1.1 in Csörgő and Horváth (1997)). Here b is called a nuisance parameter.
We test:
� the null hypothesis where no change happens, i.e. θ1 = · · · = θn,
� against the alternative hypothesis where at most one change occurs, i.e. there

exists some 1 ≤ k ≤ n such that a1 = · · · = ak 6= ak+1 = · · · = an and
b1 = · · · = bn.

The test is defined with the help of the log-likelihood ratio

Λcs
k,n := log


sup

(a,b),(a′,b)∈Θ

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a′, b))

sup
θ∈Θ

∏n
i=1 f(Xi, θ)


and the test statistic max1≤k≤n 2Λcs

k,n. Csörgő and Horváth (1997) provide its limit dis-
tribution 16.

For the detection of a change in the first component for a finite parametric mixture
with m components, we set a := (p1, λ1) and b := (p2, . . . , pm−1, λ2, . . . , λm). In other
words, the separation between the parameters of interest a and the nuisance parameters
b allows the test to focus on a change in the first component. In the WL and EWL
tests, this role is played by the weight functions.
This setting for a and b also means that we allow the weight parameter of the first
component to change (p1 6= p′1). Looking at the numerator of ΛBM

k,n , for both couples
(a, b) and (a′, b), the sum of the m− 1 weight parameters has to be strictly below one.
We impose first that ∑m−1

k=1 pk < 1. Then, we assume that the relative weight of two
components for 2 ≤ i, j ≤ m is the same before and after k. The log-likelihood ratio
becomes:

ΛBM
k,n := log


sup
a,a′,b

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a′, b′))

sup
θ∈Θ

∏n
i=1 f(Xi, θ)

 (3.41)

with
b′ :=

(
1− p′1
1− p1

p2, . . . ,
1− p′1
1− p1

pm−1, λ2, . . . , λm

)
.

Thus the sum of the m − 1 weight parameters of the couple (a′, b′) is also below one.
We refer to the test defined by the test statistic max1≤k≤n 2ΛBM

k,n as the benchmark test.

3.6.2 Numerical properties
Setup

While establishing Theorem 3.17, we assumed that the null hypothesis holds in order
to control the type I error (proportion of false positives). In this numerical application,
16. See Corollary 1.1.1, Theorems 1.3.1. and 1.3.2 in Csörgő and Horváth (1997).

97



Chapter 3 – Weighted likelihood test for a change in one component of a parametric mixture

we aim to visualize some properties of the WL and EWL tests:
� Compare the type II error (proportion of false negative) of the three tests (WL,

EWL and benchmark),
� Understand the computational difficulties raised by each test (available algo-

rithms, run time, inadequate convergence, etc.),
� As a nice-to-have, visualize the detection frequency of the tests when a change

occurs in any other component.
We illustrate our analysis with simulations of a Gaussian mixture with 3 components
such that:
� The sample size is large: n = 1k or 10k observations (obs.) as we are interested in

applications to large datasets (see the application on real data in Section 3.6.3).
� Under the null hypothesis, the mixture used for the illustrations has equal weight

parameters (1/3), equal standard deviations (0.25) and respective means -1, 0
and 1. It follows that, with a relatively small sample, the empirical density of the
mixture shows clearly the three components.
� The change occurs in middle of the sample (s = 0.5) 17.
� The detection threshold is the 90% percentile of test statistic under the null

hypothesis (type I error).
The results are obtained with standard algorithms from the R software. For the bench-
mark test, the optimization problem of the numerator of ΛBM

k,n is not standard and
a dedicated algorithm does not exist. We solve this problem with the generic optim
function (Byrd et al. (1995)). For the denominator of ΛBM

k,n and the estimators in the
WL and EWL tests, we apply the standard EM algorithm from the mixtools pack-
age (Benaglia et al. (2009)). We distinguish two settings for the initialization of the
algorithms:
� A standard initialization assuming that we do not know the parameters,
� A theoretical initialization with the true parameters. This is possible because we

are simulating the data.
The comparison of both types of initialization illustrate the capacity of the algorithms
to converge to the optimal parameters. Results are obtained by multiple simulations
of the random sample.

In this setup, the results obtained under the null hypothesis in Theorems 3.17 and 3.18
allow us to reduce significantly the calibration run time of the detection thresholds:
the marginal run time of one simulation is divided by 10 000. For 106 simulations of
the limit distribution, due to the approximation of the constants of the maps q and q∗
defined in (3.33) and (3.39), the run time of the WLT and EWLT is divided by 8 000.

Results: detection quality under the alternate hypothesis

The alternate hypothesis is defined in Section 3.2.1 as the case when the sample con-
tains one change in the first component: the parameters which describe the distribution

17. The simulations for the numerical comparison given in this section require an important run
time. In order to reduce significantly this run time, we computed the illustrations for s = 0.5 (statistic
and threshold) and not over the whole process. We made sure that this does not effect the conclusions.
The application on the real data in Section 3.6.3 is based on a computation of the whole process.
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of the first component are different before and after the change-point while the other
parameters of the mixture remain the same. In this application, we illustrate the po-
tential properties of the WL and EWL tests through three kind of changes in the
parameters of the first component: a shift between -1 and +1 of the mean, a shift
between -0.2 and +0.5 of the standard deviation and a shift between -0.25 and +0.25
of the weight parameter.
The type II error (proportion of false negative) of each test is obtained from multiple
re-simulations of samples that contain a change in the first component (Table 3.1). A
high-performance test is characterized by a low type II error. Detailed graphs are also
given in Figures 3.4 and 3.5 in Appendix 3.8.3.

in % Theoretical init. Standard init.
n=1k obs. n=10k obs. n=1k obs. n=10k obs.

WL EWL BM WL EWL BM WL EWL BM WL EWL BM
Mean +0.1 34.8 15.4 11.6 0.0 0.0 0.0 44.4 21.8 42.4 0.4 0.8 30.8
Mean -0.1 36.8 14.4 9.2 0.0 0.0 0.0 42.4 19.0 29.8 0.8 1.2 50.8
Std dev +0.1 22.0 8.6 6.8 0.0 0.0 0.0 33.0 9.2 73.0 0.4 0.6 43.4
Std dev -0.1 5.6 0.4 0.0 0.0 0.0 0.0 9.8 1.0 22.6 1.0 0.2 45.4
Weight +0.1 61.2 38.8 13.8 0.0 0.0 0.0 67.2 42.0 40.8 0.2 0.6 55.4
Weight -0.1 54.2 26.6 10.4 0.0 0.0 0.0 51.8 27.4 34.2 0.6 0.2 27.8

Table 3.1 – Type II error (in %) for a change in the first component (500 re-
simulations). Results are given respectively for the WLT, the EWLT and the benchmark
test (BM).

First, we recall that our main interest lies in the detection of changes in the first com-
ponent that are not visible to the naked eye (small) but also not too close to 0 (no
impact in practice), for large samples (over 10k observations). In that sense, Table 3.1
and Figure 3.5 show that the WLT performs significantly better than the benchmark
test for large samples. In addition, the EWLT improves the performance of the WLT.
Regardless of algorithmic issues, i.e. with a theoretical initialization, the EWLT cor-
rects side effects due to unnormalized contributions (see Section 3.4 for details on the
contribution). In particular, Figures 3.4a and 3.4b illustrate the correction for a signif-
icant increase of the mean. Remark that this has a relative interest since such increase
of the mean is visible to the naked eye. More generally, the three tests have a similar
detection quality for large samples of 10k observations, even if the benchmark test
seems better for a sample of 1k observations (Figures 3.4).
Results obtained with the standard initialization correspond to what one could expect
when applying these tests to real data. In that case, the benchmark test fails to de-
tect properly the change, especially with large samples. To our understanding, this is
mainly due to the optimization problem in the numerator of ΛBM

k,n that the algorithm
often fails to solve. Since their estimation algorithms are more robust, the WL and
EWL tests have both very low type II errors for small changes in the parameters on a
sample of 10k observation (Table 3.1 and Figure 3.5).
We also see that there is still room for improvement for large changes in the weight and
the standard deviation, even if large changes do not have a strong importance since
they are visible to the naked eye.
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In addition to these performance results under the alternative hypothesis, Figure 3.1
shows that, as the sample size increases, the run time needed to compute the bench-
mark test increases considerably faster compared to the WLT. It follows that one major
advantage of the WLT is that it can be computed quickly with standard algorithms,
making it especially convenient for large datasets.

Figure 3.1 – Run time of the benchmark and the WL and EWL tests for an increasing
sample size.

We conclude that the WLT is a valid candidate for the detection of a change in the first
component of a Gaussian mixture. The EWLT is an improved version that significantly
reduces the type II error.

Results: when a change occurs in the second or the third component

As a nice-to-have, we also studied the detection frequency of each test when a change
occurs in the second or third component. We used the same shift ranges as the ones
used for a change in the first component. In this context, a high-performance test is
characterized by a low detection frequency. The results are given in Table 3.2 with
detailed graphs in Figures 3.6, 3.7, 3.8 and 3.9 in Appendix 3.8.3.

The main observation is that the EWLT shows the best results and, for large samples
of 10k observations, the WLT is better than the benchmark test. The WL and EWL
tests tend to detect a change when there is a change in the standard deviation of the
second or third component. This explained by the role of the weight functions in their
detection statistic that zoom on some range of values around the mean of the first com-
ponent: there are significantly more (or less) points that enter this range, increasing
the detection frequency. We still observe that the benchmark test behaves poorly for
large samples.
One could expect that a high-performance test would have a detection frequency that
stays close to the type I error (10%). This is the case for the WL and EWL tests when
a change occurs in the weight parameter (Figures 3.7f and 3.9f). However, from Figures
3.7 and 3.9, we remark that the three tests show systematic patterns for a wide range
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in % Theoretical init. Standard init.
n=1k obs. n=10k obs. n=1k obs. n=10k obs.

WL EWL BM WL EWL BM WL EWL BM WL EWL BM
Change in the second component
Mean +0.1 12 13 20 18 7 73 13 11 25 16 8 59
Mean -0.1 14 8 25 21 7 91 15 10 29 23 6 41
Std dev +0.1 49 22 27 99 63 91 44 20 28 99 61 43
Std dev -0.1 76 67 40 100 100 99 62 44 40 100 100 80
Weight +0.1 12 13 14 11 11 30 7 9 27 14 13 61
Weight -0.1 14 13 13 12 12 31 15 16 13 16 14 24
Change in the third component
Mean +0.1 15 12 10 17 15 13 13 14 10 15 13 28
Mean -0.1 14 11 10 16 13 14 15 16 13 15 14 65
Std dev +0.1 14 14 11 86 64 9 11 11 10 90 68 18
Std dev -0.1 9 9 10 3 4 13 6 6 12 7 6 33
Weight +0.1 9 12 16 13 14 28 13 12 15 11 10 29
Weight -0.1 10 10 15 8 11 21 8 9 28 12 12 66

Table 3.2 – Detection frequency (in %) for a change in the second and third components
(500 re-simulations). Results are given respectively for the WLT, the EWLT and the
benchmark test (BM).

of possible deviations for a change in the mean and the standard deviation. It follows
that there is still some room for improvement regarding this criterion.

In the next section, we study briefly an illustration to a Property and Casualty insur-
ance large dataset (15k observations).

3.6.3 Illustration of the WL and EWL tests on P&C insurance
data

We recall that:
� the WLT is defined by the statistic Sn in (3.6) and Theorem 3.17 provides its

limit distribution;
� the EWLT is defined by the statistic S∗n in Section 3.4 and Theorem 3.18 provides

its limit distribution.
In this section, we give an example of application of these two tests to a problem from
the insurance industry, in particular the bodily injuries from the motor claims. Each
claim is known by the insurer from its declaration date that is the starting point of
observation: we set t = 0, t being expressed in years. We denote by Ct the real-valued
random variable that represents the amount that, at time t, the insurer expects to pay
eventually. This amount varies over time when the claim is reviewed, until it is settled.
The evolution of the amount Ct depends on structural factors (e.g. the type of injury),
internal factors (e.g. a change in the revision policy) and external factors (e.g. new
elements are known by the insurer, a court decision sets the final amount, etc.). For
bodily injuries, the claims takes time to resolve (over 2 years in average). After the
settlement, we assume that Ct is fixed and possibly null or negative.
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In this application, we know that a change of the revision process happened at some
point in the past. The question is then to determine whether or not this change im-
pacted significantly the observed variations of claim amount over time. For that pur-
pose, we consider the random variable Z = sgn(C1−C0.5) log(1+ |C1−C0.5|) that gives
the variation of the claim amount between the 6th and the 12th month in log-scale,
where sgn(.) is the function that gives the sign of a real number taking respectively the
values -1, 0 and 1 when this number is negative, null or positive. From a first analysis
of the data, a Kolmogorov-Smirnov hypothesis test does not reject the assumption that
observed realizations of Z before the change follow a finite parametric mixture with 12
components (Figure 3.2a).
For internal reasons, the insurance company is particularly interested in the 5th com-
ponent of the mixture, highlighted in Figure 3.2a by a red arrow. This component
represents slight decreases of claim amounts. We applied the WL and EWL tests to
a sample of 15k claims where the first third of the sample is known to contain claims
that are not impacted by the change of process. Under the null hypothesis that no
change occurs in the 5th component of the mixture, both tests reject this hypothesis
with a p-value below 10−4. Figure 3.2b illustrates the underlying processes Λn and Λ∗n
and their respective thresholds: the change is significant and, according to both tests,
it seems to occur from the time 1.07.
This conclusion allowed the insurance company to investigate further the quantification
of the change.

This application shows that the WL and EWL tests can be used in the industry for the
monitoring of changes, when they are unexpected but also to assess their significativity
when they are known or suspected. For other topics that tackle change-point problems
in non-life insurance, we refer for example to Dhaene et al. (2002), Andersen et al.
(2009), Kwon and Vu (2017), Peštová and Pešta (2017) or Maciak et al. (2020).
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(a) Empirical density of the variation in claims amount between the 6th
and the 12th development months, before the change of process (7k obs).

(b) Log-ratio processes Λn and Λ∗n of the WL and EWL tests for the de-
tection of a change in the 5th component of the mixture (15k obs).

Figure 3.2 – Application of the WL and EWL tests to a change in the variation of
incurred claims amount (Motor bodily injuries claims).

3.7 Conclusion
In this chapter, we consider a closed sample of independent random variables that
follow a finite mixture distribution with parametric components. The sample might
contain at most one change in the parameters of the first component. If there is a
change, the r.v. are identically distributed before and after the change-point: the pa-
rameters which describe the distribution of the first component are different before and
after the break-point while the other parameters of the mixture remain the same.
To test whether there is a change or not, we proposed two alternative tests (WLT and
EWLT). Each test statistic is built upon a càd-làg process obtained from a likelihood
ratio (see (3.5) and (3.38)). The specificity of these tests is that they can be computed
using known inference algorithms. The first version uses weight functions to help the
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likelihood ratio to zoom on the first component. In the second extended version, we
added an adjustment that helps improve the type II error, as explained in Section 3.6.2.

With a technique from Davis et al. (1995), we derived in Theorems 3.17 and 3.18
the limit distribution of the test statistics under the null hypothesis in the form of a
quadratic form of a multidimensional Brownian motion, with the help of a dedicated
functional limit theorem. In particular, the proof is based on a functional delta method
(Corollary 1.16) and multiple applications of the Extended Slutsky’s Theorem 1.13
and the Continuous Mapping Theorem 1.11. We showed in Section 3.5 that validity
conditions of the main result hold for univariate finite Gaussian mixtures within the
framework of Hathaway (1985).

Numerical applications on simulated data for the Gaussian case showed that second
version of the test outperforms significantly a benchmark test exposed in Csörgő and
Horváth (1997) and defined by (3.41): the type II error is considerably reduced (when
a change occurs in the first component) and the detection frequency remains low in
most cases when a change occurs in another component.
Two issues of the benchmark test are that usual optimization algorithms have an unre-
alistic convergence run time for large samples, and that they fail to compute properly
its statistic. However, in the case of simulated data, we assess that, without this com-
putational issue, the benchmark test would have a lower type II error than our tests.
Therefore the extended version of our tests remains so far the best candidate even if a
dedicated algorithm for computing more robustly the statistic of the benchmark test
would be an improvement.
In addition, in some cases, the three tests still detect a change when a change occurs
in another component (i.e. not the first one). Extensions of our work could consider
adding a penalization term to the likelihood ratio in order to improve this aspect.

We end the applications by a brief illustration of the proposed tests on variations of
claim amounts for bodily injuries motor claims (real data), in the context of a change
of process in the claims handling department of an insurance company. A change is
detected in the fifth component of the Gaussian mixture with 12 components: the in-
surance company could therefore assess the change and investigate further its causes.

From the numerical applications, the WL and EWL tests are valid candidates when
looking for a change in one component of a finite parametric mixture. In addition,
the results obtained under the null hypothesis in Theorems 3.17 and 3.18 allow us to
reduce significantly the calibration run time of the detection thresholds: the marginal
run time of one simulation is divided by 10 000. Beyond these promising results, the
possibilities for other techniques still exist and are worth to be explored.

3.8 Appendices

3.8.1 The constant u
The constant u = EH0 [Dθ(w log f1)(X1,θ)], defined in (3.8), plays a central role in the
proof of Theorems 3.17 and 3.18 since most of the technical difficulties in Section 3.3
emerge only when u 6= 0. This is the case in general, as illustrated in the following
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numerical example.
With the notations of Section 3.5, we consider a numerical simulation for an univariate
Gaussian mixture with 3 components defined by

θ :=
(
(1/3, 1/3), (−1.00, 0.25), (0.00, 0.25), (1.00, 0.25)

)
.

For 105 simulations, the Monte-Carlo approximation of EH0

[
∂
∂µ2

(w log f1)(X1,θ)
]
con-

verges to a non null limit (Figure 3.3). This illustrates that u is not null in general.

Figure 3.3 – Convergence of the Monte-Carlo approximation of
EH0

[
∂
∂µ2

(w log f1)(X1,θ)
]
.

3.8.2 Additional result
This appendix contains an additional result for quadratic forms.

Lemma 3.22. Fix d ≥ 1. If x ∈ Rd 7→ q(x) is a quadratic form, then, for any x, y ∈ Rd

and any real s 6= 0, the following equality holds:
1
s
q (x) + 1

1− sq (y − x)− q(y) = q(x− sy)
s(1− s) .

Proof. The unique symmetric bilinear form 18 associated to q is the application

(x, y) ∈ Rd × Rd 7→ bq(x, y) = 1
2
(
q(x+ y)− q(x)− q(y)

)
.

By definition of bq, we have that q(x) = bq(x, x) and q(x+ y) = q(x) + q(y) + 2 bq(x, y).
Further, for any real s and any x ∈ Rd, q(sx) = s2q(x). It follows that

1
s
q (x) + 1

1− sq (y − x)− q(y)

=(1− s)q(x) + s(q(x) + q(y)− 2 bq(x, y))− s(1− s)q(y)
s(1− s)

=q(x)− 2s bq(x, y) + s2q(y)
s(1− s) = q(x) + 2 bq(x,−sy) + q(−sy)

s(1− s) .

The result follows.

18. See for instance Section 41 in O’Meara (2000).
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3.8.3 Additional illustrations
In this appendix, we provide additional illustrations of the numerical simulations ex-
posed in Section 3.6.2.

(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.4 – Type II error for a change in the first component, theoretical initialization.
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.5 – Type II error for a change in the first component, standard initialization.
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.6 – Detection frequency for a change in the second component, theoretical
initialization.
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.7 – Detection frequency for a change in the second component, standard
initialization.
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.8 – Detection frequency for a change in the third component, theoretical
initialization.
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure 3.9 – Detection frequency for a change in the third component, standard ini-
tialization.
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3.9 Glossary of notations
Â = − 1

n

∑n
i=1

(
D2
θ(log f)(Xi,θ) + 1

2
∑d
l=1

(
θ̂l − θl

)
D3
θ(log f)(Xi, θ

′)l,.,.
)

defined in (3.13).
Â0,s or Âs,1 Âs1,s2 = − 1

bs2nc−bs1nc
∑bs2nc
i=bs1nc+1

(
D2
θ(log f)(Xi,θ)

+1
2
∑d
l=1(θ̂s1,s2;l − θl)D3

θ(log f)(Xi, θ
′
s1,s2)l,.,.

)
defined in (3.14).

β = EH0 [log f1(Y,λ1)], with Y a r.v. with density f1(.,λ1). See Section 3.4.
cs,n =

∑bsnc
i=1 w(Xi, θ̂0,s) +

∑n
i=bsnc+1w(Xi, θ̂s,1), defined in (3.37).

d dimension of the parameter set Θ, see Section 3.2.1.
D[s̄,1] = D([s̄, 1], (Rd)2 × gld(R)). Skorokhod metric space of càd-làg paths, see

Lemma 3.12.
fk(., λk) density function of the k-th component, see Section 3.2.1.
g(., ., .; ., .) map defined in (3.26) for (ι, u, I;A, J) ∈ (Rd)2 × (gld(R))2 × Rd×d×d by

(ι, u, I;A, J) 7→
(
ι, u, I − 1

2
∑d
l=1(ιT (AT ).,l)J.,.,l

)
.

g(., ., .) linear map defined in (3.25) for (ι, u, I) ∈ (Rd)2 × gld(R) by
(ι, u, I) 7→

(
ι, u,−I−1(I − 1

2
∑d
l=1(ιT (I−1 T ).,l)J.,.,l)I−1

)
.

ι̂0,s = 1
bsnc

∑bsnc
i=1 Dθ(log f)(Xi,θ), defined in (3.19).

Î0,s = − 1
bsnc

∑bsnc
i=1 D

2
θ(log f)(Xi,θ), defined in (3.19).

I = −EH0

[
D2
θ(log f)(X1,θ)

]
. Fisher information matrix defined in (3.1).

Ĵ0,s = 1
bsnc

∑bsnc
i=1 D

3
θ(log f)(Xi, θ

′
0,s) defined in Lemma 3.13.

J = EH0

[
D3
θ(log f)(X1,θ)

]
defined in (3.22).

λk density function parameter of the k-th component, see Section 3.2.1.
λ̂1 see θ̂.
λ̂0,s,1 or λ̂s,1,1 see θ̂0,s or θ̂s,1.
Λn = (Λs,n)s∈[s̄,1−s̄]. Detection process of the WL test, defined in (3.5).
Λs,n = Q1

s,n +Q2
s,n −Q1

1,n defined in (3.5) (see also (3.9)).
Λ∗n = (Λ∗s,n)s∈[s̄,1−s̄]. Detection process of the EWL test, defined in (3.38).
Λ∗s,n = c1,n

cs,n
Λs,n +

(
c1,n
cs,n
− 1

)∑n
i=1w(Xi, θ̂) log f1(Xi, λ̂1) defined in (3.38).

m number of components in the mixture, see Section 3.2.1.
pk weight of the k-th component in the mixture, see Section 3.2.1.
Φ(.) map defined in (3.28) by (xs)s∈[s̄,1] 7→ (ϕ(xs))s∈[s̄,1].
q(., ., .; ., .) map defined in (3.32) by (ι, u, I;A, J) 7→ uTAι+ ιTATJAι+ uT Iι.
q(.) map defined in (3.33) by z ∈ R2d+d2 7→ q(g(Σz); I−1,U).
q∗(.) map defined in (3.39) for z ∈ R3d+d2 by z 7→ q∗(g∗(Σ∗z); I−1,U ,V ).
Q1
n = (Q1

s,n)s∈[s̄,1] defined in (3.10).
Q1
s,n =

∑bsnc
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)
−uT I−1∑bsnc

i=1 Dθ(log f)(Xi,θ) defined in (3.10).
Q2
n = (Q2

s,n)s∈[s̄,1−s̄] defined in (3.10).
Q2
s,n =

∑n
i=bsnc+1

(
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)− w(Xi,θ) log f1(Xi,λ1)

)
−uT I−1∑n

i=bsnc+1Dθ(log f)(Xi,θ) defined in (3.10).
s̄ ∈ (0, 0.5). We assume that the change-point is in [s̄, 1− s̄] if it exists (As-

sumption 3.1).
Sn = sups∈[s̄,1−s̄] Λs,n defined in (3.6). Detection statistic of the WL test.
S∗n = sups∈[s̄,1−s̄] Λ∗s,n defined in Section 3.4. Detection statistic of the EWL

test.
Σ unique positive semi-definite square root of the covariance matrix of the

i.i.d. terms in the average ξ̂0,1, see Lemma 3.12.
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θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m). One consistent sequence of solutions of the like-
lihood equations over the sample X1, . . . , Xn, see Section 3.2.1.

θ̂0,s or θ̂s,1 θ̂s1,s2 = (p̂s1,s2,1, . . . , p̂s1,s2,m−1, λ̂s1,s2,1, . . . , λ̂s1,s2,m). One consistent sequence
of solutions of the likelihood equations over the sample Xbs1nc+1, . . . , Xbs2nc,
see Section 3.2.1.

θ true parameter under the null hypothesis, see Section 3.2.1.
θ′ point on the segment [θ̂,θ], see (3.12).
θ′0,s or θ′s,1 θ′s1,s2 is a point on the segment [θ̂s1,s2 ,θ], see (3.14).
Θ0 parameter set for the weights of the mixture components, see Section 3.2.1.
Θ′ convex subset of Θ for which Assumption 3.5 holds.
û0,s = 1

bsnc
∑bsnc
i=1 Dθ(w log f1)(Xi,θ), defined in (3.19).

u = EH0 [Dθ(w log f1)(X1,θ)] defined in (3.8).
Û0,s = 1

bsnc
∑bsnc
i=1 D

2
θ(w log f1)(Xi, θ

′
0,s), see proof of Theorem 3.16.

U = EH0

[
D2
θ(w log f1)(X1,θ)

]
defined in (3.34).

v̂0,s = 1
bsnc

∑bsnc
i=1 Dθw(Xi,θ), see Section 3.4.

v = EH0 [Dθw(X1,θ)], see Section 3.4.
V = EH0

[
D2
θw(X1,θ)

]
, see Section 3.4.

w(x, θ) = (p1f1(x, λ1))/(f(x, θ)) defined in (3.2).
w log f1 application defined in (3.4) by (x, θ) 7→ w(x, θ) log f1(x, λ1).
ξ̂0,s = (ι̂0,s, û0,s − u, Î0,s), defined in (3.19).
ξ = (0, 0, I) defined in (3.21).
ξ· constant process s.t. ξs = ξ for all s ∈ [s̄, 1], see proof of Theorem 3.14.
ξ̂′0,s = (ι̂0,s, û0,s − u, Â−1

0,s) defined in (3.24).
ξ′ = (0, 0, I−1), see Theorem 3.14.
ξ̂′′0,. = (ξ̂′′0,s)s∈[s̄,1], see proof of Theorem 3.14.
ξ̂′′0,s g(ξ̂0,s; Â−1

0,s, Ĵ0,s) if (3.27) holds, ξ otherwise. See proof of Theorem 3.14.
ξ̂∗0,s = (ι̂0,s, û0,s − u, v̂0,s − v, Î0,s), see Section 3.4.
ξ∗ = (0, 0, 0, I), see Section 3.4.
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Titre : Études de détection de rupture : procédure en ligne pour des modèles discrets de Poisson et
test hors ligne pour des mélanges paramétriques. Application à des problèmes issus de l’assurance.

Mots-clés : Détection de rupture, mélange paramétrique, théorèmes limites faibles de séquences
dépendantes, test de ratio de vraisemblance pondérée, estimateur séquentiel convergent, procédure
de Shiryaev-Roberts, mortalité nationale française, application à des données d’assurance.

Résumé : Cette thèse traite de deux études dis-
tinctes de techniques de détection de rupture.
Le premier problème concerne l’estimation sé-
quentielle du paramètre post-changement dans
le cas d’une séquence discrète de variables aléa-
toires de Poisson. Nous introduisons un estima-
teur alternatif qui est basé sur la statistique de la
procédure de Shiryaev-Roberts. Nous montrons
qu’il s’agit d’un estimateur convergent. Les ap-
plications numériques indiquent que, juste après
le changement, il a un biais et une variance si-
gnificativement plus faibles que ceux de l’estima-
teur du maximum de vraisemblance, avec des
propriétés asymptotiques similaires. Des appli-
cations à des données réelles d’assurance sont
présentées, pour des cas où le changement est
évident ou non.
Dans la seconde étude, nous introduisons deux
tests d’hypothèse qui permettent de détecter une

rupture dans la première composante d’un mé-
lange fini de lois paramétriques, pour un échan-
tillon où au plus un changement se produit.
Chaque test repose sur un ratio de vraisemblance
pondérée qui est calculable à l’aide d’algorithmes
d’estimation standards. Avec une technique issue
de Davis et al. (1995), nous obtenons sous l’hy-
pothèse nulle les lois limites des statistiques de
test comme des formes quadratiques d’un mou-
vement Brownien, à l’aide d’un théorème limite
fonctionnel dédié. Nous montrons que les condi-
tions de validité du résultat limite sont valides
pour le cas Gaussien dans le cadre donné par
Hathaway (1985). Des applications numériques
sur des données simulées illustrent les avantages
des tests alternatifs comparés à un test standard
de référence. Une application illustrative sur des
données réelles d’assurance non-vie est donnée
pour les tests alternatifs.

Title: Studies of change-point detection: on-line scheme for discrete Poisson models and off-line test
for parametric mixtures. Application to insurance problems.

Keywords: Change-point detection, parametric mixture, weak limit theorems for dependent se-
quences, weighted likelihood quotient test, consistent sequential estimator, Shiryaev-Roberts scheme,
French mortality, applications to insurance data.

Abstract: This thesis concerns two distinct stud-
ies of change-point detection techniques.
The first problem deals with the sequential esti-
mation of the post-change distribution when ob-
serving an on-line sequence of Poisson random
variables. We introduce an alternative estimator
based on the detection statistic of the Shiryaev-
Roberts procedure. We show that it is a consis-
tent estimator for the true post-change parameter.
Numerical simulations indicate that, compared to
the usual Maximum Likelihood Estimator, it has
significantly reduced bias and variance just af-
ter the change, with identical asymptotic prop-
erties. Applications on real data from the insur-
ance industry are provided, in a context where the
change is obvious or not.
In the second study, we introduce two alterna-
tive hypothesis tests that aim to detect a change-

point in the first component of a finite paramet-
ric mixture, for a closed sample where at most
one change occurs. They are based on weighted
likelihood ratios that can be computed with stan-
dard inference algorithms. With a technique from
Davis et al. (1995), we derive the limit distribution
of their statistics under the null hypothesis in the
form of quadratic forms of multidimensional Brow-
nian motions, with the help of a dedicated func-
tional limit theorem. We show that validity con-
ditions of the main result hold for univariate fi-
nite Gaussian mixtures within the framework of
Hathaway (1985). Numerical applications on sim-
ulated data illustrate the advantage of the alter-
native tests compared to a standard benchmark
test. An application to Property and Casualty in-
surance real data is provided for the alternative
tests.
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